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EFFECTS OF HIGH PRESSURE GRADIENTS ON THE FLOW OF 
REAL GASES THROUGH POROUS MEDIA 

Kwaku Ofori Temeng, Ph.D. 
Stanford University, 1988. 

The flow of gases through homogenous porous media is governed by non-linear 
differential equations. For steady-state flow the equations may be linearized by 

assuming small changes in pressure, and thus in fluid properties. The results thus 
yield a linear relationship between pressure drop and flow rate. 

At high flow rates experiments and well tests show deviations from behavior 
predicted by the linear theory. These deviations are usually attributed to turbu- 

lence, inertial effects and other factors, all of which are thought to render Darcy’s 
law invalid. Quadratic and higher order equations are then used to characterize 

this type of flow, with the nonlinear coefficients determined empirically. However, 
this study has found that an alternative to using empirically determined non-Darcy 
effects is to account for the consequences of the assumptions used to linearize the 
flow equations. 

In this study the flow of real gases through porous media was analyzed by incor- 
porating some of the nonlinearities present in the flow equations. It is shown that 

deviations from linearity of the form observed in field tests and in laboratory exper-1 
iments can result from the nonlinearities inherent in the basic formulation. Thus, 
a lack of proportionality between pressure drop and flow rate does not necessarily 
imply or indicate a deviation from Darcy flow. 

In laboratory examples it has been possible to determine observed Forchheimer 

coefficients, based on a derivation from first principles. This is achieved only with 
Darcy’s law, without reference to non-Darcy effects. 
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Chapter 1 

Introduction 

A fundamental basis for the analysis of flow of fluids through porous me- 

dia is Darcy’s law. Darcy (1856) studied the flow of water through sands 

under relatively low flow rate conditions. He found that the flow rate was 

proportional to the pressure gradient, and proposed an equation, which for 

linear, horizontal flow, is of the form: 

where v is the apparent fluid velocity, and K is the so-called hydraulic 

conductivity, an average property of the rock-fluid system. 

Experiments conducted with different fluids, arid with porous media of 

different conductivities [Wyckoff et al. (1934), for example], led to an 
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expression for the conductivity, I<, as the ratio of a property of the rock to 

that of the fluid, as follows: 

k AP 
2, = -- 

In Eq. 1.2, k is identified with the permeability of the rock, and is consid- 

ered independent of the fluid, if the fluid does not react with the porous 

medium. The property, p,  is the Newtonian viscosity of the fluid. 

By considering the situation where L tends to :zero in the limit, a more 

general form of Eq. 1.2 is obtained as follows: 

The negative sign in Eq. 1.3 is a recognition of the fact that flow is positive 

in the direction opposite to the pressure gradient. The development of Eq. 

1.3 implies that the properties, k and p ,  are in theory, functions of position, 

and are thus local values. Thus, Darcy’s law may be applied to situations 

involving varying fluid and rock properties. 

Hubbert (1956) discussed the implications and application of Darcy’s law 

and defined a flow potential function to account, for the effect of gravity. 

Hubbert (1956) also derived Darcy’s law from fundamental considerations 
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by using the Navier-Stokes equation. 

Darcy’s law for the isothermal flow of gas may be: derived by integration of 

Eq. 1.3, and by invoking a gas law equation of state. This gives [Craft and 

Hawkins (1959)l: 

where q,, is the volume flow rate measured at the pressure, p,,, and tem- 

perature, Tsc. 

I Eq. 1.3 may be combined with the equation of continuity and an appropri- 

ate equation of state to derive differential equations for other specific fluids 

and flow geometries. In general, these differential equations are nonlinear. 

By assuming small, steady flow rates and constant fluid properties, these 

equations can be linearized, and can be solved to yield a linear relationship 

between pressure drop and flow rate. 

l 

, 

Muskat (1937) has shown that if the differential equations are expressed 

in terms of fluid density instead of pressure, then exact linear differential 

equations are obtained for steady flow. This suggests that for steady flow, 

analysis may be performed in terms of fluid densities without concern for 

the consequences of gradient-squared terms as long as Darcy’s law applies. 

I 
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During experimentation involving the flow of water through linear porous 

systems, Forchheimer (1901) observed that Darcfs law, in the form of Eq. 

1.2, did not match high rate data. He proposed. a quadratic equation to 

account for the apparent deviation from Darcy’s law, as follows: 

AP - = av + bv2 L 
- 

Forchheimer (1901) pointed out that at even higher rates, third and fourth 

order terms in v may be required to match the observed pressure drops. 

An apparent deviation from Darcy flow has also been observed during the 

flow of gases at  high rates in linear systems. It has been found [Green and 

Duwez (1951); Cornell (1952); Cornell and Katz, (1953)l that at high gas 

flow rates, Eq. 1.4 fails to predict pressure drops correctly. The deviation 

from linearity is illustrated in Fig. 1.1, where flow rate is graphed as a 

a function of the pressure drop [Katz e t  al. (1959)l. The graph shows a 

deviation from linearity at high flow rate, apparently indicating non-Darcy 

flow. The result of the apparent non-Darcy effect is a flow rate that is 

lower than would be expected from pure Darcy flow. Thus, permeability 

measurements in this flow regime would predict lower than actual values. 

The Forchheimer equation has been adapted to model high rate gas flow. 

This equation is analogous to Eq. 1.5, and is expressed as: 
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Fig. 1.1 Nonlinear Flow of Air Through Sand 

[Katz et al. (1959)l 
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Green and Duwez (1951) employed dimensional analysis to derive a differ- 

ential form of Forchheimer's equation from first principles, which may be 

expressed as: 

- - = = v + p p v  dP 2 
dx k 

where p is the density of the fluid, and p is a property of the porous medium. 

The term /3 is usually referred to as a turbulence or inertial factor, or 

velocity coefficient [Firoozabadi and Katz (1979)l. 

For application to laboratory core analysis, Eq. 1.7 may be integrated and 

combined with the real gas law to give [Cornell (1952)l: 

Thus, a plot of the left hand side of Eq. 1.8 against qsc would be linear, 

with the slope providing a measure of the coefficient, p, and the intercept 

equal to the reciprocal of permeability. 

The cause of the apparent deviation from Darcy flow has been the subject of 
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a great amount of work and discussion. Because Fancher and Lewis (1933) 

successfully correlated pressure drop data by means of friction factors and 

Reynolds number, the deviation from Darcy’s law was initially thought to 

be due to turbulent flow, in analogy with flow through pipes. Firoozabadi 

and Katz (1979) have summarized discussions on the causes of the non- 

Darcy flow, and have proposed the use of the term ‘velocity coefficient’ to 

describe p. 

The velocity coefficient, p, has been widely correlated with rock properties 

such as porosity and permeability. Katz e t  al. (1959), Tek e t  al. (1962)) 

Gewers and Nichol (1969), Geerstma (1979), Noman e t  ai. (1985), Noman 

and Archer (1987), and Jones (1987) have reported correlations of p with 

rock properties. Friction factor plots for the characterization of non-Darcy 

flow have been developed by Fancher and Lewis (1933), Green and Duwez 

(1951)) Cornell and Katz (1953)) and others. The friction factor plot of 

Cornell and Katz (1953) is shown in Fig. 1.2. 

The effect of core length on ,B appears to have been ignored in all the 

analyses. The importance of the relationship between p and L is that the 

transition from the original Forchheimer equation to the differential form 

requires p and L to be independent of each other. This is because if /? 

is proportional to L,  for example, then in the limit as L tends to zero, we 

obtain Darcy’s law (Eq. 1.3), and not the different,ial Forchheimer equation. 
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Fig. 1.2 Friction Factor Plot [Cornell and Katz (1953)] 
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A t  very high rates, Forchheimer’s quadratic equation does not fully de- 

scribe flow, and a third or fourth power term is required. Ezeudembah and 

Dranchuk (1982) discussed this high rate flow regime, and derived a cubic 

equation form of Forchheimer’s equation from first principles. 

Another type of nonlinear gas flow is slip flow or the Klinkenberg effect. 

This effect is important in flows at low pressures and through low perme- 

ability media, and results in higher than actual calculated pemeabilities. 

Klinkenberg (1941) theorized that the effect arises from the slippage of gas 

molecules along the rock grain surfaces, and proposed an equation to correct 

the gas permeability values affected by slip flow. The Klinkenberg effect is 

not considered in this study. The only effects studied are those related to 

high velocity flow. The combined effects of gas slippage and ‘non-Darcy’ 

flow have been studied by Dranchuk and Piplapure (1973). 

Darcy’s law may be applied to radial geometries by expressing Eq. 1.3 in 

terms of radial distance, r ,  instead of linear distance, IC. This gives: 

For steady flow, Eq. 1.9 may be integrated and combined with the real gas 

law to produce: 
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(1.10) 

It has been observed that at high flow rates, wells do not produce in accor- 

dance with Eq. 1.10., and that a deliverability plot (Ap2 vs qsc)  on a log-log 

graph is usually of non-unit slope, suggesting a deviation from Darcy flow. 

Rawlins and Schellhardt (1936) proposed an empirical equation to account 

for the apparent deviation from Darcy flow. This equation is the famous 

backpressure equation, and is given as: 

(1.11) 

where C and n are empirically determined constants. It has been shown 

[Craft and Hawkins (1959)] that C and n are not really constants at all, 

and that n varies from unity at low flow rates to 0.5 at  high flow rates. 

