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Abstract

History matching forms an integral part of the reservoir modeling work-flow pro-

cess. Despite the existence of many history matching tools, the integration of produc-

tion data with seismic and geological continuity data remains a challenge. Geostatistical

tools exists for integrating large scale seismic and fine scale well/core data. A general

framework for integrating production data with diverse types of geological/structural

data is largely lacking. In this paper we develop a new method for history matching that

can account for production data constraint by prior geological data, such as the presence

of channels, fractures or shale lenses. With multiple-point (mp) geostatistics prior in-

formation about geological patterns is carried by training images from which geological

structures are borrowed then anchored to the subsurface data. A simple Markov chain

iteratively modifies the mp geostatistical realizations until history match. The method is

simple and general in the sense that the procedure can be applied to any type of geolog-

ical environment without requiring a modification of the algorithm.
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Introduction

Production data brings an important, yet indirect constraint to the spatial distribution of reser-

voir variables. Pressure data provides information on the average pore volume and perme-

ability connectivity near wells, while fractional flow data informs the extent of permeability

connectivity between wells. Production data rarely suffice however to characterize hetero-

geneous reservoirs, a large amount of uncertainty still remains after history matching of

geostatistical models [1].

History matching is an ill-posed inverse problem attempting to invert reservoir properties

from measured flow and pressure data. Solutions to such inverse problems are never unique

which allows imparting other sources of data such as provided by seismic surveys and geo-

logical interpretation. The non-uniqueness of the history matching problem is well-known

and various techniques have been developed that allow integrating production data with geo-

logical continuity information in fine scale geostatistical models2;3;4;5;6;7. Most of these prior

geological models reproduce only the covariance as a measure of geological continuity. Co-

variance models are rarely sufficient to depict patterns of gfeological continuity consisting

of strongly connected, curvi-linear geological objects such as channels or fractures, see for

example [8] and [9]. Ideally one would like to possess a single history matching algorithm

that can handle diverse type of geological structures.

We propose a pixel-based history matching method that can account for any complex

style of geological continuity, not necessarily limited to the two-point statistics of a vari-

ogram model. That geological heterogeneity is characterized by multiple-point (mp) patterns

and corresponding statistics. The mp patterns are inferred from a training image. A fast se-

quential simulation algorithm, termed snesim (single normal equation simulation), then bor-

rows those patterns from the training image and anchors them to local subsurface data. Next,

the concept of multiple-point geostatistics is combined with a simple one-parameter Markov

chain process to address the history matching problem. The transition matrix of this Markov

chain is parameterized by a single parameter and modifies gradually and iteratively an ini-

tial geology consistent geostatistical realization to match better the production data. The

Markov chain is implemented such that the final model honors the imposed training-image

3



based geological structure. We first review some important concepts in mp geostatistics that

allows defining a large variety of prior geological models, then develop the proposed history

matching methodology.

Multiple-point geostatistics

Borrowing structures from training images

The snesim algorithm

Traditional to geostatistics, geological continuity is captured through a variogram. A var-

iogram measures the degree of correlation/connectivity or conversely variability between

any two locations in space. Since the variogram is only a two-point statistics, it cannot

model curvi-linear structures such as channels, nor can it model strong contiguous patterns

of connectivities such as fractures. The representation of such complex geological features

requires multiple-point statistics, involving jointly more than two locations. The idea behind

multiple-point geostatistics is to infer spatial patterns using many spatial locations of a given

geometric template scanning a training image or reservoir analog8;9.

The corresponding algorithm, termed snesim, is proposed in [9,10]. It is essentially not

different from existing more traditional conditional simulation techniques [11,12], in that it

sequentially generates the numerical model, one grid cell after another. The difference comes

from the probability distributions from which these pixel values are drawn: in snesim these

probabilities are actual proportions inferred from the training image and made conditional

to an mp data event. In traditional sequential simulation these probabilities are derived by

kriging using a variogram model.

