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Abstract

The advent of computers in the 1960’s made possible the a@vant of geo-
statistics. Forty years later, large RAM’s and massive @gseing power is about to
change dramatically the theory and practice of geostegistAnalytically defined,
concise hence parameter-poor, structural models are poinane a must. Large
3D training images in their full complexity can be considkes random function
models which provide the multiple point (mp) statistics awah to characterize and
utilize data shapes and patterns, a critical informatianobthe realm of traditional
variograms.

Practice has led the development of mp geostatistics, bbewe reached a point
where a theoretical formalization can come in. A detailedlysis of SCRF v.10.0
snesim stochastic simulation algorithm allows an undedstey of its theoretical
foundations, constitutive hypothesis, potentials andtéitions, opening avenues for
new developments.



1 A short historical review

Initiated by the work of Daniel Krige estimating gold gradesS. African mines (Krige,
1951), geostatistics as a body of theory was built up in tH80Eby Georges Matheron
and his fellows in Fontainebleau, France (Matheron, 19821865). Geostatistics is
now widespread and its field of applications has extendethegbnd its original mining
roots. As many mature disciplines, it has branched outntpkind sharing concepts
and algorithms from so many related disciplines that it widag difficult to attempt an
up-to-date definition. In its origin geostatistics was deped towards one goal, that of
providing locally accurate grade estimates of mining btockhe novelty with regard
to then well established least-square regression tecesm@ailliams, 1959; Draper and
Smith, 1966) was:

1. The inference from actual data and the modeling of an @inalywariogram model,
as opposed to the more traditional inference of a covariarateix which required
gridded data. Notions of nested structures, nugget effed# noise and anisotropy
were then introduced.

2. The concept of support effect: the volume support of dageevtypically much
smaller than that of the mining block being estimated. Guioes for difference of
support volumes were proposed.

3. Possibly most critical, the full accounting for data nedancy through inversion of
a kriging matrix, that is the data-to-data covariance mafrhis was as opposed to
the then traditional practice of regression with the datasatered as independent
variables.

Actually, Halmos (1951), Goldberger (1962) and later Lwegler (1969) did develop
a general theory for regression and projection into vegtacs that encompasses much
of Matheron’s work on kriging (1969). Matheron and his graipnining engineers had
the advantage of wide practice.

The wanting of kriging:

Debate about publication antecedence often masks thedeahees implemented by
practitioners to fix a wanting algorithm and meet deadlité®my; many clean, supposedly
new, theories were actually developed from such fixes pr@&fécient? Kriging, and



for that matter all regression algorithms, had two majomdracks that quickly became
apparent to practitioners:

1. Maps of kriging estimates displayed artefacts (datatioesa are immediately vis-
ible) and, generally, did not reflect the prior image one hadfprior experience
and visual observation. The smoothing effect of krigingdemed kriging maps bi-
ased for any selection that involved jointly several blodk&al accuracy of each
block estimate does not suffice. Very early, this authorr@eli1975) suggested to
the sneer of th&*! international geostatistics congress that kriging eseésahould
never be mapped or used as such.

2. The estimation variance, whose minimization defineskgignd more generally all
projection-type estimators, is an incomplete measuretohation accuracy since
it is data values-independent. The crossplots of krigimipnae vs. ranks of the
cross validation errors typically display insignificantieation; then how useful
was it to minimize such estimation variance? One major exmeps provided
by the multivariate Gaussian model much touted by theoaets; but practitioners
quickly found that their data (earth sciences) were rar@yssian, less multivariate
Gaussian distributed.

The advent of simulation

Stochastic simulation was introduced in the early 1970’'sdwect for the smooth-
ing effect of kriging and provide maps that displayed thetigpaariance predicted from
the variogram model (Matheron, 1973; Journel, 1974). Tlitgirturning band algo-
rithm was adapted from an idea suggested much earlier byriMit860), a much unsung
founding father of geostatistics. The turning band algonireduced the problem of gen-
erating large 3D (theoretically n D) realizations with a@fie 3D isotropic covariance
into that, simpler, of generating a series of independentedlizations with a related 1D
covariance; the latter simulation could be achieved withldshed spectral techniques.

Because many different, yet equiprobable, realizationddcbe generated, all con-
ditional to the same set of data, the idea came to using th#seedt realizations as a
model of spatial uncertainty (Journel & Huijbregts, 197B)e second major phase in the
development of geostatistics, simulation instead of kdggassessing the impact of spatial
uncertainty, had started.



The turning band algorithm was quickly superseded by femter more flexible al-
gorithms that allowed handling of complex anisotropies eoditioning to a variety of
data, hard and soft. Most notable, the sequential algoritfought back into focus the
foundation of any stochastic simulation which is the deraraof conditional probability
distributions (cpdf’s) from which simulated values can laveh, e.g. by Monte Carlo
sampling. Sequential simulation algorithms are presetttite core of geostatistical the-
ory and practice (Journel, 1983; Isaaks, 1990; Srivast8@2; Goovaerts, 1997; Chiles
and Delfiner, 1999).

Simulated maps did correct for the smoothing effect andfaote of kriging, they
proved useful in reproducing amorphous, high entropycstines that could be summa-
rized by a variogram, an example being the spatial disiobudf grades or petrophysical
properties within an homogeneous mineralization zone a@e$a But variogram-based
simulation algorithms fail to reflect crisp geometries oe@fic (as opposed to amor-
phous) patterns of spatial variability, such as displaygdhe distribution in space of
facies indicators. Again, a solution was initiated by pi@otrs, this time from the oil
industry, more specifically from Norway. Stochastic sintiola took its first major turn
away from variogram and kriging.

Boolean object-based algorithms were introduced in tree1880’s to simulate ran-
dom geometry (Stoyan, Kendall and Mecke, 1987; Haldorsdribamsleth, 1990). Para-
metric shapes, such as sinusoidal channels or ellipsedakk, are dropped onto the
volume to be simulated, then are displaced or removed, shajpes changed, to fit con-
ditioning statistics and local data through an iterativecesss. At long last, the simulated
objects did look as expected from geologist drawings or giy@iphs of present-day de-
positions. After a period of enthusiasm, the limitation®bfect-based simulation algo-
rithms became apparent: the iterative, perturbation;tgfgmrithm for data conditioning
did not converge in presence of dense data or could not atéoudiverse data types
(e.g. soft seismic data that are at places locally accurate situation of exact hard data
conditioning and flexibility in soft data conditioning prided by traditional sequential
simulation algorithms was sorely missed.

The wanting of variograms:
The development of geostatistics has been held down by théasic concepts that
made its initial success: kriging as discussed above andhit@gram.



The pre-eminence of the variogram/covariance model wasrrgiestioned, until re-
cently. Perhaps, the process of inferring the variogramehfsxdm actual data gave it a
mythical aura of objectivity? Yet, and again, practitianquickly realized that inference
of a variogram, or for that matter any other statistics stgrtvith the histogram, was
more an art than an objective science. In most applicattbese are rarely enough actual
subsurface data to get an interpretable directional vearaglet alone an anisotropic 3D
variogram. Whenever the data were abundant, the priorideci$ stationarity (i.e. to
pool data together) was revisited, leading to pool limitatand consequent renewed data
sparsity. It came to the point that variograms are not angnrderred from actual data,
they are chosen from a “mysterious” list of authorized medae] worse, set to the default
values of software packages.

At the same time that variograms lost their aura of objetstitheir limitations as mea-
sures of spatial variability because evident, again totpiiagers. Many different patterns
of spatial variability, see Figure 1, may share the sam@ygeaim. Thus what controls the
output of traditional simulation algorithms is not so muhbk tiser’s input (the variogram
model) but the algorithm retained for simulation, someghthe user has little control
on. Gaussian algorithms and to a lesser extent indicatgingribased algorithms tend to
maximize entropy (i.e. minimize structures) beyond theutn@ariogram: the resulting
simulated maps are essentially amorphous. Such modeleigjole of maximum entropy
is a justifiable starting point in message decoding or inrtteetynamics where high en-
tropy is synonym of stable systems, it is a sufficient deaisa modelling amorphous
distributions of grades or petrophysical properties witnn homogeneous mineralization
zone or facies. Maximum entropy mever a good choice for modelling random geome-
tries particularly those for which we have prior knowleddeslbbapes and patterns, such
prior knowledge being synonym of organization hence lowagyt The uncertainty im-
parted by organized facies distributions typically oveelnhs that of the homogenous,
amorphous, distribution of petrophysical properties withose facies.

As to borrow a variogram from an outcrop or a geologist reimgeof expected struc-
tures, why not borrow much more, borrow statistics that warlable reproducing those
structures displayed by the proxy image and that are knownrist in the field being sim-
ulated? Not using a training image, because one is uncetat it, amounts to use the
implicit training image of the estimation or simulation sedire, a training image possibly
totally wrong or inappropriate for the types of structuresler study. A misplaced desire
of objectivity, e.g. accept only data-based variogram| althost certainly lead to ac-



cept blindly the convenient but arbitrary least-structypton of the simulation algorithm
used.