Elenbaas and Katz (1948) proposed a formula for computing high velocity 

flow effects through the use of the friction factor concept. 

Another method to empirically consider apparent non-Darcy flow is to ex- 

press the deliverability equation as a Forchheimer-type equation: 

(1.12) 



This method is believed to possess a more fundamental basis than the back- 

pressure equation of Eq. 1.11 [ERCB (1975); Lee (1982); Ikoku (1984)]. 

The apparent non-Darcy flow in gas wells has also been interpreted in terms 

of a rate-dependent skin factor. This is because most of the excess pressure 

drop due to high velocity flow is thought to occur in the immediate region 

of the well. Thus for steady-state flow, the pressure drop can be expressed 

in field units in the form: 

(In? + s + ~ q )  
2 2 -  1.422( 1OG)pzTq,, 

kh r w  
P, - Pw - (1.13) 

The 'non-Darcy' factor, D, is usually determined from field tests or approx- 

imated from correlations. 

In a recent paper, Brigham (1988) showed that the backpressure equation 

(Eq. 1.11) can be related to the Forchheimer equation for stabilized flow 

to yield estimates of reservoir properties. 

Swift and Kiel(1962), and Tek e t  al. (1962) determined the D coefficient in 

Eq. 1.13 analytically by integrating the differential Forchheimer equation 

for steady, radial flow. The equation derived by Tek e t  al. (1962) is: 

D =  3.161( 10-'2)/3ygzT 
h2rw 

(1.14) 
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Noman e t  al. (1985) used this radial Forchheimer equation on North Sea 

gas wells to calculate and correlate the velocity coefficient, /3. Ezeudembah 

and Dranchuk (1982) developed a similar equation on the basis of a cubic 

Forchheimer equation. 

Rowan and Clegg (1964), in reviewing the work of Houpeurt (1959), con- 

cluded that equations of the form given by Eqs. 1.11 and 1.12, do not 

necessarily indicate non-Darcy flow, and may result from a variation of 

fluid properties with pressure. This conclusion is not unreasonable because 

flow through porous media is controlled not just by Darcy’s law, but must 

also conform to material balance requirements. This means that deviation 

from linearity could arise from a combination of effects, non-Darcy flow 

possibly being one of them. 

Ramey (1965) proposed a method for accounting for non-Darcy flow during 

unsteady radial flow that incorporated the non-Darcy coefficient, D. Tek 

e t  al. (1962) used finite difference methods to study unsteady, non-Darcy 

flow. Wattenbarger and Ramey (1968) studied the composite effects of high 

flow velocity, wellbore storage, and skin effect on unsteady real gas flow. 

Non-Darcy effects during unsteady real gas flow is usually described in 

terms of a Forchheimer-type equation, but with a time-independent non- 

Darcy coefficient [Lee 19821. Lee e t  al. (1987) combined the differential 

Forchheimer equation with the continuity equation to develop a general 
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differential equation for high velocity flow. They concluded that the co- 

efficient, D ,  is in general pressure-dependent, and that at high flow rates, 

significant erron are introduced by assuming a constant D factor. 

The partial differential equation for Darcy flow of real gas is obtained by 

combining the differential form of Darcy’s law with the equation of conti- 

nuity. The result, in terms of pressure or pressure-squared, is a nonlinear 

partial differential equation that does not possess general solutions. A sim- 

ilar equation results from the analysis of liquid flow. Finjord and Aadnoy 

(1986), Finjord (1987)’ and Odeh and Babu (1987) have studied some of 

the nonlinearities present in the liquid equation. Al-Hussainy and Ramey 

(1966) discussed the use the gas pseudo-pressure, rn(p) ,  and showed that 

it eliminates the gradient-squared nonlinearity in the real gas partial dif- 

ferential equation. Russel et al. (1966) also discussed the use of a similar 

pseudo-pressure to simplify the real gas partial differential equation. 

The m(p) function has become the standard variable for the analyses of gas 

well tests [ERCB (1975)l. However, certain conclusions drawn from earlier 

analyses, using squares of pressure, have been carried over to the m ( p )  

analyses without due consideration for the consequences. For example, 

non-Darcy flow is considered in the m ( p )  formulation by including a non- 

Darcy D term, by analogy with the pressure-squared formulation [ERCB 

(1 975)]. 
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In this work, the effects of the gradient-squared nonlinearity in the real 

gas flow equation are studied. The scope of the study includes steady and 

unsteady rectilinear flow through cores, and radial, steady, pseudo-steady 

and transient flow. The relationship between pressure drop and flow rate 

are determined, and related back to apparent non-Darcy flow. 
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Chapter 2 

Flow Equations 

In this chapter are presented the equations and assumptions used to formu- 

late the problems considered in this study. Equations are discussed in terms 

of pressure, pressure-squared, and pseudo-pressure. Met hods are also dis- 

cussed for estimating the coefficients of some of the terms in the equations. 

The equations discussed here are all derived in Al-Hussainy (1967) and 

ERCB (1975). We discuss the final forms that will be used in subsequent 

analyses. 

2..1 Basis for Equations 

The derivations of the differential equations all assume that Darcy's law 

is valid, and that the real gas law applies. By combining the equation 

of continuity with Darcy's law and an equation of state, these result in 
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nonlinear differential equations that are presented in the following. These 

three principles are expressed in the following. 

Darcy's Law for Horizontal Flow: 

IC 
P 

v'= --vp 

Continuity Equation: 

Equation of State: 

p = -  PM 
zRT 

In addition to the preceeding equations, the following assumptions are also 

made: 

0 Isothermal Flow 

0 Constant porosity, 4 

0 Constant and isotropic permeability, k 
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Using these equations and assumptions, differential equations can be devel- 

oped in terms of pressure, pressure-squared or pseudo-pressure variables. 

In this study, the pressure formulation has been used to study the flow of 

gas through cores, and radial gas flow studies were were performed on the 

basis of a pressure-squared differential equation. An equation in terms of 

pseudo-pressure is presented for purposes of comparison and discussion. 

2..2 Equation in Terms of Pressure 

In terms of pressure, the partial differential equation of real gas flow in 

porous media is: 

Eq. 2.4 is nonlinear because of the presence of the squared-gradient term, 

and because the coefficient of the time derivative term is in general, pressure- 

dependent. 

The coefficient of the squared-gradient term in Eq. 2.4 may be expressed 

in the following alternative form: 
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Eq. 2.4 then becomes: 

where: 

dPC 3 P  v 2 p  + (cg - c,)(Vp)2 = -- 
k at 

1 1 d z  
c g = - - - -  P Z d P  

is the isothermal gas compressibility, and where: 

For most of the range of pressure values that are of interest, the isothermal 

gas compressibility is the dominant variable of the two coefficient terms. 

This is demonstrated in Fig. 2.1 which shows a comparison ( c g  - c p )  and 

cg for a gas of yg = 0.7 and a temperature of 75 " F  for a range of pressures. 

For most pressure ranges, the error introduced by using only the 
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Fig. 2.1 Comparison of cg and (cg - cp)  
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gas compressibility as the coefficient of the squared gradient term will be 

reasonably small. 

Fig. 2.1 shows that for high values of pressure, the coefficient, (cg - c p )  is 

very nearly zero. This practically removes the effect of the squared-gradient 

term in the differential equation. This observation is consistent with that 

of Aziz e t  al. (1976), who arrived at  the same conclusion using a different 

method of interpretation. 

2..3 Equations in Terms of Squares of Pressure 

The flow equation in terms of squared-pressure is given by: 

d 4pc 8P2 v 2 p 2  - 7 [In( pz) ]  ( 0 ~ ~ ) ~  = -- 
dP k d t  

The coefficient of the nonlinear gradient-squared term may be expressed in 

a slightly different way as follows: 

(2.10) 

Figs. 2.2 and 2.3 show behavior of pz with pressure for gases of different 

properties. The nature of the curves suggests that pz may be correlated 

according to the equation: 
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pz = a + bp2 (2.11) 

The correlation was tested for sweet natural gases of different gravities and 

temperatures, and seem to work fairly well. For purposes of developing 

the correlation, the z factor was calculated using a correlation developed 

by Dranchuk e t  al. Viscosity was calculated by means of the 

correlation of Lee e t  al. (1966), and the critical temperature and pressure 

by the equations of Thomas e t  al. (1970). 

(1974). 

The dashed lines in Fig 2.2 and 2.3 represent calculations of pz based on 

Eq. 2.11. At low pressures below about 100 p s i a ,  pz decreases slightly 

with pressure, and cannot be described by the same coefficients in Eq. 

2.11 as for the higher pressure values. Figure 2.4 presents a correlation 

of the parameter, b versus temperature, and shows that b is large for low 

temperatures and high specific gas gravities. The parameter b is of the 

order of lo-’ c p l p s i 2 .  

The flow equation in terms of p2  may be approximated by: 

(2.12) 

The coefficient of the gradient-squared term is pressure-dependent because 

of the presence of the p z  product in the denominator. The coefficient can 

23 



1.5e-09 

le49 

5e- 10 

0 

I I I 

100 200 300 400 500 
Temperature, O F  

Fig. 2.4 Correlation of ‘b’ parameter 

24 



be made constant by expressing pz at a known average pressure. This is 

discussed in Chapter 4. 

