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Abstract An efficient, robust and flexible adjoint-based
computational framework for performing closed-loop reser-
voir management is developed and applied. The method-
ology includes gradient-based production optimization and
data assimilation (history matching). Flexibility is achieved
through use of automatic differentiation (AD) within the
reservoir simulation, production optimization and history
matching modules. The use of AD will also facilitate the
application of closed-loop reservoir management to physi-
cal models of higher complexity. A fast sequential convex
programming (SCP) solver based on the method of moving
asymptotes (MMA) is applied for the production optimiza-
tion component of the closed-loop. This technique is shown
to outperform the sequential quadratic programming (SQP)
method, which is commonly used for production optimiza-
tion computations. The history matching component of the
workflow integrates both production data and proxy seismic
measurements into a unified adjoint-based data assimilation
framework. The effect of noisy data, and data of different
types, on the accuracy of the history matching component
is assessed. The overall closed-loop reservoir management
methodology is tested using the well-documented Brugge
model. Results demonstrate the efficient performance of the
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individual closed-loop components and the improvement in
net present value that is achieved using these procedures.
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1 Introduction

The reservoir modeling and optimization capabilities that
have been developed in recent years hold great promise
for improving reservoir performance. Closed-loop reservoir
management (CLRM) is one such strategy. CLRM, which
has been widely studied [3, 7, 15, 19–21, 27, 37, 44], essen-
tially involves periodic history matching and production op-
timization computations. Various minimization procedures
have been applied for these computations, though our em-
phasis here will be on gradient-based methods, with gradi-
ents computed using adjoints for both history matching and
production optimization.

CLRM is illustrated schematically in Figure 1. The pro-
duction system includes the field and facilities, in which pro-
duction and seismic data are collected periodically. These
data are then used for the model update step, in which the
geological model or models are adjusted such that the pre-
dicted reservoir response closely matches the actual data.
Time-varying optimal well settings (flow rates or bottom-
hole pressures) are then determined based on this updated
geological model. Hydrocarbon production using these con-
trols proceeds until the next closed-loop step, at which time
the geological model is again updated and the optimal con-
trols recomputed. The loop is repeated for the duration of the
production time frame. Because the geological model may
be highly uncertain at early stages of production, the model
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and controls can change significantly during the course of
CLRM.
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Fig. 1 Closed-loop reservoir management scheme.

The two areas most relevant to CLRM are production
optimization and data assimilation. The literature associated
with both of these fields is very extensive, so our focus here
will be on papers that are directly relevant to this study. A
recent review of history matching procedures can be found
in [29]. As noted above, our interest here is in gradient-
based history matching, discussed in, e.g., [25,30,37]. These
methods are very efficient if adjoint procedures are used to
construct gradients. In this paper, our adjoint-based history
matching scheme utilizes both production and seismic data.
Many previous researchers (e.g., [8–10, 12, 18, 31, 38, 41])
have considered the combined use of production and seismic
data, but little previous work has involved the application of
a general adjoint-gradient procedure for both production and
seismic data, as is presented here. We also introduce a sim-
ple procedure for generating proxy seismic data with spa-
tial filtering and varying degrees of noise, and the impact of
noise on the quality of the history matched solution is as-
sessed.

Gradient-based production optimization has also been
addressed in a number of recent papers; e.g., [2,3,24,27,35,
37, 43, 44]. See [20] for a comprehensive description of this
general area and an extensive literature review. An important
aspect of our work is the choice of an efficient nonlinear
programming solver to ensure computational efficiency in
the production optimization component of the closed-loop
scheme. Specifically, we compare a state-of-the-art SQP
solver with an SCP solver based on MMA [39]. The for-
mer is commonly used in production optimization [24, 37],
though the latter does not appear to have been previously
applied in this application area.

The automatic differentiation procedure used in this
work enables us to obtain adjoint-based gradients for both

production optimization and history matching. The AD
technique has been implemented into Stanford’s Automatic
Differentiation-based General Purpose Research Simulator,
AD–GPRS, using the Automatic Differentiation Expression
Templates Library (ADETL). This procedure was originally
developed in [45, 46] and later extended in [47, 48].

This paper proceeds as follows. In the next section we
give the mathematical details of the CLRM scheme. The
production optimization and history matching components
are cast as optimization problems that are solved using an
adjoint gradient algorithm. Computational aspects of the
methodology, including the optimization software, are de-
scribed in Section 3. In Section 4 we present a range of
computational results for the synthetic Brugge model. These
results entail the use of both production and 4D (time–lapse)
seismic data. Concluding remarks are provided in Section 5.

2 Mathematical description

2.1 Reservoir simulation model

Although our formulation is quite general, we describe our
model here in terms of an isothermal oil-water flow problem.
The general set of governing partial differential equations
(PDEs) can be expressed as

g(x,u) = 0,
x(t0) = x0,

t ∈ [t0, t f ].

(1)

Here t is time, x denotes the state variables (phase pressure
pp and saturation sp in this case), and u represents model
parameters (for history matching) or well control parame-
ters (for production optimization). The first equation in (1)
is a standard mass balance equation for component/phase p,
with p = o,w, which designate oil and water (see, e.g., [1])

∂
∂ t

(ϕρpsp)+div(ρpvp)+ρpqp = 0, p = o,w. (2)

Here the phase flux vp is given by Darcy’s law

vp =−k
krp

µp
(∇pp− γp∇D) . (3)

The phase dependent parameters appearing in (2)–(3) are
molar density ρp, relative permeability krp, viscosity µp,
vertical pressure gradient γp = ρpg, and source term qp. The
space dependent parameters are porosity ϕ , absolute perme-
ability k, and vertical depth D. The system is closed by the
relation so + sw = 1 and a capillary pressure relationship
(if capillary effects are included; otherwise po = pw). We
reiterate that, although the above equations are for an oil-
water system, the implementation can handle general com-
positional problems.
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In the discretized model, the total volumetric phase flow
rate in well j (q j,p), and the phase flow rate in completion i
in well j (qi

j,p), are given by

q j,p = ∑
i

qi
j,p, j = 1, . . . ,Nwell,

qi
j,p =

(
T w krp

µp

)
i

(
pi− pw

j −ρ j∆z
)
.

(4)

Here T w represents the well transmissibility factor (well in-
dex), pi is the well-block pressure, and pw

j + ρ j∆z is the
wellbore pressure at the corresponding location. The latter
involves the well bottom-hole pressure (BHP) pw

j , which is
defined at a reference depth z0, along with the adjustment
ρ j∆z, which accounts for the difference in wellbore pressure
between the reference and cell-center depth (here ρ j is the
average density of the fluid in the wellbore). Note that, for
simplicity, frictional and other pressure losses in the well-
bore are neglected.

2.2 Optimization problems

CLRM entails solving two types of optimization problems
sequentially. We defer the detailed description of these prob-
lems to Section 2.8, and the adjoint gradient solution algo-
rithm to Sections 2.4 and 2.5. Here, we consider an opti-
mization problem in a general form, with the objective func-
tion defined as

J (x,u) =
∫ t f

t0
F(t,x,u)dt. (5)

Here F(t,x,u) is a nonlinear function whose form, for pro-
duction optimization and history matching problems respec-
tively, will be specified in Sections 2.8.1 and 2.8.2. The op-
timal solution û is obtained through minimization or maxi-
mization of the objective function J (x,u) as follows:

history matching: û = argmin
u
J (x,u), (6a)

production optimization: û = argmax
u
J (x,u), (6b)

subject to the reservoir flow equations (1) and any applicable
constraints that define a feasibility region for u. The details
of the constraint treatment are provided in Section 2.7. Note
that in the optimization problems (6a) and (6b) the state vari-
ables x are considered to be dependent on u through an im-
plicit relationship defined by (1). A proper treatment of this
relationship is discussed in Section 2.4.

