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Section 1 

Introduction 

Pressure transient testing techniques are an important part of reservoir and produc- 

tion testing procedures. These techniques are frequently used to determine practical 

information about underground reservoirs such as the permeability, porosity, liquid 

content, reservoir and liquid discontinuities and other related data. This information 

is valuable in helping to analyze, improve and forecast reservoir performance. 

A transient well test is performed by changing flow conditions in a wellbore and 

observing the pressure response. Monitoring of the pressure response may be done at 

the surface or maybe performed downhole. The data thus obtained is then analyzed 

by matching the response obtained during the well test with a solution provided by a 

mathematical, numerical or a physical model. The basic assumption underlying this 

approach is that the model accurately describes the reservoir behavior. Reservoir 

properties can be inferred from those used in the model to obtain the match. 

The well flow rate maybe changed in a number of ways, and each leads to a 

different type of test. Whether a particular test can be analyzed or not depends 

upon the availability of a model to describe that particular test. It is thus important 

to develop models for the different types of well tests and for the different types of 

reservoirs in which tests are conducted. 

This report is concerned with developing models for pressure transient well testing 

in high permeability, high flow rate, naturally fractured reservoirs. Theoretical models 

presently available are inadequate for handling these well tests because they do not 

1 



SECTION 1. INTRODUCTION 2 

include the inertial effects of the liquid in the wellbore and the fractures. The basic 

assumptions commonly used in currently available theoretical models for naturally 

fractured reservoirs are: 

1. mass conservation is assumed, 

2. Darcy’s Law applies in the matrix and the fractures, 

3. it is assumed that the wellbore, fractures and the matrix are saturated by a 

single phase, slightly compressible liquid, 

4. flow from the fractures to the wellbore is much greater than the flow from the 

matrix to the wellbore, 

5. inertial, gravitational and frict,ional effects are neglected, 

6. turbulent flow in fractures and the fracture wellbore interface is neglected, 

7. in the fracture network, isotropic permeabilities are assumed, 

8. a fractured reservoir is assumed to consist of a regular array of matrix blocks, 

though recent work considers a reservoir as having blocks with some uniform 

distribution, and 

9. skin and wellbore storage influence well pressure behavior. 

Pressure behavior recently observed in several well tests conducted in high flow rate 

oil wells in Mexico exhibited oscillations, believed caused by the inertial effects of 

a liquid in the wellbore and perhaps formation fractures. In the present work, a 

study was made of the effects of liquid inertia in the fractures and the wellbore on 

the pressure response obtained during a well test. The effects of turbulent flow and 

multi-phase flow effects such as gravitational segregation or anisotropic porous media 

effects were not considered. The scope of the study was limited to studying inertial 

effects on the pressure response of a fractured reservoir. 



Section 2 

Problem Definition 

This study concerns some well tests performed in Mexico on extremely high flow rate 

oil wells in naturally fractured reservoirs. A typical example of a well test result is 

shown in Fig. 2.1. The figure shows a linear plot of Hewlett Packard (HP) gage 

pressure vs. elapsed time during a pressure buildup test. The well was shut in at  

the wellhead and a simultaneous pressure and flowrate recording was made downhole. 

The data from the spinner (flow rate) and other plots showing the nature of the well 

test are presented in Figs. 2.2-2.4. 
The following information is available on the well and formation: 

1. matrix permeability is 0.1 md, 

2. fracture permeability estimated at 1-10 darcy, 

3. matrix porosity is 0.06 fraction bulk volume, 

4. producing formation thickness is 40 meters, 

5 .  mobile formation liquid is single phase oil of viscosity 0.5 cp and a bubble point 

of 3,415 psi, and 

6. oil is produced through packed off tubing. The tubing size is 7 inches. 

3 
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SECTION 2. PROBLEM DEFINITION 8 

25,000 bbls/day 

M 40 meters 

P 800 k g / m 3  
p 0.001 pascal-second 

70 seconds 
1 darcy 

Table 2.1: Estimated parameter values for the Mexican well 

The estimated parameters for the well may be summarised in Table 2.1. 

The following observations may be made from the various data available for the 

well test: 

1. the well flow rate before shut in was very high, in the range of 25,000 barrels 

Per day, 

2. the pressure response shown in Fig. 2.1 is due to a step shut in, i.e the flow 

rate was rapidly dropped to zero at the surface, 

3. the pressure response shows underdamped oscillations with a time period of 
about 70 seconds(see Fig. 2.3), 

4. the amplitude of the first pressure oscillation was of the order of one psi; later 

oscillations rapidly decay to a stable pressure reading, 

5. the flowrate spinner response showed an oscillating flow entering and leaving 

the formation for the duration of the oscillations(see Fig. 2.4), and 

6. the oscillations occurred for several minutes at the start of buildup and masked 

the early time storage and skin response. 

