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Abstract 

In this work, transient rate analylsiis for constant pressure production in a naturally 
fractured reservoir is presented. The solution for the dimensionless flowrate is based 
on a model which treats interporosity flow as a function of a continuous matrix 
block size distribution. Several distributions of matrix block size are considered. 
This approach is similar to that of Ref. 1, which examined the pressure response. 

The flowrate response js investigated for both pseudo-steady state (PSS) and 
unsteady state (USS) interporosity models, which include slab, cylindrical, and 
spherical matrix block geometries, It was found that the flowrate decline becomes 
smooth, specially for the Gteadly state model, and approaches the decline behavior 
of a nonfractured reservoir when matrix block size Variability is large, i.e., when 
fracturing is extremely nonuniform. The difference in flowrate for various geometric 
models of blocks is not significant, with the spherical geometry yielding the highest 
and the slab yielding the lowest flowrate. 

This work suggests why certain naturally fractured reservoirs do not exhibit a 
sudden rate decline followed by a period of constant flowrate as predicted by clas- 
sical double porosity models. Also, the results indicate that reservoir producibility 
is directly proportional to fracture intensity and inversely proportional to the de- 
gree of fracture nonunifonnity. Hence, the Warren and Root model which assumes 
fracturing is perfectly unifom, provides an upper bound of reservoir producibility 
and cumulative production. 
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Section 1 

Introduction 

Much work has been done on the pressure transient modeling of naturally fractured 
reservoirs. However, the rate response and producing capacity of these reservoirs 
have not received adequate attention. This work examines flowrate decline behavior 
of naturally fractured reservoirs. 

Naturally fractured reservoirs are heterogeneous porous media which consist of 
fractures and matrix blocks. The matrix blocks store most of the fluid, but have 
low permeability. On the other band, the fractures do not store much, but have 
extremely high permeability. Most of the reservoir fluid flows from the matrix 
blocks into the wellbore through the permeable fractures. Therefore, the produc- 
ing capacity of a naturally fractured reservoir is governed by matrix-fracture fluid 
transport capacity, which is called interporosity flow. To describe flow in naturally 
fractured reservoirs, double pomsity model has been widely used. Fig. 1.1 shows 
the schematic of a naturally fractured reservoir and its double porosity idealiza- 
tion. This concept was first proposed by Barenblatt et a1 [2,3). Transient pressure 
behavior for this model has been studied by many researchers [2-161. Mavor and 
Cinco-Ley [lo] and Da Prat e t  a1 [17] examined the rate response of this model 
by applying the rate decline concept proposed by Fetkovich [18]. Raghavan and 
Ohaeri [19], and Sageev [ZO] also examined the rate dedine behavior of naturally 
fractured reservoirs. These work indicate that the double porosity model predicts 
an initial high flowrate followed by P sudden rate decline and a period of constant 
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SECTION I. INTRODUCTION 2 

flowrate (the interporosity flow period). Although many naturally fractured reser- 
voirs exhibit such behavior, many others do not. They exhibit a gradual rate decline 
throughout the life of the reservoir, similar to that of nonfractured reservoirs. Jalali- 
Yazdi et  a2 [21] suggested the concept of a distributed interporosity flow strength 
to explain such behavior. 

Here, a similar approach is &dopted, and the effect of the variation of matrix 
block size on flowrate is investigated. This work demonstrates that the gradual rate 
decline occurs in nonuniformly fractured reservoirs where the variation in matrix 
block size is large. Also, this work shows that fracture nonuniformity has an adverse 
effect on the producing capacity of naturally fractured reservoirs. 
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MATRIX FRACTURES 

MODEL R E S E R V O I R  

Figure 1.1: Naturally Fractured Reservoir (after Ref. 4) 



Section 2 

Mat hernatical Model 

The partial differential equations and their solutions for pseudo-steady state and 
three unsteady state cases, which include slab, cylindrical, and spherical matrix 
block geometries, are presented in this section. Also, the probability density func- 
tions (PDF) used in this study to represent various distributions of matrix block 
size, are presented. 

2.1 Initial Boundary Value Problem 

The fracture diffusivity equatian for a double porosity reservoir with a continuous 
matrix block size distribution is given by: 

and the matrix diffusivity equation is: 

In Eqn. 2.1, P(h )  is the probability density function of matrix block size and is 
discussed in the next section. U ( h )  in Eqn. 2.1 is the flow contribution from a 
matrix block of size h, and is given by: 

4 



SECTION 2. MATHEMATICAL MODEL 

where A/V is the specific surfaae area of the matrix block. 

5 

The main assumptions used to develop the equations and solutions are as follows: 

0 flow is single phase and obeys Darcy’s law, 

0 reservoir fluid is slightly compressible, 

0 reservoir is radial and idki te  in extent , 

0 matrix and fracture properkies are homogeneous and isotropic, and 

0 the well is either producing at constant pressure (rate decline) or constant 
rat e (pressure decline). 

For a reservoir at constant pressure, the initial condition is: 

The radial inner boundary condition for wellbore storage and skin are: 

r=rw 

The radial outer boundary condition for an infinite acting reservoir is: 

Two boundary conditions are needed for flow in matrix blocks. One specifies that 
P, = Pi at the matrix-fracture interface. The other, depending on the geometry, 
specifies either no-flow boundary or bounded pressure at the center of the matrix 
block (see Appendix A for details). 
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2.2 Probability Density Functions (PDF) 
Three probability density functions for the matrix block size distribution are consid- 
ered - uniform, positively skewed linear, and negatively skewed linear distributions. 
Fig. 2.1 shows the schematic of a uniform distribution. The normalized probability 
density function for uniform distribution is given by: 

1 

Fig. 2.2 depicts a positively skewed linear distribution, where the normalized prob- 
ability density function is given by: 

The negatively skewed linear distribution is shown in Fig. 2.3, and the normalized 
probability density function is given by: 

t 

Figure 2.1: Uniform Distribution 

(2.10) 



SECTION 2. MATHEMATICAL MODEL 

t 

Figure 2.2: 

t 

Poaitively Skewed Linear Distribution 

Figure 2.3: Negatively Skewed Linear Distribution 
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2.3 Solutions 

2.3.1 General Solution 

The initial boundary value problem is rendered dimensionless and solved using 
Laplace transforms. The procedure is stated in Appendix A. The constant pressure 
solution is obtained from the constant rate solution (with CD = 0) using the result 
presented by van Everdingen and Hurst [22]: 

(2.11) 

Or, in Laplace space: - 
Q D  = -. QD 

S 

The argument x of modified Bessel functions is: 

x =  Ja. 

(2.13) 

(2.14) 

(2.15) 

The function g(s) can be obtained by specifying the mode of interporosity flow 
(PSS or USS), the geometry of matrix blocks (slab, cylinder, or sphere), and the 
distribution of matrix block size. 

