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Abstract

Many satellite images have a spatial resolution coarser than the extent of
land cover patterns on the ground, leading to mixed pixels whose composite
spectral response consists of responses from multiple land cover classes. Spec-
tral unmixing procedures only determine the fractions of such classes within
a coarse pixel without locating them in space. Super-resolution or sub-pixel
mapping aims at providing a fine resolution map of class labels, one that dis-
plays realistic spatial structure (without artifact discontinuities) and reproduces
the coarse resolution fractions. In this paper, existing approaches for super-
resolution mapping are placed within an inverse problem framework, and a
geostatistical method is proposed for generating alternative synthetic land cover
maps at the fine (target) spatial resolution; these super-resolution realizations
are consistent with all the information available.

Indicator coKriging is used to approximate the probability that a pixel at
the fine spatial resolution belongs to a particular class, given the coarse reso-
lution fractions and (if available) a sparse set of class labels at some informed
fine pixels. Such Kriging-derived probabilities are used in sequential indicator
simulation to generate synthetic maps of class labels at the fine resolution pix-
els. This non-iterative and fast simulation procedure yields alternative super-
resolution land cover maps that reproduce: (i) the observed coarse fractions,
(ii) the fine resolution class labels that might be available, and (iii) the prior
structural information encapsulated in a set of indicator variogram models at
the fine resolution. A case study is provided to illustrate the proposed method-
ology using Landsat TM data from SE China.
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1 Introduction

Sensors with spatial resolution larger than the extent of classes on the ground yield
mixed pixels, i.e., pixels whose spectral signature is a composite of signatures of
different classes. Spectral unmixing is the procedure of determining the fractions of
such classes that occupy any coarse pixel; see, for example, Richards and Jia (1999)
or Tso and Mather (2001) for a survey of unmixing methods. Spectral unmixing,
however, provides only class fractions without locating within any coarse pixel the
constituent classes. That additional task lies in the realm of super-resolution mapping,
also termed sub-pixel mapping, or downscaling; see, for example, Atkinson (2001).

In this paper, we view super-resolution mapping from an inverse problem per-
spective (Menke, 1989; Bertero and Boccacci, 1998; Tarantola, 2005): that of recon-
structing a fine resolution map of class labels from a set of coarse class fractions. The
forward problem of computing coarse fractions from a fine resolution map of class
labels is trivial. The inverse problem, however, is under-determined, in that it has
multiple plausible solutions: many fine resolution class maps can lead to an equally
good reproduction of the available coarse fractions. In order to solve such an under-
determined inverse problem, one needs to invoke prior information that will resolve
the inherent ambiguity. This prior information should pertain to the fine (target)
spatial resolution, so that it constrains the “space” of possible spatial patterns of
classes that can occur at that resolution. In what follows, we will occasionally refer
to this fine resolution prior information as a model of spatial structure, structural
model, or structural information, which, in this work, can also be loosely regarded as
pertaining to texture (Tso and Mather, 2001).

The most primitive form of spatial structure is the rather unrealistic assumption of
classes randomly distributed at the fine spatial resolution. Another particular form of
prior information is the assumption of maximum class auto-correlation at the target
resolution, which underpins several approaches for super-resolution mapping (Atkin-
son et al., 1997; Verhoeye et al., 2001; Atkinson, 2001; Tatem et al., 2001; Mertens
et al., 2003). This prior structural model might be appropriate when the extent of
spatial patterns on the ground is much larger than that of the coarse pixel, a scenario
termed H-resolution by Jupp et al. (1988). Such a model, however, is too rigid, in
that it cannot be adapted to generic scenes.

Moving away from the rigid notion of maximum spatial auto-correlation, prior
information has been specified implicitly or explicitly in the form of parametric in-
dicator variogram models. Atkinson (2001) and Makido and Shortridge (2005) used
an iterative class swapping procedure to generate super-resolution maps, whereby a
parametric function of distance (e.g., exponential decay) was used as a proxy for a
formal indicator variogram model to determine the benefit of changing a simulated
class label at any particular pixel in each iteration. Tatem et al. (2002, 2003) ex-
plicitly used indicator variogram models as objective function components within an
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iterative optimization framework. Prior information has also been specified in the
form of interactions between predefined groups of pixels (cliques) linked to the para-
metric energy function of a Markov Random Field model (Tso and Mather, 2001;
Kasetkasem et al., 2005). Alternatively, that prior information could be extracted
from analog images, by computing directly without any parametrization the proba-
bility of occurrence of different spatial patterns, i.e., sets of class labels over groups
of pixels (Strebelle, 2002). This latter approach to prior information specification
can account for complex spatial patterns (e.g., meandering objects) that cannot be
adequately characterized by two-point statistics, such as indicator variograms.

In this work, we assume knowledge of the coarse resolution fractions; we do not
address how such fractions were derived from the original satellite reflectance values.
Moreover, we assume that these fractions are exact measurements with no error or
inherent uncertainty; the possibility of relaxing this assumption is not pursued here
due to space limitations. In addition, and contrary to many existing approaches to
super-resolution mapping, we also consider the case whereby the analyst has access to
a typically small set of class labels at the fine resolution, possibly obtained via ground
surveys. Such sparse, with respect to the abundant coarse fractions, fine resolution
data provide information on the actual location of classes at the target resolution,
and hence should be reproduced exactly in the final maps.

After a prior model of spatial structure has been specified, a probabilistic formula-
tion of inverse problems seeks to determine the conditional probability distribution of
the unknowns given the available data; that probability distribution encapsulates our
uncertainty about the unknown attribute values given the current level of informa-
tion (Tarantola, 2005). In the context of super-resolution mapping, this amounts to
determining the multivariate or multi-pixel conditional probability of obtaining any
particular spatial combination of class labels at the target resolution, given the abun-
dant coarse fractions and possibly some sparsely sampled class labels at that target
resolution. That conditional distribution is typically complex with multiple modes
and may not be analytically tractable. Instead of determining a single summary
measure from the conditional distribution, such as its mean or mode, that distribu-
tion is “explored” by generating multiple samples or realizations from it (Mosegaard
and Tarantola, 1995; Sambridge and Mosegaard, 2002; Kaipio and Somersalo, 2004;
Tarantola, 2005). In our setting, this amounts to generating alternative simulated
super-resolution maps of class labels that are consistent with all the information avail-
able; that is, the prior structural model, the coarse fractions, and the fine class labels
if available. These simulated super-resolution maps can then be used to determine
the likelihood of occurrence of patterns of classes over various groups or templates
of pixels, by calculating the frequency of occurrence of such class patterns over the
realizations.

More importantly, by using these synthetic super-resolution maps as inputs to a
process simulation model, e.g., in a wildfire propagation simulator, one can build a
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probability distribution for the model outputs in a Monte Carlo framework (Bach-
mann and Allgöwer, 2002). By fixing other input variables to a nominal value or
set of values, one could also assess via Monte Carlo simulation the sensitivity of that
model to an uncertain land cover map; see Crosetto et al. (2001) for a discussion of
uncertainty and sensitivity analysis techniques in a remote sensing context. In our
case, that sensitivity would pertain to the lack of class labels at the appropriate model
resolution.

One of the earliest approaches to super-resolution land cover mapping is that
of Verhoeye et al. (2001), who proposed a deterministic solution based on linear pro-
gramming. This approach, however, does not acknowledge the existence of multiple
super-resolution maps due to multiple optima in the linear programming formula-
tion. In general, most existing algorithms for super-resolution land cover mapping
are iterative in nature, and (rightfully so) yield different such maps depending on the
initial map used in the iteration procedure. Mertens et al. (2003) adopted the same
objective function as Verhoeye et al. (2001), but used a genetic algorithm to search for
plausible super-resolution maps. Tatem et al. (2001) trained a Hopfield neural net-
work to optimize an initial super-resolution map (used for further iterations) with the
simultaneous objectives of coarse fraction reproduction and spatial auto-correlation
maximization; that method was successfully tested on an actual case study (Tatem
et al., 2003). Mertens et al. (2004) used wavelets to account for the resolution differ-
ence between fine class labels and coarse fractions. At the fine scale, a neural network
was trained to estimate the wavelet coefficients, from which a super-resolution map
was reconstructed. Tatem et al. (2002) extended their neural network approach to
account for indicator variogram models. Atkinson (2001) and Makido and Shortridge
(2005) adopted a swapping algorithm, as used in spatial simulated annealing, to con-
struct plausible super-resolution maps. In these latter works, the coarse fractions
were matched exactly by construction. This was achieved by applying the swapping
algorithm to an initial purely random super-resolution map comprised of the correct
class fractions within each coarse pixel.