Solutions to the problem (6) in general are located either
at an extremum or on the boundary of the feasibility region.
We postpone the feasibility discussion until Section 2.7 and
consider the algorithm for finding extrema. These points are
characterized by the first-order optimality condition, which

requires the Gâteaux differential of the objective function
(5), defined as

dJ (u;δu), lim
ε→0

J (u+ ε ·δu)−J (u)
ε

, (7)

to vanish for all perturbations δu [26], i.e.,

dJ (û;δu) = 0, ∀δu. (8)

Due to its complexity the equality (8) is solved iteratively
û = limm→∞ u(m), where{

u(m+1) = u(m)+ τ(m)δu(m), m = 1, . . . ,

u(1) = u0.
(9)

In (9), u0 is the initial guess corresponding to an approxi-
mation of u, and τ(m) is the length of the step in the search
direction at iteration m. In the simplest case, the search di-
rection

δu(m) = argmin
v

dJ (u(m);v) (10)

represents the steepest descent direction. However, a more
efficient search is achieved through use of advanced mini-
mization/maximization techniques. In this work, we employ
two dedicated SCP algorithms, discussed in Section 2.3, to
handle the τ(m)δu(m) term in (9). Note that, since the opti-
mization problem (6) is in general nonconvex, condition (8)
characterizes only a local, rather than the global, optimum û.
However, because SCP solvers accumulate search direction
information from a number of iterations, the trust region is
larger, and the optimal solution “less” local, than in steepest
descent. We now discuss SCP in more detail.

2.3 Sequential convex programming (SCP)

An SCP algorithm finds an optimum û by solving a se-
quence of convex programming (CP) problems where an
objective function is replaced by its convex approximation.
The CP problems are solved at each iteration m to deter-
mine the update τ(m)δu(m) in (9) within the feasibility region
of the optimization variable space. When the optimization
problem is known to have a nonunique solution, the success
of SCP relies on the characteristics of the trust region and
the ability to define and solve individual CP problems with
minimal computational effort.

Commonly used approximations are those obtained with
Taylor expansions. Approximations of order higher than two
are not used in production optimization and history match-
ing because of their prohibitive computational cost. The lin-
ear approximation is not applied directly because, due to the
nonlinearity of these problems, it leads to a small trust re-
gion. However, it often serves as a building block for other



4 Vladislav Bukshtynov et al.

convex approximations that depend on the exact sensitiv-
ity of the objective function with respect to the optimization
variables. In the next section we provide a detailed descrip-
tion of the adjoint gradients, which provide the most accu-
rate estimation of this sensitivity.

The quadratic expansion within the sequential quadratic
programming algorithm has proven to be highly efficient for
production optimization and history matching [24, 37]. The
computational efficiency of SQP is achieved by using the ad-
joint gradients to construct both linear and quadratic terms
in the approximation, along with a dedicated optimization
algorithm to solve a quadratic problem. The quadratic term
accumulates the gradient information from multiple opti-
mization iterations. Therefore, the quadratic approximation
can have an arbitrarily large trust region and can thus avoid
some local minima. Depending on the form of the objec-
tive function and the initial guess, this capability could have
positive or negative consequences. A common observation
is that SQP, though quite general, requires some amount of
tuning for a particular optimization problem.

Dedicated SCP algorithms that use convex approxima-
tions consistent with the particular nonlinear form of the
objective function have been developed in many applica-
tion areas. Among these, the reconstruction of the geometri-
cal scaling factors in structural optimization resembles the
mathematical formulation of the production optimization
problem with BHP controls. This similarity is due to the
separability and quasi-linearity of the objective function and
PDE constraints with respect to individual optimization vari-
ables (i.e., partial Hessians Juu and guu are diagonal or zero
in both problems). In this situation, the use of convex ap-
proximations based on the linearization of functions with re-
spect to reciprocal optimization variables enhances the con-
vergence properties of the optimization procedure [14].

A successful modification of this approach, called method
of moving asymptotes (MMA) [39], uses an approximation
of J in the vicinity of ū in the form

J̃ (u) = J (ū)+ ∑
i∈ I+

∇Ji

[
(Ui− ūi)

2

Ui−ui
− (Ui− ūi)

]
− ∑

i∈ I−

∇Ji

[
(ūi−Li)

2

(ui−Li)
− (ūi−Li)

]
,

(11)

where ui designates a component of the vector u, ∇Ji is
a component of the gradient of the objective function J ,
Ui and Li are tunable parameters, I+ = {i : ∇Ji > 0}, and
I− = {i : ∇Ji < 0}. In (11), Li and Ui are adjusted such that
J̃ > J at the minimum of J̃ , and J̃ < J at the maximum
of J̃ , for minimization and maximization problems respec-
tively. This treatment is applied to stabilize and accelerate
the convergence of the optimization process [14]. In this
method, Li and Ui act as asymptotes that change the curva-
ture of the approximation J̃ (u). Their initial values are set

to the lower and upper bounds of the optimization variables
ū. In the case of a quasi-linear objective function, the ability
to adjust the curvature from the beginning of the optimiza-
tion process plays an important role. If Li and Ui are chosen
“far away” from ū, then J̃ (u) has small curvature in a large
neighborhood of ū, which allows the optimizer to take large
steps at the beginning of the optimization process.
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Fig. 2 (a, b) illustrate the adjustment of asymptotes in MMA. The first
two iterations of MMA are compared with a trust region method (SQP)
in (c, d). All figures show the objective function (black line), and the
convex approximation before (thick blue line) and after (thick red line)
adjustment used by the optimizer. In (a), MMA asymptotes before (ver-
tical blue dashed line) and after (vertical red dashed lines) adjustment
are shown. In (b), neither the convex approximation nor the asymptote
requires adjustment.

The advantages of MMA relative to SQP can be illus-
trated as follows. In SQP, the curvature of the initial approx-
imation of J is assigned with a default constant value, since
at this point we only have a unique instance of the gradient,
which does not allow us to approximate the Hessian. The op-
timization process requires a certain number of iterations be-
fore a working approximation of the Hessian is constructed.
In MMA, by contrast, the curvature of the approximation of
J at the point ū is directly controlled by the values of Li
and Ui. Therefore a suitable curvature is available at the first
optimization iteration.

Figure 2 illustrates in a simple fashion this adjustment of
the curvature. The example involves a minimization prob-
lem in one variable. It entails two iterations of MMA, which
are compared with two iterations of SQP (namely the trust
region SQP). The MMA optimization is started with an ini-
tial approximation (thick blue line) shown in Figure 2(a). At
the first iteration, the minimum of the approximation func-
tion is below the objective function. The asymptotes (verti-
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cal dashed lines) are then shifted to produce a new approx-
imation (thick red line). At the second MMA iteration, the
minimum of the approximation (thick red line) is above the
objective function, so no shift in the asymptotes is needed.

Note that MMA is a trust region method, i.e., it does
not perform a line search. However it is proven in [49] that
MMA converges from any initial guess. MMA is also often
more efficient computationally than SQP. This is because
a solution of the convex programming problem in MMA
is readily available. In addition, MMA requires fewer re-
sources than SQP to store the approximation.

A major disadvantage of MMA relative to SQP, how-
ever, is that it relies on a particular form of the objective
function and regularization (if any). For example, in the his-
tory matching problem, the curvature of the objective func-
tion is less prone to changes because of the need to main-
tain geological consistency in the reservoir parameters. For
this reason MMA, which significantly alters the curvature
of the approximation to fit the objective function, demon-
strates poor performance for the history matching problem,
in contrast to the production optimization problem.

