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a b s t r a c t

Reduced-order modeling represents an attractive approach for accelerating computationally expensive

reservoir simulation applications. In this paper, we introduce and apply such a methodology for data

assimilation problems. The technique applied to provide flow simulation results, trajectory piecewise

linearization (TPWL), has been used previously for production optimization problems, where it has

provided large computational speedups. The TPWL model developed here represents simulation results

for new geological realizations in terms of a linearization around previously simulated (training) cases.

The high-dimensional representation of the states is projected into a low-dimensional subspace using

proper orthogonal decomposition. The geological models are also represented in reduced terms using a

Karhunen–Lo �eve expansion of the log-transmissibility field. Thus, both the reservoir states and

geological parameters are described very concisely. The reduced-order representation of flow and

geology is appropriate for use with ensemble-based data assimilation procedures, and here it is

incorporated into an ensemble Kalman filter (EnKF) framework to enrich the ensemble at a low cost.

The method is able to reconstruct full-order states, which are required by EnKF, whenever necessary.

The combined technique enables EnKF to be applied using many fewer high-fidelity reservoir

simulations than would otherwise be required to avoid ensemble collapse. For two- and three-

dimensional example cases, it is demonstrated that EnKF results using 50 high-fidelity simulations

along with 150 TPWL simulations are much better than those using only 50 high-fidelity simulations

(for which ensemble collapse is observed) and are, in fact, comparable to the results achieved using 200

high-fidelity simulations.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

History matching is an essential component of reservoir
modeling and management. It entails the updating of reservoir
models using dynamic data, e.g., production data or time-lapse
seismic data. History matching typically requires large numbers
of simulations, so it can be extremely time consuming if high-
resolution models are used. Thus, there is a significant need for
efficient (proxy or surrogate) models that can predict simulation
results with reasonable accuracy.

Reduced-order modeling procedures, which have been applied
in many application areas including reservoir simulation, repre-
sent a promising means for constructing efficient surrogate
models. Many of these techniques entail the projection of the
full-order (high-fidelity) numerical description into a low-dimen-
sional subspace, which reduces the number of unknowns that
ll rights reserved.
must be computed at each time step. Existing approaches, applied
within the context of reservoir simulation, include procedures
based on proper orthogonal decomposition or POD (van Doren
et al., 2006; Cardoso et al., 2009) and techniques based on the
combination of POD and trajectory piecewise linearization, TPWL
(Cardoso and Durlofsky, 2010; He et al., 2011a). The target
application in these studies was mainly production optimization,
and the reduced-order model was used to provide results for
varying well control parameters (e.g., bottomhole pressure).

In this work, we explore the use of the TPWL reduced-order
modeling approach for data assimilation. In TPWL, new solutions
are represented as linearizations around saved states from pre-
viously simulated (training) solutions. The linearized representa-
tion is projected into a low-dimensional space using POD. TPWL
was first introduced by Rewienski and White (2003) and has since
been applied in a number of areas (Gratton and Willcox, 2004;
Yang and Shen, 2005; Vasilyev et al., 2006) including reservoir
simulation (as noted above). As far as we are aware, the use of
TPWL (or a closely related procedure) for data assimilation has
not been previously explored.
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The approach applied here entails the use of geological vari-
ables as control parameters within the TPWL representation. This
enables us to perform training runs for particular geological
models and to then represent solutions for new geological models
as linearized expansions around the training runs. The geological
model itself can also be represented in a reduced space, again
through the use of POD. When applied within the context of
geological modeling, this reduction is typically referred to as
principal component analysis (PCA) or Karhunen–Lo�eve (K–L)
expansion; see Oliver (1996) and Sarma et al. (2006, 2008) for
further discussion. Thus, our overall framework entails low-order
representations of both the reservoir states (pressure and satura-
tion) and the geological parameters (transmissibility in our case).

In this study, the TPWL representation is incorporated into an
ensemble Kalman filter (EnKF) framework. EnKF was introduced
by Evensen (1994) and has since become very popular in the
petroleum industry. Nævdal et al. (2002) first used EnKF to
history match near-well static parameters. In subsequent work,
EnKF was applied to update the entire reservoir model by
continuously adjusting the permeability, pressure and saturation
fields (Nævdal et al., 2005). The procedure has been successfully
tested on several field cases including the PUNQ-S3 reservoir
model (Gu and Oliver, 2005). EnKF has also been integrated into a
closed-loop reservoir modeling framework (Nævdal et al., 2006).
See Aanonsen et al. (2009) for a detailed review of recent
developments in EnKF. Although EnKF provides multiple realiza-
tions that approximately match historical data, some concerns
regarding its ability to properly quantify uncertainty are
expressed by Park (2011).

Despite its success, a well-known limitation of EnKF is that,
when the ensemble size is small, the ensemble approximation to
the cross-covariance matrix can be spurious, resulting in unphy-
sical updates of reservoir properties and loss of ensemble varia-
bility. This problem is referred to as ‘ensemble collapse’ (Lorenc,
2009). In addition, the number of degrees of freedom in the
ensemble is limited by the ensemble size. The ensemble collapse
problem is typically addressed through use of localization, where
the estimated covariance is modified to avoid spurious correla-
tions and reduce collinearity (Zhang and Oliver, 2010; Chen and
Oliver, 2010). Localization is, however, essentially a heuristic fix
and is not always reliable. In addition, even when it performs
adequately, localization only addresses ensemble collapse, not the
issue of limited degrees of freedom.

The problems noted above, which result from the use of a
small ensemble, do not exist if we can afford to use a sufficiently
large ensemble. In a typical EnKF implementation, however, the
total computational time scales directly (linearly) with the
number of realizations in the ensemble, so the use of large
ensembles can be expensive. In this work, we use the TPWL
representation for the majority of realizations. This provides us
with much of the benefit of a large ensemble (e.g., avoidance of
ensemble collapse), but at reduced cost.

This paper proceeds as follows. We first describe the TPWL
representation of flow solutions for varying geological para-
meters. We also discuss the representation of the geological
model using the K–L expansion. Results demonstrating the use
of the overall reduced-order modeling procedure for computing
the production response of new geological realizations are then
presented. Next, we give a brief overview of EnKF and describe
the combined EnKF-TPWL workflow. The use of the EnKF-TPWL
methodology for two- and three-dimensional systems is then
demonstrated. We conclude with a summary and a discussion of
outstanding issues and future research directions.

An earlier version of this work, including some of the discus-
sion contained here, was presented in an SPE conference proceed-
ings paper (He et al., 2011b). The descriptions and results in this
paper are, however, further developed and much more compre-
hensive than those in He et al. (2011b).
2. TPWL formulation for variable geological parameters

In this section we describe the TPWL formulation with variable
geological parameters in detail. The representation of geological
parameters using the K–L expansion is also discussed. We limit
our descriptions to oil–water systems, as the TPWL method has
not yet been implemented for general three-phase black-oil
models. Extensions along these lines will be considered in
future work.
2.1. Discretized flow equations

Detailed derivations of TPWL models for oil–water systems,
with fixed geological parameters but varying well controls (bot-
tomhole pressure), have been presented previously by Cardoso
and Durlofsky (2010) and He et al. (2011a). Our discussion here
follows the descriptions in these references.

