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ABSTRACT 

Reservoir geometry and heterogeneities significantly influence the flow field and conse- 

quently the pressure transient response in underground reservoir fluid flow. With the advent of 

accurate instrumentation, it is important to include the behavior of complex reservoir systems 

in the pressure transient design and analysis procedures. 

Boundary element method is used in this work to account for such effects. The useful- 

ness of this method lies in the fact that the solutions obtained are highly accurate and do not 

suffer from the usual drawbacks of other domain type numerical schemes. Also complex 

reservoir geometries with multiple wells can be handled due to the good boundary confor- 

mance obtained with the elements. 

Such desirable features are realized because the analytical nature of the solution is 

preserved due to the use of free space Green’s function of the govi:ming differential operator 

as the weighting function in the weighted residual approach. A collocation type method is 

used for the solution of the resulting integral equations. Also, since the method is a boundary 

procedure, the dimensions of the problem are reduced by one. This, reduction in dimensional- 

ity is obtained in cases where there are no distributed sources/sinks in the problem domain and 

the initial conditions are homogeneous. The use of the Green’s function restricts the applica- 

tion of the method to linear problems with constant coefficients. 

A variety of problems have been considered herein. Generation of streamlines is demon- 

strated in odd shaped reservoirs with multiple wells. Two different formulations for transient 

flow of single phase fluids in homogeneous anisotropic porous media are also presented. Both 

iv 



real space and Laplace space formulations are derived and compared. Also the boundary ele- 

ment method is proposed to determine the pressure solution in a piecewise homogeneous reser- 

voir with arbitrary geometry of each region. This formulation can solve fluid injection prob- 

lems which show composite behavior (steam injection, C02 flooding, in-situ combustion). In 

addition impermeable barriers of any shape and orientation, as well as large pressure support 

sources (aquifers) can be included. 

Both pressure and pressure derivative behavior of such systems are studied. Example 

solutions are verified against known analytic solutions. Numerical features of the boundary 

element method, such as accuracy, consistency, and the optimum number of nodal points, are 

investigated in detail. 



TABLE OF CONTENTS 

Abstract ............................................................................................................................ iv 

Acknowledgements .......................................................................................................... vi 

Table of Contents .......................................................................................................... VI] 

List of Tables ................................................................................................................... x 

.. 

List of Figures ................................................................................................................. xi 

1 . Introduction ............................................................................................................... 1 

1.1 Analytical Methods ........................................................................................... 2 

1.2 Numerical Methods ........................................................................................... 2 

1.2.1 Finite Differences ................................................................................. 3 

1.2.2 Finite Element Method ......................................................................... 3 

1.3 Boundary Element Method (BEM) .................................................................. 4 

2 . Mathematical Preliminaries ...................................................................................... 10 

2.1 Fluid Flow Equations ........................................................................................ 10 

2.1.1 Boundary Conditions ............................................................................ 13 

2.2 Weighted Residual Methods ............................................................................. 14 

2.3 Boundary Element Method ............................................................................... 17 

2.3.1 Green’s Functions ................................................................................. 22 

2.4 Numerical Considerations ................................................................................. 24 

2.4.1 Interpolation Functions ......................................................................... 25 

vii 



2.4.2 Local Coordinate System ..................................................................... 26 

2.4.3 Matrix equations ................................................................................... 27 

2.5 Numerical Integration ....................................................................................... 29 

3 . Steady State Problems .............................................................................................. 31 

3.1 Implementation .................................................................................................. 32 

2.5.1 Singular Integral Evaluation ................................................................. 30 

3.1.1 Interior Solutions .................................................................................. 35 

3.2 Treatment of Singularities ................................................................................ 35 

3.2.1 Singularity Programming ...................................................................... 36 

Streamline Genzration and Front Tracking ...................................................... 40 

4 . Unsteady State Problems ......................................................................................... 56 

3.3 

5 . 

4.1 Transient Real Space ........................................................................................ 56 

4.1.1 Time Stepping ....................................................................................... 58 

4.1.2 Matrix Form of the Integral Equation ................................................. 59 

4.1.3 Solution of Matrix Equations ............................................................... 62 

4.1.4 Computational Details and Algorithm ................................................. 64 

4.1.5 Limitations of Convolution BEM ........................................................ 68 

4.2 Laplace Space Formulation .............................................................................. 68 

4.3 Results and Comparisons .................................................................................. 72 

4.3.1 Comparison of the Two Formulations .................................................. 72 

4.3.2 Application to Well Testing Problems ................................................. 85 

4.3.3 Use of Pressure Derivative .................................................................... 90 

4.3.4 Special Problems .................................................................................... 94 

Sectionally Homogeneous Reservoirs ...................................................................... 109 

5.1 Introduction ....................................................................................................... 109 

5.2 Mathematical Considerations ............................................................................ 112 

Sectionally Heterogeneous Reservoirs ................................................. 112 5.2.1 

... 
Vll l  



5.2.2 Two Region Composite Reservoirs ..................................................... 1 15 

5.3 Implementation .................................................................................................. 119 

5.4 Results and Discussion .................................................................................... 122 

6 . Conclusions ................................................................................................................ 138 

6.1 Recommendations ............................................................................................. 140 

Nomenclature .................................................................................................................. 142 

References ........................................................................................................................ 146 

Appendix A Free Space Green’s Function ................................................................ 154 

A.l Diffusion Operator ........................................................................................... 154 

A.2 Modified Helmholtz Operator .......................................................................... 158 

Appendix B Boundary Integral Evaluations .............................................................. 161 

Steady State Flow ............................................................................................. 161 

B.2 Velocity Calculations for Steady Flow ........................................................... 162 

B.l 

B.3 Convolution BEM ............................................................................................ 164 

B.4 Laplace Space BEM ......................................................................................... 166 

Appendix C Singular Integral Evaluation ................................................................. 168 

C . 1 Convolution BEM ............................................................................................ 168 

C.2 Laplace Space BEM ......................................................................................... 170 

Appendix D Non-formal Proof for the Convolution Matrix ................................... 173 

D . 1 Origin of Convolution Structure and Incremental Solution ........................... 173 

D.2 Mamx Computation for Convolution BEM ..................................................... 175 

Appendix E VO for Laplace Space BEM Simulator ................................................. 177 

E.l Setup of Datafile ............................................................................................... 177 

E.2 Sample Datafile ................................................................................................. 179 

E.3 Sample Output File ........................................................................................... 180 

Appendix F Computer Program: Laplace Space BEM .......................................... 182 

ix 





LIST OF TABLES 

3.1 

3.2 

3.3 

3.4 

3.5 

4.1 

4.2 

4.3 

4.4 

5.1 

Effect of Element Refinement on BEM Solution .................................................... 39 

Steady Irrotational Flow in a Corner ....................................................................... 41 

Boundary Solutions for a 90" wedge ........................................................................ 43 

Comparison of Boundary Solutions for a 90" wedge .............................................. 44 

Approach of Limiting Streamlines to Stagnation Point ........................................... 55 

Identification of Element Nodes ................................................................................ 67 

Comparison of BEM and Analytic Solution for Well in the center of an 

Equilateral Triangle ................................................................................................. 92 

Comparison of Shape Factors for Bounded Reservoirs .......................................... 98 

Well Flow Rates for the Simulated Reservoir ......................................................... 103 

ComDarison with Analvtical Solution (Circular ImDermeable Barrier) .................. 128 

X 





LIST OF FIGURES 

2.1 

2.2 

3.1 

3.2 

3.3 

3.4 

3.5 

3.6 

3.7 

3.8 

3.9 

A typical computational domain .............................................................................. 12 

Local Co-ordinate System ........................................................................................ 28 

Steady irrotational flow in a corner ......................................................................... 38 

Modified boundary for steady irrotational flow ....................................................... 38 

Schematic of flow across a 90" wedge .................................................................... 42 

Streamlines at breakthrough in a 5-spot pattern ...................................................... 46 

Isochrones at breakthrough in a 5-spot pattern ....................................................... 47 

Streamlines at breakthrough in a staggered line drive ............................................ 49 

Isochrones at breakthrough in a staggered line drive .............................................. 50 

Schematic of the production scheme in a simulated reservoir ............................... 51 

Streamlines at breakthrough in the simulated reservoir ........................................... 52 

3.10 Streamlines in a 2: 1 rectangle with one short side at constant 

pressure ................................................................................................................... 53 

4.1 Relation between matrices in convolution boundary element method ................... 63 

4.2 Flow chart for the convolution BEM ....................................................................... 65 

4.3 Illustration of dependent variables at boundary nodes ............................................ 66 

4.4 Schematic of the reservoir for figures 4.5 through 4.10 ......................................... 73 

4.5 Pressure behavior at various cross sections for a mixed type problem ................ 74 

4.6 Effect of time step refinement on the solution of a mixed problem ..................... 75 

xi 



4.7 Flux at the inlet end for the mixed problem .......................................................... 77 

4.8 Effect of time step refinement on the flux at the inlet end ................................... 78 

4.9 Constant flux inner boundary and radiation outer boundary condition ................. 80 

4.10 Flux singularity at the inlet end for radiation-type bounduy condition ............... 81 

4.11 Water influx functions for bounded linear aquifers ............................................... 82 

4.12 Pressure transients due to sinusoidally varying inner boundary condition ......... 84 

4.13 Interference and wellbore pressure response for a well in the center 

of a closed square ................................................................................................. 86 

4.14 Error in computations by Laplace domain boundary element 

4.15 

4.16 

4.17 

4.18 

4.19 

4.20 

4.21 

4.22 

4.23 

4.24 

method ................................................................................................................... 87 

Well pressure behavior for a constant pressure outer boundary in a 

circular reservoir ................................................................................................... 88 

Importance of accurate boundary representation for depletion systems 

(closed circular reservoir) ..................................................................................... 89 

Pressure and derivative response for a well in the center of an 

equilateral triangle ................................................................................................. 91 

Two-wells in a 2:l rectangle with one short side at constant pressure ................ 93 

Schematic of elliptical shaped reservoirs with different eccentricities ................. 95 

Pressure and pressure derivative response for closed elliptical 

reservoirs ............................................................................................................... 96 

Schematic of a kidney shaped reservoir ................................................................ 99 

Interference and wellbore pressure response in a kidney-shaped 

reservoir ................................................................................................................ 100 

Schematic of a simulated multi-well reservoir ...................................................... 102 

Pressure and pressure derivative response at wells 2 and 3 for the 

simulated reservoir ............................................................................................... 104 

xii 



4.25 

4.26 

5.1 

5.2 

5.3 

5.4 

5.5 

5.6 

5.7 

5.8 

5.9 

Comparison of BEM and analytic solutions for pressure derivative at 

the wellbore in a closed square reservoir with wellbore storage ....................... 106 

Dimensionless rate and derivative group for a well in the: center of a 

closed square ......................................................................................................... 107 

Schematic of a reservoir with heterogeneities ........................................................ 113 

Path integration scheme for a barrier in the reservoir ........................................... 114 

Schematic of a composite reservoir ........................................................................ 116 

Partition of reservoir boundary into two regions ................................................... 121 

Matrix structure for the composite reservoir .......................................................... 123 

Reduced matrix structure on removing the constraint equations ........................... 124 

Well producing external to an internal circular boundary ..................................... 125 

Pressure response at a well producing external to a circular sub-region .............. 127 

Pressure derivative behavior at a well producing external to a circular 

sub.region .............................................................................................................. 129 

5.10 Schematic of a well external to impermeable elliptical sub-regions of 

different sizes ........................................................................................................ 130 

5.11 Pressure response at a well producing external to an impcmneable 

elliptic sub-region ................................................................................................. 131 

5.12 Effect of mobility and storativity ratio on the derivative response of 

a radial composite reservoir ................................................................................. 133 

5.13 Effect of external boundary on the derivative behavior of a radial 

composite reservoir ............................................................................................... 134 

5.14 Effect of W/L ratio on the pressure response of a rectangular 

composite reservoir ............................................................................................... 136 

A.l Schematic of integration contour in the complex plane ...................................... 157 

B.l Geometric scheme for integration from an interior point ..................................... 163 

... 
Xl l l  





Chapter 1 

INTRODUCTION 

Development of sound exploitation scheme for petroleum and geothermal reservoirs is 

contingent upon characterizing the reservoirs as well as possible. A synthesis of the concep- 

tual reservoir model proposed by the geoscientists into the modeling efforts for fluid flow 

through the porous rocks can theoretically lead to a stage when accurate solutions to complex 

problems may be obtained and the interpretation of field tests could be performed with 

confidence. The major reason for this integration is that the reservoirs are normally of com- 

plex configuration, and the performance depends quite strongly on these factors. Also, 

numerous wells producing from the reservoirs alter the flow field significantly. 

Traditionally, pressure transient tests have been one of the primary sources of informa- 

tion for reservoir rock transmissivity and storativity. The pressure data collected from the 

wells are matched against an assumed model whose behavior is known by analytical or 

numerical means. Once a reasonable match is obtained, the parameters are calculated based 

on the solution to the assumed model. These predictive models are also used to design well 

tests so that a particular feature can be seen during the test to help evaluate the reservoir 

better. These models have usually been generated by either analytical or numerical methods. 

In this work, a method which has a strong analytical basis but uses numerical schemes to 

evaluate the solutions is investigated. 
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1.1 Analytical Methods 
There are only a few conventional analytic methods for solving the equations goveming 

the fluid transport exactly. The important methods are separation of variables, eigenfunction 

expansion, similarity transform, Laplace transform, Fourier transform and Green’s functions. 

To solve a partial differential equation, both the equation and the lmundary conditions should 

be expressed in a separable orthogonal coordinate system. This limits the types of problems 

that can be solved analytically. Thus, one of the major shortcomi~igs of the analytic methods 

is that only a few simple geometric shapes lend themselves to closed form solutions. Another 

level of flexibility in handling geometric shapes and boundary conditions is obtained by the 

use of the linearity property of the differential operators, in the form of superposition. In this 

method, image wells are used to generate different types of boundary conditions and boundary 

shapes. Larsen (1985) discusses the possible reservoir geometries that are amenable to ana- 

lytic solutions by the technique of superposition. He gave a general algorithm for the location 

of images for computing the pressure transient behavior at a well. Earlougher et al (1968) 

and Earlougher (1977) presented the solution and interpretation of pressure behavior in 

bounded rectangular systems. The superposition method is a standard technique extensively 

used in the field of pressure transient testing. 

For problems governed by the Laplacian operator (steady State problems) the solutions 

are analytic functions which satisfy the Cauchy-Riemann equations (Spiegel, 1964). The tech- 

nique of hodograph transformation, which is a form of conformad mapping can be used to 

solve problems of complex geometry. The equations obtained for bounded systems are often 

complex elliptic integrals which must be evaluated numerically. 

1.2 Numerical Methods 
The shortcomings of the analytical methods are alleviated by numerical schemes which 

have a greater flexibility in solving complex problems. However, this is at the expense of 

accuracy. In the classical numerical schemes the continuous character of the governing 
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equation on the domain is compromised in terms of approximate solutions at a discrete 

number of locations. Finite difference and finite element methods belong to this category. 

Although complex non-linear problems can be solved by these methods, they suffer from a 

variety of errors which are sometimes difficult to characterize. A brief description and 

shortcomings of both the finite difference and finite element methods is presented next. 

1.2.1 Finite Difference Method 

This method is the most widely used in the oil and geotherrnal industries. In the fmite 

difference method, the governing differential equations are discnctized and solved approxi- 

mately at each of the nodal locations. The matrix structure obtained for solving the equations 

simultaneously is sparse and banded. The special structure of the matrix makes the solution 

amenable to fast matrix inversion algorithms. 

The source of errors in the finite difference method (FDM) are due to a variety of rea- 

sons. The solutions obtained with the FDM are affected, at times strongly, by the orientation 

of the grid blocks with respect to the flow field. This is particularly true when there are pre- 

ferred flow channels or paths in the system. The fluid fronts are smeared due to the grid 

orientation effects. In addition, flexibility in gridding is restricted LO mostly rectangular grids. 

Although, special techniques have been developed which use triangular grids. Other problems 

associated with the finite difference method include numerical dispersion and discretization 

errors. These emrs  affect the accuracy of solutions to a significant degree, too. For a 

description of the various aspects of finite difference methods see ,Roache (1972). In spite of 

all the drawbacks, finite difference methods are the most powerful general schemes available 

for solving complex nonlinear problems. 

1.2.2 Finite Element Method 

The finite element technique ( E M )  is based on a weak formulation of the governing 

differential equations. This method has a strong theoretical basis and a number of properties, 
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which are important in considerations of a sound numerical method, can be proved for a few 

differential operators (Hughes, 1987). Two sets of approximating functions known as shape 

functions and weighting functions respectively, are defined on e:ach of the elements. The 

shape (or basis) functions defined piecewise on each element, are said to have local compact 

support. This means that the basis functions are zero on all the oiher elements except on the 

element they are defined for. Local compact support keeps the resulting matrix (called the 

stiffness matrix) sparse and banded as in the finite difference method. Enormous gains in 

flexibility of element shapes and interpolation functions are gained over the FDM by the use 

of isoparametric elements. A good comparison of the finite difference and finite element 

method is given by Russell and Wheeler (1983). One of the popular schemes in the finite ele- 

ment methods is the Galerkin method. The Galerkin formulation uses both the weighting and 

the interpolation functions from the same set of finite dimensional functions. Other tech- 

niques, such as Petrov-Galerkin method (Johnson, 1987) uses a different set of weighting and 

interpolation functions. The Petrov-Galerkin method is being used in fluid mechanics. 

Though a better representation of boundary shape and boundary conditions is obtained 

with the finite element methods, the problems of numerical disperision still remain. An addi- 

tional disadvantage is the complexity and the amount of input data that must be provided. 

The requirement for a large amount of input data is primarily clue to the need to provide 

details of connectivity between the elements. An important limitation of all numerical 

schemes is the difficulty in handling the advective or convective teims in the differential equa- 

tions. A variety of upwinding methods have been proposed to overcome the problems with 

the convective terms. Details of the finite element method and its shortcomings are given in 

Hughes (1987). 

1.3 Boundary Element Method (BEM) 
A method or technique which has the accuracy of the analytical methods and preserves 

the versatility of the numerical techniques to solve complex reservoir problems is highly 
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desirable. With high speed computing possible with modern computers, the geological infor- 

mation can be included in well testing models with good precision. Such models can prove to 

be quite useful. 

A method which preserves these desirable features is the boundary element method 

(BEM). The early development of this technique took place within the realm of potential 

theory. A good description of the mathematical foundations of tht: boundary element method 

is given by Jialin (1986). The horizons of the method expande:d tremendously during the 

1970’s in various disciplines of engineering such as elastodynamics, heat transfer, wave pro- 

pagation, fluid mechanics and groundwater hydrology. Unlike the FDM and FEM which are 

domain methods, the boundary element method is a surface method. This means internal 

grids need not be generated and only the bounding surface of the system is discretized. Being 

a surface method the drawbacks of grid orientation effects are avoided as no internal grids are 

prescribed. The analytical character of the solution is preserved in terms of the Green’s func- 

tion of the governing differential equation. The BEM is an integral method developed from a 

weak formulation of the problem statement and so, the numerical dispersion is minimal 

because of the smoothing property of the integral operators. 

A brief discussion of the pertinent literature on boundary el’ement method is presented 

next. The application of BEM to steady state problems is addressed first. Subsequently the 

transient problems are discussed. 

The application of the boundary element method to steady state problems governed by 

Laplace’s equation are numerous. This is because the BEM is particularly suited for Laplace 

type (potential flow) equations due to the symmetry properties this equation possesses. 

Liggett (1977) solved the problem of locating the free surface in groundwater flow using 

the boundary element method. He assumed steady state flow and used an iterative technique 

to update the surface location until convergence was achieved. Liggett and Liu (1979) 

extended the abovementioned work and considered the nonlinearity of the motion of the free 
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surface parametrically using finite differences in time to propagate the free surface. They 

compared their results with experimental data. 

Based on the work by Liggett (I977), Liu and Liggett (1978) solved two groundwater 

problems of sudden drawdown and free surface flow through a dam with a toe drain. They 

used a hodograph transformation to the complex plane to reduce the problem to a mixed type 

boundary value problem on a regular domain. Lennon ef al (1979) presented the formulation 

and solution to axisymmetric potential flow problems in groundwater hydrology. This formu- 

lation was used to calculate the free surface in pumping wells. Parallel applications for steady 

state heat transfer and equivalent applications in elastodynamics are discussed by Brebbia and 

Walker (1980). Brebbia (19843) showed the use of BEM for solving potential flow problems 

external to a boundary. Lafe et al (1980) discussed the treatment of singularities during 

steady flow. The extension of boundary element procedure to three dimensions was shown by 

Lemon et al (1980). The essential difference between two and three dimensional applications 

of BEM is that the boundary is a surface in three dimensions instcad of a line in two dimen- 

sions. Other problems for steady state flow including tilting interfaces in a piston-like dis- 

placement experiment were solved by Liu et. al. (1981). They compared their results with 

experiments conducted with a Hele-Shaw cell. Application to petroleum reservoir engineering 

problems was done by Masukawa and Horne (1988) and Numbere and Tiab (1988) who used 

the boundary element method for streamline generation in balanced waterflood patterns. 

Rizzo and Shippy (1970) were the first to address the problems in transient heat conduc- 

tion by the boundary element method. They formulated the problem in Laplace space. The 

resulting solution was applied to the problem of heated cylinder with convective boundary 

conditions. Shaw (1974) solved the same problem with different and arbitrary boundary con- 

ditions on the curved surface of the cylinder. Shaw (1974) solved the problem in real space 

rather than in the transformed domain. The nature of the diffusioa equation is such that the 

solution is history dependent. In other words, the solution at any given time depends on the 
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solutions at all previous times. They calculated the solution at any given time by starting the 

computations at time zero. 

Groundwater hydrology applications of BEM for transient flow in aquifers was first 

presented by Liggett and Liu (1979). They compared both the real space and Laplace 

transform solutions. Also, the time stepping procedure for the real space formulation was 

based on finite differences in time unlike those of Shaw (1974). Liggett and Liu (1979) 

showed some simple examples using these formulations. They considered a mixed problem 

defined on a square block of porous medium. The top and bottom surfaces of the medium 

were sealed. The inlet and outlet surfaces were held at constant values of head. In order to 

start the solution procedure for this problem, an asymptotic expression for the flux at short 

times had to be used. This is clearly a disadvantage of the formulation. Wrobel and Brebbia 

(1981) and Pina (1985) suggested different types of time stepping schemes. Pina (1985) 

showed that if the time step size were assumed to be constant then one can avoid recalculation 

of all the matrices corresponding to the previous time steps (because of the history depen- 

dence). Taigbenu and Liggett (1985) proposed time stepping schemes based on finite 

difference in time. One of their schemes was based on a multi-substep procedure which 

requires iterative solution. In another related paper, Taigbenu and Liggett (1986) performed a 

stability analysis based on the solution to a simple problem. 

In addition to these problems, techniques to include multixonal reservoirs have been 

introduced for steady state problems (Cheng, 1984, Masukawa a& Horne, 1988). Pressure 

transient behavior for composite and sectionally homogeneous reservoirs have been treated by 

Kikani and Horne (19893). Wrobel et a1 (1986) proposed a dual reciprocity boundary ele- 

ment formulation for transient heat conduction problems. They assumed that the time deriva- 

tive in the equation can be approximated by specific functions which satisfy the Laplace’s 

equation and hence are harmonic. Ara2 and Tang (1988) extended the idea of Wrobel et al 

(1986) and proposed a secondary reduction process for transient problems governed by the 

diffusivity equation. This process utilizes a secondary interpolation process for temporal 

derivatives using specific coordinate functions which are problem independent. Shapiro and 
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Andersson (1983) considered steady state fluid response through fractured rock. The fractures 

were represented discreetly and continuum equations were used. Ellsworth (1986) solved the 

problem of hydraulic response of three-dimensional sparsely fractured rock masses. He con- 

sidered disk shaped fractures which are simply or multiply connected to the other fractures. 

Use of regular perturbation to solve steady state problems with linearly and exponentially 

varying permeabilities was presented by Lafe and Cheng (I987). Van Kruysdijk and Dul- 

Zaert, (1989) used the boundary element method to solve for the tr,nnsient pressure response of 

multiply fractured horizontal wells. The horizontal well was treated as a line source produc- 

ing with a uniform rate and the individual fractures were assumed to be planar with an 

averaging in the vertical plane through a skin factor. One-dimensional flow along the frac- 

tures was considered. 

This work investigates the application of the boundary element method to complex prob- 

lems, including considerations of accuracy and computational efficiency. The application to 

streamline generation is shown in balanced injection patterns with unit mobility ratio. The 

major thrust however, is to solve complex pressure transient problems. Modeling pressure 

transient behavior in sectionally homogeneous and composite reservoirs is also investigated. 

Four separate computer programs have been developed in the course of this work. One 

of them is capable of generating streamlines in complex reservoirs with multiple 

producers/injectors, and has the ability to include singularities whose analytical behavior may 

be known from hydrodynamics. The second program solves the iransient problem governed 

by the diffusivity equation in real space. The third computer program implements the tran- 

sient problem in Laplace space. This has wider capabilities in teims of efficiency of imple- 

mentation as well as capability of including important effects suc:h as wellbore storage and 

skin, dual-porosity behavior and rate decline. This program can also handle an internal boun- 

dary of arbitrary shape and boundary condition, with a few basic: modifications to the pro- 

gram. The last program solves the pressure transient problem in a two region composite 

reservoir with arbitrary inner boundary and external boundary shapes. Composite models are 

needed to analyze field injection and falloff tests in a variety of processes including steam 
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injection, water flooding, in-situ combustion, and C02 injection. This model assumes that 

there is a sharp discontinuity in properties across the injection fluid front. Since the velocity 

of the front is calculated as a part of the solution procedure, the fimt can be tracked approxi- 

mately. 

A wide variety of problems have been solved using the above computer programs and 

the versatility of the methodology is demonstrated through the investigation of accuracy and 

ease of solving complex problems. Such questions as the consistency of solutions, the 

required number of nodes, and the best nodal arrangement were also investigated. 



Chapter 2 

MATHEMATICAL PRELIMIN.ARIES 

The dimensionless form of the diffusion equation for the Row of single phase fluids 

through a homogeneous porous medium is derived in this chapter. In addition, a unified 

review of numerical techniques in the general context of weighted residual methods is 

presented. Subsequently, a step by step procedure for the development of the boundary ele- 

ment formulation is discussed. A review of the Green’s functions and numerical considera- 

tions in the solution procedure for the boundary element method are also explained. 

2.1 Fluid Flow Equations 
A continuum representation of a porous medium allows one to write macroscopic scale 

fluid flow equations based on physical laws. Under the assumption of the flow of a single 

phase fluid in a homogeneous porous medium, the continuity equation is 

where Q* is the strength of a sink in mass per unit volume per wlit time. The velocity field 

can be determined by a rate equation or momentum equation. Ilarcy’s law, which can be 

derived under certain assumptions from the Navier-Stokes equation, can be used for the pur- 

pose. Darcy’s law in a differential form is 

- + -  K v - --VP 
CL 
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where K is the permeability tensor. Substituting Eq. (2.2) into (2.l) gives 

v . (a V p )  = 3@Q. at + Q *  
P 

11 

(2.3) 

Derivation of equations of this type can be found in Aziz and Se t tw i  (1979). A typical reser- 

voir geometry is shown in Fig. (2.1). The domain of the probleim is defmed by R and the 

corresponding bounding surface is represented by r. Any of the three h e a r  boundary condi- 

tions may be applied at a section of the reservoir. We use the equation of state for small and 

constant compressibility fluid and assume that the permeability tensor (K) can be diagonalized. 

Defining a Cartesian coordinate system with the coordinate axes aligned with the principal per- 

meability directions, we obtain the following equation : 

Assuming k, and 

of the medium and performing a coordinate transformation given b y  

to be constants, in addition to the viscosity of the fluid and the porosity 

M 

x =x’ ; y =yp] 
we obtain 

where 

(2.5) 

Since the system geometry can be odd, the above system is normalized with respect to 

the area (A) of the system. Thus, defining 
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2 u\ r 

1 

i+ 1 

i- 1 

Fig. 2.1 A typical computational domain 
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gives 

where 

13 

(2.9) 

(2.10) 

and QD is dimensionless flow rate. jj is an arbitrary normalization pressure chosen to be 

equal to one and p o  is the initial reservoir pressure. Rewriting Eq. (2.9) in a coordinate- 

system free format, that is in the operator form 

A linear operator L is defined such that 

(2.1 1) 

(2.12) 

For fluid flow under steady state conditions the time derivative on the right hand side of 

Eq. (2.11) is zero. The governing equation is a Laplacian operator which is elliptic in nature. 

