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2 ABSTRACT 
Interporosity flow in a naturslly fractured reservoir is modelled by a new 
formulation incorporating variability in matrix block size. Matrix block size 
is inversely related to fracture intensity. The size of matrix elements con- 
tributing to interporosity flow is expressed as a distribution in the source 
term of the diffusivity equation. The pressure transient response for uni- 
form and bimodal distributions of block size is investigated. Both pseudo- 
steady state and transient models of flow are analysed. It is shown that 
features observed on the pressure derivative curve can yield the parame- 
ters of the distribution. Thus, observed pressure response from fractured 
reservoirs can be analysed to obtain the matrix block size distribution in 
the volume of the reservoir investigated by the test. 

The solution to the uniform distribution can be extended to more 
general distributions. Other sources of information, like logs and geological 
observations, can give an estimation of the shape of the distribution, and 
this model can be used to compute the reservoir parameters. 
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3 INTRODUCTION 
Flow tests in naturally fractured reservoirs have been analysed using a con- 
tinuum approach to model the reservoir, i.e., matrix and fracture systems 
are assumed continuous throughout the formation.'12 The rock matrix has a 
very low permeability but stores most of the reservoir fluid in its intergran- 
ular porosity. The fracture system, on the other hand, has an extremely 
low porosity but provides the path of principal permeability. 

When a well located in such a reservoir is produced, a rapid pres- 
sure response occurs in the fracture network due to its high diffusivity. This 
creates a pressure difference between the matrix and the fractures, which 
begins to deplete the fluid from the matrix, commonly termed as inter- 
porosity flow. As flow progresses, pressures in the matrix and the fractures 
equilibrate and the fracture flow response is observed again, with fluid now 
coming from a composite storativity of the matrix and the fractures. 

The interaction between the matrix and the fractures is affected 
strongly by the geometrical distribution of the fractures. The parameters 
used to characterise this interaction are w,, matrix storativity ratio, which 
specifies the relative fluid distribution, and X, the interporosity flow coeffi- 
cient, which lumps the effects of the flow properties of both media and their 
geometry. Matrix flow can be modelled as pseudo-steady state (PSS): or 
unsteady state (USS).4*6 

Models available in the literature assume fracturing is uniform and 
hence matrix block size is constant. Geologic studies have shown nonuni- 
formity in fracture intensity in many reservoirs, from very severe fracturing 
to very sparse fractures!-' Hence, it is necessary to model variability in 
flow contribution from matrix elements or blocks, depending on their size. 

The evolution of the double porosity model is explained in the next 
section. 

This work is the development of a robust and general fractured reser- 
voir model allowing any distribution of matrix block size. Matrix block size 
distibution affects the pressure response significantly. The sensitivity of the 
pressure response is studied for the uniform and bimodal distributions and 
parameter estimation is discussed. 
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4 LITERATURE REVIEW 
The double porosity concept was introduced in 1960 by Barenblatt et a1.1*2 
As explained before, it assumed the existence of two porous regions of dis- 
tinctly different porosities and permeabilities within the formation. Also, a 
continuum was assumed, where any small volume contained a large propor- 
tion of both media. Hence each point in space had associated with it two 
pressure values, Pi in the permeable medium and I?, in the porous, less 
permeable medium. Interporosity flow was assumed to occur in pseudo- 
steady state condition, 

The solution was completed in 1963 by Warren and RootS who de- 
scribed the reservoir geometry as an orthogonal system of continuous, uni- 
form fractures, each parallel to the principle axis of permeability. Two 
parameters were defined to characterize the double porosity behaviour : 

0 The inter-porosity flow coefficient: 

where kf is the fracture permeability, rw the wellbore radius and (II a 
geometrical factor with dimensions of reciprocal area. 

0 The fracture storativity: 

where 4, is the fracture porosity, d,,, the matrix porosity and Cf 
and C, the corresponding fluid compressibilities. 

Pseudo-steady state flow was assumed for the matrix as a suitable 
approximation for late time data. The results were analysed on semilog 
plots, characterizing the interporosity flow region for different values of X 
and w.  
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where x = Jm, and 

f ( 4  = w. 
Odeh" suggested in 1965 that wellbore 

pressure response at early times, and hence the 
be observed. 

Kazemi'' (1969) and De Swaan" (1976) removed the pseudo-steady 
state assumption and numerically solved the transient problem for flow 
from mark to fractures. Kazemi also considered flow directly from the 
matrix to the wellbore and concluded that the results showed insignificant 
difference. 

Kazemi also applied the solution to interfexnce tests, solving the 
equation both analytically and numerically. 

Mavor and Cinco18 added wellbore storage and skin to the pseudw 
steady state flow solution of Warren and Root. 

In 1980, Najurieta" proposed an approximate solution for the equa- 
tion presented by De Swaan. The time domain approximation was of the 
same form as the homogeneous reservoir solution. It presented a way to 
group parameters to facilitate the solution of the inverse problem. 

Type curves for analysing wells with wellbore storage and skin in 
double porosity reservoirs were introduced by Bourdet and GringartenFO 
It was claimed that even in the absence of the first straight line on the 
semi-log plot, a log-log type curve analysis could yield all reservoir parame- 
ters. Dimensionless parameters were defined. The idea of computing fissure 
volume and matrix block size was presented but was not convincing. 

A major contribution was made by Bourdet et a121122 in 1983 when 
the pressure derivative plot was introduced as a tool to analyse pressure 
test data. The inter-porosity flow region was identified as a distinct feature 
and could be characterized by the A and the w parameters. Both pseudo 
steady state and the transient matrix flow models could be analysed. 

At the same time, StreltsovaZS showed that the transient flow in 
the matrix did not cause an inflection point on the pressure profile on the 
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semilog plot. A transition straight line was proposed with a slope equal to 
one half the slope of the early or late time straight lines. This facilitated a 
Horner plot analysis. 