2..4 Pseudo-Pressure Formulation 

Al-Hussainy et al. (1966) introduced the concept of the real gas pseudo- 

pressure for the analysis of gas flow: 

m ( p )  = 2JP p d p  
Pb p z  

where Pb is some base pressure. 

In terms of m ( p ) ,  the flow equations become: 

(2.13) 

(2.14) 

The equation in terms of m(p) is still nonlinear because of the fact that p 

and c depend upon m. However gradient squared terms are incorporated 

in this substitution. 
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Chapter 3 

Rectilinear Flow 

This chapter presents an analysis of the real gas flow through a finite, 

linear porous medium. The objective is to model and study high rate flow 

in laboratory cores. A relationship between flow rate and pressure drop for 

I 

steady flow and will be presented. The discussion will include the pressure- 

distance profiles that result from high rate flow during both steady and 

unsteady flow. The equations developed will be matched to experimental 

results that are available in the literature. 

3.1 Flow Equations 

The subject problem is the flow of a real gas in a finite core of length L, 

and constant cross-sectional area, A. The pressures at the upstream and 

downstream ends of the core are fixed at pressures pl and p2 respectively. 
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The effects of gas slippage are not included in the analysis. 

As discussed in Chapter 2, the partial differential equation governing gas 

flow is given by Eq. 2.6. When this is expressed for linear flow, it becomes: 

where: 

and: 

The pressure equation was chosen to model gas flow because the range of 

pressure drops considered in this problem is small. This means that to 

use either the squared pressure or the pseudo-pressure formulation, very 

accurate viscosity and z factor data at small pressure intervals would be 

required. Such data are not available. The pressure formulation involves 

primarily the gas compressibility as the coefficient of the squared-gradient 

term, and is easier to estimate. 
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In this study, attention has been focused on the effects of the squared- 

gradient nonlinearity in the differential equation. The coefficient of the 

squared-gradient t e rn  is strongly dependent on pressure, especially at the 

low pressures used in laboratory experiments that are modeled in this work. 

To make the problem tractable however, an average value of the coefficient 

will be determined and utilized in the analysis. Because the coefficient of 

the gradient-squared term is strongly pressure-dependent , no single average 

value can model the flow over the entire range of pressure drops. However, a 

good average can be chosen to provide a solution with an order of magnitude 

accuracy. 

The average coefficient used in this study was determined by performing 

an integration over the length of the core. The integration was performed 

to produce the following result: 

where: 

AP=Pl  -P2 
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For flows at relatively low pressures, as usually pertain in laboratory exper- 

iments, there is little change in viscosity and in the compressibilty factor 

from inlet to outlet. Equation 3.5 then becomes: 

3.2 Steady Flow 

In steady-state flow there is no dependence of pressure on time, and the 

mass flow rate of gas at  every location is constant. For this situation, 
I 

~ 

the right side of Eq. 3.1 can be equated to zero. The partial differential 

equation then becomes: 

Two different types of analysis will be performed. The first one will relate 

pressure drop to flow rate, and the second will provide a description of the 

pressure-length profile in the core. The two problems differ only in the way 

the boundary conditions are specified. 
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3.2.1 Relationship Between Pressure Drop and Flow 
Rate 

In this section an equation relating pressure drop and flow rate during 

steady-state flow will be presented. We consider the situation where gas is 

injected at  a constant rate, qsc, at one end of a core, and produced at the 

outlet end whose pressure is fixed at p 2 .  

The boundary condition at the inlet end is: 

The outlet condition is: 

p =  p2, at x = L 

The following dimensionless variables are introduced: 

(3.10) 

(3.11) 

(3.12) 
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The flow equations then become: 

where: 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

The parameter, al ,  can be interpreted as a measure of the significance 

of the nonlinear squared-gradient term in the differential equation. Thus 

the nonlinearity is important for high flow rates, high compressibility, low 

permeability, and low mean pressure. 

Eq. 3.13 may be solved by making the substitution: 

(3.17) 
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to obtain the integrable equation: 

(3.18) 

The inlet boundary condition in u ,  corresponding to Eq. 3.15, is: 

u = -1 , at X D = o  (3.19) 

The solution to Eq. 3.18, subject to the boundary condition of Eq. 3.19 is: 

(3.20) 

and can be further integrated, and combined with Eq. 3.14, to obtain the 

final solution: 

(3.21) 

The total pressure drop across the core may be obtained by substituting 

unity for SD in Eq. 3.21. This gives: 

1 
PTD = --ln(1 - al) 

Q1 
(3.22) 
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The overall, dimensional pressure gradient is therefore given by: 

(3.23) AP 1 LQsc PZTPsc 
L FL k APrnTsc 
- = ---In (1 - 

The flow rate, qsc, may be obtained by rearranging Eq. 3.23, and gives: 

(3.24) 

To examine the nature of the solution obtained, Eq. 3.22 may be expanded 

in a Taylor series in terms of a1 as follows: 

Q1 

2 3  
PTD = 1 + - + - + .  

In terms of the dimensional variables, Eq. 3.25 becomes: 

where: 

(3.25) 

(3.26) 

(3.27) 



(3 .28)  

(3 .29)  

Equation 3.26 can be expressed in terms of A p 2  by multiplying t,Jough by 

twice the mean pressure. Thus: 

If only the first two terms are retained, Eq. 3.30 can be written as: 

(3 .31)  

Equations 3.26 and 3.31 indicate a nonlinear relationship between pressure 

drop and flow rate. They are of the Forchheimer type, which is usually cited 

as evidence of non-Darcy behavior. As was shown in Chapter 2 however, 

the basis of the equations are merely Darcy’s law and a material balance. 

This suggests the likelihood that some flows that have been described as 

non-Darcy may not be so at all, but may due to the gradient-squared non- 

linearity of the governing differential equation. The equations also show 
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that the coefficients of the nonlinear terms are functions not only of com- 

pressibility, but also of the length of the core. Thus, if L is made to go to 

zero in the limit, we should recapture Darcy’s law, and not a differential 

form of the Forchheimer equation. 

The first term in Eq. 3.31 is the linear or so-called Darcy term, which will be 

referred to here as the ‘laminar’ term. The additional terms are therefore 

equivalent to what have been referred to as ‘non-Darcy’, ‘turbulent’, or 

inertial’ terms. ‘. 

To relate the results to the non-Darcy parameter, p, Eq. 3.31 may be 

rearranged to give: 

(3 .32)  

Comparison with Eq. 1.8 leads to the following definition for p: 

Ep2zTR 
= ( 2 p m k 2 M T s c )  

or: 

(3 .33)  

(3 .34)  



Figure 3.1 shows a graph of p~ vs a1 (Eq. 3.25), and demonstrates that at 

high values of al,  corresponding to high flow rates or low permeabilities, 

more terms in the expansion equation would be required to describe the 

flow accurately . The figure also indicates that for flows corresponding to 

a1 = 1, the behavior becomes ‘critical’, i.e. an infinite pressure drop is 

required to produce an additional increase in flow rate. 

Figure 3.1 also suggests guidelines for determining the number of Forch- 

heimer terms required to approximate the exact solution. It shows that 

‘laminar’ flow is accurate to a value of al of about 0.05. The two term 

Forchheimer equation is valid to a value of a1 of about 0.3, whereas the 

three term equation is good for cyl less than 0.45. Thus, determination of 

a1 would provide an indication of the number of terms in Forchheimer’s 

equation required to describe the flow. In any case, since the relationship 

between pressure drop and flow rate is also given in a simple closed form 

in Eq. 3.24, it is not necessary in general to resort to the Forchheimer 

formulation at all. 

To show that the deviation from linearity (‘turbulence’) is not due to non- 

Darcy effects, the equation derived here was matched with experimental 

data. Two sets of experiments were analyzed; the first set was reported 

by Green and Duwez (1951), and the second set by Cornel1 (1952). The 

description and analyses of these data follow. 
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Fig. 3.1 Comparison of Exact and Approximate Solutions 
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Data of Green and Duwez (1951) 

The experiments of Green and Duwez (1951) involved flowing nitrogen gas 

at various rates through f inch thick porous metals of different permeabil- 

ities. The diameter of the metal samples was 1.4 inches. The porosities 

varied from 0.256 to 0.595, and the permeabilities from 64 millidarcies to 

19 Darcies. Figure 3.2 is a plot of their experimental results. The data for 

the 19-Darcy sample (sample C) were ignored because the reported per- 

meability was estimated, not actually measured. The temperature was not 

reported, and therefore it was assumed to be 75" F for the purpose of using 

the equations derived in this work. 

To compare the experimental results to the equations derived in the study, a 

few experimental points were selected from Fig. 3.2. Because the grid of the 

graph is coarse, the points were selected to coincide as much as possible 

with the grid crossings. All the points were chosen from the nonlinear 

sections of the curves. 

