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CHAPTER 1. INTRODUCTION 1 

Chapter 1 

Introduction 

The main objective of this study is the development of a numerical simulator 

to study the transient drawdown and buildup behavior of a liquid in a gravity drainage 
well with a moving free surface boundary. The purpose of this work is to provide a 

tool to help understanding the flow mechanism in the vicinity of the wellbore where 

the known methods of interpretation fail to determine the transient pressure behavior 
or to establish physical grounds for creating a method of interpretation of pumping 

gravity well tests. 

In the last few years, much attention has been dedicated to depleted petroleum 

reservoirs in the oil industry all over the world. The interdependency of oil and gas 
reserves, price, demand, and politics is a major factor affecting interest in developing 
alternative sources of energy, and enhanced oil recovery from abandoned fields, heavy 
oil reservoirs, tar sands, bitumen shales, etc. 

Among the potential targets for enhanced oil recovery projects are many depleted 

oil reservoirs, some with such a low pressure that the gas cap is at atmospheric 

pressure. This is the case when gas solubility is low, or for water flooded shallow 

reservoirs which have produced much of the oil, water and associated gas. 
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Figure 1.1: Unconfined free surface gravity drainage reservoir producing to a single 
well - Muskat (1937) 

A common characteristic of such a reservoir is the lack of detailed information 

about the formation properties necessary to plan an enhanced oil recovery project. 

Unfortunately, the present petroleum well testing techniques do not consider the 
case of a well in a reservoir with a phreatic liquid table. In hydrology, a phreatic 
aquifer is defined as an unconfined reservoir with an air-water contact at atmospheric 
pressure. Pumping a well that penetrates a formation with a phreatic gas-liquid 

contact develops a downward movement of the free surface, under a gravity flow 

mechanism. Often, no other source of energy is present for driving the liquid into 
the wellbore. An exception is capillary forces acting in the capillary fringe above 

the phreatic line. A schematic view of the gravity well problem is presented in the 
Fig. 1.1, representing a cross section of a fully penetrating open hole well in an 
unconfined sandstone reservoir. 

Until recently, most theory found in the petroleum literature about well test anal- 

ysis has concerned confined flow of compressed fluid. However, the groundwater lit- 
erature contains many studies where phreatic aquifers are a common subject. On the 

other hand, even hydrologists have not focused on pumping wells where the presence 
of a seepage face along the sandface adds further difficulties to a moving boundary 
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problem. Since unconfined aquifers are often shallow and the wells are easy and cheap 
to drill, methods of interpretation often concerned interference tests. 

The theory associated with the gravity flow mechanism with a variable free surface 
started in the last century with the Dupuit (1862) approach, generalized by Forch- 
heimer (1886) in the so-called Dupuit-Forchheimer partial differential equation, which 
for radial incompressible flow is: 

d2h2 1 dh2 
dr2 r dr 
- + - -  = 0 

Eq. 1.1 concerning saturated flow in an incompressible radial system. Many assump- 
tions were made such as formation isotropy and neglection of vertical flow gradients. 
The Dupuit-Forchheimer approach has become a standard reference for improved 
theories and interpretation methods. 

The first rigorous attempt to solve the steady-state gravity problem under several 
different flow geometries using a hodographic transformation was made by Wyckofl 

et al. (1932) and Muskat (1937). A hodographic transformation is a representation 
of the dynamical system by coordinates that are the velocity components. This 

rather difficult method, although supporting the Dupuit-Forchheimer theory, fails in 

producing the shape of the free surface, as observed in Chapter 2 of this study. 

The classic transient solution for compressed liquid flow (Theis, 1935) is often 
used today to represent the late time drawdown behavior in observation wells by well 
known Groundwater authors like Bovlton, Neuman, Streltsova, among many others. 
Although the hydrology literature is rich concerning this subject, there is a great deal 

of confusion about the physical principles governing unconfined flow - see Chapter 2. 

Regarding transient drawdown in observation wells near well producing at a con- 

stant pumping rate, there are three different flow regimes characterized by the S- 
shaped curve illustrated by Fig. 1.2 from the Groundwater literature. Observation 
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Figure 1.2: Typical type curve for unconfined flow fi-om the groundwater literature - 
Nevman (1975-a). 

wells located far from the producing well present a characteristic time-drawdown 
curve reflecting three stages of flow in the reservoir. The first stage is attributed 

to a pure radial flow by fluid expansion and compactation of the aquifer before the 

free surface starts a downward movement. The Theis solution applies, according to 
many hydrologists. As the free surface responds to the well pumping,. an intermediate 

stage is marked by a reduction in the slope of the head drawdown, approaching zero 
in some circumstances. This is the period of desaturation of the cone around the 

well. The last stage would again follow radial flow behavior because of stabilization 
of the free surface changes. The analytical methods presented by Streltsova (1972- 

a, 1972-b, 1973) and Neurnan (1972, 1975) considered elastic and formation storage 
properties lumped into the specific yield parameter. To get the analytical solution for 
the boundary problem (see Chapter 2), Neuman imposed such conditions as the head 

drawdown must be much smaller than the initial head, the well was a line-source well, 

wellbore storage and skin effects were neglected, and the seepage face was neglected. 
As a result, analytical methods were not applicable to a pumping well or its vicin- 

ity, and were insufficient to analyze the transient pressure behavior in the produced 
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wellbore. 

Using the Dupuit-Forchheimer approach, Ramey et. al (1989) derived a partial 
differential equation for incompressible radial flow into a single well located in an 

infinite reservoir. In terms of pressure, instead of liquid head, the p.d.e. takes the 
form of Eq. 1.2, in Darcy units: 

By analogy with the flow of ideal gas, the Aronofsky and Jenkins (1953) correlations 

were applied to obtain the approximate wellbore transient pressure solution, as follows 
in English petroleum field units: 

2 2 QBP 0.000264kt p ,  - p ,  = 325.2 - {log ( ) + 0.351 + - 
W / P )  4 P (P? 1 r: 1.151 

This appears to be the first approach for gravity drainage well test analysis found in 

the petroleum engineering literature since the classic stydies of Wycko$ et al (1932) 
and Muskat (1937). 

From the many concepts and ideas related to unconfined flow into a well, it is pos- 
sible to consider the physical flow mechanism. First, start with the rest condition of 

an unconfined, single-phase reservoir, like that represented in the Fig. 1.1. Above the 

phreatic surface, there is a partly-saturated region containing liquid called the capil- 
lary fringe where the pressures are negative. As a consequence, the static potentials 

are constant and equal to the potentials anywhere in the saturated region below the 
phreatic table, defined throughout this report by Q, = p + yh. The degree of liquid 
saturation in the capillary region and the elevation of liquid above the free surface is 

dependent on the surface tension between the liquid and the porous medium and the 
gas and the pore throats related to the shape and grain size distributions. 
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When the well is pumped at a constant rate in an infinite, unconfined reservoir, 
the liquid level in the wellbore drops at a velocity that depends on the well storage 
capacity. Due to the viscous forces in the formation, the potential drop in the well is 
not immediately transmitted to the reservoir. This causes a discontinuity of potentials 
at the sandface. With increasing time, the potential drops in the formation causing 
the liquid to start moving into the well at increased rates as the potential differentials 

become large, and the pressure drop is transmitted radially and vertically through 

the formation. During this period, called the wellbore storage period, the withdrawal1 
from the well is greater than the flow from the formation. 

Vertically along the sandface in the well, there are two different regions of flow: 

an open face, where the liquid falls, and the liquid filled well region below the liquid 
level in the hole. The seepage length is the difference between the liquid levels in 
the sandface and in the well. Thus, at the sandface wall, the potentials vary from 

a maximum value at the intersection point of the phreatic free surface down to the 

liquid level in the well, and remain constant from there down to the bottom of the 
well. 

Following an initial period of flow, the potential drawdown in the pumping well 

deccelerates, due to an increasing contribution of flow from the formation. The with- 
draw in the neighborhood of the well develops gradients of potential driving the 
streamlines to bend gradually, with decreasing slopes from the free surface down to 

the sand base. The produced mass of liquid, considering a low compressibility system, 

leaves a desaturated region behind the free surface. Neglecting for a while the capil- 
lary region, which is discussed in Chapter. 4.7, the desaturated region is a two-phase 
flow region where the liquid saturations successively drop to an irreducible value. Due 
to the low velocity of vertical displacements of the free surface, the resistance created 
to the gas entry into the porous spaces left by the liquid under the gravity flow are of 

minor importance to create a delay in the process, according to some authors, even 

around the wellbore. Also, the liquid retained by capillary forces in the desaturated 

zone, though known to exist in small amounts, is not rigorously considered in the 
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present study. 

After the wellbore storage effects cease and the desaturation cone starts developing 
in the formation, the pressure in the well stabilizes at a certain level as a result of 

equilibrium between the rates of pumping and the withdrawal from the surroundings. 
At  this time, the seepage face trends to shrink. The cone of depression develops 
radially from the wellbore. As the depression of the free surface reaches remote 
regions, a small free surface displacement corresponds to a large volume of liquid. In 

other words, the storage capacity becomes large with increased radius. 

Since an external boundary is not reached and the free surface presents a fairly 
stable shape, the potential changes reflect a confined system behavior corresponding 

to a third cycle of observed pressures in the well. During this period, one expects 
a slow, uniform downward displacement of the free surface, and the seepage face 

changes at a much lower rate. 

The transmissivity has an important effect on the potentials and free surface 

profiles. The velocity along stream lines at any radial location, a consequence of 
the transmissivity and withdraw rates, is of interest. In other words, if we track 

two single stream flow lines from a remote region to the sandface, vertically spaced 

by a certain difference in height, we observe a reduction in the distance between 
them by the stream-line merging process. Since the material balance condition for 
two consecutive stream flow lines to converge is to double their velocities (case of 
incompressible flow), the viscous forces are the most responsible for the shape of the 
free surface, and also for the seepage face length. By itself, the viscous flow theory 
can explain the formation of the seepage face without invoking surface tension effects. 

Those capillary end effects, although present in the very top of the seepage face are 
of minor importance, according to some experim.enta1 sandbox models (Hull, 1955). 

Wycko$ et  al. (1932) explained the influence of the resistance forces to the vertical 
flow in the formation neglecting capillary forces by expressing the potential in the 
free surface as a function of the average vertical velocity at some radial position: 
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where: 

2, - sandface vertical distance from the sand bottom 

Z - head of liquid at the bottom 
TJ - average vertical velocity of the liquid 
k - equivalent to the transmissivity 

- 

y g  - liquid gradient 

In App. D Eq. 1.4 is verified against @ = p + yh, verifying the free surface boundary 

condition found in the literature. 

The buildup process in gravity wells has been overlooked in most studies. Some 
references in the Groundwater literature takes buildup as a reversible process similar 

to drawdown, but there has not been a careful investigation of the physical behavior 

during this period. R a m e y  et  al. (1989), analyzing a field case, concluded that the 

pressure buildup is “essentially different” from the prior drawdown process, leading 
to a rapid establishment of a semilog straight line. According to R a m e y  e t  al., radial 
flow occurs below the free surface during the buildup, and the free surface is displaced 
up by radial flow into the cone of depression. After pumping stops, the liquid flows 

into the wellbore, and starts refilling the well. Chapter 7.1.2 presents considerations 
of the buildup analysis. 

The first attempt to study the gravity well problem was to find a bi-dimensional 
numerical model that could answer most of the questions related to the real physics 
of the mechanism. A moving boundary simulator was developed and named S t ream 
L a y e r  Model. A s t ream layer is a set of stream flow lines in a vertical section of an 

axial flow into the well. The next chapter presents a literature survey for gravity 
drainage well test analysis. 



Chapter 2 

Literature Review 

The mechanism of gravity drainage flow in a porous medium has not been 
completely studied in either Groundwater research or the oil industry. In this chapter, 

a review of the main works in gravity drainage well test analysis is presented. Also, 

studies of two dimensional well model simulators are reviewed both in Groundwater 
and Petroleum Engineering. 

Pumping tests are common in hydrologic evaluations, and gravity drainage eval- 
uation methods have been necessary due to the fact that many shallow aquifers 

(phreatic) are free surface systems. Hence, the Groundwater literature was the main 
source of information for the present investigation. 

In most studies of unconfined radial flow, water is the only saturating fluid in 
the porous medium, and the presence of other phases is not considered, except in a 

few studies dealing with a desaturated region and/or a capillary fringe between the 
water table and the air-filled pores above it. Generally, most models consisted of a 

well located in the center of an infinite reservoir where the formation properties were 

often considered anisotropic, and the presence of a damaged region was neglected. 

Wellbore effects were some of the major difficulties encountered in this study and 

9 
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only recent studies of wellbore effects have been made by some authors. 

A small difficulty is relating petroleum engineering terms to the reservoir prop- 
erties and parameters defined by hydrologists. A set of relationships and unit con- 

versions between the definitions employed in both branches of study is given in Ap- 

pendix B. 

2.1 Early History 

Apparently, the first important contribution to the gravity flow problem was 

the Dupuit (1863) analytical solution which assumed a radial, steady-state parabolic 

distribution of head with the distance from the wellbore. A simplification of the 

mathematical steady-state problem was made by assuming that for a small slope of the 

water table, which is also a streamline, the Darcy law velocity vector is proportional 
to the tangent of the angle the streamline makes with the horizontal, rather than the 
sin of the angle. Thus, instead of 

sin 8 was replaced by tun 8 = 2, where h = h (z) is the vertical coordinate of the 
water table position. This assumption permitted a derivation of the steady-state flow 
equation by Dupuit, which for radial flow is: 

Forchheimer (1886) applied the Dupuit assumption to the continuity equation and 
produced the partial differential equation for radial flow: 
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d2 h2 1 dh2 
dr2 
- + -- - 

r ar 
- 0  

Equation 2.3 is the well known Dupuit-Forchheirner partial differential equation for 
steady-state gravitational radial flow. 

2.2 Experimental and Analytical Models - Steady- 

State 

Wyckofl et al. (1932) investigated gravity flow using an experimental 15" 
sector sand box to simulate the radial flow of a single liquid (water) saturating the 
reservoir. Their results provided important informations about the free surface and 
streamline behavior along the reservoir and around the wellbore. The radial sector was 
laterally bounded by glass walls which permitted visual inspection of the liquid level 
in the porous medium, and streamlines traced by ink injected at points at the outer 

boundary. Eighteen complete steady-state experimental runs were presented, varying 

initial heads and flow rates in order to compare the results with the Dupuit model and 
other models. The capillary fringe effects were important in the lab scale, and most of 

the the deviations from the Dupuit model were attributed to the capillary fringe. The 
tables summarizing the results of each experiment presented the liquid heads taken 
at the sand bottom, and the liquid level (free surface position) profiles were graphed 
for runs No. 18 and 19. There were no direct seepage face length measurements, but 
visual inspections and the graphs presented in the paper indicated the seepage face 

existence. 

Muskat (1937) dedicated an entire chapter to the analysis of gravity flow systems. 
His study of steady state flow for different configurations (Muskat, 1935,1937) of 

porous medium included physical experiments such as sandbox and electrical models 
(by other investigators). He pointed out the weakness of the Dupuit assumptions, and 
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raised the concept of a seepage face along the downstream boundary that introduces 

a complication to the problem once the water table causes a discontinuity in the 
wellbore. Since the Dupuit equation depends only on radial distance, this equation 
fails to determine the head distribution along the vertical coordinate in the vicinity 
of the wellbore. Far from the well, horizontal flow dominates, and the Dupuit results 

are reasonable. Muskat concluded the Dupuit equation, although based on incorrect 
assumptions, gives fortuitously accurate results in the calculation of the discharge of 

a well when the head values are taken at the base of the formation. 

Muskat (1935,1937) solved the steady gravity flow problem analytically through 
two methods: an exact solution using the hodograph method, and an approximate 

solution by Fourier series expansion of the boundary conditions. These solutions 
are not simple even for an isotropic medium. The method of hodographs, though 
powerful, is difficult to apply. Analytical and experimental results were compared in 
several figures in the Muskat (1937) book. 

Babbit and Culdwell (1948) used one electrical and two sandbox models (small 

and large scales) to corroborate the observations of Wycko$ e t  al. and Muskat. The 

effect of the capillary fringe was omitted in this work which generated an empirical 
equation to locate the free surface as a function of the distance from the wellbore 
axis: 

where h, and he are respectively the free surface positions at distances T,  and re from 
the wellbore center, and C, is an empirical constant obtained as a function of the 
dimensionless radial distance. 

The most valuable experimental work, is a major reference in the Groundwater 

literature by Hall (1955).Hall presented four series of sandbox experiments analyzing 

capillary effects, the hysteresis due to air invading the desaturating cone, and changes 
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Figure 2.1: Essential dimensions of well model - from Hall (1955). 

in the surface tension in the rock-fluid system. Figure 2.1 from the Hall paper shows 
a 15" sector and the essential sandbox model dimensions. Series A of tests performed 
by Hall presented eight steady-state steps of successive flow rates starting from a 

completely water saturated system with an average capillary fringe height of 3.5 

inches. It is remarkable to observe the behavior of the free surface as the flow rate 
increases. From run A-4 to A-8, the free surface position at the sandface varied 

only -3.6%, while the wellbore liquid level dropped from half of the initial height 
to zero, and the production flow rate increased more than 32%. This result is a 

difficult mathematical condition to be represented by only a few variables as in the 
Dupuit formula. The streamline traces were qualitatively and quantitatively studied, 
demonstrating the importance of the vertical position of a streamline related to the 

time necessary to flow from the outer source to the inner boundary. See Fig. 2.2. The 

uppermost streamline requires twice as long to reach the wellbore as the lowermost 
streamline. There are two possible reasons for this phenomenon. First, the uppermost 
inner boundary potentials are always greater than the lowermost potentials. See Ch. 3. 
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Figure 2.2: Time for flow along the streamlines - Hull (1955). 
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Second, the uppermost streamlines are much longer than the lowermost streamlines. 

2.3 Transient Analysis 

An early important study of compressible transient flow was presented by 
Theis (1935). Previous groundwater hydraulics had been based on steady flow con- 

ditions. Theis applied the theory of heat conduction in solids using the line-source 

solution adapted to the flow of fluids in porous medium. In the paper, the limita- 

tions of the use of the exponential integral, E;(-z), in analyzing unconfined flow were 
considered. Early time effects due to a finite radius wellbore and gravitational flow 

around the wellbore were considered. Theis presented the technique later used by 
Horner (1951) to analyze the pressure-time behavior in well recovery (buildup) and- 
ysis by plotting pressure-drawdown versus the dimensionless time relation (tP + O ) / O .  

A paper by WuZton (1960), written in two parts, considered pumping test analysis 

for both artesian and unconfined aquifers. The author pointed out that the true 

behavior of water table models deviates from the line-source solution, mainly at early 
times. Three different segments of the time-drawdown curve were recognized: a 
very early one in which the well starts producing under decompression of the water 

and formation (as short as a few seconds or minutes) followed by a gravity drainage 

period when vertical flow near the wellbore controls and the free surface changes 
rapidly, and finally a late period where the rate of change of the water table is no 
longer important. In the first and last periods, the so-called non-equilibrium formula 

(Theis solution or its logarithmic approximation) could be applied, because the flow 

is dominantly horizontal. However, when and where gravity drainage is the most 
important mechanism, solutions like Bodton (1954-b) should be used. 

In 1954, Bodton (1954-a) introduced a new approach to represent unconfined 
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transient flow behavior. Using Darcys Law and the continuity equation for flow of 
incompressible liquids, the following partial differential equation in terms of the liquid 

potential @ = p / g y w  + z was posed in the case of isotropic aquifers: 

d2@ 1 a@ d<P2 
dr2 r dr a22  

V2(<P) = - + -- + -  = 0 

The water table boundary condition was expressed by: 

The differentiation following the motion of a particle located on the free boundary 

streamline was defined: 

In Eq. 2.7: 

D 
Dt 
- 

D 
Dt 
- (@ - 2) = 0 

Applying the differential oper 

obtained: 

,ator as defined, the following non-linear eq1 

d@ - at = {  ( E J 2  + (E)2 - !E} 
uation was 

Equation 2.9 was simplified by the assumption that the @ gradients are small, and 
when z = h: 
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d@ k a@ - + -- 
at s dz 

= o  (2.10) 

The inner boundary condition considered a line sink at a constant pumping rate 

per unit length: 

a@ 
d r  ' Q = 2 1 r k h ~ r - m  r -+ 0 ;  O < z < h e  (2.11) 

A general solution of Eqs. 2.6 to 2.11 and the boundary conditions was reached after 
simplifying assumptions: 

(2.12) 

Further simplifications were made and a definite integral denoted by V(r , t )  was in- 
troduced: 

v(P,T) = (") { 1 - exp [- XT tanh (X) 3) dX 
X (2.13) 

where p and 7 are dimensionless radius and time, respectively: 

r p = -  
he 

and : 

k t  

(2.14) 

(2.15) 

(2.16) 
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Values of the Eq. 2.13 integral were tabulated, as well as corrections for deviations due 

to the several simplifications. Boulton (1954-a) a,lso handle modifications to consider 

anisotropy and head recovery (buildup), and a correction for a finite wellbore radius. 

The second Boulton paper (1954-b) contains a solution that became an most im- 
portant reference in the Groundwater literature during the subsequent 15 to 20 years, 

because it introduced a new theory for unsteady radial flow in an unconfined isotropic 
aquifer. Two different cases were considered, but the one that fitted the gravity 
drainage model best assumed a delayed yield from storage caused by an idealized bed 

of fine-grained material overlaying the aquifer with the stabilized water table within 

this section of low permeability. The rate of delayed yield was empirically represented 
by: 

where a is an empirical constant. Neglecting the vertical components of flow, the 

final form of the P.D.E. considering delayed yield is: 

(2.18) 

where: 

(2.19) 

a c  s + S' T 
7 = 1 + -  - 

a S' 
and c = - T 

- 
a 

a = -  
S '  S '  

(2.20) 
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Some approximations of the solutions were prepared by assuming limiting values of 

q .  Tables containing numerical values for different approximations of Eq. 2.19 were 
provided. 

The explanation used to justify the Boulton model was weak and had little phys- 

ical connection with the pure gravity flow mechanism. However, the mathematical 
formulation was shown to match many sets od field data, and later Boulton (1963) 

presented the same model applied to unconfined aquifer drawdown, and a group of 

delayed yield type curves generated by a computer program - see Fig. 2.3. The early 
and late time behaviors were analyzed, and two different sets of curves were plotted 

on the same graph at two different dimensionless time scales. The shapes of these 
curves, according to the author, show different flow patterns. Under the considera- 

tion of the initial and internal boundary conditions at the very early time of pumping, 
the time-drawdown curve follows the Theis solution for an artesian aquifer. Next, as 

the yield from the water table becomes effective, the drawdown behavior deviates 
from the line-source solution due to the contribution by the water table fall, and the 

curves bend to the right (Type A curves), trending to an asymptotic behavior. After 

a time, the approximations of the integral show flat curves which start to bend up 
(type B curves), merging into the Theis solution. The dimensionless time at which 
the departure from Theis solution drawdown and the calculated type B curve from 

the Bozllton model equals 0.02 generates a new parameter called the delayed index 

(i). This delayed index is a characteristic of the formation and is physically related 

to the gravity vertical flow around the wellbore. As in the previous work (Boulton, 
1954-b), only isotropic formations were considered. 

Prickett (1965) applied the BouIton (1963) solution to eighteen pumping tests and 
found good agreement with the theory. The relationship obtained in the tests between 
the delay index and the grain size of sand demonstrated a physical correlation. Also, 
an interesting set of graphs shows the individual variation of different parameters. 

Theoretical time-drawdown curves indicated the effects of changing only one vari- 

able of the basic equation (such as 1 / ~ ,  S, Sy,  r, and T ) ,  while all other coefficients 
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VALUESOF 8 

remained fixed. 

i 

To consider the vertical flow around a well, Boulton (1970) presented, without 

derivation, an equation based on the delayed yield (Boulton, 1954-b and 1963) and 

the vertical velocity-component of the flow (Boulton, 1954-a). However, this equation 
was not applied in the 1970 study. Instead, some considerations were suggested 
in order to have “the most reliable method of analyzing pumping test data for an 

unconfined aquifer”, using previous theories: 

(a) the use of matching distance-drawdown by type-curves based on a constant 

coefficient of Storage (such as the Boulton V-function, Boulton 1954-a), and 

(b) the application of the delayed yield analysis (Boulton, 1963). 

A practical example of these methods applied to observation wells was given. There 

is a comment on page 375, in which Boulton 1970 explains the deviation of the early 
time behavior from the type A (early Theis) solution, shown in his Fig. 2 by the 
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need for a “type-curve based on a differential equation which contains an additional 

term for the short-term delayed yield”. He justified the simplification of the problem 
by stating that the parameters involved in this early period of flow are “of small 
importance”. 

In order to enhance the solution (Boulton, 1954-a, 1954-b, 1963) for drawdown of 
an unconfined aquifer, an additional empirical term allowing for early time delayed 
yield from storage was considered by Boulton and Pontin (1971). The new solution 

enabled one to consider anisotropy and partial penetration, as well as to calculate the 
specific yield with “greater confidence”. By considering a second delayed yield term, 
the new results at early times were not associated with the previous early Type A 
curve. A practical example of application was given, using the same pumping test 

reported in a previous paper (Bodton, 1970). The figures presented showed a better 
match of the theoretical solution with the data, even at early times. 

Dagan (1964, 1967) proposed a perturbation technique to linearize-the equations 
of unsteady flow toward a partially penetrating well in an unconfined aquifer which 

considered the velocity potential and Darcys Law to describe the motion of the liquid 
in an anisotropic aquifer of infinite extent. The resulting first and second order lin- 
earized equations were solved using Green Functions for different sink configurations, 
considered as point or line sources. The restrictions requiring small drawdowns and 
vanishing sinks contained in the Dagan solutions restrict use in the neighborhood of 
the sandface. However, the Dagan solutions have advantages over the Boulton (1963) 

solution, by the consideration of the vertical component of velocities. At least, better 

results than the Theis approach would be expected in the vicinity of a well. The 
problem posed by Dagan neglected compressible effects in the unconfined aquifers, 

later included by Neurnan (1974) by incorporating the aquifer compressibility in the 
Dagan (1967) equations. 

Streltsowa (1972-a) and (1972-b) considered slow drainage as the delayed process 
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of vertical transfer, and not a delayed yield as did Bodton. She reduced the tri- 

dimensional problem to a two-dimensional problem by considering an average head 

along the vertical coordinates, given by the relationship: 

Therefore, the unsteady radial free surface flow partial differential equation is: 

1 d h  dh 8 dh" 
T ( - g + F B )  = s - + s-  at at 

(2.21) 

(2.22) 

The specific rate of the vertical transfer of flow was assumed to vary linearly with the 
difference between the average head h and the free surface h": 

dh" 
at 
- -  - Q ( h  - h") 

The relationship between Q and other properties is: 

1 k a =  - a  = - 
S' S'b 

(2.23) 

(2.24) 

where, IC and b are the average value of the permeability coefficient and the thickness of 
the vertical flow, respectively, and CP is the specific hydraulic conductivity. A constant 
rate inner boundary condition given by the following equation was considered, as 
r + r,: 

Q = 2 . r r k H r  = constant (2.25) 

and the initial condition is: 

h(r,O) = h" (r,O) = H .  (2.26) 
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The combination of the differential equations permitted the partial differential 

Equation (Eq. 2.22) to be represented in terms of h and the radial distance from the 
well axis r: 

Equation 2.27 has a similar solution to the Boulton (1963) problem for which com- 

pressible flow was neglected, i.e., S = 0: 

A solution for h", which is the position of the free surface with time, was also 
obtained by assuming an exponential rate of discharge resulting from the discontinuity 
in head at a well: 

Q" = Q (1 - e-at) (2.29) 

and so: 

h" = H - - 1  Q O0 Jo ($ x) { (- )} dz (2.30) 
1 - exp 

2nkT o X x2 + 1 

In a subsequent paper, Streltsova (1973) analyzed the contribution of the unsatu- 
rated zone (capillary forces and additional retarded flow) above the free surface to the 
head drawdown response in the wellbore, and concluded that the unsaturated zone 
contributions were of minor importance compared with the vertical fall of the water 
table. An important observation in this paper was the conclusion that the specific 
yield for vertical flow is a constant property of the formation, and the relationship 
between the unsteady water table heights and the flux at the water table averaged 

over the area is also constant. However, the free surface and the flux have an ex- 

ponential change with time. In this same paper, Streltsova showed results from an 
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experimental radial flow model using an analog electrical resistance network for sim- 

ulating unconfined flow around the well. These results were compared with results of 
analytical solutions from the Boulton (1963) type-curves for average drawdown, and 
with the Barenblatt e t  aL(1960) solution for a similar equation for the free surface 

drawdown applied to unconfined flow. A good match between experimental and an- 

alytical results was used to verify the theory, and to show the degree of reliability 

of assumptions of neglected flow from the unsaturated region and capillary pressure 
effects. 

Complementing the previous work, Streltsowa and Rushton (1973) presented a 

table for the definite integral W,,[r/B,u] defined in Eq. 2.30, and compared the 
Streltsowa (1972-b) solution based on the previous assumptions and the Boulton (1963) 
integral V [ r / H , t ]  given by Eq. 2.13. The basic difference between the two methods 
is that the former’s main assumption is a finite difference approximation for the free 

surface condition (see Eq. 2.23), whereas the latter makes an assumption of constant 

discharge per unit length over the entire depth of the well and establishes an empiri- 

cal relationship creating the delayed yield parameter. The comparison is presented in 
both table and graph. A computer code for the main part of a program to calculate 
the position of the free surface according to the Streltsowa approach is available. 

