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Abstract

Satellite images are a principal medium to detect and map changes in the landscape,
both in space and time. The method proposed here aims to better exploit remotely
sensed data by simultaneously taking into account the spatial and the temporal relations
between land covers for multitemporal mapping and change detection.

At each location on a landscape, a time series of land cover classes is modeled
with transition probabilities. That time series at any specific location is estimated with
pixel-specific satellite measurements, the neighboring ground truth land cover data, and
any neighboring previously estimated time series deemed well-informed by the satellite
measurements. The spatial context is incorporated with indicator kriging and image
segmentation which constrain the relevance of the spatial data.

When space and time are both integrated with a maximum likelihood classifier,
the prediction accuracy of the time series improves significantly, increasing from 31%
to 61%, compared with the likelihood classifier alone. The consideration of spatial
continuity also reduced unwanted speckles in the classified images, removing the need
for any post-processing.
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1 Introduction

Mapping of land cover changes is intrinsically a space time operation, yet current image
processing methods often do not consider simultaneously the spatial and temporal contexts
when estimating land cover change.

A common method to incorporate spatial information is to model the spatial distribution
of land cover classes as a Gibbs-Markov random field (GMRF) (Li, 2001; Tso and Mather,
2001). The GMRF calls for minimizing an energy function U computed from cliques, which
are templates relating mutual neighbors. The energy is a global measure of the spatial
distribution of the classes in the image. Classification is aimed at producing an image
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where the classes are such that the energy is low. The common procedure is to perturb the
classification to minimize the energy and stop when convergence is reached. That iterative
procedure can be computationally demanding for large domains.

Geostatistics, especially indicator kriging, has also been used to incorporate spatial
autocorrelation in estimating or simulating classes (Stein et al., 1998; Atkinson and Lewis,
2000; Brown et al., 2002; Goovaerts, 2002; Wang et al., 2004). Kriging has the advantage of
not being iterative, but requires many conditioning data in order to provide useful contextual
information. Contextual relations between classes require the modeling of a linear model of
coregionalization (Goovaerts, 1997), a task that is both data and time-demanding.

An accurate cross-sectional classification is not sufficient to map land cover changes. At
any specific locations, the time series of land covers must also be accurate. The temporal
component becomes as important as the spatial component when one wants to know both
when and where changes have occurred.

There are two main issues with change detection; (a) the combination of the images and
(b) the classification of those images. The simplest change detection method classifies each
image independently, changes are then mapped by identifying which pixels have changed.
The problem lies in the errors associated with the mapping of changed classes. The fi-
nal accuracy is approximately the product of accuracy associated with the classification
performed at each time, often with poor results.

A second method consists of analyzing the images concurrently and classifying the class
trajectories. For example, instead of classifying an image into label 1 or 2, all the possible
transitions between those classes (1 to 1, 1 to 2, 2 to 1 and 2 to 2) are considered, expanding
to potentially KNt transitions, where K is the number of classes, and NT the number of
images.

A third method models every pixel as a time series, where the time of change is estimated.
For example Kaufmann and Seto (2001) utilize time series econometrics to detect dates
of change with better results than when the changes are obtained from post-processing
independently classified images.

Another common method to process multitemporal images is the cascade approach (Swain,
1978) which consists of analyzing the sequence of image in chronological order. Past clas-
sifications being used to condition future classifications.

Few applications have looked at change detection using spatial (contextual) informa-
tion (Jeon and Landgrebe, 1992; Wang et al., 2004; Kasetkasem and Varshney, 1992; Mel-
gani and Serpico, 2003, 2001). Wang et al. Wang et al. (2004) evaluate change in vegetation
between two dates using cokriging and cosimulation, whereas Kasetkasem and Varshney
(1992) and Melgani and Serpico (2003) use a Markov random field to detect change. In
most cases, the examples are limited to change detection between only two images.

The methodology proposed here integrates the spatial correlation of the land cover
classes with temporal information, thus improving the mapping of land cover changes. The
aim is to improve existing methods of land cover change detection by considering prior
knowledge about the class spatial and temporal patterns and efficiently integrating them
into the classification procedure. Furthermore, that framework has to be flexible enough to
use most of the sophisticated algorithm being developed to classify remotely sensed data at
a single time. Finally, the computational complexity of the algorithm should not increases
too drastically when one increases the number of classes and/or the length of the time series.
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The framework is applied to mapping land cover changes in the Pearl River Delta, China.
This region is undergoing urban growth and other landscape changes.

