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Abstract

The advent of computers in the 1960’s made possible the development of geo-

statistics. Forty years later, large RAM’s and massive processing power is about to

change dramatically the theory and practice of geostatistics. Analytically defined,

concise hence parameter-poor, structural models are not any more a must. Large

3D training images in their full complexity can be considered as random function

models which provide the multiple point (mp) statistics needed to characterize and

utilize data shapes and patterns, a critical information out of the realm of traditional

variograms.

Practice has led the development of mp geostatistics, but wehave reached a point

where a theoretical formalization can come in. A detailed analysis of SCRF v.10.0

snesim stochastic simulation algorithm allows an understanding of its theoretical

foundations, constitutive hypothesis, potentials and limitations, opening avenues for

new developments.
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1 A short historical review

Initiated by the work of Daniel Krige estimating gold gradesin S. African mines (Krige,

1951), geostatistics as a body of theory was built up in the 1960’s by Georges Matheron

and his fellows in Fontainebleau, France (Matheron, 1962-63, 1965). Geostatistics is

now widespread and its field of applications has extended well beyond its original mining

roots. As many mature disciplines, it has branched out, taking and sharing concepts

and algorithms from so many related disciplines that it would be difficult to attempt an

up-to-date definition. In its origin geostatistics was developed towards one goal, that of

providing locally accurate grade estimates of mining blocks. The novelty with regard

to then well established least-square regression techinques (Williams, 1959; Draper and

Smith, 1966) was:

1. The inference from actual data and the modeling of an analytical variogram model,

as opposed to the more traditional inference of a covariancematrix which required

gridded data. Notions of nested structures, nugget effect/white noise and anisotropy

were then introduced.

2. The concept of support effect: the volume support of data were typically much

smaller than that of the mining block being estimated. Corrections for difference of

support volumes were proposed.

3. Possibly most critical, the full accounting for data redundancy through inversion of

a kriging matrix, that is the data-to-data covariance matrix. This was as opposed to

the then traditional practice of regression with the data considered as independent

variables.

Actually, Halmos (1951), Goldberger (1962) and later Luenberger (1969) did develop

a general theory for regression and projection into vector space that encompasses much

of Matheron’s work on kriging (1969). Matheron and his groupof mining engineers had

the advantage of wide practice.

The wanting of kriging :

Debate about publication antecedence often masks the real advances implemented by

practitioners to fix a wanting algorithm and meet deadlines.How many clean, supposedly

new, theories were actually developed from such fixes provenefficient? Kriging, and
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for that matter all regression algorithms, had two major drawbacks that quickly became

apparent to practitioners:

1. Maps of kriging estimates displayed artefacts (data locations are immediately vis-

ible) and, generally, did not reflect the prior image one had from prior experience

and visual observation. The smoothing effect of kriging rendered kriging maps bi-

ased for any selection that involved jointly several blocks: local accuracy of each

block estimate does not suffice. Very early, this author (Journel, 1975) suggested to

the sneer of the1st international geostatistics congress that kriging estimates should

never be mapped or used as such.

2. The estimation variance, whose minimization defines kriging and more generally all

projection-type estimators, is an incomplete measure of estimation accuracy since

it is data values-independent. The crossplots of kriging variance vs. ranks of the

cross validation errors typically display insignificant correlation; then how useful

was it to minimize such estimation variance? One major exception is provided

by the multivariate Gaussian model much touted by theoreticians, but practitioners

quickly found that their data (earth sciences) were rarely Gaussian, less multivariate

Gaussian distributed.

The advent of simulation:

Stochastic simulation was introduced in the early 1970’s tocorrect for the smooth-

ing effect of kriging and provide maps that displayed the spatial variance predicted from

the variogram model (Matheron, 1973; Journel, 1974). The initial turning band algo-

rithm was adapted from an idea suggested much earlier by Matern (1960), a much unsung

founding father of geostatistics. The turning band algorithm reduced the problem of gen-

erating large 3D (theoretically n D) realizations with a specific 3D isotropic covariance

into that, simpler, of generating a series of independent 1Drealizations with a related 1D

covariance; the latter simulation could be achieved with established spectral techniques.

Because many different, yet equiprobable, realizations could be generated, all con-

ditional to the same set of data, the idea came to using these different realizations as a

model of spatial uncertainty (Journel & Huijbregts, 1978).The second major phase in the

development of geostatistics, simulation instead of kriging, assessing the impact of spatial

uncertainty, had started.
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The turning band algorithm was quickly superseded by fasterand more flexible al-

gorithms that allowed handling of complex anisotropies andconditioning to a variety of

data, hard and soft. Most notable, the sequential algorithmbrought back into focus the

foundation of any stochastic simulation which is the derivation of conditional probability

distributions (cpdf’s) from which simulated values can be drawn, e.g. by Monte Carlo

sampling. Sequential simulation algorithms are presentlyat the core of geostatistical the-

ory and practice (Journel, 1983; Isaaks, 1990; Srivastava,1992; Goovaerts, 1997; Chiles

and Delfiner, 1999).

Simulated maps did correct for the smoothing effect and artefacts of kriging, they

proved useful in reproducing amorphous, high entropy, structures that could be summa-

rized by a variogram, an example being the spatial distribution of grades or petrophysical

properties within an homogeneous mineralization zone or facies. But variogram-based

simulation algorithms fail to reflect crisp geometries or specific (as opposed to amor-

phous) patterns of spatial variability, such as displayed by the distribution in space of

facies indicators. Again, a solution was initiated by practioners, this time from the oil

industry, more specifically from Norway. Stochastic simulation took its first major turn

away from variogram and kriging.

Boolean object-based algorithms were introduced in the late 1980’s to simulate ran-

dom geometry (Stoyan, Kendall and Mecke, 1987; Haldorsen and Damsleth, 1990). Para-

metric shapes, such as sinusoidal channels or ellipsoidal lenses, are dropped onto the

volume to be simulated, then are displaced or removed, theirshapes changed, to fit con-

ditioning statistics and local data through an iterative process. At long last, the simulated

objects did look as expected from geologist drawings or photographs of present-day de-

positions. After a period of enthusiasm, the limitations ofobject-based simulation algo-

rithms became apparent: the iterative, perturbation-type, algorithm for data conditioning

did not converge in presence of dense data or could not account for diverse data types

(e.g. soft seismic data that are at places locally accurate). The situation of exact hard data

conditioning and flexibility in soft data conditioning provided by traditional sequential

simulation algorithms was sorely missed.

The wanting of variograms:

The development of geostatistics has been held down by the two basic concepts that

made its initial success: kriging as discussed above and thevariogram.
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The pre-eminence of the variogram/covariance model was never questioned, until re-

cently. Perhaps, the process of inferring the variogram model from actual data gave it a

mythical aura of objectivity? Yet, and again, practitioners quickly realized that inference

of a variogram, or for that matter any other statistics starting with the histogram, was

more an art than an objective science. In most applications,there are rarely enough actual

subsurface data to get an interpretable directional variogram, let alone an anisotropic 3D

variogram. Whenever the data were abundant, the prior decision of stationarity (i.e. to

pool data together) was revisited, leading to pool limitation and consequent renewed data

sparsity. It came to the point that variograms are not anymore inferred from actual data,

they are chosen from a “mysterious” list of authorized models or, worse, set to the default

values of software packages.

At the same time that variograms lost their aura of objectivity, their limitations as mea-

sures of spatial variability because evident, again to practitioners. Many different patterns

of spatial variability, see Figure 1, may share the same variogram. Thus what controls the

output of traditional simulation algorithms is not so much the user’s input (the variogram

model) but the algorithm retained for simulation, something the user has little control

on. Gaussian algorithms and to a lesser extent indicator kriging-based algorithms tend to

maximize entropy (i.e. minimize structures) beyond the input variogram: the resulting

simulated maps are essentially amorphous. Such modeling decision of maximum entropy

is a justifiable starting point in message decoding or in thermodynamics where high en-

tropy is synonym of stable systems, it is a sufficient decision for modelling amorphous

distributions of grades or petrophysical properties within an homogeneous mineralization

zone or facies. Maximum entropy isnever a good choice for modelling random geome-

tries particularly those for which we have prior knowledge of shapes and patterns, such

prior knowledge being synonym of organization hence low entropy. The uncertainty im-

parted by organized facies distributions typically overwhelms that of the homogenous,

amorphous, distribution of petrophysical properties within those facies.

As to borrow a variogram from an outcrop or a geologist rendering of expected struc-

tures, why not borrow much more, borrow statistics that would enable reproducing those

structures displayed by the proxy image and that are known toexist in the field being sim-

ulated? Not using a training image, because one is uncertainabout it, amounts to use the

implicit training image of the estimation or simulation software, a training image possibly

totally wrong or inappropriate for the types of structures under study. A misplaced desire

of objectivity, e.g. accept only data-based variogram, will almost certainly lead to ac-
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cept blindly the convenient but arbitrary least-structureoption of the simulation algorithm

used.

Haldorsen and Damsleth (1990) and the proponents of object-based modelling were

forerunners, dropping the variogram and kriging all together, instead borrowing whole

shapes from prior information. They were successful inasmuch as that prior information

was valuable information that would have been ignored by variograms. Unfortunately, in

their boldness they also drop the pixel-based approach whereby the simulated field, its

shapes and patterns, are constructed one point or one grid node at-a-time, a feature par-

ticularly convenient for conditioning to data of various volume supports and resolutions:

it suffices to freeze the hard data at their locations then build around them.

