DETERMINATION OF FRACTURE APERTURE A MULTI-TRACER APPROACH

A REPORT SUBMITTED TO THE DEPARTMENT OF PETROLEUM ENGINEERING OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

> By Charles E. Fox June 1988

I certify that I have read this report and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science.

Edd N. e

Roland N. Horne (Principal Advisor)

Abstract

This work shows that fracture aperture can be calculated from tracer tests involving two tracers with different affinities for adsorption onto the rock. In 1983 Jensen proved that fissure aperture can be determined when adsorptive effects are neglected. Adsorption introduces an additional unknown, the retardation factor, into the governing equations. When two tracers are injected, the number of available equations expands to match the number of unknowns.

This report also presents equations based on the matrix diffusion model which allow estimation of fracture aperture through visual examination of tracer tests. Tracer data from tests in the Wairakei geothermal field in New Zealand were analyzed by the visual method. The results were compared to computations using nonlinear regression. The two analyses differed randomly with an average variation of \pm 40%.

Experiments were performed in which three tracers, sodium chloride, ethyl alcohol and isopropyl alcohol, were flowed through a fractured core. The effective diffusivity of the rock was determined by measuring the salt concentration at the inlet and at two points along the fracture. The analysis of the data made use of an analytical solution to the matrix diffusion model in which the inlet boundary condition is expressed in terms of a complementary error function. Although the effective diffusivity was estimated, the amount of adsorption which occurred during the flow tests could not be determined quantitatively. The sampling frequency was too low to provide good resolution of the breakthrough curve. Interestingly, the differences in molecular diffusion of the tracers seemed to dominate over adsorption effects.

Acknowledgements

I would like to thank Professor Roland N. Horne for his personal support and guidance.

I also wish to express my appreciation to Robert A. Johns whose advice on laboratory procedures greatly speeded the completion of this project.

Thanks are also be extended to Dr. Milind Deo for his help with the chromatographic analysis.

I wish to gratefully acknowledge the financial assistance I received from the Mobil Oil Corporation.

Financial support for this project was provided by the Department of Energy Stanford-DOE contract DE-AS07-84ID12529.

Contents

Ał	ostra	ct	iii
Ac	knov	wledgements	iv
1	Intr	oduction	1
2	Lite	erature Review	2
3	The	ory	5
	3.1	Derivation of the Governing Equations	5
		3.1.1 Fracture Flow Governing Equation	7
		3.1.2 Matrix Diffusion Governing Equation	8
	3.2	Solution	9
	3.3	Fracture Aperture Equation	11
	3.4	Analysis of Synthetic Tracer Tests	15
4	Ana	alysis of Wairakei Field Data	20
	4.1	Geology,	20
	4.2	Tracer Tests ,	20
	4.3	Analysis and Comparison	23
5	Exp	perimental Objectives	30
6	Exp	perimental Apparatus	31
	6.1	Flow System	31

	6.2	Tracer Detection System	34
		6.2.1 Conductivity Measurement System	34
		6.2.2 Alcohol Detection System	37
	6.3	Berea Sandstone	37
	6.4	Tracer	37
7	Exp	erimental Procedure	38
	7.1	Porosity Measurement	38
	7.2	Chromatograph Calibration	38
	7.3	Measurement of K_v	39
	7.4	Flow System Operation	39
8	Exp	perimental Results	41
	8.1	Sandstone Measurements	41
	8.2	Static Adsorption Tests	42
	8.3	Flow Tests	44
		8.3.1 Conversion d Voltages to Salt Concentration	48
		8.3.2 Alcohol Concentrations	51
9	Мо	deling of the Experimental Data	53
	9.1	Inlet Condition	53
	9.2	Modeling of the Salt Tracer	55
		9.2.1 Nonlinear Regression Fit	55
		9.2.2 Estimation of the Effective Diffusivity	57
	9.3	Modeling the Alcohol Tracers	59
	9.4	Nonlinear Regression Fit	59
10) Co	nclusions	62
1	1 Ree	commendations	63
1	2 No	menclature	64
A	Ad	sorption	72

В	Solu	tion of the Matrix Diffusion Model	75
	B.1	Governing Equations	75
	B.2	Boundary Conditions	75
	B.3	Initial Conditions	76
	В.4	Dimensionless Groups	76
	B.5	Governing Equations in Dimensionless Form	77
	B.6	Boundary Conditions in Dimensionless Form	77
	B .7	Initial Conditions in Dimensionless Form	77
	B.8	Laplace Transform of Governing Equations	77
	B.9	Laplace Transform of Boundary Conditions	78
	B. 10	Laplace Transform of Initial Conditions	78
	B.11	Manipulation of Transformed Equations	78
	B.12	Solution	80
C	Fra	cture Aperture Equation Derivation	81
	C.1	Solution of the Matrix Diffusion Model	81
	C.2	Laplace Transform of Solution	81
	C.3	Derivative	81
	C.4	Superposition	82
	C.5	Manipulation of the Superposed Derivative Equation	83
	C.6	Fracture Aperture Equation	85
	C.7	Fracture Aperture Equation - Instantaneous Injection	85
D	Wa	irakei Tracer Tests	87
E	Reg	ression Equations	95
F	Соі	nputer Data Acquisition System	97
	F.1	Hardware	97
	F.2	Software	98
	F.3	Software Listing	102
		F.3.1 Main Program	102

		F.3.2	Subroutines	104
G	Chro	omato	graph Specifications/Settings	107
	G.1	Equip	ment	107
	G.2	Instrui	ment Settings	107
		G.2.1	Detector/Oven/Presentation Settings	107
		G.2.2	Injection Settings	108
Н	Chro	omato	graph Runs	109
	H.1	Calibr	ation Runs ,	109
	H.2	15 mir	nute Adsorption Test	114
	H.3	Run6	•••••••••••••••••••••••••••••••••••••••	116
Ι	Volta	age D	ata	133
J	VAR	RPRO	Regression Subroutine	154
K	Maiı	n Pro	gram – Nonlinear Regression	171

List of Tables

3.1	Synthetic Tracer Test _Formation Data	16
3.2	Synthetic Tracer Test _Injection Data	17
4.1	Estimation of Fracture Aperture _Regression and Visual Methods .	26
7.1	Gas Chromatograph Response Factors	39
8.1	Experimental Data _Sandstone Porosity and Grain Density	42
8.2	Determination of K_v _Summary of Chromatograph Results	43
8.3	Determination of K_v . Supplemental Data	43
8.4	Estimates of K_v	43
8.5	Voltage Conversion Coefficients	49
8.6	Results of Chromatograph Runs vs. Time	52
9.1	Results of Nonlinear Regression _Salt Concentration	57
9.2	Estimation of D_e Using Nonlinear Parameters	58
9.3	Results of Nonlinear Regression _Outlet	60
9.4	Effects of High Isopropyl Alcohol Concentration	61

List of Figures

3.1	Fracture Flow	6
3.2	Matrix Diffusion	6
3.3	Inlet Condition - Step Change	10
3.4	Outlet Response to Step Change	11
3.5	Inlet Condition _Pulsed Injection	12
3.6	Outlet Response to Pulsed Injection	12
3.7	Chromatographic Effects of Diffusion and Adsorption	15
3.8	Synthetic Tracer Breakthrough Curves	16
3.9	Fracture Aperture Cross Plot - Approximate Equation	17
3.10	Fracture Aperture Cross Plot - Iterative Solution	18
3.11	Approximate vs. Iterative Solution	19
4.1	Location of Wairakei Field (from DiPippo 1980)	21
4.2	Geology of Wairakei Field (from Grindley 1965)	21
4.3	Well Locations in Wairakei Field (from McCabe et al. 1983)	22
4.4	Chromatographic Movement of Iodide and Bromide _Wairakei (from	
	McCabe et al. 1983)	23
4.5	WK68 Tracer Breakthrough Curve _from WK107	25
4.6	Fracture Aperture _Visual vs. Regression Method	27
4.7	Breakthrough Time _Visual vs. Regression Method	27
4.8	Peak Concentration Time _Visual vs. Regression Method	28
4.9	WK116 Tracer Breakthrough Curve _from WKlOl	29
6.1	Photograph of the Flow System	32

6.2	End View of the Fracture Entrance	32
6.3	Side View of the Core	33
6.4	Photograph of the Inlet Plate	33
6.5	Constant Pressure Vessel	34
6.6	Location of Electrodes Fracture Wall View, Top Slice	35
6.7	Photograph of the Fracture Wall	35
6.8	Location of Electrodes - Side View. Bottom Slice	36
8.1	Run 6 _Electrode #1 (Inlet)	45
8.2	Run 6 _Electrode #2 (L/4)	45
8.3	Run 6 –Electrode #3 (Midpoint)	46
8.4	Run 6 _Electrode #4 (3L/4)	46
8.5	Run 6 –Electrode #5 (Outlet)	47
8.6	Comparison of Voltage Response $_$ Run 6, Electrodes #3 and #5	47
8.7	Dimensionless Salt Concentration at Electrode #1 (Inlet)	49
8.8	Dimensionless Salt Concentration at Electrode #3 (Midpoint)	50
8.9	Dimensionless Salt Concentration at Electrode #5 (Outlet)	50
8.10	Dimensionless Alcohol Concentration vs. Time	51
9.1	Model Match _Dimensionless Salt Concentration at the Inlet	55
9.2	Model Match _Dimensionless Salt Concentration at the Midpoint .	56
9.3	Model Match _Dimensionless Salt Concentration at the Outlet	56
9.4	Model Match _Dimensionless Ethanol Concentration at the Effluent	59
9.5	Model Match _Dimensionless Isopropanol Concentration at the Ef-	
	fluent	60
D.l	Regression Fit. CWK 107 – WK24 (from Jensen 1983)	88
D.2	Regression Fit, CWK107 – WK30 (from Jensen 1983)	88
D.3	Regression Fit, CWK107 – WK48 (from Jensen 1983)	89
D.4	Regression Fit, CWK107 – WK55 (from Jensen 1983)	89
D.5	Regression Fit, CWK107 – WK67 (from Jensen 1983)	90
D.6	Regression Fit, CWK107 – WK68 (from Jensen 1983)	90

D.7	Regression Fit. CWK107 – WK70 (from Jensen 1983)	91
D.8	Regression Fit, CWK107 – WK81 (from Jensen 1983)	91
D.9	Regression Fit, CWK107 - WK83 (from Jensen 1983)	92
D.10	Regression Fit. CWK107 – WK108 (from Jensen 1983)	92
D.11	Regression Fit, CWKlOl – WK103 (from Jensen 1983)	93
D.12	Regression Fit. CWKlOl – WK116 (from Jensen 1983)	93
D.13	Regression Fit, CWKlOl – WK121 (from Jensen 1983)	94
F.1	Circuit Diagram _Computer Data Acquisition System	98

Chapter 1

Introduction

The disposal of produced water is an important part of geothermal development. Often the water contains pollutants which preclude dumping into the biosphere. Reinjection of waste fluids into the productive formation is normally the most economical solution. Injection programs can have positive effects such as pressure maintenance and the replacement of reservoir fluid. Conversely the introduction of cooled fluids may damage the productivity of the reservoir. Cold water could flow into production wells and decrease thermal recovery.

Geothermal fields are especially prone to breakthrough problems because the primary flow paths are through fractures. Cooled fluids can short circuit the low permeability matrix and flow quickly through the fissures from the injector to the producer. The prediction of the arrival of the cold front is therefore of considerable economic importance.

The process of heat transfer between fluids and heat sources has been extensively studied. Solutions are readily available for the flow of fluids through heat exchangers of almost any configuration. The major problem for the geothermal engineer is to define the geometry of the system since the other parameters such as heat transfer coefficients are known.

Recently the matrix diffusion model has been developed to describe the flow of tracers or contaminants through fractured porous media. The use of this model is extended in this report to cover the determination of fracture aperture from tracer tests in which adsorption is significant. Once this parameter is known the estimation of thermal breakthrough is straight forward.

Chapter 2

Literature Review

Tracer tests are used extensively to determine the behavior of fracture networks. They are utilized in preference to pressure transient analysis because well testing does not predict the existence of preferential returns (Grant, Donaldson and Bixley 1982). Horne (1982) gathered information from geothermal fields in Japan where tracer tests were able to discern short-circuiting of injection water. Qualitative descriptions of subsurface conditions have also been obtained from tracer tests for fields in New Zealand by McCabe, Barry and Manning (1983) and Fossum (1982). As of yet few quantitative descriptions of fracture systems have been acquired from tracer tests.

Accurate estimation of contaminant transport through fractures is extremely important in the nuclear waste disposal industry. A large amount of work is being done to predict the flow of radioactive elements through basement rock. It has been observed that the breakthrough of a species transported through a fractured porous medium is delayed. The retardation is due to the interaction of the fluids in the fracture and the matrix (Freeze and Cherry 1979, Neretnieks 1980, Grisak and Pickens 1980). Neretnieks and other researchers working with the nuclear waste problem have used the matrix diffusion model to explain these effects. The model has received wide acceptance.

The extension of the conceptual model has proceeded rapidly with mathematical developments preceding experimental and field verification. Tang, Frind and

CHAPTER 2. LITERATURE REVIEW

Sudicky (1981) were the first to solve analytically the problem of flow through two parallel plates. The next year Sudicky and Frind (1982) extended the solution to a series of parallel fractures. Chen (1986) increased the scope of the model to include radial flow through a horizontal fracture. Most recently van Duijn and van der Zee (1986) have used the matrix diffusion model to solve the problem involving diffusion between two porous zones of different permeability.

Experimental and field verification have followed closely behind the mathematical developments. An experiment done on flow through fractured glacial till confirmed that diffusion is an important part of advective transport (Grisak 1980). In 1982 Neretnieks *et al.* proved that diffusive effects must be considered even with a granitic matrix of low porosity and low permeability (Neretnieks, Eriksen and Tahtinen 1982). Later Jensen (1983) showed that the matrix diffusion model explains the results of tracer tests in the Wairakei geothermal field in New Zealand. Maloszewski and Zuber (1985) were also able to match larger scale groundwater tests. Finally Johns (1987) determined experimentally that the matrix diffusion model simulates observations better than a model based on dispersion alone.

The field and experimental work all shared one drawback. The model was verified by inference only. The important parameters were not all determinable beforehand. As the simulations were run, various coefficients (diffusion and adsorption) were changed to improve the fit. In every case a good match was obtained with reasonable input values.

As the name of the model suggests, the diffusion properties of the rock are key determinants in the transport process. Good data would clearly enhance the value of a simulation. Fortunately simple, standard methods are available to measure the diffusion coefficient (Stoessell and Hannor 1975), and attempts have been made to directly quantify diffusion where rock samples have been available (Skagius and Neretnieks 1986).

Adsorption is not nearly as easy to handle as diffusion. While diffusion can normally be represented by one number, quantifying adsorption requires selection of a model. Boast (1971) summarizes ten models which could be used for forecasting transport through soils. Some researchers prefer using more complicated models

CHAPTER 2. LITERATURE REVIEW

(Gupta and Greenkorn 1973); most, however, favor using the Freundlich isotherm of which linear adsorption is **a** subset (Greenkorn 1983, Lindstrom, Boersma and Stockard 1971, Skagius, Svedberg and Neretnieks 1982). Breitenbach (1982) found that the linear model was adequate to explain the sorption of two geothermal tracers on andesite. Published work involving the matrix diffusion model all use the linear model because additional mathematical complexity would make analytical solutions extremely formidable.

Even as adsorption is difficult to manage conceptually, it is more troublesome to measure experimentally. Skagius *et al.* (1982) outline one straightforward method to quantify this type of rock-tracer interaction. The effort is worthwhile because the effect of adsorption on advective transport is significant even for weakly sorbing tracers (Johns 1987).

Vetter and Crishlow (1979) also understood the importance of quantifying the adsorptive behavior of geothermal tracers. They suggest that the contacted surface area may be measured through chromatographic analysis. They expect one could also draw conclusions about the porosity and permeability of flow channels by comparing the breakthrough curves of two sorbing tracers.

Although the matrix diffusion model has recently received much favor as a means to describe advection through fractured rock, some investigators have suggested that it must be modified. Neretnieks *et ak.* and Abelin *et ak.* have presented evidence that fluid flow through fractured rock is through channels not parallel plates (Neretnieks 1982, Abelin, Birgersson, Gidlund, Moreno, Neretnieks and Tunbrant 1985). It is a simple matter, however, to change the mathematical construction to represent the new geometry (Tsang and Tsang 1981).

Chapter 3

Theory

As stated in the introduction, many authors have utilized the matrix diffusion model to study the flow of tracers through fractures. Contributions of this work include the definition of several dimensionless groups, the derivation of a fracture aperture equation and the coupling of the matrix diffusion model to chromatographic analysis.

3.1 Derivation of the Governing Equations

The two governing equations are expressions of material balance. Figures 1.1 and 1.2 show the control volumes used to develop the fracture flow and matrix diffusion governing equations. The fracture and adjoining matrix are assumed to be homogeneous and isotropic. Convection, diffusion and adsorption occur within the system, and while longitudinal dispersion terms are not included, Taylor Dispersion is used to describe diffusion within the fracture itself (Taylor **1953**). Taylor Dispersion holds that diffusion in the direction of flow is negligible in relation to the velocity of flow but is quick enough so that there is no concentration gradient across the small width of the fracture. While the effective diffusivity is used throughout this report, Neretnieks (**1980**) presents an excellent survey of the various diffusion constants used in other literature. Adsorption is modeled as linear, instantaneous

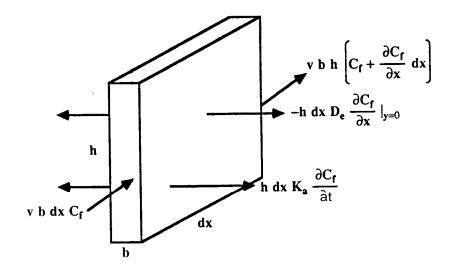


Figure 3.1: Fracture Flow

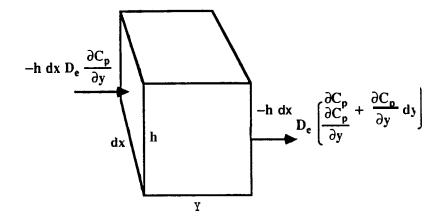


Figure 3.2: Matrix Diffusion

reaction (mass adsorbed is proportional to the concentration). Appendix A discusses adsorption further.

3.1.1 Fracture Flow Governing Equation

The fracture flow equation describes the transport of a tracer through a fissure. Figure 1.1 depicts a fracture with a width, b, a height, h, and a differential length, dx. A tracer of concentration C_f is transported through the fracture with a velocity, v. Fick's Law of diffusion describes the flux of tracer which flows through the fracture wall. Tracer is also lost from the fracture due to adsorption which is characterized as a linear function of concentration. K_a , the areal partition coefficient, models the equilibrium between the mass of tracer adsorbed onto the fracture wall and the concentration of the tracer in the fracture.

Placing the terms shown in Figure 1.1 into a mass balance equation:

$$MassEntering - MassLeaving = MassAccumulating$$
(3.1)

$$vbhC_f - vbh(C_f + \frac{\partial C_f}{\partial x}dx) + 2hdxD_e\frac{\partial C_f}{\partial y}|_{y=0} - 2hdxK_a\frac{\partial C_f}{\partial t} = hbdx\frac{\partial C_f}{\partial t} \quad (3.2)$$

Dividing both sides of the equation by *hbdx* yields:

$$-v\frac{\partial C_f}{\partial x} + \frac{2}{b}D_e\frac{\partial C_f}{\partial y}\Big|_{y=0} - \frac{2}{b}K_a\frac{\partial C_f}{\partial t} = \frac{\partial C_f}{\partial t}$$
(3.3)

Note that h dropped out of the equation. Rearranging Equation 3.3:

$$(1 + \frac{2}{b}K_a)\frac{\partial C_f}{\partial t} = \frac{2}{b}D_e\frac{\partial C_f}{\partial y}|_{y=0} - v\frac{\partial C_f}{\partial x}$$
(3.4)

The retardation factor, R_D , is defined to be $(1 + \frac{2}{b}K_a)$ (Freeze and Cherry 1979), hence:

$$R_D \frac{\partial C_f}{\partial t} = \frac{2}{b} D_e \frac{\partial C_f}{\partial y} |_{y=0} - v \frac{\partial C_f}{\partial x}$$
(3.5)

This report will refer to both Equations **3.4** and **3.5** as the fracture flow governing equation.

3.1.2 Matrix Diffusion Governing Equation

The matrix diffusion equation describes the transport of tracer through the porous matrix. Figure 1.2 depicts an elemental volume representing the matrix. Fick's Second Law of Diffusion models the diffusion of tracer through the rock where C_p denotes the concentration in the pores of the matrix (mass per volume of liquid). Mass accumulates in the volume due to adsorption onto the rock grains.

Placing the terms shown in Figure 1.2 into a mass balance equation:

$$MassEntering - MassLeaving = MassAccumulating$$
(3.6)

$$-(hdx)D_{e}\frac{\partial C_{p}}{\partial y} - \left[-(hdx)D_{e}\left(\frac{\partial C_{p}}{\partial y} + \frac{\partial^{2}C_{p}}{\partial y^{2}}dy\right)\right] = (hdxdy)\frac{\partial C_{m}}{\partial t}$$
(3.7)

 C_m is the concentration within a given volume of rock (mass per volume of liquid and solid).

Dividing both sides of the equation by (hdx)dy yields:

$$D_e \frac{\partial^2 C_p}{\partial y^2} = \frac{\partial C_m}{\partial t} \tag{3.8}$$

Again h divides out of the equation. h does not appear in either governing equation. The solution will not depend on the fracture height.

The mass in the matrix, C_m (mass per bulk volume), is comprised of free solute in the pores, C_p (mass per **pore** volume), and adsorbed mass on the grains S (mass per bulk volume).

$$C_m = \phi C_p + S \tag{3.9}$$

For small concentrations a linear isotherm may be used to model the partitioning between the rock and fluid. K_v (pore volume per bulk volume) is the volumetric

partition coefficient. K_v is related to A by the surface area to volume ratio of the rock.

$$S = K_v C_p \tag{3.10}$$

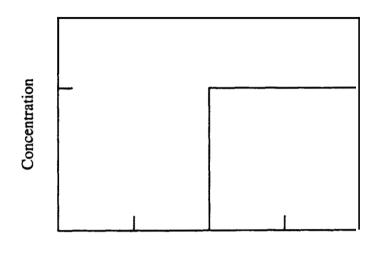
Substituting Equation 3.10 into Equation 3.9

$$C_m = (\phi + K_v)C_p \tag{3.11}$$

Equations **3.8** and 3.11 may be combined:

$$(\phi + K_v)\frac{\partial C_p}{\partial t} = D_e \frac{\partial^2 C_p}{\partial y^2}$$
(3.12)

Some authors define $(\phi + K_r)$ as the volumetric equilibrium constant, $K_d \rho_p$ and utilize the apparent diffusivity, D_a where $D_a = D_e/K_d \rho_p$ (Neretnieks 1980). Equation 3.13 is the matrix diffusion governing equation.


$$\frac{\partial C_p}{\partial t} = \frac{D_e}{\phi + K_v} \frac{\partial^2 C_p}{\partial y^2}$$
(3.13)

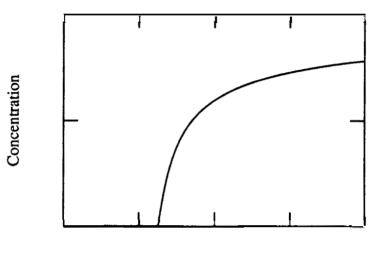
3.2 Solution

The governing equations may be solved for a step change at the inlet (Figure 3.3) where there is no tracer present prior to injection (Carslaw and Jaegar 1959). The details of this operation are given in Appendix B. The major difference between this approach and published works is the use of dimensionless groups.

The equations were nondimensionalized by using six dimensionless groups. Concentration was nondimensionalized by dividing by the injection or reference concentration ($C_D = C/C_0$). The lengths were divided by the distance between the inlet and outlet ($x_D = x/L$ etc.). The retardation factor, R_D , is the same as previously defined. K_D is the dimensionless partition coefficient where $K_D = \phi + K_v$.

Two groups were defined using an unknown time, t^* . t^* defines the length of the fracture divided by the velocity of flow (L/v). This is the time for a tracer to travel from an injector to a producer where there is no adsorption or diffusion.

Time


Figure 3.3: Inlet Condition - Step Change

It is the breakthrough time for a nonsorbing tracer. The dimensionless time and dimensionless diffusivity are defined as follows: $t_D = t/t^*$; $D_D = D_e t^*/L^2$.

The solution to the step input is given in Equation 3.14 (and Appendix B). Notice that the retardation factor is buried with the dimensionless time inside a square root. The retardation factor does not affect the shape of the response. It simply translates the profile forward or backward in time. Also at the outlet or producing well, x = L or $x_D = 1$; therefore, the solution does not depend of the fracture length. Figure 3.4 shows the response to a step input.

$$C_{fD} = erfc \left[\frac{x_D (D_D K_D)^{1/2}}{b_D (t_D - x_D R_D)^{1/2}} \right]; \ for \ t_D > x_D R_D$$
(3.14)

$$C_{fD} = 0; \text{ for } t_D \le x_D R_D \tag{3.15}$$

Time

Figure 3.4: Outlet Response to Step Change

3.3 Fracture Aperture Equation

Most field tests do not usually involve simple step changes at the inlet. Instead, tracers are more commonly injected over a short period of time. When a tracer is injected into an injection well for a time, At (Figure 3.5), the response will be as shown in Figure 3.6. This boundary condition can be handled by superposition of the step change solution (Equation 3.14). Equation 3.16 is the derivative of the solution to this input Condition (see Appendix C).

$$C_{fD}' = A_D \left\{ \frac{\exp\left[\frac{-D_D K_D x_D^2}{b_D^2 (t_D - R_D)}\right]}{(t_D - x_D R_D)^{3/2}} - \frac{\exp\left[\frac{-D_D K_D x_D^2}{b_D^2 (t_D - \Delta t_D - R_D)}\right]}{(t_D - \Delta t_D - x_D R_D)^{3/2}} \right\}$$
(3.16)

for
$$t_D - \Delta t > x_D R_D$$

where
$$A_D = \frac{x_D (D_D K_D)^{1/2}}{\sqrt{\pi} b_D (t_D - x_D R_D)^{3/2}}$$

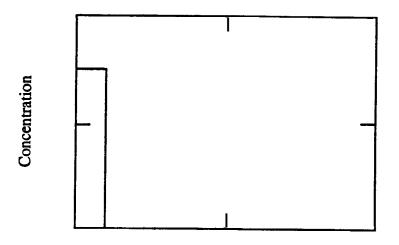
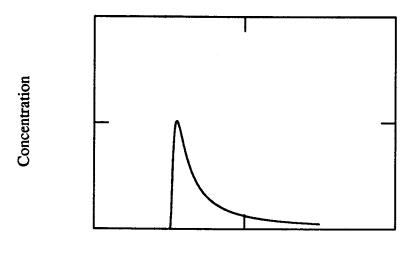



Figure **3.5:** Inlet Condition - Pulsed Injection

Time

Figure 3.6: Outlet Response to Pulsed Injection

At the peak of the tracer recovery curve, the derivative of the concentration with respect to time is zero. By setting Equation 3.16 to zero and rearranging the result in dimensional form, one can derive the fracture aperture equation (Equation 3.17). Equation 3.17 relates the fracture aperture to t^* and several other parameters. The other parameters can be determined through logs or laboratory tests on cores. The fracture aperture appears on both sides of the equation and an iterative solution is required.