2 Notations

Consider a domain D ⊂ R2 sampled at different times ti, i = 1, ..., Nt ⊂ T . The Nt

measurements of D constitute a set of images denoted I = {I (t1), ..., I(tNt
)}. Let (u, t) be

a point in D × T informed by a vector of length nB of continuous attributes, Z(u, t) =
{Z1(u, t), ..., ZnB

(u, t)}. These attributes are the satellite measurements known as digital
numbers (DN).

Each pixel (u, t) must be classified into one of K classes L1, ...,LK , for example K land
cover types. Define Ik(u, t) an indicator variable indicating whether or not the pixel at
location (u, t) has class Lk

Ik(u, t) =

{

1 if (u, t) ∈ Lk

0 otherwise

And let
L(u, t) = k if Ik(u, t) = 1

Furthermore, let Ω be the set of location uα, α = 1, ..., n whose classes are known at all
times (ground truth). V (u, t) is the set of known pixel data in an isochronous neighborhood
of u at time t.

3 Coding and combining information

Following Serpico and Melgani (2000) and Brown et al. (2002), three sources of informa-
tion are considered relevant for the mapping of land cover changes. The first and foremost
source is the satellite measurements. The second is the spatial pattern that relates land
cover classes to each other. The third source of information is the temporal pattern of
classes. Based on three data sources, the available information at each unsampled loca-
tion u is separated between isochronous (cross-sectional) and time series information. The
isochronous information includes the satellite response and the neighboring land cover indi-
cators at any specific time. The time series information consists of transition probabilities
linking the land cover indicators through time. The classification at location u is then done
by combining these two types of information in such a way to minimize misclassification
over a given training set.

3.1 Time series transition probabilities

Denote by pT
k (u, t) the probability of having class Lk at location (u, t) given the collocated

land cover indicators in the past (L(u, t− ∆1t)) and/or future (L(u, t+ ∆2t)):

pT
k (u, t) = Pr{Ik(u, t) = 1 | L(u, t− ∆1t),L(u, t+ ∆2t) } (1)

3



The probability pT
k (u, t) is calibrated directly from ground truth data or determined as

function of the transition probabilities pkk′(ti, tj) relating the probability of having class
Lk′ at time tj given that Lk is observed at time ti.

pkk′(ti, tj) = Pr{Ik′(u, tj) = 1 | Ik(u, ti) = 1},∀ u, k, k′ (2)

The transition probabilities pkk′(ti, tj) are calibrated from ground truth or historical data.

3.2 Isochronous probabilities

The isochronous information at any specific time is obtained by combining the satellite
response and the spatial information available at that time. All information is expressed in
terms of probabilities. Denote by piso

k (u, t) the isochronous probability obtained by combin-
ing the probabilities pDN(u, t) and pS(u, t) obtained from satellite and spatial information
respectively.

piso
k (u, t) = Pr{Ik(u, t) = 1 | Z(u, t),L(u′, t),u′ ∈ V (u, t)}

= φ(pDN
k (u, t), pS

k(u, t))
(3)

with
pDN

k (u, t) = Pr{Ik(u, t) = 1 | Z(u, t)}, ∀ k (4)

and
pS

k(u, t) = Pr{Ik(u, t) = 1 | L(u′, t),u′ ∈ V (u, t)}, ∀ k (5)

where V (u, t) is a set of location in the vicinity of (u, t). The combination algorithm φ is
presented later. The isochronous probability is calculated independently for each time.

Satellite-derived probabilities

The conditional probability pDN
k (u, t) (4) for the pixel at location (u, t) to be assigned to class

Lk given the satellite response is computed with a classifier F (·) calibrated from the known
data {Z(uα, t),L(uα, t)} (Richards and Jia, 1999). The function F (·) approximates the
conditional expectation of Ik(u, t) given the sole collocated satellite response. Furthermore,
the classifier F (·) for time ti is calibrated only from the ground truth data available at time
ti.