Haldorsen and Damsleth (1990) and the proponents of obpessd modelling were
forerunners, dropping the variogram and kriging all togetinstead borrowing whole
shapes from prior information. They were successful inagnas that prior information
was valuable information that would have been ignored biogaams. Unfortunately, in
their boldness they also drop the pixel-based approachebkighe simulated field, its
shapes and patterns, are constructed one point or one gltedatea-time, a feature par-
ticularly convenient for conditioning to data of varioudwme supports and resolutions:
it suffices to freeze the hard data at their locations theld lamound them.

Borrowing directly conditional probabilities :

The variogram function serves as a distance model betweef paints (but only 2
points); that distance is used to infer the probabilityribsition of any unsampled value
weighting the influence of each datum, taken one at-a-timéshlistance to the unsam-
pled location: that weighting process is none other thagitkgi. Variogram and kriging
are but tools to get the critical ingredient to any simulatmd to any uncertainty assess-
ment: the probability distribution of the unsampled valixeg its specific conditioning
data event. Hence the idea of borrowing directly that praibakistribution from exper-
imental replicates of the conditioning data event.

Consider available a training image that would displaytjgidata patterns and pat-
terns of the attribute being simulated, that training imagelld be scanned for replicates
of the experimental conditional data event. Consider thauch replicates are found,
the histogram of thé, corresponding central attribute values can be taken as alrfaxd
the probability distribution of the unsampled value giveattdata event, see Figure 2.
What is borrowed from the training image are not 2-pointistigs, variograms or 2-point
correlations, from which to stitch back haphazardly a cbodal distribution, that is a
(n + 1)-point statistics if the conditioning data event comprisegata locations. What
is borrowed is directly thatn + 1)-point or multiple-point statistics, that is the required
conditional distribution, Srivastava (1992), Caers (19%8rebelle (2000). All structural
statistics, including all variograms, come from the tragiimage, hence are controlled by
the user through his choice of that training image; none amgireg from the simulation
algorithm which is outside the user’s control. The trainimgge plays the role of a non-
analytical, yet fully explicit, random function model whigrovides a number (ideally



sufficiently large) of multiple-point (mp) statistics. Obarse, the proviso is availability
of such rich training image, see later discussion in se@ion

Note that the conditioning data event could be absolutejyhamg, » can be large,
then data need not relate to the attribute being simulatednttata configuration can
be anything, ete- -. Of course, the training image should be equally diversenbkiple
attributes, displaying enough replicates of the varied éaents.

2 The concept of random variable

The modeling of uncertainty which is at the roots of prokbiabtheory, geostatistics and
stochastic simulation, relies on the concept of a randonabks. There is no need, actu-
ally itis unhelpful, to dwell into axiomatic definitions (géom, 1962); it suffices to retain
the definition which made the concept of random variableuwl$ef practical applications.
A random variable RV'), denoted by the capital lettér, can be seen as a collection of
outcomeg 2" 1 =1,---, L, orl € (L)} which the variableZ can take; each outcome or
class thereof is attached with a probability < [0, 1], then%p(l) = 1. The probability

distribution{p®, 2 | € (L)} fully characterizes th&V Z and provides a model for
the uncertainty about the actual outcome, typically unkmoo¥ Z. The building of that
uncertainty model thus requires: (1) a census of all posgbtcomes L} or classes
thereof and, (2) attaching a probability to each such ouecom

Remarks:

e The most critical point about modeling uncertainty is thnare isno unique, best
or true model. There can be several alternative probaliigyibutions for theR1
7, depending on various subjective decisions about whatldhmuiconsidered as
relevant information. Playing with these decisions, utaety can be modeled as
small or as large as one wishes, and it is certainly naive lieugethat there could
be an “objective” assessment of uncertainty.

e The random variable concept can be extended to cover thedistnibution of sev-
eral variables not all necessarily related to the samebat&ior the same loca-
tion in space. Considek” suchRV’s Z,, £k = 1,---, K and the random vector
Z={Z, k=1,---,K}. The probability distribution characterizing that random
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vectorZ is considerably more complex than for the previous dase- 1. It re-
quires (1) a census of all joint outcoméﬁ’“’, I, € (Lg)}, k= 1,---, K and,
(2) the derivation of the corresponding joint probabiBtsich as:

Prob{Zy =2 k=1, K}, Vi e (Ly), k=1,---, K. (1)

Note that knowledge of all probabilities of type (1) allonaaulating any condi-
tional probability, such as:

Prob{Z, = 28| Zjy = 25 K € (K') c (K)} )
 Prob{Zy, = 2, Zy = 25, K € (K') € (K)}
Prob{Zy = 2, k' € (K') C (K)}

where, e.g.Z, would model the variable whose uncertainty is to be assegged
are theRV’s data providing information related t,,, the K’ corresponding data
values are the,(f,’“’), k' € (K'). The decision to retaix”’ specific variables as data
among thelX possible variables is not necessarily unique, nor is itgmaiable; so
is the decision about what the initial pool &f variables should be. Then, there is
also the issue of inference or modeling of the set of joinbphulities (1). As we

will see that inference process is far from being objective.

Random function:

In the case where alt” variables defining the random vector= {7,k =1, ---, K}
relate to the same attribute but at different locations #csp the term random function
(RF) is used and the notation is:

Z(u) : {Z(u),u € domainD} (3)

whereZ(u) denotes a singl&V" at a location of coordinates vectar

This author regrets the terminology “function”, implyingree functional, analytical,
relation of theRV Z with its location in space; there is usually none. The majoaatage
of the RF’ concept is its concise notation: th&" Z(u) is fully characterized by its spatial
law defined as the set of all joint probabilities of type (Myridten as:

Prob{Z(a,) =z, Z(uy) = 22, ---, Z(ug) = 2k, } (4)
YV u, € domainD, V z, V K
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Again knowledge of the spatial law (4) allows calculating ttonditional probability of
any singleRV Z(uy) given any numbef’ of data related to neighboringV’s Z (uy).

In practice theRF concept may have to be extended to a vectaRal involving
several distinct yet (cor)related attributes, each distad in space:

Z(u) ={Zy(u), k=1,---,K; u e DomainD}

Think aboutZ;(u) being porosity; data can be either porosity datéu,) and/or
related sonic log values(ug).

Representation of the spatial law

The random vector or random function concept is useful inednas its spatial law
(1) or (4) can be determined yielding the required condélgmobabilities (2).

In a pre-digital computer era, there was no alternativedutstrict the extraordinary
information wealth of the spatial law to a parametric arieftmodel with as few param-
eters as possible, for these parameters had to be evalhdaeg.decisions can be made
to restrict the wealth of the spatial law (1) and thus makénifisrence easier. Unfortu-
nately, these decisions all come at the cost of loss of indédion related to the variable
Z1, Whose uncertainty is being assessed:

- reduce the number of related variables, Hés in expression (2)
- assume stationarity, i.e. invariance of the spatial lawragslation in space

- limit the complex joint dependence of any setiofvariablesZ,, k = 1,---, K to
the K x K correlation matrix of any pair of variables

- assume an analytical spatial law that would depend onlyuch sorrelation ma-
trix or covariance function, typically a Gaussian-relataddom function or vector
model. Gaussian models are indeed congenial and parapwerbut their conse-
guence in terms of estimation and under-assessment oftamtgmere not always
well understood (Anderson, 1958; Journel, 1996).

Many of the previous limiting decisions, in particular theotlatter which limit statis-
tics to the covariance, need not be any more now that largebigemory and processing
power allows a non-analytical representation of the splatia Instead of characterizing



the REF' Z(u) by its spatial law (4), one could characterize it by a (veayye number
of its realizations over the domain:

{zO(u),u e DomainD}, I=1,--- L (5)

Anyone of the joint probabilities defining the spatial lawy ¢4n be identified to the cor-
responding proportion found within therealizations, e.g. foK = 3:

Prob{Z(uy) = 21, Z(u3) = 29, Z(u3z) = 23} (6)
= Proportion of realizations among tlheavailable such that:

20(y) = 21, 29 (uy) = 2, 2 (us) = 23 simultaneously.
1 15 2 2, 3 3 y

Similarly, for the conditional probability of having (u;) = z; given the data event
{Z(UQ)} = 29, Z(U3> = 23}:

Prob{Z(ul) =21 | Z(ug) = Z9, Z(ug) = 23} (7)
_ #ofrealizations s.t® (u;) = 21, 2 (uz) = 29, 20 (u3) = 23
B # of realizations s.t ) (uy) = 25, 20 (u3) = 23

The theoretical concept of &F defined by its spatial law (4) is replaced by an
explicit set of realizations. Defining &F amounts to pooling together the realiza-
tions (5); adopting theRF" model (3) to assess uncertainty about a particular unsam-
pled valuez(u;) amounts to decide that this unsampled value and its relatdavent
{z(u2) = 29, z(u3) = 23} belongs to the specific family of realizations (5).

Remarks:

e Inasmuch as each of thiedefining realizations” (u), u € D, exists and is con-
sidered a relevant member of the padll, statistics of type (6) or (7) are perfectly
licit and consistent with each other. In particular, were@oiht covariance matrix
inferred from thesd. realizations, that covariance matrix is necessarily pa@sit
definite without any need for any correction (Journel, 1996)

e The critical problem is how large should be the numbeaf realizations to ensure
that all unknown-to-data event of the typéu;) = 21, z(uz) = 29, z(u3) = 23
are represented in the pool with enough replicates to alleieble” derivation of
conditional proportions of the type (7).
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Note that if a particular data event is not found in the pogldbis found with
too few replicates, this only means that the pool is not “riehough to permit
calibration of that particular data event. The solutiornetto either define a larger
pool, or to reduce or approximate the data event to allowriigé@nough replicates
of it in the initial pool; the latter solution is discussedther in the next section 3.