Fracture Aperture Equation

$$b^{2} = \frac{D_{e}(\phi + K_{v})t^{*2}\Delta t}{(t_{p} - R_{D}t^{*})(t_{p} - At - R_{D}t^{*})\ln\left[1 - \frac{1}{t_{p} - R_{D}t^{*}}\right]^{-3/2}}$$

$$where R_{D} = 1 + \frac{2}{b}K_{a}$$
(3.17)

For no adsorption (K, $=K_v = 0$):

$$b^{2} = \frac{D_{e}\phi t^{*2}\Delta t}{(t_{p} - t^{*})(t_{p} - At - t^{*})\ln\left[1 - \frac{\Delta t}{t_{p} - R_{D}t^{*}}\right]^{-3/2}}$$
(3.18)

For an instantaneous or spike injection, At approaches zero. This is the normal boundary condition for injection of a radioactive tracer. Equation **3.19** is the fracture aperture equation for instantaneous injection. This expression provides a noniterative solution.

Fracture Aperture Equation - Instantaneous Injection

$$b = \frac{K_a t^* + \sqrt{K_a^2 t^{*2} + 6D_e(\phi + K_v)(t_p - t^*)t^{*2}}}{3(t_p - t^*)}$$
(3.19)

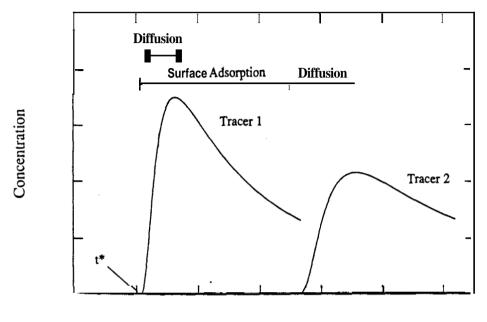
For no adsorption (K, $= K_v = 0$):

$$b = t^* \sqrt{\frac{2D_e \phi}{3(t_p - t^*)}}$$
(3.20)

Inferring values of b from the fracture aperture equation requires the injection of either one nonsorbing or two dissimilar adsorbing tracers. Either method will allow

estimation of t^* . This parameter appears in every form of the aperture equation and must be determined before the fracture width can be estimated. When a nonsorbing tracer is injected, the breakthrough time corresponds to t^* , and the aperture can be calculated in a straightforward manner. t^* cannot be determined directly when dealing with a sorbing tracer because adsorption causes a retardation of the tracer movement. When one sorbing tracer is utilized, two unknowns, b and t^* , appear in the one equation. If two tracers with different affinities for adsorption are injected, one can write the fracture aperture equation twice – once for each tracer. With two equations, the two unknowns can both be calculated. Although the evaluation is simpler when using a nonsorbing tracer, it is important to note that truly nonsorbing tracers are uncommon. Skagius **et al.** (1982) have noted the adsorption of radioactive elements on minerals.

In many cases adsorption is the major cause for delaying the peak returns from t^* . Adsorption will dominate the slower diffusion process. Remember that surface adsorption will translate the entire profile while diffusion will simply separate the breakthrough and peak times. Figure 3.7 illustrates this point. Tracer 1 is a nonsorbing tracer; therefore, the breakthrough time and t^* are identical. Diffusion causes the small difference between t^* and t_* . Tracer 2 is an adsorbing tracer in which adsorptive effects cause a translation. This translation is the major reason that t^* and the peak time are different. Notice the relatively small diffusional effects. For the case where adsorptive effects dominate:


$$t_{\mathfrak{p}} - At - R_D t^* \times 0 \tag{3.21}$$

Substituting for R_D and solving for b yields the:

Approximate Fracture Aperture Equation

$$b \approx \frac{2K_a t^*}{t_p - At - t^*} \tag{3.22}$$

Note the great dependence on $K_{,.}$ This is unfortunate because K_a is the most difficult parameter to measure (Appendix A).

Time

Figure 3.7: Chromatographic Effects of Diffusion and Adsorption

3.4 Analysis of Synthetic Tracer Tests

Synthetic tracer tests were generated using the matrix diffusion model. They are analyzed in this section to illustrate the utility of the fracture aperture equation.

Figure **3.8** shows breakthrough tracer returns for three tracers. The flow is through a fracture of 0.004 inches in width. Tracer 1 is nonsorbing. Tracer 2 has an areal partition coefficient of twice the aperture. Tracer **3's** areal partition coefficient is five times the width. The input data are summarized in Tables **3.1** and **3.2**.

It is a simple matter to analyze the nonsorbing tracer test. The breakthrough and peak times are determined from the graph. Along with these parameters, the diffusivity, porosity and injection time are plugged into Equation 3.18. Note that the breakthrough time for the nonsorbing tracer is equal to t^* (5 hr = 1000 ft/200 ft/hr).

When analyzing adsorbing tracers, two tracers are necessary. Figure 3.9 presents a cross plot of t*vs. fracture aperture for tracers 2 and 3. The approximate equation (3.22) was used to generate these curves. There is little separation between the two

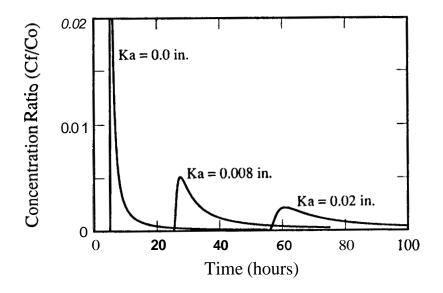


Figure 3.8: Synthetic Tracer Breakthrough Curves

Fracture Data						
b	0.004	in.				
	1000	ft				
h	100	ft				
v	200	ft/hr				
	Matrix Da	ta				
ϕ	2	%				
B	$1.86 \cdot 10^{-6}$	ft²/hr				

Table 3.1: Synthetic Tracer Test – Formation Data

\square	Tracer Data						
	Tracer 1		Tracer 2		Tracer 3		
Π	<i>K</i> ,	0.000	К,	0.500	<i>K</i> ,	1.000	
	K_a	0.000 in	К,	0.008 in.	Κ,	0.020 in.	
Π	Injection Interval						
	At 5 min				ı		

 Table 3.2: Synthetic Tracer Test – Injection Data

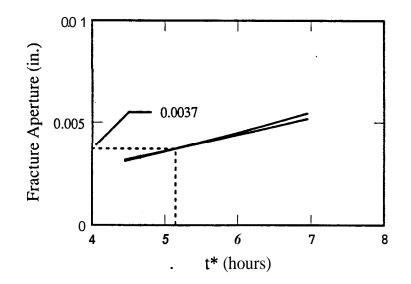


Figure **3.9:** Fracture Aperture Cross Plot - Approximate Equation

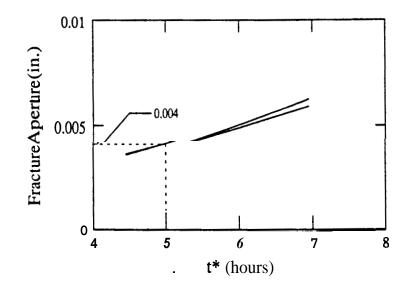


Figure 3.10: Fracture Aperture Cross Plot - Iterative Solution

curves; highlighting the sensitivity of the solution to K_a . The lines cross at 5.15 hrs and 0.0037 in. while the input parameters were **5** hours and 0.004 in. If the iterative equation were used (Figure 3.10), the solution would be exact (excluding round off error). Figure 3.11 compares the two solutions.

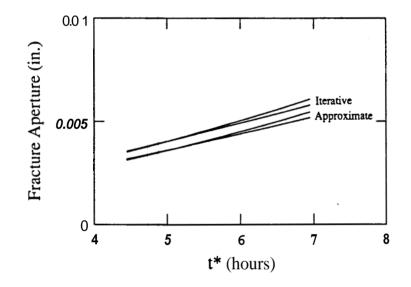


Figure 3.11: Approximate vs. Iterative Solution

Chapter 4

Analysis of Wairakei Field Data

This chapter describes the analysis of tracer tests from the Wairakei Geothermal Field in New Zealand. The results compare favorably to those of an investigation by Jensen (1983). While he also used the matrix diffusion model, his analysis was done using a nonlinear regression program.

4.1 Geology

Wairakei is one of New Zealand's larger geothermal resources. The field lies in a large thermal area, 200 miles north of Wellington on the North Island (Figure 4.1). The primary production comes from the interface between the Waiora and Wairakei formations (Figure 4.2), and the primarily flow paths are through fissures. The major faults, the Kaiapo, Wairakei and Waiora, all strike northeast to southwest and are intersected by minor faults inside the productive area (Figure 4.3). Jensen (1983) provides a fairly complete synopsis of the geology. For a more complete description see Grindley (1965).

4.2 Tracer Tests

Two tracer injection tests are analyzed in this report. They were performed by the Institute of Nuclear Sciences, Department of Scientific and Industrial Research,

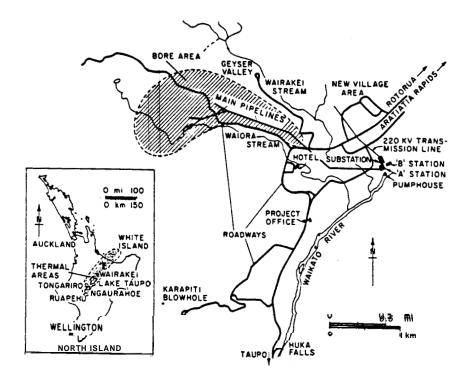


Figure 4.1: Location of Wairakei Field (from DiPippo 1980)

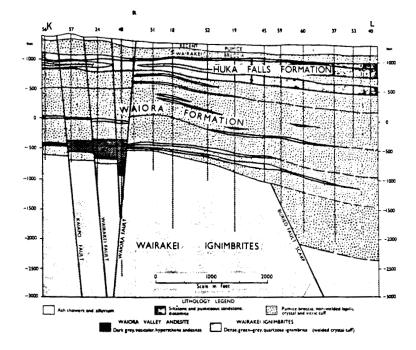


Figure 4.2: Geology of Wairakei Field (from Grindley 1965)

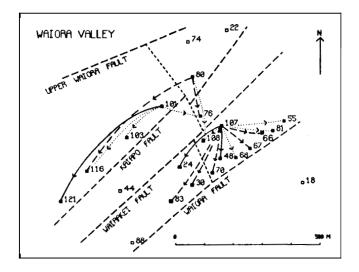


Figure 4.3: Well Locations in Wairakei Field (from McCabe et al. 1983)

New Zealand. In March 1979, **155** GBq of iodine-131 were injected into well WK107 at 1096 feet (Figure 4.3). A vial containing the tracer was shattered inside a surface by-pass connection thus producing an instantaneous injection (McCabe, Barry and Manning 1983). Radioactivity was subsequently seen in ten wells. Later in June, 165 GBq were injected into well WK101 at 1312 feet, and sensors detected the iodide in twelve wells. Some wells did not show significant response and were not analyzed by Jensen (1983).

Appendix D presents plots of the data. The concentrations have been scaled to units of injected amount divided by 10^{12} liters and corrected for decay and background emissions. Additionally, negative values have also been omitted. The raw data and the nonlinear regression fit is also presented in Jensen's 1983 report.

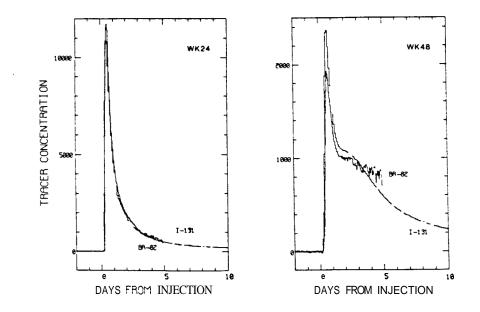


Figure **4.4:** Chromatographic Movement of Iodide and Bromide - Wairakei (from McCabe et al. 1983)

4.3 Analysis and Comparison

The data could only be analyzed if an adsorption isotherm were assumed. A literature survey produced no publications regarding the sorption of iodide on the minerals found in the Wairakei field although the chromatographic performance of iodide vs. bromide was tested in Wairakei (Figure 4.4). There was no difference in the arrival times or shapes of the breakthrough curves (McCabe *et al.* 1983). The responses may have been alike either because neither tracer adsorbed, or both adsorbed similarly. The similarity is probable since both iodide and bromide are halogens. A factor which tended to reduce the affinity of iodide for the rock was its electrical potential. Anions have little attraction for identically charged formations: however, they are known to adsorb onto the crystal edges of otherwise negatively charged clays (Gray and Darley 1980). In the absence of better information the best assumption was that iodide does not adsorb.

Equation 3.12, valid for a nonsorbing tracer, was used to analyze the data. Only

four parameters were needed: porosity, diffusivity, breakthrough time and time to peak concentration. The two times were found by inspecting the concentration vs. time plots, and the porosity was estimated by logs and core analysis. The diffusivity could have been inferred from the porosity (Perkins and Johnston 1963) or measured directly. To facilitate comparison with Jensen's calculations, this analysis assumed a porosity of 1% and a diffusivity of $4.32 \cdot 10^{-6} ft^2/day (5 \cdot 10^{-7} cm^2/s)$.

Equation 3.12 repeated:

$$b = t^* \sqrt{\frac{2D_e\phi}{3(t_p - t^*)}}$$

From Perkins and Johnston (1963):

$$D_e = \frac{D_0}{F\phi} \tag{4.1}$$

For a carbonate or consolidated formation:

$$F = \frac{1}{\phi^2} \tag{4.2}$$

For a sandstone:

$$F = \frac{0.62}{42.15} \tag{4.3}$$

The analysis of WK68 was typical and proceeded as follows. A plot similar to Figure 4.5 was inspected. The breakthrough and peak times were determined visually, in this case 2.3 and 11.09 days. The fracture aperture of 0.0043 in. was then calculated using Equation 3.12.

Jensen used a nonlinear regression technique. Three parameters were needed to fit the data. α determined the shape of the curve. $1/\beta$ was equal to the break-through time, and the third factor was a simple scaling coefficient. The time to peak concentration was not determined explicitly but could be found by manipulating Jensen's equations (Appendix E). For the WK68 Jensen computed a breakthrough time of 2.92 days and a peak time of 11.09 days. The resulting fracture aperture was 0.0068 in., approximately 50 % greater than the width estimated visually. Since

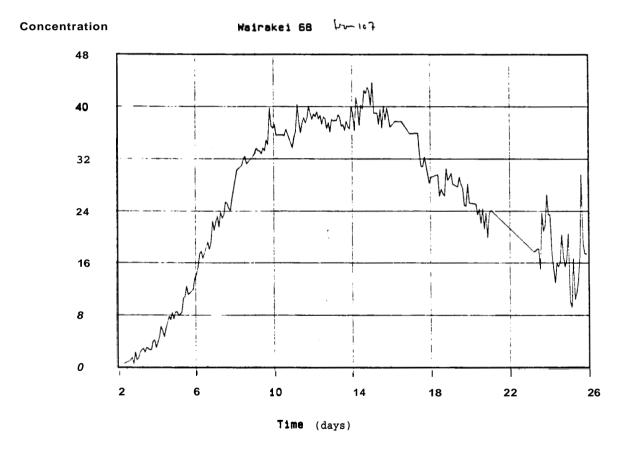


Figure 4.5: WK68 Tracer Breakthrough Curve - from WK107

Inj.	Prod.		Reg	ression]		Visual	1	
Well	Well	α	1/eta	t_p	b	t*	t_p	b	A b
			days	days	in.	days	days	in.	%
CWK107	WK24	1.25	0.23	0.47	0.0031	0.22	0.51	0.0027	-14
	WK30	1.37	4.37	9.83	0.013	3.7	9.3	0.010	-16
[]		1.27	3.22	6.67	0.012				- 7
	WK48	1.39	0.29	0.67	0.0032	0.26	0.70	0.0026	-17
		1.67	1.04	2.97	0.0050				-48
	WK55	2.50	2.67	14.51	0.0052	3.3	15.7	0.0063	-23
	WK67	2.74	1.65	9.89	0.0038	0.46	15.3	0.0008	-80
	WK68	2.05	2.92	11.09	0.0068	2.3	14.8	0.0043	-35
	WK70	2.48	2.03	10.39	0.0047	2.8	9.9	0.0070	+50
	WK81	1.54	3.66	9.41	0.010	4.0	8.4	0.013	+23
	WK83	2.17	2.55	10.53	0.0060	3.7	9.7	0.010	+73
	WK108	1.69	6.78	19.62	0.013	10.7	25.6	0.019	+47
CWKIOI	WK103	3.44	0.62	5.49	0.0019	0.54	5.1	0.0017	-10
	WK116	3.84	0.63	6.79	0.0017	2.4	7.0	0.0075	+342
		0.92	4.79	7.35	0.019				-61
	WK121	0.92	1.45	2.26	0.011	1.1	2.5	0.0062	-41

Table 4.1: Estimation of Fracture Aperture - Regression and Visual Methods

both methods were based on the matrix diffusion model, identical picks for the times yielded identical aperture estimates.

Table 4.1 presents the results of the visual and regression methods. In three cases Jensen found a better match using a double fracture model. Visual analysis of this kind was impossible. When only the ten single fracture fit curves were compared, the estimates of fracture aperture agreed fairly well. Figure 4.6 shows a plot of width found from the regression and visual procedures. The divergence between the two methods lie within the definitions of accuracy and precision. The average absolute value of the difference between the procedures was 40% (low precision). If the differences are summed while maintaining the positive and negative signs, the average of the discrepancies is only 0.9% (high accuracy).

Figures 4.7 and 4.8 attempt to discern the reasons for the discrepancies. The regression method computed both longer breakthrough and peak times. Since the difference between the two times is important, the relative overestimation was not

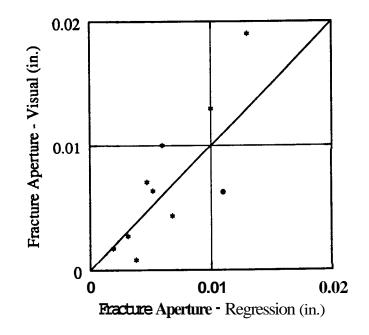


Figure 4.6: Fracture Aperture - Visual vs. Regression Method

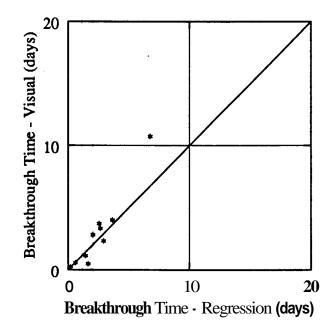


Figure 4.7: Breakthrough Time - Visual vs. Regression Method

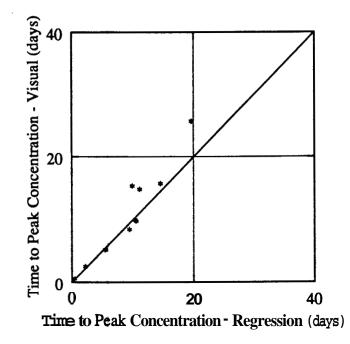


Figure 4.8: Peak Concentration Time - Visual vs. Regression Method

the cause of the divergence. The difference was simply a random variation. Perhaps with practice, an engineer could fine tune his judgement.

The visual estimation was probably more accurate in at least one case. In his analysis of the WK116 well (Figure 4.9), Jensen incorporated data from 0 to 2.4 days. These points include random background radiation. Their inclusion may be the origin of the double fracture fit.

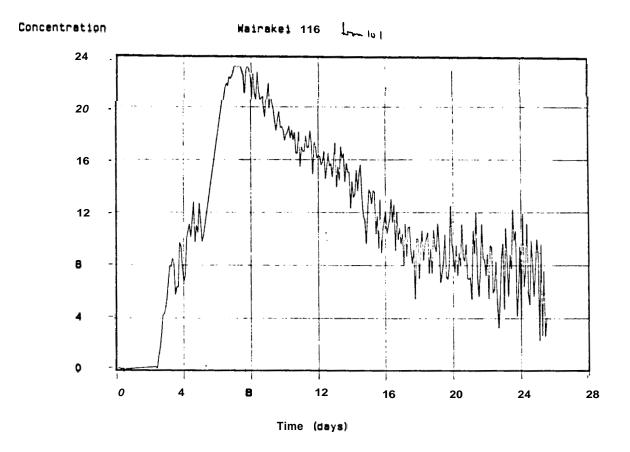


Figure 4.9: WK116 Tracer Breakthrough Curve - from WK101

Experimental Objectives

The experiment had four major objectives:

- o Determine the significance of adsorption in tracer tests
- o Determine the effective diffusivity of a fractured rock through flow tests
- *o* Measure the volumetric partition coefficient of several tracers by static adsorption tests
- o Relate the volumetric and areal partition coefficients by performing fracture flow tests in which K_a the only unknown parameter

Experimental Apparatus

In this experiment an aqueous solution containing tracers was flowed through a fracture. The equipment was built to allow concentration measurements to be made at the inlet, at the outlet, along the fracture and within the rock matrix.

6.1 Flow System

The flow apparatus is illustrated in Figure 6.1. A 6.00 in. long, 2.83 in. diameter, Berea sandstone core formed the matrix, The fracture was created by slicing the core lengthwise. Two 0.010 in. shims, sandwiched between the two halves, propped open the fracture (Figures 6.2 and 6.3). The two halves were held together by clamps, and the outer surface was coated with epoxy to prevent leakage. Because the ends were sealed, fluid could enter or leave the core only through the fracture. The inlet, machined from plexiglass, was affixed to one end of the core with RTV silicone adhesive (Figure 6.4). The outlet was formed by cementing three hypodermic needles onto the fracture outlet with RTV. The dead volume within each needle was 0.032 ml. Leaks were plugged with either epoxy or RTV, and the core was inclined to prevent drainage.

Fluid flowed into the core from one of two constant pressure reservoirs (Figure 6.5) (Gilardi 1984). Air suction ports located below the water surface held the pressure constant. The flow rate was controlled by the difference between the elevation

CHAPTER 6. EXPERIMENTAL APPARATUS

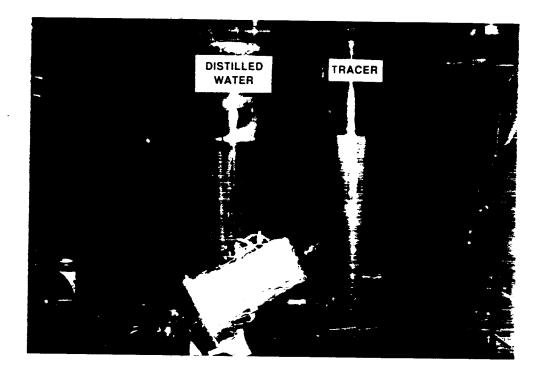


Figure 6.1: Photograph of the Flow System

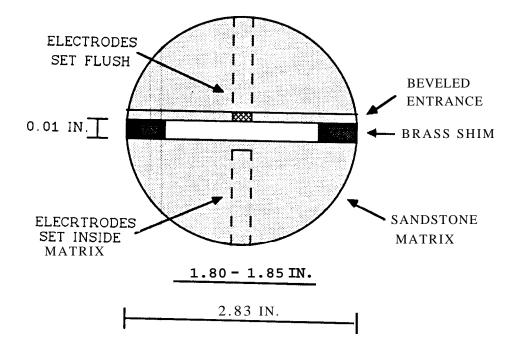


Figure 6.2: End View of the Fracture Entrance



Figure 6.3: Side View of the Core

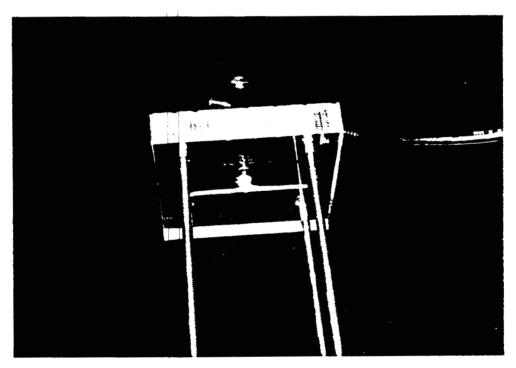


Figure 6.4: Photograph of the Inlet Plate

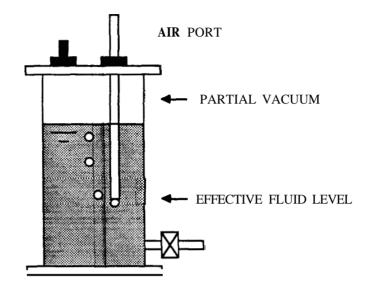


Figure 6.5: Constant Pressure Vessel

of the port and the tips of the needles. A valve switched flow between one vessel containing distilled water and the other containing tracer fluid. After the solution exited the outlet, samples were captured in 2 ml bottles for later analysis.

6.2 Tracer Detection System

Two detection systems were used. The first utilized electrodes to measure sodium chloride concentration in situ. The second determined alcohol concentration through gas chromatography of effluent samples collected in bottles.

6.2.1 Conductivity Measurement System

Salt concentration was measured by seven gold plated, ring disk electrodes positioned within the core (Gilardi 1984). The five electrodes recording concentration in the fracture were set flush with the wall (Figures 6.6 and 6.7). The two others were set within the other core half 0.3 in. from the fracture (Figure 6.8). A current

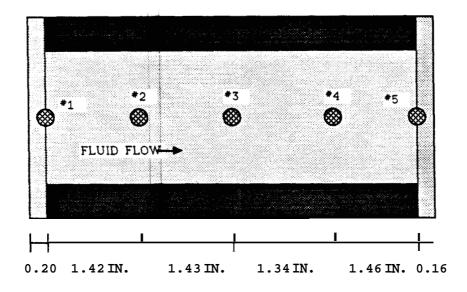


Figure 6.6: Location of Electrodes - Fracture Wall View, Top Slice

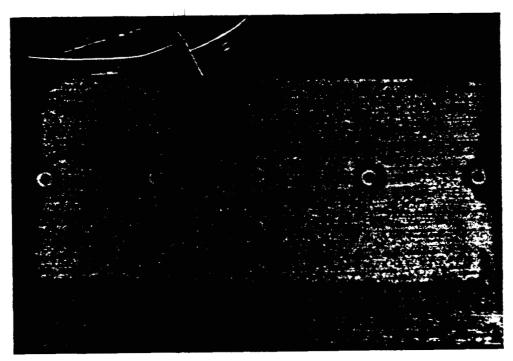


Figure 6.7: Photograph of the Fracture Wall

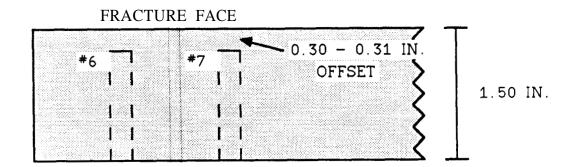


Figure 6.8: Location of Electrodes - Side View, Bottom Slice

was pulsed through each electrode and across the gap between the central charged pole and the grounded outer ring. The voltage drop across the gap was related to the concentration of salt in solution. Installation of sensors at various locations within the core enabled tracking of the tracer front.

The data collection and storage was handled by a digital-analog converter and a personal computer. A KEITHLEY/das Series 500 Measurement and Control System pulsed current to the electrodes and measured the voltage drop. The KEITH-LEY received instructions from a COMPAQ personal computer. and converted the data into digital form for storage on a floppy disk. A similar system was used by Johns (1987).

The data acquisition proceeded as follows:

- A positive five volt current **was** output across the reference resistors and the electrodes.
- The elapsed time was determined and the voltage drop was measured.
- The time and voltages were recorded.

- o Zero voltage was output to the electrodes.
- o A negative five volt signal was output for approximately the same duration as the positive signal. The reversal of polarity prevented a charge from accumulating around the electrode.
- o Zero voltage was output to the electrode.
- The entire process was immediately repeated.