In this study, the conversion of Landsat TM measurements into land cover types proba-
bilities is done with the conventional Gaussian maximum likelihood (ML) classifier (Richards
and Jia, 1999), a generative algorithm. The principle is simple, each class is associated
with a multiGaussian RF modeling the satellite bands. The probabilities Pr{Ik(u, t) =
1 | Z(u, t)}, k = 1, ..,K are calculated from the training set using a Bayes’ inversion

pDN
k (u, t) = Pr{Ik(u, t) = 1| Z(u, t) = z} =

Pr{Z(u, t) = z|Ik(u, t) = 1}Pr{Ik(u, t) = 1}
∑K

k′=1 Pr{Z(u, t) = z|Ik′(u, t) = 1} · Pr{Ik′(u, t) = 1}
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Assuming the random vector Z(u, t) to be multiGaussian, its conditional probability is
written as

Pr{Z(u) = z|Ik(u, t) = 1} =

1

(2π)N/2|Σi|1/2
e−

1

2
(z−mi)

T Σ−1

i
(z−mi)

(6)

where mi and Σi are the mean vector and covariance matrix of the DN values belonging to
the training data with class Li.

Spatially-derived probabilities

Denote by pS
k(u, t) the conditional probability of observing Lk at location (u, t) given the

isochronous class data found in the neighborhood V (u, t) 5).
This spatial probability pS

k(u, t) may be estimated from simple indicator kriging (Goovaerts,
1997). Simple indicator kriging is a linear interpolator that applied kriging weights to in-
dicator data yielding the probability of belonging to a class given the neighborhood data,
the marginal and the covariance model of that class.

In addition to the ground truth data, the neighboring data in V (u, t) also include loca-
tions that are considered well informed by the sole satellite measurements. A measure of
information content is used to determine which locations are well informed and which ones
are not. Those well-informed pixels are locations where the DN measurements Z alone are
deemed sufficient to label them. For example, a pixel where the classifier F (·), see expres-
sion (4), would indicate a probability of 0.98 or more to belong to a certain class would
qualify as a well-informed node.

Those pixels, assumed to be informed adequately by the satellite information such that
no spatial information is needed, are used as anchor for the less informed ones. This spreads
information from high-confidence pixels to their neighbors. For example, if all the well-
informed locations in an area are urban, the neighboring pixels are more likely to belong to
the urban class. The indicator kriging from the well-informed classes performs just that.

Taking the neighborhing pixels has indicative of the presence or absence of a class
assumes that those classes are somewhat directly related to the unknown pixel. There
is, however, a risk to overextend the spatial relevance of the well-informed locations. The
problem lies in the discontinuity of the landscape. For example a certain region may be pre-
dominantly urban, without forest or agriculture, yet the vegetated area could start abruptly
a few pixels away. A well-informed water class located in a lake close to the shore does not
say whether that shore is urbanized or vegetated, instead it tends to artificially increase the
probability that the shore would belong to a water class.

To offset this problem of borders and discontinuities, the images are first segmented to
find edges delineating those discontinuities. Then a data neighborhood that does not cross
the edges is retained for the indicator kriging process. Interpolation (kriging) is thus limited
to homogeneous neighborhoods, a schematic representation of that adaptive neighborhood
is shown in Figure 1.
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3.3 Posterior probability

The posterior probability pk(u, t) for class Lk to occur at location (u, t) is computed by
combining the isochronous probability piso

k (u, t) and the time series probability pT
k (u, t)

pk(u, t) = Pr{Ik(u, t) = 1 | all data}

= ψ( piso
k (u, t), pT

k (loc, t) ), ∀ k

The proposed combination algorithm ψ is developed in the next section.
Finally, the class L(u, t) is estimated by taking the most probable class of the posterior

distribution:
L∗(u, t) = arg max

k
{pk(u, t), k = 1, ..,K} (7)

The time series, {L(u, t1), ...,L(u, tNt
)} at location u is generated with a modified cascade

approach. The estimation sequence is not chronological, the time series is produced by
estimating the classes starting from the best informed time, as measure from the satellite
information, and then sequentially estimating the time before and after that starting time.
The idea is that the starting time is very consequential for the estimation of the whole time
series, that starting time is thus chosen to reduce the prediction error. If the first pixel in
the time series is misclassified, it is quite likely that this misclassification will be propagated
to the rest of the time series. The less informed times at any given location benefit from
being conditioned on the better informed collocated times.

