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1. Introduction

ABSTRACT

We perform a stability and convergence analysis of sequential methods for coupled flow and geomechan-
ics, in which the mechanics sub-problem is solved first. We consider slow deformations, so that inertia is
negligible and the mechanical problem is governed by an elliptic equation. We use Biot’s self-consistent
theory to obtain the classical parabolic-type flow problem. We use a generalized midpoint rule (param-
eter « between 0 and 1) time discretization, and consider two classical sequential methods: the drained
and undrained splits.

The von Neumann method provides sharp stability estimates for the linear poroelasticity problem. The
drained split with backward Euler time discretization («=1) is conditionally stable, and its stability
depends only on the coupling strength, and it is independent of time step size. The drained split with
the midpoint rule (o =0.5) is unconditionally unstable. The mixed time discretization, with o =1.0 for
mechanics and o = 0.5 for flow, has the same stability properties as the backward Euler scheme. The
von Neumann method indicates that the undrained split is unconditionally stable when o > 0.5.

We extend the stability analysis to the nonlinear regime (poro-elastoplasticity) via the energy method.
It is well known that the drained split does not inherit the contractivity property of the continuum prob-
lem, thereby precluding unconditional stability. For the undrained split we show that it is B-stable (there-
fore unconditionally stable at the algorithmic level) when « > 0.5.

We also analyze convergence of the drained and undrained splits, and derive the a priori error estimates
from matrix algebra and spectral analysis. We show that the drained split with a fixed number of itera-
tions is not convergent even when it is stable. The undrained split with a fixed number of iterations is
convergent for a compressible system (i.e., finite Biot modulus). For a nearly-incompressible system
(i.e., very large Biot modulus), the undrained split loses first-order accuracy, and becomes non-conver-
gent in time.

We also study the rate of convergence of both splits when they are used in a fully-iterated sequential
scheme. When the medium permeability is high or the time step size is large, which corresponds to a high
diffusion of pressure, the error amplification of the drained split is lower and therefore converges faster
than the undrained split. The situation is reversed in the case of low permeability and small time step
size.

We provide numerical experiments supporting all the stability and convergence estimates of the
drained and undrained splits, in the linear and nonlinear regimes. We also show that our spatial discret-
ization (finite volumes for flow and finite elements for mechanics)removes the well-documented spuri-
ous instability in consolidation problems at early times..

© 2011 Elsevier B.V. All rights reserved.

shrink bodies, and the thermal stress by heating can affect, in turn,
body deformation [1]. Coupling of flow and mechanics has far-

The study of coupled fluid or heat flow and mechanics is impor-
tant in many fields of science and engineering. Heat can extend or
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reaching consequences for soft tissues such as blood cells [2] and
the brain, whose mechanical response depends critically on hydra-
tion [3]. In geotechnical and geological settings, an increase in pore
pressure leads to a reduction of effective stress [4-6], which may
affect the stability of fractures and faults [7-11]. In petroleum engi-
neering, reservoir geomechanics plays a crucial role in production
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by compaction drive [12], surface subsidence [13], caprock integ-
rity, and well failure [14,15].

Two basic strategies exist to solve the coupled flow and geome-
chanics problem: a fully coupled approach, and a sequential solu-
tion approach [16-23]. In the fully coupled method, the governing
equations of flow and geomechanics are solved simultaneously at
every time step. A converged solution is obtained through itera-
tion, typically using the Newton-Raphson method [9,23-26]. This
approach is unconditionally stable, but requires the development
of a unified flow-geomechanics simulator and can be computa-
tionally expensive.

In the sequential approach, either the flow or mechanical prob-
lem is solved first, then the other problem is solved using the inter-
mediate solution information [16-18,20,21,23,27]. One may iterate
this sequential procedure at each time step until convergence - the
solution is then identical to that obtained using the fully coupled
approach - or perform a fixed number of iterations per time step
- it is common to employ a staggered solution strategy with only
one iteration per time step [26,28-33].

This partitioned approach offers several advantages. The most
important advantage is that a sequential approach makes use of
existing simulation codes for flow and mechanics, and only the
interface between those codes needs to be implemented [34,16].
One can then enjoy the efficiency and wide flexibility in terms of
software engineering. Despite these desirable features, the use of
sequential schemes may be limited by the lack of stability and con-
vergence of the overall operator split.

1.1. Previous work

Stability. Significant efforts to find stable and efficient sequential
methods for coupled poromechanics (or the analogous thermome-
chanics problem) have been pursued in the geotechnical and com-
putational mechanics communities [26,28-30,33,35,36]. Most of
these methods assume that the mechanical subproblem is solved
first. Two sequential schemes are relevant here. One is the drained
split method (the isothermal split in the thermomechanical prob-
lem [30]), and the other one is the undrained split method
[23,26,29] (the adiabatic split in the thermomechanical problem
[30]). The drained method freezes the pressure during the mechan-
ical step. It is well-known that, despite its simplicity, this scheme is
only conditionally stable [28-30]. The undrained method, on the
other hand, freezes the fluid mass content when solving the
mechanics problem. It has been shown that this split respects
the dissipative structure of the continuum problem [30]. The un-
drained method can be applied to linear coupled problems
[23,29,33,35] as well as nonlinear problems [26].

To show unconditional stability of a sequential method via the
energy method, the following three steps must be taken [30,37-40]:

1. Determine whether the continuum problem is contractive. The
appropriate norm to show contractivity (non-negative energy
dissipation) is defined at this step.

2. Show that the operator split corresponding to the sequential
method honors, at the continuum level, the contractivity prop-
erty relative to the norm defined in the previous step. If the
operator split is not contractive, it is not possible to obtain an
unconditionally stable method [41].

3. When the operator split is contractive at the continuum level,
one must then show contractivity at the discrete time level
(B-stability) for the individual subproblems with a specific time
discretization (e.g., backward Euler or midpoint rule). The algo-
rithmic stability of the subproblems for an uncoupled problem
is not applicable to the study of the stability of the coupled
problem because the natural norms of the subproblems are dif-
ferent from that of the coupled problem.

Contractivity of the problem (Step 1) and the undrained-split
operator (Step 2) has been rigorously shown for the thermome-
chanics problem by Armero and Simo [30]. Following this work,
Romero [40] introduced the midpoint rule as an unconditionally
stable time-stepping algorithm for thermoelasticity (Step 3). The
focus of these works is on thermomechanical problems with
fully-dynamic (inertial) mechanics, and leave open several
important questions regarding the stability and convergence of
sequential schemes for coupled flow and quasi-static mechanics.
Quasi-static mechanics produces differential algebraic equations
(DAEs) as a semi-discrete version of the partial differential equa-
tion (PDE), whereas fully-dynamic mechanics produces ordinary
differential equations (ODEs). Indeed, ODEs and DAEs generally ex-
hibit different numerical convergence behavior [42].

Armero and Simo [30] do separately investigate the stability of
the drained and undrained splits for quasi-static mechanics, but
only as an illustrative calculation based on two degrees of freedom
(one wave number), and later Armero [26] proves that the un-
drained split is thermodynamically consistent. However, a com-
plete analysis leading to sharp stability criteria and B-stability for
coupled flow and quasi-static mechanics is still missing.

Convergence. Stability, in general, does not guarantee conver-
gence. While the fully coupled method with a backward Euler time
stepping is typically first-order convergent with respect to time,
the convergence properties of sequential schemes depend strongly
on the details of the splitting strategy, the specific form and dis-
cretization schemes used for the various subproblems, and how
the subproblems communicate during a time step.

Consider a continuum operator .4 that can be additively split as:

y(t) = Ay(t) = (A1 + A)y(t), (1)

where 4 can be linear, or nonlinear, y is a solution vector, and ( ) is
the time derivative. We solve two subproblems in sequence as
follows:

y(£) = Ay(t) and y(t) = Ay(t). 2)
blem 1 problem 2
problem roblem

In this case, even when one iteration is performed (i.e., a staggered
method), the sequential method from Eq. (2) is convergent by Lie’s
formula [43,44]. When the operator splitting of Eq. (2) is applied to
the coupled heat flow and mechanical-dynamics, convergence with
first-order accuracy in time is obtained, as long as the discrete algo-
rithm is stable [30].

In general, however, sequential methods with a fixed number of
iterations do not guarantee convergence, even when they are
numerically stable [45]. Operator splitting of coupled flow and geo-
mechanics, where the mechanical problem is quasi-static, can be
written as:

0=Ay(t) and 0=A(y(t),y(t)). 3)
mechanics flow

Lie’s formula cannot be applied to Eq. (3), and it is unclear whether
sequential methods are convergent for a fixed iteration number,
even when they are stable. It was mentioned by Armero [26] that
the undrained split may suffer from loss of accuracy for strongly
coupled problems, but a comprehensive analysis is missing. The
convergence of sequential methods with a fixed iteration number
is important, since a fixed iteration number is typically required
in order to save computational resources.

Vijalapura and Govindjee [46] propose a hybrid scheme of stag-
gered and fully coupled methods, in which the time step size is
controlled for accuracy based on the assumption that refining the
time step size improves the accuracy of the staggered method.
Vijalapura et al. [47] investigate the order of accuracy of index-1
differential algebraic equations of the type given in Eq. (3) where
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the mechanical problem can be viewed as an algebraic constraint
[42]. They find that sequential methods of the differential algebraic
equations have first-order accuracy when the first step in the alge-
braic equation is redundant. However, this is not applicable to the
coupled flow and quasi-static mechanics because the mechanical
problem is not redundant for the first time step: consolidation
problems are often driven by instant loading in the mechanical
problem during the first time step. In fact, the work of Vijalapura
et al. [47] supports the fact that typical sequential methods are
non-convergent in time when the first step in the algebraic equa-
tion is not redundant.

1.2. Summary of results

With the above issues in mind, in this paper we focus on the
stability and convergence analysis for the drained and undrained
splits. First, we perform a comprehensive stability analysis of the
drained and undrained splits for coupled flow and quasi-static geo-
mechanics with a generalized midpoint rule time discretization
(evaluation at time t.,, with « € [0,1]). Following Armero and
Simo [30], we use the von Neumann method to analyze the linear
problem, and the energy method for the nonlinear problem.