Borrowing directly conditional probabilities :

The variogram function serves as a distance model between any 2 points (but only 2

points); that distance is used to infer the probability distribution of any unsampled value

weighting the influence of each datum, taken one at-a-time, by its distance to the unsam-

pled location: that weighting process is none other than kriging. Variogram and kriging

are but tools to get the critical ingredient to any simulation and to any uncertainty assess-

ment: the probability distribution of the unsampled value given its specific conditioning

data event. Hence the idea of borrowing directly that probability distribution from exper-

imental replicates of the conditioning data event.

Consider available a training image that would display jointly data patterns and pat-

terns of the attribute being simulated, that training imagewould be scanned for replicates

of the experimental conditional data event. Consider thatL such replicates are found,

the histogram of theL corresponding central attribute values can be taken as a model for

the probability distribution of the unsampled value given that data event, see Figure 2.

What is borrowed from the training image are not 2-point statistics, variograms or 2-point

correlations, from which to stitch back haphazardly a conditional distribution, that is a

(n + 1)-point statistics if the conditioning data event comprisesn data locations. What

is borrowed is directly that(n + 1)-point or multiple-point statistics, that is the required

conditional distribution, Srivastava (1992), Caers (1998), Strebelle (2000). All structural

statistics, including all variograms, come from the training image, hence are controlled by

the user through his choice of that training image; none are coming from the simulation

algorithm which is outside the user’s control. The trainingimage plays the role of a non-

analytical, yet fully explicit, random function model which provides a number (ideally
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sufficiently large) of multiple-point (mp) statistics. Of course, the proviso is availability

of such rich training image, see later discussion in section3.

Note that the conditioning data event could be absolutely anything, n can be large,

then data need not relate to the attribute being simulated, then data configuration can

be anything, etc· · ·. Of course, the training image should be equally diverse, bemultiple

attributes, displaying enough replicates of the varied data events.

2 The concept of random variable

The modeling of uncertainty which is at the roots of probability theory, geostatistics and

stochastic simulation, relies on the concept of a random variable. There is no need, actu-

ally it is unhelpful, to dwell into axiomatic definitions (Yaglom, 1962); it suffices to retain

the definition which made the concept of random variable useful for practical applications.

A random variable (RV ), denoted by the capital letterZ, can be seen as a collection of

outcomes{z(l), l = 1, · · · , L, or l ∈ (L)} which the variableZ can take; each outcome or

class thereof is attached with a probabilityp(l) ∈ [0, 1], then
∑

(l)
p(l) = 1. The probability

distribution{p(l), z(l), l ∈ (L)} fully characterizes theRV Z and provides a model for

the uncertainty about the actual outcome, typically unknown, of Z. The building of that

uncertainty model thus requires: (1) a census of all possible outcomes{L} or classes

thereof and, (2) attaching a probability to each such outcome.

Remarks:

• The most critical point about modeling uncertainty is that there isno unique, best

or true model. There can be several alternative probabilitydistributions for theRV

Z, depending on various subjective decisions about what should be considered as

relevant information. Playing with these decisions, uncertainty can be modeled as

small or as large as one wishes, and it is certainly naive to believe that there could

be an “objective” assessment of uncertainty.

• The random variable concept can be extended to cover the joint distribution of sev-

eral variables not all necessarily related to the same attribute or the same loca-

tion in space. ConsiderK suchRV ’s Zk, k = 1, · · · , K and the random vector

Z = {Zk, k = 1, · · · , K}. The probability distribution characterizing that random
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vectorZ is considerably more complex than for the previous caseK = 1. It re-

quires (1) a census of all joint outcomes{z(lk)
k , lk ∈ (Lk)}, k = 1, · · · , K and,

(2) the derivation of the corresponding joint probabilities such as:

Prob{Zk = z
(lk)
k , k = 1, · · · , K}, ∀ lk ∈ (Lk), k = 1, · · · , K. (1)

Note that knowledge of all probabilities of type (1) allows calculating any condi-

tional probability, such as:

Prob{Zk0
= z

(l0)
0 |Zk′ = z

(l
k′

)
k′ , k′ ∈ (K ′) ⊂ (K)} (2)

=
Prob{Zk0

= z
(l0)
0 , Zk′ = z

(l
k′

)
k′ , k′ ∈ (K ′) ⊂ (K)}

Prob{Zk′ = z
(l

k′
)

k′ , k′ ∈ (K ′) ⊂ (K)}

where, e.g.,Zk0
would model the variable whose uncertainty is to be assessed, Zk′

are theRV ’s data providing information related toZk0
, theK ′ corresponding data

values are thez(l
k′

)
k′ , k′ ∈ (K ′). The decision to retainK ′ specific variables as data

among theK possible variables is not necessarily unique, nor is it undisputable; so

is the decision about what the initial pool ofK variables should be. Then, there is

also the issue of inference or modeling of the set of joint probabilities (1). As we

will see that inference process is far from being objective.

Random function:

In the case where allK variables defining the random vectorZ = {Zk, k = 1, · · · , K}

relate to the same attribute but at different locations in space, the term random function

(RF ) is used and the notation is:

Z(u) : {Z(u),u ∈ domainD} (3)

whereZ(u) denotes a singleRV at a location of coordinates vectoru.

This author regrets the terminology “function”, implying some functional, analytical,

relation of theRV Z with its location in space; there is usually none. The major advantage

of theRF concept is its concise notation: theRF Z(u) is fully characterized by its spatial

law defined as the set of all joint probabilities of type (1) rewritten as:

Prob{Z(u1) = z1, Z(u2) = z2, · · · , Z(uK) = zK , } (4)

∀ uk ∈ domainD, ∀ zk, ∀ K
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Again knowledge of the spatial law (4) allows calculating the conditional probability of

any singleRV Z(u0) given any numberK ′ of data related to neighboringRV ’s Z(uk′).

In practice theRF concept may have to be extended to a vectorialRF involving

several distinct yet (cor)related attributes, each distributed in space:

Z(u) = {Zk(u), k = 1, · · · , K; u ∈ DomainD}

Think aboutZ1(u) being porosity; data can be either porosity dataz1(uα) and/or

related sonic log valuesz2(uβ).

Representation of the spatial law:

The random vector or random function concept is useful inasmuch as its spatial law

(1) or (4) can be determined yielding the required conditional probabilities (2).

In a pre-digital computer era, there was no alternative but to restrict the extraordinary

information wealth of the spatial law to a parametric analytical model with as few param-

eters as possible, for these parameters had to be evaluated.Many decisions can be made

to restrict the wealth of the spatial law (1) and thus make itsinference easier. Unfortu-

nately, these decisions all come at the cost of loss of information related to the variable

Zk0
whose uncertainty is being assessed:

- reduce the number of related variables, theZk′ ’s in expression (2)

- assume stationarity, i.e. invariance of the spatial law bytranslation in space

- limit the complex joint dependence of any set ofK variablesZk, k = 1, · · · , K to

theK × K correlation matrix of any pair of variables

- assume an analytical spatial law that would depend only on such correlation ma-

trix or covariance function, typically a Gaussian-relatedrandom function or vector

model. Gaussian models are indeed congenial and parameter-poor, but their conse-

quence in terms of estimation and under-assessment of uncertainty were not always

well understood (Anderson, 1958; Journel, 1996).

Many of the previous limiting decisions, in particular the two latter which limit statis-

tics to the covariance, need not be any more now that large digital memory and processing

power allows a non-analytical representation of the spatial law. Instead of characterizing
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theRF Z(u) by its spatial law (4), one could characterize it by a (very) large numberL

of its realizations over the domainD:

{z(l)(u),u ∈ DomainD}, l = 1, · · · , L (5)

Anyone of the joint probabilities defining the spatial law (4) can be identified to the cor-

responding proportion found within theL realizations, e.g. forK = 3:

Prob{Z(u1) = z1, Z(u2) = z2, Z(u3) = z3} (6)

= Proportion of realizations among theL available such that:

z(l)(u1) = z1, z(l)(u2) = z2, z(l)(u3) = z3 simultaneously.

Similarly, for the conditional probability of havingZ(u1) = z1 given the data event

{Z(u2)} = z2, Z(u3) = z3}:

Prob{Z(u1) = z1 |Z(u2) = z2, Z(u3) = z3} (7)

=
# of realizations s.t.z(l)(u1) = z1, z(l)(u2) = z2, z(l)(u3) = z3

# of realizations s.t.z(l)(u2) = z2, z(l)(u3) = z3

The theoretical concept of aRF defined by its spatial law (4) is replaced by an

explicit set of realizations. Defining aRF amounts to pooling together theL realiza-

tions (5); adopting theRF model (3) to assess uncertainty about a particular unsam-

pled valuez(u1) amounts to decide that this unsampled value and its related data event

{z(u2) = z2, z(u3) = z3} belongs to the specific family of realizations (5).

Remarks:

• Inasmuch as each of theL defining realizationsz(l)(u), u ∈ D, exists and is con-

sidered a relevant member of the pool,all statistics of type (6) or (7) are perfectly

licit and consistent with each other. In particular, were a 2-point covariance matrix

inferred from theseL realizations, that covariance matrix is necessarily positive

definite without any need for any correction (Journel, 1996).

