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Summary
The optimization of large-scale multiwell field-development proj-
ects is challenging because the number of optimization variables 
and the size of the search space can become excessive. This 
difficulty can be circumvented by considering well patterns and 
then optimizing parameters associated with the pattern type and 
geometry. In this paper, we introduce a general framework for 
accomplishing this type of optimization. The overall procedure, 
which we refer to as well-pattern optimization (WPO), includes a 
new well-pattern description (WPD) incorporated into an underly-
ing optimization method. The WPD encodes potential solutions 
in terms of pattern types (e.g., five-spot, nine-spot) and pattern 
operators. The operators define geometric transformations (e.g., 
stretching, rotating) quantified by appropriate sets of parameters. 
It is the parameters that specify the well patterns and the pattern 
operators, along with additional variables that define the sequence 
of operations, that are optimized. A technique for subsequent 
well-by-well perturbation (WWP), in which the locations of wells 
within each pattern are optimized, is also presented. This WWP 
represents an optional second phase of WPO. The overall opti-
mization procedure could be used with a variety of underlying 
optimization methods. Here, we combine it with a particle-swarm-
optimization (PSO) technique because PSO methods have been 
shown recently to provide robust and efficient optimizations for 
well-placement problems.

Detailed optimization results are presented for several example 
cases. In one case, multiple reservoir models are considered to 
account for geological uncertainty. For all examples, significant 
improvement in the objective function is observed as the algorithm 
proceeds, particularly at early iterations. The use of well-by-well 
perturbation (following determination of the optimal pattern) is 
shown to provide additional improvement. Limited comparisons 
with results using standard well patterns of various sizes dem-
onstrate that the net present values (NPVs) achieved by the new 
algorithm are considerably larger. Taken in total, the optimization 
results highlight the potential of the overall procedure for use in 
practical field development.

Introduction
Field-development optimization entails the determination of the 
number, type, location, trajectory, and drilling schedule for new 
wells such that an objective function is maximized. Examples 
of relevant objective functions include NPV for the project and 
cumulative oil produced. Computational optimization is commonly 
employed to address this problem, with recent applications involv-
ing hundreds of wells (Volz et al. 2008).

A straightforward and common approach for representing 
the solution parameters in field-development optimization is to 
consider a series of wells and to concatenate the well-by-well 
optimization parameters. For problems with many wells, however, 
the number of optimization variables can become excessive and 
the search space can become very large, thereby increasing the 

complexity of the optimization problem. This can lead to a deg-
radation in algorithm performance. Additional complications may 
result when necessary constraints (e.g., minimum well-to-well 
distances) are incorporated, and this can also affect algorithm 
performance negatively.

In this work, we propose a new procedure, called the WPO 
algorithm, which can be used for optimization problems involving 
a large number of wells. WPO consists of a new WPD, followed 
by an optional WWP, with both procedures incorporated into a 
core optimization methodology. WPD represents solutions at the 
level of well patterns rather than individual wells, which leads to 
a significant reduction in the number of optimization variables for 
problems with large numbers of wells. In fact, using WPD, the 
number of optimization variables is independent of the number of 
wells considered. In WPD, each potential solution consists of three 
elements: parameters that define the basic well pattern, parameters 
that define so-called well-pattern operators, and the sequence of 
application of these operators. The well-pattern operators define 
pattern transformations that vary the size, shape, and orientation 
of the well patterns considered in the optimization. The optimum 
number of wells required, in addition to the producer/injector 
ratio, is obtained from the optimization. Optimized solutions based 
on WPD are always repeated patterns (i.e., the method does not 
lead to irregular well placements). The subsequent use of WWP 
allows (limited) local shifting of all wells in the model, which 
enables the optimization to account for local variations in reservoir 
properties.

There have been many previous studies addressing the opti-
mization of well location and type. Most of these investigations, 
however, have focused on optimizations involving relatively few 
wells rather than large-scale field development. For a discussion 
of some of this literature, see Onwunalu and Durlofsky (2010). 
Here, we consider previous investigations that proposed optimi-
zation strategies that share similarities with our procedure. Pan 
and Horne (1998) applied kriging and least-squares techniques to 
determine optimal well scheduling in a pattern waterflood project. 
Ozdogan et al. (2005) used a fixed-pattern approach to optimize 
well count and location of production and injection wells using a 
hybrid genetic algorithm (GA). The procedure, which was applied 
to a field case, reduced the number of simulations required in the 
optimization. Emerick et al. (2009) presented a procedure for 
handling different well-placement constraints such as maximum 
well length and minimum distance between wells. They used a 
two-population binary genetic algorithm where each individual 
belongs to one of the two populations, depending on its feasibility. 
Litvak and Angert (2009) described a robust field-development-
optimization procedure that has been applied successfully to giant 
fields (Litvak et al. 2007; Volz et al. 2008). They considered three 
pattern types—inverted five-spot, inverted seven-spot, and stag-
gered line-drive—to reduce the number of optimization variables. 
These investigators considered different well types and a specified 
set of well spacings in their optimizations.

The optimization procedure introduced here differs from the 
work of Litvak and Angert (2009) in several respects. We use a 
different technique to represent potential field-development sce-
narios, and our algorithm considers very general well patterns. This 
is accomplished through use of pattern-transformation operations, 
which allow patterns to be rotated, stretched, or sheared to an 
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optimal degree. This can be important, for example, in situations 
where there are preferential flow directions in the field. In addition 
to standard patterns, the algorithm accepts user-defined patterns. 
WPD also eliminates the need for well-to-well distance constraints 
in the optimization. This is useful because highly constrained 
optimization problems are generally more difficult to solve than 
less-constrained problems (Engelbrecht 2005). Finally, the use of 
WWP enables the local adjustment of well locations.

The well-pattern description and WWP developed in this work 
can be applied in conjunction with any number of underlying opti-
mization algorithms. Here, we use the PSO algorithm (Kennedy 
and Eberhardt 1995; Eberhardt and Kennedy 1995), which is a 
relatively new global-optimization procedure, as our core algo-
rithm. In recent work (Onwunalu and Durlofsky 2010), we applied 
PSO to several well-placement-optimization problems involving 
vertical, deviated, and dual-lateral wells. The PSO algorithm was 
found to provide better results, on average, than the binary GA 
for the problems considered. Our investigation of PSO for well-
placement optimization was motivated by the study of Matott et 
al. (2006), who compared a variety of optimization algorithms for 
groundwater-remediation problems and found PSO to be generally 
superior to simulated annealing, conjugate gradient, and continu-
ous GAs. PSO tends to require fewer iterations (or function evalu-
ations) relative to other algorithms to produce solutions of similar 
quality (Abdelhalim and Habib 2009; Onwunalu and Durlofsky 
2010), which makes it well suited for use in field-development 
optimization.