2.3.2 Solutions for Slab Geometry 

Fig. 2.4 shows the schematic of the slab geometry. In this geometry, matrix blocks 
and fractures are assumed to be piled up on one another. No flow boundary ex- 
ists at the center of the matrix slab due to flow symmetry. Pseudo-steady state 

and unsteady state cases are considered for the three probability density functions 
discussed in section 2.2. 
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Pseudo-Steady State Solutiorus 

0 Arbitrary Distribution 
Let P ( ~ D )  denote any probability density function of matrix block size. From 
Appendix A, we have: 

(2.16) 

0 Uniform Distribution 
B y  combining Eqns. 2.16 and 2.8, one obtains: 

0 Positively Skewed Linear Distribution 
By combining Eqns. 2.16 and 2.9, one obtains: 

Xmax urns + Amin x -In - 
[w:s ( Xmin urns + Xmax 

-7zXz { arctan ({z) - arctan ({E)}] .(2.18) 
2 

0 Negatively Skewed Linear Distribution 
By combining Eqns. 2.16 and 2.10, one obtains: 

X [ - & { arctan (/$) - (ig)) 
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Unsteady State Solutions 

0 Arbitrary Distribution 
Similarly, let P ( ~ D )  denote any probability density function of matrix block 
size. One obtains: 

0 Uniform Distribution 
Eqns. 2.20 and 2.8 yield: 

0 Positively Skewed Linear Distribution 
Eqns. 2.20 and 2.9 yield: 

0 Negatively Skewed Linear Distribution 
Eqns. 2.20 and 2.10 yield: 

(2.20) 

(2.21) 

22) 

(2.23) 



SECTION 2. MATHEMATICAL MODEL 11 

2.3.3 Solutions for Cylindrical Geometry 

In this model, the matrix blocks are assumed to be of cylindrical shape and are 
separated by vertical fractures. The schematic of this geometry is shown in Fig. 
2.5. 
The PSS solutions are the same as those given for the slab geometry, Eqns. 2.16 
through 2.19 (but different definition of X as discussed in section 2.3.5 is used). The 
USS solutions are given below. 

0 Arbitrary Distribution 
Let P(rfflD) denote any probability density function of matrix block size. One 
obtains: 

(2.24) 

0 Uniform Distribution 
Eqns. 2.24 and 2.8 yield: 

2.3.4 Solutions for Spherical Geometry 

This model is shown in Fig. 2.6. Matrix blocks have spherical shape and are 
surrounded by fractures. The PSS solutions are the same as those given for the slab 

or the cylindrical geometry, Eqns. 2.16 through 2.19 (but different definition of X 
as discussed in section 2.3.5 is used). The USS solutions are given below. 

0 Arbitrary Distribution 
Let P(r,o) denote any probability density function of matrix block size. One 

obtains: 

(2.26) 
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0 Uniform Distribution 
Eqns. 2.26 and 2.8 yield: 

2.3.5 Dimensionless Parameters 

The following dimensionless parameters are used: 

For slab geometry: 

For cylindrical and spherical geometry: 

f7 
f m  

rlD = - 9  

12 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.3s) 
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fmD = -. r m  (2.39) 
rmmat 

The constant a in the definition of interporosity flow coefficient X is given in Table 
2-1. 

Table 2.1: Constant a for various matrix geometries 

? 

r 

? Matrix Block 
I 

Figure 2.4: Matrix Slab Geometry 
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Figure 2.5: Matrix Cylindrical Geometry 

Figure 2.6: Matrix Spherical Geometry 
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Section 3 

Discussion 

In this work, flowrate and pressure response are considered and the factors which 
affect them are investigated. To convert the rate and pressure solutions from Laplace 
space into real space, Stehfest Algorithm (231 is used. The unsteady state solutions 
are evaluated using numerical integration. 

3.1 Effect of Matrix Block Geometry 

Figs. 3.1 through 3.3 show the rate response for the uniform distribution and 
USS interporosity flow for slab, cylindrical, and spherical matrix block geometries, 
respectively. Each figure is for m e  value of wm and X,,,, and several values of Xralio. 

The parameter Xratio is defined as: 

which is a measure of the spread (variance) of the matrix block size distribution 
and determines the duration of the interporosity flow period. In each of the Figs. 
3.1 through 3.3, the interporosity flow period for a given Atatio begins and ends 
at  the same time for the three geometries. This occurs because the duration of 
the interporosity flow period depends only on Xratio. The effect of block geometry 
appears only in the interporosity flow period. Fig. 3.4 shows that the spherical 
model yields a higher flowrate than the Cylindrical model, which in turn yields a 

15 
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higher flowrate than the slab model. The differences are, however, not significant. 
Also, as Fig. 3.5 indicates, as X*atio increases, the difference in flowrate decreases. 

Figs. 3.6 through 3.8 show the pressure and the pressure derivative response for 
constant rate production for slab, cylindrical, and spherical geometries, respectively. 
Fig. 3.9 compares the pressure derivative response for the three geometries. The 
spherical model shows a smoother derivative profile than the cylindrical or the slab 
models, especially for small Xtafio. Due to the striking similarity of the rate and the 
pressure response for the three bbck geometries, only the slab model will be used 
for the remainder of this study. 
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QD 
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0.1 1 10 100 lo00 10000 l e 4 5  let06 le+07 l e 4 8  let09 le+10 l t+ l l  

Figure 3.1: Flowrate profile for slab geometry in USS model 
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Figure 3.2: Flowrate profile for cylindrical geometry in USS model 
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QD 
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Figure 3.3: Flowrate profile for spherical geometry in USS model 
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100 l o o 0 0  le+05 le+06 l e 4 7  

Figure 3.4: Comparison of flowrate response of various matrix block geometries 
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Figure 3.5: Difference in flowrate of various matrix block geometries 
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Figure 3.6: Pressure and pressure derivative profile for slab geometry in USS model 
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10 

from the bottom curve 

Figure 3.8: Pressure and pressure derivative profile for spherical geometry in USS 
model 
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3.2 Effect of the Mode of Interporosity Flow 

Fig. 3.10 is a flowrate profile that compares the USS and PSS response for several 
values of Xrotio. The interporosity flow period ends at the same time for these two 
models, however, the beginning time is different. In the USS model, the interporos- 
ity flow period begins much earlier than in the PSS model. Thus, the duration of 
the interporosity flow period of the USS model is much longer than that of the PSS 
model. Also, the USS model yields a higher flowrate than the PSS model during 
the interporosity flow period. Both models produce at exactly the same flowrate 
at the end of this period. Thus, the USS model yields a larger cumulative produc- 
tion. In the PSS model, the flowrate during the interporosity flow period is almost 
constant for small Xrotio values. In the USS model, on the other hand, a period of 
constant flowrate does not occur and a gradual decline is observed throughout the 
interporosity flow period. This gradual flowrate decline is particularly pronounced 
for large Xroiio values. Fig. 3.11 shows the comparison of pressure derivative profiles 
for the PSS and the USS models. The figure shows the sharp character of the PSS 
profile compared to the USS profile. 
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Figure 3.10: Comparison of PSS and USS flowrate response 
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Figure 3.11: Comparison Of PSS and USS pressure derivative profiles 
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3.3 Effect of PDF Type 

In this section, the rate and the pressure response for three matrix block size distri- 
butions - uniform, positively skewed linear, and negatively skewed linear distribu- 
tions, are examined. Both PSS and USS modes of interporosity flow are considered. 
Only the slab matrix geometry is used, since the transient response is not very 
sensitive to the matrix block geometry (see section 3.1). 

Fig. 3.12 shows the PSS flowrate profile for the three probability density func- 
tions. The duration of the interparosity flow period is the same for the three models. 
The probability distribution function does not affect the duration of this period as 
long as the limits of the distribution (Amin and X,,,) are the same. The response 
shows the lowest flowrate for the positively skewed linear distribution arld the high- 
est flowrate for the negatively skewed linear distribution. This indicates that the 
higher frequency of smaller matrix block sizes yields a higher flowrate. The flowrate 
for the uniform distribution is between that of the positively and the negatively 
skewed linear distributions, but is closer to the latter. This implies that the adverse 
effect of large blocks on reservoir producibility outweighs the advantage of small 
blacks. Fig. 3.13 shows the PSS pressure and the pressure derivative response for 

the three distributions. The positively skewed distribution, which corresponds to a 
higher frequency of larger blocks, shows a delayed response. 