• The critical problem is how large should be the numberL of realizations to ensure

that all unknown-to-data event of the typez(u1) = z1, z(u2) = z2, z(u3) = z3

are represented in the pool with enough replicates to allow “reliable” derivation of

conditional proportions of the type (7).
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Note that if a particular data event is not found in the pool (5) or is found with

too few replicates, this only means that the pool is not “rich” enough to permit

calibration of that particular data event. The solution is then to either define a larger

pool, or to reduce or approximate the data event to allow finding enough replicates

of it in the initial pool; the latter solution is discussed further in the next section 3.

• A mere combinatorial calculation for the numberL of realizations necessary would

be incorrectly scary. Indeed if the data search neighborhood consists of 1000 pos-

sible locations:K = 1000, and each variableZ(uk) is discretized into 10 classes,

the total number of different possible realizations is formidable:101000, then if one

wishes to have an average of 10 replicates for each realization, thenL = 101001!

However, (1) the vast majority of these101000 realizations will never be encountered

in practice, hence there is no need for the pool (5) to includethem; (2) a particular

data event not found in the pool can be either reduced (Strebelle, 2002) or it can

be related to different but similar data events present in the pool (Arpat, 2003). A

similarity or distance measure need to be defined for the latter solution.

• Local stationarity : Instead of a large numberL of realizations of type (5) over

a domainD, one could equally consider one single realizationL = 1 over a much

larger domainDD, sayL times the size ofD:

{z(1)(u), u ∈ domainDD}, with |DD| >> |D|. (8)

That larger domainDD should not be scanned for any data event extending over

dimensions larger thanD. Pooling replicates over this larger domainDD amounts

to a decision of local stationarity (invariance by translation) of all statistics of type

(6) or (7) defined over the smaller extentD.

• Sequential approach: The explicit representation of a spatial law by a set

of realizations of type (5) does also provide probabilitiesof multiple-point events

conditional to multiple-point data events. For example:

Prob{Z(u1) = z1, Z(u2) = z2, |Z(u′

α) = z′α, α = 1, · · · , n} (9)

=
# of realiz. s.t.z(l)(u1) = z1, z(l)(u2) = z2, z(l)(u′

α) = z′α, α = 1, · · · , n

# of realiz. s.t.z(l)(u′

α) = z(u′

α), α = 1, · · · , n

However, it may be more efficient to proceed sequentially, building on the exact

probability decomposition:
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Prob{Z(u1) = z1, Z(u2) = z2, | (n)} (10)

= Prob{Z(u1) = z1, |Z(u2) = z2, (n)} × Prob{Z(u2) = z2, | (n)}

where|(n) is short notation for conditioning by the n-data event

Z(u′

α) = z(u′

α), α = 1, · · · , n

If approximations are accepted for the identification of conditional probabilities

to proportions as in relation (7), then evaluating separately the two single-point

probabilities of the product expression (10) provides moreflexibility.

The objectivity issue:

Which of a concise analytical representation of the spatiallaw or an explicit numerical

representation through training images of the types (5) or (8) is better?

A few years ago, the answer was clear: the analytical representation, because we did

not have the computers to generate, store and retrieve the large amount of data involved

in a training image. However, those analytical representations could not reflect prior in-

formation about complex shapes and geometrical patterns, hence the resulting maps were

poorly conditioned in that this prior information, howevercritical, was forfeited. Object-

based simulation algorithms fall into the category of training image-based algorithms, in

that after conditioning to local data there is not anymore any analytical representation of

the corresponding spatial law.

There is unfortunately an aura of objectivity to analyticalrepresentations, perhaps

due to that ever lingering complex of geologists towards mathematicians and statisticians,

their belief that an equation yields objectivity. An equation models concisely prior infor-

mation, it is no better than the prior information it captures, then, precisely because of

that conciseness, equations and analytical representations can only capture very simple,

elementary, possibly simplistic, information. The real question is: “ what is better, a nu-

merical model (e.g. a training image) that captures more of the prior information deemed

critical, or a concise “clean” analytical model? ” What doesconciseness brings us in an

era of ever increasing computing power?

Training images force the geologist/naturalist to expresshis prior information. If that

prior information is uncertain, then he should provide alternative training images bracket-

ing the range of uncertainty, rather than give up and let a “clean” and arbitrary analytical
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model imposes a prior information that, if expressed as a training image, he would likely

reject as wrong. Now, if that analytical model does yield nondata-conditioned realiza-

tions/maps that are acceptable, then for sure the concise model should be preferred.

Objectivity does not mean subservience to default models. Better several imperfect

training images than a wrong and biased default model. Remember that maximum entropy

or minimum structuration as in Gaussian-related models most often yield too optimistic

results; uncertainty and risk arise from the presence of structures or patterns that we know

exist but could not locate accurately in space (Journel, 1996).

3 Training image considerations

In this section, we will consider the training images as a numerical representation of the

spatial law of the random function model. Denote such training image by:

{zT i(u), u ∈ T i} (11)

whereT i stands for training image,zT i(u) is the training value at locationu.

Training statistics are limited to data configurations thatfit into a templateT of size

much smaller than the training image size, i.e.:

Template|T | << |T i|

The training image can be seen as the set of all possible template data that can be

extracted from it, if they areL such templates (overlapping each other) then theT i repre-

sentation (11) is actually equivalent to the representation (5) distinguishing allL training

templates. This remarks indicates that, instead of one verylargeT i, one could consider

manyT i’s each of lesser size.

Both the training image and the template are discretized by the same rectangular grid

to allow scanning theT i by sliding over it the templateT , see Figure 3.

Inference: Consider an actual reservoir discretized with the same grid used by theT i

and the templateT , then an unsampled value at locationu denotedz(u). The attributez

being estimated is of the same type as theT i attributezT i. Notice the notation difference

betweenz-value (actual reservoir) andzT i-values (training image).
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The unsampled valuez(u) is informed by a multiple-point (mp) “data event” (DEV)

constituted byn data valuesz(u + hα), α = 1, · · · , n, at n locationsuα = u + hα all

within the templateT centred atu. The DEV{z(uα), α = 1, · · · , n} need not fill-in all

locations of the templateT , i.e. : n ≤ |T |.

Uncertainty about the unsampled value is modeled by the histogram of theR cen-

tral values of training templates which replicate the DEV{z(u + hα), α = 1, · · · , n}.

Denote theseR central values by:zT i(u(r)), r = 1, · · · , R; they are such that in their

T -neighborhood:

{zT i(u(r) + hα) = z(uα), α = 1, · · · , n}, ∀ r (12)

The histogram of theR central values is taken as the conditional probability distribution

of the random variableZ(u), see relation (7).

The conditioning data event comes from the actual field, the statistics and the proba-

bility values comes from theRF model, e.g. from its training image representation. It is

critical to understand this dichotomy: local data must be taken from the actual reservoir,

information about how these data relate to the unknown comesfrom the training image

model. Similarly, in traditional geostatistics, how localdata relate to the unknown is

given by some kriging process built on the variogram model. The huge difference is that

aT i provides mp statistics that allow considering the DEV as a whole, as opposed to that

DEV being considered piecewise, one datum at a time, becauseof the 2-point statistics

limitation of the variogram.

Number of replicates: An integral part of the random function model, as delivered

by a training image, is the minimum numberRmin of replicates of the DEV to be found

in thatT i before the corresponding histogram of the training centralvalues can be taken

as a model of the conditional probability, recall definition(12).

- If Rmin is too small, those few replicates may be too specific to a few localities of

theT i and deemed not representative of theT i as a whole.

- If the minimum numberRmin is set too large, theT i (or sets ofT i’s) may not be

large enough to provide enough replicates, in which case approximations have to

be made which all amount to tamper with the conditioning DEV.

The case of no replicate (R = 0) is instructive. This case can have two very different

causes:
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1. theT i is not rich or large enough to display that DEV. The solution is then to

accept replicates that only approximate instead of reproducing exactly the DEV, or

to reduce the DEV, e.g. by dropping out the least “relevant” datum value.

2. theT i adopted is not the correct one. This would be the case if too many exper-

imental DEV’s had no replicates in theT i, even after reduction of the DEV size.

In other words, the actual reservoir data contradict theT i retained. The solution is

then to change theT i.

One main reason for too few DEV replicates is the requirementfor exact replicates.

Allowing a tolerance for “approximate” replicates would multiply their number, see here-

after the section on classification of DEV’s.

Template size and discretization:

No statistics beyond the template size is taken from the training image, and those

statistics must be based on a minimum number of replicates. Template size, minimum

number of replicates and the training image define theRF underlying the multiple-point

geostatistics approach.

The template geometry and size is the equivalent of the data search neighborhood of

traditional geostatistics and, for that matter, of any spatial interpolation technique. You

do not wish to retain data that are too far away because: (1) you are not sure they belong

to the same population than the unsampled value to be estimated, this restriction is related

to the decision of stationarity defining the data pool, (2) you are uncertain about the struc-

tural model relating such far away data to the unsampled value, there may not be enough

training replicates of the corresponding large size data event.

Yet far away data provide information about large scale spatial structures. Retaining

a too small template size amounts to forfeiting reproduction of those structures. If such

large scale structures are deemed to exist and must be reproduced, then a corresponding

large scaleT i must be available and would have to be scanned with a large template size.