The common concern with the above iterative approaches is their rate of con-
vergence and computational burden, associated with the repetitive evaluation of
mismatch between simulated and observed coarse fractions, and most importantly
between simulated and expected spatial structure. Other more complex sampling
methods, such as Markov Chain Monte Carlo methods and simulated annealing are
also iterative, and can become computationally prohibitive due to slow convergence;
see, for example, Kaipio and Somersalo (2004). In addition, none of the existing ap-
proaches for super-resolution mapping accounts for fine resolution data in the form of
a sparse set of class labels at informed fine pixels. The recently developed probability
perturbation method of Caers and Hoffman (2006), although still iterative, appears
to be less computational expensive, and warrants further attention in the context of
super-resolution mapping.

4



In this paper, we propose a novel approach for super-resolution land cover map-
ping based on the geostatistical methods of indicator Kriging (Journel, 1983) and
indicator stochastic simulation (Journel and Alabert, 1989), accounting explicitly for
the resolution difference between the available coarse fractions and the sought-after
class labels. The proposed approach: (i) is non-iterative and computationally inex-
pensive, (ii) offers exact, within round-off errors, reproduction of coarse resolution
fractions, (iii) ensures exact reproduction of observed class labels at informed fine
resolution pixels that might be available, and (iv) closely reproduces a set of indica-
tor variogram models linked to transition probabilities of class labels from one fine
pixel to another. Since we explicitly acknowledge that there are multiple solutions
to super-resolution land cover mapping, the end product of our method is a set of
alternative realizations or maps of class labels having the properties listed above.

Section 2.1 describes the links between the spatial statistics of the fine resolution
class labels and the coarse resolution class fractions. These links are exploited in Sec-
tion 2.2 to derive, via indicator coKriging, the conditional probability of class occur-
rence at any fine resolution pixel, given the neighboring coarse fractions and possibly
some fine resolution sample class labels. In Section 2.3, the coKriging formulation
is used within a modified sequential indicator simulation framework to generate al-
ternative realizations of fine resolution class labels with the properties listed above.
A case study is provided in Section 3, illustrating the applicability of our proposed
methodology for super-resolution land cover mapping using data from a Landsat TM
scene over SE China. Last, we offer some discussion and recommendations for future
work in Section 4.

2 Methodology

Let c(v) denote the, usually unknown, class at a generic fine resolution pixel v = v(u),
with u being the coordinate vector of its centroid; the area of that pixel v is denoted
as |v|. It is assumed that at this fine resolution c(v) can take one of K mutually
exclusive and collectively exhaustive labels, i.e., c(v) = k, with k = 1, . . . , K. The
set of all true class labels constitutes the unavailable super-resolution image, and
can be arranged in a (M × 1) vector c = [c(vm),m = 1, . . . ,M ]T , where superscript
T denotes transposition, M = MxMy denotes the number of fine resolution pixels,
and vm = v(um). The presence or absence of the k-th class label at pixel v can be
coded by a binary class indicator ik(v), defined as ik(v) = 1, if c(v) = k, zero if not.
The set of all true indicators for the k-th class can be arranged in a (M × 1) vector
ik = [ik(vm),m = 1, . . . ,M ]T ; there are K such vectors (binary images), one per class.

Let ak(V ) denote the fraction of the k-th class at a generic coarse resolution
pixel V = V (s), with s being the coordinate vector of its centroid. The set of all
fraction values for the k-th class constitutes the available coarse resolution fraction
image, and can be arranged in a (N × 1) vector ak = [ak(Vn), n = 1, . . . , N ]T , with
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N = NxNy denoting the number of coarse pixels, and Vn = V (sn); there are K such
fraction vectors (images), one per class. We denote as F = |V |/|v| = M/N >> 1 the
resolution ratio between the coarse and fine resolution images, and we assume that
both images are co-registered in such a way that there are always F fine resolution
pixels {vm,m = 1, . . . , F} in any coarse resolution pixel V . For simplicity, we do not
always use the full notation vn

m to indicate that the fine pixel vm belongs to the coarse
pixel Vn.

In addition to the coarse resolution fraction images, we consider the case whereby
the analyst has access to class labels obtained at a subset of G << M fine resolution
pixels. We therefore distinguish between informed and uninformed fine pixels, and
denote as jk(vg) the sampled k-th class indicator at an informed fine pixel vg = v(ug);
again, jk(vg) = 1, if c(vg) = k, zero if not. The G indicators for the k-th class are
arranged into a (G × 1) vector jk = [jk(vg), g = 1, . . . , G]T ; there are K such vectors,
one per class. It should be stressed that our method does not require availability
these latter fine resolution data; if such data are available, our method can readily
incorporate them.

In order to condense notation for subsequent discussion, we denote as dk =
[aT

k jTk ]T the ((N +G)× 1) vector containing both coarse resolution fraction data and
fine resolution sample indicators for the k-th class. There are K such vectors, one per
class, which can be arranged in a single ((N +G)×K) matrix d = [dk, k = 1, . . . , K].
With this concise notation, the super-resolution mapping objective can be formulated
as the task of finding the (M × 1) vector c from the ((N + G) × K) matrix d. Note
again, that when the fine resolution sample indicators are not available, matrix d is
of dimension (N × K) consisting only of class fraction values, but the objective and
notation remain the same.

2.1 Statistics of class indicators and fractions

The spatial distribution of the k-th class at the fine resolution is partially charac-
terized by: (i) its proportion, and (ii) a measure of its spatial structure or texture.
In this work, we denote as πk the stationary proportion of the k-th class, and as
2γv

k(h) = 2γv
k(u − u′) the stationary variogram of the k-th class indicators between

any two generic (informed or not) fine resolution pixels v and v′, whose respective
centroids u and u′ are separated by vector h = u − u′; superscript v denotes that
the indicator variogram 2γv

k(h) pertains to the fine spatial resolution of v-pixels. The
indicator variogram between two particular informed fine pixels vg and vg′ is then
denoted as 2γv

k(ug − ug′) = 2γv
k(hgg′), whereas the indicator variogram between a

particular uninformed fine pixel vm and a particular informed fine pixel vg is denoted
as 2γv

k(um − ug) = 2γv
k(hmg). Similarly, the indicator variogram between two partic-

ular uninformed fine pixels vm and vm′ is denoted as 2γv
k(um − um′) = 2γv

k(hmm′).
The indicator variogram 2γv

k(h) characterizes the joint probability of any two

6



generic fine pixels separated by vector h to have different class labels. That indicator
variogram is readily linked to the probability of transition of class k from any pixel v
to a different class k′ at any other pixel v′, when the two pixel centroids are separated
by vector h; see, for example, Carle and Fogg (1996). The joint spatial dissimilarity of
two different classes k and k′ can be characterized by their indicator cross-variogram
2γv

kk′(h); although possible, we do not consider such measures of spatial dissimilarity
in this work.

We further assume that one has already inferred a parametric model 2γv
k(h; θ)

for the fine resolution variogram of each class k. Here θ denotes a vector of model
parameters, such as sill, range, nugget contribution, and possibly anisotropy direction
and ratio. The inference of such a variogram model could be based on fine resolution
information, such as aerial photographs acquired in similar scenes and/or possibly
ground-based data. Alternatively, one could have information on the functional form
of such a variogram model, say, exponential with a nugget component, and then
iteratively fit this model to the coarse fractions, along the lines used by Journel and
Huijbregts (1978) and Atkinson and Curran (1995). It should be noted here, that
we assume that ground-based surveys do not yield an exhaustive sampling of fine
resolution land cover over the study area, but only provide partial information on the
occurrence of class labels at a sparse set of fine pixels. In most real-world situations,
the sampling density of these ground-based surveys might not be sufficient to allow
quantifying fine resolution spatial variability. In these cases, one needs to resort to
assumptions or expert knowledge to infer the indicator variogram models at that fine
resolution; see the discussion in Section 4.