A mere combinatorial calculation for the numbeof realizations necessary would
be incorrectly scary. Indeed if the data search neighbattvoosists of 1000 pos-
sible locations: K = 1000, and each variabl& (uy) is discretized into 10 classes,
the total number of different possible realizations is fitable: 101°°°, then if one
wishes to have an average of 10 replicates for each realigatien = 10'°°!!
However, (1) the vast majority of the$e'°" realizations will never be encountered
in practice, hence there is no need for the pool (5) to incthden; (2) a particular
data event not found in the pool can be either reduced (Skeel2902) or it can
be related to different but similar data events presentempibol (Arpat, 2003). A
similarity or distance measure need to be defined for therlatlution.

Local stationarity: Instead of a large numbér of realizations of type (5) over
a domainD, one could equally consider one single realizatioa- 1 over a much
larger domainD D, sayL times the size ob:

{zW(u), u € domainDD}, with |DD| >> |D]. (8)

That larger domairD D should not be scanned for any data event extending over
dimensions larger thaf. Pooling replicates over this larger domdiD amounts

to a decision of local stationarity (invariance by tranisia} of all statistics of type

(6) or (7) defined over the smaller extent

Sequential approach The explicit representation of a spatial law by a set
of realizations of type (5) does also provide probabilibésnultiple-point events
conditional to multiple-point data events. For example:

Prob{Z(wy) = 21, Z(ug) = 29, | Z(W) =2, a=1,---,n} 9)
~ #ofrealiz. s.tz(uy) = 21, 20(w) = 25, 20 (u)) =2, a=1,---,n
B #of realiz. s.tzO(w) = z(w,), a=1,---,n

However, it may be more efficient to proceed sequentialljilding on the exact
probability decomposition:
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Prob{Z(uy) = z1, Z(uy) = 29, | (n)} (10)
= Prob{Z(uy) = 21, | Z(ug) = 23, (n)} x Prob{Z(uy) = 2z, | (n)}

where|(n) is short notation for conditioning by the n-data event

If approximations are accepted for the identification of diianal probabilities
to proportions as in relation (7), then evaluating sepérdtee two single-point
probabilities of the product expression (10) provides nilesability.

The objectivity issue

Which of a concise analytical representation of the spktvabr an explicit numerical
representation through training images of the types (53 pis(better?

A few years ago, the answer was clear: the analytical reptasen, because we did
not have the computers to generate, store and retrievertfee danount of data involved
in a training image. However, those analytical representatcould not reflect prior in-
formation about complex shapes and geometrical patteemgehthe resulting maps were
poorly conditioned in that this prior information, howeitical, was forfeited. Object-
based simulation algorithms fall into the category of timjnimage-based algorithms, in
that after conditioning to local data there is not anymongamalytical representation of
the corresponding spatial law.

There is unfortunately an aura of objectivity to analytiogpresentations, perhaps
due to that ever lingering complex of geologists towarddwaiaticians and statisticians,
their belief that an equation yields objectivity. An eqoatimodels concisely prior infor-
mation, it is no better than the prior information it capsréhen, precisely because of
that conciseness, equations and analytical represamtatam only capture very simple,
elementary, possibly simplistic, information. The reaésgtion is: “ what is better, a nu-
merical model (e.g. a training image) that captures morb@ptior information deemed
critical, or a concise “clean” analytical model? ” What d@esiciseness brings us in an
era of ever increasing computing power?

Training images force the geologist/naturalist to exphesgrior information. If that
prior information is uncertain, then he should provideralétive training images bracket-
ing the range of uncertainty, rather than give up and let edic! and arbitrary analytical

12



model imposes a prior information that, if expressed asiaitrgimage, he would likely
reject as wrong. Now, if that analytical model does yield mlata-conditioned realiza-
tions/maps that are acceptable, then for sure the concidelrsbould be preferred.

Objectivity does not mean subservience to default mode&tteBseveral imperfect
training images than a wrong and biased default model. Rdraethat maximum entropy
or minimum structuration as in Gaussian-related modeld witsn yield too optimistic
results; uncertainty and risk arise from the presence oé€sires or patterns that we know
exist but could not locate accurately in space (Journel6199

3 Training image considerations

In this section, we will consider the training images as a eacal representation of the
spatial law of the random function model. Denote such trgjmmage by:

{z"(v), u € T4} (11)

whereT'i stands for training image;*(u) is the training value at location.
Training statistics are limited to data configurations fitahto a templatel” of size
much smaller than the training image size, i.e.:

Template|T'| << |Ti|

The training image can be seen as the set of all possible &enghta that can be
extracted from it, if they aré, such templates (overlapping each other) theritheepre-
sentation (11) is actually equivalent to the represema®y distinguishing all training
templates. This remarks indicates that, instead of one laegg 77, one could consider
many7:’s each of lesser size.

Both the training image and the template are discretizedhégame rectangular grid
to allow scanning thé&; by sliding over it the templaté, see Figure 3.

Inference: Consider an actual reservoir discretized with the santeuged by thg™
and the templat&’, then an unsampled value at locatiemlenoted:(u). The attribute:
being estimated is of the same type asthattributez”*. Notice the notation difference
between:-value (actual reservoir) and“-values (training image).
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The unsampled valug(u) is informed by a multiple-point (mp) “data event” (DEV)
constituted by» data valueg(u + h,), « = 1,---,n, atn locationsu, = u + h,, all
within the templatél” centred au. The DEV{z(u,), a = 1,---,n} need not fill-in all
locations of the templaté&, i.e. :n < |T|.

Uncertainty about the unsampled value is modeled by thedniain of theR cen-
tral values of training templates which replicate the DEMu + h,,), o = 1,---,n}.
Denote theser central values byz"*(u™), » = 1,---, R; they are such that in their
T-neighborhood:

{zTi(u(r) +h,) =2(u,), a=1,---,n}, Vr (12)

The histogram of thé? central values is taken as the conditional probabilityriigtion
of the random variabl& (u), see relation (7).

The conditioning data event comes from the actual field, thgstics and the proba-
bility values comes from th& F' model, e.g. from its training image representation. It is
critical to understand this dichotomy: local data must lkemafrom the actual reservoir,
information about how these data relate to the unknown cdroes the training image
model. Similarly, in traditional geostatistics, how loadta relate to the unknown is
given by some kriging process built on the variogram modak fiuge difference is that
aT'i provides mp statistics that allow considering the DEV as alejas opposed to that
DEV being considered piecewise, one datum at a time, bea#ube 2-point statistics
limitation of the variogram.

Number of replicates An integral part of the random function model, as delivered
by a training image, is the minimum numbgy,;,, of replicates of the DEV to be found
in thatT" before the corresponding histogram of the training cenehles can be taken
as a model of the conditional probability, recall definiti@2).

- If R, is too small, those few replicates may be too specific to a tmalities of
theT'i and deemed not representative of fieas a whole.

- If the minimum numbeR,,,;, is set too large, th&’i (or sets ofl:’s) may not be
large enough to provide enough replicates, in which caseoappations have to
be made which all amount to tamper with the conditioning DEV.

The case of no replicatd?(= 0) is instructive. This case can have two very different
causes:
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1. theT" is not rich or large enough to display that DEV. The solutisrthen to
accept replicates that only approximate instead of regrioduexactly the DEV, or
to reduce the DEV, e.g. by dropping out the least “relevaatuch value.

2. theT'i adopted is not the correct one. This would be the case if taoyreaper-
imental DEV’s had no replicates in th€i, even after reduction of the DEV size.
In other words, the actual reservoir data contradictitheetained. The solution is
then to change thé:.

One main reason for too few DEV replicates is the requirerfmaméxact replicates.
Allowing a tolerance for “approximate” replicates would ltiply their number, see here-
after the section on classification of DEV’s.

Template size and discretization

No statistics beyond the template size is taken from thaitrgiimage, and those
statistics must be based on a minimum number of replicatemplate size, minimum
number of replicates and the training image defineRft€underlying the multiple-point
geostatistics approach.

The template geometry and size is the equivalent of the @atiecls neighborhood of
traditional geostatistics and, for that matter, of any isphatterpolation technique. You
do not wish to retain data that are too far away because: {1 py® not sure they belong
to the same population than the unsampled value to be estipthts restriction is related
to the decision of stationarity defining the data pool, () gioe uncertain about the struc-
tural model relating such far away data to the unsampleceydhere may not be enough
training replicates of the corresponding large size dataiev

Yet far away data provide information about large scaleigpstiructures. Retaining
a too small template size amounts to forfeiting reprodunctibthose structures. If such
large scale structures are deemed to exist and must be tmddhen a corresponding
large scald’i must be available and would have to be scanned with a largaldéersize.
A large template size need not contain too many nodes, ifdissretized with a coarse
grid. Recall that the more nodes a data event is compriséldeoimore specific it is, hence
the fewer replicates of it will be found in th&i. The traditional solution of multiple grids
simulation (Tran, 1994) can be adopted, see Figure 3:

- the final high resolution fine grid over which the study fieddtd@ be simulated is
split into a series of nested grids from coarse to finer. If Sted 3D grids are
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considered, the coarsest one includes only eséry 64" node of the finest grid,
the second coarsest includes ev&fynode of that finest grid.