A large template size need not contain too many nodes, if it isdiscretized with a coarse

grid. Recall that the more nodes a data event is comprised of,the more specific it is, hence

the fewer replicates of it will be found in theT i. The traditional solution of multiple grids

simulation (Tran, 1994) can be adopted, see Figure 3:

- the final high resolution fine grid over which the study field is to be simulated is

split into a series of nested grids from coarse to finer. If 3 nested 3D grids are
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considered, the coarsest one includes only every82 = 64th node of the finest grid,

the second coarsest includes every8th node of that finest grid.

- simulation proceeds first on the coarsest grid with an equally coarse template which

thus can be of large size. A separate very largeT i but coarsely gridded could be

considered to display the large scale structure to be reproduced.

- in a sequential simulation mode, every node simulated on a coarse grid is considered

as a conditioning datum for simulation of all other grid nodes. TheT i’(s) used for

the finer grids need not be the same as the coarse largeT i. These fine scaleT i’s are

scanned by correspondingly finely gridded templates but of smaller extent. The fine

scaleT i’s need not display the large scale structures, they should however display

the fine scale structures to be reproduced.

Data relocation:

Because of the need to scan theT i to find replicates of the conditioning DEV, both the

data and the field to be simulated should be gridded with a rectangular grid. If multiple

nested grids are used, then at any one of these grids the original sample data may have

to be relocated to its nearest grid node. This relocation notonly causes data location

inaccuracy particularly at coarse grids, but also data location inconsistency if the same

datum is relocated at different locations when used over different nested grids.

Ideally, hard sample data should not be relocated (no tampering) yet the scanning

process requires a rectangular grid. One solution consistsof replacing the original data

with estimated, or better simulated, values at the data neighbouring nodes, see proposal

in section 5.

Modeling the training image:

No matter how large theT i, when scanned with a templateT of fair size it will never

yield all the DEV’s that will be encountered in the course of simulating the field under

study. As mentioned before, there are two courses of action:(1) reduce the data event

which amounts to some loss of conditioning information, (2)interpolate that DEV from

“similar” DEV’s actually found in the training image. In thefirst option, the only statistics

taken come from theT i as is, there is no adding to it; if necessary, data are dropped:

this extreme fidelity to theT i is debatable in that one is never sure that theT i is fully
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representative of the experimental data. This first option is that adopted by the search tree

approach of Strebelle (2000, 2002).

The2nd option calls for modeling theT i, this can be done in many ways:

- Classification: For a given template sizeT , all training DEV’s are retrieved and

classified (unsupervised classification) intoK classes. The histogram of the training

central values of all DEV’s falling into a class is taken as the conditional probability

given that class of DEV’s. During the simulation process, any experimental DEV,

whether its template is fully informed or not, is attributedto one of the previous

training classes, and that class conditional probability is retrieved. There are many

alternative ways to do the prior classification, the avenuesthat are presently being

investigated at SCRF are:

1. defines a distance between any two training DEV’s, then group these DEV’s

into a determined number of classes. This is the approach of Arpat (2003, in

this SCRF report). A similar approach consists of reducing the dimension of

each training DEV by retaining only the first few principal components (PC’s)

of its template data. Some form of cluster analysis then allows to define classes

of DEV’s based on their PC’s. This is the approach used by Caers, Strebelle

and Parayzan (2003), Zhang (2003), Liu, Harding and Abriel (2003), the two

latter references are in this SCRF report.

2. the classification tree approach (Breiman et al., 1984) consists of partitioning

theKT -dimensional space of all training DEV’s into a much smallernumber

of regions or classes of DEV’s.T is the number of nodes of the data template,

K is the number of classes discretizing the range of variability of each nodal

value. The partitioning of the initialKT -dimensional space is done by a se-

quence of binary splits, each split ensuring maximum “homogeneity” of the

two resulting classes. This requires defining a measure of homogeneity of any

class of training DEV’s. This approach is being investigated by Remy (2002).

Defining a distance or a measure of homogeneity between DEV’sbrings another

input decision into the definition of the random function implicit to the training im-

age; associating a specific experimental DEV to a class or region of similar DEV’s

amounts to tampering with those experimental data. However, the classification

approach offers many potential critical advantages: (1) dimension reduction and
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limited memory demand associated to the fewer number of classes retained, (2)

filtering of training DEV’s through their pooling into class, (3) expanding theT i

model to accept any experimental DEV even if that exact DEV isnever found ex-

actly in theT i.

- Neural net models: The set of training conditional proportions could be mod-

eled by explicit analytical probability distribution functions such as:

Prob{Z(u) ∈ classz |Z(u + hα) = zα, α = 1, · · · , T} (13)

= ϕθ(z | zα, α = 1, · · · , T )

whereu is the central location of a template fully informed at all its T locations

u + hα, α = 1, · · · , T . Thezα’s are the data values. The functionϕθ(.) gives the

probability that the central valueZ(u) be in the specific classz. The parameters

θ of that probability distribution function are fitted by a neural net from the cor-

responding observed training proportions. The training phase consists of reducing

theT i to the parametric functionϕθ(.), the simulation phase consists of simulating

the unsampled valueZ(u) by drawing from that function (Caers, 1998; Caers and

Journel, 1999).

The neural net approach carries all the advantages of the classification approach, but

can only accommodate “full” DEV’s with all their template nodes informed. Thus

simulation must start with a fully informed field which is gradually updated one

node at-a-time until some criterion of convergence is met. For example, the field

can be initiated with nodal values all drawn from the target marginal distribution of

theZ-attribute; such initial field would thus present no spatialstructure and would

be sequentially modified by successive drawings from conditional distributions of

type (13) or by an acceptance/rejection Metropolis-type algorithm (Hastings, 1970;

Caers, 1998). As with all Markov chain-type algorithms, convergence is an issue:

which criterion should be used to stop the iteration, convergence may be slow, and

when the iteration is stopped is it unclear what statistics or structure has been actu-

ally retained from the originalT i.

The search tree concept:

As opposed to classification, the search tree takes the training image as is, does not add

anything to it, does not tamper with it. The training proportions are merely recorded in a
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dynamic data structure, called a search tree (Roberts, 1998). Search trees are particularly

convenient to store nested information such as numbers of outcomes of DEV’s, where the

larger DEV includes lesser ones.

If the idea of borrowing directly conditional probabilities from a training image is now

more than a decade old (Srivastava, 1993), the breakthroughthat allowed wide applica-

tions was utilization of a search tree as proposed by Strebelle (2000). Instead of scanning

theT i anew at each node being simulated, thatT i is scanned only once prior to any sim-

ulation, and all the training DEV occurences within a given template are recorded in the

search tree.

There is one search tree for each data template size and geometry, hence if 3 different

multiple grids are used in the sequential simulation process with correspondingly 3 dif-

ferent templates, there will be 3 different search trees even if the same finely griddedT i

is used.

The grid nodes constituting a template are first ordered, typically with the nodes clos-

est to the central template location given the highest ranks. The root of the search tree

gives the training histogram (proportions); discounting border effects this is the marginal

histogram of thezT i(u) values,u ∈ T i. If that histogram is discretized intoK classes,

that search tree root branches out intoK daughters corresponding to conditioning by the

highest ranked template node value, sayzT i(u1) = zk for thekth class and branch. Each

of theK 2nd level nodes of the search tree gives the histogram of the2nd ranked template

nodal value conditional to a particular class value of the1st ranked nodal value:

Proportion{zT i(u2) = zk′ | zT i(u1) = zk}, k′ = 1, · · · , K

whereu1 is the1st template node, andu2 is the second;zk, zk′ are classes discretizing the

range of thez-attribute value.

Each of the2nd level nodes of the search tree branches out intoK daughters leading to

3rd level nodes,· · · and so on until the last ranked template node. For further details, the

reader is referred to the remarkable thesis work of Strebelle (2000), or Strebelle (2002).

Actually what is recorded at each node of the search tree is not the proportion but

actually the number of training occurences, e.g.:

# of occurences of{zT i(u2) = zk′ | zT i(u1) = zk}

from which one can check whether the number of DEV replicatesis sufficient and retrieve

the required conditional proportions.
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The size, hence RAM demand, of a search tree is not related to theT i size, it is related

to the numberT of nodes of the data template and the discretization levelK of the range of

thez-attribute value. The size of the search tree is proportional to the number of different

DEV’s of any size≤ T found in theT i; that number is typically much lesser than the

total of nodes in theT i, hence much lesser thanKT because not all possible DEV’s are

found, or need to be found, in theT i. In typical applicationsK ≤ 3, i.e. mp geostatistics

is limited to categorical variables.T ≤ (7×7−1) = 48 in 2D, (5×5×3−1) = 74 nodes

in 3D corresponding to a small template discretization; recall however that the template

size (extent) can be large if the gridding of that template iscoarse.

The advantage and also limitation of the search tree is that it records theT i DEV’s

exactly as they are found. Reading from the search tree, an experimental DEV is either

exactly matched by a minimum number ofT i replicates, or that DEV needs to be reduced

e.g. by dropping out the lowest ranked datum value. The search tree per se does not

allow any tolerance for “approximate” replicates; it does not allow for either filtering or

interpolation of DEV’s. Overcoming this limitation has been an impetus for research, see

the previous section on modeling the training image.