2.4 Adjoint-based gradients

For PDE-constrained optimization problems, we must ac-
count for the implicit relationship (1) between state and con-
trol variables. This is accomplished by estimating sensitivi-
ties of the objective functions with respect to the PDE con-
straints, called adjoint variables [28]. One of the most ef-
ficient ways to obtain these sensitivities is through an aug-
mented objective function called the Lagrangian L, which
shares the same extrema as the original objective function
J (x,u)

L(x,u,λλλ ) = J (x,u)+ ⟨λλλ , g(x,u)⟩, (12)

where λλλ are the Lagrange multipliers for g(x,u) and ⟨·, ·⟩ de-
notes the inner product. At this stage, we eliminate the PDE
constraint (1) at the cost of increasing the space of the op-
timization variables with λλλ . After requiring that the partial
derivatives of the Lagrangian (12) with respect to λλλ , x and u
vanish, we obtain the first optimality conditions, which are,
respectively

• state equation (the same as (1))

g(x,u) = 0, (13)

• adjoint equation

λλλ gx(x,u) =−Jx(x,u), (14)

• optimization equation

λλλ gu(x,u) =−Ju(x,u), (15)

where gx and gu correspond to the linearization of the state
equation (1) with respect to x and u. Equations (13)–(15)
are solved sequentially in the following manner. The state
variables x are computed first from (13), after which the
adjoint variables λλλ are found from adjoint equation (14).
Equation (15) is then used to update control variables u. This
equation is not solved explicitly. Instead, it defines a linear
relation between a perturbation δu and the total variation of
L, also known as the Fréchet derivative

dL= ⟨Ju(x,u)+λλλ gu(x,u), δu⟩. (16)

The first term of the inner product in (16) is called the ad-
joint gradient. It is independent of δu and points in the di-
rection of the steepest ascent of L. This property is also uti-
lized to choose between the nearest maximum or minimum.
Algorithm 1 summarizes the steps in the adjoint gradient ap-
proach for a general optimization problem.

Algorithm 1 Adjoint gradient workflow for a general opti-
mization problem

m← 1
u(1)← initial guess u0
repeat

given estimate of u(m), solve state equations (13) for x(m)

given x(m) and u(m), solve adjoint equations (14) for λλλ (m)

update u(m+1) using (9) with a descent/ascent direction derived
from the gradient

∇uJ , Ju(x(m),u(m))+λλλ (m) gu(x(m),u(m)) (17)

m← m+1
until the termination criteria are satisfied to a given tolerance

2.5 Discrete formulation

Let us assume that, as is typical in reservoir simulation, (1)
is discretized in space using a finite volume procedure and in
time using the backward Euler (fully implicit) scheme. This
results in a nonlinear algebraic system of equations

gn(xn,xn−1,un) = 0,
x0 = x(t0),

(18)

where xn = x(tn), n = 1, . . . ,N, is the discretized state vari-
able at the end of time step n (which is of size ∆ tn). The
AD-GPRS solution procedure for solving (18), for multi-
phase, multicomponent flow, is described in [47].

The continuous objective function (5) is approximated
by a first-order scheme

J (x,u) =
N

∑
n=1

∆ tnFn(tn,xn,un)+O (max{∆ tn}) . (19)
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Following the steps described in Section 2.4, the discrete
adjoint gradient with respect to control variables un is given
by

∇uJ =
N

∑
n=1

(
∆ tn

∂Fn

∂un
+λλλ T

n
∂gn

∂un

)
, (20)

where the discrete adjoint variables λλλ n satisfy

λλλ T
n

∂gn

∂xn
=−

(
λλλ T

n+1
∂gn+1

∂xn
+∆ tn

∂Fn

∂xn

)
,

λλλ T
N

∂gN

∂xN
=−∆ tN

∂FN

∂xN
, n = 1,2, . . . ,N−1.

(21)

Here and throughout this paper, (·)T denotes transpose.
More details on the derivation of (20) and (21) can be found
in [34].

2.6 Automatic differentiation

As should be clear from our discussion above, the use of
discrete adjoint gradients (20) is the key component of our
CLRM procedure. This approach is appropriate for CLRM
as it (1) provides all partial derivatives in (20)–(21) based on
the numerical solution of the reservoir and adjoint equations
(13)–(14), and (2) does not lead to excessive overhead or
restrictions on the solution of the reservoir equations them-
selves. It is important to note that the use of adjoints is much
more efficient than obtaining numerical partial derivatives
of the functions Fn and gn with respect to state and control
variables using a finite difference scheme, which becomes
very expensive as the number of optimization variables in-
creases.

Analytical differentiation has traditionally been used
within reservoir engineering to construct the adjoint equa-
tions. This requires access to source code and detailed cal-
culations and coding, which are prone to error. In addition,
when updating or enhancing the capabilities of the forward
simulation model, the detailed adjoint treatment must be re-
visited.

Due in part to its ability to overcome the problems men-
tioned above, automatic differentiation is gaining popular-
ity in scientific and high performance computing. On the
one hand, it allows analytical, i.e., exact and fast, evalua-
tion of the partial derivatives of all nonlinear functions and
quantities involved in the formulation of the reservoir equa-
tions. On the other hand, any new physics added to the exist-
ing reservoir model is automatically taken into account. The
novelty of our computational approach applied to CLRM in-
volves utilizing AD in obtaining gradients for both the pro-
duction optimization and history matching components. We
note that AD was used in previous work for the computation
of gradients for production optimization in compositional
simulation [24].

The reservoir equations are in general PDEs of parabolic
type. Therefore, their adjoints are also parabolic, and are
solved backward in time as seen in (21). Thus, the reser-
voir equations and their adjoints must be solved sequen-
tially. One approach would be to store all partial deriva-
tives employed in (21), which amounts approximately to
Nvar ×Nvar ×N floating point numbers, where Nvar is the
total number of state variables obtained after spatial dis-
cretization and N is the number of time steps in the discrete
reservoir model (18). In addition, since the terms ∂Fn/∂xn,
∂Fn/∂un, ∂gn/∂un are not required in the forward simu-
lation, computing and storing them will unavoidably slow
down the process. Our AD-based reservoir simulator AD–
GPRS adopts a different approach by storing only the state
variables, enumerated to approximately Nvar ×N, and re-
assembling the residual gn and the constitutive parts of J
as required. The optimization module in AD–GPRS and the
AD framework itself ensure the fidelity of this reassem-
bly. In addition, the framework is customized to adapt to
changes in the optimization variables caused, for example,
by changes in well controls during the simulation (e.g.,
switches from BHP to rate control).

2.7 Handling bounds and constraints

Most of the optimization parameters in CLRM are subject to
limitations. For example, BHPs and flow rates are restrained
by technical limits on the wells and facilities. The geologi-
cal model parameters such as permeability and porosity are
constrained to fall within physical ranges. In the optimiza-
tion problems these limitations are translated into bounds on
the optimization variables u, which are satisfied by the op-
timizer. If a particular limitation is not applied directly to
an optimization variable, it enters as a nonlinear output con-
straint. This is the case, for example, for constraints on phase
flow rates when the well control is BHP. In this situation,
constraints can be satisfied either during the simulation or
within the optimization [24, 35]. Numerical studies [24, 43]
have shown that, when using an SQP solver, it is often ad-
vantageous to enforce the constraints during the simulation
(even though this requires the use of some heuristics) rather
than in the optimization.

