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Abstract In oil field development, the optimal location for
a new well depends on how it is to be operated. Thus, it is
generally suboptimal to treat the well location and well con-
trol optimization problems separately. Rather, they should
be considered simultaneously as a joint problem. In this
work, we present noninvasive, derivative-free, easily paral-
lelizable procedures to solve this joint optimization prob-
lem. Specifically, we consider Particle Swarm Optimization
(PSO), a global stochastic search algorithm; Mesh Adap-
tive Direct Search (MADS), a local search procedure; and
a hybrid PSO–MADS technique that combines the advan-
tages of both methods. Nonlinear constraints are handled
through use of filter-based treatments that seek to mini-
mize both the objective function and constraint violation.
We also introduce a formulation to determine the optimal
number of wells, in addition to their locations and controls,
by associating a binary variable (drill/do not drill) with each
well. Example cases of varying complexity, which include
bound constraints, nonlinear constraints, and the determina-
tion of the number of wells, are presented. The PSO–MADS
hybrid procedure is shown to consistently outperform both
stand-alone PSO and MADS when solving the joint prob-
lem. The joint approach is also observed to provide superior
performance relative to a sequential procedure.
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1 Introduction

The development of computational optimization procedures
for oil field operations has been an area of active research in
recent years. Optimization techniques have been developed
for several types of field development and operational deci-
sions, including the determination of the optimal type and
location of new wells and the optimal operation of existing
wells (as discussed below). Traditionally, the optimization
of well location has been considered separately from the
optimization of well operation (the latter is often referred
to as well control or production optimization). However,
recent work has demonstrated that, as would be expected,
the optimal location of a new well depends on how the well
is to be operated [6, 33, 45]. Thus, the optimization of well
position and well control should be considered as a joint
optimization problem, rather than as two separate (sequen-
tial) optimization problems. Our goal in this paper is to
develop and test derivative-free procedures that enable the
joint optimization of well location and control under general
(nonlinear) constraints.

The well control problem involves determining optimal
values for continuous operating variables, such as well rates
or bottomhole pressures, in order to maximize an objective
function (e.g., net present value, cumulative oil production,
etc.). The well placement optimization problem involves
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maximizing an objective function by varying well types and
well locations. During the solution of the well placement
optimization problem, various treatments can be used for
the well controls, including fixed bottomhole pressures or
“reactive” control. In the latter case, production wells are
closed (shut in) when water cut exceeds a specified limit
[45].

As shown by Bellout et al. [6] and Zandvliet et al. [45],
the optimized well locations depend on the control strat-
egy used during the well placement optimization. Thus,
any approach that does not aim at optimizing both well
locations and controls simultaneously can be expected to
provide theoretically suboptimal results. Recent investiga-
tions have therefore addressed the joint, or simultaneous,
optimization of well placement and well control variables
for oil field problems [6, 27, 33] and problems in geological
carbon storage [9]. In assessments of joint versus sequen-
tial approaches, Bellout et al. [6] and Li and Jafarpour [33]
found their joint approaches to outperform sequential pro-
cedures. Humphries et al. [27], by contrast, did not find
the joint approach to consistently provide superior results
relative to their sequential procedure. This may be due to
the fact that they included some heuristics for well con-
trol in their well placement optimizations, or to some other
algorithmic treatments.

A variety of methods have been applied to solve the
well control, well placement, and joint placement and con-
trol problems. Due to their more continuous nature, well
control problems are amenable to solution using gradient-
based optimization methods such as sequential quadratic
programming [34]. Adjoint formulations allow for efficient
(but simulator-invasive) computation of gradients and have
been used effectively for these problems (see, e.g., Brouwer
and Jansen [8] and Sarma et al. [40]). Wang et al. [42]
and Forouzanfar et al. [22] applied gradient-based methods
for well control optimization that heuristically approached
the joint problem by eliminating wells that did not satisfy
minimum injection or production criteria. Derivative-free
methods have also been used for well control problems
[1, 17, 25]. These approaches may require large numbers
of function evaluations (reservoir simulations) when com-
pared with gradient-based methods, but they are often easily
parallelized, so elapsed time can be greatly reduced with
distributed computing.

Due to the effects of reservoir heterogeneity, well place-
ment optimization problems can display very rough opti-
mization surfaces, with multiple local optima [36]. Thus,
these problems are frequently solved using stochastic search
procedures (which avoid getting trapped in some local
optima) including Genetic Algorithms [24, 44], Particle
Swarm Optimization [36], and stochastic perturbation meth-
ods [5]. Gradient-based approaches have also been applied

for these problems [39, 45, 46], though these methods may
get trapped in relatively poor local optima.

Our intent in this paper is to introduce and apply sev-
eral new procedures for the joint optimization problem. The
underlying optimization techniques considered are noninva-
sive (with respect to the simulator) derivative-free methods
that naturally parallelize. Noninvasive (also known as black-
box) methods are required when one does not have access
to simulator source code. Echeverrı́a Ciaurri et al. [18]
illustrated the applicability of noninvasive derivative-free
optimization methods to well control, well placement, and
history matching problems. Our solution of the combined
well placement and control problem entails the use of Mesh
Adaptive Direct Search (MADS), which is a local opti-
mization technique with established convergence theory,
and Particle Swarm Optimization (PSO), a stochastic global
search procedure. A new hybrid PSO–MADS procedure
that combines the positive features of these two methods
will be presented and applied.

Our framework also includes a treatment for general
(nonlinear) constraints in the optimization. These are han-
dled using filter-type approaches, as described in [17, 28],
in which the constrained problem is essentially viewed as
a biobjective optimization where the two objectives are the
maximization of the net present value (for example) and the
minimization of the constraint violation. The filter method
for MADS was introduced by Audet and Dennis [3]. Here,
we describe new filter treatments for PSO and the PSO–
MADS hybrid. We also introduce a problem formulation
that includes drill/do not drill binary variables that are asso-
ciated with each well. This allows the procedure to add or
eliminate wells and thus optimize the number of wells to be
drilled (subject to a specified maximum).

An important aspect of the general problem that is not
considered here is the treatment of geological uncertainty.
We note, however, that our framework is readily compati-
ble with approaches that model the impact of uncertainty
by optimizing over multiple realizations, as demonstrated
by Isebor [28]. Our methodology requires a large num-
ber of function evaluations (flow simulations), and although
the computational effort is substantially reduced by dis-
tributed computing, further reduction could be accom-
plished through use of surrogate models. This could entail,
for example, the use of reduced-order numerical models
[11], quadratic approximations, e.g., as used in the Bound
Optimization by Quadratic Approximation (BOBYQA)
algorithm [23, 38], or kriging procedures within Efficient
Global Optimization [30].

This paper proceeds as follows. First, the optimization
problem statement is presented, together with the sequential
and proposed joint solution approaches. We then describe
the underlying derivative-free optimization methods used in
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our framework: MADS [4, 32], PSO [15], and the PSO–
MADS hybrid method, which is a variant of the PSwarm
algorithm introduced by Vaz and Vicente [41]. We also
describe filter techniques for handling nonlinear constraints
in each of the methods. Next, optimization results for well
placement and well control are presented. We consider a
case with only bound constraints, a case that additionally
includes nonlinear constraints, and a case with nonlinear
constraints where we also optimize the number of wells. We
conclude with a summary and suggestions for future work
in this area.

2 Problem statement and solution approaches

In this section, we present the optimization problem
for combined well placement and control. Two types of
approaches for its solution are then described—the more
commonly used sequential procedure and our proposed joint
approach. These techniques are discussed with reference to
waterflood operations (injection of water into a reservoir ini-
tially containing oil), though the procedures we develop are
also applicable for other recovery processes.