Where to get training images:

When interpolating or simulating between data one utilizestwo sources of informa-

tion: (1) the local data on which to anchor (2) the structuralmodel, be it a surface, a

covariance function (dual kriging) or a portion of a training image. We insist that the

structural model that links the data together should be actual information, not some ar-

bitrary surface. The geologist, more generally the physicist of the data, should have a

prior idea of what the final field should look like; that prior information is critical and

should not be forfeited for an arbitrary, typically congenial oversmooth and wrong struc-

tural model hidden behind the automatic contouring algorithm. In the common case of

local data sparsity, the final estimated or simulated field depends more on the structural

model used than on the few data on which it is anchored, hence it is wrong not to at-

tempt building a structural model that would match that prior information. A training

image provides a vehicle for expressing and utilizing the prior structural information. If

the geologist hesitates, then he should be pressed to provide several alternative guesses

under the visually explicit form of alternative training images. In most situations, that

uncertain geologist would reject categorically an amorphousT i which is implicit to most

Gaussian, variogram-based, structural models. Unfortunately, the structural or random
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function model underlying analytical spatial laws are never made visually explicit which

prevents them to be outright rejected if deemed inappropriate.

The main contribution of aT i is to be a vehicle for expressing prior structural infor-

mation. AT i is visually explicit, hence is more attuned to the judgementof a geologist.

Geologists do no think in terms of histograms or variograms,however they can draw since

most of their experience is recorded as figurative patterns.

Because it is dissociated from the field sample data, a training image need not repro-

duce these data, i.e. it need not be locally accurate. AT i is a pure conceptural rendering

of what shapes and spatial structures should be. Interpreted photographs of outcrop and

present-day depositions, hand-drawn sketches of patternscan serve as starting points to

build the large 3DT i’s needed for mp geostatistics. They are only starting points, be-

cause sketches and photographs are 2D and limited in their extent and resolution. These

sketches and more generally the “vision” of the geologist should guide computer runs to

generate the full size 3D training images needed for mp geostatistics. Object-based or

process-based algorithms and computer-aided design and modeling of 3D volumes are

all valid approaches to generating full size 3DT i’s; because these algorithms are freed

from the conditioning to local data, they can be fine-tuned todeliverT i’s that match the

prior conceptual “vision” of geologists; see Haldorsen & Damsleth (1993), Bratvold et al.

(1994), Deutsch (2002) for object-based algorithm; Tetzlaff, D. and Harbaugh, J. (1989),

Kolterman and Gorelick (1996), Wen et al. (1998), Srivastava (2002) for process-based

algorithms; Mallet (2002) and the gOcad software (Earth Decision Sciences, 2002) for

computer-aided modeling of 3D volumes.

Catalog of training images:

There exist many excellent geological books providing a classification of depositional

sedimentary systems, see for example Galloway (1996), Miall (1996). One may dream

that one day, all major classes of depositional systems would be backed with one or more

large training images in digital format. In addition to the traditional qualitative descrip-

tion with typically few supporting statistics, each class will be backed by a high resolution,

large extent, numerical and visually explicit, description of how that system may look like

in 3D, possibly at various scales calling for variousT i’s. Again theseT i’s are purely con-

ceptual, they need not locally match any data from any specific deposit. Non-stationarity

and, more generally, overly specific aspects of theseT i’s would have to be dealt with, see

next subsection.
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The existence of such catalog would allow sharing prior structural information in a

directly usable digital format: any company geologist would page through that catalog

and extract thoseT i’s that express best and bracket his own “vision” of what the deposit

under study may look like. Multiple point geostatistics andsimulation would then try to

match that prior vision to the field data available, both hard(e.g. wells) and soft (e.g.

seismic).

Stationarity of training images:

A training image generated as a non-conditional realization of a stationary and ergodic

process will look “stationary”, in that our perception of structures and shape will appear

invariant under small translation of our eye window or template. For example, an object-

based realization of the distribution of ellipses, over a field of dimensions much larger

than the size of ellipses or their clusters, is stationary; see Figure 5a. That distribution

is not conditioned to any local data hence no area of theT i appears more particular then

another.

The situation is much different with anyT i based on an actual photograph, of a present

day deposition for example, see Figure 5b. An actual deposition pattern has necessarily

location-specific, non-repetitive, hence non-stationaryfeatures; it also typically display

multiscale structures, with the larger scale extending over the entire figure, hence these

large scale structures are also non-repetitive and non-ergodic. If such pictures of real

phenomena are to be used asT i’s, because they are to a certain degree non-stationary and

non-ergodic, what “average” structural information can weexpect to extract from them,

e.g. by scanning theT i with a fixed size template? Clearly, local non-repetitive features

will be averaged out, large scale non-ergodic features would not be seen through the too

narrow window. How could those missed-out features or structures be re-introduced in

our simulated realizations?

Figure 6a gives a non-stationary image of what could be an interpreted binary map

of channels in a delta fan. That map is non-stationary in thatthe direction of channeling

varies in the delta, and it is non-ergodic in that the channelcontinuity extends across the

entire image. Figure 6a was used asT i to generate through snesim the non-conditional

(no local data) simulated realization shown in Figure 6b, see also Zhang (2002). The non-

stationary locally varying channel directions of theT i were averaged out in the simulated

realization. One way to re-introduce the large scale fan structure of theT i is to condition

the simulation by local data giving in each area the general direction of the channels,

see Figure 7b and later discussion on “Local transforms”. Short of such local data about

22



direction, the prominent but non-stationary fan structureof theT i of Figure 6a cannot be

recovered.

4 Snesim v.10.0 – State of the Art

The snesim code, based on a strict search tree record of the training image, is presently

(2003) the most developd mp simulation algorithm. Other algorithms based on some

form of classification of theT i DEV’s are still in various stages of development, see

Arpat (2003), Zhang (2003), both in this SCRF report.

Snesim stands for single normal equation simulation. That single normal equation

expresses the projection of the indicator of presence or absence of a category (variable

to be simulated) onto the linear space generated by the single multiple-point data event

grouping all relevant data (Journel, 1993; Strebelle, 2002). The basic inference relation

(7) identifying the conditional probability to a training proportion is but an expression of

that single normal equation.

The snesim version 10.0 is fully flowcharted and described inZhang and Journel

(2003, this SCRF report). A detailed sensitivity analysis of all input parameters is given

in Liu (2003, this SCRF report).

Figures 8 and 9, taken from the previous 2 papers, give the flowchart and input pa-

rameter file of snesim v.10.0. The following short review intends to highlight the major

algorithm decisions of snesim and discuss their shortcomings while suggesting alterna-

tives.

Flowchart:

From Figure 8 it appears immediately that the loop giving different simulated realiza-

tions is at the top of the flowchart, embedding all other loopsincluding that constructing

the search trees. Hence all search trees will be constructedanew for each new realization,

although they are the same since the same training image is used. This major program-

ming decision was taken for 2 reasons:

1. the trend in modern geostatistics is not to assess uncertainty with many realizations

of the full field facies and properties. A few realizations (2or 3) suffice to check that

the input parameters are correct and that the simulation algorithm chosen delivers

the expected results. Uncertainty is to be assessed earlierregarding critical input
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parameters such as target Net to Gross ratio and choice of theT i, see Bitanov and

Journel (2003), Kim and Caers (2003), both in this SCRF report.

2. because of multiple grids and local transforms (see hereafter), the number of search

trees needed for any single training image is large. RAM storage becomes an is-

sue if all these search trees (same for all simulated realizations) were to be loaded

upfront. Because construction of a search tree is reasonably fast, it was decided

to repeat that construction as often as needed, unload from RAM the search tree

before constructing the next one; this was deemed faster than reading these search

trees from external storage devices.

The other point apparent from the flowchart of Figure 6 is the assignment of sample

data to the nearest (sub)-grid nodes, followed by their unassignment then re-assignment

when another multiple or sub-grid is considered. This creates data location inaccuracy

and, of greater concern, possible inconsistency from one grid to another. The present

definition of a data event requires hard data values at the nodes of the data template,

hence the location assignment chore. In section 5, we suggest interpolating probabilities

at these template nodes which has two major advantages (1) hard data stay where they

are, (2) the data template is always full but with probability values.

Multiple grids :

The concept of simulation on successively finer grids, passing simulated values as hard

data from one grid to another, is key to reproducing large scale structures (Tran, 1994).

Indeed, simulation starts on a coarse grid which allows using a large size data template

but coarsely gridded. The number of multiple grids to retaindepend on the largest scale

of the training structures to be reproduced: the most difficult case is that of structures

spanning the entire extent of the field to be simulated. In such case, experience has shown

that 4 to 5 nested multiple grids, each with a coarsening factor of 2 in each 2D direction

(thus a factor of 8 in 3D), is adequate.

Training image size:

For reasons of ergodicity (number of replicates) the training image extent should be

at least twice the dimension (four times would be better) of the largest scale structures to

be reproduced. For example, if channels spanning the entireEW length L of a simulated

field are expected, theT i should be large enough to display channels of EW dimension
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2L, again 4L would be better. This may call for extremely largeT i’s; the solution is again

to use large but coarsely griddedT i’s for simulation at coarse grids.