In this work, we apply an approach related to that in [24]
and proceed as follows. For purposes of illustration, assume
we have a production well operating under BHP control
(with maximum and minimum BHP bounds specified) that
is subject to a maximum water rate constraint. The produc-
tion optimization module will have provided the target BHP
for the time step under consideration. If the use of this BHP
does not lead to a violation of the water rate constraint at
the current Newton iteration, then this BHP acts as the con-
trol. If, however, this target BHP does lead to a violation
of the water rate constraint at the current Newton iteration,
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then we perform an approximate test to assess whether or
not the well can operate under water rate control, with the
target given by the maximum water rate constraint, while
not having the BHP fall below the value determined by the
optimizer. If the test indicates that the rate control speci-
fication is feasible (with respect to BHP), then the well is
operated under rate control. If rate control is infeasible, then
the well is shut in for this Newton iteration. Analogous pro-
cedures are applied for other production and injection well
constraints. It is important to note that wells can also be shut
in during an AD–GPRS run when back flow occurs; i.e.,
when a zone intersected by the injector actually produces
into the well or a zone intersected by a producer actually
injects fluid into the reservoir.

2.8 Objective functions

2.8.1 Production optimization

The objective function used in this work for production op-
timization is net present value (NPV). The discretized cash-
flow appearing in the objective function (19) as the term Fn
is expressed as

Fn(tn,xn,un) =
Nwell

∑
j=1

Np

∑
p=1

C j,p(tn)q j,p(xn,un), (22)

where q j,p and C j,p denote respectively the volumetric pro-
duction/injection flow rate and discounted price of phase p
in well j, and Np designates the number of phases. Note that
in production optimization the objective function (19) is im-
plemented in the problem (6b).

2.8.2 History matching

When solving the history matching problem (6a), the model
parameters u are grid-block or interface properties of the
discrete reservoir, e.g., porosity, permeability, or interblock
transmissibility. It is common to define an objective function
in a least-square data mismatch fashion, e.g., [30]:

J (x,u) = (G(x,u)−dobs)
TC−1

D (G(x,u)−dobs)+R, (23)

where dobs are observed production and/or seismic data (the
latter are treated here as approximate phase saturation data),
G(x,u) is the model response given by (1), matrix CD repre-
sents the measurement error, and R is an appropriate regu-
larization term, discussed in Section 2.9.

Assuming that measurement k in the sequence of Nobs
observations, k = 1, . . . ,Nobs, is collected at time τk = tn, the
function Fn(tn,xn,un) in (19) may be rewritten as

Fn(tn,xn,u) = fk(xn,u)δ (tn− τk), (24)

where δ (tn−τk)= 1
/

∆ tn is the first-order approximation of
the Dirac delta function. The particular form of fk depends
on the type of measured data, namely

• well production rate data

fk(xn,u) =
Nq

well

∑
j=1

Np

∑
p=1

C j,p (q j,p− q̃ j,p)
2 , (25)

• well BHP data

fk(xn,u) =
NBHP

well

∑
j=1

C j
(

pBHP
j − p̃BHP

j
)2
, (26)

• time-lapse seismic data, e.g., phase saturation sp, given
by a seismic inversion or a proxy of seismic observations

fk(xn,u) =
Nblock

∑
j=1

Np−1

∑
p=1

Cp (s j,p− s̃ j,p)
2 , (27)

where coefficients C j,p, C j, Cp are diagonal elements of ma-
trix C−1

D , q j,p, pBHP
j and s j,p designate simulated phase pro-

duction rates, well BHPs and phase saturation, and q̃ j,p,
p̃BHP

j and s̃ j,p indicate the corresponding observed quanti-
ties. Here Nq

well and NBHP
well are the numbers of wells provid-

ing phase production rate and BHP data, respectively, while
Nblock is the number of reservoir grid blocks where seismic
measurements are available.

Well flow rates for different phases can differ substan-
tially. We address this by changing volumetric rates to mass
rates for production wells and by scaling the various contri-
butions to J (xn,u). Specifically, (25) is replaced by

fk(xn,u) =
Nq

well

∑
j=1

Np

∑
p=1

C j,pD2
p (q j,p− q̃ j,p)

2 , (28)

where Dp is a phase relative density defined as follows

Dp =
ρp

max{ρo,ρw}
, (29)

where ρp designates phase p = o,w density at standard con-
ditions.

Scaling is required because the sensitivity of the full ob-
jective function J (xn,u) with respect to u may vary by or-
ders of magnitude for the different contributions fk(xn,u) in
(25)–(27). Let us denote by Ji, i = 1,2,3, the terms of the
objective function corresponding to the three types of data
as defined in (25)–(27). To balance the contributions Ji, we
weight each data type using the initial values of Ji (desig-
nated J (1)

i ). We thus introduce weighting factors αi, which
appear in the calculation of J as follows

J =
3

∑
i=1

αiJi, αi =
min

i
{J (1)

i }

J (1)
i

. (30)
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2.9 PCA-based parameterization for history matching

From a mathematical viewpoint, the history matching prob-
lem as stated above is usually over-parameterized for large
models. This is the case because the amount of observed
data is small compared to the number of unknown model
parameters. The added complication is that the underlying
optimization problem is nonconvex. This results in large un-
certainty regarding the optimal solution; i.e., the optimal so-
lution is nonunique. From the geological perspective, the so-
lution of the history matching problem should honor avail-
able prior information. This information can be quantified
from a set of prior geological realizations, as described be-
low.

From both viewpoints, history matching requires reg-
ularization, which can be incorporated by augmenting the
objective function J in (23) with an additional model mis-
match term R. This term can be represented as a weighted
difference between the solution for model parameters u and
a reference set of parameters uref

R(u) = αR(u−uref)
TC−1

R (u−uref), (31)

where αR is a scaling coefficient. The choice of matrix CR
corresponds to different types of regularization: finite differ-
ence matrices for Tikhonov-type [11], or a covariance ma-
trix, denoted by CM, to maintain spatial correlation in his-
tory matching problems [30]. The former is not considered
in this paper, whereas the latter is incorporated through an
appropriate control space re-parameterization technique.

In general, the control space can be re-parameterized
based on various types of information, e.g., structure of the
gradient, geological or spatial features, geostatistics, etc.
Here we consider only re-parameterization based on Prin-
cipal Component Analysis (PCA), which is also known as
Proper Orthogonal Decomposition or Karhunen–Loève Ex-
pansion.

We use the PCA representation to convert a set of prior
realizations characterized by correlated variables (parame-
ters u) into a set of linearly uncorrelated variables (prin-
cipal components ξξξ ) through application of an orthogonal
transformation. Below we provide a brief description of the
general approach for mapping model parameters u to new
control variables ξξξ by performing PCA based on Singu-
lar Value Decomposition (SVD). For further details refer
to [36, 37, 42].

Without loss of generality, we consider a geological
model which contains Nu model parameters. We assume
the existence of a set of Nr realizations u j, j = 1, . . . ,Nr,
each of size Nu, that may or may not be conditioned to hard
data (these realizations would typically be generated using
geostatistical modeling software). For simplicity, we could
also assume a Gaussian (normal) distribution for the model
parameters, i.e., u ∼ N(ū,CM), where ū = (1/Nr)∑Nr

j=1 u j.

The aforementioned covariance matrix CM may be approx-
imated by

CM ≈
XX T

Nr−1
, XNu×Nr = [u1− ū . . . uNr − ū] . (32)

It is more efficient to perform SVD on the matrix Y =
X/
√

Nr−1 of size Nu ×Nr rather than on the covariance
matrix CM of size Nu×Nu, as Nr≪Nu. The SVD factoriza-
tion with truncation is then applied to matrix Y

Y ≈ ŨNξ Σ̃Nξ Ṽ
T
Nξ
, (33)

where diagonal matrix Σ̃Nξ contains the singular values of
Y , and matrices ŨNξ and ṼT

Nξ
contain the left and right sin-

gular vectors of Y . The matrix Σ̃Nξ is truncated to keep only
Nξ singular values σk, k = 1, . . . ,Nξ (analogous truncations
are applied to ŨNξ and ṼT

Nξ
).

