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ABSTRACT 

Hydraulic fracturing is a widely used method of enhancing well performance. Indeed, 
a large number of wells, which could not otherwise be operated economically, are 
made highly profitable via hydraulic fracturing. The fracturing process is expensive, 
thus, it is important that means be available to evaluate fracture effectiveness. The 

most widely used tool in fracture evaluation is pressure transient analysis. 

Many models have been proposed for analyzing pressure data from fractured wells. 

These models fall into two groups: numerical solutions of integral representations, 

which are used to compute pressures; and approximate modlels which illustrate quali- 
tative pressure behavior but only give accurate pressures under restricted conditions. 

The purpose of this study is to develop exact analytic sloliitions for the pressure 

response of a finite conductivity fracture. This model should be able to verify the 

existence of various flow regimes found in earlier studies. It is hoped that this solution 

could be modified to give simplified expressions for well pressures for all times and 
all fracture conductivity ranges. 

The present work poses and solves the problem of a vertical finite conductivity 

fracture of elliptical cross section. The flow within the fracture is assumed to be 

incompressible and the reservoir is assumed to be infinite. The elliptical fracture 

geometry was chosen to facilitate the expression of fracture and reservoir pressures 
by eigenfunction expansions. 

The solution is obtained by expressing the reservoir pressure as a series of Mathieu 
functions, and the fracture pressure as a series of cosines. The coefficients in these 

series satisfy an infinite set of linear relations, termed Fredholm sum equations. Exact 

solutions to these sum equations are obtained in forms which resemble continued 
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fractions of summations, or equivalently, which require iteration of rational forms. 

Computation of the solution is not trivial, but is not overly computer intensive. 
For example, computation of well pressures for 150 values of dimensionless time be- 
tween and requires less than five minutes of real tirne on an Apollo 10000 
computer operating under moderate load. One of the findings of this study is that 

computation of Mathieu functions is not as computationally demanding as the liter- 

ature suggests. 

The exact solution becomes increasingly difficult to compute as time decreases. 
So, approximate solutions for well pressures are given for extremely low values of 

time. These solutions indicate that an elliptical fracture exhibits reservoir linear 

and bilinear flow. It had long been known that elliptical fractures would exhibit 

pseudoradial flow. So, the qualitative behavior of an elliptical fracture is essentially 
the same as that of a rectangular fracture. Indeed, the well pressures calculated in 

this work are quite close to those for a rectangular fracture. 

The significance of the analytic nature of the solutions deserves emphasis. This 
problem requires the solution of the diffusivity equation for a composite system in 

nonradial geometry. Solutions to this type of problem are rarely, if ever, found. 

A great deal of effort has been expended to speed the calculation of the solutions, 

however, only partial success has been achieved. Generally applicable simplified well 
solutions have not been found. 
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Chapter 1 

OVERVIEW 

The present research has turned out to be much more involved than was first expected. 

Consequently, in this thesis, great pains have been taken to explain the problem and 
its solution in as clear and basic it manner as possible. However, we have not been 

wholly successful, so this chapter is intended to act as a roadmap through what is, 

at some points, rather treacherous terrain. 

This chapter begins with a discussion of the motivation for this research and the 
research objectives. We then pose the problem and discuss its solution. The chapter 

ends with a discussion of the computational difficulties associated with evaluating the 
solution and the use of approximate solutions developed to overcome these difficulties. 

1.1 La Raison d’Etre 

Hydraulic fracturing is a widely used method for increasing well productivity. Pro- 
ductivity increases occur because fracturing effectively increases the well surface area 

which makes flow to the well much more efficient. 

The increase in surface area is achieved by injecting fluids into the formation at 
pressures above the formation parting pressure. Injecting a fluid at high pressure 
initiates the fracture and causes it to propagate. Subsequent injection of proppant 

allows the fracture to remain open after injection has ceased. 

The flow of fluids to a propped fracture is much more efficient than flow to a 
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CHAPTER 1. OVERVIEW 2 

cylindrical wellbore. This is because the wellbore has a surface area of a few square 

feet while a fracture may have a surface area of a few thousand square feet. Therefore 
fracturing increases well production dramatically, often making unprofitable wells 
highly profitable. 

While hydraulic fracturing is usually very effective, it is always very costly. Thus, 

it is essential that methods be available to evaluate the effectiveness of the fracturing 
process. The most widely used evaluation tool for hydraulic fractures is pressure 
transient testing or, equivalently, rate decline analysis. 

Pressure transient analysis consists of two phases. The first phase consists of 
posing and solving the equations which govern flow in ain idealized model. This 

model is assumed to reflect the mechanisms at work in the reservoir. The second 
phase consists of matching the rate and pressure measurements, taken in the field, 
to those from the assumed model. This work investigates only the first aspect of 

pressure transient testing of fractured wells-posing and solving the equations which 

govern flow in the model. 

The prediction of the pressure response of fractured wells is not a new topic. 

Many models have been investigated which consider various aspects of the problem. 

However, these models either consider only a part of the problem, or they only allow 
approximate solution of the governing equations. 

The most comprehensive model that has been investigated is the finite conductiv- 

ity fracture model developed by Cinco and coauthors in a number of papers. The two 

most important of these are Cinco et al. (1978), where the niotlel is proposed and the 

governing equations solved, and Cinco and Samaniego (1981), where the behavior of 
the solution is investigated. 

The solution procedure used in the first of these papers is a numerical solution of 

an integral equation. This technique has come to be known as the boundary integral 
equation method, BIEM. The method is computationally intensive, and, since it 

is numerical, yields only approximate results. The pressures computed using this 
method appear to be accurate, although it is difficult to say just how accurate they 

are. (At this point the author must confess that he has not, implemented the BIEM 
technique, and so must be rather vague about its attributes.) 
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In Cinco and Samaniego (1981), the behavior of the well pressure is investigated. 

In this paper a simplified model was analyzed and used to identify the bilinear flow 
regime. The regimes of fracture linear flow and reservoir linear flow were also exam- 
ined. The fracture linear flow regime results from expansion of fluid in the fracture. 

This regime is of too short a duration to be of practical use and so little is lost by 

assuming the fracture flow to be incompressible. A discussion of the BIEM technique 

for the case of incompressible fracture flow is given in Chapter 3. 
The intent of the present work is to present a model which depicts the flow of 

fluids into and through a finite conductivity vertical fracture. We seek an exact solu- 

tion which can be used to find pressures anywhere in the fracture/reservoir system. 
The reason for pursuing an analytic solution is that it would be expected to be highly 

accurate and, if not computationally expedient, at least it would have the ability to 
be made computationally efficient. The ultimate goal is to provide solutions whose 

computation is sufficiently rapid to be of use in computer-aided well test interpreta- 
tion. 

Ideally, we would like to find an exact solution to Cinco’s model. However, in order 
to find this solution, we have changed the fracture cross section from rectangular to 

elliptical. The reason for assuming an elliptical fracture is ithat it enables the use of 

elliptical coordinates. The purely steady-state form of the elliptical fracture problem 

was solved by Prats (1961) using the elliptical coordinate system. Our solution bears 

strong resemblance to Prats’ solution. 

1.2 The Problem and Solution 

This section gives an overview of the model and the solution procedure employed in 

the present work. This is covered in some detail because the exposition of Chapters 
4-7 is rather intricate. 

This research poses the reservoir/fracture problem as a pair of coupled partial 
differential equations which are derived in Chapter 4. We seek exact solutions in 

terms of eigenfunction series expansions of the reservoir and fiacture pressures. The 

series expansion for the reservoir pressure is derived in Chapter 5 which also discusses 
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Mathieu functions in detail. The series expansion for fracture pressure is given in 
Chapter 6. 

Expressing pressures as series of eigenfunctions reduces the problem of determining 

pressures to the problem of determining the coefficients in the series. The difficulty 

in determining these coefficients is that the eigenfunctions of the reservoir pressure 

series, the Mathieu functions, ~ e ~ ~ ,  are not orthogonal to the eigenfunctions in the 

fracture pressure series, the cosine functions, cos(27y). Therefore, we must solve 

an infinite set of linear relations, termed Fredholm sum equations, to determine the 
values of the coefficients. The sum equations are developed in Chapter 6 and solved 
in Chapter 7. 

The eigenfunction expansion of the reservoir pressure is obtained by applying the 
method of separation of variables to the two-dimensional cliffusivity equation. This 
requires the use of a coordinate system in which the diffusivity equation is separable. 

Because the reservoir sees the fracture as the line segment between XD = -1 and 

X D  = +1 on the xg-axis, the coordinate system must also express this line segment 
as a single value of one coordinate for all values of the second coordinate. The only 
coordinate system which satisfies these two requirements is the elliptical coordinate 

system. 

The diffusivity equation, expressed in elliptical coordinates, and in Laplace space, 
is: 

d 2 p R  d2jiR s 
dq2 d(2 2 
- t-- -  C COS^(^() - C O S ( ~ ~ ) ] ~ B R  . 

In this equation, ( plays a role similar to the radial coordliniste and q plays a role 
similar to the angular coordinate. In Eq. 1.1, s is the parameter of Laplace transfor- 

mation. A result of using elliptical coordinates is that the separated solutions of Eq. 
1.1 are Mathieu functions. This is unfortunate because Matlriieu functions are difficult 

to evaluate, although we have found that these difficulties haire been exaggerated in 
the literature. 

We require solutions of Eq. 1.1 which are even and 7r-periodic in q .  These solutions 

must also vanish as ( approaches infinity. The only combination of Mathieu functions 
which satisfies these requirements is the product, ~e2~Felc2,. The functions, are 
the eigenfunctions of the reservoir solution. They are functions of the angular variable 
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and satisfy the periodicity requirements in 7.  

Because the product, ~e2~Felc2,, forms a complete set when summed over n, we 
choose to represent the reservoir pressure by the series: 

This solution satisfies Eq. 1.1 for any values of 72n, because the separated solutions 
satisfy Eq. 1.1. The coefficients, 7Zn, must be specified so that the series satisfies the 

fracture equation at < = 0. The constants, (-l)n/Felc2n(0; --s/4), have been included 

in the reservoir series to facilitate the equation of reservoir and fracture pressures at 

( = 0. 
The fracture equation is found by considering a composite elliptical system pro- 

ducing at a constant rate and taking the limit as the inner ellipse collapses to a line 
segment. Taking this limit and assuming that the fracture flow is incompressible gives 
the equation governing flow in the fracture: 

In this equation FE is the elliptical fracture conductivity. The Dirac delta function 

is used to account for well production. The delta function is used for convenience, 

since it simplifies series manipulation. The incompressible fracture flow assumption 

should be as valid for the elliptical case as it was for the rectangular case discussed 
in the previous section. 

The solution of the fracture equation, Eq. 1.3, can be written as an eigenfunction 

expansion. In this case the eigenfunctions are cosines, so we choose to represent the 

The two series, Eqs. 1.2 and 1.4, contain two sets of undietermined constants, 7 z n  

and ,&. These two sets of unknowns must satisfy two constraints. One is that the 

reservoir pressure evaluated at ( = 0 equal the fracture pressure for all values of 77. 

Hence, Eq. 1.2 evaluated at < = 0 must equal Eq. 1.4. The second constraint is that 
the two series satisfy Eq. 1.3. 
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The equal pressure constraint and the orthogonality properties of the functions, 
cos(2rq), gives a relation between P 2 T  and 7 2 n :  

03 

n=O 

In this equation the terms, Ai:, are Mathieu Fourier coefficients and are known 
functions of s. 

Equation 1.5 gives an indication of the difficulty of using eigenfunction expansions 
to solve this problem. The difficulty arises because the eigenfunctions, cezn, are not 

orthogonal to the eigenfunctions, cos(2rq). This means th#at we cannot express the 
coefficients, ,82T, in terms of a finite number of the coefficients, 72n, and vice versa. 
This becomes more of a problem when we make use of the second constraint. 

The second constraint is employed by inserting Eqs. 1.2 and 1.4 into Eq. 1.3. 

Subsequent use of Eq. 1.5 and the orthogonality properties; of cos(2rq) removes the 
dependence of the fracture equation on q and 7Zn: 

03 0 

Equation 1.6 is a Fredholm sum equation of the second kind. It consists of an infinite 
set of linear relations, each relation corresponding to a different value of r. The only 

unknowns in Eq. 1.6 are the coefficients, P2, (or, equivalently, P2p, the subscript, p ,  
being a dummy index of summation). The kernel of the equation is Oii. The kernel 

is itself expressed as an infinite sum and is a known function of s. The quantity, E , ,  

is also known. 

The focal point of the entire solution procedure is to determine P2, from Eq. 

1.6. Once these coefficients have been found, the fracture pressure is determined by 
summing Eq. 1.4. The coefficients, 72n, are found by evaluating a series analogous 
Eq. 1.5. The reservoir pressure is then found by evaluating Eq. 1.2. 

The solution to the sum equation, Eq. 1.6, was found quite by accident. In 

attempting to find an approximating form valid for late times, we used the simple 
rearrangement of Eq. 1.6: 

(1.7) 
2 

P 2 T  = 
s'T(2FEr2 - CEO 6pugi@2p/P2T) a 
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This form gives the correct expression for ,B2T as s approaches zero (or equivalently as 

time becomes infinite) for any values of ,B2T used in the right hand side. As this form 
was used, it became apparent that any reasonable guess for /32r put in the right hand 

side of Eq. 1.7 resulted in a better approximation. Using this approximation as the 
new guess resulted in an iterative technique which seems alwa,ys to converge. 

Theoretically, Eq. 1.7 gives an iterative procedure which converges for all values of 

FE. Computationally, however, this procedure works efficiently only for large values 
of fracture conductivity. There is a second sum equation in terms of /3zT which is 
amenable to iterative solution in exactly the same way as 13q. 1.7. This second 

solution converges rapidly for small values of FE. 
Thus, we have two iterative solutions which have favorable convergence properties 

depending on whether F E  is large or small. The reason we are confident that these 
two procedures yield exact results is that, computationally speaking, they are quite 

independent and both converge to the same result. 

The procedure outlined above works well as long as s is small. As s increases the 
process becomes tedious because it requires the computation of a large number of 
terms. For this reason an alternate procedure was chosen to evaluate well pressures 
for t~~~ less than 

1.3 Well Pressures at Early Times 

Because the exact solutions become difficult to evaluate as the Laplace transform 
parameter, s, increases, approximate solutions are developed in Chapter 8 which give 
accurate well pressures at early times. These solutions combine the solutions to three 

simplified problems. The first problem assumes that the fracture is infinitely long 

and has a rectangular cross section. The second problem assumes that the fracture is 
elliptical, but that flow in the reservoir is one-dimensional. The third model assumes 
that the fracture conductivity is infinite. 

The first model uses the solution of Wilkinson (1989) for an infinitely long fracture 
of rectangular cross section. This solution gives accurate w'ell pressures for very low 
conductivity fractures because, if the conductivity is low, the fracture length has little 
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effect on the well pressure. Wilkinson’s solution can be used for the elliptical fracture 

because, near its minor axis, an ellipse is closely approximasted by a rectangle. 

The second model assumes that the reservoir pressure can be approximated by 

p~ N pjexp(-fiyo), i.e., that flow in the reservoir is essentially one-dimensional. 
Using this expression to give the reservoir influx term in Eq. 1.3 results in a ordinary 

differential equation for fracture pressure. This differential equation is solved by a 

perturbation procedure which gives pressures at the well only. These well pressures 
are valid for all values of fracture conductivity for extremely small values of time. 

This solution shows that the flow regimes of bilinear and reservoir linear flow exist 

for the elliptical fracture. 

The third approximate problem assumes that the fracture conductivity is infinite. 
Because we desire a solution that is valid for large s only, we use an approximate 
solution that is computationally expedient for small values of time. 

With these three approximate solutions in hand, we give composite solutions which 
are valid for all fracture conductivities for t~~~ less than 

The use of the composite solution for short times together with the exact solution 

for long times, yields a solution which gives accurate well pressures for all fracture 

conductivities and all times. This solution shows that the pressures from the elliptical 

fracture model do not vary markedly from those of the rectangular fracture model. 



Chapter 2 

REVIEW OF LITERATURE 

In this chapter we discuss the literature on pressure transient methods applied to 

hydraulic fractures and the literature on Mathieu functions. The hydraulic fracture 
section will discuss only those references which bear direct,ly on this research. The 

section on Mathieu functions discusses those references which pertain to the behavior 

of these functions and their computation. 

2.1 Hydraulic F’ract ures 

The literature on vertical fractures goes back to Muskat (1!337), and maybe even 

further. We do not intend to give an exhaustive account of the literature back to 

1937, but only to highlight those works which have a direct bearing on the present 

work: those using Green’s function techniques, approximate solutions, and elliptical 

geometries. An extensive review of the subject of pressure transients in hydraulically 

fractured reservoirs, through 1982, is given by Cinco (1982). 
The first work on pressure transients in fractured wells using the Green’s function 

technique is that of Gringarten et al. (1974). These authors posed the problem of 

an infinite conductivity fracture producing at a constant rate as an integral equation. 

In this integral equation, the flux distribution was the unknown and the free space 

Green’s function was the kernel. The solution procedure consisted of discretizing the 
equation in time and space and obtaining the flux distribution numerically. This 

9 
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type of procedure has been used jn many different fields and has become known as 
the boundary integral equation method, BIEM. 

Gringarten et al. (1974) gave the flux distribution for various times, but appar- 
ently did not use it to calculate pressures. Instead, they investigated the discretized 

equations and showed that a uniform flux fracture evaluated at a certain point along 

the fracture (they gave x = 0.73225) has the same value at early and late times as the 
infinite conductivity fracture. There has been some debate as to whether this use of 

the uniform flux fracture gave the correct values of pressures at intermediate times. 
Kuchuk et al. (1988) indicated that this “pressure point method” will not capture 
the character of the infinite conductivity fracture at intermediate times. Papatzacos 
(1987) states that the differences between the exact solution and the uniform flux 
approximation are as large as four percent. 

Cinco et al. (1978) used a version of the BIEM to evaluate the pressure response 
of a finite conductivity fracture of rectangular cross section. The finite conductivity 

model accounts for pressure drops along the fracture. The procedure used the integral 

of Gringarten et al. (1974) to represent reservoir pressure and a second integral to 
represent fracture pressure. Equating these two integrals at the fracture face resulted 
in an integral equation which was discretized and solved numerically. The use of this 

BIEM technique gives more accurate pressures than the finite difference method used 

by Agarwal et al. (1979) or the finite element treatment of Barker and Ramey (1978). 

Cinco and coauthors extended the BIEM to investigate less ideal cases. The 

effects of wellbore storage and skin were investigated by Cinco and Samaniego (1977). 

The inclusion of wellbore storage was a significant accomplishment since the integral 
relations were expressed in real space (as opposed to Laplace space). 

All of the BIEM treatments described above were performed without the use of 
the Laplace transformation. This means that they all involved a double integral 

over time and space. The use of the Laplace transformation eliminates the time 

integral leaving only an integral in space. The Laplace transform has been used in 

vertical fracture problems only recently; in fact, the first evaluation of the uniform 

flux solution in Laplace space was given by Kuchuk (1987). The BIEM solution of the 

finite conductivity problem in Laplace space, for the case of double porosity reservoirs, 
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was obtained by van Kruysdijk (1988) and Cinco and Meng (1988). 

As alluded to above, the BIEM is essentially a numerical technique-an accurate 

numerical technique, but a numerical technique nonetheless. One drawback of not 
having analytic expressions for the solutions is the lack of approximate solutions for 

various time and parameter ranges. To overcome this difficulty, several models have 

been proposed to give accurate solutions for certain time and conductivity ranges. 
First among these was the bilinear flow model of Cinco and Samaniego (1981). These 
authors considered an infinitely long fracture producing from a reservoir that exhib- 
ited linear flow perpendicular to the fracture. Using this moldel, the authors were able 

to demonstrate the existence of a bilinear flow regime which exhibited a one-quarter 

slope line on a log-log graph of pressure versus time. They also showed that the 

fracture linear flow regime, which results from decompression of fluids in the fracture, 
ends at times too early to be of practical use. So, little is lost by assuming that flow 

within the fracture is incompressible. 
The drawback of assuming linear flow in the reservoir is that it does not allow 

the radial flow regime to develop. In a later paper, Cinco et al. (1987), allowed two- 
dimensional flow in the reservoir and showed that the solution exhibited radial flow 

and was a good approximation for fractures of very low conductivity. The authors 

did not give closed form expressions for the solution. The closed formed expressions 
were given by Wilkinson (1989). 

Lee and Brockenbrough (1986) developed a model that exhibited both bilinear and 

reservoir linear flow-the trilinear model. The important feature of this model was the 

assumption of one-dimensional flow to a fracture of finite length. The third region 
in the model, which exhibited one-dimensional flow in the far field parallel to the 

fracture, had little effect on the solution. Since the trilinear model is a combination 
of linear flow regions, it does not exhibit radial flow. However, it does exhibit all of 

the regimes before the onset of radial flow including the effects of wellbore storage 
and fracture face skin. 

The most accurate approximate model to date is that of Wilkinson (1989). This 

model neglects all of the flow in the reservoir that is not adjacent to the fracture; 

so that the reservoir becomes an infinitely long, finite width strip. In this strip 
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two-dimensional flow is allowed, but the sides of the strip are closed to flow. The 
solution was presented in terms of a Fourier cosine series. ’Wilkinson then combined 
this solution with the infinite conductivity solution to obtain an approximate well 

solution. This solution was found to work well for high conductivity fractures, but 
for low conductivity fractures a correction term was required. 

The works cited above do not give exact solutions to either the infinite or finite 
conductivity fracture problems. The only exact solutions to these problems have been 
found by considering the fracture to be a degenerate ellipse. Exact solutions have been 
found for the infinite conductivity case and for the steady-state finite conductivity 

case by expressing the problem in elliptical coordinates. 

Prats (1962) solved the problem of an infinite conductivity fracture producing 
from a reservoir which had an elliptical outer boundary. The Laplace space solution 
was expressed as a series of Mathieu functions. Mathieu functions always arise when 

solving unsteady problems in elliptical geometries. 

Kucuk and Brigham (1979) used the solution given by ‘rranter (1951) to express 
the solution of an elliptical wellbore producing at a constant rate from an infinite 
system. The infinite conductivity fracture is a limiting case of Kucuk and Brigham’s 

elliptical well. These authors gave the reservoir pressure for the fracture producing 
at constant pressure, but gave only the wellbore pressure for the constant rate case. 

Papatzacos (1987) gave the solution for reservoir pressure for an infinite conduc- 

tivity fracture producing at constant rate. He approached the problem through the 

integral formulation of Gringarten et al. (1974). The exact solution was derived by 

means of a Mathieu function expansion of the kernel of the integral. 

Prats (1961) gave the only analytic treatment of a finite conductivity fracture. 
Prats considered an elliptical fracture producing from an elliptical reservoir. The 

flow in both regions was assumed to be incompressible. Prats gave closed form solu- 
tions, and, since the problem was steady state, the solutions did not involve Mathieu 
functions. 

A problem closely related to the one considered in this work, is that of a composite 

elliptical system. Obut and Ertekin (1987) investigated the problem of waterflooding 

a hydraulically fractured reservoir by considering a composite elliptical system. They 
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gave closed form solutions in terms of Mathieu functions, but unfortunately, they 
made an error when considering the matching conditions at the interface. Obut and 
Ertekin apparently did not realize that Mathieu functionjs of different parameters 

were not orthogonal to each other. In a discussion of Obut itnd Ertekin’s work, Riley 

(1990) showed the difficulties associated with solving composite elliptical problems. 

In this discussion, Riley used the method of Yeh (1963) to show that the application 

of separation of variables to the composite elliptical problem results in a pair of sum 
equations rather than an explicit solution. 