The partial differential equations governing subsurface flow
are derived by combining statements of mass conservation for oil
and water with Darcy’s law for each phase. Discrete representa-
tions, based on standard finite-volume treatments and fully
implicit schemes, are then introduced (see Cardoso and
Durlofsky, 2010 for details). The discretized system, which is a
set of nonlinear algebraic equations, can be written as

gðxnþ1,xn,mÞ ¼ 0, ð1Þ

where g is the residual we seek to drive to zero, n and nþ1
designate time levels, x is the state vector (the states are pressure
p and water saturation Sw in each grid block), and m represents
the geological parameters to be determined by history matching.
For a model containing Nc grid blocks, g and x are vectors of
dimension 2Nc . If m is taken to represent directional permeability
(kx, ky, kz) in each grid block in a three-dimensional problem, it is
of dimension 3Nc.

In reservoir simulation, Eq. (1) is nonlinear and is typically
solved using Newton’s method. Practical problems may have on
the order of 105 or 106 unknowns, which makes the solution
expensive computationally (though much smaller models will be
considered in this work). We now describe the application of the
TPWL approach for the efficient solution of Eq. (1).
2.2. Piecewise linearization of the discretized equations

In trajectory piecewise linearization (TPWL), we first simulate
some number of full-order ‘training’ runs using particular geolo-
gical models. We designate the geological model used for the
training run o as mo. This training information is then applied to
build a TPWL surrogate. The surrogate can then be used for a
simulation with a different geological description, which we
designate as m.

We proceed by linearizing Eq. (1) around states saved during
training simulations. Here, at any given time, we linearize around
a single point (rather than using weighted linearizations around
multiple points) on the training trajectory. Given the geological
model m and the (known) state at the current time xn, we
designate the ‘closest’ saved state, which is the state at time step
i in the training run for geological model mo, as xi

o. We will
explain later (in Section 2.6) how mo and i are found. To
determine the new state xnþ1, we linearize g around
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ðxiþ1
o ,xi

o,moÞ. This gives

gnþ1 � giþ1
o þ

@giþ1
o

@xiþ1
o
ðxnþ1�xiþ1

o Þþ
@giþ1

o
@xi

o
ðxn�xi

oÞþ
@giþ1

o
@mo

ðm�moÞ,

ð2Þ

where gnþ1 ¼ gðxnþ1,xn,mÞ ¼ 0 and giþ1
o ¼ gðxiþ1

o ,xi
o,moÞ ¼ 0

from Eq. (1). Note that the m vector appearing here will be
specified by the history matching algorithm, so it is a known
quantity. The derivatives in Eq. (2) will be denoted as

Jiþ1
o ¼

@giþ1
o

@xiþ1
o

, Aiþ1
o ¼

@giþ1
o

@xi
o

, Biþ1
o ¼

@giþ1
o

@mo
: ð3Þ

Note that Jiþ1
o is the Jacobian matrix at time step iþ1 of training

simulation o (i.e., the training run for geological model mo). Eq.
(2) can now be expressed as

Jiþ1
o ðx

nþ1�xiþ1
o Þ ¼�½A

iþ1
o ðx

n�xi
oÞþBiþ1

o ðm�moÞ�: ð4Þ

For conciseness, from here on we will drop the o subscript in
xi
o, xiþ1

o , Jiþ1
o , Aiþ1

o , Biþ1
o and giþ1

o , although it will be retained in
mo. However, it should be understood that terms with super-
scripts i and iþ1 correspond to training simulation o.

During the training simulation, we save xi, Jiþ1, Aiþ1 and Biþ1

at each time step. Given xn and this saved information, Eq. (4)
provides a linearized representation for xnþ1, which is the only
unknown variable. This equation is, however, still in a high-
dimensional space; i.e., the dimension of Jiþ1 is 2Nc � 2Nc. We
now describe the POD procedure, which is used to project Eq. (4)
to a reduced space.

2.3. Model order reduction by proper orthogonal decomposition

Through application of POD, we can represent the state vector
x in terms of a reduced state vector z and a basis matrix U using

x�Uz: ð5Þ

POD, which is also referred to as principal component analysis or
PCA, is a general procedure that uses an orthogonal transforma-
tion to represent a set of realizations of (possibly correlated)
variables x in terms of uncorrelated variables z (Jolliffe, 2002). In
practice, POD can be accomplished by performing singular value
decomposition (SVD) of the so-called snapshot matrix of x. The
resulting singular vectors provide the orthonormal basis matrix
U. POD is optimal in the sense that it minimizes the mean-square
reconstruction error for the snapshots. Therefore, it is reasonable
to assume that POD can represent the states of other (test)
simulations if these states are somewhat similar to those encoun-
tered during training runs.

Our approach is as follows. We denote the total number of
training simulations as No and the total number of time steps
from all of these No training simulations as L. We save the full
pressure and saturation states (snapshots) at each time step of
each simulation. These snapshots are then assembled into pres-
sure and saturation snapshot matrices. Designating the pressure
snapshots as x1

p , x2
p , etc., and the saturation snapshots as x1

s , x2
s ,

etc., the snapshot matrices are constructed as

Xp ¼ ½x
1
p x2

p . . . xL
p�, Xs ¼ ½x

1
s x2

s . . . xL
s �: ð6Þ

The columns of the orthonormal basis matrices Up and Us are
given by the left singular vectors of the SVDs of Xp and Xs, scaled
by the corresponding principal values. There are a maximum of L

nonzero singular values, though in general it is not necessary to
retain all L columns in Up and Us. These two matrices are then
assembled into a single basis matrix U as follows:

x¼
p

Sw

" #
�Uz¼

Up 0

0 Us

" #
zp

zs

" #
, ð7Þ
where p and Sw designate the vectors of pressure and saturation
unknowns. The number of columns to be retained in Up and Us

can be determined using either an energy criterion (Cardoso and
Durlofsky, 2010) or through a basis optimization procedure (He
et al., 2011a). Designating the number of columns in these
matrices as lp and ls, the dimension of U is 2Nc � l, where
l¼ lpþ ls. In general, l52Nc , so significant reduction is achieved.