This paper proceeds as follows. We first provide a brief descrip-
tion of the PSO algorithm. Next, the overall well-pattern descrip-
tion and well-pattern operators are discussed in detail. We then 
describe our approach for WWP. Results for several examples, 
including a case with geological uncertainty, are then presented. 
For these examples, it is demonstrated that WPO enables a 
wide variety of patterns to be evaluated and provides significant 
improvement in the objective functions.

PSO Algorithm
The PSO algorithm is a procedure for global optimization origi-
nally developed in Kennedy and Eberhardt (1995) and Eberhardt 
and Kennedy (1995). The algorithm is based on social behaviors 
observed in animal groups such as schools of fish, bird flocks, 
and bees. Like GAs, the algorithm is population based. In PSO, 

 individual solutions are called particles and the collection of par-
ticles is called a swarm (these terms are analogous to “individuals” 
and “population” within the context of GAs). The particles interact 
with each other and exchange information regarding the search 
space. The particles can be grouped into neighborhoods within 
which particles interact. The specific topologies of the neighbor-
hoods can affect the performance of the algorithm.

The particle interactions within PSO lead to a cooperative 
search. At each iteration, particles move to new positions in the 
search space on the basis of their acquired experience (i.e., previ-
ous sampling of the search space) and the collective experience 
of other particles in their neighborhood. The particle velocity, 
which is recomputed at each iteration, determines how the particle 
moves through search space. We will briefly describe the variant 
of the PSO algorithm used here. The interested reader is referred 
to Engelbrecht (2005), Clerc (2006a), and Poli et al. (2007) for 
more details about the PSO algorithm.

The PSO variant applied in this work is called a “local best 
PSO.” The approach used here entails neighborhoods that are 
unique to each particle in the swarm. We denote x as a potential 
solution in the search space of a d-dimensional optimization prob-
lem, xi(k) = [xi,1(k), …, xi,d(k)] as the position of the ith particle 
in Iteration k, xi

p kbest ( ) as the previous best solution found by the 
ith particle up to Iteration k, and xi

n kbest ( ) as the position of the 
best particle in the neighborhood of Particle i at Iteration k. Note 
that each particle is always a member of its own neighborhood. 
In addition, the neighborhoods can overlap because a particle can 
reside in multiple neighborhoods.

At each iteration, new position vectors are determined for each 
particle. The new position vector of Particle i, denoted xi(k+1), is 
computed as (Kennedy and Eberhardt 1995; Eberhardt and Ken-
nedy 1995)

x x vi i ik k k t+( ) ( ) + +( ) ⋅1 = 1 � ,  . . . . . . . . . . . . . . . . . . . . . . (1)

where vi(k+1) = [vi,1(k+1), …, vi,d(k+1)] is the velocity of Particle 
i at Iteration k+1 and Δt is a time increment. Here, consistent with 
standard PSO implementations, we set Δt = 1. It should be noted, 
however, that recent work has demonstrated improved results using 
variable Δt (Martinez and Gonzalo 2008, 2009), so this might be 
worthwhile to consider in future investigations. The elements of 
the velocity vector are computed as (Shi and Eberhardt 1998; 
Engelbrecht 2005)

v v D x xi i i
p

ik k c k k k+( ) ⋅ ( ) + ⋅ ( ) × ( ) − ( )1 = 1 1� best⎡⎡⎣ ⎤⎦
+ ⋅ ( ) ⋅ ( ) − ( )⎡⎣ ⎤⎦2 2c k k ki

n
iD x xbest ,  . . . . . (2)

where �, c1, and c2 are weights; D1(k) and D2(k) are diagonal matri-
ces whose diagonal components are uniformly distributed random 
variables in the range (0, 1); and j, j d∈{ }1,2, ,… , refers to the jth 
optimization variable. In the optimizations performed in this paper, 
we set � = 0.721 and c1 = c2 = 1.193. These values were determined 
from numerical experiments performed by Clerc (2006b). We note 
that it is possible to optimize these parameters as part of the overall 
procedure, and this will be investigated in future work.

The velocity equation (Eq. 2) has three components, referred to 
as the inertia (term involving �), cognitive (term involving c1), and 
social (term involving c2) components, respectively (Engelbrecht 
2005). The inertia component provides a degree of continuity in 
particle velocity from one iteration to the next, while the cogni-
tive component causes the particle to move toward its own previ-
ous best position. The social component, by contrast, moves the 
particle toward the best particle in its neighborhood. These three 
components perform different roles in the optimization. The inertia 
component enables a broad exploration of the search space, while 
the cognitive and social components narrow the search toward the 
promising solutions found up to the current iteration.

Fig. 1 shows the velocity computation and solution update in 
Iteration k+1 for a particle in a 2D search space. Here, vi(k) is the 
particle’s previous velocity, while vi

c k( ) is the velocity (cognitive) 
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Fig. 1—Graphical illustration of PSO particle velocity and 
 particle-position updates for a single particle, xi(k), in a 2D search 
space. 
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from the current position [xi(k)] to the particle’s previous best posi-
tion [xi

p kbest ( )], and vi
s k( ) is the velocity (social) from the current 

position to the current neighborhood best position [xi
n kbest ( )]. The 

velocity vectors vi(k), vi
s k( ), and vi

c k( ) are used to compute vi(k+1) 
according to Eq. 2. The new particle velocity, vi(k+1), is added to 
the current position to obtain the new position vector, xi(k+1), as 
shown in Eq. 1.

The PSO algorithm uses a cooperative search strategy that 
involves interaction (communication) between particles. These 
interactions occur between particles that reside in the same neigh-
borhood. The grouping of particles into neighborhoods is referred 
to as the neighborhood topology (Engelbrecht 2005; Clerk 2006a), 
and various such topologies have been devised. Here we use the 
random-variable neighborhood topology (Clerk 2006a) in which 
the members of a neighborhood are determined probabilistically. 
The neighborhood topology is defined by a so-called adjacency 
matrix mij. This (nonsymmetric) matrix contains zeros and ones as 
entries, with an entry of one indicating that Particle i is contained 
in the neighborhood of Particle j. The matrix contains ones on the 
diagonal; otherwise, mij = 1 only when a generated random number 
is less than a specified probability p. The mean number of nonzero 
elements on any row (i.e., the mean number of neighborhoods 
each particle belongs to) is a user-specified value (the particular 
value determines the probability p). Here we take this value to be 
3, as suggested by Clerc (2006a). The neighborhood topology is 
not updated if a better solution is found in the previous iteration. 
A particle will in general belong to multiple neighborhoods. Note 
that the locations of the particles in the search space do not affect 
the neighborhood topologies. The random-variable topology used 
here is robust and reduces the susceptibility of solutions to get 
trapped in local optima. More details on this approach can be found 
in Clerc (2006a) and Onwunalu (2010).