The data acquisition software can be found in Appendix F.

6.2.2 Alcohol Detection System

Alcohol content was measured by a Hewlett Packard 5880 Series Gas Chromatograph (Appendix G). The effluent drained into small 2 ml hand held sample bottles. Each time a new sample bottle was positioned, the time was recorded by toggling a control which connected the KEITHLEY to either a 1.6 volt or a 6.3 volt source (Appendix F).

6.3 Berea Sandstone

The finely grained uniform sandstone was quarried in Lorain County, Ohio. The porosity of 17.7% and grain density of 2.65 g/cc were measured by the resaturation method. The supplier estimated that the longitudinal and transverse permeabilities were 550 md and 100 md respectively.

6.4 Tracer

The tracer solution contained 2081 ppm NaCl, 180,300 pprn ethanol and 217,500 ppm isopropyl alcohol.

Experimental Procedure

Five primary tasks were required in conducting this experiment, (1) measurement of the porosity and grain density of the sandstone, (2) calibration of the chromatograph (3) measurement of the volumetric partition coefficient (K_v) and (4) performance of the flow tests.

7.1 Porosity Measurement

The porosity and grain density were measured using the resaturation method. A 65 g. sample, previously joined to the core, was heated to 120°C for approximately three hours. The dry sample was then weighed. Next the rock was saturated with water under vacuum conditions. Both the wet weight and the buoyant weight were then measured.

7.2 Chromatograph Calibration

The chromatograph was calibrated by analyzing a known solution to determine response factors for the components of the mixture. A 205,200 ppm ethanol solution and a 246,500 ppm isopropanol standard were prepared and analyzed by the gas chromatograph. Multipliers were then calculated which converted the raw data into mass and weight percentages (Table 7.1). The accuracy of the equipment is ± 0.1

CHAPTER 7. EXPERIMENTAL PROCEDURE

	GC	Response Factors					
ļ	Units	Water Ethanol			ol	Propa	nol
Ĩ	$1 \cdot 10^{6}$	0.1950	mg	0.2218	me:	0.2231	mg

Table 7.1: Gas Chromatograph Response Factors

weight percent.

7.3 Measurement of K_v

The volumetric partition coefficient was measured in 15 minute and 24 hour static adsorption tests. 5.0 g of crushed Berea sandstone were placed in a dry 20 ml sample bottles. 1.373 g of standard solution were then added to the bottle which was the capped to prevent evaporation. At this solid-liquid ratio the fluid completely wet the rock with no excess. Later approximately one-half ml of fluid was withdrawn from the 20 ml bottle and prepared for injection into the gas chromatograph. The sample was analyzed ten times to estimate precision. These analyses were compared to ten runs done on the unexposed solution. The difference in concentration was attributed to adsorption (Appendix I).

7.4 Flow System Operation

Conducting the flow test required four simple operations, (1) flushing the core, (2) measuring the flow rate, (3) switching flow to the tracer vessel and (4) capturing the effluent for chromatographic analysis. Prior to the injection of the tracer solution, distilled water was flowed through the fracture. This flushing action was needed to stabilize the ion concentration at the outlet. Icns dissolved into solution due to a non-equilibrium reaction between the distilled water and the rock. During this time the flow rate was measured by capturing fluid at the outlet in a graduated cylinder. After the voltages at the inlet and outlet (Electrodes #1 and #5) had stabilized for at least 5 minutes, the majority of the data acquisition began. Approximately five

samples were caught at the outlet before the valve was switched from the distilled water to the tracer solution. The effluent was gathered for analysis at a rate of one sample every 15 - 20 seconds for the remainder of the test. The run was halted after the voltage at outlet had stabilized for several minutes.

Experimental Results

The experiments were conducted in three major areas: (1) measurements of the Berea sandstone characteristics, (2) determination of the capacity of the rock to adsorb the alcohol tracers and (3) tracking of the tracer fronts during **flow** tests.

8.1 Sandstone Measurements

The porosity and grain density were measured by the resaturation method. Table 8.1 presents the data which were analyzed using following standard formulas:

$$Total Sample Vol. = (Dry Weight - Buoy. Weight)x Water Density$$
(8.1)

Vol. of Water Absorbed = (Dry Weight - Sat. Weight)x Water Density (8.2)

$$Porosity = \frac{Vol. of Water Absorbed}{Total Sample Volume}$$
(8.3)

$$Grain Density = \frac{Dry Weight}{Total Sample Vol. x (1 - Porosity)}$$
(8.4)

Dry Weight	65.2610	g
Saturated Weight	70.5536	g
Buoyant Weight	40.587	g
Water Density	1.0	g/cc

Table 8.1: Experimental Data – Sandstone Porosity and Grain Density

Calculations yield estimates of 17.7 % porosity and 2.65 g/cc grain density. Since the expected density for a sandstone is 2.65 g/cc, the experimental values are considered reliable.

8.2 Static Adsorption Tests

The volumetric partition coefficients were measured in two static adsorption tests. The equilibrium concentrations of the tracer fluids which had been in contact with the rock for 15 minutes and for 24 hours were compared to the concentrations prior to exposure. The difference was assumed to be caused by adsorption. In the 15 minute test the concentrations of ethanol and isopropanol dropped from 20.86% to 20.26% and from 20.30% to 19.53% respectively. Table 8.2 presents the summary of the chromatograph analysis for the 24 hour test while the complete chromatograph output (including the 15 minute test) is given in Appendix H.

The partition coefficients were estimated using the concentration data, the supplemental data presented in Table 7.3 and Equations 7.5 – 7.8. Because in situ estimates of K_v were desired, the porosity of the undamaged core and not that of the crushed sample was used in Equation 7.8. The results of these calculations are presented in Table 7.4. The effect of time was significant; K_v more than doubled over a 24 hour period.

From Equation 3.10:

$$K_v = \frac{S}{C_p} \tag{8.5}$$

where:

CHAPTER 8. EXPERIMENTAL RESULTS

	Unexpose	d Tracer	24 Hr Ex	xposure
	Ethanol	IPA	Ethanol	IPA
Run	Wt. %	Wt. %	Wt. %	Wt. %
1	20.36	19.83	18.89	18.14
2	20.14	19.62	18.84	18.08
3	20.29	19.78	18.91	18.11
4	20.21	19.65	18.71	17.89
5	20.32	19.81	18.88	18.11
6	20.34	19.76	18.80	17.99
7	20.41	19.81	18.80	18.00
8	20.31	19.74	18.80	18.00
9	20.30	19.70	18.85	18.01
10	20.37	19.80	18.85	18.02
Ave.	20.30	19.75	18.83	18.04

Table 8.2: Determination of K_v - Summary of Chromatograph Results

	15 min Test	24 hr Test
Rock Mass	4.997 g.	4.994 g.
Mass of Solution	1.328 g.	1.373 g.
Solution Density	0.894 g/cc.	0.894 g/cc

Table 8.3: Determination of K_v - Supplemental Data

Component	15 min. Test	24 hr. Test
Ethyl Alcohol	0.0178	0.0468
Isopropyl Alcohol	0.0236	0.0568

Table 8.4: Estimates of K_v

CHAPTER 8. EXPERIMENTAL RESULTS

$$S = \frac{mass \ of \ tracer \ adsorbed \ on \ rock}{bulk \ volume \ of \ rock} \tag{8.6}$$

$$C_p = tracer \ concentration \ at \ equilibrium$$
 (8.7)

and

$$Bulk \ Volume \ of \ Rock = \frac{Mass \ of \ Rock}{Rock \ Density \times (1 - Porosity)}$$
(8.8)

8.3 Flow Tests

Although seven complete **flow** tests were conducted, only one provided enough good data to model. The major problem was electrode malfunctions, most likely caused by the attachment of **air** bubbles to the electrodes. Gilardi (1984) witnessed this phenomenon when he performed experiments with his Hele-Shaw cell. Additional difficulties were encountered due to cross-talk between input channels on the KEITHLEY AMM1 board.

Five successive runs were conducted without success. Runs 1 and 2 could not be interpreted due to anomalous voltage responses later attributed to air bubbles. Runs 3, 4, and 5 were performed while attempts were made to modify the equipment to correct the problem. The results of these tests are not considered reliable.

Although Run 6 furnished good data, it also provided an example of an electrode malfunction. Figures 8.1 – 8.5 show voltage vs. time plots for each sensor.

Electrode #2 does not exhibit the relatively sharp profile that is seen in the sensors positioned upstream and downstream (#1 and #3) while Electrode #4 hardly responds to the passing front.

Cross-talk can be seen by comparing the voltage records of Electrodes #3 and #5 (Figure 8.6). The voltage drop across Electrode #5 tracked that of #3 before the outlet sensor responded **to** its own signal. In an attempt to investigate this phenomenon, the KEITHLEY was disconnected from the core. A 1.6 voltage drop was then placed across each input channel of the AMM1 board. All the channels

44

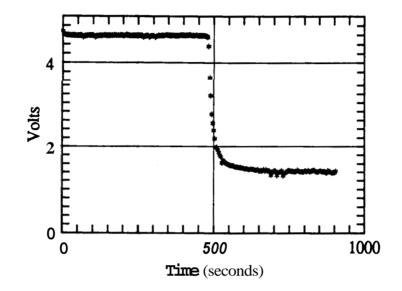


Figure 8.1: Run 6 – Electrode #1 (Inlet)

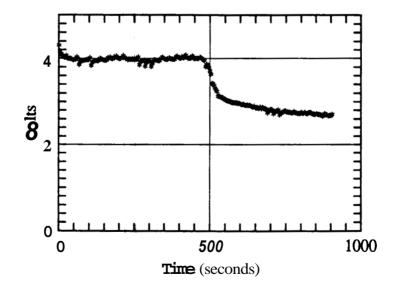


Figure 8.2: Run 6 – Electrode #2 (L/4)

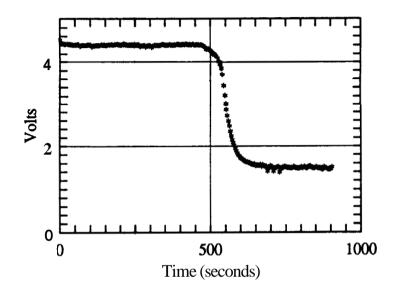


Figure 8.3: Run 6 – Electrode #3 (Midpoint)

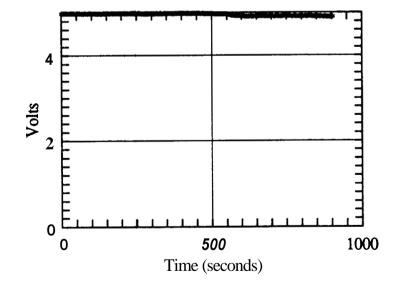


Figure **8.4:** Run 6 – Electrode #4 (3L/4)

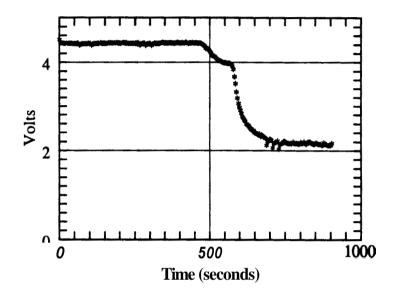


Figure **8.5**: Run 6 – Electrode #5 (Outlet)

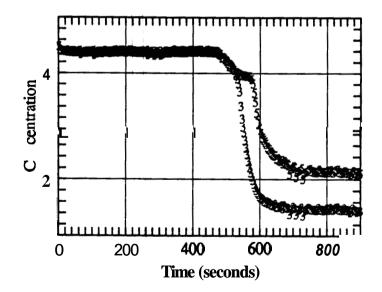


Figure 8.6:. Comparison of Voltage Response - Run 6, Electrodes #3 and #5

were seen to respond in varying degrees to inputs in the other channels. Following this observation, Electrodes #6 and #7 were disconnected and then Runs 6 and 7 were conducted.

8.3.1 Conversion of Voltages to Salt Concentration

The voltages were converted to concentrations by assuming that the voltage drop and the concentration are related by a straight line function on a semilog plot of voltage vs. concentration (Gilardi 1984). The following formula was used:

$$Concentration (ppm.) = C_2(C_1 - \log V)$$
(8.9)

where

$$C_1 = \log V_0 \tag{8.10}$$

$$C_2 = \frac{Tracer Conc.}{(\log V_0 - \log V_{tracer})}$$
(8.11)

Use of Equation 8.9 requires calibration of the electrodes to distilled water (0 ppm) and the concentration of the tracer solution (2081 pprn.) The voltage drop registered for V_0 was considered to be the average of the voltages from 250 – 450 s. During this period the response had stabilized prior to the injection of the tracer. Although some background concentration was undoubtably present due to dissolution of the rock, the amount of dissolved matter in solution was probably less than 10 ppm (Johns 1987). The voltage drop for 2081 ppm, V_{tracer} was estimated as the average of the voltages from 850 – 900 s. By this time it was assumed that the concentration at the outlet had asymptotically approached the injection value. V_0 , V_{tracer} and the resultant constants used in the conversion formula are given in Table 8.5. Figures 8.7 – 8.9 show plots of dimensionless concentration (Conc./2081 ppm.) vs. time.

Electrode	V_0	V_{tracer}	C_1	C_2
#1	4.577	1.403	0.6606	4052
#3	4.394	1.480	0.6429	4403
#5	4.423	2.134	0.6457	6575

Table 8.5: Voltage Conversion Coefficients

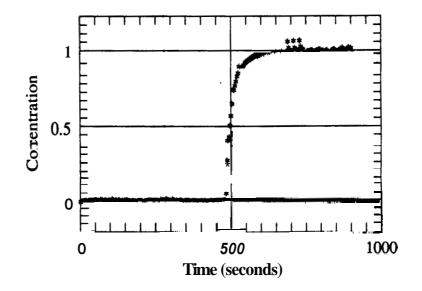


Figure 8.7: Dimensionless Salt Concentration at Electrode #1 (Inlet)

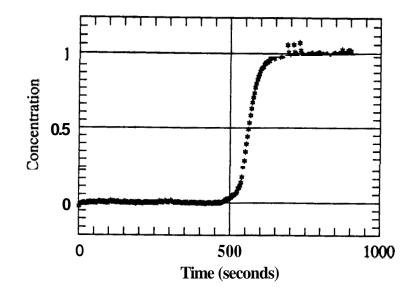


Figure 8.8: Dimensionless Salt Concentration at Electrode #3 (Midpoint)

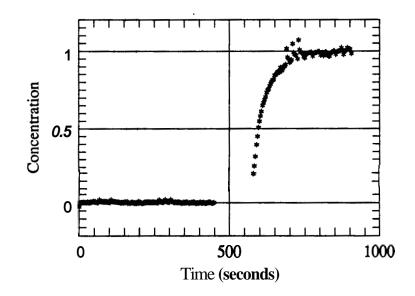


Figure 8.9: Dimensionless Salt Concentration at Electrode #5 (Outlet)

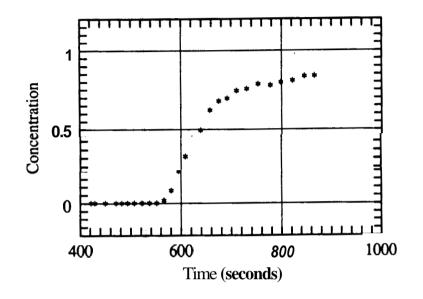


Figure 8.10: Dimensionless Alcohol Concentration vs. Time

8.3.2 Alcohol Concentrations

The effluent was captured in sample bottles and then analyzed by a gas chromatograph. The results of this analysis are presented in Table 8.6. Figure 8.10 plots the sample concentrations vs. the midpoint of the time interval over which they were collected. The raw data are presented in Appendices H and I.

	Weig	Weight %		C_0	Time	Average
Sample	Ethanol	Propanol	Ethanol	Propanol	Interval (s)	Time (s)
53	_				419.2 - 424.2	421.7
54					425.4 - 433.5	429.5
55					434.2 - 465.2	449.8
56					466.0 – 476.7	471.4
57					477.8 – 487.7	482.8
58					488.4 - 499.6	494.0
59					501.5 - 512.7	507.1
60					513.4 - 530.1	521.8
61					531.3 - 543.1	537.2
62					544.2 - 558.6	551.5
63	0.28	0.39	1.55	1.79	559.2 - 572.5	565.9
64	1.40	1.94	7.76	8.92	573.7 – 587.4	580.6
65	3.55	4.68	19.69	21.52	588.1 - 602.4	595.3
66	5.56	7.02	30.84	32.28	603.5 - 613.5	608.6
67	7.97	10.05	44.20	46.21	614.2 – 629.4	621.8
68	8.89	10.56	49.31	48.55	630.6 - 646.8	638.7
69	11.22	13.72	62.23	63.08	648.1 - 666.7	657.4
70	12.22	14.86	67.78	68.28	668.1 - 682.5	675.3
71	12.53	15.21	69.50	69.93	683.6 – 699.2	691.4
72	13.40	16.19	74.32	74.44	700.4 – 720.3	710.4
73	13.65	16.48	75.71	75.77	720.9 – 740.2	730.6
74	14.21	17.26	78.81	79.36	740.8 – 765.0	752.9
75	14.04	16.99	77.87	78.11	766.1 – 788.9	777.5
76	14.39	17.40	79.81	80.00	790.0 - 808.0	799.0
77	14.55	17.59	80.70	80.87	809.9 - 833.7	821.8
78	15.06	18.27	83.53	84.00	834.3 - 857.5	845.9
79	15.09	18.28	83.69	84.05	858.0 - 874.0	866.0

Table 8.6: Results of Chromatograph Runs vs. Time

Modeling of the Experimental Data

The data were analyzed in three steps (1) selection of a model to specify the inlet condition (2) analysis of the salt concentration data (3) analysis of the alcohol data.

9.1 Inlet Condition

Solution of the matrix diffusion model requires the specification of an inlet boundary condition. The solutions presented in Chapter **3** are for step and pulse injections. Inspection of data recorded by the inlet sensor reveals that this system did not have a simple change in inlet concentration. Johns (1987) showed that the concentration at the inlet must be closely matched for the matrix diffusion model to yield useful results. He used a complementary error function to specify the boundary condition. This analysis also used a complementary error function but one of a slightly different nature:

$$C_{fD} = \xi erfc_i \left[\frac{\sigma_i}{\sqrt{t - \theta_i}} \right]$$
(9.1)

where ξ , σ_i and θ_i are determined by performing nonlinear regression on the inlet concentration data. θ_i is defined as the time at which the tracer enters the core. σ_i is the inlet dispersion term, and ξ_i is a scaling factor. The inlet condition specifies the constant A_2 in Equation B.42. Equation 9.2 is Equation B.42 in dimensional form.

$$\overline{C}_{fD} = A_2 \exp\left[-\frac{x}{L}R_D t^*\right] \exp\left[-\frac{2x\sqrt{D_e K_D} t^*}{bL}\sqrt{s}\right]$$
(9.2)

When x = 0, A_2 is equal to the Laplace transform of the inlet condition:

$$A_2 = \frac{\xi_i}{s} \exp\left[-\theta_i s\right] \exp\left[-\sigma_i \sqrt{s}\right]$$
(9.3)

Substituting Equation 9.3 into Equation 9.2:

$$\overline{C}_{fD} = \frac{\xi}{s} \exp\left[-\left(\frac{x}{L}R_D t^* + \theta_i\right)s\right] \exp\left[-2\left(\frac{\sqrt{D_e K_D} t^*}{b} + \sigma_i\right)\sqrt{s}\right]$$
(9.4)

Let

$$\sigma_f = \frac{\sqrt{D_e K_{\rm P}} t^*}{b} \tag{9.5}$$

$$\theta_f = \frac{x}{L} R_D t^* \tag{9.6}$$

$$\sigma_{total} = \sigma_i + \sigma_f \tag{9.7}$$

$$\theta_{total} = \theta_i + \theta_f \tag{9.8}$$

and

$$\xi_{total} = \xi_i \xi_f \tag{9.9}$$

then inversion of Equation 9.4 yields:

$$C_{fD} = \xi_{total} erfc \left[\frac{\sigma_{total}}{\sqrt{t - \theta_{total}}} \right]$$
(9.10)

Equation 9.10 is of the same form as the inlet condition. This allows use of the same nonlinear regression program to calculate both the inlet and total regression parameters. Once these are known, σ_f , the fracture dispersion parameter, and θ_f , the breakthrough time, can be determined.

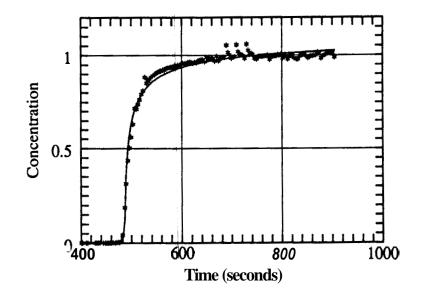


Figure 9.1: Model Match - Dimensionless Salt Concentration at the Inlet

9.2 Modeling of the Salt Tracer

The data matched the theory well. Using the complementary error function as the inlet condition, the matrix diffusion model matched the progress of the salt tracer through the fracture. The effective diffusivity, estimated with the model, was on the same order of magnitude as that computed with Equation 4.1.

9.2.1 Nonlinear Regression Fit

The data were fit to Equation \$.10 using a least squares nonlinear regression program. The regression subroutine, VARPRO, and the front end driving program are given in Appendices J and K. Figures 9.1 - 9.3 illustrate the match, while the regression parameters are listed in Table 9.1. The inlet function condition closely matched the fairly sharp front recorded by the inlet sensor. The fit at the midpoint electrode (Figure 8.2) was not quite **as** good because the leading edge of the front was diffuse. This dispersion could be the result of channeling or cross-talk between

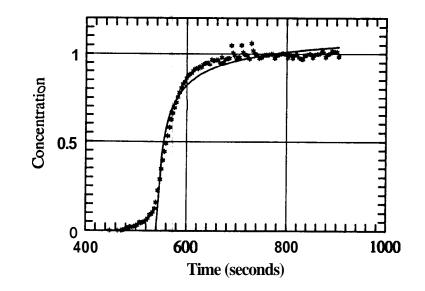


Figure 9.2: Model Match – Dimensionless Salt Concentration at the Midpoint

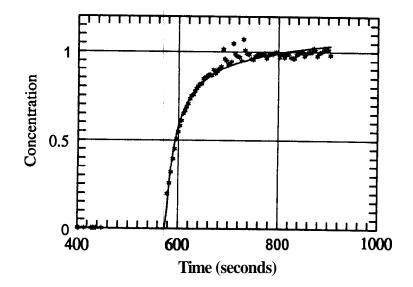


Figure 9.3: Model Match – Dimensionless Salt Concentration at the Outlet

[Location	
	Inlet	Midpoint	Outlet
Etotal	1.125	1.195	1.230
σ_{total}	1.612	2.217	2.591
θ_{total}	484 5	539.5	573.8
$\left[\frac{\xi_{f}}{\xi_{f}}\right]$		1 062	1.093
σ_f		1.062 0.605	0.979
θ_{f}		55.0	89.3

Table 9.1: Results of 'NonlinearRegression - Salt Concentration

channels on the AMM1. Interestingly exclusion of the leading edge data from 475 – 539 s did not change the regression parameters to the fourth significant figure. The data between 450 and 576 s were not included in the regression analysis of the outlet sensor (see Chapter 8.3), and Equation 9.10 fit the remaining data well (Figure 9.3).

Inspection of the numerical parameters reveals that the results did not agree completely with theory. As time approached infinity, the concentration should have approached 1.0; however, the laast squares fit for the downstream data sets gave ξ_f values between 1.05 and 1.10. If more data had been collected, regression analysis would have yielded lower final concentrations. Additional data was not necessarily desirable, though, because the effect of honoring the late time response would have been to place less emphasis on the more important early time breakthrough.

The experimental relationship between θ_f at the midpoint and the exit also diverged from expectations. θ_f^{\dagger} for the midpoint sensor should have been one-half (x/L = 0.5044) of the outlet value. The actual ratio, 0.616, was 22 % higher than expected and indicated possible channeling.

9.2.2 Estimation of the Effective Diffusivity

The effective diffusivity was estimated using the regression parameters. If the rock properties were isotropic, the ratio of σ_f/θ_f measured at all points within the fissure should have been constant:

	Midpoint	Outlet
σ_f	0.605	0.979
θ_f	55.0	89.3
σ_f/θ_f	0.0110	0.0110
$D_e(cm^2/s)$	$4.41 \cdot 10^{-7}$	$4.38 \cdot 10^{-7}$

Table 9.2: Estimation of D_e Using Nonlinear Parameters

$$\frac{\sigma_f}{\theta_f} = \frac{\sqrt{D_e K_D}}{b R_D} \tag{9.11}$$

Assuming no adsorption, K_D was equal to the porosity, and R_D equaled 1.0. These values were used to construct Table 9.2 in which the two estimates of effective diffusivity differ by less than 1%. The confidence in the data was greatly enhanced by the close agreement.

The effective diffusivity was also estimated using Equation 4.1 presented by Perkins and Johnston in 1963. Equation 4.1 repeated:

$$D_{\rm e} = \frac{D_0}{F\phi}$$

where for a sandstone (Equation 4.3 repeated):

$$F = \frac{0.62}{\phi^{2.15}}$$

Using $1.3 \cdot 10^{-5} cm^2/s$ as the molecular diffusivity of sodium chloride in water (Jost 1960), an effective diffusivity of $2.86 \cdot 10^{-6} cm^2/s$ was calculated. The diffusivity estimated with the nonlinear parameters was 15% of this value. One explanation is that the fracture face was modified during construction of the fissure. The pores in the fracture walls did appear'to be plugged with dust after they had been sanded flat. Because the two estimates utilizing the nonlinear parameters agreed so well and these measurements were made in situ following the alteration, $4.40 \cdot 10^{-7} cm^2/s$ was considered the better estimate.

In addition to D_e , the flow rate was also estimated. θ_f at the outlet was assumed to be the breakthrough time for a nonsorbing tracer, t^* . Given the 5.65 inches

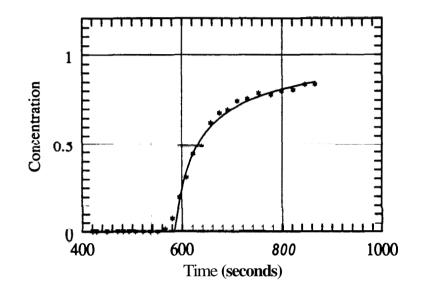


Figure 9.4: Model Match - Dimensionless Ethanol Concentration at the Effluent

distance between Electrodes #1 and #5 a 0.316 ft/min flow velocity and a 1.13 ml/min flow rate were calculated.

9.3 Modeling the Alcohol Tracers

The alcohol breakthrough curves were **also** fit using the programs given in Appendices J and K. Even though isopropyl alcohol adsorbed more than ethanol, the dimensionless concentration of isopropanol exceeded that of ethanol throughout the test. This phenomenon was due to ethyl alcohol's higher molecular diffusivity.