2.4. Linearized reduced-order representation

We now combine the linearized representation in Eq. (4) with
the POD reduction described above. Substituting Eq. (5) into
Eq. (4), we obtain the following over-determined system (2Nc

equations, l unknowns):

Jiþ1Uðznþ1�ziþ1Þ ¼�½Aiþ1Uðzn�ziÞþBiþ1
ðm�moÞ�: ð8Þ

To reduce the number of equations to equal the number of
unknowns, we pre-multiply both sides of Eq. (8) by UT , which
is referred to as Galerkin projection (Berkooz and Titi, 1993). This
gives, after further manipulation

znþ1 ¼ ziþ1�ðJiþ1
r Þ

�1
½Aiþ1

r ðz
n�ziÞþBiþ1

r ðm�moÞ�, ð9Þ

where

Jiþ1
r ¼UT Jiþ1U, Aiþ1

r ¼UT Aiþ1U, Biþ1
r ¼UT Biþ1: ð10Þ

Note that reduction methods other than the Galerkin projection
exist; e.g., the least-square projection (Carlberg et al., 2011). It
will be of interest to evaluate the performance of this and other
approaches in future work.

In Eq. (9), all vector and matrix dimensions are reduced (to size
l) except for m and mo and the number of columns in Biþ1

r , which
are still of dimension OðNcÞ. In order to render all terms in Eq. (9)
in low-dimensional space, we need to introduce the reduced-
order representation for the geological model. We now describe
our K–L treatment.

2.5. Reduced-order representation of geological parameters

In this work, for convenience, we consider systems in which
the permeability field varies from model to model but porosity is
constant. There are several ways to represent the geological
models m and mo in Eq. (9) for such cases. Obvious choices are
the directional permeabilities in each grid block (designated k, of
dimension 3Nc) or transmissibility in each grid block (T). Numer-
ical experiments have demonstrated that, within the context of
TPWL, the use of T is preferable to the use of k, presumably
because g is linear in T (which means one of the neglected higher-
order terms in Eq. (2) vanishes), while it is nonlinear in k. Because
transmissibility is defined at interior block interfaces, the dimen-
sion of T (designated Nt) is 3NxNyNz�NxNy�NyNz�NxNz for
Cartesian grids, where Nx, Ny and Nz are the number of grid
blocks in each direction.

We will apply a K–L representation (which is, to reiterate,
completely analogous to the POD representation described ear-
lier) to express T in a reduced form. When using the standard
two-point flux approximation for flow terms, as is applied here,
all transmissibilities must be positive to ensure flow is ‘down’ the
pressure gradient. However, direct use of the K–L representation
to provide new T fields does not guarantee the positivity of all
components of T. For this reason, instead of working directly with
transmissibility, we use log-transmissibility, designated g. This
guarantees that the K–L derived transmissibility values are
always positive.

We follow the basic procedure described in Sarma et al. (2006,
2008) to construct the K–L representation of g. Given a particular
variogram model and associated parameters (which define the
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spatial correlation structure of permeability), along with any
conditioning data, we apply SGEMS (Remy et al., 2008) to
generate a set of Nr realizations of k. From k, T is constructed
using standard procedures (e.g., in the x-direction we have
Tij ¼ 2kikjA=½ðkiþkjÞDx�, where ki and kj are the x-direction perme-
abilities of blocks i and j, respectively, A is the area of the common
interface, and Dx is the block size), after which g is formed by
taking the logarithm of each component of T. Here, Nr is typically
Oð102

�103
Þ.

Each of the Nr realizations of g represents a snapshot, so a
snapshot matrix C¼ ½g1 . . . gNr

� can be constructed. Following
Sarma et al. (2006, 2008), prior to constructing C, the realizations
are centered; i.e., g ¼ ð1=NrÞ

PNr

i ¼ 1 gi is subtracted from each gi.
Next, following the procedure described in Section 2.3, we per-
form SVD on C. Assembling the scaled left singular vectors in a
basis matrix (designated R), we can now express realizations
of g as

g¼ Rnþg, ð11Þ

where R is of dimensions Nt � lm (lmrNr is determined using an
energy criterion) and n is the reduced variable.

We note that this K–L representation is most appropriate for
use with Gaussian fields. It will entail some error for non-
Gaussian (e.g., channelized) models, which are characterized by
multipoint spatial statistics. A more general representation,
referred to as kernel principal component analysis or KPCA, was
developed in Sarma et al. (2008) to enable reduced-order repre-
sentation of models characterized by multipoint statistics. Exten-
sion of the current framework to handle KPCA permeability
representations may be considered in future work.

Given that each component of g is the logarithm of the
corresponding component of T, which we express as g¼ log T,
we have

@giþ1

@go
ðg�goÞ ¼

@giþ1

@To
DTo ðg�goÞ, ð12Þ

where To is the vector of transmissibilities for training simulation
o (analogous to mo), go ¼ log To and DTo is a diagonal matrix
whose diagonal elements are the elements of To. Using Eqs. (11)
and (12), (9) can now be written as

znþ1 ¼ ziþ1�ðJiþ1
r Þ

�1
½Aiþ1

r ðz
n�ziÞþ ~B

iþ1

r ðn�noÞ�, ð13Þ

with ~B
iþ1

r given by

~B
iþ1

r ¼UT @giþ1

@To
DToR: ð14Þ

This matrix is of dimension l� lm, where (to reiterate) l is the
number of columns in U and lm is the number of columns in R.
Note that, although both l and lm are small compared to Nc and Nt,
in general la lm.

Eq. (13) defines our TPWL model. This equation is linear and all
the vectors and matrices appearing in it are in low-dimensional
space, so the new reduced state znþ1 can be computed very
efficiently. The full-order state xnþ1 can be reconstructed from
znþ1, at some or all grid blocks, using Eq. (5). The well production
and injection rates are calculated from the well-block states using
the standard well model, as described by Cardoso and Durlofsky
(2010).

2.6. Point selection strategy

In order to use Eq. (13), we must first determine the geological
model (To) and associated saved states (zi, ziþ1) to expand
around. The determination of the geological model would not
be required if we used only one training simulation, but the
predictive ability of the resulting TPWL model in this case is
highly limited. Through use of multiple training runs with
different geological models, the TPWL basis incorporates informa-
tion from a variety of geological scenarios. This greatly improves
TPWL model accuracy and robustness for ensemble-based data
assimilation problems.

When the TPWL model is constructed using multiple training
simulations, at each time step of a new (test) simulation we need
to choose, from all the saved training points (time steps) of all No
training simulations, a particular training point to linearize
around. This point should be ‘close’ to the current point to
minimize linearization error, although the precise definition of
‘close’ is problem dependent. Our procedure, established based on
numerical experimentation, is as follows. We define a ‘distance’
between the current solution (at time step n in the test simula-
tion) and the saved solution at time step j in training simulation v.
This distance incorporates the difference between well-block
pressures, well-block relative permeabilities, and near-well trans-
missibility, as these have a major impact on flow rate calculations.