The steps of the PSO algorithm are summarized as follows: 
1. Initialize all particle-position vectors randomly in the fea-

sible space.
2. Initialize all particle-velocity components to zero.
3. Compute the objective function for all particles.
4. While not converged 
   a. Reinitialize the neighborhood for all particles (if no 

improvement).
  b. Update the best particle position in each neighborhood.
  c. Update the previous best position of each particle. 
  d. Compute the new particle positions using Eqs. 1 and 2.
  e. Compute the objective function for all particles.
5. Repeat Step 4 until termination criterion is reached.
Full details regarding the PSO algorithm used in this work can 

be found in Onwunalu and Durlofsky (2010) and Onwunalu (2010). 
We note, finally, that, rather than initialize all particle positions ran-
domly at the start of the optimization, some number of user-defined 
particles (well patterns in the first phase of the optimization, new 
well locations in the second phase) can be specified. This enables 
engineering insight to be incorporated into the optimization.

WPD
The overall WPO algorithm contains as key components the WPD, 
WWP, and the core optimization algorithm (PSO in this case). 

The WPD, which we now describe, treats well patterns (rather 
than individual wells) as the basic unit of representation. Thus, in 
our PSO implementation, each particle represents a repeated well 
pattern. WPD can encode representations for a wide variety of pos-
sible well patterns, in addition to the transformations that are used 
to manipulate these well patterns. It is the parameters that define 
the patterns and quantify the transformations that are optimized 
during the course of the optimization. As indicated in the Intro-
duction, the WPD representation offers several benefits, including 
a reduction in the number of optimization variables, the ability to 
perform optimizations without well-to-well distance constraints, 
and the automatic determination of the optimum number of wells. 
The use of well patterns also presents some challenges. For a robust 
optimization, many different well-pattern types, shapes, and ori-
entations must be considered, and there is a very large number of 
possible combinations of these attributes. Thus, a concise solution 
representation, coupled with an efficient and robust core optimiza-
tion algorithm, is required for this problem.

In the WPD representation, each solution contains three groups 
of optimization parameters: the basic parameters associated with 
each of the different well patterns, parameters that quantify the 
pattern operations, and parameters that define the sequence of 
application of these operations. In the following sections, we will 
describe these three elements in detail.

Basic Well-Pattern Parameters. In order to consider different 
well-pattern types in the optimization, a basic well-pattern repre-
sentation is required. For this purpose, we extend the representation 
for inverted fi ve-spot patterns described in Pan and Horne (1998). 
Our representation uses four variables to represent the well pattern, 
{� 0, �0, a, b}, where (� 0, �0) designate the areal location of the cen-
ter of the pattern [a well may or may not be located at (� 0, �0)] and 
a and b specify well spacings. We represent areal location using (� , 
�) rather than the usual (x, y) because x is used to designate PSO 
solutions. Our extended representation is as follows: 

P = , , , ,0 0I a bwp
� �[ ]{ },  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)

(a) Inverted five-spot (b) Inverted seven-spot 

b

b

b

b

a       a a       a

a          a
2          2

Fig. 3—Well-pattern-element representations for the inverted 
five- and seven-spot patterns. 

(a) Inverted five-spot (b) Inverted six-spot (c) Inverted seven-spot (d) Inverted nine-spot 

Fig. 2—Illustration of different types of well patterns. The solid black circles represent producers, and the circles with arrows 
represent injectors. 
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where Iwp is an integer variable that defines the pattern type (e.g., 
seven-spot, nine-spot). If we consider Np different well-pattern 
types in the optimization, then I Nwp

p∈{ }1,2, ,… , with each value 
corresponding to a different pattern type. The representation shown 
in Eq. 3 is quite simple and is applicable for many pattern types. 
This representation could be readily extended to account for more-
complex well arrangements, such as 13-spot patterns.

Several well patterns, containing different numbers of wells, are 
shown in Fig. 2. It is evident that, using the representation shown in 
Eq. 3, each pattern can be represented in terms of the five variables 
appearing in the equation (Fig. 3). Were we to represent each well 
individually, a five-well pattern would require 10 parameters (� 
and � locations of each well) and a nine-well pattern would require 
18 parameters. Thus, the representation in Eq. 3 clearly leads to 
significant reduction in the dimension of the search space.

In our algorithm, well patterns are in all cases repeated to fill 
the entire reservoir domain. Each pattern has the same size and 
orientation as the base pattern. Wells that fall outside of the reser-
voir boundaries are eliminated from the total set. The well-pattern 
parameters a and b, in addition to the parameters connected to 
the operators, thus determine the total number of wells associated 
with each PSO solution (particle). In this way, WPO determines 
the optimal number of wells. We constrain the minimum and 
maximum values of a and b such that the patterns they define 
are of physically reasonable sizes. The bounds prescribed for a 
and b depend on the bounds used for the parameters associated 

with the pattern operators because these also affect the size of 
the patterns.

The well-pattern representation in Eq. 3 does not allow for 
the general orientation of well patterns. In fields with large-scale 
permeability features or correlations, this representation may be 
suboptimal because patterns cannot align themselves to take advan-
tage of trends in flow. We now describe techniques that generalize 
the representation given in Eq. 3.

Well-Pattern Operators. Well-pattern operators defi ne opera-
tions that can be performed on the encoded well patterns. When 
applied to a pattern, these operators can alter the pattern size, 
shape, orientation, and type (normal vs. inverted), and the loca-
tion of the wells in the pattern. We developed four well-pattern 
operators: rotation, scale, shear, and switch operators. The rota-
tion operator rotates a well pattern, the scale operator increases 
or decreases the size of a well pattern, the shear operator skews 
the shape of a well pattern, and the switch operator changes the 
pattern type from the normal to the inverted form by switching 
production wells to injection wells and vice versa. Other opera-
tors can be readily incorporated into the WPD representation. In 
general, application of these pattern operators requires the speci-
fi cation of several parameters, including the reference well. The 
reference well serves as the origin for the pattern operation, and 
its location remains unchanged after the operation is performed.

(a) Rotation about Well 4 with θ=–25° (b) Rotation about Well 5 with θ =45° 
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Fig. 4—Illustration of the rotation operator applied to an inverted five-spot pattern. 

(a) Scaling with factors {0.75, 1.8} from Well 1     (b) Scaling with factors {1.5, 2.0} from Well 7 
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Fig. 5—Illustration of the scale operator for the inverted five- and seven-spot patterns. 

(a) Shearing with factors {0.45, 0.3} from Well 1           (b) Scaling with factors {−0.50, −0.10} from Well 5 
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Fig. 6—Illustration of the shear operator for the inverted five-spot pattern. 
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We now define the pattern operators and associated parameters. 
Each pattern has wells located at the vertices of a polygon (outer 
wells), and, except for the six-spot pattern, there is also a well at 
the center (Fig. 2). In our numbering convention, the outer wells 
are numbered consecutively in the counterclockwise direction fol-
lowed by the interior wells.