Figs. 3.14 and 3.15 show the rate profile and the pressure derivative profile 
for the USS model, respectively. The effect of the probability density function is 
less significant compared to the PSS model. However, the features which were 
mentioned with regard to the PSS model are observed here as well. 
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Figure 3.12: PSS flowrate profile for various matrix block size distributions 
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Figure 3.13: PSS pressure and pressure derivative profile for various matrix block 
size distributions 
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Figure 3.14: USS flowrate profile for various matrix block size distributions 
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Figure 3.15: USS pressure and pressure derivative profile for various matrix block 
rize distributions 
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3.4 EEect of Fracture Intensity and Uniformity 

Here, the effect of the mean and the variance of the matrix block size distribution 
on flowrate and cumulative recovery is considered. This is done for the uniform 
distribution and slab geometry for both PSS and USS models. 

For PSS interporosity flow model, Fig. 3.16 shows the cumulative production 
at t~ = lo5 versus Xgmean with Xpatio as a parameter. The parameter Agmean is the 
geometrical mean of the distributed interporosity flow coefficient and is given by: 

Two trends are apparent. First, cumulative recovery is directly proportional to 
Xgmean. That is, as Xgmean increases, ie., as matrix blocks become smaller or fracture 
intensity becomes larger, then cumulative recovery becomes larger for a given Xratio. 

Second, for a given Anmean, &S X+atio increases, cumulative recovery decreases. 
That is, as matrix block size variability increases or fracturing becomes more nonuni- 
form, then cumulative recovery decreases. For a given Xgmcon, the maximum cu- 
mulative recovery is given by a Xrafio of unity, which is the smallest possible value 
for Xralio and represents a reservoir with perfectly uniform fracturing, Le., a Warren 
and Root type model. The effect of Xratio is more pronounced when Agmean is large. 
On the other hand, the effect ob Xratio is negligible for small Xgmean. For the USS 
interporosity flow model, Fig. 3.17 shows identical results. 

Figs. 3.18 and 3.19 show the PSS rate response and the pressure derivative 
profile, respectively. It is observed that the time at which the interporosity flow 

period begins is determined by Agmean. Also, the time at which this period ends 
is determined by Amin. In Fig. 3.19, the shape of the pressure derivative profile is 
determined by Xratio, whereas its temporal position is determined by Xgmean. Thus, 
variations in fracture intensity (or Xgmean) only affect the temporal position of the 
response, whereas variations in fracture uniformity (or Xral io)  affect the shape of the 
transient response. 
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Xgmean 

Figure 3.16: Cumulative production at fD = IO5 for Pss model 
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Figure 3.17: Cumulative production at fD = lo5 for USS model 
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Figure 3.18: Flowraie profile for various A,,mean 
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0.1 

Figure 3.19: Pressure derivative profile for various X w a n  



Section 4 

Conclusion 

1. The distributed formulation of interporosity flow predicts a gradual decline of 
the flowrate unlike the classical double porosity models which predict a sudden 
rate decline followed by a period of constant flowrate. This gradualness is more 
pronounced for larger matrix block size variabilities, i.e., cases of extremely 
nonuniform fracturing. Also, the gradualness is more apparent in the unsteady 
state model of interporosity flow. 

2. Matrix block geometry does not have a significant effect on the rate or the 
pressure response. Spherical geometry yields slightly higher flowrate than the 
cylindrical geometry. The latter yields slightly higher flowrate than the slab 
geometry. Matrix block geometry only enters the formulation for unsteady 
state interporosity flow and not for pseudo-steady state interporosity flow. 

3. The unsteady state formulation of interporosity flow yields higher flowrate 
(and hence higher cumulative recovery) than the pseudo-steady state formu- 
lation. 

4. The negatively skewed linear distribution of matrix block size yields higher 
flowrate than the uniform distribution. The latter , in turn, yields higher 
flowrate than the positively skewed linear distribution. Thus, from the view- 
point of reservoi- producibility, it is more advantageous to have a high fre- 

quency of small blocks than large blocks. 
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5. Reservoir producibility is directly proportional to fracture intensity and in- 
versely proportional to the degree of fracture nonuniformity. Hence, the War- 
ren and Root model which assumes perfectly uniform fracturing, yields an 
upper bound of reservoir ptoducibility. 



Nomenclature 

A =  

Cf = 

area of matrix fracture interface, ft2 

constant 
constant 
constant 
formation volume factor, RB/STB 

constant 
constant 
constant 
fracture total compressibility, psi” 

matrix total Compressibility, psi-’ 

wellbore storage coefficient, dimensionless 

constant 
constant 
constant 
constant 
constant 
constant 
constant 
a parameter in the Bessel function argument 

matrix block size for slab geometry, ft 

matrix block size for slab geometry, dimensionless 
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maximum matrix block size, ft 

minimum matrix block size, ft 

modified Bessel function, first kind, zero order 

modified Bessel function, first kind, first order 

fracture permeability, md 

matrix permeability, md 

modified Beasel function, second kind, zero order 

modified Bessel function, second kind, first order 

fracture pressure, dimensionless 

Laplace transfoamed fracture pressure 

matrix pressure, dimensionless 

Laplace transformed matrix pressure 

wellbore pressure response, dimensionless 

Laplace h-ansfotrmed wellbore pressure response 

fracture fluid pressure, psi 

probability density function of matrix block size distribution 

probability density function of normalized matrix block size 
distribution in slab geometry 

probability density function of normalized matrix block size 
distribution in cylindrical and spherical geometries 

initial pressure, psi 

matrix fluid pressure, psi 

wellbore pressure response, psi 

volumetric flow rate, STB/D 

volumetric flow mte, dimensionless 

Laplace transformed flow rate 

cumulative production, dimensionless 
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Laplace transformed cumulative production 

radial coordinate, ft 

radial Coordinate, dimensionless 

matrix block radius for cylindrical and spherical geometries, ft 

matrix block radius for cylindrical and spherical geometries, 
dimensionless 
maximum matrix block radius, ft 

minimum matrix block radius, ft 

wellbore radius, ft 

Laplace parameter 

skin factor, dimensionless 

time, hour 

time, dimensionless 

production time, dimensionless 

interporosity flow contribution from matrix size h 
interporosity flow contribution from dimensionless matrix size 

hD 

interporosity flow contribution from dimensionless matrix ra- 
dius rmD 

volume of matrix block, ft3 

Bessel function argument 

coordinate for dab matrix block 
dimensionless coordinate for slab matrix block 
constant in the definition of interporosity flow coefficient 

coordinate for matrix block radius 
dimensionless coordinate for matrix block radius 
interporosity flow coefficient, dimensionless 
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Xgmeon geometrical mean of interporosity flow coefficient, dimension- 
less 
maximum interporosity flow coefficient, dimensionless 

minimum interporosity flow coefficient, dimensionless 

ratio of X,,, to Amin 

viscosity, cp 

fracture porosity, dimensionless 

matrix porosity, dimensionless 

fracture storativity ratio, dimensionless 

matrix storativity ratio, dimensionless 

SI METRIC CONVERSION FACTORS 
bbl X 1.589873 E-01 = m3 

C P  x 1.0' E-03 = pas 
ft x 3.048' E-01 E m 

psi x 6.894757 E-01 = kpa 
psi'' x 1.450 E-01 = kpa" 
' Conversion factor is exact. 
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Appendix A 

Derivation of Solution 

This appendix contains a derivation of the constant rate and constant pressure 
solutions. 