We define a linear transformation

ΦNu×Nξ = ŨNξ Σ̃Nξ , Nξ ≤ Nmin = min{Nu,Nr}, (34)

to project the initial control space, in which the model pa-
rameters u were defined, onto the reduced-dimension ξ -
space, containing only the Nξ largest principal components
ξξξ , by means of the unique mapping

u = Φ ξξξ + ū. (35)

For large models, the SVD required to construct Φ can be
quite time consuming. More efficient algorithms, for exam-
ple the kernel PCA approach applied by [36,42], can be used
in such cases.

Various approaches can be used to determine the size of
the ξ -space; i.e., the Nξ value. Options include the Kaiser
criterion σ2 ≥ 1 [23], the scree test [6], and the inclusion
of a prescribed portion of the variance (energy) contained
in eigenvalues λ1 = σ2

1 through λk = σ2
k . With this last ap-

proach, given the (prescribed) parameter ropt, Nξ is deter-
mined such that the following condition is satisfied

∑
Nξ
k=1 σ2

k

∑Nmin
k=1 σ2

k

≥ ropt. (36)

When constructing the backward mapping, the simplest
approach is to approximate the inverse of the matrix Φ
(which cannot be inverted due to its size Nu×Nξ ) using a
pseudo-inverse matrix Φ̂−1. Then

ξξξ = Φ−1 (u− ū)≈ Φ̂−1 (u− ū), (37)

where

Φ̂−1 = Σ̃−1
Nξ
ŨT

Nξ
. (38)

The matrix Φ̂−1 is derived using (34)–(35) and the orthonor-
mality of the matrix ŨNξ .
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The optimization problem (6a) can now be restated in
terms of the new model parameters ξξξ as follows

ξ̂ξξ = argmin
ξξξ
J (xn,ξξξ ), (39)

subject to the discretized reservoir model (18), and using the
mappings given by (35) and (37). By applying (35) and the
chain rule for derivatives, the gradient ∇ξξξJ of the objective
function J with respect to the control variables ξξξ can be
expressed as

∇ξξξJ = ΦT ·∇uJ = Σ̃Nξ Ũ
T
Nξ
·∇uJ . (40)

This expression is derived by projecting the gradient ∇uJ
defined in (20) from the initial space onto the reduced-
dimension ξ -space.

In the results that follow, we apply the PCA-based
re-parameterization described above, which constrains the
geological model to honor hard data and “resemble” the
a priori realizations in terms of spatial correlation struc-
ture. We do not, however, directly include the regulariza-
tion termR(u) in the objective function. For PCA-based re-
parameterization procedures, it has been shown in, e.g., [42],
that a regularization of the form ξξξ Tξξξ appears in the compu-
tation of the maximum a posteriori (MAP) estimate in ξ -
space. This term could be easily incorporated into our treat-
ment as required.

A summary of the complete optimization scheme to
solve the minimization problem (6a), utilizing a solution of
the problem (39), is provided in Algorithm 2.

Algorithm 2 Optimization workflow utilizing PCA-based
control space re-parameterization

m← 1
u(1)← initial guess u0
construct Φ and Φ̂−1 by (34) and (38)
ξξξ (1)← u(1) using (37)
repeat

given estimate of u(m), solve state equations (18) for x(m)

given x(m) and u(m), solve adjoint equations (21) for λλλ (m)

∇uJ (u(m))← u(m),x(m),λλλ (m) by (20)
∇ξξξJ (ξξξ (m)

)← ∇uJ (u(m)) by (40)

update ξξξ (m+1) with a descent direction derived from (9) by

ξξξ (m+1)
= ξξξ (m)− τ(m)∇ξξξJ (ξξξ (m)

) (41)

u(m+1)← ξξξ (m+1) by (35)
m← m+1

until the termination criteria are satisfied to a given tolerance

3 Computational algorithm for CLRM

3.1 General description

In this work the computational model used for CLRM, as
shown in Figure 1, consists of three main parts:

• production optimization (PO), in which problem (6b) is
solved,

• history matching (HM), in which problem (6a) is solved,
• data handling (production and/or seismic) generated

from the true or emulated production system.

All three parts are also represented by the blue rectangles
within the computational flow chart shown in Figure 3.

We introduce the following general notation in the de-
tailed description of the closed-loop model used in this pa-
per, which is presented in Figure 3 and Algorithm 3:

• The parameter Nℓ is the number of cycles (iterations) in
the CLRM. The subscript index ℓ = 1, . . .Nℓ indicates
the CLRM cycle.

• S defines the reservoir facility (well) schedule. Thus S0
is the initial well schedule, while Sopt = SNℓ

designates
the optimal schedule obtained as a result of solving the
full CLRM optimization problem.

• R denotes a set of geological parameters.R0 andRopt =
RNℓ−1 describe correspondingly the initial and optimal
representations of the geological parameters.

• H denotes all of the data available at the current time
tcurr.
• ∆ tℓ defines the duration of one CLRM cycle, e.g., one

year.

In the CLRM description in Algorithm 3 and Figure 3,
we assume that initial reservoir parametersR0 are available
based on prior geological knowledge. This enables us to first
solve the production optimization problem. In fact, for any
CLRM cycle ℓ, we solve the PO problem first (at t = tcurr),
and the HM problem second (after accumulating new data;
i.e., at t = tcurr + ∆ tℓ). If a prior model is not available,
we would reverse the order of the CLRM solutions (solve
HM first, PO second). This will not introduce any additional
complications into the CLRM procedure.

3.2 Representation of observed data

Following the notation introduced in Section 2.8.2, measure-
ments may include phase production rates q̃p, phase satura-
tion s̃p, and BHPs p̃BHP. If these measurements are obtained
from a true production system, noise is present in the ob-
served data dobs in (23). Here, however, we use the reservoir
model (18) to generate historical data, assuming that the true
geological propertiesRtrue are known. In this case synthetic
noise could be introduced as follows

dobs = dtrue +Σ y, (42)
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Fig. 3 Computational flow chart for closed-loop reservoir management.

Algorithm 3 Workflow for CLRM
R0← initial reservoir characteristics
S0← initial well schedule

∆ tℓ←
t f − t0

Nℓ
tcurr← t0
for ℓ= 1 to Nℓ do

if ℓ > 1 then
simulate (Rℓ−1,Sℓ−1) for t ∈ [t0, tcurr]

end if
Algorithm 1 for PO (Rℓ−1,Sℓ−1) for t ∈ [tcurr, t f ]
Sℓ← Sℓ−1 optimized for t ∈ [tcurr, t f ]
tcurr← tcurr +∆ tℓ
Hℓ←Rtrue and Sℓ for t ∈ [t0, tcurr]
if ℓ < Nℓ then

Algorithm 2 for HM (Rℓ−1,Sℓ,Hℓ) for t ∈ [t0, tcurr]
Rℓ←Rℓ−1 optimized

end if
end for

where dtrue represents data without noise, y is a vector of
random numbers drawn from a normal distribution N(0,1),
and Σ is a diagonal matrix. The components σi of matrix Σ
play the role of standard deviations, defined for BHP data as

σBHP = γBHP, (43)

and for phase production rate qp data as

σq =


σq,min, γq ·qp < σq,min,

γq ·qp, σq,min ≤γq ·qp ≤ σq,max,

σq,max, γq ·qp > σq,max,

(44)

where γBHP, γq, σq,min and σq,max are prescribed (constant)
“noise” parameters.