The distance between the current solution and saved point j in
training simulation v is defined as

dn,v,j
¼ adn,v,j

p þbðdn,v,j
kro þdn,v,j

krw Þþgdv
T , ð15Þ

where a, b and g are weights and dn,v,j
p , dn,v,j

kro and dT
v are the relative

differences in well-block pressure, relative permeability and trans-
missibility between the current state (at time step n) and saved
point j in training simulation v. These quantities are defined as

dn,v,j
p ¼

1

Ns

XNs

s ¼ 1

pn
b,s�pv,j

b,s

pv,j
b,s�pv,j

w,sþE

�����
�����, dn,v,j

kro ¼
1

Ns

XNs

s ¼ 1

kn
ro,s�kv,j

ro,s

kv,j
ro,sþE

�����
�����,

dv
T ¼

1

Nl

XNl

l ¼ 1

Tl�Tv
l

Tv
lþE

����
����, ð16Þ

where pb,s and pw,s are the well-block pressure and wellbore
pressure in well-block s, kro,s is the oil-relative permeability at
well-block s, Ns is the total number of well blocks, and E is a
constant set to 0.01 to avoid dividing by zero. The quantities Tl
and Tv

l are the transmissibility of the connection l between well
blocks and neighboring blocks for the test case and training
simulation v, and Nl is the total number of such connections.
The expression for dn,v,j

krw is analogous to that for dn,v,j
kro .

At each time step, Eq. (15) is evaluated for all training points
(looping over v and j). The v and j pair that minimizes dn,v,j defines
o and i, which in turn provide zi and the other vectors and
matrices in Eq. (13). The reduced-order state for the subsequent
time step (for the same o) provides ziþ1.

In our study, we use a¼ 1, b¼ 1 and g¼ 3. The use of a
relatively large value for g avoids frequent shifts in o; i.e., we
tend to linearize around the same geological model over multiple
time steps. Algorithm performance does not appear to be very
sensitive to the choices for a, b and g over a reasonable range.
2.7. Summary of the TPWL procedure

The overall methodology first requires pre-processing (offline)
computations in which the TPWL model is constructed. The inline
process provides TPWL results for each new (test) simulation
model. These two TPWL components are summarized as follows:

Offline processing:
1.
 Generate Nr permeability realizations (using, e.g., SGEMS,
described in Remy et al., 2008), the associated log-transmissi-
bility vectors g, and the ‘snapshot’ matrix C. The SVD of C
provides the K–L basis matrix R.
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2.
 Perform high-fidelity training simulations on No realizations
from the distribution considered in step 1. Save the states xi

and derivative terms Ji, Ai and Bi at each time step in each run.

3.
 Construct the basis matrix U by performing SVDs on the

snapshot matrices Xp and Xs.

4.
 Compute the reduced states zi and reduced derivative matrices

Ji
r , Ai

r and ~B
i

r .

Inline processing:
1.
 Given zn, find the training point (v,j) that minimizes dn,v,j in Eq.
(15). This provides zi, ziþ1 and other vectors and matrices to be
used in the linearization.
2.
 Evaluate Eq. (13) to provide znþ1.

3.
 Reconstruct xnþ1 from znþ1 at required locations using Eq. (5).

Calculate well flow rates (using well-block states and standard
well model) and any other required information.
4.
Fig. 1. Well locations for Model 1 (circles indicate producers and triangles indicate

injectors). Background displays log-transmissibility for one realization.
Repeat steps 1–3 until the final simulation time is reached.

2.8. Implementation details

In many reservoir simulation applications such as history
matching and production optimization, we are particularly inter-
ested in the pressure and saturation in well blocks because these
values directly affect injection and production rates. Therefore, in
our TPWL simulations here, we use the local-resolution scheme
introduced in He et al. (2011a) to maintain high resolution in well
blocks (other blocks may also be included at high resolution using
a missing point estimation approach introduced by Astrid and
Verhoeven, 2006). The local-resolution blocks are represented at
full order; i.e., they are not projected into the low-order space
using POD. We let xLR designate the full-order states for the nLR

locally-resolved grid blocks (which we wish to represent at high
resolution) and xG are the states for the remaining (global) grid
blocks. Then, instead of Eq. (5), we write

x¼ P
xLR

xG

" #
� P

ULR 0

0 UG

" #
zLR

zG

" #
¼ ~U

zLR

zG

" #
, ð17Þ

where P is a permutation matrix that reorders x into xLR and xG.
The basis matrix UG is generated by application of POD to
snapshots of xG, and ULR is simply the identity matrix. This gives
zLR ¼ xLR, meaning that full resolution is maintained for grid
blocks associated with xLR. The modified basis matrix ~U is then
used in place of U in Eq. (10). See He et al. (2011a) for further
discussion.

The computational requirements for the TPWL model do not
depend directly on the dimension of the original problem but
rather on the dimension of the reduced representation. For a
typical dimension of the reduced space (l� 10021000) and a
typical number of time steps (� 502300), the runtime is on the
order of one, or a few, seconds. However, the TPWL formulation
does require performing training simulations and generating the
low-dimensional states and matrices, which constitute most of
the cost of the method (this is all done in the offline processing).
The generation of the required matrices entails about as much
computation time as the training runs.

In terms of storage, the full-order derivative terms Ji, Ai and Bi

(stored in step 2 of the offline processing) are sparse and are only
intermediate products of the method. Their storage requirements
can be reduced by more efficiently integrating the procedure into
the simulator. The space requirements (step 4) for the reduced
derivatives Ji

r , Ai
r and ~B

i

r , which are not sparse but are in low-
dimensional space, are OðL� l2Þ for Ji

r and Ai
r and OðL� l� lmÞ for

~B
i

r , where L is the total number of time steps from all No training
runs. The storage requirement is proportional to l2 or l� lm,
although it does not depend directly on Nc, the dimension of the
full-order model. For the examples considered in this work, about
10 Gb of storage are required. For significantly larger models,
more efficient storage procedures may be needed.

The full-order simulations needed to generate the saved states
and the derivative matrices are performed using Stanford’s Gen-
eral Purpose Research Simulator, GPRS (Cao, 2002). GPRS has been
modified to output the quantities required by TPWL at each time
step of the training runs, which include xi, Ji, Ai and @gi=@To.
3. Evaluation of TPWL model performance

We now assess the performance of the TPWL model described
in the preceding sections for an ensemble of realizations. These
results motivate the use of this approach within an EnKF
framework.
3.1. Geological realizations (Model 1)

This system (referred to as Model 1) is composed of two-
dimensional geostatistical realizations defined on a 45�45 grid
with cells of size 10 m�10 m�10 m. The realizations are gener-
ated using sequential Gaussian simulation within SGEMS (Remy
et al., 2008). The log k fields are characterized by a Gaussian
distribution with a mean of 5.0. Different values of the standard
deviation of log k will be considered. A spherical variogram with
ranges of 200 m and 100 m, oriented at 451 and 1351 to the x-axis,
characterizes the spatial correlation structure. The model contains
eight injectors and eight producers, as shown in Fig. 1. The
background of Fig. 1 shows the log of the x-direction transmissi-
bility (transmissibility is in units of md-ft) for one of the
realizations. Transmissibility is an interface quantity, and in this
and subsequent figures, the blocks displayed are centered on the
interfaces. The color of the block indicates the magnitude of log-
transmissibility for that connection. Because transmissibility is an
interface quantity, there are 44 blocks in the x-direction in Fig. 1
rather than 45 as in the geological model.