Our von Neumann analysis leads to sharper stability estimates
than previously found [30] (the focus of [30] was on the fully-
dynamic case, and the stability estimate for the quasi-static case
was just a side calculation using two degrees of freedom). We
determine stringent bounds for stability of the drained split. For in-
stance, we find it is unconditionally unstable when the midpoint
rule is used (« = 0.5). Even when the backward Euler time-stepping
is used (o= 1), the stability of the drained split is delicate: it de-
pends only on the coupling strength between flow and mechanics,
and (rather surprisingly) it is independent of time step size. More-
over, when it is stable, it yields an oscillatory solution. In contrast,
the von Neumann analysis shows that the undrained split is
unconditionally stable for o« > 0.5.

We provide a complete stability analysis of the undrained split
for the nonlinear problem, following the analysis of Armero and
Simo [30] and Armero [26] and extending it to the fully algorithmic
(time-discrete) problem. We show, following the analysis of Simo
[37] and Simo and Govindjee [48] for the uncoupled problem, that
the undrained split is unconditionally stable if o > 0.5.

We then investigate the convergence of the drained and un-
drained splits under the backward Euler time-stepping method.
We obtain a priori error estimates for the two sequential methods
using matrix algebra, which is similar to the method by Turska
etal. [45], and spectral analysis. We show that the drained split with
a fixed number of iterations is not convergent, and that the un-
drained split with a fixed iteration number is convergent for a com-
pressible system and non-convergent for an incompressible system.

From a spectral analysis, the error amplification factors be-
tween two sequential schemes and the fully coupled method allow
us to estimate the rate of convergence when the sequential
schemes are fully-iterated at each time step. Schrefler et al. [49]
use the spectral radii of error amplification matrix to investigate
the rate of convergence for the staggered Newton schemes based
on the drained split. They show in the numerical study of a 1-D
model with two degrees of freedom that the spectral radii of the
error amplification matrix decrease as the time step size increases,
which explains the fast convergence rate.

Here, we obtain analytical estimates for the error amplification
factors, which provide similar information to the spectral radii of
error amplification matrix: smaller values indicate faster rate of
convergence [49]. Thus, the analytic derivation of the error ampli-
fication factors provides a priori estimates of the rate of conver-
gence for the drained and undrained splits. In this paper we
show that the error amplification factor of the drained split

decreases when permeability is high and time step size is large
(i.e. high diffusivity of pressure). In contrast, convergence of the
undrained split is fast in the case of low permeability and small
time step size (i.e. low diffusivity of pressure).

We perform numerical simulations that support the results
from the stability and convergence analysis. We use a finite vol-
ume method for the flow equation and a finite element method
for the mechanics. This mixed space discretization method is lo-
cally mass conservative (see also [23]), and is effective at eliminat-
ing the instability at early time for consolidation problems with
compressible fluids [50-54].

2. Mathematical model

We adopt a classical continuum representation, where fluid and
solid are viewed as overlapping continua. The physical model is
based on the poroelasticity and poroelastoplasticity theories (see,
e.g., [5]). In this paper, we assume isothermal single-phase flow of
a slightly compressible fluid, small deformation (i.e., infinitesimal
transformations), isotropic material, and no stress-dependence of
flow properties like porosity or permeability. The governing equa-
tions for coupled flow and reservoir geomechanics come from the
mass balance and linear momentum balance. Under the quasi-static
assumption for solid displacements, the governing equation for
mechanical deformation of the solid-fluid system can be expressed
as:

Dive + p,g =0, 4)

where Div (-) is the divergence operator, & is the Cauchy total stress
tensor, g is the gravity vector, p, = ¢pps+ (1 — ¢)ps is the bulk den-
sity, pr is fluid density, ps is the density of the solid phase, and ¢
is the true porosity. The true porosity is defined as the ratio of the
pore volume and the bulk volume in the deformed configuration.
A stress—strain relation must be specified for the mechanical behav-
ior of the porous medium. Changes in total stress and fluid pressure
are related to changes in strain and fluid content by Biot’s theory
[4,5,25,55,56]. In the form of Biot’s theory [5], the poroelasticity
equations take the following form:

6 —069=Cy :&—b(p—po)l, )
1

1
a(m—mo) = be, +M(P—Po)~, (6)

where the subscript 0 means reference state, Cy is the rank-4
drained elasticity tensor, 1 is the rank-2 identity tensor, p is fluid
pressure, m is fluid mass per unit bulk volume, M is the Biot mod-
ulus, and b is the Biot coefficient. Note that we use the convention
that tensile stress is positive. Here, ¢ is the linearized strain tensor
under the assumption of infinitesimal transformation:

&=Grad’u = % (Grad u + Grad' u). (7)
Note that we also have [5]:
1 b — ¢q
7= %0 (®)
_ Kdr
b=1- X, 9)

where ¢y is the fluid compressibility (1/Kj), Ky is the bulk modulus of
the fluid, K; is the bulk modulus of the solid grain, and Ky, is the
drained bulk modulus. It is convenient to express the strain and
stress tensors in terms of their volumetric and deviatoric parts:

s:%svl +e, (10)
6=0,1+s, (11)
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where ¢, =trg is the volumetric strain (the trace of the strain ten-
sor), e is the deviatoric part of the strain tensor, g, = 1 tra is the vol-
umetric (mean) total stress, and s is the deviatoric total stress
tensor.

Under the assumption of small deformations, the fluid mass
conservation equation is

om
ar —+ Divw = p;f, (12)

where w is the fluid mass flux (fluid mass flow rate per unit area
and time), and fis a volumetric source term. Using Eq. (6), we write
Eq. (12) in terms of pressure and volumetric strain:

1op &,
Mat b—+Dlv— f. (13)

The relation between volumetric stress and strain reads:
(6, —0,0) +b(p—py) =Ky (14)

The fluid velocity v =w/py, is given by Darcy’s law:
k
v= —E(Gradp—pfg), (15)

where k is the positive-definite absolute permeability tensor, and u
is the fluid viscosity.

To complete the description of the coupled flow and geome-
chanics mathematical problem, we need to specify initial and
boundary conditions. For the flow problem we consider the bound-
ary conditions p =p (prescribed pressure) on I, and v-n=7v
(prescribed volumetric flux) on I',, where n is the outward unit
normal to the boundary, dQ. For well-posedness of the problem,
we assume that I', N I,=0, and I', U I',=09Q.

The boundary conditions for the mechanical problem are u = u
(prescribed displacement) on I', and 6 - n = t (prescribed traction)
on I',. Again, we assume I'yNI'z=0, and I', U I';=0Q.

The initial displacements and strains are, by definition, equal to
zero. The initial condition of the coupled problem is p|.o=po and
6|0 = 6. The initial stress field should satisfy mechanical equilib-
rium, and reflect the history of stress paths in the formation of the
reservoir. Initialization of the geomechanical model is a difficult
task in itself [15].

3. Discretization

Traditional reservoir simulation is based on the finite volume
method [57], whereas the computational mechanics community
has favored the use of finite element discretizations [9,24-
26,29,30,52]. Here, we use a mixed discretization that employs a
finite volume method for the flow problem and a nodal-based finite
element method for the mechanical problem. The pressure un-
known is located at the element center, and the displacement vec-
tor is located at element vertices [58]. This space discretization is
locally mass conservative at the element level, yields a continuous
displacement field and enjoys excellent stability properties [23,59].

Let the domain be partitioned into nonoverlapping elements,
Q= UJ’.’;';'“ Q;, where neem is the number of elements. Let

Q c[*(Q) and U c (H'(2))? (where d = 2, 3 is the number of space
dimensions), be the functional spaces of the solution for pressure,
p, and displacements, u. Let Qp and U/, be the corresponding func-
tion spaces for the test functions ¢ and #, for flow and mechanics,
respectively. Let Qp,, Opo, Uy and Uy be the corresponding finite-
dimensional subspaces. Then, the discrete approximation of the
weak form of the governing Eqgs. (4) and (12) becomes: find
(Uh, py) € Up x Qp such that:

/Gradsqh:ah dQ:/nh~pbg dQ+/ N, -tdl Vn, € U,
Q Q I's
(16)

1

(Ph omy, dQ+/ @,Div v, dQ:/Qth dQ, Vo, € Ono.
Pro @ ¢

(17)

The pressure and displacement fields are approximated as follows:

Nelem

Ph=Y_ 9P (18)
=
Npode

u, = > U, (19)
b=1

where npege is the number of nodes, P; are the element pressures,
and U, are the displacement vectors at the element nodes (vertices).
We restrict our analysis to pressure shape functions that are piece-
wise constant functions, so that ¢; takes a constant value of 1 over
element j and O at all other elements. Therefore, Eq. (17) can be
interpreted as a mass conservation statement element-by-element.
The second term can be integrated by parts to arrive at the sum of
integral fluxes, Vj,;;, between element i and its adjacent elements j:

. Mace Nface
/ ([)iDiV Uy dQ=— / vy-Nn; dr = Z / vy - N dr = —thjj.

JQ [ste) I j=1
(20)

The inter-element flux can be evaluated using a two-point or a mul-
tipoint flux approximation [60].

The displacement interpolation functions are the usual C°~con-
tinuous isoparametric functions, such that #, takes a value of 1 at
node b, and 0 at all other nodes [58]. Inserting the interpolation
from Eqgs. (18), (19), and testing Eqs. (16), (17) against each individ-
ual shape function, the semi-discrete finite-element/finite-volume
equations read:

/Bgah dQ:/napbg dQ+/ ntdl Ya=1,... Mg, (21)
Q Q I's

Nface p
thjj: / fdQ Vi= 17~~-7nelem‘
j=1 JQ;
(22)

The matrix B, is the linearized strain operator, which in 2D takes
the form:

O], 0
Bi=| 0 o, |. (23)

ayyla aﬂ’]a

The stress and strain tensors are expressed in compact engineering
notation [58]. For example, in 2D:

1 oP;

i 0e,
[ Wi 4ot /b Q-

O hxx gh,xx
On=|Ohy |, &= Eny |- (24)
O-h.xy 23h.xy

The stress-strain relation for linear poroelasticity takes the form:

6, = o), —bp,1, o0} = Dogy, (25)

where &' is the effective stress tensor, and D is the elasticity matrix
which, for 2D plane strain conditions, reads [58]:
1 = 2
 E1-v) Lo
S+ =2v) | {

v 1

—_

=V
v

—

(26)

—_

v

where E is Young’s modulus, and v is the drained Poisson ratio.
The coupled equations of quasi-static poromechanics form an

elliptic-parabolic system of equations. A fully discrete system of

equations can be obtained by further discretizing in time the mass
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accumulation term in Egs. (21) and (22). In this paper, we use the
generalized midpoint rule (with o € [0,1]).