Each pattern operator takes as input a well pattern and produces 
a new well pattern as output. We designate Win to be an N×2 
matrix representing the well locations in the input well-pattern 
element [these well locations are designated (� , �)] and Wout to 
be the corresponding matrix representing the output well locations 
[designated ˆ ˆ� �,( )]. In both matrices, well locations are relative 
to the reference well, located at (� ref, �ref). The two matrices are 
given by

Win

ref ref

ref ref

ref=

1 1

2 2

� � � �

� � � �
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− −

− −

−n n −−
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,  . . . . . . . . . . . . . . . . . . . . . (4)

where Nwp is the number of wells in the well pattern. Most of the 
well-pattern transformations can now be described through the 
following operation:

W MWout in
T T= ,   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5)

where M is a 2×2 transformation matrix. The specific forms of 
M for the relevant pattern operators are described later. We illus-
trate the well-pattern operators using the inverted five-spot and 
seven-spot well patterns, though the operators also apply to other 
well-pattern types.

Rotation Operator. The rotation operator, designated Orot, 
rotates a well pattern by an angle � about a reference well, nref,
n Nwp

ref ∈{ }1,2, ,… . After the rotation, the locations of all wells 
other than nref are altered. The rotation operator does not change 
the size of the well pattern. The rotation of the pattern element is 
achieved through use of M = M� in Eq. 5, where

M�

� �

� �
=

cos sin

sin cos−
⎛
⎝⎜

⎞
⎠⎟

.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6)

This results in clockwise rotation for � > 0 and counterclockwise 
rotation for � < 0. Fig. 4 illustrates the rotation operator applied 
to an inverted five-spot pattern. In Fig. 4a, the initial well pattern 
(solid lines) is rotated about Well 4 with � = −25° (counterclock-
wise rotation). In the final pattern (dashed lines), the locations of 
Wells 1, 2, 3, and 5 differ from those in the initial pattern. Fig. 4b 
shows a 45° (clockwise rotation) about Well 5. 

Scale Operator. The scale operator, Oscale, increases or decreases 
the size of a well pattern. The scale operator requires as arguments 
the reference well in the pattern and axis scaling factors for the 
�  and � directions. If the scale factor for an axis is greater than 
unity, the pattern is stretched in that direction. If the scale factor 
is less than unity, the well pattern is shrunk along that direction. 

 
(a) Switching an inverted five-spot pattern (b) Switching an inverted seven-spot pattern 
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Fig. 7—Illustration of the switch operator for the inverted five- and seven-spot patterns. 
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Fig. 8—Application of one pattern operator. 
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A nonuniform scale matrix, Msc, is used to achieve the scaling of 
a well pattern:

Msc =
0

0

S

S
�

�

⎛
⎝⎜

⎞
⎠⎟

,   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7)

where S�  and S� are axis scaling factors. Figs. 5a and 5b illustrate 
the scale pattern operator applied to the inverted five-spot and 
inverted seven-spot patterns, respectively. In Fig. 5a, the well pat-
tern is scaled relative to Well 1 using scaling factors {0.75, 1.8}. 
In Fig. 5b, the inverted seven-spot pattern is scaled with factors 
{1.5, 2.0} relative to Well 7. Because the pattern is replicated over 
the entire field, it is clear that these scaling parameters will have 
a strong effect on the total number of wells. In the examples, the 
scaling factors are constrained to be between 0.5 and 2. 

Shear Operator. The shear operator, Oshear, alters the shape of a 
well pattern by shearing (skewing) the well pattern in the �  and � 
directions. The shear operator requires three arguments: a reference 
well and axis shearing factors for the �  and � directions. These 
factors indicate the amount of shearing in each direction relative to 
the other direction. The shearing of the pattern element is achieved 
using a shear matrix, Msh:

Msh =
1

1

H

H
�

�

⎛
⎝⎜

⎞
⎠⎟
,   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8)

where H�  and Hη are axis shearing factors. Care must be taken in 
defining the minimum and maximum values of H�  and Hη because 
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Fig. 9—Application of two pattern operators (shear and scale).
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Fig. 10—Permeability field (Example 1). 

TABLE 1—ECONOMIC PARAMETERS  
FOR NPV COMPUTATION 

Well cost 3 106 (USD) 
Oil price (Examples 1, 3, 4) 60 (USD/STB) 
Oil price (Example 2) 80 (USD/STB) 
Gas price (Example 2) 2.5 (USD/MSCF) 
Water-production cost (Examples 1, 3, 4) 5 (USD/STB) 
Water-injection cost (Examples 1, 3, 4) 5 (USD/STB) 
Water-production cost (Example 2) 10 (USD/STB) 
Water-injection cost (Example 2) 10 (USD/STB) 
Discount rate, r 0.10 
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well locations become colinear if H�  and Hη approach −1 or 1. In 
the examples, the shearing factors are constrained to be between 
−0.5 and 0.5. Fig. 6 illustrates the shear operator applied to an 
inverted five-spot pattern.

Switch Operator. The switch operator, Oswitch, switches a well 
pattern from the normal to the inverted form and vice versa. This is 
achieved by switching the type (producer, injector) of all the wells 
in the pattern. The switch operator does not require any arguments.

The switch operator offers some benefits for the overall WPO 
algorithm. It enables the algorithm to consider both normal and 
inverted forms of the patterns without increasing the number of 
patterns that need to be defined in the algorithm. It also allows the 
algorithm to consider different producer-/injector-well ratios for 
the same well-pattern parameters. For example, the normal seven-
spot and inverted seven-spot patterns have producer/injector ratios 
of 1:2 and 2, respectively (Craig 1971). Figs. 7a and 7b illustrate 
the switch pattern operator applied to the inverted five-spot and 
inverted seven-spot patterns, respectively. 

Representation of Well-Pattern Operators. As described, each 
pattern operator (except the switch operator) requires the specifica-
tion of a reference well in the pattern and at most two additional 
operator arguments. This allows us to use a simple generic repre-
sentation for these pattern operators that can be readily extended 
to other operators that may be introduced.

Let Oj  represent the jth pattern operator, where O O Oj ∈{ rot scale, ,
O O }shear switch, . In the WPD representation, Oj is represented as 

Oj
j j jn

= ,1 ,2
ref

reference well

,{ } { }, arg arg

ooperator arguments

⎡

⎣
⎢

⎤

⎦
⎥,  . . . . . . . . . . . . . . . . . . . . . . (9)

where nj
ref  is the reference well for Operator j and {argj,1, argj,2} is 

the list of arguments for Operator j.
In our implementation, the arguments appearing in Eq. 9 are 

represented as normalized variables between zero and unity. Each 
variable is then rescaled as required before being used in the 
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Fig. 11—NPV of the best solutions vs. number of simulations for the four optimization runs using one and four pattern opera-
tors (Example 1).