A.1 Slab Geometry 

A. l . l  Unsteady State 

In dimensionless form, Eqns. 2.1 through 2.3 become: 

Combining Eqns. A . l  and A.3 yields: 

In dimensionless form, Eqns. 2.4 through 2.7 are: 
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P D j = O  ; as r D +  00. 

Matrix boundary conditions are: 

and 
(A.lO) 

Eqns. A.2 and A.4, subject to the six conditions, Eqns. A.5 through A.10 are to 
be solved. Applying Laplace transformation to these equations yields: 

a p D *  - = 0  ; at . z D = ~ .  

The general solution of Eqn. A.12 is: 

(A.11) 

(A.12) 

(A.13) 

(A.14) 

(A.15) 

(A.16) 

(A.17) 

(A.18) 

(-4.19) 

( A  2 0 )  
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Next, differentiating Eqn. A.19 and using Eqn. A.18: 

Thus: 

P D f  

Substituting Eqn. A.22 into Eqn. A.l l ,  and rearranging yields: 

where: 

50 

(A.21) 

(A -22) 

(A.23) 

The general solution for Eqn. A.23 is: 

Applying boundary condition, Eqn. A.16: 

(A.25) 

(A.26) 

Differentiating Eqn. A.26: 

From the skin and storage conditions, Eqns. A.14 and A.15: 
. 

where: 

(A 2 9 )  

( A  .30) 
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The relation between flowrate and wellbore pressure in Laplace space is [22]: 

1 
SZPDW 

ijD = -* (A.32) 

Then, flowrate for no storage case is: 

- XKl ( X )  
q D  = 

8 {KO( 5 )  + s D x K l ( z ) }  ' 

Cumulative production is given as: 

(A.33) 

(A.34) 

A.1.2 Pseudo-Steady State 

Solution for pseudo-steady state interporosity flow is obtained by eliminating the 
spacial dependency of time rate of change of pressure. That is, Eqn. A.2 becomes: 

(A.35) 

where & ( f D )  is independent of t ~ .  This partial differential equation is solved as: 

1 
P D m  5E1(1D)zL -I- E ~ D  + G I .  

Applying boundary condition, Eqns. A.9, and A.lO: 

Then: 

(A.36) 

(A.37) 

G1 = Poi. (A .39) 
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By differentiating Eqn. A.40 and using Eqn. A.35: 

(A .41) 

Substituting Eqn. A.41 into Eqn. A.4, the diffusivity equation becomes: 

In Eqn. A.40, by averaging &(to) across the matrix block thickness, the following 
equation is obtained: 

(A .45) 

Applying Laplace transfox&ation to Eqns. A.42 and A.45: 

and 

From Eqn. A.47: 

Substituting Eqn. A.48 into Eqn. A.46, the following equation is obtained: 

where: 

(A .47) 

(A .48) 

(A.49) 

(A .50) 

Eqn. A.49 is the same as Eqn. A.23 in the unsteady state model, which yields the 
same general solution. The procedure and solutions of Eqns. A.25 through A.34 
are valid for the pseudo-steady state model also. 
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A.2 Cylindrical Geometry 

A.2.1 Unsteady State 

In dimensionless form, Eqns. 2.1 through 2.3 become: 

, - I  

(A.52) 

(A.53) 

Combining Eqn. A.51 and Eqn. A.53 yields: 

Eqns. A.5 through A.8 are used as initial and boundary conditions in cylindri- 
cal geometry, too. As for the boundary conditions for the matrix coordinate, the 
following are used instead of Eqns. A.9 and A.lO: 

PDf ; at = 1, (A.55) 

P D m  is f inite at q D  = 0. (A.56) 

Applying Laplace transform to E q n s .  A.54 and A.52: 

and 
(A . 5S )  

The boundary conditions in Laplace space are given by Eqns. A.13 through A.16 
end the following two equations: 

Pom i s  f inite at VD = 0. 
- 

(A.60) 
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The general solution for Eqn. A.58 is given as: 

From boundary condition, Eqn. A.60, PDm is finite at VD = 0, therefore: 

A2 = 0. 

F'rom the other boundary condition, Eqn. A.59: 
- 

Then: 

By differentiating Eqn. A.64 and evaluating at 70 = 1: 

Substituting Eqn. A.65 into Eqn. A.57: 
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(A.61) 

(A.62) 

(A .63) 

(A.64) 

(A.65) 

(A.66) 

(A .67) 

Eqn. A.65 is the same as Eqn. A.23 in the slab geometry, so solutions shown by 
Eqns. A.29 through A.34 are valid for this geometry too, while g(s) is different. 

A.2.2 Pseudo-Steady State 

The procedure is exactly the same as the case of slab geometry. Eqn. A.52 is 

assumed to be independent of space, which yields: 

(A .SS) 
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where & ( t D )  is independent of q ~ .  Solving this partial differential equation yields: 

Substituting Eqn. A.70 into Eqn. A.54, the diffusivity equation becomes: 

In Eqn. A.69, averaging & ( t D )  across the matrix radius: 

Then, 

&(tD)lowg = 6 ( P D j  - P D m )  - 
Eqns. A.68 and A.73 give: 

(A.73) 

(A.74) 

This equation is the same as Eqn. A.45 and fracture flow equation, Eqn. A.71, is 
also the same as Eqn. A.42 for the slab geometry. Then, the procedure to obtain 
the function g(s) follows that of Eqns. A.46 through A.50. The function g(s) 

obtained is the same as that of the slab geometry (except rm should be used in 
these equations instead of h) .  

A.3 Spherical Geometry 

A.3.1 Unsteady State 

In this case, the fracture flow equation, Eqn. A.51, is valid. Matrix flow equation, 

(A .75) 
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and Eqn. 2.3 becomes: 

56 

(A.76) 

Combining Eqn. A.51 and Eqn. A.76 yields: 

Initial and boundary conditions are the same as the case of cylindrical geometry. 
Eqns. A.5 through A.8 and Eqns.  A.55 and A.56 are used. Applying Laplace 
transform to Eqns. A.77 and A.75: 

and 
(A 3 9 )  

The conditions in Laplace space are shown in Eqns. A.13 through A.16 and Eqm. 
A.59 and A.60. 
The general solution for Eqn. A.79 is given as: 

From boundary condition, Eqn. A.60, p~~ is finite at = 0, therefore: 

A3 = 0. (A.81) 

From another boundary condition, Eqn. A.59: 

P D  j Bs = 
sinh (m * 

Then: 

(A .83) 

(A.83) 
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By differentiating Eqn. A.83 and evaluating at V D  = 1: 

Substituting Eqn. A.84 into Eqn. A.78: 

57 

(A .84) 

(A.85) 

where: 

Eqn. A.85 is the same as Eqn. A.25 for the slab geometry, so solutions obtained by 
Eqns. A.29 through A.34 are also valid for this geometry, while g(s) is different. 

A.3.2 Pseudo-Steady State 

The procedure is exactly the same as the case of slab geometry. Eqn. A.75 is 
assumed to be independent of space, which yields: 

(A.87) 

where E 3 ( t D )  is independent of q ~ .  Solving this partial differential equation gives: 

1 
6 porn = - & ( t o )  (7; - 1) + P D  f (A 38) 

Differentiating Eqn. A.88, evaluating at V D  = 1, and using Eqn. A.87: 

a P D m  - - --. 3wrn a p D m  
-11)0=1 x a t D  (A .S9) 
3770 

Substituting Eqn. A.89 into Eqn. A.77, the diffusivity equation becomes: 

In Eqn. A.88, averaging & ( t ~ )  across the matrix radius: 
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Then: 

& ( f ~ ) l o v g  = 9 ( P D ~  - porn). 