All wells are assumed to be stimulated to the same level, so all
well indices are set to 3000 md-ft (this constant well index
specification can also be viewed as conditioning to well perme-
ability data). The reservoir is initially at a pressure of 5800 psi and
saturated with oil. The production wells operate at a bottomhole
pressure (BHP) of 5200 psi and the injection wells operate at a
BHP of 6000 psi. The simulations are run for 800 days.



Fig. 2. Average TPWL errors for test cases as a function of slog k for Model 1.

Results are for TPWL models constructed using 50 training runs (solid curves) and

20 training runs (dashed curves).
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3.2. Error definition

To assess the performance of the TPWL model, it is useful to
compute errors (relative to full-order simulation) for quantities of
interest. Here, errors are quantified in terms of the mismatch of
the production rates (for both oil and water) and water injection
rates between the full-order solution (Qfull) and TPWL simulations
(Qtpwl). For example, for oil production rate, the error for well j

(Eo
j ) is calculated as

Ej
o ¼

R T
0 9Qj

o,full�Qj
o,tpwl9 dtR T

0 Qj
o,full

, ð18Þ

where subscript o designates oil, T is the total simulation time and
the integration is accomplished using the trapezoidal rule over
the time series of the flow rate data. The overall average error of
the oil production rates, designated Eo, is computing by averaging
Ej

o over all production wells

Eo ¼
1

npw

Xnpw

j ¼ 1

Ej
o, ð19Þ

where npw is the total number of production wells. Similar
expressions are used to compute average water production error
and water injection error (Ew and Einj, respectively).

3.3. TPWL results

We now evaluate the accuracy of the TPWL model for
predicting flow results on new realizations. We performed a
sequence of TPWL evaluations using different levels of perme-
ability variability, as quantified by the standard deviation of log k,
denoted as slog k. Values of slog k of 0, 0.25, 0.5, 0.75 and 1 were
considered.

For each value of slog k, 500 geological realizations were
generated through application of SGEMS. These realizations were
then used to construct the K–L representation given by Eq. (11)
(using lm¼300). From this K–L representation, 50 random realiza-
tions were generated by randomly sampling each component of n

from a standard normal distribution. Training simulation runs
were then performed using these realizations, and the TPWL
model was constructed. Next, 50 new realizations were gener-
ated, again using the K–L representation, and (test) simulations
were performed to evaluate the TPWL model performance. We
emphasize that the new realizations are sampled from the same
distribution used in the TPWL model construction (i.e., they are
characterized by the same spatial correlation structure and
s log k).

The TPWL model constructed using the 50 training simulations
(for a given value of slog k) resulted in about 2500 saved states and
matrices. The resulting U matrix is characterized by lp ¼ ls ¼ 200
and llr ¼ 50, where the latter denotes the number of local-resolu-
tion grid blocks (i.e., grid blocks retained at high resolution and
not projected into the reduced space). Thus U contains
lpþ lsþ2llr ¼ 500 columns. TPWL simulations were then per-
formed, and the average errors for oil and water production rates
and water injection rates for the 50 test cases were calculated.

Fig. 2 shows the error in oil production rate, water production
rate and water injection rate versus slog k for the TPWL model
generated using 50 training runs (solid curves). All three errors
increase linearly until slog k ¼ 0:75, beyond which there is a
sharper increase. Water production rate displays more error than
the other two quantities, possibly because of the differences in
breakthrough times between the training and test runs.

Also shown in Fig. 2 are analogous results in which the TPWL
model was constructed by generating and simulating only 20
(training) realizations. These results are clearly less accurate than
those using 50 training simulations, as would be expected.
Comparison of the two sets of results allows us to quantify the
trade-off between TPWL model accuracy and the computational
effort required to construct the TPWL model.

Figs. 3–5 display the oil production rate, water production rate
and water injection rate, respectively, for a test case (using the
TPWL model constructed from 50 training runs) with slog k ¼ 0:5.
The errors (Eo, Ew, Einj) for this case are 4.2%, 8.7% and 4.9%. These
errors are close to the average errors for slog k ¼ 0:5 test cases (as
is evident from Fig. 2), so these results can be considered to be
representative. Results are shown only for four producers and
four injectors, but these are representative of the results for the
other eight wells. In the figures, the solid lines (which are red in
the online version) show the reference solution from the full-
order simulation (GPRS), the lines with circles (blue in the online
version) show the solution provided by the TPWL model, and the
dashed lines are the training simulation results about which the
TPWL model is linearized.

It is evident that the TPWL results for the test case (lines with
circles) are in reasonable agreement with the full-order results for
production and injection rates, even though the training and test
solutions differ considerably. This indicates that the TPWL model
is able to capture the essential features of the test runs through
linearization around (nearby) training runs. This feature will be
important in our use of TPWL for history matching with ensemble
methods such as EnKF. It should be noted, however, that the
TPWL results do display some error, and that this error will
clearly increase with increasing slog k.

In terms of computational effort, the runtime for the full-order
models for this case was about 30 s on an Opteron dual-core CPU.
The TPWL models, by contrast, required less than 1 s. However,
the construction of TPWL model requires simulating 50 training
cases, plus additional overhead, which approximately doubles the
cost. Therefore, it would not make sense to construct the TPWL
model unless it is to be used for a large number of simulations.
Because many simulations are required in history matching
applications, the TPWL model should be applicable in this con-
text. The use of TPWL in conjunction with an EnKF data assimila-
tion procedure is explored in the following sections.
4. Use of TPWL for EnKF-based history matching

In this section we briefly describe the ensemble Kalman filter
(EnKF) method, discuss some of its limitations, and show how we
use TPWL to enhance the performance of EnKF.



Fig. 3. Oil production rate for a representative test case with slog k ¼ 0:5 (Model 1).

Fig. 4. Water production rate for a representative test case with slog k ¼ 0:5 (Model 1).
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4.1. Basic ensemble Kalman filter method

EnKF was first proposed by Evensen (1994) and has since been
applied by many researchers for history matching oil reservoirs. A
recent review by Aanonsen et al. (2009) summarizes the history,
current state, and some of the challenges associated with EnKF for
reservoir engineering. These references should be consulted for
details on EnKF. For the sake of completeness, an abbreviated
description of the method is included here.

EnKF starts from an ensemble of initial reservoir models along
with a priori geostatistical assumptions. The method then seeks
to drive ensemble members to match production data at every
assimilation step by correcting the models based on data mis-
match and on the statistical correlation between members.