In the present research we model the fracture/reservoir system as a composite 
problem in elliptical geometry and consider the unsteady case. The problem can be 

viewed as a combination of those considered by Prats (1961) and Obut and Ertekin 

(1987). 

2.2 Mathieu Functions 

This section gives a review of the literature on Mathieu functions. The aim is to show 

only those references which were found to be useful for the purposes of the present 
research. 

There is only one text devoted solely to the subject of Mathieu functions. This 

book, McLachlan (1947), gives a good explanation of the properties of Mathieu func- 

tions and is written on a level comprehensible to the engineer. 
Another useful source is Chapter 2 of the second volume of Erdelyi et al. (1955). 

The exposition is clear and readily understandable and shows how Mathieu functions 
relate to the other higher transcendental functions. The drawback of this treatment 
is its brevity. 

Another important reference is the book on Mathieu functions and Spheroidal 

Wave functions by Meixner and Schafke (1954). This bolok appears to give some 
information that is missing in the previously cited referencles. The drawback of this 

reference is that it is written on a more technical level and is written in German. 

There may well be some important information in this reference that was overlooked 
by the present author. 
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Mathieu functions are discussed by Morse and Feshbacli (1953) in their two vol- 
ume work on mathematical physics. The treatment of these functions is scattered 
throughout the two volumes and is primarily concerned with solving problems in 
elliptical geometries. 

The standard reference on higher transcendental functions is the Handbook of 

Mathematical Functions (Abramowitz and Stegun (1972)). The section on Mathieu 
functions contains some useful formulae, but most of them can be found in McLachlan 
(1947). 

The first concern when dealing with Mathieu functions is to determine their eigen- 

values. To determine these eigenvalues, it is useful to have power series and asymp- 
totic representations. Rubin (1964) gave recursive formulae for the coefficients in 

power series expansions of Mathieu eigenvalues. The power series are useful for small 
values of the Laplace parameter, s. Meixner et al. (1980:) gave the corresponding 

recursive formulae for the asymptotic series, which is useful for large values of s. 

The power series and asymptotic series will give approximations to the eigenvalues 
only. The final determination of the eigenvalues is made through the evaluation of 

a continued fraction. This continued fraction is also used t o  determine the Mathieu 

Fourier coefficients, Ai:. The use of the continued fraction is detailed by Blanch 

(1966). 

The author wishes to emphasize the importance of McLachlan (1947) and Blanch 

(1966) to the present study. Without these two works, this research would not have 
been possible. 



Chapter 3 

THE RECTANGULAR 
FRACTURE MODEL 

In this chapter we discuss the rectangular fracture problem in some detail. The 

methods discussed in this chapter represent the current stake of the art in finite 
conductivity fractures. The focus of this chapter is a boundary integral element 

method (BIEM) similar to that used by Cinco et al. (1978:). However, we make two 
important digressions. The first discusses the difficulties associated with solving the 
finite conductivity fracture problem in rectangular coordinates. The second digression 
investigates an approximate model which gives well pressure behavior at early times. 

Before we can discuss solution techniques, we need to present the governing equa- 

tions. These governing equations are developed in the first section. 

3.1 The Governing Differential Equations 

This section is concerned with the equations which govern the pressure response of 

a rectangular finite conductivity fracture. To fully specify the problem we consider 

two domains. The first domain represents the reservoir and the second represents the 

fracture. Flow in each domain is governed by a differential equation and associated 
boundary conditions. 

15 
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3.1.1 The Reservoir Equation 

In this subsection we present the diffusivity equation and boundary conditions which 
govern flow in the reservoir. At the end of the subsection we discuss mixed boundary 

value problems. We do this to illustrate the difficulties associated with solving this 

type of problem analytically. 

Throughout this work, we assume that the reservoir is infinite, homogeneous and 
isotropic. The reservoir will “see” the fracture as a zero thickness strip occupying the 
x-axis from -xj  to +xj. Thus, the reservoir equation and boundary conditions will 
be the same for the rectangular fracture and the elliptical fracture. The fracture is 
assumed to be homogeneous, isotropic, to produce from its axis at a constant rate 

per unit height, and to have height equal to that of the reservoir. 

Because of the simplicity of the model, the flow in the reservoir is governed by the 

two-dimensional diffusivity equation: 

We will not discuss the derivation of this equation. A complete explanation of the 
derivation is given in the second chapter of Matthews and Russell (1967). The di- 
mensionless quantities in Eq. 3.1 are defined in the usual way, except that the length 
scale is the fracture half-length, xi:  

The reservoir initial condition is pRD(tDzf = 0) = 0, i.e. the reservoir is initially at 

a constant pressure, p;. Therefore, Laplace transformation o’f the diffusivity equation, 
with respect to tDxf, gives: 

d2pR d2pR 
SpR . - 

ax; (3.3) 

In this equation, s, is the parameter of Laplace transformation, and p~ is the Laplace 

transform of PRD. Throughout this work, a “bar” denotes a transformed quantity. 

Equation 3.3 is usually referred to as the two-dimensional Helmholtz equation, but 

we shall refer to it as the diffusivity equation. 
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To fully constrain the reservoir problem, boundary conditions are required. The 

first condition is that the dimensionless pressure approach zero as distance from the 
fracture approaches infinity. There are also symmetry conditions which arise because 
the fracture produces from its midpoint. The first symmetry condition is that no 
fluid crosses the y-axis. Therefore, the x-derivative of reservoir pressure must be zero 

along the y-axis. 

The remaining conditions are specified on the x-axis. It is these conditions which 

make solution of the rectangular fracture problem intractable. The symmetry of the 

fracture placement implies that no fluid crosses the x-axis to the left or right of the 

fracture. This requires that the y-derivative of reservoir pressure be zero on the 2- 

axis, but only for XD < -1 and XD > +l. The boundary condition on the fracture 
itself is that the reservoir pressure equals the fracture pressure. Explicitly stated, 
these x-axis conditions are: 

This set of conditions is indicative of a mixed boundary vidue problem. The term, 
mixed boundary value problem, refers to the fact that t:he dependent variable is 

specified over one segment of the boundary and its derivakive is specified over the 

remainder. Problems of mixed type are notoriously difficult to solve. So, we end this 
subsection with a discussion of mixed boundary value problems. 

Mixed Boundary Value Problems 

As an illustration of the difficulty of solving mixed problems, we consider two cases. 

The first is the uniform flux fracture and the second is the infinite conductivity 
fracture. 

The first problem, the uniform flux fracture, is one o'f unmixed type. In the 
uniform flux case we specify the y-derivative on the fracture face. Aside from this, 

the uniform flux problem is identical to that outlined earlier: the reservoir pressure 



CHAPTER 3. THE RECTANGULAR FRACTURE MODEL 18 

must satisfy the diffusivity equation, and all of the boundary and symmetry conditions 
outlined earlier apply, except for Eq. 3.5. The boundary coindition on the fracture is: 

The distinguishing feature of the uniform flux problem is that the boundary con- 

ditions on the x-axis all specify the value of the y-derivative. This makes the uniform 

flux case an unmixed boundary value problem. 
The uniform flux problem can be solved in many ways. The conventional approach 

is to apply a cosine transformation, with respect to yo ,  to Eq. 3.3. This results in 
a readily solvable ordinary differential equation because the cosine transform utilizes 
the derivative condition at = 0. An alternative method is to integrate the free 

space Green's function directly in the manner of Gringart,en et al. (1974). These 

methods are directly applicable because the y-derivative is given along the entire 

x-axis. 

If instead, we seek the solution for an infinite conductivity fracture producing at 
constant pressure, the fracture boundary condition becomes: 

(3.7) 
1 

pR(YD = 0,xD;s) = - , -1 5 X D  5; +1 . 
S 

The diffusivity equation and the remaining boundary conditions are unchanged. 

We now have a mixed boundary value problem. The only change is that the 

pressure, rather than the derivative of pressure, is specified on the fracture. This 

does not seem as if it changes the problem significantly, but it does. The problem 
can no longer be solved using the cosine transform because we are given gradient 

conditions only on portions of the x-axis. Similarly, the Green's function approach 

changes the problem into an integral equation, but does not give its explicit solution. 

It would be instructive to give the fundamental principle which underlies the diffi- 
culty of solving mixed boundary value problems. However, this principle is unknown 

to the present author. We can only state that if the unknown function, its derivatives 

or the sum of the two are given along each bounding surface, then there is hope of 

finding the solution using ordinary means. If one type of boundary condition is given 
over part of the boundary and another over the remainder, the solution can only be 
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found using extraordinary means. For the case of the infinite conductivity fracture 

these extraordinary means consist of the use of elliptical coordinates and Mathieu 
functions. 

We have made this digression to explain the difficulties associated with solving 
a mixed boundary value problem. The case of a finite conductivity fracture is more 

complicated yet. This is because we have specified that the reservoir pressure equals 
the fracture pressure at the fracture face, and the fracture pressure itself satisfies 
a differential equation. The fracture differential equation is the subject of the next 
subsect ion. 

3.1.2 The Fracture Equation 

In this subsection we describe the differential equation that governs flow within a 

rectangular finite conductivity fracture. We will not give the derivation here. The 
equation can be derived in a way analogous to that for the elliptical fracture given in 
Chapter 4. 

The rectangular finite conductivity fracture is assumed to have constant, although 

infinitesimal, width. The fluid flow into the fracture is accounted for by the derivative 

of the reservoir pressure at the fracture face and the flow within the fracture is assumed 
to be one-dimensional. Incorporating these assumptions into a material balance, 

eliminating the density in favor of the pressure and assuming the pressure gradients 
are small gives: 

(3.8) 
aPfD - K D - - ,  

d 2 P f D  
ax; FD d p R D /  d y D  yD=o+ - at,,, 

The fracture conductivity, F D ,  is equal to k p / k R x f ,  and the diffusivity ratio, K D ,  is 

equal to k R 4 f C t f / k f # R C t R  - 
The diffusivity ratio, K D ,  in Eq. 3.8 is normally on the order of and has 

been found by Cinco and Samaniego (1981) to have an effect on well pressure only 
for extremely small values of time. Hence, we will ignore the right hand side of Eq. 
3.8 without any significant loss of applicability. To simplify the problem further, we 

will transform it into Laplace space. In Laplace space the fracture equation then 
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becomes: 

20 

Since, the initial condition for the fracture pressure is p j D ( : t D x ,  = 0) = 0, no initial 
condition appears in this equation. 

Equation 3.9 requires two boundary conditions: 

== 0 . (3.10) 

Here we have restricted consideration to the right wing of the fracture. An equivalent 
set of conditions holds for negative X D .  The first boundary condition specifies that 

the fracture produces at a constant rate. The second condition specifies that no fluid 
enters the fracture at its tips. 

This concludes the discussion of the fracture problem. The remainder of this 

chapter will discuss the solution techniques for the pair of differential equations, Eqs. 

3.3 and 3.9. 

3.2 The Integral Equation Formulation 

In this section we discuss a variant of the solution procedure employed by Cinco et al. 

(1978) for the rectangular fracture. The procedure involves recasting the differential 

equations and boundary conditions of the previous section into integral form. The 

resulting integral equation is then solved numerically. This method is essentially that 

presented in Cinco and Meng (1988). The integral formulation requires two integral 

representations: one each for the fracture and the reservoir. 

3.2.1 The Reservoir Integral 

This subsection discusses the formulation of an integral expression for the reservoir 
pressure. The formulation uses the fundamental solution, K O ,  and the flux distri- 

bution, q’, to express the pressure in the reservoir. This converts the problem of 

determining reservoir pressure to one of determining the flux distribution at the frac- 

ture face. 
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As discussed in the previous section, the pressure in the reservoir is governed by 

the transformed two-dimensional diffusivity equation: 

(3.11) 

We now construct a fairly general solution to the diffusivity equation using the notion 
of the fundamental solution. This form can be found through the use of Green’s 

functions. For simplicity, however, we choose to develop the integral representation 

by superposing line source wells. 

The fundamental solution of the two-dimensional diffusivity equation is essentially 
that of a line source well producing at a rate, i j ( s ) ,  from an infinite medium. The 
solution to this problem is well known and is given by the modified Bessel function, 

KO : 

P R ( ~ D ;  s) = Q(S) K o ( r ~ & )  , (3.12) 

where rg is the distance from the well to any point in the reservoir. 

If more than one line source well produces from the reservoir, the pressure response 

is given by the sum of the contributions of the individual wells. In the case of a 

fracture, the only outflow from the reservoir is at the fracture face. So, we approximate 
the fracture outflow by a number of line source wells along ithe x-axis at positions xi: 

(3.13) 

In this equation rgi is d ( x g  - x ; ) ~  + y$ . 
At this point we need to discuss the approximate solution, Eq. 3.13, vis a vis, 

the diffusivity equation, Eq. 3.11. Equation 3.13 is a solution to the diffusivity 
equation because each term in the sum is a solution. Also, the approximate solution 

automatically satisfies the symmetry constraint that no fluid cross the x-axis because 

the only outflow points are on the x-axis. The final syrmnetry condition, that no 
fluid crosses the y-axis, will be satisfied if wells of equal rate are placed symmetrically 
about the y-axis. 

The only condition that Eq. 3.13 does not fulfill is that reservoir pressure equals 
fracture pressure at the fracture face. We cannot hope that ,a finite sum of line source 
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wells will satisfy this condition, since each well location has a logarithmic singularity 

associated with it. This will always be the case if the individual flowrates, iji, are 
finite. To overcome this difficulty we take the limit as the number of wells becomes 

infinite. If we assume, that as the number of wells becomes infinite, they are evenly 

distributed along the fracture, an integral results: 

The term, 6 ,  is the flux density, or flux distribution, at ilny point on the fracture. 

The prime is used in the notation for flux distribution because it is not the flowrate 

but the flowrate per unit length along the fracture. 

The flux density is proportional to the Darcy velocity and can be written in terms 
of the y-derivative of reservoir pressure: 

(3.15) 

Note that the integral of the flux distribution along the fracture must equal l/s 

because the fracture flow is incompressible. 
Equation 3.14 is the final representation for the reservoir pressure. It satisfies 

the diffusivity equation and all of the boundary/symmetry #conditions as long as q' is 

symmetric about the y-axis. To satisfy the equality of fracture and reservoir pressures 

at the fracture face, we restrict Eq. 3.14 to the fracture face and assign it to be equal 
to the fracture pressure: 

(3.16) 

Equation 3.16 is half of the final integral equation. The complete integral formu- 

lation requires an integral representation of the fracture equation. 

3.2.2 The Fracture Integral 

In this subsection we derive an integral representation of the fracture differential 

equation. This will be accomplished by means of a double integration. 
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The differential equation governing fracture flow is given by Eq. 3.9. If we use 

Eq. 3.15 to represent the first derivative of the reservoir pressure, Eq. 3.9 becomes: 

(3.17) 

The boundary conditions associated with this equation are given by Eq 3.10. 
The method of transforming Eq. 3.17 into an integral form is double integration. 

If we integrate Eq. 3.17 with respect to X D ,  twice, from zero to X D ,  and use Eq. 3.10, 
the result is: 

(3.18) 

where pw is the well pressure. 
Equation 3.18 does not appear in the usual form of integral equation. We can 

convert it to a more recognizable form by expressing the double integral as a single 
integral: 

(3.19) 

This last form is the result of changing the order of integration in the double integral. 

3.2.3 The Final Integral Formulation 

In this subsection we give the final integral formulation for the rectangular fracture. 
We then briefly discuss the numerical approach used for its solution. 

If we equate the two integral formulations for fracture pressure, Eqs. 3.16 and 
3.18, and use Eq. 3.19, an integral equation for q’ results: 

In this equation the unknowns are the flux distribution, 6, iznd the well pressure, pw.  
Equation 3.20 is the final integral form and is equivalent to that given by Cinco 

and Meng (1988). The oddity in Eq. 3.20 is that the well pressure is present. It 
would appear that Eq. 3.20 does not fully constrain q’, because the well pressure is 
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not known a priori. This is true. To fully constrain the problem we need the material 

balance condition that fracture influx equals well production: 

(3.21) 

Thus, it appears that the occurrence of well pressure in the integral equation is a 

result of the incompressible fracture flow assumption. 

Exact solution of Eq. 3.20 does not appear to be feasible. The commonly used 

solution procedures: transform methods, eigenfunction expansion, complex analysis 

techniques and generating function methods, are not useful in this case. The reason 

these techniques are not useful is that the kernels of the integrals in Eq. 3.20 have 
characters that differ greatly. 

Since an exact solution technique is unavailable, numerical means have been used. 

The numerical solutions of Eq. 3.20 convert the integral form to an approximate 

algebraic form. The algebraic form arises from the approximation of the integrals by 
Riemann sums. We will not detail the numerics involved. Suffice it to say that the 

method divides the fracture into n segments. The flux in each of these segments is 

assumed to be constant. This gives a set of n equations with n + 1 unknowns. The 

remaining constraint is provided by discretizing Eq. 3.21. 
The solution of the set of n + 1 equations, gives the well pressure and the flux 

distribution. Once the flux distribution is determined, reservoir pressures may be 

calculated from Eq. 3.14. 
It would be useful to have some appraisal of the efficiency of the BIEM just 

described: an appraisal both of the speed and the accuracy of the method. Unfor- 
tunately, no appraisal has been given in the literature, nor has the present author 

implemented this procedure. 
This ends the discussion of the BIEM applied to the rectangular fracture problem. 

This method appears to give accurate pressures, however determining qualitative 

pressure behavior using this method is difficult. 

The most widely used means of identifying qualitative behavior is to examine the 

solutions of simplified problems. Many simplified models have been presented in the 
literature. The next section examines a representative model. 
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3.3 An Approximate Model 

In this section we investigate the early time behavior of the wellbore pressure by 

means of a simplified model. We pursue this model because it can be used to identify 

the bilinear and reservoir linear flow regimes and is similar to a model we investigate 
in Chapter 8 for the elliptical fracture. 

The distinguishing feature of this model is that it assumes reservoir fluids flow 
in the y-direction only. Using this assumption, the diffusivity equation, Eq. 3.3, 
becomes: 

(3.22) 

This equation is an ordinary differential equation with constant coefficients and pos- 

sesses exponential solutions. The solution to Eq. 3.22, which is bounded at infinity 

and is equal to the fracture pressure at YO = 0, is: 

Note that we have not employed the boundary conditions specified on the x-axis 
outside of the fracture. The effect of ignoring these conditions is that the solution 

becomes increasingly unreliable away from the well. 

The importance of Eq. 3.23 is that it transforms the fr,acture equation, Eq. 3.9, 
into an ordinary differential equation. When Eq. 3.23 is used to give the reservoir 

influx term in Eq. 3.9, the fracture equation becomes: 

The boundary conditions are unchanged: 

(3.24) 

(3.25) 

The solutions to Eq. 3.24 are exponentials or, equivalently, hyperbolic sines and 

cosines. Thus, the solution is easily obtained. Evaluated at the wellbore, the solution 
is: 

/ --\ 

(3.26) 
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This expression is a limiting form of the trilinear solution o€ Lee and Brockenbrough 

(1986). The importance of Eq. 3.26 is that it represents lbilinear flow, linear flow, 
the transition between these two regimes and nothing else. This expression does not 

exhibit pseudoradial flow because we have neglected reservoir flow in the z-direction. 

However, it does give a limiting curve to which all well pressure curves must merge 
at early times. 

The optimum way to represent this early time limiting curve can be seen by 
examining Eq. 3.26 in relation to the change of scale property of the Laplace trans- 
formation: 

-- 6(s’c) - L {(a( c t ) }  . 
C 

(3.27) 

The application of the change of scale property shows that Eq. 3.26 represents a 

single curve when p ~ , F o  is graphed versus t~~~ F i .  
The short time and long time behaviors of this limiting curve are found by evalu- 

ating Eq. 3.26 as s approaches infinity and as s approaches zero, respectively. These 
two limiting forms are: 

and 

(3.29) 

The first limiting form, Eq. 3.28, was first found by Cinco and Samaniego (1981) 
and gives well pressure during the bilinear flow regime. The characteristic feature of 

this regime is that it plots as a one-quarter slope line on a log-log graph of pressure 

drop versus time. 

The second limiting form, Eq. 3.29, was given by Cinco et al. (1984) and gives 

the well pressure during the reservoir linear flow regime. The characteristic feature 

of this regime is that it approaches a one-half slope line on a log-log graph. The 

reservoir linear flow regime occurs for fractures of high concluctivity only. 
Figure 3.1 shows a graph of well pressures, given by Cinco et al. (1978), plotted 

on a log-log graph of PD,FD versus to,,F’. The bold curve is a graph of Eq. 3.26. 
Figure 3.1 is one of the most useful sets of curves currently available for the analysis 
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Figure 3.1: Cinco and Samaniego’s Type Curves 

of well test data from hydraulically fractured wells. This method of presentation is 
due to Cinco and Samaniego (1981). 

This concludes the discussion of the rectangular fracture model. This chapter was 
meant as a review of the current state of the art of the solution methods for rectangular 

finite conductivity fractures. We also intended this chapter to show that it is infeasible 
to solve the rectangular fracture problem analytically and that approximate models 

are useful. The remainder of this work will be devoted to the problem of an elliptical 

fracture. We choose the cross section to be elliptical because it results in a problem 

which is amenable to analytic solution. 



Chapter 4 

GOVERNING EQUATIONS FOR 
ELLIPTICAL FRACTURE 

In this chapter we present the pair of differential equations which govern the elliptical 
finite conductivity fracture case. This pair of equations is analogous to Eqs. 3.3 and 

3.8 of Chapter 3. We change the geometry from rectangular to elliptical to facilitate 
analytic solution of the problem. This necessitates expressing the reservoir equation 

in elliptical coordinates and representing the fracture as a degenerate ellipse. 

4.1 The Reservoir Equation 

The purpose of this section is to present the two-dimensional diffusivity equation 
in elliptical coordinates. This will require a discussion of the elliptical coordinate 
system. 

The reservoir flow to the elliptical fracture is governed by the same equation as for 
the rectangular fracture case: the two-dimensional diffusivity equation, Eq. 3.3. This 
is because both cases represent the fracture as a zero-width strip. Thus, reservoir 
pressure in the elliptical fracture case satisfies: 

In this work we pursue solutions in the form of eigenfunction expansions. The 

28 
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reservoir expansion is found by applying the method of sepatration of variables to the 

diffusivity equation. To use separation of variables, we require a coordinate system 
in which the two-dimensional diffusivity equation separates. Only four coordinate 

systems satisfy this separability requirement: Cartesian, cylindrical, parabolic, and 

elliptical coordinates. An additional requirement is that th.e strip, which represents 

the fracture, be expressible by one coordinate for all other values of the second coor- 
dinate. Of the four coordinate systems mentioned, only the elliptical system satisfies 
this requirement. 

4.1.1 Elliptical Coordinates 

The elliptical coordinate system, shown in Fig. 4.1, is constructed from the relations: 

YD = y/xj  = sin(q) sinh(() . (4.3) 

The elliptical coordinate system consists of a family of ellipses and a family of 
hyperbolas; each with foci at $1 and -1 on the zD-axis. The hyperbolas are labeled 
for various values of q from 0 to 2n. In this system 17 plays a role similar to the 

angular coordinate. The ellipses are labeled for various values of ( starting from 0. In 

this system ( plays a role similar to the radial coordinate. A s  ( increases, the ellipses 

resemble circles and the hyperbolas become radii of these circles. 