9.4 Nonlinear Regression Fit

As with the salt concentration, Equation 9.10 fit the alcohol data well (Figures 9.4 and 9.5). Again the mechanism causing the additional dispersion at the front was not matched by the model. Table 9.3 lists the regression parameters for the three

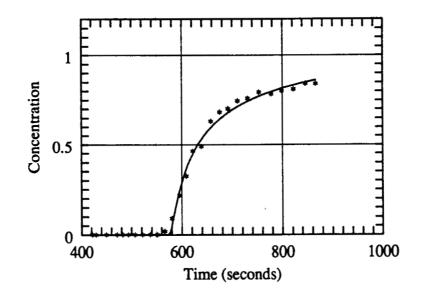


Figure 9.5: Model Match - Dimensionless Isopropanol Concentration at the Effluent

solutes measured at the outlet. Calculations of the fracture parameters assumed that the inlet conditions for the salt and alcohol were identical. Comparison of the σ_f values reveals that the alcohols are much more dispersed than the salt. The increased dispersion was due to both increased adsorption and end effects. The salt concentration was measured with an electrode positioned within the core while the chromatograph samples were captured after the fluid had flowed past the sensor

	Salt	Ethanol	Propanol
ξtotal	1.230	1.151	1.220
σ_{total}	2.591	3.981	4.578
θ_{total}	573.8	579.7	570.5
ξf	1.093	1.023	1.085
σ_f	0.979	2.369	2.966
A,	89.3	95.2	86.0

Table 9.3: Results of Nonlinear Regression - Outlet

Chapter 10

Conclusions

1) Adsorption is a significant factor in the flow of tracers through through fractured rock, Adsorption can occur in two places, on the fissure wall and in the matrix. The effect of areal adsorption **is** to translate the entire breakthrough curve in time. Adsorption within the rock pores tends to increase dispersion. In the case of a pulsed injection, volumetric adsorption increases the time between breakthrough and the peak concentration. Estimating fracture aperture from tracer tests requires an accurate estimation of the partition coefficients.

2) The fracture aperture may be determined by visually examining tracer breakthrough curves. Accurate estimation of fissure width requires good appraisals of the times to breakthrough and peak concentration. Choosing the correct values of $R_D t^*$ and t_p is not always easy especially when analyzing radioactive tracer data.

3) An analytical solution is available to the matrix diffusion model for any inlet boundary condition which **can** be expressed in terms of a complementary error function.

4) The effective diffusivity can be determined from flow tests through a fractured core. Accurate estimates rely an adequate sampling frequency.

5) The measurements involving salt concentration are considered accurate because the ratio of σ_f/θ_f was constant along the fracture. Since the data are good, the ratio of θ_f at the midpoint to θ_f at the exit is an indication of channeling within the fracture.

Chapter 11

Recommendations

1) An similar experiment should be repeated with two changes. a) The sampling frequency should exceed $25/t^*$. (The salt concentration was measured at a rate of $30/t^*$.) b) The concentrations should all be measured at the same points to allow comparison of the tracers.

2) The adsorptive behavior of field tracers is not known. Adsorption tests should be performed with tracers and **rocks** found in geothermal fields.

Chapter 12

Nomenclature

A_1, A_2, A_3, A_4	constants of integration
A_D	dimensionless coefficient
b	fracture aperture, [L]
b_D	dimensionless fracture aperture
C	concentration (mass/volume), $[m/L^3]$
C_D	dimensionless concentration (C/C_0)
C_f	concentration in fracture (mass/liquid volume), $[m/L^3]$
C_{fD}	dimensionless concentration in fracture (C_f/C_0)
${C}_m$	concentration in matrix (mass/volume of rock), $[m/L^3]$
C_p	concentration in pores (mass/liquid volume), $[m/L^3]$
C_{pD}	dimensionless concentration in pores (C_p/C_0)
C_0	injection or reference concentration, $[m/L^3]$
C_{fD}	dimensionless fracture concentration (C_f/C_0)
C_1, C_2	constants in conversion of voltage to concentration
D_a	apparent diffusivity $(D_e/(\phi + K_v)), [L^2/t]$
D_D	dimensionless diffusivity $(D_e t^*/L^2)$
D_e	effective diffusivity, $[L^2/t]$
D_0	molecular diffusivity in water, $[L^2/t]$
F	formation factor
h	fracture height, $[L]$

CHAPTER 12. NOMENCLATURE

k	coefficients in adsorption isotherms
K_a	areal partition coefficient, [L]
K_{v}	volumetric partition coefficient, [porevol./bulkvol.]
$K_d \rho_p$	volumetric equilibrium constant ($\phi + K_v$)
K_D	dimensionless partition coefficient ($\phi + K$,)
L	fracture length, [L]
M	mass of injected tracer, [m]
Q	total volume flow rate, $[L^3/t]$
R	retardation factor, [dimensionless]
R_D	retardation factor $(1 + \frac{2}{b}K_a)$
s	the Laplace variable
S	concentration of mass adsorbed on rock (mass/rock volume), $[m/L^3]$
Smax	maximum concentration of tracer adsorbed on rock
t	time, [<i>t</i>]
t_D	dimensionless time (t/t^*)
t_p	time from injectian to peak concentration, [t]
t_{pD}	dimensionless peak time (t_p/t^*)
t^*	t-star (L/v) , [t]
Δt	injection time, [t]
Δt_D	dimensionless injection time $(\Delta t/t^*)$
v	velocity of flow in fracture, $[L/t]$
V_0	voltage drop across an electrode exposed to distilled water
V_{tracer}	voltage drop across an electrode exposed to a tracer solution
x	length along fracture axis, $[L]$
x_D	dimensionless fracture length
y	distance normal to fracture axis into matrix, $[L]$
y_D	dimensionless distance into the matrix
lpha	regression shape parameter, [dimensionless]
$oldsymbol{eta}$	regression breakthrough parameter, $[1/t]$
θ	regression breakthrough time, [t]

CHAPTER 12. NOMENCLATURE

 ξ regression scaling factor, [dimensionless]

- σ regression dispersion factor, $[\sqrt{t}]$
- ϕ porosity
- ω_D dimensionless variable

References

- H. Abelin, L. Birgersson, J. Gidlund, L. Moreno, I. Neretnieks, and S. Tunbrant:, "Flow and Tracer Bxperiments in Crystalline Rocks. Results from Several Swedish In Situ Expariments", In International Symposium on Coupled Processes Affecting the Performance of a Nuclear Waste Repository, pages 127– 139, Lawrence Berkeley Laboratory, (September 18–20 1985).
- [2] Milton Abramowitz and Irene A. Stegun, editors: , *Handbook of Mathematical Functions*, Dover Publishers Inc., tenth edition, (1972).
- [3] Arthur W. Adamson:, *Physical Chemistry* of *Surfaces*, John Wiley & Sons, fourth edition, (1982).
- [4] Peter W. Atkins:, *Physical Chemistry*, Oxford University Press, Great Britain, second edition, (1982).
- [5] C. W. Boast:, "Modeling the Movement of Chemicals in Soils by Water", Soil Science, 115(3):224-230, (1973).
- [6] Kenneth A. Breitenbach:, *Chemical Tracer Retention in Porous Media*, Technical Report SGP-TR-53, Stanford Geothermal Program, (May 1982).
- [7] H. S. Carslaw and J. C. Jaeger:, *Conduction of Heat in Solids*, Oxford University Press, New York, second edition, (1959).
- [8] Chia-Shyun Chen:, "Solutions for Radionuclide Transport from and Injection Well into a Single Fracture in a Porous Formation", Water Resources Research, 22(4):508–518, (April 1986).

REFERENCES

- [9] Ronald DiPippo:, *Geothermal Energy* as a Source of Energy, U. S. Government Printing Office, first edition, (1980).
- [10] Martin P. Fossum:, Tracer Analysis in a Fractured Geothermal Reservior: Field Results from Wairalcei, New Zealand, Technical Report SGP-TR-56, Stanford Geothermal Program, (June 1982).
- [11] R. Allan Freeze and Cherry John A.:, Groundwater, Prentice-Hall Inc., Englewood Cliffs, New Jersey, (1979).
- [12] J. R. Gilardi:, Experimental Determination of the Efective Dispersivity in a Fracture, Technical Report SGP-TR-78, Stanford Geothermal Program, (1984).
- [13] Malcolmb A. Grant, Ian G. Donaldson, and Paul F. Bixley:, *Geothermal Reservior Engineering*, Academic Press, San Francisco, (1982).
- [14] George R. Gray and H. C. H. Darley:, Composition and Properties of Oil Well Drilling Fluids, Gulf Publishing Company, Houston, Texas, fourth edition, (1980).
- [15] Robert A. Greenkorn:, *Flow Phenomena in Porous Media*, Marcel Dekker, Inc., New York, (1983).
- [16] G. W. Grindley:, "The Geology, Structure, and Exploitation of the Wairakei Geothermal Field, Taupo, New Zealand", New Zealand Geological Society Bulletin, (75), (1965).
- [17] G. E. Grisak and J. F. Pickens:, "Solute Transport Through Fractured Media
 1. The Effect of Matrix Diffusion", Water Resources Research, 16(4):719-729, (August 1980).
- [18] G. E. Grisak, J. F. Pickens, and J. A. Cherry:, "Solute Fracture Through Fractured Media 2. Column Study of Fractured Till", Water Resources Research, 16(4):731-739, (August 1980).

- [19] Surendra P. Gupta and Robert A. Greenkorn:, "Dispersion during Flow in Porous Media with Bilinear Adsorption", Water Resources Research, 9(3):1357-1368, (October 1973).
- [20] Roland N Horne:, "Geothermal Reinjection Experience in Japan", Journal of Petroleum Technology, 495–503, (March 1982).
- [21] M. J. Jaycock and G. D. Parfitt:, Chemistry of Interfaces, John Wiley & Sons, New York, (1981).
- [22] Clair L. Jensen:, Matrix Diffusion and Its Effect on the Modeling of Tracer Returns from the Fractured Geothermal Reservior at Wairakei, New Zealand, Technical Report SGP-TR-71, Stanford Geothermal Program, (December 1983).
- [23] Robert A. Johns:, *Injection Through Fractures*, Technical Report SGP-TR-110, Stanford Geothermal Program, (May 1987).
- [24] W. Jost:, *Diffusion in Solids, Liquids, Gases,* Academic Press Inc., New York, third edition, (1960).
- [25] F. T. Lindstrom and L. Boersma:, "Theory of Chemical Transport with Simultaneous Sorption in a Water Saturated Porous Medium", Soil Science, 110(1):1-9, (July 1970).
- [26] F. T. Lindstrom, L. Boersma, and D. Stockard:, "A Theory on the Mass Transport of Previously Distributed Chemicals in a Water Saturated Sorbing Porous Medium: Isothermal Cases", Soil Science, 112(5):291-300, (November 1971).
- [27] P. Maloszewski and A. Zuber:, "On the Theory of Tracer Experiments in Fissured Rocks with a Porous Matrix", Journal of Hydrology, 79:333–358, (1985).
- [28] W. J. McCabe, B. J. Barry, and M. R. Manning:, "Radioactive Tracers in Geothermal Underground Water Flow Studies", Geothermics, 12(3):83–110, (1983).

- [29] Ivars Neretnieks:, "Diffusion in the Rock Matrix: An Important Factor in Radionuclide Retardation?", Journal of Geophysical Research, 85(B8):4379– 4397, (August 10 1980).
- [30] Ivars Neretnieks, Tryggve Eriksen, and Paivi Tahtinen:, "Tracer Movement in a Single Fissure in Granitic Rock: Some Experimental Results and Their Interpretation", Water Resources Research, 18(4):849–858, (August 1982).
- [31] T. K. Perkins and O. C. Johnston:, "A Review of Diffusion and Dispersion in Porous Media", Society of Petroleum Engineers Journal, 70-84, (March 1963), SPE of AIME Trans. Vol. 228.
- [32] Kristina Skagius and Ivars Neretnieks:, "Porosities and Diffusivities of Some Nonsorbing Species in Crystalline Rocks", Water Resources Research, 22(3):389–398, (March 1986).
- [33] Kristina Skagius, Gunnar Svedberg, and Ivars Neretnieks:, "A Study of Strontium and Cesium Sorptian on Granite", Nuclear Technology, 59:302–313, (November 1982).
- [34] Ronald Stoessell and Jeffrey S. Hanor:, "A Nonsteady State Method for Determining Diffusion Coefficients an Porous Media", Journal of Geophysical Research, 80(36):4979-4982, (December 20 1975).
- [35] E. A. Sudicky and E. O. Frind:, "Contaminant Transport in Fractured Porous Media: Analytical Solutions for a System of Parallel Fractures", Water Re-Sources Research, 18(6):1634-1642, (December 1982).
- [36] D. H. Tang, E. O. Frind, and E. A. Sudicky:, "Contaminant Transport in Fractured Porous Media: Analytical Solution for a Single Fracture", Water Resources Research, 17(3):555-564, (June 1981).
- [37] Sir Geoffrey Taylor, F.R.S.:, "Dispersion of Soluble Matter in Solvent Flowing Slowly through a Tube", Proceedings of the Royal Society of London, 219:186– 203, (1953).

- [38] Y. W. Tsang and C. F Tsang:, "Channel Model of Flow Through Fractured Media", Water Resources Research, 23(3):467-479, (March 1987).
- [39] C. J. van Duijn and S. E. A. T. M. van der Zee:, "Solute Transport Parallel to an Interface Separating Two Different Porous Materials", Water Resources Research, 22(13):1779–1789, (December 1986).
- [40] O. J. Vetter and H. B. Crichlow:, Injection, Injectivity and Injectability in Geothermal Operations: Problems and Possible Solutions (Phase I - Definition of the Problems, Technical Report SAN-2044-1, U. S. Department of Energy - Geothermal Energy, (February 1979).

Appendix A

Adsorption

The purpose of this appendix is to suggest several considerations for choosing a geothermal tracer and a corresponding adsorption model. These considerations may include:

Does the tracer chemically react with the rock? What is the extent of surface coverage? How quickly does the process reach equilibrium? Is the reaction reversible? What type of isotherm should be chosen? Are temperature effects significant?

Adsorption may be divided into chemical and physical processes. Physical adsorption involves van der Waals interactions between the adsorbent and adsorbate. In the process of accommodation a molecule loses its kinetic energy and adheres to the surface. The molecule vibrates in a shallow potential energy well, and sometimes the atoms shake themselves from the surface. Since the attractive forces are relatively weak, a physically adsorbed molecule normally retains its integrity. Chemical adsorption is the result of chemical bonding. This process is normally much stronger than physical adsorption. In fact the adsorbed molecule may be torn apart (Atkins 1982). Of the two processes physical adsorption is more likely to be reversible. Tracers may also be categorized into two groups, electrolytes and nonelectrolytes. Electrolytes are adsorbed through electromagnetic forces. Ions of opposite sign are attracted to a charged surface. Those of the same sign are repelled (Jaycock 1981). Specific chemical reactions may also occur at the interface (Adamson 1982). In addition to simple attraction-repulsion, ion exchange is possible. An example is the interaction of a KC1 mud with sodium-montmorillonite clay. The potassium replaces the sodium in the crystal lattice and liberates the second element in the process.

Nonelectrolytes also adsorb. Adamson (1982) describes their general behavior: "a polar (nonpolar) adsorbent will preferentially adsorb the more polar (nonpolar) part of a nonpolar (polar) solution". Polarity refers to ability to engage in hydrogen bonding or dipole interactions. The adsorption coefficient is larger where there are specific opportunities for hydrogen bonding. Another general principle, the Lundelius Rule, states that the less soluble the solute the more likely it is to adsorb. This rule of thumb also applies to electrolytes.

Many isotherms are available to model adsorption. Although one may predict which model will be suitable in advance, experimental confirmation is required. In his **1973** paper, Boast summarizes ten adsorption models used in groundwater studies. They are presented **below**:

Equilibrium Models

Linear:

$$S = k_1 C + k_2 \tag{A.1}$$

Freundlich:

$$S = k_3 C^{k_4} \tag{A.2}$$

Competition between ions a and b:

$$S_a = S_b(k_5 C_a/C_b) \tag{A.3}$$

Modified Kjelland:

$$S = S_{max} \frac{C/C_0}{\frac{C}{C_0} + \left(1 - \frac{C}{C_0}\right)} \exp\left[\ln k_5 + k_7 (1 - 2C/C_0)\right]$$
(A.4)

Nonequilibrium Models

Linear:

$$\partial S / \partial t = kg(k_1 C + k_2 - S) \tag{A.5}$$

Freundlich:

$$\partial S/\partial t = k_9(k_3 C^{k_4} - S) \tag{A.6}$$

Competition between ions a and *b*:

$$\partial S_a / \partial t = k_{10} \left(C_a S_b - \frac{1}{k_5} S_a C_b \right) \tag{A.7}$$

Lindstrom and Boersma (1970):

$$\partial S/\partial t = k_{11}(S_{max} - k_3C) \sinh\left[k_{12}\left(1 - \frac{k_3C}{S_{max}}\right)\right]$$
 (A.8)

Lindstrom, Boersma and Stockard (1971):

$$\partial S / \partial t = k_{13} e^{k_{14}S} \left(k_{15} C e^{-2k_{14}S} - S \right)$$
 (A.9)

Appendix B

Solution of the Matrix Diffusion Model

B.1 Governing Equations

$$(1 + \frac{2}{b}K_{a})\frac{\partial C_{f}}{\partial t} = \frac{2}{b}D_{e}\frac{\partial C_{f}}{\partial y}|_{y=0} - v\frac{\partial C_{f}}{\partial x}$$
(B.1)

$$\frac{\partial C_p}{\partial t} = \frac{D_e}{\phi + K_v} \frac{\partial^2 C_p}{\partial y^2} \tag{B.2}$$

B.2 Boundary Conditions

$$C_f \mid_{y=0} = C_p \mid_{y=0}$$
(B.3)

$$C_f = C_0; \ for \ \mathbf{x} = 0 \tag{B.4}$$

$$\lim_{x \to \infty} C_f = 0 \tag{B.5}$$

$$\lim_{x \to \infty} C_p = 0 \tag{B.6}$$

B.3 Initial Conditions

$$C_f = 0; \text{ for } t \le 0 \tag{B.7}$$

$$C_p = 0; \text{ for } t \le 0 \tag{B.8}$$

B.4 Dimensionless Groups

The following dimensionless groups **are** defined:

ĺ

$$C_D = \frac{C}{C_0} \tag{B.9}$$

$$x_D = \frac{x}{L} \tag{B.10}$$

$$y_D = \frac{y}{L} \tag{B.11}$$

$$b_D = \frac{b}{L} \tag{B.12}$$

$$R_D = 1 + \frac{2}{b} K_a \tag{B.13}$$

$$K_D = \phi + K_v \tag{B.14}$$

$$t_D = \frac{t}{t^*} \tag{B.15}$$

$$D_D = \frac{D_e t^*}{L^2} \tag{B.16}$$

B.5 Governing Equations in Dimensionless Form

$$R_D \frac{\partial C_{fD}}{\partial t_D} = 2 \frac{D_D}{b_D} \frac{\partial C_{fD}}{\partial y_D} |_{y_D=0} - \frac{\partial C_{fD}}{\partial x_D}$$
(B.17)

$$\frac{\partial C_{pD}}{\partial t_D} = \frac{D_D}{K_D} \frac{\partial^2 C_{pD}}{\partial y_D^2} \tag{B.18}$$

B.6 Boundary Conditions in Dimensionless Form

$$C_{fD}|_{y_D=0} = C_{pD}|_{y_D=0}$$
 (B.19)

$$C_{fD} = 1; \ for \ x_D = 0$$
 (B.20)

$$\lim_{x_D \to \infty} C_{fD} = 0 \tag{B.21}$$

$$\lim_{x_D \to \infty} C_{pD} = 0 \tag{B.22}$$

B.7 Initial Conditions in Dimensionless Form

$$C_{fD} = 0; \ for \ t_D \le 0$$
 (B.23)

$$C_{pD} = 0; for t_D \le 0 \tag{B.24}$$

B.8 Laplace Transform of Governing Equations

$$R_D(s\overline{C}_{fD} - \overline{C}_{fD} \mid_{t_D=0}) = 2\frac{D_D}{b_D}\frac{d\overline{C}_{fD}}{dy_D} \mid_{y_D=0} - \frac{d\overline{C}_{fD}}{dx_D}$$
(B.25)

$$s\overline{C}_{pD} - \overline{C}_{pD} \mid_{t_D=0} = \frac{D_D}{K_D} \frac{d^2\overline{C}_{pD}}{dy_D^2}$$
(B.26)

B.9 Laplace Transform of Boundary Conditions

$$\overline{C}_{fD}|_{y_D=0} = \overline{C}_{pD}|_{y_D=0} \tag{B.27}$$

$$\overline{C}_{fD} = \frac{1}{s} \text{ for } x_D = 0 \tag{B.28}$$

$$\lim_{x_D \to \infty} \overline{C}_{fD} = 0 \tag{B.29}$$

$$\lim_{x_D \to \infty} \overline{C}_{pD} = 0 \tag{B.30}$$

B.10 Laplace Transform of Initial Conditions

$$\overline{C}_{fD} = 0; \text{ for } t_D \le 0 \tag{B.31}$$

$$\overline{C}_{pD} = 0; \text{ for } t_D \le 0 \tag{B.32}$$

B.11 Manipulation of Transformed Equations

Rearranging Equation B.26 and utilizing Equation B.32:

$$\frac{D_D}{sK_D}\frac{d^2\overline{C}_{pD}}{dy_D^2} - \overline{C}_D = 0$$
(B.33)

The solution to this ordinary differential equation is:

$$\overline{C}_{pD} = A_1 \, \exp\left[-y_D \sqrt{\frac{sK_D}{D_D}}\right] + A_2 \, \exp\left[+y_D \sqrt{\frac{sK_D}{D_D}}\right] \tag{B.34}$$

From Equation B.30, \overline{C}_{pD} is bounded; therefore, A2 must equal zero:

$$\overline{C}_{pD} = A_1 \, \exp\left[-y_D \sqrt{\frac{sK_D}{D_D}}\right] \tag{B.35}$$

At $y_D = 0$:

$$\overline{C}_{pD} = \overline{C}_{fD} = A_1 \tag{B.36}$$

Substituting into Equation B.35:

$$\overline{C}_{pD} = \overline{C}_{fD} \, \exp\left[-y_D \sqrt{\frac{sK_D}{D_D}}\right] \tag{B.37}$$

Taking the derivative:

$$\overline{C}'_{pD} = -\overline{C}_{fD} \sqrt{\frac{sK_D}{D_D}} \exp\left|-y_D \sqrt{\frac{sK_D}{D_D}}\right|$$
(B.38)

At $y_D = 0$:

$$\overline{C}'_{pD}|_{y_D=0} = -\overline{C}_{fD} \sqrt{\frac{sK_D}{D_D}}$$
(B.39)

Rearranging Equation B.25 and utilizing Equations B.31 and B.39:

$$\frac{d\overline{C}_{fD}}{dx_D} + \left(sR_D + 2\frac{D_D}{b_D}\sqrt{\frac{sK_D}{D_D}}\right)\overline{C}_{fD} = 0 \tag{B.40}$$

The solution to this ordinary differential equation is:

$$\overline{C}_{fD} = A_3 \, \exp\left[-\left(sR_D + 2\frac{D_D}{b_D}\sqrt{\frac{sK_D}{D_D}}\right)x_D\right] + A_4 \, \exp\left[\left(sR_D + 2\frac{D_D}{b_D}\sqrt{\frac{sK_D}{D_D}}\right)x_D\right] \tag{B.41}$$

From Equation B.29, \overline{C}_{fD} is bounded; therefore A_4 must equal zero:

$$\overline{C}_{fD} = A_2 \, \exp\left[-\left(sR_D + 2\frac{D_D}{b_D}\sqrt{\frac{sK_D}{D_D}}\right)x_D\right] \tag{B.42}$$

At $x_D = 0$:

$$\overline{C}_{fD} = \frac{1}{s} = A_2 \tag{B43}$$

80

Substituting Equation B.42 into Equation B.43:

$$\overline{C}_{fD} = \frac{1}{s} \exp\left[-x_D R_D s\right] \exp\left[-2\frac{D_D x_D}{b_D} \sqrt{\frac{K_D}{D_D}} \sqrt{s}\right]$$
(B44)

B.12 Solution

Equation B.44 may be inverted using Equations 29.2.15 and 29.3.83 from *Handbook* of *Mathematical Functions* (Abramowitz and Stegun 1972):

$$C_{fD} = erfc \left[\frac{x_D (D_D K_D)^{1/2}}{b_D (t_D - x_D R_D)^{1/2}} \right]; \ for \ t_D > R_D$$
(B.45)

$$C_{fD} = 0 \text{;} for t_D \le x_D R_D \tag{B.46}$$

Appendix C

Fracture Aperture Equation Derivation

C.1 Solution of the Matrix Diffusion Model

Equations **B.45** and **B.46** repeated:

$$C_{fD} = erfc \left[\frac{x_D (D_D K_D)^{1/2}}{b_D (t_D - x_D R_D)^{\frac{1}{2}}} \right]; \ for \ t_D > x_D R_D$$

$$C_{fD} = 0; \qquad \qquad for \ t_D \le x_D R_D$$

C.2 Laplace Transform of Solution

Equation **B.44** repeated:

$$\overline{C}_{fD} = \frac{1}{s} \exp\left[-x_D R_D s\right] \exp\left[-2\frac{D_D x_D}{b_D} \sqrt{\frac{K_D}{D_D}} \sqrt{s}\right]$$

C.3 Derivative

The derivative of a function mag be found by multiplying its Laplace Transform by *s* and then taking the inverse.

$$\overline{C}'_{fD} = \exp\left[-x_D R_D s\right] \exp\left[-2\frac{D_D x_D}{b_D} \sqrt{\frac{K_D}{D_D}} \sqrt{s}\right]$$
(C.1)

Equation C.1 may be inverted using Equations 29.2.15 and 29.3.82 from *Handbook* of *Mathematical Functions* (Abramowitz 1972):

$$C'_{fD} = \frac{x_D (D_D K_D)^{1/2}}{\sqrt{\pi} b_D (t_D - x_D R_D)^{3/2}} \exp\left[\frac{-D_D K_D x_D^2}{b_D^2 (t_D - x_D R_D)}\right]; for \ t_D > x_D R_D$$
(C.2)

$$C'_{fD} = 0; for \ t_D \le R_D \tag{C.3}$$

C.4 Superposition

At this point superposition will be used to provide a solution to an inlet condition where a given concentration of tracer is injected for time, At. Previously the inlet condition was constant injection for $0 \ge t \le \infty$.