The velocity field is established instantaneously and does not change with time. For a finite 

time derivative in Eq. (2.11), the nature of the operator changes tcl parabolic and the problem 

becomes an initial-boundary value problem. 

2.1.1 Boundary Conditions 
Three types of boundary conditions can be imposed on different sections of the boun- 

dary, r. 

on r2 E r (Neumann) (2.13b) 
- -  aPD 

- 41 an 
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where n is the outward pointing normal on an element on the boundary. The initial condition 

is homogeneous. Symbolically 

(2.14) 

2.2 Weighted Residual Method 
It is informative to compare various numerical schemes from the point of view of the 

consistency of the method, its convergence properties and error estimates. This task becomes 

easier if common grounds for evaluating each of the numerical schemes can be established. If 

it can be shown, for example, that most of the numerical schemes are subsets of one formula- 

tion only, and that a particular numerical method is obtained by making certain assumptions in 

the general formulation, then the evaluation of a numerical method becomes simple. Such a 

formulation which unifies all the numerical schemes is known as the weighted residual 

method. Although, traditionally, none of the numerical methods are derived from the 

weighted residual formulation, it is another way of looking at the numerical methods. The 

idea here is to show an alternative viewpoint. 

In the weighted residual approach, assumptions of particular functions for the unknown 

variables lead to different numerical schemes. The generality and ihe strength of each method 

can then be seen and compared on the same basis. The basis; of the weighted residual 

approach is presented next. It is shown how some of the numerical methods are obtained 

from the weighted residual formulation. Brebbia (1984, 1984b) give an overview of the 

weighted residual scheme, and show simple examples to illustrate the derivation of various 

numerical schemes. 

Consider the solution of partial differential equations of the type 

* + Q D  = o  in 62 
J ~ D A  

(2.15) 
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given in Eq. (2.12), by the weighted residual scheme over the domain a. The external sur- 

face of the domain SZ is I' and the exact solution to Eq. (2.15) is given by p D .  L is con- 

sidered to be a linear operator for the purposes of this work. 

The unknown variable p~ is approximated by a set of functions @k (x , t )  such that 

PD = x B k  @k 
k 

(2.16) 

In Eq. (2.16), Bk are the undetermined parameters and @k are linearly independent functions 

of the independent variable, taken from a complete sequence of fuiictions satisfying the admis- 

sibility conditions. These admissibility conditions are related to the essential boundary condi- 

tions and the degree of continuity of the functions. In essence, a particular form of the solu- 

tion for Eq. (2.15), in terms of simple functions @ k ,  has been assumed. For exam€ e, qk 
could be trigonometric sine and cosine functions. 

Since Eq. (2.16) is an approximation of the true solution, substituting Eq. (2. 

(2.15) produces an error function E' which is called the residual, symbolically 

6) in 

L ( p , )  = O + i  (2.17) 

When E' is zero the solution is exact, but in general, E' will be non-zero. One can choose to 

force this error to be zero in an average sense over the domain of ihe problem. The error E' is 

forced to zero in an average sense by setting the weighted integral of the residual to zero 

(2.18) 

where vi is a set of weighting functions. Physically Eq. (2.13) means that the error is 

orthogonalized with respect to a set of weighting functions. In other words, the inner product 

of the error with respect to the weighting functions is set to zem over the domain. 

In order to relate the functions (Ok and yfk to physical variables, consider for example, 

the discussion about finite element method in Section 1.2.2. It was mentioned in Section 

1.2.2 that two types of functions are assumed in the finite element method. The two sets of 

functions are qk and vk which are shown in Eqs. (2.16) and (2.18) respectively. Qk is known 
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as the basis, trial or interpolation function and vk is known as the weighting function. 

Different numerical methods result on choosing a different set of weighting functions. 

When the set of weighting functions is a sequence 1, x ,  x2,  .... the method that results is 

called the ‘Method of Moments’. In the event that the error is forced to be zero at certain 

points in the domain, the resulting scheme is called the ‘Point Calllocation’ technique. These 

points are usually, but not necessarily, evenly distributed in the domain. The Galerkin fmite 

element method results if the sequence of weighting functions w, is taken to be identical to 

$i. That is, the weighting functions are the same as trial functions. 

All the above methods are restricted to self-adjoint operators (analogous to the symmetry 

of a matrix) and boundary conditions coinciding with the essential (Dirichlet type) boundary 

conditions. A simple but crude definition of a self-adjoint differential operator is one which 

consists of only even order derivatives. Existence of any odd derivative makes the operator 

adjoint (not self-adjoint). A more rigorous definition of a self-adjoint operator will be given 

later. More powerful techniques of solving partial differential equations emerge when the 

stipulation of self-adjointness and the restriction on the boundary conditions are relaxed. This 

can be achieved through weak or integral formulations of the differential operators. Both the 

finite element and the boundary element methods are based on the weak formulation. The 

essentials of the weak formulation and how this gives rise to the finite element and boundary 

element methods, is discussed next. 

The weak formulations are based on the following considerations. The continuity 

requirements of the solution space are usually determined by the highest derivative in the 

differential operator. If some of these derivatives are transferred to the weighting function, by 

integrating by parts, the resulting method is known as the finite element method. Transfer of 

derivatives reduces the continuity requirement of the trial functions in the L 2  - sense. The L2 

- norm which defines the square integrability of a function over the domain of interest, is con- 

sidered in the sub-space known as the Sobolev space. The Sobolev spaces are a subset of 

spaces which arise on imposing restrictions on the continuity and integrability requirements of 
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the function and its derivatives. The continuity requirements are an important consideration, 

because they help one choose the mathematically feasible functions as approximations (the 

trial and weighting functions). For example, a Co continuous function is simply a continuous 

function whereas a C’ continuous function implies the continuity of both, the function and its 

first derivative. A C’ continuity requirement thus restricts the trial or weighting function 

space from which a function can be chosen. Very interesting coinvergence properties can be 

proved for such weak formulations and with simple basis functions designed with respect to 

the above analysis, the results obtained are quite accurate (Hughes, 1987). 

It was seen in the previous paragraph that, when only a few derivatives are transferred 

to the weighting functions, the resulting method is the finite element method, but if the 

highest derivatives from the operator L ( p D )  are completely transferred to the weighting func- 

tion (by integration by parts), sort of an ‘inversion’ process, this leads to the method hown  

as the Boundary Integral Equation Method. Since an integral equation is difficult to solve, the 

boundary integral equations are implemented discretely on elements. Due to this discrete 

implementation, the boundary integral equation method is commonly known as boundary ele- 

ment method (BEM). 

With the boundary element method weighting functions can be proposed which identi- 

cally satisfy the goveming equations and only approximately the boundary conditions. In this 

regard, the boundary element method can be viewed as a special ciise of the weighted residual 

technique where the highest derivatives of the differential operator have been transferred to 

the weighting function. The details of the formulation and casting of the differential equation 

into an integral equation are discussed in the next section. 

2.3 Boundary Element Method 
Although the boundary element technique can be seen in the light of the weighted resi- 

dual methods as shown in the previous section, the derivation thai. follows is based on more 

fundamental principles. Starting from the partial differential equation Eq. (2.12), an integral 
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equation based on a boundary procedure is derived. The primary objective for the manipula- 

tion of Eq. (2.12) is to cast the governing differential equation into an exact differential. If 

the equation is exact, then a first integral of the differential equation is readily available. 

Rewriting Eq. (2.12) 

(2.19) 

Consider a function, G, which is in the same set of admissible functions as p o .  Admissible 

here means that G belongs to the same class of functions as po with regards to continuity and 

integrability. Taking a product of the function G with the differential operator L @ D )  given 

by Eq. (2.19) 

(2.20) 

Expressing Eq. (2.20) in a divergence form which effectively invoslves transferring derivatives 

to the function G. As a first step one of the derivatives from the V 2  operator and the only 

temporal derivative, is transferred over to G. 

where the identity 

V m { x j j + }  = xVmjj++(Vx)mjj+ (2.22) 

has been used. The term x in Eq (2.22) is a scalar function and 7 is a vector function. 

Rewriting Eq. (2.22) 

(2.23) 

At this point Vp,  still appears in Eq. (2.21) hence, performing ihe operation of casting in 

divergence form again 
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Rewriting Eq. (2.24) 

The last term in Eq. (2.25) is identical to the diffusion equation without the source term and a 

positive sign on the temporal derivative instead of a negative ,sign. At this point all the 

highest derivatives from the original equation have been transfeirred to a function G which 

will be seen later to be a weighting function. The positive sign om the last tenn in Eq. (2.25) 

instead of a negative sign in the diffusion operator [Eq. (2.19)] is ‘because the diffusion opera- 

tor is not self-adjoint as it contains a first order (odd) derivative. More rigorously, an adjoint 

(or not self-adjoint) differential operator is similar to an adjoint of a matrix. An operator L is 

said to be self-adjoint if the 

duct of two functions u and 

inner product (G, LPD) is equal to (LG, p D ) ,  where the inner pro- 

v is defined as 

( u , v )  = uv dR d (2.26) 

The diffusion type operators are non self-adjoint and cannot be formally cast into a self- 

adjoint form. On the other hand for the steady state case in whic:h the time derivative in Eq. 

(2.12) is zero, a Laplacian type operator results which is formally self-adjoint. Substituting In 

Eq. (2.25) an adjoint differential operator is defined as 

Substituting Eq. (2.27) into Eq. (2.25) and transposing the terms 

(2.27) 

(2.28) 

Eq. (2.28) can be derived in an alternative way which is simple to follow. In the alternative 

derivation Eq. (2.26) is multiplied by pD and subtracted from Eq. (2.20). Green’s third iden- 

tity is used to cast the equation in the form of Eq. (2.28). 
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Eq. (2.28) expresses the left hand side expression in terms of a divergence form. The 

right hand side of Eq. (2.28) is an exact differential, as we had slct out to obtain. Integrating 

Eq. (2.28) over the domain of the problem results in 

(2.29) 

Eq. (2.29) holds on the entire space-time domain of the problem. Assuming that the function 

G is a response to an instantaneous line source of strength unity, we obtain on defining the 

adjoint problem in Cartesian coordinate system 

L * ( G )  - (G, + Gyy + Gt) = 6 ( ~  - 5) Sg - 5) 6(t - Z) (2.30) 

where the subscripts denote partial derivatives and 6(z - zo) is the Dirac - Delta function. 

The solution to Eq. (2.30) provides the function G, which is knovvn as the fundamental solu- 

tion or the Green’s function for the operator L@D). Substituting Eq. (2.30) in Eq. (2.29) and 

realizing that L @ D )  = 0 from Eq. (2.9) 

(2.31) 

Using the shifting property of the delta function 

and the divergence theorem of Gauss in Eq. (2.31) we obtain, an equation for pressure at any 

location in the reservoir in terms of an integral over the boundary values of both pressure and 

fluxes. The pressure at any location within the reservoir is 
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This is the integral equation we had set out to derive. At this point no approximations have 

been made. All that is required is that a function G be found which has smooth properties 

and decays uniformly in the far field. Eq. (2.33) shows that the free space Green's function 

appears as a weighting function in the integral equation. 

pDo represents the initial condition in the integral equation. For a homogeneous initial 

condition, the second term on the right hand side in Eq. (2.33) becomes zero. The third 

integral on the right hand side corresponds to the contribution due to the source/sink of 

strength Q D .  If we consider n, continuous line sources or sinks starting at the initial time 

zero, and producing / injecting at locations ( x D i ,  y D i )  at strengths Q D i  respectively, then QD 

in Eq. (2.33) can be replaced by X Q D  6(xD - X D ~ )  SgD - yD i). The integral equation then 
"W 

i=l  

reduces to 

(2.34) 

where Gi is evaluated at the source locations (xo i ,  i ) .  Again, the shifhg property of the 

delta function has been used to transfer the point of application of Green's function to the 

source location i. In other words 

(2.35) 

The integral equation Eq. (2.34) is a strict boundary integral imd implies that the dimen- 

sionless pressure at any location in the reservoir (6, () and at a time z, is given by a boundary 

integral over the space and time domains. Eq. (2.34) forms the basis for the Boundary Ele- 

ment Method. Eq. (2.34) is of a lower dimension compared to the original problem. For the 

two-dimensional problems considered in this work, it becomes a contour integral around the 

boundary. Unlike the numerical schemes such as finite difference or finite element methods, 

the entire reservoir need not be discretized. It is only the surface of the reservoir volume that 



CHAPTER 2 .  MATHEMATICAL. PRELIMINARIES 22 

must be discretized. The reduction in dimensionality could save considerable computing 

effort. 

In order to compute pressure within the reservoir, Eq. (2.34) requires that both the pres- 

sure and flux be known at every point on the boundary. In other words, the temporal or spa- 

tial variation of pressure at any point within the reservoir boundary requires one to know the 

variation of both the pressure ( p D )  and the flux (-) on the boundary. However, either dPD 
an 

the pressure or the flux is prescribed on the boundary through the boundary conditions. That 

is, one of the two quantities (pressure or flux) is unknown 011 the boundary. Thus, the 

integral cannot be evaluated until the missing piece of information on the boundary is deter- 

mined. It is to this end, that Eq. (2.34) becomes an integral equation as the unknowns are 

embedded in the boundary integrals. For example, if the reservoir boundary is at constant 

pressure then the flux across the boundary is unknown. The flux terms (-) in Eq. (2.34) 

appear within the integral only. This integral equation is known as a Fredholm integral equa- 

tion of the first kind. On the other hand, if the reservoir boundary were closed, then the flux 

across the boundary is zero and the pressures are unknown. The terms containing pressure 

appear both inside and outside of the integral in Eq. (2.34). This integral equation is known 

as the Fredholm integral equation of the second kind. 

aPD 

an  

Once the boundary unknowns are determined, Eq. (2.34) is used again to calculate the 

value of pressure at any interior location. Interior solutions may be calculated now, because 

the right hand side of Eq. (2.34) is fully determined. Pressure at an interior location is calcu- 

lated by Eq. (2.34) but in order to calculate the flux at a point interior to the domain, deriva- 

tive of Eq. (2.34) has to be taken. 

2-3-1 Green’s Functions 

The variable G , used in the integral equation is a solution to the adjoint problem defined 

in Eq. (2.30). It is known as a kernel function, a Green’s function, or a fundamental solution 



CHAPTER 2 .  MATHEMATICAL. PRELIMINARIES 23 

to the differential operator defined in Eq. (2.9). The Green’s function is the response to an 

instantaneous source of Unit strength at a location in the flow field. The value of the function 

depends on both the location of the fictitious (also known as Green’s function) source and the 

observation point. The Green’s function also depends on the location of the boundaries. It is 

thus, a two point function with symmetry properties. That is, if ihe source and the observa- 

tion locations are interchanged, the response remains the same. 

For application to finite domains such as shown in Fig. (2.1), the Green’s function is 

different for every shape and type of boundary condition. In addition it is very difficult to 

calculate the Green’s function except for certain regular shapes. ‘rhis limits the flexibility of 

the solution procedure. To avoid this problem, a free space Green’s function is defined for 

the given adjoint differential operator. This function satisfies the boundary conditions at 

infinity. That is, the Green’s function is bounded and decays uniformly in the far field. The 

free space Green’s function is then used in Eq. (2.34) as a weighting function. Appendix A 

gives the derivations for the free space Green’s functions for the problems discussed in later 

chapters. 

The free space Green’s function satisfies the material balance condition 

L G d A  = 2 x  (2.36) 

The value 2x is obtained 

interest. For example, for 

because the source is completely surrounded by the domain of 

the free space Green’s function, an infinite reservoir is considered 

and the source is completely contained in it. Now, in order to solve Eq. (2.34) for the unk- 

nown boundary conditions, the Green’s function source (fictitious source) is moved to the 

boundary. On the boundary, the domain of interest subtends an ‘internal angle 0 as seen in 

Fig. 2.1. Thus, the angle 2x in the free space Green’s function is replaced by the angle 0 on 

the boundary. The final form of the integral equation (2.34) becomes 

(2.37) 



CHAPTER 2 .  MATHEMATICAL PRELIMINARIES 24 

e = 2~ if (xg, YO> E (2.37a) 

where 8 is the internal angle subtended between two adjacent elements. This is shown in Fig. 

(2.1). The value of the constant, c, is one or two depending upon ithe formulation used. 

The integral equation obtained in Eq. (2.37) is impossible to solve analytically unless the 

behavior of p g  and - is known on the boundary. One of these variables is known from an 

the boundary condition but the other one is unknown, as discussed earlier. Thus, a trial or 

interpolation function, which is piecewise continuous, is assumed for the unknown variables. 

This leads to the numerical aspects of the procedure which are discussed next. 

2.4 Numerical Considerations 
The boundary integral equation obtained in Eq (2.37) can be solved explicitly for some 

special cases of infinite domains and it forms the basis for solution of partial differential equa- 

tions by the Green’s function method. Use of the Newman product theorem and superposition 

helps to find solutions for certain bounded systems with orthogonal boundaries (Carslaw and 

Jaegar, 1959). 

The boundary integral requires knowledge of either the pressure or the normal derivative 

of the pressure at all locations on the boundary. In a well-posed problem, the pressure, the 

normal derivative of pressure, or some combination of the two, is laown at each point on the 

boundary. In order to calculate the solution at any location within rhe domain, it is imperative 

to first solve for the boundary unknowns. The boundary unknowns can be solved for by a 

collocation technique. 

Implementation of the collocation technique requires discretization of both the space and 

time domains. The boundary of the computational (space) domain shown in Fig. 2.1 is 

discretized into N points referred to as nodes. The line segment joining two adjacent nodes 
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will be referred to as an element. In this ‘elemental’ sense the Boundary Integral Equation 

Method (BIEM) is referred to as Boundary Element Method (BEM). 

Equation (2.37) is solved for the unknown boundary condition by choosing a discrete 

number of elements on the boundary. An interpolating function is assumed for pressure and 

flux (or normal derivative of pressure) on a boundary element in both space and time dimen- 

sions. The integral equation can be solved by moving a fictitious source point (or Green’s 

function source) to each of the nodes, in turn. One matrix equation is obtained for each posi- 

tion of the fictitious source. Moving the source to all the nodes generates enough equations 

so that they match the number of unknowns. The problem then reduces to one of solving a 

matrix equation. Once both pressure and normal derivative of pressure are known at all 

points on the boundary, Eq. (2.37) can be used again, to obtain the solution at any internal 

point (5, <, z). Since an internal point is completely surrounded by the computational domain, 

the angle 8 in Eq. (2.37) becomes 2n: for calculations in the interior. 

2.4.1 Interpolation Functions 

Interpolation functions define the variation of the dependent variables between two nodes 

or equivalently over the element. Since only one variable [pressure or normal derivative of 

pressure or a combination of the two] is known on the boundary, the behavior of the unk- 

nown variable must be assumed in order to solve Eq. (2.36). Various types of interpolation 

functions have been used. Brebbia(l984) discusses some of the commonly used functions. 

The two most commonly used interpolation functions are constarit elements and linear ele- 

ments. These are described next. 

For the constant elements the dependent variables are taken to be the average value of 

the nodal values and they act at the center of an element. Symbolically 

A similar function is defined for the flux. The advantage of using constant elements is its 
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ease of implementation and use. Flow singularities due to sharp Icomers in the flow field are 

avoided because the center of gravity (point of action) of a constarit element is at the center of 

the element rather that at the edges (end points). In other words, the element value of the 

dependent variable is the average of the end point values of the two nodes constituting the 

element. Use of constant elements for time domain interpolation is common. 

The linear interpolation function represents a continuously varying dependent variable on 

the element. The pressure and normal derivative of pressure at any point on the element is 

expressed in terms of the nodal values as follows : 

P D  (5) = [@D,.+l - P D j )  5 ( s j + l P D j  - 6 jPDj+>] / (6 j+ l  - k j )  c j  < k < k j + l  (2.39) 

(2.40) 

where is the local coordinate varying along the element. Eq. (2.38) and (2.39) imply that 

the pressure and flux at any point on an element which extends from the point si to c j + l  is a 

linear interpolation of its end point nodal values. 

Throughout this work linear interpolation functions in space and constant elements in 

time have been used. Higher order functions can be used at the cost of complexity in imple- 

mentation and numerical evaluation of resulting integrals. The extra time and cost produces 

only a small improvement in accuracy. 

2.4.2 Local Coordinate System 

The contour integral of Eq. (2.37) is still a double integral in space dimension. To 

avoid having to evaluate double integrals, a local coordinate system based on the fictitious 

source point and the element over which the integral is performed is defined. Thus, the 
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coordinate system moves depending on which node is the source point and which element is 

the field element. An illustration of a local coordinate system is given in Fig. 2.2. In Fig. 

2.2, the point pi is the node at which the fictitious source point is acting and the element over 

which the contribution of the source is being calculated consists of nodes pi and This 

element is called the field element, and a point on this element is referred to as a field point. 

To define a local coordinate system, a perpendicular is drawn from the fictitious source 

point on the boundary onto the element over which the integral has to be performed. The per- 

pendicular forms one of the axes of the local moving coordinate system (6) and is constant on 

the element. The other axis is along the element (E) .  The local coordinate system is different 

from the fixed global coordinate system in which the problem has k e n  defined. 

2.4.3 Matrix Equations 

Using the interpolation functions presented in Section 2.4.2, the integral of Eq. (2.37) 

can be performed piecewise on each element. Equations (2.39) and (2.40) are substituted in 

Eq. (2.37) along with a transformation to a moving coordinate system. As mentioned earlier, 

the source point is moved around the boundary and is located at each of the nodes in turn. 

This generates N equations in N unknowns, where N is the number of boundary nodes. A 

geometry dependent coefficient matrix is thus obtained. The form of the matrix equation is 

H @ u p  = Gp (2.41) 

where a and p denote an element in the matrix or location of the matrix in an array of 

matrices, depending on the formulation used. The vector of unknowns is represented by u 

and Gp represents the right hand side vector. Details of the matrix structure and the elements 

of the matrix will be described in greater detail in Chapters 3 and 4. 

The matrix H @  is full, that is there are no elements which ane zero. The reason for this 

is explained by comparing the matrix in Eq. (2.41) with the matrices obtained in the finite ele- 

ment method, 



CHAPTER 2 MATHEMATICAL PRELIMINARIES 28 

\ \\ 
‘i / 

‘i ‘i,j+l 

Fig. 2.2 Local coordinate system 
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In finite element methods the basis functions or weighting functions are usually chosen 

to be either isoparametric or piecewise polynomials. These functions have a compact local 

support (Section 2.2). That is, the functions have a finite value over an element but are zero 

over all the other elements. This leads to the well known sparse matrix structure. In the 

boundary element method the weighting functions are solutions to the adjoint problem and do 

not have to be chosen arbitrarily. This translates to the fact that they have global support. 

Owing to the global support, the contribution at one location is affected by all points in the 

discretized domain. Thus, the matrices that are obtained in the boundary element method are 

full, unlike the sparse structure of other numerical schemes. One riedeeming feature is that the 

size of the matrices are much smaller compared to the domain type schemes. This is due to 

the boundary only character of the boundary element method. 

2.5 Numerical Integration 
The elements of the coefficient matrix consist of integrals over boundary elements. 

These integrals depend on the type of interpolation functions used and the complexity of the 

weighting functions. For development of a general purpose simulator where any type of inter- 

polation function can be prescribed, the integrals have to be evaluated numerically. For this 

work, most of the integrals could be evaluated analytically. Nwertheless, some integrals 

could not be evaluated analytically and numerical means had to b, used. The Green’s func- 

tion has a singularity at the origin. Other than that singularity, the Green’s functions, used in 

the integral equation (2.37)’ are well behaved functions which decay rapidly in the far field. 

Highly accurate Gauss-Legendre type integration schemes were used to evaluate the integrals 

numerically. Gauss-Legendre quadrature has been shown to be optimum in the sense of max- 

imum accuracy for a given number of function evaluations (Strouti and Secrest, 1966). The 

range of integration is divided into two panels and a six point integration scheme is used on 

each of the panels. This scheme was found in general to be the optimum between computing 

effort and accuracy. The accuracy criterion used on test cases was to eight significant digits. 
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A smaller number of function evaluations (four, for example) works well if the criterion for 

accuracy is relaxed slightly. The Gauss-Legendre quadrature requires specification of abscis- 

sae and the weights given to each of the abscissae points. The automatic generation of the 

abscissae and weights for the Gauss-Legendre quadrature for an 74-point rule is provided in 

Appendix - F. 

2.5.1 Singular Integral Evaluation 

When the fictitious source point is on the same boundary element as the field point, 

integrals which are singular at one of the limits, are obtained. The integrals are singular due 

to the presence of a singularity in the Green’s function at the origin. In Fig. 2.2, when the 

fictitious source point @i) is acting at p ,  or is zero 

and 5, or is also zero. The usual techniques for numerical integration are unsuitable. In, 

particular the integral 

the value of the local coordinate 

C 

(2.42) 

has been performed in a very tedious way in the literature (Liggett and Liu, 1979, Taigbenu 

and Liggett, 1985, Pinu, Z985). Various methods have been suggested to handle this, but all 

of them require either removing the singularity and integrating numerically or performing a 

term by term integration of an infinite series which converges slowly at large values of the 

argument. Eq. (2.42) can be evaluated in terms of smoothly behaved functions. The result is 

(2.43) 

and is derived in Appendix C. The functions in Eq. (2.43) are standard special functions and 

can be evaluated easily and quickly. 

The mathematical development of the boundary element method was discussed in this 

chapter. In the next chapter the development of the boundary element method for steady state 

problems (Laplacian operator) is presented. 



Chapter 3 

STEADY STATE PROBLEMS 

Steady state flow occurs in balanced waterflood schemes or at late times in bounded sys- 

tems with constant pressure outer boundaries. The effect of pattern geometry and flow singu- 

larities are important because the reservoir configuration and sources/sinks govern the move- 

ment of injected fluid to the production wells. Though, the flow singularities affect the local 

flow field more strongly than other locations, ignoring them could lead to undesirable and 

unrealistic results. A number of studies involving analog and computer models have been 

conducted on the effect of various parameters. It is assumed that the reservoir fluid is 

incompressible and is being displaced by a similar fluid. The fluid and reservoir properties 

are homogeneous. Capillary and gravity effects are neglected. 

As mentioned earlier, the conventional numerical schemes have difficulty in tracking 

moving fronts due to the nature of domain gridding whereas the boundary element method is 

most suited for potential flow applications. Examples are shown in this chapter which demon- 

strate the utility of Boundary Element calculations in a number of typical cases for unit mobil- 

ity ratio displacement problems. 
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3.1 Implementation 
The goveming equation for steady state flow becomes 

vzpD = 0 

considering no sources/sinks present in the domain. The time dependent term in Eq. (2.12) is 

absent from Eq. (3.1). The operator of Eq. (3.1) is the Laplacian operator and is self-adjoint. 

This means that the adjoint operator which is solved with a concentrated (delta-function) 

source to give the Green’s function is the same as the Laplacian operator. Following the 

derivation outlined in Chapter 2 the integral equation for pressure is 

(3.2) 

The time integral is not present in Eq. (3.2) because of the steady Bow conditions. The effort 

required to compute the single integral around the contour is far less compared to the double 

integrals which arise in unsteady state problems. The treatment of unsteady problems will be 

shown later. 

The weighting function, G, in Eq. (3.2) is the free space Green’s function for the Lapla- 

cian operator and is 

(3.3) 

where 

Eq. (3.2) can be written in a discrete form over the element nodes on the boundary between 

si and si+* in the local coordinate system as 

Eq. (3.5) suggests that the dimensionless pressure at a location in the resemoir is given by the 
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sum of the contributions of each of the boundary elements. The angle 8; in Eq. (3.5) is given 

by 

If the fictitious source is completely surrounded by the reservoir boundary, €Ii is equal to 2 ~ .  

If the source is on the boundary, Bi is equal to the internal angle between two adjacent ele- 

ments. 