3.4 Combining probabilities

Consider the isochronous probability vector piso(u, t) defined in 3 and the time series condi-
tional probability pT

k (u, t) defined in 1 as two sources of information. Each of the those two
probabilities can be transformed into a distance related to the likelihood of event L(u, t) = k

occurring (Journel, 2002). Let those distances be

xiso
Lk

(u, t) =
1 − piso

k (u, t)

piso
k (u, t)

∈ [0,∞]

xT
Lk

(u, t) =
1 − pT

Lk
(u, t)

pT
Lk

(u, t)}
∈ [0,∞]

Consider also the distance related to the marginal probabilities

x
(0)
Lk

=
1 − Pr{(u, t) ∈ Lk}

Pr{(u, t) ∈ Lk}
, ∀u

The updated distance to the event L(u, t) = k occurring accounting for both information
(1) and (3) is given by the “tau model”:

xLk
(u, t) = x

(0)
Lk

·

(

xiso
Lk

(u, t)

x
(0)
Lk

)τiso

·

(

xT
Lk

(u, t)

x
(0)
Lk

)τT

(8)
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where τiso and τT are parameters measuring redundancy between the two information
sources (Journel, 2002; Krishnan et al., 2004). The posterior probability is then retrieved
by inverting from the updates distance (8):

Pr{(u, t) ∈ Lk|Z(u, t)} =
1

1+xL
k
(u,t)

1
1+xL1

(u,t) + 1
1+xL2

(u,t) + ...+ 1
1+xLK

(u,t)

∈ [0, 1]
(9)

The integration of pDN(u, t) and pS(u, t) into piso(u, t) is also done with expression 9
but using different tau parameters τS and τDN.

The tau-model integration has convenient properties. If one of the prior probabilities is
zero or one (no uncertainty), the combined probability is also zero or one. The combined
probability is also always admissible, i.e. included between zero and one.

Although mathematically similar to the logarithmic opinion pool from consensual the-
ory (Benediktsson and Swain, 1992) and to the aggregating formula of Bordley (1982), the
tau-model is conceptually different. The τ exponents are not a measure of the reliability
of the information source, but serves to model the redundancy between these sources. The
reliability of the information is assumed to be already coded into each of the prior proba-
bility distribution related to each source. More details about the tau-model can be found
in Journel (2002), Krishnan et al. (2004) and Benediktsson and Swain (1992).

The tau model is derived from the exact representation of the conditional distribution.
Consider the conditional distribution of an event A conditional to a series of eventD1, ..., Dn.
Also denote Di as the set {D1, ..., Di}. The conditional probability can be rewritten as

Pr{A|D1, ..., Dn} =

Pr{A|D1}Pr{D1}
∏n

i=2 Pr{Di|A,Di−1}

Pr{D1, ..., Dn}

(10)

Expression (10) can also be written with Ã, the complement of event A.

Pr{Ã|D1, ..., Dn} =

Pr{Ã|D1}Pr{D1}
∏n

i=2 Pr{Di|Ã,Di−1}

Pr{D1, ..., Dn}

(11)

Dividing (11) by (10) yield:

x = x(1)
n
∏

i=2

Pr{Di|Ã,Di−1}

Pr{Di|A,Di−1}

The ratio above can always be written as

Pr{Di|Ã,Di−1}

Pr{Di|A,Di−1}
=

(

Pr{Di|Ã}

Pr{Di|A}

)τi

Furthermore
Pr{Di|Ã}

Pr{Di|A}
=

Pr{Ã|Di}

Pr{A|Di}
·
Ã

A
=
x(i)

x(0)
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The full conditional probability can then be written as

x

xx(0)
=

x(1)

xx(0)

n
∏

i=2

(

x(i)

x(0)

)τi

where rigorously

τi =
log Pr{Di|Ã,Di−1}

Pr{Di|A,Di−1}

log Pr{Di|Ã}
Pr{Di|A}

(12)

The tau exponents can then be interpreted as the ratio at which the previous data Di−1

change the information content of Di. It is then easy to verify that setting all tau parameters
to 1 is equivalent to data conditional independence.

The challenge is in finding a suitable function for τi i = 1, ..., n for a given decomposition
sequence of the data Di. In the general case, the τs cannot be determined analytically and
a heuristic function has to be used, potentially trained on a training set. This preminilary
study assume all τs equal to 1, corresponding to conditional independence between the
sources.