TABLE 2—OPTIMIZATION RESULTS USING WPD WITH ONE PATTERN OPERATOR 
(EXAMPLE 1) 

   Well Count 

Run Best Pattern NPV (million USD) Producers Injectors 

1 Inverted 9-spot 2,591 26 10 
2 Inverted 7-spot 2,449 28 14 
3 Inverted 6-spot 2,575 28 9 
4 Inverted 9-spot 2,597 30 9 

Average 2,553   

TABLE 3—OPTIMIZATION RESULTS USING WPD WITH FOUR PATTERN OPERATORS 
(EXAMPLE 1) 

   Well Count 

Run Best Pattern NPV (million USD) Producers Injectors 

1 Inverted 9-spot 2,754 30 9 
2 Inverted 7-spot 2,872 28 14 
3 Inverted 9-spot 2,698 33 9 
4 Inverted 9-spot 2,773 28 8 

Average 2,774   
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pattern operation. This enables appropriate exchange of informa-
tion between particles that are acted on by different operators 
during the course of the particle-swarm optimization.

Solution Representation in WPD. We now describe the overall 
representation of potential solutions using the well-pattern descrip-
tion. Each solution (particle within our PSO implementation) 
consists of the basic well-pattern defi nition and parameters (Eq. 3) 
and the representation for the pattern operators (Eq. 9). In addition, 
each solution contains a set of variables that defi nes the sequence 
of pattern operations when multiple operators are applied. The ith 
PSO particle, xi, is thus encoded as 

xi

i
wp

i i i iI a b

=

, , , ,0 0

pattern paramet

� �⎡⎣ ⎤⎦{ }
eers operator se

…S S Si i i o,1 ,2 ,, , , N{ }
qquence pattern

…O O O Ni i i o,1 ,2 ,, , ,{ }
ooperators

⎡

⎣
⎢

⎤

⎦
⎥
,

 . . . . . . . . . . . . . . . . . . . . . . . (10)

where I a bi
wp

i i i i, , , ,0 0� �⎡⎣ ⎤⎦{ } are the pattern parameters for Particle 
i, No is the number of pattern operators, O O O Ni i i o,1 ,2 ,, , ,…{ } pro-

vides the list of pattern operators, and S S Si i i o,1 ,2 ,, , ,… N{ } represents 
the sequence of application of the pattern operators. Each Si,j, 
Si j o, 0,1,2, ,∈{ }… N , is an integer variable representing the index 

of a pattern operator. For example, if Si,1 = 1 and Si,2 = 2, then 
the pattern operator Oi ,1 is applied first and pattern operator Oi ,2 
is applied second (using the well pattern generated from Oi ,1). If 
Si,j = 0, then the jth pattern operator (Oi j, ) is skipped.

All components of any particle xi, which represents a PSO 
solution, are treated as real numbers. Some of the optimization 
parameters, such as nj

ref  and Si,j, however, are integers. Where 
necessary, we determine integer values from real values by simply 
rounding to the nearest integer.

Examples of using one pattern operator and two pattern opera-
tors in sequence are illustrated in Figs. 8 and 9, respectively. In 
Fig. 8, the rotation operator is applied to the initial well pattern 
(Fig. 8a) and the resulting pattern (Fig. 8b) is repeated over the 
entire domain (Fig. 8c). In the example in Fig. 9, the shear and 
scale operators are applied in sequence to an inverted seven-spot 
pattern. As indicated, wells that fall outside the reservoir bound-
aries are eliminated. It is evident from these figures that a wide 
variety of well patterns can be generated (and thus evaluated in the 
WPO procedure) using the WPD representation. 

WWP
Optimization using WPD produces solutions that consist of 
repeated well patterns. It is possible to improve the solution 
further by performing optimizations that involve perturbing the 
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Fig. 12—Well locations of the best solutions using one operator and four operators (Example 1). Oil saturation at t = 500 days 
shown as background. 

TABLE 4—NPV OF UNOPTIMIZED STANDARD WELL PATTERNS  
FOR DIFFERENT WELL SPACINGS* 

   Well Count 

Spacing Pattern NPV (million USD) Producers Injectors 

30 acres Inverted 5-spot 1,432 25 25 
 Inverted 6-spot 749 25 45 
 Inverted 7-spot 991 65 30 
 Inverted 9-spot 1,321 75 25 

40 acres Inverted 5-spot 1,895 16 16 
 Inverted 6-spot 1,557 48 16 
 Inverted 7-spot 245 44 20 
 Inverted 9-spot 805 48 16 

50 acres Inverted 5-spot 2,151 16 16 
 Inverted 6-spot 1,780 16 28 
 Inverted 7-spot 467 40 20 
 Inverted 9-spot 707 16 28 

*  The well patterns are aligned with the reservoir boundaries (Example 1). 
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well locations determined using WPD. We refer to this as WWP. 
Following WWP, the basic patterns remain essentially intact but 
the well locations within the patterns are shifted to improve the 
objective function.

We again use the PSO algorithm for the WWP optimization. 
Here, however, each PSO particle xi contains a concatenation of 
the perturbations to be applied to the well locations determined 
from WPD: 

xi = , , ,1 1 2 2� � � �� � � �
Well 1 Well 2

… …, , , , ,� � �� � �n n

nWell

NN N

N

, ��
Well

{ }, 

 . . . . . . . . . . . . . . . . . . . . . . . (11)

where N is the total number of wells as determined in the WPD 
optimization and Δ�n and Δ�n represent the perturbations of the 
spatial locations of Well n. Before simulation, the actual well loca-
tions are obtained by adding the perturbations to the corresponding 
well location from the WPD solution. In our implementation, the 
minimum and maximum values of Δ�n and Δ�n are constrained 
to keep wells from shifting from one pattern to another. We note 
that WWP could also be used for other determinations, such as the 
completion interval for each well in 3D problems. Elimination of 
wells could also be considered through inclusion of an active/inac-
tive optimization parameter for each well. Neither of these options 
was considered in this work, though they could be incorporated 
easily into the WWP procedure (the dimension of the search space, 
however, will increase).

The WWP procedure introduces an efficient local search, which 
leads to improved solutions (as will be demonstrated). Improved 
solutions are achieved because the optimized well locations now 
account for local variations in porosity, permeability, and other 
properties. The two procedures—WPD and WWP—are comple-
mentary because WPD provides the ability to search efficiently on 
the large scale and to optimize well count, while WWP enables 
local adjustments.

Although the dimension of the search space in WWP is the 
same as that using well-by-well concatenation (for cases where 
the number of wells is specified), WWP has several advantages 
over well-by-well concatenation. Specifically, in WWP, wells are 
allowed to move only a limited number of gridblocks in each direc-
tion. This constraint can be incorporated easily into the optimiza-
tion, in contrast to the general well-distance constraints required 
when using well-by-well concatenation. In addition, because wells 
can move only locally in WWP, the size of the search space is much 
smaller than that for well-by-well concatenation (despite the fact 
that the dimension of the search space is the same in both cases). 
Finally, in WWP the number of wells (as determined from the 
WPD optimization) is fixed and does not need to be determined as 
part of the optimization. Using well-by-well concatenation, how-
ever, the number of wells should also be an optimization variable, 
which further complicates the optimization.