From Equation B:45:

$$C_{fD} = erfc \left[\frac{x_D (D_D K_D)^{1/2}}{b_D (t_D - x_D R_D)^{1/2}} \right] - erfc \left[\frac{x_D (D_D K_D)^{1/2}}{b_D (t_D - \Delta t_D - x_D R_D)^{1/2}} \right]$$
(C.4)

for $t_D - At > x_D R_D$

From Equation C.2:

$$C'_{fD} = A_D \left\{ \frac{\exp\left[\frac{-D_D K_D x_D^2}{b_D^2 (t_D - x_D R_D)}\right]}{(t_D - x_D R_D)^{3/2}} - \frac{\exp\left[\frac{-D_D K_D x_D^2}{b_D^2 (t_D - \Delta t_D - x_D R_D)}\right]}{(t_D - \Delta t_D - x_D R_D)^{3/2}} \right\}$$
(C.5)

83

for
$$t_D - At > x_D R_D$$

where
$$A_D = \frac{x_D (D_D K_D)^{1/2}}{\sqrt{\pi} b_D (t_D - x_D R_D)^{3/2}}$$

C.5 Manipulation of the Superposed Derivative Equation

At the peak concentration the derivative of the concentration function is equal to zero. Equation C.5 can only equal zero when the two term inside the braces are equal. Thus:

$$\frac{\exp\left[\frac{-D_D K_D x_D^2}{b_D^2 (t_{pD} - x_D R_D)}\right]}{(t_{pD} - x_D R_D)^{3/2}} = \frac{\exp\left[\frac{-D_D K_D x_D^2}{b_D^2 (t_{pD} - \Delta t_D - x_D R_D)}\right]}{(t_{pD} - \Delta t_D - x_D R_D)^{3/2}}$$
(C.6)

Let $\omega_D = (D_D K_D x_D^2)/b_D^2$. Then:

$$\frac{\exp\left[\frac{-\omega_D}{(t_{pD} - x_D R_D)}\right]}{(t_{pD} - x_D R_D)^{3/2}} = \frac{\exp\left[\frac{-\omega_D}{(t_{pD} - \Delta t_D - x_D R_D)}\right]}{(t_{pD} - \Delta t_D - x_D R_D)^{3/2}}$$
(C.7)

Gathering the exponential terms on one side:

$$\frac{(t_{pD} - \Delta t_D - x_D R_D)^{3/2}}{(t_{pD} - x_D R_D)^{3/2}} = \frac{\exp\left[\frac{\omega_D}{(t_{pD} - x_D R_D)}\right]}{\exp\left[\frac{\omega_D}{(t_{pD} - \Delta t_D - x_D R_D)}\right]}$$
(C.8)

$$\left(1 - \frac{\Delta t_D}{t_{pD} - x_D R_D}\right)^{3/2} = \exp\left[\frac{\omega_D}{t_{pD} - x_D R_D} - \frac{\omega_D}{t_{pD} - \Delta t_D - x_D R_D}\right]$$
(C.9)

$$\left(1 - \frac{\Delta t_D}{t_{pD} - x_D R_D}\right)^{3/2} = \exp\left[\frac{-\omega_D \Delta t_D}{(t_{pD} - x_D R_D)(t_{pD} - \Delta t_D - x_d R_D)}\right]$$
(C.10)

Taking the natural log of both sides:

$$\ln\left(1 - \frac{\Delta t_D}{t_{pD} - x_D R_D}\right)^{3/2} = \frac{-\omega_D \Delta t_D}{(t_{pD} - x_D R_D)(t_{pD} - \Delta t_D - x_D R_D)}$$
(C.11)

Solving for ω_D :

$$\omega_D = \frac{-(t_{pD} - x_D R_D)(t_{pD} - \Delta t_D - x_D R_D)}{\Delta t_D} \ln \left(1 - \frac{\Delta t_D}{t_{pD} - x_D R_D} \right)^{3/2}$$
(C.12)

Substituting for ω_D :

$$\frac{D_D K_D x_D^2}{b_D^2} = \frac{-(t_{pD} - x_D R_D)(t_{pD} - \Delta t_D - x_D R_D)}{\Delta t_D} \ln \left(1 - \frac{\Delta t_D}{t_{pD} - x_D R_D}\right)^{3/2} \tag{C.13}$$

Solving for b_D :

$$b_D^2 = \frac{D_D K_D x_D^2 \Delta t_D}{(t_{pD} - x_D R_D)(t_{pD} - \Delta t_D - x_D R_D) \ln\left[1 - \frac{\Delta t_D}{t_{pD} - x_D R_D}\right]^{-3/2}}$$
(C.14)

Substituting for the dimensionless variables and letting $x_D = 1$:

$$\frac{b^2}{L^2} = \frac{\left(\frac{D_{a}t^*}{L^2}\right)(1)\left(\phi + K_v\right)\left(\Delta t/t^*\right)}{\left(t_p/t^* - R_D\right)\left(t_p/t^* - \Delta t/t^* - R_D\right)\ln\left[1 - \frac{\Delta t/t^*}{t_p/t^* - R_D}\right]^{-3/2}}$$
(C.15)
where $R_D = 1 + \frac{2}{b}K_a$

C.6 Fracture Aperture Equation

$$b^{2} = \frac{D_{e}(\phi + K_{v})t^{*2}\Delta t}{(t_{p} - R_{D}t^{*})(t_{p} - \Delta t - R_{D}t^{*})\ln\left[1 - \frac{\Delta t}{t_{p} - R_{D}t^{*}}\right]^{-3/2}}$$
(C.16)
where $R_{D} = 1 + \frac{2}{b}K_{a}$

For no adsorption ($K_a = K_v = 0$):

$$b^{2} = \frac{D_{e}\phi t^{*2}\Delta t}{(t_{p} - t^{*})(t, -At - t^{*})\ln\left[1 - \frac{\Delta t}{t_{p} - R_{D}t^{*}}\right]^{-3/2}}$$
(C.17)

C.7 Fracture Aperture Equation - Instantaneous Injection

For an instantaneous injection of tracer, At approaches zero. From Equation C.16:

$$b_{2} = \lim_{\Delta t \to 0} \frac{D_{e}(\phi + K_{v})t^{*2}\Delta t}{(t_{p} - R_{D}t^{*})(t_{p} - At - R_{D}t^{*})\ln\left[1 - \frac{\Delta t}{t_{p} - R_{D}t^{*}}\right]^{-3/2}}$$
(C.18)

In order to solve Equation C.18, the following limit will be evaluated using L'Hopital's Rule:

$$\lim_{\Delta t \to 0} \frac{\Delta t}{\ln\left[1 - \frac{\Delta t}{t_p - R_D t^*}\right]^{-3/2}} = \lim_{\Delta t \to 0} \frac{\frac{d}{d\Delta t} (\Delta t)}{\frac{d}{d\Delta t} \left\{\ln\left[1 - \frac{\Delta t}{t_p - R_D t^*}\right]^{-3/2}\right\}}$$
$$= \lim_{\Delta t \to 0} \frac{2}{3} (t_p - t^*) \left(1 - \frac{\Delta t}{t_p - R_D t^*}\right)$$
$$= \frac{2}{3} (t_p - R_D t^*)$$

Substituting into Equation C.18:

$$b^{2} = \frac{2D_{e}(\phi + K_{v})t^{*2}}{3(t_{p} - R_{D}t^{*})}$$
(C.19)

Substituting for R_D and solving the resulting quadratic:

$$b = \frac{K_a t^* + \sqrt{K_a^2 t^{*2} + 6D_e(\phi + K_v)(t_p - t^*)t^{*2}}}{3(t_p - t^*)}$$
(C.20)

For no adsorption (K, $= K_v = 0$):

$$b = t^* \sqrt{\frac{2D_e \phi}{3(t_p - t^*)}} \tag{C.21}$$

Appendix D

Wairakei Tracer Tests

This appendix presents plots of the Wairakei tracer tests. The concentrations have been scaled to units of injected amount divided by 10^{12} liters and corrected for decay and background radiation. Negative values have also been omitted.

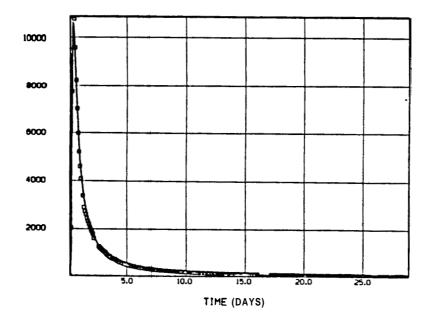


Figure D.1: Regression Fit, CWK 107 – WK24 (from Jensen 1983)

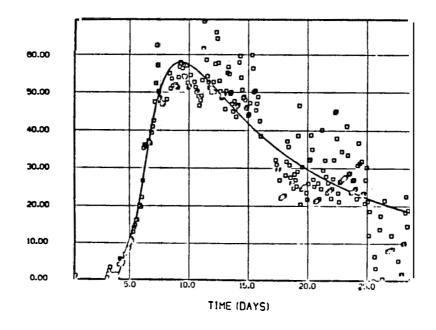


Figure D.2: Regression Fit, CWK107 - WK30 (from Jensen 1983)

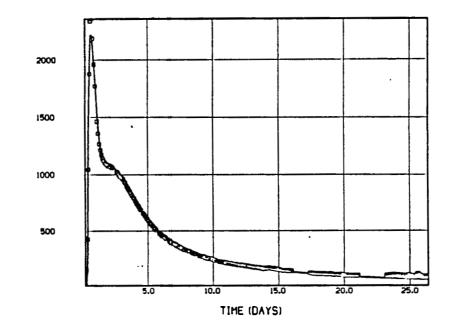


Figure D.3: Regression Fit, CWK107 – WK48 (from Jensen 1983)

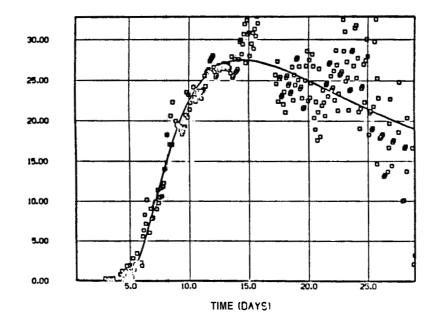


Figure D.4: Regression Fit, CWK107 – WK55 (from Jensen 1983)

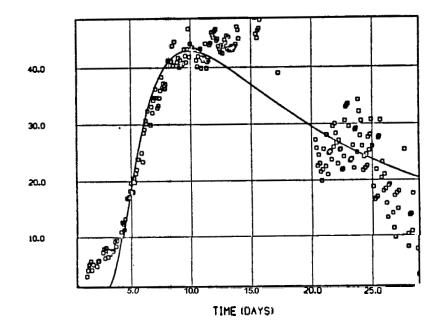


Figure **D.5:** Regression Fit, CWK107 – WK67 (from Jensen 1983)

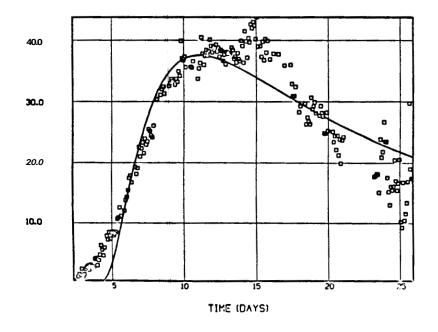


Figure D.6: Regression Fit, CWK107 - WK68 (from Jensen 1983)

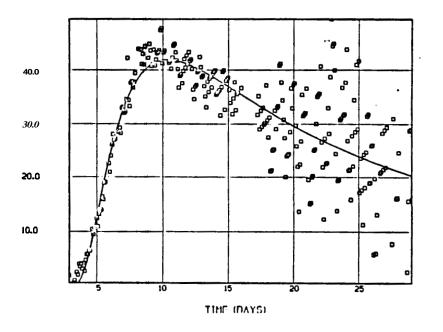


Figure D.7: Regression Fit, CWK107 - WK70 (from Jensen 1983)

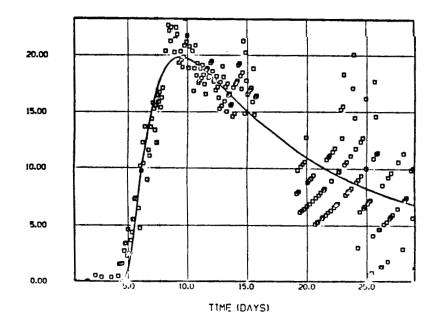


Figure D.8: Regression Fit, CWK107 - WK81 (from Jensen 1983)

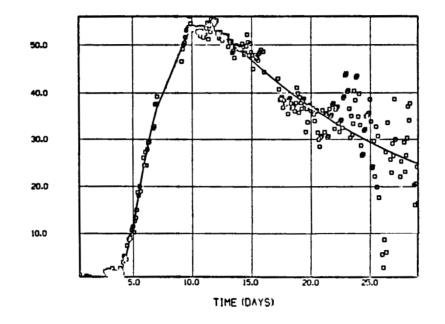


Figure D.9: Regression Fit, CWK107 - WK83 (from Jensen 1983)

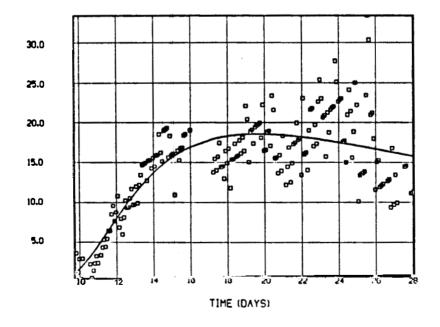


Figure D.IO: Regression Fit, CWK107 – WK108 (from Jensen 1983)

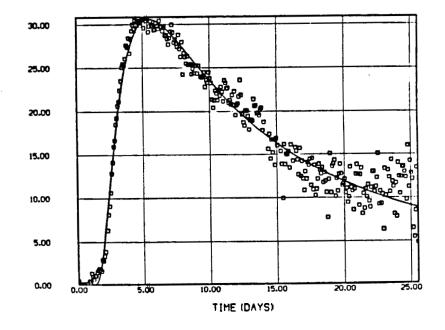


Figure **D.ll:**Regression Fit, CWKlOl – WK103 (from Jensen 1983)

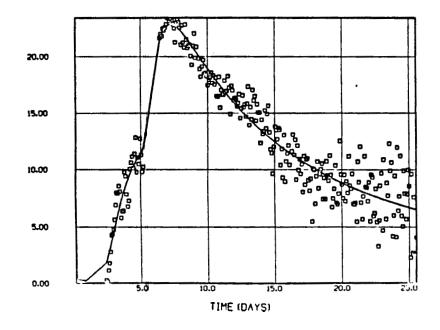


Figure D.12: R ression Fit, CWKlOl – WK116 (from Jensen 1983)

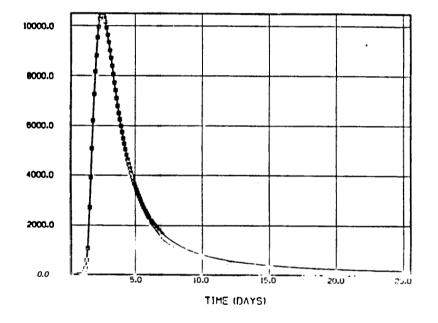


Figure **D.13:**Regression Fit, CWKlOl – WK121 (from Jensen 1983)

Appendix E

Regression Equations

The equations presented in Jensen's report (1983) are similar to those given in this work. His Equation **3.12** is closely related to Equation C.8 in this report. Equation 3.12 holds for an instantaneous injection. It is repeated here in the nomenclature of this report:

$$C_f = \frac{M}{Q} \left\{ \frac{D_e t^*}{b\sqrt{\pi} D_a^{1/2} (t^*R)^{3/2} \left(\frac{t}{t^*R} - 1\right)^{3/2}} \exp\left[\frac{-\frac{D_e^2 t^{*2}}{D_a (t^*R)b^2}}{\frac{t}{t^*R} - 1}\right] \right\}$$
(E.1)

R is defined as the retardation factor. The breakthrough time is equal to (t^*R) . Jensen defines two nonlinear parameters, *a* and β :

$$a = \frac{D_e t^*}{b \sqrt{D_a(t^*R)}} \tag{E.2}$$

For no adsorption (R=1):

$$a = \frac{\sqrt{D_e \phi t^*}}{b} \tag{E.3}$$

$$\beta = \frac{1}{t^* R} \tag{E.4}$$

Using the newly defined parameters, Jensen reduces Equation E.1 to:

$$C_f = \frac{M}{Q} \left\{ \frac{\alpha\beta}{\sqrt{\pi}(\beta t - 1)^{3/2}} \exp\left[-\frac{\alpha^2}{\beta t - 1}\right] \right\}$$
(E.5)

APPENDIX E. REGRESSION EQUATIONS

A form of this expression is used to fit the Wairakei field data.

Although $1/\beta$ equals the breakthrough time, Jensen never explicitly found the time to peak concentration. t_p may be expressed in term of α and β by setting the derivative of Equation E.5 equal to zero.. This allows better comparison between the visual and regression methods.

$$t_p = \frac{\frac{2}{3}\alpha^2 + 1}{\beta} \tag{E.6}$$

Appendix F

Computer Data Acquisition System

This appendix presents a brief explanation of the computer data acquisition system (hardware and software) and provides a listing of the program code. The equipment was used for the collection of sodium chloride concentration data. The instruments also recorded the positioning of a new sample bottle under the effluent.

F.1 Hardware

The hardware consisted of a KEITHLEY system baseboard, two circuit board modules, an interface card and a CQMPAQ computer. Figure F.1 illustrates the circuit diagram. The Analog Output Module 1 (AOM1) was placed in slot 2 of the baseboard. This module controlled the voltage output. While the AOM1 had two output channels, only AOM1 Channel 1 was used in this experiment. The Analog Measurement Module 1 (AMM1), located in slot 1 of the base board, measured the voltage drop across the electrodes. AMM1 Channels 1 - 7 were connected to Electrodes #1 - #7. Each channel measured the voltage at a single sensor. AMM1 Channel 0 was connected through a switch to either of two voltage sources. The switch was toggled manually each time a new sample was collected at the outlet. The AMM1, AOM1 and each electrode were connected to a common ground buried

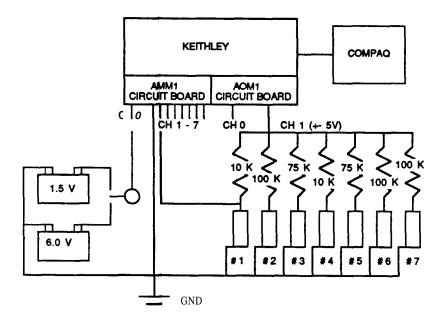


Figure F.1: Circuit Diagram - Computer Data Acquisition System

in the earth outside the laboratory. A clock was contained in the interface card located inside the COMPAQ.

F.2 Software

The software was written in BASIC. The program accomplished five operations:

o Initializing the clock

- o Pulsing voltage
- Reading the time
- o Reading the voltage
- o Recording time and voltage data

Many of the instructions required specific knowledge of hardware memory locations referenced in the KEITHLEY manual. A synopsis of the program follows.

Lines 1000 – 1001

Lines 1000 – 1001 define the starting memory location.

Lines 1010 - 1013

This section opens the data files. The voltage readings marking the introduction of new sample bottles are stored in the file VOLT0.DAT. The data collected from Electrode #1 is stored in VOLT1.DAT. The readings from the remaining six electrodes are placed VOLT27.DAT.

Lines 1020 - 1198

This section initializes the interval timer. The timer consists of three counters which are analogous to the hour, minute and second hands of a clock. Counter 2 moves the fastest. It counts down from its initial value at the rate of one count every 1.046 μ s. If Counter 2 and Counter 1 are linked, Counter 1 counts down once each time Counter 2 reaches zero. Counters 1 and 0 may be similarly joined. The counters are initialized by placing starting values into memory locations. Each value must be broken into two octadecimal bytes before it is poked into memory. Line 1198 provides a delay. The program will not always run properly without it.

Lines 1200 – 1212

These lines set PT and OLDTIME equal to zero. PT increments each time the program finishes an iteration.

Lines 1220 – 1222

These lines determine the REMAINDER when PT is divided by **4.** The value of REMAINDER determines the voltage level which is output from the AOM1.

Lines 1225 – 1252

This section determines the output level of AOM1 Channel 0. AOM1 CH 0 was not used in these experiments. See the next section for additional details.

Lines 1260 – 1292

This section determines the output level of AOM1 Channel 1. The AOM1 was configured to send voltages in the \pm 5 volt range. When REMAINDER = 0, a positive **5** volts is pulsed across the electrodes. When REMAINDER = 2, a negative 5 volts is output. Zero voltage is sent from AOM1 CH 1 when REMAINDER is odd.

The output range is divided into 4096 possible voltage levels. Possible input values are 0 - 4095. When 0 is placed into memory, the lowest value is output. When 4095 is sent to memory the highest voltage is pulsed. The inputs must be in octadecimal form. HB1 and LB1 represent the high and low bytes sent to the memory locations controlling the voltage.

Lines 1295 – 1300

Disables AOM1 Channel 0 output.

Lines 1301 – 1630

This section accomplishes the main goals of the program. The following operations are performed:

o Voltage output from AOMI CH 1

o Time measurement

o Voltages measurement from AMM1 CH 0 - 7

o Recording the data in output files

o Printing to the screen voltages from Electrodes #1 and #5 and the time Because electrode data are only recorded for positive current, the positive voltage is pulsed for a slightly longer duration than the negative current.

Lines 1700 - 1711

This code provides a solution to a hardware malfunction. The equipment will not allow input into the Counter 0 memory location, &HC0. Each time the COMPAQ is booted up, a new random number is placed into &HC0. If the number is different than that chosen on line **1033**, the program will not normally work.

The solution chosen is to query the memory for the random number and then manually change the input to match it. CCZ, which is printed to the screen, is the random number. It must be entered in place of the value found on line 1033. When the program fails, the operator should:

> type CONTROL-BREAK type LIST 1033 change CZ on line **1033** to CCZ

Lines 1800 - 2000

This section increments PT, sets OLDTIME equal to the last measured time and returns the program to line 1221. The operator should type CONTROL-BREAK, to end the program.

Subroutines

Lines 4000 – 4199: Reads the counters and computes the elapsed time. Lines 5000 – 5099: Pulses voltage from Channel 0. Lines 5500 – 5599: Pulses voltage to electrodes from Channel 1. Lines 6000 – 6199: Reads voltage across Channel 0. Lines 6200 – 6399: Reads voltage across Channel 1. Lines 6500 – 6999: Reads voltage across Channels 2 – 7.

Each line of these subroutines is commented. For additional information see the KEITHLEY reference manual (Lessons 1 - 5, Reference Sections AOM1 and AMM1).

F.3 Software Listing

F.3.1 Main Program

1000 **REM** this program controls the data acquisition system 1001 DEF SEG=&HAFF0: REM defines starting memory location 1010 REM the following section opens the output files OPEN "B:VOLTO DAT "FOR OUTPUT AS #1 1011 1012 OPEN "B:VOLT1.DAT"FOR OUTPUT AS #2 1013 OPEN "B:VOLT27.DAT"FOR OUTPUT AS #3 1020 REM the following section initializes the interval timer 1031 CT=65000!: REM initialize interval counter 2 1032 CO=65000!: **REM** initialize interval counter 1 1033 CZ=51134!: REM initialize interval counter 0 1041 HT=INT(CT/256): REM high byte counter 2 REM low byte counter 2 1042 LT = CT - (256 * HT) :1045 HO=INT(CO/256) : REM high byte counter 1 1046 LO=CO-(256*HO) : REM low byte counter 1 HZ=INT(CZ/256): 1048 REM high byte counter 0 REM high byte counter 0 REM low byte counter 0 REM set timer global, carry 2-1-0 REM counter 2 set for carry mode REM low byte for counter 2 REM high byte for counter 2 REM counter 1 set for carry mode 1049 LZ=CZ-(256*HZ) : POKE &HE0,3: 1150 POKE &HC3,180 : POKE &HC2,LT : 1161 1162 POKE &HC2,HT : 1163 POKE &HC3,116: 1171 1172 POKE &HC1,LO: REM low byte for counter 1 POKE &HC1,HO: 1173 REM high byte for counter 1 REM counter 0 set as timer 1181 POKE &HC3,54: POKE &HC0,LZ: REM low byte for counter 0 1182 POKE &HC0, HZ : 1183 **REM** high byte for counter 0 1198 FOR I=1 TO 500: NEXT I 1200 REM the following section pulses the voltage and records the data 1201 PT=0: REM set pointer to 0 1212 OLDTIME-O 1220 REM lines 1221 - 1252 determine how to pulse the voltage 1221 WHOLE=INT (PT/4) 1222 REMAINDER-PT-(WHOLE*4) 1225 REM this subsection determines how to pulse channel 0 voltage 1230 **REM** when remainder = 0, pulse positive voltage IF REMAINDER=0 THEN HB=15 1231 1232 IF REMAINDER=0 THEN LB=255 1240 REM when remainder = 1 or 3, pulse zero voltage IF REMAINDER=1 OR REMAINDER=3 THEN HB=8 1241 IF REMAINDER-1 OR REMAINDER=3 THEN LB=0 1242 REM when remainder = 2, pulse negative voltage 1250 1251 IF REMAINDER=2 `THENHB=0 1252 IF REMAINDER4 THEN LB-6

REM this subsection Uetermines how to pulse channel 1 voltage 1260 1270 REM when remainder = 0 or 2, pulse zero voltage IF REMAINDER=0 OR REMAINDER=2 THEN H81=8 1271 IF REMAINDER-0 OR REMAINDER=2 THEN L81=0 1272 REM when remainder = 1, pulse positive voltage 1280 IF REMAINDER-1 THEN #81=15 IF REMAINDER-1 THEN 181=255 1281 1282 1290 REM when remainder = 3, pulse negative voltage 1291 IF REMAINDER=3 THEN H81=0 IF REMAINDER=3 THEN LB1=6 1292 1295 GOTO 1301: **REM** do not pulse channel **0** voltage 1300 GOSUB 5000: REM pulse the voltage (channel 0) GOSUB 5500: 1301 REM pulse the voltage (channel 1) 1400 **GOSUB** 4000: REM read time 1500 GOSUB 6000: **REM** read voltage (channel 0) IF REMAINDER=1 THEN GOSUB 6200: REM read voltage (channel 1) 1510 IF REMAINDER=1 THEN GOSUB 6500: REM read voltage (channels 2-7) 1520 REM print to output files and screen 1600 1610 1620 1621 VOLT6, VOLT7 1630 IF REMAINDER-1 THEN PRINT TIME, VOLTO, VOLT1, VOLT5 1700 **REM** set time interval for data recovery 1701 GOSUB 4000: REM read time 1702 ELAPSE=TIME-OLDTIME; REM calculate elapsed time IF (ELAPSE>.1) THEN GOTO 1800 1703 1704 PRINT" LINE 1704: YOU ARE IN TROUBLE" PRINT "LINE 1705: 1705 TYPE - CONTROL-BREAK" PRINT "LINE 1706: TYPE - LIST 1033" 1706 PRINT "LINE 1707: 1707 CHANGE C2 TO THE NUMBER GIVEN BELOW (CC2)" PRINT "LINE 1705: CCZ 1708 ĊČZ'n 1710 FOR I=1 TO 10: NEXT I: REM time delay 1711 GOTO 1701 1800 2T=2T+1 1801 OLDTIME=TIME GOTO 1221 1900 1999 CLOSE END 2000

F.3.2 Subroutines

4000 REM subroutine: time 4001 DEF SEG=&HAFF0: REM defines starting memory location 4111 POKE &HC3,0: REM counter **0** used in latching mode 4112 LOWZ=PEEK(&HCO) : REM recover **low** byte 4113 HIZ=PEEK(&HCO) : REM recover high byte 4114 CCZ=LOWZ+(HIZ*256) : REM comb ne high and low bytes 4121 POKE &HC3,64: REM counter 1 used in latching mode REM recover **low** byte 4122 LOWO-PEEK(&HC1) : HIO=PEEK(&HC1) : 4123 REM recover high byte 4124 CCO=LOWO+(HIO*256) : REM combine high and low bytes POKE &HC3,128: 4131 REM counter 2 used in latching mode 4132 LOW=PEEK(&HC2) : **REM** recover low byte 4133 HIT=PEEK(&HC2) : REM recover high byte CCT=LOWT+(HIT*256) : 4134 REM combine high and low bytes REM calculate the number of current pulses received from the PC PULSENO=((CZ-CCZ) * (CT*CO))+((CO-CCO)*CT)+(CT-CCT) 4140 4141 4150 REM convert pulses to seconds (1 pulse = 1.046 micro sec.) 4151 TIME=PULSENO*1.046E-06 4199 RETURN 5000 REM subroutine: pulse current to sensors (from channel 0) 5001 DEF SEG=&HAFF0: REM defines starting memory location 5010 POKE &H9A,0: REM set global gain to 1 POKE &H9D,64: 5020 REM enable strobe 5030 REM select slot 2, channel 0 for digital-analog control - low byte 5031 POKE &H82,0 5035 REM place low byte data into memory for slot 2 channel 0 5036 POKE &H83,LB 5040 REM select slot 2, channel 0 for digital-analog control - high byte 5041 POKE &H82,1 5045 REM place high byte data into memory for slot 2 channel 0 5046 POKE &H83,HB 5050 POKE &H9D,1: **REM** issue data (send voltage) 5060 **COR I =1 TO 200: NEXT I:** REM time delay to stabilize voltage 5099 RETURN 5500 REM subroutine: pulse current to sensors (from channel 1) DEF SEG=&HAFF0: 5501 REM defines starting memory location 5510 POKE &H9A,0: REM set global gain to 1 5520 POKE &H9D, 64: **REM** enable strobe REM select slot 2, channel 1 for digital-analog control - low byte 5530 POKE &H82,2 5531 REM place low byte data into memory for slot 2, channel 1 5535 5536 POKE &H83, LB1 5540 REM select slot 2, channel 1 for digital-analog control - high byte POKE &H82,3 5541 5545 REM place high byte data into memory for slot 2, channel 1 5546 POKE &H83,HB1 5550 POKE &H9D,1: REM issue data (send voltage) 5560 FOR I=1 TO 200: NEXT I: REM time delay to stabilize voltage 5599 RETURN