4 A case study, urbanization in the Pearl River Delta, China

This study focuses on detecting and mapping changes between between 1988 and 1996 using
a time series of Landsat TM images. We acquired 6 images of the Pearl River Delta, China,
dating from 1988,1989, 1992, 1994, 1995 and 1996 all taken around December. The scene
consists of 1 917 870 pixels approximatively covering an area of size 45km by 45 km, with
each pixel of dimension 30x30 meters.

The landscape is divided into K=7 classes: water, forests, agriculture, urban, fish pond,
transition (land getting cleared for urban settlement) and shrub. The ground truth mea-
surements consists of 1917 locations identified by expert interpretation or by field reconnais-
sance. At ground truth locations the classes are deemed known at all times. The prediction
errors, the expected errors between the estimated class and the true class at any location,
are estimated by a 5-fold cross-validation procedure (Hastie and Friedman, 2001). The
known classes are divided five times, each time into a training set and a testing set such
that all samples are used once for testing purposes. Each split is done such that 80% of the
ground truth data belong to the training set and the remainder 20% to the test set.

4.1 Computing the transition probabilities

The time series transition probabilities pkk′(ti, tj) defined in expression 2 are assumed sta-
tionary in time, such that

pkk′(ti, tj) = pkk′(∆t)

where ∆t = tj − ti. The pkk′(∆t) are computed from the training set by evaluating the
proportions of transitions from class k to class k ′. Notable characteristics of this transition
probability matrix is that the urban land cover type is an absorbing state, and the transition
land cover type only communicates with either itself or the urban land cover type. This
means that once a pixel is urban, it will remain urban; if a pixel has a transition class, it
can only remain in transition or become urban.
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4.2 Computing isochronous probabilities

Satellite-derived probabilities

The probabilities pS
k(u, t), k = 1, ...,K is computed with a maximum likelihood estimator,

see expression 6.

Spatially-derived probabilities

The spatial continuity for each land cover type is measured with indicator variograms
Goovaerts (1997) defined as

γk(h) = E{[Ik(u, t) − Ik(u + h, t)]2}

The variogram γ(h) is linked to the covariance by

C(h) = C(0) − γk(h)

where C(0 is the variance. It can also be linked to the transition probability of being in
state Lk at location (u + h) given location u has class Lk with

Pr{Ik(u + h) = 1|Ik(u + h) = 1} =
pk(1 − pk) − γk(h)

Pr{Ik(u) = 1}

where pk = E{Ik(u) = 1} is the marginal probability for class Lk.
The indicator kriging system uses that measure of spatial continuity to optimally assigns

weight to the indicator data.
The simple indicator kriging system is

Kλ = k

Where K is the data-to-data covariance matrix, λ an unknown weight vector and k the
unknown-to-data covariance vector. The weight vector λ is then found as

λ = K−1k

Finally the conditional probability of having class Lk at location (u, t) given the the neigh-
boring data is

Pr{(u, t) ∈ Lk|Ik(u
′),u′ ∈ V (u)}

= λTd + (1 − λT1)E{Ik(u, t)}
(13)

where d is the known indicator data vector and 1 is a column vector of one. The full
posterior probability density function is obtained by computing and normalizing (13) for
k = 1, ...,K such that they sum to one.

The previous kriging in combination with the tau-model (9) assures that no ground
truth (hard data) locations are misclassified. At any informed location L(u, t) = k, the
kriging estimate returns a probability of one to belong to Lk and zero for all others classes.
The tau model than ensures that the final probability remains so.
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The spatial context is thus accounted for through the probabilities pS(u, t) estimated
with simple indicator kriging using for conditioning data the time series at those locations
deemed well informed by the satellite measurements. The information content of a time
series at location (u) is measured as the sum of the maximum satellite-derived probability
at each times.

Inf(u) =
1

Nt

NT
∑

i=1

max(pDN
k (u, ti), k = 1, ...,K) (14)

To ensures homogeneous spatial neighborhood, those well informed time series are in-
cluded in the kriging neighborhood only if a straight line going from the center of the
neighborhood to any well informed datum does not cross an edge. The edges are found by
performing a Canny segmentation method (Canny, 1986). Figure 2 shows two examples of
edge detection. The edges in Figure 2(a) represent the shore of a bay with a dam at the
SW extremity. In Figure 2(b), the edges separate a port from the ocean and also segment
homogeneous regions inside the port complex.