The multiple grid simulation approach calls for multiple different search trees, one

per grid specific to the data template retained for that grid.Recall that the size (number

of nodes) of a search tree is related to the size of the data template, not to the size of the

T i; the number of replicates is related to theT i size.

One single largeT i, as finely discretized as the finest simulation grid, could beused to

generate all multiple search trees including that corresponding to the coarsest and largest

data template. This would be the ideal solution provided that singleT i displays all struc-

tures to be reproduced, from smallest scale to largest scale. Such large and finely dis-

cretizedT i may be too memory demanding and the building of the corresponding mul-

tiple scales search trees may be time-consuming. Remember,however, the concept of a

catalog ofT i’s and related search trees repositories of DEV’s: a search tree should be an

upfront, one-time cost.

The other solution is to consider differentT i’s at different scales for the different

simulation multiple grids. The larger scaleT i’s would be coarsely gridded and could

display very different structures/shapes than the fine scale, densely griddedT i’s. Beware

though of consistency between these differentT i’s.

Data template issues:

The demand in memory (RAM) and processing time (cpu) of a snesim simulation is

conditioned mainly by the data template size. The number of noden of that data template

determines the size (RAM demand) of the search tree, and alsothe cost of constructing

it (an one-time cost) and reading from it (a cost proportional to the size of the simulation

grid).

At present the snesim approach accepts experimental DEV’s that may only partially

fill the data template: not all nodes are informed. Whenever adata template node is

not informed, allK possible outcomes for that missing datum are considered andthe

corresponding conditioning probabilities are averaged; therefore the search tree is readK

times starting from the tree node corresponding to the template uninformed node. Thus

the more incomplete the experimental DEV, the more cpu time it takes to retrieve from

the search tree the corresponding conditional probabilitydistribution (pdf); and this grows

exponentially worse as the template sizen increases and the numberK of outcome/classes

per node increases.
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Consequently, a major gain in speed would be obtained if all experimental DEV’s

were full. One solution, that taken by the neural net approach of Caers (1998), is to fill-in

all simulation grid nodes at the start: this can be done by drawing from the marginal target

distribution of the attribute variable. Sequential simulation would then iteratively perturb

the central value of each template conditional to the present template full DEV. What is

gained in speed from having a full DEV is lost by the necessityof iterating several times

through the entire simulation grid, not to mention issues ofconvergence.

Strebelle (2002) has suggested defining subgrids within each of the simulation mul-

tiple grids. The simulation path proceeds on each of these subgrids in such a way to

maximize the number of data template nodes informed from previously simulated nodes.

This subgrid solution has been implemented in SCRF version 10.0 of the snesim program.

However, subgrids call for the burden of additional search trees.

In the next section 5, a new snesim algorithm is proposed which always considers

full data templates, but data templates informed with probability values instead of hard

simulated values. The key modification is to be able to use probability values, instead of

hard outcome values, to visit a search tree.

As for the geometry of data templates, experience has confirmed the established prac-

tice of data search neighborhoods used in kriging, which is isotropic template geometries

are just fine. This is true even for modeling highly anisotropic elongated structures, such

as fluvial channels.

Local transforms:

As discussed before in section 3 – Stationarity Issues, stationary training image can be

rotated then squeezed (affinity transform) as needed, see Figure 7. The experimental DEV

can be transformed (rotation + affinity) from its actual datalocations to adapt to those of

the single stationaryT i; the problem is that such transform calls for data relocation with

the consequent inaccuracy which may be severe for the largest coarsest multiple grid.

The snesim version 10.0 has taken the alternative solution which is to transform the

original T i: more precisely if 5 classes of angle transform and 3 classesof anisotropy

ratio are considered, 15 different search trees will be generated from the single original

T i, for each multiple grid. Hence, if that transform is to be applied at all scales and 5

multiple grids are considered, there will be a total of15 × 5 = 75 different search trees.

If a prior catalog ofT i’s and search trees does not exist (present situation), the manage-

ment (construction, loading into RAM, unloading) of so manysearch trees is demanding
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and cpu-time consuming. In 3D, a local transform may need 2 rotations, hence 2 angle

parameters (one for azimuth, the other for dip identification), and 2 affinity transforms,

hence 2 anisotropy ratio parameters, for a total of 4 parameters. The total discretization

of the corresponding 4 dimensional parameter space should not much exceed 25 to limit

the number of corresponding search trees; but 25 corresponds to an extremely coarse dis-

cretization. Fortunately, in subsurface applications, data are rarely abundant or accurate

enough to allow a high resolution definition of local anisotropy directions and correspond-

ing anisotropy ratios.

Target proportions:

The global proportions or marginal histogram of the attribute variable over the var-

ious multiple gridT i’s need not identify the proportions targeted for the simulation. If

the difference betweenT i proportions and target proportions is not too different, a ser-

vomechanism allows correcting gradually the conditional proportions towards meeting

the target proportions, as the sequential simulation progresses.

Beware however, that if the target proportions are too different from theT i’s pro-

portions, this target may not be anymore consistent with thestructures displayed by the

T i. Consider the binary variable indicator of presence/absence of channel in a mud back-

ground: aT i displaying thin undulating fluvial channels in proportion 0.2 is not consistent

with a target channel proportion of 0.5 or more.

In snesim v.10.0 the servomechanism can be turned up from 0 (no correction) to 0.99,

the maximum 1 entailing exact target reproduction ignoringthe T i information. The

program also allows variable vertical target proportions;this is useful for simulation of

3D layered reservoirs where target facies proportions may vary from one horizontal layer

to another.

Performance:

To provide a rough measure of the relative cpu costs of the varions steps of the snesim

algorithm, run times for generating a 2D simulated realization of the type of Figure 7c

are:

Code: Still experimental (not optimized)C++ version of snesim v.10.0, Linux OS.

Hardware: 1.7 GHz Intel Pentium 4, 512 Mb RAM

T i and simulated field size: 250 × 250 nodes, 5 multiple grids

Template size: 25 nodes for each multiple grid, 3 rotation angle categories, and 3
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affinity ratio categories, 2 subgrids for each of the 4 finer multiple grids, thus 9 search

trees are generated for the coarsest grid and9 × 2 = 18 for each of the 4 other multiple

grids

Total time: 172 seconds distributed as:

- 165 s. for inference (rotation + affinity + search tree) construction, reading and

unloading out of RAM

- 5 s. for actual simulation

- 2 s. remaining

Remarks:

There is a total of 81 search trees generated, thus the time spent per search tree is about

2 seconds≈ 165/81. This is clearly where algorithm optimization should take place.

Ideally, the search tree (s) construction should be an upfront task performed outside the

loop for each realization (see Figure 8); if a catalog of suchsearch trees already exists,

then the cost of search tree construction would be replaced by that of I/O reading from

hard disk.

The cost of reading the conditional probabilities would be considerably reduced if the

data template was aways full (all its nodes are informed), see proposal in the next section

5.

Our conjecture is that algorithm modification and code optimization could cut the run

time given above by a factor of 10 (more in Fortran) allowing generating a 3D multimillion

nodes realization within 10 to 20 min. within the next 2 years.

5 Improving the snesim algorithm

Strebelle’s snesim algorithm will remain a landmark in the development of geostatistics

being the1st operational multiple-point simulation algorithm. The rigor and simplicity

of the search tree concept combined with the well established sequential algorithm have

proven to be a remarkable match.

As is often the case, one’s strength is also one’s weakness:
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- the search tree allows retrieving the number of training image data events matching

exactly the experimental one, but then it does not allow interpolating betweenT i

data events. There is no measure of similarity between DEV’s; either they match

exactly or valuable data must be dropped until such exact match is obtained.

- the sequential simulation is non-iterative, hence fast: each uninformed node is vis-

ited only once, its simulated value is then frozen as hard data. This can create con-

flicts and discontinuities when nodes on a coarse grid are simulated independently

one from another due to non-overlapping data templates.

- pointwise algorithms proceed simulating one point at a time, as opposed to object-

based algorithms. This allows for easy data conditioning since it suffices to freeze

those points/grid nodes that are already informed, but setsof contiguous simulated

values may not anymore display the crisp geometry of expected objects.

Consequently, the snesim algorithm suffers from the present drawbacks:

- it requires large, difficult to build, training images ableto display the large variety

of DEV’s expected in a real reservoir. Large template sizes are required to capture

and reproduce large scale continuity; correspondingly, very largeT i’s are needed

to provide enough replicates of DEV’s defined on such large templates. We would

like to expand from the limited DEV sample provided by aT i. We would like also

to filter that DEV sample, retaining only those DEV’s reflecting the “essence” of

theT i and rejecting those associated to specific, non exportable,occurences.

- the present sequential simulation does not allow self correction, except for a post-

processing of the simulated field. That post-processing amounts to a2nd iteration;

we would like such iteration to be fast (few iterations without issues of convergence)

and to be part of the simulation algorithm rather than an afterthought correction.

- without resorting to dropping onto the field whole objects as in object-based

(Boolean) algorithms, we might consider simulating sets orwhole templates of

contiguous points. The initial simulation of those points might be soft, simulating

probability values instead of hard values, which would makethe first simulation

pass “soft”.