All models presented thus far assumed the orthogonal system of 
uniform, continuous fractures, as proposed by Warren and Root. Matrix 
blocks in between the fractures were of the same size and shape. 

Numerous studies in geology and well logging have shown the exis- 
tence of nonuniformly fractured reservoirs. The Warren and Root model 
is an over-simplification of reality. There is need to develop a model which 
honors the heterogeneity in matrix block properties. Since the matrix- 
fracture interface area is dependent on the geometry of the matrix blocks, 
a distribution of matrix block geometries must be considered. The shape 
of the blocks does not have a significant effect on the response and hence a 
variability in block size shall be considered in this work. 

Braesterlo concluded block size does not significantly affect the draw- 
down pressure response of a fractured reservoir. Cinco et al" suggested a 
discrete distribution of matrix block sizes with transient interporosity flow 
and showed the pressure derivative is significantly affected. Jalali-Yazdi and 
Belani12 show block size variability affects the pressure response markedly. 

It would be more appropriate to lump all flow criteria into the flow 
coefficient X and consider a distribution of matrix elements with differ- 
ent flow coefficients. The engineering concept of matrix blocks would be 
replaced by that of matrix volume elements with a variability in their con- 
tribution to interporosity flow. This idea has many strengths in modelling 
the reservoir and understanding its flow behaviour, and hence will be the 
subject of later research. 

I 
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5 MODEL FORMULATION 
The classical development of the diffusivity equation from mass balance in 
a fracture element yields : 

where Pf is the pressure in the fracture and Qm is the interporosity flow 
source term. Eqn.(l) assumes: 

0 radial, cylindrical flow occurs in the fracture, 

0 reservoir fluid is slightly compressible and has constant properties, 

inertial and gravity effects can be ignored and Darcy’s law is appli- 
cable, and 

0 rock properties are constant. 

Formulation of the flow contribution term Q m  requires a reservoir model, 
since the geometrical distribution of the fractures governs interporosity 
flow. In a uniformly fractured reservoir where block size is constant, the 
flow contribution from a single block into the adjoining fracture depends 
upon the storativity, permeability, and the size of the block. Such models 
have been presented in the In a nonuniformly fractured reser- 
voir with a random distribution of matrix block size (Figs. l,2), the matrix 
contribution is : 

Qm = 1 Q(h)f(h)dh,  

where Q(h) is the flow contribution from a block of size h and f(h) is the 
probability of occurrence of block size h. The flow contribution Q(h) is 
specified by the mode of interporosity flow and the shape of the matrix 
block. 

Note for a constant block size model, matrix block size distribution 
f(h) is a shifted Dirac delta function 6(h-H): 

hmaz 

(2) 
hnrin 
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which is consistent with the Warren and Root’ and other single block size 
rn~de l s .~ l~  

For reservoirs with intense fracturing, f(h) is a positively skewed dis- 
tribution ‘favoring’ small blocks, and for reservoirs with sparse fracturing, 
f(h) is a negatively skewed distribution, ‘favoring’ large blocks. 

A more general formulation of the source integral can account for 
variability in several matrix properties. For instance, a random variation 
in block permeability km and block size h, results in : 

1- 

I 
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6 SOLUTION 
Equations (1) and (2) are solved for slab matrix blocks for the initial and 
boundary conditions stated in the Appendix. The wellbore pressure re- 
sponse in the Laplace space is: 

where s is the Laplace variable related to dimensionless time: 

and the argument z = \/sgo. 
For PSS: 

For USS: 

The dimensionless parameters are defined below : 
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h 
hD = -. 

h-, (16) 

The interporosity flow coefficient X depends on h and hence is included in 
the integral in Eqns. (7) and (8); these equations collapse to the single 
block size case if f(hD) is a Dirac delta function. 

The pressure response is markedly governed by the distribution func- 
tion in Eqns.(7) and (8). Geologic studies of outcrops do not express ob- 
served fracture intensities in terms of block size, hence it is difficult to 
choose any particular shape of block size distribution. This work solves the 
cases of Uniform and Bimodal distributions. 
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7 UNIFORM DISTRIBUTION 
A distribution of interest is the uniform or rectangular distribution where 
all block sizes (hmin to hmaz) have an equal chance of occurrence: 

1 
f(h) = 

hmaz - hmin' 

with mean block size: 
hmin + hmaz 

hmean = 2 9 

and variance: 

The applicability of the uniform distribution is two-fold: 

1. It should be used when the matrix block size distribution is unknown. 

2. A sum of uniform distributions of small variance spread can approxi- 
mate any distribution and hence the pressure response for other dis- 
tributions can be obtained. 

For PSS flow, Eqns.(7), (12)-(14) yield: 

For USS flow, Eqns. (8), (12)-(14) yield: 

Eqn. (18) does not have a closed form analytical solution and requires 
numerical integration. 
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The block sizes hmin and hmaz correspond to interporosity flow co- 
efficients X,,, and Amin, respectively: 

The Xmoz/Xmin ratio governs the variance of the uniform distribution. As 
this ratio approaches unity, the uniform distribution approaches a Dirac 
delta function and hence the pressure response approaches the single block 
size response. 
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8 BIMODAL DISTRIBUTION 
General tectonic stresses over a region can cause fracturing at a macro 
scale and associated breaking of the rock at a finer scale. This results in 
two controlling sets of matrix block sizes, which can be represented by a 
bimodal distribution. If the two modes of the distribution are equally prob- 
able (same height), then: 

where hl < hz < hs < h,,, correspond to A1 > A2 > As > Amin , respec- 
tively. The PSS solution for this distribution function is: 
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9 DISCUSSICN 
Figure (3) shows the PSS pressure and pressure derivative response for uni- 
form block size distributions of different variance spread (X ratio). X,,, is 
kept constant at lo-' and Xmin varies from lo-' to lo-' by an order of 
magnitude at each step. Figure 3 indicates: 

1. In the limit Xmin approaches X,,, (or vice versa), the single block size 
response is obtained (Warren and RootS). 

2. The interporosity flow region on the derivative curve shows distinctly 
the effect of the variation in block size. The contribution from each 
block size affects the pressure at a different point in time depend- 
ing on the interporosity flow coefficient, causing a stretching of the 
derivative curve. The change from the characteristic 'peaked valley' 
to a stretched valley with more features, is hence dependent on the 
block size distribution. 