Eqns. A.87 and A.92 give: 

(A.92) 

(A.93) 

This equation is the same as Eqn. A.45 and the fracture flow equation, Eqn. A.90, 
is also the same 8s Eqn. A.42 for the slab and the cylindrical cases. Then, the 
procedure for obtaining the function g(s) follows that of Eqns. A.46 through A.50. 
The function g(s) is the same as that for slab and cylindrical cases (except r, should 
be used in these equations instead of h).  



Appendix B 

Computer Programs 

This section contains the computer programs which are used in this study. To solve 

some of the equations, IMSL fortran routines were used. 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Calculation of PD, qD, and QD 

for Slab, Cylindrical, and Spherical Geometries 

* ----- P.S.S. c U.S.S. ----- 

* 
* 
* 

* 
* Katsunori Pujiwara Apr.29, 89 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C 
implicit real*8 (a-h, 0 - 2 )  
common m, /a/sn, cd, xlamda, ylamda, mgm 

dimension td(121) ,pd(121) ,xlmd(lO) ,ylmd(lO) ,dpd(l20), 
C 

c rate (121) ,cum(l21) 
C 

open (unit=3,file='pl.datt) 
open (unit=4, f ile='dpl .dat' ) 
open (unit=7, file-' ratel. dat 
open (unit=8, f ile-'cuml .dat' 

rewind (unit=3) 
rewind (unit=4) 
rewind (unit-7) 
rewind (unit=8) 

n=lO 
m-1 

read(5, *)  sn 
read(5, *)  cd 
read(5, *)  omgm 

read(5, *)  nxlmd 
do 60 i=l,nxlmd 

read (5, * nylmd 
do 70 i=l,nylmd 

C 

C 

C 

C 

60 read(5,*) xlmd(i) 

70 read(5,*) ylmd(i) 
C 

td(1)-0.1 
do 40 1=1,120 
td(l+l)-(lO.O**O.l)*td(l) 

40 continue 
C 
C 

do 20 i=l,nxlmd 
xlamdatxlmd (i) 

do 30 kel, nylmd 
ylamda-ylmd (k) 

write (3, * )  121 
write (4, *)  120 
write (7, * )  121 
write (B, * )  121 

C 

C 

C 
do 50 1-1,121 
call pwd(td(1) ,n,pd(l) ,rate(l) ,cum(l)) 
write(3,*) td(1) ,pd(l) 
write (7, *)  td(l), rate (1) 
write (8, *)  td(1) , cum(1) 



SO continue 
do 55 111,120 
dpd(l)=(pd(l+l)-pd(l))/(dl~g(td(l+l.))-dlog(td(l))) 
write(4, *) t d ( 1 )  ,dpd(l) 

55 continue 
30 continue 
2 0 cont inue 

C 
C 

stop 
end 



* L  * -  
I .- .A. 

'.C 
C 
C 
C 
C 
C 
c 
'C 
C 
C 
C 
C 
C 
C 

C 
C 

C 

C 

C 
C 

C 

C 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* 
* Calculation of PD,qD, and OD 

for Slab, Cylindrical, and Spherical Geometries 

* --_-- 
* P . S . S .  ----- 
* Katsunori Fujiwara Apr.29, 89 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

function plapl(s) 
implicit real*8 (a-h,o-z) 
double precision kO,kl,gg,xx 
common m,/a/sn,cd,xlamda,ylamda,omgm 

if (xlamda .eq. ylamda) then 
gg-1.0-omgm+omgm*xlamda/(omgm*s+xlamda) 
else 
gg=l. 0-omgm+omgm*dsqrt (xlamda/omgm/s) / (1.0- 

& dsqrt (xlamda/ylamda) ) * 
C (datan (dsqrt (ylamda/omgm/s) 1 -Batan (sqrt (xlamda/omgm/ 
& SI)) 
endif 

xx=dsqrt (s*gg) 
k0-dbsk0 (xx) 
kl-dbskl ( x x )  
PlaPl= (kO+sn*xx*kl) / (s* (cd*s* (kO+sn*xx*kl) +xx*kl) ) 
return 
end 

function plap2 (5)  
implicit real*8 (a-h, 0 -2 )  
double precision kO, kl, gg, plap, xx 
Cornon m, /a/sn, cd, xlamda, ylamda, omgm 

if(x1amda .eq. ylamda) then 
gg-1.0-omgm+omgm*xlamda/(omgm*s+xlamda) 
else 
gg=1 .O-omgm+omgm*dsqrt (xlamda/omgm/s) / (1.0- 

C dsqrt (xlamda/ylamda) ) * 
C (datan (dsqrt (ylamda/omgm/s) ) -ciatan (sqrt (xlamda/omgm/ 
& SI)) 
endif 

xx=dsqrt (s*gg) 
kO-dbskO (xx) 
kl-dbskl (xx) 
plap=(kO+sn*xx*kl)/(s*(cd*s*(kO+~n*xx*kl)+xx*kl)) 
plap2=l./s/s/plap 
return 
end 

function plap3 (s) 
implicit raal*8 (a-h, 0 - 2 )  
double precision kO, kl,gg,plap,xx 



cornon m, /a/sn, cd, xlamda,ylamda, omgm 
C 
.C 

if (xlamda .eq. ylamda) then 
gg=l.O-omgm+omgm*xlamda/ (omgm*s+xLamda) 
else 
gg=l.O-omgm+omgm*dsqrt(xlamda/om~/s)/(l.O- 

& dsqrt (xlamda/ylamda) ) 
c (datan (dsqrt (ylamda/omgm/s) 1 -&tan (sqrt (xlamda/omgm/ 
c SI)) 
endi f 

ur-dsqrt (s*gg) 
kO-dbskO ( x x )  
kl-dbskl (xx) 
plap- (kO+sn*xx*kl) / (s* (cd*s* (kO+sn*xx*kl) +xx*kl) ) 
plap3=l./s/s/s/plap 
return 
end 



. .a- 

C 
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function plapl(s,ans) 
implicit real*6 (a-h, 0 -2 )  
double precision kO, kl,gg, xx 
comon m, /a/sn, cd, xlamda, ylamda, mgm 

if (xlamda .ne. ylamda) then 

& dsqrt (xlamda/ylamda) ) *ans 
gg-1.0-omgm+omgm*dsqrt (xlamda/3. Jomgm/s) / (1 .O- 

else 
gg-1. 0-omgm+omgm*dsqrt (xlamda/3. Jomgm/s) * 

C dtanh (dsqrt (3. *omgm*s/xlamda) ) 
endif 

ut-dsqrt (s*gg) 
kO-dbskO (xx) 
kl-dbskl (xx) 
plapl= (kO+sn*xx*kl) / (s* (cd*s* (kO+sn*xx*kl) +xx*kl) ) 
return 
end 

function plap2 (5, ans) 
implicit real*8 (a-h, 0-2) 
double precision kO,kl,gg,plap,xx 
common m, /a/sn, cd, xlamda, ylamda, oangm 

if (xlamda .ne. ylamda) then 

6 dsqrt(xlamda/ylamda))*ans 
ggll.0-omgmiomgm*dsqrt (xlamda/3./omgm/s) / (1.0- 

else 
gg=l.0-omgmiomgm*dsqrt(xlamda/3./omgm/s)* 

C dtanh(dsqrt(3.*omgm*s/xlamda)) 
endif 

xx-dsqrt (s*gg) 
kO-dbsk0 (xx) 
kl-dbskl (xx) 
plapt (kO+sn*xx*kl) / (s* (cd*s* (kO+sn*xx*kl) +xx*kl) ) 
plap2=l./s/s/plap 
return 
end 

function plap3 (s,ans) 
implicit real*8 (a-h, 0 -2 )  
double precision kO, kl, gg, plap, xx 
common m, /a/sn, cd, xlamda, ylamda, omgm 