4. Operator splitting

The fully coupled method solves the equations of flow and
mechanics simultaneously, and obtains a converged solution
through iteration, typically using the Newton-Raphson method
[24,25]. Let us denote by A the operator of the original problem
(Egs. (4) and (12)). The discrete approximation of this operator cor-
responding to the fully coupled method can be represented as [59]:

ul A | Ut Dive + p,g =0,
L’"} = L’"” ]7 where Ay : {m L Divw — pyof =0, (27)

where () denotes time derivative and the superscript n denotes
time level t,,.

4.1. Drained split

In this scheme, the solution is obtained sequentially by first
solving the mechanics problem, and then the flow problem. The
pressure field is frozen when the mechanical problem is solved.
The drained-split approximation of the operator .4 can be written

as:
utl oa un+1 AP un+1
e “
p"] P p
Al : Dive + =0,
where gr . . P
Af m+Divw — p,of =0,

op=0,

28
oe=0. (28)
One solves the mechanical problem with no pressure change, then
the fluid flow problem is solved with a frozen displacement field.
In this scheme, the fluid is allowed to flow when the mechanical
problem is solved [26].

4.2. Undrained split

The undrained split uses a different pressure predictor for the
mechanical problem, which is computed by imposing that the fluid
mass in each grid block remain constant during the mechanical
step (6m = 0). The original operator A is split as follows:

u" Azd un+] Aﬁd un+1
pn} - p* - pn+1 ’
where Ay :Dive + p,g =0, 6m =0,
ALy o+ Divw — pof =0, og=0.

(29)

The undrained split allows the pressure to change locally when the
mechanical problem is solved. From Eq. (6), the undrained condi-
tion (dm = 0) yields:

. 1
0 = bée, + M&p, (30)
and the pressure is updated locally in each element using:
p =p" — bM(el! — €. (31)

For the mechanical problem, Eq. (5) with the generalized midpoint
rule at t,., is discretized as follows:

O.H+(Z _ 60 — Cdr . 8H+d _ b(prl+9( _ pO)‘l’ pn+o< — ap* JF (‘l _ (X)I)H7

(32)
where « € [0,1]. After substituting Eq. (31) in Eq. (32), the mechan-

ical problem can be expressed in terms of displacements using the
undrained bulk modulus [26], C.q = C4-+ b>M1 ® 1. The additional

computational cost is negligible because the calculation of p* is
explicit.

5. Stability analysis for linear poroelasticity

We adopt the von Neumann method to analyze the stability of
the different sequential schemes. This is a standard technique
[61,62], which consists in examining the unbounded growth or de-
cay of the Fourier representation of the numerical error.

We discretize the governing equations in one dimension and
without source terms for space using second-order finite volume
method for flow, and C° linear finite elements for mechanics. De-
spite the one dimensional analysis, the error estimation can be ex-
tended to multiple dimensions because the coupling between flow
and mechanics is based on the volumetric response, which is a sca-
lar quantity. We label the elements with index j. The nodes bound-
ing element j are labeled with a half-index: j—1 and j+1. We
denote the pressure unknown at element j by P} and the displace-
ment unknown at node j + by J’.1+%, where n is the time level. We
use a generalized midpoint rule, so the unknowns are evaluated at
time they as P"*=oP™!1+(1 — «)P* and U"*=aU™! + (1 — a)U™
Let h be the element size, and At the time step size, both assumed
constant. The fully discrete equations in 1D are:

Kar (upy —2ur7 +uny) + b (P - P =0, (33)

h \7izz i+

1 1 n n
h PP bh (U}”; ~UY +Uj;—vj+;)

M At At h h
k ‘
- (P 2P 4 P) =0, (34)

where kj, is the medium permeability.

It is known that the fully coupled method is unconditionally
stable for oo > 0.5 [59,63]. In this section, we perform a von Neu-
mann stability analysis for the drained and undrained sequential
schemes.

5.1. Drained split

The drained split freezes the variation of the pressure during the
mechanical step. Therefore, P** is replaced by P" in Eq. (33). We
now introduce solutions of the form:

U" = y" exp(iaf) U, (35)
P} = 7" exp(ijo)P, (36)

where 7 is the amplification factor (y" means 7y “to the power n”), i is
the imaginary unit, and 0 € [-m,r]. Since a is the node index, it
takes values jF1, j 3, etc.

Substituting Egs. (35), (36) into the discretized equations of the
drained split, we obtain:

Kar (1 — o) + 09)2(1 — cos 0) b2ising

b(y —1)2isin§ %(V*l)+%((1 — o)+ oy)2(1 —cos0)

Gar

L

Nontrivial solutions are obtained if detG,- =0, which provides the
characteristic equation [62]. For the backward Euler scheme
(oe=1), the characteristic equation reduces to:
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Fl(y) = Kar g, kpA t2(1 —cosf) |7? + _Kar +b2 y—b*=0.
(38)
The method is spectrally-stable if (i) max (|y|) < 1 for all values of 6,
and (ii) y1 # v, when max (|y|)=1 [58]. From (38), the necessary
and sufficient condition to hold spectral stability is
_b’M
N Kdr
where 7 is the coupling strength between the flow and mechanics
problems [30,59].
For the midpoint rule, « = 0.5, the characteristic equation re-
duces to:

<1, (39)

Fgr:OS(,V) _ (% Kﬁ + Kzi IZ’% (] — COS ('))) ’Yz

<Kdr k”’?t(l —cosO)+b )/

M
1 Ko Kar kpAt
<2M2 (1 059)+b) (40)

which yields max (|y|) > 1, and we conclude that the drained split
with the midpoint rule is unconditionally unstable.

Remark 1. For the backward Euler time discretization, o = 1, the
stability condition is independent of time step size. This means
that if the problem is such that 7 > 1, stability of the drained split
cannot be recovered by reducing the time step size. The von
Neumann analysis also shows that one of the amplification factors
is always negative, so the drained split will suffer from spurious
oscillations [62].

Remark 2. Armero and Simo [30] use the backward Euler method
for mechanics and the midpoint rule for flow, and the finite ele-
ment method is used for both problems. This mixed time discreti-
zation yields the amplification factors:

] b

’\/ = 7b2(1+cos 0) (41)
Kar 5 4 cos 0)+ 222 (1-cos 0)’
M 2

from which the stability condition is 7 < 1, the same as in the back-
ward Euler scheme with the mixed finite volume/finite element
method. The stability condition (41) is sharper than the one in
[30], obtained from a simple illustrative analysis with just two de-
grees of freedom:

k AtM 4
== T—5. (42)
3
uh
The mixed time discretization with the mixed finite volume/
finite element method also yields the same stability criterion as
the backward Euler time discretization.

5.2. Undrained split

The undrained split freezes the variation of fluid mass during
the mechanical problem. From Egs. (31) and (32), the pressure at
elementj at time t., iS

P;’*“ — obM(&], el — g, (43)
where ¢! = ( 1’7% - U}L%)/h. Substituting Eq. (43) into Eq. (33), we
obtain the discrete equations for the undrained split. Introducing
a solution of the form Eqs. (35) and (36) into the discretized equa-
tions of the undrained split, we obtain the system of equations:

(Td ((1— o) + ory)

b2isin$
oMy — 1))2(1 — cos0)
w@=1
b(y —1)2isin¢ M
(v =1)2ising +588 (1 — o) + a)2(1 — cos 0)
Gud
ul| _[o
(4112
The characteristic equation detG,, = 0 reads:

2 kpAt

o o Kdr 2 2
() = (Wowrsz + (Ko + b*M) 2 = 2(l—cos())>y

('Iij[ (1-20) + (1<dr2(1 — o)+ bM(1 — 20<)>

kpAt

a-2=2(1 — cos 0) + (1 - 20<)b2>y
uh

(- = (M (1 k)

« (1- ) %881 _coso) - (1 —o<)b2> -0, (45)
uh?

which yields max (]y|) <1 when 0.5 < « < 1. Therefore, the un-

drained split is unconditionally stable for 0.5 < o < 1. This result ex-

tends to the nonlinear problem, as we will show in the next section.

Remark 3. When the backward Euler scheme is adopted for
deformation and the midpoint rule is used for flow, the undrained
split is also unconditionally stable.

6. Contractivity of the nonlinear continuum problem

In this section, we study the contractivity of the coupled contin-
uum problem, and whether the dissipative structure of the coupled
problem is inherited by the drained and undrained splits. The re-
sults of this section are not new, and they simply re-state the find-
ings of Armero [26]. They are necessary, however, to set the stage
for the algorithmic stability analysis of the next section.

Consider the following extension of the Biot equations of poro-
elasticity (Egs. (5) and (6)) to the elastoplastic regime under iso-
thermal conditions [5]:

6—060=Cy: (stp)fb(pfpo)lv (46)

L o) — by = b(es — £a) + 5 (0~ Po) (47)
Pro

where g, is the linearized plastic strain tensor, &, , = trg,, and ¢, is
the plastic porosity. The elastic strain &, is defined as & — g,, and
&e,p = tré.. The plastic porosity and plastic strain can be related to
each other by assuming that ¢, = f§é,,. Here, we further assume

that g =b [26], which yields:
d¢, = boey . (48)

When the solid grains are incompressible, f=b = 1.
The natural norm to show the dissipative character of the cou-
pled problem is

\|¢|\7_2/<a Cilo +k-H x+]p>dQ, (49)

T = {c = (0',k,p) € Sx R x R: 0y € [2(Q), K; € [(Q),p € LZ(Q)}7
(50)

where g; and «; are the components of ¢’ and k, respectively, and k
is a vector of the stress-like plastic internal variables (“hardening
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force”). ngim is the dimension of the domain €, and nj, is the
dimension of . S = RMam*Din/2 s the vector space of symmetric
rank-two tensors [64]. Note that the pressure can be discontinuous,
and we only require the regularity p € L%(Q). H is a positive-definite
hardening modulus matrix, which relates changes in the internal
stress variables x with changes in the variables &:

K—Ko=-H-¢& (51)

The vector ¢ is a vector of the strain-like plastic internal variables
[5]. The norm in Eq. (49) is motivated by the uncoupled mechanical
and flow problems. The first and second terms correspond to the
complementary Helmholtz free energy norm for the mechanical
problem (albeit using the effective stress &' instead of the total
stress @), and the third term is the weighted [*>-norm in the flow
problem [37].