Turning our attention to the coarse resolution data, the fraction value ak(Vn) for
the k-th class at the n-th coarse pixel Vn is formally defined as the average of the
k-th class indicators at the F fine pixels within that coarse pixel Vn:

ak(Vn) =
1

F

F
∑

m=1

ik(vm), vm ∈ Vn (1)

The spatial distribution of the k-th class fractions is again partially character-
ized by their mean (expected value) and a measure of their spatial structure. More
precisely, the mean āk of the k-th class fraction values equals the corresponding pro-
portion πk of same class indicators:

āk =
1

N

N
∑

n=1

ak(Vn) =
1

N

N
∑

n=1

[

1

F

F
∑

m=1

ik(vm)

]

=
1

M

M
∑

m=1

ik(vm) = πk (2)

The fine-to-coarse resolution variogram between the k-th class indicator ik(vm) at
the m-th fine pixel vm and the k-th class fraction ak(Vn) at the n-th coarse pixel Vn
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is then computed from the fine resolution indicator variogram model 2γv
k(h; θ) as:

2γk(vm, Vn) =
1

F

F
∑

m′=1

2γv
k(hmm′ ; θ), vm′ ∈ Vn (3)

where the fine pixel vm need not lie within the coarse pixel Vn.
The above fine-to-coarse resolution variogram is stationary because: (i) the fine

resolution variogram 2γv
k(h; θ) is stationary, and (ii) the coarse pixel size defining

the integration domain is constant. This entails that the fine-to-coarse resolution
variogram is also a function of the separation vector hmn = um − sn between the
centroids um and sn of pixels vm and Vn, i.e., 2γk(vm, Vn) = 2γk(v(um), V (sn)) =
2γvV

k (um − sn) = 2γvV
k (hmn); superscript vV indicates that 2γvV

k (hmn) is a cross-
resolution variogram between fine v-pixels and coarse V -pixels. The cross-resolution
variogram between the g-th informed fine pixel vg and the n-th coarse pixel Vn is
computed in the same way as in Equation (3), and is denoted as 2γvV

k (hgn).
Last, the variogram between the k-th class fractions at two particular coarse pixels

Vn and Vn′ can be computed from the fine resolution indicator variogram model
2γv

k(h; θ) as:

2γk(Vn, Vn′) =
1

F 2

F
∑

m=1

F
∑

m′=1

γv
k(hmm′ ; θ), vm ∈ V, and vm′ ∈ V ′ (4)

where, again, that coarse resolution variogram is stationary. This entails that the
above coarse resolution variogram is also a function of the separation vector hnn′ =
sn − sn′ between the centroids sn and sn′ of pixels Vn and Vn′ , i.e., 2γk(Vn, Vn′) =
2γk(V (sn), V (sn′)) = 2γV

k (sn−sn′) = 2γV
k (hnn′); superscript V indicates that 2γV

k (hnn′)
is a coarse resolution variogram between coarse V -pixels.

Both Equations (3) and (4) are classically derived from the variogram definition
and the functional relationship of Equation (1) linking fine resolution indicators with
coarse resolution fractions (Journel and Huijbregts, 1978; Atkinson and Curran, 1995).
In what follows, the variogram models for the fine resolution class indicators, the
fine-to-coarse variograms between such class indicators and the corresponding coarse
fractions, and the variograms between the coarse fractions, are used to estimate the
probability of class occurrence at any fine resolution pixel.

2.2 Indicator CoKriging

CoKriging with coarse resolution fraction data ak(V ) and, if available, fine resolution
class indicator data yields an approximation p̂k(v) to the true probability pk(v) =
Prob{Ik(v) = 1|dk} of k-th class occurrence at any fine resolution pixel v (Journel,
1983; Goovaerts, 1997); here Ik(v) denotes a binary random variable at pixel v. That
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probability p̂k(v) is expressed as a weighted linear combination of coarse fractions and
fine indicators for the k-th class. Because the class proportions are assumed known,
or estimated with sufficient confidence by the mean of the corresponding fraction
values, see Equation (2), we consider the simple Indicator CoKriging (ICK) estimate
for the m-th fine pixel vm, written as:

p̂k(vm) = ηk(vm)Tak + λk(vm)T jk + πk

[

1 − ηk(vm)T1N − λk(vm)T1G

]

(5)

where ηk(vm) = [ηk
n(vm), n = 1, . . . , N ]T denotes the (N×1) vector of weights assigned

to the N fractions for the k-th class, λk(vm) = [λk
g(vm), g = 1, . . . , G]T denotes the

(G × 1) vector of weights assigned to the G informed fine pixels; 1N and 1G denote,
respectively, a (N × 1) and a (G × 1) vector of ones. The known class proportion πk

receives as weight the complement to one of the sum of the weights attributed to the
N class fractions and the G class indicators.

The ICK weights λk(vm) and ηk(vm) for the k-th class are obtained by solving
the following system of equations (ICK system):

[

ΓV V
k ΓvV

k

ΓV v
k Γvv

k

] [

ηk(vm)
λk(vm)

]

=

[

γvV
k

γvv
k

]

(6)

where ΓV V
k = [2γV

k (hnn′), n = 1, . . . , N, n′ = 1, . . . , N ] is a (N ×N) matrix of fraction
variogram values between all pairs of coarse pixels, Γvv

k = [2γv
k(hgg′), g = 1, . . . , G, g′ =

1, . . . , G] is a (G × G) matrix of indicator variogram values between all pairs of
informed fine pixels, ΓvV

k = [2γvV
k (hgn), g = 1, . . . , G, n = 1, . . . , N ] is a (G × N)

matrix of variogram values between all pairs of informed fine and coarse pixels, and
ΓV v

k = [ΓvV
k ]T . Term γvV

k = [2γvV
k (hmn), n = 1, . . . , N ]T denotes a (N × 1) vector of

variogram values between the m-th uninformed fine pixel vm and the N coarse pixels,
and term γvv

k = [2γv
k(hmg), g = 1, . . . , G]T denotes (G× 1) vector of variogram values

between the m-th uninformed fine pixel vm and the G informed fine pixels.
Equations (5) and (6) account for both the coarse resolution class fraction data

and (if available) the fine resolution class indicators. Each piece of information, be it a
coarse fraction ak(Vn) or a fine indicator jk(vg), is weighted according to its relevance
to the unknown same class indicator ik(vm) at the uninformed fine pixel vm. That
relevance is quantified by the fine-to-coarse resolution variogram 2γvV

k (hmn) for the
class fraction ak(Vn), and by the fine resolution variogram 2γv

k(hmg) for the class
indicator jk(vg). The ICK weights also account for the redundancy between the data
found within the neighborhood of the uninformed fine pixel vm; that is, for: (i) the
correlation between class fractions ak(Vn) and ak(Vn′) at neighboring coarse pixels,
(ii) the correlation between class indicators jk(vg) and jk(vg′) at neighboring informed
fine pixels, and (iii) the correlation between a coarse resolution class fraction ak(Vn)
and a neighboring fine resolution class indicator jk(vg).

Since there are K classes, a set of K systems similar to that given in Equation (6)
need to be solved, one per class k. The resulting ICK-based probabilities {p̂k(vm), k =
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1, . . . , K} derived from Equation (5) need to be corrected to ensure that they lie in the
[0, 1] interval and have a unit sum; typically, the magnitude of such corrections is very
small (Goovaerts, 1997). In addition, these K systems need to be solved M times,
one for each fine pixel vm. Because the number N of class fraction data is typically
large, the above systems are solved using a limited amount of such data, most often
those falling in a neighborhood centered on the coarse pixel Vn containing the fine
pixel vm where ICK is performed. The extent of that neighborhood is typically linked
to the range of the class fraction variograms (Goovaerts, 1997).