Sequential simulation then allows to generate a number of equiprobable realizations

which reproduce the training image pattern of continuity and honor local well-log and seis-

mic data. The snesim approach essentially replaces the variogram modeling by the con-

struction of a training image. A training image would typically be constructed using an

unconstrained 3D Boolean simulation, see Fig. 1.
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At each node of the simulation grid, denote by P (AjB) the probability model from which

the value at that grid cell is drawn, where A could be the event ”channel present” at a given

grid cell location and B is the set of sample data and previously simulated grid cells used

to constrain A. In the sequantial Gaussian simulation (sGs), P (AjB) is a Gaussian distri-

bution with mean and variance determined by a set of (variogram-based) kriging equations.

The snesim algorithm follows the same principle of sequential simulation, but the proba-

bility model P (AjB) is read from the training image rather than built by kriging from the

variogram model. The snesim algorithm then allows generating the patterns found on the

training image (see [9] for details).

The various proportions P (AjB) are retrieved from the training image and stored in

a dynamic search tree prior to starting the random path [9]. An example of the snesim

methodology, using the training image of Fig. 1 is presented in Fig. 2. Note that the training

image model need not have the same size as the actual zone being simulated.

Constraining to soft data

The snesim algorithm allows for the integration of secondary information, used by the pro-

posed history matching methodology. For example, seismic inversion procedures allow

quantifying from amplitude data the probability of presence of specific facies, see for ex-

ample [13]. This probabilistic inversion result must then be integrated with finer scale well

data and geological prior models as depicted by the training image. Using a notation similar

to that above we denote the probability model derived from secondary data as P (AjC), where

A is the unknown property at each grid node and C is the secondary data event observed in

the neighborhood of that node.

In order to integrate that secondary information C into the snesim algorithm we need to

draw from the conditional distribution P (AjB;C) instead of P (AjB), i.e. each simulated

value should also depend on the secondary data. To combine P (AjB) and P (AjC) into

P (AjB;C), we use the following expression based on an improved form of conditional

independence14
x

b
=

c

a
(1)
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where

x =
1� P (AjB;C)

P (AjB;C)

and

b =
1� P (AjB)

P (AjB)
; c =

1� P (AjC)

P (AjC)
; a =

1� P (A)

P (A)
;

P (A) is the global proportion of A occurring, hence a can be interpreted as a prior distance

to the event A occurring, prior to knowing the information carried by the event B or C.

Indeed if P (A) = 1 then the distance a = 0 and A is certain to occur. Likewise, the values

b and c state the uncertainty about occurrence of A, given information B and C respectively.

x is the uncertainty when knowing both B and C. The combined probability P (AjB;C) is

derived as follows

P (AjB;C) =
1

1 + x
=

a

a+ bc

Based on this expression, an algorithm termed cosnesim has been developed (see [9,13])

which allows generating models constrained to both the geological structure depicted by the

training image (information B) and the secondary data C.

Solving the inverse problem

Methodology

We will consider only the case of a binary spatial variable described by an indicator random

function model

I(u) =

8<
:

1 if a given facies occurs at u

0 else

where u = (x; y; z) 2 Reservoir, is the spatial location of a grid cell. In a reservoir context

i(u) = 1 could mean that channel occurs at location u, while i(u) = 0 indicates non-channel

occurrence. In the mp geostatistics context, we denote by A the event I(u) = 1 (”the event

occurs”) and use D for the production data.

Next, define a non-stationary Markov chain on the entire set of random variables I(u); 8u,

starting from an initial model i(o)(u), generating iterations i(l)(u) till convergence. Conver-

gence is defined as matching the data D up to a given precision �. To define such Markov
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chain, consider the single random variable I(u) at a specific location u. Since I(u) is binary,

define the four transition probabilities of a 2 � 2 non-stationary transition matrix, moving

the chain from state (l) to state (l + 1) at location u. The chain is parameterized by a single

parameter rD, where rD 2 [0; 1] and depends on the data D as follows

PrfI(l+1)(u) = 1jD; i(l)(u) = 0g = rD PrfI(u) = 1g) (2)

PrfI(l+1)(u) = 0jD; i(l)(u) = 1g = rD PrfI(u) = 0g) (3)