3. The beginning of the late t h e  semi-log straight line (P' = 0.5) is 
inversely related to Xmin (slowest contributing block), with an approx- 
imate relation: 

The solution was investigated for other values of X,,, varying X 
ratio. Figure (4) shows the pressure derivative response for X,, of lo-' 
and X ratios of 1 to 10000. Similarly, Fig.(5) shows the response for X,,, of 

and the same X ratio values. Identical derivative profiles are obtained 
for a given w, and X ratio; only the placement of the profile in time is 
governed by the magnitude of the flow coefficients. 

Figure (6) illustrates the response for a range of matrix storativity 
(wm) for Am,, = lo-' and Amin = lo-'. The 'stretched' transition curve 
characterizes the variance of the distribution function as noted in Fig.(3). 
Also, PAmin and Ti (the coordinates of the point of inflection) increase with 
decreasing w,. 

The response was closely studied for the inflection points in the three 
cases of Figs. 3,4,5. The dat$is presented in Tables 1,2,3. 
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Figure (7) is a correlation of slope ratio (SR) and w, and X,in/X-,. 
SR is the ratio of semi-log slope at the point of inflection and the early 
time or late time semi-log slope, SR=PAmin/0.5.13114 SR is independent of 
the magnitude of Ami, and X,,,. 

Figure (8) is a correlation of TD, and Ami, as indicated by Eqn.(22). 
Figure (9) indicates the time at which the transition curve begins, 

TDB, is a dominant function of Amoz but also varies with the variance of the 
distribution function (X ratio). 

Figure (10) illustrates the time coordinate of the point of inflection, 
Ti, depends on the magnitude of the interporosity flow coefficients. How- 
ever, the ratio TD~/TA is a function of w, and X ratio and not of the X 
values. 

Figure (11) illustrates the effect of wellbore storage on the pressure 
response. Flow tests where early time data may be lost should be run long 
enough to obtain TD,. 

Figure (12) exhibits the pressure response for the unsteady state 
mode of interporosity flow. The X distribution is the same as that of Fig.(3) 
but w, is 0.99. The features of Fig.(lO) are similar to those of the pseudo- 
steady state response (Fig.3), although less pronounced. 

The relations illustrated above can be used to estimate w,, Amin, 

and X,,, from pressure transient data. Alternatively, use of the proposed 
solution (Eqns. 5,17,18) in nonlinear regression of pressure data yields the 
reservoir parameters. 

Figures (13) and (14) illustrate the pressure response for a bimodal 
distribution with the parameters, A1 = lo-', X2 = 0.8 x lo-', X3 = 
and Amin = 0.8 X lo-'. Figure (15) exhibits the response for a bimodal 
distribution with X1 = lo-', X2 = 0.8 X lo-', X3 = lo-' and Amin = 0.8 x 

Figures (16) and (17) exhibit the response for a bimodal distribution 

Figure (18) exhibits the response for a bimodal distribution with X1 = lo-', 
X2 = 0.8 x lo-', X3 = and Ami, = 0.8 x 

When the two modes of the distribution are very close, the response 
is similar to that of the unimodal uniform distribution corresponding to 
the larger X mode. As the separation between the two modes increases, the 
pressure response deviates from that of the unimodal distribution. Beyond 
a certain degree of separation, the derivative plot character due to the 
higher X mode is suppressed. 

with X1 = lo-', X2 = 0.8 X lo-', X3 = and = 0.8 X 
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The solutions of the unimodal and-5iinodal distributions can be ex- 
tended to multimodal distributions, which may be obtained from geologic 
information. The procedure would be to  estimate a shape of the distri- 
bution from well-log data and compute the parameters using the pressure 
response. 

..' 
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10 CONCLUSIONS 
1. A robust formulation of pressure transient response in nonuniformly 

fractured reservoirs is presented. 

2. The matrix block size distribution for a uniformly fractured reservoir 
is a Dirac delta function and results in a sharp pressure response. 

3. The pressure response of a nonuniformly fractured reservoir becomes 
less pronounced with an increase in the variance of the matrix block 
size distribution. 

4. The pressure derivative curve for uniform distribution can be anal- 
ysed to estimate the reservoir parameters. 
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11 NOMENCLATURE 
formation volume factor, 
RB/STB 
compressibility, psi-' 
fracture total compressibility, 

matrix total compressibility, 

wellbore storage coefficient, di- 
mensionless 
block size distribution function, 

block size distribution function, 
dimensionless 
joint probability distribution 
function, ft-'.md-' 
a parameter in the Bessel func- 
tion argument 
matrix block size variable, f t  
matrix block size, dimensionless 
fracture thickness, ft 
minimum block size, uniform dis- 
tribution, ft  
maximum block size, uniform dis- 
tribution, f t  
mean block size, uniform distri- 
bution, ft 
block size bounds for bimodal dis- 
tribution, f t  
constant matrix block size, ft  
fracture permeability, md 

psi-' 

psi-' 

f t-' 

matrix permeability, md 
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modified Bessel function, second 
kind, zero order 
modified Bessel function, second 
kind, first order 
fracture pressure, dimensionless 
matrix pressure, dimensionless 
Laplace transformed wellbore 
pressure response 
fracture fluid pressure, psi 
initial pressure, psi 
matrix fluid pressure, psi 
pseudo-steady state 
volumetric flow rate, STB/D 
flow contribution of matrix size h, 
hour-’ 
flow contribution of matrix size h 
and permeability km, hour-’ 
cumulative matrix flow contribu- 
tion, hour’’ 
radial coordinate, ft 
radial coordinate, dimensionless 
wellbore radius, ft 
Laplace parameter 
skin factor, dimensionless 
minimum slope ratio, dimension- 
less 
time, hours 
time, dimensionless 
time transition period begins, di- 
mensionless 
time transition period ends, di- 
mensionless 
time of minimum slope, dimen- 
sionless 
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x19x2,xs = 