- simulation proceeds first on the coarsest grid with an égjuabrse template which
thus can be of large size. A separate very lafgdut coarsely gridded could be
considered to display the large scale structure to be repezt

- inasequential simulation mode, every node simulated @aese grid is considered
as a conditioning datum for simulation of all other grid ned&heT"’(s) used for
the finer grids need not be the same as the coarse’largehese fine scal&i’s are
scanned by correspondingly finely gridded templates bunadlier extent. The fine
scaleTi’s need not display the large scale structures, they shaietver display
the fine scale structures to be reproduced.

Data relocation:

Because of the need to scan fhigto find replicates of the conditioning DEV, both the
data and the field to be simulated should be gridded with amgctar grid. If multiple
nested grids are used, then at any one of these grids thaarggample data may have
to be relocated to its nearest grid node. This relocationondt causes data location
inaccuracy particularly at coarse grids, but also datatioeanconsistency if the same
datum is relocated at different locations when used ovésrdint nested grids.

Ideally, hard sample data should not be relocated (no tang)eyet the scanning
process requires a rectangular grid. One solution consistplacing the original data
with estimated, or better simulated, values at the datahbeigring nodes, see proposal
in section 5.

Modeling the training image:

No matter how large th&i, when scanned with a templaieof fair size it will never
yield all the DEV’s that will be encountered in the course iofidating the field under
study. As mentioned before, there are two courses of ac{ibnreduce the data event
which amounts to some loss of conditioning information,i{@grpolate that DEV from
“similar” DEV’s actually found in the training image. In ttiest option, the only statistics
taken come from th&"i as is, there is no adding to it; if necessary, data are dropped
this extreme fidelity to th€"; is debatable in that one is never sure thatihas fully
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representative of the experimental data. This first opsdhat adopted by the search tree
approach of Strebelle (2000, 2002).
The2"? option calls for modeling th&’, this can be done in many ways:

- Classificatiorn For a given template siZE, all training DEV'’s are retrieved and
classified (unsupervised classification) iffalasses. The histogram of the training
central values of all DEV’s falling into a class is taken as ¢onditional probability
given that class of DEV’s. During the simulation process;, experimental DEV,
whether its template is fully informed or not, is attributiedone of the previous
training classes, and that class conditional probab#itetrieved. There are many
alternative ways to do the prior classification, the averibhasare presently being
investigated at SCRF are:

1. defines a distance between any two training DEV'’s, thengtbese DEV’s
into a determined number of classes. This is the approachpEtA2003, in
this SCRF report). A similar approach consists of reduchrggdimension of
each training DEV by retaining only the first few principahesponents (PC’s)
of its template data. Some form of cluster analysis themalko define classes
of DEV’s based on their PC’s. This is the approach used byC&trebelle
and Parayzan (2003), Zhang (2003), Liu, Harding and Ab#e0g), the two
latter references are in this SCRF report.

2. the classification tree approach (Breiman et al., 198d3ists of partitioning
the K'T-dimensional space of all training DEV’s into a much smatiember
of regions or classes of DEV’Y. is the number of nodes of the data template,
K is the number of classes discretizing the range of vartstwfieach nodal
value. The partitioning of the initiak 7-dimensional space is done by a se-
guence of binary splits, each split ensuring maximum “hoemaity” of the
two resulting classes. This requires defining a measurerablgeneity of any
class of training DEV'’s. This approach is being investigdig Remy (2002).

Defining a distance or a measure of homogeneity between DEiifigs another
input decision into the definition of the random function into the training im-
age; associating a specific experimental DEV to a class avmay similar DEV's
amounts to tampering with those experimental data. Howekierclassification
approach offers many potential critical advantages: (fedision reduction and
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limited memory demand associated to the fewer number obetasetained, (2)
filtering of training DEV’s through their pooling into clas&) expanding thg"
model to accept any experimental DEV even if that exact DENeiger found ex-
actly in theTn.

- Neural net models The set of training conditional proportions could be mod-
eled by explicit analytical probability distribution futions such as:

Prob{Z(u) eclassz| Z(u+h,) =2,, a=1,---,T} (13)
= (2| 20, a=1,---,T)

whereu is the central location of a template fully informed at adl it locations
u+h,, a=1.--,T. Thez,’s are the data values. The functigg(.) gives the
probability that the central valug(u) be in the specific class The parameters

0 of that probability distribution function are fitted by a malinet from the cor-
responding observed training proportions. The trainingsghconsists of reducing
the 7' to the parametric functiopy(.), the simulation phase consists of simulating
the unsampled valug(u) by drawing from that function (Caers, 1998; Caers and
Journel, 1999).

The neural net approach carries all the advantages of th&fitation approach, but
can only accommodate “full” DEV’s with all their template aies informed. Thus
simulation must start with a fully informed field which is giaally updated one
node at-a-time until some criterion of convergence is met. éxample, the field
can be initiated with nodal values all drawn from the targatgmal distribution of
the Z-attribute; such initial field would thus present no spadialicture and would
be sequentially modified by successive drawings from cadit distributions of
type (13) or by an acceptance/rejection Metropolis-tygewdihm (Hastings, 1970;
Caers, 1998). As with all Markov chain-type algorithms,\wngence is an issue:
which criterion should be used to stop the iteration, cagpeece may be slow, and
when the iteration is stopped is it unclear what statisticstiucture has been actu-
ally retained from the original’.

The search tree concept
As opposed to classification, the search tree takes théigamage as is, does not add
anything to it, does not tamper with it. The training propmms are merely recorded in a
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dynamic data structure, called a search tree (Roberts,)1988rch trees are particularly
convenient to store nested information such as numberstobmes of DEV’s, where the
larger DEV includes lesser ones.

If the idea of borrowing directly conditional probabilisérom a training image is now
more than a decade old (Srivastava, 1993), the breakthrihaglallowed wide applica-
tions was utilization of a search tree as proposed by Stee(2000). Instead of scanning
theT'i anew at each node being simulated, thats scanned only once prior to any sim-
ulation, and all the training DEV occurences within a givemplate are recorded in the
search tree.

There is one search tree for each data template size and ggoneace if 3 different
multiple grids are used in the sequential simulation presesh correspondingly 3 dif-
ferent templates, there will be 3 different search trees évine same finely gridded
is used.

The grid nodes constituting a template are first orderedc&jly with the nodes clos-
est to the central template location given the highest raike root of the search tree
gives the training histogram (proportions); discountingder effects this is the marginal
histogram of the:”?(u) values,u € Ti. If that histogram is discretized intd” classes,
that search tree root branches out infaaughters corresponding to conditioning by the
highest ranked template node value, s&Y(u;) = z, for thek*" class and branch. Each
of the K 2"¢ level nodes of the search tree gives the histogram of'theanked template
nodal value conditional to a particular class value ofttHeanked nodal value:

Proportiof 27 (uy) = zp | 27 (wy) = 2.}, K =1, K

whereu, is thel® template node, and, is the second;, z;- are classes discretizing the
range of thez-attribute value.
Each of the2" level nodes of the search tree branches outinttaughters leading to
37 level nodes; - - and so on until the last ranked template node. For furtheiildethe
reader is referred to the remarkable thesis work of Strel§2000), or Strebelle (2002).
Actually what is recorded at each node of the search treetisheoproportion but
actually the number of training occurences, e.g.:

# of occurences ofz""(uy) = 2 | 27 (0y) = 2.}

from which one can check whether the number of DEV replicatesfficient and retrieve
the required conditional proportions.
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The size, hence RAM demand, of a search tree is not relatbe G size, it is related
to the numbef” of nodes of the data template and the discretization l&ved the range of
the z-attribute value. The size of the search tree is proportimnthe number of different
DEV's of any size< T found in theT"; that number is typically much lesser than the
total of nodes in thd@'i, hence much lesser thdt’ because not all possible DEV’s are
found, or need to be found, in thé&. In typical applicationgs < 3, i.e. mp geostatistics
is limited to categorical variable§: < (7x7—1) = 48in 2D, (5 x5x3—1) = 74 nodes
in 3D corresponding to a small template discretizationalidwowever that the template
size (extent) can be large if the gridding of that templatisrse.

The advantage and also limitation of the search tree is thiatords thel’s DEV’s
exactly as they are found. Reading from the search tree, periexental DEV is either
exactly matched by a minimum number©f replicates, or that DEV needs to be reduced
e.g. by dropping out the lowest ranked datum value. The beaee per se does not
allow any tolerance for “approximate” replicates; it does allow for either filtering or
interpolation of DEV’s. Overcoming this limitation has le@n impetus for research, see
the previous section on modeling the training image.