For high production rate from fractured reservoirs, the kinetic energy of the liquid 

moving in the fractures and the wellbore may be important and contribute to the early 

time pressure response. The mass of liquid flowing to the borehole from the fractures 
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and in the wellbore is decelerated rapidly during the well shutin (build up).This may 

cause a momentum effect at early times. This pressure effect propagates up and 

down the well bore and fractures until the energy is dissipated by friction. This is 

the premise of the work presented in this study. The relative importance of inertial 

effects in the wellbore and in formation fractures was also an objective of the study. 

In the next chapter we consider literature on inertial effects. 



Section 3 

Literature Review 

In 1856 Darcy [7] stated the law of laminar flow through porous media. This law has 

been generalized to describe laminar mutiphase flow of oil, gas and water through 

reservoir rocks. Although originally empirical, Darcy’s Law has been derived on a 

fundamental basis by assuming that inertial effects are negligible. 

In 1965 Bredehoeft et al. [2] addressed the subject of oscillations in groundwater 

wells. They considered pressure oscillations in groundwater wells observed in response 

to an earthquake. They also considered the effect of inertia on a water column due to 

a small initial variation in liquid level, neglecting friction losses. In 1966 the authors 

[llintroduced wellbore storage into the problem description and developed several 

specific solutions. In 1967 Bredehoeft [3] described changes in wellbore liquid level in 

response to earth tides caused by the passage of the moon. 

McMillen et al. [lo] in 1967 considered inertial effects on flow in porous media in 

an early study. They concluded that the Telegraph Equation was more appropriate 

than the Diffusivity Equation . They did not consider a fractured porous medium. 

In 1976, van der Kamp[20] proposed an approximate method to determine reser- 

voir transmissivity by means of slug test data analysis for systems exhibiting an 

oscillatory response in the wellbore. This theory was based on the wellbore equation 

(incorporating a momentum balance) previously developed by Bredehoeft et al. in 

1965. 

In 1979, Shinohara and Ramey[l7] extended van der Kamp’s work on slug test data 

10 



SECTION 3. LITERATURE REVIEW 11 

analysis by considering wellbore storage, skin effect and inertial effects on a wellbore 

liquid column. Saldana in his 1983 Ph.D dissertation [15] extended Shinohara’s work. 
He considered wellbore friction and improved the wellbore momentum balance. 

In 1985 Holzhausen and Gooch [14] presented a method for determining the dimen- 

sions of hydraulic fractures by analyzing the time period of free pressure oscillations 

measured in a wellbore. The method was called hydraulic impedance analysis. They 

also considered the effect of liquid in the hydraulic fracture. 

In 1986, Saldana and Ramey [16] presented a paper on wellbore inertial and fric- 

tional effects during slug tests and drill stem tests. The paper considered inertial 

effects in the wellbore, and coupled a momentum balance equation for the wellbore to 

the diffusivity equation for the reservoir. The resulting solution in laplace space was 

solved by numerical inversion using the Stehfest(l970) [18] algorithm. The authors 

presented criteria useful to evaluate the magnitude of inertial and frictional effects 

from the properties of the wellbore-reservoir system. 

Guenther and Lundy [12] in 1986, presented a numerical treatment of the response 

of a well aquifer system to slug testing. The method used Green’s functions to solve 

the coupled wellbore equation and the diffusivity equation governing the behavior of 

the system. The method considered inertial and frictional effects in the wellbore and 

compared the results of the solution with observed data. 

Holzhausen and Egan [13] in 1986, applied the hydraulic impedance method for 

fracture evaluation to two tests in minifracture testing. 

Although there is limited literature on inertial effects in well test analysis, there is 

evidence that such effects can cause the oscillations observed in the Mexican well tests. 

Holzhausen and Gooch, 1985, observed a definite change in the period of oscillations 

before and after hydraulic fracturing. The time period of the oscillations increased 

from about 1 second before fracturing to 2 seconds after fracturing. This suggested 

that natural formation fractures and /or the wellbore could explain the Mexican well 

test data. The method for solution of the Mexican well test problem is presented in 

the next chapter. 



Section 4 

Methodology for Solution 

Inertial effects for high flow rate liquid flow in naturally-fractured formations has not 

been studied. In view of the unusua.1 pressure oscillations in the Mexican well test it 

was evident that a need existed for: 

1. identifying the source of the oscillations, 

2. developing a model for the well test, and 

3. determining whether useful reservoir parameters could be determined by match- 

ing such a model with the available well test data. 