Since Kriging is an exact interpolator, the ICK-derived probability p̂k(vg) at an
informed fine pixel vg yields the corresponding class indicator jk(vg), no matter the
indicator variogram models 2γv

k(h; θ) used to compute all the variogram values called
for by the ICK system of Equation (6). Equally important for consistency, the average
of the ICK-derived probabilities of class occurrence within any given coarse pixel Vn

reproduces the corresponding class fraction:

1

F

F
∑

m=1

p̂k(vm) = ak(Vn), vm ∈ Vn (7)

see Mao and Journel (1998) for a proof, as well as Kyriakidis and Yoo (2005) for a
generalization of that proof. The above reproduction holds only if the ICK-derived
probabilities are not corrected to lie in the [0, 1] interval and sum to one. If such
a correction is performed, then Equation (7) becomes approximate, yet in practice
very close to being true; see Mao and Journel (1998), as well as the case study of this
paper.

If no fine resolution class indicators are available (G = 0), the ICK estimate p̂k(vm)
of Equation (5) simplifies to:

p̂k(vm) = ηk(vm)Tak + πk

[

1 − ηk(vm)T1N

]

(8)

where it should be stressed that the resulting prediction is not the same as that given
in Equation (5) because the data used are not the same in these two cases; here we
use the same notation for simplicity.

The corresponding ICK weights are simply found by reducing Equation (6) to:

ΓV V
k ηk(vm) = γvV

k (9)

and the reproduction of the coarse resolution class fraction by the resulting ICK
probabilities is still guaranteed, i.e., Equation (7) still applies, no matter the fine
resolution indicator variogram models 2γv

k(h; θ) used to compute the entries of matrix
ΓV V

k and vector γvV
k in Equation (9).

The Kriging component of the approach developed by Verhoeye et al. (2001)
can now be viewed within the proposed geostatistical framework. More precisely, in
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that work the authors estimated p̂k(vm), which they termed a spatial dependence
parameter, by replacing the right hand side vector γvV

k in the system of Equation (9)
by γV V

k ; this modification amounts to ignoring the resolution difference between the
original coarse fractions and the target super-resolution map. As a consequence, any
integration of coarse resolution fractions with fine resolution indicators would not be
straightforward, as opposed to our method which readily allows for such a fusion.

On the computational side, if no fine resolution indicators are available, the
weights vector ηk(vm) can be found by solving much fewer ICK systems than the
number M of fine resolution pixels (Kyriakidis and Yoo, 2005). This is a consequence
of the fact that, for a given indicator variogram model 2γv

k(h; θ), the ICK weights are
only function of the spatial data configuration (the pixel layout), not of the actual
data values. Since all fine pixels within a coarse pixel have the same coarse neighbors
(ignoring edge effects) as any other set of fine pixels within another coarse pixel, that
data configuration remains the same.

We do not recommend turning the Kriging-derived probabilities into a set of class
labels by some form of, say, Maximum a Posteriori (MAP) allocation rule. Indeed,
super-resolution land cover mapping is much more than per-pixel classification, in that
it deals with joint classification under coarse fraction reproduction constraints; that
is, with the task of creating land cover maps consistent with all available information.

2.3 Sequential indicator simulation

One efficient simulation algorithm for generating synthetic categorical maps, given a
sample set of known categories and a set of indicator variogram models, is sequential
indicator simulation (Journel and Alabert, 1989; Goovaerts, 1997), abbreviated here
as SIS. The key paradigm in SIS is the decomposition of the multivariate probability
distribution f(ik|dk) of M indicator RVs {Ik(vm),m = 1, . . . ,M} into a product or
sequence of M univariate conditional probabilities as:

f(ik|dk) = Prob {Ik(v1) = ik(v1), . . . , Ik(vM) = ik(vM)|dk} , k = 1, . . . , K (10)

=
M
∏

m=1

Prob
{

Ik(vm) = 1|im−1
k ,dk

}

, k = 1, . . . , K

where Prob
{

Ik(vm) = 1|im−1
k ,dk

}

is the univariate conditional probability of the m-
th indicator RV Ik(vm), given: (i) the m − 1 previously simulated indicator values
stored in a ((m − 1) × 1) vector im−1

k = [ik(vm′),m′ = 1, . . . ,m − 1]T , and (ii) the
original data vector dk comprised of the N coarse resolution fractions and possibly
the G fine resolution sample indicators for the k-th class. In this paper, any such
univariate conditional distribution is determined by ICK; see Section 2.2.

Simulation proceeds along a, typically random, path which considers in sequence
the M fine resolution pixels, and thus determines the order of the decomposition given
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in Equation (10). At any fine pixel, say vm, along that path, a simulated class label
c(l)(vm) is generated from the corresponding K ICK-derived conditional probabilities
at that pixel; here superscript (l) denotes the l-th simulated value, and there can be L

such values. The associated K simulated indicators {i
(l)
k (vm), k = 1, . . . , K} are then

considered as data which constrain all subsequent univariate conditional probabilities,
and hence all subsequent simulated class labels generated from such probabilities.

The end product of repeating the above steps at all M fine resolution pixels is a
simulated realization of class labels denoted as c(l) = [c(l)(vm),m = 1, . . . ,M ]T . A
new class realization c(l′) can be generated by repeating the above procedure with
a different random path. Because any simulated class label conditions or constrains
the generation of all subsequent labels along the simulation path, spatial continuity
is ensured. More precisely, the simulated class maps {c(l), l = 1, . . . , L} reproduce
in expected value the K fine resolution indicator variogram models {2γv

k(h; θ), k =
1, . . . , K}; for more details, the reader is referred to Goovaerts (1997).

Although the ICK-derived probabilities are consistent with the coarse resolution
fractions, see Equation (7), this characteristic does not translate to the simulated
classes themselves, because the latter are derived via a non-linear operation (thresh-
olding) from the ICK-derived probabilities. This entails that a simulated super-
resolution class map c(l) may not reproduce when upscaled the corresponding class
fractions at the coarse resolution. That reproduction is achieved in expected value;
that is, on average over many realizations. A correction is therefore needed to ensure
that the proportion of simulated fine resolution class indicators within the coarse
pixels reproduce the corresponding fraction data. In what follows, we propose a
progressive correction algorithm to enforce that reproduction exactly.

More precisely, consider the m-th fine pixel vn
m visited along the simulation path;

superscript n indicates that this pixel lies within the coarse pixel Vn. Let pR
k (vn

m)
denote the current (prior to visiting the m-th pixel vm) remaining proportion of
fine pixels within Vn that, given the coarse fraction ak(Vn), should be simulated as
belonging to the k-th class:

pR
k (vn

m) =

int[ak(Vn)F ] −

Fm−1(Vn)
∑

m=1

ik(v
n
m)

F − Fm−1(Vn)
, ∈ [0, ak(Vn)] (11)

where int[·] denotes rounding to the nearest integer, Fm−1(Vn) denotes the number
of fine pixels within Vn that have already been visited prior to arriving at the m-th
pixel vn

m. The running proportion pR
k (vn

m) can also be regarded as the probability of
simulating a fine pixel as belonging to the k-th class, given: (i) the number of fine
pixels within Vn already simulated as belonging to that class, and (ii) the target coarse
fraction value ak(Vn). This running proportion can thus be viewed as a saturation
probability for a particular coarse pixel vm in the k-th class, and depends on how
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many fine pixels have already been simulated as belonging to class k within that
coarse pixel.

Our correction algorithm combines the ICK-derived conditional probability of
Equation (5), denoted here as pIK

k (vn
m), with the running proportion pR

k (vn
m) of Equa-

tion (11) using a multiplicative rule for probability fusion (Bordley, 1982; Benedikts-
son and Swain, 1992; Journel, 2002):

Prob{Ik(v
n
m) = 1|im−1

k ,dk} =
pIK

k (vn
m)pR

k (vn
m)

ak(Vn) S

where S =

∑K

k=1 pIK
k (vn

m)pR
k (vn

m)

ak(Vn)

(12)

When no fine pixels within Vn have been simulated as belonging to class k,
pR

k (vn
m) = ak(Vn), hence Equation (12) leaves the ICK-derived probability pIK

k (vn
m)

unchanged. As simulation progresses along the random path, the correction of Equa-
tion (12) may become more important if pR

k (vn
m) differs significantly from the target

proportion ak(Vn). When the proportion of fine pixels within Vn simulated as belong-
ing to class k reaches the target fraction ak(Vn), then pR

k (vn
m) = 0, and the combined

probability of Equation (12) is also zero. This algorithm therefore constrains the
proportion of simulated fine resolution class labels within Vn to reproduce exactly the
corresponding coarse fraction ak(Vn).