I 

Table 3.1 is a summary of the comparison of the experimental fow rate with 

computed flow rate based on Eq. 3.24. The agreement between the exper- 

imental and computed data is reasonable. The lack of better agreement is 

probably due to the error involved in averaging the compressibility term in 

the flow equation over such a large pressure drop. 
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Fig. 3.2 Experimental Data of Green and Duwez (1951) 
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Sample k 
- (md) 

A 63.9 

A 63.9 

B 178 

B 178 

B 178 

C 7080 

TABLE 3.1 

Data of Green and Duwez (1951) 

AP21L 
( 1  b2 / in5) 

5( lo5) 

107 

104 

5( lo4) 

105 

104 

Ap Measured Rate Predicted Rate 
(psi) (Ib/in2 - sec) (Ib/in2 - sec) 

339.2 7.5( 

1566.5 7( 10-1 

37.4 10-3 0.9(10-3) 

98.1 3( 3.2( 

144.1 5( 5.1 ( 

37.4 3( 3.3( 
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Data of Cornell (1952) 

Cornell (1952) performed a series of experiments on rock samples of different 

permeabilities and sizes. Different gases were flowed at varying rates in 

order to determine correlations for the nonlinear term, p. The permeability 

and /3 both were determined from the same plot through Eq. 1.8 which is: 

I 

~ 

(3.35) I 

The permeability determined for the low-permeability samples using this 

method appeared to be in error as a result of the Klinkenberg effect. Since 

the Klinkenberg effect was not considered in deriving the equations in this 

work, the comparisons were made only with the high permeability data 

(greater than 100 md). This was in order to avoid the influence of Klinken- 

berg flow on the results. 

, 
I 

I 
I 

Figures 3.3 to 3.7 show graphs of measured and calculated flow rates versus 

pressure drop. The agreement is in general reasonable given the fact that 

an average value of a strongly pressure-dependent parameter is used as a 

coefficient in the equation. In two of the cases (Samples 15 and 16), the 

model appears to exaggerate the nonlinear effects. This lack of agreement 

is probably a result of using the wrong values of permeability in the model. 

The reported permeabilities were obtained from a plot based on Eq. 3.35, 



- Nonlinear Theory -- Linear Theory 

Experimental Data 

I I I I 1 1 1 1  I I I I 1 1 1 1  

Fig. 3.3 Flow Behavior of Sample 1 of Cornell (1952) 
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Fig. 3.4 Flow Behavior of Saxnple 2 of Cornell (1952) 
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Fig. 3.5 Flow Behavior of Sample 3 of Cornell (1952) 
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Fig. 3.6 Flow Behavior of Sample 15 of Cornell (1952) 
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Fig. 3.7 Flow Behavior of Sample 16 of Cornell (1952) 
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l 

and in the cases of Samples 15 and 16, the scatter in the plot makes the 

extrapolation unreliable. The plots used to determine the permeabilities 

for those two cases are shown in Fig. 3.8. In both cases, it appears that 

alternative extrapolations can be performed to arrive at  higher permeability 

values. Figures 3.9 and 3.10 are graphs of flow rate versus squared difference 

pressure for Samples 15 and 16 respectively, and for permeabilities slightly 

higher than those reported. The agreement is much better in both the linear 

and nonlinear regimes, and indicates a high sensitivity of the computed flow 

rates to permeability. 

The analytical model does not match the experimental data exactly within 

the entire range of pressure drops. This is a result of the fact that an 

average value is being used to characterize the parameter, z, which is a 

strong function of pressure. Even with this approximation in the model, 

the agreement with the experimental data is reasonable. . 

The good agreement between the analytical model and experimental data 

confirms the theory that the deviation of flow from linearity is not due 

to non-Darcy effects but rather to the nonlinearties present in the basic 

Darcian formulation. This is an important finding. It implies that Darcy’s 

law, in its differential form, is applicable over a wider range of flow rates 

of than previously thought. While it is possible to have non-Darcy flows at 

high velocities, the results of this study suggest that the non-Darcy effects 

cannot be diagnosed on the basis of a simple nonlinear relationship between 
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Fig. 3.9 Flow Behavior of Sample 15 
(k=500 md) 

49 



lo00 

100 

10 

1 
1 

10 

I I I I 1 1 1 1  I I I I 1 1 1 1  

k 

- Nonlinear Theory , -- Linear Theory 

0 0 Experimental Data . 
I I I I 1 1 1 1  I I I I I l l ]  

100 

Fig. 3.10 Flow Behavior of Sample 16 
(k=600 md) 

50 



pressure drop and flow rate. 

3.2.2 Steady-State Pressure Profile 

In this section is derived an equation for determining the steady-state pres- 

sure profile in a core. The pressure in this section is nondimensionalized 

differently from that of the previous section. This is to restrict p~ to Val- 

ues between 0 and 1, and to allow general inferences to be drawn without 

having to include the effect of flow rate explicitly. The problem is posed 

mathematically as follows: 

(3.36) 

I 

(3.37) 

(3.38) 

I 

where: 

I 

(3.39) 
I 
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(3.40) 

and 

a2 = Z A P  (3.41) 

The term, a2, has a different definition from a1 of the previous section. 

While al resulted from a scaling of the problem, cy2 is a consequence of the 

process of nondimensionalizing, and does not have special physical signifi- 

cance. Thus a2 can take values much greater than unity depending on the 

pressure drop and gas compressibility. 

The solution for a2 = 0, representing the linear problem, is: 

P D = ~ - X D  (3.42) 

The general solution is obtained by making the following substitution: 

(3.43) 

When Eq. 3.43 is substituted in Eq. 3.36 the differential equation becomes: 
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which has the solution: 

(3.44) 

(3.45) 
1 

U =  
a 2 x D  + p 

Equation 3.45 may be integrated to yield a solution for p~ as follows: 

(3.46) 

In the preceding equations, /3 and y are integration constants which will be 

determined with the boundary conditions. 

When Eqs. 3.37 and 3.38 are applied to Eq. 3.46, the following expressions 

for ,B and y are obtained: 

The equation for p~ then becomes: 
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(3.48) 



1 
a 2  

PO = 1 + -ln (xDe-a2 - xD + 1) (3.49) 

Equation 3.49 may be written in a compact form by making use of the 

following identity: 

1 
1 = --nea2 

a 2  
(3.50) 

This results in the following expression for PO: 

1 
PD = -In 0 2  (zD - xDea2 + (3.51) 

Figure 3.11 shows a plot of p~ vs X D  for various values of cy2. The plot 

shows that as expected, the a2 = 0 line yields a straight line between the 

end points. The curves for the higher values of a2 show however, that the 

profile for a strongly nonlinear system is curved, and the curvature increases 

with 0 2 .  The plot shows that for the nonlinear case, most of the pressure 

drop occurs near the downstream end of the core, and that the average 

pressure in the system is higher than the arithmetic mean pressure. 
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Fig. 3.11 Steady-State Pressure Profiles 
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3.3 Transient Flow 

This section deals with the determination of the pressure profiles that are 

produced during the transient flow of gas from one end of a core to the 

other. Because the interest here is in determining the pressure profiles, the 

pressure variable is nondimensionalized with respect to the total pressure 

drop across the core, as in the previous section. 

The differential equation representing the transient flow, Eq. 3.1, can be 

cast in terms of non-dimensional variables as: 

(3.52) 

where p ~ ,  X D ,  and a2 are defined in Eqs. 3.39, 3.40 and 3.41, and where, 

k t  
(3.53) 

The compressibility, Eg, and the viscosity, p, are evaluated at  the mean 

average pressure of the end faces. 

In addition to the boundary conditions specified by Eqs. 3.37 and 3.38, an 

initial condition is specified as follows: 

56 



p ~ = 0  at tD=O (3.54) 

The solution to this problem for the linear case (cy2 = 0) is: 

(3.55) 

A solution for the nonlinear case will now be presented. 

In order to linearize the equations, the following transformation is effected 

[Odeh and Babu (1987)]: 

(3.56) 
1 
a2 

p~ = -1nu 

Substitution of Eq. 3.56 in Eq. 3.52 results in the following linear equation: 

(3.57) a2u du - - -- 
ax& dtD 

In terms of the new variable, the initial and boundary conditions become: 

u = 1  at tD=O (3.58) 
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u = l  at X D = ~  (3.59) 

u = eQZ at X D  = 0 (3.60) 

The inhomogeneity present in the boundary conditions is supressed by ex- 

pressing the solution, u, as the sum of a transient part and a steady-state 

part, viz: 

Equation 3.57 then becomes: 

a2w CFV dw - +- =-  
azz, dZz, at, 

(3.61) 

(3.62) 

In anticipation of the final result, v is forced to satisfy the following set of 

equations: 

d2 v - = o  
d x k  

(3.63) 
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w(0) = eQ2 (3.64) 

w(1) = 1 (3.65) 

The solution of Eq. 3.63, subject to Eqs. 3.64 and 3.65 is: 

w(x)  = (1 - ea2)xo  + ea2 

which is equivalent to the equation for steady flow derived in Section 3.2. 

(3.66) 

The equations for w then become: 

(3.67) 

w(x0 ,O)  = 1 - eOL2 + (eQ2 - 1)zo (3.68) 

w(0, to)  = 0 (3.69) 

w(1 , to )  = 0 
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(3.70) 



We assume that w is separable, i.e. of the form: 

(3.71) 

Upon substitution of Eq. 3.71 in Eq. 3.67, and the separation and solution 

of the resulting equations, a general equation for w is obtained as follows: 

w = e -X%D ( A  cos Azo + B sin AxD) (3.72) 

The boundary condition of Eq. 3.69 implies that A = 0. Therefore: ~ 

w = B e - X Z t D  sin x ~ D  

From the boundary condition of Eq. 3.70, we have: 

o = B ~ - ” ~ D  sinX 

This implies that X takes the following values: 

X = nrr, n = 0 , 1 , 2 ,  . . .  