3.3 Modeling proxy seismic data

Time-lapse (4D) seismic observations can be used as an
additional data source during reservoir production. These
results are usually considered in the form of a solution
of a separate inverse problem, e.g., full waveform inver-
sion (FWI). In this problem, geophysical model parameters,
which are coefficients in the seismic wave equation, are es-
timated by matching, for example, calculated seismograms
and observed data [13,40]. Performing FWI requires the so-
lution of the seismic wave equation as a forward problem.
For current purposes, however, the process of obtaining the
field property data can be emulated using a synthetic model,
as described in, e.g., [8, 12, 31]. A degree of realism can be
achieved by adding noise to the synthetic data, which in our
case are phase saturations. As the level of noise increases,
however, the information content of these data will decrease.
In addition, the seismic wavelength, which typically differs
from the dimensions of reservoir grid blocks, can be incor-
porated by applying spatial filtering.

In this work, as indicated in (27), time–lapse seismic
data enters in the form of estimates for the phase satu-
ration s̃p. We use the simulated saturation data, in some
cases supplemented with noise, as a proxy. Figure 4 il-
lustrates schematically the general process of constructing
proxy seismic data dproxy. Three steps are involved:

1. Generate “true” data dtrue from the solution of the reser-
voir equation (18) performed with the true fieldRtrue.

2. Add noise to the simulated data dtrue. This noise may be
described by (42), where standard deviation σs is given
by

σs = γs(1−ϕ), (45)
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Fig. 4 Schematic showing the procedure for obtaining proxy seismic
data for a 2D example.

where γs is a constant noise parameter. This simple form
accounts qualitatively for the fact that the seismic mea-
surement is more precise when porosity is higher. When
a gas phase is present, an additional multiplier of the
form (1− strue

g ), where strue
g is the true gas saturation,

would appear in (45).
3. Apply spatial filtering to the simulated data with added

noise; i.e., average observed data dobs over the half
wave-length.

Incorporating noise of a specified percentage η entails ad-
justment of the noise parameter γs in (45).

Step 3 can be accomplished by employing a simple spa-
tial filtering operation, e.g., a discrete convolution with a
rectangular kernel, which also has a smoothing effect. As an
example for the 2D case, Figure 4 shows a 3×3 “box blur”
discrete kernel (convolution matrix). Filtering with this tem-
plate replaces values for a given pixel in the original image
by the average of the target pixel and its eight direct neigh-
bors. Kernels of this class are also called low pass filters, as
they remove high image frequencies and also contribute to
noise reduction. Details on other filtering techniques, as well
as algorithms for their practical implementation, are avail-
able in the image processing literature; see, e.g., [17, 33].

4 Computational results

In this section we present computational results for the
closed-loop reservoir modeling described in Sections 2
and 3. We first overview the reservoir simulation and op-
timization packages utilized in this work. Then, after a brief
discussion of the model and optimization parameters, we as-
sess the CLRM framework and the performance of the pro-
duction optimization and history matching components. Our

intent in these computations is to demonstrate the general
capabilities of our adjoint gradient-based CLRM.

Prior to running the CLRM, we performed a diagnostic
test commonly employed to verify the correctness of the gra-
dient computation [4,5]. This test entails computing the total
variation of the objective function in an arbitrary direction
δu using (16). Here δu = ε · 1, where 1 denotes the vector
of ones of the same dimension as δu, and ε is a parameter
(which we vary). The variation (16) computed from the AD
implementation was then compared with its finite difference
approximation for a range of ε using different values of the
maximum time step ∆ tmax. We observed close agreement
between the AD and finite difference approximations over
a several order-of-magnitude range in ε , which confirms the
accuracy of the AD gradients used in our CLRM framework.

4.1 Optimization software

All computational results presented in Section 4 are ob-
tained using AD–GPRS. The simulator is used both for
forward simulations and for constructing adjoint gradients,
which are provided to an SCP solver. The SCP packages
used in this work are SNOPT and NLOPT, which provide
robust implementations of SQP and MMA, respectively. De-
tails on the use of these packages can be found in [16] and
[22].

The termination criteria available in the SCP solvers
are a maximum number of gradient evaluations (for both
solvers), a tolerance on the relative change of the objective
function (for NLOPT), and a tolerance on the violation of
the optimality conditions (for SNOPT).

To improve the performance of the SQP method pro-
vided by SNOPT, all objective function values for pro-
duction optimization are scaled by the constant coefficient
1 ·10−7. The resulting PO objective function values are then
of order 100−102. For history matching, the production data
component of the objective function is scaled as shown in
(30), with α set to 1.18 ·10−7. The initial values of the HM
objective are then of order 100− 101. We note finally, that
because SNOPT constructs a gradient of large dimension for
both the PO and HM problems, we use the limited memory
L-BFGS approximation in place of the full Hessian approx-
imation [16].

4.2 Model parameters

The optimization module in AD–GPRS is able to perform
optimization for different types of model parameters. The
adjoint gradient framework is only suitable for continuous-
valued variables. The available control parameters for pro-
duction optimization are well BHPs and phase flow rates,
which can be used simultaneously. For history matching
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Fig. 5 Brugge model (reservoir structure and initial oil saturation).

the optimization parameters are defined as block-by-block
multipliers either to grid-block permeabilities or interblock
transmissibilities.

The CLRM results presented below are obtained using
well BHPs pBHP

n and multipliers µµµT to interblock transmissi-
bilities as the optimization parameters. As the transmissibil-
ity field in the model described in Section 4.3 is of Gaussian
type, history matching parameters are subject to log-scale
parameterization, i.e.,

PO : un = pBHP
n ,

HM : u = lnµµµT , ∇lnµµµT
J = µµµT ∇µµµTJ .

(46)

Available prior information is incorporated by applying the
PCA-based re-parameterization technique discussed in Sec-
tion 2.9.

4.3 Brugge test case model

The model used in this work is based on the Brugge bench-
mark case [8, 31, 32]. We preserve the geometry of the
Brugge model, shown in Figure 5, including the grid struc-
ture and the distribution of active cells. A total of 104 geo-
logical realizations exist for this case, with each realization
containing information on grid-block depths and volumes,
net to gross ratio, porosity and permeability distributions,
and initial pressure and saturations. To apply the PCA-based
re-parameterization, the original realizations have been con-
verted into realizations for interblock transmissibilities. Re-
alization #73 is removed from this set and is designated to
be the “true” transmissibility field. This model is then used
to generate synthetic production and oil saturation data, both
of which provide observed data (the treatments discussed in
Sections 3.2 and 3.3 can additionally be applied). The re-
maining 103 realizations are used to construct a PCA-based
representation of the interblock transmissibility. Realization
#101 is used as the initial guess for history matching, and
the initial well schedule S0 is taken from the original Brugge
test case model. The model contains only oil and water.

Continuous-valued adjoint history matching imposes
certain restrictions on the reservoir model. For example,
only transmissibilities in layers 3 through 8 have consistent
sets of active grid blocks across realizations. This problem
could be treated by making all blocks active and introducing
fictitious transmissibilities, though for now we simply limit
our model to include only layers 3 – 8. Except where other-
wise stated, the computational results presented in Section 4
are obtained without adding noise to the production and seis-
mic data. Other model and optimization parameters are pre-
sented in Table 1. The original Brugge model parameters
are also shown for comparison. Additional specifications for
this model can be found in [31]. In all computations in this
paper, we use ∆ tmax = 10 days.

4.4 Closed-loop performance

Evaluation of CLRM performance involves consideration
of the two distinct optimization problems within the over-
all procedure. We assess the CLRM quality in terms of the
production optimization objective function NPV, computed
over the full time frame (20 years), as a function of S and
R. We compute NPV after each closed-loop iteration ℓ. Two
different NPVs, denoted NPV(Sℓ,Rℓ) and NPV(Sℓ,Rtrue),
are computed. These values correspond to expected and ob-
served results, respectively, and will be referred to as “model
response” and “reservoir response.”