It is important to note that the use of WPD followed by WWP 
cannot be expected to provide the overall global optimum that 
could (theoretically) be achieved through use of well-by-well 
concatenation. This is because well-by-well concatenation entails 
a broader search, which should ultimately lead to a better global 
optimum than that resulting from the use of WPD plus WWP. 
However, the WPD-plus-WWP search is much more efficient, so 
this approach is expected to provide better solutions given practical 
computing resources.

Examples
We now apply the WPO procedure to four example problems. In all 
cases, we maximize NPV using the procedures described earlier. 
The economic parameters used for the computation of NPV are 
provided in Table 1. Simulation runs for Examples 1, 3, and 4 are 
performed using Stanford’s General Purpose Research Simulator, 
GPRS (Cao 2002; Jiang 2007). The 3DSL streamline simulator 
(3DSL 2006) is used for Example 2. Because of the stochastic 
nature of the PSO algorithm, we perform multiple optimization 
runs with the same set of input parameters. This enables us to 
gauge the degree of variability in the optimization results. In the 
figures in this section, x-grid and y-grid refer to gridblock locations 
in the simulation models.

Example 1: WPD Optimizations Using Different Numbers of 
Operators. In this example, we perform optimizations using either 
one or four WPD operators per particle. We optimize using only 
WPD; the WWP optimization is not applied for this case.

We consider a synthetic, heterogeneous, 2D reservoir model 
containing 100×100 gridblocks, with each block being 100×100×40 
ft. The permeability field, shown in Fig. 10, was generated geo-
statistically using an exponential variogram model with oriented 
correlation lengths of 1,000 and 5,000 ft. Porosity varies from 
block to block and is correlated with permeability. The reservoir 
model initially contains oil and water (So,i = 0.80, Sw,i = 0.20). The 
oil viscosity µo is 1.20 cp, and oil compressibility co is 2.0×10−5 
psi−1. For water, we specify µw = 0.31 cp and cw = 2.9×10−6 psi−1. 
Relative permeability endpoints for oil and water are 0.85 and 
0.30, respectively. The initial reservoir pressure is 5,000 psi. The 
production and injection wells operate under bottomhole pressure 
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Fig. 13—Logarithm of permeability field (Example 2). 

TABLE 5—OPTIMIZATION RESULTS USING WPD WITH FOUR PATTERN OPERATORS 
(EXAMPLE 2) 

   Well Count 

Run Best Pattern NPV (million USD) Producers Injectors 

1 Inverted 5-spot 1,377 16 15 
2 Inverted 5-spot 1,459 15 15 
3 Inverted 5-spot 1,460 15 15 
4 Inverted 5-spot 1,372 15 15 
5 Inverted 5-spot 1,342 13 15 

Average 1,402   
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(BHP) constraints of 1,000 and 6,000 psi, respectively. The total 
production time is 3,650 days.

The four well-pattern types shown in Fig. 2 are considered in 
the optimizations. We perform optimizations using one and four 
operators. For the optimizations that apply one operator per par-
ticle, we use 20 PSO particles. In these optimizations, although 
each particle has only one pattern operation performed on it, the 
particular operator varies with particle and iteration. For the opti-
mizations that apply four pattern operators per particle, we use 40 
particles. More particles are used in the optimizations with four 
operators because the number of variables is approximately twice 
that of the optimizations with one operator. Four optimizations 
are performed in each case, and each optimization is run for 40 
iterations. Function evaluations are performed in parallel using a 
cluster of up to 40 processors.

Figs. 11a and 11b show the evolution of the NPV of the best 
development scenario vs. number of simulations for the optimiza-
tions using one and four operators. Each thin curve corresponds 
to a different optimization run, and the heavy curve depicts the 
average of the best solutions from the four runs. NPV clearly 
improves with iterations, with the largest improvement coming 
at early iterations. Tables 2 and 3 summarize the results for the 
optimization runs with one and four operators, respectively. In 
the optimizations with one operator, the inverted nine-spot is the 
best pattern, with an NPV of USD 2,597 million (Table 2). This 
development scenario has 30 producers and nine injectors. For the 
optimizations with four operators, the inverted seven-spot pattern, 
containing 28 producers and 14 injectors, gives the best scenario 
with an NPV of USD 2,872 million (Table 3).

Although the results in Tables 2 and 3 suggest that the use of 
four operators provides generally better NPVs than those using one 
operator, it must be kept in mind that twice as many simulations 
are performed in the four-operator cases than in the one-operator 
cases. However, assessment of NPVs for the four-operator runs 
after 800 simulations indicates that these, on average, are superior 

to those from the one-operator runs after 800 simulations (average 
NPV of USD 2,688 million for the four-operator runs vs. USD 
2,553 million for the one-operator runs). The maximum NPV for 
the four-operator runs after 800 simulations (USD 2,872 million) 
is also considerably higher than that from the one-operator runs 
(USD 2,597 million). Therefore, in all subsequent WPD optimiza-
tions, four operators will be used.

Figs. 12a and 12b show the well locations from the best solu-
tions in the optimizations with one and four operators, respectively. 
The black dots inside white circles represent producer wells, while 
a white circle with a black X designates an injection well. In 
these figures, the basic pattern element is depicted by the white 
lines. The oil saturation at 500 days is shown as background. It 
is evident that the best patterns, in both cases, are rotated with 
respect to the reservoir boundaries. This results from the effect of 
reservoir heterogeneity on the flow field. We note that, based on 
the oil-saturation maps, both patterns appear to provide efficient 
sweep (recovery factor is very high at the end of the runs in both 
cases). Because the optimizations seek to maximize NPV rather 
than cumulative oil produced, a number of other factors, such as 
well cost, the costs associated with water injection and production, 
and the timing (because of discounting) of costs and revenues, have 
a strong effect on the determination of the optimal scenario.

Next, we compare these results with those obtained using stan-
dard well patterns (no optimization is performed). Results for stan-
dard patterns aligned with the reservoir boundaries are presented 
in Table 4. We consider well patterns with spacings from 20 to 50 
acres. This range was determined on the basis of the bounds speci-
fied for a and b and for the pattern operator parameters. Results 
for standard patterns with 20-acre spacings give negative NPVs 
and are not presented in the table. It is clear that the optimization 
results are significantly better than those for the standard patterns, 
which highlights the potential benefits of using our procedure for 
large-scale optimizations.