The elastic properties of the aquifer were considered by Streltsowa (1974) in solving 
the gravity drainage flow problem for a partially penetrating line-sink. Different 

boundary conditions and a more rigorous mathematical approach were used, instead 

of the finite difference approximation described before. In the conclusions, it was 

emphasized that the elastic properties of the aquifer were essential during the early 
periods of pumping before gravity drainage has started. 

A new analytical approach was presented by Neuman (1972) which defined a set 
of equations, considering formation anisotropy and constant values of specific storage 
and specific yield with no empirical considerations. According to the author, this 
method eliminates the conceptual difficulties in the Boulton theory of “delayed yield”, 
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and suggested calling the physical process involved in the early time flow behavior 

of an unconfined aquifer as “delayed response”. Also, a comparison with the results 
from a numerical solution using the Cooley (1971) finite difference model showed the 

unsaturated region flow to be important to the drawdown in a free surface aquifer. 

The Neuman model treated the unconfined aquifer as a compressible system and the 

free surface as a moving boundary. One common assumption in the Neuman theory 
as well as that of others is the treatment of the well as a line sink. This simplification 
of the problem, using the author’s words, introduces “a certain error in the solution 
near the well bore” by neglecting the presence of a seepage face. The governing set 
of equations for the tri-dimensional problem is: 

s (r ,  z,  0) = O (2.32) 

s ( o o , z ,  t )  = 0 (2.34) 

t ( T ,  t )  = b - s (r ,  z,  t )  (2.36) 

(2.37) 

Equations 2.31 and 2.37 were solved using a perturbation technique and Laplace and 
Hankel transforms. The solution is given in the Appendix of Neurnan (1972) and is: 
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where, w,(x) and w,(x) are expressions given by Eq.15 in the original paper. That 
solution is a function of the coordinate z. In order to find an average solution over 

the aquifer thickness in an observation well, the following expression was used: 

(2.39) 

where z1 and 2 2  are elevations of the open sandface in the observation well. For a 

well that completely penetrates the aquifer, the final result for the average draw- 
down is calculated from Eq. 2.38 after redefining w,(x) and w, (x) as Eqs. 20 and 
21 in Neuman (1972). The influence of each dimensionless parameter was studied 
and interesting graphs presented. See Figs. 4 and 5 (Neuman, 1972, pp. 1037-1038). 

Figure 4 suggests an approximate linear relationship of the logarithm of water table 

drawdown with the logarithm of time (curve corresponding to ZD = l), and Fig. 5 
presents a dimensionless constant position ZD M 0.57 for the average drawdown over 
the entire aquifer. The Neuman (1972) solution was supplemented by a subsequent 
paper (Neuman, 1973) whose main purpose was to modify the original Eq. 27 (Neu- 
man,1972), allowing for anisotropy. The result presented in Eq. 2.40 is similar to the 
Boulton (1954-b) solution: 

(2.40) 

The new theory (Neuman, 1972,1973,1974) was applied to pumping tests for fully 
and partially penetrating wells by Neuman (1975-a). Besides the general procedure 

of curve-matching, this paper introduced a method of interpretation based on the 
semi-logarithmic relationship between drawdown and time. For type-curve analysis, 
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the methodology follows that previously described by Priclcett (1965). The semi-log 

interpretation is based on the linear behavior of drawdown with the logarithm of time 

at late times when the rate of change in the free surface has become small. However, 

due to the assumption of a line-sink well, the theoretical early time behavior is also 
supposed to fall on a semi-log straight line since the initial flow from the formation 

into the wellbore is essentially horizontal. The practical example of application of this 
method in analyzing pump test data seems to be conclusive with respect to the late 

time behavior, but not well fitted to the early time data points for a pumping well. 
In describing this method, Neuman suggests deleting the early time data analysis if 

the slope of the straight line obtained differs noticeably from the straight line fitted 
to the late time data points. In this case, the method of interpretation should be 
complemented by matching of type-curves. Another important consideration made 
in the paper by Neuman (1975-a) concerns recovery (buildup) tests. Because no flow 

from the unsaturated region is considered in this method, and the unconfined aquifer 

is treated as a compressible system, no hysteresis is expected. As a consequence, the 
same analytical equations and interpretation methods should applyfor both drawdown 
and buildup. However, Ramey et al. (1989) observed that the semi-log graphs for 
drawdown and buildup show much different times for the start of the straight line 
behavior for the same well test data. This and similar physical observations make 
questionable the reversibility of the process of gravity drainage under the free surface. 
On this same paper, Neuman (1975-a) relates the Boulton reciprocal delay index 

a with aquifer properties by establishing a numerical relationship between Boulton 

type-curves expressed by the dimensionless parameter ( T / B ) ~ / ~  versus S D .  In semi- 

logarithmic paper, a linear relationship was obtained by regression analysis: 

Using definitions of T / B ,  p, and a, Eq. 2.41 becomes: 

(2.41) 

(2.42) 
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Equation 2.42 represents a connection between the Boulton and Neuman theories. 

Neuman also recognized the relationship of the a-parameter and physical properties 
of the aquifer in the Streltsova study, but claims that the relationship exists only as a 

function of distance r (see Eq. 2.42), and not of time, as is clear from the dependence 
of sWT in the following Eq. 2.43 by Streltsova (1972-b): 

(2.43) 

Streltsova (1976) believes that the Neuman boundary condition for the free surface 
(Neuman, 1972) leads to a mathematical formulation equivalent to Boulton (1954-b, 
1963) and Streltsova (1972). Therefore, she concludes that the solutions are identical, 
and claims that once the a-parameter is determined, it is possible to determine the 
degree of anisotropy by calculating p from the relationship with a: 

(2.44) 

where: 

This procedure yields a different k, from the Neuman theory due to the approximation 
in the Streltsova model relating the average drawdown and the drawdown of the free 

surface by a finite difference relationship given by Eq. 2.23. Plots of ,8 and (r /B)2 

versus S D  are matched to demonstrate the correlation between the dimensionless 
parameters. These considerations were denied by Neuman (1976), asserting that the 
matching was “grossly misleading”. 

The discussions with respect to delayed yield are summarized in a paper (Neuman, 
1979) which compares the relevant theories on delayed yield. Neuman seems to have 

adopted the term “delayed yield” to characterize the phenomena which he previously 
suggested (Neuman, 1972) should be referred to as “delayed gravity response”. A brief 
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speculation about Boulton theory raises the possibility of delayed yield being caused 

by delayed air entry in the high water saturation porous region above the free surface. 
However, referring to several authors, and specifically to works by Kroszynski and 

Dagan (1975), Neuman (1975-b) and Neuman et al. (1974)) Neuman concludes that 
the unsaturated flow has a minor influence on the time-drawdown response during 

gravity drainage of liquid. A justification for large apparent storage coefficients S 
in unconfined aquifers compared to artesian aquifers is explained by entrapped air 
bubbles or dissolved air in the saturated zone. Thus, the fluid compressibility could 
have large values. Therefore, Neuman uses this argument against the idea of Bower  
and Rice (1978) that the delayed air entry is due to the slow movement of liquid 
in the unsaturated porous space above the free surface. The liquid in the capillary 

fringe is drained slowly as a consequence of a negative pressure differential created 

when the liquid surface moves vertically down. Neuman again referred to the rate 

of head recovery (buildup) as a fully-reversible mirror-image process, and, therefore, 
incompatible with the theory of the air entry concept of B o w e r  and Rice. Neuman 
criticized the idea that the influence of radial distance on the Prickett (1965) and 

Gumbolati (1976) theories that at a certain time during the desaturating period the 
region around the wellbore may be divided into three different sub-regions of different 

flow patterns. Neuman stated that “the cone of depression is not distorted, and its 
slope varies monotonically with radial distance”. 

The most important theories of gravity drainage flow so far reviewed do not con- 
sider the flow in the unsaturated zone rigorously. Even the Boulton (1954-b) model 

does not consider the characteristics of the region above the free surface directly. 

Instead, the Boulton model approximates this effect by creating the delayed yield 
parameter a. In the following, flow in the unsaturated zone will be considered in 
regard to the gravity flow problem. 

A complete analytical solution reflecting the flow in the unsaturated region above 
the free surface, an anisotropic formation, and a partially penetrating line-sink well 

were considered by Kroszynski and Dagan (1975). According to Neuman (1979), this 
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is " ... the most definitive study about the role of unsaturated flow ..." published so 

far. Using the same original notation, the following equation is used to represent the 
flow in the unsaturated zone: 

(2.45) 

where Dl is the initial saturated thickness of the aquifer, 8 is the volumetric moisture 
content, 8' is the capillary head, k is the relative hydraulic conductivity (function of 

0 or 8 ), and CP is the total head corresponding to the isolated sink solution. The 
other equations and the analytical solution will not be presented here. The model was 
tested by comparing results with numerical solutions from a modified program after 
Neuman (1975-b). The results indicate little influence of the unsaturated flow on the 
time-drawdown response. Only for special conditions of thin and low permeability 
aquifers were significant effects observed at early times. Another important consid- 
eration is the finite wellbore radius used in the numerical model to simulate wellbore 

storage effects. Unfortunately, Kroszynski and Dagan did not apply this model to 

the producing well, and the closest observation well was located at 4.4 ft from the 

symmetry axis. 

Bouwer and Rice (1978) presented a physical basis for delayed yield response as a 

restriction of the unsaturated zone to air entry due to the fall of the water table. As 

the free surface moves down, air penetration into the rock pores is impeded by the 

high initial water content of this region reducing the relative permeability to air. The 
initial specific yield is small, but increases with time as vertical drainage occurs. This 

process is important if the draining region contains layers of fine-textured materials 
which have high water retention. In this case, the entry capillary pressure retards 

the air movement downward. Once started, the pressure directly above the water 
table varies from vacuum to equilibrium at atmospheric pressure. The time lag is 
reflected in the variation of the specific yield. Bozlwer and Rice use the explained 

principles to run laboratory experiments to explore field observations. Apparently, 

the typical inflection in the time-drawdown curve observed for pumping tests could 



2 Literature Review 31 

not be reproduced in the lab, and, according to Neurnan (1979), the results were not 
conclusive. 

Another physical explanation for delayed yield is attributed to the hysteresis effect 

on the capillary fringe and transition zone above the water-table, and also underneath 

the free surface (Bouwer, 1979). According to Bouwer, pumping tests are often done 

in wells that were previously operated. As a consequence, the region of the reservoir 

around the wellbore, once drained by pumping the well, is not completely re-saturated 

after the recovery of the initial head after pumping is stopped. Hence, bubbles of 

air, entrapped in the initial capillary fringe or in the previously saturated zone, will 
create a more compressible system than the original one, causing a delay in releasing 
significant amount of water from the pores. Therefore, the fall of the water-table will 

be retarded by an increase of the compressibility in that region. In Bouwer opinion, 

the air compressing effects could well be a common cause of delayed yield, in addition 

to the elastic response of the aquifer and the restricted air entry. There was no 
mention of a reduction in transmissivity caused by the presence of another phase. 

Analyzing pumping tests for an unconfined aquifer in Canada, Nwanlcwor et  al. 

(1984) made a comparative study of their determinations of specific yield with results 

from other methods. The tests were run in a pattern formed by a centered pump- 
ing well and observer wells distributed into two perpendicular lines to monitor the 
drawdown at different levels in the aquifer. Using the Boulton (1963) and Neurnan 
(1972) theories, the authors observed that at early times very low results for specific 

yield were calculated from both methods. As time increased, specific yield increased 

slightly, but never approached the values calculated from the volume-balance method 
or determined by laboratory measurements. The volume-balance method consists of 

calculating the cumulative water produced V, and dividing it by the volume of the 
cone of water-table drawdown K, obtained from observation well drawdown map- 
ping. Despite that discrepancy, Nwankwor e t  al. concluded the various methods of 

interpretation give similar results for transmissivity. The apparent reasons for the 

differences in the long-term specific yield were attributed to neglecting the delayed 
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drainage from above the water table in the N e u m a n  (1972) theory, and the downward 

hydraulic gradients in the Boulton theory. Therefore, a more rigorous model consid- 

ering flow in the unsaturated zone and vertical flow processes simultaneously should 
be more appropriate. 

The large differences in the specific yield described before caused concerns about 
the reason for such deviations. A convincing explanation for this problem was given 
by Neuman (1987). A superficial analysis of the Nwankwor et  al. (1984) study shows 
an invalid assumption concerning the volume-balance method. The criteria used in 

performing that balance is that the total volume of water produced by a well comes 
from the depressed cone in the reservoir. Therefore, applying the ratio of volumes, 

the specific yield would vary, and reach high values after a long time. Regarding 

laboratory results, one is supposed to accept the concept of specific yield as the 
difference between the saturated core and residual water in the pores of the rock. 
Apparently only a fraction of the produced water comes from the depressed cone. 
Nwankwor e t  al. et  al. (1984) neglected the volume of water that comes from the 

outer reservoir. Neuman (1987) demonstrated this idea in two different ways: an 
approximate calculation based on the presented data (Nwankwor e t  al., 1984), and a 

theoretical approach. In other words, the water balance was not valid because only 
a small fraction of the water comes from the observed cone of depression. N e u m a n  

theoretical analysis was also confirmed by the pumping test data from Nwankwor 
et  al., and substantially supports the idea that the variation of the free surface “in 
response to pumping is relatively insensitive to residual drainage in the unsaturated 
zone”. 
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2.4 Inner Boundary Condition 

Until the middle sixties, the inner boundary condition had not been treated 

adequately in hydrology, and only the line source well ( Theis, 1935) had been consid- 

ered in pumping tests. Wellbore storage and finite radius well effects were neglected, 
mainly in shallow and unconfined aquifers where most of the pressure observations 
in pumping tests were usually performed in shut-in observation wells, not in the pro- 

ducer. In petroleum engineering, an early application of the finite well radius and well 
storage was presented by Moore e t  al. (1933). This was a remarkable early study of 

transient flow which included an example of field well test data interpretation. Sonic 
annulus liquid levels were measured and sandface flow rates found by subtracting 

production from the wellbore storage. A variable rate analysis was used to interpret 
the well test data. One of the authors, W. Hurst was a co-author of the classic paper 

wan Everdingen and Hust (1949) which included both finite-producting well radius so- 

lutions and defined wellbore storage and produced a log-log storage type curve which 

is the basis of modern type curve data interpretation. 

Wellbore conditions were completed defined in 1953 by the van Everdingen (1953) 
and Hurst (1953) skin effect concept. The skin effect defined well condition quanti- 
tavelly by adding a dimensionless resistance to flow at the sandface. In the following, 

a brief analysis of selected studies of wellbore condition is presented. 

In 1964, Hantush reviewed solutions of the continuity equation for a well of finite 

radius in a confined aquifer, without storage effects. Consideration of well bore storage 
in analyzing pumping tests for a confined aquifer was presented by Papadopulos and 
Cooper (1967), who appeared to be unware of the earlier study by wan Everdingen 
and Hurst (1949). The wellbore storage inner boundary condition can be represented 

by a material balance equation: 
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The solution in Laplace space is: 

(2.47) 

(2.48) 

where, S is the Laplace transform of the drawdown, p is the Laplace parameter, 
and Q = ($) ' I 2 .  The inversion, obtained from an analogous problem in heat flow 

(Carslaw and Jaeger, 1959), gives the drawdown at any distance r from the well bore 
center: 

where, a = rs2S/rc2, and uw = rs2S/4Tt. When r = rw, Eq. 2.49 simplifies to: 

where 

(2.49) 

(2.50) 

(2.51) 

In the Papadopulos and Cooper paper, Fig. 2 shows a set of type curves based on 
this solution, and compares several results for parameters a (related to the well bore 
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storage), with the Theis and Huntush solutions. As an addendum to the previous 

work (Papadopulos and Cooper , 1967)) Papadopulos (1967) presented an additional 

logarithmic plot of s/Q/4ppT versus r2S /4T t  for several dimensionless distances from 
the well. 

Cooper e t  al. (1967) use a procedure similar to Papadopulos and Cooper (1967) to 

study the “slug-test” in a confined aquifer. Equation 2.50 is used as an inner boundary 
condition, and the final solution for the head in Laplace space has the same format 
as Eq. 2.48, here represented by Eq. 2.53: 

(2.52) 

(2.53) 

where, q and cy have the same definition as before, and Ho is the initial head increase 
in the well. Analogously, the solution at the producing well, i.e., when r = rs ,  is: 

(2.54) 

Kipp (1973) presents another theoretical solution for the unconfined flow prob- 
lem. A homogeneous isotropic aquifer of infinite thickness and infinite lateral extent, 

partially penetrated by a well of finite radius was assumed. Other important assump- 
tions were single phase flow, an incompressible system and no surface of seepage in 

the well bore. A set of boundary condition equations in terms of velocity potential 

was solved using a perturbation technique. The approximations made restrict ap- 
plications of the semi-analytical results to short times after pumping start-up. The 
line-sink solution by other authors (Boulton, 1954-a, and Dagan, 1967) was found to 
have reasonable agreement with the Kipp solution, at radial positions greater than 
15% of the well depth below the initial free surface. Although some graphical compar- 
isons were shown, no attempt to create dimensionless type curves was made. There 
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are some disadvantages of this solution with respect to analysis of well tests besides 

limitations imposed by the initial assumptions and the solution method: a “tedious 
trial and error search is necessary to determine the aquifer parameters”. 

A simple procedure for calculating aquifer properties by a slug test is shown in a 

paper by Bouwer and Rice (1976) using a modified Thiem equation and a resistance 
network analog computer. The method is based on the assumption that the nature of 

flow around the well is predominantly radial during a pressure recovery after a fixed 

volume of water is instantaneously removed from the wellbore: 

(2 .55)  

where y is the instantaneous position of the water level in the well, with respect to the 
original water-table and re is the effective drainage radius in which the slug volume 
is dissipated. The drainage radius is obtained by empirical correlations from the 

electrical model, and is expressed as a function of parameters which depend only on 

the geometry of the system. The expressions for both a partially and fully penetrating 

well are given below. 

partiallv Penetrating well: 

fully penetrating well: 

re 1.1 
rW 

In - - (2 .57)  

where A, B and C are empirical functions of L/rw obtained from Fig. 3 in the Bouwer 
and Rice (1976) paper. To estimate the aquifer conductivity, Eq. 2.58 was derived 
from integration of Eq. 2.55: 
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(2.58) 

A semi-log plot of the ratio yo/yt was used to determine K .  According to Bouwer 
and Rice, the approach used to determine ln(re/rw) yielded values of K 10% to 25% 

in error, depending on the geometric characteristics of the system. 

Dagan (1978) presented an approach for interpreting packer, slug and recovery 
tests in unconfined aquifers in order to determine the permeability of low conductivity 
aquifers. He did not consider variations of the free surface due to small volumes 

drained from the system for those type of tests. The method consisted in integrating 
the source function continuously through the open interval in the well bore: 

where: 

q = 2rrwK-,  a9 
dP 

r = r w ,  O < z < L  

(2.59) 

(2.60) 

Using a Greens function to define &(r, z, Z) for an element along r = 0 centered at 

z = Z with sources of strength q ( Z )  distributed along the z axis, the solution produces 
the integral 

The integral in eq. 2.61 is discretized and a finite sum is used instead: 

(2.61) 

(2.62) 
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The length L is divided in N equal intervals of length AL = L / N  and q(z)  is replaced 

by qi( i  = 1,2, ..., N ) ;  &( j  = 1,2,  ..., N )  is started from the boundary condition and 
stands for P[z = ( j  - 0.5)ALI at the middle of the j t h  interval. The system composed 

of Eq. 2.62 is solved for qi/K by a computer program. Therefore, the result from 
Eq. 2.55 is: 

The hydraulic conductivity is: 

where Q is generated from a computer program, and: 

1 Q Q =  
2rLy [l - (y/2L)] 7i 

(2.63) 

(2.64) 

(2.65) 

The main limitation of this method is that the length of the sandface open to flow 

must be much larger than the wellbore radius. 

Rushton and Holt (1981) compared analytical and numerical solutions for gravity 
drainage for aquifers and concluded that the numerical solutions were accurate in 
representing the phenomenon of unconfined flow. Rushton and Holt developed a finite 
difference form to solve the partial differential equation, Eq. 2.66, and simulated the 

wellbore storage effect by including a portion of the aquifer that represents the region 

within the well in the model . 

(2.66) 

The transmissivity was set to a very high value in the well partly to simulate the 



2 Literature Review 39 

horizontal water level in the well, while the storage coefficient (equivalent to the 

effective porosity) was set to unity. The authors explained superficially that liquid 
level variations in the saturated depth was handled by considering the transmissivity 

equal to the permeability multiplied by the saturated depth, which was a function 
of the drawdown. Probably an iterative procedure was used if the drawdown was 

unknown. Figure 4 in Rushton and Holt compared the numerical results with field 
data, and showed good agreement with the early and late time drawdown. However, 
the intermediate period was poorly matched. 

A kernel approach was used by Patel and Mishru (1983) for unsteady flow to a 

large diameter well in a confined aquifer taking wellbore storage into consideration. 
Using s(r ,  0) = 0 for the initial condition and s(m, 0) = 0 for an external boundary 

condition, the solution of Eq. 2.66 when a unit impulse quantity is withdrawn from 

the aquifer is given by (Curslaw and Jaeger, 1959): 

e - [."4Pt] 

4nTt 
s ( r , t )  = (2.67) 

where p = T/@.  By defining a unit kernel function k ( t )  as the right hand side of 
Eq. 2.67, the drawdown for a variable pumping rate Q A ( t )  is: 

From discretizing and applying Eq. 2.68 to the sandface: 

where Sr,(m) is the discretized kernel coefficient at the sandface. For the wellbore, 
the discretized drawdown for the time step n is: 
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(2.70) 

The combination of Eqs. 2.69 and 2.70 through a material balance in the well Qp = 

Q A ( ~ )  + Qw(n) and the continuity of the drawdown through the sandface into the 
well (no seepage face in the confined flow), SA(n) = S, (n) ,  the following solution was 
obtained in a matrix form: 

(2.71) 

Dimensionless curves were generated after calculating s(r , t )  and s, from Eqs. 2.68 
and 2.70. The results match with those from Pupadopulos and Cooper (1967). 

A consideration of the seepage face was presented in a method of interpretation 
of pumping tests by Rushton and Singh (1987). This method has an important 

restriction because it assumed that the change in the saturated depth was negligible. 
Hence, the superposition principle may be applied the same way as in the work of Putel 
and Mishru (1983). The method also depended on empirical relationships between 

the height of the seepage face and the withdrawal rate from the aquifer, QA. The 
suggested relationship was of the form: 

Rushton and Singh based their model on an unpublished report by Sukthivadivel 
(1986), (see ref. in the paper) , and the parameters G1 and G2 must be deduced 
from field measurements. Coupling Eq. 2.72 it with a material balance in the well 
(see Eq. 2.47), the resulting set of discretized equations allowed the iterative calcu- 
lation of the sandface rates, and, consequently, the determination of the drawdown 
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distribution. The paper also presented a comparison of two different approaches: one 

considering the seepage face and the other neglecting the seepage face. The results 
showed that the resulting transmissivity could be underestimated by 25%, while the 

storage coefficient value could be of the order of one-fifth of the true value in the 
simplified model neglecting the seepage face. The example shown in Figs. 5a and 

5b in Rushton and Singh shows Cartesian graphs of drawdown and discharge from 
the aquifer versus time for both field data and computed results. Our observation of 
the plot of drawdown versus time identifies a linear relationship for the early time 

drawdown points. The early time recovery points also show the same behavior, al- 

though for a different period of time. Such a linear period is analogous to the well 
bore storage effects in confined systems. However, fitting the calculated curves by a 

theoretical approach is open to discussion. 

2.5 Unconfined Flow in the Petroleum Industry 

Although Muskut (1949) presented a brief discussion of the free surface grav- 

ity flow well problem, there have been only a few works concerning gravity drainage 

well test analysis in the petroleum literature. In 1956, Mutthews and Leflcovits pub- 
lished a paper in which were presented some approximate expressions to calculate 
the production rate decline for homogeneous reservoirs with a free surface pumped 

at a constant wellbore pressure (liquid level). The flow dynamics were neglected in 

the derivations which were based on the drainage radius and the Dupuit formula to 

get the following second order hyperbolic expression, not valid in the early stage of 
production: 

(2.73) 

where qi is the rate of oil production at time t = 0 (t = 0 may be taken arbitrarily), 

and 7 is given by the following expression, translated into the symbology used in the 
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Figure 2.4: Cumulative Production for Small Values of E;/re.  - from Mutthews and 
Lefiovits (1956). 

present dissertation: 

A scaled sandbox model was built to verify particular field data and used to 

validate the theoretical approach. There were two important conclusions from this 

work: (a) a completely pumped-off well produces at higher rates than a partially 

pumped well, and higher flow rates may be obtained in completely pumped-off wells if 

the rates were reached by small increases rather than through sudden well withdrawal, 
and (b) as shown in Fig. 2.4, the time derivative of the cumulative production indicates 
flow rates increasing to a maximum value in the early seconds of pumping (out of 

Eq. 2.73 validity range), probably due to the potential gradient development in the 
vicinity of the well. 

In recent years, there has been interest in evaluating depleted fields for EOR 
projects. Many of these fields produce under a pure gravity drainage mechanism and 

available methods of well test interpretation are not appropriate. Rumey e t  al. (1989) 
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was the first paper in many years to consider this sort of problem. Starting from 
a material balance on an infinitesimal radial flow element, the Dupuit-Forchheimer 
Partial Differential Equation was obtained: 

azp2  1 a p 2  4 P  (P-l) aP2 - + - -  = ( ) dr2 r dr 0.000264k dt2 (2.75) 

where p is the pressure at the bottom of the formation. In the formulation, both the 
system compressibility and vertical velocity variations along the formation thickness 
were neglected. By inspection, Eq. 2.75 resembles the ideal gas equation of Aronofsky 
and Jenkins (1953). Since the simplifying assumptions are more appropriate at late 
times, the approximate solution for Eq. 2.75 (also shown in Ch. 1 as Eq. 1.3) was 
presented: 

2 !lBP 0.000264kt 
@ / P )  4 P ( P a  r; 1.151 

P, - P% = 325.2 - {log ( ) + 0.351 + - } (2.76) 

Because vertical flow in the formulation was neglected, h / p  could be considered con- 
stant and equal to the liquid gradient for incompressible flow. The wan Ewerdingen 
(1953) skin parameter s was included in the inner boundary condition. From Eq. 2.76, 
a p 2  versus time semilog graph should produce a straight line, with a slope rn that 
may be used to obtain the permeability - see Ch. 7.1. The Ramey e t  al. (1989) solu- 

tion represented an improvement with respect to the Theis (1935) approach in that 

variation in height and the skin effect were considered. Also highlighted in the Ramey 
e t  al. paper is a discussion of the role of compressible effects in gravity transient flow 

behavior. Also, the reversibility of the buildup pressure behavior was questioned be- 
cause a different physical process occurred during buildup, compared to drawdown. 
Those subjects are further discussed in Chapter 7. 

Equations of the type of Eq. 2.75 were solved numerically in a broader context 

including wellbore storage effects and a skin by Fligelman (1980) and is discussed in 
Ch. 7 and in App. C.2. 
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2.6 Numerical Solutions 

With the development of large, fast computing machines, numerical methods 
became a powerful source of solutions for non-linear problems, avoiding simplifica- 
tions that were used in approximate analytical solutions with relaxed constraints. 
Numerical solutions have been an important tool to verify analytical methods when 
necessary, and to test correlations in general. 

In the groundwater literature, the main references on numerical methods dedi- 

cated to the study of unconfined flow started in the 60’s. Cooley and Donohue (1969) 
developed a numerical simulator to solve a finite-difference equation system for un- 

steady flow in a radial flow problem using two-phase flow in the desaturating region 
based on classical methods employed in the petroleum industry. This work was ad- 
vanced by Cooley (1971) and presents an axial model converted into a cross-sectional 
model geometrically divided into cylindrical blocks in the radial direction. In the 

vertical direction, constant thickness was allocated to each row. The potentials were 
the unknowns in each equation, and the flow was divided into radial (horizontal) 
and vertical directions ruled by the continuity equation coupled with Darcys Law. 
Multiphase air-liquid flow was governed by capillary pressure. The posed problem 

did not establish a boundary condition for the free surface. Instead, the model had 
a fixed grid and calculated the potentials at every block, even those located in the 

desaturated region. The free surface position could be obtained indirectly by interpo- 

lation by the relationship of h (head) and z (vertical coordinate of the node points). 

The model permitted the existence of two different overlaying beds of sediments with 

different properties. Unfortunately, the inner boundary condition did not consider 
wellbore storage, and the wellbore liquid level was obtained by an iterative process. 
LSOR was the most general method used to solve the non-linear system, generating 
tridiagonal matrixes, and the time interpolation factor used was 0.5. The model was 
verified using the Bodton  approach applied to synthetic data of two observation lo- 

cations far from the pumping well. There were no verification runs for the pumping 
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well itself. 