(3.73) , 

I 

(3.74) 

(3.75) 
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Since the equations are linear in 20, the general solution for w is obtained 

as an infinite sum over n, as follows: 

(3.76) 
n=l 

Applying the initial condition (Eq. 3.68), an equation for B, is obtained. 

This is: 

oc, 

(eQ2 - 1)(XD - 1) = B,sinnxxD (3.77) 
n= 1 

From the theory of Fourier series, Bn is given by, 

(eQ2 - 1)(xD - 1) sinn7rxodxD (3.78) 

Therefore, the complete solution for u is: 
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(3.80) 



This leads to the following expression for p ~ :  

(3.81) 

Figures 3.12 to 3.17 show a sequence in time of the transient pressure 

profiles for different values of az. The figures show that increasing values 

of a2 result in lower pressure drops at  all times. It can also be observed 

that for all the cases, steady flow conditions are achieved at a dimensionless 

time of approximately 0.4. Thus, a general equation for predicting the time 

to steady state is presented as: 

4clcgL2 
k tat M 0.4 (3.82) 

Equation 3.82 shows, as expected, that the time to steady-state is high 

for low permeabilities. It also shows that low pressures, and thus high 

compressibilities, will result in an increased time to steady state. 

The next chapter considers radial flow. 

62 



\=** - a2 = 0 -- a2 = 2 
a~ = 5 \;****.*,* 0 0 0 0 0 -  

0 1 
Dimensionless Distance 

Fig. 3.12 Transient Profiles for t~ = 0.01 
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Fig. 3.13 Transient Profiles for t~ = 0.05 
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Fig. 3.14 Transient Profiles for t~ = 0.1 
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Fig. 3.15 Transient Profiles for t~ = 0.3 
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Fig. 3.16 Transient Profiles for t~ = 0.4 
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Fig. 3.17 Transient Profiles for t~ = 0.5 
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Chapter 4 

Steady Radial Flow 

In this chapter, an analysis of the nonlinear, steady, radial flow of gas will be 

presented. This analysis is of importance because the equation for steady 

state flow is fundamental; all other modes of flow show behavior which can 

be described in one way or another in forms analogous to the steady flow 

equation. 

In theory, steady flow occurs when there is enough support at the drainage 

boundary to maintain the pressure at and within the boundary. In practice, 

a well may ‘stabilize’ for a period during which it performs in conformity 

with the steady-state theory. Thus, meaningful predictions and analyses 

of well performance can, and are made by utilizing the general form of the 

steady flow equation. 

The mathematical problem is formulated in Section 4.1 in terms of squares 
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of pressure. A solution to the mathematical problem, and discussions of the 

implications of the results are presented in Section 4.2. Section 4.3 presents 

analysis and discussion concerning the representation of high rate gas wells 

in reservoir simulators. 

4.1 Formulation 

The problem was formulated by considering the radial flow of a real gas 

towards a well producing at a constant surface rate, qsc. The well was 

assumed to be completely open to flow in a reservoir of uniform thickness, 

h,  constant porosity, 4, constant permeability, IC, and external radius, re. 

The effects of skin, wellbore storage, and gravity were ignored. 

The partial differential equation describing the flow was derived in Chapter 

2, and is presented in terms of squares of pressure as: 

d2p2 1 dp2 1 d(pz)  ( :r2)2 $pc dp2 -+ ----- - =-- 
dr2 r dr pz dp2 k dt  (44 

As was discussed in Chapter 2, the derivation of Eq 4.1 assumes that 

Darcy’s law is valid, and that changes in fluid volumes occur isothermally 

according to the real gas law. 

The boundary condition at the well is merely an application of Darcy’s law, 
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and is given by: 

qsc at r = rw a P 2  - pwzwpscT r- - 
ar TkhT,, 

where the subscript, w, denotes wellbore conditions. 

Key to the analysis was the observation that the product pz correlates with 

pressure according to the relation: 

pz = a + bp2 (4.3) 

In Eq. 4.3 ,  a and b are constants which are assumed to depend only on 

temperature and gas composition. This correlation, discussed in Chapter 

2, was performed for a range gas gravities and temperatures. Assuming the 

correlation to be correct, the rate of change of pz with respect to p 2  is: 

Figure 4.1 is a graph of the parameter, b, versus temperature for different 

gravities of sweet natural gases. The graph shows that b is large for high 

gravity gases, and for low temperatures. 

When Eq. 4.4 is substituted in Eq. 4.1, the flow equation becomes: 
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We introduce dimensionless variables as follows: 

r 
rg = - 

rw 

re 
r ,D = - 

rW 

(4.5) 

(4.8) 

(4.9) 

The constants in the dimensionless variables are for English field units. 

Thus qsc is in M M S C F D ,  t is in hr, k is in md, and all distances are 

in feet. The standard pressure and temperature are assumed to have the 

values 14.7 psia and 520"R respectively. 

When the indicated change in variables is made, Eq. 4.5 becomes: 
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where: 

and: 

The boundary condition at the well is: 

where: 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

Because p ,  z ,  and ct are functions of pressure, the parameters u , X and 

CY are in general, pressure-dependent. For true steady flow, u is constant, 
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since both pia; and pwzw are fixed, and the equations can be solved exactly 

as posed. In this study it was assumed that both u and X are equal to  

unity, and that the average pa is used in place of the initial value. The 

average values of p and a are determined at an average pressure defined as, 

(4.15) 

The concern of this work was thus restricted to the nonlinearity due to 

the squared-gradient term. Since u is equivalent to a nondimensional well 

source term, its effect can be accounted for by multiplying all values of qSc 

in the resulting equations by u. The magnitude of u can be as high as 

1.3, and thus ignoring its effect would reduce the effects of flow rate by 

as much as 30 percent. Kale and Mattar (1980), and Kabir and Hassan 

(1986) studied the effects of non-unit values of X on drawdown behavior, 

and concluded that it results in a small apparent skin factor at the well. 

I 
I 
I 

With the foregoing assumptions, the governing equations become: 

(4.17) 

where, 
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1.422( 1OG)Tbq,, 
kh a =  (4.18) 

The significance of the squared-gradient nonlinearity is indicated by the 

magnitude of a relative to the other coefficients. Thus deviations from lin- 

earity are expected for high flow rates, low values of kh, high temperatures, 

and high values of the parameter, b. A similar parameter dependence was 

observed in the linear problem described in Chapter 3. 

, 

I 
4.2 Solution to Steady-State Problem I 

For true steady flow, the time derivative in Eq. 4.16 vanishes, and the 

equation reduces to: 

I 

(4.19) 

The inner boundary condition remains unchanged, and an outer boundary 

condition is introduced to express the fact that the pressure at the boundary 

is fixed at the initial value. It is: 

(4.20) 
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The following variable transformation is effected to make Eq. 4.19 solvable: 

When this substitution is applied, Eq. 4.19 

(4.21) 

becomes: 

The inner boundary condition also becomes: 

u = - 1  at r D = 1  

The solution to Eqs. 4.22 and 4.23 is: 

Equation 4.24 is integrated with respect to rg  to give: 

1 
p D  = -In[alnrD - 11 + C 

cr 

(4.22) 

(4.23) I 

I 

(4.24) 

(4.25) 
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where C is a constant to be determined from the outer boundary condition, 

Eq. 4.20. When Eq. 4.20 is applied to Eq. 4.25, we find: 

1 
C = --ln[aInr,o a - 11 (4.26) 

The complete solution to the problem is then: 

1 a l n r o -  
Po = - ln [ 

a a lnr ,o  - i] (4.27) 

By multiplying both the numerator and denominator by -1, the solution 

may be expressed in the form: 

At the wellbore, r g  = 1, and Eq. 4.28 reduces to: 

1 
p,D = - - In (1 - a In reD) 

a 

In terms of dimensional variables this becomes: 

(4.28) 

(4.29) 
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A deliverability equation was derived by solving for flow rate, qsc in Q. 

4.30. It is: 

(4.31) 

An equation for determining permeability was also derived by a rearrange- 

ment of Eq. 4.31: 

To examine the nature of the relationship between flow rate and pressure 

drop further, Eq. 4.29 was expanded in a Taylor series in Q as follows: 

(4.33) 

The expansion is valid for values of Q and r ,D for which the following 

relation applies: 

alnreD < 1 (4.34) 

A typical value of Q is of the order of 0.01. Thus the restriction is satisfied 
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if r e D  is of the order: 

(4.35) 100 
reD e 

For most practical situations this condition is satisfied, and the expansion 

is valid. 

In terms of the original variables, the expansion becomes: 

(4.36) 

where: 

1.422( 106)jX? re 
A =  In - 

kh T W  
(4.37) 

B =  - b In r, 2 . 0 2 2 ( 1 0 1 2 ) ~ 2  

(W2 2 r w  
(4.38) 

1.422(106)T b re 
= A  -In - kh 2 rw (4.39) 

The ‘non-Darcy’ coefficient, D, was artificially introduced by rewriting Eq. 