4.3 Algorithms

The algorithm proposed proceeds as follows

• Perform a segmentation of the scenes

• Compute pDN(u, t),∀ u, t, see (4)

• Calculate the information content Inf(u) ∀u for all time series

• For each well-informed time series uβ, β = 1, ..., NInf

– Estimate time series with pDN, and pT (see next algorithm)

• For each remaining uninformed time series

– Estimate time series using all information (pS, pDN, and pT)

The algorithm to estimate a time series at location u can be described as

• Find the times ti most informed by the satellite measurements

• Assign Lu, ti = k such as k = arg maxj p
iso
j (u, ti)

• Estimate sequentially future times ti+1, ..., tNt

– Assign classes L(u, ti+s), s = 1, ..., Nt−i based on piso(u, ti+s) (3) and pT(u, ti+s)

• For all past times ti−1, ..., t1

– Assign classes L(u, ti−s), s = 1, ..., i + 1 based on piso(u, ti−s) and pT(u, ti−s)
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4.4 Results

The results of the proposed method applied to the Shenzhen scene are compared to the
accuracy resulting from the maximum likelihood (ML) classifier, see expression 6. The
ML classification is done by assigning to a time-space location (u, t), the class that has the
maximum probability pDN

k (u, t). This ML classification considers only the satellite responses
thus ignores the temporal and spatial correlation between classes. The changes are mapped
by comparing the ML classification performed independently at each time.

The results are validated using (a) an overall accuracy criterion, the percent of correctly
classified pixels, and (b) a time series accuracy, the percent of locations which have their
vector of classes all correct. A time series at location u is well classified only if its six classes
have been correctly predicted. For change detection purposes, the time series accuracy is
critical as it measures how well the changes are mapped in both time and space. This
allows for a correct identification of the time when the landscape has changed, and from
which class to which other class. Such information is necessary to study the dynamics of
the landscape.

With the ML classifier, the accuracy from a five-fold cross validation yields an overall
accuracy of 78%, but the time series accuracy is only 33%. The proposed method marginally
improves the overall accuracy from 78% to 82%. However, the time series accuracy goes up
to 61%, a considerable improvement.

Tables 1 and 2 show the confusion matrices of the classification using ML and then
using the proposed method which utilizes both spatial and temporal information. The
producer and consumer accuracy for both cases are shown in Table 3. For all classes the
consumer accuracy is greater or at least equal when space and time are incorporated in the
classification. The improvement is especially noticeable for the forest class, the consumer
accuracy jump from 44% to 91% as less forest were misclassifed into shrub. The producer
accuracy, however, remains low with both methods for the forest class. The shrub ground
truth data are almost all correctly identified (a producer accuracy of 0.93), a significant
improvement from 0.83 when only the ML classifier is used. The fish ponds class also
greatly benefits from the proposed method as its consumer accuracy goes from 0.66 to 0.81
and its producer accuracy improves 20 points from 0.72 to 0.92. The proposed method
reduced the misclassification of fish pond into the water class from 56 misclassifications to
only 6. Only the producer accuracy of water and forest decreases with the integration of
spatial and temporal information.

The indicator kriging step decreases the level of speckling in the images, producing
smoother maps. For example, the ML tend to classify many shadow zones in mountainous
areas as water; the integration of spatial information corrects many of those misclassified
pixels. There is no need to post-process the classified images to remove the speckles.

Kriging based on well-informed locations with an adaptive neighborhood has some ad-
vantages over commonly used post-processing filters such as the majority filter. With that
filter any pixel can be changed according to the neighboring pixels; hence there is a possi-
bility that a pixel well informed by the satellite measurement, thus with a low probability
of misclassification, gets changed based on potentially more uncertain pixels in its neigh-
borhood. Such scenario cannot happen with our proposed kriging as the spatial context is
created from those well-informed pixels and propagated to the poorly informed ones, never
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the other way.
The maps in Figure 3 show, for each location, the year at which change first occurred.