In keeping with these objectives, it was decided to derive solutions for liquid inertia 

in the wellbore and liquid inertia in a fractured formation, for pressure buildup. Liquid 

inertia in the wellbore coupled with Darcy laminar liquid flow(Diffusivity Equation) 

in the reservoir was one model. The equations for the wellbore were derived from 

the Navier Stokes and Continuity equations. By using the Diffusivity Equation for 

the reservoir we neglected flow inertia in the reservoir. This model helped determine 

whether the cause of the pressure oscillations was inertia of liquid in the wellbore. 

Another model considered inertial effects of liquid in a single fracture in the reser- 

voir. The fracture was coupled to the wellbore, but the model did not consider inertial 

or gravitational effects in the wellbore. This was done to permit identification of the 

cause of pressure oscillations. To aid understanding, this model was first constructed 

for linear flow and then later extended to a more realistic radial flow system. 

12 



Section 5 

Inertia of liquid in a wellbore 

In this section we consider the effects of the mass of liquid in a wellbore upon pressure 

in a wellbore, as flow is started and stopped. 

5.1 Basic Equations 

First, we will consider inertial effects in a wellbore. We start with the Continuity 

Equation: 

dP a a a 
- + - (pw)  -t -(pv) + -(p.) = 0 
at ax dY dZ 

where w, w and u are velocities in the x, y and the z directions, respectively(Schematic 

in Fig. 5.1).We make the following assumptions: 

w = o  

v = o  

The isothermal compressibility of a liquid is defined as: 

1 dP c =  -(-) 
P dP T 

13 
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SECTION 5. INERTIA OF LIQUID IN A WELLBORE 15 

We will assume c to be constant. Substitution of Eqs. 5.2 and 5.3 in 5.1 yields 

the the Continuity Equation we will use for this study: 

d p  d p  du 
at dz dz  

c - + c u - + - = o  (5.4) 

That is we will consider velocity in the z-direction in the wellbore only. The other 

equation we will use for the wellbore is the Navier Stokes Equation. The full form is 

given in Appendix A. The equation for the wellbore in the z direction is given by: 

The body force density F, is -pg in the wellbore. Expanding Eq. 5.5 and simplifying 

(see Appendix A for notation): 

Since the second and the fifth term are negligible for the model under consideration 

the final form of the Navier Stokes Equation is: 

du d p  
p - + - = - p g  

at d z  (5.7) 

A similar exercise for the Continuity Equation 5.4 yielded the following dimen- 

sional form of the equation: 

d p  du 
at dz 

c - + - = o  

To obtain the equation representing liquid flow in the wellbore we combine Eqs.5.7 
and 5.8. Taking the partial derivative of Eq. 5.7 with respect to t:  

d 2 U  d2p 
P a t 2 + a z d t -  

- 0  (5.9) 
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Taking the partial derivative of Eq. 5.8 respect to z:  

d2p  1 d2U -++-= 0 
dzdt c dz2 

Subtracting Eqs. 5.9 and 5.10: 

16 

(5.10) 

(5.11) 

From fluid mechanics [19][21] c: = 6 where c, is the wave velocity in the liquid. 

This subtitution yields the wave equation for the wellbore. For the time period of 

interest (typical value was 70 seconds, the time period of the observed oscillations), 

no inertial terms appear in the wellbore equation. The wave equation is: 

(5.12) 

The next step is to couple the wave equation with the diffusivity equation, the com- 

plete form of which is: 

1 a p  d2P dP 4 P C t  8 P  + - + c ( - )  = -- -- 
r dr  dr2 dr  k at 

(5.13) 

Ignoring the gradient squared term which is often taken to be negligible, we obtain: 

(5.14) 
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We are thus left with the following governing equations for our model in Fig. 5.1. 

The wave equation: 

(5.15) 

The diffusivity equation is: 

dAp k 1 d dAp -- --- ( r- ) = 0 (5.16) 
at 4pctr  dr dr  

We replace p by Ap since we are concerned only with the change in pressure. The 

coupling conditions are as follows. The rate of flow through the sand face must equal 

the rate of liquid storage in the wellbore: 

(5.17) 

The rate of change of pressure in the wellbore liquid results in a change in vertical 

velocity in the wellbore: 

The boundary and initial conditions are : 

Ap + 0 as r + o o  

(5.18) 

(5.19) 

To solve this system of equations we introduce Laplace transforms(LT) using the 

notation: 

L{u}  = il = 1 e-%(t)dt 
03 

(5.20) 
0 

Applying LT to Eq. 5.15: 

s 2 .  u-c ; - -=o  8.; 
dz2 

and applying LT to Eq. 5.16: 