The significant feature of this coordinate system is thak the degenerate ellipse, 
( = 0, is the line segment joining the two foci. From the viewpoint of the reservoir this 

degenerate ellipse represents the fracture. This is an improvement over the Cartesian 

coordinate system, in which the fracture is represented as IJD = 0 for some values of 

X D  but not for others. 
Aside from the basic geometry of the system, we are concerned with the transfor- 

mation of differential quantities: primarily the arc-length and the Laplacian. The 

required transformations can be found using conventional methods of coordinate 

transformation which employ the scale factors, h, and h,. The scale factors mea- 
sure the ratio of the infinitesimal element of arc-length in th,e new coordinate system 
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Figure 4.1: Elliptical Coordinates 

to that in the Cartesian system. In elliptical coordinates .the two scale factors are 

equal and are given by: 

h, = ht = -(cosh(2[) - cos(29)) J: (4.4) 

Using the scale factors, we can immediately transform the :Laplacian and arc-length 
from Cartesian to elliptical coordinates. 

The two-dimensional Laplacian of a quantity, @, is given by the expression: 
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If we consider arc-length to be a vector, its differential element is given by: 

In this equation the “hats” denote unit vectors in the direction of the quantities they 
over lay. 

It is now a simple matter to transform Eq. 4.1 into elliptkal coordinates. We need 
only replace the left-hand side of Eq. 4.1 by the final form in Eq. 4.5, and rearrange: 

S - a 2 F R  a2FR  COS^(^[) -  COS(^^)] j jR . 
at2 + = 2 (4.7) 

Equation 4.7 is the diffusivity equation expressed in elliptical coordinates. This 
new form is completely equivalent to Eq. 4.1. Equation 4.7 is preferred because it 

allows us to express the fracture at a single value of { = 0. 

The boundary conditions associated with Eq. 4.7 are the same as in the rectangu- 

lar fracture formulation of Chapter 3 but must be expressed in elliptical coordinates. 

The condition that no fluid crosses the x or y-axis is equivalent to specifying that 

the derivative of reservoir pressure, with respect to 7, is zero at 17 = 0, a/2, t, and 
3 ~ / 2  . The boundedness condition in the far field is equivalent to specifying that p~ 
approaches zero as t approaches infinity. The inner boundary condition is that 1 7 ~  
equals p f  at = 0. 

4.2 The Fracture Equation 

In this section we derive the differential equation which governs fracture flow and 
discuss its boundary conditions. The fracture equation is derived by applying a 

material balance to a long thin ellipse and taking the limit as the minor axis of the 

ellipse vanishes. The boundary conditions will be homogeneous because we choose to 

account for well production by means of the Dirac delta function. 

We start with a control volume (CV) that is part of a thin ellipse of width t o ,  
as shown in Fig. 4.2, and assume that flow within the C\I takes place only in the 

17-direction. Flow in the (-direction is represented by a source term, a first derivative 
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Figure 4.2: The Elliptical Fracture 

at [ = (0. The symmetry of the problem allows us to restrict our attention to the 
first quadrant as long as we ensure that no fluid crosses the x-axis. 

In Fig. 4.2 the CV has width 2A77 and is centered at an arbitrary position 77. The 
conservation of mass applied to the CV is: 

pvAIq+Aq - poAlq-Aq + pvAl<o = ( d v l t + &  - pdv l t ) /A t*  (4.8) 

In this equation: o is the volume flux, A is the cross-sectional area and V is the 
volume element. The other nomenclature should be self explanatory. We can write 
the velocities, cross-sectional areas and volume element in terms of derivatives and 
scale factors: 

- P 4  hhdo  h,2A77lt+*t - P d  hh€& h,2A771, . (4.9) 
At 

In this equation, h is the reservoir thickness, while h< and h., are the scale factors 

defined by Eq. 4.4. Recalling that h, = ht allows us to simplify the expression 
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considerably: 

(4.10) 

To put this equation into differential form: we take the limit as A q  and At approach 
zero, assume + and p are pressure independent, assume the fluid compressibility is 
small and constant, and assume that the pressure gradients atre small. We also assume 
that as (0 approaches zero, k f  approaches infinity, such that, the product, k f t o ,  is 
nonzero and finite. To keep the diffusivity ratio from vanishing, we assume that 

fracture compressibility becomes infinite as fracture permeability becomes infinite. 
The result of performing these operations is: 

(4.11) 

All of the dimensionless terms are defined using reservoir properties, as in Chapter 3, 
and ICD is the diffusivity ratio, 4 j c t f  kR/$RctRkf . The elliptical fracture conductivity, 

FE, is defined as 2 k f [ o / k ~  . Fracture conductivity is defined in this way so that FE 
and the rectangular fracture conductivity, FD, represent the same quantity ut the 
well. This is important because the width of the elliptical fracture, and hence its 

flow capacity, decreases toward the fracture ends, while the width of a rectangular 

fracture is constant. Thus, FE and FD represent different quantities. We have chosen 

to match their definitions at the well to facilitate comparison of pressures in Chapter 
9. 

The initial condition for the fracture is pfD(tDx,  = 0) = 0. so, Laplace transfor- 
mation of Eq. 4.11 yields: 

(4.12) 

Equation 4.12 requires two boundary conditions. If we assume that the well 

produces at a constant rate 
constant rate inner boundary 

and use Darcy’s law to model flow at the well, the 
condition is: 

(4.13) 
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The outer boundary condition, at q = 0, specifies that no fluid crosses the z-axis. 

Thus, the outer boundary condition for the fracture is the liomogeneous condition: 

(4.14) 

The fracture problem is difficult to solve with this pair of boundary conditions 

because they complicate the use of Fourier representations for the fracture pressure. 
The reason is that termwise differentiation of Fourier series is allowed only under 

certain conditions. We can avoid this difficulty by accountiing for well production by 

means of the Dirac delta function. Using the delta function we can account for well 
production in Eq. 4.12, itself 

(4.15) 
-w 

- cos(2q)I pf = - S(q - ./a) . 
S F E  

Since we have taken well production into account in the differential equation, we now 

require both the inner and outer boundary conditions to be homogeneous: 

(4.16) 

A convenient way to view the role of the delta function in Eq. 4.15 is to consider 
two line sources producing from opposite wings of the fracture. If these sources 

produce at equal rates and are symmetrically placed about the well, the derivative 

of the pressure at the well will be zero. If we bring this pisir of sources toward the 

well and place them an infinitesimal distance from it, we have accounted for the 
well production while imposing a zero gradient condition at q = w/2.  This may 

seem rather contrived, but the delta function will simplify the analysis of Chapter 6 
considerably. 

The fracture formulation is now complete, although at a later stage we will make 
the assumption that KD is equal to zero. Before we attempt to solve the coupled 

fracture/reservoir differential equations we need to discuss Mathieu functions in some 

detail. These functions arise from applying separation of variables to the reservoir 

equation, Eq. 4.7. Mathieu functions are the topic of the next chapter. 



Chapter 5 

MATHIEU FUNCTIONS 

In this chapter we interrupt the discussion of the elliptical fracture problem to give 

an overview of Mathieu functions. This is necessary because these functions are the 
separated solutions of the diffusivity equation in elliptical coordinates. The develop- 

ment will be fairly detailed because Mathieu functions are rarely used in petroleum 
engineering. 

Mathieu functions will be introduced as separated solutions of the diffusivity equa- 
tion. The angular functions, cezn, will be discussed at length, since they are the 

eigensolutions of the reservoir problem. There will be a lengthy digression which dis- 

cusses the orthogonality properties of the Mathieu functions' and the Mathieu Fourier 

coefficients. These relations will be used to develop Fredholm sum equations in the 
next chapter. The chapter ends with a discussion of the radial functions, Fekz,, and 

presentation of the reservoir pressure series. 

5.1 Separation of Variables 

In this section we discuss the method of separation of variables applied to the diffu- 

sivity equation in elliptical coordinates. The separated equations will be Mathieu's 

equations and their solutions will be the subjects of subsequent sections. 

35 
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As was shown in Chapter 4, Eq. 4.7, reservoir pressure is governed by: 

d2FR a2‘R -[cosh(2[) S - cos(2q)l j jR . 
at2 + dq2 = 2 

This equation is subject to the boundary conditions discussed in Chapter 4: the 
solution must have q-derivative equal to zero at q = 0, n/2, n, and 3n/2; it must 

decay as t approaches infinity, and it must equal the fracture pressure at [ = 0. The 
zero-derivative condition in q is equivalent to the requirement, that j i ~  be n-periodic 
and even in q. 

The first step in solving Eq. 5.1 is to assume that solutions exist in the form 

R(t )0(q) ,  i.e., a function of t multiplied by a function of q. Inserting this product 
into Eq. 5.1 and rearranging yields: 

1 d 2 0  s 1 d2R s 

0 dq2 2 R d t 2  2 
- -- - - cos(2q) = -- - - cosh(2t) = a.  

Here we have set an expression that is only a function of q equal to an expression 
that is only a function o f t .  Equality can hold only if both expressions are equal to 

a constant, the separation constant, a. 

The equations in Eq. 5.2 are the “separated equations”. The first of these: 

d2 0 S - + [a + - cos(2q)I 0 = 0, dV2 2 (5.3) 

is a form of Mathieu’s equation. Equation 5.3 governs flow in the q-direction and 
so will be referred to as the angular Mathieu equation. This equation is subject to 
homogeneous derivative conditions at integral multiples of n/2. 

The second separated equation is: 

(FR S - - [U +- - ~ 0 ~ h ( 2 t ) ]  R = 0. d t 2  2 (5.4) 

This equation is usually referred to as an associated Mathieu equation. Equation 

5.4 governs flow in the [-direction and so we will refer to it as the radial Mathieu 
equation. The solutions we require must decay as 5 approaches infinity. 

The discussion of the solutions of these two separated equations and the properties 
of these solutions comprise the remainder of this chapter. 
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5.2 The Angular Mathieu Functions, ce2, 

In this section we describe the even a-periodic angular Mathieu functions, ceg, . 
Before we can discuss these functions, we need to discuss the separation constants, 
a2n, which occur in the separated equations and also discuss the Fourier coefficients, 

Ai:, which are used to express ce2, by cosine series. The separation constants are 
intimately related to the eigenvalues of Eq. 5.3 which a8re the topic of the next 

subsection. 

5.2.1 The Eigenvalues, A;n 

In this subsection we discuss the eigenvalues, A i n  . The discussion will be largely 

qualitative, since we must defer the discussion of the quantitative aspects of the 
eigenvalues until we consider the Fourier coefficients. 

The significance of the separation constant, a, is best illustrated by considering 

the angular Mathieu equation given in the previous section: 

d202,  S dq2 + [ a h  + - cos(2q)l 0 2 ,  = 0. 2 (5 .5)  

Here we have added subscripts to 0 and a because there are an infinite number of 

these functions and constants that satisfy Eq. 5.5 and the symmetry conditions. 

Note that when s = 0, Eq. 5.5 becomes an equation with (constant coefficients. For 

s = 0, the only solutions which satisfy this equation and the: boundary conditions are 

cos( 2nq). 
Since, a2, satisfy a homogeneous differential equation with homogeneous bound- 

ary conditions, they will play the role of the reservoir eigenfunctions. It is the prop- 

erties of these eigenfunctions, principally orthogonality, w:hich makes separation of 
variables such an effective tool. 

Equation 5.5 is the defining equation for the eigenfunctions, cezn . Sturm-Liouville 
theory states that there exist only certain special values of aZn for which these eigen- 

functions exist. It is the determination of these constants which poses the first major 

problem in developing the eigensolutions. 
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We have made a point of referring to u2, as separation constants and not eigen- 

values. Technically, ~2~ are not eigenvalues because Eq. 5.5 is not in standard Sturm- 
Liouville form. This is because cos(2q) changes sign on the interval (0, T ) .  Equation 
5.5 can be put into standard form by defining a new set of cmstants, Ai, = a2, +s/2. 

Using these new constants, which are the eigenvalues, and the half-angle identities of 
cosines, puts Eq. 5.5 into Sturm-Liouville form: 

d 2 0 2 ,  + [Xi, - ssin2(q)] 02, = 0. 
dv2 

In this form, Sturm-Liouville theory gives useful information about the eigenvalues, 
A;,. The theory says that all of the eigenvalues are positive (or at least nonnegative). 
It also states that there are an infinite number of them and. that they are all simple, 

Le., no two eigenvalues are equal. An unfortunate feature of the eigenvalues is that 
they are functions not only of their index, but also of s. What is more, there is no 
closed form expression for Xi, . 

We can facilitate the discussion of the eigenvalues by examining a graph of A:, 
versus s for various values of n. Figure 5.1 shows a graph of the first eleven eigenvalues. 
This figure shows that each eigenvalue starts out at a value of 4n2 at s = 0. As 
s increases each of the eigenvalues increases and each curve has a positive second 
derivative until it reaches a point near the line X2 = s. At these points, each curve 

has a point of inflection. After this, the second derivative becomes negative. The first 

derivative remains positive, however, so that the eigenvalues are strictly increasing 
functions of s. 

The significance of the line, Ai, = s, is found by examining Eq. 5.6 with regard 

to the coefficient of 02,. If Ai, is greater than s, the coefficient is positive for all real 

values of q. When the coefficient is positive we expect purely oscillatory solutions. 
When s becomes greater than Xin, however, there are always certain ranges of q in 
which the coefficient is negative. The values where the cot:fficient is zero are called 

turning points. The existence of these turning points complicates the solution of 

the differential equation, because they separate regions of oscillatory behavior from 

those of exponential character. This difficulty is reflected in the determination of the 
eigenvalues as well as the computation of the Mathieu functions. 
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Figure 5.1: Eigenvalues, Ain, n = 0 - 10 

The determination of the eigenvalues is somewhat involved. There are power 

series expansions for A&, in powers of s ,  for each value of 11. However, the radius of 
convergence of these series is less than s = Ain, Le., the series converge to the left 

of the straight line on Fig. 5.1. Far to the right of this line, there is an asymptotic 

expansion which works fairly well. However, there is no satisfactory representation of 
the eigenvalues near the line, X2 = s. There is, however, a continued fraction which 
can be used to compute the eigenvalues for any value of s. This continued fraction 
will be discussed in some detail in Appendix B. 
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5.2.2 The Fourier Coefficients, A:: 

This subsection is primarily concerned with the Fourier coefficients, Ai:, which are 

used in the series representations of Mathieu functions. The discussion is aided by 

the construction of the solutions of the angular Mathieu equation, since the Fourier 
coefficients arise from the representation of cezn by cosine series. The Fourier coeffi- 
cients are constrained by a set of recurrence relations derived from the Fourier series 

representation. The eigenvalues of Mathieu's equation are constrained by these same 
relations. 

The reservoir eigenfunctions, cezn, satisfy the same periodicity requirements as 

cos(2nq) and become proportional to them as s approaches zero. So, it is not sur- 
prising that the solutions to the angular Mathieu equation are usually expressed by 
cosine series. In keeping with the literature, we shall refer to the solutions of Eq. 5.6, 
satisfying the homogeneous derivative conditions, as cezn(77; --s/4). It is convenient, 

however, to solve Eq. 5.5 rather than Eq. 5.6 and to use ~ 2 n  rather than A i n .  
The Mathieu functions, cezn(q; -s/4), are usually represented as: 

00 

ce2n(q; -s/4) = C(-l)'+"Ai:(s/4) cos(2rq). 
T =o 

(5.7) 

Here the coefficients, AiF(s/4), have been written in this way to emphasize the de- 
pendence of the Fourier coefficients on s. Throughout this work we tacitly assume 
that the argument of the Fourier coefficients is s/4, unless otherwise specified. Also, 

note that "2n", which appears as a superscript, is a superscript and not a power. 

Inserting Eq. 5.7 into Eq. 5.5, and equating coefficients of cos(2rq) to zero 

produces the recurrence relations: 

Since these relations are all homogeneous, they define the Fourier coefficients only 

up to a multiplicative constant. This constant will be fixed by the normalization 
of cezn in the next section. The recurrence relations also constrain the separation 
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constants because the values of Ai: are required to approach zero as r becomes 
infinite. It is interesting that this last requirement can only be fulfilled if ~2~ takes on 
those same special values which allow solutions of Eq. 5.5 to be n-periodic and even. 
In Appendix B, we make this restriction on u2n explicit by recasting the recurrence 
relations as a continued fraction. 

In theory, once the eigenvalues have been found, the Fourier coefficients can be 

determined from the recurrence relations of Eq. 5.8. The recurrence relations are 

unstable in the forward direction, however, and so it is expedient to determine the 

coefficients from the continued fraction formulation used in determining the eigenval- 
ues. This is also discussed in Appendix B. 

Before discussing the properties of the “Fourier coefficients”, Ai:, we need to 
comment on their significance to Mathieu functions. We use the quotation marks 
to emphasize that, although we use many types of Fourier expansions in this work, 

the term Fourier coefficients is used to refer to Ai: only. We introduced the Fourier 

coefficients through a cosine expansion of the angular Mathieu functions, but these 

coefficients are fundamental to all representations of Mathieu functions. They appear 

in all of the series expansions for the angular functions-cosine expansions as well as 

Bessel function expansions. They also appear in the expansions of the radial Mathieu 
functions. For our purposes they are essential, since the Fourier coefficients will be 

the building blocks of the sum equations of Chapter 6 indlependent of their role in 

the representation of Mathieu functions. 
Analysis of the recurrence relations, Eq. 5.8, shows that convergence of the Fourier 

series, Eq. 5.7, is rapid. This is because the Fourier coefficiients become proportional 
to (-1)‘(~/16)‘/(r!)~, as r becomes infinite. It would be illustrative to show a graph 
of the Fourier coefficients. Since they are functions of r ,  n and s, there is no convenient 

way to do this. Therefore, we will give a qualitative appraisal of the coefficients in 

the cases of small and large s. 

The behavior of the coefficients for small s is favorable from a computational 
standpoint. The previous discussion together with the normalization adopted in the 
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next section shows that ce2, have the limiting form: 

cos( 2n77) 
limce2,(7; -s/4) = 6 .  s-bo 

This implies that the Fourier coefficients have the limiting form: 

(5.9) 

(5.10) 

In these last two relations, E ,  is defined to be two, if n = 0, and is unity, otherwise. 
For small s and for r less than a fixed n, the coefficients increase factorially with T- up 
to Ai: and are all positive. For r greater than n, the coefficients decrease factorially 

with r and have alternating signs. This means that there is only a narrow range of 
r ,  centered at r = n,  in which the coefficients differ significantly from zero. 

The behavior for large s is less favorable. The large s behavior seems to begin at 
the straight line of Fig. 5.1, i.e., large s behavior starts with the appearance of turning 

points. As s increases a second region develops. Again we are considering n fixed. 
This region is again centered at n, but the coefficients no longer decay near r = n. 

In this second region the coefficients change magnitude and sign in an apparently 
random fashion. In addition, the coefficient, Ai:, is no longer guaranteed to have 

the greatest magnitude and itself changes sign. The size of this secondary region 
increases with s, but the coefficients outside this region still decrease rapidly. This 

large s behavior not only makes the coefficients more difi.cult to calculate, simply 

because there are more of them, but this behavior also malkes the resulting Fourier 

series converge more slowly. 

This ends the discussion, in the main text, of the computational aspects of the 
Mathieu functions. Appendix B discusses the computation of the eigenvalues and the 

Fourier coefficients in detail. 

5.2.3 Qualitative Aspects of ~ e 2 ~  

Mathieu functions differ from those functions normally used in petroleum engineering. 
Most of the functions used in petroleum engineering: error functions, exponential in- 

tegrals and Bessel functions, are of hypergeometric type. These hypergeometric func- 
tions possess power series expansions, integral representat ions, recurrence relations 
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and the like, all in terms of explicitly defined coefficients, integrands etc. This is not 

the case with Mathieu functions: the power series representations of Mathieu func- 

tions are not useful, no known integral representations exist {(instead there are integral 

equations which contain Mathieu functions themselves), and the recurrence relations 
for ~ e 2 ~  have coefficients which are complicated functions of Mathieu functions. 

As alluded to earlier, the functions, cezn, are similar to the trigonometric functions, 
cos(2n17). They have the same number of oscillations, in any interval of length n, as 

cos(2nq)) but, for large values of s, the oscillations are confined to regions between 
turning points. 

Typical behavior of Mathieu functions is shown in Fig. 5.2. This figure shows the 

function, ce4, for s equal to 1, 10, 100 and 1000, for 7 between -n/2 and n/2. For low 
values of s, the function is closely approximated by cos(4q). For higher values of s 

the function changes shape: the appearance of turning points restricts the oscillatory 
behavior to a narrow range of 7. 

There is another property of Mathieu functions that is important in the solution 

of the finite conductivity fracture problem: for sufficiently large n, ~ e 2 ~ ( 1 7 ;  -s/4) 

becomes equal to cos(2nq) to any tolerance desired. Another way of saying this is 

that a value of s, which is considered large for a function of low order, is considered 

small for a function of much higher order. This is illustrat#ed by Fig. 5.3 where we 

have plotted ~ e ~ ~ ( q ;  -25) for n equal to 1,3,5,  and 7. From this figure it is clear that 

the two lowest order eigenfunctions are not purely oscillatory-turning points have 

developed. However, the highest order eigenfunction looks much like cos( 1417). For 

higher values of n, ce2, will resemble cos(2n7) even more cllosely. This is significant, 

since in later chapters we will equate a cosine series to a Mathieu function series. 

This property implies that for large n, the coefficients in the Mathieu function series 
must equal those in the cosine series. 

This ends the discussion of the descriptive properties of the angular Mathieu func- 
tions. Before we describe analytic properties of these functions, however, we need to 

mention the second solutions of Mathieu’s equation. Since Eq. 5.6 is a linear sec- 

ond order equation, there must be a second solution that is linearly independent of 

cezn . Since the first solution is analogous to cosine, we expect the second solution 
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to be analogous to sine. This is not the case. The second solution, denoted f e z n  
by McLachlan (1947), is not oscillatory and bears little resemblance to any trigono- 
metric function. It also does not satisfy the symmetry requirements and so must be 

discarded. In passing, it should be said that solutions analogous to sin(2nv) require a 

different set of separation constants. These separation constants are usually denoted 

bzn+2 and are constructed in a way analogous to that shown above. 

5.2.4 Orthogonality Properties 

In this subsection we discuss the orthogonality properties of the angular Mathieu 
functions, the Mathieu Fourier coefficients and the functions, cos(2rq). These prop- 

erties will be used in the next chapter, where we derive the Fredholm sum equations 

which are the focus of this work. 

The functions, cez,, possess an orthogonality relation because they satisfy a 

Sturm-Liouville problem. This orthogonality relation states that the integral of the 

product of two eigenfunctions over a period will be zero, if the functions are of differ- 

ent order, or a constant, if the functions are of the same order. This relation can be 

The Kronecker delta function, S,,, is defined to be zero unless rn = n, in which case 

it is unity. Implicit in Eq. 5.11 is that ce2, has norm 7r/2, i.e., the square integral of 

cezn over any interval of length 7r is equal to r /2 .  This normalization is the one most 
commonly used in the literature. 

The analysis of related orthogonality properties is facilitated by the use of the 
cosine series representation, Eq. 5.7: 

03 

~ e 2 ~ ( 7 ;  -s/4) = X(-l)'+"A;: cos(2rq). (5.12) 
T =o 

This form is useful because the functions, cos(2r7), also ;sat,isfy a Sturm-Liouville 
problem and, hence, possess an orthogonality relation: 

7r 1' cos(2r7) cos(2pq)d7 = . 
4 

(5.13) 
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Recall, E , ,  is two, if r = 0, and unity, otherwise. 

We can now demonstrate an orthogonality property of the Fourier coefficients, 
A::, over summation. This discrete orthogonality relation is obtained by using Eq. 
5.12 to represent both Mathieu functions in Eq. 5.11. Subsequent use of Eq. 5.13 
yields: 

00 

(5.14) 

This is the first orthogonality property of Fourier coefficients over summation. A 
second expression of this type will be given later in this section. 