It should be stressed that our proposed method is fast when compared to other
iterative methods for super-resolution mapping. This speed advantage is due to: (i)
the SIS algorithm being a single-pass simulation method: there is no iteration involved
in generating plausible alternative class realizations, and (ii) the algorithm used to
enforce the reproduction of coarse resolution fractions also being non-iterative.

3 Case study

To demonstrate our proposed super-resolution mapping approach, we consider a ref-
erence land cover classification derived from a Landsat TM scene of an area in the
Pearl River Delta, South East China; see Seto et al. (2002) for more details. The
reference land cover class map, shown in Figure 1, has dimension 15km×15km, and
includes 500× 500 fine resolution pixels. Each pixel has size 30m× 30m, and is con-
sidered as belonging to one of K = 3 broadly defined land cover classes: vegetation
(white color, with regional proportion 0.52), urban (grey color, with proportion 0.18),
bare soil (black color, with proportion 0.30).

It should be noted that the reference map considered in this case study was cho-
sen for illustrative purposes. In other real-world applications, the true land cover
classification could be far more complex and contain more classes, e.g., here, water.
Our approach can handle an arbitrary number of classes, and arbitrarily complex
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indicator variogram models; of course, for a given resolution ratio F , the associated
computational burden increases as a function of the number of classes and variogram
model complexity (Goovaerts, 1997). As stated above, the intent of this case study
is to demonstrate the construction of multiple super-resolution maps from the avail-
able coarse and fine resolution information, not to make the most locally accurate
super-resolution land cover map for the particular region.

The reference land cover map of Figure 1 was upscaled into three coarse fraction
maps using three different fine-to-coarse resolution ratios. For each coarse pixel, the
corresponding class fractions are computed as the linear average of the fine pixel class
indicators within that coarse pixel. More precisely, each coarse pixel is progressively
comprised of 9× 9 = 81, 15× 15 = 225 and 25× 25 = 625 fine pixels, with associated
pixel size 270m× 270m, 450m× 450m and 750m× 750m; the resulting sets of coarse
class fraction maps are shown in Figure 2. Since no observational errors are considered
in this work, such synthetic fraction maps could be thought of as the outputs of
a perfect spectral unmixing of data originating from sensors with coarser spatial
resolution than that of Landsat TM.

The reference fine resolution indicator variograms for the three classes (not shown)
were inferred from the land cover map of Figure 1. Each indicator variogram was
modeled with a nugget effect contribution and two isotropic exponential functions
or nested structures. The variogram model parameters, with partial sills given as
proportions to a unit sum, are given in Table 1. The nugget effect contributions
range from 0.10 to 0.14, indicating that the reference land cover map exhibits a small
component of purely random spatial variability. The first exponential structure has
ranges from 7 to 12 fine (TM) pixels, and shows similar partial sills across all classes
(0.50 to 0.52). The second exponential structure has ranges from 65 to 70 fine pixels,
and similar partial sills (0.36 to 0.39). The above variogram model parameters imply
that: (i) more than 50% of the class spatial variability at the fine resolution occurs
at scales smaller than the coarse pixel size, and (ii) for each upscaling scheme, all
spatial variability occurs at scales smaller than eight, five and three coarse pixels,
respectively, since 70/9 = 7.78, 70/15 = 4.67 and 70/25 = 2.80.

In general, the larger the upscaling ratio, the less information is carried by the
corresponding coarse resolution fractions. Such a loss of information due to averaging
is a function of the variogram shape near the origin and its range: the larger that
range or the smoother the underlying field, the smaller that information loss (Journel
and Huijbregts, 1978). Since more than 50% of spatial variability in the reference
land cover map of Figure 1 occurs within 7 to 12 TM pixels, one should expect that
the latter two upscaling schemes (15× 15 and 25× 25) would yield coarse resolution
fractions with more or less similar information content. A very significant portion of
the spatial information content in the reference land cover map is lost going from the
TM pixel size to the first coarse pixel size (9 × 9 upscaling).

14



3.1 Kriging

Using the coarse fraction maps of Figure 2, and the fine resolution indicator variogram
models whose parameters are given in Table 1, the probabilities for class occurrence
at any fine resolution pixel vn

m that falls within any coarse pixel Vn are computed
via ICK; see Equations (8) and (9). The data used for ICK at any such fine pixel
vn

m consist of a set of 21 coarse pixel neighbors defined as the 5 × 5 coarse template
centered at Vn excluding the four corner pixels. That neighborhood geometry was
chosen for computational efficiency reasons: the weights received by those four corner
pixels are negligible with respect to those received by the remaining pixels in that
neighborhood. For each upscaling scheme, the resulting set of three probability maps,
one for each class, is shown in Figure 3. As expected from theory, these Kriging-
derived probability maps reflect the conditioning fraction data of Figure 2 without
any block artifacts. The smooth transition between the ICK-derived probabilities
computed at fine pixels within two adjacent coarse pixels V and V ′ is a consequence
of considering the closest 21 neighboring coarse fraction data. If only the co-located
coarse fractions ak(V ) and ak(V

′) had been considered, strong discontinuities would
be visible in the probability maps of Figure 3 near the coarse pixel boundaries.

The high frequency spatial variability seen on the reference land cover map of
Figure 1, however, is not reproduced by the ICK-derived probability maps of Figure
3, especially for the larger upscaling ratio. This is as expected due to the smoothing
effect of Kriging and any interpolation algorithm in general. If one was to perform
class allocation (using, say, a MAP criterion) by thresholding the ICK-derived proba-
bilities of Figure 3, the spatial distribution of the resulting classes would have a much
smoother spatial distribution than that seen in the reference land cover map of Figure
1. For a more detailed discussion of spatial prediction (Kriging) versus simulation,
the reader is referred to Goovaerts (1997).

To check the consistency of the Kriging-based downscaling procedure in reproduc-
ing the coarse class fractions, the ICK-derived probabilities for the 25× 25 upscaling
scheme shown in Figure 3(g)-(i) were averaged within each coarse pixel, and compared
to the corresponding coarse fractions of Figure 2(g)-(i). Figure 4 shows the resulting
scatterplots: as expected from theory, see Equation (7), the coarse fraction data are
reproduced; any mismatch is due to round-off errors.

In addition to the coarse fraction data of Figure 2(g)-(i) corresponding to the
25 × 25 upscaling scheme, five hundred (500) fine resolution sample class labels (not
shown) were collected at random from the reference land cover map of Figure 1,
and added to the conditioning information. ICK, see Equations (5) and (6), was
now performed using the same 21 coarse pixel neighborhood as above, and all the
sample class labels inside a radius of 70 fine resolution pixels or 3 coarse pixels for
the 25 × 25 upscaling scheme. The resulting ICK-derived probabilities are shown in
Figure 5. The introduction of the 500 fine resolution class labels did not affect the
results significantly, except in the immediate vicinity of these fine resolution data;
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compare Figures 3(g)-(i) and 5(a)-(c). Had the fine resolution indicator variogram
models exhibited smaller nugget contributions and longer ranges, or had the 500 fine
resolution class labels been preferentially located as clusters close to distinct features
of the reference class map of Figure 1, the local differences between Figures 3 and
5 would have been larger. When the fine resolution ICK-derived probabilities of
Figure 5 are averaged within each corresponding coarse pixel, they reproduce the
coarse fractions seen in the last row of Figure 2; that reproduction yields a set of
scatterplots (not given here) similar to those shown in Figure 4.

3.2 Sequential simulation

Next, sequential indicator simulation (SIS) with the progressive correction algorithm
of Equation (12) was performed, see Section 2.3, yielding multiple super-resolution
realizations of land cover. The data used to generate these realizations were: (i)
the different sets of coarse fraction images displayed in Figure 2, and (ii) the fine
resolution indicator variogram models whose parameters are given in Table 1.