The research done recently at SCRF (2002-03) has been multiprong. Various alterna-

tives are being tried to offset the previous limitations of the snesim approach. The pattern
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simulation (program simpat) research line of Arpat (2003, in this SCRF report) is possibly

the most innovative. Beyond details, simpat provides the following critical improvements

over the present snesim program:

1. simpat matches experimental DEV’s to classes of trainingimage DEV’s. That

match involves probability values at each node of the data template instead of hard

values as in snesim. Such prior classification of training DEV’s and soft match

allows for interpolation and filtering of theT i DEV’s.

2. from one node to another, from one multiple grid to another, simpat passes proba-

bility values as opposed to the hard values passed by snesim.Thus, early simulated

values are not frozen at the risk of generating later discontinuities. Hard simulated

values are generated by simpat only through a2nd pass over all nested guides: this

amounts to an iteration.

3. in the simpat algorithm all nodes of each template are simultaneously simulated as

probability values, as opposed to snesim simulating a hard value at the sole central

location of the template. Simulating all nodes of each template guarantees within-

template continuity, then because these values are probabilities they are easily up-

dated when a second template overlaps the first one.

Point 1 above amounts to a classification of DEV’s which callsfor defining a distance

measure between any two DEV’s. Classification voids the needfor a search tree, a concept

at the very basis of the snesim algorithm. Points 2 and 3 do notcall for any classification

and could be accommodated were the snesim algorithm be expanded to:

2a. accepting, as data, probability values, then passing updated probability values

instead of hard values. Hard values would be generated/simulated only during a2nd pass

through the simulation grids.

3a. the probability values at all locations of the template should be updated simulta-

neously instead of the present snesim simulating only the central location.

Leaving aside for now the critical issue (Point 1) of interpolation and filtering ofT i

DEV’s, an issue associated to the definition of what constitute the yet undefined concept

of “essence” of aT i, the following proposed modifications would allow snesim toaccept

and pass probability values.

30



A soft semi-iterative snesim algorithm:

Presently, snesim accepts and passes only hard data values,0 and/or 1 in the case of a

categorical variable; such hard data values can be seen as extreme probability values.

Passing probability values to the central location of each template is easy, it suffices

to pass the conditional proportion value(s) read from the search tree instead of drawing a

hard simulated value from it. Accepting probability valuesis a tougher challenge because

the search tree is a repository of hard, not probabilistic,T i DEV’s.

We suggest the following new semi-iterative snesim algorithm based on two stages, a

sequential probability updating stage to fill-in all nodes of all grids with mutually consis-

tent probability values conditioned to the original samplevalues, and a simulation stage

similar to that of the present snesim algorithm, see flowchart in Figure 10.

(1) Probability updating stage:

Consider again Figure 4 and the structure of a search tree. Each node of that tree

corresponds to a particular location within the data template with K branches starting

from it, if there areK possible categories for the variable being simulated. The hard

datum value at each template location determines which branch to take to reach the next

node of the tree; if that datum value is a probability value (the K branches probability

values summing up to 1), one can draw from that probability distribution the indicator of

the branch to take. We would keep drawing at each node of the template to determine the

next branch/route and go as far(∗) as the search tree allows. Note that an original sample

value frozen as a hard datum value at any given node corresponds to the particular case

of a deterministic draw with probability 1 for a specific branch. Once all locations(∗)

of a specific template centred atu have been so visited, a specific hard DEV has been

identified in the search tree, the corresponding central value conditional probability is

retrieved and used to update whatever probability value wasat that central value. That

probability value is then passed along (no drawing from it!).

Remarks

(∗). At each grid nodeu the final conditioning hard DEV generated is of sizet(u) ≤ T ,

whereT is the template size. Indeed the search tree generally does not contain all possible

KT DEV’s, i.e. all branches starting from the tree root do not have maximum lengthT .

• The previous route simulating one’s way through all branches of a data template requires

a fully informed template, with all itsT locations informed with a probability distribution
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function (pdf). These pdf’s are either passed from the previous coarse grid, or they can

be interpolated from an indicator kriging based on neighboring original hard sample data

and coarse grid pdf data. Actually a much faster inverse-indicator variogram weighting

interpolation should be sufficient since these interpolated pdf values will be updated with

search tree probability values.

• Original hard sample data values exactly located on a grid node are frozen there, i.e.

with a prior pdf equal to 0 and 1. These hard sample nodes are skipped in the sequential

simulation, that is they are never updated. If a hard sample datum is not located exactly

on a grid node, it isnot relocated: it will influence the previous pdf interpolationprocess

from its actual location.

• Updating template pdf values: Once the template central value atu has been

updated with a pdf read from the search tree, one should update its neighbor template pdf

values for consistency. The following sequential algorithm is suggested for that updating:

Let i(u + hα) be the indicator values drawn at thet(u) template locationsu + hα,

α = 1, · · · , t(u); these indicator values define the path taken through the branches of

the search tree, hence they define the pdfp(u) attached to the central locationu of that

template;p(u) is read from the search tree. Using the classical sequentialalgorithm, at

each within-template locationu′

α = u + hα, α = 1, · · · , t(u),

- discard both the prior pdfp(u′

α) and the indicatori(u′

α)

- position a new template centred atu
′

α

- apply the previous algorithm, using the neighboring indicator i(u + hα′), α′ 6= α,

or drawing from pdf values when such indicators are not present, to determine the

conditioning DEV for that new template

- read the corresponding conditional probability from the search tree and update

p(u′

α). Draw from that probability a new indicator valuei(u′

α)

- end this inner loop when all locationsuα′ = u+hα, α = 1, · · · , t(u) of the original

template have been visited and their probabilities and indicators are updated.
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The central locationu and its template neighbor locationsu
′

α, α = 1, · · · , t(u) are

excludedfrom the random path visiting the present multiple grid, i.e. they are not any-

more updated on that grid. They will be at the next finer grid.

Proceed to the next locationu not excluded along the random path and repeat the pre-

vious process, i.e. update the prior pdf atu and all its within-template locationu′

α which

havenot been updated yet. Hence over anyone of the multiple grids, a node location will

have its prior probability values updated once and only once. That updating uses prob-

ability values from the search tree, hence pdf values that carry the mp statistics of the

training image. Only those grid nodes exactly co-located with an original hard sample

datum are not updated, their probability (0 or 1) are hard andfrozen never to be changed,

ensuring data exactitude.

This algorithm

- accepts and passes probability values at each grid node

- updates the prior probability values once and only once within each multiple grid

- updates consistently (in an inner loop) the template central value and its non-already

updated template neighbor locations.

When a grid is completed, all its nodal probabilities are passed to the next finer grid.

Each node of that finer grid not informed is first interpolatedfor a prior probability value.

The process is then repeated to updateall nodes of that finer grid once and only once.

Note that all probabilities passed from the coarser grid areupdated again.

When the last (finest) multiple grid has been fully updated, we have a fine grid filled

with probability values, with the only exception of hard sample data frozen whenever

their locations coincide with a grid node. The second stage of actual simulation can now

proceed.

(2) Simulation stage:

Starting again with a random path visiting the coarsest grid, the previous process of

gathering pdf values from the search tree is repeated, but this time:

- a hard simulated value is drawn from each pdf read from the search tree. That hard

simulated value is then frozen (never to be changed) and passed along.
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The inner loop consisting of simulating hard values at all within-template locations,

before proceeding to the next central location, is maintained. This should allow consis-

tency of close-by simulated values on any grid.

The hard simulated nodal values of one grid are passed to the next grid. Each template

of that finer grid is full with either hard data (from the coarser grid) or probability values.

The previous simulation process is repeated, again with hard values drawn from the search

tree pdf’s. The process continues down to the last and finest grid: one fully simulated

realization of the study field has been generated.

In summary:

The proposed new snesim algorithm includes two stages:

(1) a probability updating stage where a consistent probability field is generated with a

progressive probability updating as read from the search tree. Probabilities are accepted

and passed along. At this stage the probabilities are used only to draw the route within

the search tree for each template.

(2) a simulation stage where hard simulated values are drawnfrom the probability field

after an ultimate2nd updating pass reading from the search tree.

Awaiting for a better shorter name this proposed new algorithm is called “soft semi-

iterative snesim” in that:

- it remains based on a search tree which is a faithful record of the training image

DEV’s, hence the appellation snesim

- initially, probability values are passed from one grid node to another, hence the

qualifier “soft”

- those probability values are sequentially updated to ensure within-template consis-

tency at all multiple grids, however this iteration is not controlled by any dubious

convergence criterion, hence the qualifier “semi-iterative”.

6 Concluding remarks

When modeling a spatial phenomenon, whether a mineral deposit or an hydrocarbon

reservoir, there is much more to information than the local sample data available. These
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local data would have triggered a “structural” interpretation about how these data relate

one to another and to the unsampled values. That interpretation, if based on prior ex-

perience in studying similar deposits, represents extremely valuable information. Any

interpolation or simulation process aiming at filling-in values between sampled data

necessarilycalls for a structural model relating data and unknown values. That structural

model should capitalize on the prior structural interpretation of the expert interpreter, a

geologist or geophysicist. The impact of the structural model chosen is absolutely critical

in early exploration stages when actual (local) data are few. Too few data can’t speak

for themselves, and it would be foolish not to capitalize on prior experience because it is

deemed uncertain. Accepting the prior structural model uncertainty and trying to assess it,

is better than accepting models based on arbitrary criteriasuch as maximum smoothness

of the interpolated surface or, at the other extreme, maximum entropy of the data all the

way to data independence.