Where to get training images

When interpolating or simulating between data one utilixes sources of informa-
tion: (1) the local data on which to anchor (2) the structunaldel, be it a surface, a
covariance function (dual kriging) or a portion of a traigpirmage. We insist that the
structural model that links the data together should beaha@tdormation, not some ar-
bitrary surface. The geologist, more generally the phgsiof the data, should have a
prior idea of what the final field should look like; that prierfermation is critical and
should not be forfeited for an arbitrary, typically congdroversmooth and wrong struc-
tural model hidden behind the automatic contouring albarit In the common case of
local data sparsity, the final estimated or simulated fielgedds more on the structural
model used than on the few data on which it is anchored, he&risenirong not to at-
tempt building a structural model that would match that pnidormation. A training
image provides a vehicle for expressing and utilizing therpstructural information. If
the geologist hesitates, then he should be pressed to preeitkral alternative guesses
under the visually explicit form of alternative training &ages. In most situations, that
uncertain geologist would reject categorically an amoy#¥a which is implicit to most
Gaussian, variogram-based, structural models. Unforélyahe structural or random

20



function model underlying analytical spatial laws are mewade visually explicit which
prevents them to be outright rejected if deemed inapprtepria

The main contribution of &% is to be a vehicle for expressing prior structural infor-
mation. AT is visually explicit, hence is more attuned to the judgenuéra geologist.
Geologists do no think in terms of histograms or variogramsgyever they can draw since
most of their experience is recorded as figurative patterns.

Because it is dissociated from the field sample data, a trgiimhage need not repro-
duce these data, i.e. it need not be locally accurat@; & a pure conceptural rendering
of what shapes and spatial structures should be. Intethpdtetographs of outcrop and
present-day depositions, hand-drawn sketches of pattamserve as starting points to
build the large 3DIi’s needed for mp geostatistics. They are only starting poine-
cause sketches and photographs are 2D and limited in theinteand resolution. These
sketches and more generally the “vision” of the geologisusth guide computer runs to
generate the full size 3D training images needed for mp géstts. Object-based or
process-based algorithms and computer-aided design addlimg of 3D volumes are
all valid approaches to generating full size 3D's; because these algorithms are freed
from the conditioning to local data, they can be fine-tuneddliver7%’s that match the
prior conceptual “vision” of geologists; see Haldorsen &nideth (1993), Bratvold et al.
(1994), Deutsch (2002) for object-based algorithm; TétAla and Harbaugh, J. (1989),
Kolterman and Gorelick (1996), Wen et al. (1998), Srivaat@®002) for process-based
algorithms; Mallet (2002) and the gOcad software (Earthiflen Sciences, 2002) for
computer-aided modeling of 3D volumes.

Catalog of training images

There exist many excellent geological books providing asifecation of depositional
sedimentary systems, see for example Galloway (1996),| {1i8B6). One may dream
that one day, all major classes of depositional systemsdumeibacked with one or more
large training images in digital format. In addition to thaditional qualitative descrip-
tion with typically few supporting statistics, each clash lae backed by a high resolution,
large extent, numerical and visually explicit, descriptad how that system may look like
in 3D, possibly at various scales calling for varidiiss. Again thesdi’s are purely con-
ceptual, they need not locally match any data from any spad#posit. Non-stationarity
and, more generally, overly specific aspects of thegewould have to be dealt with, see
next subsection.
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The existence of such catalog would allow sharing priorcstmal information in a
directly usable digital format: any company geologist wbphge through that catalog
and extract thosg’’s that express best and bracket his own “vision” of what tepasit
under study may look like. Multiple point geostatistics amthulation would then try to
match that prior vision to the field data available, both h@d. wells) and soft (e.g.
seismic).

Stationarity of training images:

A training image generated as a non-conditional realinaifa stationary and ergodic
process will look “stationary”, in that our perception ofigttures and shape will appear
invariant under small translation of our eye window or teat@l For example, an object-
based realization of the distribution of ellipses, over &fef dimensions much larger
than the size of ellipses or their clusters, is stationagg Bigure 5a. That distribution
is not conditioned to any local data hence no area oflthappears more particular then
another.

The situation is much different with afyi based on an actual photograph, of a present
day deposition for example, see Figure 5b. An actual depagiiattern has necessarily
location-specific, non-repetitive, hence non-statiorfaptures; it also typically display
multiscale structures, with the larger scale extending tive entire figure, hence these
large scale structures are also non-repetitive and navdarg If such pictures of real
phenomena are to be usedias, because they are to a certain degree non-stationary and
non-ergodic, what “average” structural information canexpect to extract from them,
e.g. by scanning th&i with a fixed size template? Clearly, local non-repetitivattees
will be averaged out, large scale non-ergodic features dvoat be seen through the too
narrow window. How could those missed-out features or sres be re-introduced in
our simulated realizations?

Figure 6a gives a non-stationary image of what could be arpneted binary map
of channels in a delta fan. That map is non-stationary inttietirection of channeling
varies in the delta, and it is non-ergodic in that the chaooatinuity extends across the
entire image. Figure 6a was usediasto generate through snesim the non-conditional
(no local data) simulated realization shown in Figure 6b,aso Zhang (2002). The non-
stationary locally varying channel directions of thiéwere averaged out in the simulated
realization. One way to re-introduce the large scale farctire of thel' is to condition
the simulation by local data giving in each area the gendrattion of the channels,
see Figure 7b and later discussion on “Local transformstriSif such local data about
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direction, the prominent but non-stationary fan structfrthe 7' of Figure 6a cannot be
recovered.

4 Snesim v.10.0 — State of the Art

The snesim code, based on a strict search tree record ofaithanty image, is presently
(2003) the most developd mp simulation algorithm. Othepaigms based on some
form of classification of the/s DEV'’s are still in various stages of development, see
Arpat (2003), Zhang (2003), both in this SCRF report.

Snesim stands for single normal equation simulation. Thnafles normal equation
expresses the projection of the indicator of presence aretesof a category (variable
to be simulated) onto the linear space generated by theesmgltiple-point data event
grouping all relevant data (Journel, 1993; Strebelle, 200Re basic inference relation
(7) identifying the conditional probability to a traininggportion is but an expression of
that single normal equation.

The snesim version 10.0 is fully flowcharted and describedhiang and Journel
(2003, this SCRF report). A detailed sensitivity analydialbinput parameters is given
in Liu (2003, this SCRF report).

Figures 8 and 9, taken from the previous 2 papers, give theclflavy and input pa-
rameter file of snesim v.10.0. The following short revieweimds to highlight the major
algorithm decisions of snesim and discuss their shortcgsnwhile suggesting alterna-
tives.

Flowchart:

From Figure 8 it appears immediately that the loop givinfedént simulated realiza-
tions is at the top of the flowchart, embedding all other loimgfuding that constructing
the search trees. Hence all search trees will be constraotad for each new realization,
although they are the same since the same training imageds d$is major program-
ming decision was taken for 2 reasons:

1. the trend in modern geostatistics is not to assess uimdgntath many realizations
of the full field facies and properties. A few realization®(3) suffice to check that
the input parameters are correct and that the simulaticorittign chosen delivers
the expected results. Uncertainty is to be assessed eadjarding critical input
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parameters such as target Net to Gross ratio and choice @fiffsee Bitanov and
Journel (2003), Kim and Caers (2003), both in this SCRF ttepor

2. because of multiple grids and local transforms (see Rergahe number of search
trees needed for any single training image is large. RAMagferhecomes an is-
sue if all these search trees (same for all simulated reé@li) were to be loaded
upfront. Because construction of a search tree is reaspffadt, it was decided
to repeat that construction as often as needed, unload frdivi fRe search tree
before constructing the next one; this was deemed fastarrdeling these search
trees from external storage devices.

The other point apparent from the flowchart of Figure 6 is th@gnment of sample
data to the nearest (sub)-grid nodes, followed by their sigament then re-assignment
when another multiple or sub-grid is considered. This e®alata location inaccuracy
and, of greater concern, possible inconsistency from oitetgranother. The present
definition of a data event requires hard data values at thesotithe data template,
hence the location assignment chore. In section 5, we stiggespolating probabilities
at these template nodes which has two major advantages rd dhata stay where they
are, (2) the data template is always full but with probapilues.

Multiple grids :

The concept of simulation on successively finer grids, passimulated values as hard
data from one grid to another, is key to reproducing largéesstauctures (Tran, 1994).
Indeed, simulation starts on a coarse grid which allowsguaiharge size data template
but coarsely gridded. The number of multiple grids to retéépend on the largest scale
of the training structures to be reproduced: the most difficase is that of structures
spanning the entire extent of the field to be simulated. I sase, experience has shown
that 4 to 5 nested multiple grids, each with a coarseningfaaft2 in each 2D direction
(thus a factor of 8 in 3D), is adequate.

Training image size

For reasons of ergodicity (number of replicates) the trajnmage extent should be
at least twice the dimension (four times would be betterheflargest scale structures to
be reproduced. For example, if channels spanning the dffiféength L of a simulated
field are expected, th€: should be large enough to display channels of EW dimension
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2L, again 4L would be better. This may call for extremely &rg’s; the solution is again
to use large but coarsely griddéd’s for simulation at coarse grids.

The multiple grid simulation approach calls for multipldfeient search trees, one
per grid specific to the data template retained for that gRecall that the size (humber
of nodes) of a search tree is related to the size of the datalaéennot to the size of the
T'i; the number of replicates is related to thiesize.

One single larg&, as finely discretized as the finest simulation grid, couldded to
generate all multiple search trees including that corredpy to the coarsest and largest
data template. This would be the ideal solution providetlshragleT": displays all struc-
tures to be reproduced, from smallest scale to largest.s&leh large and finely dis-
cretizedTi may be too memory demanding and the building of the corredipgmmul-
tiple scales search trees may be time-consuming. Remehuseever, the concept of a
catalog of7"i’'s and related search trees repositories of DEV’s: a seagehshould be an
upfront, one-time cost.