An important step comes when the fictitious (or the Green’s function) source is moved 

to the boundary and the contribution of this source is evaluated at each of the nodal points on 

the boundary. As mentioned earlier, one of the quantities under the integral is unknown and 

the only way to solve Eq. (3.5) for any interior point is to first determine the boundary unk- 

nowns. It is at this step that Eq. (3.5) is an integral equation. The fictitious source point is 

moved to each of the boundary nodes in turn. Eq. (3.5) then gives the pressure at a boundary 

node in terms of the pressure and fluxes at other boundary nodes. This gives N equations in 

as many unknowns on the boundary. Using the interpolation functions defined in Eq. (2.39) 

and (2.40) and the free space Green’s function defined in Eq. (‘3.2) the discretized integral 

equation for pressure at a nodal location i in a local coordinate systttm is 

-ll 

aPD where, (-) is replaced by pD,  for convenience. The relation tetween the local (5, () and 

the global (x, y) coordinates is evident from Fig. 2.2, and the following equations hold 

an ; 
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and 

The integrals in Eq. (3.6) are given in Appendix B. Rewriting J5q. (3.6) in matrix notation 

(3.9) [Fij - 6ij eil PO, = C ~ i j  P D ~ ,  i = l , N  
i i 

where 

and 

(3.9b) 

The boundary conditions in Eq. (2.13a, b, c) are used in Eq. (3.9). These boundary condi- 

tions are multiplied by the proper coefficients of the matrix in Eq. (3.9). Separating the vector 

of unknowns from the vector of knowns results in a matrix equation of the form 

(3.10) Hij Qj = G .  J i = l , N  

where Q j  is the vector of unknowns and Gj is the right hand side vector obtained by using 

the boundary conditions. 
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3.1.1 Interior Solutions 
Once the boundary unknowns are obtained, pressure at any internal location is calculated 

by using Eq. (3.6) again. For front tracking purposes, velocities at internal points must be 

calculated. The velocity of a point within the domain is 

v 2  = v, 2 2  + vy (3.11a) 

(3.1 lb) 

The velocities in the x and y directions are obtained by taking the directional derivatives of 

the integral equation (3.6). 

(3.12) 

where, rD is the distance from the internal point to a boundary point. All the integrals in Eq. 

(3.12) can be evaluated exactly since, both the flux and the pressure at each point on the 

boundary are known. The evaluation of the integrals and the resulting expression for the 

velocities is given in Appendix B. 

3.2 Treatment of Singularities 
Singularities in potential flow situations occur when the flux or the pressure at a certain 

location goes to a mathematical infinity. Sources and sinks with diminishing radii are exam- 

ples of such singularities. Also sharp bends and comers in the flow geometry cause the flow 

behavior to become singular in the vicinity of the singularities. 'These singularities can be 

treated in two different ways. Well singularities can be treated as inhomogeneities in the flow 

equation as shown in Eq. (2.19) and (2.37). Being Dirac-delta functions for line source con- 

ditions, they appear only as an additive term as in Eq. (2.37). Another way to treat the singu- 

larities is by singularity programming, which is discussed next. 
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3.2.1 Singularity Programming 
If the behavior of the singularity is known from hydrodynamics or elsewhere, then the 

contribution due to the singularity is subtracted from the goveming equation and the boundary 

conditions. The singularity free problem is solved with the conventional boundary element 

procedure. Once the solution is obtained, the contribution of the singularity is added. This 

simple procedure improves the accuracy of solutions greatly. This procedure can be 

represented as 

P D  = P D , + P D ,  (3.13) 

where, pD, is the non-singular part of the solution and pD, is the singular solution. For a line 

source well singularity, p D ,  is given by 

(3.15) 

Both the singular and the non-singular solutions satisfy Laplace’:; equation. The boundary 

conditions should be adjusted for the singular behavior as follows, 

(3.16) 

(3.17) 

Other known singularities can be treated in a similar manner. The effect of singularities on 

the potential and the velocity fields depends on the strength of the: singularities and the dis- 

tance from the points at which the contribution is being calculated. For weak singularities, 

the far field solutions are not affected strongly. Only in the vicinity of the singular points is 

the effect felt. Sometimes weak singularities can be treated either by approximating the flow 
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field, or by not providing special elements and using the interpoliation function used in the 

other parts of the flow field. 

An example of approximation of the flow field such that the singularity is avoided is 

given in Fig. 3.1. The problem considered is the steady irrotation4 flow of fluid in a comer. 

Each side of the square is of length x. The top boundary is maintained at a dimensionless 

pressure of ten and the adjacent right side boundary at a pressun: of five. The upper right 

hand comer is discontinuous in pressure Le., the pressure changes From ten to five at a single 

point, thus the flux at that location goes to a mathematical infinity. Fig. 3.2 shows a diagram 

(not to scale) of a modified boundary where the upper right hand comer is chopped slightly (1 

% of the total length) and is replaced by a no flow boundary. This provides the fluid enough 

non-equipotential surface so that the pressure gradient is established in a finite way. Table 3.1 

shows the comparison of the boundary solutions with the analyticin solution at various loca- 

tions. The analytical solution is given in Numbere (1982). Also investigated is the effect of 

the number of nodal points on the results. Each side of the square boundary was divided into 

three elements (4 nodes) for the case with 13 nodal points. The nodes are equidistant from 

one another. Each of the elements was further subdivided into two for the case with 25 nodal 

points. Ln both cases, the chopped comer consisted of only two nodes at each of the ends. 

The maximum error is less than 1% for both 13 and 25 boundary nodes. Element refinement 

with 25 nodes gives accurate results, the maximum percent error k i n g  0.0612%. The max- 

imum error for the case with 25 nodes is near the chopped element (coordinates 3.0, 3.0), 

since the effect of singularity is felt more strongly in the vicinity of its occurrence. As no 

further subdivision of the chopped element was made when refining the elements from 13 to 

25 nodes, the errors at this location for both the cases are the same. This is because the effect 

of the singularity overpowers the effect of nodal subdivision in its vicinity. As the points at 

which the solution is evaluated get closer to one of the boundaries, the results with 25 nodes 

are better than those of 13 nodes. This is seen from the results at nodal locations (3.0, 1.571) 

and (3.0, 0.5). 
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-- I 
I 

Fig. 3.1 : Steady irrotational flow in a comer 

I -- I 
I 

Fig. 3.2 : Modified boundary for steady irrotati'onal flow 
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Y-Coord. 

1 .000 

1 .500 

2.000 

2.500 

3 .000 
1 .Ooo 
1 .500 

2.000 

2.500 

3.000 

1 .Ooo 
1 .500 

2.000 

2.500 

3.000 

lame 3.1 ~ r e c r  or uement Kennement on nlbM soin. 

Y-coord. 

1 .000 
1 .500 

2.000 

2.500 

3.000 
1.571 

1.57 1 

1.571 

1.571 

1.571 

0.500 

0.500 

0.500 

0.500 

0.500 

7.50076 

7.50080 

7.50060 

7.50089 

7.50459 

7.91911 

7.56539 

7.021 17 

6.25481 

5.29154 

7.29231 

6.94476 

6.46369 

5.86787 

5.19627 

39 

13 Nodes 

Soh. 

7.5000 

7.5000 

7.5000 

7.5000 

7.5000 

7.9204 

7.5648 

7.0212 

6.261 1 

5.3416 

7.2877 

6.9372 

6.4575 

5.8620 

5.1850 

% Error 
- 

0.0101 

0.0107 

0.0080 

0.01 18 

0.06 12 

0.0163 

0.0078 

O.OOO4 
0.1006 

0.9461 

0.0632 

0.1089 

0.0957 

0.1001 

0.2 169 

25 Nodes 

Soh. 

7.5000 

7.5000 

7.5000 

7.5000 

7.5000 

7.9190 

7.5648 

7.0205 

6.2543 

5.2908 

7.2905 

6.9426 

6.4618 

5.8667 

5.1961 

% Error 

0.0101 

0.0107 

0.0080 

0.0118 

0.0612 

0.0014 

0.0078 

0.0096 

0.0081 

0.0139 

0.0248 

0.03 1 1 

0.0292 

0.0200 

0.0033 
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A comparison is made in Table 3.2 between the analytical solution, solution with con- 

stant boundary elements and solution with linear elements. 'With constant elements, the loca- 

tion of the singularity is avoided because the pressure or flux is evaluated at the midpoint of 

an element. Thus, the solution procedure does not know about the presence of a comer. In 

fact, for this reason the flow field need not be approximated by chopping off the comer, as in 

this example. The results for constant elements were given by Numbere (2982). The result 

with linear elements is far superior to constant elements as seen in Table 3.2. 

Figure 3.3 is a schematic of flow through a rectangular porous medium with a 90" 

wedge in the flow field (Liggett and Liu, 1983). The origin of the Cartesian coordinate system 

is at the tip of the wedge, which is at the center of the geometry. The boundary nodes are 

shown by solid 

from theoretical 

circles in Fig. 3.3. The behavior in the vicinity of this singularity is known 

hydrodynamics to be 

2 
3 
- 

(3.18) PD 

This behavior can be incorporated in the boundary element pi-ocednre, in the neighborhood of 

the singular point by defining special elements around the singularity. Instead of linear vana- 

tion of pressure and flux, used for the regular elements, the variation, in the vicinity of the 

singularity point is defined using Eq. (3.18). Table 3.3 show!; the dimensionless pressure and 

velocity at the boundary nodes with and without considering the wedge singularity with spe- 

cial elements. The errors due to the use of regular elements are s~~iall. This can also be seen 

in Table 3.4 which compares the boundary element solution at selected boundary points with 

the exact solution. The improvement is not great because the singularity is relatively weak, 

and the linear boundary elements match the results reasonably well. 

3.3 Streamline Generation and Front Tracking 
Since sources and sinks are simple to include and the handling of complex geometries is 

simplified, the boundary element method can be used effectively for generating streamlines in 
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Table 3.2 Steady Irrotational Flow in a Corner 
~ ~~ 

IElernents 1 Node Points I Max. % 13rror 

Constant 

Linear 

Linear 

12 

13 

25 

7.9 

0.94 

0.06 1 

41 

* Numbere( 1982) 
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i I 

Fig. 3.3 : Schematic of flow across a 90’ wedge 
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Table 3.3 Boundary Solutions for a 90' 'Wedge 

X-Coord. 

-1.00 

-1.00 

-1.00 

-0.50 

-0.25 

+O.OO 

+0.25 

+OS0 

+1.00 

+l.OO 

+1.00 

+0.25 

+om 
-0.25 

~~ 

Y-coord. 

-0.50 

+O.OO 

+0.50 

+0.50 

+0.25 

+0.00 

+0.25 

+OS0 
+0.50 

+O.OO 

-0.50 

-0.50 

-0.50 

-0.50 

Regular Elements 

P D  

-1.OOO 

-1.OOO 

-1.OOO 

-0.720 

-0.505 

-0.OOO 
-0.505 

-0.720 

+l.oOO 

+l.oOO 
+l.oOO 
+0.282 

+O.o00 
-0.282 

Flux 

-0.892 

-0.796 

-0.655 

+O.OOO 

+O.OOO 
+O.OOO 

+O.OOO 

+O.OOO 

+0.655 

+0.796 

+0.892 

+O.OOO 
+O.OOO 
+O.OOO 

Singularity Prog. 

-1.OOO 

-1.OOO 

-1.OOO 

-0.728 

-0.520 

+O.o00 
+0.520 

+o.728 

+l.OOO 

+l.OOO 

+1 .Ooo 
4.288 

+o.OOO 
-0.288 

Flux 

-0.876 

-0.77 8 
-0.635 

+O.OOO 
+O.OOO 

+O.OOO 
+O.OOO 
+O.OOO 

+0.635 

+0.778 

+0.876 

+O.OOO 
+O.OOO 
+O.OOO 
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X-Coord. 

I 

+O.OO 

1 +0.25 

+OS0 

P D  w b  pD with Exact Y-Coord. Singular El. singular El. 

+OS20 

+O.728 +0.729 

+O.OO -0.OOO 

+0.25 -0.505 

+OS0 -0,720 
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multiwell complex geometries. The method is fast and accurate because the dimensionality of 

the problem is reduced by one. 

There are two different ways of computing the streamlines. After computing the pres- 

sure at an interior point, the velocity of the point is determined from EQs. (3.11a) and (3.11b). 

The particle is then moved in time in a particle tracking sense. The location of a particle at a 

time t + At is given by 

(3.19) 

and 

Yl +AI = Yt + vy At (3.20) 

This implies that once the velocity field is computed at an interior point, the particle can be 

tracked to the producing well by using Eq. (3.19) and (3.20). In other words the coefficient 

matrix in Eq. (3.10) must be solved only once. 

Another way is to pose the problem in the stream-function format instead of using pres- 

sure. The goveming equation remains the same; only the boundary conditions are modified. 

The stream function solution at any interior location gives the velccity field directly, although 

the pressure field must be calculated by integrating the velocity field. In this work, the velo- 

city field is computed in a particle tracking scheme using the pressure solution as shown in 

Eq. (3.12). 

Figure 3.4 shows the streamlines for the symmetric element (one-eighth) of a five-spot 

pattern at breakthrough. Sixteen points were selected radially around the injection well. Each 

of these particles, as they are referred to, were tracked until the fiist one reached the produc- 

tion well. The particles were tracked using Eqs. (3.19) and (3.20) once the velocity field was 

determined by Eq. (3.12). The results compare well with the analytical solution for the break- 

through sweep efficiency presented by MureI-Seytoux (1965). Figure 3.5 depicts the iso- 

chrones or the location of fluid particles at particular times after the start of injection for the 

symmetric element of a five-spot pattern. This is essentially the location of the front. Figures 
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Figure 3.4 Streamlines at breakthrough in a 5-spot pattern 
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Figure 3.5 Isochrones at breakthrough in a 5-spot pattern 
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3.6 and 3.7 show the streamlines and isochrones for the symmetric element of a staggered line 

drive pattern with a d/a ratio of 1.0. 

As the fluid particles approach the pressure sink at the top right comer, they rapidly 

move toward it. In numerical schemes, such as finite differences, distinct preferential flow 

paths are not well represented owing to the smearing of the front due to grid orientation 

effects. Fine gridding or other action must be taken to reduce the effect. The BEM, on the 

other hand, retains the sharp front. The location of the front is not affected by preferential 

flow paths since there is no gridding of the interior of the reservoir. 

Cumulative recovery until breakthrough is calculated by material balance. A schematic 

of an oil reservoir undergoing a balanced waterflood with two injectors and four producers is 

shown in Fig. 3.8. Figure 3.9 shows the streamlines in the flow field at breakthrough at indi- 

vidual wells. As a streamline breaks through at a well, it is stopped but the others are contin- 

ued until all the wells have been broken into. A couple of the streamlines in Fig. 3.9 are seen 

to have a kink or a knot at a point. This is because the computational procedure was stopped 

when a streamline broke through at a well and subsequently restarted. During this restart pro- 

cedure a couple of the streamlines were replaced inadvertantly by different streamlines which 

were very close to the original one, but were not the same. As the internal computation point 

approaches within half-a-boundary element length from the boundary, the solutions are 

affected due to the nature of the boundary approximations. Smaller elements must be used to 

preserve or increase accuracy of these streamlines. This layer close to the boundary where the 

solutions start to be affected has been termed the boundary layer by some researchers. 

Figure 3.10 shows the streamlines in a two-well water-drive system in a 2:l rectangle. 

The short side of the rectangle (the dashed line) is a constant pressure boundary or an active 

water support. Both wells produce at equal rates, and are placed :symmetrically in the reser- 

voir. The coordinate locations of Wells 1 and 2 are (0.5, 0.5) and (1.5, 0.5) respectively. 

Point 0 on Fig. 3.10 is a limiting streamline. A particle to the left of point 0 goes to well 1 

and a particle infinitesimally to the right of point 0 goes to the well 2. Ramey et a1 (2973) 
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Figure 3.6 Streamlines at breakthrough in a staggered line drive 

49 
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Figure 3.7 Isochrones at breakthrough in a staggered line drive 
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Figure 3.8 Schematic of the production scheme in a simulated reservoir 
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Figure 3.9 Streamlines at breakthrough in the simulated reservoir 
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0 2 

Figure 3.10 Streamlines in a 2: 1 rectangle with one short side at constant pressure 



CHAPTER 3. STEADY STATE PROBLEMS 54 

report oscillations in numerically tracking this stagnation point. 'With the boundary element 

method, two particles were chosen close to the constant pressure boundary. These particles 

were positioned equidistant from the line of symmeuy joining the two producing wells. 

Reverse tracking both the particles in time led to both of them converging to the location of 

the stagnation point, where they remained for all subsequent times. Table 3.5 shows the 

approach of the two particles to the stagnation point. The lower-half streamline in Table 3.5 

shows the coordinate locations of the streamline which starts at the coordinates (0.01, 0.26) 

and is tracked until it reaches the stagnation point (0.6, 0.5). Similarly, the upper-half stream- 

line begins at the coordinates (0.01, 0.74) and approaches the stagnation point from above. 

This demonstrates that the location of drainage boundaries in steady state flow fields could be 

done accurately with this technique. 
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Table 3.5 Approach of Limiting Streamlines to Stagnation Point 

Lower-half Streamline 

I(-Coord. 

0.01000 
0.07730 
0.14470 
0.21200 
0.27900 
0.40950 

0.52090 
0.58370 

0.59700 
0.60000 

Y-Coord. 

0.26000 
0.26000 
0.26300 
0.26600 
0.27300 
0.29800 
0.35000 
0.4 1800 
0.46600 
0.5oooO 

Upper-half Stre amlirie 

x-coord, 

0.01Ooo 
0.07730 
0.14470 
0.2 1200 
0.27900 
0.40950 

0.52090 
0.58370 
0.59700 
0.6oooO 

--- 

Y -Coo rd. 

--- 

0.74OOO 

c1.73900 
0.73600 
0 73300 
Cl.726ClO 
0 70100 
0 64900 
C .581ClO 
0 53300 
0 50000 
--- 



Chapter 4 

UNSTEADY STATE FLOW 

The equation governing unsteady flow of single phase fluids through homogeneous, 

anisotropic porous media is given by Eq (2.12). This is the diffusivity equation and is used 

widely for pressure transient problems. A time dimension must be added to the previous con- 

siderations for steady state flow. Two different formulations for the transient problems are 

proposed in this chapter. They are : 

0 Real Space 

0 Laplace Space 

Both these techniques are investigated in detail and the respective merits of each is analyzed. 

Verification and new solutions are presented for both formulations in the results section in this 

chapter. 

4.1 Transient Real Space 
The goveming equation is given by Eq. (2.19). Time appears as a first derivative term 

in the diffusivity equation. The presence of the first derivative terrn destroys the formal self- 

adjoint character of the Laplacian operator found in steady state problems. The diffusion 

operator is not a self-adjoint operator and cannot be cast into one. The integral equation is 

given by Eq. (2.37) 
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where the source term in Eq. (2.19) has been treated as a line source. Gi is evaluated at the 

source locations ( x D ~ ,  yo>. Since line sources are singularities in the flow field, the source 

term can be treated by singularity programming primarily because the differential equation is 

linear. 

The free space Green’s function ‘G’ in the above equation is defined as the pressure 

response at (xD, yo) at a time tDA due to an instantaneous line s c m x  of strength unity gen- 

erated at coordinates (5, 5) at the time 2 (Curskuw and Juegar, 19.59). The medium is initially 

at zero pressure and infinite in extent. The free space Green3 function is 

r 1 

(4.2) 

where H(tDA - 2) is the Heaviside step function. The derivation of Eq. (4.2) by the method of 

Fourier transforms is given in Appendix A. Substituting Eq. (4.2) in Eq. (4.1) 

(4.3) 

where the source term has been dropped for simplicity. 8 in El. (4.3)  corresponds to the 

angle subtended by any two adjacent boundary elements. If the fictitious Green’s function 

source is completely enclosed by the boundary of the reservoir, 8 becomes 27c. Symbolically 

On evaluating the normal derivative of the Green’s function, Elq. (4.3) becomes 
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where 

4.1.1 Time Stepping 

58 

The time fDA at which the solution is desired appears both in the integrand and the lim- 

its of integration in a convolution fashion, that is the pressun: and the fluxes are functions of 

time in the forward direction but the basis functions depend on time coming backward from 

total time. This is not intuitive, but can be explained by the concept of energy integrals. 

The energy integrals are based on the fact that the total system energy is conserved and 

the system tends to a minimum energy state. For the diffusion operator to conserve energy, 

the adjoint problem is considered reversed in time. The product of the forward and adjoint 

problem conserves energy. In fact the variational formulation of the problem is based on this 

principle. 

The convolution character of the integrals which is evident from above suggests a his- 

tory dependence of the diffusion operator. The solution at a time [DA depends on the solution 

at all previous times. 

Wrobel and Brebbia (1981) outlined a number of time stepping schemes. The merits 

and problems of several methods are discussed next. The solution at a particular time step 

could be treated as an initial condition for later time steps. The solution can then be advanced 

in time, stepwise. This destroys the boundary only charactcr of the solution, as a domain 

integral over the initial condition appears as an extra term in Elq. (4.4). To evaluate the 

domain integral, the internal region must be discretized in element!;. Thus, at every time step 

one domain or volume integral must be evaluated. The discretization of the reservoir dimin- 

ishes the appeal of the procedure as being a boundary only method. Another way to handle 

the integrals is to start the solution at zero time. Domain integrals do not arise in this case 

but the computations can become tedious, especially for solutim at long times because at long 
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times the time slot is divided into a large number of segments. Excessive repetitive computa- 

tions must be performed in this case. 

In this work, the convolution character is considered, by storing the matrices from all 

previous times levels to construct solutions at subsequent rimes. If the time step size is 

assumed constant, only one new matrix must be generated at each time level. This was sug- 

gested by Pinu (1984). The computational inefficiency of the previous procedure is replaced 

by increased computer storage requirements. The matrix stnicture is shown in the next sec- 

tion. 

Once the time step size requirements have been decided, the representation of pressure 

and fluxes in each time slot must be dealt with. In this work coilstant elements in time are 

prescribed. 

4.1.2 Matrix Form of the Integral Equation 

The interpolation functions between the boundary nodes far pressure and fluxes are 

represented as in Eqs. (2.38) and (2.39). Substituting Eqs. (2.38) and (2.39) in Eq. (4.4) and 

using a transformation to a moving coordinate system, the following system of equations is 

obtained 

where 

I- - 

and 
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where 

is the exponential integral. Rewriting Eq. (4.6) in a compact form 

N 

C ai; 
;=l 

+ bij PO,, = 0 i = 1, E l  

where 

exp[- s i 2  ] 
4(fDA *) 

- 2eitii; 

(4.9) 

(4.10) 

(4.10a) 

(4. lob) 
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The boundary conditions are used in Eq. (4.10) to create a right hand side vector. The matrix 

of unknowns is the coefficient matrix. The normal derivatives in thle preceding equations have 

been represented by the subscript n for convenience. 

All but two of the integrals in Eq. (4.3) were evaluated analytically. The rest of the 

integrals in Eqs. (4.7) and (4.8) were evaluated with highly accurate Gauss-Legendre panel 

type integration schemes (Stroud and Secresr, 1966). The Gauss-Legendre integration scheme 

gives the most accurate results for a given order of polynornial ivpresentation of the given 

function. The disadvantage of this scheme is that for a different number of integration points, 

a new set of abscissae and weights must be generated. The xmge of integration was divided 

into two panels and a six point integration scheme was used on each of the panels. The 

abscissae and weights for each integration point were generaied automatically depending on 

the number of points and the number of panels. This was found. in general, to be the 

optimum between computing effort and accuracy. 

When the collocation point is on the same boundary ele,ment as the field point, integrals 

are obtained which are singular at one of the limits. This crm be seen from Fig. 2.2. This 

happens when is zero. The usual techniques for numerical integration 

are unsuitable. There are several ways to handle this. One of the ways is to integrate analyti- 

cally from the singularity to a value 6,  then numerically h i m  6 onwards. Another method 

could be to use the Gaussian integration scheme with points spaced to avoid the singularity. 

Yet another way could be to perform a term by term integration of an infinite series obtained 

by expanding the integrand. This infinite series is slowly ccinvergent at large values of the 

argument. 

is zero and si or 

All of the methods described above require either removing the singularity and integrat- 

ing numerically or performing a term by term integration of an infinite series. This integral 

can be evaluated exactly and a simple closed form integration scheme in terms of smoothly 

behaved functions is described in Appendix C. 
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4.1.3 Solution of Matrix Equations 

If we assume a constant time step size, tDA = to + kAtDA, where AtDA is the step size. 

The matrix equation generated can be rewritten in the following form for convenience 

(4.11) 

where H is the coefficient matrix, G is the right hand side vector and u is the unknown vec- 

tor. The unknown vector u can consist of either pressures or fluxes on the boundary nodes. 

It can also be a mixture of the pressures and fluxes, if the boundary conditions change at 

different places in the reservoir. The coefficient matrix has solutioin time, both as the limit of 

the sum and in the elements of the matrix. This arises from integrals of the form 

The convolution character in the above expression is evident. ,4ppendix D.l considers a 

specific example of interpolation function and boundary conditions to demonstrate the origin 

of the convolution structure in Eq. (4.11) using the Green's function for the diffusion equa- 

tion. Appendix D. l also shows [using Eq. (4.1 l)] that the solution at any given time is the 

sum of the results at all the previous time slots. If the solution up to (k - I)~" time step is 

known, the solution at the krh time level may be found from Eq. (4.1 1). Rewriting Eq. (4.1 1) 

in expanded form for the kth time level 

Hk'u '  + H k 2 u 2  + .... + H k u k  = Gk (4.12a) 

which on transposing becomes 

a=l 
(4.12b) 

The matrix H k a  depends entirely on the geometry of the system and the step size. At the k'" 

time level for example, Eq. (4.12b) suggests that the unknown vector uk  at time step k is 

multiplied by a coefficient matrix H k k .  The right hand vector is the sum of the products of 
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matrices obtained at earlier time levels with the solution vectors at previous times. The rela- 

tion between matrices generated at different time steps is shown in an array form in Fig. 4.1. 

Fig. 4.1 : Relation between matrices in convolution bounda.ry element method 

Figure 4.1 shows the coefficient matrices which are generated at each time level. For exam- 

ple, at the first time level, the only matrix that must be generated is H".  At the second time 

level, two matrices are created - one each for the time slots Af and 2At, respectively. This is 

represented as row 2 in the matrix structure in Fig. 4.1. At k'" time level, k number of 

matrices are generated as shown in row k of Fig. 4.1. As mentioned earlier, if the time step 

size is assumed to be constant, a relationship between each of these matrices is found. The 

matrices on each of the diagonal lines are the same, that is H 3 2  = H21 = H43 etc. Similarly, 

the matrices on the principal diagonal of the array in Fig. 4.1 (ix. H" = H z  = H k k )  are 

identical. H k k  also happens to be the left hand side coefficierilt matrix in the matrix equation 

Eq. (4.12b). This coefficient matrix stays the same for the entix solution time due to the rela- 

tion between these matrices seen from Fig. (4.1). Thus, this matrix can be inverted and stored, 

and at every time step only the right hand vector is created by summing the previously stored 

matrices in a convolution fashion. 

At the kth time level the right hand vector consists of (k - 1) matrices multiplied by 

their respective solution vectors. But at any given time level only one of these matrices must 

be generated anew. If we look at the third row in Fig. (4.11, for example, there are three 
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matrices that are created because it is the third time level. H33 is the same as H", also H3' 

is the same as H2' and has been generated at the second time level already. The only matrix 

to be created is H31. Appendix D.2 shows the matrix smcture and creation of the right hand 

side vector involving convolution of matrices up to the third time step to demonstrate the idea 

behind the convolution method. 

4.1.4 Computational Details and Algorithm 

The program structure (algorithm) is outlined in Fig. 4.2. After initialization of vectors 

and arrays, the area of the reservoir is computed by triangulation of the domain. The area of 

individual triangles are computed and summed. Subsequently, the matrix coefficients are 

computed by integration over individual elements in a local coordinate system based on the 

fictitious source point. This was outlined in Chapter 2. The bouridary conditions are multi- 

plied by the corresponding matrix elements to create a right hand slide vector. The manner in 

which this is handled is by assigning node identification numbers to each of the nodes. The 

identification number specifies the type of boundary condition on the particular nodal location. 

Three quantities are needed at each of the nodes, two of which are known from the boundary 

condition. This is illustrated in Fig. 4.3. The unknown information is entered as a zero (0) in 

the datafile. The following are the pieces of information : 

0 PressuE,pD 

0 

0 

Normal derivative of pressure leaving the node, pl,, 

Normal derivative of pressure approaching the node, pD, 

If the node is not a comer, then it is assumed that pD, = p ~ ) ~  and there is no discon- 

tinuity in fluxes. The combination of various boundary conditions and their associated 

identification numbers are given in Table 4.1. 