2.1 Optimization problem

The goal of the optimization is to determine the optimal
locations of some number of injection and production wells,
along with the optimal well settings as a function of time.
Later, we will introduce a treatment for additionally opti-
mizing the number of wells. Well settings, also referred to as
well controls, can be specified in terms of well flow rates or
bottomhole pressures (BHPs). In this work, the well controls
are BHPs. We seek to optimize the net present value or NPV
of the operation (other objective functions could of course
be considered) by optimizing the locations and controls in
a joint, rather than sequential, manner. The optimization
problem can be stated as follows:

min
x∈X,u∈U

f (x, u), subject to c(x, u) ≤ 0, (1)

where f is the objective function we seek to minimize (e.g.,
f = −NPV if we wish to maximize NPV) and c ∈ R

m is the
vector of m nonlinear constraint functions. The bounded sets
X = {x ∈ Z

n1; xl ≤ x ≤ xu} and U = {u ∈ R
n2; ul ≤ u ≤

uu} define the allowable values for the discrete well place-
ment variables x and continuous well control variables u.
The set X could define possible drilling locations within the
reservoir boundaries and the set U could define allowable
BHP ranges.

Even though the actual well locations are real-valued, the
well placement variables are modeled as integers because
the simulator used in this work requires well locations to
be defined in terms of discrete grid blocks. The wells are

assumed to be vertical with locations stated in terms of dis-
crete areal (x, y) coordinates. Thus, we have n1 = 2(NI +
NP), where NI and NP are the number of injection and pro-
duction wells, respectively. In more general cases involving
deviated or multilateral wells, additional variables would be
required to describe well locations. The well controls are
represented by piecewise constant functions in time with NT

intervals. Thus, n2 = NT(NI + NP).
We optimize undiscounted NPV, given by

NPV = −
NI+NP∑

j=1

Cj

︸ ︷︷ ︸
drilling costs

−
NI∑

j=1

Nt∑

k=1

Δtk ciwq
j,k

iw (x, u)
︸ ︷︷ ︸

water injection cost

+
NI+NP∑

j=NI+1

Nt∑

k=1

Δtk

⎛

⎜⎜⎝poq
j,k
o (x, u)︸ ︷︷ ︸

oil revenue

− cpwq
j,k
pw (x, u)

︸ ︷︷ ︸
water disposal cost

⎞

⎟⎟⎠, (2)

where Cj is the cost to drill well j , Nt is the number of time
steps in the reservoir simulation, Δtk represents the time
step size at time step k, ciw and cpw are the costs per bar-
rel of injected and produced water, and po is the sale price
of produced oil. The terms q

j,k

iw , q
j,k
pw , and q

j,k
o represent the

rates of injected and produced water, and produced oil, from
well j in time step k. Note that these rates are functions of
the optimization variables and are obtained from the reser-
voir simulator. The reservoir simulator used in this work is
Stanford University’s General Purpose Research Simulator
(GPRS) [10].

2.2 Sequential solution approach

The well placement and control problems are commonly
addressed in a decoupled manner, with the well placement
part solved first and the well control optimization solved
second, in contrast to the joint optimization proposed in
Eq. 1. Using a sequential procedure, the well placement
variables are optimized with an assumed control strategy by
solving

x∗
S = arg min

x∈X
f (x, u0), subject to c(x, u0) ≤ 0, (3)

where u0 ∈ U defines the assumed control strategy. Possi-
ble control strategies include using constant BHPs (typically
set at the bounds, implying wells injecting or producing
at maximum rates) or the potentially more effective “reac-
tive” control strategy, which is used in this work when we
perform sequential optimizations. Under the reactive con-
trol strategy considered here, injection wells always operate
at their maximum BHP bounds. Production wells operate
at their minimum BHP bounds until a prescribed limit is
reached. This limit can be defined in terms of a maximum
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allowable fraction of water in the produced fluid, or (anal-
ogously) when the water production cost (cpwq

j,k
pw ) exceeds

oil production revenue (poq
j,k
o ) for the well. Although it

can give reasonable results in some cases, reactive control
represents a heuristic treatment which will, in general, be
suboptimal. After the solution of Eq. 3, the well locations
are fixed at x∗

S and the following well control optimization
problem is solved:

u∗
S = arg min

u∈U
f (x∗

S, u), subject to c(x∗
S, u) ≤ 0. (4)

As discussed in Section 1, a number of different opti-
mization techniques—both gradient-based and derivative-
free—have been applied for the problems defined by Eqs. 3
and 4. Here, we will introduce a hybrid technique that
combines two noninvasive derivative-free optimization pro-
cedures for the solution of both problems. The specific
approaches incorporated are Particle Swarm Optimization,
which has been used for the well placement problem [36],
and Mesh Adaptive Direct Search, similar to Generalized
Pattern Search [2], which has been applied for well control
[17].

2.3 Joint solution approach

The sequential approach defined above has the advantage
of solving two smaller problems (well placement, of dimen-
sion n1, and well control, of dimension n2) instead of
one large problem (of dimension n1 + n2). As shown by
Bellout et al. [6] and Zandvliet et al. [45], the controls
applied during the well placement optimization affect the
optimized well locations. Thus, any approach that does not
optimize the location and control variables simultaneously
can be expected to be suboptimal. This motivates the joint
optimization of the problem defined in Eq. 1.

As noted in Section 1, joint optimization approaches have
been developed previously. Bellout et al. [6] presented a
procedure based on a nested bi-level optimization. In that
method, well placement is the master problem, and in order
to evaluate the objective function associated with a partic-
ular configuration of wells, the well controls are optimized
to a certain degree. This approach allows the use of dif-
ferent optimization methods for the two problems, and in
their implementation, the well placement was accomplished
using derivative-free direct search procedures, while the
well control subproblem was addressed with an efficient
adjoint-based gradient technique. Li and Jafarpour [33] used
an iterative procedure in which they alternated between opti-
mizing well placement and well control. Again, different
optimization approaches were used for the two problems.
The results presented in both studies demonstrated the

advantages of joint optimization compared to sequential
procedures.

Our approach can be seen as an alternative to these
earlier treatments, but we also introduce several important
extensions. We solve the joint well placement and control
problem with a single optimization method, in contrast to
the earlier procedures that addressed the joint problem but
used different treatments for the two subproblems. We also
include general (nonlinear) constraints in our framework
(which do not appear to have been considered previously
for the joint problem) and present a hybrid optimization
procedure that includes a stochastic global search method
(PSO) along with a local direct search technique (MADS).
We additionally introduce a formulation, with binary deci-
sion variables, that enables the optimization of the number
of wells along with the well locations and controls. We now
describe the detailed procedures and the overall workflow.

3 Optimization framework and methods

We consider derivative-free optimization techniques, an
important class of optimization methods applicable to prob-
lems where gradients are not available, difficult or expen-
sive to obtain, or ill-defined. Echeverrı́a Ciaurri et al. [18]
have illustrated the applicability of such methods to prob-
lems in oil field development and operation. After dis-
cussing the two optimization techniques used in this work,
we present a hybrid approach that combines their posi-
tive features. As noted earlier, the key developments in this
work include the new PSO–MADS hybrid algorithm and the
consistent filter-based treatment of nonlinear constraints in
both stand-alone PSO and the PSO–MADS hybrid. For fur-
ther details on the optimization procedures discussed here,
please see Isebor [28].

In our descriptions in this section, we consider the fol-
lowing general optimization problem:

min
x∈Ω

f (x), subject to c(x) ≤ 0,

with Ω = {x ∈ R
n : xl ≤ x ≤ xu}. (5)

Note that the vector x now contains both discrete and con-
tinuous variables (we use x here in place of (x, u) in Eqs. 1
and 2 to simplify the presentation). As we will see later
in Section 4.3, x can also contain binary categorical vari-
ables that determine the number of wells. The dimension of
x varies with the number of wells and control periods and
is usually on the order of tens to hundreds. The derivative-
free methods presented here are not suitable for problems
with many hundreds or thousands of optimization vari-
ables because the computational expense, which scales with
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(a) Initial polling stencil (b) Successive polling iterations (c) Contraction of polling stencil

Fig. 1 Illustration of a polling sequence in R
2. The red star desig-

nates a local optimum, the red circles are poll centers around which the
polling stencil for the current iteration is defined (with polling stencil

size Δ
p
k ), the blue circles are poll points to be evaluated at each itera-

tion, and the black circles indicate the sequence of previously evaluated
poll centers

the number of variables, would be excessive on a current
(typical) computer cluster.