We assume the material response follows an associated flow
rule, or maximal plastic work (see Fig. 1). Such condition guaran-
tees the following inequality [5]:

/ (W—0):&+M—K)- é) dQ <0, VY, n) eé, (52)
Q

where ©' and n are admissible (but otherwise arbitrary) effective
stress and hardening force. The generalized elastic domain £ is de-
fined as:
E:={¥=(0,k) €S xR" : fy(a',k) <0}, (53)
where X is a generalized effective stress. An admissible generalized
effective stress is one that lies inside the elastic domain € or on its
boundary d€. We assume that the generalized elastic domain con-
tains the origin (0,0), and that the yield surface fy is a convex
function.

Let X =(o0',k) and Il = (7, n) be generalized effective stresses.
We define the bilinear form (,-):

(x,1m) ::/ (o" S Clm + x.H’1q> dQ, (54)
Q
and its associated norm || - ||.:
1
113 =5 (2, ). (55)

To show contractivity of the coupled problem, let (uo,po, o) and
(i, o, &) be two arbitrary initial conditions, and denote by
(u,p,&) and (u1,p, &) the corresponding solutions, which yield the
remaining variables (¢’,m,k,s,) and (6’,m, K, ,), respectively. By
subtracting the two solutions, we obtain a solution to the problem
with no source terms and with homogeneous boundary conditions,
governed by the operator:

d= = (dep , dE)

Fig. 1. Sketch of the generalized elastic domain &. The thick gray line represents the
yield surface fy = 0 on X = (¢',k) generalized stress space. We assume an associated
flow rule, so that the evolution of the generalized plastic-strain vector d= = (de,,d¢)
is colinear with V xfy at any point of the boundary d€.

Divde = 0,

du"
. 56
[ (dm) + Divdw =0, (56)

dp"

Aﬂc d n+1
% [d:”“ ], where A7 - {

where d(-) = () — (-) denotes the solution to the homogeneous
problem. From Eqs. (46)-(48) and (51), we have:

do = Cy : (de — de,) — bdpl, (57)
dm 1

—— — bde, +—dp, 58
Pro P (58)
dk = —Hde. (59)

From Eq. (52), we obtain
/ ((6'—6'): &+ (k—K)-&d2<0, choosing (n.n) = (¢,k),
JQ

(60)

/ ((o" —6): &+ (K—K)- Z‘) dQ <0, choosing (', 1)) = (¢, k).
Q

(61)

Adding Egs. (60) and (61), we arrive at the non-negativity of the rate
of plastic dissipation:

s /52 (da’ S dé, + dic - dé) dQ > 0. (62)
Then we obtain, from Eq. (49):

a3 [ (o' aldo+ e+ i
Q

2
_1 / ds, : Cyde. + de - Hdz + M 9™ _bde,,) | da.
2 Jo Pro

= ||dy1%, (63)

where we define the norm:

2
I =5 [ (se : Caree *5'"“’”(21‘ bse,y> ) de.  (64)

N o= {x = (8,8,m,) €S x R™ x R: g5 € [X(Q), & € [*(Q),m, € LZ(Q)},
(65)

where & ;; and ¢&; are the components of &, and &, respectively. The
definition of the natural norm in Eq. (64) originates from the Helm-
holtz free energy of the system [5].

Let us denote ||dy||%, by ¥¢, for convenience. Then, the coupled
problem enjoys the following contractivity property,

dyd ewd . oyt oyt .
W:mAdegﬁ‘w‘d&"rW(jmg
- / do' - déo—M( 9™ _bde, , \bdz, , —dic-de+ ™ bde, , | din, | d2
0 Pro Pro
:/ (do‘:ds+d—pdh1)dfz—/ (do' - déy +dxc-de) d2
o Pro Q

d
Dy

:./Q (dodé — dpDiv(de)) de—D{ (from Eq. (56),)
:—/(dpDiv(dv))dQ—Dz (since /dd:dsdQ:O from Eq. (56),)
JQ JQ

:—/dv»yk’]dde—D;I (from Eq. (15), with » € H(div, Q))
Q
<0 (fromEq. (62)). (66)

Eq. (66) implies:
12(6) = X (Ol < 12 = Xollx (67)
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from which it follows that the coupled problem is contractive with
respect to the norm || - ||~ Thus, the norms in Eqgs. (49) and (64) are
the appropriate norms to show contractivity, which is equivalent to
thermodynamic stability and uniqueness of the solution [5]. To be
precise, stability of the displacement field requires a bounded plas-
tic strain, which in turn requires the strict inequality ||H|| > 0. There-
fore, perfect plasticity (||[H|| = 0) does not guarantee stability of the
displacement field Simo [37].

We now analyze whether the drained and undrained splits are
contractive.

6.1. Drained split

Introducing two arbitrary initial conditions and taking similar
steps to the fully coupled method, the drained split for the problem
with no source terms and homogeneous boundary conditions

reads:
du® Ag;u du™t! AS;P du
dpn - dpn - dpn+] ’
A%":Divde =0, 5dp =0,
where ¢ * ) )
A,P - dm +Divdw =0, 5de =0, éde, =0, 5d& =0.

(68)

For the flow step:

d . .
ay :/ (do-:dé+;)ipdm> dQ—/ (do : di, +dx - d¢) de
0p Q Q
'Adr

dt .0

o

= —/ dpDiv(dv)dQ (since dde = 0,dde, = 0,d¢ = 0)
Q

=— / dv - uk'dvdQ < 0. (69)
Q

For the mechanics step:

d . .
av :/ do - di + %P din dQ—/(da’:dép+dk~d§)dQ
dt A0u Q pf,O Q

dr

Dy
. dp, ;. 4
= / do : dé +—bde, | dQ2 - Dj, (since ddp = 0)
Q Pro
dp , . PR .
:/ ——bde€,dQ — D, (since Dive = 0) £ 0. (70)
e Pro
From the expression above, one cannot guarantee that the natural
norm of the solution decreases during the mechanics step. There-
fore, the drained split method does not inherit the contractive char-
acter of the continuum coupled problem. This has been pointed out
by Armero [26].

6.2. Undrained split

Following the same procedure as above, that is, introducing two
arbitrary initial conditions and subtracting the corresponding solu-
tions, the undrained split for the difference is given by

du® Agau du1 Ag-dp du™1
n - * - n+1 |
dp dp dp
where A% Divde =0, 5dm =0,
A®P . drih 4 Divdw = 0, ode = 0, ode, = 0, dE = 0.

(71)

The contractivity properties of the flow step are the same as for the
drained split. In contrast, for the mechanics step we have:

d . . .
d¥’ :/ do - di+- % din de/(da’:diserdx-dé)dQ
dt pou e Pro e}
ud Dg
- / do - dzdQ — D¢ (since odm = 0)
Q
d . .
=-D, (since Dive =0) < 0. (72)

Therefore, the undrained split satisfies the contractivity property of
the continuum problem, which is equivalent to its dissipative char-
acter [26].

7. Algorithmic stability of the nonlinear problem

The analysis of the previous section confirms that the undrained
split inherits the contractivity property (that is, the dissipative
character [26]) of the continuum problem. In this section we study
what time-integration schemes are B-stable [65]. By B-stability we
mean the algorithmic counterpart of contractivity [37,48,66], i.e.,

™13 < ldy"[l3 v, (73)

where dy is the difference between two solutions with different ini-
tial conditions, and n and n + 1 refer to two consecutive time steps.

Since the drained split does not honor the dissipative character,
it clearly cannot provide an unconditionally stable algorithm. Thus,
we focus exclusively on the undrained split. Our analysis follows
that of Simo [37], and Simo and Govindjee [48] for elastoplasticity,
and that of Simo [37] for the nonlinear heat equation. We extend
their results to the coupled problem.

7.1. The mechanics step

We solve the mechanical problem first by means of the return
mapping algorithm [67,68], for which we adopt the generalized
midpoint rule [37,48]. The algorithmic counterpart of Eq. (52) is

(g I g <0 VITE £, (74)

where X =(6’,k) is a generalized effective stress which is con-
strained to lie within the elastic domain &, IT = (@', 1) is another
generalized effective stress, and X™™* from the elastic trial step
is defined as (6" + aCq4- Ag" k™). In what follows, we denote by
A(G)' = ()" — (). Fig. 2 shows the geometric interpretation of
Eq. (74).

2rr,n+a

Fig. 2. Geometric interpretation of the return mapping algorithm in effective stress
space (modified from [66]).
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Let (u",p",¢") and (u",p",&") be two arbitrary solutions at
time t, with the associated variables (6™, m",k",&;) and
(6™, m", k", &), respectively. Then, discretization of Eq. (71); with
the generalized midpoint rule yields:

Divde™* =0, Adm =0, (75)
where d6"* = ¢"™* — ¢"*. From Eq. (74),

<<Ztr.n+oc _ Zn+o¢,in+a _ an» <0 (choosing n= ):ﬁ‘nﬂx)7 (76)

(i _ g gt yntay < 0 (choosing IT = Z%). (77)
Adding Eqgs. (76) and (77):

(dz" — d=™*, —dE™") + ((aCqAde™, 0), (—de™*, —dK™*)) < 0.

(78)
The first term of Eq. (78) can be written as:
(dE" — dz™* —dEM ) = —(o(dE" — d2™), dE"12
+ (ac - %) (dz™1 —dzM))
—a(|ld="1)2 - ")
+ o200 — 1)||dE™T — dE"|2, (79)

where %12 = 1/2(Z" + %), The second term of Eq. (78) can be
written as:

((4CarAde", 0), (—da™**, —dk™*))
- / aAde" : da™ " dQ
JQ

=—o [ Adg": (d6""™* + bdp"""1)dQ

Q

— o [ Ade": bdp"**1dQ (from Eq. (75))
Q
- / %(dp”“ —dp")dp"**dQ (from Eq. (6) and Adm = 0)
Q
1 n n 1 n n
= otz (1™ e = 1P ) + ex(2e = 1) 5z ldp™ ! — dp .
(80)

Substituting Eqgs. (79) and (80) into Eq. (78):
1 n
(11 =12 + 5 (1™ 1~ 1))
+ a2 —1) (Hd):"” —dz| + ﬁ |dp"™ — dp"|\fz> <0. (81)

Then, the evolution of the norm at the discrete time level during the
solution of the mechanics step is

ld™ " I3 — Izl
= [ldg™ 17 — [1de™ |7
1 1
= | dz" 2 +dep"“ I — ldz" 2 fml\dp"\\fz
(from Eqgs. (49), (54) and (55))
< -0 — 1)<||dz"+l —dz"|? +ﬁ||dp”“ —dp”ufz> (from (81)).
(82)

The B-stability condition (73) is satisfied during the mechanical
stepif 0.5 <a<1.