Figure 6 shows the evolution of NPV(Sℓ,Rℓ) toward
NPV(Sℓ,Rtrue) as ℓ increases from 1 to 20. Results are pre-
sented for two PO solvers — SQP and MMA. The HM
solver is always SQP (see Section 2.3). The reservoir re-
sponse (red points) converges quickly to a constant value.
Similar behavior is observed in the model response (blue
points), and the model and reservoir NPV values are very
close for ℓ ≥ 8 for SQP and ℓ ≥ 5 for MMA. The “conver-
gence” of the model NPV to the true reservoir NPV cannot
be expected to be observed in general. It occurs in this case
because the 104 Brugge model realizations cluster into a few
sets, and within a particular set the level of variation is rel-
atively low, and because we use “true” saturation data as
proxy seismic data. As a result, the history matched model
closely resembles the true model after a few CLRM itera-
tions (as illustrated later). Nonetheless, the results in Fig-
ure 6 demonstrate that our CLRM procedure is indeed oper-
ating in the desired manner. Results in which noise and fil-
tering are added to the proxy seismic data will be presented
below.

4.5 Performance of production optimization (PO)

To assess the PO performance by itself, we introduce a refer-
ence solution S∗, which is obtained by performing a single
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Table 1 Parameters for the computational model.

Parameter Units Notation Computational model Original Brugge model
Grid size 139×48×6 139×48×9
Wells Nwell 30 standard wells 30 smart wells
Production life years Nℓ 20 30
Closed-loop schedule 20×1-year cycles 2×10-year cycles
Geological realizations Nr 103 (transmissibility) 104 (permeability, porosity, NTG)
True reservoir properties Rtrue realization #73 not given
Rock and fluid properties same given
Initial pressure and saturation same given
Initial facility (well) schedule S0 same given
Initial reservoir properties R0 realization #101
NPV, oil price/water cost US$/bbl 80/5 80/5
NPV discount 10% 10%
BHP bounds, lower/upper bar 50/180 50/180
Maximum fluid rate, injector/producer bbl/day 4000/3000 4000/3000
BHP production data p̃BHP not used monthly for the first 10 years
Rate production data q̃p monthly for 20 years daily for the first 10 years
4D-seismic data (proxy saturation) s̃p yearly, synthetic at time 0 and 10 years, “inverted”
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Fig. 6 NPV at the end of the reservoir life (20 years) as a function
of closed-loop iteration ℓ for (top) SQP and (bottom) MMA. The red
dots represent the reservoir response NPV(Sℓ,Rtrue), while the blue
circles show model response NPV(Sℓ,Rℓ) (notation defined in Sec-
tion 4.4). Magnification of the regions indicated by the dashed rectan-
gles is shown in the subplots.

production optimization with SQP over the 20-year reservoir
lifespan, starting with the initial guess S0 (as noted earlier,
S0 is taken from the original Brugge test case description).
For this computation, we use the true reservoir model; i.e.,
R=Rtrue. Figure 7 shows the comparison of NPV as a func-
tion of time for the initial guess S0 (thick dashed line), the
optimal solution Sopt (blue line), and the reference solution
S∗ (red line). We would not expect there to be much differ-
ence between Sopt and S∗ since the reservoir model is spec-
ified to be Rtrue. This is in fact observed — the two NPVs
after 20 years are 7.32 ·109 USD (Sopt) and 7.29 ·109 USD
(S∗). The similarity between the two solutions is also evi-
dent in the BHP controls for the two cases, shown in Fig-
ures 8(c,d) and 8(g,h).

Note that, from the results in Figure 8, it is evident that
many of the wells experience shut in over significant por-
tions of the simulation period. This is due to backflow in the
forward simulation, and not to our treatment of the nonlinear
constraints (which can also lead to well shut in). By limiting
the ranges of allowable BHPs for injection and production
wells, we observed that nearly all of these shut ins can be
eliminated. This treatment, however, leads to lower NPVs
than are achieved when we use the BHP bounds given in
Table 1.

We next generate a pool of reference solutions, desig-
nated S∗∗i , i= 1, . . . ,15, by performing production optimiza-
tion starting with different initial guesses S0,i (we again take
R = Rtrue and use SQP as the optimizer). Figure 7 shows
the NPV trajectories computed for S∗∗ (in gray), which are
seen to fall within a narrow range. Specifically, the NPVs at
20 years lie within the interval [7.16 · 109,7.39 · 109]. From
these results we can conclude that the difference between
Sopt and S∗∗ is essentially insignificant because the NPV for
Sopt is contained within the envelop of NPVs for S∗∗.
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The impact of production optimization can also be seen
by considering the remaining oil at the end of the reservoir
life. Figure 9 presents oil saturation distributions at 20 years
for the initial controls S0 and optimal controls Sopt and S∗.
It is apparent that Sopt and S∗ lead to improved sweep and
thus more oil production relative to S0. This is particularly
evident in layers 4 and 6.

4.6 Comparison of SQP and MMA

In Figure 6 we saw that the “convergence” of the model
and reservoir NPVs occurred at smaller ℓ with MMA than
SQP, and that MMA led to a slightly higher final NPV than
SQP. These findings are consistent with the better overall
performance observed for MMA. Additional comparisons
for the first three closed-loop iterations are presented in Ta-
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Fig. 9 Final oil saturation distribution in the vicinity of the wells (in-
jectors indicated by white triangles, producers by white circles) in lay-
ers 2, 4 and 6 for four cases: (a, b, c) S0, (d, e, f) Sopt with SQP, (g, h, i)
Sopt with MMA, and (j, k, l) S∗ with MMA. Rtrue is used in all cases.
Black circles indicate regions of improved sweep efficiency relative to
S0.

ble 2. Here, forward simulation and gradient evaluation re-
fer to sequential steps within the “repeat” loop in Algorithm
1, where we solve (18) and (20)–(21). From the table we
see that MMA requires fewer forward simulations and gra-
dient evaluations (the number of gradient evaluations with
MMA is equal to the number of forward simulations) for
ℓ = 1, 2, 3. This is likely due to the fact that, as discussed
above, by adjusting the asymptotes, MMA is able to provide
an accurate nonlinear approximation of the objective func-
tion even at the beginning of the optimization.

We note also that a slight improvement in sweep with
MMA relative to SQP can be seen by comparing Fig-
ures 9(e) and (h) within the regions indicated by the black
circles. The optimal BHP controls for the two cases differ,
as is evident in Figure 8.

The relative performance of MMA and SQP cannot be
judged based on a single test. Thus, we now perform mul-
tiple optimizations to assess the number of reservoir simu-
lations required for convergence. MMA termination criteria
are based on the relative change of the objective function
and optimization variables, while the SQP criterion consid-
ers the reduction of the norm of the gradient. Table 3 com-
pares the computational performance of SQP and MMA for
15 different optimization runs (in which S∗∗, described in
Section 4.5, is determined). In this table, columns 3 and 6
provide the number of simulation runs needed for MMA and
SQP to converge to the values shown in columns 2 and 5.
The values in parentheses in column 4 specify the number
of runs required for MMA to reach the same NPV value as
SQP at the point of SQP termination. In 12 of the 15 cases,
MMA achieves a higher NPV than SQP (the cases in which
SQP reaches a higher NPV are indicated by asterisks in col-
umn 1). In addition, we see that MMA consistently requires
fewer simulations.

The superior performance of MMA is further illustrated
in Figure 10, where we compare the the norm 1

Nnb
∥∇JPO∥1,nb

of the objective function gradient (20) obtained while com-
puting the solutions S∗∗. This norm includes only the com-
ponents corresponding to the Nnb control variables located
away from the boundary of the feasibility region. It is evi-
dent that the MMA gradients decrease faster, and that there
is less spread in the MMA results for the different runs. This
suggests that MMA performance is less dependent than SQP
on the initial guess.

Table 2 Comparison of the computational performance of SQP and
MMA solvers for the production optimization problem over the first
three CLRM iterations.