(5.21) 
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k d dAl; sAl;- (-)-(r-) = 0 
4pctr dr dr (5.22) 

A$ + O as r+Oo 

Solving the wave Eq. 5.21: 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

where cx is a constant to be determined. Solution of the diffusivity equation 5.22 
yields: 

(5.28) 

where S is a constant to be determined. The coupling equations 5.23-5.26 require: 

That is: 

Cosh(-z)  + aSinh( -2 )  = -S 
S S 

CS cs 

Substituting this condition in Eq. 5.18 yields: 

(5.30) 
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That is: 

S S pf2.rrkh KO({-) 
Sinh(-z)  + ~ C O S ~ ( - Z )  = ( 

CS CS pc, f rd2 ) d-l(l (JT) (5.32) 

The following linear system results for a and S: 

( S i n h ( 5 )  1 
, ) ( i )  = - ( S i n h ( F )  ) Cos h( 9) 

(5.33) 

To obtain the value of a and S we invert the matrix which yields 

The change in bottom hole pressure is: 

Replacing the value of S by means of Eq. 5.34 yields: 

I A,." -2 - 

(5.35) 

(5.37) 
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This is the complete solution for Ap in laplace space which may be inverted to 

provide the pressure response in time for the imposed flow rate G(s) . We may also 

look at the short time and long time approximations of the solution by making the 

following simplifications. 

Long time approximation 

As s -+ 0: 

and 
sH sH 
CS CS 

sinh(-) + - 

The expression for A$ simplifies to : 

Short time approximation 

As s + 00: 

This leads to the following approximation for A$: 

(5.38) 

(5.39) 

(5.40) 



SECTION 5. INERTIA OF  LIQUID IN A WELLBORE 21 

which shows that the downhole pressure response is delayed by the acoustic travel 

time in the borehole. 

The solution can be inverted numerically to study the pressure response when 

different surface flow rates are imposed on the system. 

The flow rate imposed on the model in laplace space was: 

(5.41) 

This represents a well flowing at 5000 b/d for 1000 seconds and then shut in. 

To perform the inversion a routine based on the Crump [5] method with some 

modifications was used. This allows excellent inversion characteristics compared to 

the Stehfest algorithm. The Crump inversion is done in complex space and is corn- 

putationally more intensive than the Stehfest method. The results of the numerical 

inversion for the pressure drop vs. time are shown in Fig. 5.2. The results show the 

presence of oscillations in the system. 

5.2 Results 

A study of the results revealed the following features of the solution: 

1. The pressure response shows oscillations with a time period of approximately 

one second. This is much shorter than the observed time period of 70 seconds 

for the Mexican field data. The time period may be found to be z, the time 

required for the pressure pulse to travel twice the length of the wellbore. 
cu 

2. After shut in, a pressure rise takes place with a time delay which is equal to the 

time taken for the pressure pulse to travel the length of the wellbore. The delay 

time t D  is thus 5. For the plot in Fig. 5.2, a wellbore of length 970 meters 

and a wave velocity c, of 1500 meters/sec was used. This yields a delay time of 

about 0.646 seconds which is approximately verified by Fig. 5.2. 

This result is as one would expect. It has been shown by Holzhausen[l4][13] that 

oscillations due to wellbore inertial effects have a time period of a few seconds. Since 
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the typical time period of such oscillations is F, it would take an extremely long pipe 

length to reduce the frequency of the oscillations to the value seen in the Mexican well. 

One way to increase the time period would be a reduction in the wave velocity cs. 

This would seem to be possible for wave travel through thin apertures(eg. fractures) 

where the velocity would be reduced due to viscous effects. Due to the large internal 

diameter of the wellbore and consequently negligible viscous effects, we should not 

expect to see this effect in a wellbore. 

There are other possible sources for wellbore oscillations. An example is Earth 

tide effects caused by the moon, which can cause oscillations with time period of 

roughly 12 hours. This is greatly different from the present case in which the time 

period is much lower ( 70 seconds). Results of calculations for the preceding case 

lead us to conclude that the cause of the oscillations in the observed field data is not 

inertial effects in the wellbore. A more likely cause is inertial effects in the formation 

fractures. 

5.3 Effect of Transducer Time Constant on the 

Oscillations 

Because oscillations from inertial effects in the wellbore are of a high frequency i.e 
of the order of one second, it is important to consider the response time of the 

transducer used to measure the pressure response. This is of interest because the 

time constant of most transducers is of the order of one second and this could mask 

pressure oscillations. 