Remark 4. This result generalizes the analysis of Simo [37] to
coupled poroelastoplasticity. In the uncoupled problem, Eq. (80) is
identically zero, and the natural norm does not include a contri-
bution from the pore fluid pressure.

7.2. The flow step

The second step in the sequential scheme is to solve the flow
problem. Since all the mechanical variables (deformation and
stress) are frozen during the flow step, the problem reduces to
the heat conduction equation, and the nonlinear stability analysis
is standard [69,37]. We summarize it here for completeness.

After time discretization with the generalized midpoint rule, Eq.
(71); leads to:

n+1 n
% % +Divde™™ =0, with Ade = 0,
Ade, =0, Adé—0. 83
D

n+o

Multiplying by dp™*?, integrating over the domain €2, and using the
divergence theorem, we obtain:

n-+o 1 dpn“ - dpn _ n+o -0

'/de MTdQ_/QGraddp o™ dQ

zf/dv"”‘-uk’]dv"*“dQ
Q

(from Darcy’s law). (84)
From Eq. (83):
ld=" )12 = A7 (85)
Using Eq. (85) and the following identity:
n+o. 1 n+1 n
/de v (@™~ dp”) do

1 1
=5M <|\dp”“||fz - Hdanfz) + (20— 1)m||dp”+1 —dp"|%, (86)

the evolution of the norm during the flow step is
Idy™ 13 = ldo" 13 = 1de™ 115 = [1dg™ |7

— o (10" 2~ 1" )

= (- 1)y A"~ dp

— At / dv™* . k' dv"* dQ. (87)
JQ

The B-stability condition (73) is satisfied during the flow step if
0.5 < a < 1. The stability condition during the flow step is identical
to the uncoupled problem, where the proper norm to show stabil-
ity is a weighted L? norm of the pressure [69,37]. From Egs. (82)
and (87), the condition for B-stability of the undrained split is
0.5 < « < 1. Moreover, since this condition is obtained indepen-
dently for the mechanics and flow steps, we infer that the un-
drained split is B-stable for mixed time discretizations based on a
generalized midpoint rule for each subproblem, with otmech # %aow,
as long as 0.5 < dmech <1 and 0.5 < agow < 1.

8. Error estimation

We now investigate convergence of the drained and undrained
splits. For simplicity, we consider the linear problem only. We em-
ploy the matrix algebra and spectral methods to analyze the
behavior of the error as a function of the number of iterations.
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8.1. Error estimation of the drained split by matrix algebra

For a sequential solution strategy, we can write:

‘ e?sﬂ.ni[er < ‘ X?H _ X}H—] + ‘ X}H—] _ X?H,nite,
= O(AD) + % — et (88)

where e is the error between the true solution and the numerical
solutions from the sequential method, and ||-|| is an appropriate
norm (e.g., L norm), ept! = xi'! —x!"IMer s the error between
the fully coupled and sequential methods, n is the time step, njter
is the iteration number within a time step, and x' = [u’, p’] denotes
the displacement-pressure solution to the coupled problem. The
subscripts f and s (i.e., (-)y and (-);) denote the fully coupled and
sequential methods, respectively, and the subscript t (i.e., (-);) de-
notes the true solution. If ||ex|| = O(At™), where m > 0, the numerical
scheme is convergent [62], whereas if ||eg|| = O(1), the numerical
scheme is not convergent. Turska and Schrefler [70] show that
X7 —x*1[| = O(At) when the backward Euler time discretization
is employed.

For the fully coupled method, the algebraic form of the coupled
problem is

{IL( _ﬂ mm wmn :@’ (89)
A B f

where K is the stiffness matrix from the drained moduli, and
F=Q+ AtT [25]. Q and T are the fluid compressibility matrix, which
includes the Biot modulus, and the transmissibility matrix of the flow
problem, respectively. L is associated with the coupling coefficient,
the Biot coefficient. The drained split decomposes matrix A into:

K 07 u™k 0 L'lral™™ 0o 01rul” £,
{L FHp} ‘{o oHp} _{L QHD} :M 7

(90)
where k is the iteration index. From Eqgs. (89) and (90), the errors of

pressure and displacement between the fully coupled method and
drained split are:

|:efs,u:|n+].k+l B |:I( 0:|1<|:0 L[:| |:efs,u:|n+1'k+ |:0 0:| |:efsAu:|n>
€sp L F 0 O ||esp L QJlesp
K (]
N [—FlLl(l F' }
([0 Lt:| |: }nﬂ.kjL |:0 0} {efs,ur>
0 O0léesp L Q]lesp

o kL {efs,u}"“*
10 —FLK'L'| lesp

————————
D

0 0 €5 u "
* {rm F*Q} {efs,J ’ e
~——

H

e
where ey = { efs"“} and e}, = ej’l"”"ef. Then:
fs.p

n|l‘

e;s+1,nite, Dn,menﬂ 0 + ZDI 1Hen Miter
— D"m( X1 ) (Dnlter +Zl terpyl— IH) ”"m (92)
where ™' is written as (X! —X!) + (x}' x¢"er), By recursion,

el is expressed in terms of the initial error e(’0 D" and S as:

rH’] Niter __ E D”ntersl( H+] I

Stability requires that ||S|| < 1 and || D"« || < 1 [45]. For conver-
gence analysis, we assume no initial error, such that
|| 0 = X} —x2°|| = 0. By the triangular inequality:

xi1) + 8. (93)

n+1 mer | < HDHWHZ’X}M -1 _ 4” < HDnilerHZMlAt
=0
— HD"lter Mlth
(since x}’}'l =X{ + O(At) from the Taylor expansion),

(94)

where M, is a positive constant independent of time step size, and
t, is the simulation time up to the n™ time step. Thus,
||e”””“"H O(1) when |D||=0(1). As the time step size goes to
zero:

lim ||D]0,
At—0

which yields ||D|| = O(1) in Eq. (91), Non-convergence of the drained
split for a fixed number of iterations was originally anticipated by
Turska et al. [45]. They pointed out that ||D|| = O(1) implies non-con-
vergence whereas ||D|| = O(At) shows convergence.

The fact that ||D||=0(1) can also be derived from the error
amplification factor as shown in the next section. Thus, the drained
split with a fixed iteration number is not convergent. In particular,
the drained split can show severe non-convergence problems as
||D|| approaches one, which is the stability limit of the drained split.

Remark 5. Turska et al. [45] and Turska and Schrefler [70] indicate
that |D|| < 1 for convergence of sequential methods during itera-
tions and ||S|| < 1 for stability of sequential methods. Here, we
define convergence as global convergence of a numerical solution,
and stability as the condition for bounding the numerical errors.
Hence, we require that |[D||<1 and ||S|| <1 for stability, and
lima,_o ||D|| = O for convergence.

8.2. Error estimation of the undrained split by matrix algebra

In the undrained split, matrix A in Eq. (89) is decomposed into:

K+L'Q'L 0 {u}"*”‘“_ Q'L L {u}”“”‘
L F|lp 0 o|lp

[ alGl e ®

Let K,q= K +L'‘Q'L. Then the errors can be expressed as:

|:efs.u :| n+1.k+1 |:l(ud 0:| -1
efsvp L F

L'Q 'L Lf'{efs.u}””"‘ {0 0:|{efs.u}n
X + '
0 0| lesp L QJles

B K, 0

- {—Flu(u; Fl}

(e i e alie)
. O 0| L€sp L QJllesp

_{ K, L'Q 'L K, L' Hefs,u}”“*
~F'LK,/L'Q 'L —F'LK,L"| [esp

Dyq

0 0 €r.u "
- {F*L F*QH%J : (%6)
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From the first row of Eq. (96), we have:
I(ud L[Q LeTH»] k
=KL (Q 'L+ e ). 97)

n+1,k+1

—1ytan+lk
€y +K,L €p

F 'L times the first row of Eq. (96) plus the second row of Eq. (96)
yields:

F'Lef """ +eft " =F 'Le}, + F'Qef,. (98)
Note that F — Q as At — 0 since lima,_o {AtT} =0 in Eq. (89). Using

Egs. (97) and (98), the pressure error, €gp, becomes:
fim e, = lim (F el L, < F Q)
(from (98))
= -Q 'LK,L'(Q 'Lej, +Q 'Qe}, ) +Q 'Lej,

from (97)
+Q'Qef, = (1- Q 'LK,L) (Q 'Lef, + e, ).
(99)
As the time step size is refined to zero, Eq. (98) yields:
lim (F'Lef, " + e ") —Q 'Lej, +€f, (100)

From Eq. (100), the displacement error, €g,, in Eq. (97), using
lima,_o F=Q, becomes:

i}% e}lH k+1 llm Kud L (Q L n+1 k + e}l;;l k>
—K,4L'(Q 'Lej, + egyl,).

Then, from Egs. (99) and (101), the displacement and pressure er-
rors become:

(101)

K, /L'Q 'L

e n+1k+1 Kud L! €u
{e } - Ay-11t\a -1 Ayype-1pt [ } :
fip (I—Q Ll(udL)Q L 1-Q LKL | |esp

Eud
(102)
By recursion and the assumption e]?s'o =0, eg“‘”“”, we can write:
i T hjter || _ iter _
lim (e | = ||Euel" | < [[Euall" el = O (103)

Eq. (103) implies that the undrained split yields convergence as the
time step size is refined. Therefore, the undrained split is conver-
gent with a fixed iteration number. We can also show convergence
of the undrained split if ||D,q|| = O(At), since ||D,4|| corresponds to
D] in Eq. (94). In the next section we investigate the behavior of
|IDyql| by spectral analysis. These results are easy to explain since,
as the time step size goes to zero, the physical system approaches
the undrained condition, and the undrained split converges to the
fully coupled method regardless of how many iterations are taken.

Remark 6. Convergence of the undrained split is restricted to a
(slightly) compressible system (i.e. compressible fluid or solid
grains). When both the fluid and solid grains are incompressible,
Q=0. As a result, K] does not exist, and Eq. (103) is not valid for
incompressible systems.

9. Spectral analysis

The matrix algebra method is a rather general approach to ana-
lyze whether a method is convergent, but it does not provide sharp
information for the order of accuracy. In the previous sections, we

saw that ||D|| and ||D,q4|| are the key parameters for convergence. In
this section, we investigate ||D|| and ||D,q4|| further by performing an
analysis of the error amplification of a 1D problem based on the fi-
nite volume and finite element methods adopted for flow and
mechanics, respectively. The procedure is similar to the von Neu-
mann method.