The matrix generated is inverted by Gauss-Jordan elimination with pivoting, after which 

it is stored. The reason for storing the inverted matrix has been explained earlier in this 
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Fig. 4.2 Flow chart for the convolution BEM 
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Fig. 4.3 Illustration of dependent variables at boundary nodes 
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Table 4.1 Identification of element nodes 

Node ID 

3 

4 

5 

6 

7 

8 

Known BC 

P D  

- 
P D ,  - P D ,  

Unknown BC Equation 
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section and is because the left hand side unknown coefficient matrix remains the same 

throughout the computations. Only the right hand vector i,s modified every time step as 

shown in Eq. (4.11b). 

Once the solution at a particular time step is obtained, the solution vector and the 

coefficient matrices are stored in an array. The coefficient matrix is stored as a two dimen- 

sional array of matrices and the solution vector in a one dimen:sional vector array. These 

arrays are convolved at subsequent time levels to create the right hand side vector. 

4.1.5 Limitations of Convolution BEM 

The elegance of the boundary only nature of the soluticlns is preserved by treating the 

problem in real space and considering the convolution nature of the integrals. The use of con- 

stant time step size requires that the coefficient mamx and the solution vectors for all times be 

stored. In modem computers, high speed auxiliary memory access and large swap spaces pro- 

vide large and quickly accessible memory, but due to the dyriamic growth in the number of 

matrices that must be stored, the solution becomes a tedious an~d expensive task for large 

times. Another limitation is that small emrs  created at any time due to roundoff errors can 

accumulate. Examples will be shown later in this chapter which suggest that this limitation is 

not prohibitive in that good solutions can be obtained if the boundary geometry is represented 

well. 

4.2 Laplace Space Formulation 
Since robust numerical inversion routines are available fca inverting Laplace space solu- 

tions for the diffusivity equation, the boundary element proceclure can be performed in 

Laplace space and the solution inverted to real space. The advantage that can be anticipated 

is that time appears as a parameter in Laplace space thereby removing the complication aris- 

ing from the convolution nature of the integrals. The disadvamage is that the kernel (Green's) 

function is more complex and most of the integrals arising frDm ithe boundary discretization 
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must be done numerically. 

Equation (2.1) is transformed to Laplace space. The Laplace transform is 

L ( f ( t ) }  = f ( s )  = l e - "  f ( t ) d t  
00 

(4.13) 

where the function f(t) is of exponential order. The transformed equation with the initial con- 

ditions is 

where s is the Laplace transform parameter. The boundary conditioris become 

on rl E r P1 PD = - 
S 

on r2 E r 

on r, E r 

The differential operator in Eq. (4.14) can be defined as 

L ( F D )  ( V 2 - ~ ) p '  = 0 

(4.14) 

(4.15a) 

(4.15b) 

(4.1%) 

(4.16) 

The operator L is known as the modified Helmholtz operator. L is now self-adjoint as the 

first order time derivative in the diffusivity equation has beerl replaced by the zeroth order 

derivative. Casting Eq. (4.16) into divergence form as described in. Section 2.3, and integrat- 

ing over the domain of the problem, results in 

(4.17) 

Defining the adjoint operator L* (G) as 
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and using the shifting property of the Dirac delta function, and ithe divergence theorem of 

Gauss, we obtain 

(4.19) 

where 8 has the same meaning as Eqs. (4.3a) and (4.3b). q. in Eq. (4.19) denotes the contri- 

bution of the Green's function from the source point (well). Tlie solution to the adjoint prob- 

lem of Eq. (4.18) gives the free space Green's function for the modified Helmholtz operator 

and is 

(4.20) 

where K o ( z )  is the modified Bessel function of second kind of order zero, and rD is given by 

Eq. (4.5). The value 2x in Eq. (4.20) has been replaced by 0 in the equation (4.19) because 

the Green's function source is restricted to the domain of interest and does not act in free 

space. The derivation of Eq. (4.20) is given in Appendix A. 

The solution procedure is analogous to the real space fomiulaition described in the previ- 

ous section. Eq. (4.20) is substituted in Eq. (4.19) and using Eq. (2.33) and (2.34) as space 

interpolation functions, matrix equations are generated. The dislxetized equation is 

;=l i = 1  

where 

r . , .l 

(4.22) 



71 CHAPTER 4. UNSTEALIY STATE FLOW 

In a more compact notation 

N 

where 

and 

(4.23) 

(4.24) 

(4.24a) 

The boundary conditions are used in the above equation to create a right hand vector. The 

coefficient matrix is inverted to obtain the solution in Laplace space. Once the solution at a 

particular time is obtained in Laplace space, it is inverted to real space by means of the Sreh- 

fest (1970) algorithm. 

Appendix E.l gives a detailed explanation of the datafide needed to run the Laplace 

space BEM computer program which is given in Appendix F. A sample datafile is included 

in Appendix E.2 and a sample output file for the output at any interior location so that the 
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for the the wellbore pressure and semilog pressure derivative as a function of dimensionless 

time is given in Appendix E.3. 

4.3 Results and Comparison 
Both convolution and Laplace space formulations are ap;?lied to a variety of problems 

with increasing level of difficulty. The primary goal being to evaluate the methods for accu- 

racy, robustness, speed, storage requirements and generality of application. 

On one hand, the convolution formulation has the advantage of being in real space, and 

most of the integrals may be performed analytically. On the other hand, the Laplace 

transform solutions do not have a history dependent nature, as the time domain is replaced by 

a parameter. Preliminary discussions concern solutions of protdems which have closed form 

analytic solutions. The rest of the examples will be solved with the best method. 

4.3.1 Comparison of the Two Formulations 

Figure 4.4 shows a square box of porous media with impermeable upper and lower 

boundaries. The inner and outer boundaries are maintained at diflemt conditions and both 

convolution and Laplace space BEM solutions are compared with their analytical counterparts. 

Figure 4.5 shows the pressure behavior at several locations for a mixed problem in which a 

step change in pressure is imposed at the inlet end rpD(xD = Cl) = 11 and the other boundary 

is maintained at a constant pressure [PD(xD = 1) = 01. The top and bottom surfaces of the 

porous medium are sealed. The solution is given by (Liggert and Liu, 1979) 

(4.25) 

The circles represent the convolution BEM with a time step size of 0.025, and the solid lines 

are the analytical solutions. For the convolution BEM, at early times the solutions are not 

good because of a rapid variation of Green’s function. On reducing the time step size, the 

solution improves as shown in Fig. 4.6. Eight (8) equidistant nodal points on the boundary of 
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Fig. 4.4 Schematic of the reservoir for figures 4.5 duough 4.10 
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Fig. 4.5 Pressure behavior at various cross sections for a mixed type problem 
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Fig. 4.6 Effect of time step refinement on the solution of a mixed problem 
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the problem domain were used for calculations. Figure 4.5 also shows the solution in Laplace 

space. The results are accurate. A finite time step is not required in Laplace space, since the 

solution can be determined at any required time point. 

An interesting feature of the problem is the calculation of fluxes at the inlet end. Since 

a step change in pressure was imposed at time zero, there is a flux singularity at the inlet at 

early times, Figure 4.7 shows the flux as a function of time at thc inlet end. Since the con- 

volution solution considers the history dependence, small time step sizes have to be used to 

account for the flux singularity at early times. Taking smaller time steps improves the flux 

behavior. The Laplace space solution performs better, partly because it uses less computa- 

tions and hence has less roundoff error. Also, since the results for the convolution method 

depend on all previous time solutions, error caused at a time step is carried through to the 

solution at subsequent time levels. Figure 4.8 shows the flux calculations with the convolu- 

tion BEM assuming a retined time step size of 0.005. The error in flux calculations with the 

convolution BEM at a time ( tDA) of 0.05 with a time step size of 0.025 was about 30% and 

with the reduction in step size (AtDA = 0.005) the percentage error was reduced to 5% 

whereas the Laplace transform solution results gave error of less than 0.1% for the same time 

(tDA = 0.05). 

The mixed problem discussed in the preceding example was used to perform a stability 

analysis for the Convolution BEM. The stability analysis was done to evaluate the propaga- 

tion of a small error introduced in one of the elements of a convolution matrix. For this pur- 

pose, a 5% error was introduced in an off-diagonal element of the matrix generated at the 

second time-step. Since this mamx is used for calculation of solutions at all the subsequent 

time steps due to the history dependent nature of the diffusion operator, it is important to 

determine whether the error attenuates or not. The maximum error in the solution at the third 

time step was 2.4%. For the solution at the eighth time step this error had reduced to 0.03% 

indicating that the contribution of a particular convolution matrix at later times diminished and 

that an error introduced in any matrix attenuates quite rapidly. Introduction of a 5% error in 

the diagonal element of the convolution matrix affected more damage on the solutions. A 
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Fig. 4.7 Flux at the inlet end for the mixed moblem 
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Fig. 4.8 Effect of time step refinement on the flux at the inlet end 
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19% error was seen at the third time step at the node where the error was introduced. It took 

much longer for the e m r  to attenuate and at around the lgth time step the e m r  attenuated to 

about 0.015%. 

The above analysis indicates that errors introduced in the matrices due to roundoff die 

On the out quite rapidly and that the error accumulation may not be a cause for concern. 

positive side, the solutions obtained are accurate. 

The pressure response both at the inlet and outlet ends is shown in Fig. 4.9 for a con- 

stant flux inner boundary condition and a radiation type outer boundary condition. The boun- 

dary conditions are 

The other two boundaries are closed. The exact solution for this problem is 

(4.26a) 

(4.26b) 

(4.27) 

where a,, are the roots of 

a t a n a  = 1 (4.27a) 

With a time step size of 0.1, the results matched the analytical solution well. If the inner 

boundary is at constant pressure, the fluxes are singular at early times at the inlet end, and are 

difficult to match with numerical schemes. Figure 4.10 shows the rnatches obtained with both 

the convolution and Laplace space BEM. The Laplace space solutions match the fluxes well, 

even at very short times. 

A more practical example is shown in Fig. 4.1 1. Both convolution and Laplace space 

BEM were used to generate the linear aquifer influx functions presented by Nubor and Bar- 

ham (1964). The convolution method shows a slight deviation at late times for closed outer 

boundaries. At early times when the outer boundaries have not been felt, the wellbore 
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Fig. 4.1 1 Water influx functions for bounded linear aquifers 
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pressure shows infinite acting behavior given by a half slope straight 'line on a log-log plot of 

dimensionless pressure versus time. Depending on the type of boundary condition the pres- 

sure deviates from infinite acting behavior to a boundary dominated regime. 

Figure 4.12 is an example of solving the diffisivity equation with a time dependent 

inner boundary condition. A sinusoidally varying pressure pulse is imposed at the inner boun- 

dary at time zero. In other words 

p~ = sin 2xtDA at XD = 0 (4.28) 

The outer boundary is maintained at zero pressure I ~ D ( X D  = 1) = 01. 'The pressures are moni- 

tored at three downstream points and matched to the analytical solution. The analytical solu- 

tion is given by (Taigbenu and Liggetr. 1985) 

p~ = [ sin2xtDA (sinha cosa sinhp cosp + sina cosha sinp lcoshp) 

+ CoSktDA (sina cosha sinhp cosp - sinha cosa sinp coshp) /D 1 
(4.29) 

and 

D = sinh2pCos2p + sin2@msh2p , a = f i ( l - X D ) ,  p = 4 i  (4.29a) 

The convolution BEM was used to solve this problem. A time step size of 0.025 was used. 

The results obtained are accurate as seen in Fig. 4.12. As the pressure signal propagates in 

the medium the sinusoidal pulse diffuses and becomes out of phase with the original pulse. 

This example demonstrates the feasibility of handling time depend.ent inner boundary condi- 

tions by the boundary element method. Taigbenu and Liggett (19615) solved this problem by 

treating the solution at time, say t l  as an initial condition for the subsequent time step. This 

requires a discretization of the domain to evaluate one area integral that is present. For the 

evaluation of the area integral the domain must be discretized in finite element type meshes. 

The solution presented here is by a purely boundary procedure. 
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Fig. 4.12 Pressure transients due to sinusoidally varying inner boundary 
condition (Exact Soln., after Taigbenu & Liggett,. 1985) 
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Preliminary conclusions based on the above examples are as follows : 

0 The Laplace domain BEM is more accurate 

0 

ties and late time depletion type systems. 

Small time step sizes are needed for the convolution BEM to match flux singulari- 

0 In pressure transient solution where up to five or six log cycles of pressure data are 

usually needed, the requirement of a constant time step size in the convolution BEM 

poses a great computational burden. 

Based on these observations, only the Laplace domain BEM was investigated further. 

4.3.2 Application to Well Testing Problems 

Figure 4.13 is a log-log plot of dimensionless pressure vs. time for a well producing at a 

constant rate from the center of a closed square of dimension 6 / r W  = 2000. The solid lines 

are the analytical solution generated by superposition of an infinite array of wells (Earlougher 

et al, 1968). The solid circles are the boundary element solution with eight nodes on the 

boundary. A good match is obtained. Pressure at the wellbore and various interference loca- 

tions are calculated. The error characteristics of the method with respect to the number of 

nodes are shown in Fig. 4.14. The maximum percentage error for four nodes, one each at the 

comer points of the square is about 3%. The absolute minimum number of nodes required to 

represent the geometry is four. As the number of nodal points are increased the solution 

becomes more accurate. The maximum error for 16 nodes is only a b u t  0.3%. 

Figures 4.15 and 4.16 show this effect for a well in the center of a circle. The BEM 

solution is compared with the van Everdingen and Hurst (1949) analytic solutions, for both 

constant pressure and closed external boundaries. The size of the reservoir is given by the 

ratio relrw. Representing the circle with eight nodes (Le. an equivalent octagon) gives good 

results for the constant pressure external boundary where at late times steady state is reached 

(Fig. 4.15). For closed external boundaries however, eight nodes fail to give accurate solu- 

tions at late time (Fig. 4.16). Representing the circle with a hexa.-decagon (16 nodes) gives 
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Fig. 4.13 Interference and wellbore pressure response for a well in the 
center of a closed square (Exact Soh., after Earlougher et al., 1968) 
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Fig. 4.14 Error in computations by Laplace 
domain boundary element method 
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results close to the analytic solution. This emphasizes the earlier observation that for deple- 

tion type systems the boundary mesh should be refined. This, in part, is due to the assump- 

tion of linear interpolation of pressure and fluxes between two adjacent boundary nodes. A 

higher order interpolation function (for example a quadratic) would alleviate this problem, 

4.3.3 Use of Pressure Derivative 

Since the advent of accurate pressure gauges for pressure measurements in well tests, the 

pressure derivative technique for analysis of the data has become prominent. The semilog 

pressure derivative is given by 

(4.30) 

The pressure derivative accentuates each of the flow regimes and thus aids in identification of 

flow regimes and parameters. Figure 4.17 shows a log-log plot of pressure and the semilog 

pressure derivative for a well producing at a constant rate from the center of a closed equila- 

teral triangle of size Ah: = 4 x lo6. The BEM solution for pressure matches well with the 

analytical solution (Rmey et al, 2973). The pressure derivative shows a value of 0.5 at early 

times, indicating infinite acting behavior. At late times the pressure goes into boundary dom- 

inated behavior (pseudosteady state) which is seen as a unit slope straight line on the plot. 

The results are shown in tabular form in Table 4.2. Also shown in the table are the values of 

the pressure derivative group. 

Figure 4.18 shows a multiwell situation with two wells producing from within a 2:l rec- 

tangle with one short side at constant pressure. The pressure is evaluated at the well closer to 

the constant pressure boundary. The pressure derivative graph shows that the system 

approaches pseudosteady state, but then the constant pressure boundary dominates and the 

derivative eventually goes to zero indicating steady state. The dimensionless pressures are 

compared to the analytical solutions given by Ramey et a1 (1973). Excellent agreement is 

obtained. 
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Fig. 4.17 Pressure and derivative response for a well in the center of an 
equilateral triangle 
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Table 4.2 Comparison of BEM and Analytic Solution for Well in the Center 
of an Equilateral Triangle 

Xnensionless 

Time (tDA) 

0.001 

0.002 

0.004 

0.008 

0.010 

0.020 

0.040 

0.080 

0.100 

0.200 

0.400 

0.800 

1 .000 

2.000 

4.000 

8.000 

1o.Ooo 

Anal. Soln. 

Ramey et al(1973) 

4.55 16 

4.8980 

5.2447 

5.5913 

5.7029 

6.0494 

6.398 1 

6.7852 

6.937 1 

7.6040 

8.8649 

11.3783 

12.6349 

18.9181 

3 1.4844 

56.6172 

69.1836 

Boundary Element 

4.55 15 

4.8969 

5.2423 

5.5876 

5.7028 

6.0483 

6.3952 

6.7780 

6.9326 

7.5916 

8.8428 

11.3327 

12.6254 

18.8819 

31.3623 

56.2652 

69.1918 

0.5000 

0.5000 

0.5000 

0.5000 

0.5001 

0.4998 

0.51 19 

0.6279 

0.7 188 

1.2685 

2.5002 

4.9932 

6.2861 

12.5398 

25.0179 

49.9161 

62.8404 
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Fig. 4.18 Two-wells in a 2:l rectangle with one short side at constant 
pressure 
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4.3.4 Special problems 

The preceding examples were designed to show the efficacy of the BEM method by 

solving complex, but regular domain problems whose exact solutions can be found. The fol- 

lowing examples illustrate the use of boundary element method for calculating shape factors 

for regular but complex geometries. Results highlight the advantages of using the Laplace 

space boundary element method. 

Figure 4.19 is an illustration of a well in the center of a clcsed elliptical shaped reser- 

voir. Though of the same area, the eccentricities of the two ellipses shown are different. Fig- 

ure 4.20 shows the pressure and pressure derivative response at tht: well for the elliptical sys- 

tem of Fig. 4.19. As expected, after the early infinite acting period characterized by a slope 

of 0.5, there is a short transition before the external boundaries are felt and the system goes to 

pseudosteady state. The early and late time pressure derivative behavior for both eccentrici- 

ties are the same. At intermediate transition times, the system with larger eccentricity deviates 

quicker from the semilog straight line and has a longer transition before reaching pseudos- 

teady state. The reason for this is that radial streamlines are the most effective way of fluid 

transport to the wellbore. Any other geometry leads to longer flow paths and thus less 

efficient transport. 

For regular geometries, a shape factor is defined based Ion the pseudosteady state 

response for closed reservoirs. The shape factor is a geometric factor characteristic of the 

system shape and the well location. During pseudosteady state the dimensionless pressure is 

given by 

(4.31) 

where C, in Eq. (4.31) is the shape factor. A shape factor for any regular shape may be 

determined from Eq. (4.31) if the pressure response and the area of the reservoir are known. 

Since the geometric variables in Eq. (4.31) are embedded within log terms, the shape factors 

are sensitive to p D  . Taking the semilog derivative of pressure in Eq. (4.31) we obtain, 
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Fig. 4.19 Schematic of elliptical shaped reservoirs with different 
eccentricities 
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Fig. 4.20 Pressure and pressure derivative response for closed elliptical 
reservoirs 
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(4.32) 

The geometric terms are not present in Eq. (4.32). Replacing; 2ittDA in Eq. (4.31) by Eq. 

(4.32), the following is obtained for the shape factor 

(4.33) 

Theoretically, determination of the shape factor from Eq. (4.33) is no different from that of 

Eq. (4.31). But, the results show that the accuracy is tremendlously increased by using Eq. 

(4.33). This can be explained by considering the way numerical computations are performed. 

In Laplace space, ~TD is calculated at each of the sampling points and summed. The pressure 

derivative in Laplace space is 

(4.34) 

Thus, once jJD is calculated it is multiplied by the value of the ]Laplace parameter s. The 

derivative has similar computational emrs  as p o .  For this reason, subtracting the pressure 

derivative from pressure [Eq. (4.33)] to compute the shape factm leads to better results. 

Table 4.3 presents the shape factors determined both in the conventional way [Eq. (4.31)] and 

by Eq. (4.33). Results are shown for a well in the center of closed square, circle, equilateral 

triangle and ellipse. The calculated shape factors are closer to the analytical results when Eq. 

(4.33) is used. 

Figure 4.21 shows the schematic of a kidney shaped reservoir. The well location is 

shown by a solid circle. Pressures are monitored at the wellbore and at two interference 

points shown in the figure by cross marks. The external boundary of the reservoir is closed. 

The results are shown in Fig. 4.22. The qualitative features lend credence to the correctness 

of the solution. The amount of computational effort is proportioiial to the number of elements 

required to represent the geometry adequately and does not depend on the complexity of the 
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Drainage Shape 

Square 
Circle 

Eq. Triangle 

Table 4.3 Comparison of shape factors for bounded reservoirs 

Boundary Element Method 

Eq. (4.29)l Eq. (4.32) 

- Dietz Factor 

- 

CA * CA * 1 - h(- 1 2.2458 

CA CA 
(*I 

- 

- 1.3 1 06 30.883 -1.2923 29.78 -1.3002 30.25 

-1.3224 31.620 -1.3301 32.11 -1.3162 31.23 

- 1.2544 27.600 -1.2410 26.8'7 -1.2495 27.33 

Ellipse [Eccentricity = 0.8661 

- 
24 nodes 
32 nodes 
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Fig. 4.21 Schematic of a kidney shaped resemoir 
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DA 

Fig. 4.22 Interference and wellbore pressure response in a kidney-shaped 
reservoir 
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geometry. In other words the computational effort in solving the kidney shaped reservoir 

would be the same as that for a circle if the number of boundary elements are the same. 

A schematic of a multiwell production scheme in an irregularly shaped reservoir with 

mixed impermeable and constant pressure boundaries is shown in Fig. 4.23. There are four 

wells producing in the reservoir. The production rates of the wells are given in Table 4.4. 

Figure 4.24 shows the drawdown pressure transient and pressure derivative response in wells 

2 and 3 respectively. The pressure behavior at the two wells is aflected by the presence of a 

background trend owing to the production in rest of the wells. The presence of a constant 

pressure boundary makes the solution go to steady state at late times, because the Dirichlet 

type boundary condition dominates the behavior. At intermediate times, well 2 deviates from 

infinite acting behavior and attempts to go to pseudosteady state due to the presence of the 

closed boundaries around it, but at late times when the pressure support from the constant 

pressure boundary is felt the response goes to steady state, tht: derivative approaching zero. 

Well 3, on the other hand is closer to the pressure support and thus does not deviate as much 

as well 2 from the infinite acting behavior before going to steady state. 

Another advantage of solving problems in Laplace space is the convenience of including 

wellbore storage and skin. The dimensionless wellbore pressure dlop for a constant rate well 

with wellbore storage and skin is 

(4.35a) 1 
pwD = L-l [ c D s 2 +  s ] 

s + SPD 

where L-' is the inverse Laplace transform operator. j j ~  in Ecl. (4.35a) refers to the dimen- 

sionless wellbore pressure drop in Laplace space without storage and skin. The pressure 

derivative group with respect to time is 

(4.35b) 

Comparison of Eqs. (4.35a) and (4.35b) shows that a simple manipulation of the wellbore 
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Fig. 4.23 Schematic of a simulated multiwell reservoir 
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Table 4.4 Well Flow Rates for the Simulated Reservoir 

Well Number Flow Rate (eD bpld) I 
150 

300 
300 

100 
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Fig. 4.24 Pressure and pressure derivative response ai: wells 2 and 3 for 
the simulated reservoir 
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pressure solution in Laplace space gives the pressure derivative solution and allows the inclu- 

sion of wellbore storage and skin. 

Figure 4.25 shows the pressure derivative behavior of a well with wellbore storage pro- 

ducing from the center of a closed square reservoir. The solid lines are analytical solutions 

generated by superposition. The early time pressure behavior is maasked by wellbore storage. 

A long transition follows before the infinite acting behavior is reached. Subsequently the 

outer boundary effects dominate the response. This is seen as ;I unit slope straight line on a 

log-log plot. 

Production rate for constant pressure production can also be achieved by a simple mani- 

pulation of the pressure solution in Laplace space. This follows from an identity presented by 

Van Everdingen and Hunt ,  (1949). 

1 

and the rate decline is 

(4.36a) 

(4.35b) 

Figure 4.26 shows the rate and rate decline at a well producing at a constant pressure in a 

square reservoir with closed outer boundaries. 

Simulation of pressure response for naturally fractured reservoirs can be accomplished 

easily by defining a resistance function. This resistance function represented by f ( s )  is unity 

for homogeneous reservoirs. For naturally fractured reservoirs with pseudosteady state inter- 

porosity flow this function is 

(1 - o)h 
h + (1 - 0 ) s  

f ( S )  = a +  (4.37) 

For transient interporosity flow with slab shaped matrix blocks and an infinitesimally thin skin 

(S,) surrounding the matrix blocks, the resistance function is 

(4.38) 
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Fig. 4.25 Comparison of BEM and analytic solutions for pressure derivative 
at the wellbore in a closed square reservoir with well.bo;re storage 
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where 

3(1 - 0)s v = [  h 1 

I08 

(4.38a) 

The parameters that govern the system behavior are the matrix to fracture interporosity flow 

coefficient ( I )  and matrix to fracture storativity ratio (a). The wellbore pressure for a natur- 

ally fractured reservoir is given by 

(4.39) 

where pD is the Laplace space solution for a homogeneous reservoir and f(s) is the resistance 

function defined in Eqs. (4.37) and (4.38). 

From the preceding examples, it is evident that BEM is a powerful tool for evaluating 

solutions to arbitrary - shaped reservoirs with multiple sources and sinks. The Laplace 

domain boundary element simulator can be used to solve a wide variety of reservoir problems. 



Chapter 5 

SECTIONALLY HOMOGENEOWS 
RESERVOIRS 

This chapter extends the application of boundary element method to problems which 

consist of simple heterogeneities in the flow field. In particular, the presence of internal boun- 

daries and two-zone composite reservoirs are treated. The internal subregion can be an 

impermeable barrier or a constant pressure "hole". After a short introduction, the solution 

methodology for sectionally homogeneous reservoirs with the boundary element method is 

presented. Detailed implementation of the procedure is also shown Next, the results are 

compared with the known analytical solutions and the important features of the method are 

discussed. Similarities and differences with homogeneous reservoin; are highlighted. 

5.1 Introduction 
Large scale features in reservoirs such as finite length faults, permeability barriers or 

different properties in front of and behind a flood zone significantly affect pressure transient 

response in the wells. Detection of such features or design of tests to include heterogeneities 

could be important in predicting long term performance. The parameters obtained by the 

analysis may also serve as input to a reservoir simulator. With better geological description 

of reservoirs becoming available, it is of relevance to be able to model the features in the flow 

field which may significantly affect the reservoir performance. 
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Two different types of problems are considered in this chapter. The Boundary Element 

method has been used to solve both problems. The first category of problems consists of 

wells producing from reservoirs which have permeability barriels and/or constant pressure 

"holes" of arbitrary size, shape and orientation. Permeability bamers occur as shale lenses or 

as structural features in a reservoir. These can also be created artificially due to the injection 

of low mobility and compressibility fluids. Constant pressure subregions ("holes") such as 

gas caps or limited extent recharge zones may occur in reservoirs. Gas injection for a number 

of EOR methods could create similar effects. 

These problems have received limited treatment because of the difficulty of handling 

them analytically. The simplest manifestation of heterogeneity may be idealized as sealing 

boundaries in a flow field. The method of images has been used to study drawdown, buildup 

and interference tests for a well in a homogeneous reservoir containing single or multiple 

linear, sealing boundaries (Davis and Hawkins, 1963, Tiab and Crichlow, 1979, Tiab and 

Kumar, 1980, Streltsova and McKinley, 1984, Larsen, 1985). 'me pressure and pressure 

derivative behavior has been used to determine the distance to the sealing boundaries and the 

type of boundaries present (Davis and Hawkins,  1963, Prasad, 1'975). Prasad (1975) and 

Wong et a1 (1986) used a Green's function approach to generate multiple sealing boundaries. 

Multiple boundaries of finite dimensions have not been treated analytically because of the 

difficulty of posing the boundary conditions in an otherwise homogeneous flow field. Han- 

tush and Jacob (1966) considered an eccentric well within a bounded aquifer with a leaky 

caprock. A single well producing external to a circular boundary has been solved by Sageev 

(1983). Computational complexities were encountered due to the nature of the solutions. 

Britto and Grader (1988) presented type curves for a well producing external to a circular or 

elliptic, no-flow or constant-pressure boundary. The well was located in an infinite reservoir. 