The other solution is to consider differeiit’s at different scales for the different
simulation multiple grids. The larger scalé’s would be coarsely gridded and could
display very different structures/shapes than the fineesdainsely gridded'i's. Beware
though of consistency between these differEiis.

Data template issues

The demand in memory (RAM) and processing time (cpu) of aisnssnulation is
conditioned mainly by the data template size. The numbeodén of that data template
determines the size (RAM demand) of the search tree, andlasoost of constructing
it (an one-time cost) and reading from it (a cost proportida@he size of the simulation
grid).

At present the snesim approach accepts experimental DE¥tstay only partially
fill the data template: not all nodes are informed. Whenevdata template node is
not informed, allK possible outcomes for that missing datum are consideredhrend
corresponding conditioning probabilities are averageeefore the search tree is rel&d
times starting from the tree node corresponding to the tateplninformed node. Thus
the more incomplete the experimental DEV, the more cpu tiniekies to retrieve from
the search tree the corresponding conditional proballigtyibution (pdf); and this grows
exponentially worse as the template sizacreases and the numbErof outcome/classes
per node increases.
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Consequently, a major gain in speed would be obtained ifxa@deemental DEV’s
were full. One solution, that taken by the neural net apgradcCaers (1998), is to fill-in
all simulation grid nodes at the start: this can be done byithgrfrom the marginal target
distribution of the attribute variable. Sequential sintiaia would then iteratively perturb
the central value of each template conditional to the ptetsemplate full DEV. What is
gained in speed from having a full DEV is lost by the necessityerating several times
through the entire simulation grid, not to mention issuesarivergence.

Strebelle (2002) has suggested defining subgrids withih e&athe simulation mul-
tiple grids. The simulation path proceeds on each of thebgrgls in such a way to
maximize the number of data template nodes informed fromiqusly simulated nodes.
This subgrid solution has been implemented in SCRF verddndf the snesim program.
However, subgrids call for the burden of additional searebd.

In the next section 5, a new snesim algorithm is proposediwaliways considers
full data templates, but data templates informed with pbdig values instead of hard
simulated values. The key modification is to be able to usbability values, instead of
hard outcome values, to visit a search tree.

As for the geometry of data templates, experience has cagditire established prac-
tice of data search neighborhoods used in kriging, whickagopic template geometries
are just fine. This is true even for modeling highly anisoitadongated structures, such
as fluvial channels.

Local transforms:

As discussed before in section 3 — Stationarity Issuesoataly training image can be
rotated then squeezed (affinity transform) as needed, geed-i. The experimental DEV
can be transformed (rotation + affinity) from its actual datzations to adapt to those of
the single stationary’i; the problem is that such transform calls for data relocatth
the consequent inaccuracy which may be severe for the tazgassest multiple grid.

The snesim version 10.0 has taken the alternative solutioohais to transform the
original 77: more precisely if 5 classes of angle transform and 3 clastasisotropy
ratio are considered, 15 different search trees will be ge¢ed from the single original
T, for each multiple grid. Hence, if that transform is to be lggbat all scales and 5
multiple grids are considered, there will be a totall6fx 5 = 75 different search trees.
If a prior catalog ofl’i’s and search trees does not exist (present situation), #mage-
ment (construction, loading into RAM, unloading) of so maegarch trees is demanding
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and cpu-time consuming. In 3D, a local transform may need&ioms, hence 2 angle
parameters (one for azimuth, the other for dip identifiaggti@nd 2 affinity transforms,
hence 2 anisotropy ratio parameters, for a total of 4 parmsel he total discretization
of the corresponding 4 dimensional parameter space shotilthuch exceed 25 to limit
the number of corresponding search trees; but 25 corresgorah extremely coarse dis-
cretization. Fortunately, in subsurface applicationsadae rarely abundant or accurate
enough to allow a high resolution definition of local anispiy directions and correspond-
ing anisotropy ratios.

Target proportions:

The global proportions or marginal histogram of the attiebvariable over the var-
ious multiple grid7'i’s need not identify the proportions targeted for the sirmaia If
the difference betweeh’i proportions and target proportions is not too differenteg s
vomechanism allows correcting gradually the conditionalpprtions towards meeting
the target proportions, as the sequential simulation <sgs.

Beware however, that if the target proportions are too wfie from theT’s pro-
portions, this target may not be anymore consistent withsthectures displayed by the
Ti. Consider the binary variable indicator of presence/atxssefchannel in a mud back-
ground: ari displaying thin undulating fluvial channels in proportia @& not consistent
with a target channel proportion of 0.5 or more.

In snesim v.10.0 the servomechanism can be turned up from €ofmection) to 0.99,
the maximum 1 entailing exact target reproduction ignotimg 7" information. The
program also allows variable vertical target proportiahss is useful for simulation of
3D layered reservoirs where target facies proportions nagy from one horizontal layer
to another.

Performance

To provide a rough measure of the relative cpu costs of thenasteps of the snesim
algorithm, run times for generating a 2D simulated realwabdf the type of Figure 7c
are:

Code: Still experimental (not optimized)"* version of snesim v.10.0, Linux OS.

Hardware: 1.7 GHz Intel Pentium 4, 512 Mb RAM

T and simulated field size: 250 x 250 nodes, 5 multiple grids

Template size: 25 nodes for each multiple grid, 3 rotatiogl@categories, and 3
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affinity ratio categories, 2 subgrids for each of the 4 fineltiple grids, thus 9 search
trees are generated for the coarsest gridard2 = 18 for each of the 4 other multiple
grids

Total time: 172 seconds distributed as:

- 165 s. for inference (rotation + affinity + search tree) ¢ondion, reading and
unloading out of RAM

- 5s. for actual simulation

- 2 s. remaining

Remarks:

There is a total of 81 search trees generated, thus the tiem¢ ger search tree is about
2 secondsx 165/81. This is clearly where algorithm optimization should takage.
Ideally, the search tree (s) construction should be an optask performed outside the
loop for each realization (see Figure 8); if a catalog of ssehrch trees already exists,
then the cost of search tree construction would be replagetdi of I/O reading from
hard disk.

The cost of reading the conditional probabilities would basiderably reduced if the
data template was aways full (all its nodes are informed) pseposal in the next section
5.

Our conjecture is that algorithm modification and code ofation could cut the run
time given above by a factor of 10 (more in Fortran) allowiegegrating a 3D multimillion
nodes realization within 10 to 20 min. within the next 2 years

5 Improving the snesim algorithm

Strebelle’s snesim algorithm will remain a landmark in tleeelopment of geostatistics
being thel’ operational multiple-point simulation algorithm. Theaigand simplicity
of the search tree concept combined with the well estaldiskguential algorithm have
proven to be a remarkable match.

As is often the case, one’s strength is also one’s weakness:
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- the search tree allows retrieving the number of traininggedata events matching
exactly the experimental one, but then it does not allowrptkating betwee™
data events. There is no measure of similarity between DEtker they match
exactly or valuable data must be dropped until such exaathmatobtained.

- the sequential simulation is non-iterative, hence faatheuninformed node is vis-
ited only once, its simulated value is then frozen as hard.dgtis can create con-
flicts and discontinuities when nodes on a coarse grid aralated independently
one from another due to non-overlapping data templates.

- pointwise algorithms proceed simulating one point at atias opposed to object-
based algorithms. This allows for easy data conditioningesit suffices to freeze
those points/grid nodes that are already informed, buta$etsntiguous simulated
values may not anymore display the crisp geometry of exgeuttgects.

Consequently, the snesim algorithm suffers from the pted@vbacks:

- it requires large, difficult to build, training images alitedisplay the large variety
of DEV’s expected in a real reservoir. Large template sizegequired to capture
and reproduce large scale continuity; correspondinglgy lagge7i’'s are needed
to provide enough replicates of DEV’s defined on such larggptates. We would
like to expand from the limited DEV sample provided b§'a We would like also
to filter that DEV sample, retaining only those DEV'’s reflegtithe “essence” of
theT'i and rejecting those associated to specific, non exportatdteyrences.

- the present sequential simulation does not allow selfection, except for a post-
processing of the simulated field. That post-processinguatsdo a2 iteration;
we would like such iteration to be fast (few iterations withssues of convergence)
and to be part of the simulation algorithm rather than anrtteight correction.

- without resorting to dropping onto the field whole objedsraobject-based
(Boolean) algorithms, we might consider simulating setsvbole templates of
contiguous points. The initial simulation of those pointight be soft, simulating
probability values instead of hard values, which would m#defirst simulation
pass “soft”.

The research done recently at SCRF (2002-03) has been roalgipVarious alterna-
tives are being tried to offset the previous limitationshe snesim approach. The pattern
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simulation (program simpat) research line of Arpat (2003his SCRF report) is possibly
the most innovative. Beyond details, simpat provides tHewiang critical improvements
over the present snesim program:

1. simpat matches experimental DEV’s to classes of traimmage DEV’s. That
match involves probability values at each node of the datgpkate instead of hard
values as in snesim. Such prior classification of trainingVBEnd soft match
allows for interpolation and filtering of tH&: DEV’s.