Fig. 5. Water injection rate for a representative test case with slog k ¼ 0:5 (Model 1).
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We denote an ensemble of Ne state vectors at data assimilation
step i as

Yi ¼ ½yi,1,yi,2, . . . ,yi,Ne
�: ð20Þ

The ‘state vector’ y in EnKF usually consists of the static model
parameters m (permeability or transmissibility, porosity), the
dynamic states x (pressure and saturation), and the predicted
data d (well production rates, bottomhole pressures)

yi,j ¼

m

x

d

2
64

3
75

i,j

, j¼ 1, . . . ,Ne: ð21Þ

The predicted data d are computed from the model variables m
and x. In history matching we attempt to match d with the
measurement (or observed) data dobs by modifying m. Because
the predicted data are included as part of the state vector, the
relation between the state vector and the data can be viewed as
linear. Therefore we have

di,j ¼Hyi,j, ð22Þ

where H is an extraction matrix that selects the predicted data
from the state vector.

EnKF updates reservoir models incrementally and assimilates
data sequentially. As an ensemble-based method, the final result
of EnKF is an ensemble of history matched reservoir models
rather than a single model. Using the representation above, the
EnKF procedure can be summarized as follows:
1.
 Create an ensemble of state vectors using prior geologic
knowledge and initial reservoir conditions

Y0 ¼ ½y0;1,y0;2, . . . ,y0,Ne
�: ð23Þ
2.
 Forecast step: Advance the state vectors to the next assimila-
tion point using a simulator.
3.
 Compute the Kalman gain Ke,i at data assimilation step i as
follows (Wen and Chen, 2006):

Ke,i ¼ Cf
Y,iH

T
ðHCf

Y,iH
T
þCD,iÞ

�1, ð24Þ

where Cf
Y,i is the covariance matrix of Y at step i, the super-

script f denotes quantities calculated from the forecast step,
and CD,i designates the covariance of the error in observed data
dobs at step i.
4.
 Assimilation step: Update each member in the ensemble
according to

ya
iþ1,j ¼ yf

i,jþKe,iðdi,j�ðdobsÞi,jÞ, ð25Þ

where the superscript a denotes that the quantity is calculated
in the assimilation step.
5.
 Return to step 2 if there are additional data to assimilate.

EnKF does have several limitations, one of which is associated
with the ensemble size. The technique is often observed to perform
well when the ensemble size is sufficiently large, but a large
ensemble size means that many simulations are required, which
may not be practical for high-resolution models. However, when a
small ensemble size is used, errors in the estimation of the
covariance matrix, and thereby the Kalman gain, can be large, which
results in unrealistic updates of the state vector. In such cases, after
a few assimilation steps the variability can become so low that the
entire ensemble collapses to an incorrect reservoir model (Lorenc,
2009). In addition, the number of degrees of freedom in EnKF is
limited by the ensemble size. A small ensemble may not have
enough degrees of freedom to represent the true solution accurately.

The most common approach for reducing the errors in covar-
iance estimation due to a small ensemble is to apply distance-
based localization. In this method, the covariance of spatial
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variables is assumed to be dependent on the distance and is cut
off (or tapered) when the distance is large (Houtekamer and
Mitchell, 1998; Houtekamer et al., 2005). Although the method is
straightforward to apply and can avoid ensemble collapse when
an appropriate choice of tapering range is used, determining an
optimal tapering function can be difficult. In addition, the optimal
localization depends not only on the type of data to be assimi-
lated but also on previous data assimilation steps (Chen and
Oliver, 2010).

For some variables, distance-based localization may not be
applicable, and localization methods that do not assume the
distance dependence of covariance have also been suggested. In
particular, Zhang and Oliver (2010) proposed a method using
bootstrap sampling to estimate the reliability of the Kalman gain
and subsequently remove unreliable terms. It is important to
note, however, that most localization techniques modify the
Kalman gain without considering its impact on the prior geosta-
tistics, which may alter the geological correlation structure. Thus,
Fig. 6. Flowchart of basic EnKF and EnKF þ TPWL methods.

Fig. 7. Reference log-transmissibility field and well rate data. (a) Reference log-trans

(d) Qinj at four injection wells.
in light of the issues noted here, it is clearly worth exploring
alternatives to existing localization procedures.
4.2. Combining EnKF and TPWL for history matching

The TPWL representation has some features that render it well
suited for use with EnKF. Most importantly, the runtime for TPWL
models is on the order of one second, which is much less than the
time required to simulate a typical high-fidelity model (though
the computational requirements for TPWL overhead must also be
considered). In addition, TPWL enables us to recover the full-
order states from the reduced states (through use of Eqs. (5) and
(11)), which is required for EnKF updates.

The way in which we incorporate TPWL into EnKF is illustrated in
the flowchart shown in Fig. 6. As in standard EnKF, we first perform
a forecast step. However, instead of simulating each member of the
ensemble using a high-fidelity simulation, we use full-order simula-
tions for only some of the members of the ensemble. After these
simulations are performed, they are used as training runs for TPWL.
Then, TPWL is applied to simulate the remaining members in the
ensemble. Flow results from both the high-fidelity runs and the
TPWL runs are assimilated in EnKF to provide the updated state
vectors. This process is repeated until all data are assimilated.

Given an ensemble of Ne realizations, we need to select Nhf

members of the ensemble for high-fidelity (GPRS) simulation
(Nhf is analogous to No used earlier). This is accomplished by
performing clustering based on the distance definition (dv

T ) in Eq.
(16). To accomplish this, we apply k-means clustering (Lloyd,
1982) at the beginning of each forecast step to cluster the Ne

realizations into Nhf clusters. The realizations that are closest to
the center of each cluster are used for full-order simulation. These
realizations are expected to be reasonably well distributed over
the parameter space. It will be of interest to explore other
approaches for selecting the realizations for high-fidelity simula-
tion, as well as methods to determine the appropriate value of Nhf.
missibility field. (b) Qo at four production wells. (c) Qw at four production wells.
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5. History matching using TPWL-based EnKF

5.1. Model 1: problem set up

We consider a history matching problem involving Model 1,
presented in Section 3.1. The initial ensemble of permeability
realizations is generated using slog k ¼ 1 (other geostatistical
parameters are as described earlier). The uncertain parameters
for the history matching are the 3960 transmissibility values.
Other parameters (porosity of 0.3, irreducible water saturation of
0.2) are assumed to be known.

The well specifications are different from those used in Section
3.1. The reservoir is initially saturated with oil and is at a pressure
of 5800 psi. The simulations are run for 800 days. The production
wells operate at a BHP of 5600 psi from 0 to 400 days and at
5400 psi from 400 days to 800 days. The injection wells operate at
a BHP of 6000 psi from 0 to 400 days and at 6200 psi from 400
days to 800 days.