C 
C 



. . .. .. - _.. . 

if (xlamda .ne. ylamda) then 

C dsqrt (xlamda/ylamda) ) *ans 
gg=l. 0-omgm+omgm*dsqrt (xlamda/3. /omgm/s) / (1.0- 

gp1.O-omgm+omgm*dsqrt (xlamda/3. /omgm/s) * 
else 

C dtanh (dsqrt ( 3 .  *omgm*s/xlamda) ) 
endif 

ut-dsqrt (s*gg) 
k0-dbsk0 ( x x )  
kl=dbskl (xx) 
p l a p  (kO+sn*xx*kl) / (s* (cd*s* (kOtsn*xx*kl) +xx*kl) ) 
plap3=1./s/s/s/plap 
return 
end 

C 

C Definition of function f which is used for integration 

function f (x) 
implicit real*8 (a-h, 0 - 2 )  

fldtanh (x) /x 
return 
end 

C 



. . .. 2. 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 

C 

C 
C 

C 
C 

C 

C 
C 

C 
C 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* Calculation of PD,qD, and OD 

* for Cylindrical Geometry --*-- * 
Katsunori Fujiwara 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

U . S . S .  

******* ** 

function plapl(s,ans) 
implicit real*8 (a-h, 0 - 2 )  
double precision kO I kl, gg, xx 
common m, /a/sn, cd, xlamda, ylamda, omgm 

if(x1amda .ne.ylamda) then 
gg-l.0-omgm+omgm*dsqrt(2.*xlamda/3./omgm/s)/(l.O- 

& dsqrt (xlamda/ylamda) ) *ans 
else 
gg-1.0-omgm+omgm*dsqrt (2. *xlamda/3. /omgm/s) * 

& dbsile(dsqrt(6.*omgm*s/xlamda~)/ 
& dbsiOe(dsqrt(6.*omgm*s/xlamdal) 
endif 

xxrdsqrt (s*gg) 
k0-dbsk0 ( x x )  
kl-dbskl ( x x )  
plapl= (kO+sn*xx*kl) / (s* (cd*s* (kO+sn*xx*kl) +xx*kl) ) 
return 
end 

function plap2 (5, ans ) 
implicit real*8 (a-h, 0-2) 
double precision kO I kl, gg, xx 
common m, /a/sn, cd, xlamda, ylamda, omgm 

if(x1amda .ne.ylamda) then 
gg=1 .O-omgm+omgm*dsqrt (2. *xlamda/3. /omgm/s) / (1.0- 

& dsqrt (xlamda/ylamda) ) *ans 
else 
gg=l.0-omgm+omgm*dsqrt(2.*xlamda/3./omgm/s)* 

& dbsile(dsqrt(6.*omgm*s/xlamda))/ 
L dbsiOe (dsqrt (6. *omgm*s/xlamda) ) 
endif 

aucldsqrt (s*gg) 
k0-dbsk0 (xx) 
kltdbskl (xx) 
plap- (kOtsn*xx*kl) / (s* (cd*s* (kO+sn*xx*kl) +xx*kl) ) 
plap2=l./s/s/plap 
return 
end 

function plap3 (3, ans) 
implicit real*8 (a-h, 0 - z )  
double precision kO, kl, gg, xx 
common m, /a/sn, cd, xlamda, ylamda,omgm 

**** **  

if(x1amda .ne.ylamda) then 



gg-1.0-omgm+omgm*dsqrt (2. *xlamda/3. /omgm/s) / (1.0- 
& dsqrt (xlamda/ylamda) 1 *ans 
else 
gg=l.0-omgm+omgm*dsqrt(2.*xlamda/3./omgm/s)* 

& dbsile (dsqrt (6. *omgm*s/xlamda) 1 / 
& dbsiOe (dsqrt (6. *omgm*s/xlamda) ) 
endif 

uc-dsqrt (s*gg) 
kO=dbskO ( x x )  
klldbskl (xx) 
plap=(kO+sn*xx*kl) / (s* (cd*s* (kO+sn*xx*kl) +xx*kl) ) 
plap3=l./s/s/s/plap 
return 
end 

E 

C Definition of function f which i 8  used for integration 
function f (x) 
implicit rea1*8 (a-h, 0 - 2 )  
double precision iOe,ile 

iOe-dbsiOe (x)  
ile-dbsile (x)  
f=ile/iOe/x 

return 
end 

C 

C 
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function plapl(s, ansl, ans2) 
implicit real*8 (a-h, 0-2) 
double precision kO, kl,gg, xx 
common m, /a/sn, cd, xlamda, ylamda, omgm 

if (xlamda .ne. ylamda) then 
gg=l . 0-omgm+omgm*dsqrt (xlamda/omgm/s) / (1.0- 

C dsqrt (xlamda /ylamda) ) *ansl 
& -dsqrt (xlamda) /6. /s/ (1 .O-dsqrt (xlamda/ylamda) ) * a m 2  

c (dsqrt(9.*omgm*s/xlamda))-xlamda/3./s 

else 
gg=l.O-omgm+omgm*dsqrt(xlamda/omgm/s)/dtanh 

endif 

xxldsqrt (s*gg) 
kO=dbskO (xx) 
kl-dbskl ( x x )  
plapl= (kO+sn*xx*kl) / (s* (cd*s* (kO+sn*xx*kl) +xx*kl) ) 
return 
end 

function plap2(s,ansl,ans2) 
implicit real*8 (a-h, 0 - 2 )  
double precision kO, kl, gg, xx 
common m, /a/sn, cd, xlamda, ylamda, omgm 

if (xlamda .ne. ylamda) then 
99'1.0-omgm+omgm*dsqrt (xlamda/omgm/s) / (1.0- 

c dsqrt (xlamda/ylamda) 1 *ansl 
c -dsqrt(xlamda)/6./s/(l.O-dsqrt(xlamda/ylamda))*ans2 

L (dsqrt(9.*omgm*s/xlamda))-xlamda/3./s 

else 
gg=l.O-orngm+omgm*dsqrt(xlamda/orqm/s)/dtanh 

endif 

xxldsqrt (s*gg) 
kO=dbskO ( x x )  
kl=dbskl (xx) 
plap- (kO+sn*xx*kl) / (s f  (cd*s* (kO+sn*xx*kl) +xx*kl) 1 
plap2=l./s/s/plap 
return 
end 

function plap3 (s, ansl, ans2) 
implicit rea1*8 (a-h, 0 - 2 )  
double precision kO, kl, gg, xx 
common m, /a/sn, cd, xlamda, ylamda, omngrn 

if(x1amda .ne. ylamda) then 



gpl. 0-omgm+omgm*dsqrt (xlamda/onqn/s) / (1.0- 
C dsqrt(xlamda/ylamda))*ansl 
c -dsqrt (xlamda) / 6 .  /s/ (1.0-dsqzt (xlamda/ylamda) ) *ans2 

c (dsqrt(9.*omgm*s/xlamda))-xlMda/3./s 

else 
gpl.0-omgm+omgm*dsqrt(xlamda/omgm/s)/dtanh 

endif 

ut-dsqrt (s*gg) 
kO-dbskO ( x x )  
kl-dbskl ( x x )  
plap- (kO+sn*xx*kl) / (s* (cd*s* (kO+sn*xx*kl) +xx*kl) ) 
plap3=l./s/s/s/plap 
return 
end 