The superposition technique used is tedious and requires one to 1Bx the strength of sources 

used for superposition such that the requisite boundary conditions a r e  satisfied. This involves 

an iterative procedure. Domains with multiple barriers are difficult to treat with this method. 
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With the boundary element method, any number of sectional heterogeneities can be present in 

the flow field consisting of a number of line source wells (injectors/producexs). 

The second category consists of fluid injection problems ,which create mobility and 

storativity contrasts in the reservoir. Injection falloff tests performed in wells show distinct 

characteristics of both the injection and in-situ fluid provided the test is run long enough and 

that wellbore storage does not dominate the early time pressure behavior. Such systems may 

be treated as radial or elliptical composite reservoirs with different properties in the inner and 

outer regions. The interface between the two regions is assumed to be fixed in time and 

space. Ramey (1970) showed the validity of such an assumption. Radial composite models 

are used extensively to analyze well tests in water injection, steam injection, in-situ combus- 

tion and miscible injection projects. Extensive work has been done for such problems assum- 

ing both the inner and outer regions as perfectly radial and treating only one well producing 

from the center of the reservoir (Bixel and van Poollen, 1967, Eggenschwiler et al, 1979, 

Ambastha and Ramey, 1987, v a n  Poollen, 1965). Analysis methods based on the pressure 

derivative have been shown to provide useful results. A number of methods have been pro- 

posed to calculate the location of the injection front from pressure transient data. A survey of 

the literature on this subject is given in Ambastha (1988). 

In reality, injection fronts are never truly radial due to a variety of reasons. Background 

drift caused by injection and production wells nearby can affect the: geometry of the propagat- 

ing front, and so can outer boundary effects. Also, fractured injection wells could cause the 

fluid front to move in an elliptical or a rectangular fashion for a n:rtain distance in the reser- 

voir before the effect of inner boundary geometry is dissipated, and the front becomes approx- 

imately radial. Gravity ovemde in steam injection projects also smear the radial geometry of 

the propagating front. 

These two categories of problems are considered in the following, by the Boundary Ele- 

ment Method. 
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5.2 Mathematical Considerations 
Development of the mathematical formulation of reservoirs with internal sub-regions and 

composite reservoirs is presented next. 

5.2.1 Sectionally Homogeneous Reservoirs 

Figure 5.1 shows a schematic of a reservoir with small scale features. These features 

tend to alter the flow characteristics of the fluids and consequeritly the pressure behavior. 

Examples are impermeable barriers or small recharge zones acting as constant pressure boun- 

daries, or local concentration of injected gas near a wellbore. The [constant pressure boundary 

is shown in Fig. 5.1 as a checkered region. The other two hatched regions represent 

impermeable bamers. 

Mathematically, the problem domain is a multiply-connected surface, the flow through 

which is governed by the diffisivity equation for single-phase flow. 

As mentioned earlier for a simply connected region (as in hcimogeneous reservoirs) the 

diffusivity equation is cast in an integral form in Laplace space. The boundary surface is 

discretized in a number of linear segments such that the boundary geometry is reasonably well 

represented. The linear segments or boundary elements, are numbered such that on traversing 

the boundary in a clockwise direction, the domain is always to the right. Clockwise number- 

ing of nodes is not essential but a consistent method should be used. The procedure for solv- 

ing the diffusivity equation on a mdtiply-connected surface follows the same concept, except 

that the integrals must be performed on the internal surfaces also. The interior sub-regions are 

numbered in a counter-clockwise direction to preserve the sense of the outward normal. The 

path integration scheme for one impermeable barrier in an otherwise: homogeneous reservoir is 

shown in Fig. 5.2. It demonstrates the fact that the reservoir on which the flow problem is 

solved is the annular region between the two surfaces. Both the internal sub-regions and the 

outer boundary are discretized in a number of boundary elements. 'The number of nodes on a 

boundary (ri) is N i .  
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Fig. 5.1 Schematic of a reservoir with heterogeneities 
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Fig. 5.2 Path integration scheme for a barrier in the reservoir 
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The integral equation for the pressure at any point within the reservoir (excluding the 

interiors of the subregions) in Laplace space is 

e = 2 x 4  if ( X D ,  Y O )  E r2 (5.2~) 

where 8 is the internal angle between two adjacent boundary elements. Eq. (5.2~) implies that 

the exterior angles between adjacent boundary elements should be considered for interior sub- 

regions. 

c in Eq. (5.1) corresponds to the f n x  space Green’s function in Laplace space. G is 

given by Eq. (4.20). 

To reiterate, the solution procedure is the same as outlined in Chapter 4 for the diffusion 

operator in homogeneous reservoirs, except that N 1  + N 2  equations are obtained in as many 

unknowns. The solution in Laplace space is sampled a number of times and inverted to real 

space by the use of the Stehfesr (1970) algorithm. With a few modifications the algorithm for 

solving the diffbsivity equation in homogeneous reservoirs can be used for sectionally homo- 

geneous reservoirs. 

5.2.2 Two Region Composite Reservoir 

Fig. 5.3 shows the schematic of a composite reservoir. The properties of the inner and 

outer regions are different. The interface between the two regions is assumed stationary. 

This assumption can be relaxed in an approximate sense and will be discussed later in this 

chapter. There are three parameters which govern the system belhavior. These are mobility 

ratio (M), storativity ratio (F,) and the distance to the discontiriuity ( R D ) .  The storativity 

ratio is 
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Fig. 5.3 Schematic of a composite reservoir 
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M F, = - 
rl 

(5.3) 

where q is the difisivity ratio between the inner and outer regions. 

The two regions can assume an arbitrary shape and can include multiple injection and produc- 

tion wells. The non-dimensional governing equations and boundary conditions are 

Inner Region 

a 2 P D l  a2PDl a P D l  + +- = - 
ax; ay;  at^^ 

“wl 

QD i i  S(XD - XD,.) SOD - yoi)  ( x i  + Yo2 RD2) 1 
i = l  

(5.4) 

Outer Region 

Initial Condition 

Interface Conditions 

The negative sign in Eq. (5.8) accounts for the opposite sense of the outward normal in the 

two regions. 
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Exterior Boundary Condition 

PD2(RcD 9 tDA ) = P e  

The dimensionless variables in the above equations are defined as 

P 1  - P o  
b 

P O 1  = 
P 2 - P o  

B P D 2  = 

I18 

(5.9) 

(5.10) 

(5.1 1) 

(5.12) 

(5.13) 

(5.14) 

AI in Eq. (5.13) and (5.14) is the area of the inner region. Alternatively, the above equations 

can be normalized with respect to the exterior drainage area. p is a reference normalization 

pressure and p o  is the initial resewoir pressure. 

Transforming Eqs. (5.4) through (5.11) to Laplace space and casting them into a boun- 

dary integral, we obtain the following integral equations : 

where ei has the same meaning as in Eq. (5.1). The in Eqs. (5.15) and (5.16) denote the 

contributions of injector/producer wells at the Green's function source location. The details of 

the derivation for the Eqs. (5.15) and (5.16) are similar to the single region homogeneous 

reservoir and are given in Chapter 4. 
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The weighting functions or kernel functions (Green’s functioils) in the integral equations 

of Eqs. (5.15) and (5.16) are denoted by and c2. The Green’s function for the inner 

region is given by Eq. (4.20). The Green’s function for the outer region is 

where K o ( z )  is the modified Bessel function of second kind of order zero, and rD is given in 

Eq. (4.5) 

5.3 Implementation 
The integral equations obtained in the previous section are solved discretely on the 

boundaries by the method of collocation with linear interpolation fimctions. Once the interpo- 

lation functions are defined, the integral equations are discretized in a local coordinate system 

in order to reduce the integrals in two-dimensions to a one-dimensional contour integral. A 

local coordinate system is sketched in Fig. 2.2. The point i is the fictitious source point and 

kj and are the nodal locations for the element, on which the contribution of the source is 

evaluated. The fictitious source point is moved, in turn, to all the nodes and the respective 

contributions at all nodal locations are calculated. The procedure is the same as outlined in 

Chapters 3 and 4, the only difference being the discretization of all the surfaces instead of 

only the external surface. The discrete form of the integral equations (5.1)’ (5.15) or (5.16) is 

given symbolically in the local coordinate system as 

The integrals in Eq. (5.20) consisting of functions f 

analytically or numerically. Rewriting El. (5.20) in a matrix form we obtain 

f 2, g 1, and g2 are evaluated either 

N 

j = l  
2 aij FDj  + bij P . n j  = 0 i = l l N 1 + N , l  (5.21) 
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where ui, and bi, are the elements of the augmented coefficient matrix. The coefficients ui, 

and bi, are exactly the same as those given in Eqs. (4.24a) and (4.24b). Equation (5.21) is 

then sorted for the unknowns. The resulting matrix equation for tlie unknown boundary con- 

ditions is 

Nl+N2 C H~;u; = G; i = 1 , N l + N 2  (5.22) 
j =1 

where u is the solution vector and Gj the right hand side vector. Solution of Eq. (5.22) gives 

the nodal values of the unknown at the boundaries. The solutions in the interior are obtained 

by using the same discretized integral equation again for an internal. point. 

The implementation of the integral equation for sectionally !heterogeneous reservoirs is 

similar to that for homogeneous reservoirs. The only difference between the two is in the 

numbering of the nodes. For the multiply-connected surface, the sub-domains must be con- 

sidered. 

For two-region composite reservoirs, Eqs. (5.15) and (5.16) must be solved separately 

and coupled through the interface conditions. The boundary of the inner zone is divided into 

N 1  nodes and the exterior boundary is divided into N 2  nodes. Figure 5.4 shows the partition 

of the boundaries in the two regions. Region I consists of the fluid interface and the domain 

internal to it. Region I1 includes both the external boundary and the internal surface (inter- 

face). In other words region I1 is the annular region between the interface and the outer 

boundary. 

Discretized equations as in Eq. (5.20) are written for both regions. The inner region is a 

simply-connected surface. The fictitious Green’s function source is placed at each of the 

nodal points and the contributions at all other nodes are calculatcd in turn. This gives N ,  

equations in 2N unknowns. There are more unknowns than equations because the boundary 

of the inner region is the fluid interface, or the discontinuity, andl neither pressures nor the 

fluxes are known a priori on this surface. 
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Fig. 5.4 Partition of reservoir boundary into tw'o regions 
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Meanwhile, the outer region of the composite reservoir consists of a multiply-connected 

surface. The node numbering for the inner subregion in this case follows the sectionally 

heterogeneous reservoir case. The number of nodes in this region are Nl + N2. Thus, 

Nl + N2 equations in N, + 2N1 unknowns are obtained. In Fig. 5.4 this is shown as the 

region on the extreme right. Once the coefficient matrix for this region is compiled, the inter- 

face conditions are forced to be satisfied pointwise. Figure 5.5 shows the matrix structure 

resulting from consmining the solution to the interface conditions. The two rectangular sub- 

matrices are the coefficient matrices obtained from the boundary integral equations. These are 

completely filled. The other sub-matrices relate to the interface constraints and are diagonal. 

The blank spaces correspond to zero elements. These constraints may be eliminated in terms 

of common interface variables, reducing the matrix size. The structure of the reduced matrix 

is shown in Fig. 5.6. The bottom left hand comer submatrix is a null matrix. On solving the 

matrix, the boundary unknowns both on the inner and outer regions are known. This implies 

that both the pressure and the velocity of the fluid interface are knlown, pointwise. This pro- 

vides a way to move the front in time if required. In other words, the front may be tracked in 

time in an Eulerian sense, if it were moving as in an injection situaiion. Of course this would 

be an approximation because an injection problem truly is a moving boundary problem and 

belongs to a class of problems known as Stefan's problem. 

Once the boundary solutions are known, the pressures can be calculated at any well or 

interference location, be it in the inner or outer region. This is done by re-solving the integral 

equation (5.15) or (5.16) depending on where the well is located. Since the boundary infor- 

mation in both pressure and fluxes is known, the problem reduces to quadratures. 

5.4 Results and Discussion 
Boundary element solutions for both internal boundaries and composite reservoirs were 

verified against known analytical solutions. Figure 5.7 is a schematic of a well producing 

external to a circular boundary such as a flow barrier or a constant pressure "hole." The 
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Fig. 5.5 Matrix structure for the composite reservoir 
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Fig. 5.7 Well producing external to an internal circular boundary 
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dimensionless parameters goveming the system behavior are F, the ratio of the radius of the 

a 
r 

internal circular boundary, a, to its distance from the well, r' (F = 7). and c which is the 

distance from the well to the closest part of the internal boundary. Figure 5.8 shows a semi- 

log plot of dimensionless pressure vs. time for c = 250 and values of F ranging from 0.1 to 

0.9. In the limit when F = 0, the system behaves like a line source solution. On the other 

extreme F = 1, shows the behavior of well near a linear fault. Both closed and constant pres- 

sure internal boundaries are considered. The analytic solution was given by Sugeev (1983). 

The analytic solution is composed of infinite series of modified Bessel functions 

[I ,  ( x ) ,  K,, ( x ) ]  of all integer orders. Table 5.1 compares the boundary element solution with 

the analytic solution for F = 0.5 and c = 250. The results are within 0.5 % for rD I 8 x los. 

Log-linear instead of linear interpolation between the computed values to obtain pressures at 

the times shown in the table, would show even smaller errors. 

Figure 5.9 is a log-log plot of dimensionless semilog pnessure derivative vs. time 

corresponding to Fig. 5.8. It is instructive to consider the derivative plot. At early times, the 

derivative group shows infinite-acting behavior given by a slope of 0.5. As the presence of 

the internal boundary is felt, the derivative group deviates from infinite-acting behavior for a 

short time. Presence of more fluid in the system results in another period of infinite-acting 

behavior. The pressure derivative at late time becomes a constant and the value depends on 

the size and distance of the boundary from the active well. If the internal boundary is at con- 

stant pressure, the derivative group dips below the infinite-acting behavior when the presence 

of pressure support becomes evident. However the derivative group does not go to zero as 

the system is infinitely large and the well can deplete the reservoir farther away. 

Figure 5.10 is a schematic of a well producing external to inipermeable elliptic internal 

boundaries of various sizes. The major axis and the minor axis are labeled UD and b D ,  

respectively. The minimum distance from the well to the intenial boundary is shown as 

' D ,  mine Figure 5.11 shows a log-log plot of dimensionless pressyre vs. t h e  for a constant 

- 0.25. r D , , , h  is chosen to be 100. The sizes of the ellipses are value of the ratio - - b D  



CHAPTER 5 .  SECTIONALLY HETEROGENEOUS RESERVOIRS 127 

I I I n 15 t 
13 c = 250 0.9 0.7 n A 
11 

7 

5 

c 

I I I I 

loo00 le+05 le+06 1 le+07 le+08 1000 

Fig. 5.8 Pressure response at a well producing externial to a circular 
sub-region 
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Table 5.1 Comparison with Analytical Solution (Circular Impermeable Barrier) 

Dimensionless 

Time ( t D )  

4.Oe+O 

8.Oe+O 

4.0e+ 1 

8.Oe+l 

4.0e+2 

8.Oe+2 

4.Oe+3 

8.Oe+3 

4.Oe+4 

8.0e+4 

4.Oe+5 

8.0e+5 

pwD Analytical 

(Sageev, 1983) 

1.1283 

1.4597 

2.2520 

2.5970 

3.4005 

3.7469 

4.5515 

4.898 1 

5.7288 

6.1299 

7.0921 

7.4739 

pwD Boundary Element 

(16 nodes) 

1.1289 

1.4590 

2.2527 

2.5963 

3.4012 

3.7462 

4.55 10 

4.8974 

5.7257 

6.1246 

7.0400 

7.4578 

Abs. Percent 

Error 

0.053 

0.048 

0.03 1 

0.027 

0.021 

0.019 

0.01 1 

0.014 

0.054 

0.086 

0.738 

0.2 15 
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Fig. 5.9 Pressure derivative behavior at a well producing external 
to a circular sub-region 
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Fig. 11 : Schematic of a well external to impermeable elliptical 
sub-regions of different sizes 
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shown in Fig. 5.10. Britto and Grader (1988) used an iterative procedure as described ear- 

lier to generate pressure transient solution for elliptical internal boundary. Their solutions are 

represented as open circles in Fig. 5.11. At late times, the two sallutions do not match well. 

The reasons for this could not be determined due to lack of detailed information about possi- 

ble errors associated with Britto and Grader’s (1988) solution. 

Composite Reservoirs 

Figure 5.12 shows the effect of mobility (M) and storativity (F,) ratios on the semilog 

pressure derivative behavior of an infinite circular composite reservoir. The storativity ratios 

chosen cover a spectrum of values. The time axis is scaled by the front radius 

Early time radial infinite acting behavior corresponding to the inner region is seen as a con- 

stant value 0.5 on the pressure derivative plot. Depending on the value of storativity ratio, the 

pressure derivative deviates from infinite acting behavior. The derivative passes through a 

maximum and goes to another radial infinite acting behavior, corresponding to the external 

region. The pressure derivative group is given by a value of W!, where M is the mobility 

ratio of the inner to the outer region. The solid lines in Fig. 5.12 are the analytical solution 

(Ambustha, 1988) and the circles are the boundary element solution. Figure 5.13 shows the 

effects of a closed external boundary on the pressure transient response of a two-zone circular 

composite reservoir with a mobility ratio of 10 and storativity ratio of 1OOO. The composite 

reservoir effects are not seen if the ratio Rd/RD is less than 10. For R,DIRD of 1O00, the 

infinite-acting behavior due to the outer region can be seen before pseudosteady state begins, 

which appears as a unit slope straight line on the derivative plot. 

The results in Figs. (5.12) and (5.13) show the accuracy obtained with the boundary ele- 

ment method. For such good results the geometry of the inner region must be defined accu- 

rately. The reason for this will be discussed later. 
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Fig. 5.13 Effect of external boundary on the derivative: behavior of a radial 
composite reservoir (Analytical Soln., after Ambastha, 1988) 
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Field data suggest that there are thermal injection wells which are intercepted by a verti- 

cal fracture. In such cases, the displacement front will move in a diirection normal to the plane 

of the fracture at early times. The swept region at early times can tc idealized as a low width 

to length ratio rectangle. Figure 5.14 shows the dimensionless pressure vs. time based on 

length of the inner zone for various width to length ratios of the inner swept region. The 

mobility and storativity ratios used were 200 and 16.67 respectiveily. Teng (1984) studied a 

similar problem for gas injection in a vertically fractured well with a finite difference simula- 

tor. The nonlinearities caused by the gas flow were included in. the study. The solution 

matches qualitatively with Teng’s results. 

Computational Effort 

The computations for composite reservoirs require substant ial computing effort. At 

every time step an (N2 + 2 N 1 )  by (N2 + 2N1)  matrix is inverted six. to eight times, depending 

on the number of sampling points in Laplace space. In addition, the geometry of the inner 

region must be represented accurately. For example, for a radial composite reservoir the 

phase discontinuity is a circle. If the circle is represented by a hexagon (six nodes), the pres- 

sure behavior is affected significantly at late times, because .the isopotential lines are 

configured so that they are hexagons instead of circles. 

No effort has been made to optimize the code for speedup. However, considerable 

improvement could be obtained by eliminating repetitive calculations, in favor of increased 

storage. The optimum number of nodes required varies from pmblem to problem. For a 

homogeneous reservoir good results were obtained with 16 nodes on a circular boundary. 

However, it was necessary to represent a circular phase discontinuiiy by 32 nodes in order to 

obtain accurate results, although representing the outer boundary by only 16 nodes did not 

degrade the results. 

A few runs were made for the composite rectangular reservoir to compare the run-times 

with different number of nodal points on the fluid interface. Since the computational effort in 
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Fig. 5.14 Effect of W/L ratio on the pressure response of a rectangular 
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solving a full matrix is proportional to the cube of the number of elquations, thus the effort for 

solving a composite problem increases tremendously as the number of nodal points increase. 

The size of the matrix increases more rapidly if the number of points on the interface are 

increased instead of increasing the points on the external boundary. For comparison purposes 

pressure transient solutions were calculated for 10 values of time. ‘The system considered was 

a rectangular composite reservoir with mobility and storativity ratios as 200 and 16.67 respec- 

tively. The width to length ratio of the fluid interface was one. ‘me external boundary was 

discretized in eight nodal points for all the runs. Computation times were calculated on an 

Apollo loo00 for four, eight, sixteen and thirty-nodes on the interface. The coefficient matrix 

for the case with four nodes was 16 x 16. The CPU time needed was 19.5 seconds. For the 

case of eight interface nodes the matrix size was 24 x 24 and the IU-time was 87.8 seconds. 

Computation times required for the cases with 16 and 32 interface nodes were respectively 

1689 and 13146 seconds. These results indicate that the run-times increase very rapidly as 

the number of nodal points are increased. 



Chapter 6 

CONCLUSIONS 

This study provides an analytical-numerical approach for computing pressure transient 

response in homogeneous and sectionally homogeneous reservoirs of arbitrary configuration. 

Multiwell production/hjection schemes are easily incorporated. Three different categories of 

problems have been addressed. These are : 

0 

0 

0 

Incompressible fluid flow (steady state) 

Transient flow in homogeneous media 

Unsteady flow in sectionally heterogeneous media 

Arbitrary geometries are considered by a weak formulation. This gives rise to an 

integral equation for unknown boundary conditions. An auxiliary equation leads to the deter- 

mination of solutions in the interior of the domain. The computations are carried out on the 

boundary of the domain, thus the name Boundary Element Method (BEM). Use of the 

Green’s function in the solution scheme restricts the application of this method to linear prob- 

lems. Based on the results of this study the following conclusions are made. 

Boundary Element Method 

0 

smaller matrices for inversion compared to domain type methods. 

A reduction in dimensionality of the problem is achieved. This leads to 
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0 The global support of the basis (weighting) functions (Green’s functions) 

leads to full matrices. Thus, for large problems the advantage of having small 

matrices is overwhelmed by the non-sparsity of the mauices. For such large prob- 

lems, there may not be any computational savings for the boundary element 

method when compared to the domain methods. 

0 

mental solution to the differential operator. 

The analytical nature of the solution is preserved due to the use of the funda- 

0 

convolution character of the resulting integrals. 

The real space formulation to transient problems requires consideration of the 

0 The Laplace space formulation of transient problems gives better results with 

a coarse nodal definition compared to a real space formulation and also allows for 

straightforward inclusion of rate decline, double porosity and wellbore storage 

effects. 

0 

methods, however accuracy is generally better. 

There may not be a gain in computing efficiency over other numerical 

0 

variety of problems of increasing complexity. 

0 

range of examples. 

Comparison with analytical results show that the solutions are accurate for a 

Consistency and convergence of the solution has been shown via a broad 

Pressure Transient Solutions 

0 Both pressure and pressure derivative solutions for arbitrarily shaped reser- 

voirs with any linear boundary condition at a section of the reservoir were obtained 

by using the boundary element method. 

0 

porated. 

Multiple line sources (producers/injectors) at different rates are easily incor- 
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e 

recharge zone inclusions of any size shape and orientation can be solved. 

Problems in reservoirs with internal subregions in the form of impermeable or 

0 

solved with good results. 

The pressure transient response in a two-zone coimposite reservoir has been 

Computational Effort 

0 Most of the integrals over the boundary elemenls were performed analyti- 

cally. Specifically, all the integrals for the steady st,ate problems, 60% of the 

integrals for the real space transient problems and about 30% for Laplace space 

problem were done analytically. 

0 Singular integrals were evaluated analytically in texms of well known, easy to 

compute functions. Term by term integration of an infinite series or numerical 

evaluation of these integrals have been done previously in the literature. The 

analytical solution is exact and computationally efficient. 

0 Numerical integration was performed with highly accurate Gauss-Legendre 

quadrature. A six-point integration scheme and two panel subdivision gave good 

results, as it is necessary for accurate inversion of Laplace space solution by the 

Stehfest algorithm. 

0 The computational effort would increase tremendously for multizone prob- 

lems or multiple internal boundaries. Thus, improvement in the area of solution of 

very large problems should be attempted. 

6.1 Recommendations 
The Boundary element method has shown promise in solving classical pressure 

transient problems and extended those to include a variety of new features. The follow- 

ing aspects should be addressed in future work. 
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0 

bation Green’s function. 

Extension of BEM to include weak nonlinearities by defining a pertur- 

0 Investigation of increased flexibility in proldem solving by including 

body force terms and discretizing the domain in firute element type meshes to 

compute integrals. 

0 Truncation of the stored convolution integrals. This will reduce storage 

requirements for the convolution BEM and improve computational efficiency. 

0 Extension of internal subregion and composite reservoir problems to 

more than two zones. 



NOMENCLATURE 

A =  

F =  

F, = 

Lij = 

L(P> = 

Area of the problem domain 

Area of the region i 

Set of undetermined parameters 

Exponential Integral 

Fourier transform with parameter h 

a 
7, Size of the internal circular sub-region 
r 

Elements of coefficient mamx correspon'ding to pressure 

W I  1 Storativity ratio, - 
4)cr 2 

Free Space Green's Function, (two-point function) 

Right hand side vector in the matrix equation 

Free Space Green's Function, Laplace Space 

Coefficient matrix 

Heaviside step function, 0 if fDA < 2, 1 if fDA 2 z 

Permeability tensor 

Modified Bessel function of the second kind of order i 

Modified Bessel function of the second kind of order zero 

Modified Bessel function of the second kind of order one 

Elements of coefficient mamx corresponding to flux 

Linear operator operating on p 
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L (s ) = 

L* (G) = 

Laplace transform with parameter s 

Adjoint of operator L, operating on G 

Q* = 

R =  

b =  

c =  

c, = 

exp ( x )  = 

erf ( x )  = 

kxx,Qy = 

n =  

n, = 

P =  

p =  
ri = 

s =  

t =  

u =  

? =  

x , y  = 

x , y  - 
# ,  - 

3 1  Flow rate of a well, [ML- T- 3 

Distance to the discontinuity (phase front.), ft 

Right hand side vector 

Constant in the integral equation 

Single phase fluid compressibility 

Exponential function of argument x 

Error function or probability function, Ecl. (B8) 

haginarynumber= .Izi 
principal directions of permeability 

Outward pointing normal to a line segment 

Number of wells in the problem domain 

Pressure, psia. 

Reference pressure, for normalization 

Radial distance from point i 

Laplace transform parameter 

Time 

Solution vector 

Velocity vector 

Variables in Cartesian coordinate system 

Stretched Cartesian coordinates, Eq. (3) 
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Greek Symbols 

o =  

E =  

E =  

P =  

P =  
a =  

h =  

Ve = 

v =  

Subscripts 

Domain of the solution region 

Boundary of the solution region 

constants 

Dirac delta function, singular at x = 5 
Kronecker delta, 0 if i # j, and 1 if i = j 

Angle subtended between two adjacent elements 

Local coordinate system based on the fictitious source point 

Diffusivity = - 

Porosity 

Set of linearly independent functions 

Set of weighting functions 

Belongs to, or is an element of 

Error function in a residual scheme 

Viscosity, cp 

Density, gm./cc. 

Fracture to total system storativity ratio 

Interporosity flow coefficient 

Divergence operator 

Gradient operator 

k, 
4w 

I44 

D = Dimensionless 

DA = Nondimensionalized with respect to area 

eD = Dimensionless, based on external boundary area 
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wD = Dimensionless, based on well radius 

Sections of the boundary 

Partial derivative with respect to x or y 

1, 2, 3 = 

x , y  - - 
t = Partial derivative with respect to t 

s = singular 

M = Nonsingular 
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APPENDIX A 

Free Space Green’s Function 
A.l Diffusion Operator 

The adjoint problem for the diffusion operator is given by 

aG 
 at^^ 

v2G + - = - 6(Xo - 5) 600 - c) 6 ( t ~ ~  - 7:) 

Only one space dimension is considered for simplicity. Once the Green’s function is 

obtained, extension to the second dimension is straightforward. Thus in one dimension 

The infinite Fourier transform is defined as 

1 ihr, where i = a. Multiply Eq. (A.2) by - e and integrating over the infinite domain 4% 
we obtain on using Eq. (A.3) 

where 
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Rewriting Eq. (A.4) in a shorthand notation with subscripts denoting partial derivatives, we 

get 

where the subscripts from the dimensionless variables have been omitted for convenience. 