PrfI(l+1)(u) = 1jD; i(l)(u) = 1g = 1� rD PrfI(u) = 0g

and for closure

PrfI(l+1)(u) = 0jD; i(l)(u) = 0g = 1� rD PrfI(u) = 1g

The first two transition probabilities (2) and (3) are the probabilities of changing states (fa-

cies) from step (l) to step (l + 1); rD is the relative probability of such change of state,

relative to the prior P (A). rD is a taken as a function of the conditioning data D. The degree

of freedom rD allows moving the model to matching closer the data D. At each iteration, a

one-dimensional optimization is carried out to find the value roptD that matches best the data

D. For any given rD 2 [0; 1] at any given current iteration (l) and for all grid cells u the

conditional probability P (AjD) is obtained using the above transition matrix as

P (AjD) = rDP (A) if i(l)(u) = 0 (4)

1� P (AjD) = rD(1� P (A)) if i(l)(u) = 1 (5)

rD is the same for all grid cells u. The resulting probability P (AjD) is then combined

with thee training image-derived probability P (AjB) using Eq. (1) where P (AjC) is re-

placed by P (AjD). Note that the resulting realization i
(l+1)
rD (u), honors the prior geological

continuity as depicted by the training image. Using a simulator of choice, the production

data is forward evaluated on i
(l+1)
rD (u) and an optimal roptD can be selected using any sim-

ple one-dimensional optimization method (e.g. the Dekker-Brent method, see [17]). This

Markov chain is termed ”non-stationary” since rD changes at each iteration (l).

Two limit cases exist for rD:
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� rD = 0: then the probability for a change is according to Eq. (2)

PfI(l+1)(u) = 1� ijD; i(l)(u) = ig = 0; 8i = 0; 1

that is I (l+1)(u) = I(l)(u). Iteration (l+1) does not provide a better match to the data

D, hence, one can either stop the iteration or change the random seed s. The latter

amounts to starting the chain/iteration over with i(l)(u) as the initial guess.

� rD = 1: then

PfI(l+1)(u) = 1jD; i(l)(u) = 0g = P (A) = PfI(l+1)(u) = 1g

PfI(l+1)(u) = 0jD; i(l)(u) = 1g = 1� P (A) = PfI(l+1)(u) = 0g

hence the state is changed according to the prior probability of the new state. The

combined probability then becomes

P (AjB;D) = P (AjB)

Consequently the cosnesim algorithm will generate a new realization i(l+1)(u), drawn

independently of i(l)(u)

Fig. 3 shows an example of five models i(1)rD (u) generated with different values rD, start-

ing from the initial model i(o)(u) shown in the top left corner. Note that the bottom right

model i(1)rD=1
(u) appears completely independent of i(o)(u).

Another interpretation of rD

Eqs. (4) and (5) can be recombined into a single equation providing another interpretation

of rD

P (AjD) = (1� rD)i(u) + rDP (A) 2 [0; 1] (6)

The probability P (AjD) appears as a mixeture of the current realization i(u) and the net-

to-gross prior proportion P (A), that mixture being controlled by the optimization parameter

rD
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� if rD = 1, P (AjD) = P (A) and P (AjB;D) = P (AjB), an independent new realiza-

tion is generated

� if rD = 0, the current realization is retained as shown previously.

Algorithm summary

The proposed algorithm to integrate production data (D) and mp geological information (B)

proceeds as follows

� Define a training image depicting the desired geological continuity (information B)

� Using the snesim algorithm: generate an initial model i(o)(u);u 2 Res:, l = 0.

� Iterate, l = 1; : : : ; Lmax,

– Define a transition matrix Eqs. (2).

– Perform a one-parameter optimization on rD that provides the best match to the

data D, then draw model, the probability P (AjD) is then given by Eq. 6. This

step requires multiple runs of the cosnesim algorithm and the flow simulator.

– Derive the conditional probability from Eq. (1).

– Make a final run of the cosnesim algorithm to generate a model i(l+1)rD (u)

Application examples

Quarter 5-spot

A set of applictation examples illustrate the proposed approach. Consider the 2D horizontal

reference model in Fig. 4 consisting of diagonal elliptical bodies of high permeability (750

mD) in a low permeability matrix (150 mD). We assume that the values of 150/750 mD

are known, while the placement of the high permeability bodies is not known. A training
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image reflecting knowledge about the elliptical shapes is generated using a Boolean program

ellipsim [15], see Fig. 1 .