Example 2: WPD and WWP Optimizations in Reservoir With 
Irregular Boundary. Here, we apply the WPD and WWP proce-
dures to maximize NPV in a reservoir with irregular boundaries. 
The simulator used for this case is 3DSL (3DSL 2006). The 2D 
synthetic reservoir model contains 80×132 gridblocks, with each 
block being 250×200×10 ft. Fig. 13 depicts the logarithm of the 
permeability fi eld. Net/gross ratio varies from block to block, 
with blocks outside the boundary (feasible region) having zero 
net/gross. The reservoir initially contains oil, gas, and water (So,i = 
0.80, Sg,i = 0.01, Sw,i = 0.19). For fl uid viscosities, we specify µo = 
1.2 cp, µg = 0.01 cp, and µw = 0.31 cp. Relative permeability end-
points for oil and water are 1.0 and 0.1, respectively. The initial 
reservoir pressure is 2,700 psi. The production and injection wells 
operate under BHP constraints of 1,200 and 2,900 psi, respectively. 
The total production time is 1,825 days.
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Fig. 14—NPV of best result from WPD and average NPV of the 
WWP solutions vs. number of simulations (Example 2). 
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TABLE 6—OPTIMIZATION RESULTS USING THE WWP 
PROCEDURE (EXAMPLE 2) 

  Increase Over WPD  

Run NPV (million USD) (million USD) % 

1 1,777 317 21.7 
2 1,787 327 22.4 
3 1,776 316 21.6 
4 1,801 341 23.4 
5 1,771 311 21.3 

Average 1,782 322 22.1 
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All of the pattern types shown in Fig. 2 are considered in the 
WPD optimizations. Each optimization run uses 40 particles with 
four pattern operators applied. The runs proceed for 40 itera-
tions. Five such WPD runs are performed. As is evident in Fig. 
13, the region in which wells can be placed is irregular. In the 
WPD optimizations, well patterns are still replicated throughout 
the reservoir. Wells that fall outside the boundaries are eliminated 
from the total set, so only those wells located in the reservoir are 
included in the simulations.

Following the five WPD runs, we perform five WWP optimi-
zations. The WWP optimizations are based on the best solution 
from the WPD runs (meaning the perturbations are computed with 
respect to the best configuration determined from the five WPD 
optimizations). In the WWP runs, the optimization parameters are 
defined such that the wells always fall within the feasible region 
after the perturbations.

Table 5 presents the results for the five WPD optimizations. 
The results for the five runs are quite consistent, with the inverted 
five-spot found to be the best pattern in all cases. The maximum 
NPV for the five runs is USD 1,460 million (Run 3).

Using the best pattern from Run 3, five WWP optimizations 
are then performed. The results are presented in Fig. 14, where 
the best WPD solution is shown (thick solid line, corresponding 
to the first 1,600 simulations) along with the average of the five 
WWP runs (solid line with circles). It is clear that NPV increases 
in both phases (WPD and WWP) of the optimization and that 
WWP provides clear improvement in the WPD results. Results 
from all five WWP runs are shown in Fig. 15, where the NPV of 
the best scenario in each run (thin lines) is displayed along with 
the average curve. It is evident that all of the WWP runs provide 
an increase in NPV relative to the best WPD solution (dot-dash 
line). Results from the five WWP runs are summarized in Table 6. 
The maximum NPV is USD 1,801 million, which represents an 
increase of USD 341 million (23.4%) over the best WPD result 
(Run 3 in Table 5).

Figs. 16a and 16b show the well locations from the best WPD 
and WWP optimization runs. Although the perturbations evident 

in Fig. 16b do not appear that dramatic, this configuration results 
in a significant improvement in NPV over the unperturbed con-
figuration.

Finally, we note that solving this optimization problem using 
a traditional approach (i.e., through use of concatenation of well 
parameters) will present some difficulties. For example, constraints 
must be introduced to keep wells within the feasible region and to 
satisfy minimum well-to-well distance requirements. Incorporation 
of these constraints into the optimization may limit the effectiveness 
of standard algorithms, particularly for large numbers of wells.

Example 3: WPD and WWP Optimizations Over Multiple 
Reservoir Models. In this example, we account for geological 
uncertainty by performing the optimizations over fi ve realizations 
of the reservoir model. In each phase of the optimization, we 
optimize expected NPV, which is simply the average of the NPVs 
over the fi ve models. The reservoir model consists of 63×63 blocks, 
and each gridblock is 100×100×30 ft. The permeability fi elds were 
generated geostatistically using an exponential variogram model 
with correlation length of 1,000 ft. Porosity varies from block to 
block and is correlated with permeability.

We perform four WPD optimizations with four pattern opera-
tors. Using the best solution from the WPD runs, we then perform 
four WWP optimizations. Each optimization run contains 40 par-
ticles and is run for 40 iterations.

Table 7 shows the optimization results from the WPD runs. 
The best pattern is consistently a normal nine-spot pattern. Note 
that, although WPD encodes only the inverted forms of the well 
patterns, the optimization consistently switches from the inverted 
to the normal nine-spot. The best scenario (Run 2) has an expected 
NPV of USD 832 million and contains seven producers and 29 
injectors.

Fig. 17 shows the evolution of NPV in the best WPD run and 
the average NPV of the four subsequent WWP runs. Again, NPV 
increases with iteration during both phases of the optimization. The 
increase in NPV using WWP is substantial in the first few itera-
tions. Fig. 18 shows the evolution of NPV for the best scenarios 
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Fig. 16—Well locations for the best WPD and WWP solutions. Logarithm of permeability field is shown as background (Example 2). 

TABLE 7—OPTIMIZATION RESULTS USING WPD WITH FOUR PATTERN OPERATORS 
(EXAMPLE 3) 

   Well Count 

Run Best Pattern NPV (million USD) Producers Injectors 

1 Normal 9-spot 705 8 30 
2 Normal 9-spot 832 7 29 
3 Normal 9-spot 723 9 27 
4 Normal 9-spot 757 7 30 

Average 754   
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in the four WWP optimizations (thin lines) along with the average 
result. There is very little variation between the four WWP opti-
mizations. Table 8 summarizes the results of the WWP optimiza-
tions. The WWP procedure improves the NPV in each case, with 
a maximum increase in NPV of USD 290 million (34.9%) over 
the best WPD result.

Figs. 19a and 19b show the well locations for the best solutions 
from the two phases of the optimization, with the permeability field 
of one of the realizations shown in the background. The degree of 
perturbation of the well locations, evident in Fig. 19b, is greater 
than that observed in Example 2. Fig. 20 shows the NPVs for 
each of the five realizations. We see that the use of WWP provides 
improvement for all realizations.

Example 4: Comparison of WPO to Well-by-Well Concatena-
tion. In this example, we compare optimizations using WPO to 
optimizations using concatenated well parameters. We use the 
same reservoir model and economic parameters as in Example 
1. We fi rst perform fi ve WPD optimizations using four pattern 
operators. Then, as in Examples 2 and 3, we perform fi ve WWP 
optimizations using the best WPD solution. We also perform fi ve 
optimizations with concatenated well parameters using the same 
number of wells as in the best WPD solution.