6000 REM subroutine: read voltage channel 0 DEF SEG=&HAFF0: 6001 REM defines starting memory location POKE &H9A,0: **REM** select a gain of 1 6010 6100 REM this section reads the voltage drop across channel 0, slot 1 POKE &H80,0: 6111 REM select channel 0 POKE &H81,1: 6112 REM select slot 1 6120 POKE &H9B,255: REM starts analog-digital conversion DLOW=PEEK(&H80) : 6131 REM read low byte REM read high byte 6132 DHI=PEEK(&H81) : REM combine high and low bytes 6133 6134 COUNTS=DLOW+(DHI-240) * 256REM calc value of voltage for input range = +-10 v and gain = 1 6135 VOLT0 = (COUNTS * (20/4095) - 10)6136 6199 RETURN REM subroutine: 6200 read voltage channel 1 6201 DEF SEG=&HAFF0: REM defines starting memory location REM select a gain of 1 6210 POKE &H9A,0: REM this section reads the voltage drop across channel 1, slot 1 6300 POKE &H80,1: 6311 REM select channel 1 POKE &H81,1: 6312 REM select slot 1 6320 POKE &H9B,255: REM starts analog-digital conversion 6331 DLOW=PEEK(&H80) : REM read low byte 6332 DHI=PEEK(&H81) : REM read high byte 6333 REM combine high and low bytes 6334 COUNTS=DLOW+ (DHI-240)*256 REM calc value of voltage for input range = +-10 v and gain = 16335 6336 VOLT1 = (COUNTS * (20/4095) - 10)6399 RETURN 6500 REM subroutine: read voltage channels 2-7 6501 DEF SEG=&HAFF0: REM defines starting memory location 6502 POKE &H9A,0: REM select a gain of 1 REM this section reads the voltage of channel 2, slot 1 6510 6511 POKE & H80,2: REM select channel 2 6512 POKE &H81,1: REM select slot 1 6520 POKE &H9B, 255: REM starts analog-digital conversion 6531 DLOW=PEEK(&H80) : REM read low byte 6532 DHI=PEEK(&H81) : REM read high byte 6533 REM combine high and low bytes COUNTS=DLOW+(DHI-240)*256 6534 REM calc value of voltage for input range = +-10 v and gain = 1 6535 VOLT2 = (COUNTS * (20/4095) - 10)6536 6610 REM this section reads the voltage of channel 3, slot 1 6611 POKE CH80,3: REM select channel 3 POKE &H81,1: 6612 REM select slot 1 6620 POKE &H9B,255: REM starts analog-digital conversion 6631 DLOW-PEEK(&H80) : **REM** read low byte REM read high byte 6632 DHI=PEEK(&H81) : REM combine high and low bytes 6633 6634 COUNTS=DLOW+(DHI-240) *256 REM calc value of voltage for input range = +-10 v and gain = 1 6635 6636 VOLT3 = (COUNTS * (20/4095) - 10)

REM this section reads the voltage of channel 4, slot 1 6710 POKE &H80,4: 6711 REM select channel 4 6712 POKE &H81,1: **REM** select slot 1 6720 POKE &H9B,255: REM starts analog-digital conversion DLOW=PEEK(&H80) : **REM** read low byte 6731 DHI=PEEK(&H81) : REM read high byte 6732 REM combine high and low bytes 6733 6734 COUNTS=DLOW+(DHI-240) *256 **REM** calc value of voltage for input range = +-10 v and gain = 1 6735 6736 VOLT4 = (COUNTS * (20/4095) - 10)6810 REM this section reads the voltage of channel 5, slot 1 6811 POKE &H80,5: REM select channel 5 POKE & H81,1: 6812 REM select slot 1 6820 POKE &H9B,255: **REM** starts analog-digital conversion 6831 DLOW=PEEK(&H80) : **REM** read low byte DHI=PEEK(&H81) : 6832 REM read high byte REM combine high and low bytes 6833 COUNTS=DLOW+ (DHI-240)*256 6834 6835 REM calc value of voltage for input range = +-10 v and gain = 1 6836 VOLT5 = (COUNTS * (20/4095) - 10)6910 REM this section reads the voltage of channel 6, slot 1 REM select channel 6 6911 POKE &H80,6: POKE &H81,1: 6912 REM select slot 1 POKE &H9B, 255: REM starts analog-digital conversion 6920 6931 DLOW=PEEK(&H80) : REM read low byte 6932 DHI=PEEK(&H81) : REM read high byte REM combine high and low bytes 6933 COUNTS=DLOW+ (DHI-240) *256 6934 REM calc value of voltage for input range = +-10 v and gain = 1 VOLT6= (COUNTS*(20/4095)-10) 6935 6936 REM this section reads the voltage of channel 7, slot 1 6960 POKE &H80,7: REM select channel 6 6961 POKE &H81,1: 6962 REM select slot 1 POKE &H9B,255: **REM** starts analog-digital conversion 6970 6981 DLOW=PEEK(&H80) : REM read low byte REM read high byte DHI=PEEK(&H81): 6982 REM combine high and low bytes 6983 6984 COUNTS=DLOW+(DHI-240)*256REM calc value of voltage for input range = +-10 v and gain = 1 6985 VOLT7 = (COUNTS * (20/4095) - 10)6986 6999 RETURN

Appendix G

Chromatograph Specifications/Settings

G.1 Equipment

· Hewlett Packard 5880 Series Gas Chromatograph

· Hewlett Packard 7673A Controller

. Hewlett Packard Automatic Sampler

 Hewlett Packard Column (Separation) - Porapak QS, 6 ft, 1/8 in. I.D., mesh range 80/100

. Hewlett Packard Column (Reference) - 2 % OV-101, 20 in., 100-120 WHP

G.2 Instrument Settings

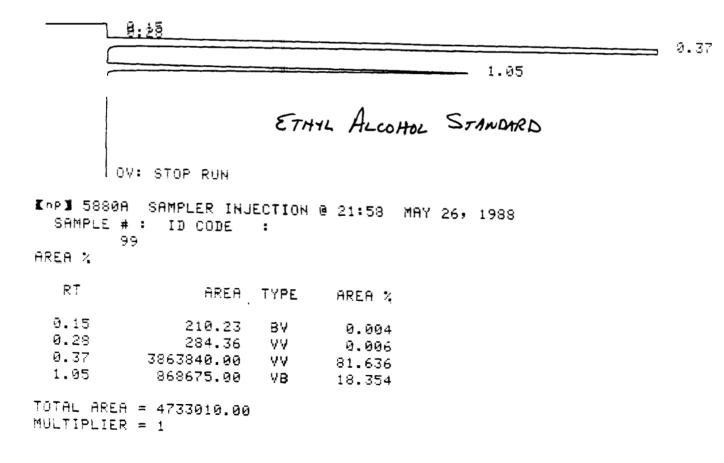
G.2.1 Detector/Oven/Presentation Settings

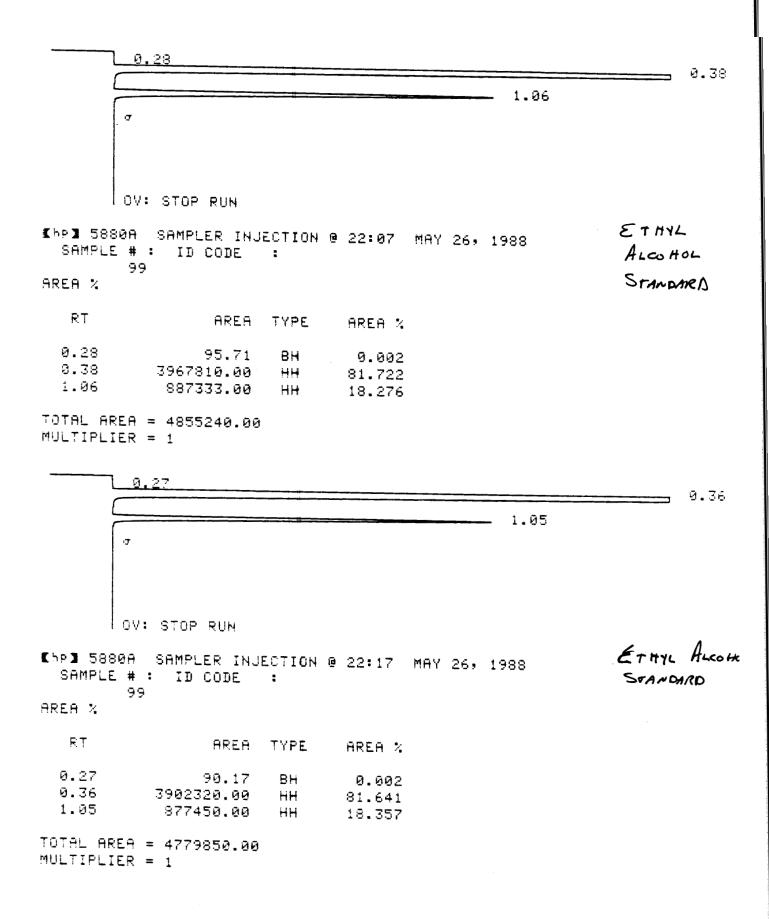
- · INJ 2 TEMP 200 [°C]
 . DET 2 TEMP 200 [°C]
 · DETECTOR D ON
- . SIGNAL D

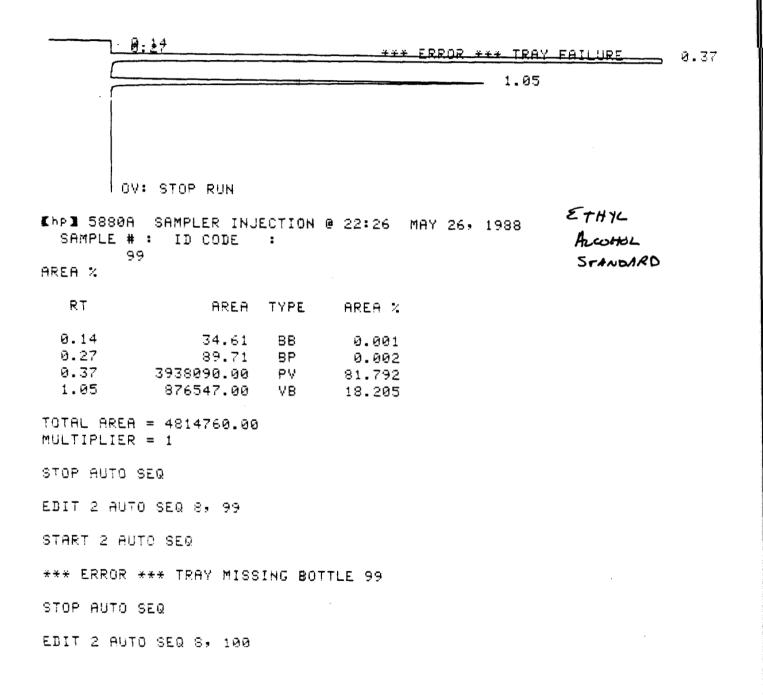
- OVEN TEMP INITIAL VALUE 180 ["C]
- . OVEN TEMP FINAL VALUE 240 ["C]
- · OVEN TEMP PGRM RATE 20 [°C/min]
- OVEN TEMP INITIAL TIME 0 [min]
- . OVEN TEMP FINAL TIME 2 [min]
- ATTN 2¹14

G.2.2 Injection Settings

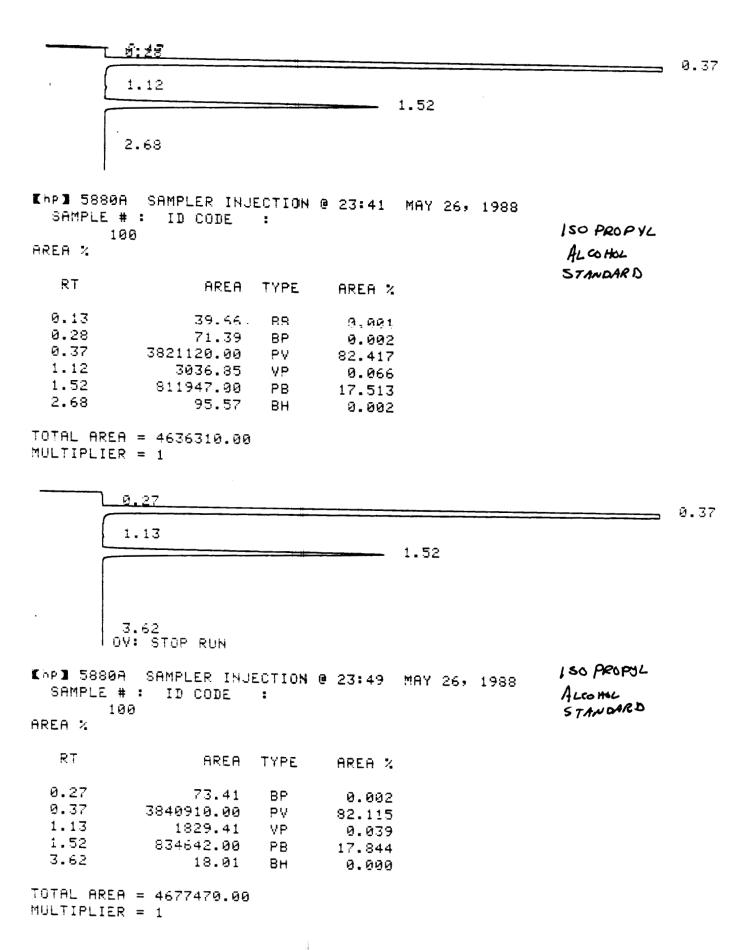
AUTO SEQ 2

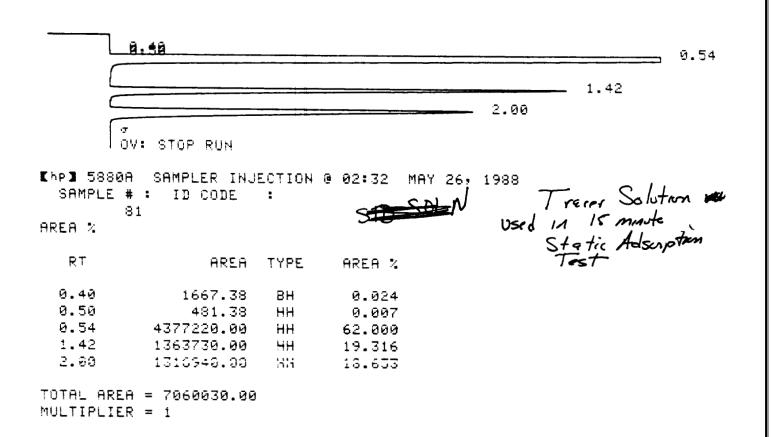

INJECTOR 2:

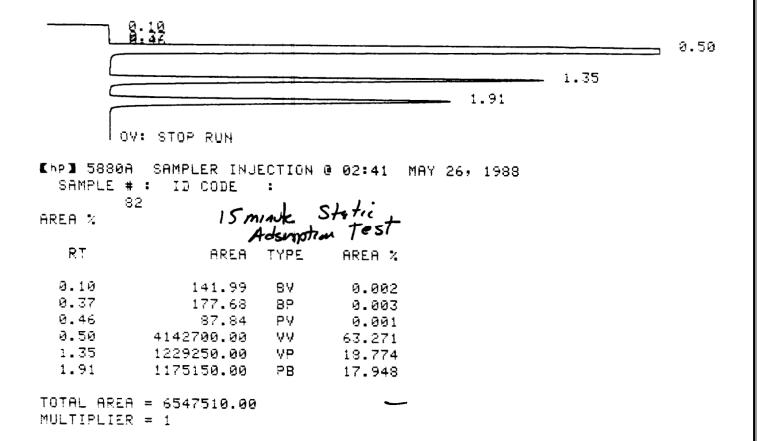

- 0. MODE = 0 [normal]
- 1. PRE-INJECTION SAMPLE WASHES = 0
- 2. VISCOSITY = 1 [wait 1 second at the top of each pump]
- **3.** SAMPLE PUMPS \neq 6
- **4.** SAMPLE VOLUME = $1 [\mu l]$
- 5. POST-INJECTION SOLVENT A WASHES = 0
- 6. POST-INJECTION SOLVENT B WASHES $\doteq 0$
- 7. INJECTIONS PER BOTTLE = 1
- 8. FIRST BOTTLE = 1
- 9. LAST BOTTLE = varies


Appendix H

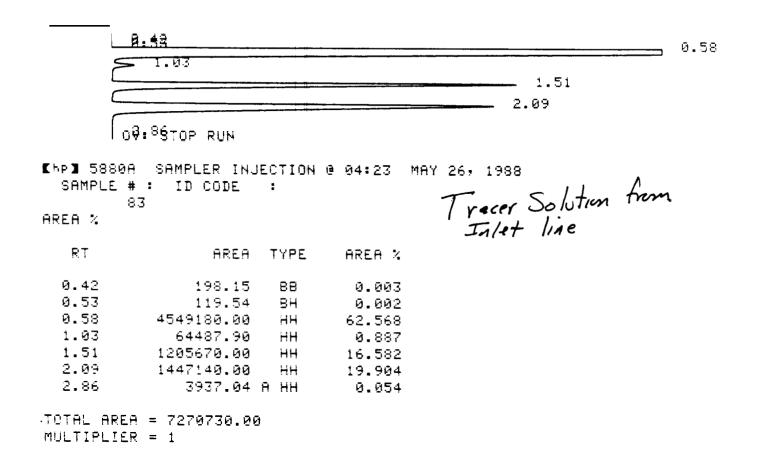
Chromatograph Runs

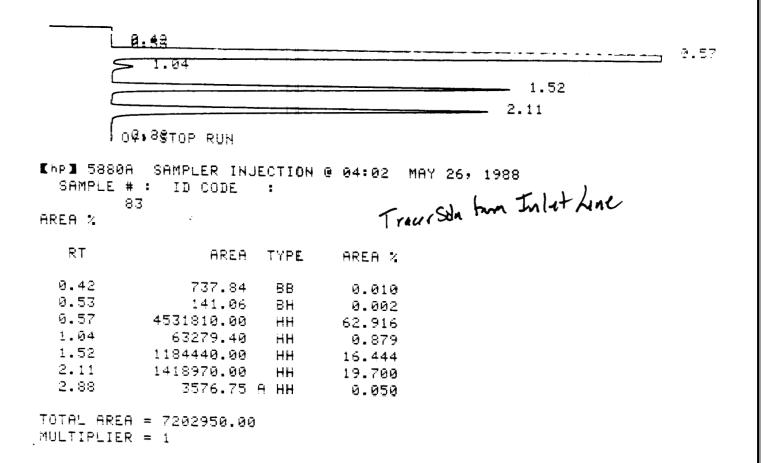

H.1 Calibration Runs


APPENDIX H. CHROMATOGRAPH RUNS



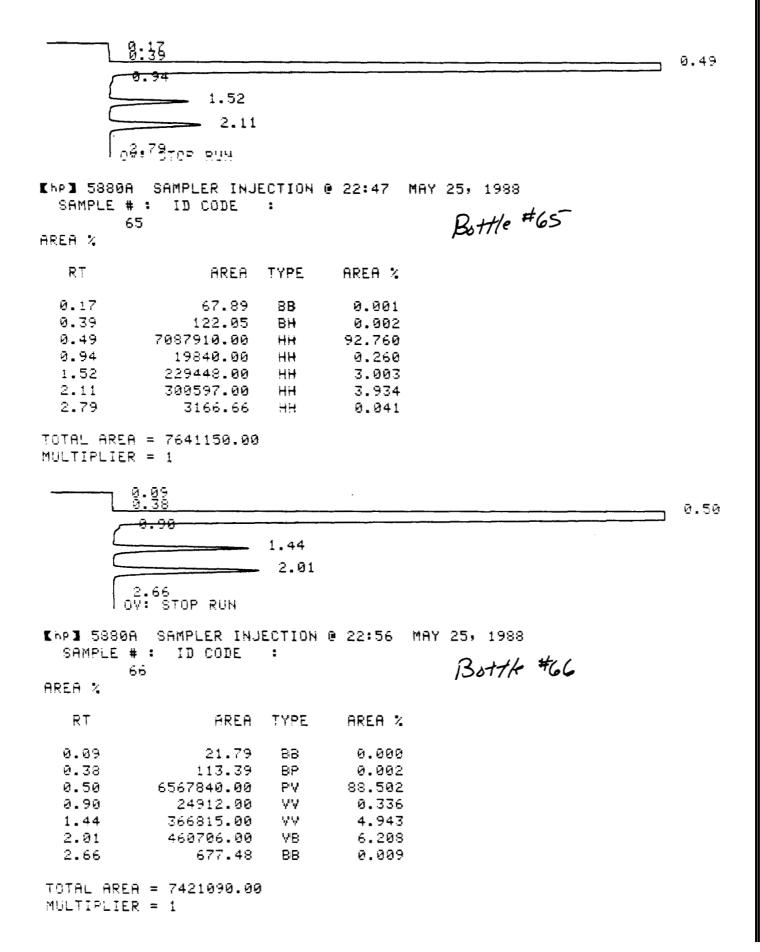
APPENDIX H. CHROMATOGRAPH RUNS

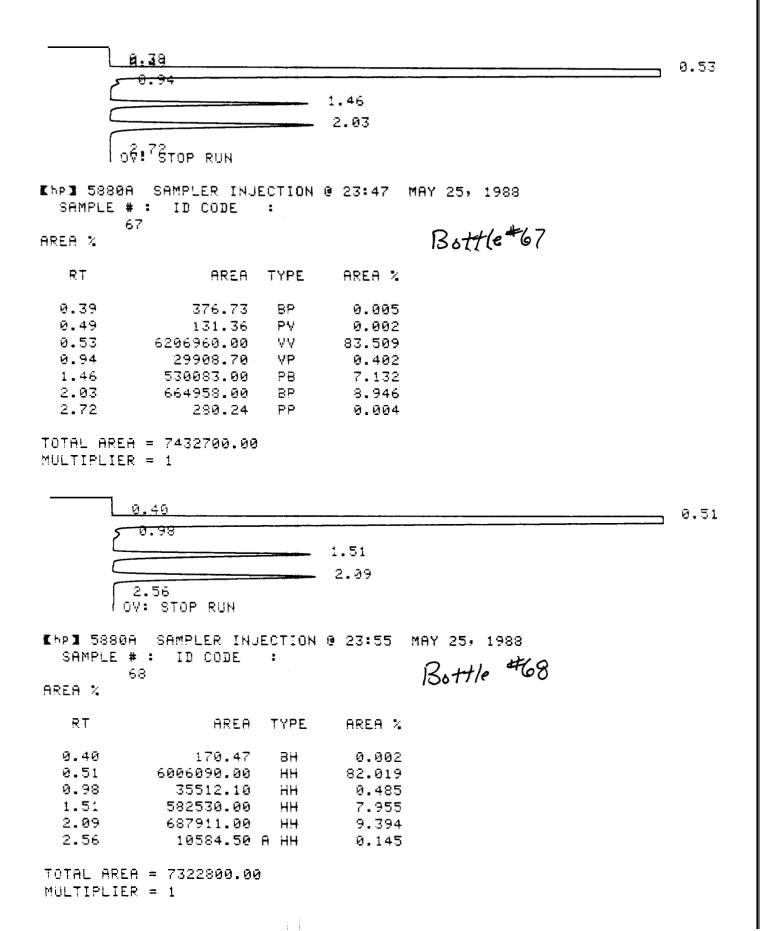

	0.27					······································	ę
	1.12			1.51			
	2.67						
	OV: STOP RUN						
	80A SAMPLER INJ E # : ID CODE 100	ECTION 0 :	00:09	MAY 27,	1988	SO PROPYL Auconul STANDARN	
AREA %						STANUTICA	
RT	AREA	TYPE	AREA %				
0.27 0.36 1.12 1.51 2.67	72.82 3829250.00 1818.13 833058.00 29.13	BP PV VP PB BB	0.002 82.098 0.039 17.861 0.001				
TOTAL AN MULTIPL:	REA = 4664230.00 IER = 1	1	·				
	0.27		. =				ł
	1.13			1.53			
	2.69						
	OV: STOP RUN					150 PROPYL ALCOHIL	
Khp] 58: SAMPLI AREA %	80A SAMPLER IN. E # : ID CODE 100	ECTION (:	00:18	MAY 27,	1988	STANDARD	
RT	AREA	TYPE	AREA %				
0.27 0.37 1.13 1.53	1828.07	BP PV VP PB	0.002 82.246 0.039 17.713				
2.69	9.48	88	0.000				


H.2 15 minute Adsorption Test

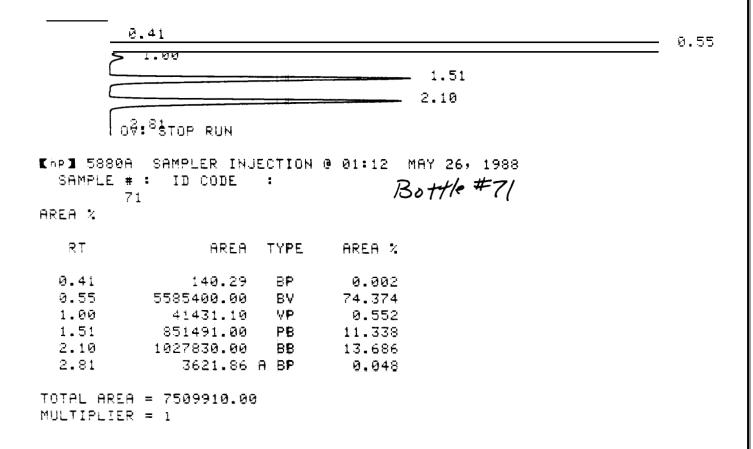
H.3 Run 6

<u>_</u>	.34					0.
	.37 .92					
l ov	: STOP RUN					
Khel 5880A Sample # 53 Area %		ECTION	@ 20:11 Mf	14 25, 1988 Bottle	e #53	
RT						
	AREA	TYPE	AREA %			
0.34 0.45 1.37 1.92	410.15 6904300.00 21973.50 8901.59	BV VV VB	0.006 99.549 0.317 0.128	0 % 090		
TOTAL AREA MULTIPLIER	= 6935590.00 = 1					
0	.36					
	.52 .10	— <u> </u>				
1 04	STOP RUN					
Khp] 5880A SAMPLE # 54 AREA %		ECTION :	@ 20:19 MF	Y 25, 1988	Bo++/e #	=54
RT	AREA	TYPE	AREA %			
9.36 9.45 1.52 2.10	808,52	6Å 6Å	я.011 99.965 0.020 0.005			
TOTAL AREA MULTIPLIER	= 7452660.00 = 1					