4.36 in the form: 
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By comparing Eq. 4.36 to 4.40, D was determined as follows: 

1.422( 106)Tb re 
In2 - 

2kh r W  

D =  

(4.40) 

(4.41) 

The preceding developments show that the gradient-squared nonlinearity 

leads to a pressure drop and flow relationship which is nonlinear, and is of 

a form which is usually attributed to deviations from Darcy’s law. This 

suggests the likelihood, as in the linear flow case, that these deviations are 

not due to non-Darcy flow, but result from neglecting gradient squared 

terms. The equations derived here thus make it possible to compute high 

rate well performance without resorting to empirically-derived coefficients. 

As expected, the additional pressure drop is large for low permeability 

formations, and for high flow rates or pressure gradients. It is also a function 

of the drainage radius, although weakly so, a fact which is not usually 

considered in the analysis of high rate flow. This dependence on drainage 

area suggests that in the transient problem, the quadratic and higher order 

terms will be a function of time, since drainage radius increases with time. 

Presently, it is theorized [Lee (1982)l that the effect of time on the pressure 

drop is manifested only in the linear term. This issue is addressed in greater 
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detail in Chapter 6. 

An example problem is discussed in Chapter 5 to examine the magnitude 

of the nonlinear quadratic term compared to the linear term. 

4.3 Simulation of High Rate Gas Wells 

The results obtained in the previous section have implications for the sim- 

ulation of high rate gas wells. The designation ‘high rate wells’ is used here 

to refer to those wells and rates for which pressure drop and flow relate in 

a significantly non-linear fashion. 

One of the problems in the treatment of wells in reservoir simulators is how 

to relate the wellbore pressure to the computed pressure of the gridblock 

containing the well. The well flow rate of a phase is usually determined as 

the product of the pressure drop between the well and the gridblock, the 

phase mobility at  the wellbore, and a geometric factor. Thus, for single 

phase, horizontal flow: 

(4.42) 

where: 
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(4.43) 

Gj is a geometric factor for the gridblock, and is related to the block shape 

and size, and the location of the well in the block. The geometric factor is 

the term through which the wellbore and gridblock pressures are related. 

Usually single well radial models are constructed with closely-spaced grids 

near the well. The goal is to account for the rapid changes that occur 

near the well correctly, and to reduce computation cost farther from the 

well, where pressure gradients are small. For such a method, the geometric 

factor follows directly from the radial differencing procedure. Assuming 

steady-state flow between the block and the well, the geometric factor is: 

(4.44) 

where rl is the well radius, r2 the radius of the gridblock, and Azj is 

the vertical section open to flow. The constant, C, depends of the units 

employed, and the term, s, is a skin factor to model damage or other 

restrictions to flow near the wellbore. 

To account for high rate, nonlinear flow of free gas, a flow-dependent skin 

factor is usually added to the damage skin factor, s. This rate-dependent 

skin factor is defined as: 
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(4.45) 

where the D is specified by the user of the simulator, and is determined 

from either correlations or well tests. An alternative way to account for 

nonlinear gas flow has been to use the backpressure equation. 

This study has concluded, however, that for the radial flow situation de- 

scribed, it may be unnecessary and incorrect to include terms to account 

for ‘turbulence’ . This is because the grids near the well are usually fine 

enough to account for the changes in fluid properties correctly which may 

cause the nonlinear behavior. If on the other hand, there is a strong evi- 

dence of actual non-Darcy effects, then they must be included in the model. 

But as we have demonstrated, that evidence cannot be based merely on an 

observed nonlinearity between pressure drop and flow rate. 

The representation of wells in rectangular grids presents a different problem. 

In this situation, the well behavior is predicted on the basis of the pressure 

of a grid block whose dimensions are large compared to those of the well. 

The problem in this case is to account for the radial flow near a well within 

a rectangular grid system. 

Peaceman [1978, 19831 and Abou-Kassem and Aziz (1985) have studied 

the problem of modelling oil wells in rectangular grids. Peaceman’s results 

were extended in this study to suggest procedures for modeling gas wells, 
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particulary those flowing at high rates. 

Peaceman (1978) defined an equivalent radius, r,, at which the steady-state 

well flowing pressure is equal to the well block pressure computed by the 

simulator. For liquid flow, the equation, in Darcy units, is: 

PQ 
PO - P, = - ln(ro/rw) 27rkh 

(4.46) 

where p ,  is the simulator computed grid block pressure, and r, is the asso- 

ciated equivalent radius. 

For square grids, Peaceman [1978] showed that r, is related to Ax, the grid 

linear dimension, by the simple equation: 

ro = 0.2Ax 

For non-square, isotropic grids, Peaceman [ 19831 showed that 

(4.47) 

r, = 0.14dAz2 + A y 2  (4.48) 

For modeling gas wells, Peaceman suggested the use of the gas pseudo- 

pressure, m ( p ) ,  in place of pressure in his equations. This approach is the 

recommended method because for steady-state flow, the gas flow equation 
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in terms of m(p) is identical in form to the pressure equation for incom- 

pressible liquid flow, which formed the basis of Peaceman’s derivations. 

The geometric factor for a rectangular grid can be defined as: 

Azj Gj = 
l n k + s  

TW 

(4.49) 

where again the factor, s, accounts for physical restrictions to flow. As in 

the radial case, the modeling of nonlinear gas flow has been accomplished 

by either the inclusion of a rate-dependent skin factor, or the application 

of the backpressure equation. 

If one chooses to perform the analysis in terms of squares of pressure then 

the results of this study can be combined with Peaceman’s work as follows. 

Peaceman’s derivation assumed that the Laplace equation describes the flow 

between the grid block containing the well and the four adjacent blocks. 

For steady gas flow analysis based the squared-pressure formulation, the 

Laplace equation is not strictly applicable because of the presence of the 

gradient-squared term. However, as has been shown in this work, the effect 

of the nonlinearity of the flow equation is localized in the vicinity of the 

well. Thus for interblock flow, the Laplace equation (in terms of squares of 

pressure) is a good approximation. Even with that approximation, direct 

application of Peaceman’s procedure to the results of this study would lead 

to an equivalent radius, r,, that is a function of gas flow rate. 
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An alternative, approximate approach is as follows. For a rate specified 

well, Eq 4.30 is used to compute well pressure in the simulator by replacing 

T ,  by r,, and p ,  by p j ,  where p j  is the simulator block pressure, and T ,  is 

the equivalent radius defined by Peaceman. Thus, in English field units: 

( 1.422( 1 O 6 ) T b q s C  
pw-pj+-ln 2 - 2 P j z i  b 1- kh In( r 0 / r w ) )  (4.50) 

For bottomhole pressure specification, Eq. 4.31 can be used to derive an 

equation for computing flow rate. This is: 

kh r 1, 1 - e(rJ L 
. .  

In( r,/~-,,,)l .422( 106)Tb qsc  = (4.51) 

These nonlinear terms are necessary not because Darcy’s law is invalid, but 

because the choice has been made to model wells in finite grids in terms of 

pressures rather than the m(p) function. 

A better method for simulating gas wells in rectangular grids is to use a 

hybrid grid system. This method is described by Pedrosa and Aziz [1987], 

and involves the imposition of a radial grid within the rectangular grid 

block containing the well. As in the purely radial grid case, there would be 

no need to include nonlinear terms to account for ‘turbulence’ if the radial 

grids are fine enough. 
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We consider stabilized radial flow in the following. The term “stabilized” 

is used to describe flow similar to pseudosteady state for a constant rate 

liquid flow from a closed outer boundary system. 
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Chapter 5 

Stabilized Flow 

The analysis of nonlinear radial flow is continued in this chapter with the 

consideration of stabilized flow. Stabilized flow is a condition similar to 

pseudo-steady liquid flow, and is attained after the well has produced long 

enough, at a constant surface rate, to produce from the entire drainage 

radius. Theoretically, pseudo-steady flow is possible only under conditions 

of constant and small compressibilities. Thus, strictly speaking, pseudo- 

steady flow is not possible in gas reservoirs where the compressibilities are 

strong functions of pressure. Nevertheless, the concept is still widely applied 

to gas reservoirs, and many deliverability analyses are based on equations 

similar to those for pseudo-steady liquid equations, [ERCB (1975)l. 

In the following sections, the nonlinear stabilized flow problem will be for- 

mulated, and the solution derived. A perturbation series method will be 
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used to solve the problem. The series method is used since the exact solu- 

tion is difficult to obtain, and because the series solution exhibits features 

that are of interest in this study. A numerical example will also be presented 

to demonstrate the applicability of the results obtained. 

5.1 Forrnulat ion 

The general dimensionless equation for the radial flow of gas was presented 

in Chapter 4. It is: 

If stabilized flow conditions are assumed, then by analogy with pseudosteady 

liquid flow, the pressure is expected to behave according to the following 

equation: 

The first term in Equation 5.2 represents the voidage of the reservoir with 

time, and the second term describes the variation of pressure with location 

within the reservoir. As shown by Ramey and Cobb [1971], ~ ( T D )  is equiv- 

alent to a dimensionless pressure based on average pressure, instead of the 
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initial pressure. That is: 

Al-Hussainy (1967) discussed the meaning of the average pressure during 

stabilized gas flow, and stated that the average pressure is not a volumetric 

average, but rather the static pressure following a complete pressure build- 

up. The difference between the two average pressures is small, however, 

and the average pressure can be described mathematically as an average 

over the reservoir volume with small error. 