C 

C Definition of function f which is used for integration 

function f 1 (x) 
implicit real*8 (a-h, 0 - 2 )  

f 1-1. /dtanh (x) /x 
return 
end 

C 

function f2 (x )  
implicit real*8 (a-h,o-z) 

f2-1. /dsqrt (x) 
return 
end 

C 



- II 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Calculation of PD,.qD, and QD 

* for Slab, Cylindrical, and Spherical Geometries 

* -_--- P.S.S. ----- Skewed Dibtribution 

* 

* 
Katsunori Fujiwara Apr.29, 89 

t******************************************************** 

C 
C 

function plapl(s) 
implicit real*B (a-h,o-z) 
double precision kO, kl,gg, xx 
common m, /a/sn, cd, xlamda, ylamda, amgn 
common /b/nflag 

C 
C 

if (xlamda .eq. ylamda) then 
ggll.0-omgm+omgm*xlamda/(omgm*s+xlamda) 
else 

if ( nflag .eq. 1) then 
99'1.0-omgm+omgm*dsqrt (xlamdaJomgm/s) / (1.0- 

c dsqrt (xlamda/ylamda) ) * 
c (datan (dsqrt (ylamda/omgm/s) 1 -datan (sqrt (xlamda/omgm/ 
& 3))) 

else 
endif 

ratio=xlamda/ylamda 
argl-dsqrt (xlamda/omgm/s) 
arg2=dsqrt (ylamda/omgm/s) 
arg3-1 .O-ratio 
aaa=omgm*xlamda/arg3/arg3 
bbb-dlog (ylamda' (omgm*s+xlamcYa) /xlamda/ (omgm*s+ 

cccldatan (arg21 -datan (argl) 

gg-l.O-omgm+aaa*(bbb/omgm/s-~.*ccc/dsqrt(omgm*s*ylamda)) 

c ylamda) 

if ( nflag .eq. 2 )  then 

else 
endif 
if ( nflag .eq. 3) then 

else 
endif 

gg=l. 0-omgm+aaa* (2 .*ccc/dsqrt (omgm*s*xlamda) -bbb/omgm/s) 

endif 

xx-dsqrt (s*gg) 
kO-dbskO (xx) 
kl-dbskl (xx) 
plapl= (kO+sn*xx*kl) / (s* (cd*s* (kO+8n*xx*kl) +xx*kl) ) 
return 
end 

C 

C 
function plap2 (3) 
implicit real*8 (a-h, 0 - 2 )  
double precision kO, kl, gg, plap, xx 
common m, /a/an, cd, xlamda, ylamda,omgrn 
common /b/nflag 

C 
C 

if (xlamda .eq. ylamda) then 



gg-1. 0-omgm+omgm*xlamda/ (omgm*s+xLlamda) 
else 

if ( nflag .eq. 1) then 
gg-l.0-orngm+omgm*dsqrt(xlamQa/amgm/s)/(l.O- 

& dsqrt(xlamda/ylamda))* 
& (datan (dsqrt (ylamda/omgm/s) ) -datan (sqrt (xlamda/omgm/ 
& 8 ) ) )  

else 
endif 

ratio-xlamda/ylamda 
argl-dsqrt (xlamda/omgm/s) 
arg2-dsqrt (ylamda/omgm/s) 
arg3=l. 0-ratio 
aaa=omgm*xlamda/arg3/arg3 
bbb-dlog (ylamda* (omgm*s+xlamda) /xlamda/ (omgm*s+ 

ccc-datan (arg2) -datan (argl) 

gg-l.O-omgm+aaa*(bbb/omgm/s-~.*ccc/dsqrt(omgm*s*ylamda)) 

& ylamda) 1 

if ( nflag .eq. 2) then 

else 
endif 
if ( nflag .eq. 3)  then 

else 
endif 

gg-l.0-omgm+aaa*(2.*ccc/dsqrt~omgm*s*xlamda~-bbb/omgm/s~ 

endif 

xx-dsqrt (s*gg) 
kO-dbskO (xx) 
kl-dbskl (xx) 
plap- (kO+sn*xx*kl) / (s* (cd*s* (kO+sn*xx*kl) +xx*kl) 
plap2=1./s/s/plap 
return 
end 

E 

C 
function plap3 (s) 
implicit real*8 (a-h, 0 - 2 )  
double precision kO, kl, gg, plap, xx 
common m, /a/sn, cd, xlamda, ylamda, amgm 
common /b/nflag 

C 
C 

if (xlamda .eq. ylamda) then 
gg=l.0-omgm+omgm*xlamda/(omgm*s+xlamda) 
else 

if ( nflag .eq. 1) then 
98'1.0-omgm+omgm*dsqrt (xlamda/omgm/s) / (1.0- 

c dsqrt (xlamda/ylamda) ) * 
c (datan (dsqrt (ylamda/omgm/s) 1 -datan (sqrt (xlamda/omgm/ 
& 3) 1 )  

else 
endif 

ratio-xlamda/ylamda 
argl-dsqrt (xlamda/omgm/s) 
arg2tdsqrt (ylamda/omgm/s) 
arg3-1.0-ratio 
aaa=omgm*xlamda/arg3/arg3 
bbb=dlog(ylamda*(omgm*s+xlamda),Ixlamda/(omgm*s+ 

ccc-datan (arg2) -datan (argl) 

gg-l.O-orngm+aaa*(bbb/omgm/s~~.*ccc/dsqrt(omgm*s*ylamda)) 

& ylamda) 1 

if ( nflag .eq. 2) then 

else 
endif 



if ( nflag .eq. 3) then 

else 
endif 

gg-l.0-omgm+aaa*(2.*ccc/d~qrt~omgm*s*xla~a~-bbb/omgm/s) 

endif 

xx-dsqrt (s*gg) 
kO-dbsk0 (xx) 
kl*dbskl (xx) 
plap- (kO+sn*xx*kl) / (s* (cd*s* (kO+$n*xx*kl) +xx*kl) ) 
plap3=l./s/s/s/plap 
return 
end 

C 



C 
C 
C 
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function plapl(s,ansl,ans2) 
implicit real*B (a-h, 0-2) 
double precision kO I kl I gg, xx 
common m, /a/sn,cd,xlamda,ylamda,orngm 
common /b/nflag 

C 
C 

if (rlamda .eq. ylamda) then 
gg-l.O-omgm+omgm*dsqrt(xlamda/3./omgm/s)* 

& dtanh (dsqrt (3. *omgm*s/xlamda) 
else 

if (nflag .eq. 1) then 
gg=l.0-omgm+omgm*dsqrt(xlamda/3./omgm/s)/~l.O- 

c dsqrt (xlamda/ylamda) ) *an31 
else 
endif 
if (nflag .eq. 2) then 
gg-1.0-omgm+omgm/ ( (1.0-dsqrt (xlmda/ylamda) 1 **2.) 