9.1. Error amplification of the drained split

The drained split treats the pressure term P! in Eq. (33) explic-
itly as P™"* which is obtained from the previous iteration (k™)
step. The other variables in Egs. (33) and (34) are treated implicitly
as U™'k*1 apd P™1**1 wwhich are unknown at the present (k + 1)%
step. Let e = U™ — U™'* and ek = P™' — p"*'¥ where U™ and
P! are the solutions from the fully coupled method, and U™*'*
and P"*'* are those from the sequential methods at the kth itera-
tion step. Let ey and ej"* be the difference between the solu-
tions from the fully coupled and sequential methods at t, for
pressure and displacement, respectively. Then the error equations
are given as:

Kdr k+1 Kar o1 Kar s k k) _
ey t2ye z—heﬂz—b(epﬂ—e[,j)fo, (104)
k-+1 k-+1
h e’ h € Uy Ua) k1, fil | ket
" A]t *bﬂ . p ,HH(ePﬁI—Ze +ePH>
N.Njter N, Njter
e )" — e

We set e;"" and e];"*" to zero in order to investigate ||D|| in Eq.
(91) only. This implies that we drop the second term in Eq. (91).
Introducing errors of the form e" = ykelil’ey and ef = ykeiiVep,
where v, is the amplification factor of error, we obtafn from Egs.

(104) and (105):
Ka 29,1 - cos 0) b2ising e 0
|:1h+kpA[]2(‘1*COSH)]’y EE 7|:0:|

by,2ising
Bdr
(106)
Since the matrix By, is required to be singular (i.e., detBg; = 0), this
leads to:
2
Y.=0 b = k’JA‘ (107)

K (% + 72(1 = cos 0)) ’= (h?

The coefficient ), is equivalent to the eigenvalue of the error ampli-
fication matrix G defined by

k+1 =G| |
ep] ep,

If the two y.’s in Eq. (107) are distinct, then G can be decomposed as

G=PAP![71], where A = diag{y.1, y.2} and P is an invertible ma-

trix. When a fixed iteration number, k = nj, is used, the error esti-
mate of the drained split is
en+1,niter

e

n+1,0 n+1
where e, " =x{

(108)

< (max [y,|)"

el (109)
— xy"er, Thus, (max|y|) is equivalent to ||D].

Remark 7. From Eq. (94), e" Mier does not disappear even though At

approaches zero, because (max |y])™e does not approach zero (i.e.,
0(1)). Thus, the drained split with a fixed number of iterations is

not convergent. Non-convergence of the drained split becomes
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severe when max|y.| approaches one, which is also the same as the
stability limit.

Remark 8. ||D|| is less than one if max|y.| < 1 for all 6, which yields
the stability condition of the drained split during iterations. In order
to have max|y.| <1 for all 0 in Eq. (107), the stability condition is
7 =b?M|K4 < 1, where 7 is the coupling strength. This stability con-
dition coincides with that obtained by the von Neumann method.

9.2. Comparison with coupled flow and fully-dynamic geomechanics
The governing equations of coupled flow and fully-dynamic
geomechanics are [30]:

Dive + p,g = p, 1,
1 + Divw = p; of,

(110)
(111)

where () denotes the second order time derivative. Denote u by vy,
which is the rate of the solid skeleton displacement. Then, applying
the fully coupled and drained split methods to Egs. (110) and (111)
and following the same procedure of the previous section, we ob-
tain the following error equations:

e’fﬂ Atekﬂ (1 12)
3 Vi- 3
AtK, Atb
k+1 — dr -2 k+1 k+1 _ ok 113
ev”% thz (eu' eu -3 - eu“‘) " Pl ( Pia epf>7 ( )
AtMk AtMb
k+1 _ P (ok+1 _ 9ok+1 k+1 k+1 _ ok+1
€y = e (er 26 tep ) T (evj,% evﬂ%), (114)

where V = U, ek = V™' — v"¥ and we assume the difference be-
tween the solutions from the fully coupled and sequential methods
at t, to be zero, as in the previous section. Introducing errors of the
form e, = yge'V’ey, ey, = yee'V’ey, and ef = yge'’ep, we obtain:

Ve 7Atﬂ))e 0
%2(1 —cos0)y, Ve A 2isin}
0 AMBisingy, 7, + 5 2(1 - cos )y,
B;r
ey 0
x|ley| =10 (115)
ep 0
From det(B;,) = 0, the error amplification factors of the coupled

flow and dynamics for the drained split are given by

ALZ—"”Z”ZZ(I — cos 0)

h
Ye=0, - 2 . (116)
(1 n A;zjfgr 2(1 - cos 0)) (1 + 25 (1 — cos 0))
Eq. (116) indicates that:
EE}) max|y,| =0 (117)

Following a similar procedure to that used for the drained split
of quasi-static geomechanics (Eqs. (92)-(94)) and add v, to the un-
knowns, one can show that the drained split for coupled flow and
dynamics is convergent because limy._o||e}; e’ 1| = 0. As explained by
Armero and Simo [30], when we use the staggered method (i.e.,
one iteration), convergence and first-order accuracy can be also di-
rectly estimated by Lie’s formula [43,44]. Thus, the drained split of
the coupled flow and dynamics is convergent, whereas the drained
split of the coupled flow and quasi-static mechanics is not conver-
gent, especially close to the stability limit.

Remark 9. A necessary condition for stability is max|y.| < 1 for all
0 in Eq. (116). To compare with the stability estimate of thermo-
elasticity in Armero and Simo [30], consider the undrained limit
corresponding to k, = 0. Then the stability condition becomes:

2
{aai} c-n <1

where a2 = %, and ay is the speed of sound [58]. Eq. (118) has a sim-
ilar form to tiqat of Armero and Simo [30]. The slight difference be-
tween the two is due to the different space and time discretization.
In contrast to coupled flow and quasi-static mechanics, the stability
of the drained split for the fully-dynamic case depends on the time
step size. From Eq. (118), 7 <1 can only provide stability as the
mechanical problem approaches the elliptic limit (i.e., p, — 0,
which yields a; — oo), which is identical to the stability condition
of coupled flow and statics. Furthermore, since one of the error
amplification factors is negative, we may observe oscillations dur-
ing iterations for the drained split in coupled flow and dynamics.

(118)

Remark 10. Even when both the fluid and solid grains are incom-
pressible, lima;_omax|y| = 0. Hence, in contrast to coupled flow
and statics, refining the time step size can recover stability and
first-order accuracy for an incompressible problem.

9.3. Error amplification of the undrained split

The undrained split solves the mechanical problem while freez-
ing fluid mass content for each grid block. Then the error equation
for mechanics is written as:

Kud k+1 k+1 k+1 b2 k k
e, ZeU +eU o eU 3 —ZeUJ | +er7%

3 2

- b(e,,jf1 - ePI) =0,

where Ky,q = Kg4r + b®M. The error equation for flow is the same as Eq.
(105). Introducing errors of the form e" = pkelile;  and
e" ykeiiep, Eqs. (119) and (105) yield:

(119)

(W Ve — szM>2(1 — cos0) b2isin{

by.2ising Lh+ 52121 —cos0) |y,

el 0
<] = { }
e 0
From detB,;=0, the error amplification factors of the un-
drained split are obtained as:

b® yM2(1 — cos )
(Kar + D*M) (& + 2(1 — cos 0))

From Eq. (121), when At is refined, max|y.| approaches zero. Since
[Duall = max|y,|, ef goes to zero when the time step size is refined
even if a fixed number of iterations is used. Hence, the undrained
split with a fixed number of iterations exhibits first-order conver-
gence for a compressible system.

(120)

b =0 (121)

Remark 11. We obtain first-order accuracy for the undrained split
only for a compressible system. From Eq. (121), if the fluid and
solid grains become incompressible, we have M — oo and
max|y.| — 1 regardless of time step size. Thus, we expect severe
reductions of accuracy if the system is nearly incompressible
(M — o0), and loss of convergence altogether for an incompressible
system.
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Fig. 3. The distribution of the error amplification factors of the drained (left) and undrained (right) splits with respect to pressure diffusivity y and frequency. The coupling

strength 7 is 0.05.

Remark 12. The undrained split is always stable during iterations,
since max|y.| < 1 and y,’s are distinct. Global unconditional stabil-
ity is rigorously shown in the previous section on stability analysis.

10. Convergence rate of fully-iterated schemes

The solutions to the model equations of coupled flow and geo-
mechanics using sequential methods converge to those of the fully
coupled method when full iterations are performed if the schemes
are stable and convergent during the iterative process. In this sec-
tion, we address the question of which sequential method is more
efficient in terms of the rate of convergence when full iterations are
performed. The error amplification factors, shown in Egs. (107) and
(121), are appropriate tools for estimating the rate of convergence:
smaller magnitudes indicate faster rates of convergence [49].

The left and right plots of Fig. 3 show the error amplification
factors from Eq. (107) (drained split) and (121) (undrained split),
for a coupling strength 7 =0.05. The absolute value of the error
amplification factor of the drained split, |y, q|, decreases with re-
spect to y in Eq. (107), where y is pressure diffusivity. Hence, high
(pressure) diffusive conditions (e.g., high permeability and large
time step size) are favorable to the drained split in terms of the rate
of convergence. However, |y.,q| of the undrained split increases
with respect to y, which implies that the undrained split exhibits
better rates of convergence under less (pressure) diffusive condi-
tions (e.g., low permeability and small time step size). Fig. 4 shows
the difference between the magnitude of the two amplification fac-
tors, [Yeud| — |Ve.ar|- When the difference is negative, the undrained
split shows a better rate of convergence compared with the
drained split. When the difference is positive, the drained split
shows better rates of convergence. From Fig. 4, it is apparent that
the drained split can be faster than the undrained split for high
%, but the undrained split can be faster than the drained split for
low .

11. Representative numerical examples
11.1. Stability behavior of the staggered approach
In this section, we confirm the results of the theoretical analysis

by means of simple numerical examples. In Kim et al., [59] we
show numerical simulations for linear poroelasticity - using

staggered, non-iterative schemes — and nonlinear poroelastoplas-
ticity — using various sequential schemes and full iteration to
achieve convergence at each time step. In that work, a backward
Euler time discretization was employed. Here we report simula-
tions using the midpoint rule (o = 0.5 for both mechanics and flow)
and a mixed time discretization (opech = 1 and ogew = 0.5). For the
nonlinear problem, we concentrate exclusively on the non-itera-
tive drained and undrained splits.
We report the results of three test cases:

Case 1.1 Fluid injection and withdrawal in a 1D elastic medium.