2m 2n - C ‘TA2T - ‘m, * 

T =o 

For n = rn , Eq. 5.14 shows that the Fourier coefficients satisfy the normalization: 
03 

2(Ap)2 f C(Ai: )2  = 1. (5.15) 
T = l  

This normalization taken together with recurrence relations, Eq. 5.8, fully constrains 

the magnitude of the Fourier coefficients. The sign of Ai: is fixed by requiring A? 
to be positive. 

In addition to its orthogonality properties, Sturm-Liouville theory states that the 

functions, cezn, comprise a complete set. This means that any even n-periodic func- 

tion can be written as an infinite series of Mathieu functions. The same completeness 
property holds for cos(27-7). Hence, an arbitrary even n-periodic function, f ( ~ ) ,  can 
be written: 

M 00 

(5.16) 
n=O ,=O 

The factors, (-l)T and (-l)n, have been used because t,hey simplify expressions 
derived below. 

Application of the orthogonality relations to Eq. 5.16 shows that the coefficients, 

and ,&, can be expressed as integrals: 

The orthogonality and completeness properties allow us to write Mathieu function 
series and cosine series in terms of each others coefficients. This requires the use of 
the relation: 

(5.18) 
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Equation 5.18 is derived by using the cosine series representation of cezn, Eq. 5.12, 

and the orthogonality property of cos(2rq), Eq. 5.13. 
Applying the orthogonality property of cos(2rq) and Eq. 5.18, to Eq. 5.16 gives: 

00 

n=O 
Applying the orthogonality property of ~ e 2 ~  and Eq. 5.18, to Eq. 5.16 gives: 

60 

(5.19) 

(5.20) 

These two relations allow us to write the coefficients of a cosine series in terms of the 

coefficients of a Mathieu function series, and vice versa. 
As an application of these relations, we show the expansion of cos(2pq) as a series 

of Mathieu functions. In this case, ,&T = ( - l ) T b T p  . Use of Eq. 5.20 gives: 

n=O / n:=O 
(5 .21)  

Using this relation, to represent both cosine functions in Elq. 5.13, and the orthogo- 
nality property of cean gives a second orthogonality relation for the Fourier coefficients 
over summation: 

00 

(5.22) 

This discrete orthogonality relation, together with Eq. 5.14, will be used in Chapter 
6 to manipulate the sum equations. 

2n 2n - 
'T A 2 T A 2 p  - 'I'p 

n=O 

The discrete orthogonality properties, Eqs. 5.14 and 5.22, of the Fourier coeffi- 

cients at first appear rather mystical. However, some reflection will show that they 
are equivalent to the continuous orthogonality properties of cezn and cos(2rq). The 

importance of the discrete orthogonality properties is that they can be used to ma- 

nipulate expressions in which explicit q dependence has been removed, i.e., they can 
be used after the problem has been reduced to a relation between coefficients. This 
will enable us, in Chapter 6 ,  to derive equivalent forms of sum equations almost at 
will. 

In this section we have concentrated on the relations between Mathieu functions 

and cosine functions. This is because, in the next chapter, we represent the fracture 
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pressure by a cosine series. The cosine series will arise naturally from the assumption 

of incompressible fracture flow. 

5.3 The Radial Mathieu Functions, Fekz, 

The subject of this section is the radial functions, Fek2, In the previous section 

we dealt with the eigenfunctions, ce2, . That discussion required some fairly deli- 

cate manipulations, because we were solving an eigenvalue problem which required 

the determination of eigenvalues. Discussion of the radial functions will be much 

more direct. It is simplified greatly because we have alrea,dy discussed the Fourier 
coefficients. 

The equation which determines the radial functions is the separated equation, Eq. 

5.4. Substituting R2, for R and u2, for u yields: 

(5.23) 

The requirement that reservoir pressure decays at infinity means that RfLn must vanish 

as t approaches infinity. Two linearly independent solutions of Eq. 5.23 are given 
by McLachlan (1947) as Fek2,(J;  - s / 4 )  and Ce2,(t; -s/41). The functions, Ce2,, 

become infinite as t becomes infinite while, Fek2, approach zero as t approaches 
infinity. So we use only the functions, Fek2, . 

The derivation of the representation of Fek2,  is fairly complex and will not be 

given here. The series representation is discussed in Chapter 13 of McLachlan (1947).  
It is convenient to normalize the radial function by its value at zero and deal with 
the function, Fekz,( t ;  - s /4 ) /Fekzn(O;  - s / 4 ) .  This radial function is represented by 
a ratio of two series of modified Bessel functions: 

(5.24) 

In Eq. 5.24, v1 is equal to f i e - t / 2  and w2 is equal to f ie+t/2. Defined in this way, 

as a ratio, the radial solution has simple characteristics: it decays exponentially at 
infinity, it has a value of unity at ( = 0, and decreases monlotonically as t increases. 
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In this work, we are primarily interested in the derivative of the radial function 
with respect to E evaluated at the origin: Fek;,(O; -s/4)/Fekzn(o; -s/4). Because 

we shall use this ratio often, we denote it as F2n. The expression for this derivative 
is similar to Eq. 5.24: 

We have made use of Eq. 13.31 (13) of McLachlan (1947) to simplify the numerator of 
this expression. For large s, Eq. 5.25 will prove difficult to evaluate. The computation 
of this derivative has proven to be a major obstacle in this iresearch and Appendix C 
is devoted to its computation. 

It can be shown that as n becomes infinite, .F2n becoimes equal to -2n. This 

simplifying form also holds as s approaches zero, for n # 10. The limiting behavior 
for small s, explicitly stated is: 

lim,,oFo = -l/ln(4/fiy') n =: 0,  
lim,,o F2n  = -2n n > 0. 

(5.26) 

The constant, y', is the exponential of Euler's constant and is approximately equal 
to 1.781. 

This ends the discussion of the radial functions, Fek2, . The next section will com- 

bine the radial functions with the angular functions to present a series representation 
of the reservoir pressure. 

5.4 The Reservoir Solution 

This chapter has dealt largely with the determination of the functions which satisfy 

the separated equations of the first section. The previous discussion indicates that 

the product, ~ e 2 ~ F e k 2 ~ ,  satisfies the reservoir equation, Eq. 5.1, for any value of n. 
This product also satisfies the boundedness condition as approaches infinity and 

the symmetry requirements at 7 equal to multiples of ~ / 2 .  
Since the product, ceznFek2,, comprises a complete set, the full expression for the 

reservoir pressure can be written as an infinite sum of this product. For convenience 
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we represent the reservoir pressure as: 

51 

(5.27) 

Equation 5.27 gives the pressure anywhere in the reservoir, including the fracture. The 

only unknowns in this equation are the coefficients, Y~~ . Thle factor, (-1)"/Fek2,(0), 

has been included to enable direct use of Eqs. 5.19 and 5.210. 

We have thus reduced the problem of determining the reservoir pressure to the 

problem of finding the values of the coefficients in its series. It is a matter of some 

debate whether this is progress, but we shall concentrate our efforts on determining 

these coefficients. The path we shall follow is to insert the reservoir pressure series 
and the fracture pressure series (to be given in the next chapter) into the fracture 
equation. Manipulation of the resultant expression gives the sum equations whose 
solutions we pursue throughout the remainder of this work. 



Chapter 6 

THE FREDHOLM SUM 
EQUATIONS 

In this chapter we derive relations which constrain the coe-ficients in the series rep- 

resentations of reservoir and fracture pressure. These const raining relations take the 

form of Fredholm sum equations. The solution of any one of these equations allows 

computation of pressures anywhere in the reservoir/fracturcs system. 

The coefficients in the series expansions are not readily obtained using conven- 
tional methods. This is because the eigenfunctions of the reservoir and fracture 
problems differ from each other. The reason for this difference is that the diffusivities 

of the reservoir and fracture are unequal. To emphasize this point, the first section 

will consider a problem which is readily solvable using the orthogonality properties 
of cezn . This problem models the distinguished case of equal fracture and reser- 

voir diffusivity. The equal diffusivity system does not model any physically realistic 

phenomenon, but it provides a means of illustrating some i:mportant points. 

6.1 The Matched Diffusivity Problem 

In this section we solve the composite problem in the case where fracture diffusivity 

is equal to reservoir diffusivity. The solution will not be of use in field applications, 
since the diffusivity ratio, K D ,  in the field is of the order loy6 to lo-'. The matched 
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diffusivity problem will be shown to have a straightforward solution in terms of a 

Mathieu function series. The solution will be used to give the limiting form of the 
coefficients as s 0 for any value of KD. 

The matched diffusivity problem requires solution of the fracture equation, Eq. 

4.15 of Chapter 4: 

with KD equal to unity. In arriving at Eq. 6.1, we have made use of the identity, 
11 - cos(2~)]/2 = sin2(q). Equation 6.1 is subject to the boundary conditions: 

The eigensolutions of Eq. 6.1, can be shown to be cezr2(q; - K D S / ~ ) .  TherefoE, 

we choose to represent the solution of Eq. 6.1, with KD = 1, as: 

The reservoir pressure series was presented as Eq. 5.27 of the last chapter, and 
will remain the reservoir solution throughout this work: 

Equations 6.3 and 6.4 contain two sets of undetermined 'constants and must fulfill 

two constraints: Eq. 6.4 evaluated at ( = 0 must equal Eq. 6.3, and the two series 
must satisfy the fracture differential equation, Eq. 6.1. 

If we set ( equal to zero in Eq. 6.4, the Fek2, functions will cancel and it becomes 

identical in form to Eq. 6.3. Therefore, P2j = y2j for all j. This relation satisfies 

the first constraint. By contrast, in the incompressible case, a single coefficient of 

one series will be represented as a weighted sum over all of the coefficients of the 
other series. This is because the incompressible case involves series representations 
containing different eigenfunctions. 
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The second constraint requires that the reservoir and fracture series combine to 

satisfy Eq. 6.1. Inserting Eq. 6.4 and Eq. 6.3 into Eq. 6.1, ;setting P 2 j  = y2j, and KD 

equal to unity gives: 

Here we have used the notation F2n = Fek;,(O; -s/4)/Fekzn(0; -s/4) and assumed 

the validity of interchanging the orders of summation and differentiation. This 

termwise differentiation is valid because the Dirac delta fu.nction has been used to 

account for well production. 
The defining equation for cezn is Eq. 5.6 of Chapter 5: 

ce1,1,(q; -s/4) - s sin2(q)cezn(q; -s/4) = --X;,cezn(7; -s/4) . (6.6) 

This equation allows us to combine the first and third terms in Eq. 6.5. Making this 
substitution and rearranging the result gives: 

It is now a simple matter to remove the summation sign using the orthogonality 
property of Mathieu functions. Before doing this, however, we should pause and 
consider the reason that Eq. 6.7 has such a simple form. The reason is simple-we 

were able to use Eq. 6.6 to remove both the second derivative and the sine term from 

Eq. 6.5 because we had set KD equal to unity in the fracture equation. Had we not 

set KD = 1, a sine term would have remained in Eq. 6.7 and orthogonality would not 

be of much use. A similar difficulty will arise in the incompressible case and will be 

the reason we are forced to solve sum equations. 

If we multiply Eq. 6.7 by cezm(q; -s/4), integrate from 0 to a/2, use the or- 
thogonality property of the Mathieu functions and the sifting property of the delta 
function, the coefficients are determined explicitly. The result of these manipulations 
is: 
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We will not use Eq. 6.8 for any computations, since it is the solution to an unrealistic 

problem. However, Eq. 6.8 can be used to give an important limiting form for any 

value of diffusivity ratio. 

Taking the limit of Eq. 6.8 as s approaches zero gives .the late time form of the 
coefficients, ~ 2 ~ .  Using Eq. 6.8, the limiting forms, Eqs. 5.9 and 5.26 of the last 

chapter, and inserting the result into Eq. 6.3 gives the sm(al1 s form of the fracture 
pressure: 

It is not a coincidence that this equation is essentially the steady-state solution given 

by Prats (1961) (though there seems to be an error in his Eq. A-27). Equation 6.9 
was derived for the equal diffusivity case, but it can be shown to be the limiting 

form of the solution for any nonnegative value of K D .  This; is important because as 

n becomes arbitrarily large, ~e~~ approach their low s form,  i.e., cos(2nq), for any 

value of s. This means that no matter what are the values of s and K D ,  only a finite 
number of terms of the exact solution will differ significantly from those of Eq. 6.9. 

The above derivation was straightforward because the eigenfunctions of the reser- 
voir and fracture problems were identical. This is because the eigenfunctions of the 
fracture equation, Eq. 6.1, are ce2r(q;-stcD/2). If K D  is not equal to unity, the 
Mathieu functions in the reservoir and fracture series will have different parameters. 
Mathieu functions of different parameters are different functions and are not orthog- 

onal to each other (see Riley (1990)). This idea will be brought out in the following 

section where we consider the case KD = 0 and represent the fracture pressure by 

a cosine series. This representation makes sense when we recall that cos(2rq) are 

proportional to ce2,(q; 0). 

6.2 The Sum Equations 

In this section we derive the sum equations to which we have been referring for 

some time. We present four equivalent expressions which seem to be primary-other 

expressions can be derived from these. Each sum equation comprises an infinite 
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set of algebraic relations which fully constrain the coefficients of one of the series. 

Sum equations result from solving the composite flow problem for cases where KD is 
not equal to unity. The sum equations are the crux of this work-solution of any 

one of them enables determination of pressure anywhere in the fracture/reservoir 

system. In the remainder of this work, we treat only the case of KD equal to zero, 

i.e., incompressible fracture flow. 

The sum equations result from inserting the reservoir and fracture pressure series 
into Eq. 6.1. We consider the fracture flow to be incompressible, so we set KD equal 
to zero: 

The boundary conditions are unchanged: 

(6.10) 

(6.11) 

The fracture pressure series is found by determining the eigenfunctions of Eq. 6.10. 

To determine the eigenfunctions, we consider the related homogeneous problem, i.e., 

the homogeneous form of Eq. 6.10 is set equal to the product of the eigenfunction 
and an eigenvalue: 

-=  a24 A 2 4  (6.12) 

The only functions which satisfy this equation and Eq. 6.11 are proportional to 

cos(2rr)), for integer r. Thus, fracture pressure can be represented by: 

ar12 

M 

(6.13) 

The factor (-1)' has been included to facilitate equating Eq. 6.13 to Eq. 6.4 at the 
fracture face. 

Inserting Eqs. 6.4 and 6.13 into Eq. 6.10 and interchanging the orders of summa- 

tion and differentiation, yields: 
00 

(6.14) 
-?T 

= -b(q - ?T/2). 
S F E  

This equation will be recast as Fredholm sum equations in the next two subsections. 
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6.2.1 Sum Equations Involving P2r 

In this subsection we present two equivalent forms of sunn equation involving Par. 
The first equation results from removing the 7 dependence of Eq. 6.14, using the 
orthogonality properties of cos(2rq), and writing rzn in terms of P z T .  The second sum 

equation is derived from the first using the discrete orthogonality properties of the 

Fourier coefficients. 
Multiplying Eq. 6.14 by cos(2pq), using the orthogonality properties of these 

functions, the sifting properties of the delta function and the relations: 

developed in Chapter 5, gives: 

(6.16) 2 00 

2 F ~ r ~ p ~ ~  - epllS$Bzp = - . 
p = o  S C T  

The kernel of Eq. 6.16, U, is defined by the sum: 

00 

(6.17) 2m 2m 
U;; = U$ = A,, Azp F2m . 

m=O 

Equation 6.16 is the first sum equation. It comprises an infinite set of linear 
relations which fully constrain the values of the coefficients;, P z T .  In Eq. 6.16, P 2 T  is 

the unknown, Ui i  is the kernel, and 2/scT is the inhomogeneity. We refer to this set 
of linear relations as an inhomogeneous Fredholm sum equation of the second kind. 

This is because of the close resemblance of Eq. 6.16 to the inhomogeneous Fredholm 

integral equation of the second kind: 

$(x) + x J,” Is-(z, x‘)$(z’)dz’ = f(x).  (6.18) 

In the integral equation: $(x) is the unknown function, while K ( z ,  5’) and f(z) are 
the known kernel and inhomogeneity, respectively. The theory of integral equations 
is fairly well developed, however no theory of sum equations is known to this author. 
In considering the sum equations we shall borrow heavily from the theory of integral 

equations: we shall assume that the solutions of the sum equations exist and are 
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unique, and in Chapter 7 we shall use the discrete analogy of the Neumann series to 
derive a series solution for /32T. 

Equation 6.16 is amenable to solution for large values of F'. This will be discussed 

in Chapter 7. We now derive a second sum equation from Eq,. 6.16, which is amenable 
to solution for low values of FE. This derivation requires the inverse of the kernel, U. 
This inverse kernel, which we call R, can be found by inspection to be: 

(6.19) 

Summing the product of the two kernels, R and U, using the discrete orthogonality 

relations given in Chapter 5: 

00 00 

(6.20) 2m 2n - 
' T A 2 T  A,, - Snm 9 

2n 2n - 
'T A 2 p  - ' T ,  9 

n = O  ,=O 

and the definitions of the kernels, shows that they are orthogonal in the sense: 

(6.21) 

To derive the second sum equation we need only to multiply Eq. 6.16 by ern::! 
and sum over T .  We can simplify the resultant expression bsy noting: 

The fourth term in Eq. 6.22 uses the cosine series representation of cezn . The final 

expression in Eq. 6.22 results from applying Eq. 6.20 to Ecl. 5.25 of Chapter 5. 
Performing the steps outlined above, gives the second slim equation: 

(6.23) 

This equation is equivalent to Eq. 6.16, but is amenable t,o solution for low values 
of FE. Solution to either Eq. 6.16 or Eq. 6.23 will give the fracture pressure using 
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Eq. 6.13. Since the first relation of Eq. 6.15 gives 72n in berms of P z T ,  the reservoir 
pressure can be obtained from Eq. 6.4. 

Because we are primarily interested in well pressures and because the reservoir 

pressures can be found from the coefficients, PZT, the remaining chapters concen- 

trate on obtaining the coefficients, PZT. However, for the sake of completeness, sum 

equations for the coefficients, 72n, are derived in the next subsection. 

6.2.2 Sum Equations Involving 72n 

We can derive two sum equations involving 72n in the same way as those involving 
P 2 T .  The first equation is found using Eq. 6.14 and the orthogonality properties of 

Mathieu functions. The second equation is derived from the first. 

Multiplying Eq. 6.14 by ~ e ~ ~ ,  integrating from zero to ./a, using Eq. 6.15 and 
the relation; 

M 

n=O 

gives the sum equation: 

The kernel of this equation, A, is defined by the sum: 

(6.24) 

(6.25) 

(6.26) 

A second sum equation can be obtained from Eq. 6.25 by using the kernel which 
is the inverse of A. This inverse kernel, V ,  can be found by inspection and is: 

(6.27) 

The two kernels, A and V ,  are orthogonal in the sense: 

l=O 

This orthogonality relation can be verified by using Eq. 6.20 and the definitions of A 
and V .  
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Multiplying Eq. 6.25 by Vir and summing over 1 from zero to infinity, gives the 

final sum equation: 

(6.29) 

The form of this last sum equation differs from the previous three in that it has two 
sums involving, 72n. 

We have now completed the development of the four Fredholm sum equations 

which we consider to be primary. We can derive other forms by combining these four 

equations. The solution of the first two of these sum equations, Eqs. 6.16 and 6.23, 
will be derived in the next chapter. 

Before we end this chapter it should be noted that the four sum equations were 

derived, directly or indirectly, from the governing differential equations. This work 
has also examined equivalent formulations in terms of various integral and differential- 
difference equations. None of the alternative forms allow for efficient solution and all 

of them, when expanded in terms of eigenfunctions, give the same Fredholm sum 

equations already presented. For these reasons, the alternative formulations will not 

be discussed. 



Chapter 7 

SOLUTION OF SUM 
EQUATIONS 

In this chapter we develop the solutions to the Fredholm sum equations involving Pzr 
derived in Chapter 6. When Pzr is known, pressure can be determined anywhere in 
the reservoir/fracture system. 

We consider only the equations containing coefficients of the cosine series for two 
reasons: (1) we are primarily interested in determining well pressures, and (2) the 
Mathieu function coefficients, 72Yzn, can be obtained directly from the cosine series 
coefficients. There may be advantages to pursuing solutions to the sum equations in- 

volving 7zn. However, time constraints have limited our investigations to determining 

Pzr . 
In the first section we develop a series solution in powers of FE which is useful 

for low fracture conductivities. In the second section we develop a power series in 

terms of I /FE  which is useful for high fracture conductivities. These two series have 

restricted regions of applicability, but the first terms of both series will be used as 
the starting values for the iterative procedure of the third section. 

The third section develops two solutions which iterate on the late time solution. 

The two iterative solutions converge for all values of s and FE. These solutions are 

analogous to continued fractions, except that the unknown terms are sums and the 

number of tails of the fractions grow with iteration level. It is these iterative solutions 
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which are the most generally valid and which are used for numerical calculation. 

The two Fredholm sum equations we solve in this chapter are Eqs. 6.23 and 6.16 
of Chapter 6: 

and 

These two expressions are equivalent and we need solve only one. However, the 
expressions are amenable to solution for differing ranges of FE; Eq. 7.1 for small 

values of FE and Eq. 7.2 for large values of FE. It is the presence of the summation 

which complicates solution. So Eq. 7.1 is preferred for low conductivities, since 

FE multiplies this sum. Equation 7.2 is preferred for high conductivities for similar 
reasons. 

7.1 The Low Conductivity Solution 

In this section we develop the low conductivity series solution of Eq. 7.1. The pro- 

cedure uses the method of successive substitution, where a power series is developed 

by inserting Eq. 7.1 into itself. The resulting series consists of terms of the form, 

2 jF iQj ,  where Qj is a j-fold series containing the kernel O$. 
We can write Eq. 7.1 in the form: 

00 

where p:r is the Bessel function term: 

This form indicates that if FE is zero, ,B2T is given by pir .  This first approximation 
can be shown to be the coefficient in the cosine series represent#ation of the line source 

solution, Ko/s. This is encouraging, because the solution of Eq. 7.3 must degenerate 
to the line source solution for zero fracture conductivity. 
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The power series is developed by solving Eq. 7.3 for ,B2.p in terms of Pir and the 

sum on the right hand side of Eq. 7.3. Redefining indices and substituting the result 

back into Eq. 7.3 gives: 

or: 

p=l p=l  q = l  

This expression gives the first two terms in the power series expressed in terms of 

known quantities. The unknown, P2q, appears in the last term only. Equation 7.6 is 

equivalent to Eq. 7.3-we merely substituted the equation into itself. 
This procedure can be repeated indefinitely, each time substituting Eq. 7.3 into 

its extended form. Successive use of this procedure yields tlne kth iteration: 

f f l= l  ff2=1 f f k = l  f f k + l = I  

For any finite value of k, all of the series in Eq. 7.7 converge. Thus, Eq. 7.7 is an 

exact expression for P2T. The problem with this representation is the final term which 

contains the unknown, ,L?2ffk+l (recall that all of the &j are known). This final term 
can be considered a residual, i.e. the difference between the exact solution and the 

first k terms of its power series. The difficulty arises becau,se this residual term will 

only approach zero, as k + 00, if FE is within the radius of convergence of the power 

series. If FE is too large, the residual term will grow without bound, while if FE is 
small, it converges rapidly. 