Fig. 7(a) shows the ‘true’ transmissibility model, which was
used to generate the production data. This transmissibility field is
characterized by the Model 1 geostatistics, but it is not one of the
initial realizations used in the EnKF procedure. The oil production
rates (Qo), water production rates (Qw) and water injection rates
(Qinj) for the first four producers and injectors from this model are
shown in Fig. 7(b)–(d), respectively. Of the total 800-day produc-
tion period, the first 400 days are treated as the production
history and the second 400 days are treated as the prediction
period. During the production history we assume that Qo, Qw and
Qinj at each well are available to us every 50 days. There are thus a
total of eight assimilation steps with 24 pieces of data at each
assimilation step. Gaussian errors with zero mean and a standard
deviation of 3 stb/day were added to the true production data to
create an ensemble of noisy production data.

As in Section 3.3, in the TPWL model we use lp ¼ ls ¼ 200 and
llr ¼ 50 (thus U contains 500 columns), and lm¼300. Around
seven snapshots were collected from each training simulation
for each forecast period. Therefore, there were about 350 snap-
shots for each 50 day interval.
Fig. 8. Oil production rate for initial and final updated ensembles for Produ
Three different scenarios are considered. In the first scenario
(referred to as HF200), the EnKF ensemble consists of 200
randomly sampled members which, as shown later, is large
enough to avoid ensemble collapse. For this scenario all models
were simulated at high fidelity (i.e., TPWL is not applied). Note
that HF200 provides the reference against which the other two
cases are compared. In the second scenario (HF50), the ensemble
consists of the first 50 of the 200 models in HF200. Thus HF50
contains an ensemble of 50 randomly sampled members. All
models were again simulated at high fidelity. In the third scenario
(HF50þTPWL150), the EnKF ensemble is the same as in HF200,
though only 50 of the models were simulated at high fidelity. The
other 150 members were simulated using TPWL, with the TPWL
models constructed as described earlier.
5.2. Model 1: history matching results

Fig. 8 shows both the history match and the prediction of oil
production rate for the first production well for the three cases.
These results were obtained by re-running the final updated
ensemble for the entire simulation period. Shown in
Fig. 8(a) are the results from the initial ensemble (solid lines,
blue in the online version), with the reference (true) solution
(dashed lines, red in the online version). It is clear that the
variability in the initial ensemble is large. Fig. 8(b) shows the
results from the 200 realizations after EnKF assimilation for
HF200 for Producer 1. These results are representative of those
for all of the producers. We see that, for the history matching
period, the spread of the ensemble results is significantly reduced
relative to that in Fig. 8(a), which demonstrates that the assim-
ilation of production data improves the match between all
ensemble members and the true solution significantly, as
expected. Note also that the reference solution always falls within
the ensemble results (during both the production and prediction
periods).

Fig. 8(c) shows the results obtained for HF50. Because of
the small ensemble size, the curves collapse to a very small range.
cer 1 in Model 1. (a) Initial. (b) HF200. (c) HF50. (d) HF50þTPWL150.
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The reference solution does not fall within this range, which
illustrates the degradation that can occur with EnKF when the
size of the ensemble is too small. The results achieved using
HF50þTPWL150 are shown in Fig. 8(d). It is evident that the
general solution is very near that of the reference case (HF200),
and of much better quality than HF50.

Figs. 9 and 10 show the water production rates and water
injection rates for the three cases. For water production, clear
improvement relative to the HF50 case is achieved through the
use of HF50þTPWL150. For water injection, HF50þTPWL150
results in increased spread relative to the reference case which
indicates lower history matching quality compared with the
reference case. This is due to error introduced by the TPWL
approximation. Nonetheless, the true solution always falls within
the ensemble results, in contrast to the results for HF50.

We now quantify the error introduced by TPWL at each
forecast step by computing Eo, Ew and Einj for the TPWL runs (this
requires us to run the same simulations using the full-order
simulator). Fig. 11 displays average TPWL flow rate errors for each
EnKF step. The errors for Eo and Einj decrease as EnKF proceeds as
the variance between realizations decreases. This decrease in
error is to be expected because the test cases become ‘closer’ to
the training runs as the differences between realizations decrease.
The water production rate error increases between the first and
second EnKF steps, but this is only because water breakthrough
has not occurred at the first step. After the second step, this error
also decreases. It is notable that, at the end of the EnKF process,
the largest error is in water injection rate. This is consistent with the
results in Fig. 10, where the spread in the results for the EnKF-TPWL
method is greater than that for HF200, in contrast to the results for
oil and water production rates.

Fig. 11 suggests that it may be useful to develop a TPWL-based
EnKF procedure that uses more training simulations at earlier
stages, when the variability of the ensemble is large, and fewer at
the later stages. An approach along these lines could lead to
improved accuracy and/or reduced computational requirements.
It will be worthwhile to pursue such a procedure in future work.
Fig. 9. Water production rate for initial and final updated ensembles for Pro
Fig. 12 displays the mean log-transmissibility field (expectation)
and the associated variance field computed from the initial ensemble
and the final ensemble for the three scenarios. Before any data have
been assimilated, the mean and variance are largely featureless. After
EnKF assimilation for HF200, it is clear that the mean of the ensemble
captures many of the characteristics of the reference field shown in
Fig. 7(a). In addition, the variance is reduced in the vicinity of well
locations. For HF50, because of ensemble collapse, the variance is
reduced to nearly zero at all locations, meaning that all members of
the ensemble are very similar. It is also clear that the mean of the
ensemble in this scenario contains many extreme values and does not
retain the smoothness and continuity of the reference field. Results
for HF50þTPWL150 resemble the reference HF200 results and do not
display the anomalies evident in the HF50 results. This further
demonstrates the potential of TPWL-based EnKF.

Fig. 13 shows the mean and variance computed using a
recently proposed localization method (Zhang and Oliver, 2010)
with an ensemble of 50 realizations. It is evident that this
localization technique does avoid ensemble collapse and provides
much better results than HF50. However, the variance is still
lower than that of the reference scenario and the mean field is not
as smooth as in the reference case. By these measures, our
method may offer some advantages over localization.
5.3. Model 2: problem set up

This example, designated Model 2, involves a three-dimen-
sional system defined on a 30�30�10 grid with cells of size
50 m�50 m�50 m. The realizations were generated using
sequential Gaussian simulation in SGEMS (Remy et al., 2008).
The log k field is characterized by a Gaussian distribution with
mean of 5.0 and slog k ¼ 1. A spherical variogram, with ranges of
1000 m, 500 m and 100 m, oriented at 451 to the x-axis, 1351 to
the x-axis, and vertically, was used to generate the realizations.
The parameters to be determined using EnKF are the 25,500
transmissibility values. These transmissibilities are represented
ducer 1 in Model 1. (a) Initial. (b) HF200. (c) HF50. (d) HF50þTPWL150.



Fig. 10. Water injection rate for initial and final updated ensembles for Injector 1 in Model 1. (a) Initial. (b) HF200. (c) HF50. (d) HF50þTPWL150.