unsteady state 
Bessel function argument 
Dirac delta function 
interporosity flow coefficient, di- 
mensionless 
interporosity flow coefficients, bi- 
modal distribution, dimension- 
less 
maximum interporosity flow coef- 
ficient, dimensionless 
minimum interporosity flow coef- 
ficient, dimensionless 
viscosity, cp 
normal coordinate to fracture- 
matrix interface, ft  
normal coordinate to fracture- 
matrix interface, dimensionless 
variance of the matrix block size 
distribution, ft2 
fracture porosity, dimensionless 
matrix porosity, dimensionless 
fracture storativity ratio, dimen- 
sionless 
matrix storativity ratio, dimen- 
sionless 

SI METRIC CONVERSION FACTORS 

bbl X 1.589873 E O 1  = ms 
CP x 1.0' E03 = pa.s 
ft x 3.048' E-01 = m 
psi X 6.894757 S O 1  = kpa 
psi-' x 1.450 E01 = kpa-l 

' Conversion factor is exact. 

21 



12 BIBLIOGRAPHY 
1. Barenblatt, G.E., Zheltov, I.P., and Kochina,I.N.: ‘Basic Concepts 

in the Theory of Homogeneous Liquids in Fissured Rocks,’ J. Appl. 
Math. Mech. 24, (1960), 12861303. 

2. Barenblatt, G.E.: ‘On Certain Boundary-Value Problems for the 
Equations of Seepage of a Liquid in Fissured Rocks,’ J. Appl. Math. 
Mech., 27, (1963), 513-518. 

3. Warren, J.E. and Root, P.J.: ‘Behaviour of Naturally Fractured Reser- 
voirs,’ SOC. Pet. Eng. J., (Sept. 1963), 245-55. 

4. de Swaan, O.A.: ‘Analytical Solutions for Determining Naturally 
Fractured Reservoir Properties by Well Testing,’ SOC. Pet. Eng. 
J., (June 1976). 

5. Kazemi, H.: ‘Pressure Transient Analysis of Naturally Fractured 
Reservoirs with Uniform Fracture Distribution,’ SOC. Pet. Eng. J., 
(Dec. 1969), 451-62. 

6. Isaacs, C.M.: ‘Geology and Physical Properties of the Monterey For- 
mation, California,’ paper SPE 12733 presented at the 1984 California 
Regional Meeting, Long Beach, April 11-13. 

7. McQuillan, H.: ‘Small Scale Fracture Density in Asmari Formation 
of Southwest Iran and its Relation to Bed Thickness and Structural 
Setting,’ AAPG Bulletin, V.57, No. 12, (Dec. 1973), 2367-2385. 

8. McQuillan, H: ‘Fracture Patterns on Kuh-e Asmari Anticline, South- 
west Iran,’ AAPG Bulletin, V.58, No. 2, (Feb. 1974), 236246. 

9. Stearns, D.W., and Friedman, M.: ‘Reservoirs in Fractured Rock,’ 
AAPG Memoir (1972), 82-106. 

10. Braester, C.: ‘Influence of Block Size on the Transition Curve for 
a Drawdown Test in a Naturally Fractured Reservoir,’ SPEJ 1984, 
498-504. 

22 



11. Cinco-Ley, H., Samaniego-V, F., and Kucuk, F.: ‘The Pressure Tran- 
sient Behavior for Naturally Fractured Reservoirs with Multiple Block 
Size,’ paper SPE 14168, presented at the 60th Annual Fall Technical 
Conference and Exhibition, Las Vegas, NV, Sept. 22-25, 1985. 

12. Jalali-Yazdi, Y., and Belani, A.: ‘Pressure Transient Modeling of 
Nonuniformly Fractured Reservoirs,’ Proceedings of Advances in Geother- 
mal Reservoir Technology, Lawrence Berkeley Laboratory, June 14- 
15, 1988. 

13. Jalali-Yazdi, Y., and Ershaghi, I.: ‘Pressure Transient Analysis of 
Heterogeneous Naturally Fractured Reservoirs,’ paper SPE 16341, 
presented at the SPE California Regional Meeting, Ventura, Cali- 
fornia, April 8-10, 1987. 

14. Jalali-Yazdi, Y., and Ershaghi, I.: ‘A Unified Type Curve Approach 
for Pressure Transient Analysis of Naturally Fractured Reservoirs,’ 
paper SPE 16778 presented at the 62nd Annual Fall Technical Con- 
ference and Exhibition, Dallas, TX, Sept 27-30, 1987. 

15. Odeh, A.S.: ‘Unsteady State Behaviour of Naturally Fractured Reser- 
voirs,’ SOC. Pet. Eng. J. (March 1965) 60-66. 

16. Kazemi, H., Seth, M.S., Thomas, G.W.: ‘The Interpretation of Inter- 
ference Tests in Naturally Fractured Reservoirs with Uniform Frac- 
ture Distribution,’ SOC. Pet. Eng. J. (Dec 1969) 463-72. 

17. de Swaan, 0.: ‘Analytical Solutions for Determining Naturally Frac- 
tured Reservoir Properties by Well Testing,’ SOC. Pet. Eng. J. (June 
1976). 

18. Mavor, M.J., Cinco, H.: ‘Transient Pressure Behaviour of Naturally 
Fractured Reservoirs,’ Paper SPE 7977 presented at the 1979 SPE 
California Regional Meeting, Ventura, April 18-20. 

19. Najurieta, H.L.: ‘A Theory for Pressure Transient Analysis in Natu- 
rally Fractured Reservoirs,’ J.  Pet. Tech. (July 1980) 1241-50. 