The low conductivity series, Eq. 7.7, should be useful for low values of FE. How 
low these values need to be, has not been determined. In the third section we discuss 

the radius of convergence as we develop the final solution. Before doing this, however, 

we develop a series solution that is useful for high values of FI3. 
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7.2 The High Conductivity Solution 

In this section we derive a series solution in powers of 1/FE. This solution should be 

valid for high values of FE. Unfortunately, the derivation lacks a neat exposition and 

the series appears to have a finite radius of convergence. 

The development of the series for high FE starts with Eq. 7.2: 

We cannot employ the method of successive substitutions in this case because it will 

require division by r2 and summation beginning with r = 0 will be undefined. 
The obvious way to solve Eq. 7.8 is to allow FE to approach infinity and assume 

that the summation is small in comparison to the other terms. This is not the best 
approach because, as FE becomes infinite, all of the ,8zT terms approach zero except 

PO. We know this because, as the fracture conductivity becomes infinite, the fracture 

becomes an isobar and the pressure in the fracture becomes equal to its average 

pressure. Since the zero order term in a cosine series is equal to the average of the 
function, Po must be the only nonzero term. 

This observation indicates a better way to approach the solution. Let FE approach 
infinity and set r equal to zero in Eq. 7.8. This will result in the left hand side of 
the equation being reduced to a single term, -~~115;&. We then put the resulting 

expression back into Eq. 7.8 and let r differ from zero, but keep FE arbitrarily large. 

This will give the first approximation to the remaining coefficients. This process is 
then repeated to give a power series expression for all of the coefficients. 

If we let FE approach infinity in Eq. 7.8, set r = 0, and solve for Po, we obtain: 
-1 

(7.9) 

This is the expression for the pressure of an infinite conductivity fracture given by 

Kucuk and Brigham (1979). 
Assigning r to be nonzero and assuming the only significant term in the summation 

of Eq. 7.8 is Po, gives the leading order behavior for higher values of r:  

2115; - 02 , r > O .  
= s2FEr20: 

(7.10) 
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We denote the first approximation for r # 0 by the superscript “1” and not by zero 
because the final representations for ,f&T will be: 

(7.11) 
j=O j = 1  

Using this ordering of superscripts means that each term will contain l / F A .  
The above procedure can be repeated indefinitely. At each stage we set r = 0 and 

assume that the coefficients in the summation, except Po, are given by their values 
at the previous iteration level. Solving the resulting expression for ,Bo (the right hand 
side of Eq. 7.8 is omitted from higher iterations, since it wa,s accounted for in the 

first iteration), gives: 

(7.12) 

Inserting this term into the summation of Eq. 7.8, letting r differ from zero, assuming 

the other PzT terms in the sum take on their values at the previous iteration level, 
and solving for gives: 

(7.13) 

The high conductivity series is of limited usefulness because it has a finite radius of 
convergence. The value of this radius of convergence is unknown. In the next section 

we will discuss the radius of convergence as we develop the final form of solution. 

7.3 The Final Solution 

In this section we develop a computationally efficient method of determining the 

coefficients, ,B2T. The method consists of iterating on the late time solution. The 

advantage of this approach is that it accounts for the singularities of P 2 T ,  when ,& is 
considered as a function of FE. Thus, the iterative procedure has an infinite radius 

of convergence. Two forms of solution are given. Their usefulness depends on the 

magnitude of FE, although technically they converge for all values of FE. 
We begin by showing the late time limiting form of the solution. We do this 

for three reasons: first, to bolster the claim, made in Chapter 6, that the long time 
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solution was independent of diffusivity ratio; second, to give an indication of the 

difficulties of evaluating the power series of the previous two sections; and third, to 

derive an iterative procedure which gives computationally ulseful solutions to the sum 
equations. 

To derive the limiting form, we need only take the limit of any of the sum equations 
as s + 0. For definiteness we choose Eq. 7.2. Before we take the limit we factor /?2T 

from the left hand side and divide by the factored term. This gives: 

r. 2 (7.14) 

This form will be important later. Because Eq. 7.14 expresses /?2T as a ratio, it will 
be referred to as a “rational form.” 

Using the definition of the kernel, Ui3;, Eq. 6.17 of Chapter 6 ,  and the limiting 
forms given in Chapter 5, Eqs. 5.10 and 5.26, shows: 

lirnU$ = -2r bTp , r > 0 ;  
s-0 

(7.15) 

Note that the appearance of the Kronecker delta function in these two expressions 

causes the p2, coefficients in the right hand side of Eq. 7.14 to be multiplied by zero, 
except when r = p.  This term cancels with the /?2r which divides it. So, in the limit as 

s approaches zero, all of the P Z T  and ,BZp terms vanish in the right hand side, leaving: 

(7.16) 

This is the same expression as Eq. 6.9 of Chapter 6 for the equal diffusivity case. 

In the first two sections, we developed power series in terms of FE and ~ / F E .  
Equation 7.16 gives an idea of the radii of convergence of these series. We know, 

from the theory of Taylor series, that the radius of convergence of a power series is 

equal to the distance from the origin to the nearest singularity of the function being 

expanded. Thus, in the limit of small s, the radii of convlergence are given by the 
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points where FEr2 + r = 0, at least for r > 0. So, the radii 'of convergence of the two 

series, in the limiting case, are FE = I - 1/rI and ~ / F E  = I - r1. For s different from 
zero, it is unclear whether the radii of convergence increase or decrease, but we are 

not optimistic. 

We will not pursue the investigation of the power series further. We merely wished 

to show the reason for their limited usefulness: power series do a poor job of account- 
ing for singularities. 

This observation indicates a much better way of developing a solution. The ra- 

tional form, Eq. 7.14, accounts for the singularity of PzT as s 4 0. For larger s it is 
unclear where the singularity, or singularities, lie; but it turns out that Eq. 7.14 ac- 

counts for them remarkably well. In the process of evaluatiing Eq. 7.14, it was found 

that it gave reasonable results as long as a reasonable guess for ,82T (and equivalently 

/32p) was inserted into the right hand side. Indeed, experience with the rational form 
indicated that when approximate values were inserted for ,&T, the result was always 
closer to the correct ,&T value. 

This observation indicates an iterative procedure which takes the form: 

(7.17) 

This procedure seems to converge for all s and for all FE. Convergence is more rapid 

as FE increases. 

The iteration of Eq. 7.17 is initiated using the leading order terms of the high 

conductivity solution, Eq. 7.9 and 7.10: 

(7.18) 

This first approximation works reasonably well, but a more refined first guess would 

enhance convergence. 

An analogous procedure can be used for low values of FE. This iterative procedure 
uses the rational form of Eq. 7.1: 

(7.19) 
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The starting values for this procedure are the zero order terms in the low conductivity 
power series of Eq. 7.4: 

(7.20) 

Again, more refined starting values will result in enhanced convergence. 

Equations 7.17 and 7.19 give computationally independent means of calculating 
P 2 T .  Equation 7.19 is preferred for 3'' less than about 2. Equation 7.17 is preferred for 

higher F'. One reason we believe that these two iterative procedures represent exact 

solutions is that they converge to the same result-this has been checked numerically 
in the range 0.1 < FE < 20. 

We choose to leave Eqs. 7.17 and 7.19 in iterative form because of the typographi- 
cal difficulty of showing more explicit forms. The explicit forms result from successive 

substitution in much the same way as in the first section. The first substitution re- 

sults in a two-fold rational form-each ,f?2T term and P 2 p  term in the denominator of 

Eq. 7.17 (or Eq. 7.19) is replaced by a rational form. This new form resembles a 

continued fraction of summations with two tails. Further substitution results in a 

j -t 1-fold rational form or equivalently a continued fraction of summations with 2 j  
tails. 

The computation of the solutions presented above are fairly straightforward, how- 
ever, computation of the kernels requires some explanation. This is because the 

evaluation of the series containing the kernels requires filling out a matrix. The 
computation of the kernels is discussed in Appendix B. 

The convergence of the solutions is slowest for 1.0 < FE < 5.0 and for large S. 

In this range of F E ,  for s equal to lo4, both methods require about thirty iterations 

to obtain ten significant figures of precision in Laplace space. The required number 

of iterations increases with s. For this reason alternative methods of computing well 
pressures, for very large s, are presented in Chapter 8. 

Pressure computation from the solution is also a problem. If the cosine series, Eq. 
6.13 of the last chapter, were summed directly, it would require excessive computa- 

tional time and storage space. For this reason we choose to accelerate the convergence 

of the series by means of the Kummer transformation of series. The acceleration of 
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the solution is the subject of the next subsection. 

7.3.1 Accelerating Convergence of the Closine Series 

In this subsection we deal with the problem of accelerating convergence of the cosine 
series, so that the solutions can be computed with only a rlelatively small number of 

terms. The method we employ is the Kummer transformation of series. It is useful 

and conceptually simple. Using it we have been able to obtain accuracies using one 
hundred terms which would otherwise require over ten thousand. 

We wish to enhance convergence of the series: 

(7.21) 

Before showing the Kummer transformation, we need to consider why direct compu- 
tation of Eq. 7.21 is impractical. As r becomes large, ,f3ZT is closely approximated by 

the limiting forms of Eq. 7.16. Hence, the cosine series will ultimately converge as 

l / r 2 .  Thus, to compute the series to eight significant figures (which is necessary for 

numerical Laplace inversion), we must calculate at least ten thousand terms. 

Kummer's transformation entails adding and subtracting a comparison series to 
and from Eq. 7.21: 

In this transformation we are free to choose any comparison series which possesses a 

sum. However, it is desirable to choose a comparison series whose ultimate conver- 

gence matches that of the original series. This will accelerate the convergence of the 

first series in Eq. 7.22. The comparison series should also contain easily calculable 

terms. For example, we can choose x2T = l /s(F'r2 + r ) .  This will accelerate con- 
vergence dramatically and is itself simple to compute. In fisct, we use an expression 
similar to this as the final comparison series. 

The method of finding the final comparison series was a numerical trial and error 

procedure. This procedure assumed initially that x 2 T  = l / s (  F'r2 + T ) .  This x 2 T  value 

was subtracted from p 2 T  and the terms were examined for large values of r. The form 
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of ~2~ was then altered to account for the new dominant beh.avior. Proceeding in this 

way, the final comparison series was chosen to have terms: 

where g(s , r )  is: 

(7.24) 
S 

32r3/9  - 3 2 r / 5 - 3 2 / 4 5 + 5 5 s r / 6 4 - 6 ~  * 
g ( s 7 r )  = 

This expression is completely empirical. However, it ensures that the difference, 
p2m - ~ 2 0 0 ,  is essentially zero for s less than lo4 and FE greater than 0.1. Other, 

more analytic, methods have been used to find comparison series, but none have been 

found to be as useful as Eq. 7.23 .  

Using this acceleration procedure, we are able to efficiently calculate well pres- 
sures for all conductivities and s less than lo4. However, even with the acceleration 

procedure, the solutions require more computational time than desired. For example, 

computation of six log cycles of well pressure with twenty-four points per cycle in 

the range, low3 5 t D x f  5 lo3, requires approximately five minutes of real time using 
an Apollo 10000 computer. It is hoped that acceleration procedures superior to the 
one used in this work will be found in the future that will allow the evaluation of the 

solution in much fewer than one hundred terms. 

A t~~~ value of corresponds roughly to s = lo4. Computation of the solution 
for such large values of s becomes difficult because the kernels of the sum equations 
become time consuming to compute. For this reason we have developed alternative 
means of obtaining accurate well pressures for very early times. These procedures 
will be developed in Chapter 8. 



Chapter 8 

LIMITING FORMS FO:R 
WELLBORE PRESSUItE 

The main objective of this research is to enable the computation of wellbore pressures 

for any value of fracture conductivity at any time. The iter<ative solutions of the last 

chapter theoretically give exact results for any values of fracture conductivity and 

Laplace parameter, s. However, these solutions become cornputationally demanding 
as s becomes large. Therefore, we devote this chapter to the computation of wellbore 
pressures at very early times. 

The early time well pressures will be presented as a pair of composite solutions 

comprising three cases: the infinitely long fracture, the bilinear/linear flow model, 

and the infinite conductivity fracture. These composite solutions accurately predict 
well pressures for t~~. less than low3 and all values of fracture conductivity. 

8.1 Wellbore Pressures for Very Low FE 

In this section we present an approximate solution that gives wellbore pressures for 

fractures of very low conductivity. The solution assumes that the fracture is infinitely 
long. We use this solution as part of the composite solution of the third section. 

However, this solution gives accurate well pressures for all values of s when F E  5 0.1. 

71 
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As fracture conductivity decreases, the amount of influx at  the fracture tips be- 

comes negligible and the wellbore pressure behaves as if the fracture were infinitely 

long. The case of an infinitely long rectangular fracture is readily solved, as shown by 

Wilkinson (1989) in terms of a Fourier integral. Evaluated at the wellbore, Wilkin- 

son’s solution simplifies to a combination of elementary functions. 

We are concerned with a very low conductivity ellipticalfracture. However, as the 

conductivity decreases, well pressure is only affected by the influx in the immediate 
vicinity of the wellbore. In this region, the elliptical fracture is essentially rectangular 
and so Wilkinson’s solution can be used directly. 

Wilkinson’s solution, evaluated at the well, is: 

A1 + B1 
Rs 2 A1 - Bl 

Piow = [”’ In ( ) + B2 arctan (31 , 
where R =  d m ,  Al = 1+F’&+R, A2 = 1 +  FE&- R, Bl = d m ,  
and B2 = d-. 

Equation 8.1 is in a slightly different form than that given by Wilkinson, but 
should be equivalent to his expression for the case of incompressible fracture flow. 
Examination of Eq. 8.1 shows that, aside from an overall factor of l/s, FE and s 

appear only in the combination F E f i .  Use of the change of scale property of the 
Laplace transform, as in Chapter 3, shows that the real space solution is only a 

function of t D x  / Fg . 
Figure 8.1 presents the wellbore solution, Eq. 8.1, as a solid curve, graphed as 

a function of t D z j / F g .  Overlain on this graph is the iterative solution of the last 
chapter evaluated for FE equal to 0.1. The data for these two cases are given in Table 
D.5 of Appendix D. The two solutions agree to within 1.0 percent. 

The method of presentation used in Figure 8.1, pow versus tD,,/Fi, is equivalent 

to that used by Cinco et al. (1987), pow versus tDr:. This is because, for very low con- 

ductivity fractures, dimensionless time based on equivalent well radius is proportional 

to t D x j / F g .  

The very low conductivity case exhibits a bilinear flow period followed immediately 

by pseudoradial flow. Reservoir linear flow does not develop. For linear flow to develop 
a significant amount of production must enter the fracture near its tips. For cases 
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Eq. 8.1 0 

Elliptical - 

0.01 0.1 100 1000 

Figure 8.1: The Low Conductivity Cisse 

of higher conductivity, the wellbore pressures will exhibit some reservoir linear flow. 

For these cases, the early time behavior can be found by assuming that the flow in 
the reservoir is one-dimensional. 

8.2 Linear and Bilinear Flow 

In this section we develop analytic expressions for the bilinear aad reservoir linear flow 

regimes of the elliptical fracture. These regimes for the elliptical fracture are similar 

to those for a rectangular fracture. The greatest difference between the elliptical and 

rectangular cases occurs in the transition region between the two regimes. 

As in Chapter 3, we assume that reservoir flow is one-dimensional. Thus, reservoir 
pressure is approximated by Eq. 3.23: 

Using this expression to give the reservoir influx term in t:he fracture equation, Eq. 
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6.10 of Chapter 6, yields: 

subject to the boundary conditions: 

74 

In this case it is not convenient to use the Dirac delta function to account for well 

production. So, we have specified an inhomogeneous boundary condition. 
Equation 8.3 is of Mathieu type because of the factor, siin(r1). Full solution of this 

equation will be quite difficult to obtain. However, since 'we are only interested in 

pressures at the wellbore, we can simplify the procedure by recasting the problem as 

a Riccati equation. 

To write Eq. 8.3 in Riccati form, we make the substitution: 

Making this substitution, the fracture problem becomes: 
dz - + z2 = B~ sin(v), 
drl 

z(q = 0) = O. 

In this equation B is defined as ,/2&/FE . 
Equation 8.6 is a first-order nonlinear ordinary differential equation that is no less 

difficult to solve than the original second-order equation. However, it is much more 

amenable to solution by perturbation. Moreover, to determine well pressure we need 
only find .(./a) and use the definition of z:  

In this equation, Z)BL is the well pressure during the bi1inea:r and linear flow regimes. 
To determine 2(7r/2) for B ranging from zero to infinity, we consider two cases: B 

small and B large. For small B, we assume that z2 in Eq. 8.6 is negligible to a first 

approximation and iterate. For large B, we assume that d z / d v  is negligible to a first 

approximation and iterate. These two perturbative approaches are fundamentally 
different: the low B solution takes the form of an ascending series, while the high B 
solution is purely asymptotic. 
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8.2.1 The Small B Approach 

In this subsection we develop a perturbative solution of the Riccati equation for small 
values of B. We assume that z2 is small and solve a succession of first-order linear 

ordinary differential equations. Using the final iterate, we develop a power series 

solution for .(./a). Examination of this series shows that it has a small radius of 

convergence, so we recast it as a continued fraction. 

The low B perturbation approach proceeds as follows. We assume initially that z2 

is zero in Eq. 8.6 and obtain the zero-order solution, zo. We then obtain a better ap- 
proximation by assuming that z2  is given by z i  and solving the full equation. At each 

stage we are solving a first-order linear equation and so ea,ch higher approximation 

requires an additional integration. 

At each stage we solve the equation: 

or, equivalently, integrate: 

It should be kept in mind that this is an iterative procedure and so we do not sum 
the z k .  At each iteration level zk is updated, so zk is the approximation to z .  

The first two iterations can be performed by hand: 

zo = -B2(cos(q) - 1) 
sin(2q) 

2 sin(q) -t - 4 21 = -B2(cos(q) - 1) -B4 (8.10) 

Higher order iterations are straightforward and involve only integration of powers and 

trigonometric functions, but the manipulations become tedious. For this reason, the 
procedure was programmed into MATHEMATICA (see Wolfram (1988)), a symbolic 
manipulation software package. Use of MATHEMATICA entabled calculation of terms 

through 217. This final term is complicated and will not be shown. However, since 
we are interested only in z(n/2), we expand it in a power series and use 217(n/2) to 
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I --a I 1 I + 1 .oooooooooooooooooooooooooooooooooooooooooooooooooo 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

-O.356194490192344928846982537459627163147787704953133 
+0.155379336690486291035635716700969016113549845 

+0.03053996300457748667545903587889404593 19574015 

+0.00601596101433775651465667566698551417842086554 

+0.001185106177977462196552528600985771391164996 

+0.00023345854850684580922 195836793771845275 

+0.000045989882989675213410214069003858355108452 

+0.00000905972109962678242276537858247262519503 

+O.OOOOO 17847087460890458592 1336656860825325472 

-0.0688258560261391853319980769438924878372199214 

-0.0135544095268710697101 7375684187000286692476540 

-0.0026701215517632490557324602232699230391419199 

-0.0005259973059044691629625766866625373471 682549 

-0.0001 03618 19978756597096983780451 00308861 302099 

-0.000020412 141 32054465547841828921 0156488087241 

-0.00000402106496883980837312488277569767473695 
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Table 8.1: Coefficients for Ascending Series, Eq. 8.11 

give the first seventeen terms in the series. The first seventeen coefficients, ak, in the 
power series: 

00 

z(n/2) = U J p ,  (8.11) 

are given in table 8.1. The entries of this table are reproduced as given by MATHE- 
MATICA. In implementing MATHEMATICA, we requested fifty significant figures of 

precision. This seems like extraordinary precision, but, as we shall see, it is actually 

only marginal precision. It is not known why the coefficients in Table 8.1 seem to 

lose and gain precision-we are assuming MATHEMATICA knows what it’s doing. 

k= l  

Examination of the ascending series, Eq. 8.11, was performed using the methods 
of Van Dyke (1974). Use of these methods and discussions with Professor Van Dyke 

(Van Dyke (1990)) indicate that the series represents a function with simple poles 

symmetrically placed on the imaginary B-axis. The distance from the origin to the 

first pole (and consequently the radius of convergence of the series) is about 1.501. 
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This means that the utility of the power series is restricted to a small region near 

B = 0. However, the terms of the power series can be manipulated to give a much 

better representation in terms of a continued fraction. Continued fractions seem to 
have extraordinary convergence properties, and there is a simple recipe for generating 
the terms. 

The continued fraction representation assumes that 2(7r/2) can be written as: 

(8.12) 

This is the conventional way of writing a continued fraction. The breaks in the bar 

and the lone addition sign in each denominator indicate that each successive term 

belongs in the denominator of the term which precedes it. 

doB2 dl B2 d2B2 d3B2 d4B2 
1+ 1 t  1+ 1+ 1+ 

z(n/2) = -----. . . . 

Bender and Orzag (1982) give recursive formulae for the dj 's ,  in Eq. 8.12, in terms 
of the ak's of Table 8.1: 

Di = ak, k = 1,2,3, ..., 17 
0 

0: = -% DY ' k =  1,2,3 ,..., 16 

dj = D' 1 '  (8.13) 

Using these relations, the coefficients from Table 8.1 and MATHEMATICA gave the 

coefficients, d j ,  shown in Table 8.2. These coefficients are given to at most 16 signifi- 

cant figures, since this is the significance used in double precision Fortran. Note that 

even though we calculated the power series coefficients to high precision, the coeffi- 
cients in the continued fraction lose significance rapidly. In fact, MATHEMATICA 

was only able to calculate the first fourteen coefficients in Table 8.2. The remaining 

coefficients were extrapolated from the first fourteen. 

Using the coefficients of Table 8.2 in the continued frac:tion of Eq. 8.12, enables 
the computation of z(a/2), for B up to 11.0, to nine significant figures. This result has 

been verified numerically using a Runge-Kutta solution of the Riccati equation. To 

calculate 2(7r/2) for values of B exceeding 11.0 we are forced to use another approach. 
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- 
j - 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 - 

4 
+1 .ooooooooooooooo 
+0.3561944901923449 
+0.08002600442165511 
+0.03670273499100588 
+0.02097049584855654 
+0.013570494533768 11 
+0.009499608396674833 
+0.007021542075008946 
+0.00540 122208992925 
+0.00428374369506396 
+0.00348054939937352 

+0.002883887762 
+0.002428539254 

+0.0020731 
+0.001787 
+O .OO 154 
+0.0013 

Table 8.2: Coefficients for Continued Fraction, 139. 8.12 

8.2.2 The Asymptotic Series 

In this subsection we develop an expression for 2(7r/2) useful for B greater than 11.0. 

This approach assumes that the derivative term in Eq. 8.6 is small. Since this method 

ignores the boundary condition at 77 = 0, it must be purely asymptotic. 

In this method, we assume initially that dz/dq is zero and represent z at each 

stage by: 

(8.14) 

This procedure is more straightforward than that of the previous subsection, since 
it involves only differentiation. The fact that it does not make use of the boundary 

condition must mean that, as B becomes very large, the boundary condition has little 
effect on the solution away from 77 = 0. 

Zk(7) = /-. dzk-1 

The first two terms are readily calculable: 
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(8.15) 

Using the iterative procedure to develop a power series representation for z(n/2), 

shows that the series involves inverse powers of B2 and that, except for the first, 
it takes two iterations to achieve an additional term. Although the procedure is 
simple in principle, the complexity of the successive terms increases rapidly. Using 
MATHEMATICA with 5.5 MegaBytes of memory enabled the calculation of z k  only 

through E equal to eight. The power series for z(7r/2) using this last iterate is: 

.) . (8.16) 98389 - 1 15 419 
z(n/2) N B (1 - - - - - 

8B2 128B4 1024B6 32768B8 

This series enables computation of z(n/2), for all values of B greater than 11.0, to 

at least 9 significant figures. This has been verified numerically using a Runge-Kutta 

solution. 