Solving the homogeneous equation first 

where T is the total time to which the solution is required. Using the homogeneous initial 

condition, we obtain the solution to Eq. (A.6) 

where H (t - z) is the Heaviside step function. The Fourier inversion formula is given by 

Inverting Eq. (A.9) according to Eq. (A.lO) 

Adding and subtracting in the exponent 
{ 2 4  

- { s r ] d L  

(A. 10) 

(A. 1 1) 

(A. 12) 

and completing the square results in 
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- (x - E,I2 [ 4(t - 2 )  ] [j ex.p{ - 
1 

2n: 
G ( x ,  5, t ,  2) = - H ( t  -2) exp 

[ k G  + -I2} 2 G  d k ]  

Making a substitution 

(A. 13) 

(A. 14) 

Eq. (A.13) becomes 

r 1 

(A. 15) 

L J 

Making another substitution 

i c + k G  = z 

Eq. (A.15) becomes 

(A. 16) 

- C 2  1 e 
G(x ,  5, t ,  2) = - H ( t  - 2) - 

2n: fi 

The integrand of Eq. (A.17) is an analytic function as it satisfies .the Cauchy-Riemann equa- 

tions. Thus, the Cauchy residue theorem which defines the integral of an analytic function 

around a closed contour as 

If ( z )  dz = 2n:i ( Residues due to singularities ) (A. 18) 

can be applied to Eq. (A.17). The closed contour is defined as a. rectangular region on the 

complex surface shown in Fig. (A.1). There are no singularities of the function e-" within 

the contour. Thus, by the Cauchy residue theorem 

j e-z2dz = o 

c 

(A. 17) 

(A.19) 
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iC 

-0 0  
___c____ 

l-1 00 X 

Fig. A.l  Schematic of integration contour in the complex plane 
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Breaking the left hand integral into sections 

{ / + /  + /  + / k - z 2 d z )  = 0 
1 2 3 4  

158 

(A.20) 

where z is x on the real axis and y on the imaginary axis. Rewriting Eq. (A.20) after tran- 

sposing the terms 

(A.21) 

The sense of the integrals over the lines r2 and I', are opposite and equal, and therefore can- 

cel. Eq. (A.20) becomes 

(A.22) 

Using the results of Eq. (A.22) in Eq. (A.17) and restoring the value of c from Eq. (A.14) 

(A.23) 

Extending this to two-dimensional space 
I- - 

Eq. (A.24) is the free space Green's function. It can be derived in a variety of ways. 

Zauderer (1983) and Morse and Feschbach (1953) give an alternate derivation. 

A.2 Modified Helmholtz Operator 

The adjoint problem in Laplace space is given by 

v2 G - sG = - 6(x - 5) sg - 5) (A.25) 

The operator in Eq. (A.25) is known as the modified Helmholtz operator. In two dimensions, 
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EQ. (A.25) can be written as 

(A.26) 

The Fourier transform in the x-direction is defined slightly differently compared to Eq. (A.3). 

It is given by 

(A.27) 

Taking the Fourier transform first in the x and then in the y direction with the y direction 

transform being denoted by i?, we obtain 

(A.28) 

Transforming Eq. (A.28) again to Fourier space in the y dimension, and denoting the 

transform by F" and the second Fourier space parameter as o we obtain 

Solving Eq. (A.29) we obtain 

P 1 , - i k G e - i o <  
F = -  

211: h 2 + 0 2 + s  

(A.29) 

(A.30) 

Using the shifting property of Fourier transforms [Erdelyi et. a1 (1954) vol. I pg. 117 #7] 

gives 

Using the inversion in ErdeZyi et. aI. (1954) vol. I. pg. 118 #5 we obtain 

(A.31) 

(A.32) 

Using the shifting property of Fourier transforms again on x 
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(A.33) 

The function to be inverted in Eq. (A.33) is an even function, thus the exponential transform 

can be reduced to a cosine Fourier transform 

(A.34) 

Using Erdelyi e f .  al. (1954) vol. I pg. 17 #27, the free space Green’s function is given by 

(A.35) 



APPENDIX B 

Boundary Integral Evaluations 
B.1 Steady State Flow 

The integrals in Eq. (3.6) can be performed analytically. Each of the integrals are given 

here. Referring to Fig. (3.1), 'Di is given by Eq. (3.7). The normal derivative is given by Eq. 

(3.9). This information is used in simplifying the integrals. These integrals are shown in an 

indefinite form, subsequently the limits of integration must be used for the definite integrals. 

where Eq. (B.4) was obtained by using Eqs. (3.7) and (3.8) 
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B.2 Velocity Calculations for Steady Flow 

Equation (3.12) is discretized using linear interpolation functions for both pressure and 

fluxes. Figure (B.1) shows a sketch of integration over an element from an interior point. 

The discretized equation for the velocity field in the interior in ternis of boundary values is 

where from Figure (2.2) 

and 

Using Eqs. (B.7) and (B.8) in Eq. (B.6) gives 

Similarly, vy is 

k 1  cosy + €, siny ~ P D  c o x  
( - ) j  + - 

'D To2 an 

(B.10) 
J 

If 5 and n are in the same direction as shown in Fig. (B.l) then 5 is positive. If 5 and n are 

in opposite directions, as may be the case when the vector r from point P to Q passes outside 

the region, the sign on 5 is negative. 
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P i  
sinv+: cos v - sin ~4 

cos v 

j+ 1 

Fig. B. 1 Geometric scheme for integration from an interior point 
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The integrals needed to evaluate Eqs. (B.9) and (B.lO) may be done analytically and are 

(B.13) 

(B.14) 

B.3 Convolution BEM 

The following boundary integrals which arise in the integral formulation with linear ele- 

ments may be performed analytically 

(B.15) 

Making a substitution 

Eq. (B.15) becomes 

On integrating Eq. (B. 17) we obtain 

I ,  = - 4 e-Yo 
2 r 

(B.17) 

(B.18) 
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Another boundary integral obtained is integrated exactly by making a couple of substitu- 

tions. This is shown in the following derivation. 

Let, -t- = y = > t d t  = 2 ( t - z ) @  
4(t - 2) 

Substituting Eq. (B.20) into Eq. (B.19) and simplifying 

To simplify Eq. (B.21) further, assume 

II? a =  
4(t - 2) 

Eq. (B.21) reduces to 

4(t - 7) 

To reduce Eq. (B.23) into a familiar form, let 

Then, Eq. (B.23) becomes 

I 2  = 

y + a  = z  

4(t - 7) 

- dz e -’ 
z 

(B.19) 

(B.20) 

(B.21) 

(B .23) 

(B.24) 

(B.25) 

Eq. (B.25) is the familiar Exponential Integral form. Integrating Eq. (B.25) and resubstituting 

Eqs. (B.20), (B.22) and (B.24) 
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1 2  = - e x p [  1 q? J [ E l [  t; + Ti  2 ] - E l [ - ~ ] ]  tf+l+ qi 
4(t - 2) 4(t  - 2) 4(t - z) 2 

Another integral is of the form 

Substituting 

= z  
t2 + v? 
4(t - z) 

and integrating by parts 

Incorporating the limits of integration we obtain 

t z ( r - z ) e x p [ -  4(t q? - z) ]{exp[- 4(t 6; - z) ]-exp[--*J] 4(t  - z) 

I66 

(B.26) 

(B.27) 

(B.28) 

(B.29) 

(B.30) 

B.4 Laplace Space BEM 

Only one of the boundary integrals could be evaluated analytically. The integrals which 

are singular at one of their limits are shown in Appendix C. 

ti+] 
(B.31) 

Eq. (B.31) can be rewritten as 
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(B.32) 

Because 

(B.33) 

Thus the integral I4 becomes 

(B.34) 
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Singular Integral Evaluation 
C.l Convolution BEM 

An integral that arises when the field and collocation points coincide is 

At the lower limit, the integral seems to be singular. We will show that owing to the loga- 

rithmic nature of the singularity the integral is bounded. Let us consider a non-zero lower 

limit in Eq. (C.l) as b. Equation (C.1) can be integrated analyt~~caJly and the results were 

presented in Eq. (B.30). Setting 6 to zero in Eq. (B.30) we obtain, at the lower limit 

If b = 0 then the first term on the right hand side becomes zero. The second term is of the 

form 

X 

X->o lim 

X Expanding E l ( - )  in ascending series 
k 

X (- 1  )" (xl'k)" 
OD 

n = l  n n !  -1 X l i m x E l ( - )  = l imx  
x->o k X -9 

where y is Euler's constant. Rewriting Eq. (C.4) 
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(C.5) X (-1 )" (xlk)" lim x E ,  (-) = - l i  (yx)-  lim x lnx + lim x lnk - lim C 
x-HI  k x->o X->o x->o %->On = 1 n n !  

The first, third and fourth term on the right go to zero. Also lini x Inx -+ 0 because lnx 

grows much slower than any polynomial. Thus x goes to zero quicker than lnx grows. Thus, 

x->o 

in the limit 

I d 0  = 0 

Another singular integral encountered is of the form : 

The integral has a logarithmic singularity at the lower limit. Two methods have been sug- 

gested previously to alleviate this problem. One requires expanding the exponential integral 

in ascending series and evaluating the integrals term by term. Thjs produces an infinite sum 

that must be evaluated whenever the integral is evaluated, and is slowly convergent for large 

values of the argument. Another method suggested is to add and subtract a logarithmic term 

to the exponential integral. This femoves the logarithmic singularity of E l ( z )  after which it 

can be integrated numerically. The remaining logarithmic term can be integrated analytically. 

We present here a simple closed form value of Eq. (C.7) in terms of smoothly behaved func- 

tions. 

Re writing Eq. (C.7) 

c 

where 

1 
4t 

a = -  

Integrating once by parts 
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(C.10) 

Since E1(ax2) grows logarithmically as x goes to zero, and hence grows slower than any 

polynomial, then x tends to zero faster than E l  grows, as shown in Eq. (C.6). This implies 

that 

x E,(ax2)I  0-90 as x + 0 

thus 

(C.12) 

(C. 13) 

where 

For large arguments, E l ( a c 2 )  goes to zero asymptotically 

totically. Thus a stable and easy to evaluate form is 

(C2) we obtain 

C.2 Laplace Space 

(C.14) 

and erf (&) goes to one asymp- 

obtained. Resubstituting a from Eq. 

(C.15) 

The integrals singular at one of the limits are performed as follows. Some integrals of 

the form 
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(C. 16) 

can be rewritten as 

Gradshteyn & Rhyzhik(l980) give the following integral 

Customizing Eq. (C.18) for Eq. (C.17) 

C r 

(C.17) 

(C. 1 8 )  

(C.19) 

(C.20) 

Another integral encountered is 

1, can be rewritten as 

(C.21) 

((2.22) 

The ascending series valid for small arguments of the function is given by 

Abramowitz and Stegun (1970) as 

X 

Ko(t)  dt = - y +  In- x ;I: (x/2)2k + [ ;] k = 0 ( k ! ) ~ ( 2 k  + 1 )  

(C.23) 
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where, y is Euler's constant. The large argument asymptotic series is defined as 

where, ak are defined as 

I72 

(C.24) 

(C.25) 

In order to use Eq. (C.24) as the large argument asymptotic series for Eq. (C.22), the follow- 

ing identity is used. 

X r- -1 

but 

7c [ Ko(t )  dt = 5 

Thus 

(C.26) 

(C.27) 

(C.28) 

where, the large argument asymptotic series given by Eq. (C.24) is used. The coefficients ak 

in Eq. (C.28) are defined in Eq. (C.25). The two equations Eq. (C.23) and Eq. (C.28) are 

used to calculate the integral. The switch from the ascending series to the asymptotic series 

depends upon the computer used. For our purposes th? switch was made at an argument of 

11.2. 
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Non-Formal Proof for the Convolution Matrix 

D.l Origin of Convolution Structure and Incremental Solution 

The time step sizes for the convolution BEM are assumed to be constant. In order to 

show the development of the convolution structure at the matrix level let us assume that a 

problem with constant pressure outer boundary conditions is being solved. The BEM first 

evaluates the fluxes at all locations on the boundary. Accounting for the boundary condition, 

the integral equation looks as follows 

Suppose both the space and time interpolation functions are constant. This means that the ele- 

ment value of the variables are replaced by the average of the two adjacent nodal values. For 

illustration purposes, assume that the total solution time is divided into three steps of size At. 

The respective time levels can be written 

Substituting the Green's function in Eq. (D.l) the solution at an element for the first time step 

is 
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where pD,, denotes the flux at time step 1, and the distance from the collocation to the field 

point is one. The last term in Eq. (D.3) is zero. At the second time step, since the flux is 

piecewise constant in time, the element integral is 

Integrating Eq. (D.4), 

Since the time step size is constant, Eq. (D.5) can be rearranged as 

Denoting the difference between the flux values at times t l  and t2 as A~D. ,  Eq. (D.6) can be 

rewritten as 

1 = &Dn2 El(z) 1 +PO, ,  1 (D.7) 

Similarly, at the third time step the integral can be broken into three parts as 

Integrating and rearranging the terms 

{ exp 
403 - 7) 

where 

&Dn3 = PD,3-PDn2 (D. 10) 

One thing obvious from the above procedure is that the solution obtained at each time step is 

incremental and a running sum must be kept in the algorithm to get the cumulative result at 
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the end of a particular time step. Also, the convolution character o'f the coefficients is evident 

in Eq. (D.9). The flux at the third time slot @D,,) is multiplied by the coefficient obtained 

from the first time slot ( A t )  and the flux at the first time slot bDln1) is multiplied by the 

coefficient from the third time slot (3 A t ) ,  and so on. 

1 
At 

The coefficient E l ( - )  always multiplies the unknown quantity [ A  PO,, in Eq. (D.3) and 

A pD,, in Eq. (D.9)]. This implies that the coefficient matrix for the unknown vector remains 

the same throughout. Only the right hand side vector is modified at each time level. The left 

hand coefficient matrix can thus be inverted and stored once and for all. This was also 

observed by Pina (1984). Matrix level rather than element level treatment will make this 

clearer, and is given in the next section. 

D.2 Matrix Computation for Convolution BEM 

Appendix D.1 dealt with a specific boundary condition and the interpolation function in 

space. This may be generalized to the matrix level. At the first time level, the augmented 

matrix equation is 

[ H l l ]  [ U l ]  = 0 

Separating the right hand side vector, we obtain 

where, r denotes 

nown vector u 1. 

[ . I l l  [ U l ]  = - [ . ; I ]  [ 4 

(D. 10) 

(D. 1 1) 

the vector of boundary conditions. Solution of Eq (D.11) gives the unk- 

u1 = [H1l]- l{[H;l]  [4} 
At the second time level a similar procedure yields 

(D. 11) 
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Since u1 is known from the previous time step, it is moved to the right hand side. The 

coefficient matrix on the left hand side is the same matrix [Hll], as before. It may be seen 

from Eq. (D.12) that on the right hand side, the new matrix generated at the second time step 

namely, [H21] is multiplied by the solution at the first time level. A u2 in the second term on 

the right hand side is the change in the boundary condition over the time step. For time 

dependent boundary conditions this term is non-zero. 

To show the convolution of the right hand side matrices clearly, consider the third time 

step. The resulting matrix equation is 
. 

(D. 13) 

Eq. 0.13)  and Eq. (4.12b) are equivalent, if the diagonal structure of the matrix array in Fig. 

(4.1) is considered. 
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I/O 

E.1 

SN. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

for Laplace Space BEM Simulator 

Setup of Datafile for BEM Simulator 

Variable 

Title 

Logistics 

4) 

k x ,  5, 

CL, ct 

INUM, JNUM 

ICB, NBEGIN 

KEY 

N 

X-Coord., Y-Coord., 

PO PO,, PO,,,, CONST, ID 

PINIT 

Comments 

[80 Characters (maximum)] 

Well name, field name, etc. [80 characters] 

Porosity 

X-direction and Y-direction Permeabilities (Darcy) 

Viscosity (cp) and Compressibility (am-') 

Output of Bdry. Press. from Point INUM to JNUM 

No. of Internal Boundaries [currently one], Beginning 

Node No. for Internal Boundary 

0 --> No Diagnostics 

1 --> Diagnostics 

Number of Boundary Nodes 

Nodal Location (cm.) and ]Boundary Values 

(am, atm/cm), [Repeated N times] 

Initial Boundary Pressure (am.) 
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12. 

13. 

14. 

15. 

16. 

17. 

18. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

Nw 
x w ,  YW, m o w  

QW, 

I o n  

If IOPT=O 

TMAX 

TO 

At 

If IOPT=l 

ILOG 

ICYC 

TDSM 

IGANPT 

ISFJNV 

INT 

x x ,  YY 

C D ,  s 

Number of Line Source Wells 

Well Location (cm.) and No. of Flow Periods 

Prod. Rate (cm3/sec) and Starting Time [Repeated 

NFLOW Times] 

Time Stepping Option 

Cartesian Time Stepping 

Maximum Solution Time (seconds) 

Starting Time (seconds) 

Step Size (seconds) 

Logarithmic Time Stepping 

Number of Log Cycles 

Number of Points/Log Cycle 

Starting Time (seconds) 

N-point Gauss Integration Rule 

N-point Laplace Space Inversion 

Number of Internal Points 

Coordinates of Internal Points (cm) [Repeated INT Tim$ 

Wellbore Storage, Skin [Dimensionless] 

The datafile shown above is set up for input of variables in Darcy units. The input vari- 

ables are cast into dimensionless variables internally in the program. The output is presented 

in dimensionless time ( t D A )  and pressure (Po) format. 
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E.2 Sample Datafile 

PROBLEM #14A 

WELL IN THE CENTER OF A CLOSED EQUILATERAL TRIANGLE 

1 .Od+OO 

l.Od+OO l.od+Oo 

l.Od+Oo l.Od+OO 

6 7  

0 

12 

-0.7598356 -0.4386913 O.Od+OO O.Od+OO O.Od+Oo O.Od+oO 4 

-0.5698767 -0.1096728 O.Od+OO O.Od+OO O.Od+OO O.Od+OO 4 

-0.3799178 +0.2193456 O.Od+OO O.Od+oO O.Od+OO O.Od+OO 4 

-0.1899589 +0.5483641 O.Od+OO O.Od+oO O.Od+OO O.Od+oO 4 

4.0000000 +0.8773826 O.Od+OO O.Od+OO O.Od+oO O.Od+OCI 4 

4.1899589 +OS483641 O.Od+OO 0.0d+00 O.Od+OO O.Od+OCI ,4 

+0.3799178 +0.2193456 O.Od+OO O.Od+Oo 0.0d+00 0.0d+001 

+OS698767 -0.1096728 O.Od+OO O.Od+oO O.Od+OO O.Od+OO 4 

+0.7598356 -0.4386913 O.Od+OO O.Od+oO O.Od+OO O.Od+OO 4 

+0.3799178 -0.4386913 O.od+OO 0.0d+00 0.0d+00 O.Od+OO 4 

+0.0000000 -0.4386913 O.Od+OO O.Od+oO O.Od+OO 0.0d+00 4. 

-0.3799178 -0.4386913 O.Od+OO 0.0d+00 O.Od+OO O.Od+oO 4 

O.Od+OO 

1 

o.Od+OO o.Od+Oo 1 

6.283 18 0.0d+00 
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1 

4 

10 

0.001 

6 

8 

1 

0.0 0.0005 

0.0 0.0 

E.3 Sample Output File 

41.0000000000000 1 

1 .ooOOOO21754510E-03 

1.25892568566722E-03 

1 S8489353724685E-03 

1.99526274902841E-03 

2.51 188697795814E-03 

3.16227834810636E-03 

3.98 107257159755E-03 

5.01 18734265809 1E-03 

6.30957481741 862E-03 

7.94328407526483E-03 

1.00000021754508E-02 

1.2589256856672OE-02 

1 S8489353724683E-02 

1.99526274902838E-02 

4.55 150082073090 

4.66662355046387 

4.78 1747599691 68 

4.89687268229402 

5.01 199851234593 

5.12712466604652 

5.24225039041 891 

5.357374836 17244 

5.47249896966325 

5.58762977854023 

5.70278235404304 

5.8 1796879366257 

5.933 170421 80628 

6.04832658428773 

0.5oooO21388258'34 

OSooOo56979997:35 

OSooOO834O973 1 r39 

0.5000102835091:25 

0.5OOO11658 162106 

0.5OOO12492 190590 

0.5000 12834094 193 

0.50001 3574725628 

0.50001 8240563590 

0.5000325 19554669 

0.5OOO524028629:17 

0.5OOO4013 1472 140 

0.499935008270483 

0.4998 15225822297 
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2.5 11 886977958 1 1E-02 0.5003 15970372 134 

3.162278348 1063 1E-02 6.27871 601916173 0.5032278 18 186001 

3.98 10725715975 1E-02 6.395 16525905925 0.51 19521725 14025 

5.01 187342658086E-02 6.51476772778330 0.531474330190670 

6.30957481741852E-02 6.64082080169802 0.567880315724269 

7.94328407526472E-02 6.77802265535270 0.627881253904955 

6.16341 8255535 1 1 

0 . 1 ~ 2 1 7 5 4 5 0 7  

0.125892568566718 

0.158489353724680 

0.199526274902835 

0.251 188697795807 

0.3 162278348 10627 

0.398107257 159746 

0.501 187342658079 

0.63095748 1741 845 

0.794328407526462 

1.00000021754505 

1.25892568566716 

1.58489353724678 

1.99526274902832 

2.51 188697795804 

3.162278348 10622 

3.98 107257 159740 

5.01 187342658071 

6.30957481741836 

7.9432840752645 1 

10.000002 1754504 

6.93259273683730 0.718806415889670 

7.1 1252924597900 0.849034263757746 

7.32797079262657 1.0284252774584:! 

7.59155032959813 1.268496464691 1’7 

7.91 872674262002 1 S8260024272634 

8.32823484824593 1.98659709769266 

8.84284020037596 2.50021739272089 

9.490502 8 35 30347 3.148 8 85 54744700 

10.3059567994461 3.96567235638688 

11.3326913573696 4.99326740416317 

12.6253712723555 6.28614539199894 

14.25280584 19577 7.9 1323256 133403 

16.3016353994230 9.96136759372297 

18.8809487894316 12.5398009322737 

22.1280899252805 15.7859646756708 

26.21596840144 10 19.872789109 1795 

31.3622651562781 25.01792773 18239 

37.84 10233918702 3 1.4953659101767 

45 9 7 2 4  15772979 39.65002497637 80 

56.2652453030240 49.916 1385583680 

69.191 8161374446 62.8403809091606 
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Computer Program 
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C*******************************************************:~****************** 

c PROGRAMMAIN 

C*******************************************************:~****************** 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

Features : 
o Boundary Element Method 
o Two-dimensional 
o Single phase 
o Homogeneous, Anisotropic 
o Slightly compressible 

Fluid Flow through Forous Media 
Diffusivity Equation Solved in Laplace Space 

JITENDRA KIKANI 
STANFORD UNIVERSITY 

- C 
c Characterisitics : 
C o Pressure and Semi-log pressure derivative 
C o Logarithmic or Cartesian time stepping 
C o nw line source wells 
C o Rate decline 
C o Dirichlet, Neumann or Radiation Boundary Conds 
C o Laplace inversion by Stehfest algorithm 
C o Matrix Inversion by Gauss Jordan elimination 
C with pivoting 
C o Numerical integration with Gauss-Legendre 
C 
C o Calculation of reservoir area by triangulation 
C o Local Coordinate system based on fictitious 
C source point 
C*******************************************************~******************  

quadrature, 2 panels, 6 point schemes in each 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
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CONTROL STATEMENTS 

IMPLICIT REAL*8(A-H,O-Z) 
CHARACTER TITLE”80, LOGISTIC*80 
DIMENSION X( 100) ,Y ( 1 OO),F’( 1 OO),XW(2O),Y W(20) ,TW(20) ,lrWD(20),T(5OO) 

&,TP(20,10) 

DIMENSION XX(lO),YY(lO) 

COMMON/INV/N,NW,XD( 1 OO),Y D( 1 OO),ID( 1 00),NFLOW( ~O~I,XWD(~O),YWD(~O), 
&QW(20,1 O),TPD(20,1 O),MOB,KEY ,IGANPT,INT,GINV( 100),1’D( 100),PNL( 100) 
&,PNA( 1 OO), ALPHA( 1 OO),BETA( lO),CONST( 1 00),CONS( 1 OO),CHID( 1 OO), 
&CHI( 100),XXD( 1 O),YYD( 1 O),PP( 1 O),PPD( 1 O),CD,SKIN 
COMMON/COEFGEN/V (50) 
COMMON/SINTASS/ COEFF’( 100,1OO),COEFPL( 100,1OO),CO EFPA( 100,100) 
COMMON/FUNC/ETA,S 

Input Data 

READ(5,9100) TITLE 
READ(5,9100) LOGISTIC 

9100 FORMAT(A80) 

c Petrophysical and Fluid Properties 
C 

C 
READ(5,*) POR 
READ(5 ,*) PERMX,PERMY 
READ@,*) VISC,COMP 

C 
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C 
C 

C 
C 
C 
C 

C 
C 
C 

C 
C 
C 
C 
C 

40 for boundary pressure 

READ(5,") INUM,JNUM 

No. of internal boundaries (currently only one), Starting node no. 
for the internal boundary 

READ@,*) ICB,NBEGIN 

Geometrical Data and Boundary Conditions 

READ(S,*) KEY 
READ(S,*) N 
READ@,*) (X(I),Y(I),P(I),PNL(I),PNA(I),CONST(I),ID(I), I=l,N) 
READ@,*) PINIT 

Well(source/sink) Data 
N W  = Number of Wells 
NFLOW = Number of Flow periods for each well 

READ(%*) NW 
IF (NW .EQ. 0) GO TO OOO9 

READ(%*) XW(I),YW(I),NFLOW(I) 
DO 1213 J=l,NFLOW(I) 

DO 1212 I=l,NW 

READ(5, *) QW(IJ),*(I ,J) 
1213 CONTINUE 
1212 CONTINUE 

C 
c Transient Solution Data 

OOO9 READ(S,*) IOPT 
IF (IOPT .EQ. 0) THEN 

C 
C Cartesian time stepping 
C 

READ(S,*) W A X  
READ(S,*) TO 
READ(5,") DELT 

ELSE 
C 
C Logarithmic time stepping 

READ(S,*) L O G  
READ(S,*) ICYC 
READ(S,*) TDSM 

ENDLF 
IF (IOPT .EQ. 1) THEN 
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IRDNO = ICYC*ILOG 
RTD = lO.OD+00**(1.OD+OO/ICYC) 
T(l) = TDSM 

DO 1225 1=2,IRDNO+l 
1225 T(1) = TDSM*(RTD)**(I-1) 

ENDIF 

c Gaussian Quadrature Rule(N-point) 
C 

L 

READ(5,*) IGANFT 

Number of terms in Laplace Inversion Routine 

READ(5,”) ISFINV 

C 
c 
C 

c Internal Solution Data 

READ@,*) INT 
IF (INT .EQ. 0) GO TO 73 

READ(S,*) (XX(I),YY(I), I=l,INT) 

C 

73 CONTINUE 

c Wellbore Storage and Skin 

READ(%*) CD,SKIN 

C 

C 

L 

C 
c Echo Input Data 

WRITE( 6,920O) 

&Diffusivity Equation’) 
WRITE(6,9300) TITLE 

9300 FORMATU1 X,A80) 
WRITE(6,9400) 

9400 FORMAT(/4X, ’1’,4X,’X-Cood’,4X,’Y -Cood’ ,SX,’Pot’ ,SX,’Pn.(lv .) ’ , 
&4X, ’Pn(app.)’ ,4X, ’Const’,4X, ’Id’) 

C 

9200 FORMAT (/5X,’Boundary Integral Equation Method’JlOX,’Solution of 

DO 9444 I=l,N 
9444 WRITE(6,9500) I,X(I),Y(I),P(I),PNL(I),PNA(I),CONST(I),ID(I) 
9500 FORMAT(3X,I2,3X,F6.2,3X,F6.2,3X,F7.3,4X,F7.3,4X,~.3,4X,~.3, 

& 3X,I3) 
WRITE(6’9600) POR,PERMX,PERMY,VISC,COMP 

&cies’ , l  OX, ’Y-Permeability =’,F5.3,’ Darcies’,/5X,’Viscosity = ’ 
&,F5.2,’ Centipoise’, lOX,’Compressibility =’,F7.5) 
WRITE(6,9700) TMAX ,DELT 

9600 FORMAT(/5X,’Porosity = ’,F5.3,/5X,’X-Permeability = ’,F5.3,’Dar 

9700 FORMAT(lOX,’Max. Simulation Time =’,F5.1,8X9’Time Step Size =’, 
kF7.4) 

186 
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C 
c---------------------------------------------------------------------- 
C 
c Non-Dimensionalize variables and parameters 
C 

IBUG = KEY 
AR = AREA(N-NBEGIN+ 1 ,X,Y, 1 ,N-NBEGIN+l ,IBUG) 

DO 10 I=l,N 
XD(1) = X(I)/DSQRT(AR) 
YD(1) = Y (I)*DSQRT(PERMX/(PERMY*AR)) 

10 CONTINUE 
DO 20 I=l,INT 

XXD(1) = XX(I)/DSQRT(AR) 
YYD(1) = YY(I)*DSQRT(PERh4X/(PEFWY *AR)) 

20 CONTINUE 
DLFF = PERMX/(POR*VISC*COMP) 
MOB = PERMWISC 

IF (IOPT .EQ. 0) THEN 
TDMAX = TMAX*DLFF/AR 
TOD = TO*DIFF/AR 
DTD = DELT*DIFF/AR 

ENDIF 
IF (NW .EQ. 0) GO TO 40 

DO 30 1=1 ,NW 
XWD(1) = XW(I)/DSQRT(AR) 
YWD(1) = YW(I)*DSQRT(PERMX/(PERMY*AR)) 
DO 37 J=l W O W ( 1 )  

TPD(1,J) = TP(I,J)*DIFF/AR 
37 CONTINUE 
30 CONTINUE 
40 CONTINUE 

DO 50 I=l,N 
IF (ID(1) .EQ. 1 .OR. ID(1) .EQ. 2 .OR. ID(1) .EQ. 3) THEN 
PD(1) = P(1) - PINIT 
ENDIF 

50 CONTINUE 
C 
C 
C 
C 

If Boundary Conditions are of TYPE 3. The Value of Constants are 
Given in the Input P,PNL or PNA. Excoriate them. 