In the optimizations using the well-by-well concatenation, 
we determine both well type and well locations. Well-to-well 
distance constraints are not included in the optimizations using 
concatenation. This is because, in problems with well-to-well 
distance constraints and relatively large numbers of wells, a sig-
nificant fraction of the solutions can be infeasible, which reduces 
the effective swarm size and, thus, limits the performance of the 
PSO algorithm (we note that this issue could be addressed through 
the implementation of better constraint-handling techniques). It 
is not clear how the lack of well-to-well distance constraints will 
affect the well-by-well concatenation results. On the one hand, 

the actual global optimum for the unconstrained problem cannot 
be less than that for the constrained problem. On the other hand, 
however, the use of constraints may enable a more efficient search. 
The approach used here does not require the determination of the 
optimal number of wells in the well-by-well concatenation runs, 
so, in this sense, the problem setup provides an advantage to this 
approach. Other comparisons between the two techniques are, of 
course, also possible.

In all optimizations, we use the PSO algorithm with 40 par-
ticles in each iteration. We run each WPD optimization for 20 
iterations and then, using the best WPD result, run WWP for 20 
iterations. This results in a total of 1,600 simulations for each full 
WPO optimization. Although we use the same parameters here as 
in Example 1 for the WPD portion of the runs, this case was run 
separately, and five optimization runs were performed (in contrast 
to four optimizations used in Example 1). Thus, these WPD results 
differ slightly from those presented earlier. In the optimizations 
using the concatenated well parameters, we run the optimizations 
with the specified number of wells until we have performed 1,600 
simulations of feasible scenarios (i.e., cases with invalid well con-
figurations are not included in the simulation count).

Fig. 21 shows the evolution of the NPV of the best WPD solu-
tion and the average of the five subsequent WWP optimizations. 
The average of the five well-by-well concatenation runs is also 
presented. The WPO procedure provides, on average, a better solu-
tion than the well-by-well concatenation approach. We note that 
the best result (of the five runs) using the concatenation approach 
gave an NPV of USD 3,575 million. The five WWP runs (starting 
from the best WPD optimization) provided NPVs ranging from 
USD 3,667 million to USD 4,022 million. Thus, for this particular 
example, we observe that WPO consistently outperforms well-by-
well concatenation. This demonstrates that WPO indeed provides 
a useful and concise solution representation.

Conclusions
In this paper, we developed and applied a new procedure for opti-
mizing well placement in large-scale field developments involving 
many wells. The new algorithm, called WPO, consists of a WPD 
incorporated into a core optimization algorithm. In the well-pattern 
description, each solution consists of a representation of a par-
ticular well pattern along with pattern operators that alter the size, 
shape, and orientation of the pattern. Many different well patterns 
can be considered within WPD. It is the parameters associated 
with the pattern descriptions and operators that are determined 
during the optimizations. The encoded well patterns are repeated 
across the field, which enables the optimum number of wells to be 
determined as part of the solution. A desirable feature of WPD is 
that the computational complexity of the optimization is essentially 
independent of the number of wells introduced.
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Fig. 17—NPV of best result from WPD and average NPV of 
the WWP solutions vs. number of simulations per realization 
(Example 3). 
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Fig. 18—NPV of the best WWP solutions vs. number of simula-
tions per realization (Example 3). 

TABLE 8—OPTIMIZATION RESULTS  
USING THE WWP PROCEDURE (EXAMPLE 3) 

  Increase Over WPD 

Run NPV (million USD) (million USD) % 

1 1,116 284 34.1 
2 1,122 290 34.9 
3 1,119 287 34.5 
4 1,120 288 34.4 
5 1,115 283 34.0 

Average 1,184 286 34.4 
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A WWP procedure was also developed. WWP, which can be 
applied as an optional second phase of the optimization, entails a 
local perturbation of the well locations obtained from the WPD 
optimization. For the underlying (core) optimization algorithm, we 
used PSO. PSO has recently been demonstrated to be an efficient 
algorithm for optimizing well locations in subsurface-flow applica-
tions (Matott et al. 2006; Onwunalu and Durlofsky 2010).

The optimization procedure was applied to four example cases. 
Several variants were considered, including the use of one vs. four 
operators for each potential solution and the use of WWP following 
optimization using WPD. The overall optimization was shown to 
result in significant increases in the objective function, particularly 
at early iterations, in all cases. In one example, the WPO results for 
NPV were compared to those for standard well patterns of various 
sizes. The NPVs using WPO were seen to be significantly larger 
than those for standard well patterns, highlighting the potential 
benefit of the algorithm for identifying promising development 
scenarios. Significant improvement in NPV was obtained by per-
forming WWP optimizations on the best solution obtained using 
WPD. For the two examples in which WWP was applied, average 
improvements in NPV of 22 and 34% over the best WPD solutions 
were achieved. We also compared WPO results to those obtained 
from optimizations using concatenated well parameters and found 
that the WPO procedure provided better solutions.

In future work, it will be useful to improve the efficiency of 
the WPO algorithm through use of surrogate (proxy) simulation 
models. This will act to reduce the number of time-consuming 
simulations required. It will also be of interest to investigate the use 
of specialized PSO particle neighborhoods and to consider other 
variants of the two-phase (WPD followed by WWP) optimiza-
tion strategy applied here. Use of a hybrid optimization approach 
involving the combination of PSO with a local optimizer may also 
prove effective. Finally, it may be useful to apply a metaoptimiza-
tion procedure to determine the best PSO parameters to use in the 
optimizations.

Nomenclature
 a, b = well-spacing parameters 
 c = compressibility, psi−1

 c1, c2 =  weight of cognitive and social components in 
velocity equation 

 d = number of optimization variables 
 D1, D2 =  diagonal matrices of random numbers between 0 

and 1 
 H = axis shearing factor 
 Iwp = index of well pattern
 k = index of iteration 
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Fig. 19—Well locations for the best WPD and WWP solutions. Permeability field for one of the realizations is shown as back-
ground (Example 3). 
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 M = transformation matrix 
M�, Msc, Msh =  rotation, scale, and shear transformation matrices, 

respectively
 n = index of a well 
 Np = number of different well patterns 
 Nwp = number of wells in a well pattern 
 No = number of pattern operators 
 O = pattern operator
 P  = pattern representation 
 S = axis scaling factor, operator sequence 

Sgi, Soi, Swi = initial gas, oil, and water saturations, respectively
 v = PSO particle velocity 
 W = matrix of well locations in a well pattern 
 x = PSO particle position
 Δt = time increment 
 Δ� , Δ� = spatial perturbations of a well location 
 � = rotation angle 
 µ = viscosity, cp 
 � , � = areal location of a well 
 � 0, �0 = center of a well pattern
 � = inertia weight 

Subscripts
 g, o, w = gas, oil, and water phases, respectively
 i = index of PSO particle 
 j =  index of pattern operator, index of optimization 

variable 

Superscripts
 c = cognitive 
 nbest = neighborhood best 
 pbest = previous best 
 ref = reference
 s = social 
 wp = well pattern 
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