Three sets of such super-resolution realizations are shown in Figure 6; the real-
izations in each row were generated using the corresponding row of coarse fraction
images shown in Figure 2 as conditioning data. Despite the significant differences
in input information provided by the coarse fraction images, the resulting super-
resolution maps of Figure 6 exhibit similar spatial patterns. One can accept, at least
visually, that these simulated maps reproduce the low frequency spatial patterns of
the reference land cover map of Figure 1. Bare soil (black color), for example, occurs
in patches attached to the more elongated urban class (grey color). In addition, the
high frequency spatial patterns (texture) found in the reference map of Figure 1 are
reproduced well in all super-resolution realizations of Figure 6, no matter the coarse
fraction images used (i.e., across all upscaling ratios considered); this is not the case
with the ICK-derived probability maps shown in Figure 3. As stated above, simula-
tion aims at reproducing the prior model of spatial structure within the constraints of
the available data. Since that fine resolution structural model is independent of the
resolution of the coarse fractions, and these coarse fractions are consistent with the
prior structural model (i.e., the reference indicator variograms were used for simula-
tion), the resulting super-resolution realizations show realistic texture reproduction.
Last, because the progressive correction algorithm was employed in generating the
super-resolution realizations of Figure 6, the corresponding coarse fractions are repro-
duced (up to round-off errors) when these fine resolution realizations are upscaled;
see Figure 7.

The reproduction of the prior structural model at the target fine resolution is
quantitatively investigated in Figure 8, by comparing the indicator variograms of 25
SIS realizations with the input fine resolution indicator variogram models whose pa-
rameters are given in Table 1. These 25 realizations were conditioned to the coarse
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fraction data of Figure 2(g)-(i) corresponding to the 25 × 25 upscaling scheme. The
indicator variograms shown in Figure 8 are not standardized to a unit sill, to better
appreciate the different variance of land cover classes, which is approximately equal
to πk(1 − πk) for a given class k. Overall, the indicator variograms computed from
the simulated super-resolution maps reproduce the input model variograms; see Fig-
ure 8. These super-resolution realizations, however, exhibit a slightly higher degree
of short-scale spatial variability; see the nugget contribution mismatch in Figure 8,
particularly for the vegetation class. We believe that this mismatch is a consequence
of the correction algorithm used to enforce the reproduction of the coarse class frac-
tions of Figure 2(g)-(i), and we are currently investigating alternative procedures for
eliminating such a mismatch.

Note that some complex sub-pixel features, e.g., curvilinear roads, found in the
reference land cover map of Figure 1 are not seen in the simulated maps of Figure 6.
These features are lost during the upscaling procedure, and they cannot be retrieved
from the coarse fractions alone without any additional fine resolution information.
Such information is beyond that provided by the fine resolution indicator variograms,
which can only characterize repetitive spatial patterns with elliptical or circular ge-
ometry. For a thorough discussion on the inadequacy of variograms to capture spatial
patterns with complex geometrical characteristics, the reader is referred to Strebelle
(2002).

The procedure conducted above for checking the reproduction of coarse resolution
information, was also repeated for the case of SIS without the incorporation of the
progressive correction algorithm. Three such super-resolution realizations, generated
using the coarse fraction data of Figure 2(g)-(i) corresponding to the 25 × 25 up-
scaling scheme, are shown in Figure 9. Because thresholding of probabilities of class
occurrence into actual labels is a non-linear transformation, these realizations do not
reproduce the corresponding coarse fractions when upscaled; see Figure 10(a)-(c).
However, globally and for all classes, the upscaled simulated coarse fractions are un-
biased; that is, the differences between simulated and observed coarse class fractions
have a near zero mean. In addition, the super-resolution maps of Figure 9 reproduce
the input indicator variogram models better than the realizations shown in Figure
6(g)-(i); compare Figure 10(d)-(f) to Figure 8(g)-(i). Note also that the indicator
variograms of the simulated super-resolution maps fluctuate more when the correc-
tion algorithm is not used, because these simulated realizations are not as tightly
constrained by the coarse fractions.

The same 500 fine resolution class labels used to derive the ICK probabilities
of Figure 5 were also considered, along with the coarse fractions of Figure 2(g)-
(i), for generating another set of realizations via SIS and the progressive correction
algorithm of Equation (12); three such realizations are shown in Figure 11. Due to
the application of the correction algorithm, the coarse fractions of Figure 2(g)-(i)
are reproduced when the super-resolution realizations of Figure 11 are upscaled; the
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corresponding scatterplots are very similar to those given in Figure 7, and are not
given here. The simulated super-resolution maps of Figure 11 should be compared
to the reference map of Figure 1 and the simulated maps shown in the bottom row
of Figure 6. There are some visible local differences between the three corresponding
realizations of Figure 6(g)-(i) and Figure 11, but no systematic difference can be
detected overall.

To illustrate the impact of different prior models of spatial structure on the re-
sulting super-resolution maps, we consider two new sets of fine resolution indicator
variogram models; recall that the parameters of the reference indicator variogram
models were given in Table 1. The first set of new variograms consists of pure nugget
effect models, whereas the second set consists of exponential models with no nugget
contribution and ranges equal to 500 fine pixels; that is, approximately 7 times larger
than the largest range of the reference models. The former models correspond to an
assumption of purely random spatial variation of classes, whereas the latter models
correspond to an assumption of strong continuity of such classes.

To better appreciate the spatial structure associated with these different sets of
indicator variogram models in the absence of conditioning data, three unconditional
realizations are given in Figure 12(a)-(c); these were generated without accounting
for any coarse fraction data or class labels at some informed fine resolution pixels,
hence the term unconditional. Figure 12(a) exhibits the characteristic “salt and pep-
per” texture of a white noise image, whereas Figure 12(c) exhibits class labels that
are spatially arranged in very large patches. The same sets of indicator variogram
models were subsequently used to generate the three conditional realizations shown
in Figure 12(d)-(f). Because these realizations were conditioned to the coarse frac-
tion data shown in Figure 2(g)-(i) corresponding to the 25 × 25 upscaling scheme,
they reproduce these coarse fraction values when upscaled. The differences between
Figures 12(a)-(c) and 12(d)-(f) lie in the effect of the conditioning coarse fraction
data. It is precisely the information carried by these coarse fractions that forces the
spatial patterns of land cover classes to be located where they do in the latter set of
realizations. Note that the simulated super-resolution map of Figure 12(f) exhibits
significantly different spatial patterns than those implied by the prior model of spa-
tial structure, and depicted in Figure 12(c). Indeed, in our proposed super-resolution
mapping method, the data (i.e., the coarse fraction values in this case) exert a far
greater influence on the spatial patterns of the resulting super-resolution maps than
the prior model of spatial structure adopted. In the case of Figure 12(f), that prior
model of spatial structure was inconsistent with the observed coarse fractions, since
these fractions were generated from the reference land cover map of Figure 1 whose
indicator variograms did not imply a very strong spatial continuity. Consequently,
one can conclude that the coarse fraction data (not the prior model) dominate the
patterns found in the super-resolution land cover map of Figure 12(f).

Comparing the various conditional realizations, one can easily appreciate that Fig-
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ure 12(d), which corresponds to the assumption of lack of spatial correlation, differs
clearly (exhibits more fragmented classes) from Figures 12(e)-(f) which correspond
to prior models of spatial structure with significant spatial auto-correlation. Figures
12(e) and (f) differ slightly in the extent of class patches, the latter exhibiting some-
what larger patches (less fragmentation) than the former due to the assumption of
stronger spatial continuity.

To corroborate the above statements, the reference land cover map of Figure 1
was first converted into three binary images of class indicators. Each binary image
was then subjected to connected components labeling (using 8-point connectivity) to
define objects comprised of groups of connected pixels with the same class indicator;
see, for example, Gonzalez and Woods (2002). The natural logarithm of the areas of
objects found in each binary image was finally recorded for the corresponding land
cover class. The histogram of such object areas can be viewed as a measure of spatial
structure going beyond that encapsulated in the indicator variogram models. The
same connected components labeling procedure was then applied to the simulated
super-resolution maps of Figure 12(d)-(f). The distributions of the natural logarithm
of object areas derived from the reference and from the three simulated land cover
maps were then compared using the quantile-quantile (Q-Q) plots given in Figure
13. Quantiles for object areas derived from the reference land cover map pertain to
the x-axes of these plots, whereas quantiles derived from object areas found in the
simulated maps pertain to the y-axes of these plots. A perfect agreement between
the distributions of reference and simulated object areas would entail a Q-Q plot with
bullets aligned on the diagonal solid line or first bisector. When a simulated super-
resolution map exhibits more (less) fragmentation than the reference land cover map,
the bullets of the associated Q-Q plot are aligned below (above) the diagonal line.