A similar method was described in a recent work by Narusimhan and Zhu (in 
press) who used the Agarwal e t  al. (1970) definition of wellbore storage constant in 
the inner boundary condition and verified their finite difference model with a series 
of analytical solutions and numerical experiments. A better verification of the same 

model applied to radial flow into a gravity drainage well at steady conditions with 

respect to the inner boundary seepage face was done by Shamsai and Narasimhan 

(1991), by comparing results with the Hall (1955) experiments. 

Szabo and McCuig (1968) created a general finite difference model to solve the 
transient gravity flow problem which considered single-phase fluid and a moving 
boundary free surface whose grid blocks presented adjustable triangular shapes be- 
tween consecutive time steps. An analogue device was used to compare results with 

the numerical solutions for a bidimensional linear flow. Szabo and McCaig consider- 

ated a constant head inner boundary condition. 

Finite element methods have been widely used to simulate steady or unsteady 
flow conditions such as Neuman (1975-b), Neuman and Witherspoon (1970-a, 1970-b, 
1971). In the latter, a general transient gravity drainage model using a variational 

principle considered wellbore storage and had a Crank-Nicolson time interpolation 
method. The nodal distribution was variable to adjust to the free surface at the end 
of each time step. No wellbore solution or verification run was provided in the paper. 

Two phase, one-dimensional flow was studied by Green e t  al. (1970) and Horn- 
berger and Remson (1970) who developed finite difference models using relative per- 
meability and capillary pressure relationships with liquid saturations to analyze mois- 

ture movement in the porous medium. The results in the Green e t  al. paper were 

compared with experimental measurements of the local saturations using neutron log 

devices. The importance of hysteresis caused by residual air saturation was high- 
lighted and caused concerns about reversibility of formation properties in the buildup 
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analysis. 

Special procedures in simulation are important to enhance the capability of nu- 
merical solutions. As an example, logarithmic and geometric grid spacing have been 

used in numerical simulation of radial flow into a centered well of accuracy and sta- 
bility. A handy algorithm to create an adjustable log radial spacing by Tera'n and 

la Garza (1988) allows one to specify the ratio between the first and last cylindrical 
block sizes keeping truncation error in the same magnitude all over the grid. An 
advantage of this algorithm is to provide control of the inner radial block storage 
capacity reducing the dependence of the number of blocks in the radial direction, and 
also to provide different radial node distributions as desired with minor consequences 

on the computational efforts. 

Further techniques of numerical simulation in petroleum engineering are presented 

in many references, but most of the procedures in the development of the present 
dissertation are summarized in the classical books by Peaceman (1977), Aziz and 
Setari (1979) and Thomas (1982). 
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Chapter 3 

Mat hernatical Model 

In the following, a complete finite difference formulation of a well test in a grav- 

ity drainage unconfined reservoir is presented. The groundwater literature presents 
several attempts to develop analytical solutions to this problem, and all attempts 
produced equations that are applicable under limitations imposed by restrictive as- 

sumptions. One common constraint requires the water table gradient and/or the 

water table fall to be small. Therefore, high flow-rates should be avoided in pumping 
test analysis due to the resulting steep gradient around the wellbore. 

3.1 Basic Assumptions 

The present numerical model consists of a discretization in time and space of 

a cylindrical reservoir producing at constant flow rate under a gravity drainage drive 
from a centered, open hole wellbore. The model formulates bi-dimensional flow and 
considers the height variation of the liquid column in the reservoir as a consequence 

of the free surface position change. Other important effects also considered in this 
model are wellbore storage, skin effect, and the variation of the direction of the flow 
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at each position (T ,  z )  in an anisotropic medium. 

A single-phase flow model was developed using an adaptive grid based on a stream- 
layer concept described in the following. The following considerations for an uncon- 
fined aquifer flow will be assumed until otherwise modified: 

- horizontal reservoir of finite, constant thickness 

- anisotropy (kh, L,) 

- Darcys Law 

- conservation of mass and energy 

- compressible system containing a single liquid phase with constant properties 

- uniform undisturbed free-surface as initial condition 

- constant outer boundary pressure 

- finite wellbore radius 

3.2 Partial Differential Equations and Boundary 
Values 

In a two-dimensional gravity flow system, several distinct regions with appro- 
priate characteristics of flow may be defined: a saturated region where the porous 

space is completely filled by the liquid; a free liquid surface where the liquid table 

is in contact with gas at atmospheric pressure; a desaturated region left behind the 

free surface on drainage during production; the finite radius wellbore inner boundary; 
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an impermeable lower boundary layer; a constant potential outer boundary which is 

far enough from the producing well to assure an infinite reservoir behavior. Also, a 
capillary fringe above the free surface is considered in a separate chapter. For each 
one of these regions, a mathematical representation of the physical conditions are 
posed in the following. 

0 Saturated Region: 

The diffusivity equation is applied to a compressible system completly saturated 
with a single liquid. From the combination of mass conservation and Darcys 

Law principles: 

where the potential CP is: 

Q, = p + ( z ) z  

(3.2.1) 

(3.2.2) 

0 Free surface Boundary: 

The potential at the free surface is proportional to position. This is equivalent 

to atmospheric pressure everywhere on the free surface: 

Q, ( f ,  H )  = (Pk) H (3.2.3) 

If the capillary fringe is to be considered, the following equation is valid: 

(3.2.4) 

0 Inner Boundary: 

A constant flow rate inner boundary condition considering wellbore storage 

effects is obtained from a material balance at the well by the following equation: 

(3.2.5) 
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A complementary condition at the wellbore sandface must to be defined. The 
potential at the sandface is specified by the observation of the existence of a 

seepage surface, characterizing the discontinuity of the positions of the free 

surface and the wellbore liquid level. At the inner boundary rw+ location, it 
is assumed that the potential is constant and equal to the potential at rw- , 
when zw 5 H,,,. On the seepage surface (H, 2 z, > H, ), the potential is 
proportional to the vertical coordinate, since the point is on a stream-flow line 
at atmospheric pressure. Hence: 

Hs 2 zw > H w  =+ @w = ( P  f )  zw (3.2.6) 

zw I H w  =+ @w = ( P E )  Hw (3.2.7) 

A detailed numerical treatment of the inner boundary condition is presented in 

Section 4.8. 

0 Infinite Reservoir Behavior: 
Infinitely large reservoir behavior is obtained by assuming a large external ra- 
dius. Therefore, a constant pressure outer boundary condition is used: 

0 Lower Boundary: 
A no-flow lower boundary condition is used: 

a@ 
az 
- -  - 0  z = o  (3.2.9) 

or 

IC, = 0 * z = o  (3.2.10) 

According to Muskat (1936) and several other authors, analytical solution of the 
system of partial differential equations in this boundary problem is of insurrnountabze 
dificulty. As seen in Ch. 2, not one of the analytical solutions surveyed was ob- 

tained without restrictive assumptions, and none appeared to represent pumping well 
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pressure behavior. The numerical solution developed in the next chapter, although 

possessing the well known limitations of a finite difference method, is intended to 
present a tool to solve the gravity drainage well problem completely. 

3.3 Dimensionless Parameters 

Before modeling the numerical problem, a set of dimensionless constants and 

variables is required. The relationships presented use Darcy units for the reservoir 
parameters. 

(a) Dimensionless length or thickness: 

(b) Dimensionless pressure and potential: 

(c) Dimensionless static liquid gradient: 

(3.3.11) 

(3.3.12) 

(3.3.13) 

1 
70 = - 

H O D  

(3.3.14) 
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(d) Dimensionless production rate: 

(e) Dimensionless time: 

(f) Dimensionless liquid and total compressibilities: 

C L D  = P ~ H .  CL 

‘tD = p E H O q  

In the next chapter, a finite difference model is considered in detail. 
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(3.3.15) 

(3.3.16) 

(3.3.17) 
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Chapter 4 

Finite Difference Model 

The partial differential equation that represents radial liquid flow in the reser- 
voir may be generated from a material balance in an infinitesimal element of porous 
medium, based on the conservation of mass and Darcys flow law. The complexi- 

ties of the boundary conditions in the free surface gravity flow problem drive the 
present solution to a numerical approach, making it possible to linearize the bound- 

ary equations. The discretized form of these equations can be formulated from the 
same material balance criteria using a finite-difference formulation described in this 

chapter. 

Figure 4.1 represents a grid configuration of the problem, depicting a half-cross- 
section of a cylindrical reservoir with a free-surface developed from the original po- 

sition H,. The horizontal dimensions of the grid blocks can be scaled to provide 
accuracy around the well bore, where the most important flow effects occur. The 

radial grid spacing used the Multimodal method [Tera'n and de la Garza, 19881, in 
which logarithmic spacing is a particular case. 

In order to simulate the variable free surface position, an adaptive vertical griding 
was conceived to group a set of streamlines, and referred to as the Stream Layer 
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Figure 4.1: The Stream Layer Modelgrid 

Model (SLM) in the following. During a discrete time step, each block but the one 
containing the free surface will keep its geometrical dimensions unchanged while the 
liquid flows through the block boundaries in the vertical and axial directions. In this 

cross sectional model, no angular flow normal to the cross section is allowed, and 

the axial directions are not necessarily horizontal, as can be seen in Fig. 4.1. The 
dimensions normal to the axial flow are corrected by the average slopes of the block 
boundaries, according to Fig. 4.2. 

In a separate section of this chapter, the capillary fringe is added to the model 
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Figure 4.2: Geometric corrections based in the slope of the flow axix. 

by incorporating an additional layer with constant height on the top of the free 
surface layer, or phreatic layer. Capillary flow is important for small scale sand-box 

experiments where capillarity has a sensitive role in the results. 

In the present model, the free surface layer is the only one that changes position 

during a production or buildup time step period, because the.free surface layer con- 

tains the movable boundary. In the case of neglecting the capillary region above the 
free surface, the free surface downward movement leaves behind a liquid saturation in 
the desaturating zone. In the present model, no later flow from that region is allowed, 

and the liquid moves entirely within a specific period. The liquid saturation behind 

the free surface boundary is considered residual. Based on groundwater studies - see 

Bouwer and Rice (1978) and Neurnan (1979), the air entry effects in the desaturing 
region (two-phase flow) are neglected. 

The technique used in calculations was the iterative solution of the block poten- 

tials, concentrating the non-linearities in the free surface and the wellbore potentials 
where the boundary values are pre-estimated based on the previous time step. The 
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Figure 4.3: Matrix representation of a 5x4 cross sectional grid 
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convergence method was the Newton-Raphson procedure which generates a diagonal 
Jacobian matrix with special characteristics due to the non-zero coefficients corre- 
sponding to the inner boundary blocks, as shown in Fig. 4.3. 

A single step solution follows the sequence: 

(a) Calculate the inner boundary potential as a first approach 

(b) Calculate the equation coefficients 

(c) Calculate the Jacobian matrix elements 

(d) Solve the matrix for the potentials 

(e) Recalculate the inner boundary potential 
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( f )  Check the results for convergence and iterate if necessary 

Since the layer containing the free surface is the only one moving during a discrete 
time period, the block thicknesses are dependent on the free surface position, or 

dependent on the block potentials. This loop dependency is responsible for the strong 
non-linearity of the gravity drainage problem. 

Skin effect was considered in the model by assuming a cylindrical damaged region 

around the well with an altered permeability, using Huwkins (1956) approach: 

The finite difference treatment of the equations and the boundary conditions is 

presented in the sections that follow. A detailed description of the computer model 
is given in the Sec. 4.9. 

4.1 Grid Distribution 

The cross-sectional model is composed of a grid of M x N radial and vertical 

blocks, numbered from the left to the right, and from the top to the bottom. The 
uppermost layer corresponding to the position j = 1 contains the liquid-free surface. 
The inner blocks are set at i = 1. Thus, the number of radial blocks is M ,  not 
considering the wellbore and the external outer blocks with constant potential. 

The radial grid distribution is a special kind of logarithmic spacing using the 

multimodal method of discretization adopting the the block-centered scheme. In this 

method, the problems of stability are reduced by controlling the radial size of the 
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blocks by fixing a ratio R between the inner and the outer blocks. Hence, the critical 
conditions of potential changes in the inner blocks, those containing the sandface, 
are decreased, reducing the stability problems that commonly happen in such radial 
flow models at late times. The usual logarithmic scale is a particular case of the 
rnultirnodal method. 

In the cross-sectional view, the blocks embrace sets of streamlines with variable 
slope depending on the block position and the time. Yet, the vertical flow between 

consecutive layers allows some flow lines to move from a layer set to an adjacent layer 
set during a period of time At. The stream layer is a geometric location containing the 

streamlines moving through it. The only moving boundary within that time period 

will exactly be the top of the first (uppermost) layer which contains the free surface, 
while all other layers have the same uniform thickness over all time steps. 

The time discretization uses a variable parameter 8 between 0 and 1, assigning 
a variable degree of implicitness to the model. The nature of the gravity problem 
requires analysis of ideal 0 values, which is done in the model sensitivity analysis. 

The coordinates are named in the following way, according to the figures presented 
in this chapter: 

r; = radial distance of the inner limit of the block i, j to the wellbore axis 

F; = radial distance of the block node to the wellbore axis 

Z;,j = vertical coordinate of the lower block i,j lower boundary at Ti ,  taken from the 
base of the formation 

Az; = vertically uniform thickness of the block i, j at position T; 

- 
Az; = thickness of the block i,j at the position r; 

'In the MULTIMODAL method, both ri and Ti are calculated implicitly - see [Terdn and de la 
G a m a ,  19881 



4.1 Grid Distribution 59 

H; = height of the free surface at the position T;  

Ah;  = equivalent to Az;, referred to the free surface layer blocks 

Ah;  = equivalent to xi, referred to the position r; 

H, = initial position of the free surface at rest, from the impermeable base 

H,  = liquid level in the well 

H, = liquid level in the sandface 

zwj = lower inner block boundary position j at the sandface 

Azwj  = inner block boundary thickness at the sandface 

A h ,  = equivalent to A z ,  referred to the free surface layer inner block 

- 

Figure 4.2 shows a special representation of a grid block ( i , j )  at a time t, con- 

taining a set of streamlines and an adjacent block. Due to increased slopes of the 
streamlines around the well, the geometric projections of the lengths and heights are 

based on angles calculated on the following basis: 

and the average slope of an individual block: 

The flow domain is divided into two main directions of flow, namely the vertical 
(subscript v), and the axial (quasi-radial) (subscript 2). The mathematical descrip- 

tion of such a flow can be formulated through the general finite difference equation 
for a single liquid phase flowing in a low compressibility system: 
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(4.1.3) 

In gravity drainage flow, the direction of the streamlines change continuously, and 
for that reason, the true transmissivity considers the geometry and also the permeabil- 
ity tensor. In this work where anisotropy is considered, the pseudo-axial permeability 

(in the streamline direction) is taken as an elliptic function of the horizontal (radial) 

and vertical permeabilities, according to the rule: 

(4.1.4) 

Each of the boundary conditions will define individual treatment for the transmissivity 

terms, as well as the storage variation. In the next sections of this chapter, Eq. 4.1.3 
will be expanded and applied to the saturated region and the boundaries. 

4.2 Balance of Unknowns and Equations 

Number of unknowns: 

Reservoir block potentials M x N  
Free surface positions M 
Position of the fluid level in wellbore 1 
Total unknowns: 

Number of equations: 

M ( N + 1 ) + 1  
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Material balance for the blocks M x N  

Free surface position M 
Wellbore material balance 1 

Total equations: M ( N + 1 ) + 1  

4.3 Saturated Region 

Equation 4.1.3 can be writen for the saturated region and the inner and outer 
boundaries. 

4.3.1 Discretization of the Saturated Region Equations 

Discretization of a block i , j ,  for M > i > 1, and N > j > 2: 

(4.3.3) 

where the typical transmissivity terms are: 
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(4.3.4) 

(4.3.5) 

The time interpolation used a parameter 6 to weight the old unknowns and the 
unknowns within a time step. Thus, using the dimensionless parameters defined 
in the Ch. 3.3, re-organizing, and collecting terms, the resulting equation may be 

summarized in the following way: 

where the coefficients of the unknown dimensionless potentials and the independent 
term are: 

(4.3.7) 

(4.3.8) 

(4.3.9) 

(4.3.10) 

(4.3.11) 
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In these coefficients, the superscript k refers to the beginning of the present time step 
values. Other parameters are: 

(4.3.13) 

(4.3.14) 

(4.3.15) 

The values of are estimated by interpolation between nodes. 

The Jacobian matrix elements for the block i, j were obtained using a Newton- 

Raphson procedure. 
The residue Q is: 
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Since all the partial differentials are zero: 

DAi,j = A;,j (4.3.18) 

(4.3.19) 

(4.3.20) 

(4.3.21) 

(4.3.22) 

4.3.2 Saturated Region Inner Boundary Equations 

The blocks containing the sandface require a special treatment because of their 
location. The transmissivity connected to the sandface can be estimated by geometric 

extrapolation of thicknesses and slopes of the layers. The inner boundary potentials 

are determined by the wellbore condition, as shown in the Section 4.8. Figure 4.1 
presents a schematic of the inner blocks around the wellbore and the extrapolated 
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thicknesses. The average thickness of a block flowing to the wellbore is taken half-way 

between the the node and the inner face. If small radial spacing is used near the well, 
the geometric extrapolation can be relaxed, and a constant thickness can be adopted 

for the whole block and its inner boundary. To be general, the equations presented 

below used extrapolated thicknesses. 

We now consider discretization of block 1, j  for N > j > 2. Following the same 
procedures as before and considering the proper symbology for the inner boundary 
parameters, the resulting equation is: 

where the coefficients of the unknown dimensionless potentials and the independent 
term are: 

(4.3.24) 

(4.3.26) 

Dl,. = 0 (4.3.27) 

(4.3.28) 
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(4.3.29) 

In these coefficients, the superscript k refers to the previous time step value. Other 
parameters are: 

(4.3.30) 

(4.3.31) 

(4.3.32) 

Determine Jacobian matrix elements for the block 1 , j  using a Newton-Raphson pro- 

cedure. The residue 9 is: 

Differentiating Eq. 4.3.33 with respect to each variable W;,j: 
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Except the last one, all the partial differentials in Eq. 4.3.34 are zero. Thus: 

Similarly, the other Jacobian coefficients are: 

(4.3.39) 

The partial differentiations of the inner boundary potentials (see App. A.1)) calculated 
individually, may be substituted above. 
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4.3.3 Saturated Region Outer Boundary Blocks 

The outer boundary condition is a constant potential at the external radius. The 
index m is used to refer to the Mth block, and rn + 1 is a dummy external block with 
constant potential and geometry. 

Now we consider discretization of the block rn,j, for N > j > 2. Following 
the same procedures and considering the proper symbology for the outer boundary 

parameters, the resulting equation is: 

where the coefficients of the unknown dimensionless potentials and the independent 
term are: 

(4.3.41) 

(4.3.42) 

(4.3.43) 

(4.3.44) 
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At the external boundary, the flux is always normal to the external face, and so, 

cospm+l,j = 1. Thus, other parameters are: 

Al, = 
fm 

2 w  r: 
(4.3.46) 

(4.3.47) 

(4.3.48) 

Determine the Jacobian matrix elements for the block m,j using a Newton-Raphson 
procedure. The residue Q is: 

Differentiating Eq. 4.3.49 with respect to each variable Wm,j: 

(4.3.50) 
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(4.3.51) 

(4.3.52) 

(4.3.53) 

(4.3.54) 

4.4 Free Surface Blocks 

The free surface blocks are those containing the free moving boundary on top of 
them. In the present discretization, the capillary fringe is neglected and the no-flow 

upper condition is applied. The free surface block thicknesses are the unknowns that 
cause the non-linearity in the problem and are calculated by an iterative process. 

4.4.1 Free Surface Layer Equations 

The principle of mass conservation associated with Darcys law applied to an el- 
ement of reservoir containing the free surface was written in Darcy units according to 
the conventions adopted in Fig, 4.4, which shows a representation of a block element 

containing the free surface. In this study, the directions of flow and the transmissivi- 
ties are ruled by the streamline slopes, That characteristic of the model enables one 

to consider the axial transmissivity terms as a function of the the direction of flow 
normal to the block boundaries, similarly to the saturated region equations. 
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+ AX 

Figure 4.4: Representation of a block containing the free surface. Convention of flow 
and coordinate directions. 

The condition that the components of velocity normal to the free surface are null 
means there is no external flow through the free surface, neglecting the unsaturated 

flow. Taking that observation and the condition given by Eq. 3.2.3, the expansion of 

Eq. 4.1.3 is described in the next sections. 

Discretization of a block i, 1, for M > i > 1: 

1 
--a, At ( W )  = "" [s, (Ahi - Ah!) + At cosPi,, 
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Typical transmissivity terms are: 
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(4.4.4) 

(4.4.5) 

The usual procedures to develop the discretized equations taking the time relax- 
ation parameter 8 is synthetized by the general equation: 

where the coefficients of the unknown dimensionless potentials and the independent 

term are: 

(4.4.7) 

(4.4.8) 

(4.4.9) 

(4.4.10) 

(4.4.11) 
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These definitions of Ali, fZ+, and f r i  are the same as given by Eqs. 4.3.13 through 

4.3.15. Determine the Jacobian matrix elements for the block i, 1 using a Newton- 
Raphson procedure. Let 9 be defined as the residue: 

The Jacobian elements are summarized in the following: 

(4.4.15) 
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(4.4.18) 

In these expressions, some parameters were introduced such as the dimensionless 
dynamic average pressure gradient "J; which can be approximated by the dimensionless 
static liquid gradient, since the vertical grid sizes of the blocks are small. 

- 1 
7;  - 

H O  

N y o  = -. (4.4.19) 

The average dimensionless gradient is used to find the dimensionless potential at  

the free surface, according to the boundary condition expressed by the Eq. 3.2.2, 
discretized below: 

(4.4.20) 

Since p ~ ~ , ~  is the pressure at the block node center, and considering that the free 

surface is at atmospheric pressure, the above expression can simplified to: 

(4.4.21) 

Thus, the uppermost layer properties become congruent to the free surface properties 
in the discretized process. 

Between nodes, the free surface elevation is interpolated by: 

where the parameter a; is a linear function of the radial distance: 

(4.4.22) 

(4.4.23) 
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and: 

then: 
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(4.4.24) 

(4.4.25) 

(4.4.26) 

(4.4.27) 

the overbar indicating the values taken between two consecutive nodes. 

4.4.2 Free Surface Inner Boundary Equation 

Similar procedures are used to get the equation for the inner boundary block 
containing the free surface, and the results are summarized below. A discretization 

of the continuity equation gives the following material balance residue equation: 

Q1,l = 4 1  K , l  + ClJ w , 2  + ElJ W2,l - F1,l (4.4.28) 

where: 

(4.4.29) 
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(4.4.30) 

(4.4.32) 

Consider AhD, the extrapolated thickness at the sandface, and the mean thickness: 

- AhD, + AhD, 
AhD, = (4.4.33) 

2 

Also: 

Q2 

QW 

Ql 2 

(4.4.34) 

(4.4.35) 

(4.4.36) 

The differentiations of the residue equation give the Jacobian elements, as follows: 
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(4.4.37) 

The resulting differentiation produces: 

(4.4.38) 

a1 and a 2  above were obtained from the differentiations of KhD. Similarly, the other 
Jacobian coefficients are: 

D&,l = O (4.4.39) 

(4.4.40) 

(4.4.41) 

d%,l 8 [ a 2  + f Z l , l  f r 1  (1 - 0 1  
DEi,l = - - - E1,l - 6 Q2 

7 2  7 2  aw2,1 
- W1,l + T W2,l 

7 2  wWl + AX,,%) aw2,1 (4.4.42) 
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Values of the derivatives of the inner boundary potentials can be obtained separately, 
and the equations are presented in App. A.1. 

4.4.3 Free Surface Outer Boundary Blocks 

Following the same procedures, the final coefficients are: 

4: 4.43) 

(4.4.44) 

(4.4.45) 

(4.4.46) 

(4.4.47) 

The Jacobian matrix elements for the block r n ,  1 are determined using a Newton- 
Raphson procedure: 
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Let: 

Differentiating Eq. 4.4.48 with respect to each variable Wm,n : 

(4.4.49) 

The resulting differentiation produces: 

(4.4.50) 

In Eq. 4.4.50 the same definitions as those used so far are applied to the parameters. 
It is helpful to define the outer boundary average thickness: 

(4.4.51) 

where: 
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Similarly, the other Jacobian coefficients are: 
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(4.4.52) 

(4.4.53) 

(4.4.54) 

(4.4.56) 

4.5 Lower Boundary Blocks 

The lower boundary is defined by the no-flow condition defined by Eg. 3.2.10. 
The resulting discretization of Eq. 4.1.3 for each region, namely the inner boundary, 
the outer boundary, and the main reservoir follows. 

4.5.1 Saturated Region Lower Boundary Equations 

The residue in the block i ,n is: 
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where the coefficients are: 

(4.5.2) 

(4.5.3) 

(4.5.4) 

(4.5.6) 

Jacobian matrix elements for the block i, n were determined using a Newton-Raphson 
procedure. Differentiating Eq. 4.5.1 with respect to each variable W :  

(4.5.7) 
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(4.5.8) 

(4.5.9) 

(4.5.10) 

(4.5.11) 

4.5.2 Lower Inner Boundary Equation 

The residue in the block i, n is: 

= A1,n W 1 , n  + B1,n  W1,n-1  + El,, W 2 , n  - F1,n (4.5.12) 

in which the coefficients are: 

(4.5.13) 

(4.5.14) 

(4.5.15) 
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(4.5.16) 

Find the Jacobian matrix elements for the block 1,n using a Newton-Raphson pro- 

cedure. 

Differentiating Eq. 4.5.12 with respect to each variable W :  

(4.5.17) 

(4.5.18) 

DC1,n = 0 (4.5.19) 

DD1,n = 0 (4.5.20) 

(4.5.21) 

The partial differentiations of the inner boundary potentials (see App. A.l ), calcu- 
lated separately may be substituted above. 
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4.5.3 Lower Outer Boundary Equation 

The residue in the block r n ,  n is: 

a m , ,  = Am,n Wm,n + Bm,n Wm,n-l + Dm,, Wm-l,n - Fm,n (4.5.22) 

in which the coefficients are: 

- 
(4.5.23) 

(4.5.24) 

(4.5.26) 

Differentiating Eq. 4.5.22 with respect to each variable W :  
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DE,,, = 0 

(4.5.27) 

(4.5.28) 

(4.5.29) 

(4.5.30) 

(4.5.31) 

4.6 Second Layer Region Blocks 

The second layer, the one immediately below the free surface layer, is a saturated 

block. However, the vertical component of the discretized equation contains a variable 
corresponding to the thickness of the free surface layer block above it. For that reason, 

the equations are summarized below. 

4.6.1 Second Layer Equations 

The residue in the block i, 2 (1 < i < m) is: 
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in which the coefficients are: 

(4.6.2) 

(4.6.3) 

Find the Jacobian matrix elements for the block 'i, 2 using a Newton-Raphson proce- 
dure. 

Differentiating Eq. 4.6.1 with respect to each variable W :  

(4.6.8) 
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(4.6.10) 

(4.6.11) 

(4.6.12) 

4.6.2 Second Layer Inner Boundary Equation 

The residue in the block 1 ,2  is: 

(4.6.14) 

(4.6.15) 

(4.6.16) 
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(4.6.17) 

Find the Jacobian matrix elements for the block i, 2 using a Newton-Raphson proce- 

dure. 

Differentiating Eq. 4.6.18 with respect to each variable W: 

(4.6.20) 

(4.6.21) 

DD1,2 = 0 (4.6.22) 

(4.6.23) 

The partial differentiations of the inner boundary potentials (see App.A ), calculated 
individually, may be substituted above. 
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4.6.3 Second Layer Outer Boundary Equation 
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The residue in the block m,2 is: 

(4.6.25) 

(4.6.26) 

(4.6.27) 

(4.6.28) 

(4.6.29) 

Find the Jacobian matrix elements for the block m,2 using a Newton-Raphson pro- 
cedure. 
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Differentiating Eq. 4.6.24 with respect to each variable W :  

(4.6.30) 

(4.6.32) 

(4.6.33) 

DE,,, = 0 (4.6.34) 

4.7 Capillary Fringe 

So far in this chapter, the existence of the capillary fringe in the model has been 

neglected. The importance of the capillary fringe appears to be a matter of scale, 
because in most field cases, the capillary layer is negligible compared to the total liquid 
height. To verify the model against sandbox experiments, however, it is necessary to 

introduce capillary effects. Due to this modification, the free surface concept must be 

reconsidered. Thus, we will use the terminology of groundwater literature to denote 

as phreatic surface the interface domain corresponding to atmospheric pressure in the 
saturated region below the capillary fringe. 

The capillary fringe is a layer immediately above the phreatic surface, partially 
or completely saturated, possessing the particular characteristic of pressures below 

atmospheric as a function of the capillary pressure. The uniformity of thickness and 

saturation is essentially dependent on the uniformity of grain and pore throat size 

distributions, and on the surface tension of the gas-liquid-rock system. At rest, the 
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Figure 4.5: Representation of the capillary fringe laye 

potentials in the fringe have the same value as in the saturated region, but at dynamic 
conditions, the potentials have the same value as in the phreatic line. According to 

the Wycko$ et al. (1932) and Hull (1955) sandbox experiments, the capillary fringe 
is not a dead region, and downward movement of the phreatic surface causes liquid 

to flow by the potential reduction generating pressure gradients. In the radial model 
sandbox experiments, it is possible to observe the tracks of the stream lines in the 

capillary fringe leaving the outer boundary in an upward direction, then following the 
pheatic surface, and bending downward in the vicinity of the wellbore. 
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Figure 4.6: Potential and pressure profiles at a radial position r ,  under static condi- 
tions. 