DO 60 J=l,N 
IF (ID(J) .EQ. 5) THEN 
ALPHA(J) = P(J) 
BETA(J) = PNL(J) 
P(J) = 0.00D+00 
PNL(J) = 0.00D+00 
ENDIF 

IF (ID(J) .EQ. 6) THEN 
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ALPHA(J) = P(J) 
BETA(J) = PNA(J) 
P(J) = O.OOD+OO 
PNA(J) = O.OOD+OO 
ENDIF 

IF (ID(J) .EQ. 7 .OR. ID(J) .EQ. 8) THEN 
ALPHA(J) = PNL(J) 
BETA(J) = PNA(J) 
CHI(J) = P(J) 
P(J) = 0.00D+OO 
PNL(J) = O.OOD+OO 
PNA(J) = 0.00D+00 
ENDIF 

60 CONTINUE 
C 
C 
C Create Plot Files 
C 

OPEN (UNIT=l, FILE=’pres.plt’) 
rewind 1 
IF (IOPT .EQ. 0) THEN 

ELSE 

ENDIF 
NANUM = JNUM - INUM + 1 

AAAA = TMAX/DELT 

AAAA = IRDNO+l 

WRITE( 1 ,*) AAAA,NANUM 

OPEN (UNIT=2, FILE=’int.plt’) 
REWIND 2 
WRITe(2,*) AAAA,INT 

C 
C 
C 

CALL SCGEN(1SFINV) 

c Begin the time loop. 
C 

TSTEP = 1. 
IF (IOP” .EQ. 0) TTOT = TOD 

DO 8888 J=1,1500 
IF (IOPT .EQ. 1) then 

TD = T(J)*DIFF/AR 
ELSE 
T D =  “TOT 
ENDIF 

IF (J .GE. IRDN0+2) GO TO 9999 

188 
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c Reinitialize the unknowns 
DO 1732 K=l,N 
GO TO (21,22,23,24,25,26,27,27), ID&) 

C 
21 PNA(K) = O.Od+OO 

GO TO 1732 
22 

23 

24 

25 

26 

1732 

C 
C 
C 

C 
1 

2 

3 

4 

5 

6 

PNL(K) = O.Od+OO 

PNL(K) = O.Od+OO 
GO TO 1732 

PNA(K) = O.Od+OO 
GO TO 1732 

PD(K) = O.Od+OO 
GO TO 1732 

PD(K) = O.Od+OO 
PNL(K) = O.Od+OO 
GO TO 1732 

PD(K) = O.Od+OO 
PNA(K) = O.Od+OO 
GO TO 1732 

PD(K) = O.Od+OO 
PNL(K) = o.od+oo 
PNA(K) = O.Od+OO 

CONTINUE 

CALL STEH(YD,AR,ISFINV,ICB,NEiEGIN) 

Allocate boundary solutions to proper unknowns 

DO 2000 K=l,N 
GO TO (1,2,3,4,5,6,7,7), ID(K) 

PNA(K) = GINV(K) 
GO TO 2000 
PNL(K) = GINV(K) 
GO TO 2000 
PNL(K) = GINV(K) 
PNA(K) = PNL(K) 
GO TO 2000 
PD(K) = GINV(K) 
P(K) = PD(K) + PINIT 
GO TO 2000 
PD(K) = GINV(K) 
P(K) = PD(K) + PINIT 
PNL(K) = CONS(K)/BETA(K) - ALPHA(K)/BETA(K)*PD(K) 
GO TO 2000 
PD(K) = GINV(K) 
P(K) = PD(K) + PINIT 
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PNA(K) = CONS(K)/BETA(K) - ALPHA(K)/BETA(l<)*PD(K) 
GO TO 2000 

P(K) = PD(K) + PINIT 
7 PD(K) = GINV(K) 

PNL(K) = CHID(K)/ALPHA(K) - PD(K)/ALPHA(K) 
PNA(K) = CONS(K)/BETA(K) - PD(K)/BETA(K) 

2000 CONTINUE 

DIMT = TD*AR/DIFF 
C 
C ....................... PRINT THE BOUNDARY SOLUTIONS--------.----------- 
C 

IF (KEY .EQ. 1) THEN 
WRITE(6,8 100) 

WRITE(6,820) TSTEP,DELT,DIMT 
8100 

8200 FORMAT(/SX,’TIME STEP NO. ’,FS.l,lSX,’STEP SIZE ’’F6.3, 

FORMAT(//X,’ ......... BOUNDARY SOLUTIONS ......... ’1 

& /14X,’TOTAL SIMULATION TIME = ’,F7.3) 
WRITE( 6,8 300) 

8300 FORMAT(/3X,’NODE’,3X,’X-COOD’,3X,’Y-COOD’,9X,’P’,7X,’FLUX(LVG 
&.)’,4X,’FLUX(APP.)’,6X,’ID’) 

DO 8222 I=l,N 
8222 WRITE(6,8400) I,X(I),Y(I),P(I),PNL(I),PNA(I),ID(I) 
8400 FOF2MAT(/3X,I3,2X7F7.3,3X,F7.3,2X,F12.6,4X,FlO.~6,4X, 

& F10.6,5X, 12) 
ENDIF 

C 
C Write the Graphing Information in Plot File 
n 
b 

WRITE(1,*) DMT, P(INUM),(P(KKK), KKK=INUM+l,JNUhUI-l),P(JNUM) 
C 
6000 CONTINUE 

C 
C 

Write the Interior Solutions in Plot File 
L. 

WRITE(2,*) TD,(PP(KKK),TD*PPD(KKK), KKK=l,INT) 

TSTEP = TSTEP + 1. 
IF (IOF’T .EQ. 0) THEN 

TTOT = ‘I7[’6T + DTD 
ENDIF 

IF (TD .GE. TDMAX) GO TO 9999 

8888 CONTINUE 
9999 STOP 

END 
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SUBROUTINE STEH(T,AR,ISFINV,ICB,NBEGIN) 

This routine samples the solution at a number of values 
of the laplace parameter S and calculates the inverse 
after setting up the matrix and solving it at every 

c------------------------------------------------------------------------ 
c 
c 
c 
c parameter value 
C 
c T - TIME AT WHICH INVERSE IS WANTED. 
c ISFINV - PARAMETER THAT GOVERNS THE ACCURACY. 
c ISFINV MUST BE EVEN. 
c 
c 

C PRECISION DIGITS N 
C SINGLE 8 8 
C DOUBLE 16 16 

ISFINV IS ROUGHLY EQUIVALENT TO THE NUMBER 1OF DIGITS 
WITH WHICH THE COMPUTER IS WORKING. 

c E.G. HONEYWELL CP-5 

c-------------------------------------------------------------- 
IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION PDNS( 1 OO),PNLS( lOO),PNAS( 100),G(1 OO),H( loO,lOO),TPP( 10) 
COMMON/INV/N,NW,XD( 100) ,Y D( 1 OO),ID( 1 00),NFLOW( 1 O)i,XWD(20) ,Y WD(20), 
&QW(20,10),TPD(20,10),MOB,KEY ,IGA”,int,GINV( 1 OO),PI)( 100),PNL( 100) 
&,PNA( 100) ,ALPHA( 1 OO),BETA( 100) ,CONST( 1 OO),CONS( 1 OO:,, CHID( loo), 
&CHI( 100),XXD( 10),YYD( lO),PP( lO),PPD( 10),CD,SKIN 
COMMON/COEFGEN/ V(50) 
COMMONF”C/ETA,S 
COMMON/SSOURCE/ AINHOM(100) 
COMMON/SINTASS/ COElT( l00,100),COEFPL( 100,100),CO:EFPA( 100,100) 

DATA DLN2/.693 1471 805599453DO/ 
C 

C 
C 
C 

73 

67 
C 
C 
C 

Very Important to Initialize ginv, and pp because they may 
Contain Numbers from Previous Time Steps 

DO 73 J = l,N 
GINV(J) = 0.0d+00 
CONTINUE 

DO 67 J=l,INT 
PP(J) = O.Od+OO 
PPD(J) = O.Od+00 
CONTINUE 

Setting the Limit on the Matrix Inversion Tolerance 

EPS = 1.0d-15 

AD =DLN2/T 
DO 11 J= 1,ISFINV 



APPENDIX F 192 

S =AD*J 
C 

100 

200 

300 

70 
C 
C 
C 
C 

DO 70 K=l,N 
PDNS(K) = PD(K)/S 
PNLS(K) = PNL(K)/S 
PNAS(K) = PNA(K)/S 
IF (ID(K) - 6) 100,200,300 

CONS(K) = CONST(K)/S 

CONS(K) = CONST(K)/S 

CHID(K) = CHI(K)/S 

GO TO 70 

GO TO 70 

CONS(K) = CONST(K)/S 
CONTINUE 

Evaluate the Coefficients of Known and Unknown Variables 

CALL AINTEG(N,XD,YD,IGANPT,ICB,IWEGIN,KEY) 
C 

& 

C 
C 

CALL AS SEMBLE(N,ID ,PDNS PNLS ,PN AS ,ALPHA ,BETA, CONS, CHID,H, 
G,KEY) 

Add the Inhomogeneity to the RHS Vector 
C 

C 

1397 
C 
C 
C 
C 
C 

9800 

C 
C 
C 

C 

DO 1397 LL=l,n 
G(LL) = G(LL) + AINHOM(LL) 
CONTINUE 

LHS Matrix of Unknown Vector, Inverted by Gauss-Jordan 
Elimination with Pivoting and Stored. 

CALL MATW(N,H,EPS,-l ,DTNRM) 

IF (DTNRM .LT. 1.OD-15) THEN 
WRITE( 6,9 800) 

ENDIF 
FORMAT(/'MATRIX IS ILL CONDITIONED') 

MULTIPLY THE STORED INVERSE WITH RHS VECTOR TO GET SOLN. 

CALL MATMULT(N,H,G) 

Calculate the Interior Solution, at Each Sampling Point 
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C 
C Boundary Point. 
C 

Perform the Laplace Inversion in the Same Fashion as 

CALL AINTERN(N,XD,YD,ID,INT,XXD,YYD,NW,XWD ,YWD,QW,TPD,NFLO W, 
& T,G,IGANFT',TPP,PDNS,F"LS,PNAS,AR,ICB ,NBEGIN) 

C 
C Inversion of the solution. This solution sampled isfinv times 
C 

DO 3750 LL = l,N 
GINV(LL) = GINV(LL) + V(J)*G(LL) 

3750 CONTINUE 

c 
C 

Inclusion of Wellbore Storage and Skin 
C 

DO 3755 LL =l,INT 
TMP = S/(SKIN + S*TPP(LL)) 
TPP(LL) = l./(CD*S*S + TMP) 
PP(LL) = PP(LL) + V(J)*TPP(LL) 
PPD(LL) = PPD(LL) + V(J)*S*TPP(LL) 

3755 CONTINUE 

6000 CONTINUE 
11 CONTINUE 

DO 79 LL = l,N 
GINV(LL) = AD*GINV(LL) 

79 CONTINUE 
DO 85 LL=l,INT 

PP(LL) = AD*PP(LL) 
PPD(LL) = AD*PPD(LL) 

85 CONTINUE 
RETURN 
END 

SUBROUTINE AINTEG(N,XD,YD,IGANPT,ICB,NBEGIN,KE:Y) 
C 
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c-------------------------------..-------------------------------------- 
C 

IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION XD( 1 OO),Y D( 1 OO), ALPHA( 100) 
COMMON/SINTASS/ COEFP( 100,l OO),COEFPL( 100,l OO),COEFF’A( 100,100) 
COMMON/func/ETA,S 
EXTERNAL BESK0,BESKl ,aIntK,XIKl,XKl ,XIKO,XKO 

C 
c Clearing the Subscripted Variables 
C 

L = N + l  
DO 20 1=1 ,N 

DO 10 J = l,N 
COEFP(1,J) = O.OD0 
COEFPL(1,J) = O.OD0 
COEFPA(1,J) = O.OD0 

COEFP(1,L) = COEFP(1,l) 
COEFPA(1,L) = COEFPA(1,l) 

10 CONTINUE 

20 CONTINUE 

SS = DSQRT(S) 
C 
c 
c Collocation Point 

Compiling the Coefficients of Pressures and Derivatives for each 

C 
IF (ICB .EQ. 1) THEN 

XD(L) = XDWEGIN) 
YD(L) = YDWEGLN) 

XD(L) = XD(1) 
YD(L) = YD(1) 

ELSE 

ENDIF 
R1 = DSQRT((XD(L) - XD(N))**2 + (YD(L) - YD(N))**2) 
CO = (XD(L) - XD(N))/Rl 
SI = (YD(L) - YD(N))/Rl 
THETA1 = DATAN2(SI,CO) 

DO 500 1=1 ,N 
DO 400 J=l,N 

C 
C 
C 

Switching to a Local Co-ordinate System 

IF (ICB .EQ. 1) THEN 
IF (J .EQ. NBEGIN-1) THEN 

R = DSQRT((XD(1) - XD(J))**2 + (YD(1) - YD(J))”*2) 
CO = (XD(1) - XD(J))/R 
SI = (YD(1) - YD(J))/R 
XIA = (XD(J) - XD(I))*CO + (YD(J) - YD(I))*SI 
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& 

& 
67 

XIB = (XD(1) - XD(I))*CO + (YD(1) - YD(I))*SI 
SIGNRN = {XD(l)-XD(J))*(YD(J)-YD(1)) - 
(XD(J)-XD(I))*(YD( 1)-YD(J)) 

GO TO 67 
ENDIF 

ENDIF 
R = DSQRT((XD(J+l) - XD(J))**2 + (YD(J+l) - YD(J):)**2) 
CO = (XD(J+l) - XD(J))/R 
SI = (YD(J+l) - YD(J))/R 
XIA = (XD(J) - XD(I))*CO + (YD(J) - YD(I))*SI 
XIB = (XD(J+l) - XD(I))*CO + (YD(J+l) - YD(I))*SI 
SIGNRN = (XD(J+l)-XD(J))*(YD(J)-YD(1)) - 
(XD(J)-XD(I))*(YD(J+l)-YD(J)) 

ETA = (YD(J) - YD(I))*CO - (XD(J) - XD(I))*SI 
DIFF = XIB - XIA 
ASQ = XIA*XIA + ETA*ETA 
SSQ = XIB*XIB + ETA*ETA 

IF (ICB .EQ. 1) THEN 
IF (3 .EQ. I) GO TO 100 

IF (I .EQ. NBEGIN .AND. J .EQ. NBEGIN-1) GO TO 150 
IF (I .EQ. 1 .AND. J .EQ. NBEGIN-I) GO TO 200 

IF (I .EQ. NBEGIN .AND. J .EQ. N) GO TO 200 
IF (I .EQ. J+1) GO TO 200 

ELSE 
IF (J .EQ. I) GO TO 100 

IF (I .EQ. J+1 .OR. I+N .EQ. J+1) GO TO 200 
ENDIF 

C 
C 
C 
150 

Integrals and Function Evaluations 

CONTINUE 
XIKlSUM = (BESKO(SS*DSQRT(ASQ)) - BESKO(SS*DSQRT(BSQ)))/SS 
CALL GAUSS(IGANPT,XK 1,l ,XIA,XIB ,2,XK1 SUM,IND) 
CALL GAUSS(IGANPT,XIKO, 1 ,XIA,XIB,2,XIKOSUM,IND) 
CALL GAUSS(IGANPT,XKO, 1 ,XIA,XIB ,2,XKOSUM,IND) 

C 
PBEl 1 = ETA*SS*XIKlSUM/DIFF 
PBE12 = ETA*SS*XKlSUM/DIFF 
PNBE21 = XIKOSUM/DIFF 
PNBE22 = XKOSUM/DIFF 
PBEl = XIB*PBE12 - PBEll 
PBE2 = PBEll - XIA*PBE12 
PBEl = DSIGN(PBE1,SIGNRN) 
PBE2 = DSIGN(PBE2,SIGNRN) 
PNBEl = XIB*PNBE22 - PNBE21 
PNBE2 = PNBE21 - XIA*PNBE22 
GO TO 300 
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C 
C 
C 
C Singular Integrals 
C 

Determination of Coefficients for Elements where Field 
Point Belongs to the Same Element as the Collocation h i n t  

100 ABC = DABS(X1B) 
PNBE21 = (l.OD+OO/ABC/SS - BESKl(ABC*SS))*ABC'/SS/DIFF 
PNBE22 = aIntK(ABC*SS)/SS/DIFF 
PBEl = O.OD0 
PBE2 = O.OD0 
PNBEl = XIB*PNBE22 - PNBE21 
PNBE2 = PNBE21 - XIA*PNBE22 
GO TO 300 

200 ABC = DABS(X1A) 
PNBE21 = (l.OD+OO/ABC/SS - BESKl(ABC*SS))*ABC/SS/DIFF 
PNBE22 = aIntK(AB C* S S)/S S/DIFF 
PBEl = O.OD0 
PBE2 = O.OD0 
PNBEl = XIB"PNBE22 - PNBE21 
PNBE2 = PNBE21 - XIA*PNBE22 

C 
300 CONTINUE 

COEFP(1,J) = COEFP(1,J) + PBEl 
COEFPL(1,J) = PNBEl 
IF (ICB .EQ. 1) THEN 

IF (J .EQ. NBEGIN-1) THEN 
COEFP(1,l) = COEFP(1,l) + PBE2 
COEFFA(1,l) = PNBE2 
GO TO 400 

ENDIF 
ENDIF 

COEFP(I,J+l) = PBE2 
COEFPA(I,J+l) = PNBE2 

400 CONTINUE 
IF (ICB .EQ. 1) THEN 

COEFP(1,NBEGIN) = COEFP(1,NBEGIN) + PBE2 
COEFPA(1,NBEGIN) = COEFPA(1,L) 

COEFP(1,l) = COEFP(1,l) + PBE2 
COEFPA(1,l) = COEFPA(1,L) 

ELSE 

ENDIF 
C 
C 
C 
C Node Point. 
C 

Contribution to the coefficient of Pressure due to Fraction 
of Circular Angle Subtended by the System Geometry at Every 

IF (ICB .EQ. 1) THEN 
IF (I .EQ. 1) THEN 

196 
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ALPHA(1) = ANGLE(XD(NBEGIN-l),YD(NBEGIN-l),XD(I),YD(I), 
& XD(I+l),YD(I+l)) 
ELSE 
IF (I .EQ. NBEGIN-1) THEN 
ALPHA(I) = Al\iGLE(XD(I-l),YD(I-l),XD(I),YD(I),XD( l:),YD( 1)) 
ELSE 
IF (I .EQ. NBEGIN) THEN 

ELSE 
ALPHA(1) = ANGLE(XD(N),YD(N),XD(I),YD(I),XD(I+l),YD(I+l)) 

IF (I .EQ. N) THEN 

ELSE 
ALPHA(1) = ANGLE(XD(I-I),YD(I-l),XD(I),YD(I),XD(L),YD(L)) 

ALPHA(1) = ANGLE(XD(I-1),YD(I-1),XD(I),YD(I),XD(I+1), 
& Y D(I+ 1)) 

ENDIF 
ENDIF 
ENDIF 

ENDIF 
GO TO 69 
ENDIF 

IF (I .EQ. 1) THEN 

ELSE 
ALPHA(1) = ANGLE(XD(N),YD(N),XD(I),YD(I),XD(I+ l)l,YD(I+l)) 

IF (I .EQ. N) THEN 
ALPHA(1) = ANGLE(XD(1-l),YD(I-l),XD(I),YD(I),XD(IL),YD(L)) 

ALPHA(1) = ANGLE(XD(1-l),YD(I-l),XD(I),YD(I),XD(:[+l), 
ELSE 

& YD(I+lN ._ ENDIF 
ENDIF 

69 
500 CONTINUE 
C 
C 
C 

COEFP(1,I) = COEFP(I.1) - ALPHA(1) 

Print Out Diagnostics if KEY=l. 

IF (KEY .NE. 1) GO TO 1000 
OPEN( UNIT= 12 ,FILE= ’ coe fp.diag ’ ) 
REWIND 12 
WRITE(12,9000) ’COEFP’ 
D06001=1,N . 
WRITE( 12’9 100) (COEFP(I,J), J= 1 ,N) 

600 CONTINUE 
WRITE( 12.9000) ’COEFPL’ 

DO 700 I=l,N 
WRITE( 1 2’9 1 00) (COEFPL(1, J) , J= 1 ,N) 

700 CONTINUE 
WRITE( 12,900O) ’COEFPA’ 

197 
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DO 800 I=l,N 
WRITE( 12,9100) (COEFPA(I,J), J= 1 ,N) 

800 CONTINUE 
9OOO FORMAT( 1H,A6) 
9 100 FORMAT( lX, 1 OF 15.10) 
lo00 RETURN 

END 

SUBROUTINE ASSEMBLE(N,ID,PDNS,PNLS,PNAS,ALPHA,BETA,CONS,CHID,H, 
&G,KEY) 

C c .............................. ---____-______ __-__-____-___-_-________ 
C 
C 
C 
C 
C 
C c ...................................................................... 
C 

Assembles the Coefficient Matrix and the Right Hand Vector. 
Takes the Coefficients Generated by the Routing AINTEG and 
Depending on the Identification of the Node Allicates it to 
the Matrix of Coefficients or the RHS Vector 

IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION ID(N),PDNS(N),PNLS(N),PNAS(N) ,ALPHA(N), BETA(N),CONS (N), 

&CHID(N),H( lOO,lOO),G(100) 
COMMON/SINTAS S/  COEFP( 100,l OO),COEFPL( 1 00,l 00),CO EFPA( 1 00,100) 

C 
C CLEARING THE SUBSCRIPTED VARIABLES 
C 

DO 80 I=l,N 
DO 70 J=l,N 

70 H(1,J) = O.OD0 
80 G(1) = 0.0d+00 

C 
C 
C 

ALLOCATE COEFFICIENTS ACCORDING TO THE NODE IDENTIFICATION 

DO 200 I = l,N 
D O 1 0 0 J = l , N  
GO TO (1,2,3,4,5,6,7,7), ID(J) 

1 H(1,J) = COEFPA(1,J) 
G(1) = G(1) - COEFPL(I,J)*PNLS(J) - COEFP(I,J)*PDNS(J) 
GO TO 100 

2 H(1,J) = COEFPL(1,J) 
G(1) = G(1) - COEFPA(I,J)*PNAS(J) - COEFP(I,J)*PDNS(J) 
GO TO 100 
H(1,J) = COEFPL(1,J) + COEFPA(1,J) 

GO TO 100 

3 
G(1) = G(1) - COEFP(I,J)*PDNS(J) 

4 H(1,J) = COEFP(1,J) 
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G(1) = G(1) - COEFPA(I,J)*PNAS(J) - COEFPL(I,J)*I”LS(J) 

H(I,J) = COEFP(1,J) - COEFPL(I,J)*ALPHA(J)/BETA(J) 
G(1) = G(1) - COEFPA(I,J)*PNAS(J) - COEFPL(I,J)* 

GO TO 100 
5 

& CONS( J)/BET A( J) 
GO TO 100 

6 H(1,J) = COEFP(1,J) - COEFPA(I,J)*ALPHA(J)/BETA(J) 
G(1) = G(1) - COEFPL(I,J)*PNLS(J) - COEFPA(I,J)* 

& CONS(J)/BETA(J) 
GO TO 100 

7 H(1,J) = COEFP(1,J) - COEFPL(I,J)/ALPHA(J) - 

G(1) = G(1) - COEFPL(I,J)*CHID(J)/ALPHA(J) - 
& COEFPA(1, J)/BET A( J) 

& COEFPA(I,J)*CONS(J)BETA(J) 
C 
C 
100 CONTINUE 
200 CONTINUE 

C 
C 
C 

Print Diagnostic Data if Needed 

IF (KEY .EQ. 1) T E N  
OPEN(UNIT=13 ,FILE= ’mat.diag ’) 
REWIND 13 
WRITE( 13,950O) 

9500 FORMAT(/lX,’LHS MATRIX,H(I,J)’) 

300 WlUTE(13,9600) (H(I,J), J=l,N) 
9600 FORMAT(8D13.5) 

wRITE(13,9700) 
9700 FORMAT(/lX,’RHS VECTOR,G(I)’) 

WRITE(13,980O) (G(I), I=l,N) 
9800 FORMAT(5D13.5) 

ENDIF 

DO 300 1=1 ,N 

RETURN 
END 
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DIMENSION XD(N),YD(N),QW(20,1O),TPD(20,lO),NFLOW(lVW), 

EXTERNAL BESKO 
&XWD(Nw),YWD(NW) 

DO 10 I = l ,N 
AINHOM(1) = O.Od+OO 

10 CONTINUE 

DO 1001=1,N 
DO 50 J = 1,NW 

dist = DSQRT((XD(1)-XWD(J))**2 + (YD(I)-YWD(J))**2)1 
DO 30 K=l,NFLOW(J) 

IF (K .EQ. 1) '1'HEN 

ELSE 

ENDIF 

COEF=O.O 

IF (TD .GE. TPD(J,K)) THEN 

COEF=QW( J,K)*DEXP(-S *TPD( J,K))/s 

COEF=(QW(J,K)-QW(J,K-l))*DEXP(-STD(J,K))/S 

ELSE 

ENDIF 
AINHOM(1) = AINHOM(1) - COEF*BESKO(DIST*DSQI<T(S)) 

30 CONTINUE 
50 CONTINUE 
100 CONTINUE 

RETURN 
END 

C 
IMPLICIT REAL*g(A-H,O-Z) 
DIMENSION QW (20,lO) ,TPD(20,10) ,NFLOW(N W) ,XWD(") ,Y WD(NW) 
EXTERNAL BESKO 

FORCE = O.Od+OO 

DO 50 J = 1,NW 
DIST = DSQRT((XXD-XWD(J))**2 + (YYD-YWD(J))**2) 
DO 30 K=l,NFLOW(J) 

IF (K .EQ. 1) THEN 
IF (TD .GE. TPD(J,K)) THEN 

COEF=QW(J,K)*DEXP(-S *TPD(J,K))/S 
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ELSE 
COEF=(QW(J,K)-QW(J,K-l))*DEXP(-S"TPD(J,K))/S 

ENDIF 

COEF=O.O 
ELSE 

ENDIF 
FORCE = FORCE + COEF*BESK)(DIST*DSQRT(S)) 

30 CONTINUE 
50 CONTINUE 

RETURN 
END 

~~ 

20 1 

W,TPD,NFL SUBROUTINE AINTERN(N,XD, YD,ID, INT,XXD, Y YD,W 
&T,G,IGANPT,PP,PDNS,PNLS,PNAS ,AR,ICB,NBEGIN) 