To study this effect, the computed pressure response was mathematically adjusted 

to obtain the pressure response a transducer would record. This was done by dividing 

the pressure response in laplace space by a first order time constant for the transducer. 

Thus if I' is the time constant for the transducer: 

Precorded = - Ptrue 

l + r  (5.42) 

Calculations were made for different time constants, and results for two guage 

time constants (0.1 and 0.6 seconds) are shown in Figs. 5.3 and 5.4. Figure 5.3 shows 
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the model pressure response as a dotted line, and the solid line represents the pressure 

response a pressure transducer would measure. The latter incorporates the effect of 

the transducer time constant of 0.1 second. There is a small difference between the 

two curves. 

However as the time constant I' is increased to 0.6 second (see Fig. 5.4) the 

pressure oscillations are nearly masked by the poor response of the transducer. This 

has practical implications. If we wish to measure such high frequency oscillations, 

we should choose a transducer carefully. It can also mean that inertial pressure 

oscillations may exist but not be measured by unresponsive pressure devices. 

The next section presents results computed for linear flow to a well with inertial 

effects in a fracture. 



Fia. 5.3. Pressure drop vs. time for model and a transducer 
with a 0.1 second time constant 
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Fia. 5.4. Pressure drop vs. time for model and a transducer 
with a 0.6 second time constant 
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Section 6 

Cartesian Solution 

The next model considers a linear flow to a well with inertial effects in a single fracture. 

We thus assume: 

0 No inertial effects in the wellbore, 

0 A penny-shaped fracture communicating with the wellbore, and 

0 Instantaneous equalization of pressure between the fracture and the matrix. 

The matrix has a large storativity. 

The model is shown in Figs. 6.1 and 6.2. 

6.1 Continuity Equation 

The continuity equation (in Cartesian co-ordinates) for compressible, viscous flow is: 

dP d d - + - (pu)  + -(p.) + -(pzu) = 0 d t  ax aY dz 

where u, v and w are velocities in th.e 2, y and z directions respectively. For a simple 

one dimensional flow: 

v = o  

w = o  

27 
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From Eqs. 6.1 and 6.2: 

ap  - + -(pu) = 0 at dx 
Substituting the relationship between pressure p and density p for a liquid with 

constant compressibility i.e. dp = pcdp and for c,: 

Let the storativity ratio R be the ratio of the reservoir pore volume to the fracture 

volume. It is thus greater than 1. This factor in the expression for c, causes the wave 

velocity to decrease in a fracture. Normally the wave velocity is given by c, = - dF' 1 

but in this case it is given by c, = &. Dropping the third term in Eq. 6.4 since 

it is insignificant for the model under consideration we obtain the final form of the 

Continuity Equation as: 

a p  au Rc- = -- 
at dX 

We consider the Navier Stokes equations in the next section. 

6.2 Navier Stokes Equation 

This equation can be simplified since v and w are negligible, and u varies only in 

the x and z directions. 
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du au d p  d2u d2u 
P(z+" - )= - -+P( ,+&  

d X  dX dX 

Dropping insignificant terms (two and four) in Eq. 6.7 we obtain the final form 

of the Navier Stokes equation as: 

The next step is to solve Eqs. 6.5 and 6.8 simultaneously. 

6.3 Solution of System Equations 

1. The Navier Stokes Equation is: 

dU d p  d2U 
p a t = - - + / -  ax dz2 

2. The Continuity Equation is: 

(6.10) 

We make the following assumptions: 

(a) We assume a velocity profile for fluid flow between parallel plates, and 

(b) We average both equations in the z direction since we assume that there 

is no flow in that direction. 

The first assumption permits the use of the following equation for fluid flow 

between parallel plates. 

6z z 
u(2) = T(l - j-)u 

(6.11) 

The second assumption allows us to average the two equations along the z 
direction. Using the notation that the averaged variables are denoted by a bar 
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above the variable, i.e., ii is the averaged value of u, the Navier Stokes Eq. 6.9 
becomes: 

or: 

(6.12) 

(6.13) 

Assuming that the liquid is slightly compressible and differentiating with respect 

to t: 

8% a2p  12p au 
p - = - - - - -  

at2 dxd t  b2 dt  

Similarly averaging the Continuity equation 6.10: 

Differentiating with respect to x :  

(6.14) 

(6.15) 

(6.16) 

Combining the Continuity and Navier Stokes equations by substituting the value 

of the cross derivative from Eq. 6.16 into Eq. 6.14: 

(6.17) 
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We convert this equation into a non-dimensional form so that it will be easier 

to manipulate. The following dimensionless groups will be substituted in both 

the Continuity and the Navier Stokes equations. 