The production data D is generated by placing an injector well in the lower left corner

which injects water in an initially oil saturated reservoir and a producer located in the upper

right corner. We use a simple black oil model, unbalanced production with the injector at

constant rate of 700 STB/day. No flow boundary conditions are assumed. Fluid properties

and density are assumed invariant with pressure. Capillary effects are ignored. Connate

water saturation is 0.15. Typical relative permeability curves are used. Initial reservoir

pressure is set at 655 psi. Grid cells size is 10 ft. A finite difference simulator ”Eclipse”16 is

used. The target production data D is the fractional flow of water observed in the producing

well as function of time. It appears that water breaks through after about 15 days as shown

in Fig. (6). The task is to generate solutions that honor the production data and the elliptical

structures depicted by the training image of Fig. 1.

Fig. 5 shows the decrease in the objective function during the outer iteration (l) also

shown is the optimal value ropt;(l)D for each iteration (l). The objective function measures the

squared difference of fractional flow data and model and has been standardized to one in Fig.

5 for the initial model. After 9 iterations a satisfactory match to the production data is found

as shown in Fig. 6. While the initial model fails to capture the connectivity of flow facies

between injector and producer well, the final history match appears visually to have similar

connectivity between injector and producer as the reference model. Fig. 8 provides more

insight into the the optimization of the rD parameter. Each outer iteration (l) consists of an

inner iteration to obtain the best rD. On average 8 function evaluations (flow simulations)

are required to perform such optimization. It appears that several local minima may occur.

Ten history matched models are generated using the above described methodology of

which 4 selected models are shown in Fig. 9. The average of these 10 realizations is shown

in Fig. 10. The fuzzy nature of Fig. 10 demonstrates that the fractional flow data is not a

strong constraint on the resulting reservoir models.

To investigate the flexibility of the approach in terms of prior models, we apply our

approach to other types of geological heterogeneities. First consider the reference model in

Fig. 11 depicting a population of fractures. Production data D similar to those obtained for
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the elliptical bodies case is generated by forward simulation on the reference set, providing

the fractional flow of water versus time measurements shown in Fig. 12. Convergence to

an acceptable history match is obtained after only 3 iterations. The initial guess plus the 3

iterations are shown in Fig. 13 and the history match shown in Fig. 12. The training image

used to obtain these results is shown in Fig. 14.

A final example concerns a reference model containing channels as shown in Fig. 15.

The results are show in Figs. 16 to 18.

5-spot case

Finally, we present a larger case of a 100 � 100 reference model shown in Fig. 19. Bound-

ary conditions, grid and fluid specifications are the same as before, only now a full 5-spot

configuration is used. The permeability constrast is now higher with 1500mD for facies 1

and 50 mD for facies 0. The Injector is located in the middle, producing well 1 in bottom

left, well 2 in bottom right, well 3 in top left, well 4 in top right.

Fig. 19 shows a good connection between the injector and producing wells 1 and 4, a

poor connection to producing wells 2 and 3, exhibiting later breakthrough. To match the

fractional flow of all 4 wells jointly, our objective function measures the squared difference

between fractional flow at all 4 wells. Fig. 21 shows that the objective function is sig-

nificantly lowered after 8 iterations. The initial model, history matched model and some

selected iterations are shown in Fig. 20. While the initial model appears to lack the strong

connectivity between injector and producing well 1, the final history matched results shows a

connectivity similar to the reference model. Fig. 22 show that the history matched is largely

satisfactory for all wells.

Discussion and conclusions

In this paper we present a new geostatistical approach to history matching. The purpose of

using geostatistics is to integrate geological information jointly with production data. Pro-

duction data brings only a limited constraint to the reservoir permeability, particularly in
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strongly heterogeneous media, hence prior geological information must be used to quantify

the geological patterns deemed relevant. If geology is ignored, the resulting history matched

models are often too smooth and might have limited prediction power.

Multiple-point geostatistics is used to introduce any type of geology that can be quanti-

fied in a training image into the history matching process. A simple Markov chain moves

realizations that are consistent with the geology depicted in the training image to final his-

tory match. The approach is generic on two fronts: one can use the same algorithm (code)

for different geological heterogeneities (cross-bedding, channels, fractures) and for different

flow processes (black oil, compositional, streamlines). The essential input required are a

training image and a flow simulator. No tuning parameters are needed. The code used to run

all of the above examples was kept unchanged.