Upon substitution of Eq. 5.2 in Eq. 5.1, an equation in terms of f ( r D )  

results as follows: 

2 -+ -- 
dr; rDdrD 

The boundary condition at the well is: 

df -=-1 at  r g = 1  
drD 

(5.4) 

( 5 - 5 )  

The outer boundary condition is an expression of the fact that the volu- 

metric average pressure as used as a reference. This is: 
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ireD rg f dro = 0 

Equation 5.6 is derived from the definition: 

Or: 

and therefore: 

or: 

(5.10) 
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5.2 Solution of Stabilized Flow Problem 

A two-term series expansion solution of the nonlinear stabilized flow prob- 

lem is presented in this section. The method used to determine the terms 

in the series is that of ‘parametric differentiation’ [Lin and Segel (1974)]. 

The underlying basis of the method is that f ( r D )  can be expressed in a 

Taylor series in a. The coefficients of the terms in the series are then given 

by the successively higher order differentials of f ( r g )  with respect to cy, as 

a tends to zero in the limit. 

It is assumed that f has derivatives with respect to cy, and that both f and 

af/acy have limits f o  and fi respectively as a tends to zero. 

To obtain the first term in the expansion, we let Q = 0 in the limit. Equa- 

tions 5.4, 5.5 and 5.6 then become: 

dfo 
dr D 
- =-1 at  r D = 1  

(5.11) 

(5.12) 

(5.13) 
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This is the classical linear problem, and has the solution: 

(5.14) 

The second term may be obtained by differentiating Eqs. 5.4, 5.5 and 5.6 

with respect to a to obtain: 

"("')=o at  r g = 1  
d a  drD 

(5.16) 

(5.17) 

When a! is made to approach zero in the limit, the equations for fi may be 

obtained as follows: 

dfl - = o  at  r g = 1  
dr D 

(5.18) 

(5.19) 
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(5.20) 

When fo, given by Eq. 5.14, is substituted in Eq. 5.18, the differential 

equation for f1 becomes: 

(5.21) 

Equation 5.21 may be solved by successive integration as follows: 

When both sides of Eq. 5.21 are multiplied by r D ,  the equation becomes: 

dr D 

Equation 5.22 is integrated with respect to r g  to yield: 

(5.22) 

(5.23) 

where c1 is an integration constant, and may be determined by applying 

Eq. 5.19, the well boundary condition. When Eq. 5.19 is applied to Eq. 

5.23, we find: 
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c1 = 0 (5.24) 

Equation 5.23 may be integrated to obtained fl as follows: 

1rL 1 1 r; 
'eD 16 rlD f 1 =  -2 - -In rg - -- + c2 (5.25) 

The integration indicated by Eq. 5.17 may be performed on Eq. 5.25 to 

determine c2, the integration constant, as: 

13 2 
c2 = - +In r,D - lnreD 

48 
(5.26) 

The complete solution for fl is: 

1f;  1 * 1 r$ 13 
16rzD 48 -In rD--- + - + In reD - lnr,D (5.27) 

In deriving Eq. 5.27, all terms of the order l/rZD and lower were neglected. 

This assumption is reasonable since reD is of the order of 5000 for a typical 

gas well. 

If the constant 13/48 is further approximated by 1/4, Eq. 5.27 becomes: 
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I r k  1 2 
f 1 =  -In rg - -- -2 - 

reD 
(5.28) 

The finite Taylor series expansion of fD in a is then, 

f ( r D ;  a )  = fO(rD) + a f l ( r D )  

where fo and fl are given by Eqs. 5.19 and 5.28 respectively. 

At the wellbore, where T D  = 1, the pressure drop is: 

(5.29) 

(5.30) 

Equation 5.30 may be expressed in terms of dimensional variables by re- 

calling the definitions of a and f from Eqs. 4.17 and 5.3 respectively: 

F2 - P2, = A19sc + (5.31) 

where: 

1.422( 106)m T ,  
A1 = 

[in - - t] kh r W  
(5.32) 

and: 
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(5.33) 

This can be expressed in the alternative form, involving the D coefficient: 

with the coefficient, D ,  defined as: 

(5.34) 

(5.35) 

This result shows again that an effect of the nonlinearity in the differential 

equation is a nonlinear relationship between pressure drop and flow rate. 

This relationship, of the Forchheimer type, is usually interpreted as an 

indication of deviation from Darcy flow. Clearly, since a basis of our analysis 

is Darcy’s law, the deviation from linearity is due to the effects of the 

gradient-squared term, and is not a ‘non-Darcy’ effect. 

As in the steady flow case, the coefficient of the nonlinear term is a function 

of reservoir size, in contradiction of current theory. The effect of reservoir 

size is tempered however, by the logarithm, and thus does not affect the 

coefficient as much as do other parameters (for example, kh). Thus a 

deviation from linearity between flow rate and pressure drop cannot be 



used as conclusive evidence of non-Darcy flow, as has been the practice. 

A gas deliverability problem will be presented here to illustrate the use of 

the equations, to obtain an indication of the magnitude of the terms, and to 

compare with results computed by another method. The example is taken 

from pp. 7-19 of ERCB [1975]. In this example it is assumed that the well 

has a zero skin factor, instead of that of -2 used in the original problem. 

Given the following gas and reservoir properties, we wish to establish the 

stabilized deliverability potential of the well. 

p =  0.02cp 

0 Z = 0.81 

0 T =  630"R 

0 k = 1 4 m d  

0 h = 4 5 f t  

0 re = 2600ft  

0 s=o 
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Equation 5.31 may be used to compute the stabilized deliverability of the 

well. To use Eq. 5.31 an estimate of the parameter, b, is required. Figure 

5.1 is a graph of b versus temperature for different values of gas gravity. 

Using the given reservoir temperature and gas gravity, a value of b may be 

read directly from the figure: 

b = 6.8( 10-'0)~p/psi~2 

A1 and B1 are then calculated from Eqs. 5.32 and 5.33 respectively to give: 

A1 = 191,600 

The stabilized deliverability equation is then: 

p2 - p', = 191, 600qsc + 1,635q:c 

The value of B1 is of the same order of magnitude as that calculated in 

the book [ERCB (1975)], which was 2,510. Their value was calculated 

from Swift and Kiel's [1962] equation, which involves the non-Darcy pa- 

rameter, p, obtained from correlations of experimental results. If the well 
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were to produce at lOOMMSCFD, the linear component of the pressure 

drop would be 1.1916(107) ps i2 ,  and the nonlinear contribution would be 

1.635(106) psi2. The two components would both be significant. 

This example shows that the extra pressure drop resulting from the nonlin- 

ear squared-gradient term can be large, and compares with that computed 

by other methods based on the assumption of non-Darcy flow. The observed 

deviations that have been attributed to non-Darcy flow may be a result of 

the gradient-squared nonlinearity of the governing differential equation. 

The next chapter considers transient flow in an infinitely large reservoir. 
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Chapter 6 

Transient Radial Flow 

This chapter is concerned with the analysis of the unsteady nonlinear flow 

towards a well in an infinite-acting system. The infinite-acting model rep- 

resents the period before the effects of external boundaries are felt. 
, 

The results to be presented here relate to the pressure responses during 

drawdown and injection. The analysis of the steady radial problem in 

Chapter 3 revealed that the coefficients of the nonlinear rate terms in the 

pressure solution are functions of drainage radius. Since in unsteady flow, 

the drainage radius increases with time, it is expected that the coefficients 

of all the rate terms in the transient problem will be time-dependent. This 

would seem to contradict prevailing theories, which suppose that the time- 

dependency is confined only to the linear term (Lee, 1982). 
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6.1 Drawdown 

The following is a derivation of the equation for the pressure response due 

to a well under production. 

The dimensionless differential equation governing the unsteady radial flow 

was derived and presented in Chapter 4. It is: 

The initial and boundary conditions applicable to the situation where the 

well is under production (drawdown) are: 

The first boundary condition, Equation 6.2, states that pressure is equal 

to the initial pressure at all points prior to production. Equation 6.3 is 
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a statement of the fact that the flow is always transient; in other words, I 

Upon substitution of Eq. 6.5 into Eqs. 6.1 to 6.4, a new set of equations 

in terms of u results: 

the system boundary is never encountered during the period of interest. 

Equation 6.4 is a specification of Darcy’s law at the well. 

I 

Equation 6.1 is nonlinear with respect to p ~ ,  and is linearized by making 

the following variable change suggested by Odeh and Babu (1987): 

1 
p~ = -1nu 

Q 
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The method of Laplace transformation may be used to obtain a solution 

to the problem. Application of the Laplace transform to Eq. 6.6 and 6.7 

gives: 

(6.10) ~ 

Equation 6.10 is the inhomogeneous modified Bessel equation of order zero, 
, and has the general solution: l 

In Eq. 6.11, A and B are integration constants, and Io and KO are the 

modified Bessel functions of the f i s t  and second kinds respectively. ' 
The Laplace transform of Eq. 6.8 is: 

(6.12) 

As rg  tends to infinity, the K O  term in Eq. 6.11 tends to zero, whereas the 

function, Io, tends to infinity. To satisfy the requirement of Eq. 6.12, the 

constant, A,  must be equal to zero. I 

Thus: 
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1 
ii = B K O ( & T D )  + - S 

The Laplace transform of the inner boundary condition, Eq. 6.9, is: 

(6.13) 

(6.14) 

An expression for B may be obtained by combining Eqs. 6.13 and 6.14. 