Also let: 

12pL p=- 
Pb2G 

Using Eqs. 6.18-6.22: 

(6.18) 

(6.19) 

(6.20) 

(6.21) 

(6.22) 

(6.23) 

Taking the Laplace Transform of Eq. 6.23 and remembering that the zero time 

value of u> is zero: 

Let A = s2 + ,Bs. Then: 

(6.24) 

(6.25) 

The solution of Eq. 6.25 is: 
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In order to obtain the full solution we must determine the two constants C1 and 

C2, and invert the resulting expression to real space. 

The Boundary conditions that govern the solution is: 

U> = U ( S ) ,  f o r  XD = O 

U> = O ,  f o r  xD= I 

u> = 0 and u> = 0 ,  f o r  x ,  t = 0 

& = O  f o r x  , t = O  (6.27) 

where U ( s )  is a specified value for the velocity (in laplace space) at the mouth 

of the fracture where the fracture meets the wellbore. Solving Eq. 6.26 for the 

given boundary conditions yields: 

U ~ ( X , S )  = - [Coth(A)Sinh(A~)  + Cosh(Ax) ]U(s )  

because: 

Cl = -Coth(A) 

c2 = 1 

(6.28) 

(6.29) 

Having determined C1 and C2, we have determined the velocity of the fluid flow 

in the fracture, but have yet to determine the pressure response. To determine 

the pressure response in laplace space we use the continuity Eq. 6.15 which 

relates velocity and pressure: 

(6.30) 
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or in dimensionless form: 

(6.31) 

Taking the Laplace transform of Eq. 6.31 and remembering that the zero time 

value of the real space pressure drop is zero: 

or: 

(6.32) 

(6.33) 

The solution for the velocity U"D in Laplace space from Eq. 6.28 is: 

uiI(2, S) = -Co th (A)S inh (A~)  + C o s h ( A ~ )  (6.34) 

Eq. 6.34 can be differentiated with respect to x and the result substituted into 

Eq. 6.33 which relates velocity u> to pressure 6 ~ .  Thus from Eq. 6.34: 

auk 
ax  D 
- = -[ACoth(A)]U(s) 

Substituting Eq. 6.34 into Eq. 6.33: 

(6.35) 

(6.36) 

This solution maybe evaluated for different values of ,B by numerical inversion. 

The Crump algorithm in complex space was used for inversion. For the condi- 

tions of the Mexican well test given in Table 2.1, p is approximately unity. For 

IR M lo3 - lo4 and c = 4.35 x lo-'' Pa-', the ratio 6 is calculated: 

L - = 3.57 x lo6 
b2 

This may help to estimate the length of the fracture. Figs. 6.3 and 6.4 present 

results of the inversion of Eq. 6.36. 



Fia. 6.3 Dimensionless pressure vs. dimensionless time for 
betazl.0 and for a dimensionless production time of 10.000 

I CD 0 )  0 )  0 )  

0 Q, 

n 

OD 

01 
01 
01 

m 

C 

Q 
0 
0 

a 
I I 

996 10004 8 10008 10012 

tD 

10016 

I 

- 

I 

10020 



Fia. 6.4 Dimensionless pressure vs. dimensionless time for 
betazl.0 and for a tranducer time constant of 0.5 seconds 

I 
9996. 10004. 10012. 

t D  

10020. 



SECTION 6. CARTESIAN SOLUTION 38 

6.4 Features of the Solution 

From the results shown in Figs. 6.3 and 6.4 we observe: 

(a) The pressure oscillations show a time period of approximately two units 

which for the Mexican well conditions is about 70 seconds. 

(b) The oscillations are sharp which may be attributed to the choice of a carte- 

sian formation flow geometry rather than the correct field flow geometry. 

(c) Figure 6.4 shows the computed pressure response for a finite time constant 

of 0.5 seconds. There is little difference between the results on Figs. 6.3 and 

6.4 because the oscillations are of a low frequency, and the time constant 

of the transducer is an order of magnitude smaller than the time period of 

the computed oscillations. 

This result confirms that the main features of the model match the observed 

pressure response for the field test. Radial formation flow to the well solution 

is presented in Appendix B. 



Section 7 

Future Work 

The radial solution should be inverted to real space. For this purpose it is 

necessary to evaluate Bessel functions in complex space. The required Bessel 

functions are not available for complex arguments in the IMSL library of rou- 

tines. However a library of functions including these has been obtained from 

the U.S.Nava1 Weapons Laboratory. This code is extremely long (more than 

2500 lines) and it is now available on the department computers. Details of the 

library are available in a manual titled " NSWC Library of Mathematics Sub- 

routines ". A copy of this manual may be found in the Petroleum Engineering 

Department at Stanford. 