Figure 13(a)-(c) corroborates that the simulated super-resolution map of Figure
12(d) exhibits much more class fragmentation than the reference land cover map of
Figure 1: the Q-Q plots for all classes are well below the diagonal lines, indicating
simulated objects with smaller areas than those found in the reference map. Figures
13(d)-(f) and 13(g)-(i) show a much better agreement between simulated and reference
object areas than that found in Figure 13(a)-(c), indicating that a purely random
model of spatial structure is inappropriate as expected. Comparing Figures 13(d)-
(f) and 13(g)-(i), one can generally conclude that the two super-resolution maps of
Figure 12(e) and (f) do not have significantly different spatial patterns, since the
corresponding Q-Q plots are more or less aligned with the diagonal lines. Only some
small differences can be detected in favor of the super-resolution map of Figure 12(e),
in particular for the urban and bare soil classes; compare Figure 13(e)-(f) with Figure
13(g)-(i). In the former plots, the bullets are closer to the diagonal lines, indicating
that the prior model of spatial structure based on the reference indicator variograms
is slightly better than that based on maximum continuity. Note that this latter
statement should be viewed in light of the data control on the simulated realizations:
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even if an inappropriate model of spatial structure was adopted, such as that of
maximum continuity, the available coarse fractions did not allow the generation of
simulated super-resolution maps with large patches of class labels; compare Figure
12(c) with Figure 12(f). As stated above, simulation aims at reproducing a prior
model of spatial structure within the constraints of the available data. In this case, the
constraints of the coarse fraction data largely over-wrote the inappropriate assumption
of maximum continuity.

4 Discussion and conclusions

In this paper, super-resolution land cover mapping is viewed as an under-determined
inverse problem, that of constructing fine resolution land cover maps from coarse class
fraction data. We document the necessity of a prior model of spatial structure for land
cover at the fine (target) resolution to resolve the inherent ambiguity of such an ill-
posed inverse problem and make it solvable. In addition, we state that existing super-
resolution land cover mapping solutions invoke such a prior model, either explicitly or
implicitly. In our work, that prior structural information is explicitly parameterized
in terms of a set of indicator variogram models that characterize the spatial variability
of land cover classes at the fine resolution. Such variogram models can range from
pure nugget effect models, indicative of completely random spatial variation of class
labels, to models with extremely large range and no nugget contribution, indicative
of strong continuity in the spatial patterns of class labels.

We acknowledge that, even within a given prior model of spatial structure, mul-
tiple plausible solutions exist to the super-resolution mapping inverse problem. Con-
sequently, we propose formulating explicitly super-resolution mapping as the task of
generating or “exploring” such equally plausible solutions. In addition, we argue that
any map of fine resolution class labels that: (i) reproduces the particular set of fine
resolution indicator variogram models adopted, (ii) reproduces a typically sparse set
of class labels at some informed fine pixels, if available, and (iii) when upscaled, repro-
duces the corresponding coarse fraction data, constitutes a plausible solution to that
inverse problem. To this respect, we developed a novel, non-iterative, geostatistical
simulation algorithm for generating such plausible, super-resolution land cover maps.

To some, generating several, instead of a single, super-resolution land cover maps
may appear as a drawback. In this work, however, we advocate that one should
not be looking for a single best super-resolution map. First and foremost, one needs
to decide on what are the constituents of a best map. Almost always, best is cast
in terms of per-pixel accuracy with respect to the true land cover map or to some
validation samples obtained from it. Alternatively, one might be concerned with the
reproduction of spatial patterns of land cover, such as fragmentation or compactness
(textural) characteristics of mapped classes. In addition and most importantly, a
single super-resolution map does not reveal the uncertainty associated with its con-
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struction. The bulk of that uncertainty stems from the lack of abundant data at the
target fine spatial resolution, and the difficulty to infer a model of spatial structure
at that target resolution. Super-resolution land cover mapping is almost never the
end-goal per se; instead, super-resolution maps are intended to serve as inputs to
detailed spatial analysis operations, other coupled environmental models, or decision
support systems, all requiring input data at that fine resolution. It therefore behoves
us to explore the consequences of the uncertainty associated with super-resolution
mapping on the outcomes of the above operations or model outputs within an uncer-
tainty propagation or uncertainty analysis context. Our proposed simulation method
allows, for example, to explore the uncertainty in the outputs of a fire-spread simula-
tor, due to unavailable or sparse land cover data at the appropriate resolution: this
could be achieved by running the fire-spread simulator using multiple super-resolution
realizations of land cover, and studying, say, the spatial distribution of the resulting
simulated fire fronts.

It should be also stressed that, for a given prior structural model, none of these
plausible solution maps is expected to be more accurate than any other, when com-
pared pixel-per-pixel with some validation class labels. As long as the generated
super-resolution maps reproduce the available data, they are all equally likely to
yield similar accuracy scores in a validation test. Of course this statement involves
expectation: a particular solution map might yield a higher accuracy score than some
other, but on average it is expected that all solutions generated from the same prior
structural information, and accounting for the same data via the same algorithm,
have similar degrees of per-pixel mismatch with the true land cover map. From this
viewpoint, the concept of accuracy in super-resolution mapping is translated to that
of accurate reproduction of coarse and possibly fine data, and of the prior structural
model. Of course, there is always the issue of choosing a prior model of spatial struc-
ture that accurately encapsulates the expected spatial patterns at the fine resolution
within the constrains of the coarse fraction data.

In this paper, the application of our proposed super-resolution mapping method
was illustrated via a case study using data from a Landsat TM scene from SE China.
Our method, however, can be efficiently used for land cover mapping at any spatial
resolution, the only requirements being that: (i) the classes are mutually exclusive
and collectively exhaustive, (ii) the classification scheme is valid at both coarse and
fine resolutions, and (iii) one has available a prior model of spatial structure for
the fine (target) resolution. Requirement (i) entails that there are no fuzzy but
only crisply-defined classes, and that these classes cover all possible states that are
expected to be found at the fine spatial resolution. For fuzzy classification schemes,
one needs to revert to approaches based on fuzzy set theory, although soft labels
(e.g., defined by probability intervals) can also be accounted for by soft indicator
Kriging (Goovaerts, 1997). When the classes are not deemed collectively exhaustive,
one could artificially define an additional class which encompasses labels not classified
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in any other class. Requirement (ii) implies that the adopted classes are meaningful,
and satisfy requirement (i), at both coarse and fine resolutions. Requirement (iii) may
be the most difficult piece of information to obtain in practice, and some guidelines
for obtaining it are given hereafter.

The prior model of spatial structure could be directly inferred from a ground sur-
vey, if enough informed fine pixels are located at distances smaller than the coarse
pixel extent to compute reliable variogram values for sub-pixel lag distances. If such
fine resolution sample data are not available, then the prior structural model might
be synthesized from analogs, e.g. high resolution imagery obtained from a different
sensor in a nearby region with similar land cover classes, or in the same region but
in the past. Alternatively, that prior structural information might be built by com-
bining the spatial information from the coarse resolution fractions with some expert
opinion on the fine resolution spatial structure. For example, one might deem some
classes less continuous or with more high frequency variation than others, such as
the urban class in the case study of this paper. Such a type of information could
be readily integrated in the fine resolution indicator variogram models by adjusting
their relative nugget contributions and/or ranges. Last, one could imagine using land
cover predictions from urban simulation models as a possible source of fine resolution
textural information.