The problem with using prior structural information is thatthis information is fuzzy,

typically not numerical nor parametric: it does not take theform of a variogram or a

histogram of channel width and sinuosity parameters. When it comes to prior experience

and structural information, geologists think in visual terms of shapes, patterns of spatial

distributions, what we proposed to call a “training image”.Training images are conceptual

visual representations of how heterogeneities could be distributed in the actual deposit or

reservoir. The fuzzy conceptual image of the geologist could be ascertained by having

him choose from a catalog of visually explicit, numerical, training images, or helping

him construct the training image(s) best depicting his prior vision using object-based

(Boolean) simulation algorithms. That phase of choosing orbuilding a training image,

i.e. elaborating a structural model, should not be encumbered with concerns of local

accuracy: the actual local data need not (should not) be honored at their exact locations.

One should see our proposed reservoir modeling flowchart as constituted of two distinct

phases:

1. elaborating a structural model that relates data and unknowns, more precisely a

numerical, visually explicit, training image of what heterogeneities are deemed to

look like in the actual reservoir

2. applying that structural model to the actual data. Instead of gradually “morphing”

the training image to match these data, we suggest to construct stochastically the

actual reservoir numerical representation(s) one pixel ata time accounting for the
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multiple-point structures displayed by the training image.

That dichotomy between structural and local information ispervasive in geostatistics.

In kriging, the structural information relating data to unknown is the variogram; in sim-

ulation it is the random function model traditionally characterized by variogram(s). The

kriging or stochastic simulation process consist of filling-in one pixel at a time the unsam-

pled grid nodes. The limitation of traditional geostatistics come from the structural model

being limited to 2-point statistics which can relate only two data locations together or

one datum location with one unsampled grid node. This is fine for modeling amorphous

heterogeneities such as distribution of grades or petrophysical properties within a statis-

tically homogeneous region or facies, it is insufficient formodeling categorical variables

associated to shapes and geometrical patterns. There is much more to facies and shape

distribution than 2-point statistics, and that “more” can be delivered by training images

selected or built from prior geological expertise.

Instead of borrowing specific multiple-point statistics from a training image, such as

2-point, 3-point,· · ·, n-point statistics and using them to construct conditional probability

distributions, the avenue presently chosen in modern geostatistics is much more direct:

borrow directly those conditional distributions. The training image is scanned for repli-

cates of the multiple-point data event, the relation of these replicates with any neighboring

training values provide the required structural information and, directly, their distributions

conditional to the data event. How a training image is scanned, how the resulting struc-

tural information is stored in a search tree, which templates for the data events should

be retained, are all critically important details of implementation. The important novel

methodological stance is accepting the numerical trainingimage(s) representation of the

random function structural model, as opposed to the traditional analytical models (all

Gaussian-related) or the implicit, algorithm-driven models (e.g. random functions asso-

ciated to most iterative simulation algorithms).

A crucial consequence, not yet fully developed, of the reliance on training image-

defined structural models is an healthy return to what reallymatters when it comes to

uncertainty. The major source of uncertainty, that which may create severe biases and

affects the1st digit of results, is related to the choice of the training image or struc-

tural random function model. It isnot the fluctuations between the various realizations

of the final reservoir representation, those fluctuations being associated to the various

ways the same prior structural model can be made to match the local data. The major

uncertainty, particular in early exploration stages, is inthe structural model/training im-
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age retained. Geostatisticians will do well toning down their touting of unconsequential

random seed-based fluctuations of simulated realizations and focus on the essential, the

uncertainty about the structural model retained. Then, because there is much more to a

structural model then mere 2-point statistics, pertubation of a variogram model is almost

always a futile exercise. What should be done is consideration of widely different geo-

logical scenarios, different structural models, yet all triggered by the same local data. The

consequence of geological scenario uncertainty typicallyoverwhelms that due to within-

scenario uncertainty; the latter could be taken care of by the fluctuations of geostatistical

realizations conditioned to the local data.
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Figure 1: Different patterns of spatial variability sharing the same variogram

(a). Boolean ellipses (GSLIB program ellipsim)

(b). Indicator simulation (GSLIB program sisim)

(c). Pieces of channels (Object-based program fluvsim)
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Figure 2: Scanning the training image to find replicates of a specific data event (here a

4-point DEV)
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Training image

Coarse simulation grid

Freeze coarse grid nodes and use them as
conditioning data to simulate finer grid nodes

Finer simulation grid

Figure 3: Multiple grids for sequential simulation and the corresponding rescaling of data

template (note that the same sample value would be relocatedto different nearest node

depending on which multiple grid is considered)
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Figure 4: Ordering of grid nodes within a data template and the corresponding search tree. Template of size 4 used to scan a

training image of size5×5 generating a search tree with 4 levels of tree nodes each with2 branches (since variable is binary)

(taken from Strebelle, 2000)
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a. Random distribution of ellipses

b. Rhein-Meuse fluvial channels
(from Berendsen & Stouthammer, 2001)

Figure 5: Stationarity of training image

(a). A stationary realization of elliptical objects of sizesmall relative to theT i size

(a). The actual Rhein-Meuse channel deposition displays location-specific patterns which

extend over the entireT i
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Figure 6: Non-stationary delta fan used as training image and one resulting snesim sim-

ulated realization (The non-stationary directions and channel widths of theT i have been

averaged out through scanning)
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Figure 7: Stationary training image (a) and local angle (b) and affinity (c) transforms

allowing generating a non-stationary delta fan (d)
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STOP

No

Read parameter file

No

snesim Main PROGRAM version 10.0 

Loop over all realizations

Initialize simulation, assign sample data to grid

Loop over all multiple grids, start from coarsest 

Build search tree for current sub-grid

Loop finished?

Write out to output file

Calculate simulated global proportion, average # of cond. data retained, etc.

Loop finished?
Yes

Yes

Set up rotation matrix 

Create data template

Assign samples to current grid nodes

Get a random path for this realization

Perform simulation

Unassign data

Delete search tree

Loop over all sub-grids

Loop finished?

No

Yes

Figure 8: Flowchart of the main snesim program, v.10.0

(taken from Zhang and Journel, 2003, in this SCRF 2003 report)
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Parameters for SNESIM

********************

START OF PARAMETERS:

data.dat - file with original data

1 2 3 4 - columns for x, y, z, variable

3 - number of categories

0 1 2 - category codes

0.25 0.25 0.50 - (target) global pdf

0 - use (target) vertical proportions (0=no, 1=yes)

vertprop.dat - file with target vertical proportions

0.5 - servosystem parameter (0=no correction)

0 - debugging level: 0,1,2,3

snesim.dbg - debugging file

snesim.out - file for simulation output

1 - number of realizations to generate

50 0.5 1.0 - nx,xmn,xsiz

50 0.5 1.0 - ny,ymn,ysiz

1 0.5 1.0 - nz,zmn,zsiz

69069 - random number seed

16 - max number of conditioning primary data

10 - min. replicates number

1 1.0 - condtion to LP (0=no, 1=yes), weight factor

localprop.dat - file for local proportions

1 - condition to rotation and affinity (0=no,1=yes)

rotangle.dat - file for rotation and affinity

3 - number of affinity categories

1.0 1.0 1.0 - affinity factors (X,Y,Z)

1.0 0.6 1.0 - affinity factors

1.0 2.0 1.0 - affinity factors

5 - number of multiple grids

train.dat - file for training image

100 100 10 - training image dimensions: nxtr, nytr, nztr

1 - column for training variable

10.0 10.0 5.0 - maximum search radii (hmax,hmin,vert)

0.0 0.0 0.0 - angles for search ellipsoid

Figure 9: A snesim v.10.0 input parameter file

(taken from Liu, 2003, in this SCRF 2003 report)
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A

IK at all nodes of coarsest grids; retain only cpdf; pass on cpdf

Loop through all multiple grids; imult = 2,nmult

Fast-interpolation at all uninformed nodes; retain only cpdf

Random path through all nodes u of imult multiple grid

For missing data at template location     , draw           from cpdf         .

Construct complete DEV with                  nodes

( )/0 ui/u ( )/up

( ) TT nn ≤u

Read cpdf from search tree for DEV; update current cpdf value at u.

Loop through       in            ; if        is not visited, construct complete DEV for      as above/u /u( )uTn

Update the cpdf at        by reading from the search tree for this DEV.

Pass on probability values to next multiple grid; ignore drawn indicator values

/u

�

Inner loop through
template

path through nodes

loop through mult grids

/u

Probability updating stage

Draw hard simulated value              from cpdf read from search tree

B

Loop through multiple grids, imult = 1,…,nmult

Random path through nodes u.

( )/)( uli

Freeze hard simulated value which replaces colocated cpdf value.

End

For missing hard data at template location         , draw                 from cpdf             ./u ( )/0 ui ( )/up

Construct complete DEV with                    nodes( ) TT nn ≤u

Pass inner loop through the           template nodes      and simulate them/u( )uTn

loop through
mult grids

path through
unsimulated nodes

Simulation stage

Figure 10: Flowchart of proposed soft semi-iterative snesim

(A). Probability updating stage

(B). Simulation stage

(taken from Krishnan research proposal, 2003)
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