4.7.1 Description of the Physical Mechanism of the Capil- 

lary Flow 

A description of the physical behavior and the causes of the capillary flow is 
presented next, with the purpose of creating a mathematical representation to be 

added to the Stream Layer Model. We start by assuming an anisotropic formation 
saturated with a single liquid, presenting a uniform capillary layer of thickness h, at 

rest, above the original static level H,. The potential and pressure distributions at 
any radial position in the formation is represented by Fig. 4.6. The pressures above 

H, are negative due to the capillary pressure rh,, which pulls the gas-liquid contact 

out, normal to the surface. The phreatic line at rest corresponds to atmospheric 
pressure. 

When pumping starts, the potentials below the phreatic surface decrease, and 
the surface travels downward producing a pressure reduction in the capillary layer. 
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Because there is a variable potential distribution along the phreatic surface, an equiv- 

alent distribution should exist above it. The liquid in the fringe starts moving ac- 

cordingly. In the gas liquid contact, the pressure reduction forces a movement of 

the meniscus and gas entry in a typical two-phase flow leaving a decreasing liquid 
saturation above the gas-liquid contact decreasing to the irreducible value Swr. The 
capillary fringe tends to maintain the thickness h,, but, in a transient flow it may be 
possible that h, will become variable due to the resistence to the air entry by the lower 
relative permeability to gas at high liquid saturations in the desaturating region. Yet, 

it is also possible that the capillary fringe presents a residual gas saturation in cases 

of sandbox experiments, and two-phase flow should be considered in this region. It is 

reasonable to expect expansion of the capillary fringe mainly around the wellbore at 
early times where the vertical velocities of the free surface drawdown are higher than 
those of the air entry before reaching steady conditions. 

The potential variation in the capillary layer generates flow in that region, which, 
neglecting the temporary expansion described before, may be considered of constant 

storativity. So, the capillary fringe acts as an aditional source of flow into the phreatic 

surface, close to the well. However, due to the constant storativity, the liquid change 

through the phreatic interface varies in direction and intensity. It was observed ex- 
perimentally that there were stream lines moving upward across the phreatic surface 

feeding the capillary layer. Hull (1955) pointed out that “the phreatic line is not a 

Aow line in a case where a capillary layer exists.” Hence, there must be a flux profile 
along the radial direction showing maximum absolute values at the inner and outer 
boundaries, though with different directions. Somewhere in between the flux is zero. 
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4.7.2 Mathematical Representation of the Capillary Layer 
Boundary 

Based on the preceeding flow concept, we could rewrite the free surface layer 
equation incorporating a source term, which is the contribution of the capillary layer. 

Some simplifications are often made in the capillary flow such as to consider constant 
dynamic vertical gradient approaching the static gradient in the capillary fringe, as 

well as neglecting the transient behavior of delayed air entry. The following mathe- 
matical relationships are valid in the capillary layer where the pressures are negative 

( B o  L I H o + h c ) :  

(4.7.1) 

(4.7.2) 

where the subscripts c and ph refer to the capillary layer and to the phreatic surface, 

and h represents the phreatic level. Equation 4.7.3 is a consequence of Eq. 4.7.1 and 
Eq. 4.7.2, and does not constitute an additional condition. Eq. 4.7.3 limits the upper 
geometric boundary of the system. A material balance for an incompressible system 

is translated by the Laplace equation if we think of the capillary layer changing its 

position in space, but not the mean pressure: 

v2ac = 0 (4.7.4) 
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Assuming the discretization principles used before, Eq. 4.7.4 could be represented in 

the following way, considering the entire capillary fringe integrated into a single layer: 

For convenience, Eq. 4.7.5 can be expressed as function of the potential in the phreatic 
layer (the one immediately below the capillary layer). The notation used here is the 
same as for the free surface layer developed in the previous chapter. In fact, it is only 

a matter of nomenclature. 

and 

(4.7.6) 

(4.7.7) 

In the vertical flow direction, the downward movement of the entire liquid column 

leaves behind a volume equivalent to an average liquid saturation in the desaturated 

region. We may consider that the liquid volume going out of the capillary layer 
through the top boundary must be the same as the equivalent volume of liquid going 
into the capillary layer through the lower boundary. This means that the capillary 

layer has no role on the liquid balance. Hence, the only vertical capillary layer in 

or out flow to be considered, named qc, is the net flow through the lower boundary, 

feeding the top of the phreatic surface. Since there is no cross flow between stream 
lines, flow is not produced by potential differentials between layers, but merely added 
to the top of the phreatic layer. Following the same sign convention for flow direction, 
Eq. 4.7.5 becomes: 
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(4.7.8) 

After substitutions, we may express qc for a discrete capillary layer block i: 

(4.7.9) 

4.7.3 Mathematical Representation of the Phreatic Layer 

The discretization of the phreatic layer will be handled the same way as the free 
surface layer was handled previously. The difference in the material balance equation 
is that the flow in is the source term qc. The same principle of variable thickness will 
be employed to the phreatic layer as well, and the Eq. 4.1.3 becomes: 

(4.7.10) 

Discretization of a block i, 1, ( M  > i > 1): 

Following the same exact procedures as in section 4.4, the equivalent residue equation 
coefficients are: 

(4.7.11) 
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(4.7.12) 

(4.7.13) 

(4.7.14) 

h (4.7.15) 

where k,O = kz i t l , l / k s i+ l , l  = k;i , l /kxi , l  is the relative permeability of the liquid in the 

capillary fringe, at an assumed residual gas saturation. 

We find the Jacobian matrix elements for the block i, 1 using a Newton-Raphson pro- 

cedure. The coefficients determined for the Jacobian matrix are those of Eqs. 4.4.14 
through 4.4.18, because all the parameters related to the capillary fringe are constant 
in the present work. 
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4.7.4 Inner Boundary Phreatic Layer Equation 

The capillary layer above the free surface does not produce to the wellbore 
because of the capillary forces in the sandface. In terms of a discretized block, the 
equation for the inner boundary blocks is developed using the same concept described 

in the previous sections for the capillary layer. Skipping the tedious algebraic manip- 

ulations, and by analogy with the procedures in section 4.3.2, the resulting residue 
equation coefficients: 

(4.7.16) 

(4.7.17) 

(4.7.19) 
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We find the Jacobian matrix elements for the block i, 1 using a Newton-Raphson pro- 

cedure. The coefficients determined for the Jacobian matrix are those of Eqs. 4.4.38 
through 4.4.42, because the parameters related to the capillary fringe are constant 

in the present work. 

4.7.5 Outer Boundary Phreatic Layer Equation 

At the outer boundary, the capillary layer is passive, and does not have an 
external source feeding the capillary layer throughout. All liquid feeding the capillary 
layer comes vertically from the free surface due to capillary forces. If the impermeable 
top of the formation allows for the existence of the capillary fringe at that position, 
that is the origin of the uppermost stream flow lines. In terms of discretized block, 

the equation for the outer boundary blocks is developed using the same concept 

described in the previous sections for the capillary layer. Skipping again the tedious 

algebraic manipulations, by analogy with the procedures in section 4.4.3, the resulting 
dimensionless equation coefficients are: 

(4.7.20) 

(4.7.21) 

= fzm,l f T m  ( h c D  k,O + =Dm) (4.7.22) 
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Again, the Jacobian coefficients are obtained from the partial derivatives. Because 
the capillary height was the only additional term in Eqs. 4.7.20 - 4.7.23, and because 

capillary height is considered constant in this study, the results for the derivatives are 

the same as presented by Eqs. 4.4.50 to 4.4.56. 

4.8 Sandface and Wellbore Conditions 

The inner boundary conditions of the gravity drive problem are difficult to 
handle due to the changes occurring on the free surface and stream-lines entering the 
wellbore. A basic condition presented is the potential along the sandface in a position 

f W +  which depends on the vertical location of the liquid level in the wellbore: 

Using dimensionless parameters, the conditions are: 

(4.8.3) 
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In App. A.l ,  a discretization in dimensionless form of the preceeding conditions is 

developed, considering all possible relative positions of the liquid level in the wellbore 

and the grid blocks adjacent to it. 

A second relevant condition is given by a material balance on the well. Considering 
the instantaneous mass flow rate of liquid measured at stock tank conditions as the 

result of the mass of liquid flowing across the sandface minus the change of mass in 
the wellbore due to storage, a general equation may be written: 

nr: AH, 2n r ,  
At P dr 

+ - J," kx% dz 4 = - (4.8.5) 

where kx is the permeability in the direction tangent to a stream-line at the sandface, 
and BWb is the volume-formation factor corresponding to the average pressure of 
the liquid column in the wellbore. Next, the material balance analytical equation 
Eq. 4.8.5 is converted into dimensionless form. Multiplying both sides of Eq. 4.8.5 by 

+, 2r Tw kh hop (g/gc yields: 

Using dimensionless parameters defined previously: 

(4.8.7) 

Equation 4.8.7 is discretized using a time-relaxation parameter 8 .  This process 
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follows the geometric characteristics of the stream-layer model. The integral repre- 
senting flow through the sandface is replaced by a summation of radial steady-state 
flow through each layer cylindrical region from the geometric center to the sandface. 

It is necessary to define some parameters introduced above. First, the formation- 
volume factor is calculated based on a time average wellbore pressure taken at half 

the distance from the top to the bottom of the liquid column: 

Most of the time, B,b may be considered 1 due to the low liquid compressibilities. 

However, B,b is considered here for complete theorectical formulation. The asterisk 
superscript in Eq. 4.8.9 represents a time average liquid height. The average block 

thickness at the wellbore may be taken as the mean of the block thickness at the 
center (Aho,)  and the extrapolated thickness at the sandface (AhD,): 

Also, the dimensionless radial distance i ; ~ ~  from the inner block geometric center to 
the sandface is used. The drop of the liquid column in the wellbore is: 

AH,, = Hw, - HW", (4.8.11) 
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The superscript k stands for the value at the beginning of the time-step. 

The discretization of the inner boundary potentials requires previous knowledge 
of the liquid position in the wellbore. Figure 4.1 shows that the base position of each 

block is an extrapolation of the coordinates expressed in dimensionless form as: 

'WD,  = (n  - j )  ''Dw 

where the extrapolated thickness is obtained by: 

and : 

(4.8.12) 

(4.8.13) 

(4.8.14) 

A similar extrapolation is done to the layer containing the free surface: 

AhD,  = a w  AhD, (1 - ) AhD, (4.8.15) 

Let jl be the position of the inner block adjacent to the liquid surface in the 
wellbore. The j ,  value is initially unknown, and must be estimated before the calcu- 

lations. Fortunately, the variation of the liquid level in the wellbore is easy to follow, 

and this procedure becomes a minor iterative problem. Due to the dependence of the 

potentials at the sandface on the liquid level in the wellbore, there is a particular way 
to calculate the average potential at the sandface of each inner block according to the 

respective stream-layer position. Every case is detailed in App. A.l .  It is possible 
to evaluate the liquid level HwD in the material balance equation by the appropriate 
substitution of the sandface potentials using an iterative method, or a direct method 
by solving a quadratic equation. 
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The partial derivatives of the sandface potentials must be determined in order to 

be substituted into the Jacobian equations required by the Newton-Raphson method. 

In view of the changes in the inner boundary condition along the sandface, there is 

a need for evaluating each case individually. In other words, due to the fact that in 
the material balance equation all the inner block potentials and sandface potentials 

are present, a variety of criteria must be considered in the differentiations. These 

procedures are summarized in App. A.l. 

4.9 Computer Model 

A general description of approximation of the numerical model described in 

the preceeding is presented in this section. The non-linear nature of the problem of 

gravity flow into a wellbore requires an iterative procedure to compute the potentials 

and the free surface positions in the reservoir, as well as the wellbore potential. Some 
criteria used in the simulator for a typical time-step calculation are described next: 

1. At the beginning of a time-step, the model assumes the dimensionless free sur- 
face distribution as being the same as that at the end of the previous time-step. 
At each radial position i, the same number N of vertical blocks is allocated 

which have an initial uniform thickness calculated by dividing the total height 

by the constant number of blocks N :  

(4.9.1) 

As an intial guess, the thickness of a block containing the free surface, AhDi, 
takes the same value as AzD,: 

AhD, = Ah;,. (4.9.2) 
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2. During a time-step, the variation of the liquid column H D ~  will be the same as 

the free surface displacement in the correspondent block in the first layer ( j  = 1). 
All other blocks in the saturated region will not have a change in thickness 

during this period. In other words, during the time-step loop calculations, 

AZQ remains constant while AhDi varies. 

3. The wellbore liquid height H,, is initially estimated from the wellbore material 
balance equation developed in Appendix A.2, considering the initial potential 
distribution around the wellbore for the present time-step. The quadratic equa- 
tion approach was the one preferred for accuracy and speed in the calculations. 

4. After calculating H,,, the sandface potentials W, are determined according 

to the inner boundary condition. 

5. The equation and Jacobian matrix coefficients are calculated. 

6 .  The matrix system is solved for the dimensionless normalized potential w;,j v+l .  

The matrix solver used in the model was developed by Brand e t  al. (1992) at 
Stanford Univeristy. The iterative method of solution of the matrix allowed for 
a maximum of 30 iterations. 

7. Convergence is verified for every i , j  dimensionless potential and the wellbore 

liquid height normalized by the initial height: 

and 

where E is an arbitrary small number that may be choosen as an input in the 
program. 

8. If convergence is not acchieved, H D ~  is recalculated based on potential calculated 
in the free surface layer: 
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In this case, the liquid gradient is assumed to be static. 

9. The wellbore liquid level HWD and the dimensionless potential at the sand- 
face WWj are updated and all other matrix and Jacobian coefficients are re- 

calculated. 

10. The procedures from 2 to 9 are repeated untill convergence is obtained. If 

convergence is not achieved within a given maximum number of iterations, or if 
the matrix calculation algorithm requires more than the prescribed number of 

iterations, the program reduces the time-step size and the calculations restart 

using the values calculated in the previous time-step. 

11. After convergence, new block thicknesses are calculated as follows: 

(4.9.5) 

12. Interpolate the potential distribution for the new blocks, and update the geo- 

metrically dependent parameters such as permeabilities in the direction of flow, 

average thicknesses, geometrical factors based on the slope corrections for trans- 
missivity and inter-layer distances. 

13. The radial number of blocks included in the computation is checked for the 
necessity of incorporating one more column of blocks. The blocks located at 
the last column considered in that time step are verified to have a potential 

drop greater than an arbitrary small number. An additional column of blocks is 

added if at least one outer boundary block starts to be sensitive to the potential 
drops. 

14. Restart a new time step following the procedures from 1. 

In App. E, a detailed description of the computer program is presented, as well as 

the code list. We turn now to operation of the Stream Layer Model and verification 

of results in Chapter 5 .  



Chapter 5 

Verification of the Numerical 
Model 

The Stream Layer Model was compared with classical solutions in the ground- 
water literature, and the results were consistent with available data and traditional 
methods found in the literature. The best way to verify the wellbore response was to 
compare the simulator results with steady-state experimental model results performed 
by Wycko$ et  al. (1932) and Hull (1955). The transient response at observation wells 

far from the producing wellbore were checked by comparing the simulator results with 

a classical groundwater method by Neuman (1972, 1974), and a numerical solution 

by Cooley (1971). Also, simulator results were compared with the Theis (1935) com- 
pressible flow line source solution and the p2 transient solution derived by Barney e t  

ul. (1989) to approximate the gravity drainage problem with a free surface. The 
analyses were done for an isotropic reservoir (kh = IC,) using original data from the 
references above. 

107 
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5.1 Verification with Wyckoff, Botset 
Experiments 

108 

and Muskat 

Wyckofl et a2. (1932) investigated the Dupuit solution for steady-state gravity 
drainage flow into a well by means of an experimental sandbox apparatus which is 
briefly described in Ch. 2. The experiments consisted of several runs at different 
steady state flow conditions, in which measurements of the head potentials used 
manometers at the bottom of the sand, and visual inspections of the liquid levels. 

In the experiments where the sand levels were much above the original liquid levels 
at the outer boundary, the free surface position was masked by the presence of the 

capillary fringe. The flow in the capillary fringe was detected by tracing streamlines 

with ink. 

When the capillary fringe was absent, the experimental results verified the Dupuit 
equation to approximate the head distribution at the bottom of the sand, although 
there were some errors involved in the following assumptions: (a) the liquid moves 
towards the well in cylindrical shells, and (b) the slope of the free surface was so small 

that the square of dh/dr could be neglected. Those errors seemed to compensate 
each other in such a way that Eq. 5.1.1, intended to give the free surface position 

distribution, was shown to approximate the liquid head at the bottom of the sand: 

(5.1.1) 

To compare with the Wyclcofl et al. results, the Stream Layer Model was run 
from an undisturbed initial condition until reaching steady-state. The permeability 

for Run No. 11 was determined using Eq. 5.1.1 and a plot of (h: - h i )  versus In r/r,. 
To avoid capillary fringe effects in Run No. 11, the top of the liquid was set at the top 

of the sand level in the sandbox, and the pumping flow rate was kept small enough 
to avoid a large cone of depression above the free surface. Based on the Wyckof et  
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point 

0.0681 38.10 86.4 r13 

0.0663 37.80 76.2 r12 

0.0704 37.60 66.0 rll 
0.0685 37.20 55.8 rl0 
0.0684 37.00 50.8 rg 
0.0691 36.80 45.7 T8 

0.0703 36.60 40.6 r7 

0.0676 36.20 35.6 rg 

0.0674 35.85 30.5 r5 
0.0651 35.30 25.3 1-4 

0.0654 34.80 20.3 r3 
0.0663 34.20 15.3 7-2 

0.0691 33.50 10.2 r1 
0.0700 32.50 6.4 well 

A well head (cm) r (cm) 

r14 

0.0581 38.40 106.7 ~ 1 5  

0.0662 38.30 96.5 

r16 0.0662 38.70 116.8 

r18 137.2 

39.30 156.0 7-20 

39.30 147.3 r19 

0.0876 39.10 
~ 1 7  0.1403 39.10 127.0 

Table 5.1: Determination of the average constant “A” from the experimental Run 
No. 11, using the Dupuit approach. 

al. observations, the Dupuit approach may be used to calculate the permeability by 

averaging the values of a constant “A” (see Tab. 5.1) defined as: 

(5.1.2) 

from which the permeability k was calculated in mD with respect to the 15” sector 
(1/24th of a complete 360” cylinder): 

(5.1.3) 
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For the units used in the experiments, and assuming a liquid viscosity of 1 cp in view 

of the lack of information about the temperature of the system, Eq. 5.1.3 simplifies to 

k ( m D )  = 7,875,709A. From the average computations of Tab. 5.1, a permeability 
of approximately 530,000 mD was calculated for the experiment of run No. 11. 

To match Run No. 11, no capillary fringe (h ,  = 0) was considered in the SLM. 
The results presented in Tab. 5.2 show good agreement of the liquid heads measured 

at the base of the sand at a steady-state condition with the head potentials calculated 

by the simulator. 

Runs No. 18 and No. 19 were selected to further verify the SLM, because of 
the conditions of flow, where both capillary effects and high vertical velocities were 
present. The permeability used in the calculations was the same obtained from the 
experiment Run No. 11. In addition, the only informations available in the paper 

about the liquid levels observed in the sandbox were those correspondent to Runs 
No. 18 and No. 19, shown in Fig. 3 in Wyckofl e t  al.. There was no information 

about the free surface position in W y c k o f  e t  al., but only about the liquid top level 
(including the capillary fringe) and the liquid heads at the sand bottom. Table 5.2 
shows the results of the experiments compared to the results of the simulator. There 

are acceptable differences of no more of 8 % in the worst case. A plot in Fig. 5.1 
shows the observed liquid top position measured directly from Fig. 3 in Wyckofl e t  

al. paper, compared with the results from SLM. 

In the runs presented in Table 5.2, the grid dimensions were those that provided 

the best fit with the experiments within a reasonable computing time. Also, a no-flow 
sandface region estimated at about 1 cm, located at the free surface intersection, was 

considered, due to surface tension effects theoretically expected and confirmed by the 

Hull (1955) work. This restriction in the upper region of the seepage face becomes 

important when the vertical scale is reduced, as in Run No. 19. In Run No. 19, 
the no-flow region could represent 10% of the well liquid level in the reservoir at the 
sandface. 
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Figure 5.1: Liquid levels and heads in the sand model by Wyclcofl et al. compared to 
the SLMresults of runs 18 and 19. 

5.2 Verification with the Cooley and Neurnan So- 

lut ions 

Cooley (1971) solved a problem of gravity drainage dedicated to interference 
testing numerically neglecting wellbore effects. He applied a finite difference method 
to solve an integral of the non-linear partial differential equation obtained by the 

divergence theorem. Also, the Cooley model considered the influence of capillary 
pressure in the unsaturated region in the capillary fringe. His results, compared 

with the Boulton (1963) convolution integral solution, show that the influence of the 
capillary fringe is negligible at field scale. The Cooley results used in the present 

comparison were obtained directly from the figures in the paper. 
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Point 

well 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

6.4 32.50 
10.2 33.50 
15.2 34.20 
20.3 34.80 
25.4 35.30 
30.5 35.85 
35.6 36.20 
40.6 36.60 
45.7 36.80 
50.8 37.00 
55.8 37.20 I I1 

q (bbl/D) 11 139.6 

SLM 

32.50 
33.58 
34 -50 
35.13 
35.62 
36.02 
36.35 
36.62 
36.87 
37.27 
37.26 
136.10 

% 

+o.oo 
+0.24 
+0.88 
+0.95 
+0.91 
+0.47 
+0.41 
+0.05 
+0.19 
+0.73 
t0.16 
-2.48 

Run No. 18 -r 
wyc. 

5.80 
11.30 
15.10 
17.60 
19.40 
20.80 
22.00 
22.80 
23.60 
24.10 
24.40 
284.3 

SLM 

5.80 
11.75 
16.29 
18.78 
20.47 
21.64 
22.56 
23.26 
23.88 
24.41 
24.87 
283.9 

% 

+o.oo 
$0.40 
+7.88 
+6.70 
$5.51 
+4.03 
+2.54 
+2.02 
+1.19 
+1.29 
$1.92 
-0.14 

112 

Run No. 19 
wyc. 

+o.oo 
5.80 
7.30 
8.30 
8.90 
9.50 
9.90 
10.30 
10.60 
10.90 
10.90 
75.5 

SLM 

0.00 
5.53 
7.30 
8.68 
9.26 
9.70 
10.04 
10.33 
10.59 
10.82 
11.02 
75.4 - 

% 

0.00 
-4.65 
+6.71 
+4.58 
+4.04 
+2.10 
+1.41 
+0.29 
-0.09 
-0.73 
$1.01 
-0.13 

Table 5.2: Heads (cm) at sand base from Wyclcoget al. experimental results compared 
with the Stream Layer Model. 

Neuman (1972) used the same synthetic data as Cooley to verify his analytical 

approach not considering the influence of the unsaturated region, and concluded that 
capillarity "... has very little influence on the time-drawdown response of unconfined 

aquifers during gravitational drainage". Later, Neurnan (1974) extended his work 
to partially penetrating wells. A computer program related to the prior solution, 

kindly furnished to us by Neurnan, was applied to generate the present results for 
comparison. The Cooley data, summarized in the following, were used to calculate 
the head drawdown response at two different radial positions far from the wellbore 
center. In the example, the two observation points were selected at radial distances 

of 44.9 and 101.1 ft respectively, to avoid wellbore storage effects, not considered in 
the Cooley, Boulton and Neuman solutions. 

The reservoir parameters were estimated from this data - see App. B: 

(a) Reservoir porosity 4: 

Sy z 4e 3 Sy = 0.23 3 4 = = 0.23, for S,, = 0 
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constant pumping rate, q 

0.034 (dimensionless) storage coefficient, S 
0.53 ft pumping wellbore radius, r, 
59.5 ft original height, H, 
302 gpm (10,354 BPD) 

0.23 (dimensionless) specific yield, Sy 
89,250 gpd/ft transmissivity, T 

Table 5.3: Data from Cooley (1971) 

(b) Total Compressibility Q: 

ss = p g d  (cw + cf) = p g $ c t  [Cooley (1971), Eq.21 

S 0.034 
h* 59.5 

s s = - -  - - -  - 0.0006 ft-I 

Using appropriate units: ct = 0.006 psi-' 

(c) Reservoir permeability kh = k, = k (single phase isotropic reservoir): 

T = 5 (p:) = 89,250 gpd/ft 
P 

k = 7 3 D  

The Stream Layer model (SLM ) was run using the above set of data translated 

from groundwater parameters to equivalent reservoir properties used in petroleum 
engineering. The mean radial drawdown ~ ( r )  was computed by averaging the head 
potentials along the the entire thickness at each radial position of the observation 
wells, while sb(r) and sh(r) were the head drawdowns at the lower boundary and free 

surface, respectively. The results presented good fit and coherence as observed in the 

figures below. Also, the applications of the Ramey e t  al. simplified analytical solution 
showed about the same results as the Theis line source solutions at early times, but 
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became closer to the Stream Layer Model as time increased. At late times, a log- 

log plot correlates the points closely such that it is difficult for one to observe any 
difference between all these methods. See Fig. 5.2 and 5.4. behavior. The semilog 
graphs in Figs. 5.3 and 5.5 are better for an accurate view of the late time potentials. 

10 

r = 44.9 ft 

; /" ,,,mi' F,' .._._.___._. SLM SLM average free surface head head potential potential 
I - - _ _ _ _  SLM bottom head potential 

,: a Theis (1935) 
- 0 Ramey et. al(1989) ;BI 9 Newnan (1972) 

0 Cooley (1971) 
I I , , , I  e I , , , , , , ,  1 I I I I , ,  I , ,  I I 0 I I , ,  

10" 10-3 10-2 10" 1 10 
Time, min 

Figure 5.2: Stream Layer Model compared to Cookey, Theis , Ramey e t  ak. and 
Neuman. Observation well at 44.9 ft. Log-log plot. 
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2.5 1 

0.5 1 

SLM average head potential 
SLM free surface head potential 
SLM bottom head potential 

.._.___._.._ 
- _ _ - - _  

Theis (1935) 
EI Ramey et. al(1989) 

0 Cooley (197 1) 
Neuman (1972) 

r = 44.9 ft 

10-3 10-1 1 
Time, min 

Figure 5.3: Stream Layer Model compared to Cooley, Theis , Barney et al. and 
Neuman. Observation well at 44.9 ft. Semilog plot. 

10 

SLM average head potential 
SLM free surface head potential 
SLM bottom head potential 

.._.___._.__ 

_ _ _ _ _ _  
Theis (1935) 

0 Ramey et. al(1989) 
+ Neuman (1972) 
0 Cooley (1971) 

I , I I I I , ,  1 I I I , ,  I I l 1 1 1  

lo4 10-3 lo-' 
Time, min 

1 

Figure 5.4: Stream Layer Model compared to Cooley, Theis , Barney et al. and 
Neurnan. Observation well at 101.1 ft. Log-log plot. 
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Figure 5.5: Stream Layer Model compared to Cooley, Theis, Ramey et al. and Neu- 
mm. Observation well at 101.1 ft. Semilog plot. 

5.3 Verification with Hall Sandbox Experiments 

Another verification compared the SLMwith the experiments by Hall (1955). He 

performed measurements using a specially designed sandbox apparatus according to 
Fig. 2.1 in the Literature Review chapter reproduced from the Hull (1955) paper. As 

referenced in Ch. 2, there were four series of tests executed under different conditions, 

summarized below: 

0 Series A: 
Greatest degree of saturation, close to an ideal condition; increasing flow rate, 
steady-state steps. 

0 Series B: 
Non-uniform distribution of air voids in the sand by natural re-saturation; de- 

creasing flow rates at each steady-state step. 
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0 Series C: 
Tests executed in reverse order of series B; better saturation conditions. 

0 Series D: 
Same conditions as in series C, but using reduced surface tension water by 
chemical treatment. 

The experiments of series A were selected to be compared with the SLM. The 
basic data were: 

(a) Permeability from direct measurements: 

IC = 0.460 cm/s =$ 453,OOOmD 

(b) Water viscosity at the experiment conditions: 

Test No. Temperature ("C) Viscosity (cp) 
1 26.8 0.86 

2 28.5 0.82 

3 29.0 0.81 
4 29.1 0.81 

5 29.5 0.81 

6 29.2 0.81 

7 29.5 0.81 

8 29.6 0.80 

(c) External radius: re = 197.6 cm 

(d) Wellbore radius: rw = 12.2 cm 

( e )  Porosity: 4 = 0.40 

(f) Constant external liquid head: H ,  = 122 cm 

'Calculated by interpolation in Table 6-4 from Amyx et .  a1 (1960) 
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A- 1 
grid N 10 

H, (Hull) ,  cm 

H, (SLIM), cm 

106.4 

+0.85 % Diff. 

107.3 

Q (Hull) ,  BPD 

0 % Diff. 