No matter the source used to acquire this high resolution information of spatial
structure, this paper illustrated that any super-resolution mapping attempt is based,
either explicitly or implicitly, on the availability of such a model. Consider, for exam-
ple, the case of simple contouring of coarse fractions to derive a map of fine resolution
fractions, or better stated a map of probabilities of class occurrence. This latter pro-
cedure fails to acknowledge resolution differences, by incorrectly assuming that the
coarse fractions pertain to pixel centroids; this entails that the resulting fine reso-
lution fractions are not guaranteed to reproduce, when upscaled, the corresponding
coarse fractions. In addition, that fine resolution fraction map needs to be converted
to a map of class labels. Any per-pixel thresholding of such fine resolution fractions
into class labels will result in a particular (albeit not defined explicitly) spatial pat-
tern of land cover. In other words, the simple procedure outlined above also invokes
implicitly a hidden model of fine resolution spatial structure; that model is embed-
ded in the weights used for contouring the coarse fractions, and in the constraints of
contiguity (if any) adopted for the final class allocation step.

We believe it is far better opening the question of how to build a model of fine
resolution spatial structure, rather than hiding it under an assumption, such as that
of maximum spatial continuity, which is not often questioned because of its con-
venience. In addition, we strongly suggest that users consider different candidate
fine resolution variogram models, possibly constructed from data-based information
and/or individual judgement, within a sensitivity analysis or scenario building con-
text. Our proposed approach allows the exploration of such alternative scenarios via
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the generation of associated super-resolution land cover maps that can be used in an
uncertainty propagation framework as inputs to other coupled environmental models
or decision-making procedures.

The methodology presented in this paper would undoubtedly benefit from further
research to: (i) fine tune the progressive correction algorithm so that the super-
resolution maps reproduce better the indicator variogram models at short distance
lags, (ii) account for errors or uncertainty in the coarse fraction maps, (iii) account for
a known point spread function of a sensor, and (iv) incorporate other sources of fine
resolution information that might be available in the form of contextual information,
ancillary data, or analog images.

The algorithms used, namely indicator coKriging and sequential indicator simu-
lation with coarse resolution fractions, were coded as plug-ins into the public domain
SGEMS software (Remy, 2004). These plug-ins, the data sets, as well as the param-
eters files used in this case study can be freely downloaded from the following URL:
http://pangea.stanford.edu/~aboucher/superRes.

Acknowledgments

The first author acknowledges partial funding from a PhD scholarship from the pro-
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nugget structure 1 structure 2
class sill range sill range
#1 0.09 0.52 12 0.39 70
#2 0.14 0.50 7 0.36 70
#3 0.10 0.52 9 0.38 65

Table 1: Parameters of indicator variogram models for the reference land cover map
of Figure 1. Both structures #1 and #2 refer to exponential variogram functions,
partial sills are expressed as proportions of a unit total sill, and ranges are expressed
in TM pixels.

Figure 1: Reference land cover classification based on Landsat TM imagery of 500×
500 pixels, each of size 30m × 30m. White color indicates vegetation, gray urban,
black bare soil. The scene is 15km by 15km.
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(a) Vegetation

0 1

(b) Urban (c) Bare soil

(d) Vegetation

0 1

(e) Urban (f) Bare soil

(g) Vegetation

0 1

(h) Urban (i) Bare soil

Figure 2: Maps of class fractions obtained at progressively coarser spatial resolutions.
The fraction value at each coarse pixel is the average of the fine resolution class
indicators within that coarse pixel derived from Figure 1. Top row: 9× 9 upscaling
scheme with pixel size 270m × 270m. Middle row: 15 × 15 upscaling scheme with
pixel size 450m × 450m. Bottom row: 25 × 25 upscaling scheme with pixel size
750m × 750m. The scene is 15km by 15km.
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(a) Vegetation

0 1

(b) Urban (c) Bare soil

(d) Vegetation

0 1

(e) Urban (f) Bare soil

(g) Vegetation

0 1

(h) Urban (i) Bare soil

Figure 3: Conditional probabilities of fine resolution class occurrence computed via
simple indicator coKriging (ICK). For each row, the conditioning information consists
only of the coarse resolution fractions of the corresponding row of Figure 2. Top

row: 9 × 9 upscaling scheme. Middle row: 15 × 15 upscaling scheme. Bottom

row: 25 × 25 upscaling scheme. The scene is 15km by 15km.
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Figure 4: Reproduction of coarse class fractions by the corresponding upscaled ICK-
derived probabilities for the 25 × 25 upscaling scheme of Figure 3(g)-(i).

(a) Vegetation

0 1

(b) Urban (c) Bare soil

Figure 5: Conditional probabilities of fine resolution class occurrence computed via
simple indicator coKriging (ICK). The conditioning information consists of the coarse
resolution fractions of Figure 2(g)-(i) corresponding to the 25× 25 upscaling scheme,
and of 500 fine resolution class labels. The scene is 15km by 15km.
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(a) Realization #1, derived
from 9 × 9 upscaling

(b) Realization #2, derived
from 9 × 9 upscaling

(c) Realization #3, derived
from 9 × 9 upscaling

(d) Realization #1, derived
from 15 × 15 upscaling

(e) Realization #2, derived
from 15 × 15 upscaling

(f) Realization #3, derived
from 15 × 15 upscaling

(g) Realization #1, derived
from 25 × 25 upscaling

(h) Realization #2, derived
from 25 × 25 upscaling

(i) Realization #3, derived
from 25 × 25 upscaling

Figure 6: Simulated super-resolution land cover maps, generated using SIS with the
progressive correction algorithm; see text for details. White color indicates vegetation,
gray urban, black bare soil. For each row, the conditioning information consists only
of the coarse resolution fractions of the corresponding row of Figure 2. The scene is
15km by 15km.
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Figure 7: Reproduction of the coarse class fractions for the 25× 25 upscaling scheme
shown in Figure 2(g)-(i) by the corresponding upscaled simulated super-resolution
realizations of Figure 6(g)-(i).
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Figure 8: Indicator variogram reproduction for 25 super-resolution realizations of land
cover generated conditional to progressively coarser class fraction data; see text for
details. Solid lines indicate the reference isotropic variogram models, dots correspond
to variograms of simulated super-resolution land cover maps.
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(a) Realization #1 (b) Realization #2 (c) Realization #3

Figure 9: Three super-resolution realizations of land cover generated using SIS with-
out the progressive correction algorithm; see text for details. White color indicates
vegetation, gray urban, black bare soil. The conditioning information consists of the
coarse resolution fractions of Figure 2(g)-(i) corresponding to the 25 × 25 upscaling
scheme. The scene is 15km by 15km.
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Figure 10: Top row: Reproduction of the coarse class fractions for the 25 × 25 up-
scaling scheme shown in Figure 2(g)-(i) by the upscaled simulated super-resolution
realizations of Figure 9. Bottom row: Indicator variogram reproduction for 25
super-resolution realizations of land cover from the 25 × 25 upscaling scheme with-
out the progressive correction algorithm; see text for details. Solid lines pertain to
the reference isotropic indicator variogram models, whereas dots pertain to indicator
variograms of simulated super-resolution land cover maps.
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(a) Realization #1 (b) Realization #2 (c) Realization #3

Figure 11: Three super-resolution realizations of land cover conditioned to the coarse
class fractions of Figure 2(g)-(i) corresponding to the 25 × 25 upscaling scheme, and
to 500 fine resolution class labels. White color indicates vegetation, gray urban, black
bare soil. The scene is 15km by 15km.
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(a) Purely random; no coarse
fraction data

(b) Reference variogram; no
coarse fraction data

(c) Strong continuity; no
coarse fraction data

(d) Purely random (e) Reference variogram (f) Strong continuity

Figure 12: Top row: Three unconditional super-resolution realizations of land cover,
generated using different indicator variogram models; see text for details. Bottom

row: Three super-resolution realizations of land cover conditioned to the coarse frac-
tions of Figure 2(g)-(i) corresponding to the 25×25 upscaling scheme, generated using
the same indicator variogram models used for Figure 12(a)-(c); see text for details.
White color indicates vegetation, gray urban, black bare soil. The scene is 15km by
15km.
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(f) Bare soil
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(i) Bare soil

Figure 13: Quantile-quantile plots between distributions of object areas derived from
the reference land cover map of Figure 1 for each class, and the super-resolution
realizations of: Figure 12(d) – top row, Figure 12(e) – middle row, and Figure
12(f) – bottom row; see text for details. All distributions pertain to the natural
logarithm of area values.
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