20. Bourdet, D. and Gringarten, A.: ‘Determination of Fissured Vol- 
ume and Block Size in Naturally Fractured Reservoirs by Type-Curve 

23 



Analysis,’ paper SPE 9293 presented at the 1980 SPE Annual Tech- 
nical Conference and Exhibition, Dallas, Sept. 21-24. 

21. Bourdet, D. et al.: ‘A New Set of Type Curves Simplifies Well Test 
Analysis,’ World Oil (May 1983). 

22. Bourdet, D. et al.: ‘Interpreting Well Tests in Fractured Reservoirs,’ 
World Oil (Oct .1983). 

23. Streltsova, T.D.: ‘Well Pressure Behaviour of a Naturally Fractured 
Reservoir,’ SOC. Pet. Eng. J. (Oct.1983) 769-80. 

24 



A SOLUTIONS 
Combining equations (1) and (2) from the text, 

Pseudo-Steady State 

Considering the direction of flow M that of the normal to the matrix- 
fracture interface, material balance yields: 

-- a2pm 4mCmp apm - 
km at - 7 (2) 

For pseudo-steady state, the pressure gradient is a constant in space, hence: 

Integrating twice with respect to e, 

at (D = 1, 

B = Pf 
A = -hC(t)  

From Darcy's law at the matrix-fracture interface, 
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which yields, 

Averaging the expression for Pm from 0 to h, Eqn.(5) 

Substituting the dimensionless parameters as defined before in the text, the 
equation for PSS flow becomes, 

and in the matrix, 

To solve the equations so obtained, (11) and (12), we specify the following 
initial and boundary conditions: 

Boundary conditions in the radial direction: 

Transforming this set of equations to Laplace space, and rearranging, 

26 



where, 

The solution to this equation is the double porosity solution, 
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A similar procedure can be followed for the unsteady state case, using the 
matrix flow equation, 

and the material balance equation 

a 2 p m  +mCmp a p m  

a€2 k m  at * 

-= -- (17) 

The initial and boundary conditions are exactly the same as the PSS case 
. Substituting dimensionless parameters, and transforming to Laplace do- 
main, 

and, 

Solving equation(l9) with the boundary conditions in ( D  and substituting 
in eqn(l8), we get a form similar to PSS 

where, 

The solution is the same as eqn(l5) with a different g(s). 
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B SOFTWARE PROGRAMS 

C 
C 

C 
C 
C 

10 

2 0  

30  
C 
C 
C 
C 
c40 
5 0  
7 0  

Program f o r  Pressure response t o  Uniform Dis t r ibut ions  
program main 

impl ic i t  real*8 (a-h,p-z) 
dimension pda (300) ,dpda (300) ,d2pda (300) , tda(300) 
common m, red, sk, cbar, slmin, slmax, omegm, s sn ,  f s ,  s f s  
open (unit-3, f i l e = ‘  datp‘ ) 
rewind (unit=3) 

n-10 
m = l  

slmax = 1.0e-6 
omegm = 0 .95  
slmin = 0.8e-6 
p r i n t  *, lambda (max) = 
read *, slmax 
p r i n t  *, ‘lambda (min) = 
read *, s l m i n  
p r i n t  *, ’ omega = 
read *, omegm 
p r i n t  *,'char= 
read *, cbar 
s s n  = 0 . 0  
sk = -2.3 
td=O. 1 
do 1 0  i=1,250 

c a l l  pwd ( td ,  n, pd, dpd, d2pd) 
t d a ( i )  = t d  
pda ( i )  = pd 
dpda (i) = dpd*td 
d2pda(i)  = d2pd*td*td + dpd*td 
td=td*l .  1 

continue 
write (3, *)  250 
do 20  i=1,250 

continue 
write (3, *) 250 
do 30 i=1,250 

continue 
write (3, * )  250 
do 40 i=1,250 

write (3,50) tda (i) ,pda (i) 

write (3,501 tda (i) ,dpda (i) 

d2pda (i) = (dpda (i+l) -dpda (i) ) / ( tda (i+l) -tda (i) ) * ( tda  (i+l) +tda (i) ) 
wrlte (3,501 tda (i) ,d2pda (i) 

continue 
format (2f20.4) 

s top  
end 

C THE STEHFEST ALGORITHM 
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SUBROUTINE PWD (TD,N, PD, dpd, d2pd) 
THIS FUNTION COMPUTES NUMERICALLY THE LAPLACE TRNSFORM 
INVERSE OF F(S) . 

IMPLICIT REAL*8 (A-H, 0-2) 
DIMENSION G(50) ,V(50) ,H(25) 
common m, red, sk, cbar, slmin, slmax, omegm, ssn, f s, sf s 

NOW IF THE ARRAY V(1) WAS COMPUTED BEFORE THE PROGRAM 
GOES DIRECTLY TO THE END OF THE SUBRUTINE TO CALCULATE 
F(S) . 

IF (N.EQ.M) GO TO 17 
M=N 
DLOGTW-0.6931471805599 
NH=N/2 

THE FACTORIALS OF 1 TO N ARE CALCULATED INTO ARRAY G. 
G (1) =1 
DO 1 I=2,N 

CONTINUE 
G(I)=G(I-l)*I 

TERMS WITH K ONLY ARE CALCULATED INTO ARRAY H. 
H(1)=2./G(NH-l) 
DO 6 I=2,NH 

FI-I 
IF (I-NH) 4,5,6 
H(I)=FI**NH*G(2*I)/(G(NH-I)*G(I)*G(I-l)) 
GO TO 6 
H(I)=FI**NH*G(2*I)/(G(I)*G(I-l)) 

CONTINUE 

THE TERMS (-1) **NH+l ARE CALCULATED. 
FIRST THE TERM FOR 111 

SN=2* (NH-NH/2*2) -1 

THE REST OF THE SN'S ARECALCULATED IN THE MAIN RUTINE. 

THE ARRAY V (I) IS CALCULATED. 
DO 7 I=l,N 

FIRST SET V(I)=O 
V(I)=O. 