1082 Q (SLM), BPD 

1082 

H, (Hull), cm 110.7 

H, (SLIM), cm 112.8 

% Diff. +1.90 

A-2 I A-3 I A-4 
I I 

12 I 14 1 16 

91.2 

3613 2960 2100 

+0.66 +1.58 +2.30 

61.2 77.2 93.3 

60.8 76.0 

2100 

90.2 95.7 104.0 

90.2 94.5 104.3 

0 0 0 

3613 2960 

-0.29 0 +1.27 

A-5 
20 

45.6 

45.6 

0 

4160 

4141 

-0.46 

86.4 

86.5 

+0.12 

A-6 
24 

30.4 

30.8 

+1.18 

4500 

4500 

0 

84.8 

84.3 

-0.58 

A-7 
31 

15.2 

15.2 

0 

4773 

4764 

-0.19 

83.3 

83 .O 

-0.36 
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A-8 
34 

- 

4849 

- 

83.3 

82.6 

i -0.84 

Table 5.4: SLMresults compared to the Hull series A experiments. 

(g) Capillary fringe thickness: h, = 8.9 cm 

(h) Residual liquid saturation (assumed): 20% 

The SLM steady-state runs were obtained by establishing both a constant rate, 
and the corresponding measured wellbore liquid height. The vertical blocks were sized 
according to the gradient developed in the sand, looking always for the best fit to the 
data, and keeping the number of radial cy€indrical blocks constant at 12. Each run 

started from a rest (flat liquid table) condition and produced at a constant rate until 

reaching a steady-state. Eventually, the wellbore pressure reached the value in the 
experiment, then that pressure was fixed and the simulator switched to a constant 
pressure inner boundary condition, re-calculating the flow rates at the wellbore. See 

cases A-5, A-7, and A-8 in Tab. 5.4. 
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Series A-6 I1 Bottom II Free Surface 
Node 

W 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Dist . , (cm) 
11.68 
14.02 
19.20 
26.52 
36.58 
51.51 
71.63 
96.62 
121.92 
146.61 
171.6 

Hall 
30.48 
38.10 
52.83 
66.29 
78.74 
89.92 
99.06 
106.43 
111.76 
115.57 
119.13 

SLM 
30.84 
36.74 
49.83 
63.04 
75.60 
87.59 
97.76 
105.91 
111.61 
115.80 
119.20 

Diff.,(%) 
+1.18 
-3.55 
-5.68 
-4.90 
-3.99 
-2.54 
-1.31 
-0.49 
-0.13 
+0.20 
$0.06 

Hall 
84.8 
86.9 
90.0 
93.5 
97.3 
101.4 
105.8 
110.7 
114.2 
116.7 
120.1 

SLM 
84.31 
84.59 
85.11 
87.06 
90.19 
95.49 
101.51 
107.47 
112.24 
116.03 
119.18 

Diff.,(%) 
-0.58 
-2.66 
-5.43 
-6.89 
-7.31 
-5.83 
-4.06 
-2.92 
-1.72 
-0.57 
-0.77 

Table 5.5: Comparison of potential heads between the Hall sandbox experiments and 
SLM ( M  = 12, N = 24), series A, Test No.6 

From the results of Tab. 5.4, good agreement was found between the numerical 
and the experimental methods. All the compared heads and flow rates were fitted 
with less than 3% error in the worst case. The greatest differences were observed in 

calculated and measured free surface positions along the radial distance, as shown in 
Tab. 5.5, for the series A-6 experiment. As a conclusion, since the discrepancies were 

within acceptable errors, the Stream Layer Model can be considered verified with the 

results contained in the present chapter. 

In the next chapter, the sensitivity of the Stream Layer Model to the grid and 
time-step dimensions are studied. 



Chapter 6 

Sensitivity 

In this chapter, some practical aspects of the SLM program regarding the simu- 
lation approach in wellbore drawdown or buildup pressure behavior will be analyzed, 

specially the model dimensioning of grid blocks and time-steps. The major difficulty is 
to handle non-linearities that occur throughout the reservoir, but are stronger around 

and at the inner boundary sandface. In some previous models, simplifications were 
made to avoid this difficulty which limited applications to regions sufficiently f a r  from 
the well, or to small flow rates to assure compatibility with some assumptions. 

The SLM is a finite-difference model that is able to simulate both pumping and 

observation wells, even those cases that generate large free surface drops. Never- 

theless, widely-known restrictions of radial numerical models are still present and 
amplified by the non-linear characteristic of the mathematical problem. Stability, 
convergence and accuracy criteria follow characteristics similar to those of standard 
confined two-dimensional radial numerical models, tempered by difficulties introduced 
by the seepage face boundary condition. 

120 
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6.1 Grid Block Dimensioning 

The effects of grid sizing were determined by runs of several configurations of 
grid dimensions, fixing one direction, and varying the other. A large number of runs 
was performed from 20 to 60 radial blocks, and 611 to 100 vertical blocks, some results 

of which are presented in Figs. 6.1 and 6.2. The reservoir and production character- 
istics were kept constant throughout, and were selected for the present investigation 
from a field example summarized in Table 6.1. E x  the radial grid spacing, the MUL- 
TIMODAL method (Tera'n and d e  la Garzu - 1.988) was adopted, using a ratio of 

4x105 between the first and last radial block dimensions. This ratio was obtained 

by successive experimental runs in order to get large storage for the first column of 

blocks (containing the sandface) and keep a logaxithmic spacing. An infinite reservoir 
was simulated by setting the external radius far enough that drawdown effects were 

not evident. 

External dimensionless radius, r , / r ,  
Initial liquid level at rest 
Isotropic permeability (single phase) 
Liquid viscosity 
Liquid compressibility 
Skin 
Formation compressibility 
Liquid density 
Formation volume factor 
Production flow rate 
Porosity 
Residual saturation in the desaturated region 

lo6 
189 ft 
80 mD 
1 CP 
3x10-~psi-~ 
0 
0 
62.4 lb/ft3 
1.0 res vol/std vol 
250 bbl/day 
0.25 
0 

Table 6.1: Basic input data for the sensitivity runs 

The numerical treatment of the partial differential equations in the gravity flow 
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problem introduces discretization errors in the potential solutions that normally tend 
to decrease with grid refinement. Grid dimensions affected the potential response 

immediately after the wellbore storage period when unconfined flow behavior became 
effective. In the examples of Fig. 6.1 and Fig. 6.2, the potentials in the wellbore show 
a considerable displacement at the beginning of the desaturating period, while at late 

times, the solutions tend to approach each other. 
30 
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............ - 
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10-2 10-1 1 10 102 103 104 16 lo6 
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Figure 6.1: Radial mesh variation, 100 vertical grid blocks 

Figures 6.1 and 6.2 show semilog plots of the wellbore pressure drawdown com- 

paring the effect of grid size on the simulator response for a range of grid sizes which 
produced acceptable computing times. The results produced larger sensitivity of the 

model to the vertical mesh size than to the horizontal mesh size, because pressure 
gradients were larger in the vertical direction. The most important deviations were 

observed during the formation of the desaturating cone demonstrating that gross 

vertical block dimensions sensibly modify the numerical results of the vertical flow 

around the wellbore in this period. 
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Figure 6.2: Vertical mesh variation, 60 radial grid blocks 

An obvious but important limitation to grid refinement is computing time. For 

a very fine grid mesh, the CPU time becomes prohibitive to reach long drawdown 

or buildup times. Since we are concerned with the wellbore response, an additional 
difficulty is the fact that the desaturating period is sometimes long requiring that 
wells reach pseudo-confined behavior after months or years of pumping. 

Some reservoir property relationships in the groundwater literature, mainly the 
Boulton parameter ,f3 = kv /kh(r /h , )2 ,  are related to the time when the unconfined 

period is followed by the pseudo-confined period, as observed from the Boulton (1963) 

and Neuman (1975-a) type curves. According to these approaches, when the potential 
drawdown starts following a pseudo-radial solution, the dimensionless time increases 
as ,f3 decreases. In the wellbore ( r  = r,) for example, practical values of p are much 
smaller than 0.001, the lowest value shown in the type-curves. As a consequence 

of the delay of the pseudo-radial response, simulation of the flowing period requires 
long production time, sometimes taking months of producing time. However, at late 
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times when the potentials near the well have large changes, computations require long 

computing time for the reduced time-step required by the numerical solution. Since 
the grid blocks around the well start having large variations in the potentials, the 

combined effects of geometry and time-step sizes influence computation performance. 

To recall some calculation procedures of the program, the Jacobian matrix is 
solved iteratively in the Newton method. Only part of the blocks are included in 

the simulation at the beginning. Those located in the reservoir region affected by the 

production are included. Since the potential perturbation far from the wellbore is less 
than an arbitrarily small value, it is not necessary to include distant grid blocks in the 
calculations, thus saving computing time. The matrix solver requires approximately 

80 to 93% of the computing time to calculate a complete iteration loop depending on 

the number of vertical and horizontal grid blocks. The number of vertical grid blocks 
is the most important factor due to the correspondence with the bandwidth of the 
matrix, according to the formulation of the matrix solver. 

To give an idea of computing times, let us consider the examples in Fig. 6.2. For a 
fixed number of 60 horizontal grid blocks, a total of 184 CPU minutes were required 

for a complete run with a 60-vertical block mesh, and 318 CPU minutes were required 
for a 100-vertical block mesh to reach a total production period of lo6 minutes. This 

was the pumping time required to get about one complete log-cycle of pseudo-radial 
drawdown behavior. The total number of matrix calculations was 25,338 for the 60- 
vertical block case, and 20,816 calculations for the 100-vertical block mesh. In this 

example, these numbers show that although the number of blocks is increased the 
number of iterations is reduced, the total computing time is still increased. These 

results were obtained with a DEC SYSTEM 5000/240 computer. 
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6.2 Time Weighting and Time Step Length 

A strong reason for errors in the numerical model is the linearization imposed 
on the non-linear problem. As a consequence, accuracy is related to the time-step 
size and the time-interpolating parameter, besides the grid mesh size. The time- 

interpolating parameter is important, and gives the degree of implicitness of the 
unknowns. In the mathematical formulation of the present numerical approach, the 
potential variation during a time-step is assumed linear, and the calculation of the 

material balance for an element considers a constant time weighting factor 0: 

k AV f3 [4in - Qout] + (1 - 6) [Qin - Qkt] = - At (6.2.1) 

where IC refers to the previous time-step. 

Figure 6.3 shows the flux in or out of a grid block element during a time-step 
from tk to tk + 1. Depending on the shape of the curve and the time-step size, 
the flux approximated by linear interpolation may be under or over-estimated. For 

example, since during the drainage process the difference qin - qout is almost zero 
(low compressibility systems - saturated region) or negative (free surface region), the 

material balance error introduced by the linearization may gradually increase when 
the flux through a block boundary is accelerating, and decrease when the flux is 

decelerating, as seen in Fig 6.3. At long times, the errors in both directions may 
compensate or attenuate the apparent deviations from the correct solution. 

In the validation runs of the sandbox experiments, as steady-state conditions 

were reached, the Crank-Nicolson method (0 = 0.5) developed oscillating problems, 
and a very large number of time-steps was required to avoid oscillations and a large 

number of low convergence iterations. The fully-implicit scheme in time calculations 
(0 = 1) was then tested, and after reaching steady-state conditions, stability and 
convergence were obtained with any time-step size. The drawdown results were a 

little underestimated, compared with the Crank-Nicolson scheme. Figure 6.4 shows 
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f lux Fig. A Fig. B 
flux 

Figure 6.3: Non-linear flux variation during a time-step. Acceleration and decelera- 
tion periods. 

a graph containing the same data input run with different interpolation parameters 

6. For 6 = 0.5, the computing CPU time was as high as 900 minutes to reach lo6 
minutes of production time due to the exaggerated number of iterations generated 
by the oscillation in the results. These oscillations were avoided automatically by 
reducing the time-step sizes as necessary. 

Based on the observations reported in the preceding, practical conclusions are 

that time-step dimensioning is important for convergence and accuracy, and that 

the interpolation parameter 6 may vary from 0.50 to 1. However, for improving the 

computing time, the Crank-Nicolson scheme should sometimes be avoided. 

Bearing in mind that at a given time each particular region of the reservoir behaves 
according to one of three possible flow regimes, namely wellbore storage, desaturating 

cone, and pseudo-confined, the time-step sizes are dimensioned based on the most 
unfavorable conditions caused by the rate of potential changes with time. Since small 

time-steps make the computations long and expensive, some criteria were adopted in 
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Figure 6.4: Effects of time interpolation parameter in the SLM results 

the program to set time step sizes in a range such that time steps were maximum 
under an accuracy point of view, and minimum to achieve a reasonable computing 
time. 

At  early time, during the wellbore storage dominated period, the flow rate varia- 
tion through the blocks and into the wellbore were similar to that represented in 
Fig. 6.3-A. That is, the linearization over-estimates the fluxes in the boundaries 
(q > qTeal). Noticeably qout is affected more than qin. As a consequence, the cal- 

culated drawdown pressures have a tendency to increase further, due to a material 

balance error. As time increases, if the deceleration process (Fig. 6.3-B) takes over, 

or a less non-linear behavior starts, the error is reduced. Inside the reservoir, as we 

go far from the wellbore, the process explained before is repeated at different times 
and places, but it is really near the well where this phenomenon is most important. 

Figure 6.5 is a graph showing the effects of the time-step size in the results during 
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Figure 6.5: Effects of time-step size in the wellbore potential drawdown 

the drawdown period. Three different time-step sizes were compared, and the analyt- 
ical approach of Ramey et al. (1989) was used as a reference. A very large time-step 

size case did not converge after = 100 (not on Fig. 6.5) when the wellbore storage 
period had finished and the desaturating surface (free-surface downward movement) 
started to accelerate. A medium time-step size was used in a second run, and a fine 
time-step size was used as a reference. The results observed in the plots of Fig. 6.5 
were consistent with expectations. 

The most critical problem with time-step dimensioning in the given examples 

starts in the transition between the desaturating and the “pseudo-confined” periods. 
We define “pseudo-confined” as the drawdown behavior that follows the period in 
which the free surface downward movement becomes approximately uniform, after 
the formation of the desaturating cone around the wellbore. In that transition, the 

pressure drawdown curve inflects upward, and the linearization tends to over-estimate 

the fluxes (see Fig. 6.3), increasing the pressure drawdown by material balance error 
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accumulation as observed in Fig. 6.5. Conservative time-steps are recommended 

during the pseudo-confined period during drawdown or buildup because of the grid 

block sizes related to the rate of potential change. 

An empirical rule of thumb derived from an extensive number of runs is to start 
runs with a t D  = 0.01 for simulating field cases, and t D  = 0.0001 for lab experiments, 

and to increase the number of time-steps per log cycle by 10 or 100 at each new time 
log-cycle. A key for this choice was to observe the sharpness of the vertical potential 

gradient in the formation, near the well, and the dimensionless block sizes compared 
to the fluxes. The lower the mobility k / p ,  or the higher the production flow rate, the 
smaller the required time-step sizes may be. 

The time-step size can not be separated from the block sizes since large increases 

in the time interval may cause problems in stability. The blocks located around the 

wellbore are those of concern, because they have low storage capacity. The SLM 
simulator has an auto time-step control that helps to guarantee a time-step size re- 
duction at any time when it is necessary. In other words, after a maximum number of 
iterations, because of problems with matrix solver convergence, lack of convergence 
in the wellbore pressure calculation, or exaggerated free surface movement, the time- 
step size control algorithm changes time step sizes gradually until acceptable values 

dictated by the built-in convergence criteria result. The maximum number of itera- 

tions, itermz, is generally input data, but can also be a variable in the program. A 
variable number departing from 3 and increasing by 1 at each new time log cycling 

has proven to be efficient, avoiding exaggerated reductions in the time-step sizes. 

In terms of convergence, buildup behavior is poorer than drawdown behavior. 
As seen in Ch. 7, the late time potential buildup behavior is more non-linear than 
drawdown behavior. Thus, the time-steps must be reduced. Computing time for lo6 
minutes of real buildup, as in Fig. 7.9, takes more than 1000 CPU minutes in an IBM 
RISC 6000/550, most of them consumed in the late time computations. 
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In the next chapter, a discussion of the effects of some reservoir properties in 
production in a gravity drainage well test is presented. 



Chapter 7 

Discussion 

In attempts to analyze drawdown and buildup behavior for a low-pressure pro- 
duction well, it became evident that free surface gravity drainage was a major factor, 
Ramey et al. (1989). A literature review indicated no pertinent interpretative meth- 
ods in the petroleum literature, and contradictory methods for pumping well data 

interpretation in hydrology, Boulton (1963) and Neuman (1975-a,b). There even ap- 

peared to be problems with interference data interpretation. Although interference 

data matched the Theis (1935) line source solution, the apparent storativity (or com- 

pressibility) from type curve matching was hundreds of times larger than the known 

compressibility of water. This led some authors to speculate that trapped gas in- 
creased apparent compressibility. It appeared to Ramey et al. (1989) that using a 
confined system model was simply incorrect for free surface drainage of an essentially 

incompressible flow system. It is easy to compute that maximum production of water 

by expansion from a low pressure (100 psi) aquifer is less than 0.1% of the water in 
place. 

It appeared to Ramey e t  al. (1989) that a solution of the Dupuit-Forchheimer 
equation similar to an early natural gas flow problem by Jenkins and Aronofsky 

(1953) could aid understanding. This study showed an incompressible liquid could 

match the line source solution exactly. However the parameter which appeared in 

131 
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dimensionless times was not compressibility, but the reciprocal initial head, which is 

much larger than the compressibility of water for a low pressure system. 

During analysis of the Dupuit-Forchheimer problem, review of the Wycko$ et 
al. (1932) study convinced Ramey e t  al. (1989) that the Dupuit-Forchheimer model 

violated physical principles and could not match the free surface behavior, or the 

existence of a seepage face in a producing well. As Muskat (1937) clearly stated, ana- 
lytical solution of free surface problem was essentially hopeless. Thus it was decided 

to produce a finite-difference computer model which could be used for investigation 
behavior of both producing and observation wells. The report concerns construction 
of a program capable of solving this formidable non-linear problem. 

To explore the characteristics of the Stream Layer Model to simulate a gravity 

drainage well, drawdown and buildup pressure behaviors are presented in this chapter. 

Also, influences of some parameters were investigated. Skin effect, permeability, flow 
rate, permeability ratio (anisotropy) and the initial position of the liquid level at rest 
have been considered in the following sections. A basic set of data used during this 

study is presented in Table 7.1. 

The Stream Layer Model (SLM), unlike the available analytical methods in the 

literature, is able to represent the wellbore and formation pressure (head) behaviors 

during drawdown and buildup periods, since the most important limitations of this 
single-phase simulator is the discretization of a numerical solution, regardless of the 
consideration of unsaturated two-phase flow. Other classical approaches, such as 

Theis (1935) and Ramey et al. (1989), have been used in this chapter for comparison 
at late times. Two auxiliary programs, namely FLIGRAM and PDE were used in 
some cases to consider the wellbore storage and skin effects in the Ramey e t  al. and 
Theis solutions (see Appendix C). These modifications were not intended to represent 

the desaturating period, since both Theis and Ramey e t  al. neglected the vertical flow 

in the reservoir. 
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Dimension for horizontal grid (mdim) 
Dimension for vertical grid (ndim) 
Initial number of time-steps per cycle (ntd) 
Initial dimensionless time (tdi) 
Dimensionless external radius (r,.) 
Liquid compressibility (cL) 
Total compressibility (c t )  
Original height of the free surface (H,) 
Initial pressure ( p i )  

Well bore radius ( rw)  
Porosity - fraction ( 4 )  
Liquid viscosity ( p ) :  
Liquid density (pglg,) 
Formation volume factor (Bo) 
Skin effect parameter (s) 
Horizontal permeability (kh) 
Vertical permeability (k,,) 
Constant production rate (9) 
Time-relaxation parameter ( 1 2 8 2 0) 
Residual saturation in the desaturating region (SrL)  
Capillary fringe thickness (h,) 
Error tolerance ( e )  

60 
100 
10 

106 
3 x 10-6psi-1 
3 x 10-6psi-1 
189 ft 
81.9 psi 
3.18 in. 
0.25 

62.4 lbf/ft3 
1 
0 
120 mD 
120 mD 
100 bbl/d 
0.9 
0 
0 
10-6 

10-4 

1 CP 

Table 7.1: Basic data used as input to the SLM. Equivalent variables used in the 
program are shown between parentheses. 

7.1 Transient Wellbore Pressure Analysis 

Using results of the SLM simulator, general observations of transient gravity 

drainage flow into a well are considered in this section, including drawdown and 

buildup behaviors of a typical oil field well. The basic reservoir properties are shown 

in Table 7.1. A complete run of the SLM is described and analyzed in the next 
subsections. 
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Figure 7.1: Wellbore flowing pressure and pressure derivative log-log plot. 

7.1.1 Drawdown 

Figures from 7.2 to 7.7 present the results from the SLM simulator for a flow 

period of lo6 minutes (278 days) of a single well located in an infinitely large reser- 

voir. As described in several papers in the Groundwater literature, the SLMresults 
show the same three flow regimes during the flow period, namely wellbore storage, 
the desaturating and the pseudo-confined or pseudo-radial periods, as observed in 
Figs. 7.1 and 7.2. 

At the beginning of the flow period, wellbore storage completely dominates during 

the first minute, according to the log-log plot of wellbore potential vs. time in Fig. 7.1. 
The potential derivative is also shown in the same graph. From the definition of 

the dimensionless wellbore storage coefficient in the Petroleum Engineering literature 

(see van Everdingen and Hurst, 1949), we present a similar definition based on the 
liquid level variation in the well: 
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Figure 7.2: Wellbore flowing pressure semi-log graph 

135 

lo6 

(7.1.1) 

According to Agarwal et  al. (1970), the early time dimensionless pressure in the 
wellbore storage period is: 

- 
P W D  - (7.1.2) 

In the following, we define a non-normalized pwD and re-write the definition of t D  in 
the Ch. 3 in petroleum field English units: 

(7.1.3) 

and : 
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(7.1.4) 

Using time in minutes instead of days, and defining the liquid gradient y = &, we 

combine Eqs. 7.1.3, 7.1.4 and 7.1.2: 

(0.0002637)(141.2) y q  t‘(min) 
CD = 

(60) 
- (7.1.5) 
9r; AP * 

In the log-log plot of p ,  vs. time in Fig. 7.1, we identified a straight line at early times 

with a unit slope as expected for a pure wellbore storage period. A given point at 

0.1021 minute corresponds to a pressure drop of 0.0766 psi (values read on the output 
list of the program). Using the input data of Table 7.1, the resulting dimensionless 
wellbore storage coefficient was calculated as 0.51, from Eq. 7.1.5. This value is very 

close to the theoretical value of 0.50. We see, then, that due to the wellbore storage 

effects, the early time line source solution used by Boulton (1954-b, 1963) can not be 
applied here. 

As the wellbore storage effects are replaced by the formation response to pumping 
the well, the potential in the wellbore becomes almost constant, as verified in Figs. 7.2 

and 7.1. This is the period during which the desaturating cone is intensely developed 
around the well, called the “delayed yield” period in the Groundwater literature. 

A first qualitative observation is that the duration of the unit slope straight line 
corresponding to pure wellbore storage effects in the log-log plot in Fig. 7.1 is greater 

in the SLM solution than in either the FLIGRAM or PDE solutions. It seems that 
the formation response is somewhat retarded in the gravity drainage flow into a well, 
and a very small increase in the wellbore pressure is observed in this example during 
the desturating period. A possible reason for this delayed reservoir response may be 

a slow development of the velocity gradients after start of pumping. The velocities 

of the uppermost stream flow lines are dependent on the development of potential 

differentials caused by the cone of depression around the wellbore. This is different 
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from the confined elastic system where the stream lines are straight in a vertical 
cross-sectional view. The pressure derivative goes to negative small values when this 
phenomenon is observed in this period. 

After the desaturating period, the semilog graph in Fig. 7.2 shows a potential 
behavior in the wellbore similar to the Ramey et al. (1989) and Theis (1935) solu- 
tions obtained from FLIGRAM and PDE programs. This is the pseudo-radial flow or 

pseudo-confined radial flow period. This behavior occurs when the formation of the 

desaturating cone is stabilized and the flow regime becomes dominated by regions of 

the reservoir distant from the well where the streamlines are almost horizontal. For 
a quantitative evaluation of the late time potential response, and for a comparison of 

the SLMresults with the Ramey et  al. (1989) method, a p-squared vs. semilog time 

drawdown graph on Fig. 7.3 is presented. In this figure, a late time m-permeability 
slope value of 114 psi2/log-cycle was obtained graphically. From the analytical ap- 
proach, the difference was only 3%: 

qBP 
W / P )  

m = 325.2 - = 117.4 psi2/cycle. 

In the traditional semilog Theis (1935) analysis, the late time pressure drawdown 

slope in Fig. 7.2 of an apparent straight-line was 0.672 psi/log-cycle, 6.6% smaller 
than in the theory: 

m = (162.6) - q B P  = 0.716 psi/cycle. 
k h  

Another quantitative verification was done by calculating the derivative of dimen- 
sionless pressure obtained from the dimensional asymptotic value in the graph of 0.32 
psi. Based on the input data, the conversion factor for the dimensionless pressure in 

Eq. 7.1.3 was 1.606 psi-'. The resulting partial derivative was 0.51, very close 

to the 0.50 in the theory. In fact, it is known that the p-squared solution produces a 
slightly higher slope than the log approximation of the line source solution. 
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Figure 7.3: Wellbore flowing pressure-squared semi-log plot 

lo6 107 

Closer results between the numerical model and the Barney et  a!. (1989) ap- 

proaches has been found consistently in the present study compared to the Theis 
(1935) approach. The agreement, however, is only related to the late time slope of 
the apparent semilog straight lines. Further considerations about absolute differences 
are discussed in Section 7.2 in this chapter. 

A graph in Fig. 7.4 shows the flow rate distribution along the sandface blocks 
of the SLM for the flow period. Relative flow rate profiles are shown for both the 

desaturating and the pseudo-confined periods. It may be observed that there is 

always a concentration of flow in the vicinity of the liquid level in the well indicating 

high velocities of streamlines in that region. In addition, the flow distribution is 

more uniform at late times. In all observations, the contribution of the seepage face 
gradually increases from zero at the free surface position to a maximum value at 

the wellbore liquid level. The flux variations are small below the liquid level in the 
wellbore, mainly at late times, as we go far from the liquid level in the well. 
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Figure 7.4: Sandface flow rate distribution. The liquid levels in the well coincid whith 
the higher flow rate values. See examples indicated by arrows in the figure. 



7.1 Transient Wellbore Pressure Behavior 140 

10-1 1 10 16 16 104 16 lo6 
Time, min 

Figure 7.5: Seepage height vs. cumulative time for drawdown period 

Figure 7.5 shows the seepage face behavior with the time. This is an important 
result from the present study which has not been found in any of the published papers 

in the surveyed literature. The seepage face presents an interesting transient behavior, 
following the three distinct periods of flow in a gravity drainage well. In this example, 

the seepage face starts developing after the pumping starts and reaches a maximum 
value of 9.5 ft at the end of wellbore storage effects. During the desaturating period, 
the seepage face length reduces while the free surface moves downward. This shrinkage 

seems to stabilize at about 3.2 ft as the pseudo-confined behavior takes place. 

An illustration of radial potential distribution, seepage length and free surface 
radial profile is presented in Fig. 7.6. In this figure, the head potential in the bottom 

of the formation and the free surface position were normalized with respect to the 

original liquid height, H,. Different flow regime periods are presented, starting at the 

end of the dominating wellbore storage effect period. The wellbore liquid level is also 
shown, and the seepage length may be identified by the difference between the liquid 



7.1 Transient Wellbore Pressure Behavior 

1.01 

- 
40 min - _ _  

- - d m -  4 min - bottom potential 

- 4,000 min - bottom potential 
.....A ..... 40 min - bottom potential 

- - - 400,000 min - bottom potential 

0.93 1 
I I I I I I l l  I I I I I I I I  I I I I I I l l  I I I I I I l l  I I I1111 

lo-' 1 10 102 103 104 
Dimensionless radial distance, r/rw 

141 

Figure 7.6: Dimensionless radial head profile during drawdown period. The sandface 
position corresponds to rg = 1. 
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level in the wellbore and the free surface level at a dimensionless radius of 1. 

Figure 7.6 gives important information about transient gravity drive flow into a 
well. The formation of the desaturating cone at different times can be seen. In the 

profiles in Fig. 7.6 corresponding to 40 and 4,000 minutes of pumping, the bottom 
head potential distribution presented the same values in this example as well as the 

liquid level in the wellbore, and the only apparent difference was the free surface 
position. After the stabilization of the seepage face length, the profile at 400,000 
minutes shows the free surface head becoming uniformly closer to the bottom potential 

head close to the wellbore. This is when the vertical flow, given by the difference 
between the heads at the same radial location become stabilized. Based on the 
information obtained from Fig. 7.4 about the flow rate distribution along the sandface 

and in an iso-potential mapping given in Fig. 7.7, we infer that there is a region 
immediatly below the free surface where the potential gradients are steep near the 

wellbore. In Fig. 7.7, a representation of streamlines normal to the iso-potential 
curves was drawn by hand. 