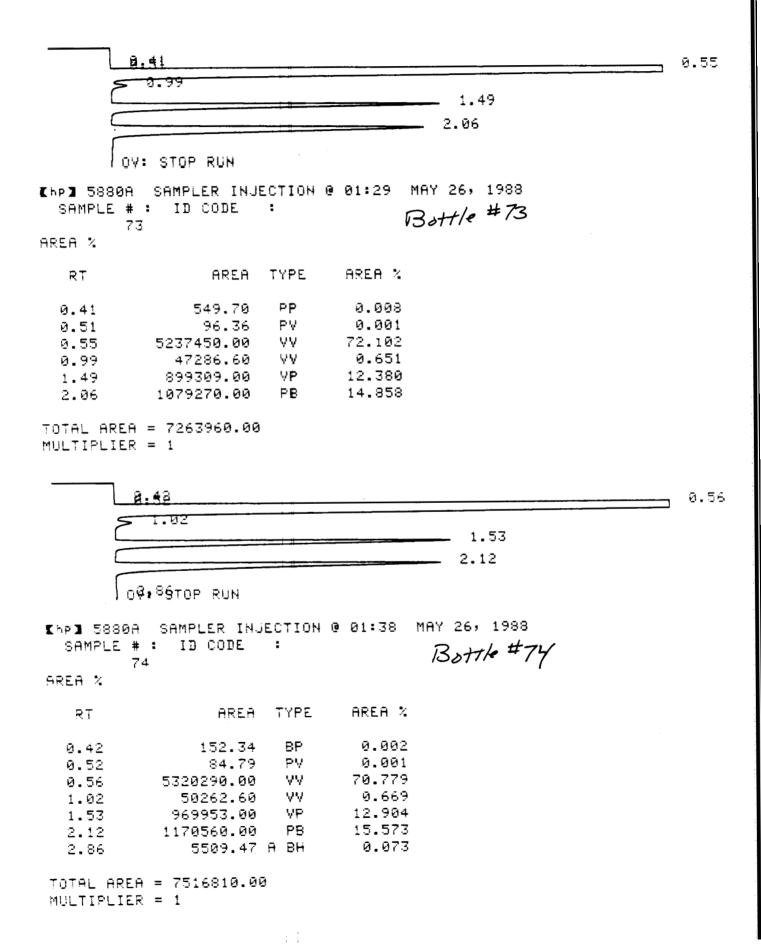

	0.35	· · · · · · · · · · · · · · · · · · ·		0.45
	· 1.49 σ2.06			
	OV: STOP RUN			
KHP] 58 Sampl	80A SAMPLER IN. E # : ID CODE 55	ECTION (
AREA %	00		Bottle #55	
RT	AREA	TYPE	AREA %	
0.31 0.35 0.45 1.49 2.06	196.91 148.61 7292100.00 1759.79 293.10	BV VV VV BB	0.003 0.002 99.967 0.024 0.004	
TOTAL A MULTIPL	REA = 7294500.00 IER = 1			
	0.38			<u> </u> 1 0.48
	1.59 2.20			
	OV: STOP RUN			
Khp] 58 Sampli Area %		ECTIÓN @ :	120:36 MAY 25, 1988 Bottle #3	76
A A A A MARK A A A A A A A A A A A A A A A A A A				
RT	AREA	TYPE	AREA %	
RT 0.33 0.38 0.48 1.59 2.20	AREA 669.16 299.24 7786460.00 3036.40 778.15 REA = 7791240.00	TYPE BV VV VV VV VB	AREA % 0.009 0.004 99.939 0.039 0.010	

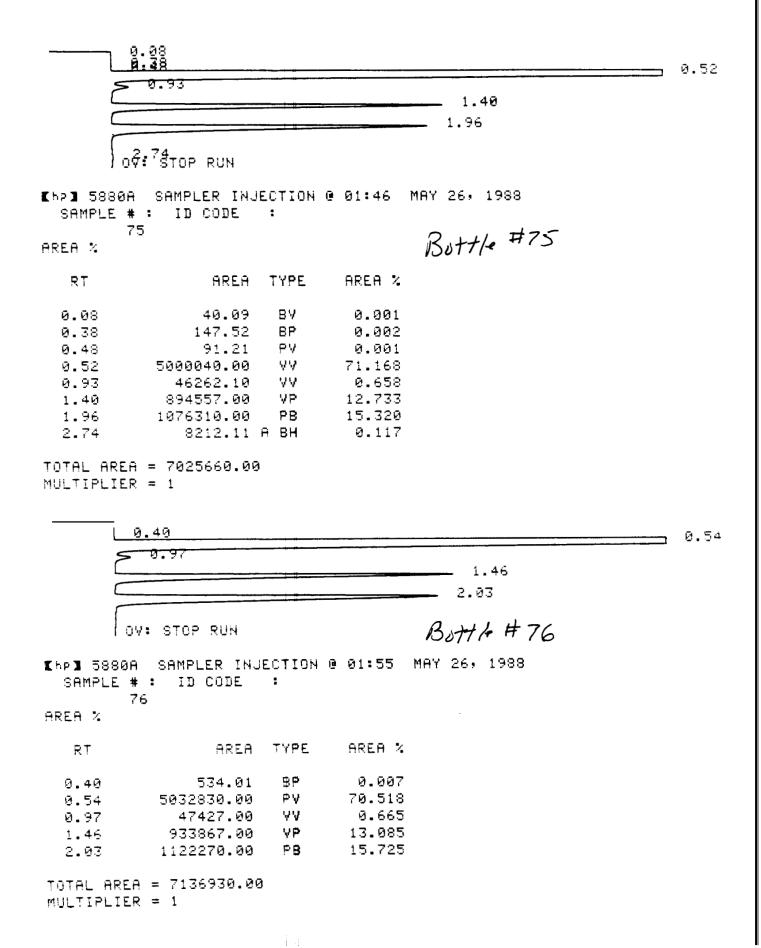

0.37			0.49
-1.48 2.08 OV: STOP RUN			
KHPI 5880A SAMPLER INJECTION Sample # : ID code : 57	@ 20:45 MAY 25,		
AREA % RT AREA TYPE	AREA %	Bottle #57	
0.37 129.30 BP 0.49 7496590.00 PV 1.48 2950.99 VV 2.08 788.33 VB	0.002 99.948 0.039 0.011		
TOTAL AREA = 7500450.00 MULTIPLIER = 1			
0.38			0.50
1.55 72.15 OV: STOP RUN			
Khpl 5880A SAMPLER INJECTION SAMPLE # : ID CODE : 58 AREA %	@ 20:53 MAY 25,	1988 Bott/0 #58	
RT AREA TYPE	AREA %		
0.38 495.74 PV 0.50 7797380.00 VV 1.55 2098.49 VV 2.15 358.33 BB	0.006 99.962 0.027 0.005		
TOTAL AREA = 7800330.00 MULTIPLIER = 1			

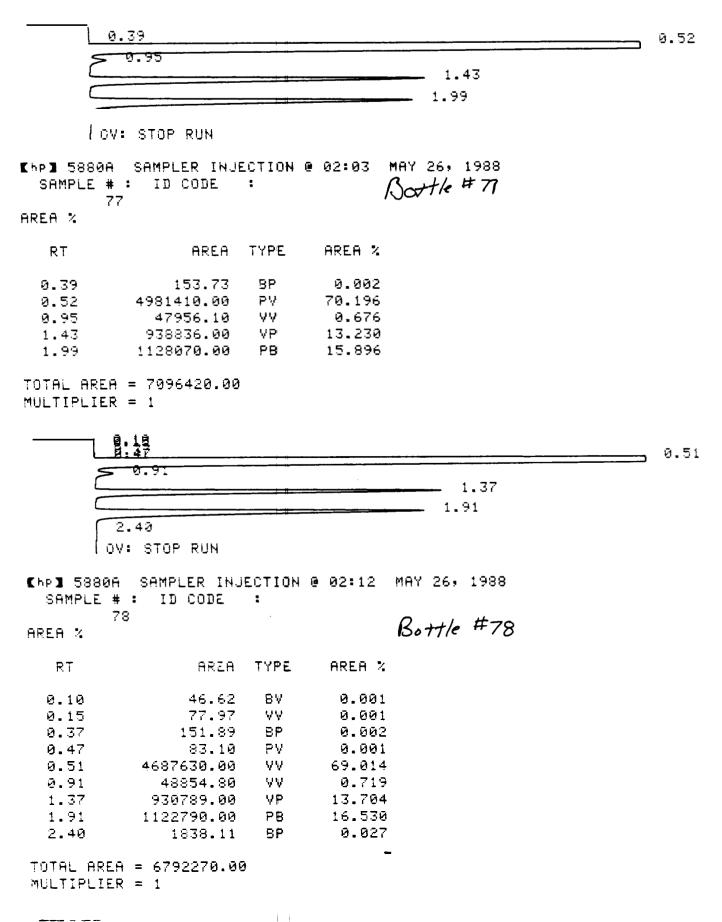
	0.33				.49
	1.58 2.18				
10	V: STOP RUN				
KHPI 58806 Sample 4		ECTION :	@ 21:02 MAY		
AREA %				Bottle # 57	
RT	AREA	TYPE	AREA %	00000	
0.33 0.38 0.49 1.58 2.18	326.25 166.72 7835320.00 1276.55 414.09	8V VV VB BH	0.004 0.002 99.972 0.016 0.005		
TOTAL ARE MULTIPLIE	A = 7837510.00 R = 1 0.39				
L	<u>9137</u>				
	1.60				
	2.21				
	OV: STOP RUN				
Khp] 5880 Sample Area %)A SAMPLER IN. #: ID CODE 60	ECTION	@ 21:10 MAY	25, 1988 Bottle #G	0
RT	AREA	TYPE	AREA %		
0.34 0.39 0.50	342.95 173.90 7944220.00 1514.10	٧V	0.004 0.002 99.969 0.019		
1.60 2.21	441.19	BB	0.006		

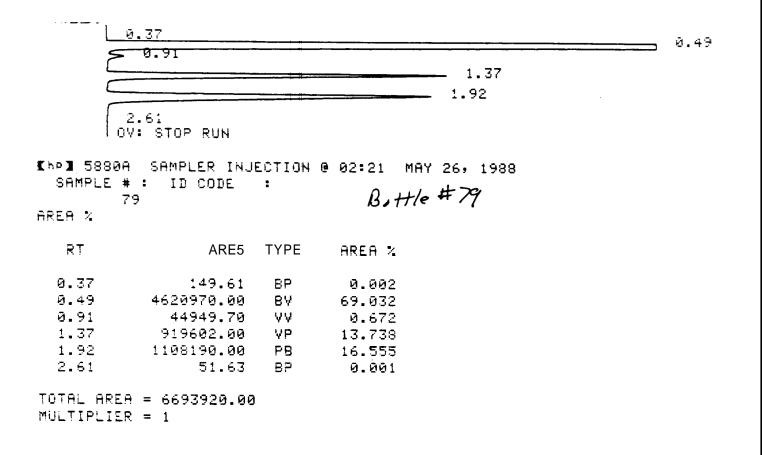

	0.38				0.51
	1.55 ⊄2.16 OV: STOP RUN				
Khp] 588 SAMPLE AREA %	30A SAMPLER INJE 5 # : ID CODE 61	CTION :	@ 21:19 MAY	25, 1988 Bo Hlo #61	
RT	AREA	TYPE	AREA %		
0.38 0.51 1.55 2.16	250.48 7885130.00 2195.96 396.56	BP PV VV BB	0.003 99.964 0.028 0.005		
TOTAL A MULTIPL	REA = 7887970.00 IER = 1				
	1 8:32				0.47
	1.55 2.14 OV: STOP RUN				
KHP] 58 Sampl	80A SAMPLER INJ	ECTION :	@ 21:27 MAY	' 25 , 1988	
AREA %				Bottle#62	
RT	AREA	TYPE	AREA %	128/114 02	
0.16	97.31	BV	0.001		
0.32	6.40	BP	0.000		
0.37	107.15	PP	0.001		
0.47	7573400.00	PV	99.952		
1.55 2.14	1682.99 1721.59	VB BH	0.022 0.023		
TOTAL A	I721.39 REA = 7577020.00 .IER = 1		0.023		

0.37	0.48
<pre> 1.48 2.06 OV: STOP RUN </pre>	
Khp] 5880A SAMPLER INJECTION @ 21:35 MAY 25, 1988 SAMPLE # : ID CODE : 63 AREA % Bottle #63	
RT AREA TYPE AREA %	
0.37 116.42 BP 0.002 0.48 7518890.00 PV 99.410 1.48 18520.40 VV 0.245 2.06 25968.80 VB 0.343	
TOTAL AREA = 7563490.00 MULTIPLIER = 1	
0.39 1.56 2.16 V: STOP RUN	0.50
KAPI 5880A SAMPLER INJECTION @ 21:44 MAY 25, 1988 SAMPLE # : ID CODE : 64 AREA %	
RT AREA TYPE AREA %	
0.39 1334.31 BH 0.017 0.50 7599320.00 HH 97.045 1.56 97104.80 HH 1.240 2.16 132944.00 HH 1.698	
TOTAL AREA = 7830700.00 MULTIPLIER = 1	








APPENDIX H. CHROMATOGRAPH RUNS

APPENDIX H. CHROMATOGRAPH RUNS

_ _ _ _

Appendix I

Voltage Data

The voltage data were stored in three output files, VOLT0.DAT VOLT1.DAT and VOLT27.DAT. The first column in each of the files is the time in seconds. The next columns are the voltages recorded from the input channels. With one exception complete data sets are given on the following pages. Data recorded in VOLT0.DAT prior to 400 s are not presented because the voltage across Channel 0 did not vary during the first 419 s.

 $1 \rightarrow$

OUTPUT FILE VOLTO.DAT

401.80131 402.3782 1 403.0913 1 403.6681 1 405.4798 1 406.1254 1 406.7702 1 407.4153 1 409.8721 1 409.8721 1 412.3168 1 412.9621 1 413.6073 1 415.4427 1 416.7334 1 417.3785 1 419.2180 6 422.3132 6 422.3132 6 422.9578 6 422.9578 6 422.9578 6 422.9578 6 422.9385 1 427.3385 1 427.9839 1 422.91392 1 423.6026 6 424.2474 6 427.3385 1 427.9839 1 425.4039 1 432.2403 1 432.8854 1 433.5302 1 434.1756 6 435.3311 6 435.3797 6 442.9308 6 443.5073 6 444.21976 6 445.3813 6 445.3813 6 445.3813 6 445.3813 6 445.3813 6 445.3813 6 445.3897 6 453.5897 6	.5604 .55604 .5604 .5604 .5604 .5556 .5604 .5556 .5604 .5556 .5604 .5556 .5604 .5556 .5604 .5556 .5604 .5556 .5604 .5556 .2540
---	--

455.3890 456.0397 456.6843 457.3294 458.4925 459.0695 459.7823 460.3646 461.5255 462.2386 463.5285 465.2748 466.0144 466.7275 467.3046 468.4602 469.1738 469.7506 470.4672 471.6273 472.2042 472.9170 473.4939 475.3639 475.3639 475.3639 475.3639 475.4654 479.1100 479.7551 485.8584 482.2148 482.8599 483.9536 484.6670 485.8584 486.5715 485.8584 486.5715 487.7270 489.6621 492.4270 485.8584 486.5715 487.7270 489.6621 492.4270 485.8584 486.5715 487.7270 489.6621 492.4270 493.4406 494.5956 495.1728 495.8915 496.4691 497.6309 498.9218 499.6352	6.2540 6.2540 1.5604 1.5556 1.5556 1.5556 1.5556 1.5556 1.5556 1.5556 1.5604 1.5604 1.5604 1.5604 1.5604 1.5604 1.5604 1.5556 1.5604 1.5556 1.5604 1.5556 1.5604 1.5604 1.5556 1.5604 1.5556 1.5604 1.5604 1.5556 1.5604 1.5556 1.5604 1.5556 1.5604 1.5556 1.5604 1.5604 1.5604 1.5604 1.5556 1.5604 1.5556 1.5604 1.5604 1.5556 1.5604 1.5556 1.5604 1.5604 1.5556 1.5604 1.55604 1.55604 1.55604 1.55604 1.55604 1.55604 1.55604 1.55604 1.55604 1.55604 1.55604 1.5604 1.5604 1.5604 1.5604 1.5604 1.5604 1.5604 1.5604 1.5604 1.5604 1.5	VOLTO.DAT
495.1728 495.8915 496.4691 497.6309 498.3447 498.9218	1.5604 1.5604 1.5556 1.5556 1.5556 1.5604	

i

APPENDIX I. VOLTAGE DATA

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	509.6040 510.2489 511.4146 512.0592 512.7056 513.3521 514.5146 515.0935 515.8117 516.3902 518.1635 518.8780 519.4567 520.1719 521.3428 522.6357 523.2824 524.4505 525.0283 526.3502 526.9273 528.0903 528.8037 529.3811 530.0952 531.2521 531.9026 532.5482 533.1256 534.3570 535.0026 535.0026 535.6482 536.2979 537.4558 538.1017 538.7468 539.3925 541.1779 541.8299 542.4751 543.0527 544.9232 545.5686 546.7975 547.9608 548.6068 549.2524 549.8983 550.9233 551.7115 552.2889 553.0025 554.1672 554.7448 555.4585 556.1095	6.2540 6.2540 6.2540 6.2540 6.2540 1.5604 1.5604 1.5604 1.5604 1.5556 1.5604 1.5556 1.5604 1.5556 1.5604 1.5556 1.5604 1.5556 1.5604 1.5556 1.5604 1.5556 1.5604 1.5604 1.5556 1.5604 1.5604 1.5540 6.2540 6.2540 6.2540 6.2540 6.2540 6.2540 6.2540 6.2540 6.2540 6.2540 6.2540 6.2540 6.2540 1.5556 1.5604 1.55604 1.55604 1.55604 1.55604 1.55604 1.55604 1.55604 1.55604 1.55604 1.55604 1.56	VOLTO.DAT
	552.2889 553.0025 554.1672 554.7448 555.4585 556.1095 557.2709 557.9163 558.5622 559.2078 560.3122 561.0307 561.6076	$1.5556 \\ 1.5604 \\ 1.5604 \\ 1.5604 \\ 1.5604 \\ 1.5604 \\ 1.5604 \\ 1.5604 \\ 1.5604 \\ 6.2540 \\ 6$	

I

APPENDIX I. VOLTAGE DATA

617.9608 618.6065 620.5327 621.1781 621.8296 622.4758 623.6371 624.2826 624.9285 625.5741 627.4216 628.1350 628.7121 629.4258 630.5917 631.2368 631.2368 631.8873 632.5331 633.6930 634.3387 634.9840 635.6296 636.7296 636.7296 637.4477 638.0251 638.7393 639.9016 640.4800 641.1934 641.8438 643.6670 644.3809 644.3809 644.9583 645.6724 646.8331 648.7167 649.3623 650.5280 651.1737 651.8190 652.4696 653.6299 654.2073 654.9209 654.9209 655.4986 656.7339 657.3848 658.0303 658.6758 659.8371 660.4830 661.7785 663.5819 664.2276 664.8735 665.5191 666.6813 668.0524 668.6300 669.3441	6.25410 6.25410 6.25410 6.2540 6.2540 6.2540 6.2540 6.2540 6.2540 6.2540 6.2540 6.2540 6.2540 6.2540 6.2540 6.2540 6.2540 1.5604 1.5556 1.5604 1.5604 1.5540 6.2550 1.5556 1.5604	VOLTO.DAT
666.6813 668.0524 668.6300	6.2540 1.5556 1.5556	

674.2633 674.9774 675.5551 676.2692 677.4358 678.0868 678.7321 679.3780 680.5395 681.1851 681.8305 682.4806 683.5821 684.2958 684.2958 685.5868 685.5868 687.3262 689.3016 690.4701 691.1159 691.7613 692.4070 693.5044 694.2183 694.7962 695.5096 697.3014 697.9471 698.5298 699.2435 700.4065 700.9836 701.6970 702.2748 703.5171 704.1630 704.8082 705.4538 705.4538 705.4538 705.4538 705.4538 705.4538 707.2603 711.6111 712.2568 713.3532 714.0666 714.6442 715.3576 716.5249 717.1026 717.8202 718.3978 708.5071	$\begin{array}{c} 1.5604\\ 1.5604\\ 1.5604\\ 1.5604\\ 1.5604\\ 1.5604\\ 1.5604\\ 1.5604\\ 1.5604\\ 1.5604\\ 1.5604\\ 1.5604\\ 1.5604\\ 1.5604\\ 1.5604\\ 6.2540\\ 6.2540\\ 6.2540\\ 6.2540\\ 6.2540\\ 6.2540\\ 6.2540\\ 6.2540\\ 6.2540\\ 6.2540\\ 6.2540\\ 6.2540\\ 6.2540\\ 6.2540\\ 6.2540\\ 1.5556\\ 1.5604\\$	VOLT0.DAT
714.0666 714.6442 715.3576 716.5249 717.1026 717.8202	1.5604 1.5604 1.5604 1.5504 1.5556 1.5604	

I

728.3225 729.0361 730.2017 730.8470 731.4918 732.1372 733.3016 733.9470 734.5925 735.2380 736.3355 737.0493 737.6315 738.3450 739.5133 740.1592 740.8040 741.4497 743.1901 743.8425 744.4881 745.1340 746.8061 747.5200 748.0972 749.4527 750.54533 751.2593 751.8366 752.5503 751.8366 755.0126 755.6582 756.8190 755.6582 756.8190 757.4656 755.6582 756.8190 757.4656 758.1115 758.7609 757.4656 758.1115 758.7609 757.4656 758.1115 763.0309 763.6322 764.3292 764.9751 766.74341 768.7241 775.0511 775.0511	6.2540 1.5604 1.56	VOLT0.DAT
770.4640 771.1771 771.8222 773.7545 774.4053	6.2540 6.2540 6.2540 6.2540 6.2540 6.2540	

H

783.0684 783.7202 784.3656 785.0113 786.1106 786.8242 787.4016 788.8607 790.0221 790.5998 791.3135 791.8916 793.1288 793.7747 794.4243 795.0703 796.1648 796.1648 796.8790 797.4571 798.1713 799.9211 800.5675 801.2129 801.8583 803.0253 803.0253 803.6707 804.2542 804.9675 806.1323 803.0253 803.6707 804.2542 804.9675 806.1323 808.0013 809.9092 810.6225 811.1996 811.9130 813.0777 813.7230 814.3736 815.0196 815	6.2540 6.2540 6.2540 6.2540 6.2540 6.2540 6.2540 1.5604 1.52	VOLTO.DAT
826.7718 827.4857 828.0631 828.7767	6.2540 6.2540 6.2540 6.2540	

.

870.64516.2540871.29056.2540872.38236.2540873.09606.2540873.67286.2540874.38996.2540876.06646.2540876.78006.2540877.35746.2540878.07106.2540879.23176.2540	838.0838 838.6615 839.9000 840.5459 841.1910 841.8366 842.9402 843.6539 844.2378 844.9514 846.1123 846.6899 847.4035 847.9814 849.8118 850.5554 851.2688 851.9142 853.0065 853.7202 854.2976 855.0146 856.1801 856.7578 857.4711 858.0488 859.2774 859.9284 861.2194 862.3843 861.2194 862.3843 863.6754 864.3274 865.4929 866.7842 867.3618 868.5971	$\begin{array}{c} 1.5604\\ 1.5604\\ 1.5604\\ 1.5556\\ 1.5604\\ 1.5604\\ 1.5604\\ 1.5604\\ 1.5556\\ 1.5604\\ 1.5556\\ 1.5604\\ 1.5556\\ 1.5604\\$	VOLT0.DAT
	869.9995 870.6451 871.2905 872.3823 873.0960 873.6728 874.3899 876.0664 876.7800 877.3574 878.0710	6.2540 6.2540 6.2540 6.2540 6.2540 6.2540 6.2540 6.2540 6.2540 6.2540 6.2540	

APPENDIX I. VOLTAGE DATA

892.2887	6.2541)	
892.9346	6.2540	
893.5800	6.2540	
894.2291	6.2541)	
895.3956	6.2540	
895.9735	6.2540	
896.6871	6.2540	
897.2648	6.2540	
898.4258	6.2540	
899.1396	6.2540	VOLT0.DAT
899.7213	6.2540	
900.4352	6.2540	
902.2856	6.2540	
902.9312	6.2540	
903.5762	6.25410	
904.2218	6.2540	
905.9146	6.25410	
906.6279	6.2540	

OUTPUT FILE VOLT1.DAT

1.6665	4.6716
4.6985 7.9297	4.6129
11.0344	4.5983 4.5884
14.1342	4.5883
17.2349 20.2752	4.5836 4.5836
24.0687	4.5883
27.9203 31.0214	4.5788 4.5788
34.1224	4.5788
37.2237	4.5788
40.2642 43.4344	4.5788 4.5739
47.1711	4.5690
50.2727 53.3071	4.5739 4.5739
56.4761	4.5739
60.2621 63.3008	4.5836 4.5788
67.0989	4.5446;
70.2002	4.5641
73.2415 76.4151	4.56901 4.5690
79.5239	4.5690
82.6375 86.5823	4.5739
89.6167	4.5739' 4.5788
92.7956	4.5788
95.9036 99.0116	4.5739 4.5739'
102.6697	4.5836
106.4873 109.7230	4.5397 4.5641
112.8182	4.5690
115.9200	4.5690
119.0117 122.0522	4.5690 4.5739
125.8482	4.5739
128.9473 131.9747	4.5690 4.5739
135.8874	4.5836
138.9116 142.0878	4.5788 4.5788
145.7681	4.5788
148.8665	4.5739
151.8971 155.0694	4.5739 4.5739
158.1629	4.5739
161.9548 165.1153	4.5885 4.5788
168.7900	4.5885
171.8206 174.9843	4.5836
178.0826	4.5836 4.5788
181.8176	4.5885
184.9791 188.7539	4.5788 4.5885
191.9211	4.5836
195.0189 198.1175	4.5836 4.5788
201.2282	4.5788
204.2521	4.5788
208.0127 211.8199	4.5885 4.5934

214.9105 218.0121 221.0397 224.2093 227.9571 231.0592 234.1490 237.2514 240.2809 243.4502 246.5497 249.6526 255.7802 258.9469 262.6820 266.4828 269.5129 272.6787 275.7131 278.8738 285.7135 285.9406 292.0385 295.1414 298.2346 301.2744 305.0511 308.1497 311.2453 315.0600 318.1552 321.1914 324.9518 328.0445 331.1461 334.1714 337.8455 341.6553 345.4470 348.5382 351.6408 354.7354 357.769 360.9404 365.2973 371.5845 371.6185 380.7924 383.8911 374.5845 377.6185 380.7924 383.8911 374.5354 400.6423 403.6681	4.5739 4.5739 4.5738 4.5788 4.5788 4.5788 4.5788 4.5788 4.5788 4.5788 4.5788 4.5788 4.5788 4.5788 4.5788 4.5788 4.5788 4.5788 4.5640 4.5690 4.5690 4.5690 4.5690 4.5690 4.5690 4.5690 4.5690 4.5690 4.55739 4.55641 4.5690 4.55739 4.55641 4.5690 4.55739 4.55739 4.55739 4.55739 4.55739 4.55739 4.55739 4.55739 4.55739 4.55739 4.55739 4.55739 4.55788 4.5578	VOLT1.DAT
391.3403 394.4332 397.5354 400.6423	4.5934 4.5836 4.5836 4.5836	

431.0783 434.1756 437.2694 441.0573 444.2199 448.0460 451.1399 454.2350 457.3294 460.3646 463.5285 467.3046 470.4672 473.4939 476.6591 479.7551 489.6621 499.6352 503.3915 507.1596 510.2489 513.3521 516.3902 520.1719 523.2824 526.9273 530.0952 533.1256 536.2979 539.3925 543.0527 549.8983 553.0025 556.1095 559.2078 562.3213 566.0976 559.2078 562.3213 566.0976 572.5020 575.5413 578.7068 582.4157 585.5786 589.3692 592.4020 596.0782 599.2473 602.3615 605.3913 602.3515 605.3913 605.3913 605.3913 605.3915 605.3915 605.3915 605.3915 605.3915 605.	4.5836 4.5788 4.	VOLT1.DAT
618.6065 622.4758 625.5741 629.4258	1.4620 1.4774 1.4628 1.4725	

•

649.3623 652.4696 655.4986 655.4986 658.6758 661.7785 665.5191 669.3441 673.1024 676.2692 679.3780 682.4806 689.3016 692.4070 695.5096 699.2435 702.2748 705.4538 709.1531 712.2568 715.3576 718.3978 725.2905 729.0361 732.1372 735.2380 745.4538 725.2905 729.0361 732.1372 735.2380 745.4537 755.6582 758.7609 745.1340 745.4527 755.6582 758.7609 761.8651 764.9751 768.7241 775.6966 778.7992 781.9035 785.0113 788.8607 791.8916 795.0703 785.0133 788.8016 795.0703 781.9130 811.9130 815.0196 821.2248 824.9422	1.4237 1.4335 1.4335 1.4335 1.4335 1.4335 1.4579 1.4139 1.4237 1.4237 1.4237 1.3211 1.3797 1.3993 1.4335 1.4237 1.4381 1.3797 1.3993 1.4335 1.4371 1.4188 1.3944 1.3944 1.3993 1.4351 1.3895 1.3895 1.3895 1.3895 1.3895 1.3895 1.3895 1.4381 1.4139 1.4432 1.4488 1.4139 1.4090 1.4090 1.4090 1.4090 1.4383 1.4383 1.4139 1.43993 1.4325 1.4385 1.4385 1.4139 1.4391 1.4090 1.4090 1.4090 1.4383 1.4391 1.4383 1.4391 1.4391 1.4383 1.4391	VOLT1.DAT
801.8583 804.9675 808.0013 811.9130 815.0196 818.1165 821.2248	1.4335 1.4139 1.4090 1.4383 1.4139 1.4090 1.4042	

APPENDIX I. VOLTAGE DATA

.