2. from one node to another, from one multiple grid to angtkienpat passes proba-
bility values as opposed to the hard values passed by sn€bims, early simulated
values are not frozen at the risk of generating later disoaittes. Hard simulated
values are generated by simpat only througfi‘apass over all nested guides: this
amounts to an iteration.

3. in the simpat algorithm all nodes of each template are lsfmeously simulated as
probability values, as opposed to snesim simulating a haiuk\at the sole central
location of the template. Simulating all nodes of each textgpyuarantees within-
template continuity, then because these values are pliltestihey are easily up-
dated when a second template overlaps the first one.

Point 1 above amounts to a classification of DEV’s which dalislefining a distance
measure between any two DEV’s. Classification voids the faetisearch tree, a concept
at the very basis of the snesim algorithm. Points 2 and 3 doaibtor any classification
and could be accommodated were the snesim algorithm be éggao:

2a. accepting, as data, probability values, then passidgtad probability values
instead of hard values. Hard values would be generatedéietonly during 2" pass
through the simulation grids.

3a. the probability values at all locations of the templdieutd be updated simulta-
neously instead of the present snesim simulating only thec@docation.

Leaving aside for now the critical issue (Point 1) of intdgtimn and filtering ofl"
DEV'’s, an issue associated to the definition of what constitine yet undefined concept
of “essence” of &%, the following proposed modifications would allow snesinatcept
and pass probability values.
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A soft semi-iterative snesim algorithm

Presently, snesim accepts and passes only hard data aked/or 1 in the case of a
categorical variable; such hard data values can be seertramexprobability values.

Passing probability values to the central location of eachplate is easy, it suffices
to pass the conditional proportion value(s) read from tlaectetree instead of drawing a
hard simulated value from it. Accepting probability valia tougher challenge because
the search tree is a repository of hard, not probabiligtid)EV’s.

We suggest the following new semi-iterative snesim algaribased on two stages, a
sequential probability updating stage to fill-in all nodésibgrids with mutually consis-
tent probability values conditioned to the original samya&les, and a simulation stage
similar to that of the present snesim algorithm, see flowtahdfigure 10.

(1) Probability updating stage

Consider again Figure 4 and the structure of a search treeh B@de of that tree
corresponds to a particular location within the data tetepleth A branches starting
from it, if there areK possible categories for the variable being simulated. Tdre h
datum value at each template location determines whichchramtake to reach the next
node of the tree; if that datum value is a probability vallee (K branches probability
values summing up to 1), one can draw from that probabilgyriiution the indicator of
the branch to take. We would keep drawing at each node of thglége to determine the
next branch/route and go as fgrés the search tree allows. Note that an original sample
value frozen as a hard datum value at any given node corrdsgorthe particular case
of a deterministic draw with probability 1 for a specific bcan Once all locations)
of a specific template centred athave been so visited, a specific hard DEV has been
identified in the search tree, the corresponding centralevabnditional probability is
retrieved and used to update whatever probability valueavaisat central value. That
probability value is then passed along (no drawing from it!)

Remarks

(*). At each grid nodex the final conditioning hard DEV generated is of siza) < T,
whereT is the template size. Indeed the search tree generally @besmtain all possible
KT DEV’s, i.e. all branches starting from the tree root do natehmaximum length’".

e The previous route simulating one’s way through all brasafe data template requires
a fully informed template, with all it§’ locations informed with a probability distribution
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function (pdf). These pdf’s are either passed from the previcoarse grid, or they can
be interpolated from an indicator kriging based on neigimgporiginal hard sample data
and coarse grid pdf data. Actually a much faster inversesadr variogram weighting
interpolation should be sufficient since these interpolaidf values will be updated with
search tree probability values.
¢ Original hard sample data values exactly located on a griterave frozen there, i.e.
with a prior pdf equal to 0 and 1. These hard sample nodes grpeskin the sequential
simulation, that is they are never updated. If a hard samgutiend is not located exactly
on a grid node, it ismot relocated: it will influence the previous pdf interpolatiprocess
from its actual location.
e Updating template pdf values Once the template central valueathas been
updated with a pdf read from the search tree, one should egdateighbor template pdf
values for consistency. The following sequential algenils suggested for that updating:
Let i(u + h,) be the indicator values drawn at thi) template locations + h,,,
a = 1,---,t(u); these indicator values define the path taken through thecbes of
the search tree, hence they define thegdf) attached to the central locatianof that
template;p(u) is read from the search tree. Using the classical sequextgiaiithm, at
each within-template locatio, = u + h,, a =1, - - -, t(u),

- discard both the prior pdf(u),) and the indicatof(u,)
- position a new template centrechsf

- apply the previous algorithm, using the neighboring iatiici(u + h,/), o' # «,
or drawing from pdf values when such indicators are not prie$e determine the
conditioning DEV for that new template

- read the corresponding conditional probability from tlearsh tree and update
p(ul,). Draw from that probability a new indicator valu@x,)

- end this inner loop when all locations, = u+h,,a = 1,-- -, t(u) of the original
template have been visited and their probabilities anccatdrs are updated.
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The central locatiom and its template neighbor location§, o« = 1, - - -, t(u) are
excludedfrom the random path visiting the present multiple grid, tleey are not any-
more updated on that grid. They will be at the next finer grid.

Proceed to the next locatiannot excluded along the random path and repeat the pre-
vious process, i.e. update the prior pdizgdnd all its within-template location], which
havenot been updated yet. Hence over anyone of the multiple grids¢da location will
have its prior probability values updated once and only orfideat updating uses prob-
ability values from the search tree, hence pdf values thay ¢he mp statistics of the
training image. Only those grid nodes exactly co-locatethan original hard sample
datum are not updated, their probability (O or 1) are hardfeomen never to be changed,
ensuring data exactitude.

This algorithm

- accepts and passes probability values at each grid node
- updates the prior probability values once and only onchiwitach multiple grid

- updates consistently (in an inner loop) the template ebwalue and its non-already
updated template neighbor locations.

When a grid is completed, all its nodal probabilities arespdgo the next finer grid.
Each node of that finer grid not informed is first interpoldi@da prior probability value.
The process is then repeated to upddtenodes of that finer grid once and only once.
Note that all probabilities passed from the coarser griduadated again.

When the last (finest) multiple grid has been fully updated have a fine grid filled
with probability values, with the only exception of hard gaendata frozen whenever
their locations coincide with a grid node. The second stdgetmal simulation can now
proceed.

(2) Simulation stage
Starting again with a random path visiting the coarsest, ghie previous process of
gathering pdf values from the search tree is repeated, isuiirtie:

- a hard simulated value is drawn from each pdf read from thechdree. That hard
simulated value is then frozen (never to be changed) anégadsng.
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The inner loop consisting of simulating hard values at athim-template locations,
before proceeding to the next central location, is maiei@inThis should allow consis-
tency of close-by simulated values on any grid.

The hard simulated nodal values of one grid are passed tettignd. Each template
of that finer grid is full with either hard data (from the coargrid) or probability values.
The previous simulation process is repeated, again withvedues drawn from the search
tree pdf’'s. The process continues down to the last and finekt gne fully simulated
realization of the study field has been generated.

In summary:

The proposed new snesim algorithm includes two stages:
(1) a probability updating stage where a consistent prdibakield is generated with a
progressive probability updating as read from the seaersh tProbabilities are accepted
and passed along. At this stage the probabilities are udgdmdraw the route within
the search tree for each template.
(2) a simulation stage where hard simulated values are dhammthe probability field
after an ultimat@™? updating pass reading from the search tree.

Awaiting for a better shorter name this proposed new algoriis called “soft semi-
iterative snesim” in that:

- it remains based on a search tree which is a faithful recbtdeotraining image
DEV'’s, hence the appellation snesim

- initially, probability values are passed from one grid edd another, hence the
qualifier “soft”

- those probability values are sequentially updated torensithin-template consis-
tency at all multiple grids, however this iteration is nohtolled by any dubious
convergence criterion, hence the qualifier “semi-itegtiv

6 Concluding remarks

When modeling a spatial phenomenon, whether a mineral depoan hydrocarbon
reservoir, there is much more to information than the loeahgle data available. These
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local data would have triggered a “structural” interpretatabout how these data relate
one to another and to the unsampled values. That interjgnetat based on prior ex-
perience in studying similar deposits, represents extyenauable information. Any
interpolation or simulation process aiming at filling-inwas between sampled data
necessarilycalls for a structural model relating data and unknown \&lUdat structural
model should capitalize on the prior structural interpietaof the expert interpreter, a
geologist or geophysicist. The impact of the structural ei@etiosen is absolutely critical
in early exploration stages when actual (local) data are féwo few data can’t speak
for themselves, and it would be foolish not to capitalize anmpexperience because it is
deemed uncertain. Accepting the prior structural modeéttamty and trying to assess it,
is better than accepting models based on arbitrary criseich as maximum smoothness
of the interpolated surface or, at the other extreme, maxiraatropy of the data all the
way to data independence.