7.1.2 Buildup 

Contrary to the conclusion found in the Groundwater literature that buildup 

behavior is similar to production behavior, the SLM has shown that the pressure 

buildup process is completely different from drawdown in the case of a single well 
located in the center of an infinitely large reservoir. To analyze the buildup period, 
we will use the same set of data as in the drawdown run. The results are shown in 

Figs. 7.8 to 7.12. 

A log-log graph of buildup pressure drop vs time in Fig. 7.8 may be compared 

with Fig. 7.1 for an analogy between the flow regimes with the flow period. In this 

figure, the pressure derivative was graphed versus time, as well as the pressure 
difference between the buildup and the flowing pressure at shutin time. In neither 
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Figure 7.7: Iso-potential map and representation of a streamline at a production time 
of IO6 minutes. 

curve do we identify a pure unit slope wellbore storage effect. At early time, the 
wellbore buildup pressure seems to respond directly to the formation production, and 
since there are no confining and no compressing system involved, there is no apparent 
wellbore storage effect domination. The liquid level rises in the well responding 

directly to the formation flow capacity. There is no unit-slope evidenced in log-log 

graph in Fig. 7.8. The upward movement continues until both the liquid level in 
the well and in the sandface equilibrate. As the liquid level in the wellbore reaches 
the free surface level at the sandface, a different behavior in the log-log graph is 

evidenced by a discontinuity in the derivative curve. In the intermediate period in 

the pressure vs. time log-log graph in Fig 7.8 and also in the semilog graph of Fig. 7.9, 
an attenuated buildup behavior occurs for about four logarithmic cycles of time. The 
pressure derivative curve increases in this period, apparently with a constant slope, 

disregarding imprecisions. The waving observed in the pressure derivative curve in 
Fig. 7.8 may be due to numerical effects in the calculations. 
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Figure 7.10: Wellbore buildup pressure - Horner plot 
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Figure 7.11: Seepage height vs. cumulative time for buildup period 
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Figure 7.12: Dimensionless radial head profiles during buildup period. The sandface 
position corresponds to r D  = 1. 
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At late times, the buildup behavior becomes asymptotic to the confined flow 

solutions of both Theis (1935) and Ramey et  al. (1989). But a slope similar to that 

of analytical approaches is only feasable at extremely long time. 

A semilog Homer  (1951) graph of the same data in Fig. 7.10 did not add further 
insight in the buildup pressure analysis. A conclusion, however, is that one could be 
mislead by trying to extrapolate pressures or to obtain a permeability slope from the 
buildup data. The simulator results do not indicate pseudo-radial behavior until very 

long times. 

Another investigation of the pressure buildup behavior was done by observing the 
seepage face length vs. time semilog graph in Fig. 7.11. Comparing Figs. 7.11 with 

the seepage face in Fig. 7.5 it is clearly evident that drawdown and buildup behaviors 

are completely different. As can be seen, the seepage face height drops to essentially 

zero within a few minutes after shut in. This appears to be an original and unique 

finding of this study. Actually the free surface height at the sandface appears to be 
negative 0.2 ft lower than the liquid level in the wellbore during most of the buildup. 
Similar behavior was found for other buildup cases. 

A better understanding of the physical phenomenon of the pressure buildup mech- 

anism in the gravity drainage well is obtained by inspection of the potential at the 

bottom of the formation and the free surface head distributions along the radial 
distance at several times in Fig. 7.12. The free surface profile indicates that the 

re-saturation of the depressed cone is done uniformly. A flat liquid surface around 

the wellbore is progressively grown upwards, while the free surface at long distances 
remains almost stable. The radial extension of the fl;%t free surface is increased with 
time as the liquid is replenished, and the liquid level rises. It appears that the de- 

pression cone fills like a tank of incompressible liqui'd. At the same time, the head 

potential in the wellbore is shown to be slighly higher than the free surface head 
potential at the sandface. This difference may be related to a viscous resistance of 
flow in the vertical direction. This negative seepage face is gradually reduced as the 
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vertical velocity of the free surface is reduced at long times, becoming negligible. The 
results shown in Fig. 7.12 also brought some explanaiion for the excessive time step 
cuts resulting in very long CPU times to simulate the buildup period. A possible 

reason may be found in steep potential gradient development far from the wellbore, 

where the discretization is much less refined than clolse to the well. 

As a conclusion, the approximate methods employed to analyze the drawdown 
period in a gravity drive well problem appear useless for buildup analysis. This ob- 
servation contradicts Neuman (1975-a). According tlo Neuman, no hysteresis would 
be expected between drawdown and recovery processes, and the same analytical equa- 
tions and interpretation methods should apply to both periods. Neuman based this 
assertion on the idea that no flow from the unsaturated region was considered in his 
method, and the unconfined aquifer was treated as a compressible system. However, 

as pointed out by Ramey (personal communication - 1989) and Ramey e t  al. (1989), 
the semilog plots in the Neuman paper show different times for the beginning of the 
apparent straight line behavior of drawdown and recovery periods from well test data. 
Also, Ramey e t  al. compared drawdown and buildup field data and concluded that 

there were “different physical mechanisms between drawdown and buildup”. How- 

ever, Ramey e t  al. (1989) did believe they identified a ;semilog straight line immediatly 
after wellbore storage during buildup. It is significant that a semilog straight line was 

clearly evident in SLM buildup runs. It appears that no thorough inspection of 
free surface recovery has been presented prior to this study. 
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7.2 Permeability 

The effects of isotropic permeabilities in the pressure response from SLMare pre- 
sented in two sets of drawdown curves for different formation permeabilities, Figs. 7.13 
and 7.14. The permeability, as well as the flow rate, is a major factor driving the 

potential distribution in the formation because of t8he streamline shapes, and the 
consequent dynamic vertical pressure gradient development. 

We define two sets of permeability range concerning the input data in Table 7.1. 
A low permeability range varying from 30 mD to 120 mD, and a high permeability 
range varying from 120 mD to 480 mD. In the low permeability range, Fig. 7.13 shows 

the same classical gravity drive curves, with the same late time trend, following the 
R a m e y  e t  al. (1989) slope. A shift in the drawdown potentials is observed for low 
permeability results. On the other hand, high permeability formation drawdown 
curves tend to approximate to the p-squared solution. Numerical model errors may 

explain some deviations. Another possible justification for the above observations 

is the accentuated slopes of the streamlines in low permeability formations. Bented 
streamlines cause enlongations of the liquid path into the wellbore introducing an 
equivalent viscous pressure drop. This influence of the vertical flow near the well was 

verified during the development of the numerical model which in early versions did 
not permit a correction in the stream layer slopes' resulting in potential drawdowns 
close to the R a m e y  et al. (1989) solution. Sandbox experiments also gave support 
to this analysis. In the Hakl (1955) experiments, tlhe time required for a particle 

located on a streamline to reach the inner boundary was observed to increase when 

approaching the free surface level (see Fig. 2.2 in the Literature Review Ch. 2). In 
addition, the runs of the simulator for the case of a hue  skin effect described in the 
Section 7.4 shows that the long time drawdown potential solutions are the same for 
the SLM and the R a m e y  et  ak. approaches. A possible explanation for this match 

'The distances between blocks nodes were the horizontal projections and not the true distances 
corrected by the slopes. 
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Figure 7.13: Wellbore pressure drawdown of intermediate to low permeability reser- 
voirs under gravity drainage 

is the reduction in the slopes of the streamlines as a consequence of flow restriction 

near the wellbore, under a skin effect. 

7.3 The Seepage Surface 

In the process of gravity drainage through a porous medium, it is generally 

recognized that a thin curtain of liquid falls along the inner production face, whatever 
the geometry of the flow. This surface, called the seepage face, reflects the difference 
between the maximum potential inside and outside the porous medium, and, in the 
case of water or oil wells, the seepage face is not easily measurable in the field. 
The analytical methods used so far have neglected the existence of the seepage face 

phenomenon. This is a major reason that the analytical models do not reproduce the 
well pressure (or head) behavior accurately. 
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Figure 7.14: Wellbore pressure drawdown of intermediate to high permeability reser- 
voirs under gravity drainage 

The SLM simulator used the same classical inner boundary condition as in most 
formulations in the Groundwater literature. The SLM'results consistently reproduced 

the seepage phenomenon with a clear visualization of the physics of the problem. No 

surface tension effect was necessary to cause the existence of the seepage face, which 

can be explained entirely by viscous flow theory, and verified by the numerical model. 

The seepage height must be related to the formation permeability at the wellbore, 
the pumping rate and the original liquid height in the formation, because the seepage 
height represents a difference between the maximum and the minimum potential at 

the inner boundary. Skin effect should also be a contributing factor to the seepage face 

development. Figures 7.15 and 7.16 illustrate how the seepage face height changes 
with permeability, and Figs. 7.5 and 7.11 illustrate tlhe seepage face behavior during 

drawdown and buildup tests, already discussed in Section 7.1. The observed trend 

in Figs. 7.15 and 7.16 for different sets of permeability is to reduce the seepage face 
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Figure 7.15: Semilog plot of the seepage height: low permeability range 
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Figure 7.16: Semilog plot of the seepage height: high permeability range 
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height as the permeability increases. 

The existence of the seepage face is a consequen-ce of the free surface position, 
which is a function of the liquid velocity. When two streamlines converge while 
moving toward the sink (well), the resulting streamline velocity increases to preserve 
a material balance. Since there is enough voided pore space above the free surface, 

a fraction of that dynamic energy may be used by increasing the liquid column. 

Figure 7.6 shows an almost flat free surface profile in a log radial scale in the vicinity 
of the well after a long drawdown period. 

This natural phenomenon may be described by the following implicit equation, 
Eq. D.l in App. D, representing the free surface height at a location r from the well 
center, according to Wycko$ e t  al. (1932): 

(Eq. D.l) 

The relationship between the free surface position and the head potential is verified 
in App. D. 

There is little general information on the seepage face height for a free surface 
gravity drainage well. One conclusion in the Groundwater literature is that the 
seepage face height is about half the drawdown for cases where the drawdown is less 
than 10 percent of the initial head. Some of the figures presented in this chapter show 

that the seepage face height increased during the drawdown period, then declined and 
became reasonably constant near the end of the dra,wdown period. Comparison of 

the drawdown head and the seepage face height showis that the seepage face height is 
rarely half the drawdown. No obvious relationship fo:r seepage face height was found 
in this study. 
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Figure 7.17: Pressure drawdown vs. time for different skin parameters. 

7.4 Skin Effect 

To complement the preceeding analysis of the influence of permeability on the 
well pressure response, the effects of a damaged annular region are now considered. 

Figure 7.17 contains a set of time-drawdown curves for skin parameters of 0, 4 
and 8. The same basic reservoir properties in Table 7.1 were used in this analysis. 

The analytical solutions by Theis (1935) and Ramey e t  al. (1989) were evaluated 
by numerical solutions using FLIGRAM and PDE programs which include wellbore 
storage effects. 

A thin region of reduced permeability around the wellbore keeps the liquid level 

high in the sandface vicinity, and the free surface loscation and the potential distri- 

bution along the reservoir become different. A change in the seepage face is another 
consequence, because the seepage face length increases as skin increases. Figure 7.18 
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Figure 7.18: Radial head potential profile of a dama,ged well after a flowing time of 
400,000 minutes. The sandface position corresponds to rg = 1. 
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presents a radial profile of the potential head around a damaged well, compared with 

a non-damaged well. An increase in skin effect does not appear to affect the bottom 
potential. The free surface is higher around the wellbore in a damaged formation 

than in a non-damaged formation. However, at long distances from the wellbore, this 
situation is inversed, since the material balance is preserved. In the graph of Fig. 7.18 
it is not possible to see a small difference between the free surface positions due to the 
scale. From these results, we infer that the presence of the damaged region reduces 
the slope of the stream-lines behind the damaged annulus, the vertical head gradients 
are reduced, and the flow becomes proportional to the liquid height, as idealized by 

Dupuit (1863). The time-drawdown curve of Fig. 7.17 also supports this explanation. 

7.5 Anisotropy 

The free surface gravity drainage problem depends greatly on vertical perme- 
ability. A set of different permeability factors fie (fie = k v / k h )  ranging from 1 to 120 
was chosen to analyze the effects of anisotropy on plroducing well pressure. Results 
of SLM runs were graphed together in Fig. 7.19 to make qualitative comparisons 
with isotropic reservoirs. From the results, we observe that high degree of forma- 
tion anisotropy causes a strong influence on the wellb'ore potential, since vertical flow 

gradients near the well are steeper than in other regions. 

In Fig. 7.19, the influence of vertical permeability is shown for several examples. 
In a case where kh of 120 mD is a fairly high permeability for a flow rate of 100 BPD, 
the streamlines do not bend shajply, even near the well, as inferred from the profile in 

Fig. 7.18. However, when the vertical permeability dlecreases to 1 mD, the wellbore 
liquid level drops rapidly to zero at late times. 

The effects of anisotropy are most important during the desaturating period. On 

the other hand, there is an observed trend of late time potentials to approximate 
the isotropic solution for the horizontal permeability. This observation may be an 
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Figure 7.19: Results from SLM for a 120 mD horizontal permeability and different 
vertical permeabilities 

important key for future study of a method to obtain the vertical permeability. 

7.6 Production Flow Rate 

Figure 7.20 presents a pressure drawdown graph for four different production flow 

rates ranging from 50 BPD to 400 BPD. The non-linearity of the potential near the 

wellbore and the flow rate variation is evident. For a flow rate variation from 50 to 400 

BPD (&fold increase) produced an increase from 1.94 to 20.42 psi (10.5-fold increase) 

in the drawdown during the flat desaturating potential period. A possible reason 
for the disproportional drawdown is that the high flow rate causes the uppermost 

streamlines to reach the inner boundary late, causing an additional potential drop. 

Figure 7.21 is a graph of the SLMresults for the 400 BPD flow rate case compared 
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Figure 7.20: SLM results for different production flow rates 

with the Ramey et al. (1989) approach. The late time pseudo-confined behavior 
shows the same slope for both solutions. The absolute values of the drawdonw at 

long times are different in the p-squared and the SLMnumerical approaches. 

A more interesting result is presented in Fig. 7.22 where two different runs for a 
constant q/k ratio of 0.6 are compared. The theory ex:plains the shift in time observed 
in that figure. From the Ramey et al. (1989) solution,, the following equation (Eq. 11 
in Ramey et al. paper) applies at late times: 

We observe in Eq. 7.6.1 that the argument in the logarithmic term is only a 

function of the permeability k and not of the production flow rate. As a conse- 
quence, a change in permeability should produce a shift in the time proportional to 
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Figure 7.21: SLMresult compared with R a m e y  et  al. (1989) solution for a high flow 
rate case 

the permeability-m. In the runs shown in Fig. 7.22, m is constant for both cases, 

according to the following expression also from Ramey et  al. paper: 

m = 325.2 - = 234.9 psi2/cycle. QBCl 
W d P )  

As a conclusion, both permeability and production flow rate produce the same 

non-linear effects in the problem. We learn from this result that for a same q / k  ratio, 
the potential drawdown will present similar behavior, displaced in time by a constant 
logarithmic fact or. 
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Figure 7.22: Comparison between SLMruns of two tests in formations with the same 
q l k  ratio 

7.7 Original Liquid Height and Transmissivity 

The influence of original height of the liquid column on the wellbore potential 

drawdown is verified in the following. Five different original heights were selected to 
run the examples in Fig. 7.23. Using the same set of basic data in Table 7.1, values 
of the liquid original height started from 63 ft, and were increased to 252 ft. The 
graph in Fig. 7.23 shows that the linearity does not exist in the potential drawdown 
behavior. The run for H, = 63ft dropped the liquid level in the well abruptly during 

the wellbore storage period, reaching the bottom. Ho.wever, increasing H, by a factor 

of 2 the potential drop during the desaturating period was only approximately 6 psi. 

Another verification was done comparing two runs with the same transmissivity 

k H,/p but different permeabilities and original liquid heights. A 120 mD reservoir 
with an original liquid height of 126 ft and an 80 mD reservoir with an original liquid 
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Figure 7.23: SLM results for different original static liquid level 

height of 189 ft were selected for this analysis. The transmissivity in both cases was 
15,120 mD-ft/cp. The results presented in Fig. 7.24: indicated that there was not a 

superposition of the curves during the desaturating period. However, at late times, 
the drawdown potential drops produced very close results with consistent slopes m, as 
compared with the Ramey et al, (1989) solution. The desaturating period presented 
a smaller potential in the wellbore (higher potential drop) in the case of smaller 
permeability. 

An expected shift between the late time solutions was observed due to different 

initial pressures, in the p-squared plot of the same data, as seen in Fig. 7.25. In this 

example, the effect of retarded development of velocity gradients in the formation at 

the beginning of pumping is more pronounced in the lower permeability case. During 

the desaturating period characterized by the flat shape in the time-drawdown graph, 
the velocity gradients become larger and the drawdown potential in the well gradually 
reduces before the pseudo-confined behavior. 
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Figure 7.24: Potential drawdown results for the same transmissivity and different 
permeabilities 
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Figure 7.25: Potential squared drawdown results for the same transmissivity and 
different permeabilities 
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7.8 Considerations About Well Test Project 

From the preceeding analysis, a consistent understanding of the physics of the 

problem allows us to reach further conclusions about the use of the Stream Layer 
Model in planning a gravity drainage well test. We have seen the effects of the main 

variables that determine the wellbore potential drop during drawdown and buildup 
periods. We have also seen that for different combinations of those variables, the 
producing time required to start pseudo-confined behavior was longer than one or 
two months of producing time. In addition, a full log-cycle in the time drawdown 
graph necessary to define the m-permeability from the slope of a straight line in a 

p-squared plot would require one or two years of production at a constant pumping 

rate in the given examples. The preceeding investigation did not include a full range 

of possible variations of the parameters, but parameter ranges were within practical 

field value ranges. 

To briefly extend the investigations, the SLM was run to simulate a short well 

test of 24 hours of pumping followed by a buildup period. The buildup period was 
set long enough for the liquid level in the wellbore to equalize the liquid level in the 
sandface, shrinking the seepage face to a minimum, and starting the re-saturating 

period. Considering that in a gravity drainage well the major unknowns are the 

permeability, the permeability ratio and the skin parameters, sets of different values 

of permeability and skin were tested. We did not consider the effect of anisotropy in 
this study. In addition, other reservoir properties such as porosity, residual saturation 
in the desaturating region, wellbore radius, original liquid height at static condition, 
liquid viscosity and liquid density were known. The basic data in Table 7.1.1 were 
used. 

Figures 7.26 to 7.28 show several sets of tests with skin effect parameters of 0, 4 
and 8. Permeability ranged from 30 mD to 150 mD. A consolidation of the results is 
presented in Fig. 7.29 where only a few limiting permeability values were included. 
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The drawdown potential drop and the buildup potential drop vs time plots were 

placed side-by-side to characterize the differences between drawdown and buildup 
behaviors. 

Important conclusions may be reached from the results shown in Figs. 7.26 to 7.29. 
Some discoveries were identified in previous sections of this chapter such as the de- 

gree of non-linearity of the formation permeability and the differences between the 
drawdown and buildup process. What is remarkable in the results presented in this 

section is the information about the free surface position at the sandface during the 
buildup period. The inflexion point in the buildup curve where the liquid level in the 
well reaches the same position as the free surface at  the sandface varies only a few 

feet for formation permeabilities ranging from 30 mD to 150 mD. For usual field test 

accuracy, this information is not useful. The time in which the liquid levels equalize, 

however, increases as the permeability decreases with a large change as observed in 
Fig. 7.30. 

In Fig. 7.31 the potential drops during the drawdown period are plotted for two 
different pumping times. The times when the re-saturating period starts in both cases 

are very close, different only by 4 minutes for production times of 1 day and 10 days. 

Figure 7.32 gives important information about the free surface at the sandface 
while the liquid level travels in the wellbore during the 24-hour drawdown and buildup 
periods. This example was run for a 30 mD formation permeability and no skin effect. 
The free surface during the early buildup period remains immobile until the liquid 

level in the wellbore reaches the same position. Then, the free surface at the sandface 
start gently moving upwards during the re-saturating period. 

Based on the results of the series of runs described in this subsection, the graph 

of Fig. 7.33 is presented. This is an example of a correlation obtained from the SLM 
for a typical set of data as in Table 7.1.1, and for the short well tests. 
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Figure 7.26: Combined 24-hour flowing and buildup test for a set of different perme- 
abilities. Skin = 0. 
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Figure 7.27: Combined 24-hour flowing and buildup test for a set of different perme- 
abilities. Skin = 4. 
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Figure 7.28: Combined 24-hour flowing and buildup test for a set of different perme- 
abilities. Skin = 8. 
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Figure 7.29: Combined 24-hour flowing and buildup test for a set of permeabilities 
and skin parameters. 
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Figure 7.30: Time in which the liquid level in the well reaches the free surface level 
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Figure 7.31: Buildup pressure drop behaviors for different production times 
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Figure 7.33: Potential in the well after a 24-hour production period. 
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In the next chapter, a summary of the most important conclusions from the results 
of the SLMare presented, as well as some recommendations for future work. 



Chapter 8 

Conclusions and 

Recommendations 

8.1 Conclusions 

0 The Stream Layer Model is able to reproduce free surface gravity flow well 

pressure behavior and the formation response with accuracy, depending on the 
finite-difference discretization in time and space. All three recognized transient 
flow periods in a constant flow rate test, namely wellbore storage, growth of the 

desaturating cone, and the pseudo-radial flow periods, are reproduced by the 
model. 

0 Steady-state flow was verified with the classical sandbox model experiments of 

Wycko$ e t  ul. (1932), and Hull (1955). The seepage face phenomenon was 

reproduced with acceptable accuracy. Also, verification runs compared inter- 
ference test results for observation wells located far from the wellbore with the 
Neurnan (1972) analytical approach and Cooley (1971) numerical solution. 

0 Capillary fringe effects, though negligible on field scales, were important in the 
laboratory experiment verifications of SLM. 

0 The delayed yield period of a flat pressure-time response following wellbore 
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storage was evident in all computer runs, with or without a capillary fringe. It 
is clear that a capillary fringe is not necessary to generate a delayed yield effect. 
The major cause of deleayed yield is vertical, viscous drainage. Analytical 
solutions without a vertical flow component do not exhibit delayed yield. 

0 The strong non-linearities in the mathematical problem require a careful di- 

mensioning of the grid parameters and time step sizes to obtain accuracy from 
the Stream Layer Model. Also, concerning the time interpolation parameter 8, 
the Crank-Nicolson method (8 = 0.5) should be avoided because of number of 

iterations required for convergence. 

0 During the transient drawdown period, the seepage face length reaches a max- 
imum value at the end of wellbore storage which frequently masked the con- 
fined system-like behavior reported in the Groundwater literature in the initial 

phase of production. After that, the liquid level in the formation adjacent to 

the wellbore starts to drop, as the potential gradients begin to increase. The 

pseudo-confined behavior is characterized by near stabilization of the potential 
gradients and free surface movement. 

0 The petroleum formation and liquid properties and well parameters tested by 
the S t ream Layer  Model  caused the transient pressure drawdown behavior to 
persist longer than two or three log-cycles during the desaturating period. The 
pseudo-confined flow behavior generally required weeks or months of produc- 

tion to be graphically represented in a logarithimic cycle. As a consequence, to 
use a logarithmic approximation such as in the R a m e y  e t  al. (1989) p-square 

approach, a long term drawdown test should be planned to assure correct ap- 

plication of the method. 

0 As an approximate solution at late time, the method of R a m e y  et  al. (1989) 
presented slopes closer to the Stream Layer Model results than the The i s  (1932) 
line source solution. Low permeability reservoirs tend to present upward shifts 

from the p-squared approach at late times, keeping the same slope of the time- 
drawdown curve as in the R a m e y  et  al. solution. 
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0 Computer runs for pressure buildup also showed delayed yield. However the 

seepage face disappeared within a few minutes, and it appeared the free surface 
desaturated region refilled by radial flow, unlike the vertical drainage during 
production. 

0 Contrary to the drawdown results, the buildup pressures in the producing well 

generally require a short time to reach the resaturating period (equivalent to the 
desaturating period in the drawdown). Late time buildup pressures, however, 
could not be approximated by radial flow interpretation methods. The poten- 
tial profiles in the radial direction taken at incxeasing buildup times show the 
distribution of the potential at the base with diflerent slopes each time, tending 

to continuously reduce the radial potential gradient. The free surface profile 

shows uniform height from the wellbore into the reservoir during the buildup. 
This flat potential profile becomes extended with the shut-in time. The present 
study has shown that the buildup potential behavior in the producing well is 
not the reverse process of drawdown. 

8.2 Recommendat ions 

0 The Stream Layer Model can be used for experimentation to aid developing 

a parametric correlation of dimensionless time and pressure drawdown in well 

test analysis, similar to the Boulton (1963) and Neuman (1972) correlations 
developed for observation wells. The use of the simulator is recommended for 

planning well tests for gravity drainage wells. 

0 The SLM simulator can be used to solve the semi-confined reservoir well prob- 

lem. This simulator could be a useful tool to investigate the behavior of low 
pressure or low permeability pumping wells with dynamic liquid level reaching 
positions below the top of the formation and developing a free moving surface 
in the formation near the well. The computer program requires small modifica- 

tions for this application. 
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0 Wellbore pressure buildup analysis is a challenging matter remaining to be in- 

vestigated, and an interpretation method should be studied using the simulator 
response for a physical understanding of the phenomenon. It is likely that 
computer aided interpretation with regression will be necessary. 

0 The observed anisotropic effects in the wellbore potential drawdown behavior 
by the Stream Layer Model may be used to produce an evaluation method to 

find vertical permeability of anisotropic reservoirs. 



Nomenclature 

area 
areal dimensionless factor 
cross-sectional area of the vertical flow 
discretized equation coefficients 
formation volume factor of the wellbore liquid 
discretized equation coefficient 
total compressibility 
liquid compressibility 
discretized equation coefficient 
Jacobian matrix coefficient 
Jacobian matrix coefficient 
Jacobian matrix coefficient 
Jacobian matrix coefficient 
Jacobian matrix coefficient 
Jacobian matrix coefficient 
Jacobian matrix coefficient 
discretized equation coefficient 
exponential integral 
discretized equation coefficients 
discretized equation coefficients 
ratio of logarithms of radial distances 
ratio of axial permeabilities 
acceleration constant of the gravity force 
dimensional conversion factor 
wellbore discretized equation coefficients 
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vertical position of the free surface 
original thickness at rest 
vertical position of the liquid at the sandface 
vertical position of the liquid at the wellbore 
vertical location of the liquid level in the well 
formation permeability 
permeability in the flow direction 
number of grid blocks in the radial direction 
number of grid blocks in the vertical direction 
pressure 
flow rate 
flow rate in the stream layer direction 
flow rate into a grid block element 
flow rate out of a grid block element 
radial distance 
wellbore radius 
radial distance of the gravity center of a 'block 
skin effect parameter 
gas saturation above the free surface 
liquid saturation 
water saturation 
specific yield 
transmissivity or transmissibility 
time 
volume of produced liquid at standard condition 
volume of produced liquid at wellbore condition 
dimensionless potential 
fraction of the inner block j1 thickness above Hw 
vertical coordinate 
vertical coordinate at the sandface 

SUBSCRIPT 

D 
h 

nw 

= dimensionless 
= horizontal direction 
= horizontal position of a discretized block; 

= vertical position of a discretized block 
= non-wet or seepage region of sandface 
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0 = initial condition 
t = total 
V = vertical direction 
W = wellbore 
wet = wet or drowned region of the sandface 

SUPERSCRIPT 

k = old time step 
U = level of iteration 

GREEK 

thickness interpolation parameter 
Dirac delta 

parameter: delta,, = 1 if k = 1, otherwise, deltak = 0 
parameter: Sil = 1 if j ,  = 1; otherwise, Sil = 0 
finite difference operator 
free surface block thickness at its gravity center 
thickness of a free surface block at the sandface 

Free surface block boundary thickness 

thickness of a saturated block at its gravity center 

thickness of a saturated block at the sandface 
saturated region block boundary thickness 
small residual number 
potential 
porosity 
dimensionless liquid gradient 

liquid viscosity 

time relaxation parameter 



Nomenclature 

P 
9 

= density of the liquid 
= residual equations 
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Appendix A 

Inner Boundary Condition 

A.l  Partial Derivatives of the Sandface Potential 

Potentials at the sandface are a function of the vertical coordinate and of the 

liquid level in the wellbore. The criteria used to define the inner boundary conditions 
are shown next in dimensionless form: 

A finite difference form of the equation and grid definitions of the reservoir requires 
that the inner boundary be reordered into different regions, according to the position 

of the liquid level in the wellbore at each time-step. A vertical grid parameter j ,  was 

defined as the grid position at the sandface adjacent to the wellbore liquid level. The 
potentials were calculated: 
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(A.1.2) 
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(A.1.3) 

(A.1.4) 

where: 

(A.1.6) 

(A.1.7) 

where: 

(A.1.8) 

Partial differentials with respect to Wl,k were calculated from the above defini- 
tions. Initially, IC is set different from 1: 

(A.1.9) 



A. l  Partial Derivatives of the Sandface Potential 

(b) j < j1  

(c) j = 1 and 1 < j, 

(d) j = j1 and jl # 1 

aw,. 
awl,, 
3- - 0  

aw,. 
awl., 
3 -  - 0  

( 4  j = j, = 1 
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(A.l.10) 

(A.l . l l )  

(A.1.12) 

(A.1.13) 

Partial differentiations with respect to W1,1 are particular cases in which there is 
a dependence of several paramaters on the potential: 

aw,. 
awl,, 
3- - 0  

(c) j = 1 and 1 < jl 
aw, 70 a, 
awl ,1 2 71 
3- - 

(A.1.14) 

(A.1.15) 

(A.1.16) 

(A.1.17) 
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(e) j = j ,  = 1 

(A.1.18) 

In the last case, AhD, is also directly dependent on W1,z. Thus, another condition 
must be considered when j = 1: 

(b) j = 1 and jl = 1 

(A.l.19) 

I (A.1.20) 

A.2 Liquid level in the Wellbore from Material 
Balance Equation 

From the material balance discretized equation and the substitution of the sand- 
face potentials, it is possible to determine the liquid level in the wellbore within a 

time-step. The possibility of guessing the position jl ;ind a global iterative procedure 

enable one to estimate the value of H,, . 