THE LIMITS FOR K ARE ESTABLISHED. 
THE LOWER LIMIT IS Kl=INTEG((I+1/2)) 

K1= (I+1) /2 

THE SUMMATION TERM IN V(1) IS CALCULATED. 
DO 10 K=Kl, K2 

IF (2*K-I) 12,13,12 
IF (I-K) 11,14,11 
V(I)=V(I)+H<K) / (G(I-K)*G(2*K-I)) 
GO TO 10 
V(I)=V(I)+H(K)/G(I-K) 
GO TO 10 
V(I)=V(I)+H(K) /G(2*K-I) 

CONTINUE 



C 
C 
C 
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C 

7 
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THE V(1) ARRAY IS FINALLY CALCULATED BY WEIGHTING 
ACCORDING TO SN. 

V (I) =SN*V (I) 

THE TERM SN CHANGES ITS SIGN EACH ITERATION. 
SNs-SN 

CONTINUE 

THE NUMERICAL APPROXIMATION IS CALCULATED. 
A=DLOGTW/TD 
PD-0 
dpd = 0. 
d2pd = 0. 
DO 15 I=l,N 

ARG==A* I 
PD=PD+V(I) *plap (ARG, sk,cbar, omegm, ssn, slmax, slmin) 
dpd=dpd+v (i) *plapd (arg, sk, cbar, omegm, ssn, slmax, slmin) 
d2pd=d2pd+v (i) *plapd2 (arg, sk, cbar, omegm, ssn, slmax, slmin) 

CONTINUE 
PD=PD *A 
dpd=dpd*a 
d2pd=d2pd*a 
RETURN 
END 

function plap (9,  sk, cbar, omegm, ssn, slmax, slmin) 

implicit double precision (a-h, 0 -2 )  
double precision k0,kl 
argmin = dsqrt(3*slmin/omegm/s) 
argmax = dsqrt (3*slmax/omegm/s) 
hratio = dsqrt (slmin/slmax) 
fS = (1.O-omegm) - (omegm*argmin* (datan (argmin) -datan (argmax) ) ) / (1-hratio) 
argl * omegm*argmin* (datan (argmin) -datan (argmax) ) / (1-hratio) 
fs = 1.0 - omegm - argl 
sf S'S*f 9 
x-dsqrt ( sf s ) 
y=dsqrt (sf s 
kl = dbskl(x) 
kO = dbskO (x) 
plap= ( (kO + (sk*x*kl) ) ) / (s* ( (x*kl) + (cbar*s* (kO+sk*x*kl) ) ) ) 
return 
end 

function plapd(s, sk, cbar, omegm, ssn, slmax, slmin) 

implicit double precision (a-h, 0-2) 
double precision k0,kl 
argmin = dsqrt (3*slmin/omegm/s) 
argmax = dsqrt(3*slmax/omegm/s) 
hratio = dsqrt (slmin/slmax) 
fs = (1.0-omegm) - (omegm*argmin* (datan (argmin) -datan (argmax) ) ) / (1-hratio) 
argl = omegm*argmin* (datan (argmin) -datan (argmax) ) / (1-hratio) 
fs = 1.0 - omegm - argl 
sf s=s*f s 
x=dsqrt (sf s)  
y=dsqrt (sf s ) 
kl = dbskl(x) 
kO = dbskO (x) 
plapd-( (kO + (sk*x*kl) 1 )  / (1* ( (x*kl) + (cbar*s* (kO+sk*x*kl) ) ) ) 
return 
end 

function plapd2 (s, sk, cbar, omegm, ssn, slmax, slmin) 



implicit double precision (a-h, 0 - 2 )  
double precision k0,kl 
argmin = dsqrt (3*slmin/omegm/s) 
argmax = dsqrt(3*slmax/omegm/s) 
hratio = dsqrt (slmin/slmax) 

argl = omegm*argmin* (datan (argmin) -datan (argmax) ) / (1-hratio) 
fs = 1.0 - omegm - argl 
sfs=s*fs 
x-dsqrt ( sf s ) 
y=dsqrt (sf s)  
kl = dbskl(x) 
kO = dbskO (x) 
plapdZ=s* ( (kO + (sk*x*kl) ) ) / (1* ( (x*kl) + (cbar*s* (kO+sk*x*kl) ) ) ) 
return 
end 

C fs = (1.0-omegm) - (omegm*argmin* (datan (argmin) -datan (argmax) ) ) / (1-hratio) 
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FI=I 
IF (I-NH) 4,5,6 
H(I)=FI**NH*G(2*1) / (G(NH-I) *G(I) *G(I-l)) 
GO TO 6 
H(I)=FI**NH*G(2*I)/(G(I)*G(I-I)) 

CONTINUE 

THE TERMS (-1) **NH+l ARE CALCULATED. 
FIRST THE TERM FOR 1=1 

SN=2* (NH-NH/2*2) -1 

THE REST OF THE SN'S ARECALCULATED IN THE MAIN RUTINE. 

THE ARRAY V (I) IS CALCULATED. 
DO 7 I=l,N 

FIRST SET V(I)=O 
V(I)=O. 

THE LIMITS FOR K ARE ESTABLISHED. 
THE LOWER LIMIT IS Kl=INTEG((I+1/2)) 

K1= (I+1) /2 

THE UPPER LIMIT IS K2=MIN (I,N/2) 
K2-I 
IF (KZ-NH) 8,8,9 
K2=NH 

THE SUMMATION TERM IN V(1) IS CALCULATED. 
DO 10 K=K1,K2 

IF (2°K-I) 12,13,12 
IF (I-K) 11.14.11 
V(I)=V(I)+H<K))(G(I-K)*G(2*K-I)) 
GO TO 10 

THE V(1) ARRAY IS FINALLY CALCULATED BY WEIGHTING 
ACCORDING TO SN. 