Case 1.2 Same as Case 1.1, but in a elastoplastic medium with
isotropic hardening.

Case 1.3 Fluid withdrawal in a 2D elastoplastic medium, which
induces compaction.

We only show the evolution of fluid pressure field because the
displacement has the same stability characteristics as the pressure.

IYe,udl_l'ye,drl

IPYe,udl_IYe,drI

l0g, (1)

6 (O~m)

Fig. 4. The difference of the error amplification factors between the drained and
undrained splits.
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Fig. 5. Case 1.1: schematic of the problem of injection and production in a 1D
medium.

11.1.1. Injection and withdrawal from 1D elastic medium

The first simulation example is a one-dimensional problem in
which the deformation is driven by fluid injection and withdrawal.
The schematic of the problem is shown in Fig. 5. A porous medium
of thickness L =150 m is subject to a constant overburden stress
0 = 2.125 MPa. The medium is assumed to be elastic, with a
drained uniaxial modulus (constrained modulus) Ky = 1 GPa. The
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permeability is k=50md~5 x 10""¥m?, and the porosity is
¢o = 0.3. Other parameters of the rock-fluid system are the Biot
coefficient b = 1, the bulk density p, = 2400 kg m~3, the fluid den-
sity  pro=1000kgm~>, and the fluid dynamic viscosity
u=1cP=10"3Pa s. The fluid bulk modulus K; - or, alternatively,
the Biot modulus M - is left unspecified to test the performance
of the drained and undrained splits for different values of the cou-
pling strength 7 (see Eq. (39)). We neglect gravity effects, and the
initial pressure P; is assumed to be uniform and equal to the over-
burden stress, so that the initial effective stress o, = 0 everywhere.
The system is driven by injection and withdrawal of fluid from two
wells, located at the bottom and top elements, respectively. We fix
the injection and production mass fluxes, and take them as con-
stant, Minj = Mproq = 100 kg m 2 day ! (in terms of volumetric flux,
this corresponds to Q ~ 1.16 x 10~® ms~'. We discretize the prob-
lem with 15 elements of equal size Az=10 m. We present results
of the simulation in terms of the pressure evolution at an observa-
tion point, located at the center of the fifth element from the top of
the domain.

Due to symmetry and linearity, the solution to the problem
does not display overall subsidence of the porous medium. This
does not mean that mechanical effects are unimportant: there is
dilation around the injection well and compaction around the pro-
duction well. Since the observation point is closer to the with-
drawal well, the pressure at that point decreases with time.

In Fig. 6 we show the evolution of the pressure at this observa-
tion point. We plot the nondimensional pressure, P, = P[P;, as a
function of dimensionless time, tp = t/t., where the characteristic
time is defined as t.=L/Q (therefore, tp is simply the number of
pore volumes injected). Results are for low coupling strength
(t=0.083), and two different time discretizations: backward Euler
(=1, left), and the midpoint rule (o = 0.5, right). In agreement
with the von Neumann stability analysis, the undrained split is sta-
ble for both values of o, given that 7 < 1. In contrast, the drained
split is unstable if the midpoint rule is used, even for this very
low value of the coupling strength - also in agreement with our
analysis.

We now study the stability properties of the sequential
schemes when a mixed time discretization is employed: a general-
ized midpoint rule with & =1 for the mechanics step and « =0.5
for the flow step. The von Neumann stability analysis suggests
that this time discretization will be unconditionally stable if the

0=0.5 and 1=0.083
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Fig. 6. Case 1.1: 1D poroelastic problem. Evolution of pressure at the observation point as a function of time. Results are for low coupling strength (7 = 0.083), and two
different time discretizations. Left: backward Euler (o = 1); Right: midpoint rule (o = 0.5). The undrained split is stable for both values of «. The drained split is unstable if the

midpoint rule is used, even for this very low value of the coupling strength.
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Mixed generalized midpoint rule t=1.11
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Fig. 7. Case 1.1: 1D poroelastic problem. Evolution of pressure at the observation point as a function of time. Results are for a mixed time discretization that uses a
generalized midpoint rule with o = 1 for the mechanics step and « = 0.5 for the flow step. Left: coupling strength slightly less than one (7 = 0.83); Right: coupling strength
slightly greater than one (7 = 1.11). The undrained split is stable for any value of 7. The drained split is unstable for 7 > 1.

10.083 ->0.417

— — — Drained
0.95 {1 O Undrained
Fully Coupled

0.75

Dimensionless pressure

07

0.65 [

0.6

0.1 0.15

0.05
Dimensionless time (pore volume injected)

0.2

10.083 —> 3.41
1 T
‘H — — — Drained
0.95 I I O - Undrained
| |\‘ Fully Coupled
I
o 09
=]
]
1]
O 085
a
@
o 08
c
kel
2 o075}
9]
E
0 o7f
0.65
. L1, .
0.6
0 0.05 0.1 0.15 0.2

Dimensionless time (pore volume injected)

Fig. 8. Case 1.2: 1D poroelastoplastic problem. Evolution of pressure at the observation point as a function of time. Results are for a backward Euler time discretization (o = 1).
Left: coupling strength after plasticity less than one (7 = 0.417); Right: coupling strength after plasticity greater than one (7 = 3.41). The undrained split is stable for any value
of 7, while the drained split becomes unstable after the material yields if 7 > 1. Stability of the drained split cannot be recovered by reducing the time step.

undrained split is used, but only conditionally stable (7 < 1) if the
drained split is employed. These results are confirmed by our
numerical simulations (Fig. 7), which show that the undrained split
is stable for any value of 7, and that the drained split is unstable for
7> 1. The values we used for the coupling strength are only slightly
less and slightly greater than one (7 =0.83 and 7=1.11, respec-
tively), indicating that the criteria from the von Neumann stability
analysis are sharp.

11.1.2. Injection and withdrawal from 1D elastoplastic medium

This test case is identical to the previous one, except that the
medium is allowed to reach the plastic regime. We adopt an asso-
ciated plasticity formulation with isotropic hardening [66,5]. The
yield function fy is given by
fr=10'| = (6 + HE) =0, with & = g, (122)

where H > 0 is the hardening modulus. For the simulations, we take
the values ¢, =15MPa, and H=250MPa and H=25MPa

(corresponding to T =0.417 and 7 = 3.41, respectively). The funda-
mental aspect of plasticity is that it softens the material and
increases the coupling strength between flow and mechanics [26].
As a result, the coupling strength may increase in the course of a
simulation from a value below 1 during the elastic response to a va-
lue above 1 when the material yields.

In Fig. 8 we show simulation results using backward Euler for
two different cases: one in which the coupling strength remains
below 1 when the material yields (left figure), and one in which
it goes above 1 (right figure). In both cases, the medium enters
the plastic regime at tp ~ 0.05. It is apparent that the undrained
split is stable — and follows the fully coupled solution almost ex-
actly - independently of the value of t. The drained split, in con-
trast, becomes unstable shortly after the material yields for the
case in which the coupling strength jumps to a value above 1
(Fig. 8, right). The instability cannot be avoided by reducing the
time step. These results are in full agreement with our nonlinear
stability analysis.
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Fig. 9. Case 1.3: schematic of the problem of fluid production in a 2D medium.

11.1.3. Withdrawal from 2D elastoplastic medium

We model fluid withdrawal from the center of a 2D medium.
The permeability is k=50 md ~ 5 x 10~'*m?, and the porosity is
¢o=0.3. The Young modulus in the elastic regime is E = 350 MPa
and the drained Poisson ratio is v =0.3. Other parameters of the
rock-fluid system are the Biot coefficient b =1, the bulk density
pb = 2400 kg m~3, the fluid density po = 1000 kg m~3, and the fluid
dynamic viscosity p =1 cP = 1073 Pa s. The medium is elastoplastic,
and modeled with a modified Cam-clay formulation [72]. The yield
function is given by

q/2
fr= 2 +6’U(O”Ufpm)=0,

mcc

(123)

where ¢’ is the deviatoric effective stress, ¢’, is the volumetric effec-
tive stress, M is the slope of the critical state line, and p, is the
preconsolidation pressure. In our simulations, we use the following
parameter values: critical state slope My, = 1.4, initial preconsoli-
dation pressure p., = —1MPa, virgin compression index 1=0.37,

and swell index x = 0.054. For details on the mathematical formula-
tion and the implementation of the return-mapping algorithm for
this poroelastoplastic model, see Borja and Lee [72].

The overburden &, and side burden stress &, are assumed to be
equal, with a value of 2.125 MPa. The initial pressure is assumed to
have the same value, po = 2.125 MPa, so the initial effective stress is
zero everywhere. The dimensions of the domain are 50 x 50 m,
discretized with a simple 5 x 5 regular grid of rectangular ele-
ments (Fig. 9).

The numerical simulations of this third test case extend our pre-
vious findings to multidimensional problems. In Fig. 10 we show the
evolution of dimensionless pressure at the center of the domain as a
function of dimensionless time (left figure). We plot the solutions
for the fully-coupled method with the Newton-Raphson method
per time step, along with the solutions for the staggered method
with the drained and undrained splits. The undrained split is stable
throughout, and follows closely the fully-coupled solution. The
drained split becomes unstable at t; ~ 0.018. The reason for this
behavior is explored on the right figure, which shows the evolution
of the coupling strength 7 as a function of time. Initially, in the elas-
tic regime, the coupling strength is less than 1. The plastic regime is
reached at time t; ~ 0.018, and the coupling strength rises sharply
to a value significantly larger than 1, causing the instability of the
drained method.

11.2. Convergence behavior for a fixed number of iterations

We introduce two test cases to study the convergence behavior
of the fully coupled, drained, and undrained methods. Cases 2.1
and 2.2 are one and two dimensional consolidation problems.

Case 2.1 One-dimensional consolidation problem in a linear
poroelastic medium, the Terzaghi problem (the left pic-
ture in Fig. 11).

Case 2.2 Two-dimensional consolidation problem in a linear
poroelastic medium (the right picture in Fig. 11).