3.1 Local derivative-free method: Mesh Adaptive Direct
Search

Pattern search algorithms are a family of optimization meth-
ods based on polling, which is the local exploration of the
objective function surface around the current iterate. Polling
is illustrated in Fig. 1 and proceeds as follows. At any iter-
ation k, a polling stencil is centered at the current best
solution xk (the poll center), as depicted in Fig. 1a. The sten-
cil comprises a set of directions, of which at least one is a
descent direction, and a poll stencil size, Δ

p
k . The objective

function is evaluated at the stencil end points, and if one of
these trial poll points leads to an improvement in the objec-
tive function, the center of the stencil is moved to this point
for the next iteration k + 1. See Fig. 1b for a sequence of
polling iterations with improvements. If no stencil poll point
yields improvement, the stencil size is reduced, as illustrated
in Fig. 1c, and polling continues with the smaller stencil
size.

If the stencil orientation is fixed (e.g., as shown in Fig. 1)
at every iteration, the resulting method is essentially Gen-
eralized Pattern Search (GPS) [2]. However, if the stencil
orientation varies from iteration to iteration, in a manner
such that polling is done in an asymptotically dense set of
directions, we have the MADS algorithm of Audet and Den-
nis [4]. A key difference between GPS and MADS is that
in MADS, we have an underlying mesh with mesh size Δm

k

on which the poll points must lie and Δm
k ≤ Δ

p
k , whereas

in GPS, we have a single stencil size with Δm
k = Δ

p
k . At

unsuccessful iterations, by allowing Δm
k to decrease faster

than Δ
p
k , the MADS algorithm is able to access more pos-

sible polling directions. Consistent with this, Audet and

Dennis [4] present results indicating that MADS yields bet-
ter solutions than GPS for constrained problems. Thus, we
apply MADS in this study.

Pattern search algorithms such as MADS often include
provision for an optional search step, in addition to the poll
step. The search step enables great flexibility as it allows
the use of any method to generate a finite number of search
points in each iteration (these points could be generated any-
where in the same mesh as the polling points in an attempt
to “globalize” the optimization process). The search step
does not disrupt the convergence characteristics provided by
polling [4]. See Fig. 2 for an illustration of possible search,
Sk = {s1, s2, s3}, and poll points, Pk = {p1, p2, p3, p4},
generated at some iteration k of an optimization with two
variables.

As the algorithm progresses, the independent evolution
of the mesh and poll size parameters is designed such that
the set of MADS poll directions becomes dense in the space

Fig. 2 Example of MADS directions in the case n = 2, at iteration k

of the algorithm
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of optimization variables, meaning that potentially every
direction can be explored [4]. For discrete variables, the
mesh is modified such that the coordinates corresponding to
these variables are constrained to have discrete points. Note
that the MADS polling process parallelizes naturally since,
at every iteration, the objective function evaluations at the
poll points can be accomplished in a distributed fashion. The
basic MADS algorithm is summarized in Fig. 3 (see [4] for
details).

Later, we will describe the use of PSO for the search step,
which leads to significant global exploration of the solu-
tion space. The MADS poll step ensures theoretical local
convergence and is based on poll directions that vary with
iteration. In each iteration, after the search and poll steps, a
final update step is performed. To accomplish this update,
the algorithm must first determine if the iteration is a suc-
cess or a failure. In the unconstrained case (i.e., nonlinear
constraints are absent), a successful iteration occurs when
the objective function is improved. For problems with non-
linear constraints, a filter method [21], as described below,
is used for this assessment.

Different stopping criteria for terminating MADS can be
considered. In our implementation, the optimization is ter-
minated if the mesh or poll size parameters, Δm

k or Δ
p
k ,

which are reduced at every unsuccessful iteration, decrease
beyond specified thresholds or if a specified maximum
number of iterations is reached. In pattern search methods,
it can be seen that the convergence of the mesh or stencil
sizes to zero implies the convergence of the gradient of the
cost function to zero [31]. In all of the examples presented
in this paper, the mesh size criterion terminates the MADS
optimization process.

Fig. 3 MADS algorithm, with a search-poll paradigm

3.2 Constraint treatment in MADS

The bound constraints on the variables in Eq. 5 are enforced
by performing the following coordinate-wise projection of
trial points onto Ω:

projΩ(xi) =

⎧
⎪⎨

⎪⎩

xli if xi < xli ,

xui
if xi > xui

,

xi otherwise.

(6)

For nonlinear constraints, the filter method is used. Fil-
ter methods [17, 21] are step-acceptance mechanisms that
seek to avoid the robustness issues that may exist with
penalty function methods and other more traditional con-
straint handling approaches. The use of filters can be seen
as an add-on to an optimization algorithm. Instead of com-
bining the objective function and constraint violation into
a single function, as is done when using penalty functions,
the problem in Eq. 5 is viewed as a biobjective optimization
in which we aim at minimizing both the objective function
f (x) and an aggregate constraint violation function, defined
as follows:

h(x) =
⎡

⎣
m∑

j=1

(max
(
cj (x), 0)

)2

⎤

⎦
1/2

. (7)

The second objective of minimizing h(x) is preferred
over optimizing f (x) because the solution determined by
the optimization algorithm should be feasible. Using termi-
nology from multiobjective optimization, a point xa is said
to dominate another point xb (written as xa ≺ xb) if and
only if f (xa) ≤ f (xb) and h(xa) ≤ h(xb), with at least one
of these being a strict inequality. A filter is defined as a list
of pairs

(
h(xf ), f (xf )

)
such that no pair dominates another

pair. An iterate xk is considered to be acceptable, or “unfil-
tered,” if (h (xk), f (xk)) is not dominated by any pair in the
filter. Refer to [21] and [34] for more detailed discussions of
the filter method and to [17] for its application to generally
constrained production optimization problems with contin-
uous variables. We now describe the use of the filter method
with MADS (this discussion follows that given by Audet
and Dennis [3] for GPS).

In adapting the filter method for MADS, a filter at itera-
tion k is defined as the set of infeasible points that are not
dominated by any other points evaluated in the optimiza-
tion process up to iteration k. The evaluated feasible points
are considered separately and are not strictly part of the
definition of a filter. At iteration k, two types of solutions
are defined, as illustrated in Fig. 4a: the best feasible solu-
tion (0, f F

k ) and the closest-to-feasible or least infeasible
solution in the filter, (hI

k, f
I
k ).



Comput Geosci

(a) Filter at the start of iteration k (b) Evaluated search/poll points at k (c) Updated filter at iteration k + 1

Fig. 4 Illustration of the progression of a filter from iteration k to k + 1

During polling in the MADS algorithm, either one of
these solutions can be used as the poll center, with pref-
erence given to the best feasible solution. We will refer to
the best feasible solution as the primary poll center and
to the least infeasible point as the secondary poll center.
Even if there is a best feasible solution, it can still be use-
ful to poll around the least infeasible point in the filter. This
enables the algorithm to explore a different, and possibly
more promising, part of the parameter space.

In our implementation, a MADS iteration that generates
an unfiltered point is considered a successful iteration. If
no feasible point has been found up to the current iteration,
the polling is performed around the least infeasible point
in the filter. If feasible points have been found, and if an
iteration in which we poll around the best feasible point
(primary poll center) is unsuccessful, in the next iteration,
the polling stencil size is reduced and the secondary poll
center is considered. Polling around the secondary poll cen-
ter continues until an unsuccessful iteration, after which the
stencil size is reduced and we return to polling around the
primary poll center. We use the least infeasible point as the
secondary poll center rather than another filter point (with
better objective function value) because the minimization of
h is preferred over the optimization of f to ensure feasible
solutions.