This is: 

Thus the solution for u in Laplace space is: 

Equation 6.16 is written in the alternative form: 

(6.15) 

(6.16) 

(6.17) 

where: 
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(6.18) 

The inverse transform of 1/s is 1, and the function, K O ( J s r ~ ) / s ,  as the 

Laplace transform of the classic exponential-integral solution of the radial 

diffusivity equation. 

For large times (small s), the following approximation is appropriate [Churchill, 

19441: I 

(6.19) 

The approximation in Eq. 6.19 is equivalent to modelling the well as a line 

source. 

When Eq. 6.19 is substituted into Eq. 6.18, f(s) is: 

1 (6.20) 
f(s) = 1 - crli'o(Js) 

For small values of a ,  f(s) can be further approximated as a truncated 

binomial series, viz: 

(6.21) , 



The binomial expansion is valid for values for a and .KO(& for which the 

following relation holds: 

Equation 6.22 implies the following inequality: 

1 
K O ( 4  < - a 

Dividing both sides of Eq. 6.23 by s (always positive), we get: 

.KO(& 1 <-  
s a s  

with the inverse transform: 

- -Ei 1 (--$) < - 1 
2 a 

(6.22) 

(6.23) I 

(6.24) 
I 

~ 

I 

I 
(6.25) 

The magnitude of a is of the order of 0.01. If we further approximate the 

Ei function by its logarithmic approximation, the inequality can be written 

as : 

I 
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1 - [Into + 0.81 < 100 
2 

(6.26) 

This implies that tD must satisfy the following approximate requirement: 

t D  < e'@' (6.27) 

For most practical situations this would be satisfied, and the binomial ex- 

pansion should be valid. 

The equation for .ii then becomes: 

S S S 

To the first order in a, il is: 

- 1 c u K o ( f i r D )  u = - +  
S S 

(6.28) 

(6.29) 

(6.30) 

The inverse transform of Eq. 6.30 is: 
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The dimensionless pressure is given by: 

1 
p~ = -1nu 

Q 

At the wellbore, T D  = 1, and the wellbore pressure drop is: 

1 
p , ~ = - l n  1 - - E i  -- 

a! [ ( 4 2 D > ]  

(6.31) 

(6.32) 

(6.33) 

Equation 6.33 was used to plot p , ~  vs t D  on a semi-logarithmic graph for 

different values of a,  and is shown in Fig. 6.1. The figure also shows a plot 

using the exponential-integral solution derived on the basis of the linear 

theory ( a  = 0). The nonlinear result shows pressure drops that are less 

than those computed from the linear theory. This difference increases with 

time, indicating a dependency on drainage radius that was present in the 

steady and pseudo-steady cases. In drawdown tests, this difference is likely 

to be misinterpreted as a rate and time-dependent skin factor, although 

this 

110 



n 

4 

3 

Fig. 6.1 

loo00 le+05 
Dimensionless Time 

Drawdown Pressure Behavior 

111 



is merely an effect of the squared-gradient nonlinear term in the governing 

differential equation. 

To further examine the nature of the pressure behavior, the logarithm term 

in Eq. 6.33 was expanded in a Taylor series. The expansion was to the first 

order in a, and resulted in the following equation: 

(6.34) 

Equation 6.34 can be written in terms of dimensional pressures by recalling 

the definition of pD : 

(6.35) 

where the coefficients, A and B are given by: 

0.711( 10')pzT 
kh Ei -- ( 4:D) 

A = -  

0.253( 1 0 ' 2 ) p ~ T 2 b  Ei2 (--$) 
( k N 2  

B =  

(6.36) 

(6.37) 
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6.2 Injection 

The problem of a well injecting into an initially static reservoir will be 

discussed in this section. The governing equations for injection are identical 

to those for drawdown which were discussed in the previous section. The 

only difference is in the sign of the boundary condition at the well. The 

solution to the nonlinear injection problem is presented in this section. 

The analysis starts off from Eq. 6.13 with the following equation for u in 

Laplace space: 

1 
ii = Bh', (fir.> + - s (6.38) 

The well boundary condition differs from that for drawdown only in sign, 

and is given by: 

dii 
= aii (6.39) GL1 

The integration constant, B ,  may be obtained by applying Eq. 6.39 to Eq. 

6.38: 

- -a 
(6.40) 

, 
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Substituting Eq. 6.40 into Eq. 6.38, the solution is: 

(6.41) 

(6.42) 

where: 

Equation 6.19 may be used to make an approximation of g(s) ,  valid for 

large times: 

i 

(6.44) 

which for small a ,  may be approximated by the binomial theorem as: 

g(s) M 1 - a K o ( f i  

Thus 2 is given by: 

(6.45) 
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I f im) 1 
U =  [I - a'h. , ( f i )]  + - 

S S 
(6.46) 

(6.47) 

To the first order in a', Eq. 6.47 is: 

The inverse Laplace transform of Eq. 6.48 is, 

u = ZEi 2 (-2) + 1 

The dimensionless pressure, PO, is: 

1 
p~ = -1nu 

a' 

= LIn  a' [1+ %Ei (-&)I 

(6.48) 

(6.49) 

I 

(6.50) 

The pressure increase at the wellbore, p , ~  may be obtained by replacing 

1'0 by unity in Eq. 6.50. This results in: 
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1 a 
P,D = -In a [I + TEi  (-&)I 

The Taylor series expansion of p , ~  to the first order in a is: 

(6.51) 

(6.52) 

Equation 6.52 suggests that the pressure increase computed by the nonlin- 

ear analysis is greater than that resulting from the linear theory, and that 

this difference increases with time. This observation is verified in Fig. 6.2, 

where p , ~  is graphed against Into for both the linear and nonlinear cases. 
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Chapter 7 

Conclusions 

Several mathematical models have been developed to describe the nonlin- 

ear flow of gases in homogeneous porous media. The models were based 

on pressure and squared-pressure formulations and involved the integration 

of the fundamental equations governing the flow of gas in porous media. 

Darcy’s law was assumed to be valid in all the analyses. Different kinds of 

geometries and flow regimes were considered. The objective of this study 

was to provide alternative analyses of the nonlinear pressure responses dur- 

ing gas flow through porous media. The following conclusions have been 

made on the basis of the results obtained in the study: 

1. The analysis of steady flow through cores indicates that Darcy’s law, 

in its differential form, is consistent with the finite form of the Forch- 

heimer equation. Based on the excellent match of the equations with 
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experimental data, the observed deviations from linearity during high 

rate flow are more likely to be due to effects of real gas properties than 

to non-Darcy flow. 

2. The onset of apparent non-Darcy flow can be predicted from a knowl- 

edge of a parameter, cq. Deviation from linearity occurs at an 01 

value of about 0.05, whereas the quadratic and cubic Forchheimer 

equations are applicable for a1 values of up to 0.3 and 0.45 respec- 

tively. The parameter, cq, is proportional to Darcy velocity, viscosity, 

length and fluid compressibility, and inversely proportional to perme- 

ability. 

3. The dimensionless time to ‘stabilization’ during unsteady flow through 

cores is the same, regardless of the magnitude of the pressure drop 

across the core. Steady state flow is reached at a dimensionless time, 

tD,  of about 0.4, and implies that stabilization will be slow for low 

permeability systems, long cores, high porosity rocks, and high fluid 

viscosity and compressibility. 

4. Deviations from linearity during radial flow can be predicted on the 

basis of Darcian analyses. 

5. Simulation of high rate gas wells requires the inclusion of nonlinear 

well terms to model the effects of drainage radius, and thus fluid 

property variations with pressure. 
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6. Darcy’s law is applicable to a wider range of flow rates than has been 

previously thought. 
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NOMENCLATURE 

A 

b 

C 

C 

h 

I< 

k 

L 

M 

n 

P 

9 

R 

r 

S 

S 

T 

t 

V 

X 

Z 

cross-sectional area 

gas property parameter 

gas performance coefficient 

compressibility 

formation thickness 

hydraulic conductivity 

permeability 

length 

molecular weight 

gas performance index 

pressure 

volume flow rate 

gas constant 

radial distance 

skin factor 

Laplace transform parameter 

temperature 

time 

velocity 

linear distance 

compressibility factor 
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a flow parameter 

P velocity coefficient 

E porosity 

"/9 gas specific gravity 

P viscosity 

4 porosity 

Subscripts 

C 

D 

e 

m 

0 

sc 

st 

t 

W 

critical 

dimensionless 

external boundary 

gas 

initial conditions 

mean average 

equivalent length 

standard conditions 

stabilization 

total 

wellbore 
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Special Functions and Operators 

Ei exponential integral function 

IO 

IC0 

L-’ inverse Laplace transform 

m(I-4 gas pseudo-pressure 

A finite difference operator 

V gradient operator 

modified Bessel function of the first kind of order zero 

modified Bessel function of the second kind of order zero 
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