Fig. 11. Average TPWL error at each EnKF step.
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using 300 parameters in the K–L expansion (lm¼300). Other
parameters (porosity of 0.3, initial water saturation of 0.2) are
assumed known. The 18,000 state variables are reduced to a total
of 500 variables, as in the previous example.

There are eight injectors and eight producers arranged in a
five-spot pattern. One log-transmissibility realization, along with
the well locations, is shown in Fig. 14. All wells are assumed to be
stimulated to the same level, and their well indices are set to be
4000 md-ft. The reservoir is initially saturated with oil and it is at
a pressure of 5800 psi. The simulations are run for 800 days. The
production wells operate at a BHP of 5600 psi and the injection
wells operate at 6000 psi. Of the total 800-day production period,
the first 600 days are treated as the production history and the
second 200 days are treated as the prediction period. Data for Qo

and Qw at producers, and Qinj at injectors, are provided every 30
days. This gives a total of 20 assimilation steps with 24 data
measurements at each step. Gaussian errors with zero mean and a
standard deviation of 3 stb/day are added to the true production
data to create an ensemble of noisy data.

We again consider three different scenarios: the first (refer-
ence) case, denoted HF200, includes 200 high-fidelity members;
the second scenario, HF50, contains 50 high-fidelity members;
and the third scenario, HF50þTPWL150, entails 50 high fidelity
members and 150 TPWL members.
5.4. Model 2: history matching results

Figs. 15–17 present the history matching results for oil
production rate, water production rate and water injection rate,
respectively, for the first producer and injector for the initial
ensemble and for the three EnKF scenarios. These results are
representative of those for the other wells. The variability in the
initial ensemble is reduced in all three scenarios. We again
observe reasonable agreement between the HF200 and
HF50þTPWL150 scenarios, indicating the viability of our
approach. There is some increased spread in the EnKF results
using HF50þTPWL150 relative to those for HF200, but the
inaccuracy and ensemble collapse evident in the HF50 results
are clearly avoided.

In terms of computational effort, the runtime for the full-order
models for this case was about 100 s on an Opteron dual-core
CPU. The TPWL models, by contrast, required less than 1 s to run.
The overall speedup is much less than this ratio, however,
because the construction of the TPWL model requires simulating
50 training cases plus additional overhead. Larger overall speed-
ups could be achieved by using fewer training simulations at later
stages of the EnKF (when the variability of the ensemble is
relatively small), or by using more total realizations in the
ensemble (but still taking only 50 training runs). In either case,
a larger fraction of the models could be simulated using TPWL,
which would reduce computational requirements.



Fig. 12. Mean and variance of the initial ensemble and final ensembles for the three scenarios (Model 1). (a) Mean: initial. (b) Variance: initial. (c) Mean: HF200.

(d) Variance: HF200. (e) Mean: HF50. (f) Variance: HF50. (g) Mean: HF50þTPWL150. (h) Variance: HF50þTPWL150.
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6. Concluding remarks

In this paper, we introduced a reduced-order modeling proce-
dure for data assimilation based on trajectory piecewise linear-
ization (TPWL). By linearizing around previously simulated
training runs and performing model-order reduction using
proper orthogonal decomposition, the TPWL description is able
to provide approximate simulation results for new geological
models. The geological model can be described in terms of
the log-transmissibility field, and this field can in turn be
represented using a Karhunen–Lo�eve expansion. The overall
procedure thus provides a very concise (low-order) descrip-
tion of both the dynamic states and the geological model para-
meters. This enables simulations for new geological models to be
performed very efficiently. The TPWL model construction, how-
ever, does require multiple training simulations and additional
overhead computations. Thus, this approach is only appropriate
when many models are to be simulated, as is the case with
ensemble-based data assimilation methods.

In this work the TPWL surrogate model was incorporated into an
ensemble Kalman filter (EnKF) history-matching procedure. The
combined method was tested for both two- and three-dimensional
systems, with only 1/4 of the realizations in the ensemble simulated
at high fidelity (full order). For both systems, the new procedure was



Fig. 13. Mean and variance of the final ensemble using localization (Model 1). (a) Mean. (b) Variance.

Fig. 14. Log-transmissibility (for one realization) and well locations for Model 2. Circles indicate producers and triangles indicate injectors.

Fig. 15. Oil production rate for initial and final updated ensembles for Producer 1 in Model 2. (a) Initial. (b) HF200. (c) HF50. (d) HF50þTPWL150.
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shown to provide results in reasonably close agreement with
reference scenarios in which all simulations were performed at high
fidelity. Significantly, results using the proposed method were much
better than those using EnKF with a small ensemble. The speedups
obtained for the EnKF example presented here are, however, still
modest. Specifically, even though only 1/4 of the models (50 out of



Fig. 16. Water production rate for initial and final updated ensembles for Producer 1 in Model 2. (a) Initial. (b) HF200. (c) HF50. (d) HF50þTPWL150.

Fig. 17. Water injection rate for initial and final updated ensembles for Injector 1 in Model 2. (a) Initial. (b) HF200. (c) HF50. (d) HF50þTPWL150.
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200) were simulated at high fidelity in the HF50þTPWL150
scenarios, the speedups achieved were closer to a factor of two
(rather than a factor of 4) due to the TPWL overhead requirements.
Because our current code is a Matlab implementation, we expect
that the overhead computations could be accelerated, which would
lead to somewhat better speedups.

There are, in addition, several ways in which more substantial
speedups and/or improvements in accuracy could be achieved,
and these should be investigated in future work. As suggested
earlier, the number of high-fidelity simulations could be opti-
mized (adaptively), which would lead to more full-order simula-
tions when the variability of the ensemble is large and fewer as
the variability decreases at later EnKF stages. The selection of
which realizations to use for high-fidelity simulation should also
be investigated. Our approach here applies a clustering procedure
based on a particular metric, but other treatments for this
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determination, and other metrics, should be considered. The
overall method is also expected to benefit, in terms of speedup,
if larger numbers of realizations are included in the ensemble. The
point selection strategy has significant impact on TPWL perfor-
mance, and alternate treatments should be investigated.

It may also be possible to enhance the accuracy of the under-
lying TPWL representation, and progress along these lines could
lead to benefits in application areas beyond data assimilation. The
linear approximations used in TPWL could conceivably be
improved by introducing semi-analytical estimates for key
higher-order effects into Eq. (13). In addition, it will be of interest
to explore approaches other than Galerkin projection, such as
least-squares, for reducing the number of equations to be solved
in TPWL. The optimal use of local resolution in TPWL should also
be investigated.

The K–L representation applied here is best suited for use with
Gaussian fields. For non-Gaussian fields, the application of TPWL
with geological models represented in terms of kernel principal
component analysis (Sarma et al., 2008) should be investigated.
Finally, it will be useful to evaluate the performance of TPWL for
other history matching techniques, including both gradient-based
and stochastic procedures.
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