The filter is updated at successful iterations as there are
new unfiltered points that dominate some of the current
filter points, as illustrated in Fig. 4. At unsuccessful itera-
tions, the mesh and poll size parameters, Δm

k and Δ
p
k , are

decreased and the filter remains the same since there are no
new unfiltered points. It is interesting to note that, at the end
of the optimization (and at no extra cost), the points of the
final filter give a quantitative indication of the sensitivity of
the objective function to the constraints.

Filter methods, when compared to techniques that sim-
ply discard infeasible points, have the advantage of using
infeasible points to enrich the search for an optimal solution.
Filter methods have been combined with gradient-based
methods [21] as well as with derivative-free algorithms [3,
17]. For more details on the MADS algorithm and the filter
constraint treatments used in this work, see [3, 28, 32].

3.3 Global derivative-free method: Particle Swarm
Optimization

PSO algorithms are a family of global stochastic search pro-
cedures introduced by Eberhart and Kennedy [15]. They are
population-based methods and entail a “swarm” (popula-
tion) of “particles” (potential solutions) that move through
the solution space with certain “velocities.” The PSO
method has been applied in many application areas, includ-
ing well placement optimization [36]. The behavior of PSO
algorithms is dependent on a few parameters. Fernández
Martı́nez et al. [19, 20] analyzed the stability properties of
various PSO algorithms, and their work provides guidelines
for choosing parameters that result in particular behaviors
(e.g., more explorative versus exploitative).

The PSO algorithm involves a swarm of S particles (S is
the population or swarm size). Each particle has a location in
the search space and a velocity. The new position of particle
j in iteration k + 1, denoted here as xj

k+1, is determined as
follows:

xj

k+1 = xj
k + vj

k+1Δt ∀ j ∈ {1, . . . , S}, (8)

where vj

k+1 is the velocity of particle j in iteration k + 1
and Δt is a “time” increment. Consistent with standard PSO
implementations [12], we set Δt = 1. The velocity vector
associated with each particle j is given by

vj

k+1 = ωvj
k︸︷︷︸

inertial term

+ c1D
1
k+1(y

j
k − xj

k )︸ ︷︷ ︸
cognitive term

+ c2D
2
k+1(ŷ

j
k − xj

k )︸ ︷︷ ︸
social term

, (9)

where ω, c1, and c2 are called the inertial, cognitive, and
social parameters, respectively. The matrices D1

k+1 and
D2

k+1 are diagonal, with elements randomly drawn from
a uniform distribution with range [0, 1]. The inertial term
tends to move the particle in the direction in which it was
previously moving, with the idea of continuing in a promis-
ing search direction. The cognitive term causes particle j to
be attracted to its own previous best position, yj

k . The social
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term causes each particle j to also be attracted to the best
position, ŷj

k , found through iteration k by any particle in its
“neighborhood” (the definition of “best” for cases with and
without constraint violation will be provided below). In our
work, we use the PSO parameters recommended by Clerc
[12] (ω = 0.729, c1 = c2 = 1.494), which were shown to
perform well for a suite of test problems.

The concept of “neighborhood” is used within PSO to
specify the set of particles that particle j “sees,” i.e., the
particles to which it has information links. In a global neigh-
borhood topology, each particle “sees” all other particles. In
this case, there is a single (global best) ŷk , given by

ŷk = arg min
z∈{y1

k,...,y
S
k }

f (z). (10)

In this work, we use a random neighborhood topology [13],
where particle j is linked to a probabilistically determined
subset of the swarm. The linkages are altered (randomly)
after iterations where there is no improvement in the best
solution. This approach was found to be robust and to pro-
vide satisfactory performance for well placement problems
by Onwunalu [35]. This reference should be consulted for
further discussion of PSO neighborhood topologies.

Different stopping criteria can be used in the PSO algo-
rithm. In our implementation, the optimization process is
terminated after a given number of iterations is reached
or when the norm of the velocities for all particles is
smaller than a specified threshold. If all of the velocities are
sufficiently small, this usually indicates that the diversity
between the particles has been lost, meaning the swarm has
collapsed.

As is the case with MADS, the PSO algorithm is easily
parallelizable since, at each iteration, the evaluation of all
particles in the swarm can be performed concurrently. We
note that all variables in our PSO implementation are treated
as continuous. We round to the nearest integer to provide
discrete variables when necessary.

It is worth observing that even though the PSO algo-
rithm attempts to search globally and does have a stochastic
component (which enables it to avoid poor local optima),
we cannot realistically expect to include enough particles
to “cover” a high-dimensional search space. Thus, PSO

should be viewed as an algorithm capable of providing
some amount of global exploration in the optimization
search space. In general, global search procedures such
as PSO might be expected to be more computationally
expensive than local optimization methods (since global
approaches need to explore a much larger region of the
search space). Particular implementations, such as that used
for the results reported in Section 4, may however display
efficient performance, possibly at the expense of less global
exploration.

3.4 Constraint treatment in PSO

To satisfy bound constraints, the coordinates of a PSO-
generated point that are outside the bounds are projected
using Eq. 6, and the corresponding coordinates of the
velocity vector for that particle are set to zero. For treat-
ing general (nonlinear) constraints, global stochastic search
methods typically employ techniques that either discard
infeasible solutions (and thus only consider feasible solu-
tions), as in [26], or they apply penalty function approaches,
as in [14] and [37]. In our work, we use filters for each
PSO particle, as illustrated in Fig. 5, in a manner we now
describe.

For problems without nonlinear constraints, the previous
best position for PSO particle j and the neighborhood best
solution, yj

k and ŷj
k in Eq. 9, are determined based only on

the objective function value. If the problem has nonlinear
constraints, a filter is constructed from the history of each
particle, as illustrated in Fig. 5. When particle j is evaluated
at a new position, its filter is updated if the new position is
“unfiltered.” The modification to the original PSO method
is mainly in the manner in which we define the previous best
position for each particle and the neighborhood best, for use
in Eq. 9. If particle j has been feasible in previous itera-
tions, yj

k is the feasible point with the best objective function
value. If particle j has not occupied any feasible position,
then yj

k is taken to be the least infeasible point in the filter
for particle j , as indicated by the red circles in Fig. 5. The
neighborhood best position is defined as the best feasible yj

k

(in terms of objective function value) or, if there are no fea-
sible previous positions, as the least infeasible point from all

Fig. 5 Illustration of filters for
three particles in a PSO swarm
at iteration k, with the least
infeasible point in each filter
highlighted



Comput Geosci

filters in the neighborhood. In Fig. 5, the neighborhood best
for the three particles would be the least infeasible point in
the filter for particle 2.

3.5 Hybrid PSO–MADS procedure

Pattern search methods such as MADS are local methods
that are designed to achieve convergence (from arbitrary
starting points) to points that satisfy local optimality con-
ditions. Although the use of a large initial stencil size
enables some amount of global search, the MADS method
is not expected to provide the same degree of global explo-
ration as a population-based stochastic search procedure
such as PSO with a reasonable swarm size. Therefore, in
this work, we exploit the global search nature of PSO and
the rigorous convergence to stationary points provided by
MADS by creating a PSO–MADS hybrid. PSO is incorpo-
rated into the algorithm as the search step of the MADS
procedure.

The hybrid used in our work is essentially an exten-
sion of the PSwarm algorithm [41], which was developed
for bound constrained problems. Our hybrid implementa-
tion is different from PSwarm in that we use MADS instead
of coordinate search during the polling process, and we
treat nonlinear constraints using the filter-based approaches
described previously. Also, we use a random neighbor-
hood topology in the PSO stage with particle links updated
after unsuccessful iterations. Figure 6 presents a detailed

description of our PSO–MADS hybrid algorithm and Fig. 7
illustrates the overall workflow.