The problem with using prior structural information is thiais information is fuzzy,
typically not numerical nor parametric: it does not take them of a variogram or a
histogram of channel width and sinuosity parameters. Wheomes to prior experience
and structural information, geologists think in visuahterof shapes, patterns of spatial
distributions, what we proposed to call a “training imag&aining images are conceptual
visual representations of how heterogeneities could hahlised in the actual deposit or
reservoir. The fuzzy conceptual image of the geologistddd ascertained by having
him choose from a catalog of visually explicit, numericagiing images, or helping
him construct the training image(s) best depicting his mpvigion using object-based
(Boolean) simulation algorithms. That phase of choosinguwlding a training image,
i.e. elaborating a structural model, should not be encueth&ith concerns of local
accuracy: the actual local data need not (should not) berbdrat their exact locations.
One should see our proposed reservoir modeling flowcham@stituted of two distinct
phases:

1. elaborating a structural model that relates data and awaks, more precisely a
numerical, visually explicit, training image of what heigeneities are deemed to
look like in the actual reservoir

2. applying that structural model to the actual data. Irnstefegradually “morphing”
the training image to match these data, we suggest to cehstachastically the
actual reservoir numerical representation(s) one pixaltahe accounting for the
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multiple-point structures displayed by the training image

That dichotomy between structural and local informatiopdsvasive in geostatistics.
In kriging, the structural information relating data to wmakvn is the variogram; in sim-
ulation it is the random function model traditionally chetexized by variogram(s). The
kriging or stochastic simulation process consist of fillingone pixel at a time the unsam-
pled grid nodes. The limitation of traditional geostatisttome from the structural model
being limited to 2-point statistics which can relate onlyotdata locations together or
one datum location with one unsampled grid node. This is finerfodeling amorphous
heterogeneities such as distribution of grades or petsipalyproperties within a statis-
tically homogeneous region or facies, it is insufficientfimodeling categorical variables
associated to shapes and geometrical patterns. There s mue to facies and shape
distribution than 2-point statistics, and that “more” candelivered by training images
selected or built from prior geological expertise.

Instead of borrowing specific multiple-point statisticsrfr a training image, such as
2-point, 3-point; - -, n-point statistics and using them to construct conditipnabability
distributions, the avenue presently chosen in modern géstts is much more direct:
borrow directly those conditional distributions. The tiiaig image is scanned for repli-
cates of the multiple-point data event, the relation oféreplicates with any neighboring
training values provide the required structural inforrmatnd, directly, their distributions
conditional to the data event. How a training image is scdnhew the resulting struc-
tural information is stored in a search tree, which temgldte the data events should
be retained, are all critically important details of implkemtation. The important novel
methodological stance is accepting the numerical traimmgge(s) representation of the
random function structural model, as opposed to the tathti analytical models (all
Gaussian-related) or the implicit, algorithm-driven migde.g. random functions asso-
ciated to most iterative simulation algorithms).

A crucial consequence, not yet fully developed, of the neleaon training image-
defined structural models is an healthy return to what reallyters when it comes to
uncertainty. The major source of uncertainty, that whicty roi@ate severe biases and
affects thel® digit of results, is related to the choice of the training gmeor struc-
tural random function model. It isot the fluctuations between the various realizations
of the final reservoir representation, those fluctuatiorisgpassociated to the various
ways the same prior structural model can be made to matclota¢ dlata. The major
uncertainty, particular in early exploration stages, ishia structural model/training im-
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age retained. Geostatisticians will do well toning dowrnirth@uting of unconsequential
random seed-based fluctuations of simulated realizatindsacus on the essential, the
uncertainty about the structural model retained. Thenabse there is much more to a
structural model then mere 2-point statistics, pertulmatiba variogram model is almost
always a futile exercise. What should be done is consiaerati widely different geo-
logical scenarios, different structural models, yet ajjgered by the same local data. The
consequence of geological scenario uncertainty typicalgrwhelms that due to within-
scenario uncertainty; the latter could be taken care of byltittuations of geostatistical
realizations conditioned to the local data.
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Figure 1: Different patterns of spatial variability shayithe same variogram
(a). Boolean ellipses (GSLIB program ellipsim)
(b). Indicator simulation (GSLIB program sisim)
(c). Pieces of channels (Object-based program fluvsim)



Training image

local data event

Figure 2: Scanning the training image to find replicates gbec#ic data event (here a
4-point DEV)
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= Freeze coarse grid nodes and use them as

Training image L : : :
$ . conditioning data to simulate finer grid nodes

Finer simulation grid
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Figure 3: Multiple grids for sequential simulation and tleeresponding rescaling of data
template (note that the same sample value would be relotatdifferent nearest node
depending on which multiple grid is considered)
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Figure 4: Ordering of grid nodes within a data template aedctirresponding search tree. Template of size 4 used to scan a
training image of sizé x 5 generating a search tree with 4 levels of tree nodes eacl2witanches (since variable is binary)
(taken from Strebelle, 2000)



a. Random distribution of ellipses
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b. Rhein-Meuse fluvial channels
(from Berendsen & Stouthammer, 2001)

Figure 5: Stationarity of training image

(a). A stationary realization of elliptical objects of sizmall relative to thd; size

(a). The actual Rhein-Meuse channel deposition displayatilon-specific patterns which
extend over the entire’
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Non-stationary training image
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Figure 6: Non-stationary delta fan used as training imageane resulting snesim sim-

ulated realization (The non-stationary directions anchalehwidths of thel™; have been
averaged out through scanning)
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Figure 7: Stationary training image (a) and local angle (d affinity (c) transforms
allowing generating a non-stationary delta fan (d)
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snesim Main PROGRAM version 10.0

[ Read parameter file |

[Loop over all realizationg

A »| Initialize simulation, assign sample data to grid

Ao———>_Loop over all multiple grids, start from coarsest]

| Set up rotation matrix |

| Create data template]

o——>L__Loop over all sub-grids |

[ Build search tree for current sub-grid]

v

| Assign samples to current grid nodes |

| Get a random path for this reallzatlop

| Pertorm 5|mu|at|0n|

v
| Unassign data|

[ Delete ﬁearch tree

No

No

<—| Calculate simulated global proportion, average # of cond. data retaineb, etc.

Figure 8: Flowchart of the main snesim program, v.10.0
(taken from Zhang and Journel, 2003, in this SCRF 2003 rgport
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Parameters for SNESIM
sk skok skok sk ok sk ok sk ok sk ok ok ok ok ok

START OF PARAMETERS:

data.dat - file with original data

1 2 3 4 - columns for x, y, z, variable

3 - number of categories

o 1 2 - category codes

0.25 0.25 0.50 - (target) global pdf

0 - use (target) vertical proportions (O=no, 1=yes)
vertprop.dat - file with target vertical proportions

0.5 - servosystem parameter (0O=no correction)

0 - debugging level: 0,1,2,3

snesim.dbg - debugging file

snesim.out - file for simulation output

1 - number of realizations to generate

50 0.5 1.0 - nxX,Xmn,xsiz

50 0.5 1.0 - ny,ymn,ysiz

1 0.5 1.0 - nz,zmn,zsiz

69069 - random number seed

16 - max number of conditioning primary data

10 - min. replicates number

1 1.0 - condtion to LP (0O=no, 1=yes), weight factor
localprop.dat - file for local proportions

1 - condition to rotation and affinity (O=no,l=yes)
rotangle.dat - file for rotation and affinity

3 - number of affinity categories

1.0 1.0 1.0 - affinity factors (X,Y,Z)

1.0 0.6 1.0 - affinity factors

1.0 2.0 1.0 - affinity factors

5 - number of multiple grids

train.dat - file for training image

100 100 10 - training image dimensions: nxtr, nytr, nztr
1 - column for training variable

10.0 10.0 5.0 - maximum search radii (hmax,hmin,vert)

0.0 0.0 0.0 - angles for search ellipsoid

Figure 9: A snesim v.10.0 input parameter file
(taken from Liu, 2003, in this SCRF 2003 report)
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Probability updating stage

‘ IK at all nodes of coarsest grids; retain only ¢pdfss on cpdf ‘

i loop through mult grids
Loop through all multiple grids; imult = 2,nmult }747

!

‘ Fast-interpolation at all uninformed nodes; retaity cpdf ‘

!

Random path through all nodes u of imult multipiliel g ‘

path through nodes l

>y

‘ For missing data at template locatign d‘r%\(u’) from cpdfp(u’) . ‘

!

‘ Construct complete DEV with, (u)s n, nodes

!

‘ Read cpdf from search tree for DEV; update curcendf value at u. ‘

!

Loop throughu’ imT (u) il is nasited, construct complete DEV for  as abov%«:

Inner loop through l
template

Update the cpdf aty’ by reading from the deéee for this DEV. ‘

!

Pass on probability values to next multiple grghare drawn indicator values‘
|

Simulan stage

‘ Loop through multiple grids, imult = 1,...,nmult FM

‘ Random path through nodes u. ‘

l path through
unsimulated nodes

‘ For missing hard data at template locatign , draw i°(u’) from cpdb(u’) . 147

‘ Construct complete DEV with; (l-l) sn nsde ‘

!

‘ Draw hard simulated valy& (u’) from cpdfddrom search tree ‘

‘ Pass inner loop through thp(u) template sigdeand simulate them ‘
‘ Freeze hard simulated value which replaces coldagtéf value. }7

I
v

Figure 10: Flowchart of proposed soft semi-iterative smesi

(A). Probability updating stage
(B). Simulation stage
(taken from Krishnan research proposal, 2003)
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