A comparison between Figure 4(a) and (b) shows that the proposed method preserves some
spatial relationships for the land cover changes, exhibiting a structured evolution of the
landscape. On the contrary, the ML method produces a salt and pepper texture where the
physical evolution of the landscape is difficult to discern.

The proposed method considerably reduced the number of false positive. With the ML
prediction, 35% of locations had changed more than once, a number that expertise visual
inspection of the images does not validate. With proposed method only 9% of locations are
predicted to change more than once. The ML also predicts that 22% of locations did not
change while that percent goes up to 64% when both spatial and temporal information are
combined for prediction.

5 Conclusion

This paper proposes a framework that integrates the spatial and temporal autocorrelation
of classes in remote sensing applications. That integration results in a more accurate change
detection map that better identifies when, where and what to the landscape had changed.
This study uses only 6 images, the extension to longer time series would be straightforward
as the complexity of the algorithm only increases linearly with additional images.

The algorithm is flexible as it can handle any spatial, temporal or satellite classifier as
long as it provides the probability for a pixel to belong to any class. For example, the
ML classifier could be replaced without any change to the algorithm by a probabilistic
neural networks or any other suitable algorithm. In the same way, a Gibbs-Markov RF or
multiple points geostatistical algorithm (Strebelle, 2002) could replace the indicator kriging
to provide the spatial context. Furthemore, if integrated with a GIS, other sources of
information ( such as distance to road, topography) could be integrated if that information
can be coded into probabilities. Optimizing the tau exponents through some kind of training
algorithm could further increase the classification accuracy.

Importantly, the study shows a considerable increase of the time series accuracy with
the proposed method. The evolution of the landscape display greater spatial continuity and
appears more realistic.
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classes wat. for. agr. urb. pond tra. shr.

wat. 1584 9 18 12 60 40 9

for. 27 185 12 0 0 0 287

agr. 35 23 988 39 0 24 503

urb. 4 2 30 877 5 292 55

pond 56 0 1 2 165 3 2

tra. 36 1 23 257 9 2535 77

shr. 13 204 215 44 12 57 2670

Table 1: Confusion table for maximum likelihood

classes wat. for. agr. urb. pond tra. shr.

wat. 1503 5 24 81 35 40 44

for. 23 168 26 7 0 0 287

agr. 39 6 1059 15 0 49 444

urb. 0 3 23 938 0 265 36

pond 6 1 5 1 210 4 2

tra. 38 0 23 239 10 2569 59

shr. 6 2 116 34 3 60 2991

Table 2: Confusion table with space/time consideration

Maximum likelihood

wat. for. agr. urb. pond tra. shr.

C. Acc 0.9 0.44 0.77 0.71 0.66 0.86 0.74

P. Acc 0.91 0.36 0.61 0.69 0.72 0.86 0.83

Proposed method

C. Acc 0.93 0.91 0.83 0.71 0.81 0.86 0.77

P. Acc 0.87 0.33 0.65 0.74 0.92 0.87 0.93

Table 3: Consumer and producer accuracy for both methods
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Figure 1: Example of an adaptive neighborhood (dashed ellipse) in presence of an edge
(solid line). The square represents the unknown location to be mapped or estimated, the
empty circle are data outside the search ellipsoid, hence not considered. The grey points
are data inside the search ellipsoid but on the wrong side of the edge and are not taken into
account. Only the black points are considered for kriging the square location.

(a) Bay and dam, 1988 (b) Edges between dock and water
and internal division inside the dock
complex

Figure 2: Examples of edge detection. In Figure (a), the edges capture the border of the
bay and the dam at its extremity. In Figure (b), the edge define the contact between a port
and the bay plus some internal divisions inside the port complex.
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(a) Year of first changes for
proposed method

(b) Year of first changes for
ML

Figure 3: Map of predicted land cover changes representing the year at which the first
change occurred. Figure (a) maps the year of change as predicted by the proposed method.
Figure (b) does it for the ML method. Black indicates no changes, lighter tones indicates
later times. Note the greater spatial resolution for the proposed method.

(a) Number of change for
the proposed method

(b) Number of change for
ML

Figure 4: Map of predicted number of land cover. Figure (a) maps the number of changes
estimated for any pixels by the proposed method. Figure (b) does it for the ML method.
Black indicates no changes, lighter tones indicates fewer times.
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