The hybrid search method begins with an initial swarm of
particles, including one or more user-defined initial guesses
if provided, and it then applies one iteration of PSO (using
Eqs. 8 and 9). Consecutive iterations where the search step
is successful are equivalent to consecutive iterations of the
stand-alone PSO algorithm. In the hybrid implementation,
for a PSO swarm with S particles, there are S particle
filters built from the history of each particle and a main fil-
ter (denoted Fmain in Fig. 6) constructed from all points
evaluated in the optimization process. Note that the least
infeasible point from all particle filters is the least infeasible
point in the main filter.

A PSO search step is designated as successful if the
global best position improves, implying generation of a
new global best position that dominates the previous global
best in terms of objective function f or constraint viola-
tion h. This definition of success is different than that used
for MADS, where an iteration is deemed successful if any
unfiltered points are found. This stricter PSO criterion is
applied to avoid performing many PSO iterations during
which the filter of the best particle remains unchanged (i.e.,
the best particle does not improve), even though the filter of
a clearly suboptimal particle continues to change. This treat-
ment acts to accelerate the convergence of the overall hybrid
algorithm. Note that, as indicated in Fig. 6, in the search
step, PSO uses a random neighborhood topology with local

Fig. 6 Details of PSO–MADS hybrid algorithm



Comput Geosci

Fig. 7 Flowchart of
PSO–MADS hybrid
implementation (gray arrows
indicate optimization within the
PSO or MADS components and
red arrows indicate termination
of algorithm or coupling
between the different
components of the hybrid)

neighborhood best positions, ŷj (which appears in the social
term of the PSO velocity equation). The definition of a suc-
cessful PSO iteration is, however, based on improvement of
the global best position, ŷ, since subsequent MADS polling
will be performed around this point.

When the search step is not successful (i.e., does not
provide improvement), the MADS poll step is performed,
centered on the best position from the swarm (least infea-
sible point or best feasible point computed for any of the
particles). The polling continues as long as consecutive poll
steps are successful (i.e., better feasible points or unfiltered
points with respect to Fmain are generated). We consider
Fmain here rather than the filter associated with the best par-
ticle because Fmain contains more complete information on
the progress of the overall search.

Consecutive iterations where the poll step is successful
are equivalent to consecutive iterations of the stand-alone
MADS algorithm (polling only, without a search step). At
these successful MADS iterations, Fmain and the particle
filter corresponding to the best PSO particle, around which
polling is being performed, are updated with the new unfil-
tered poll points. If the polling is unsuccessful, the mesh
and poll sizes are reduced and the hybrid algorithm returns
to the PSO search. PSO iterations are then resumed with the
best particle position that (frequently) has been updated by
MADS. This new global best impacts the velocities of other
PSO particles through the social term in Eq. 9. The PSO
search continues until an unsuccessful iteration, after which
a new best particle (which could be, and indeed is in most
of our runs, different from that in the previous MADS step)
is used to initiate MADS. This alternation between PSO
and MADS continues until the termination of the hybrid
algorithm.

The PSO stage of the hybrid algorithm terminates when
the particle velocities are smaller than a prescribed tol-
erance vtol (this normally indicates that the swarm has

collapsed), or when a maximum number of PSO iterations
lmax is reached. The hybrid algorithm terminates when the
mesh size decreases below a given tolerance Δtol or when a
maximum number of hybrid iterations kmax is reached.

4 Example problems and results

The methods described in the preceding section will now
be applied to solve the optimization problem defined by
Eqs. 1 and 2 for a synthetic field subject to waterflooding.
The geological model is represented on a two-dimensional
60 × 60 grid. The permeability field is shown in Fig. 8,
together with an initial guess for the locations of the five
wells (two injection and three production wells) used in the
examples. Table 1 presents key simulation and optimization
parameters.

The permeability field shown in Fig. 8 is the same as
that used by Bellout et al. [6] in their example cases, though

Fig. 8 Geological model (log10 of permeability field, with per-
meability expressed in millidarcys) used for all examples, showing
initial-guess injection (in blue) and production (in red) well locations
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Table 1 Simulation and optimization parameters

Grid cell dimensions 130 ft × 130 ft × 20 ft

Initial pressure pi, at datum 4,012 psi at 8,620 ft

μo and μw at pi 0.5 and 0.3 cp

ρo and ρw 53.1 and 62.4 lbm/ft3

Bo and Bw at pi 1.00 RB/STB

po, cpw and ciw $80, $10, and $5/STB

Drilling cost $20 million per well

Injection BHP range 4,100–6,000 psi

Production BHP range 1,000–3,500 psi

Maximum water injection rate 9,000 STB/day

Minimum oil production rate 4,000 STB/day

Maximum fluid production rate 9,000 STB/day

Maximum well water cut 0.7

Minimum well-to-well distance 1,300 ft

other aspects of the problem specification are different. The
production time frame is 2,920 days, with the well BHPs
updated every 584 days, for a total of five control intervals.
The BHP is held constant over each control interval.

Results for three cases will be presented. The first case
involves only bound constraints, the second case addition-
ally incorporates the nonlinear constraints listed in Table 1
(last five rows), and the third case includes the nonlinear
constraints plus binary optimization variables that allow us
to also determine the optimum number of wells. The total
number of optimization variables for cases 1 and 2 is 35
(two areal location variables and five control variables for
each of the five wells), while in the third case, there are 40
(an additional binary variable for each well).

4.1 Case 1: bound constraints only

For this case, the nonlinear field rate and well water cut
constraints are not included in the optimization. Thus, the
problem involves only the bound constraints on well BHPs.
The MADS, PSO, and PSO–MADS methods are applied
to this problem. For each MADS iteration, a maximum of
2n function evaluations is performed in the polling process
(2n = 70 for this case). We note that the evaluation of
some of the poll points can be avoided if these points have
already been visited in previous iterations and the objective
and constraint values are stored in a cache memory. The ini-
tial MADS mesh sizes correspond to 20 % of the variable
ranges.

In the stand-alone PSO iterations, a swarm size of 50
particles is used, which implies that about 50 function
evaluations are performed in each PSO iteration (fewer if
some positions have been previously evaluated and saved).
The same parameters used for the stand-alone PSO and
MADS iterations are considered for the hybrid PSO–MADS

method. The function evaluations in all three methods are
parallelized using a computing cluster. For these runs, we
typically have about 50 processors available, so to con-
vert from total simulations (proportional to total computa-
tional time) to equivalent simulations (proportional to actual
elapsed time), the number of total simulations should be
divided by 50 (we note that the overhead in the paralleliza-
tion process, which leads to a true speedup that is less than
50, is not accounted for in this conversion).

Considering the stochastic nature of these algorithms and
the fact that the optimization surface is expected to contain
multiple optima, each of the three methods is run five times
starting from five different initial guesses. The NPVs for the
five initial guesses, together with their mean and standard
deviation, designated <NPV> and σ , are shown in Table 2.
Note that MM designates million.

The first of these runs has as the initial guess in MADS
the well locations indicated in Fig. 8, with the injection well
BHPs at their upper bounds (6,000 psi) and production well
BHPs at their lower bounds (1,000 psi). The remaining four
initial guesses for the MADS runs are randomly generated
from a uniform distribution within the bounds of the prob-
lem. In this and all subsequent examples, in each of the PSO
and PSO–MADS runs, the starting position for one of the
particles in the initial swarm is the initial guess used in the
corresponding MADS run, while the starting positions for
the other particles are randomly generated.

The optimization results for the three derivative-free
methods are summarized in Fig. 9 and Table 3. Figure 9
shows the NPV evolution versus the number of simulations,
averaged over the five runs, for the three methods. From this
figure, we see that the PSO–MADS hybrid (red curve) out-
performs its component methods. Table 3 presents the final
optimized NPVs for all of the runs, together with the mean
and standard deviation of the optimized NPVs over the five
runs. The best NPV from each method is italicized in the
table.