8.2.3 Comparison with Rectangular Fracture 

At this point, we pause in the development of approximate well solutions, and compare 
the bilinear and reservoir linear regimes of the rectangular fracture to those of the 

elliptical fracture. The behavior of these regimes in the rectangular case was found to 

be very close to that of the elliptical case. The greatest percentage difference between 

the two cases occurs in the transition region separating bilinear flow from linear flow. 
In Chapter 3, Eq. 3.26, we gave the equation governing the bilinear and linear 

flow regimes in the rectangular case, as: 

(8.17) 

Here we use the term, Bo, to represent dm . 
In Chapter 3, we used the change of scale property of the Laplace transform 

to show that Eq. 8.17 represented a single curve when P D ~ F D  was graphed versus 

 fit^,,. We can apply the change of scale property to the elliptical case, and show 
the analogous result that the product of FE and wellbore pressure is a single valued 
function of t D , f F i  during bilinear and linear flow. 
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Figure 8.2: The Bilinear/Linear Flow Case 

Figure 8.2 is a log-log graph of FpDw versus F2tDzf for the elliptical fracture, 
shown as the solid curve, and for the rectangular fracture, shown as dots. This 
figure shows the two solutions are remarkably similar-the agreement is within two 
percent. The fact that the curves merge for early times is as expected, because the 
flux distribution is concentrated around the wellbore at early times and FE is defined 

so as to match FD at the well. The merging of the curves at late times is also expected, 

since linear flow develops only for high conductivity fractures and, in this case, the 

shape of the fracture is unimportant. In the transition region the elliptical fracture 

has a slightly higher pressure drop because it has a conductivity that decreases along 

its length. 

Figure 8.2 indicates that the bilinear and linear representations for the rectangular 
fracture also apply to elliptical fracture. However, there is a minor difference during 
reservoir linear flow: 

(8.18) 

Recall that the constant term for the rectangular case, given in Chapter 3, was n / 3 F ~ .  
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Equation 8.18 was found by expanding Eq. 8.7 using Eq. 8.1 1 aad neglecting decaying 
terms. 

The well pressure during bilinear flow is exactly the same as in the rectangular 
fracture case: 

(8.19) 

We had hoped that the early time behavior, i.e., t D x f  5; would be fully 

accounted for by the bilinear/linear flow model. This has not proven to be the case. 

The reason for the inadequacy of this model is that it does not achieve pseudoradial 

flow. Apparently there is some effect of pseudoradial flow even at t D z f  = loe3. For 
this reason we couple the solution of this section with two models which do achieve 

pseudoradial flow: the infinitely long fracture model and the infinite conductivity 
model. 

8.3 The Composite Early Time Solutions 

In this section we combine the results of the two special cases presented earlier with 

the infinite conductivity solution to produce composite solutions accurate for early 

times. A discussion of the method of composite solutions is given in Van Dyke (1975). 
Before we present the composite solution, we need an accurate early time approx- 

imation of the infinite conductivity fracture pressure. Trial and error manipulation of 

the known early time limiting form for the infinite conductivity case, p j ~  = d-, 
indicates that a very accurate approximation is: 

(8.20) 

This expression is a very good approximation for s as low as 10 and will be more than 

suitable for our purposes since we are concerned with s values greater than lo4. A 
comparison of Eq. 8.20 with the exact infinite conductivity solution is given in Tables 

D.3 and D.4 of Appendix D. 

To give an expression for well pressures at early times, we consider two cases: FE 
greater than 45 and FE less than 45. For FE less than 45 we add the low conductivity 
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solution of the first section to the bilinear/linear flow solution of the second section. 

Since these terms are equal in the limit as time approaches zero, we must subtract the 

part they have in common: the bilinear flow regime. The colmposite low conductivity 
wellbore solution is: 

(8.21) 

where plow is given by Eq. 8.1 and PBL is given by Eq. 8.7. 
The composite solution for high conductivity fractures is similar. The difference 

is that we use the infinite conductivity solution rather than the very low conductivity 

solution. The common part of these two solutions is now linear flow, so we subtract 
it: 

(8.22) 

The obvious way to utilize these two expressions is to use them for dimensionless 
times less than and to use the iterative solution for times greater than this. 

When used in this way the composite solutions are accurate, to within one half of one 

percent. A better way to use the composite solutions is to use them in Laplace space, 

when s is greater than lo4. So, numerical Laplace inversion will use some parts of 
the composite solution and some parts of the exact solution for dimensionless times 

in the neighborhood of This last approach has not been checked but it should 
be the more accurate of the two. 

7r 
Pcomp = Pinj  -k PBL - - FE > 45 . 

2 4  ’ 



Chapter 9 

RESULTS AND FUTURE 
WORK 

In this chapter we do two things. First, we compare the well pressures from the 

elliptical and rectangular models. Second, we outline extensions of the present model. 

9.1 Comparison of Wellbore Pressures 

In this section we compare the wellbore pressures calculated for the elliptical fracture 
to those for the rectangular fracture. The data for the elliptical case were generated 

using the iterative solutions of Chapter 7, while the data for the rectangular case are 

taken from Cinco et al. (1978). We compare the wellbore pressures in three ways: the 

first two are graphical, and the third is tabular. The comparison of the well pressures 

shows good agreement between the two cases. 

In their paper, Cinco and Samaniego (1981) showed that type-curves for finite 
conductivity fractures are best presented in two ways. The first method shows the 
pressures on a log-log graph of po,F~ versus t ~ ~ ~ F 2 .  When graphed in this way, 

all of the data start from a single curve which represents bilinear/linear flow as was 
shown in Figure 3.1 of Chapter 3. The second method employs a log-log graph of 

well pressures versus dimensionless time based on equivalent well radius, tD,:. When 
graphed in this way all of the data end on a curve representing pseudoradial flow. 
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Figure 9.1: Comparison Using Cinco and Samaniego's Type Curves 

The first of these graphs is shown in Figure 9.1. Figure 9.1 shows a log-log graph 

of po,F versus tD,,F2. The solid curves correspond to the elliptical fracture and 
the dots represent data for the rectangular fracture. The heavy solid curve is the 

representation of bilinear/linear flow for the elliptical fracture given by Eq. 8.7 of 

Chapter 8. 
Figure 9.1 shows two important ideas. First, the data of the elliptical case all begin 

on the bilinear/linear curve and deviate only at late times. Second, the high degree 
of correlation between the two geometries shows that the elliptical case mimics the 
rectangular case. This second point will be brought out more clearly in the comparison 
of tabular data. 

The second method of presentation is shown in Figure 9.2. This figure is a log-log 

graph of well pressures versus time based on equivalent well radius. This figure shows 

that all of the data fall on a single curve at late times. It also shows good agreement 

between the elliptical and rectangular cases. 

The equivalent wellbore radii for the rectangular fracture were computed using 
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Figure 9.2: Equivalent Wellbore Radius Comparison 

the late time data of Cinco et al. (1978) and the formula: 

1 
PO, = - 2 (1n(tDz,$/rL2) + 0.80907) . 

The equivalent well radius, for the elliptical case, is given by: 

r~ = 2 exp [-9 (-) 1 + FE - y] . 
2 FE 
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This expression is essentially a rearrangement of Eq. 9.1 using Eq. 6.9 of Chapter 6 
and the expression of the *-function as an infinite sum: 

The *-function is the logarithmic derivative of the I'-function and y is Euler's con- 
stant. The *-function is fairly simple to compute and is available as an IMSL sub- 
routine (see IMSL Inc. (1990)). 

Equation 9.2 demonstrates one advantage of the elliptical fracture formulation-it 

gives an explicit formula for the equivalent wellbore radius and hence, the apparent 
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Rect. Ellip. 
0.0590 0.0589 

F = 1OOn I F = 10n I F = n  I F = nI5  I ~ 

Rect. Ellip. Rect. Ellip. 
0.0866 0.0882 0.2443 0.2464 

t D Z f  
0.001 

0.2062 
0.5320 
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2.312 
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0.01 
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100 
1000 

0.4341 0.4424 
0.8170 0.8355 
1.5865 1.613 
2.6581 2.687 
3.8005 3.830 
4.9509 4.980 

0.1742 
0.4975 
1.2192 
2.2745 
3.4148 
4.5650 

0.1735 
0.4947 
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0.2047 
0.5316 
1.2577 
2.3147 
3.4553 
4.6055 
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Table 9.1: Comparison of Rectangular and Ellipticd Well Pressures 

skin. No such explicit form has been found (or is likely to be found) for the rectangular 
fracture. 

Figures 9.1 and 9.2 show that all well pressures start on a single curve when 
graphed in one way and end on a single curve when graphed in another. This suggests 
the possibility of finding a composite solution that will give accurate well pressures for 

all fracture conductivities and for all times. We have expended considerable effort to 

find a method of computing wellbore pressures without resorting to the exact solution. 

We have not found an alternative well solution which is satisfactory for all values of 
time. 

Both Figures 9.1 and 9.2 show a high degree of correlation between the wellbore 
pressures. This comparison is made explicit in Table 9.1 which shows well pressures 

for the rectangular and elliptical fractures. The well pressures in this table agree to 
within two and one-half percent. A more exhaustive tabulation of the elliptical case 
is given in Tables D.l and D.2 of Appendix D. 

Table 9.1 has one troubling feature; some tabulated pressures for the rectangular 

fracture are higher than those for the elliptical fracture. The elliptical fracture conduc- 

tivity, FE, is defined to match the rectangular fracture conductivity, FD, at the well. 
Moreover, the rectangular fracture has a constant cross section, while the elliptical 

fracture tapers toward its ends. So, the rectangular fracture pressures should always 

be lower than the elliptical fracture pressures. We assume that the discrepancies in 

Table 9.1 are due to inaccuracies in Cinco et al.’s data. 
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We have now completed the presentation of the elliptical finite conductivity frac- 

ture problem and solutions. We have shown a method that theoretically allows the 
computation of pressures anywhere in the fracture/reservoir system. However, we 

have concentrated our efforts on obtaining accurate well pressures. 

The accurate and efficient computation of reservoir pressures is a topic which we 

have not fully investigated. Neither have we considered the computation of pressures 

for the case of fracture face skin. These topics fall under the category of future work 

and will be discussed in the next section. 

9.2 Extensions 

The purpose of this section is to discuss aspects of the elliptical fracture problem 
which we were not able to develop fully. Here we give only a brief outline of the 

topics we see as logical outgrowths of this work. 

9.2.1 Fracture and Reservoir Pressure 

In this subsection we discuss the computation of reservoir pressures using the present 

model. In Chapter 7, we developed a method to determine the fracture pressure by 
means of the series: 

We also showed how 
of the large T terms. 

to accelerate the convergence of this series by using the behavior 

Determination of reservoir pressure requires evaluation of 

This series requires the computation of angular and radial Mathieu functions, but 

should converge as exp(-2n<)/n2. 

To evaluate the coefficients in Eq. 9.5, 7 2 % ,  we can use the expression: 
co 

r=O 
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given in Chapter 5.  Another possibility is to develop iterative solutions for the two 

sum equations involving 7zn, Eqs. 6.25 and 6.29 of Chapter 6. These solutions should 

be analogous to those involving ,&. There is also a possibility that manipulation of 

these sum equations will give insights into the problem which we have overlooked. 

We also need to consider the determination of pressures for large values of s. We 
have already developed early time solutions for well pressures. The method for deter- 
mining the bilinear/linear flow behavior could be extended to account for pressures in 

the reservoir using the method of geometrical optics (see the notes of Keller (1989)). 

9.2.2 Fracture Face Skin 

Fracture face skin can be easily included if we define the skin so that it is consistent 
with the elliptical fracture formulation. 

The usual way of defining the skin effect is to specify that the pressure drop acro~s 
an infinitesimally thin skin region is equal to the product of the dimensionless skin 

factor and the flux density, q'. For fracture face skin, the equation takes the form: 

The last expression in this equation uses the definition of q' given by Eq. 3.15 of 

Chapter 3 and the relation: 

The presence of sin(7) in Eq. 9.7 will complicate the solution process considerably. 

Thus, it is advantageous to specify a skin effect which is elliptically distributed on the 

fracture face. This entails the use of the derivative of reservoir pressure with respect 
to t rather than the normal derivative: 

Equation 9.9 should model the physical system better than Eq. 9.7. This is because 

fracture face skin arises from fluid invasion during fracturing and this invasion is great- 

est near the well. Equation 9.9 implicitly specifies a skin effect which is proportional 

to sin(9). 
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Equation 9.9 gives the matching condition for reservoir and fracture pressure, 

since the two pressures are no longer equal at the fracture face. The rest of the 

elliptical fracture problem is unchanged: the diffusivity equation and the fracture 
flow equations are as specified in earlier chapters. The m(ain difference in the new 
formulation is that the relation between 7Zn and P Z r  is no longer given by Eq. 9.6. 
Equation 9.9 indicates that the new form of Eq. 9.6 will contain an additional term. 

This means that the Fredholm sum equations will also contain additional terms. 

The exact solution of the new sum equations should be (essentially the same as in 

the third section of Chapter 7. This solution will undoubt(ed1y have computational 

difficulty at  early times. To circumvent this difficulty, we can use the methods of 
Chapter 8 to develop early time wellbore solutions. It should be no problem to include 
a skin term in the infinite length fracture model or the bilinear/linear flow model. 
However, the effect of skin on the infinite conductivity fracture may be difficult to 
determine. 

9.2.3 Miscellaneous Problems 

Wellbore Storage 

Since we have developed solutions in Laplace space, wellbore storage can be included 
in the well pressure solution simply: 

(9.10) 

This expression is due to Van Everdingen and Hurst (1949) and assumes that the 
wellbore storativity is constant. 

Bounded Reservoirs 

It does not appear that the elliptical formulation can be easily modified to include 

linear barriers. The method of images will produce a zero gradient condition along 

the barrier. However, the image fracture will cause a pressure gradient along the 

original fracture which does not satisfy the fracture differential equation. 
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The only boundaries which can be handled readily are those which correspond to 
constant values of 6 in the elliptical coordinate system. Solving problems where the 
reservoir is externally bounded by an ellipse will be straightforward. The acceptable 

radial solutions will be both Fek2, and Ce2n. The constant which multiplies the 

additional radial function is readily determined because the outer boundary condition 

will give an explicit relation between the coefficients of the two radial functions. 

Double Porosity Systems 

The solutions presented in earlier chapters can be modified to account for double- 
porosity behavior using any of the double-porosity formulations currently in use. 

This is because the solutions in this work are presented in Laplace space and the flow 

within the fracture is incompressible. 

The current double-porosity formulations use an s f ( s )  term in place of s in the 

single-porosity solution and multiply the solution by f(s) (see, for example, Bourdet 

and Gringarten (1980)). Double-porosity behavior is included. in the present case in 
exactly the same way: 

i S d P ( 4  = f(s)F(sf(s)). (9.11) 

The f(s) term accounts for interporosity flow. It takes different forms depending on 
whether interporosity flow is pseudosteady or transient. 

Layered Systems 

A layered system can be incorporated into the present model as long as the models 
do not account explicitly for flow in the z-direction. In most of the models used at 
present, the layers either do not communicate or the communication is accounted 

for by coupling equations representing two-dimensional flow. Extending the present 

model to these cases should not pose a problem. 

However, if the fracture affects the flow in the z-direction, the solution of a three- 
dimensional problem will be required. The solution of this type of problem will require 
a reformulation of the basic governing equations used in this work. 



Chapter 10 

CONCLUSIONS 

This chapter concludes the present work. It consists primarily of a list of conclusions 
reached in the course of this research. Before proceeding with the listing, however, 
we review the reasons for undertaking this project. 

It was not the intent of this work to usurp the groundbreaking and exhaustive 
efforts of Cinco and others. The purpose was to develop a model that approximated 

the physical situation as well as, or better than, the rectangular fracture and was 
exactly solvable. 

There were other aims. Primary among these was to determine if various linear- 

type flow regimes, which arise naturally from a rectangular fiacture formulation, 
would arise in the case of a different fracture geometry. These regimes were found to 
occur in the elliptical fracture formulation. 

Another aim of this work was to find an accurate, readily calculable wellbore 

solution valid for all times and conductivities. This general simplified solution was 

never found. So, determination of the wellbore pressure requires computation of the 

exact solution, at  least for dimensionless times greater than 

It needs to be emphasized that the present solutions are analytic. The only im- 

pediment to writing the solutions in explicit form is that they are typographically 

unwieldy. We have no mathematical proof of the exactness of the solution, but we 

have verified that the two computationally independent solutions converge to the 

same value. 
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We feel the need to emphasize the exactness of the solutions because we never 
expected to find them. Indeed, we happened upon them largely by chance. It was 

assumed that this work would have to rely on the power series solutions of Chapter 7 
which have restricted ranges of applicability. The exact solutions, although not trivial 

to calculate, can be computed using standard computing machinery (in our case an 

Apollo 10000). The data presented in the graphs of Chapter 9 consist of 125 data 
points over six log cycles of time. Each data set required approximately five minutes 
of real time for computation. 

1. This work poses and solves the problem of a vertical finite conductivity fracture 

of elliptical cross section producing at constant rate. The flow within the frac- 

ture is assumed to be incompressible and the reservoir is assumed to be infinite 
in extent. 

2. Two iterative solutions are presented. These solutions bear some resemblance 

to continued fractions and contain Mathieu functions and Mathieu Fourier coef- 
ficients. The two solutions converge to the same value! for all values of fracture 

conductivity, FE, and Laplace parameter, s. For practical calculations, the 

choice of solution depends on the magnitude of FE. 

3. The difficulty in computation of the solutions varies directly with the magnitude 
of s. This is because the kernels used in computing the solutions are represented 

by diagonally dominant square matrices which fill as s increases. Asymptotic 
solutions are presented for wellbore pressures when s is greater than lo4. 

4. The wellbore pressure for an elliptical fracture exhibits the same flow regimes 

as a rectangular fracture. The bilinear and reservoir linear regimes have similar 
representations for the two geometries. The pseudoradial flow regimes differ 

slightly in the two cases. There is an explicit expression for the apparent skin 
during pseudoradial flow to an elliptical fracture. No such explicit form has 

been found for the rectangular fracture. 

5. The present solution procedures can be applied to related problems. These 

applications are limited to two-dimensional problems whose geometries can be 
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represented by elliptical coordinates. 

6. Mathieu functions are computationally useful. Also, the work of Blanch (1966) 
reduces the determination of eigenvalues and Fourier coefficients to a straight- 

forward procedure. 
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Appendix A 

NOMENCLATURE 

Separation constant in Mathieu’s equation, Chapt. 5 
Mathieu function Fourier coefficient, Chapt. 5 
Parameter in Riccati equation, ,/m, Chapt. 8 
Angular n-periodic Mathieu function, Chapt. 5 
Radial Mathieu function, Chapt. 5 
Tot a1 isothermal compressibility 

Parabolic cylindrical function, App. C 
Rectangular fracture conductivity, k j w / k R x j ,  Chapt. 3 
Elliptical fracture conductivity, 2 k j t o / k ~ ,  Chapt. 4 

Feka,(O; -s/4)/Fekzn(O; -s/4), Chapt. 5 
Fourier coefficient ratio, AiF/AiF-2, App. B 
Reservoir thickness 

Parameter, &/2, App. C 
Scale factors of coordinate transformation, Chapt. 5 
Modified Bessel function of the first kind 

Permeability 

Modified Bessel function of the third kind 
Laplace transformation of f 
Index of parabolic cylindical function, -Xin/4h - 1/2, App. C 

Radial Mat,hiPii fiinrtinn, Clhnpt .5 
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Dimensionless pressure 2 n k ~ h ( p i  - p) /qp  
Well flowrate 

Fracture flux density, Chapt. 3 
Radius, d m  
Dimensionless radius, r / x f  
Separated radial solution, Chapt. 5 
Parameter of Laplace transformation 
Dimensionless skin factor, Chapt. 9 
Elliptical dimensionless skin factor, Chapt. 9 
Time 
Dimensionless time, kRt/4RpCtRX; 
Term in continued fraction, 4(a2, - 4r2) / s ,  App. B 
Rectangular fracture width 
Dimensionless distance, x/xf 
Fracture half length 

Dimensionless distance, y/zf 

Dependent variable in Riccati equation, ( d p j / ' d q ) / p j ,  Chapt. 8 

Indices of summation in Low FE series, Chapt. 7 
Coefficients in fracture pressure series, Chapt. 6 
Coefficients in reservoir pressure series, Chapt. 5 

Euler's constant, 0.5771.. . 
Exponential of Euler's constant, 1.781.. . 
I?-function 

Dirac delta function, Chapt. 4 
Kronecker delta function 
Kernels of Fredholm sum equation, Chapt. 6 
1 +So,, Chapt. 5 
Angular elliptical coordinate, Chapt. 4 
Parameter in elliptical integral formulation, App. B 
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Separated angular solution, Chapt. 5 
Diffusivity ratio, k&jctj/kjdRctR, Chapt. 3 
Mathieu eigenvalue, ~2~ + s/2, Chapt. 5 
Fluid viscosity 

Radial elliptical coordinate, Chapt. 4 
Coordinate of fracture ellipse, Chapt. 4 
Fluid density 
Porosity 

Term in comparison series of Kummer’s transformation, Chapt. 7 
@-function, I”( Z) /I?( x) 
Derivative of @ function 
Kernels of Fredholm sum equation, Chapt. 6 

SUBSCRIPTS AND SUPERSCRIPTS 

f Fracture quantity 

Li, k ,  1, m, 

n, p ,  q, r ,  a; 
R Reservoir quantity 
W Wellbore value 

Integer indices 

- Laplace transformed variable 



Appendix B 

MATHIEU EIGENVALUES AND 
COEFFICIENTS 

In this appendix we illustrate the computational aspects of the separation constants, 

u2n, the Fourier coefficients, Ai:, and the kernels of the sum equations of Chapter 6. 
Mathieu functions are rarely mentioned without reference to their computational 

difficulties. We have found that these computational difficulties have been overstated. 
The computation of Mathieu functions, except in extreme cases, is accomplished by 
summing series involving the Fourier coefficients, Ai:. The paper of Blanch (1966) 
makes the computation of these coefficients straightforward. 

B.1 Evaluation of a2n 

This section discusses the computation o the separation constants, ~ 2 ~ .  l t d  work 

primarily with, azn, rather than the eigenvalues, A i n ,  because the separation constants 

appear in the continued fraction. Recall that the relation between the eigenvalues 

and separation constants is: A i n  = u2n + s/2. 

102 
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B.l.l The Continued Fraction 

In this subsection we discuss an iterative procedure for computing the eigenvalues 

from a continued fraction. This subsection is essentially an. overview of the work of 

Blanch ( 1966). 
The derivation of the continued fraction starts from the recurrence relations given 

in Chapter 5 :  

Defining Gzr as the ratio of coefficients, Ai:/AiTr-ll, and by: 

transforms the recurrence relations into: 

Solving the second of these relations for G2 and setting it equal to the first gives a 
relation between Gq, I+, and &. Repeating this process using the third relation with 

r = 2 gives a relation between G,,l$,,& and K. This procedu 

indefinitely and ultimately yields the continued fraction: 

2 1 1 1 1  0 = vo - ----- 
v2- v4- &- Kj- KO- ... . 

Equation B.4 is a transcendental equation for u2n, since each "V" 
contains the unknown, u2n, and no other unknown terms. 

: can be repeated 

(B.4) 

given by Eq. B.2, 

The roots of Eq. B.4 are the separation constants, ~ 2 ~ .  The obvious way of finding 

these roots is to apply the Newton method of successive approximation directly to Eq. 