The true (reference) solutions are computed using the fully cou-
pled method with a very small time step size to minimize the tem-
poral error. The analytic solution is available for Case 2.1. The
reference solution matches the analytic solution within tight error
tolerances.
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Fig. 10. Case 1.3: 2D poroelastoplastic problem. Results are for a backward Euler time discretization (« = 1). Left: evolution of pressure at the observation point (center
element) as a function of time. Shown are the solutions for the fully-coupled method with full iteration per time step, along with the solutions for the staggered method with
the drained and undrained splits. The drained split becomes unstable at t; ~ 0.018. Right: evolution of the coupling strength 7 as a function of time. Initially, in the elastic
regime, the coupling strength is less than 1. The plastic regime is reached at time t; ~ 0.018, and the coupling strength rises sharply to a value significantly larger than 1.
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11.2.1. Case 2.1 - The Terzaghi problem

We have drainage boundaries for flow at the top and bottom,
where the boundary fluid pressure is P, = 2.125 MPa. The overbur-
den is ¢ = 4.250 MPa at the top, and a no-displacement boundary
condition is applied to the bottom. The initial fluid pressure is
P;=2.125 MPa. The domain is discretized with 20 grid blocks.
The length of the domain is L, =40 m with grid spacing Az=2 m.
The bulk density of the porous medium is p,=2400 kg m~'. The
fluid density and viscosity are ppo=1000kgm~" and u=1.0cp,
respectively. The medium permeability is k, = 50 md, the porosity
is ¢o = 0.3, the constrained modulus is Ky = 100 MPa, and the Biot
coefficient is b = 1.0. No production and injection of fluid is applied,
and gravity is neglected. The Biot modulus is M = 95 MPa, where
¢r=3.5 x 1078 Pa~! and the coupling strength is T = 0.95.

For Case 2.1, Fig. 12 illustrates the errors of the numerical solu-
tions from the drained, undrained, and fully coupled methods with
respect to time step size when a fixed number of iterations is

kp
(1/Kgr+ep)

performed. The errors of dimensionless pressure and displacement
are measured by the L? norm. The undrained and fully coupled
methods are convergent when a staggered method (i.e. one itera-
tion) is used. As the time step size is refined, the errors decrease as
O(At). This confirms that the undrained and fully coupled methods
have O(At) accuracy in time. The drained split, however, does not
converge. In particular, one iteration of the drained split yields
zeroth-order accuracy, which supports the a priori error estimate.
Figs. 13 and 14 show the spatial distributions of pressure and
displacement by the drained and undrained splits, respectively. As
the time step size is refined, the drained split with one iteration does
not converge to the true solution, but to a different solution, even
though the distributions of pressure and displacement look plausi-
ble. On the other hand, the undrained split with one iteration con-
verges to the true solution. When an even number of iterations is
used, the drained split exhibits better convergence in time than with
an odd number of iterations. This is likely due to a phenomenon of
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Fig. 14. Convergence of pressure for the undrained split with one iteration for Case 2.1: pressure (left) and displacement (right).

error cancellation that we have not investigated in detail. To illus-
trate this effect, Fig. 15 shows a comparison of the solutions ob-
tained taking one and two iterations per time step. The time step
size is doubled in the simulation with two iterations per time step,
so that both simulations have the same computational cost.

11.2.2. Non-convergence of the undrained split for incompressible
systems

From Eq. (121), we expect that the undrained split will exhibit
convergence problems for an incompressible, or nearly incom-
pressible, system. In Fig. 16, we observe zeroth-order accuracy
for pressure and displacement for the nearly incompressible fluid,
¢r=3.5x 10""*Pa~!. Fig. 16 shows clearly that undrained-split
solutions do not converge to the true solutions. Non-convergence
of the undrained split becomes severe when the fluid is incom-
pressible, ¢, 0. Fig. 17 shows zeroth-order accuracy for pressure
and displacement as well. The right panel of Fig. 17 shows that
the undrained split predicts there is no pressure change. This is

because there is no change of volumetric strain ¢, after solving
the mechanical problem as a result of the undrained bulk modulus
being infinite due to the incompressible fluid. Thus, the undrained
split cannot solve the coupled problem in the incompressible limit
because it fails to establish proper communication between the
flow and mechanical problems.

11.2.3. Case 2.2 - Two dimensional consolidation problem

Case 2.2 is an example of two dimensional consolidation under
plane-strain conditions, where the coupling strength approaches
one (t <1 where ¢=2.30x 10°Pa"'). The dimension of the
domain is 20 x 0.02 m and it is discretized with 10 x 4 grid blocks.
The domain is assumed to be homogeneous. We impose an over-
burden stress ¢ = 6.375 MPa at the top, no horizontal displace-
ment on the left boundary, a side burden ¢, = 2.125 MPa on the
right boundary, and no vertical displacement boundary at the
bottom boundary. The initial fluid pressure is P;=2.125 MPa. The
bulk density of the porous medium is p, = 2400 kg m~!. The fluid
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density and viscosity are pro = 1000 kg m~! and u=1.0 cp, respec-
tively. The medium permeability is k, =5 md, and the porosity is
¢o0=0.3. The Young modulus is E = 2.9 GPa, and Poisson’s ratio is
v = 0.0. The Biot coefficient is b = 1.0. We have a drainage boundary
for flow on the right side where the boundary fluid pressure is
Ppc=2.125 MPa. No-flow boundary conditions are applied at the
left side, top, and bottom, and the effect of gravity is neglected.
Since the layers are very thin, the fluid flows mainly along the
horizontal direction. Fig. 18 shows the convergence behaviors of
the drained and undrained splits for Case 2.2 when one single iter-
ation is performed. The drained split shows zeroth-order accuracy
in time, and the undrained split shows first-order accuracy. Non-
convergence of the drained split can be clearly identified in the
right panel of Fig. 18, which shows the distributions of pressure
along the top layer. The solutions by the drained split with one
iteration do not converge to the true solutions, even though the
distributions look plausible. Thus, refining the time step size can-
not improve the accuracy of the solutions by the drained split with

one iteration. In contrast, increasing the number of iterations for a
fixed time step size does improve the accuracy. The left of Fig. 19
compares a large time step size with more iterations
(Aty=2.06 x 1073, 10 iterations) with a small time step size and
one iteration (Aty=2.06 x 1074, one iteration). The two simula-
tions have the same computational cost. Aty=2.06 x 103 with
10 iterations provides higher accuracy matching the true solutions
than Aty = 2.06 x 10~* with one iteration. The right panel of Fig. 19
shows that the undrained-split solutions with one iteration con-
verge to the true solutions.

11.3. Rate of convergence of fully-iterated schemes

We employ Cases 2.1 and 2.2 to study the rate of convergence
of fully-iterated sequential schemes. For Case 2.1, Fig. 20 shows
the variation of the maximum absolute values of the residuals
with respect to the number of iteration under low (the left figure)
and high (the right figure) pressure-diffusion conditions. The cou-
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pling strength 7=0.95, where ¢f=3.5 x 108Pa~'. As shown in
Fig. 20, the drained split yields a faster convergence rate for a
large time step size At=0.1day and high permeability
kp=5 x 10* md (the right figure). In contrast, the undrained split
shows better rate of convergence for a small time step size
At=0.01day and low permeability k,=500md (the left of
Fig. 20). These results support the a priori estimates from Eqgs.
(107) and (121). Furthermore, the estimates and numerical results
for the drained split also support the observation by Schrefler
et al. [49] that a large time step size can reduce the spectral norm
of the error amplification matrix for the drained split type of the
staggered Newton scheme.

The 2-D results from Case 2.2 lead to the same conclusions as in
Case 2.1. The coupling strength 7 =0.77 with ¢;=3.0 x 107 Pa~".
We perform two tests, corresponding to low and high diffusion
of pressure. For low diffusion of pressure (i.e., low y), the perme-
ability and time step size are k,=5md and At=5 x 10~4 day,
respectively. Fig. 21 (the left figure) shows that the rate of conver-
gence for the undrained split is faster than the drained split in the
case of low pressure diffusion. In contrast, the right of Fig. 21
shows that the rate of convergence for the drained split is faster

than the undrained split because pressure is highly diffusive,
where the permeability and time step size are k, =500 md and
At =0.01 day, respectively.

12. Conclusion

We have analyzed the stability of the drained and undrained
splits, in combination with a generalized midpoint rule time dis-
cretization (0 < « < 1), for the sequential solution of coupled flow
and geomechanics. Following [26,30], we studied the stability
properties by means of the von Neumann analysis for the linear
case, and the energy method for the nonlinear case.

For the drained split, the backward Euler time discretization
(«=1) is conditionally stable, and its stability is only a function
of the coupling strength, independently of time step size. The
method is unconditionally unstable when the midpoint rule time
discretization (o= 0.5) is used. A useful scheme in practice is a
mixed time discretization, where «=1 for the mechanics step
and o =0.5 for the flow step - the drained split with this time
discretization has the same stability properties as the backward
Euler scheme. The undrained split, in contrast, is unconditionally
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stable - for any values of the coupling strength and time step size -
as long as o > 0.5.

We have also analyzed the nonlinear stability (or B-stability) of
the undrained split via the energy method. The undrained split
inherits the contractivity property of the continuum problem,
which is a necessary (but not sufficient) requirement for algorith-
mic stability. We find that the generalized midpoint rule with
o > 0.5 is unconditionally B-stable, that is, contractive at discrete
time level with respect to the natural norm of the coupled
problem.

We also performed an analysis of the convergence properties of
the drained and undrained splits with the backward Euler method
using the matrix algebra method and spectral analysis. From the a
priori estimates of error propagation, the drained split with a fixed
number of iterations is not convergent in time even when it is sta-
ble. This lack of convergence is distinctive behavior of the coupled
problem of flow and quasi-static mechanics; the drained split for
fully-dynamic mechanics exhibits first-order accuracy with respect
to time step size. The undrained split with a fixed number of iter-
ations is convergent for a compressible system but becomes non-
convergent when the system is quasi-incompressible (M — o).

We also compared the drained and undrained splits in terms of
the rate of convergence as a function of number of iterations, when
full iterations are performed. Under a high pressure-diffusion con-
dition (e.g., large time step size or high medium permeability), the
drained split is faster than the undrained split, whereas the conver-
gence of the undrained split is faster when the medium permeabil-
ity is low or the time step size is small (low pressure-diffusion
condition).

We have performed numerical experiments that support the a
priori estimates of stability and convergence. In a separate paper
[73], we investigate another type of sequential methods, in which
the flow step is solved first. There, we show that a sequential meth-
od based on a fixed-stress split is unconditionally stable and over-
comes the non-convergence and stiffness deficiencies of the
undrained split for incompressible and quasi-incompressible
systems.
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