Figure 9 and Table 3 highlight some of the characteris-
tics of the three methods. As a result of its global search

Table 2 NPVs from the five initial guesses used in the optimizations
(the best value is italicized)

Run Initial guess

# NPV [$ MM]

1 1,015

2 554

3 283

4 −663

5 580

<NPV> 354

σ 626
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Fig. 9 Evolution of mean NPV for the five runs (case 1)

nature, PSO is able to avoid poor local optima and provide
fairly robust solutions (evident from the relatively small σ in
Table 3). However, in contrast to MADS, the PSO algorithm
is not supported by local convergence theory and we there-
fore cannot guarantee that the solutions obtained satisfy any
optimality conditions. MADS results, on the other hand, can
depend strongly on the initial guess, and because of its local
search nature, MADS may converge to poor local optima, as
is the case for the second run. Since the PSO–MADS hybrid
combines some of the advantages of the PSO and MADS
algorithms, it displays strong convergence to better quality
solutions than stand-alone MADS and PSO, along with bet-
ter robustness features than PSO, which is evident from the
smaller σ for PSO–MADS. We note additionally that, even
though the total number of simulations required for these
optimizations is around 10,000 (see Fig. 9), the number of
equivalent simulations using 50 processors, which gives an
indication of elapsed time, is ideally around 200.

Figure 10 shows the optimal well locations together with
the injection and production well BHP controls for the
best PSO–MADS solution, with NPV of $1,304 million.
Comparing Figs. 8 to 10a we see that the optimized well
locations are close to the initial guess locations, implying
that the initial guess was quite reasonable (note that the
best NPVs for all three methods correspond to the runs

Table 3 Final NPVs from five runs for the three different methods
(case 1, the best values are italicized)

Run PSO MADS PSO–MADS

# NPV [$ MM] NPV [$ MM] NPV [$ MM]

1 1,283 1,297 1,304

2 1,257 1,083 1,247

3 1,263 1,262 1,289

4 1,239 1,247 1,262

5 1,169 1,289 1,244

<NPV> 1,242 1,236 1,269

σ 44 88 26

with this initial guess). The slight shifts in well locations,
together with the modifications to the well controls shown in
Fig. 10b and c, account for the observed 17 % improvement
in NPV from the initial guess to the PSO–MADS optimized
solution.

The results presented in Fig. 9 and Table 3 are obtained
by solving the combined well placement and control prob-
lem in the joint fashion proposed in this paper. In order to
compare our joint approach to a sequential procedure, we
also solve the problem sequentially. In this case, we first
address the well placement problem (Eq. 3) using reactive
controls (wells operate at their BHP limits, with produc-
tion wells closed when water cut exceeds an economic limit
of 0.9) and PSO–MADS with the same parameters as used
for the joint solution. Then, with the optimized locations
from Eq. 3, we solve the well control problem (Eq. 4), again
using PSO–MADS. We run the sequential approach five
times with the same initial guesses as were used for the joint
optimizations.

Figure 11 displays the average performance from the
sequential and joint approaches, while Table 4 presents the
final optimized NPVs for all five runs, together with the
mean and standard deviation of the optimized NPVs. Since
the sequential method involves solving two smaller opti-
mization problems (the well placement problem has 10 vari-
ables and the control problem has 25 variables, compared to
35 variables for the joint approach), it exhibits faster overall
convergence (see Fig. 11). Despite the faster convergence,
the solutions from the sequential procedure display lower
NPVs on average than those from the joint approach. This
is because, in contrast to the joint procedure, the sequential
approach does not completely capture the coupling between
the well placement and well control problems. In addition,
the sequential approach appears to be less robust, as is evi-
dent from the larger σ in Table 4. Our observation that the
joint approach provides better solutions than the sequen-
tial procedure is consistent with the findings reported in [6,
33], though (as noted in Section 1) Humphries et al. [27]
did not observe consistent improvement with their joint
formulation.

Although our joint optimization procedure differs in sev-
eral respects from that applied by Bellout et al. [6], it is
nonetheless instructive to compare our results with theirs.
In the second example in their paper, a problem very sim-
ilar to that considered above was addressed (they used the
permeability field shown in Fig. 8, though they specified
smaller grid block sizes and higher costs for produced and
injected water, and they used more control steps). We modi-
fied our problem specification to enable solution of the same
problem using our joint PSO–MADS hybrid optimization
procedure. Bellout et al. [6] ran their optimization using dif-
ferent direct search procedures for well placement (the best
results, in terms of average objective function value, were
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Fig. 10 The best PSO–MADS solution, showing well locations and BHP versus time profiles (case 1)

achieved using the Hooke–Jeeves direct search method) and
an adjoint-based gradient technique for well control. Their
results for nine optimization runs (using different initial
guesses) show a mean NPV of $363 million and a standard
deviation of $27 million over the nine runs. For the same
case, we achieved a mean NPV of $361 million and a stan-
dard deviation of $19 million (again over nine runs). Thus,
the two procedures appear to be quite comparable in terms
of the quality of results. Both of these mean NPVs are well
above the mean NPV of about $300 million reported for
sequential optimization in this example [6].

Bellout et al. [6] required about 4,000 simulations for
each of their optimization runs, whereas we use around
30,000 simulations for our runs (note that this problem con-
tains 10 control steps, resulting in 60 optimization variables,
which are more than the 35 optimization variables in case
1). Their approach requires fewer runs because they apply
an efficient gradient-based procedure for the well control
optimization, with gradients computed using the adjoint
technique of Sarma et al. [40]. Although it is very efficient,
the adjoint approach is simulator invasive and does not read-
ily parallelize. This means that part of their nested approach
can be easily parallelized (the well placement part, solved
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Fig. 11 Evolution of mean NPV from five PSO–MADS runs for
sequential and joint procedures (case 1)

with direct search procedures) and part of it cannot (the well
control part, solved with a gradient-based technique). Our
method, by contrast, is fully parallel and would effectively
lead, if 60 computing cores were available on a cluster, to
500 equivalent simulations instead of 30,000.

The approaches used by Bellout et al. [6] and Li and
Jafarpour [33] essentially decompose the joint problem into
two smaller subproblems. This enables the application of a
specialized optimization method for each of the two sub-
problems, e.g., an adjoint-based gradient technique can be
used for the well control subproblem. These decomposition
approaches can be advantageous in some cases, particu-
larly if the adjoint-based optimization has been parallelized.
They typically entail increased code complexity relative to
that associated with single-level approaches, however, since
a second optimization must be nested within the higher-
level optimization. In addition, parallelizing the adjoint-
based optimization code is far more challenging than the
parallelization associated with the derivative-free optimiza-
tion algorithms applied in this work. In any event, there
are clearly relative advantages and disadvantages between
methods that apply decomposition and the single-level pro-
cedure considered here. The choice of approach will depend
on the number of available computing cores, the availability

Table 4 Final NPVs from five runs for sequential and joint procedures
(case 1, the best values are italicized)

Run PSO–MADS PSO–MADS

# seq. NPV [$ MM] joint NPV [$ MM]

1 1,290 1,304

2 1,235 1,247

3 1,132 1,289

4 1,205 1,262

5 1,245 1,244

<NPV> 1,221 1,269

σ 59 26
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of an adjoint procedure for the problem under considera-
tion, and the amount of computation associated with the two
subproblems.

4.2 Case 2: nonlinear constraints

Case 1 above dealt with only bound constraints. We now
treat a case that also includes nonlinear constraints, which
render the problem more difficult. The nonlinear constraints
considered are the well distance, field rate, and well water
cut constraints listed in Table 1. The rate and water cut
constraints are nonlinear in nature because the relationship
between individual well BHPs (the control variables) and
the field rates and well water cuts involve reservoir simula-
tion (i.e., nonlinear function evaluations). We use the same
PSO, MADS, and PSO–MADS parameters as in case 1. The
three algorithms, together with the filter constraint handling
techniques implemented for each method (as described in
Sections 3.2 and 3.4), are applied to solve the joint well
placement and control problem. We again run each method
five times using the same initial guesses as in case 1 (recall
that one initial guess involves the well locations shown in
Fig. 8).