There are two ways to determine the liquid level in the well, starting from the 

material balance equation represented by Eq.3.2.5 in the Ch. 3, presented below. 
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A. 2.1 Quadratic Equation 

A quadratic equation is obtained from the discretization of Eq. 3.2.5 starting 
from the introduction of a time interpolation parameter as follows: 

(A.2.1.2) 

A quadratic equation can be obtained isolating HwD . The following parameter is 
introduced in order to handle all possible positions of the liquid level in the wellbore 
with a single equation: 

6 = 1  as j l  = 1 
as j1 # 1 

Next, a proportionality factor xj is introduced to average the potential at  the 
sandface position adjacent to the liquid surface in the wellbore: 

(A.2.1.3) 

Using the parameters 6 and xi, the integrals can be symplified by calculating av- 

erage permeabilities and factoring the average permeability out of the the integrands: 
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(A.2.1.4) 

(A.2.1.5) 

(A.2.1.6) 

(A.2.1.7) 

The superscript k means the begining of the time-step, and the subscripts nw and 
wet represent the seepage face (non-wet) and the liquid submerged (wet) wellbore 
regions, respectively. A first decomposition of the material balance equation at the 

wellbore gives the following: 

(A.2.1.8) 
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Rearranging the terms in the above expression, a quadratic equation is obtained in 
the format: 

AH:, + BH,, + C = O (A.2.1.9) 

in which the coefficients are easily identified. This equation gives two possible solu- 

tions. Negative values are always neglected, and if there are two positive roots, some 

logical criteria of analysis are introduced in the computer program. 

(A.2.1.10) 

A.2.2 Iterative Solution for the Wellbore Liquid Level 

An optional way to solve the wellbore liquid level equation is to use an iterative 

process as the Newton-Raphson approach. This procedure gives only one of two 

roots for HwD from the quadratic equation, and the initial guess to start the iterative 
process is of fundamental importance for the usefulness of the result. The procedure 
starts from the discretized material balance equation below: 
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1 1 )  + 
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(A.2.2.1) 

Call the function: 

(A.2.2.2) 

and its derivative: 

(A.2.2.3) 

where S is defined by the grid position of the liquid level in the wellbore j1: 
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S = l  =$ j , = 1  

6 = 0  * j , > 1  

and: 
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(A.2.2.4) 

(A.2.2.5) 

(A.2.2.6) 

From the definition of the inner boundary potentials: 

W W j ]  = Y o  2 HWD + 7 
- 

('WDJ1 - I ) ]  (A.2.2.7) 
and : 

(A.2.2.8) 

Thus: 

From the Newton-Raphson iteration aproach: 

(A.2.2.10) 
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where v is the iterative level. Convergence is achieved when the difference below 
becomes small, compared to a residue e: 

HZ:' - HW", 5 e (A.2.2.11) 

A.3 Material Balance Equation Partial Deriva- 
t ives 

The discretized wellbore material balance equation in App. A.2 may be dif- 

ferentiated with respect to each inner block potential Wl,6, to evaluate the partial 

differentials of the sandface potentials, which were written as functions of H,, and 

z,, in App. A.l. Thus aH,,/aWl,, may be substituted into the equations presented 
in App. A. l .  A step-by-step development of the Jacobian equations is presented next. 

The discretized material balance equation in App. A.2 is: 

(A.3.1) 

Differentiating Eq. A.3.1 with respect to Wl,fi: 
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Also: 

1 + Q w  

2 
CY1 = 

and : 
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(A.3.2) 

(A.3.3) 

(A.3.4) 

From the derivatives in App. A.l :  

(A.3.5) 

The parameters&, and &jl are: 

s , = 1  + K = l  

s , = o  + K # l  

Equation A.3.5 can be written as a function of HwD as the only unknown by dif- 

ferenting Bw, and by using the relationships defined in App. A.l  for the potential 
differentiations: 
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where xjl is the fraction defined in App. A. l .  The general partial differentiation of 

HwD is: 

(A.3.8) 

where: 

(A.3.9) 

and: 

(A.3.10) 
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Next, differentiate the same expression with respect to W2.1: 

(A.3.11) 

Also: 

(A.3.13) 

(A.3.14) 

+ j = j l = l  (A.3.15) 

Substituting the partial differentials and considering optional positions for the liquid 
level in the wellbore by taking jl: 
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(A.3.16) 

After rearrangement: 

(A.3.17) 



Appendix B 

Groundwater and Petroleum 
Engineering Units 

Although dealing with similar properties of fluids and rocks and the same math- 
ematical description of the physical phenomena, the Hydrology and Petroleum Engi- 
neering literatures use different symbols. As an example, the Groundwater transmis- 

sivity does not have the same units as the transmissivity in Petroleum Engineering. 
A good reference to have in mind regarding symbols is App. A in Earlougher (1977). 

A short conversion set follows to help understanding and comparisons of units 
with those in the Groundwater references used in this dissertation. Most of the 
Petroleum Engineering parameters can be directly measured in laboratories or in situ. 

Conversely, the hydrologic terminology frequently uses lumped properties related to 

the diffusivity equation. Thus, terms like storage coefficient, specific yield, specific 
storage, transmissivity, coefficient of permeability, etc. are not familiar to many 
petroleum engineers. 

The following partial differential equation is used in Hydrology to represent the 
r-z flow of liquid (water) in a porous medium in a cylindrical model: 

202 
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coefficient of permeability in both r and z directions, LT-l 

head drawdown, L 

specific (elastic) storage, L-l 

time, T 

radial and vertical coordinates, L 

The same Eq. B.l in petroleum engineering symbols is: 

where: 

IC,, IC, - permeability in r and z directions, L2 

p - pressure, L-1MT-2 

p - viscosity, L-lMT-l 

$ - porosity, fraction 

c, - total system compressibility, LM-'T2 

t - time, T 

r ,  z - radial and vertical coordinates, L 
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Correspondence may be established by a dimensional analysis. Usual conversion of 

units into field units follows for a water saturated system ( p  = 1 cp): 

Coefficient of permeability and permeability: 

= - ( P i )  k 
P 

Field units: 

Specific storage and diffusivity: 

s s  = 4ct ( P i )  
Field units: 

Head drawdown and pressure drawdown: 

s = -  P o  - P  

p: 

Field units: 

There are other important variables. Storage coefficient, transmissivity and spe- 
cific yield are: 
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Storage coefficient, S (dimensionless): 

where h is the thickness of the formation in consistent units. In the unconfined 

flow theory, h is the liquid height, and the pressure p may replace h (pglg,).  Some 
theories of unconfined aquifers consider a constant S,, neglecting the unsaturated 

flow (Neuman (1972), Streltsova (1972), and others). In this case, h should be the 
original liquid level at rest. 

Transmissivity (L2T-*) 

T = K T h  

Field units: 

(B.lO) 

(B.ll) 

From t he  unconfined flow theory 

Specific yield, Sy (dimensionless): 
This variable was introduced in the free surface boundary equation (see Neuman, 

(1972), (1974), among others): 

(B.12) 

where: 
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n,, n, - component of unit normal in r and z directions 

( - free surface elevation from the aquifer bottom, L 

I - recharge source rate at the free surface, LT-l 

Equation B.12 may be related to the free surface boundary condition in the Chapter 3. 
Sy is related to the effective porosity: 

(B.13) 

where S,,,, is the residual water saturation in the unsaturated region. The term I may 
be considered a net flow liquid left behind by the water table moving boundary as an 

effect of capillarity. Generally, Sy has been considered constant and I takes care of 

the recharge, but in the Neuman (1972, 1974) studies the recharge I was neglected. 

Usual dimensionless parameters 

Dimensionless permeability: 

Dimensionless drawdown, constant producing flow rate - see Neuman (1972): 

(B.14) 

(B.15) 

Dimensionless time with respect to the specific storage S: 
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Dimensionless time with respect to the specific yield S,: 

@-parameter: 

c-parameter: 
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(B.16) 

(B.17) 

(B.18) 

(B.19) 



Appendix C 

Symplified Approaches 

The analytical approximations of Theis (1935) and Ramey e t  al. (1989) used 
to give late time approaches for the gravity well problem do not consider the vertical 
velocity component in the reservoir, as well as wellbore storage effects. A need to 

incorporate wellbore storage effects in those solutions required additional formulation, 

and two computer programs were developed. This improvement in the approaches 

were not intended to reproduce the unconfined flow behavior at early times, but 
only to reproduce a better transient flow behavior, mainly when skin effects were 
considered. In this appendix, a brief description of each program is presented. 

The Theis (1935) method has been used by hydrologists as a late time reference 

solution for the unconfined flow of liquid in a gravity drainage well. The derivation of 
the Theis solution did not consider either a skin effect nor a wellbore storage effect in 

the inner boundary condition. Theis used a partial differential equation developed for 
heat transfer to approximate the unconfined flow problem, but his solution is mainly 

applicable to confined compressible flow. To incorporate wellbore storage and skin 
effects, a computer program called PDE was developed. Details of this approach are 
described in App. C.l .  

Recently, Ramey e t  al. (1989) developed an approximate method in which the flow 
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was proportional to the column of liquid, and considered skin effects. The transient p 2  

solution of the gravity problem proposed by Ramey et ul. (1989) was an improvement 
to the Theis (1935) solution, because the variable height of the liquid column in 
the reservoir was considered in a partial differential equation. As a result, a non- 

linear Forchheimer-type equation in dimensionless form was obtained similar to the 

non-linear partial differential equation in the ideal gas problem studied by Jenkins 
and Aronofsky (1953). Jenkins and Aronofsky correlated their numerical solutions 

with the wun Ewerdingen and Hurst (1949) liquid solutions to conclude that the later 

could be reasonably applied to solve for the transient pressure at the wellbore, if 
an appropriate dimensionless pressure (in terms of p 2 )  were used. Using a late time 
logarithmic approximation, Ramey e t  al. included the wan Ewerdingen and Hurst skin 

effect, but not wellbore storage effects. To consider storage effects in the wellbore, 
a numerical model for ideal and real gas radial flow developed by Fligelman (1980) 
was adapted to the liquid gravity drainage well problem, since the non-linear partial 
differential equations for ideal gas flow and the Dupuit-Forchheimer approach are 
exactly the same when appropriate dimensionless parameters are used (see App C.2). 
This program was named FLIGRAM. 

C.1 Wellbore Effects in the Theis Solution 

Appropriate boundary conditions were applied to the diffusivity equation for 

wellbore storage and skin effects for an infinitely large reservoir. Some results were 
compared to the Theis (1935) line source solution. 

The basic diffusivity equation for radial flow in Darcy units is: 

d 2 p  1 a p  4 P C t  dP - + - -  = -- 
k dt ' dr2  r dr 

(C.l.1) 

Theis applied Eq. C . l . l  for a constant rate well to obtain the pressure response at any 
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radial distance r and time t ,  for both a confined and an unconfined aquifer. Wellbore 

effects were not considered. Based on the simplified assumption of a line-sink, the 
Theis approach had no valid response close to the wellbore, where the storage effects 

are important. Eventually, at late time, the pressure response approaches that of a 

confined reservoir, and the line source solution becomes accurate enough. In terms 

of Petroleum Engineering nomenclature, the Theis approach was expressed by: 

where: 

(C.l.2) 

(C.1.3) 

For a small argument, the integral function Ei(-x) may be approximated by: 

X X2 x3 &(-x) = - l m y d u  = [i.. - - + - - - 
l !  2 x 2! 3 x 3! 

00 

X 

(C.1.4) 

Wellbore storage and skin effects were added to the solution of the partial differential 

equation, Eq. C.l.l. The inner boundary condition was: 

and: 

(C.1.5) 

(C.1.6) 
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where C is the wellbore storage parameter. The initial condition was: 

211 

(C.l.7) 

As an infinite reservoir, the pressure approaches the initial value, as the distance from 
the wellbore center becomes large: 

(C.1.8) 

It was convenient to introduce dimensionless variables as defined below. Both DXCY 
and field units are given. 

Darcy units: Field units: 

r 
rg = - 

rW 
r 

rg = - 
rW 

(C.1.9) 

PD = ( p i  - (C.1.11) 141.2 q B p 

Substituting the dimensionless parameters into the diffusivity equation: 

Initial Condition: 

(C.1.12) 

((2.1.13) 
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Outer Boundary Condition: 

PD ( Y D , ~ D )  = o . 
TD+CO 
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(C.1.14) 

(C.1.15) 

Combined Wellbore and Sandface Conditions: 

The solution for the dimensionless pressure in the wellbore in Laplace space is: 

A computer program was written to calculate the wellbore pressures using Eq. C.1.17. 

Inversion from the Laplace space was done numerically using the Stehfest (1970) al- 

gorithm. Early and late time approximate analytical solutions of Eq. C.1.17 were 

also derived. An early time approximation ( z  -+ 00) inverted to real space after 
simplification of the Bessel functions produced: 

(C.1.18) 

A late time approximation was similar to that expressed by Eq. C.1.4, including the 
skin parameter: 

1 
2 

pwD = - [In (to) + 0.80907 + 2 S] . (C.1.19) 
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Figures C.l and C.2 show the results in both semi-log and log-log plots of the 

solutions from the computer program PDE and the line source solution. Also, the 

buildup behavior is shown in Fig. C.3. A perfect match between the solutions when 
the wellbore effects were no longer important verify the results from the program 

Theis 

10-3 10-2 10'' 1 10 lo2 103 104 
Time, min 

Figure C.l: PDE and analytical Theis (1935) solution. Semilog plot. 

C.2 Wellbore Effects in the p2 Solution 

Wellbore storage effects were considered in the inner boundary condition for a 
constant production rate well in an infinitely large reservoir. The wellbore storage 
coefficient was coupled with a partial differential equation (Eq. C.2.1 in Ramey e t  al., 
1989) for an approximate late time solution of a gravity drainage well. A resulting 
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Figure C.2: PDE and the analytical Theis (1935) solution. Log-log plot. 
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Figure C.3: PDE and analytical Theis (1935) solution. Buildup pressure semilog plot. 
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system of non-linear equations similar to the ideal gas problem numerically solved 

by Fligelman (1980) was adapted to a single phase liquid with a free surface. Trans- 
missivity was taken proportional to the liquid column in the reservoir, and vertical 
velocities were neglected. 

Ramey e t  al. (1989) re-introduced the p2 approach for the free surface gravity 
drainage, re-writing the Dupuit-Forchheirner partial diferential equation in terms of 

a variable height h(r , t )  converted into pressure. The partial differential equation 

presented a pressure-factor in the diffusivity term, obtained for an incompressible 

system. Equation 1.2 in the Introduction Ch. 1, presented below as Eq. C.2.1, shows 
the proposed equation in terms of pressure. The similarity with the ideal gas equation 
studied by Jenkins and Aronofsky (1953) is perfect. Notice the pressure-dependent 

diffusivity coefficient. 

d2p2  1 ap2 4 P  (p-’) ap” - 
dr 2 r dr k at * 

+ - -  = (C.2.1) 

The fundamental assumption to obtain Eq. C.2.1 was that at  given a time t and 
a radial position r the liquid pressure at the lower boundary was assumed to be 

proportional to the column of liquid. The assumption of incompressible flow requires 

that pressure is proportional to liquid height: 

p(r , t )  = h p -  . 9 
g c  

(C.2.2) 

Jenkins and Aronofsky correlated numerical solution of Eq. C.2.1 with the van 

Everdingen and Hurst (1949) solutions of the linear diffusivity problem. Rarney et al. 
adapted the Jenkins and Aronofsky correlations for a constant rate wellbore condition 

to write an approximate analytical solution, not valid at early times: 

2.303 q B p  
Pi 2 - Pw 2 -  - {log,, ( k t  ) + 0.80907 + 2s 

4n k P $  4 P  (PC’) r: 
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To consider wellbore storage effects, and to allow the Fligelrnan (1980) program 

to handle pressure buildup behavior as well as drawdown, a new simplified program 

was written and named FLIGRAM. The mathematical procedure is described next. 

First, a gravity drainage pseudo-pressure was defined: 

k 

P 
mp = - p 2  . (C.2.4) 

The inner and outer boundary conditions were the same as those described in App. C.l ,  
as well as the initial condition. The dimensionless parameters were: 

Darcy units: Field units: 

r 
rg = - 

rW 
r 

rg = - 
rW 

(C.2.5) 

kPi  t (0.0002637) k p; t 
4Pr ;  4P e t D  = - = (C.2.6) 

(C.2.8) 

282.41 q B p 9 

mpi 
s c  

qD = (C.2.10) 

Substituting the dimensionless parameters into the diffusivity equation (Eq. C.2.1) 
and into the boundary conditions: 
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Initial Condition: 

rno ( O , ~ D )  = o . 

Outer Boundarv Condition: 

Wellbore Material Balance: 
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(C.2.11) 

(C.2.12) 

(C.2.13) 

(C.2.14) 

where the subscript 1 stands for the damaged region around the wellbore. The skin 

effect was translated into an equivalent permeability using Huwlcins (1956) method 
(see Eq. 4.1). 

Results from the FLIGRAM program are presented next and verified with the 
late time Ramey e t  al. approach. Figures C.4 through C.6 are graphs of drawdown 

pressure vs. time for a typical set of data. Two skin values, 0 and 5 respectively, were 

used. At late times, when wellbore effects have no sensible influence on the pressure 
response, the numerical method matches the analytical approach. In a semilog graph 

in Fig. C.4, the late time behavior shows an approximate linear relationship between 
pressure drawdown and the logarithm of time. Fig. C.5 is a log-log graph where the 

wellbore storage effects can be clearly identified by the unit slope straight line at very 

early times. In the p-squared vs. time semilog graph in Fig. C.6, the slope of the 
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k = 120 m D  
H,, = 189 ft 
q = 100 BPD 

- FLIGRAM 

0 Ramey etal. 

Figure C.4: FLIGRAM and Ramey e t  al. approaches for the drawdown period, 
semilog plot. 
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Figure C.6: FLIGRAM and Ramey e t  al. approaches for the drawdown period, p- 
squared semilog graph. 

logarithmic behavior period calculated from Eq. 10 in the Ramey e t  al. (1989) paper, 
132.1 psi2/cycle, was matched. 

Using the given example for a test, we calculated the m-permeability using an 

approximate late time semilog straight line obtained in Fig. C.4, and compared with 

the input data of 240 mD. The semilog straight line slope was 0.89 psi/cycle, corre- 

sponding to a permeability of 217 mD: 

This rough solution is less than 10% lower than the p-squared solution, for the given 

example. 



Appendix D 

Verification of the Free Surface 
Boundary Condition Relationship 
with the Average Vertical Velocity 

An interesting way of representing a relationship between the free surface posi- 

tion and the vertical velocity can be found in the Wyclco$ e t  al. (1932) work. Using 
the symbology employed in the present study: 

where h(r)  is the free surface vertical position at a radial location r from the well 
center, @b(r) is the potential in the base of the reservoir at the same r ,  o,(r) is 
the average vertical velocity of the liquid, p is the liquid viscosity, k, is the vertical 

permeability, and pg/gc is the liquid pressure gradient. If we define v, as: 

the integration produces: 
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where fs refers to the free surface vertical position. Direct substitution of Eq. D.3 
vertical velocity w, into the Wycbof et  al. expression gives: 

which is the free surface boundary condition in the current study. 



Appendix E 

SLM Computer Program 

In this Appendix, the SLM computer program is described in detail in Sec- 

tion E.1, and the program code is presented in Section E.5. The computer program 
was written in double precision FORTRAN. An exception was the subroutine that 
calculates the liquid level in the wellbore which gives an appropriate accuracy us- 
ing extended precision on IBM machines. In that subroutine, when calculating the 

production flow rate for a constant-pressure inner boundary condition, a quadratic 
equation computes differences of squared large numbers and divisions which require 

a large number of significant digits in the operations. In Section E.3, an example of 

an input data file is given. Example of output file is given in Section ??. 

E.l Structure of the Program 

The simulator is composed of a main program, 30 subroutines and 5 functions. 

A flow chart is presented next to aid understanding of the program. Some controls, 
such as the start of a buildup period or the start of constant flow rate in the well, 

were omitted in the diagram. 
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S t a r t  

I 

1 
I I n p u t  data 1 

I n i t i a l  c a l c u l a t i o n s  and  
i n i t i a l i z a t i o n  o f  p a r a m e t e r s  

I 
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d a d o s  

main 
precal 
init 

~~ ~ ~~ 

P r i n t  data head s u m m a r y  
I 

f l w r t  
Y N e w  f l o w  r a t e  

c a l c u l a t i o n  

Se t  m a x i m u m  n u m b e r  
B 

TS c o n t r o l  p a r a m e t e r s  
o f  i t e r a t i o n s  and  o t h e r  

title 

main 

main 

I M = M +  1 I 
1 

> G e o m e t r i c  P a r a m e t e r s  
( s l o p e s ,  kv, kv, a, . . .  

main 

g e o m e t  

I n i t i a l i z e  i t e r a t i o n  
p a r a m e t e r s  

main 

1 
Calcu la te  w e l l b o r e  p o t e n t i a l  whgh ( o r  f l o w  r a t e )  
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I I n i t i a l i z e  i t e r a t i o n  main 
I 

Ca lcu la te  M .  8. equa t i on  
jacobi and J a c o b i a n  c o e f f i c i e n t s  
matcof 

I 

1 I 

S o l v e  m a t r i x  solve 

tdcor s t o p  

Reduce TS and 
r e - i n i t i a l i z e  

N 

t 
main 

Ca l cu la te  t h e  f r e e  
s u r f a c e  p o s i t i o n  I thckn 

s t o p  

< main 

R e c a l c u l a t e  w e l l b o r e  whgh 
p o t e n t i a l  o r  f l o w  r a t e  

main tdcor 

Change i n t o  Y 

c o n s t a n t  p r e s s u r e  

tdcor 

Reduce TS and 
r e - i n i t i a l i z e  

main 

main 

hscntl 
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9 endi  t e r  

I 
1 

T i m e  step c o n t r o l  tempo 

1 

1 
R e - i n i t i a l i z e  n e w  TS main 

vergrd 

< Check end 2 
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E.2 Description of some Characteristics 

In this section, some important characteristics of the computer program are 
summarized. 

E.2.1 Radial Block Distribution 

The radial mesh distribution uses a block-centered scheme given by a progressive 

radial positioning of the block boundaries, according to the MULTIMODAL griding. 

See Tera'n and de  la Garza (1988) for details of the algorithm. The log-spacing is a 
particular case of the MULTIMODAL method. The parameter necessary to define the 

ratio between the last and the first block radial size, e, is an input data, as well 
as a flag integer that provides the selection of the MULTIMODAL of the standard 
logarithmic spacing. 

Another important characteristic concerning the computer program is the progres- 
sive number of radial blocks considered in the matrix set-up. The remaining blocks, 
far from the inner boundary are added to the system as the external boundary is dis- 
turbed by a small dimensionless potential drop (loq9 in the program). After several 

runs, a number equal the half of the radial dimension (MM/2) was considered a good 

start. 

E.2.2 Axial Permeability 

The variable geometry of the problem required a calculation of directional per- 
meability. The permeability tensor for an anisotropic case is defined by an elliptic 
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equation as: 

kh kw k, = 
d k i  sin2 ,8 + k,2 cos2 ,l? 

where ,B is the angle of the flow axis with the horizontal. 
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(E.2.1) 

E.2.3 Sandface Block Transmissivity Control 

The program contains a parameter p u r t ( j )  which is an input data for each sand- 
face block. This parameter multiplies each transmissivity term of the inner boundary 
blocks and can be set from 0 for a no-flow block to 1 for a fully transmissive block. 
Thus, any block or set of blocks at any position in the wellbore can be partially or 

totally plugged or partially plugged by this transmissivity control parameter. 

E.2.4 Skin Effect 

The skin effect was simulated by calculating a modified permeability for the first 

block. Thus, both vertical and horizontal permeabilities should be affected. However, 
the method used to determine the skin parameter was the Huwkins (1956) approach 

which deals only with the horizontal permeability: 

(E.2.2) 

(E.2.3) 

where rol is the first block radial mesh location. 
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We must understand this expression. First, Eq. E.2.2 expresses effects in the 
radial direction only, and there is nothing in the Huwkins approach relating to the 
vertical permeability, an important component of flow near wellbore. In the program, 
the vertical permeability is not affected by the skin effect defined this way. 

Another problem concerns negative skins. Since we the damaged (or stimulated) 
region was set to be in the first block only, we are limited to a negative skin range 
defined by the denominator of Eq. E.2.3: 

1 + s In For > 0 (E.2.4) 

1 
In F D ,  

s > --. (E.2.5) 

E.3 Input-Data File 

A sample of the input-data file is presented next. The integer values are right 
justified at column 64, and the decimal numbers are left justified at  column 60. The 

blank lines must be observed. 
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INPUT DATA - Exemple of input da t a  

Number of hor izon ta l  g r i d  blocks (M): 60 

Number of v e r t i c a l  g r i d  blocks (N) : I00 

Use MULTINODAL r a d i a l  spacing? (mult) (no=O, otherw, I )  1 

Maximum number of i t e r a t i o n s  (itermx): 5 

Maximum number of matrix ca lcu la t ions  (matmax) 99999 

Number of time-step per  cycle (ntd) IO 

V a r .  f lowrate  indx (if low: O=const, l=cont.var,  2=step.var)  0 

Boundary limit dimensionless ex te rna l  r ad ius  - ( redf)  

F i r s t  and last  blck r a t i o  - multimodal (Ratio) 

Liquid compress ibi l i ty  - l / p s i :  

To ta l  compress ibi l i ty  - l / p s i :  

Original  he ig th  of t h e  free surface  - f t  , (ho) : 

Well bore rad ius  - i n ,  (rw): 

Porosi ty  - f r a c t i o n ,  (poros) : 

Liquid v i s cos i t y  - cp, (v isc)  : 

Liquid dens i ty  times g/gc - l b f / c u f t ,  (rho): 

Volume format ion f a c t o r  - (Bo) 

Skin effect parameter - (skin) : 

Horizontal  permeabil i ty - mD, (permh): 

Vertical permeabil i ty - mD, (permv): 

Constant Production rate - bbl/D, (9):  

I n i t i a l  Pressure - p s i ,  (p res i )  

Small number t o  be used as res idue (eps) 

Over-relaxation parameter ( l>=teta>=o ) 

Output con t ro l  of wellbore dimless. press. ( i p r n t l )  

Output con t ro l  of head p r o f i l e  ( iprnt2)  

1000000. 

400000. 

0.000003 

0.000003 

189. 

3.18 

0.25 

I .  

62.4 

1. 

0 .  

120. 

120. 

100. 

81.9 

0.000001 

0.9 

1 

I 
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Output con t ro l  of t o t a l  pressure d i s t .  ( iprnt3)  

Output con t ro l  : O=dimless . , l=f i e l d  u n i t s  ( ip rn t4 )  

I n i t i a l  dimensionless time - ( t d i )  

M a x i m u m  buildup time f o r  t h e  shu t t i n  period - min, (tmax) 

Time f o r  Shutt- in (production time) - ( t shu t )  

Number of t d p r  f o r  p r e s .  prof .  l i n e  below - (nprof) 

0 . 1  1. 10.  100. 1000. 10000. l . e 5  l . e 6  l . e7  1.e8 
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1 
1 

1.00e-02 

O . O O e + O l  

1.00e+06 

10 

Number of observation wells - (nprof) 

Distance from wellbore cen te r ,  f t  ( d i s t ( i ) )  

44.9 101.1 

Partial pene t ra t ion  f a c t o r  - pa r t  (j) 
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 
I. 1. 1. 1. 1. 1. 1. 1. 1. 1. 
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 

1. 1. 1. I. 1. 1. 1. 1. 1. 1. 
1. I. 1. I. 1. 1. I. 1. 1. 1. 

Residual Satura t ion - (srw) 

Flow rate t a b l e :  time - t q ( i )  

Number of va r iab le  flow rates 

0 .  214. 

1230. 242. 

2640. 218. 

4080. 191. 

5520. 183. 

1. 

1. 

1. 

1. 
1. 

1. 

1. 

1. 
1. 

1. 

1. 

1. 

1. 

1. 

(min) 

1. 
1. 

1. 

1. 
1. 

1. 

1. 

1. 
1. 

1. 

1. 

1. 

1. 

1. 

1. 
1. 
1. 

1. 
1. 

1. 

1. 