Certain limitations exist in the current method but can be dealt with as follows

� The theory presented deals only with two facies. If more facies are present we can

extend the method in two ways.

1. Consider K facies sk; k = 1; : : : ; K, then define a set of indicator variables

I(u; sk) =

8<
:

1 if facies sk occurs

0 else

In the algorithm we can therefore work sequentially on each variable I(u; sk) by

perturbing a single facies sk versus all other facies grouped together in one class.

2. We can consider more than one parameter rD, namely a set of parameters rD(k)

for each facies, and jointly perform optimization on the set of parameters.

� The permeability for each facies is known and constant. We can solve this problem

by a hierarchical history matching process, where the iteration consists of two steps:

in the first steps one perturbs facies with constant permeability, in the second step one

perturbs the permeability while the facies remain frozen. For the second step one could

for example apply history matching by gradual deformation3.
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Nomenclature

u: (x; y; z)

A: an event: for example channel occurs at u

B: another event: for example channel occurs at u1 and shale occurs at u2

P (AjB): probabibility that event A occurs given one knows that B occurs

D: production data

C: seismic data

(l): iteration counter for outer loop

13



References

[1] WEN, X-H., DEUTSCH, C. and CULLICK, A.S., Integrating pressure and fractional

flow data in reservoir modeling with fast streamline based inverse methods, paper SPE 48971

prepared for presentation at the 1998 SPE Annual Technical Conference and Exhibition, New

Orleans, 27-30 September.

[2] VASCO, D.W., YOON, S. and DATTA-GUPTA, A., Integrating dynamic data into high

resolution reservoir models using streamline-based analytic sensitivity coefficients, paper

SPE 49002 prepared for presentation at the 1998 SPE Annual Technical Conference and

Exhibition, New Orleans, 27-30 September.

[3] HU, L.Y and BLANC, G., Constraining a reservoir facies model to dynamic data using a

gradual deformation model. paper B-01 prepared for presentation at the 6th European Con-

ference on Mathematics of Oil Recovery (ECMOR VI), September 8–11, Peebles, Scotland,

1998.

[4] WU, Z, REYNOLDS, A.C. and OLIVER, D.S, Conditioning geostatistical models to

two-phase production data. paper SPE 49003 prepared for presentation at the 1998 SPE

Annual Technical Conference and Exhibition, New Orleans, 27-30 September.

[5] TRAN, T., DEUTSCH, C.V. and XIE, Y., Direct Geostatistical Simulation With Multi-

scale Well, Seismic, and Production Data, paper SPE 71323 prepared for presentation at the

2001 SPE Annual Technical Conference and Exhibition, New Orleans, September 30 – 3,

October.

[6] HEGSTAD, B.K., and OMRE, H., An Inverse Problem in Petroleum Recovery: His-

tory Matching and Stochastic Reservoir Characterisation, proceedings ECMI96 conference,

Copenhagen, June 25-29, 1996.

[7] CAERS, J., KRISHNAN, S., WANG, Y and KOVSCEK, A.R., A geostatistical approach

to streamline-based history matching. Paper submitted to SPEJ, 2001.

[8] CAERS, J. and JOURNEL, A.G., Stochastic reservoir modeling using neural networks

trained on outcrop data. paper SPE 49026 prepared for presentation at the 1998 SPE Annual

Technical Conference and Exhibition, New Orleans, 27-30 September.

14



[9] STREBELLE, S. Sequential simulation drawing structure from training images. Ph.D

dissertation, Stanford University, Stanford, California, 2000.

[10] CAERS, J. AND ZHANG, T. Multiple-point geostatistics: a quantitative vehicle for

integrating geologic analogs into multiple reservoir models. To be published in ”Integration

of outcrop and modern analogs in reservoir modeling, AAPG memoir, 2002.

[11] ISAAKS, E. The application of Monter Carlo methods to teh analysis of spatially cor-

related data. PhD dissertation, STanford University, Stanford, California, 1990.

[12] GOMEZ-HERNANDEZ, J., and SRIVASTAVA, S. ISIM3D: an ANSI-C three dimen-

sional multiple indicator conditional simulation program. Computers and Geosscience 16,

395–410, May 1990.