Figure 12 displays the evolution of mean NPV for the
feasible solutions for the three methods tested, and the
results for all runs are summarized in Table 5. The curves
in Fig. 12 do not appear until several thousand simula-
tions have been performed because the initial guesses, with
NPVs shown in Table 2, and the earlier simulations lead to
infeasible solutions (i.e., solutions that violate the nonlin-
ear constraints). From the results in Fig. 12 and Table 5,
it is again apparent that the PSO–MADS procedure out-
performs its component methods. Note that the optimized
NPVs achieved in this case are lower, for all runs, than those
for case 1 (shown in Table 3). This is consistent with the fact
that this case involves a more constrained problem.

It is important to note that, even though the early solu-
tions using all three methods are infeasible, through use of
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Fig. 12 Evolution of mean NPV for the five runs (case 2)

Table 5 Final NPVs from five runs for the three different methods
(case 2, the best values are italicized)

Run PSO MADS PSO–MADS

# NPV [$ MM] NPV [$ MM] NPV [$ MM]

1 1,225 1,143 1,206

2 1,060 1,032 1,228

3 1,063 972 1,154

4 1,138 1,076 1,200

5 1,134 1,157 1,120

<NPV> 1,124 1,076 1,182

σ 68 77 44

the filter method, we improve the objective function value
and reduce the constraint violation simultaneously. Hence,
by the time a feasible solution is found, its NPV is already
relatively high. Specifically, for this case, the mean NPV for
the five initial guesses (all of which are infeasible) is $354
million, while for all three algorithms, the mean NPV when
feasible solutions appear (after about 4,000 simulations)
is in the range of $950–$1100 million. This observation
highlights the effectiveness of the filter constraint handling
techniques applied in this work.

The final filter from the best PSO–MADS joint opti-
mization run is shown in Fig. 13. Before aggregation into
h(x) in Eq. 7, each of the nonlinear inequality constraints is
normalized as follows:

cj (x) ≤ cj,max becomes c̄j (x) = cj (x)

cj,max
− 1 ≤ 0, (11)

where cj,max is the constraint limit for constraint cj (e.g.,
maximum field water injection rate limit of 9,000 STB/day
in Table 1). Consistent with Table 5, the best feasible solu-
tion has an NPV of $1,228 million. The points in the plot
constitute the infeasible points that define the filter. This fil-
ter illustrates the trade-off between the objective function,
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f (x), and the aggregate constraint violation, h(x). It quanti-
fies how much the constraints need to be relaxed in order to
improve the objective function by a certain amount.

In this example, for most of the filter points with small
h(x) values, only the minimum field oil production is vio-
lated. The filter in Fig. 13 shows that if we are able to
accommodate a constraint violation of about 0.2 or 20 %,
i.e., we allow the minimum oil production rate to be relaxed
from 4,000 to 3,200 STB/day, there is a field develop-
ment scenario where the NPV increases from $1,228 million
to $1,245 million while satisfying the relaxed constraints.
This increase in NPV occurs because the algorithm has
greater flexibility in maximizing the objective. In this par-
ticular case, it may seem counterintuitive to have NPV
increase when the minimum oil production rate constraint
is decreased. However, in order to maintain oil production
rates above 4,000 STB/day at all times, less oil is produced
at earlier times. When the minimum oil constraint limit is
decreased to 3,200 STB/day, higher oil rates are possible at
earlier times, and this leads to an overall increase in NPV.
Note that this increase is not due to a discount rate effect
(since we are optimizing undiscounted NPV), but rather to
the fact that, in a less-constrained problem, the optimizer
has more flexibility in maximizing NPV.

As in case 1, we also performed sequential (rather than
joint) optimizations for case 2, using the same optimization
parameters. In these runs, a maximum water cut of 0.9 is
used within the simulator. This limit triggers the “reactive
control” strategy, which is active during the well placement
portion of the sequential optimization. Within the optimizer,
however, the maximum water cut constraint is still 0.7,
consistent with the joint optimization results above. Dif-
ferent limits are used in the simulator and the optimizer
because, with the filter constraint handling, the actual water
cut constraint of 0.7 can be violated during the course of
the optimization. By setting a limit within the simulator, we
stipulate that the maximum water cut that can occur dur-
ing the optimization is 0.9. We emphasize that all feasible
solutions do satisfy the maximum water cut constraint of
0.7.

The PSO–MADS procedure was applied for both the well
placement and well control stages. Figure 14 and Table 6
provide comparisons of the joint and sequential approaches.
Four of the five sequential runs yield feasible solutions, with
a mean NPV of $1,105 million and a standard deviation of
$116 million. This is inferior in terms of average perfor-
mance and robustness to the results achieved using the joint
approach (<NPV> of $1,182 million, σ of $44 million). In
addition, the best of the five solutions for the joint approach
has an NPV that is 3.5 % higher than that from the best solu-
tion for the sequential approach. In Fig. 15, we present maps
of the final oil saturation from the best solutions for both
approaches. The well configurations are different between
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Fig. 14 Evolution of mean NPV from five PSO–MADS runs for
sequential and joint procedures (case 2)

the two solutions, and it is evident that the solution for the
joint approach provides a slightly better overall sweep (com-
pare, e.g., the saturation fields in the upper right corners in
both figures).

The individual well rates for the best PSO–MADS solu-
tion for the joint approach are presented in Fig. 16. These
rates are the simulator outputs that result from the optimized
well BHPs. Figure 16a shows the well rates for the two
injection wells depicted in Fig. 15b, and 16b displays the oil
production (solid lines) and water production (dashed lines)
rates for the three production wells. From these plots, we
see that the two injection wells operate at somewhat similar
rates, while the production well rates vary significantly.

4.3 Case 3: determination of optimum number of wells

It is evident from the results in Fig. 16 that some wells
operate at much higher rates than others. This leads us
to question whether all five wells are required and sug-
gests that we optimize the number of wells along with well
locations and controls. To this end, we introduce a binary
(drill/do not drill) optimization variable, zj , for each well j ,
as in [16], in addition to the well placement and control vari-
ables. If zj is equal to 0, then well j is not drilled, and the

Table 6 Final NPVs from five runs for sequential and joint procedures
(case 2, the best values are italicized)

Run PSO–MADS PSO–MADS

# seq. NPV [$ MM] joint NPV [$ MM]

1 1,187 1,206

2 – 1,228

3 1,107 1,154

4 941 1,200

5 1,186 1,120

<NPV> 1,105 1,182

σ 116 44
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Fig. 15 Final oil saturation maps (red indicates oil and blue indicates
water) and well configurations from the best PSO–MADS solutions
for the sequential and joint approaches (case 2)

well location and control variables corresponding to well j

have no meaning and are ignored. In this case, we do not
incur a well cost and there are no injected or produced flu-
ids for that well. However, if zj = 1, the well is drilled, the
well cost is incurred, and there will be injected or produced
fluids from the well.

Including the binary categorical variables, the problem in
Eq. 5 is now a true mixed-integer nonlinear programming
(MINLP) problem. Such problems are difficult to solve,
especially when the objective and constraint functions are
computationally expensive to evaluate, as is the case here.
In this work, we present an initial approach for addressing
this problem in the context of field development. Existing
MINLP solution approaches, such as Branch and Bound and
Outer Approximation [7], could also be considered. Here,
we simply apply the integer treatment already implemented
in our derivative-free optimization strategy (restriction to
integer mesh in MADS and variable rounding in PSO). We
now have NI + NP binary variables (drill/do not drill) in
addition to the n1 + n2 well location and control variables.
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Fig. 16 Injection and production rates for the best PSO–MADS
solution for the joint approach (case 2)

Case 3, which we now consider, is identical to case 2
in terms of problem specification and bound and nonlinear
constraints, but it also includes binary categorical variables.
We now have a total of 40 optimization variables: 10 integer
well location variables, 25 continuous well control vari-
ables, and 5 binary categorical variables. The three joint
optimization algorithms (PSO, MADS, and PSO–MADS)
are again each run five times from different initial guesses
(one user-supplied and four randomly generated, which are
different from those used in cases 1 and 2 as we now have
binary variables). The results from these runs are presented
in Fig. 17 and Table 7. In this table, in addition to the final
NPVs, we also show the optimized number of wells for each
run.