C 

XWD 

C 
IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION XD( 100),YD( 100),ID( 100),XXD( lO),YYD( lO),XWD(NW),YWD(NW), 

&QW(20,10),TPD(20,1 O),NFLOW(NW),G( 1 OO),PP( 10) ,PDNS( lOO), 
&PNLS( 1 00),PNAS( 100) 
COMMON/FUNC/ETA,S 
EXTERNAL BESK0,BESKl ,AINTK,XIKl,XKl,XIKO,XKO 

C 
c Clearing the Subscripted Variables 
C 

PI = 2.0d+00*DACOS(0.0d+OO) 

Initialize the Internal Solution Variable, which may Consist Values 
from the last Laplace Space Sampling Level 

DO 73 1=1 ,INT 

C 
c 
c 
C 

PP(1) = o.od+oo 
73 CONTINUE 

L = N + 1  
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IF (ICB .EQ. 1) THEN 
XD(L) = XD(NBEGIN) 
Y D Q  = YD(NBEGIN) 

XD(L) = XD(1) 
YD(L) = YD(1) 

ELSE 

ENDIF 
C 
C 
C 
C 

1 

2 

3 

4 
19 

C 
C 
C 
C 

C 
C 
C 

C 
C 
C 
C 
C 
C 

Take the Current Solution Vector of Steh and Allocate to Proper 
Unknowns and Use it for Evaluation at Interior Points 

DO 19 K=l,N 
GO TO (1,2,3,4), ID(K) 

PNAS(K) = G(K) 
GO TO 19 

PNLS(K) = G(K) 
GO TO 19 

PNLS(K) = G(K) 
PNLS(K) = PNLS(K) 
G O T 0  19 

PDNS(K) = G(K) 
CONTINUE 

If Internal Boundary Present, Proper Switching for Boundary 
Conditions Necessary 

IF (XCB .EQ. 1) THEN 
PDNS(L) = PDNS(NBEGIN) 
PNASQ = PNASWEGIN) 

ELSE 
PDNS(L) = PDNS(1) 
PDASQ = PDAS(1) 

ENDIF 
SS = DSQRT(S) 

Source/Sink Contribution Accounted for 

do 9OOO 1=1 ,INT 
CALL WELL~W,XWD,YWD,QW,TPD,NFLOW,T,XXD(I[),YYD(I),AR,S,FORCE) 

DO 7000 J=1 ,N 

Compiling the Coefficients of Pressures and Derivatives for Each 
Collocation Point 

Switching to a Local Co-ordinate System 

IF (ICB .EQ. 1) THEN 
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& 

& 

67 

C 
C 
C 

C 

& 

IF (J .EQ. NBEGIN-1) THEN 
R = DSQRT((XD(1) - XD(J))**2 + (YD(1) - YD(J))**2) 
CO = (XD(1) - XD(J))/R 
SI = (YD(1) - YD(J))/R 
XIA = (XD(J) - XXD(I))*CO + (YD(J) - YYD(I))*SI 
XIB = (XD(1) - XXD(I))*CO + (YD(1) - YYD(I))*SI 
SIGNRN = -(XD(J) - XXD(I))*(YD(l) - YD(J)) + 
(XD(1) - XD(J))*(YD(J) - YYD(1)) 

GO TO 67 
ENDIF 

ENDIF 

R = DSQRT((XD(J+l) - XD(J))**2 + (YD(J+l) - YD(J):)**2) 
CO = (XD(J+l) - XD(J))/R 
SI = (YD(J+l) - YD(J))/R 
XIA = (XD(J) - XXD(I))*CO + (YD(J) - YYD(I))*SI 
XIB = (XD(J+l) - XXD(I))*CO + (YD(J+l) - YYD(I))*ISI 
SIGNRN = -(XD(J) - XXD(I))*(YD(J+l) - YD(J)) + 
(XD(J+l) - XD(J))*(YD(J) - YYD(1)) 

ETA = (YD(J) - YYD(I))*CO - (XD(J) - XXD(I))*SI 
DIFF = XIB - XIA 

IF (SIGNRN .LT. 0.) ETA = -ETA 
ASQ = XIA*XIA + ETA*ETA 
BSQ = XIB*XIB + ETA*ETA 

Integrals and Function Evaluations 

XIKlSUM = (BESKO(SS*DSQRT(ASQ)) - BESKO(SS*DSQRT(BSQ)))/SS 
CALL GAUSS(IGANPT,XKl, l,XIA,XIB,2,XKlSUM,I"D) 
CALL GAUSS(IGA"T,XIKO, 1 ,XIA,XIB,2,XIKOSUM,IND) 
CALL GAUSS(IGA"T,XKO, 1 ,XIA,XIB,2,XKOSUM,IND) 

P B E l l =  ETA*SS*XIKlSUM/DIFF 
PBE12 = ETA*SS*XKlSUM/DIFF 
PNBE21 = XIKOSUM/DIFF 
PNBE22 = XKOSUM/DIFF 
PBEl = XIB*PBE12 - PBEll 
PBE2 = PBEll - XIA*PBE12 
PNBE1 = XIB*PNBE22 - PNBE21 
PNBE2 = PNBE21 - XIA*PNBE22 

IF (ICB .EQ. 1) THEN 
IF (J .EQ. NBEGIN-1) THEN 

PP(1) = PP(I) + PBEl*PDNS(J) + PBE2*PDNS(1) + 
GO TO 7000 
PNBEl *PNLS(J) + PNBE2*PNAS( 1) 

ENDIF 



ENDIF 
PP(I) = PP(1) + PBEl*PDNS(J) + PBE2*PDNS(J+1) + 

& PNBEl*PNLS(J) + PNBE2*PNAS(J+l) 
C 
C 
7000 CONTINUE 

go00 CONTINUE 

57 PP(1) = PP(I)/(2.*PI) 

PP(1) = PP(1) + FORCE 

DO 57 I=l,INT 

RETURN 
END 

C 
C c .................................. ....................... --__---_ 

Computes the Angle subtended by two adjacent elements by 
Considering the Triangle formed by the Three Nodal Points 

IMPLICIT REAL*8(A-H,O-Z) 
PI = 3.141592653589793DO 
ANGLE = O.OD0 
A = (XO-X2)**2 + (YO-Y2)**2 
B = (X2-X1)**2 + (Y2-Y1)**2 
c = (Xl-X0)**2 + (Yl-Y0)**2 

IF (B*C .EQ. 0.0) RETURN 

IF (TMP .GT. 1.ODO) TMP = 1.ODO 
TMP = (B +C- A)/( 2 .ODO* DSQRT(B * C)) 

IF (TMP .LT. -1.000) TMP = -1.ODO 
ANGLE = DACOS(Th4P) 
AREA = (X2-Xl)*(Yl-Y0) - (XO-Xl)*(Yl-Y2) 

RETURN 
END 

IF (AREA .LT. O.ODO) ANGLE = 2.0DO*PI - ANGLE 

FUNCTION AREA(N,X,Y,Sl ,S2,IBUG) 



APPENDIX F 205 

IF (S2 .LT. Sl) RS2 = S2 + N 
IF (N .LT. 3) THEN 
WRITE(6,*) ’** ERROR IN AREA.F **’ 
ENDIF 

C 
DO 10 I=Sl+l,RS2-1 
x1 = X(1) 
Y1 = Y(1) 
IF (I .GT. N) THEN 
x1 = X(1-N) 
Y1 = Y(1-N) 
ENDIF 

x2 = X(I+l) 
Y2 = Y(I+l) 

IF (I+1 .GT. N) THEN 
x2 = X(I+l-N) 
Y2 = Y(I+l-N) 
ENDIF 

AREA = AREA - 0.5*(X(Sl)*(Yl-Y2) + Xl*(Y2-Y(Sl)) + X2*(Y(Sl)-Yl)) 
10 CONTINUE 

IF (IBUG .EQ. 1) THEN 
OPEN (UNIT = 11,FILE = ’area.diag’) 
REWIND 11 
WRITE(11,*) ‘CALCULATION OF CUMULATIVE AREAS OF TRIANGLES 

wRITE(11,*) ’ 
WRITE( 1 1’20) 
WRITE(11,30) XO,YO,Xl,Yl,X2,Y2,AREA 
FORMAT(/4X,’X0’,4X,’Y0’,6X,’Xl’,4X, ’Y 1 ’,6X,’X2’,4X, ’Y2’,7X, 

& FORMED IN THE POLYGON’ 
CLOCKWISE NUMBERING OF NODES’ 

20 

30 FORMAT(2X,F5.3,2X,F5.3,2X,F5.3,2X,F5.3,2X,F5.3,2X,F!j.3,5X,F6.3 
& ’CUM. AREA’) 

& )  
ENDIF 

RETURN 
END 

SUBROUTINE GAUSS(N,FUN,KEY,A,B,M,SUM,IND) 
C 
C ......................................................................... 
c All purpose integration program to be used when the number of 
c integration abscissas,their values and the corresponding 
c weights are known in advance. 
c GAUSS can be used for : 
c Compound GAUSS I 
c NEWTON-COTES I FINITE INTERVAL 
c LOBATI’O I 
c RADAU I 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 

LAGUERRE I 
GENERALIZED LAGUERRE I SEMI-INFINITE, INFINITE 
HERMITE I 

Parameters needed : 
X : Array containing abscissas of an N-point integration rule 
W : Array containing weights of an N-point integration rule 
A,B : Endpoints for integration over a finite interval 
M : Number of subintervals [A,B] is divided 
Result appears in 'sum' if : 
I N D = 1  
IND = 0 (SET) IF N<1, KEY<l, KEY>6, OR M<1 WHEN KEY<=3 
KEY = 1 Composite symmetric rule (GAUSS), interval [-1,1], 

non-negative abscissas and weights stored in X & W 
to be given in ascending order of the abscissas 
The abscissas and weights for N-point Gauss-Legendre 
integration rule can be generated in ascending order 
by the subroutine "GRULE". 

KEY = 2 Composite non-symmetric rule (RADAU), interval l-l,l], 
to be given in any order 

KEY = 3 Composite symmetric rule (Closed NEWTON-COTIES,LOBATTO) 
includes endpoints of integration among abscissas, 
Abscissas and weights to be given in order as KEY=l 

KEY = 4 Symmetric rule (HERMITE), or any rule where exact 
abscissas and weights given, interval [-INF,INF], 
to be given for non-negative abscissas in ascending order 

KEY = 5 LAGUERRE integration, for A -> INF, EXP(-X)F(X)dX, 
abscissas and weights in any order 

KEY = 6 Any approximate integration such as generalized LAGUERRE 
integration, where integral is approximated by 
SUM (I=l -> N) Wi F(Xi) and N values of Wi and Xi given 

A PROGRAM FUNCTION FUN(X) MUST BE SUPPLIED BY THE USER AND 
FUN MUST BE DECLARED EXTERNAL IN THE CALLING PROGRAM 

I N D = O  
IF (N .LT. 1 .OR. KEY .LT. 1 .OR. KEY .GT. 6) RETURN 
IF (KEY .GE. 4) IND = 1 
L = (N+1)/2 

SUM = 0. 
K = 2*L-N+1 

IF (KEY - 5 )  7,5,6 
7 IF (KEY .EQ. 4) GO TO 4 
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IF (M .LT. 1) RETURN 
IND=1 
A M = M  
H l  = (B - A)/AM 
H = H1*.5 
A O = A + H  
GO TO (1,2,3),KEY 
KEY = 1, M*SYMMETRIC RULE, e.g.GAUSS C 

C 
C 
C QUADRATURE. SUBROUTINE GRULE GENERATES NON-NEGATIVE VALUES IN 
C ASCENDING ORDER. 
C 
1 CALL GRULE(N,X,W) 

GENERATE THE ABSCISSAS AND WEIGHTS FOR N POINT GAUSS-LEGENDRE 

DO 10 M1 = l,M 
IF (K .EQ. 2) SUM = SUM + W(l)*FUN(AO) 

DO 15 I = K,L 
H2 = H*X(I) 

15 SUM = SUM + W(I)*(FUN(AO+H2) + Fbj(AO-H2)) 
10 AO=AO+Hl  
16 SUM=H*SUM 

RETURN 
C KEY =2, M*NON-SYMMETRIC RULE,.e.g.RADAU 
2 

21 
20 A0 = AO+ H1 

C 

DO 20 M1 = l,M 
DO 21 I = l,N 
SUM = SUM + W(I)*FUN(AO+H*X(I)) 

GO TO 16 
KEY = 3, M*SYhMETRIC RULE WITH ENDPOINT l,.e.g.l,OBATTO 

3 SUM = W(L)*(FUN(B) - FUN(A)) 
w1 = 2*W(L) 
L1 = L -  1 

DO 30 M1 = l,M 
IF (K .EQ. 2) SUM = SUM + W(l)*FUN(AO) 

IF (K .GT. L1) GO TO 33 
DO 35 I = K,L1 

SUM = SUM + W(I)*(FUN(AO+H2) + FUN(AO-H2)) 

32 

35 

30 

C 
4 

H2 = H*X(I) 

33 SUM = SUM + Wl*FUN(AO-H) 
A0 = A0 + H1 

GO TO 16 
KEY = 4, INFINITE SYMMETRIC RULE, .e.g.HERMITE 

IF (K .EQ. 2) SUM = SUM + W(l)*FUN(X(l)) 
DO 40 I = K,L 

40 SUM = SUM + W(I)*(FUN(X(I)) + F"(-X(I))) 
RETURN 
KEY = 5 ,  LAGUERRE INTEGRATION FROM A TO INFINITY C 

5 DO 50 I = l,N 
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50 SUM = SUM + W(I)*FUN(X(I) + A) 
SUM = Em(-A)*SUM 
RETURN 

C 
6 
60 

KEY = 6, PURE INNER PRODUCT, .e.g. GENERALIZED LAGUERRE 
DO 60 I = l,N 
SUM = SUM + W(I)*FUN(X(I)) 

RETURN 
END 

SUBROUTINE GRULE(N,X,W) 

c ................................................................. ---___- _- 
C Computes the [(N+1)/2] Non-negative Abscissas X(I) and 
C Corresponding Weights W(1) of the N-point Gauss-Legendre 
C Integration Rule, Normalized to the Interval [-1,1]. The 
C Abscissas Appear in Ascending Order. Ref.: Stroud and Secrest (1966) c .......................................................................... 
C 

IMPLICIT REAL*8(A-H,O-Z) 
DOUBLE PRECISION PKMZ,PK,Tl,PKPl,DEN,Dl,DPN,D2PN,D3PN,MPN,U, 

&V,H,P,DP,FX 
DIMENSION TX(25),TW(25) 
DOUBLE PRECISION X(N),W(N) 
M = (N+1)/2 
El  = N*(N+l) 

DO 1 I = l,M 
T = (4*1-1)*3.1415926536/(4*N+2) 
XO = (1. -(1. -l./N>/(8.*N*N))*COS(T) 
PKMl = 1. 
PK = XO 

DO 3 K = 2,N 
T1 = XO*PK 

PKMl = PK 
3 PK = PKPl 

PKPl= T l  - PKM1 - (Tl-PKMl)/K + T1 

DEN = 1. - XO*XO 
D1 = N*(PKMl - XO*PK) 

D2PN = (2.*XO*DPN - El*PK)/DEN 
D3PN = (4.*XO*D2PN + (2.-El)*DPN)/DEN 
D4PN = (6.*XO*D3PN + (6.-El)*D2PN)/DEN 

DPN = Dl/DEN 

U = PK/DPN 
V = D2PN/DPN 

P = PK + H*(DPN + .5*H*(D2PN + H/3.*(D3PN+.25*H*D4lPN))) 
DP = DPN + H*(D2PN + S*H*(D3PN+H*D4PN/3.)) 

H = -U*(l. + .5*U*(V + U*(V*V- D3PN/(3.*DPN)))) 

H = H - P / D P  
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& 
1 

5 

TX(1) = XO+H 

.2*H*D4PN)))) 
FX = D1 - H*El*(PK + .S*H*(DPN + H/3.*(D2PN+.25*H*@3PN+ 

TW(1) = 2.*(1. -TX(I)*TX(I))/(FX*FX) 
IF (M+M .GT. N) TX(M) = 0. 

DO 5 I=l,M 
x(M-I+1) = TX(I) 
W(M-I+1) = TW(1) 
CONTINUE 

RETURN 
END 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

The Routing Employs GAUSS-JORDAN Elimination with Maximum 
Pivoting Strategy. 
N I C  < 0 
N I C  = 0 

------- > Inverse of N x N Matrix 'A' is Computed 
------- > Solution X(l .. N) Computed with A as 

Augmented(N x N+1) Array, Inverse also 
Computed 

Computed 
WIG > 0 ------- > Solution Computed, Inverted Matrix NOI: 

EPS If the Potential Pivot of Largest Magnitude be Smaller 

DTNRM Condition Number of Matrix = Determinant 'A'/ Euclidean 

Euclidean Norm is the Square Root of the Sum of the Squares of 
Each of the Elements of the Matrix. 
Row and Column Subscripts for Successive Pivot Elements are Saved 
in Order in the IROW and JCOL Arrays Respectively. 
K is the Pivot Counter, Pivot 
Pivot Element, Max The number of Columns in a . 
The Solutions are Computed in the N+lth Column of A and thien 
Unscrambled and Put in Proper Order in X(l)..X(N) Using the 
Pivot Subscript Information Available in the IROW and JCOL 
Arrays. The Sign of the Determinant is Adjusted if Necessary by 
Determining if an Odd or Even Number of Pairwise Interchanges is 
Required to put the Elements of the JORD Array in Ascending 
Sequence where JORD(IROW(1)) = JCOL(1). 
If the INverse is Required, It is Unscrambled in Place Using 
Y(l)..Y(N) as Temporary Storage. 

than EPS, Matrix Considered Singular, DTNRM = 0 

NORM. 

The Algebraic Value of the 

note: the routine has been modified just to calculate the inverse 
of a matrix(n x n). If needed to solve a system of eqations add 
JORD(lOO),X(N) in dimension statement and X in the argument of the 
subroutine. also remove the comment signs from statements. 
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C c ............................... _--- ............................ - ----- -- 
C 

IMFLICIT REAL*8(A-H,O-Z) 
DMENSION IRO W( loo>, JCOL( loo), JORD( 1OO),Y ( 100) ,A (1 013,100) 

MAX = N 
C 

IF (INDIC .GE. 0) MAX = N+l 
C 
C 
C 

IS N LARGER THAN 100? 

IF (N .LE. 100) GO TO 5 
WRITE( 6,500) 
DTNRM = 0. 
RETURN 

C 
C BEGIN ELIMINATION PROCEDURE 
C 
5 DETER=l.  

PD = 0. 
DO 1 W L =  l,N 

D O l O K = l , N  
100 PD = PD + A(L,K)*A(L,K) 

PD = DSQRT(PD) 
DO 18 K = l,N 
K M l = K - l  

C 
C 
C 

SEARCH FOR THE PIVOT ELEMENT 

PIVOT = 0. 
DO 11 I = l,N 
DO 11 J =  l,N 

C 
C 
C 

SCAN IROW AND JCOL ARRAYS FOR INVALID PIVOT SUBSCRIPTS 

IF ( K .EQ. 1) GO TO 9 
DO 8 ISCAN = 1, KM1 
DO 8 JSCAN = 1, KM1 

IF (I .EQ. IROW(1SCAN)) GO TO 11 
IF (J .EQ. JCOL(JSCAN)) GO TO 11 

IF (DABS(A(1,J)) .LE. DABS(PIV0T)) GO TO 11 
8 CONTINUE 
9 

PIVOT = A(1,J) 
IROW(K) = I 
JCOL(K) = J 

11 CONTINUE 
C 
C INSURE THAT SELECTED PIVOT IS LARGER ‘THAN EPS 
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C 

21 1 

IF (DABSPIVOT) .GT. EPS) GO TO 13 
DTNRM = 0. 
RETURN 

C 
C UPDATE THE DETERMINANT VALUE 
13 IROWK = IROW(K) 

JCOLK = JCOL(K) 
DETER = DETER*PIVOT 

C 
C NORMALIZE PIVOT ROW ELEMENTS 

DO 14 J = 1,MAX 
14 A(IROWK,J) = A(IROWK,J)/PIVOT 

C 
C CARRY OUT ELIMINATION AND DEVELOP INVERSE 

A(IROWK,JCOLK) = 1 ./PIVOT 

17 
18 

C 
C 
C 

20 

DO 18 I = l,N 
AIJCK = A(1,JCOLK) 

IF (I .EQ. IROWK) GO TO 18 
A(1,JCOLK) = -AIJCK/PIVOT 

DO 17 J = 1,MAX 
IF (J .NE. JCOLK) A(1,J) = A(1,J) - AIJCK*A(IROWK,J) 

CONTINUE 

ORDER SOLUTION VALUES( IF ANY) AND CREATE JORD ARRAY 

DO 20 I = l,N 
IROWI = IROW(1) 
JCOLI = JCOL(I) 
JORD(IROW1) = JCOLI 

c 20 IF (INDIC .GE. 0) X(JCOL1) = A(IROWI,MAX) 

C ADJUST SIGN OF DETERMINANT 
INTCH = 0 
N M l = N - l  

DO 22 I = 1,NMl 
I P l = I + l  
DO 22 J = IP1,N 

JTEMP = JORD(J) 
JORD(J) = JORD(1) 
JORD(1) = JTEW 
INTCH = INTCH + 1 

IF ( JORD(J) .GE. JORD(1)) GO TO 22 

22 CONTINUE 

C 
C 

IF (INTCH/2*2 .NE. INTCH) DETER = -DETER 

IF INDIC IS POSITIVE RETURN WITH RESULTS 
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C 
IF (INDIC .LE. 0) GO TO 26 
DTNRM = ABS(DETER)/PD 
RETURN 

C 
C 
C 
C FIRSTBYROWS 
C 
26 

IF INDIC IS NEGATIVE OR ZERO, UNSCRAMBLE THE INVERSE 

DO 28 J = l,N 
DO 27 I = l,N 
mow = IROW(1) 
JCOLI = JCOL(1) 

27 Y(JCOL1) = A(ROWI,J) 

28 A(I,J) = Y(1) 
C 
C THEN BY COLUMNS 
C 

D 0 2 8 1 = 1 , N  

DO 30 I = l,N 
DO 29 J = l,N 
IROWJ = IROW(J) 
JCOLJ = JCOL(J) 

29 Y(IR0WJ) = A(1,JCOLJ) 

30 A(1,J) = Y(J) 
C 
C 

DO 30 J = l,N 

RETURN FOR INDIC NEGATIVE OR ZERO 
DTNRM = ABS(DETER)/PD 
RETURN 

500 FORMAT(1OHON TOO BIG ) 
C 

END 
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DO 20 J=l,N 
20 
30 CONTINUE 

c(I> = C(1) + A(I,J)*B(J) 

DO 50 J=l,N 
50 B(J) = C(J) 

RETURN 
END 

1 G(0) = l.W 
NH =N/2 
SN = 2*MOD(NH,2)-1 
DO 2 I= l,N 

2 CONTINUE 
G(1) = G(1-l)*I 

H( 1) = 2.DO/G(NH- 1) 
DO 3 I= 2,NH 

FI = I  
H(I) = FI**NH*G(2*I)/G(NH-I)/G(I)/G(I-1) 

3 CONTINUE 
DO 5 I= l,N 

V(1) = O.DO 
KBG = (I+1)/2 
KND =MINO(I,NH) 
DO 4 K= KBG,KND 

V(1) = V(I)+H(K)/G(I-K)/G(2*K-I) 
4 CONTINUE 

V(1) = SN*V(I) 
5 SN =-SN 

RETURN 
END 

DOUBLE PRECISION FUNCTION XKO(X) 

Evaluates KO(r*dsqrt(s)) for the integration of this 
function by the gaussian quadrature over a finite range 

C 
c 
c 
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C 
IMPLICIT REAL*8(A-H,O-Z) 
COMMON/FUNC/ETA,S 
EXTERNAL BESKO 

SS  = DSQRT(S) 
R = DSQRT(X*X + ETA*ETA) 
TERM = BESKO(R*SS) 
XKO = TERM 
RETURN 
END 

DOUBLE PRECISION FUNCI'ION XIKO(X) 

C 
C 
C 

Evaluates x*KO(r*dsqrt(s)) for the integration of this 
function by the gaussian quadrature over a finite range 

COMMON/FUNC/ETA ,S 
EXTERNAL, BESKO 

IMPLICIT REAL*8(A-H,O-Z) 

SS  = DSQRT(S) 
R = DSQRT(X*X + ETA*ETA) 
TERM = X*BESKO(R*SS) 
XIKO = TERM 
RETURN 
END 

DOUBLE PRECISION FUNCTION XKl(X) 

Evaluates Kl(r*dsqrt(s))/r for the integration of this 
function by the gaussian quadrature over a finite range 

COMMON/FUNC/ETA,S 
EXTERNAL BESKl 

IMPLICIT REAL*8(A-H,O-Z) 

SS = DSQRT(S) 
R = DSQRT(X*X + ETA*ETA) 
TERM = BESKl(R*SS)/R 
XK1 =TERM 
RETURN 
END 

DOUBLE PRECISION FUNCTION XIKl (X) 

Evaluates x*Kl(r*dsqrt(s))/r for the integration of this 
function by the gaussian quadrature over a finite range 



IMPLICIT FEAL*8(A-H,O-Z) 
COMMON/FUNC/ETA,S 
EXTERNAL BESKl 

SS = DSQRT(S) 
R = DSQRT(X*X + ETA*ETA) 
TERM = X*BESKl(R*SS)/R 
XIKl = TERM 
RETURN 
END 

DOUBLE PRECISION FUNCTION AINTK(X) 

Evaluates the integral of KO over the singular interval 
0 --> x by means of ascending series upto x=11.2 and 
above that by means of asymptotic series. 

Abramowitz and Stegun Pg. 480-81 

IMPLICIT REAL*8(A-H,O-Z) 
AINTK=O.OD+OO 
P1=3.141592653589793238462643D+OO 
GAMMA=0.5772 1566490153D+oO 

I= 1 
Y=l .od+oo 

IF(X.GE.12.OD+00) GOTO 100 

AHARMAO.od+OO 

AHARM=AHARM+ l.OD+OO/Y 
AKIT = 2 .Od+00*(D/2.OD+00) **( 2*I+ l)/FACT(Y)/FACI'(Y) 

+ 1 .OD+00/(2.OD+OO*Y+ 1 .Od+00) + AHARM) 

AINTK=X - X*GAMMA + X*DLOG(2.0D+OO/X) 

8z /(Z.OD+W*Y+ 1 .OD+OO)*(DLOG(2.OD+OO/X)-GAMMA 
8z 

AINTK=AINTK + AKIT 

Y=Y+l.OD+OO 
I=I+1 
GOTO 1 
END 
RETURN 

IF (AINTK/AKIT.LE. 1 .OD+ 16) THEN 

215 

100 IF (X .ge. 5O.D+00) GO TO 200 
AMIN=l .OD+00 
AZER=0.625D+00 
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K=2 
Y = 1 .OD+OO 
ASSYM=DSQRT(PI/ 

& (2.OD+OO*X)) *DEXP( -X) 
AINKIT=ASSYM*(AMIN - AZERjX) 

3 APLUS=(1.5D+OO*AZER*(Y+O.5D+OO)*(Y+5.OD 00/6.OD+00) 
& -0.5D+OO*AMIN*(Y+O.5D+O0)**2*(Y-O.5D+OO))/(Y+ 1 .OD+OO) 

AKIT=(-1 .OD+OO)**K*APLUS/(X**K)*ASSYM 
IF@ABS(PI/(2.OD+OO*AKIT)).LE. 1 .OD+ 10) THEN 

AINKIT=AINKIT + AKIT 
AMIN=AZER 
AZER=APLUS 
Y=Y+ 1 .OD+OO 
K=K+1 
GOTO 3 

ENDIF 

AINKIT=AINKIT + AKIT 
AINTK=PI/2.0D+OO - AINKIT 
RETURN 

RETURN 
END 

200 AINTK=PI/2.0D+OO 

DOUBLE PRECISION FUNCTION FACT(W) 
IMPLICIT REAL*8(A-H,O-Z) 

C 
IF (W.GT.56) THEN 

ENDIF 
FACT= 1 .OD+OO 
X=O.OD+OO 

print*,'Factorial Argument Too High', w 

IF(W.LE. 1.OD-04) RETURN 
1 X=X+l.OD+OO 

FACT=FACT*X 
IF(DABS(X-W).GE.l.OD-04) GOTO 1 
RETURN 
END 
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