V (I) =SN*V (I) 

THE TERM SN CHANGES ITS SIGN EACH ITERATION. 
SN=-SN 

CONTINUE 

THE NUMERICAL APPROXIMATION IS CALCULATED. 
A=DLOGTW/TD 
PD=O 
dpd = 0. 
DO 15 I=l,N 

ARG=A* I 
PD=PD+V(I) *plap (ARG, sk, cbar, omegm, ssn, sll, 912, s13, s14) 
dpd=dpd+v (i) *plapd (arg, sk, cbar, omegm, ssn, sll, s12, s13, s14) 

CONTINUE 
PD=PD*A 
dpd=dpd*a 
RETURN 
END 

implicit real*8 (a-h, 0-2 
real*8 kO, kl 



double precision mmbsk0,mmbskl 
integer iopt,ier 
iopt=l 
argl = dsqrt (3*sll/omegm/s) 
arg2 = dsqrt (3*sl2/omegm/s) 
arg3 = dsqrt (3*s13/omegm/s) 
arg4 = dsqrt (3*sl4/omegm/s) 
hlrat = dsqrt (s11/914) 
h2rat = dsqrt (s11/913) 
h3rat = dsqrt (sll/s12) 
denom = l-h3rat+h2rat-hlrat 

argl2 = omegm*argl* (datan (argl) -datan (arg2) ) /denom 
arg34 = omegm*argl* (datan (arg3) -datan (arg4) ) /denom 
fs = 1.0 - omegm - argl2 - arg34 
sf S'S*f s 
x-dsqrt (sf s )  
y=dsqrt (sf s ) 
kl = rnmbskl (iopt, x, ier) 
kO = A s k 0  (iopt, x, ier) 
plap- ( (kO + (sk*x*kl) ) ) / (s* ( (x*kl) + (cbar*s* (kO+sk*x*kl) ) ) ) 
return 
end 

C fs = (1.0-omegm) - (omegm*argl* (datan (argl) -datan (arg2) ) ) /denom 

function plapd(s,sk,cbar,omeqm,ssn,sll,sl2,sl3,sl4) 

implicit real*8 (a-h, 0-z) 
real*8 kO, kl 
double precision mmbsk0,mmbskl 
integer iopt,ier 
iopt=l 
argl = dsqrt (3*sll/omegm/s) 
arg2 = dsqrt (3*sl2/omegm/s) 
arg3 = dsqrt (3*sl3/omegm/s) 
arg4 = dsqrt (3*sl4/omegm/s) 
hlrat = dsqrt (s11/914) 
h2rat = dsqrt (sll/s13) 
h3rat = dsqrt(sll/sl2) 
denom = l-h3rat+h2rat-hlrat 

argl2 = omegm*argl* (datan (argl) -datan (arg2) ) /denom 
arg34 = omegm*argl* (datan(arg3) -datan (arg4) ) /denom 
fs = 1.0 - omegm - argl2 - arg34 
sf s=s*f s 
x=dsqrt (sf s)  
y=dsqrt (sf s ) 
kl = mmbskl (iopt, x, ier) 
kO = mmbskO (iopt, x, ier) 
plapd- ( (kO + (sk*x*kl) ) ) / (1" ( (x*kl) + (cbar*s* (kO+sk*x*kl) ) ) ) 
return 
end 

C fs = (1.0-omegm) - (omegm*argl* (datan(arg1) -datan (arg2) ) ) /denom 
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C 
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C 
c 4 0  
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C 
C 

C 
C 

C 
C 
C 
C 

program m a i n  

i m p l i c i t  real*8 (a-h,p-z) 
d i m e n s i o n  pda ( 3 0 0 )  ,dpda ( 3 0 0 )  , d 2 p d a  ( 3 0 0 1 ,  tda ( 3 0 0 )  
common m, red, sk, cbar, s l m i n ,  s l m a x ,  omegm, ssn,  fs, sfs, ans 
open ( u n i t = 3 ,  file=' datp' ) 
rewind ( u n i t = 3 )  

n=lO 
m=l  

s l m a x  = 1 . 0 e - 6  
omegm = 0 . 9 5  
s lmin = 0 . 8 e - 6  
p r i n t  *, lambda (max) = 
read *, slmax 
p r i n t  *, ' l a m b d a  ( m i n )  = 
read *, s l m i n  
p r i n t  *, ' omega = ' 
read *, omegm 
s sn  = 0 . 0  
sk = 0 . 0  
cbar = 0 . 0  
t d - 0 . 1  
do 10 i = 1 , 2 5 0  

c a l l  pwd ( td ,  n, pd, dpd) 
t d a ( i )  = t d  
pda ( i )  = pd 
dpda(i )  = dpd*td 
d 2 p d a ( i )  = d2pd*td*td + dpd*td 
td=td*l.  1 

continue 
w r i t e  (3, *) 2 5 0  
do 2 0  i = 1 , 2 5 0  

con t inue  
w r i t e  (3, *) 2 5 0  
do 3 0  i=1 ,250  

cont inue  
w r i t e  (3, *)  250 
do 4 0  i = 1 , 2 5 0  

w r i t e  ( 3 , 5 0 1  tda (i) ,pda (i) 

w r i t e  ( 3 , 5 0 1  tda (i) ,dpda (i) 

d2pda (i) = (dpda ( i + l )  -dpda (i) ) / ( tda (i+l) -tda (i) ) * ( tda (i+l) +tda 
w r i t e  ( 3 , 5 0 )  tda (i) , d 2 p d a  (i) 

cont inue  
f o r m a t  ( 2 f 2 0 . 4 )  

s top  
end 

THE STEHFEST ALGORITHM . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE PWD (TD, N, PD, dpd) 
THIS  FUNTION COMPUTES NUMERICALLY THE LAPLACE TRNSFORM 
INVERSE OF F (S )  . 