These functions have been tested and will be used to invert the laplace space 

solution in complex space. A proprietory algorithm was obtained from the 

Schlumberger Doll Research Center (SDR) which improves on the Crump method. 

The Crump method is able to invert square waves without oscillations. This 

algorithm was written at SDR by Dr. T.S. Ramakrishnan and is available di- 

rectly from him. This algorithm permits instantaneous shut in conditions in 

the solution in laplace space without causing spurious oscillations. The 

Stehfest [18] Laplace transform inversion algorithm does not invert oscillations 

of a high frequency very well. 

39 
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The major conclusions from this work are: 

(a) Inertia in the wellbore cannot explain the long time period of the oscilla- 

tions observed in the Mexican well test data. 

(b) Inertial effects in a fracture in the formation may explain the period of 

oscillations in the field test data. In view of the highly idealized nature of 

the fracture considered, it may not be the only explanation. 

More work should be done on inertia in double porosity media. The work 

done on the radial flow fracture is of a very idealized type and is presented in 

Appendix B. 
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Symbols 

T W  

b 
= radius of producing formation 

= fracture width 

= fracture compressibility 

= matrix compressibility 

= wave speed in fluid 

= total compressibility 

= Laplace space function 

= gravitational constant 

= length of wellbore 

= formation thickness 

= modified Bessel function, first kind, zero order 

= modified Bessel function, first kind, first order 

= fracture permeability 

= modified Bessel function, second kind, zero order 

= modified Bessel function, second kind, first order 

= Length of fracture 

= slope of linear PDF 

41 
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t 

tD 

Y 
x 
7 

P 

49 

An 
R 
8 
U 

P 
U 

V 

X 

= dimensionless fracture pressure 

= dimensionless matrix pressure 

= dimensionless wellbore pressure 

= fluid pressure in the wellbore or fracture 

= initial reservoir pressure 

= matrix fluid pressure 

= wellbore flowing pressure 

= flow rate at wellhead 

= radial coordinate 

= dimensionless radial coordinate 

= wellbore radius 

= Laplace parameter 

= time 

= dimensionless time 

= 1.781, exponential of Euler’s constant 

= dimensionless interporosity flow coefficient 

= transducer time constant 

= viscosity 

= fracture porosity 

= matrix porosity 

= ratio of reservoir to fracture volume 

= radial coordinate 

= velocity at  the mouth of the fracture at  the wellbore 

= density of fluid 

= velocity in the x direction 

= velocity in the y direction 

= velocity in the r direction 

= velocity in the 8 direction 

= velocity in the z direction 

= velocity in the z direction 

= Cartesian coordina.te 
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Y 
z 

P 
A 

= Cartesian coordinate 

= Cartesian coordinate 

= dimensionless constant 

= dimensionless constant defined a s d m  

43 
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Appendix A 

This appendix summarizes the Navier Stokes Equations and the Continuity 

Equations for flow in a porous medium. 

9.1 Navier Stokes Equations 

This section gives the full form of the Navier Stokes Equations of Motion for a 

compressible fluid with constant viscosity in both the Cartesian and the 

radial co-ordinate form. 

9.1.1 Cartesian Co-ordinates 

The following forms of the Navier Stokes equations are sufficiently accurate for 

most physical problems. Here u, TI and w are the velocities in the x, y and the 

z direction respectively and: 

D d d d d - - -++-++-+w- Dt at dx dy a2 
- 

44 
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The equations are: 

Du dP d 2 U  d 2 U  d 2 U  - 
P D t  - - - + + F , + p ( - + ~ + ~ ) $  d X  a x 2  dy dz 

Dw dP d2W d2W d2W 
P E  - - - - + + z + p ( - + - + -  

dz a x 2  d?J2 dz2 

9.1.2 Radial Co-ordinates 

I d  1 due dv, 
V - V  = --(Tu,) + -- 

r dr r 80 dz +-  
and V is the velocity vector. The equations are: 
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9.2 Continuity Equation 

The continuity equation in the radial and Cartesian form is given below. In the 

Cartesian form for a general compressible fluid: 

d a - + - ( P 4  + - (pv)  + &w) = 0 d t  dx dY 

In the radial form: 

dp 1 d I d  d - + - - (rpvT) + --(pug) + -(pvZ) = O d t  r dr  r de d z  
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Appendix B 

We make the following assumptions: 

(a) No inertial effects in the wellbore, 

(b) A horizontal penny-shaped fracture communicating with the wellbore, and 

(c) Instantaneous equalization of pressure between the fracture and the ma- 

trix. 