[13] CAERS, J., AVSETH, P. and MUKERJI, T. Geostatistical integration of rock physics,

seismic amplitudes and geological models in North-Sea turbidite systems The Leading Edge,

20, 308-312 , March 2001.

[14] JOURNEL, A.G. Combining knowledge from diverse information sources: an alterna-

tive to Bayesian analysis. Submitted to Mathematical Geology, 2002.

[15] DEUTSCH, C.V. and JOURNEL, A.G., GSLIB: Geostatistical Software Library and

User’s Guide. Oxford University press, 1998.

[16] ECLIPSE 100 Reference Manual, Schlumberger-Geoquest, Houston, Texas, 1998.

[17] Press, W.H., Teukolsky, S.A, Vetterling, W.T and Flannery, B.P. Numerical recipes in

C. Cambridge University Press, 1992.

15



Figure captions

Figure 1: Example of a training image containing elliptical patterns

Figure 2: Example of a single geostatistical realization constrained to the 8 well data on the

right. Patterns are borrowed from the training image of Figure 1.

Figure 3:A single parameter rD defines the transition from an initial realization (top left) to

another independent realization (rD = 1, bottom right).

Figure 4: Reference ellipse model.

Figure 5: (top) decrease in the objective function during iterative inversion, (bottom) values

of roptD for each step during the iteration.

Figure 6: History match to the fraction flow data fw.

Figure 7: Some selected steps during the iterative inversion.

Figure 8: Optimization results on rD for each of the nine iteration during the inversion.

Figure 9: A selection of four history matched realizations.

Figure 10: Average of 10 history matched models.

Figure 11: Reference fracture model.

Figure 12: Data and history match results.

Figure 13: Initial models and iterations to reach a history match.

Figure 14: Training image for the fracture model.

Figure 15: Reference channel model.

Figure 16: Initial model and selected iterations.

Figure 17: Data and history matched results.

Figure 18: Training image for the channel model.

Figure 19: Reference model for a five spot case: injector located in the middle, well 1 in

bottom left, well 2 in bottom right, well 3 in top left, well 4 in top right.
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Figure 20: Initial model, history match and some selected iterations.

Figure 21: Decrease of the objective function.

Figure 22: History matched results for all 4 wells.
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Figure 1: Example of a training image containing elliptical patterns
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Figure 2: Example of a single geostatistical realization constrained to the 8 well data on the

right. Patterns are borrowed from the training image of Figure 1

19



initial model

East

N
or

th

0.0 50.000
0.0

50.000

facies 0

facies 1

r_D = 0.05

East

N
or

th

0.0 50.000
0.0

50.000

facies 0

facies 1

r_D = 0.1

East

N
or

th

0.0 50.000
0.0

50.000

facies 0

facies 1

r_D = 0.2

East

N
or

th

0.0 50.000
0.0

50.000

facies 0

facies 1

r_D = 0.5

East

N
or

th

0.0 50.000
0.0

50.000

facies 0

facies 1

r_D = 1

East

N
or

th

0.0 50.000
0.0

50.000

facies 0

facies 1

Figure 3: A single parameter rD defines the transition from an initial realization (top left) to

another independent realization (rD = 1, bottom right)
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Figure 4: Reference model
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Figure 7: Some selected steps during the iterative inversion.
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Figure 8: Optimization results on rD for each of the nine iteration during the inversion.
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Figure 9: A selection of four history matched realizations.
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Figure 10: Average of 10 history matched models
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Figure 11: Reference fracture model.
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Figure 12: Data and history match results.
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Figure 13: Initial models and iterations to reach a history match.
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Figure 14: Training image for the fracture model
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Figure 15: Reference channel model.
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Figure 16: Initial model and selected iterations
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Figure 17: Data and history matched results.
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Figure 18: Training image for the channel model
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Figure 19: Reference model for a five spot case: injector located in the middle, well 1 in

bottom left, well 2 in bottom right, well 3 in top left, well 4 in top right
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Figure 20: Initial model, history match and some selected iterations
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Figure 21: Decrease of the objective function
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Figure 22: History matched results for all 4 wells
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