CLRM SQP gradient SQP forward MMA forward
iteration, ℓ evaluations simulations simulations

1 26 56 10
2 26 28 12
3 9 10 8
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Table 3 Comparison of the computational performance of MMA and
SQP solvers for the production optimization problem. Performance is
assessed for 15 different initial guesses, used to obtain solutions S∗∗i ,
i = 1, . . . ,15. All NPVs are computed with Rtrue.

i MMA SQP
NPV (109$) simulations NPV (109$) simulations

1 7.41 13 (3) 7.15 15
2 7.49 12 (2) 7.25 17
3 7.43 10 (4) 7.39 32
4 7.35 9 (2) 7.22 17
5 7.35 9 (4) 7.32 61
6 7.38 13 (3) 7.16 32
7 7.42 10 (3) 7.21 40
8∗ 7.17 2 7.23 24
9 7.30 12 (4) 7.24 23

10∗ 7.17 2 7.23 13
11 7.16 10 (2) 7.01 14
12 7.23 11 (6) 7.22 25
13 7.37 10 (3) 7.28 18
14∗ 7.28 2 7.31 9
15 7.36 13 (7) 7.34 75
⟨NPV⟩ 7.33 7.24

4.7 History matching performance

In order to assess the performance of the CLRM history
matching, we compare the results obtained from the PO so-
lution Sopt for different reservoir properties R. Figure 11
shows the comparison of NPV as a function of time for
the initial guess R0 (thick dashed line), the optimal solu-
tionRopt (magenta line), and the true fieldRtrue (blue line).
The NPV trajectories corresponding to the true and history

matched fields are nearly identical, which is indicative of the
quality ofRopt.
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Fig. 11 Comparison of NPV as a function of time for the optimal so-
lution Ropt (magenta line), the true reservoir Rtrue (blue line), and the
initial guess R0 (dashed black line). All NPVs are computed using the
same set of controls (Sopt). Magnification of the region indicated by
the dashed rectangle is shown in the subplot.

Figure 12 displays transmissibility fields in the x and z
directions for the initial guess model (R0), the history match
solution (Ropt), and the true model (Rtrue). Although the op-
timal and true solutions clearly differ, they do display gen-
eral similarities for many of the large-scale features. It is
important to note thatRopt represents just one of many pos-
sible history matched models, so we cannot draw general
conclusions from the fields in Figure 12. In addition, the his-
tory matching results are impacted by the weightings used
for production and seismic data, and the specific effects of
these weightings requires further study. In any event, based
on these results and those in Figure 11, we can conclude that
the CLRM history matching is performing as expected.

The results presented above were computed using pro-
duction data that did not contain noise, along with proxy
seismic data that were unfiltered and also without noise.
We now introduce noise and filtering into the proxy seismic
data. For these computations, we focus on the HM problem.
Thus, all simulations involve the use of the fixed produc-
tion schedule Sopt, obtained from the full 20-year CLRM
optimization, as discussed in Section 4.4. History match-
ing uses only proxy seismic data generated yearly for the
first 10 years, with different noise levels (η ranges from
0 to 50%) and application of the spatial filtering described
in Section 3.3. Figure 13 shows the comparison of (signed)
NPV error as a function of noise level η . The error ε is com-
puted as the difference between the NPV for the particular
case (at 20 years) and the NPV obtained with Rtrue. As ex-
pected, for small noise values, ε is small, which suggests the
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Fig. 12 (a-e) Initial R0, (f-j) optimized (history matched) Ropt, and (k-o) true Rtrue interblock x-transmissibility Tx and z-transmissibility Tz
(log-scale) fields for layers 2, 3 and 4. Triangles and circles indicate injectors and producers, respectively.

history matched model is accurate (the 1% error interval is
shown in gray in Figure 13). As η increases beyond about
25%, however, ε grows significantly, approaching 10% error
in NPV for η = 50%.

We now consider the same history matching problem
(again using 10 years of data) for cases where only produc-
tion data, only proxy seismic data, or both production and
seismic data, are available. Production data contain noise,
with reference to (44), defined by γq = 0.05 (5% of flow
rates), σq,min = 2.0, and σq,max = 25.0. Noise in the proxy
seismic data is as described above, with η = 30%. Produc-
tion and seismic data, when used, are available every month
and every 5 years, respectively.

Figure 14 shows history matching results for nine dif-
ferent initial guesses for the three types of data. Error is

computed as described above. Interestingly, the use of only
production data tends to underestimate NPV, while the use
of only seismic data tends to overestimate NPV. The aver-
age error from using only seismic data is clearly less than
that using only production data. This may be due in part to
the relative noise levels in the two types of data, and/or to
the fact that the seismic data is spatially dense. The error
using seismic data here is less than that in Figure 13 with
η = 30%. This may be because a different noise realiza-
tion was used in this case. Use of both types of data leads
to lower accuracy (on average) than does the use of seismic
data only, though errors are quite small in either case. The
error is, however, less biased when both data types are used.
Additional examples will need to be studied to identify the
impact of various data types and noise levels on the HM so-
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different HM solutions Ropt, obtained for cases when history matching
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lution. In future work, we plan to address this issue using a
multiobjective optimization framework.
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Fig. 14 Error in NPV computed for different HM solutions Ropt ob-
tained using only production data (black points), only proxy seismic
data (blue points), and both production and seismic data (red points),
for nine different initial guesses.

5 Concluding remarks

In this work, we presented an efficient adjoint-based com-
putational approach for CLRM. The AD framework, built
around the reservoir simulator AD–GPRS and combined
with dedicated SCP solvers, enables a highly flexible im-
plementation. In the history matching component of CLRM,
the SQP method is applied to a problem parameterized using

PCA. Both production data and proxy seismic data are con-
sidered. In the production optimization component, a novel
(in this context) SCP solver is employed. This solver is suit-
able for optimization problems where the objective function
and PDE-constraints are quasi-linear and separable with re-
spect to the optimization variables.

We investigated the performance of the closed-loop
methodology for the well-documented Brugge model. For
the production optimization problem, we showed that MMA
outperformed SQP, particularly at early iterations of the
closed-loop procedure. For history matching, by contrast,
the commonly used SQP procedure is the method of choice.
The use of synthetic 4D seismic data in the gradient-based
history matching procedure was also demonstrated. This in-
volved the use of interpreted data, which provided an esti-
mated saturation field that was incorporated into the objec-
tive function. The effect on history matching of noise and
spatial filtering in the proxy seismic data was assessed. The
impact of the different data types on history matching results
was also considered.

CLRM results for Brugge model NPV were shown to
be in close agreement with those achieved for the “true”
(synthetic) reservoir model. The detailed well settings dif-
fered between the true and optimized models, which reflects
the nonuniqueness of the CLRM solution. The high level of
agreement in NPV between the two solutions is likely due,
in this case, to the characteristics of the 104 Brugge real-
izations and to our use of “true” seismic data. In any event,
our overall results demonstrate that the components of the
AD-based CLRM are functioning properly.

There are many ways in which the adjoint gradient-
based CLRM can be tested and extended. The relative per-
formance of SQP and MMA for production optimization
should be assessed for other problems. Given that we are
using data of different types, it will be of interest to apply
multiobjective optimization techniques, in which the Pareto
front is computed. We also plan to investigate the use of
other control variable re-parameterization procedures. These
could include the dynamical grouping of gradient compo-
nents, according to theoretical or heuristic observations, for
production optimization, and the use of other geological pa-
rameterizations, such as optimization-based PCA [42], for
history matching. The application of CLRM for synthetic
and real field models that involve more complicated physics,
as well as the incorporation of robust optimization proce-
dures for optimization under uncertainty, will also be ad-
dressed.
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