B.4. This was attempted and found to be inadequate. The reason for this inadequacy 
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Figure B.l :  Continued Fraction, Nonterminating Fraction Only 

is illustrated by a representative example. In this example we attempt to find ~2~ 

for all n and s = 32. Figure B. l  shows a graph of the right hand side of Eq. B.4, 
termed the residual, versus a for s equal to 32. The separation constants, a2n, are the 
points where the residual is zero, i.e., at the intersection of the heavy curves with the 

horizontal line. 

Newton’s method is able to find the first two roots, a. = -10.6 and a2 = +8.1, with 

no difficulty. The next root, a4 = 19.3, is more difficult to obtain, and the higher roots 

are virtually impossible to find. The reason for this difficulty is that as n increases, 

the zeroes and infinities of Eq. B.4 approach each other. Since Newton’s method 

relies on the slope of the function, if the initial guess is close to the eigenvalue, but 
not close enough, the first iteration will return a value that is on the more shallow 
slope. The next iterations will move along the shallow slope to one of the lower roots. 

To overcome this difficulty, the recurrence relations of Eq. B.3 are used to develop 

a second terminating continued fraction. This is accomplished by using the recurrence 
relations in reverse order. For example, to generate a terminating fraction for Gg, r 
is set equal to 3 and the first two relations of Eq. B.3 are inserted into the third. 
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Figure B.2: Continued Fraction, Nonterminating aad Terminating 

Then r is set equal to 4 and the expression for G6 is inserted into the third relation 
of Eq. B.3. This gives: 

1 1 2  
G8,l = v6 - --- . 

v4- v2- vo 
Here we are using the notation of Blanch, the subscript, 1, refers to the terminating 

fraction. The infinite continued fraction for G8 is denoted ‘by G8,2 and is derived in 

the same way as Eq. B.4, except that we start with G8 rather than G2. This gives 

When a = a2n, G8,l equals G8,2, i.e., the difference between the two continued frac- 
tions, G8,2 - G S , ~ ,  is zero. 

The reason that this formulation is so valuable is shown in Fig. B.2. Figure B.2 is 

a graph of G8,2 - Gs,l, the residual, versus a for s equal 32. .As before, the separation 
constants occur at the intersection of the heavy curves with the horizontal line. Here 

the fourth eigenvalue, at a6 = 36.9, is easily found by Newton’s method. We can find 
higher values in the same way by a judicious choice of r in G2r,2  - G2r,l. 
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The discussion of the previous paragraphs outlines the gist of Blanch’s method: 

the determination of T such that G2T,2 - G2T,1 is essentially linear in the area of 
the desired eigenvalue. This allows Newton’s method to converge to the desired 
eigenvalue. Blanch refers to this as the “chaining r” (actually in her nomenclature, it 

is the “chaining m”, m l )  and gives a method for finding it using a first guess to ~ 2 ~ .  

So, if an inaccurate first guess is used, G2T,2 - GzT,1 may be linear near an undesired 

eigenvalue and Newton’s method will converge to the wrong eigenvalue. 

Once the chaining T has been found, the Newton method of successive approxi- 
mation uses the relation: 

The primes in this equation refer to the derivatives with respect to a. The evaluation 
of these derivatives is outlined by Blanch. It is not necessary that these derivatives 
be computed to a high degree of accuracy. 

Equation B.7 is iterated until a desired tolerance is met. In this work we check 

the ratio, (ai: - u;iW)/(ai’,” + s/2), i.e. we check the convergence of the eigenvalues, 

Ain,  rather than a2n. We do this because the separation constants become zero for 
certain values of s while the eigenvalues are always positive. 

Equation B.7 converges quickly, usually in three iterations, but it requires a fairly 
accurate first guess. Before giving the correlations for the first guess we need to 
comment on a paper which has evaluated the above technique. A paper by the 
Numerical Analysis group at Delft University of Technology, Delft (1973), states that 

the method given by Blanch “in some cases will not produce the correct result.” We 
have not had any problems using Blanch’s method. 

B.1.2 Obtaining a First Guess 

The drawback of the continued fraction approach is that it requires an accurate first 
guess. The determination of the first guess is something that is not discussed in the 
literature and turns out to be the major difficulty with the method. If the guess is 

not close enough to the desired eigenvalue, the iterative procedure will converge to 

the wrong eigenvalue. The applicability of Blanch’s technique is limited solely by the 
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Figure B.3: Separation Constants, u2n, n == 0 - 10 

ability to give an accurate approximation to ~ 2 ~ .  The continued fraction approach 
has no limitation, p e r  se. 

The difficulty in finding a first guess is illustrated by Fig. B.3. Figure B.3 is a 

graph of aZn as a function of s for n ranging from 0 to 10. We show this graph because 
separation constants are usually displayed over a more limited range of s. Figure B.3 
clearly illustrates the points of inflection near a = s/2. The nature of the curves 
changes character dramatically as they cross this line. It is this change in character 
which complicates approximation of aZn. 

In the course of this work it was found that the point of equality, i.e., the value 
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of s where a2n = s/2, is well approximated by: 

2 

sapp = (n + 5 )  7r2. 
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The difference between sapp and the actual point of equality appears to grow loga- 

rithmically. For n = 1 the difference is 0.154, while for n = 100 it is 0.617. 
Using Eq. B.8 to approximate the point of equality, and the ascending and asymp- 

totic series given by McLachlan (1947), the following (fairly rough) correlations were 
developed for n 2 1: 

In Eq. B.9, A and B are given by: 

7ryn t 1/8)2 - 8n2 A =  
27r4(n + 1/8)4 7 

8 B = 7r(n t 1/8) n2(n + 1/8)2 - (4n + l ) r ( n  + 1/8) + 
(B.lO) 

For n = 0, we use the correlation: 

s 5 7.0 ; s2 7s4 29s6 6 8 6 8 7 ~ ~  
32 32768 9437184 -I- (65536)(18874368) ’ a0 N- --+-- 

(B.11) 

The correlations of Eqs. B.9 and B. l l  have been checked thoroughly and give 

correct results when used in Newton’s method for 0 5 n 5 150 and for 0 < s 5 lo4. 

These correlations should give correct results for higher values of n, but approximation 

of ~ 2 n  for higher values of s will require more sophisticated correlations. 

B.1.3 Checking the Order of a2n 

While investigating the asymptotic approximations to Matliieu functions (for exam- 
ple, see Keller and Rubinow (1960)), a relation was found which gives the order of the 
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eigenvalue explicitly. This provides a means of checking whether the iterative proce- 
dure has converged to the eigenvalue of the desired order. This procedure employs 
the observation that the integral of the square root of the coefficient in Mathieu's 
equation, Ai, - s sin2(v), gives the order of the eigenvalue explicitly. 

More concretely put, 42, in the relation: 

has been found to vary between zero and one-half. In Eq. B.12, qt is defined to be 
71/2 for Ai, greater than s and arcsin(Xz,/a, otherwise. Figure B.4 shows a graph 
of 02, for various values of n. 

Equation B.12 can be written in terms of the complete elliptic integrals E and 

K. Both of these elliptic integrals are available as IMSL subroutines (see IMSL Inc. 
(1990)). For A i n  less than s, Eq. B.12 gives: 
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For A i n  greater than s it becomes: 

n = @ { E(A2J,b) - (1 - %) K(A2J,b)} - 5 8 2 .  1 (B. 14) 
7r 

Once an eigenvalue has been found, these two expressions give its order explicitly. 
This is because the unknown on the right hand side of these expressions, 132,/2, varies 
between zero and one-quarter. 

33.2 The Fourier Coefficients, Ai," 

The Fourier coefficients can theoretically be computed using the recurrence relations 
of Eq. B.l. In practice this is not feasible because the recurrence relations are 

unstable in the forward direction. To overcome this difficulty, Blanch (1966) uses the 

continued fraction formulations of the last section. The details are given in her paper. 

The procedure for determining Ai: is to employ the G2,,l and G2,,2 used in finding 
the eigenvalues to compute a set of unnormalized coefficients. The sign of these 

coefficients is determined by requiring that A? be positive. This requirement is 
equivalent to requiring ce2n(O; -s/4) > 0. 

The final normalization is achieved by using the relation of Chapter 5 :  
00 

2(Ap)2 -I- C(Ai:)2 = 1. (B.15) 

This normalization also makes the sum over n of the squares equal to l /~ , ,  as 

T = l  

shown in Chapter 5. Thus, the expression: 
00 1 

(B.16) 

provides a convenient check on the Fourier coefficients. Recall that E, is defined to 
be unity for 7- # 0 and to be two for 7- = 0. 

B.3 Computation of the Kernels and Their Sums 

The computation of the iterative solutions given in Chapter 7 is uncomplicated once 

the sums involving the kernels have been calculated. Although, the computation of 
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these sums does not appear complex, certain pitfalls are present which have cost us 
weeks in lost time. For this reason we devote this subsection to the computation of 

the kernel, nil;, and the sum containing this kernel. The computation of the other 

kernels and their corresponding sums can be accomplished using the same procedure. 

The kernel, nib, is defined as: 

(B.17) 

To compute this series efficiently, we sum only over the indices for which the Fourier 
coefficients differ significantly from zero. Once this has been accomplished, we need 
to compute the sum containing the kernel so that only nonzero terms are used. 

The crux of the method involves calculating the Fourier coefficients, Ai:, and 

noting the extremum of r and n for which the coefficients are nonzero. As was 

noted in Chapter 5, the nature of the Fourier coefficients is such that there is a band 

centered at Ai: outside of which the coefficients become transcendentally small. It 
is only necessary to calculate the coefficients in this band and to note the values of 
the indices on its edges. A schematic of the nonzero values of Ai: for a given value 
of s is shown as a matrix in Fig. B.5. Here the nonzero elements (those greater than 

are denoted by dots and the transcendentally small elements are omitted. 

In the exposition that follows, we assume that Fig. B.5 represents the matrix we 

are computing. Note that this figure only shows the upper left hand corner of the 

matrix-the matrix is infinite in both dimensions. 

The first step in the procedure is to fill the matrix of the Fourier coefficients, which 

we call A2r2n(r,n). The ultimate reason behind the computations of this appendix 
is to enable computation of ,L?2T for r up to 100. To achieve this goal, we set the 
dimensions of A2r2n to 125 rows and columns. We do this because the sum involving 

0;; makes use of p values greater than r. 

We also define a pair of two column matrices, rnt and rnlow, each with 125 rows, 
as : 

rnlow(n,l) = lowest nonzero value of I', n fixed, 
rnlow(r,2) = highest nonzero value of n,  r fixed, 
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mt(n,l) = highest nonzero value of r ,  n fixed, 

mt(r,2) = lowest nonzero value of n, T fixed. 

Since the Fourier coefficients are calculated from a recursion relation involving r, 

we start with n = 0 and calculate all of the nonzero values of AiT. We then proceed 
to higher n. At each stage we find mlow(n,l) and mi(@) explicitly because we 

determine the starting and ending T values while computing Ai:, although we may 

have to reassign them at a later stage. The values, mlow(r,2) and mt(r,2), are more 

difficult to determine. For each A2r2n(r,n), n fixed, we only know if it is the first or 
last nonzero term in a column by comparing with coefficients of other rows, i.e. with 
other values of n. 

In order to determine if a A2r2n(r,n) value is the first nonzero value of a column, 
i.e., if n = mt(r,2), we compare r with mt(n-1,l). If there are any nonzero values for 
r > mt(n-1,l) in row n,  then mt(r,2) is set equal to n for all of these values of r .  The 

only problem with this procedure is where there are irregularities on the right side 

of the band. In Fig. B.5, the location n = 3, r = 8 is an irregularity because the 

coefficients immediately above and below it are zero. To overcome this difficulty, we 

artificially place a dot in the gap, n = 4, r = 8, and treat it as a nonzero term. This 
is accomplished by putting a check in the assignment of mt(n,l) to see if it is greater 

than or equal to mt(n-1,l). If it is less than mt(n-1,l) we reassign it to be equal to 
mt(n-1,l). In this way we fill out the gaps on the right side of the band. 

The calculation of mlow(r,2) can be performed in a way analogous to that of the 

last paragraph. In practice, however, we have found that the machinations used to 

determine mt(r,2) are not needed for the determination of 1nlow(r,2). So we opt for 

a simpler method. This method assumes that r = mlow(n,l) and the next ten higher 
r values are at the bottom of a column. If they are not at the bottom of the column, 
they will be reassigned automatically at higher values of n.  It has not been found 

necessary to fill in the gaps on the left side of the band nor do there appear to be 
irregularities which extend more than ten spaces. 

The result of the above procedure is that we have filled the matrix of elements, 

A2r2n(r,n), and know the locations of the extrema1 values. We now proceed to 

calculate the elements of the matrix of kernel elements, In order to fill the matrix, 
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OMEGA(r,p), we start at a value of r = 0 and calculate a double loop for each value 
of r up to r = 125. In essence what the computation entails is multiplying a column 
corresponding to a value to r by a column corresponding to a value of p .  In order to 
avoid unnecessarily computing zero values, we only multiply columns connected by a 

row of nonzero values and we sum only over values of n such that the p and T columns 

have nonzero elements. Otherwise we would be multiplying nonzero values of Ai: by 
zero values of Ai; and vice versa. So, at each value of r we start with a value of p 

equal to the lowermost nonzero position in the row corresponding to the uppermost 

nonzero position in column r ,  i.e., we start with p equal to rnZow(rnt(r,2),1). For this 
value of p ,  we sum Eq. B.17 over the nonzero values of the column for this value 

of p downward in the column, i.e., we sum from n equal to rnt(r,2) to rnlow(p,2). 

We next increment p by one and perform the sum over n in the next column to the 
right. We repeat this procedure until we reach a value of p equal to r .  Because 

is symmetric in p and T ,  at each value of p we set equal to 51;;. We need go no 

further than p = r because higher order coefficients will be filled in symmetrically 
at higher values of T .  At this point r is incremented by one and the procedure is 

repeated until r = 125, at which point the matrix, OMEGA(r,p), is filled. 

Once the matrix, OMEGA(r,p), is filled we need to evaluate the sum containing 
it: 

(B.18) 
p=l 

We proceed in much the same way as in the preceding paragraph, Le., we sum only 
indices such that the corresponding columns are joined by a row of nonzero elements. 
The terms, p 2  and aP, are slowly varying and so don’t affect the magnitude of the 
terms significantly. In computing a sum over p we are given a value of r which is the 

same as the subscript of the coefficients, P2r,  outside of the summation. The sum is 

carried out from p equal to rnZow(rnt(r,2),1) up to p equal to rnt(mlow(r,2),1). At 
this point the sum is complete. 



Appendix C 

COMPUTATION OF 3in 

In this appendix we illustrate the computation of the derivative of the radial Mathieu 

function, Felc2,, at 5 = 0. In this work, it has been convenient to consider the ratio 

F2n = Felc;,(O; -S/4)/F&,(o; -s/4). The methods outlined in this section allow 
computation of F., to at least seven significant figures of accuracy. 

This appendix consists of four sections. The first section uses the relations given by 
McLachlan (1947) to express F2, as a ratio of two series. This ratio is computationally 
useful for low values of s only. For higher values of s, truncation errors make the 

method inaccurate. 

The second section gives a fairly rigorous and very tedious derivation in terms 
of parabolic cylindrical functions. The final expression for F2n is given in terms of 

I'-functions, Q-functions and derivatives of *-functions. Ala argument is made that 

this final expression is actually a Taylor series expansion of a sum of I?-functions. 

The third section presents a simplistic, yet tedious derivahion which gives accurate 
results for n greater than ten. The added benefit of this solution is that, for these 

high n values, it approximates both late and early time behavior. 

The fourth section gives the ranges of applicability of the three solutions. 
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C.1 The Fourier Series Representation 

The expression given as Eq. 5.25 in Chapter 5 can be written as: 

where IT and K,  are modified Bessel functions. 
This expression is useful for small s. As s increases, the truncation errors, as- 

sociated with computing each series in Eq. C.1, grow. This is because both series 

become transcendentally small for large s, although they sum terms of order unity. 

For this reason, alternative formulations are needed which give FZn directly. These 
formulations are discussed in the next two sections. 

C.2 Parabolic Cylindrical Function Derivation 

This section derives expressions for F2n directly from the golverning differential equa- 

tion. The solutions derived in this section are valid for large values of s and all n, 
although we make use of them for n less than or equal to ten only. The method takes 
into account that the differential equation contains turning points. The derivation 

is extremely tedious, so only the highlights and the final expressions will be given. 

Much of the approach used in this section is taken from Sips (1949). 
We seek a solution of the radial separated equation, Eq. 5.23 of Chapter 5: 

which approaches zero as x approaches infinity and has a va3ue of unity at x equal to 

zero. Once this problem is solved, F2% is the derivative of y at x equal to zero. 

The difficulty with using asymptotic methods to solve Eq. C.2 is that it contains 

turning points: values of x such that the coefficient of y is equal to zero. It does not 

matter that these values are not real, they will still have an effect on the solution for 

real x. It does matter, however, that the turning points appear in complex conjugate 

pairs. This means that we must approximate Eq. C.2 by an equation which possesses 
a double turning point (see Olver(1975)). 
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The simplest differential equation which possesses a double turning point is the 
equation governing parabolic cylinder functions: 

d2Y 1 2 2  
Lb; PI = + ( p  + - 2 - --)y = 0. 

The solutions of this equation which vanish at  infinity are the parabolic cylindrical 

functions, Dp(z ) .  There is not a great deal of literature on these functions, but 

Abramowitz and Stegun (1972) and Erdelyi et al. (Vol. 2,1955) give some discussion. 

Because we seek solutions of Eq. C.2 valid in the region of the origin, we expand 
the hyperbolic cosine in a power series, make the substitutions, h = &/2, z = 2 6 x ,  
and p = -Xi,/4h - 1/2, and rearrange. These steps transform Eq. C.2 into: 

d2Y 2 1 $ Y = Y  z2 -+- Z6 Z8 ...). p + ( P + -  - (4284h 1440h2 80640h3 
In order to develop a perturbative solution, we assume a that y can be represented 

as : 

It may seem strange that we are considering p and h to be independent parameters, 
especially since we are assuming that h is large. The usual way to handle this type 

of problem is to expand p in inverse powers of h and then to equate powers of h. 
By assuming that p is independent of h, however, we develop a solution that is more 
accurate for low values of s. 

The perturbation procedure consists of inserting Eq. C.5 into Eq. C.4 and equat- 
ing powers of h. This results in an infinite set of differential equations which are 
solved sequentially. All of the solutions must approach zero as z approaches infinity 

and all of the solutions, except for yo, must have a value of zero at z equal to zero. The 

solution, yo, is to have a value of unity at z equal to zero. In this way, we insure that 

Eq. C.5 satisfies the differential equation and boundary conditions, at least formally. 

The first approximation, yo, is the solution of Eq. C.3 having a value of unity 

at z equal to zero and approaching zero for large z .  Since, the only solution which 
satisfies the differential equation and approaches zero for large z is proportional to 
D,(z), we must have: 
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To obtain the first approximation to .F2n, we differentiate this expression with respect 

to z using the chain rule and the relations: 

dz 2 DP+l(Z) 7 
- -  dDP(4 ZDP(4 - 

This gives the pproximation: 

The next approximation, y l ,  is found by considering the terms of order l / h  and 
solving the equation: 

4 

(C-9) 
2 Yo 

J 7 Y l ; P l  = 48 
L is the differential equation defined by Eq. C.3. The term 2:* will prove troublesome, 
so we remove it through repeated use of the recurrence relation: 

ZDP(Z) = D,+l(Z) + PDp-l(Z), (C.10) 

together with Eq. C.6. This procedure transforms Eq. C.9 into: 

This form is advantageous because we have eliminated all of the coefficients which 

contain z .  This enhances the solution procedure considerably. We can now find a 

particular solution to Eq. C. l l  by manipulating Eq. C.3. For example, the definition: 

implies that: 

(C.13) 

This equation does not hold for rn equal to zero. For this case, we need to differentiate 
L with respect to its order, p ,  and rearrange to get: 

(C.14) 
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These last two relations are used to find the particular solution of Eq. C . l l .  To 

find the general solution we need to add the homogeneous solution ClD,(z). The 
form of the solution automatically satisfies the boundedness condition at  infinity. In 

order to satisfy the inner boundary condition, we need to specify C1 such that y1(0) 

equals zero. 

Solving for C1, gives y1 as: 

In this equation, the superscript, ( p ) ,  denotes differentiation with respect to order. 

The second term in the approximation of F 2 n  is found by differentiating Eq. C.15 with 

respect to 2 and setting 2 equal to zero. We defer showing t:his second approximation 

until we present the third, and final, term. 

The third term, 9 2 ,  is found by solving the equation: 

(C.16) 

Repeated use of the recurrence relation, Eq. C.10, results in an expression equivalent 

to Eq. C.16, but whose coefficients do not contain z. This expression consists of 

nineteen terms and will not be shown. It contains parabolic cylindrical functions 

and derivatives of parabolic cylindrical functions with respect to order. The method 

of solving the resulting equation is the same as in the previous approximation. The 
particular solutions for functions involving derivatives with respect to order are found 

by taking the derivative of Eqs. (2.13 and (2.14 with respect to order. In order to 

find the general solution, we add C2Dp(z) to the particular solution and specify C2 
such that y2(0) is equal to zero. The resulting expression for y2 consists of twenty- 
two terms and will not be shown. The solution is in terms of parabolic cylindrical 
functions and their first and second derivatives with respect to order. 

The final expression for F 2 n  consists of adding the derivaltive of y2 to the previous 

two approximations. At this point we need to simplify ithe resultant expression. 
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Since this expression contains parabolic cylindrical functions and their derivatives 

with respect to order, we use Eq. C.7 and its derivatives. The derivatives of the 

r-function are best expressed as @-functions: 

(C.17) 

Using the r-function, the @-function, and its derivativle; the expression for F& 
becomes: 

1 
2048 h2 

+- [-36p2 - 36p - 19 - 2(10p2 + lop + 7)(2p + 1) ( @ ( A )  - @ ( B ) )  

+ (2p2 + 2p t 1)2 (@‘(A) - Q’(B) -t ( @ ( A )  - XP(B);l2)]) + U(h-5/2), 

where 9’ is the derivative of the Q-function, A = 1/2 - p/2, and B = -p/2. 
Close examination of Eq. C.18 reveals that it is equivalent to a TayloI 

expansion of three ratios of r-functions: 

r[+ - 1)/2 + (2p2 + 2p t 1)/32h] FZn = - 2 6  + ( 2 9  + 2p + 1)/32h] 

C.18) 

series 

- + 1) r [ - (~  - 1)/2 - (lop2 + lop + 7)/32h] 
16h r[-p/2 - (lop2 -t lop + 7)/32h] 

-1- o(h-5/2). (C.19) + @$36P2 + 36P + 19) r[-(P - 1)/2] 
1024h2 WP/21 

Equation C.19 is no more accurate than Eq. C.18 but it is computationally prefer- 
able. It also indicates that there may be a much simpler method for determining the 
asymptotic expansion for F2n. 

C .3 Exponential Approximat ion 

In this section we derive an approximation to F2n using exponential functions. This 
approximation ignores the presence of turning points, but is adequate for approxi- 

mating the function for large values of n and all values of s. This approximation was 

derived before we became acquainted with the Riccati equakion. It appears that the 
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method we employ is equivalent to the “Large B” Riccati equation method used in 

Chapter 8. 
In this section, we take advantage of the fact that we are only interested in the 

point, x = 0, by rearranging Eq. C.2 so that the right hand side is zero at this point 
and the left hand side has constant coefficients. Thus, the present approach solves 

the equation: 

Xi,y = 2h2(cosh(2x) - 1)y , d2Y LL[y;X] = - - (C.20) 
8x2 

where h is f i / 2 .  