10.1 Continuity Equation 

The Continuity Equation (in radial co-ordinates) for compressible, viscous flow 
is: 

(10.1) 

where, V, , vg and v, are the fluid velocities in the r ,  8 and z directions, respec- 
tively. 

For the schematic of Fig. 6.1: 

vg = 0 (10.2) 

47 
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and 

v, = 0 (10.3) 

Dropping the third and fourth terms in Eq. 10.1 we obtain on expansion: 

The isothermal compressibility of a liquid is defined as: 

1 aP c = -(-) 
P aP T 

Also the wave velocity c, is given by: 

1 
c, = - m 

(10.4) 

(10.5) 

(10.6) 

Substituting Eqs. 10.5 and 10.6 into Eq. 10.4 and dropping the fourth term 

in Eq. 10.4 since it is negligible compared to the other terms we obtain the 

following form of the Continuity Equation: 

(10.7) 

Next we consider the Navier Stokes equations. 

10.2 Navier Stokes Equations 

Due to the geometry of the model the problem depends on the radial direction 

only. Since ve and v, are negligible the following simplified form of the Navier 

Stokes Equation is appropriate: 
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Simplifying and replacing v, by v: 

The governing equations are: 

(a) The Navier Stokes Equation: 

dV d p  d2v 
p - = - -  d t  ar +PEG 

(b) The Continuity Equation: 

(10.11) 

(10.12) 
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We make the following assumptions: 

(a) We assume a velocity profile for fluid flow between two parallel plates. 

(b) We average both equations along the z direction since we assume that 

there is no flow along that direction. 

The first assumption is the use of the following equation for fluid flow between 

two parallel plates. 

62 z 
v(z) = T(l - b)v 

(10.13) 

The second assumption allows us to average the equations along the z direction. 

The Navier stokes Eq.lO.11 becomes: 

or: 

dv d p y 6 6  
P a t  = -- + -(-- - -) v 

d r b b b  

p--=- - - -  at dr b2 
dij d p  12pv 

Differentiating with respect to t: 
a2v d2p 12y dv 

%=----- drat b2 d t  

Similarly averaging Eq. 10.12: 

Differentiating Eq. 10.17 with respect to r: 

(10.14) 

(10.15) 

(10.16) 

(10.17) 

(10.18) 



SECTION 10. APPENDIX B 51 

Combining the two equations by substituting the value of the cross derivative 

from Eq. 10.16: 

d2v 1 dv 1 d2v 12pocav 
pncat2 = -- - 

r dr r2 ar2 
-v + - - -- 

b2 at (10.19) 

We convert this equation into a non-dimensional form so that it will be easier 

to manipulate. The following dimensionless groups will be used: 

b2 
PD = 12pVLP 

2, 
V D  = - 

V 
r 

r D  = - 
L 

Substituting Eqs 10.20-10.23 into Eq. 10.19: 

Let: 

Then: 

(10.20) 

(10.21) 

(10.22) 

(10.23) 

(10.24) 

(10.25) 

(10.26) 

We solve this equation by using the Laplace Transformation. Take the Laplace 

Transform of Eq. 10.26 and use the following notation: 
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Also the subscript r and rr will denote the first and second derivative with 

respect to r.  Then: 

(10.27) 

or : 

Substituting A = s2 + ,Bs we obtain an equation which resembles a Base1 

Equation: 

(10.29) 

The solution of this equation is: 

In order to obtain the full solution we determine the two constants C1 and C2 
and invert the resulting expression to real space. 

The Boundary conditions that govern the solution is: 

V>(Tg = -,s) = V ( s )  

v*o(l, s) = 0 

r W  

L 
(10.31) 
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where V ( s )  is some specified value for the velocity (in laplace space) at the 

mouth of the fracture where it meets the wellbore. Solving Eq. 10.30 for the 

boundary conditions Eq.10.34: 

(10.32) 

Having determined C1 and C2 we have fully determined the velocity of the fluid 

flow in the fracture but we have yet to determine the pressure response. To 
determine the pressure response in laplace space we use the continuity equation 

10.17 which relates the two variables. Rewriting this: 

or in dimensionless form : 

Taking Laplace transform of this equation: 

or 

r D  d r D  
-) 

(10.33) 

(10.34) 

(10.35) 
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where Cl and C2 are known constants. We will differentiate the solution with 

respect to r and substitute the result into the Eq. 10.35 which relates the 

velocity vk to p̂ o. Thus: 

Substituting Eq. 10.36 into Eq. 10.35: 

(10.36) 

(10.37) 

This solution may be evaluated for different values of p by numerically inverting 

the solution in complex space using the crump algorithm. 
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