We again see that the PSO–MADS hybrid outperforms
its component methods in terms of mean NPV, best solution,
and robustness. In addition, it is interesting to note that the
best results are obtained when only four wells are drilled
instead of five, leading us to believe that for this case, the
optimal number of wells is indeed four (two injectors and
two producers). Of the five runs for each method, the MADS
algorithm converges to a solution with four wells once, the
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PSO algorithm twice, and the hybrid PSO–MADS method
four times.

The inclusion of the binary variables leads to a more dif-
ficult optimization problem, as is apparent from the fact that
about two to three times more simulation runs are required
in case 3 than in case 2 (see Figs. 12 and 17). Although the
NPV for the best run (run 1) in case 3 exceeds that of the best
run in case 2, it is evident that some of the solutions in case 2
display better NPVs than some of the solutions in case 3.
This again reflects the difficulty of this optimization and
might suggest that rather than performing the optimization
with binary (drill/do not drill) variables, we instead perform
a sequence of optimizations with different numbers of wells
specified. This sequence of optimizations can be seen as a
different strategy, which evaluates all of the binary variable
combinations instead of explicitly including these variables
in a single optimization.

The problem with such an approach is that, even with
only five wells and a maximum of three producers and

Table 7 Final NPVs from five runs for the three different methods
(case 3, the best values are italicized)

Run PSO MADS PSO–MADS

# NPV [$ MM] NPV [$ MM] NPV [$ MM]

(# of wells) (# of wells) (# of wells)

1 1,138 (5) 1,223 (4) 1,247 (4)

2 1,197 (4) 1,127 (5) 1,162 (4)

3 1,151 (4) 1,073 (5) 1,158 (4)

4 1,111 (5) 1,194 (5) 1,143 (5)

5 1,096 (5) 991 (5) 1,161 (4)

<NPV> 1,139 1,122 1,174

σ 39 94 41

Number of wells for each run is shown in parentheses

two injectors, there are multiple combinations to consider
(for this example, there are nine relevant combinations—
two producers and one injector, one producer and two
injectors, etc.). In cases with many wells, this type of
exhaustive approach may become much more expensive
than the explicit inclusion of binary variables. We note that
more systematic optimization procedures, such as Branch
and Bound, can be applied for this problem. Branch and
Bound is, however, more computationally demanding than
our approach here. See Isebor [28] and Isebor et al. [29] for
more discussion of this issue and for optimization results
comparing Branch and Bound to PSO–MADS.

The best PSO–MADS solution (from case 3, run 1) has
injection and production rates as shown in Fig. 18. Compar-
ing the rates in Fig. 18 to those in Fig. 16, we see that the
four-well solution has some attractive features, i.e., the oil
rates are less variable and water breakthrough is delayed.
The optimized well configurations, with final oil saturation
maps, for the worst, median, and best case 3 PSO–MADS
solutions, together with the initial guess configurations used
for these runs, are presented in Fig. 19. From these figures,
we see that even with initial guesses that lead to poor sweep
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Fig. 18 Injection and production rates for the best PSO–MADS
solution (case 3)
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Fig. 19 Well configurations
and final oil saturation maps
(red indicates oil, blue indicates
water) from the initial guesses
and optimized solutions for the
worst, median, and best
PSO–MADS runs (case 3)
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(e) Initial guess (Run 1), NPV=$1015 MM (f) Best PSO-MADS (Run 1), NPV=$1247 MM

and NPV, the PSO–MADS procedure is able to optimize the
number of wells and their associated locations and controls
to provide reasonable results. Note that one of the initial
guesses contains only two wells, though the corresponding
optimized solution has four wells. Comparing Figs. 15b and
19f, we see that by including the binary variables in the opti-
mization, we obtain a four-well solution that is comparable
to the five-well solution in case 2, except that one of the
production wells in the upper right portion of the model has
been eliminated. Nonetheless, the sweep in the two cases
appears quite comparable.

The NPV from the best PSO–MADS solution improves
from $1,228 million for case 2 (five wells) to $1,247 mil-
lion for case 3 (four wells). This increase in NPV of $19
million corresponds closely to the cost of drilling one well
($20 million). For case 2, the best PSO–MADS solution
yields a cumulative oil production of 17.9 million STB and
cumulative water injection of 18.7 million STB; for case 3,
the corresponding values are 17.8 million STB of oil pro-
duction and 18.5 million STB of water injection. Thus, the
fluid injection and production volumes for the two cases are
quite similar, though the solution in case 3 accomplishes this
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oil recovery with one less well. This example illustrates the
benefits that can be achieved by optimizing the number of
wells along with the location and control variables.

5 Concluding remarks

In this paper, we presented methods for the joint optimiza-
tion of well locations and controls (BHPs). Our focus was
on the use of noninvasive derivative-free methods that par-
allelize naturally. The methods considered include a local
direct-search optimization method (MADS), a stochastic
global search procedure (PSO), and a hybrid technique
(PSO–MADS) that combines the advantages of both meth-
ods. We applied a filter-based treatment for nonlinear con-
straint handling. With this approach, the problem is viewed
as a biobjective optimization in which we seek to minimize
both the objective function and the constraint violation.
We additionally incorporated a binary variable (drill/do not
drill) that enables the determination of the optimum number
of wells.

We presented three example cases of increasing com-
plexity involving multiple vertical wells, several well con-
trol periods, and different types of constraints. All of the
optimizations were performed in a distributed comput-
ing environment. For all cases, the PSO–MADS hybrid
method was shown to outperform the stand-alone MADS
and PSO approaches, both in terms of average NPV and
standard deviation of NPV over multiple runs, demonstrat-
ing that the hybrid algorithm does indeed improve upon its
component methods. The stand-alone PSO procedure was
observed to provide better solutions in terms of cost function
value, using fewer function evaluations, than the stand-alone
MADS algorithm. This may be related to the particular
implementations considered. For the first two examples, we
included comparisons against a sequential method (where
we first optimize well locations and then well controls), and
the joint approach was shown to provide superior results.
The last example was a nonlinearly constrained problem
that additionally included the determination of the optimum
number of wells. In this case, the optimization provided an
improvement in NPV by eliminating one of the production
wells that was included in the previous examples (where the
number of wells was fixed). Our treatment for optimizing
the number of wells represents an initial approach to the
MINLP problem, and the use of more sophisticated MINLP
solution techniques should be investigated.

There are a number of other areas in which future
research may be directed. It will be of interest to apply our
joint optimization procedures to realistic three-dimensional
models. This should not introduce conceptual challenges,
but will result in longer computation times. It may there-
fore be useful to introduce some type of surrogate modeling

procedure. Existing approaches include the use of krig-
ing [30], quadratic approximations [23, 38], and reduced-
order numerical models [11]. The study of alternative local
and global search algorithms and implementations might
improve our understanding of the performance behavior
observed for different optimization procedures.

It is also important to explore the use of more rigorous
MINLP approaches, such as Branch and Bound [7], to solve
the MINLP problem given by Eq. 5. This will require the
relaxation of the categorical variables (i.e., their treatment as
continuous variables), together with the evaluation of differ-
ent strategies for this relaxation. Some work in this direction
is presented in Isebor [28] and Isebor et al. [29]. Finally,
the incorporation of geological uncertainty in the optimiza-
tion deserves attention. Techniques along the lines of the
Retrospective Optimization procedure introduced by Wang
et al. [43] could be applied for this purpose.
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