The perturbation method is slightly different than that of the previous section. 

We initially ignore the right hand side of Eq. C.20 and seek a solution which has a 

value of unity at  x equal to zero and approaches zero as x approaches infinity. This 
solution is: 

yo(x) = e-Ax, (C.21) 

where we have dropped the subscript on X for convenience. We then insert yo into 

the left hand side of Eq. C.20 and solve the equation with homogeneous boundary 
conditions at zero and infinity. This solution is yl. From then on we iterate, at each 

step using the previous solution in the right hand side. At each level we take care of 
all of the terms left over from the previous iteration. The full solution is the sum of 

the yi, and .F2% is the derivative of the full solution at x equal to zero. 

The solution, y1, requires solving the inhomogeneous equation: 

LL[yl; A] = 2h2(cosh(2x) - l)e-’”. (C.22) 

This is readily accomplished using the relations: 

These relations were found by manipulating the differential operator,Ll, in the same 
way as in the previous section. Using these relations and the solution to the homo- 
geneous equation, gives: 

e-(A-2)x e-(A+2)2 e-A” 
- (C.24) 

(4(1 - A) + 4(1 + A) 2(1 - X2) 
Y l ( X )  = h2 
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The third solution, y2, is found using Eq. C.24 in th’e right hand side of Eq. 

C.20. The solution of this equation requires more relations of the type in Eqs. C.23, 
which are again found by manipulating the operator, LL. The solution, y2, consists 
of twelve terms and will not be shown here. 

The fourth solution, y3, is the solution to the equation: 

(C.25) 

Since we do not intend to go to higher iteration levels, we can find the derivative 
of y3 at the origin through use of the Laplace transform. If we take the Laplace 

transform of Eq. C.25, using X as the parameter in the transformation (i.e., multiply 

Eq. C.25 through by exp(-Ax) and integrate from zero to infinity), we find the 
desired derivative by means of a single integration. The Laplace transformation of 

Eq. C.25, taking into account the homogeneous boundary conditions at zero and 
infinity, is: 

(C.26) 

The final expression for F2n is the sum the derivatives of yo, y1 and yz at x equal 

to zero added to the result of integrating Eq. C.26: 

h2 h4(19X2 - 4) 
x ( x 2  - 1) + 2~3(x2 - 4)(x2 - :v 3 2 a  = - A -  

+ 0(h8//X1’). (C.27) h6(631X6 - 2159X4  + 736X2 - 144) - 
2 ~ 5 ( x 2  - S)(P - 4)2(~2 - 1)3 

In this expression, X is shorthand notation for X2,, which is equal to da2, + s/2, and 
h is 6 1 2 .  

C.4 Ranges of Applicability of Solutions 

In the previous three sections, we gave solutions which were valid for different ranges 

of s and n. In this section we specify these regions. 

The ratio of series in the first section, Eq. C.1, is computationally useful for low 
values of s. In this work we use this solution for s 5 300 + lOOn and for n 5 10. 
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The r and *-function solution, Eq. C.18, is used for s > 300 + lOOn and for n 5 10. 

Equation C.19 should give equal accuracy in this range, but in this work we use C.18. 
For n > 10, we use the exponential solution, Eq. C.27, for it11 values of s. 

Using the three solutions in this way gives at least seven significant figures of 
accuracy. The weak link in the computation is Fo. Neither the Fourier series rep- 

resentation, Eq. C.l, nor the r-function representation, Eq. C.18, is very accurate 

in the neighborhood of s equal to 300. As the order increases, the accuracy of the 

representations of 3.zn increases. For example, at n = 10 we obtain ten figures of 
accuracy for all s. 



Appendix D 

WELL PRESSURE TABLES 

In this appendix we present tabular data computed from the solutions given in the 
main text. We cover three cases in five tables. The first two tables present pow for the 
elliptical fracture case using the iterative solutions of Chapter '7. The next two tables 
compare the exact solution for an infinite conductivity fracture to two approximate 
formulae. The final table compares the exact solution with the infinitely long fracture 
solution for FE equal to 0.1. 

The data presented in these tables are (with the exception of the Gringarten et 

al. solution) computed using the algorithm of Stehfest (19'70) to invert the Laplace 

space solutions. Since this is a numerical inversion technique, we cannot give explicit 

error bounds. In generating these tables, we have used eight terms of the inversion 

algorithm, i.e. N = 8. We believe that the tabulated pressuxes are accurate to at 
least three, and possibly four, significant figures. 

D .1 Well Pressures for Elliptical Fracture 

Tables D.l and D.2 present well pressures for the elliptical. fracture. Data are pre- 
sented for fracture conductivities from ~ / 1 0  to 1000 for values of toIf from to 

These data are computed using the exact solutions of Chapter 7. The low 
conductivity iterative solution, Eq. 7.19, was used for FE equal to n/10, while the 
high conductivity iterative solution, Eq. 7.17, was used for #all higher conductivities. 

124 
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Note that the tabulation starts with t D x f  = In order to use the iterative 

solutions of Chapter 7 for this low range of t ~ ~ ~ ,  we were forced to use a large number 

of terms in the fracture pressure series, Eq. 7.22 of Chapter 7. 

In computing the data of Tables D.l and D.2, we use the procedure outlined in 

Appendix B, Section B.3 to compute the kernels. The difference is that the matrices 

were defined to contain 325 by 325 elements, rather than 125 by 125. We also sum 
the series, Eq. 7.22, to 290 terms rather than 100 terms. 

D.2 The Infinite Conductivity Fracture 

Tables D.3 and D.4 give tabulations of pow for the infinite conductivity case. Also 

shown in this table are the approximate solutions of Gringarten et al. (1974) and Eq. 
8.20 of Chapter 8. We include these tables because it was found that the tabulated 
data given by Kucuk and Brigham (1979) were inaccurate at early times. 

The second columns of Tables D.3 and D.4 contain data obtained by evaluating 

the exact solution of Kucuk and Brigham (1979): 

These data were checked' against those given by an independent method described 
in Wilkinson (1989). The two methods agree to four significant figures, however both 

methods use the Stehfest (1970) algorithm to invert transformed solutions. 

The third columns in Tables D.3 and D.4 contain data from the early time ap- 
proximate solution of Chapter 8: 

7T 

s(2Js+ 1) * 

PE.T. = 

The percentage difference between the two solutions, Eq. D.l and Eq. D.2, are given 
in the fourth columns of Tables D.3 and D.4. These tables indicate that the error in 

using Eq. D.2 is essentially nil until a value of t D x f  of about 0.4. This means that 

Eq. D.2 is sufficiently accurate for use in the composite solutions of Chapter 8. 

'personal communication: D.J. Wilkinson, Dowel1 Schlumberger, Ridgefield, Conn., Feb. 27, 
1991. 
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The fifth columns in Tables D.3 and D.4 present data from the equation: 

6 [ erf (0.1299514) + erf ( 0.87004857 )] 
2 IJG 6 P D , G T ~ ~  = 

0.01 68874 0.7569845 -0.0649757 Ei (- ) - 0.4350243 Ei (- t D x f  ) . (D-3) 
Dx f 

In this equation, “erf’ is the error function and “E?’ is the exponential integral. 

Equation D.3 is the well known solution of Gringarten et al. (1974). The constants 

have been altered slightly to give greater accuracy during pseudoradial flow (see 
Kuchuk (1987), Appendix A). The reason that we tabulate this expression is that the 
data given by Kucuk and Brigham (1979) make Eq. D.3 appear more accurate than 
it is. Tables D.3 and D.4 show that the errors in using Eq. D.3 are as high as four 
percent. Also, the Gringarten et al. solution does not match the character of the exact 

solution-initially Eq. D .3 overestimates the fracture pressure, then underestimates 

it and then asymptotes to the true pressure. 

D.3 The Very Low Conductivity Fkacture 

The final table compares the exact solution of Chapter 7, Eq. 7.19, with that of the 

infinitely long fracture case. The infinitely long fracture solution is due to Wilkinson 

(1989) and is given by Eq. 8.1 of Chapter 8. 
Table D.5 shows the comparison for F’ = 0.1: the exact solution for the elliptical 

case is in the second column and Wilkinson’s solution is in the third column. The 

fourth column shows the percentage difference between the two solutions. This dif- 
ference is less than one percent. So, FE = 0.1 is a reasonable upper limit for use of 

Eq. 8.1. 
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tDZ, 
0.0001 
0.0002 
0.0003 
0.0004 
0.0005 
0.0006 
0.0004 
0.0008 
0.0009 
0.001 
0.002 
0.003 
0.004 
0.005 
0.006 
0.007 
0.008 
0.009 
0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

Elliptical Fracture Conductiv 
1000 

0.01876 
0.02603 
0.03159 
0.03627 
0.04038 
0.04408 
0.04749 
0.05065 
0.05361 
0.05641 
0.07887 
0.09593 
0.1102 
0.1227 
0.1339 
0.1441 
0.1536 
0.1625 
0.1709 
0.2370 
0.2861 
0.3266 
0.3614 
0.3923 
0.4203 
0.4459 
0.4696 
0.4917 
0.6600 
0.7776 
0.8699 
0.9464 
1.012 
1.070 
1.121 
1.167 

loon 
0.02113 
0.02843 
0.03401 
0.03869 
0.0428 1 
0.04653 
0.04993 
0.05310 
0.05607 
0.05888 
0.08137 
0.09845 
0.1127 
0.1252 
0.1364 
0.1467 
0.1562 
0.1651 
0.1735 
0.2396 
0.2889 
0.3293 
0.3642 
0.3952 
0.4232 
0.4488 
0.4725 
0.4947 
0.6630 
0.7808 
0.8731 
0.9497 
1.015 
1.073 
1.124 
1.171 

io0 
0.02790 
0.03547 
0.04118 
0.04595 
0.05012 
0.05388 
0.05733 
0.06053 
0.06352 
0.06635 
0.08899 
0.1062 
0.1205 
0.1331 
0.1443 
0.1546 
0.1642 
0.1731 
0.1815 
0.2479 
0.2973 
0.3378 
0.3729 
0.4039 
0.4320 
0.4577 
0.4815 
0.5037 
0.6725 
0.7905 
0.8831 
0.9598 
1.026 
1.083 
1.135 
1.181 

10n 
0.04483 
0.05417 
0.06081 
0.06617 
0.07079 
0.07488 
0.07860 
0.08202 
0.08521 
0.08820 
0.1118 
0.1295 
0.1442 
0.1570 
0.1685 
0.1790 
0.1887 
0.1977 
0.2062 
0.2735 
0.3235 
0.3645 
0.3999 
0.4313 
0.4596 
0.4856 
0.5096 
0.5320 
0.7023 
0.8212 
0.9143 
0.9914 
1.058 
1.116 
1.167 
1.214 

10 
0.07797 
0.09297 
0.1031 
0.1110 
0.1176 
0.1234 
0.1284 
0.1330 
0.1372 
0.1411 
0.1704 
0.1911 
0.2078 
0.2221 
0.2348 
0.2462 
0.2567 
0.2665 
0.2756 
0.3468 
0.3991 
0.4418 
0.4784 
0.5109 
0.5402 
0.5670 
0.5917 
0.6148 
0.7896 
0.91 11 
1.006 
1.084 
1.152 
1.210 
1.263 
1.310 

Y) FE 
7r 

D.1383 
0.1646 
0.1821 
0.1958 
0.2070 
0.2167 
0.2252 
0.2329 
0.2399 
0.2464 
0.2933 
0.3250 
0.3496 
0.3700 
0.3877 
0.4034 
0.4 175 
0.4305 
0.4424 
0.5314 
0.5934 
0.6426 
0.6843 
10.7207 
0.7 5 33 
0.7830 
13.8102 
0.8355 
1.024 
1.153 
1.253 
1.335 
1 A05 
1 A66 
1.520 
1.569 .-- 

1.0 

0.2899 
0.3205 
0.3441 
0.3636 
0.3802 
0.3949 
0.4081 
0.4201 
0.4311 
0.5106 
0.5635 
0.6041 
0.6376 
0.6661 
0.6912 
0.7137 
0.7341 
0.7527 
0.8871 
0.9757 
1.043 
1.099 
1.147 
1.188 
1.226 
1.260 
1.291 
1.514 
1.660 
1.771 
1.861 
1.936 
2.002 
2.059 
2.111 

0.2441 
n/10 
0.4317 
0.5109 
0.5635 
0.6039 
0.6370 
0.6652 
0.6900 
0.7122 
0.7323 
0.7507 
0.8822 
0.9682 
1.033 
1.086 
1.131 
1.171 
1.205 
1.237 
1.266 
1.467 
1.595 
1.691 
1.767 
1.832 
1.888 
1.937 
1.981 
2.021 
2.296 
2.467 
2.592 
2.692 
2.774 
2.845 
2.907 
2.962 

Table D.l: Well Pressures for Elliptical Fracture, t~~~ < 1.0 
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- 
t D I f  
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
200 
300 
400 
500 
600 
700 
800 
900 
1000 - 

1000 
1.210 
1.505 
1.689 
1.823 
1.929 
2.016 
2.090 
2.155 
2.212 
2.263 
2.603 
2.804 
2.947 
3.058 
3.148 
3.225 
3.292 
3.35 1 
3.403 
3.749 
3.952 
4.095 
4.207 
4.298 
4.375 
4.442 
4.501 
4.553 

Table D.2 

El 
1oox 
1.213 
1.509 
1.693 
1.827 
1.932 
2.019 
2.094 
2.158 
2.215 
2.267 
2.607 
2.808 
2.950 
3.061 
3.152 
3.229 
3.295 
3.354 
3.407 
3.753 
3.955 
4.099 
4.210 
4.301 
4.379 
4.445 
4.504 
4.557 

)tical Fracture Conductivity, FE 
100 

1.224 
1.519 
1.703 
1.838 
1.943 
2.030 
2.104 
2.169 
2.226 
2.278 
2.618 
2.819 
2.961 
3.072 
3.163 
3.240 
3.306 
3.365 
3.418 
3.764 
3.966 
4.110 
4.221 
4.313 
4.390 
4.456 
4.515 
4.568 

lox 
1.256 
1.553 
1.737 
1.872 
1.978 
2.065 
2.139 
2.204 
2.261 
2.312 
2.653 
2.853 
2.996 
3.107 
3.198 
3.275 
3.341 
3.400 
3.453 
3.799 
4.001 
4.145 
4.256 
4.347 
4.424 
4.491 
4.550 
4.603 

10 
1.353 
1.652 
1.837 
1.972 
2.078 
2.166 
2.240 
2.305 
2.362 
2.414 
2.755 
2.955 
3.098 
3.209 
3.300 
3.377 
3.443 
3.502 
3.555 
3.901 
4.103 
4.247 
4.359 
4.450 
4.527 
4.594 
4.652 
4.705 

x 
1.613 
1.919 
2.107 
2.243 
2.350 
2.438 
2.513 
2.578 
2.635 
2.687 
3.029 
3.230 
3.373 
3.484 
3.575 
3.652 
3.718 
3.777 
3.830 
4.176 
4.378 
4.522 
4.634 
4.725 
4.802 
4.869 
4.927 
4.980 

1 .o 
2.157 
2.475 
2.668 
2.807 
2.915 
3.004 
3.080 
3.145 
3.203 
3.255 
3.599 
3.800 
3.944 
4.055 
4.146 
4.223 
4.289 
4.348 
4.401 
4.747 
4.950 
5.093 
5.205 
5.296 
5.373 
5.440 
5.499 
5.552 

ti10 
3.012 
3.343 
3.541 
3.682 
3.792 
3.883 
3.959 
4.025 
4.084 
4.136 
4.481 
4.683 
4.827 
4.938 
5.029 
5.106 
5.173 
5.232 
5.284 
5.631 
5.834 
5.977 
6.089 
6.180 
6.257 
6.324 
6.383 
6.436 

Well Pressures for Elliptical Fracture, t D I f  2 1.0 
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t D Z f  
).0001 
1.0002 
1.0003 
1.0004 
1.0005 
1.0006 
1.0007 
1.0008 
1.0009 
0.001 
0.002 
0.003 
0.004 
0.005 
0.006 
0.007 
0.008 
0.009 
0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

Exact 
POW 

0.01765 
0.02491 
0.03047 
0.03514 
0.03 924 
0.04295 
0.04635 
0.04951 
0.05248 
0.05527 
0.07772 
0.09477 
0.1090 
0.1215 
0.1327 
0.1430 
0.1525 
0.1613 
0.1697 
0.2358 
0.2849 
0.3253 
0.3601 
0.3911 
0.4190 
0.4446 
0.4683 
0.4904 
0.6586 
0.7762 
0.8684 
0.9449 
1.011 
1.068 
1.119 
1.166 

Early Time 
PD,E.T. 
0.01765 
0.02491 
0.03047 
0.03514 
0.03924 
0.04295 
0.04635 
0.04951 
0.05247 
0.05527 
0.07772 
0.09477 
0.1090 
0.1215 
0.1327 
0.1430 
0.1525 
0.1613 
0.1697 
0.2358 
0.2849 
0.3253 
0.3601 
0.3910 
0.4190 
0.4446 
0.4683 
0.4904 
0.6585 
0.7762 
0.8684 
0.9449 
1.010 
1.068 
1.119 
1.165 

% E  
-0- 
-0- 
-0- 
-0- 
-0- 
-0- 
-0- 
-0- 
-0- 
-0- 
-0- 
-0- 
-0- 
-0- 
-0- 
-0- 
-0- 
-0- 
-0- 
-0- 
-0- 
-0- 
-0- 
-0- 
-0- 
-0- 
-0- 
-0- 
-0- 
-0- 
-0- 

0.01 
0.01 
0.02 
0.03 
0.05 

Gring 
PD,GTin 
3.01772 
3.02507 
3.03070 
3.03 545 
3.03963 
3.04342 
0.04689 
D.05013 
0.0531 7 
D.05605 
0.07927 
D.09708 
0.1121 
0.1253 
0.1372 
0.1480 
0.1581 
0.1675 
0.1763 
0.2450 
0.2945 
0.3343 
0.3681 
0.3978 
0.4244 
0.4486 
0.4710 
0.4918 
0.6510 
0.7645 
0.8552 
0.9313 
0.9970 
1.055 
1.107 
1.154 

ten m 
-0.44 
-0.63 
-0.77 
-0.89 
-0.99 
-1.09 
-1.17 
-1.25 
-1.33 
-1.40 
-1.99 
-2.43 
-2.80 
-3.10 
-3.35 
-3.54 
-3.70 
-3.82 
-3.91 
-3.93 
-3.38 
-2.78 
-2.21 
-1.71 
-1.28 
-0.90 
-0.57 
-0.29 
1.15 
1.50 
1.52 
1.44 
1.33 
1.22 
1.12 
1.03 

Table D.3: Infinite Conductivity Fracture, t ~ ~ ,  < 1.0 
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- 
t D x f  
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
200 
300 
400 
500 
600 
700 
800 
900 
1000 

Exact 
PDw 
1.208 
1.504 
1.687 
1.822 
1.927 
2.014 
2.088 
2.153 
2.210 
2.261 
2.602 
2.802 
2.945 
3.056 
3.147 
3.224 
3.290 
3.349 
3.401 
3.747 
3.950 
4.094 
4.205 
4.296 
4.373 
4.440 
4.499 
4.552 

Early Time 
PD,E.T. 
1.207 
1.498 
1.674 
1.798 
1.893 
1.969 
2.032 
2.085 
2.131 
2.171 
2.412 
2.531 
2.606 
2.658 
2.698 
2.729 
2.755 
2.776 
2.794 
2.893 
2.938 
2.965 
2.984 
2.997 
3.008 
3.017 
3.024 
3.030 

0.07 
0.37 
0.80 
1.28 
1.76 
2.23 
2.69 
3.13 
3.57 
3.98 
7.30 
9.69 
11.53 
13.02 
14.27 
15.34 
16.28 
17.11 
17.86 
22.79 
25.61 
27.57 
29.05 
30.23 
31.22 
32.06 
32.79 
33.44 

Grinf 
pD,Grin 
1.197 
1.496 
1.682 
1.818 
1.924 
2.012 
2.086 
2.151 
2.208 
2.260 
2.601 
2.802 
2.945 
3.056 
3.147 
3.224 
3.290 
3.349 
3.401 
3.747 
3.950 
4.094 
4.205 
4.296 
4.373 
4.440 
4.499 
4.552 

-ten 

0.95 
0.48 
0.30 
0.21 
0.16 
0.13 
0.11 
0.09 
0.08 
0.07 
0.03 
0.02 
0.01 
0.01 
0.01 
-0- 
-0- 
- 0- 
-0- 
- 0- 
-0- 
-0- 
-0- 
- 0- 
- 0- 
-0- 
-0- 
-0- 

%XE 

-- 
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Table D.4: Infinite Conductivity Fracture, t~~~~ 21.0 
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t D x f  
3.0001 
1.0002 
1.0003 
1.0004 
1.0005 
1.0006 
1.0007 
3.0008 
3.0009 
0.001 
0.002 
0.003 
0.004 
0.005 
0.006 
0.007 
0.008 
0.009 
0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.1 
0.2 
0.3 
0.4 
0.5 

FE = 0.1 
Exact 

0.8789 
0.9644 
1.029 
1.082 
1.127 
1.166 
1.200 
1.231 
1.260 
1.459 
1.586 
1.681 
1.756 
1.820 
1.874 
1.923 
1.966 
2.005 
2.273 
2.437 
2.557 
2.652 
2.731 
2.798 
2.856 
2.909 
2.955 
3.271 
3.460 
3.596 
3.703 

0.7480 
Approx 
0.7479 
0.8788 
0.9643 
1.029 
1.082 
1.127 
1.165 
1.200 
1.231 
1.260 
1.459 
1.586 
1.680 
1.756 
1.819 
1.874 
1.922 
1.965 
2.004 
2.271 
2.435 
2.555 
2.649 
2.727 
2.794 
2.852 
2.904 
2.951 
3.264 
3.451 
3.585 
3.690 

m 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.02 
0.02 
0.02 
0.02 
0.02 
0.03 
0.03 
0.04 
0.04 
0.05 
0.05 
0.05 
0.05 
0.07 
0.09 
0.10 
0.11 
0.12 
0.13 
0.14 
0.15 
0.15 
0.21 
0.26 
0.30 
0.34 

t D x f  
0.6 
0.7 
0.8 
0.9 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
200 
300 
400 
500 
600 
70 0 
800 
900 
1000 

-- 
FE = 0.1 

Exact 
3.790 
3.865 
3.930 
3.987 
4.038 
4.379 
4.580 
4.723 
4.834 
4.924 
5.001 
5.068 
5.126 
5.179 
5.525 
5.728 
5.871 
5.983 
6.074 
6.151 
6.218 
6.277 
6.329 
6.676 
6.878 
7.022 
7.134 
7.225 
7.302 
7.369 
7.428 
7.480 

Approx 
3.776 
3.850 
3.913 
3.970 
4.020 
4.354 
4.552 
4.692 
4.802 
4.891 
4.967 
5.033 
5.091 
5.143 
5.485 
5.686 
5.829 
5.940 
6.030 
6.107 
6.173 
6.232 
6.284 
6.630 
6.832 
6.975 
7.087 
7.178 
7.255 
7.321 
7.380 
7.433 

-- % diff 
0.37 
0.39 
0.42 
0.44 
0.45 
0.56 
0.61 
0.64 
0.66 
0.68 
0.69 
0.69 
0.70 
0.70 
0.72 
0.72 
0.72 
0.72 
0.72 
0.72 
0.71 
0.71 
0.71 
0.69 
0.68 
0.67 
0.66 
0.66 
0.65 
0.65 
0.64 
0.64 

Table D.5: Comparison with Infinitely Long Fracture, FE = 0.1 
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