0 .oo 

and qvar ( i )  (bbl/d) 

2 

5 
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E.4 Example of the Program Output 

The program has a main output file containing informations for each time step 

selected for output printing. There are also some output files for specific applications 
such as the sandface flow rate profile, the radial head distribution, observation wells, 
and others. The following labels generate corresponding outputs: 

Label 2 

Normalized head potentials: sand base, vertically averaged, and free surface. 

Label 3 

Isopotential xy distribution at prescribed times. 

Label 11 

Main output table: time, wellbore pressure or drawdown, number of iterations 

in the time step, cumulative number of matrix calculations, position J1 of the 

block adjacent to the liquid level in the wellbore, seepage face length, result from 
Ramey e t  al. (1989) approach, result from Theis (1935) approach, cumulative 
CPU time in seconds. 

Label 14 

Sandface flow rate profile at prescribed times. 

Label 21 
Same as label 11 for observation wells. Each label starting on 21 corresponds 

to a different locations or observation well. 

Any output subroutine may be included by the user. If the user intends to have 
the same output time step control as in the program, just add the new subroutine 
call line next to the callings for PRINTA subroutine. A frequency of ten output data 

per logarithmic cycle of the dimensionless time was designed in the program, and 
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controlled by a variable ntprt. Another important information for the user is how 

the information are storaged. At the end of each time step, the following variables 
are updated. In the next time step, the vectors or scalar parameters are normally 
substituted by new values in the iterative process. The notation of the variables is 
the same as that used in the program, regardless capitalization. 

H W D  = wellbore dimensionless liquid level 
Hs = free surface dimensionless height at the sandface 
H ( i )  = free surface dimensionless height at position i 
dh( i )  = free surface block dimensionless thickness 
d z d ( i )  = block dimensionless thickness 
Ww(j)  = normalized sandface potential 
W(i ,  j )  = normalized i, j block potential 

An example of the main output run is presented next. 
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tmin= .4065E+OOx t d ,  Hc= .000ft ,  Red= lOOOOOO., MULTIMODAL, Rmult= .4000E+C 

mm= 60, n=lOO Ho=189.000 f t ,  Skin= .O, Kh= 120., Kv= 120., visc=l.OOO 

POROS= .25 C t =  .30E-05psi-1, C1= .30E-05psi-l, Q= 100.0 Swr= ,000 Teta=l.OO 

............................................................................... 

FIELD UNITS: 

Time = minutes 

Pw = p s i  

Iter = Number of i t e r a t i o n s  t o  complete t h e  p r in ted  time- step 

Matrix = Cumm. number of matrix calc. during t h e  execution 

J l  = Vertical g r i d  pos i t ion  of t h e  wellbore l i q u i d  l e v e l  

Seepage = Seepage face length ,  f t  

Ramey = Well pressure  from Ramey e t  a l .  (1989) so lu t ion ,  p s i  

cpul  = CPU time t o  ca l cu l a t e  t h e  matrix once, sec. 

cpu2 = Fract ion of time: matrix so lver  / e n t i r e  i n t e r a t i o n  loop 

cpu3 = Cumulat ive  CPU time, sec, 

Time 

.4065E-O4* 

.5117E-04* 

.6442E-O4* 

.8110E-04* 

.102lE-03* 

.1285E-03* 

.1618E-03* 

.2037E-03* 

.2565E-03* 

.3229E-03* 

.4065E-03* 

.5117E-03* 

.6442E-03* 

Pw Iter Matrix J 1  Seepage 

.00003*0* 

.00004*0* 

.00005*0* 

.00006*0* 

.00008*0* 

.00010*0* 

.00012*0* 

.00016*0* 

.00020*0* 

.00025*0* 

.00031*0* 

.00039*0* 

.00049*0* 

l* 1* .7182E-04* 

2* l* .9042E-04* 

3* l* .1138E-03* 
4* l* .1433E-03* 
5* 1* .1804E-03* 

6* l* .2271E-03* 
7* 1* .2859E-03* 
8* l* .3599E-03* 

9* l* .4531E-03* 

10* l* .5704E-03* 
11* l* .7180E-03* 

22* 1* .9039E-03* 

33* 1* .1138E-02* 

Ramey 
NaNQ* 

NaNQ* 

NaNQ* 

NaNQ* 

NaNQ* 

NaNQ* 

NaNQ* 

NaNQ* 

NaNQ* 

NaNQ* 

NaNQ * 
NaNQ* 

NaNQ* 

Theis 

NaNQ* 

NaNQ* 

NaNQ* 

NaNQ* 

NaNQ* 

NaNQ* 

NaNQ* 

NaNQ* 

NaNQ* 

NaNQ* 

NaNQ* 

NaNQ* 

NaNQ* 

cpu3 
.28 

.52 

.77 
1.02 

1.26 

1.51 

1.76 

2 .oo 
2.25 

2.49 

2.75 

5.42 

8.09 
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.8110E-03* 

.102lE-02* 

.1285E-O2* 

.1618E-02* 

.2037E-02* 

.2565E-02* 

.3229E-02* 

.4065E-02* 

.5117E-02* 

.6442E-02* 

.8110E-02* 

.1021E-01* 

.1285E-01* 

.1618E-01* 

.2037E-01* 

.2565E-O1* 

.3229E-01* 

.4065E-01* 

.5117E-01* 

.6442E-O1* 

.8110E-01* 

.1021E+00* 

.1285E+00* 

.1618E+00* 

.2037E+OO* 

.2565E+OO* 

.3229E+00* 

.4065E+OO* 

.5117E+00* 

.6442E+00* 

.8110E+00* 

.00062*0* 

.00078*0* 

.00098*0* 

.00124*0* 

.00156*0* 

.00196*0* 

.00247*0* 

.00311*0* 

.00391*0* 

.00492*0* 

.00619*0* 

.00779*0* 

.00981*1* 

.01234*1* 

.01552*1* 

.01952*1* 

.02454* l* 

.03084*1* 

.03875*1* 

.04867*1* 

.06110*1* 

.07665*1* 

.09609*1* 

.12034*1* 

.15053*1* 

.18804*1* 

.23448*1* 

.29176*1* 

.36210*1* 

.44798*1* 

.55207*1* 

44* l* .1432E-02* NaNQ* NaNQ* 

55* 1* .1803E-02* .0000E+00* .0000E+00* 

66* l* .2270E-02* .0000E+00* .0000E+00* 
77* 1* .2857E-02* .0000E+00* .0000E+00* 
88* l* .3597E-02* .0000E+00* .0000E+00* 

99* 1* .4527E-02* .0000E+00* .0000E+00* 

llO* 1* .5698E-02* .0000E+00* .0000E+00* 

121* 1* .7172E-02* .0000E+00* .0000E+00* 

142* l* .9027E-02* .0000E+00* .0000E+00* 
163* l* .1136E-01* .0000E+00* .0000E+00* 

184* 1* .1430E-01* .0000E+00* .0000E+00* 

205* l* .1799E-01* .0000E+00* .0000E+00* 
244* 1* .2263E-01* .0000E+00* .0000E+00* 

286* 1* .2847E-01* .7362E-04* .7362E-04* 

328* 1* .3581E-01* .3673E-03* .3673E-03* 

370* l* .4504E-01* .1236E-02* .1236E-02* 
412* 1* .5662E-01* .3376E-02* .3375E-02* 

454* l* .7117E-01* .7761E-02* .7761E-02* 
516* 1* .8943E-01* .1553E-01* .1553E-01* 

578* 1* .1123E+00* .2778E-01* .2778E-01* 
640* 1* .1410E+00* .4538E-01* .4537E-01* 

702* l* .1769E+00* .6887E-01* .6884E-01* 

764* 1* .2217E+00* .9842E-01* .9836E-01* 
826* l* .2777E+OO* .1339E+00* .1338E+OO* 
888* l* .3474E+00* .1749E+00* .1747E+00* 

950* l* .4339E+OO* .2209E+OO* .2206E+00* 

1012* l* .5411E+00* .2714E+00* .2710E+00* 
1074* 1* .6732E+00* .3257E+OO* .3251E+00* 

1156* 1* .8355E+OO* .3833E+00* .3824E+00* 

1238* 1* .1034E+Ol* .4436E+00* .4424E+00* 

1320* l* .1274E+01* .5063E+00* .5047E+OO* 

10.76 

13.43 

16.10 

18.76 

21.43 

24. I1 

26.79 

29.46 

34.57 

39.63 

44.73 

49.85 

57.00 

64.50 

72.02 

79.51 

87.01 

94.48 

105.54 

116.62 

127.70 

138.73 

149.78 

160.85 

172.09 

183.59 

195.11 

206.66 

221.89 

237.11 
252.67 
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.1021E+Ol* 

.1285E+Ol* 

.1618E+Ol* 

.2037E+Ol* 

.2565E+Ol* 

.3229E+Ol* 

.4065E+Ol* 

.5117E+Ol* 

.6442E+O1* 

.8110E+01* 

.1021E+02* 

.1285E+02* 

.1618E+02* 

.2037E+02* 

.2565E+02* 

.3229E+02* 

.4065E+02* 

.5117E+02* 

.6442E+02* 

.8110E+02* 

.102lE+03* 

.1285E+03* 

.1618E+03* 

.2037E+03* 

.2565E+03* 

.3229E+03* 

.4065E+03* 

.5117E+03* 

.6442E+03* 

.8110E+03* 

.1021E+04* 

.67716*1* 

.82588*1* 
1.00130*1* 
1.20611*1* 
1.44132*1* 

1.70611*1* 

1.99719*1* 

2.30822*1* 
2.62923*1* 
2.94734*1* 
3.24784*1* 
3.51637*1* 
3.74154*1* 

3.91738*1* 

4.04446*1* 

4.12906*1* 
4.18080*1* 
4.20970*2* 
4.22378*2* 
4.22811*1* 
4.23038*0* 
4.23124*1* 

4.23100*0* 

4.22907*2* 
4.22601*2* 
4.22244*2* 

4.21838*2* 

4.21372*2* 
4.20854*2* 

4.20276*2* 

4.19642*2* 

1402* l* .15 862E+Ol* .57 08E+00* .5  688E+00* 2 

1484* 2* .1905E+01* .6369E+00* .6344E+OO* 
1566* 2* .2310E+Ol* .7042E+OO* .7012E+00* 
1648* 2* .2782E+01* .7726E+00* .7689E+00* 

1730* 2* .3324E+01* .8418E+00* .8375E+OO* 

1812* 3* .3934E+01* .9117E+00* .9067E+00* 

1894* 3* .4605E+01* .9823E+00* .9764E+00* 

1996* 3* .5322E+01* .1053E+Ol* .1046E+Ol* 
2098* 4* .6061E+Ol* .1125E+Ol* .1117E+01* 
2200* 4* .6793E+Ol* .1196E+Ol* .1188E+01* 
2302* 4* .7484E+01* .1268E+Ol* .1258E+01* 
2404* 5* .8101E+01* .1340E+Ol* .1329E+01* 
2506* 5* .8616E+01* .1413E+01* .1401E+01* 

2608* 5* .9018E+Ol* .1485E+01* .1472E+01* 

2710* 5* .9305E+01* .1558E+01* .1543E+Ol* 

2812* 6* .9493E+Ol* .1631E+Ol* .1615E+Ol* 
2914* 6* .9604E+01* .1704E+Ol* .1686E+01* 
3042* 6* .9660E+01* .1777E+01* .1758E+Ol* 
3225* 6* .9679E+01* .1850E+Ol* .1829E+01* 
3324* 6* .9680E+Ol* .1923E+01* .1901E+Ol* 
3415* 6* .9675E+Ol* .1997E+Ol* .1972E+01* 
3507* 6* .9665E+Ol* .2070E+Ol* .2044E+01* 

3598* 6* .9649E+01* .2144E+01* .2116E+Ol* 
3765* 6* .9610E+Ol* .2217E+Ol* .2187E+01* 
3948* 6* .9559E+01* .2291E+Ol* .2259E+01* 
4131* 6* .9498E+01* .2365E+Ol* .2331E+01* 

4314* 5* .9426E+Ol* .2439E+01* .2402E+01* 

4527* 5* .9341E+Ol* .2512E+01* .2474E+01* 
4740* 5* .9242E+01* .2586E+01* .2546E+01* 
4953* 5* .9126E+Ol* .2660E+Ol* .2617E+Ol* 

5166* 5* .8992E+01* .2735E+01* .2689E+01* 

68.5 1 

284.36 
300.20 
316.39 

332.91 

349.59 
366.63 

388.03 
410.14 
432.58 
455.11 
478.16 
501.28 

524.83 

548.50 

572.49 

596.60 
625.94 
659.59 
682.01 
703.60 
725.27 

746.85 
777.96 
811.10 

844.47 

878.32 

917.59 

957.14 
997.78 

1038.41 
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.1285E+04* 4.18955*2* 5379* 5* .8837E+01* .2809E+Ol* .2761E+01* 1079.04 

.1618E+04* 4.18191*2* 5600* 5* .8659E+01* .2883E+01* .2832E+01* 1122.37 

.2037E+04* 4.17432*2* 5823* 5* .8458E+01* .2957E+01* .2904E+Ol* 1166.25 

.2565E+04* 4.16660*2* 6046* 5* .8233E+01* .3032E+01* .2976E+01* 1210.59 

.3229E+04* 4.15941*2* 6266* 5* .7984E+01* .3106E+01* .3047E+01* 1255.35 

.4065E+O4* 4.15280*2* 6481* 5* .7711E+Ol* .3181E+Ol* .3119E+Ol* 1300.03 

.5117E+04* 4.14731*2* 6725* 4* .7417E+01* .3255E+01* .3191E+Ol* 1350.97 

.6442E+O4* 4.14368*2* 6968* 4* .7106E+Ol* .3330E+01* .3262E+01* 1401.73 

.8110E+04* 4.14260*2* 7211* 4* .6785E+01* .3405E+01* .3334E+01* 1452.53 

.1021E+05* 4.14482*2* 7454* 4* .6461E+01* .3480E+01* .3406E+01* 1503.27 

.1285E+05* 4.15147*2* 7701* 4* .6143E+Ol* .3554E+01* .3477E+01* 1554.95 

.1618E+05* 4.16300*2* 7944* 4* .5840E+01* .3629E+01* .3549E+Ol* 1607.14 

.2037E+05* 4.17957*2* 8187* 4* .5556E+Ol* .3704E+01* .3621E+01* 1659.37 

.2565E+05* 4.20171*2* 8430* 3* .5299E+Ol* .3780E+01* .3692E+01* 1712.04 

.3229E+05* 4.23087*2* 8673* 3* .5074E+01* .3855E+Ol* .3764E+Ol* 1765.78 

.4065E+05* 4.26524*2* 8916* 3* .4878E+01* .3930E+01* .3836E+01* 1820.39 

.5117E+05* 4.30577*2* 9192* 3* .4711E+Ol* .4005E+01* .3907E+Ol* 1882.01 

.6442E+05* 4.35193*3* 9492* 3* .4570E+01* .4081E+Ol* .3979E+01* 1948.23 

.8110E+05* 4.40394*3* 9856* 3* .4453E+01* .4156E+Ol* .4051E+Ol* 2022.57 

.1021E+06* 4.46034*3* 10220* 3* .4355E+01* .4232E+01* .4122E+Ol* 2098.02 

.1285E+06* 4.52060*3* 10584* 3* .4274E+01* .4307E+01* .4194E+Ol* 2175.20 

.1618E+06* 4.58549*3* 10956* 3* .4211E+Ol* .4383E+01* .4266E+01* 2255.46 

.2037E+06* 4.65297*3* 11320* 3* .4158E+01* .4459E+01* .4337E+01* 2333.43 

.2565E+06* 4.72390*3* 11701* 3* .4120E+OI* .4535E+01* .4409E+Ol* 2415.41 

.3229E+O6* 4.79253*4* 12189* 3* .4089E+01* .4611E+Ol* .4481E+Ol* 2519.34 

.4065E+06* 4.86499*3* 12678* 3* .4067E+Ol* .4687E+01* .4552E+01* 2626.41 

.5117E+06* 4.93985*4* 13232* 3* .4049E+Ol* .4763E+01* .4624E+01* 2745.25 

.6442E+06* 5.01430*6* 13863* 3* .4038E+01* .4839E+01* .4696E+Ol* 2882.58 

.8110E+06* 5.08842*4* 14498* 3* .4027E+01* .4915E+01* .4767E+01* 3022.08 

.1000E+07* 5.15839*4* 15084* 3* .4022E+01* .4984E+01* .4833E+01* 3153.72 

Buildup s tar t ing a t  td= .24601372E+07 CPU(MTRx CALC.)= 2061.710 
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.4065E-04* 76.74164*2* 15087* 3* .4022E+01* NaNQ* NaNQ* 3154.89 

.5117E-04* 76.74165*1* 15089* 3* .4022E+01* NaNQ* NaNQ* 3155.34 

.6442E-O4* 76.74167*1* 15091* 3* .4021E+Ol* NaNQ* NaNQ* 3155.80 

.8110E-04* 76.74169*1* 15093* 3* .4021E+01* NaNQ* NaNQ* 3156.25 

.102lE-03* 76.74171*1* 15095* 3* .4021E+Ol* NaNQ* NaNQ* 3156.70 

.1285E-03* 76.74174*1* 15097* 3* .4021E+01* NaNQ* NaNQ* 3157.16 

.1618E-03* 76.74177*1* 15099* 3* .4021E+O1* NaNQ* NaNQ* 3157.61 

.2037E-03* 76.74181*1* 15101* 3* .4021E+01* NaNQ* NaNQ* 3158.06 

.2565E-03* 76.74186*1* 15103* 3* .4021E+O1* NaNQ* NaNQ* 3158.52 

.3229E-03* 76.74192*1* 15105* 3* .4021E+Ol* NaNQ* NaNQ* 3158.97 

.4065E-03* 76.74199*1* 15107* 3* .4021E+Ol* NaNQ* NaNQ* 3159.43 

.5117E-03* 76.74214*1* 15129* 3* .4020E+Ol* NaNQ* NaNQ* 3164.38 

.6442E-03* 76.74232*1* 15151* 3* .4020E+Ol* NaNQ* NaNQ* 3169.33 

.8110E-03* 76.74253*1* 15173* 3* .4020E+Ol* NaNQ* NaNQ* 3174.28 

.102lE-02* 76.74278*1* 15195* 3* .4019E+Ol* .7692E+02* .7707E+02* 3179.24 

.1285E-02* 76.74307*1* 15217* 3* .4018E+01* .7692E+02* .7707E+02* 3184.18 

.1618E-02* 76.74341*1* 15239* 3* .4017E+Ol* .7692E+02* .7707E+02* 3189.12 

.2037E-02* 76.74382*1* 15261* 3* .4017E+01* .7692E+02* .7707E+02* 3194.05 

.2565E-02* 76.74431*1* 15283* 3* .4015E+01* .7692E+02* .7707E+02* 3199.01 

.3229E-02* 76.74490*1* 15305* 3* .4014E+Ol* .7692E+02* .7707E+02* 3203.96 

.4065E-O2* 76.74563*1* 15327* 3* .4012E+Ol* .7692E+02* .7707E+02* 3208.91 

.5117E-02* 76.74660*1* 15369* 3* .4OlOE+Ol* .7692E+02* .7707E+02* 3218.36 

.6442E-O2* 76.74777*1* 15411* 3* .4007E+Ol* .7692E+02* .7707E+02* 3227.81 

.8110E-02* 76.74921*1* 15453* 3* .4004E+Ol* .7692E+02* .7707E+02* 3237.26 

.1021E-01* 76.75098*1* 15495* 3* .4000E+Ol* .7692E+02* .7707E+02* 3246.72 

.1285E-01* 76.75316*1* 15537* 3* .3995E+01* .7692E+02* .7707E+02* 3256.18 

.1618E-01* 76.75586*1* 15579* 3* .3989E+01* .7692E+02* .7707E+02* 3265.61 

.2037E-O1* 76.75921*1* 15621* 3* .3981E+Ol* .7692E+02* .7707E+02* 3275.07 

.2565E-01* 76.76338*1* 15663* 3* .3971E+Ol* .7692E+02* .7707E+02* 3284.52 

.3229E-01* 76.76857*1* 15705* 3* .3959E+01* .7692E+02* .7707E+02* 3293.95 

.4065E-01* 76.77505*1* 15747* 3* .3944E+01* .7692E+02* .7708E+02* 3303.36 
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.5117E-01* 76.78322*1* 15809* 3* .3926E+01* .7693E+02* .7708E+02* 3317.32 

.6442E-O1* 76.79341*1* 15871* 3* .3902E+Ol* .7695E+02* .7710E+02* 3331.29 

.8110E-01* 76.80611*1* 15933* 3* .3873E+01* .7696E+02* .7711E+02* 3345.22 

.102lE+00* 76.82197*1* 15995* 3* .3836E+01* .7699E+02* .7714E+02* 3359.19 

.1285E+00* 76.84173*1* 16057* 3* .3791E+Ol* .7702E+02* .7717E+02* 3373.15 

.1618E+00* 76.86637*1* 16119* 3* .3734E+01* .7706E+02* .7720E+02* 3387.07 

.2037E+00* 76.89703*1* 16181* 3* .3663E+01* .7710E+02* .7724E+02* 3401.51 

.2565E+00* 76.93513*1* 16243* 2* .3575E+Ol* .7715E+02* .7729E+02* 3416.06 

.3229E+00* 76.98237*1* 16305* 2* .3466E+01* .7720E+02* .7734E+02* 3430.61 

.4065E+OO* 77.04077*1* 16367* 2* .3331E+01* .7726E+02* .7739E+02* 3445.19 

.5117E+00* 77.11278*1* 16449* 2* .3165E+01* .7732E+02* .7745E+02* 3464.45 

.6442E+00* 77.20104*1* 16531* 2* .2961E+Ol* .7739E+02* .7751E+02* 3483.67 

.8110E+00* 77.30860*1* 16613* 2* .2713E+01* .7745E+02* .7757E+02* 3503.62 

.1021E+Ol* 77.43873*1* 16695* 2* .2413E+01* .7752E+02* .7764E+02* 3523.69 

.1285E+01* 77.59475*1* 16777* 2* .2053E+01* .7759E+02* .7770E+02* 3543.79 

.1618E+01* 77.77956*1* 16859* I* .1627E+Ol* .7766E+02* .7777E+02* 3563.90 

.2037E+01* 77.99377*1* 16941* I* .1133E+Ol* .7773E+02* .7784E+02* 3584.68 

.2565E+01* 78.23704*1* 17023* l* .5716E+00* .7780E+02* .7790E+02* 3605.64 

.3229E+01* 78.50305*1* 17105* 1*-.4149E-01* .77883+02* .7797E+02* 3626.59 

.4065E+01* 78.55411*1* 17187* 1*-.1582E+00* .7795E+02* .7804E+02* 3647.58 

.5117E+01* 78.55712*1* 17289* 1*-.1638E+00* .7802E+02* .7811E+02* 3673.64 

.6442E+Ol* 78.55912*1* 17391* 1*-. 1668E+00* .7810E+02* .7818E+02* 3699.73 

.8110E+Ol* 78.56098*1* 17493* 1*-.1690E+00* .7817E+02* .7825E+02* 3725.78 

.1021E+02* 78.56284*1* 17595* 1*-.1707E+00* .7824E+02* .7833E+02* 3751.52 

.1285E+02* 78.56479*1* 17697* 1*-.1720E+00* .7832E+02* .7840E+02* 3776.55 

.1618E+02* 78.56692*1* 17799* 1*-.1730E+00* .7839E+02* .7847E+02* 3801.18 

.2037E+02* 78.56930*1* 17901* 1*-.1736E+00* .7847E+02* .7854E+02* 3824.98 

.2565E+02* 78.57205*1* 18003* I*-. 1740E+00* .7854E+02* .7861E+02* 3847.91 

.3229E+02* 78.57528*1* 18105* 1*-.1743E+00* .7862E+02* .7868E+02* 3870.84 

.4065E+02* 78.57866*0* 18195* 1*-.1743E+00* .7869E+02* .7875E+02* 3892.19 

.5117E+02* 78.58100*0* 18256* 1*-.1743E+00* .7876E+02* .7882E+02* 3911.48 
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.6442E+O2* 78.58387*0* 18317* 1*-.1742E+00* .7884E+02* .7890E+02* 3930.80 

.8110E+02* 78.58738*0* 18378* 1*-.1740E+00* .7891E+02* .7897E+02* 3950.15 

.102lE+03* 78.59193*0* 18469* 1*-.1739E+00* .7899E+02* .7904E+02* 3974.73 

.1285E+03* 78.59763*0* 18657* 1*-.1733E+00* .7906E+02* .7911E+02* 4016.17 

.1618E+03* 78.60668*1* 19015* 1*-.1725E+00* .7914E+02* .7918E+02* 4097.48 

.2037E+03* 78.61749*0* 19409* 1*-.1718E+00* .7921E+02* .7925E+02* 4184.46 

.2565E+03* 78.62922*1* 19883* 1*-.1708E+00* .7928E+02* .7933E+02* 4290.67 

.3229E+03* 78.64175*0* 20462* 1*-.1699E+00* .7936E+02* .7940E+02* 4419.01 

.4065E+03* 78.65674*3* 21109* 1*-.1686E+00* .7943E+02* .7947E+02* 4561.35 

.5117E+03* 78.67379*0* 21947* 1*-. 1673E+00* .7951E+02* .7954E+02* 4744.36 

.6442E+O3* 78.69228*1* 23002* 1*-.1657E+00* .7958E+02* .7961E+02* 4977.22 

.8110E+03* 78.71922*1* 24187* 1*-.1635E+00* .7965E+02* .7968E+02* 5244.94 

.102lE+04* 78.74697*0* 25470* 1*-.1614E+00* .7973E+02* .7976E+02* 5556.63 

.1285E+04* 78.78185*0* 26921* 1*-.1586E+00* .7980E+02* .7983E+02* 5910.92 

.1618E+04* 78.81782*1* 28480* 1*-.1556E+00* .7987E+02* .7990E+02* 6305.51 

.2037E+04* 78.86046*0* 30136* 1*-.1522E+00* .7995E+02* .7997E+02* 6756.93 

.2565E+04* 78.90745*1* 31930* 1*-.1485E+00* .8002E+02* .8004E+02* 7257.74 

.3229E+O4* 78.96061*1* 33927* 1*-.1443E+00* .8009E+02* .8011E+02* 7815.56 

.4065E+O4* 79.02000*1* 36117* 1*-.1396E+00* .8017E+02* .8018E+02* 8406.25 

.5117E+04* 79.08611*1* 38718* 1*-.1344E+00* .8024E+02* .8026E+02* 9092.54 

.6442E+04* 79.15923*1* 41661* 1*-.1288E+00* .8031E+02* .8033E+02* 9863.95 

.8110E+04* 79.23937*1* 44958* 1*- .1226E+00* .8038E+02* .8040E+02* 10728 -41 

.1021E+05* 79.39075*1* 50113* l*-.llllE+OO* .8046E+02* .8047E+02* 11994.20 

.1285E+05* 79.56135*1* 56270* 1*-.9867E-01* .8053E+02* .8054E+02* 13482.53 

.1618E+05* 79.72292*1* 62812* 1*-.8727E-01* .8060E+02* .8061E+02* 15072.10 

.2037E+05* 79.87088*1* 69494* 1*-.7721E-01* .8067E+02* .8068E+02* 16741.85 

.2565E+O5* 79.98974*0* 75448* 1*-.6942E-01* .8074E+02* .8075E+02* 18395.98 

.3229E+05* 80.08998*0* 80918* 1*-.6306E-01* .8081E+02* .8082E+02* 2007'1.73 

.4065E+05* 80.19373*0* 86927* 1*-.5675E-01* .8088E+02* .8089E+02* 21922.98 

.5117E+05* 80.29954*0* 93616* 1*-.5051E-01* .8095E+02* .8096E+02* 24002.54 

.6442E+O5* 80.40696*0* 100911* 1*-.4444E-01* .8102E+02* .8103E+02* 26281.09 
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.8110E+05* 80.51722*0* 108974* 1*-.3853E-01* .8109E+02* .8109E+02* 28807.23 

.1021E+06* 80.62913*0* 117855* 1*-.3286E-01* .8116E+02* .8116E+02* 31592.46 

.1285E+06* 80.74135*0* 127586* 1*-.2753E-01* .8122E+02* .8122E+02* 34650.95 

.1618E+06* 80.85273*0* 138262* 1*-.2264E-01* .8128E+02* .8129E+02* 38008.31 

.2037E+06* 80.95985*0* 149645* 1*-.1832E-01* .8135E+02* .8135E+02* 41588.24 

.2565E+06* 81.06714*0* 162429* l*-. 1439E-01* .8140E+02* .8141E+02* 45525.17 

.3229E+06* 81.22254*1* 183762* 1*-.9439E-02* .8146E+02* .8146E+02* 50616.67 

.4065E+06* 81.34708*1* 204014* 1*-.6215E-02* .8151E+02* .8151E+02* 55422.03 

.5117E+06* 81.44751*1* 223220* l*- .4101E-02* .8156E+02* .8156E+02* 60049.94 

.6442E+06* 81.52831*1* 241015* 1*-.2725E-02* .8161E+02* .8161E+02* 64321.11 

.8110E+06* 81.58149*0* 256457* 1*-.2037E-02* .8165E+02* .8165E+02* 68507.10 

.1000E+07* 81.61504*0* 269209* 1*-.1651E-02* .8168E+02* .8168E+02* 72342.23 
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E.5 Computer Program Code Listing 
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