IMPLICIT  REAL*8 (A-H, 0-Z) 
DIMENSION G ( 5 0 )  , V ( 5 0 )  , H ( 2 5 )  
external  f 
common rn, red, sk, cbar, s l m i n ,  s l m a x ,  omegm, s sn ,  fs, sfs, ans 

NOW I F  THE ARRAY V ( 1 )  WAS COMPUTED BEFORE THE PROGRAM 
GOES DIRECTLY TO THE END OF THE SUBRUTINE TO CALCULATE 
F ( S )  . 

I F  (N.EQ .M)  GO TO 17  
M=N 
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DLOGTW=0.6931471805599 
NH=N/2 

THE FACTORIALS OF 1 TO N ARE CALCULATED INTO ARRAY G. 
G(l)=l 
DO 1 I=2,N 

CONTINUE 
G(I)=G(I-1) *I 

TERMS WITH K ONLY ARE CALCULATED INTO ARRAY H. 
H (1)=2. /G (NH-1) 
DO 6 I=2,NH 

FI=I 
IF (I-NH) 4,5,6 
H (I) =FI**NH*G (2*I) / (G 
GO TO 6 
H (I) =FI**NH*G (2*I) / (G 

CONTINUE 

(NH-I) *G(I) *G(I-1)) 

THE TERMS (-1) **NH+l ARE CALCULATED. 
FIRST THE TERM FOR 1=1 

SN=2* (NH-NH/2*2) -1 

THE REST OF THE SN’S ARECALCULATED IN THE MAIN RUTINE. 

THE ARRAY V (I) IS CALCULATED. 
DO 7 I=l,N 

FIRST SET V(1) =O 
V(1) =o. 

THE LIMITS FOR K ARE ESTABLISHED. 
THE LOWER LIMIT IS Kl=INTEG((I+1/2)) 

K1= (I+l) /2 

THE UPPER LIMIT IS K2=MIN(I,N/2) 
K2-I 
IF (K2-NH) 8,8,9 
K2 =NH 

THE SUMMATION TERM IN V(1) IS CALCULATED. 
DO 10 K=K1, K2 

IF (2*K-I) 12,13,12 
IF (I-K) 11,14,11 
V(I)=V(I)+H(K)/(G(I-K)*G(2*K-I)) 
GO TO 10 

GO TO 10 
v(I)=V(I)+H(K)/G(2*K-I) 

V(I)=V(I)+H(K)/G(I-K) 

CONTINUE 

THE V(1) ARRAY IS FINALLY CALCULATED BY WEIGHTING 
ACCORDING TO SN. 

V(I)=SN*V(I) 

THE TERM SN CHANGES ITS SIGN EACH ITERATION. 
SN=-SN 

CONTINUE 

THE NUMERICAL APPROXIMATION IS CALCULATED. 
A=DLOGTW/TD 
PD-0 
dpd = 0. 
d2pd = 0. 
DO 15 I=l,N 
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?IRG=A* I 
dlim = dsqrt (omegm*arg/slmax) 
ulim = dsqrt (omegm*arg/slmin) 
call dqdags(f,dlim,ulim,0.0001,0.0001,ans,err) 
PD=PD+V (I) *plap (ARG, sk, cbar, omegm, ssn, slmax, slmin, ans) 
dpd=dpd+v (i) *plapd(arg, sk, cbar, omegm, ssn, slmax, slmin, ans) 
dZpd=d2pd+v (i) *plapd2 (arg, sk, cbar, omegm, ssn, slmax, slmin, ans) 

CONTINUE 
PD=PD*A 
dpd=dpd* a 

RETURN 
END 

dZpd=dZpd*a 

function plap ( 5 ,  sk, cbar, omegm, ssn, slmax, slmin, ans) 

implicit real*8 (a-h, 0-2) 
real*8 kO, kl 
double precision mmbsk0,mmbskl 
integer iopt,ier 
iopt=l 
hratio = dsqrt(slmin/slmax) 
argl = dsqrt (slmin*omegm/s) *ans/ (1-hratio) 
fs = 1.0 - omegm + argl 
sf s=s*f s 
x=dsqrt (sf s)  
kl = mmbskl (iopt, x, ier) 
kO = mmbsk0 (iopt, x, ier) 
plap- ( (kO + (sk*x*kl) ) ) / (s *  ( (x*kl) + (cbar*s* (kO+sk*x*kl) ) ) ) 
return 
end 

function plapd (s, sk, cbar, omegm, ssn, slmax, slmin, ans) 

implicit real*8 (a-h, 0 - 2 )  
real*8 kO, kl 
double precision mmbsk0,mmbskl 
integer iopt,ier 
iopt=l 
hratio = dsqrt(slmin/slmax) 
argl = dsqrt (slmin*omegm/s) *ans/ (1-hratio) 
fs = 1.0 - omegm + argl 
sf s=s*f s 
x=dsqrt ( sf s ) 
y=dsqrt (sf s ) 
kl = mmbskl (iopt, x, ier) 
kO = mmbskO (iopt,x, ier) 
plapd= ( (kO + (sk*x*kl) ) / (1* ( (x*kl) + (cbar*s* (kO+sk*x*kl) ) ) ) 
return 
end 

function plapd2 ( s ,  sk,cbar, omegm, ssn, slmax, slmin, ans) 

implicit real*8 (a-h, 0-2 )  

real*8 kO, kl 
double precision mmbsk0,mmbskl 
integer iopt,ier 
iopt=l 
hratio = dsqrt(slmin/slmax) 
argl = dsqrt (slmin*omegm/s) *am/ (1-hratio) 
fs = 1.0 - omegm + argl 
sfs=s*fs 
x-dsqrt ( sf s)  
kl = mmbskl (iopt,x, ier) 
kO = mmbskO (iopt, x, ier) 
plapdZ-s* ( (kO + (sk*x*kl) 1 )  / (1* ( (x*kl) + (cbar*s* (kO+sk*x*kl) ) ) ) 



C return 
C end 

function f (x) 
implicit real*8 (a-h,o-z) 
f=dtanh (x) /x 
return 
end 
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