& * (2. *xlamda/3. /omgm/s*ans2 
h -2.*xlamda/dsqrt(3.*omgm*s*ylamda)*ansl) 

else 
endif 
if (nflag .eq. 3) then 

gg-1.O-omgm+omgm/ ( (1.0-dsqrt (xlamda/ylamda) 1 **2. ) 
& * (2. *dsqrt (xlamda/3. /omgm/s) *anal 
& -2.*xlamda/3./omgm/s*ans2) 

else 
endif 

endif 

xx=dsqrt (s*gg) 
kO=dbskO (xx) 
kl-dbakl ( x x )  
plapl- (kO+sn*xx*kl) / (s* (cd*s* (kO+sn*xx*kl) +xx*kl) 
return 
end 

C 

C 
C 

function plap2 (s,ansl,ans2) 
implicit real*8 (a-h,o-z) 
double precision kO,kl,gg,plap,xx 
common m, /a/sn, cd, xlamda, ylamda, omgm 
common /b/nflag 

C 
C 

if (xlamda .eq. ylamda) then 
gg=l.0-omgm+omgm*dsqrt(xlamda/3./omgm/s)* 

c dtanh (dsqrt (3 .*omgm*s/xlamda) 
else 

if (nflag .eq. 1) then 
gg-l.0-omgm+omgm*dsqrt(xlamda/3./omgm/s)/~l.O- 



c dsqrt (xlamda/ylamda) 1 *an51 
else 
endif 
if (nf lag .eq. 2) then 
gg=1.O-omgm+omgm/ ( (1.0-dsqrt (xlamda/yla.mda 

c *(2.*xlamda/3./omgm/s*ans2 
6 -2.*xlamda/dsqrt(3.*omgm*$*ylamda)*ansl 

else 
endif 
if (nflag .eq. 3) then 
gg=l. 0-om&+omgm/ ( (1.0-dsqrt (xlamda/ylamda) ) **2. ) 

L * (2. *dsqrt (xlamda/3. /omgmls) *ansl 
c -2.*xlamda/3./omgm/s*ans2) 

el8e 
endif 

endif 

utldsqrt (s*gg) 
kO=dbskO (xx) 
kl-dbskl (xx) 
plap= (kO+sn*xx*kl) / (s* (cd*s* (kO+sn*xx*kl) +xx*kl) ) 
plap2=l./s/s/plap 
return 
end 

C 

function plap3 (s, ansl, ans2) 
implicit real*8 (a-h, 0 -2 )  
double precision kO,kl,gg,plap,xx 
common m, /a/sn, cd, xlamda, ylamda, omgm 
common /b/nf lag 

C 
C 

if (xlamda .eq. ylamda) then 
gg-l.0-omgm+omgm*dsqrt(xlamda/3./omgm/s)* 

e dtanh(dsqrt(3.*omgm*s/xlamda)) 
else 

if (nflag .eq. 1) then 
gg=l.0-omgm+omgm*dsqrt(xlamda/3./omgm/s)/(l.O- 

c dsqrt (xlamda/ylamda) ) *ansl 
else 
endi f 
if (nflag .eq. 2) then 
gg=l. 0-omgm+omgm/ ( (1 -0-dsqrt (xlamda/ylamda) ) **2. ) 

& *(2.*xlamda/3./omgm/s*ans2 
6 -2.*xlamda/dsqrt(3.*omgm*s*ylamda)*ansl) 

else 
endif 
if (nflag .eq. 3) then 
gg=l.0-omgm+omgm/((l.O-dsqrt(xlamda/ylamda))**2.~ 

& * (2. *dsqrt (xlamda/3. /omgm/e) *ansl 
& -2.*xlamda/3./omgm/s*ans2) 

else 
endif 

endif 

xxldsqrt (s *gg ) 
k0-dbsk0 (xx) 
klldbskl (xx) 
plap- (kO+sn*xx*kl) / (s* (cd*s* (kO+sn*xx*kl) +xx*kl) ) 
.plap3=l./s/s/s/plap 
return 
end 

C 



C Definition of function f which i8 used for integration 

function fl ( x )  
implicit rea1*8 (a-h, 0-2)  

f ldtanh (x) /x 
return 
end 

C 

function f2 (x) 
implicit rea1*8 (a-h,o-z) 

f 2dtanh (x) 
return 
end 

C 
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THE STEHFEST ALGORITHM 
* * * * * * * * * * * * * * * * * * * * * * * a * * * * *  

SUBROUTINE PWD (TD,N,PD, rate, cum) 
THIS FUNTION COMPUTES NUMERICALLY THE LAPLACE TRNSFORM 
INVERSE OF F (S) . 

IMPLICIT REAL*8 (A-H,O-2) 

COMMON M, /a/8n, cd,xlamda, ylamda, o q m  
DIMENSION G ( 5 O )  ,V(50) ,H(25) 

NOW IF THE ARRAY V(1) WAS CCW"@TED BEFORE THE PROGRAM 
GOES DIRECTLY TO THE END OF THE SUBRUTINE TO CALCULATE 
F ( S )  . 

IF (N.EQ.M) GO TO 17 
M=N 
DLOGTW=0.6931471805599 
NH=N / 2 

THE FACTORIALS OF 1 TO N ARE 'CALCULATED INTO ARRAY G. 
G(1)=1 
DO 1 I=2,N 

CONTINUE 
G(I)=G(I-l)*I 

TERMS WITH K ONLY ARE CALCULATED INTO ARRAY H. 
Xi (1)=2. /G (NH-1) 
DO 6 I=2,NH 

FI=I 
IF (I-NH) 4,5,6 
H (I) =FI**NH*G (2*I) / (G (NH-I) *G (I) *G(I-l) ) 
GO TO 6 
H(I)=FI**NH*G(2*I)/(G(I)*G(I-L)) 

CONTINUE 

THE TERMS (-1) **NH+1 ARE CALCULATED. 
FIRST THE TERM FOR I=1 

SN=2* (NH-NH/2*2) -1 

THE REST OF THE SN'S ARECALCULAXED IN THE MAIN RUTINE. 

THE ARRAY V ( I) IS CALCULATED. 
DO 7 I=l,N 

FIRST SET V(1) -0 
V(I)-O. 

THE LIMITS FOR K ARE ESTABLISHED. 
THE LOWER LIMIT IS KllINTEG ( (I+:L/2) ) 

K1= (I+1) /2 

THE UPPER LIMIT IS K2-MIN ( ItM/2:1 
K2=I 
IF (K2-NH) 8,8,9 
K2=NH 

THE SUMMATION TERM IN V (I) 56 CALCULATED. 
DO 10 K=Kl,K2 

IF (2*K-I) 12,13,12 
IF (I-K) 11,14,11 
V ( I ) - V ( I ) + H ( K ) / ( G ( I - K ) * G ( 2 * K - I ) )  
GO TO 10 

GO TO 10 
V(I)=V(I)+H(K)/G(2*K-I) 

v(I)=v(I)+H(K)/G(I-K) 

CONTINUE 



-. L A 
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C 
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C 
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C 
C 
17 
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18 

THE V(1) ARRAY IS FINALLY CALCULATED BY WEIGHTING 
ACCORDING TO SN. 

V(I)=SN*V(I) 

THE TERM SN CHANGES ITS SIGN EhCH ITERATION. 
SNm-SN 

CONTINUE 

THE NUMERICAL APPROXIMATION IS CALCULATED. 
A=DLOGTW/TD 
PD=O 
ratelo. 
cunro . 
DO 15 I=l,N 

ARGIA* I 
PD-PD+V (I) *plapl (ARG) 
rate-rate+v (i) *plap2 (arg) 
cum=curn+v (i) *plap3 (arg) 

CONTINUE 
PD=PD*A 
rate=rate*a 
cum=cum*a 
RETURN 
END 
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