867.3618 871.2905 874.3899 878.0710 881.1736 884.2139 887.3857 891.1286 894.2291 897.2648	1.4042 1.3797 1.3893 1.4333 1.4139 1.4042) 1.3993 1.3797' 1.3846; 1.3895	VOLT 1 .DAT
894.2291		

********	********	OUTPUT FIL	E VOLT27	.DAT *****	*******	******
1.6665	4.2955	4.5201	4.9695	4.5055	2.5665	2.7277
4.6985	4.1587	4.4567	4.9695	4.4371	2.4689	2.6007
7.9297	4.1001	4.4371	4.9695	4.4274	2.4347	2.5568
11.0344	4.0611	4.4274	4.9695	4.4274	2.4151	2.5372
14.1342	4.0415	4.4225	4.9695	4.4225	2.4005	2.5177
17.2349	4.0220	4.4176	4.9695	4.4225	2.3956	2.5128
20.2752	4.0122	4.4127	4.9695	4.4225	2.3858	2.5031
24.0687	4.0611	4.4274	4.9695	4.4322	2.4151	2.5031
27.9203	3.9927	4.4078	4.9695	4.4176	2.3810	2.5031
31.0214	3.9976	4.4127	4.9695	4.4225	2.3761	2.4982
34.1224	3.9927	4.4078	4.9695	4.4225	2.3761	2.4933
37.2237	3.9878	4.4029	4.9695	4.4225	2.3761	2.4933
40.2642	3.9829	4.4029	4.9695	4.4176	2.3712	2.4933
43.4344	3.9780	4.4029	4.9695	4.4176	2.3712	2.4884
47.1711	3.9536	4.3980	4.9646	4.4078	2.3516	2.4737
50.2727	3.9634	4.3980	4.9695	4.4127	2.3614	2.4786
53.3071	3.9683	4.3980	4.9695	4.4127	2.3614	2.4786
56.4761	3.9634	4.3980	4.9695	4.4127	2.3663	2.4835
60.2621	4.0220	4.4127	4.9695	4.4274	2.4005	2.4884
63.3008	3.9976	4.4029	4.9695	4.4225	2.3858	2.5031
67.0989	3.8510	4.3639	4.9646	4.3736	2.2637	2.3956
70.2002 73.2415	3.9048	4.3834	4.9695	4.3980	2.3175	2.4298
76.4151	3.9243	4.3883	4.9646	4.4078	2.3321	2.4493
79.5239	3.9341 3.9390	4.3883	4.9695	4.4078	2.3468	2.4591
82.6375	3.9438	4.3883 4.3883	4.9695 4.9695	4.4127	2.3516	2.4640
86.5823	3.9536	4.3883	4.9695	4.4127 4.4127	2.3565	2.4689 2.4493
89.6167	3.9585	4.3932	4.9695	4.4127	2.3565 2.3565	
92.7956	3.9585	4.3932	4.9695	4.4127	2.3565	2.4689 2.4737
95.9036	3.9585	4.3932	4.9695	4.4176	2.3614	2.4786
99.0116	3.9536	4.3932	4.9695	4.4176	2.3614	2.4786
102.6697	4.0073	4.4029	4.9695	4.4274	2.3956	2.4788
106.4873	3.8266	4.3541	4.9646	4.3736	2.2491	2.3810
109.7230	3.8950	4.3785	4.9695	4.4029	2.3077	2.4200
112.8182	3.9194	4.3785	4.9646	4.4078	2.3272	2.4396
115.9200	3.9243	4.3834	4.9695	4.4127	2.3419	2.4542
119.0117	3.9341	4.3834	4.9646	4.4127	2.3468	2.4591
122.0522	3.9390	4.3883	4.9646	4.4127	2.3468	2.4640
125.8482	3.9390	4.3883	4.9695	4.4176	2.3468	2.4689
128.9473	3.9341	4.3883	4.9646	4.4176	2.3468	2.4640
131.9747	3.9390	4.3834	4.9646	4.4176	2.3468	2.4640
135.8874	3.9976	4.4029	4.9646	4.4322	2.3907	2.4737
138.9116	3.9780	4.3932	4.9695	4.4225	2.3712	2.4884
142.0878	3.9683	4.3932	4.9695	4.4225	2.3614	2.4786
145.7681	3.9634	4.3932	4.9646	4.4225	2.3614	2.4835
148.8665	3.9536	4.3932	4.9695	4.4225	2.3614	2.4737
151.8971	3.9536	4.3883	4.9695	4.4176	2.3565	2.4786
155.0694	3.9536	4.3883	4.9695	4.4176	2.3516	2.4689
158.1629	3.9536	4.3932	4.9695	4.4176	2.3516	2.4689
161.9548	4.0122	4.4029	4.9646	4.4322	2.3956	2.4786
165.1153	3.9878	4.3980	4.9695	4.4274	2.3761	2.4933
168.7900 171.8206	4.0220	4.4078	4.9695	4.4371	2.4054	2.4982
174.9843	3.9976 3.9878	4.4029	4.9695	4.4274	2.3810	2.5031
178.0826	3.9780	4.4029 4.3980	4.9695 4.9695	4.4274 4.4274	2.3761	2.4982
181.8176	4.0269	4.4078			2.3663	2.4884
184.9791	4.0024	4.4029	4.9695 4.9695	4.4371 4.4274	2.4054 2.3858	2.4933 2.4982
188.7539	4.0464	4.4176	4.9695	4.4371	2.3858	2.4982
191.9211	4.0171	4.4078	4.9695	4.4371	2.4103	2.4982
195.0189	4.0024	4.4029	4.9695	4.4274	2.3858	2.5079
198.1175	3.9927	4.4029	4.9695	4.4274	2.3761	2.4982
201.2282	3.9878	4.3980	4.9695	4.4274	2.3761	2.4982
204.2521	3.9829	4.3980	4.9695	4.4225	2.3712	2.4935
208.0127	4.0269	4.4078	4.9695	4.4371	2.4005	2.4933
211.8199	4.0562	4.4176	4.9695	4.4371	2.4005	2.5031
				-		

214.9105	4.0220	4.4127	4.9695	4.4322	2.3956	2.5128
218.0121	4.0073	4.4029	4.9695	4.4274	2.3810	2.5031
221.0397	3.9976	4.4029	4.9695	4.4274	2.3761	2.4933
224.2093	3.9927	4.3980	4.9695	4.4274	2.3810	2.4933
227.9571	3.9585	4.3932	4.9695	4.4176	2.3516	2.4835
231.0592	3.9780	4.3980	4.9695	4.4225	2.3614	2.4786
234.1490	3.9731	4.3932	4.9695	4.4225		
					2.3614	2.4835
237.2514	3.9731	4.3980	4.9695	4.4225	2.3614	2.4786
240.2809	3.9731	4.3932	4.9695	4.4225	2.3614	2.4786
243.4502	3.9731	4.3980	4.9695	4.4225	2.3614	2.4835
246.5497	3.9731	4.3932	4.9695	4.4225	2.3565	2.4786
249.6526	3.9683	4.3932				
			4.9646	4.4225	2.3614	2.4786
252.7456	3.9683	4.3932	4.9695	4.4225	2.3565	2.4737
255.7802	3.9683	4.3932	4.9695	4.4225	2.3614	2.4786
258.9469	3.9683	4.3932	4.9695	4.4225	2.3565	2.4786
262.6820	4.0220	4.4078	4,9695	4.4322	2.3956	
						2.4835
266.4828	3.8413	4.3590	4.9646	4.3785	2.2491	2.3810
269.5129	3.8999	4.3785	4.9646	4.4078	2.3077	2.4249
272.6787	3.9243	4.3834	4.9646	4.4127	2.3223	2.4396
275.7131	3.9390	4.3834	4.9646	4.4176	2.3370	
						2.4493
278.8738	3.9438	4.3883	4.9646	4.4176	2.3370	2.4542
281.9815	3.9487	4.3883	4.9646	4.4176	2.3419	2.4591
285.7135	3.8120	4.3492	4.9646	4.3736	2.2295	2.3614
288.9406	3.8901	4.3736	4.9646	4.4029	2.2979	2.4054
292.0385						
	3.9096	4.3185	4.9646	4.4127	2.3126	2.4298
295.1414	3.9194	4.3785	4.9646	4.4127	2.3272	2.4444
298.23 46	3.9243	4.3834	4.9695	4.4176	2.3321	2.4493
301.2744	3.9341	4.3834	4.9695	4.4176	2.3370	2.4493
305.0511	3.8022					
		4.3443	4.9646	4.3736	2.2247	2.3565
308.1497	3.8657	4.3639	4.9646	4.4029	2.2833	2.3956
311.2453	3.8901	4.3736	4.9646	4.4078	2.3077	2.4200
315.0600	3.9634	4.3932	4.9695	4.4274	2.3565	2.4444
318.1552	3.9487	4.3883	4.9695	4.4225	2.3516	2.4640
321.1914	3.9487	4.3883	4.9646	4.4176	2.3419	2.4591
324.9518	3.9487	4.3883	4.9646	4.4225	2.3419	2.4640
328.0445	3.9438	4.3883	4.9695	4.4225	2.3419	2.4591
331.1461	3.9438	4.3883	4.9695	4.4176	2.3419	2.4591
334.1714						
	3.9438	4.3883	4.9646	4.4225	2.3419	2.4591
337.8455	3.9927	4.4029	4.9646	4.4322	2.3712	2.4689
341.6553	4.0269	4.4078	4.9695	4.4420	2.3956	2.4835
345.4470	3.9976	4.4029	4.9695	4.4322	2.3761	2.4982
348.5382	3.9829	4.3932	4.9646	4.4274	2.3663	2.4835
351.6408	3.9731	4.3932	4.9695	4.4322	2.3614	2.4835
354.7354	3.9731	4.3932	4.9646	4.4274	2.3614	2.4835
357.7669	3.9731	84.3932	4.9695	4.4274	2.3565	2,4786
360.9404	3.9683	4.3932	4.9695	4.4274	2.3614	2.4786
365.2974	4.0122					
		4.4078	4.9695	4.4371	2.3858	2.4835
368.3893	3.9878	4.3980	4.9646	4.4322	2.3663	2.4835
371.4928	3.9780	4.3980	4.9695	4.4322	2.3663	2.4835
374.5845	3.9780	4.3980	4.9646	4.4274	2.3663	2.4835
377.6185	3.9731	4.3980	4.9695			
				4.4274	2.3614	2.4835
380.7924	3.9731	(1.3932	4.9695	4.4274	2.3614	2.4786
383.8911	3.9731	(1.3980	4.9695	4.4274	2.3614	2.4786
387.6578	4.0269	4.4078	4.9695	4.4371	2.3907	2.4786
391.3403	4.0464	4.4127	4.9695	4.4420	2.4054	2.4933
394.4332	4.0171	4.4078	4.9695	4.4322	2.3858	2.5031
397.5354	4.0073	4.4029	4.9695	4.4371	2.3810	2.4982
400.6423	3.9976	4.4029	4.9695	4.4274	2.3712	2.4835
403.6681	3.9927	4.4029	4.9695	4.4274	2.3663	2.4835
407.4153	4.0415	4.4127				
			4.9695	4.4371	2.3956	2.4884
410.5177	4.0122	4.4078	4.9695	4.4322	2.3858	2.5031
413.6073	4,0024	4.4029	4.9695	4.4274	2.3761	2.4933
417.3785	4.0513	4.4176	4.9695	4.4420	2.4054	2.4982
421.1592	4.0708	4.4225	4.9695			
				4.4420	2.4151	2.5031
424.2474	4.0366	4.4127	4.9695	4.4371	2.4005	2.5128
427.9839	3.9976	4.4029	4.9695	4.4225	2.3614	2.4884

.

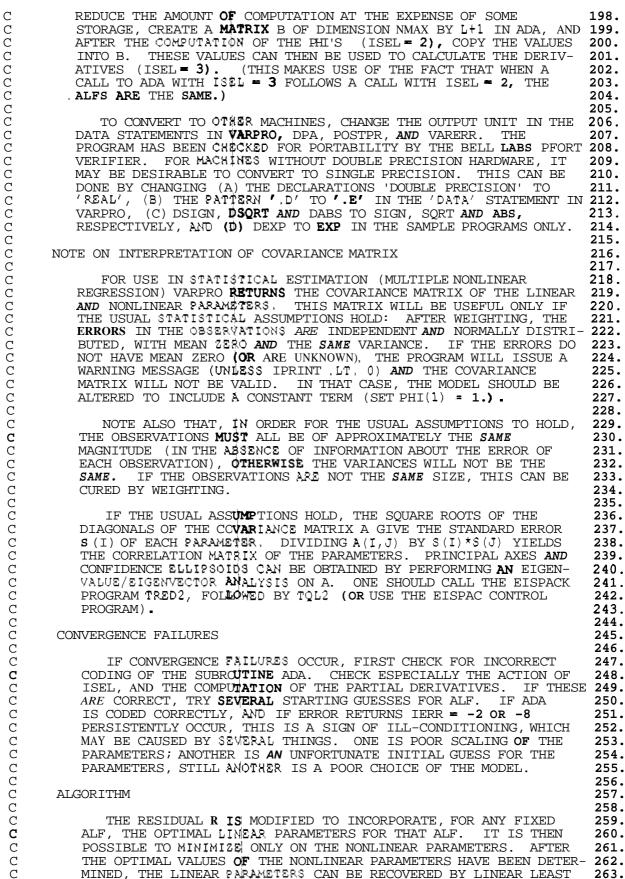
431.0783	4.0024	4.4078	4.9646	4.4274	2.3663	2.4884
434.1756	4.0024	4.4029	4.9695	4.4274	2.3712	2.4835
437.2694	3.9976	4.4029	4.9695	4.4274		
					2.3663	2.4835
441.0573	4.0562	4.4176	4.9695	4.4420	2.4054	2.4982
444.2199	4.0269	4.4127	4.9695	4.4371	2.3907	2.5079
448.0460	3.9829	4.3980	4.9695	4.4274	2.3614	2.4884
451.1399	3.9976	4.4029	4.9695	4.4322	2.3712	2.4884
454.2350	3.9976	4.4029	4.9695	4.4322	2.3712	2.4884
457.3294	3.9927	4.4029	4.9695	4.4214	2.3663	2.4884
460.3646	3.9927	4.4029	4.9695	4.4274	2.3565	2.4786
463.5285	3.9878	4.3932	4.9646	4.4274	2.3565	
						2.4737
467.3046	4.0220	4.4029	4.9695	4.4274	2.3761	2.4737
470.4672	4.0073	4.3932	4.9695	4.4176	2.3565	2.4786
473.4939	3.9927	4.3883	4.9646	4.4127	2.3468	2.4689
476.6591	3.9780	4.3785	4.9646	4.3980	2.2979	2.4200
479.7551	3.9585	4.3590	4.9646	4.3785	2.2198	2.3419
482.8599	3.9438	4.3492	4.9646	4.3639	2.1514	2.2735
486.5715	3.8022	4.3004	4.9646	4.3101	2.0244	2.1514
489.6621	3.8413	4.3101	4.9646	4.3199	2.0147	2.1270
493.4406	3.8559	4.3101	4.9646	4.3004	1.9170	
						2.0049
496.4691	3.7827	4.2906	4.9646	4.2759	1.8144	1.9219
499.6352	3.7094	4.2711	4.9646	4.2466	1.7118	1.8144
503. 3915	3.6313	4.2564	4.9646	4.2125	1.5751	1.6630
507.1596	3.4164	4.1832	4.9597	4.1441	1.4237	1.5360
510.2489	3.4115					
		4.1978	4.9597	4.1538	1.4237	1.5165
513.3521	3.3626	4.1880	4.9597	4.1392	1.3651	1.4579
516.3902	3.3138	4.1636	4.9597	4.1245	1.3114	1.4042
520.1719	3.2747	4.1343	4.9597	4.1001	1.2332	1.3065
523.2824	3.2357	4.0904	4.9597		1.1941	
				4.0806		1.2772
526.9213	3.1184	4.0024	4.9548	4.0317	1.0867	1.1893
530.0952	3.1331	3.9829	4.9597	4.0415	1.1013	1.1844
533.1256	3.1233	3.9292	4.9548	4.0317	1.0720	1.1551
536.2979	3.1038	3.8413	4.9548	4.0220	1.0476	1.1306
539.3925	3.0891	3.6996	4.9548	4.0073	1.0281	1.1111
543.0527	3.0891	3.4408	4.9548	3.9976	1.0037	1.0672
546.7975	3.0647	3.2161	4.9548	3.9878	0.9890	1.0720
549.8983	3.0501	3.0208	4.9548	3.9829	0.9792	1.0574
553.0025	3.0354	2.8596	4.9499	3.9829	0.9744	1.0525
556.10 95	3.0256	2.7131	4.9451			
				3.9780	0.9744	1.0525
559.2078	3.0159	2.5812	4.9402	3.9731	0.9695	1.0476
562.3213	3.0110	2.4689	4.9353	3.9731	0.9646	1.0427
566.0976	2.9963	2.3419	4.9304	3.9683	0.9548	1.0427
569.4005	2.9915	2.2344	4.9304	3.9634	0.9548	1.0281
572.5020	2.9817	2.1465	4.9255	3.9536	0.9499	1.0281
575.5413	2.9768	2.0733	4.9255	3.9145	0.9499	1.0281
518.7068	2.9719	2.0098	4.9206	3.8364	0.9499	1.0281
582.4157	2.9817	1.9365	4.9206	3.6703	0.9499	1.0037
585.5786	2.9670	1.8828	4.9158	3.5092		
					0.9402	1.0134
589.3692	2.9768	1.8339	4.9158	3.3187	0.9451	0.9988
592.4020	2.9573	1.7900	4.9158	3.1868	0.9353	1.0085
596.0782	2.9670	1.7656	4.9109	3.0598	0.9451	0.9988
599.2473	2.9475	1.7265	4.9109	2.9719	0.9304	1.0037
602.3615	2.9328					
		1.7021	4.9109	2.8987	0.9255	0.9988
605.3913	2.9280	1.6874	4.9109	2.8352	0.9255	0.9988
609.3013	2.9475	1.6777	4.9109	2.7570	0.9402	0.9841
612.4038	2.9231	1.6484	4.9060	2.7228	0.9206	0.9890
615.5060	2.9133	1.6337	4.9060	2.6838	0.9158	0.9890
618.6065	2.9133					
		1.6239	4.9060	2.6496	0.9158	0.9890
622.4758	2.9231	I.6288	4.9060	2.5958	0.9304	0.9744
625.5741	2.9035	1.6044	4.9060	2.5665	0.9109	0.9792
629.4258	2.9182	1.6142	4.9109	2.5519	0.9255	0.9695
632.5331	2.8987	1.5849	4.9060	2.5177	0.9011	0.9744
635.6296						
	2.8889	1.5751	4.9060	2.4933	0.9011	0.9695
638.7393	2.8791	1.5702	4.9060	2.4689	0.8962	0.9695
641.8438	2.8742	1.5653	4.9060	2.4493	0.8962	0.9646
645.6724	2.8938	1.5849	4.9109	2.4444	0.9158	0.9597
					0.7100	

649.3623	2.8547	1.5360	4.9060	2.3956	0.8767	0.9499
652.4696	2.8596	1.5458	4.9060	2.3907	0.8864	0.9548
655.4986	2.8547	1.5458	4.9109	2.3761	0.8864	0.9597
658.6758	2.8498	1.5409	4.9109	2.3614	0.8913	0.9597
661.7785	2.8449	1.5409	4.9109	2.3516	0.8913	0.9597
665.5191	2.8694	1.5653	4.9109	2.3614	0.9158	0.9597
669.3441	2.8303	1.5165	4.9109	2.3077	0.8669	0.9451
673.1024	2.8645	1.5604	4.9158	2.3419	0.9109	0.9499
676.2692	2.8449	0.5360	4.9109	2.3223	0.8913	0.9548
679.3780	2.8352	1.5263	4.9109	2.2979	0.8864	0.9499
682.4806	2.8303	1.5263	4.9109	2.2930	0.8816	0.9499
685.5868	2.8205	3.5214	4.9109	2.2735	0.8816	0.9451
689.3016	2.7326	1.4090	4.9060	2.1123	0.7790	0 .8571
692.4070	2.7717	1.4725	4.9109	2.2002	0.8376	0.9011
695.5096	2.7863	1.4969	4.9109	2.2149	0.8571	0.9255
699.2435	2.8205	1.5360	4.9109	2.2540	0.9011	0.9451
702 .2748	2.8107	1.5165	4.9109	2.2393	0.8864	0.9499
705.4538	2.8010	1.5116	4.9109	2.2247	0.8816	0.9499
709.1531	2.7131	1.4042	4.9060	2.0635	0.7741	0.8571
712 .2568	2.7473	1.4676	4.9060	2.1514	0.8327	0.8962
715.3576	2.7668	1.4872	4.9109	2.1709	0.8571	0.9206
718.3978	2.7717	1.4921	4.9109	2.1758	0.8669	0.9304
721.5634	2.7766	1.4969	4.9109	2.1807	0.8718	0.9402
725.2905	2.8010	1.5263	4.9109	2.2149	0.9011	0.9451
729.0361	2.6886	1.3895	4.9060	2.0293	0.7643	0.8474
732.1372	2.7277	1.4530	4.9060	2.1221	0.8230	0.8913
735.2380	2.7424	1.4774	4.9109	2.1465	0.8474	0.9158
738.3450	2.7521	1.4872	4.9109	2.1514	0.8571	0.9255
741.4497	2.7521	1.4921	4.9109	2.1563	0.8669	0.9353
745.1340	2.7814	1.5214	4.9109	2.1954	0.8962	0.9402
749.4527	2.7766	1.5165	4.9109	2.2051	0.8767	0.9353
752.5503	2.7619	1.4969	4.9109	2.1758	0.8669	0.9304
755.6582 758.7609 761.8651 764.9751 768.7241	2.7570 2.7521 2.7473 2.7473 2.7473 2.7375	1.4921 1.4921 I.4921 1.4872 I.4823	4.9109 4.9109 4.9109 4.9109 4.9060	2.1661 2.1612 2.1563 2.1514 2.1563	0.8620 0.8620 0.8620 0.8620 0.8523	0.9304 0.9304 0.9255 0.9304 0.9255
771.8222	2.7375	1 .4823	4.9060	2 .1465	0.8523	0.9255
775.6966	2.7668	1.5214	4.9109	2.1905	0.8913	0.9304
778.7992	2.7473	1.4969	4.9109	2.1661	0.8669	0.9353
781.9035	2.7375	1.4921	4.9109	2.1563	0.8620	0.9304
785.0113 788.8607 791.8916 795.0703 798.1713	2.7375 2.7228 2.7179 2.7179 2.7179 2.7179	1.4872 1.4823 1.4774 1.4823 1.4823	4.9060 4.9060 4.9060 4.9060 4.9060	2.1514 2.1563 2.1416 2.1416 2.1416 2.1416	0.8571 0.8474 0.8474 0.8523 0.8523	0.9255 0.9206 0.9158 0.9158 0.9206
801.8583 804.9675 808.0013 811.9130 815.0196	2.7473 2.7277 2.7228 2.7473 2.7277	1.5165 1.4921 1.4872 1.5214	4.9109 4.9060 4.9060 4.9109	2.1807 2.1563 2.1514 2.1856	0.8816 0.8620 0.8571 0.8816	0.9255 0.9255 0.9206 0.9206
818.1165 821.2248 824.9422 828.7767	2.7179 2.7131 2.7375 2.7424	1.4969 1.4872 1.4872 1.5165 1.5263	4.9060 4.9060 4.9060 4.9109 4.9109	2.1612 2.1465 2.1465 2.1807 2.1905	0.8571 0.8523 0.8523 0.8718 0.8767	0.9255 0.9206 0.9158 0.9206 0.9206
832.5247 835.6318 838.6615 841.8366 844.9514	2.7424 2.7228 2.7131 2.7082 2.7033	1. 5311 1.5018 1,4921 1.4872 1. 4823	4.9109 4.9060 4.9060 4.9060 4.9060	2.1905 2.1612 2.1514 2.1465 2.1368	0.8767 0.8474 0.8425 0.8425 0.8425 0.8376	0.9158 0.9109 0.9060 0.9060 0.9011
847.9814	2.6984	1.4823	4.9060	2.1368	0.8376	0.9011
851.9142	2.7228	1.5165	4.9060	2.1709	0.8669	0.9060
855.0146	2.7082	1.4921	4.9060	2.1514	0.8474	0.9109
858.0488	2.6984	1.4872	4.9060	2.1416	0.8376	0.9060
861.2194	2.6935	1. 4823	4.9060	2.1368	0.8376	0.9011
864.3274	2.6886	1. 4823	4.9060	2.1368	0.8376	0.9011

.

867.3618	2.6886	1.4774	4.9060	2.1368	0.8376	0.9011
871.2905	2.6593	1.4481	4.9011	2.1026	0.8083	0.8864
874.3899	2.6740	1.4676	4.9011	2.1221	0.8230	0.8913
878.0710	2.7228	1.5116	4.9060	2.1709	0.8718	0.9158
881.1736	2.7033	1.4921	4.9011	2.1465	0.8523	0.9158
884.2139	2.6886	1.4823	4.9011	2.1368	0.8425	0.9109
887.3857	2.6886	1.4774	4.9011	2.1319	0.8376	0.9109
891.1286	2.6642	1.4530	4.9011	2.1026	0.8132	0.8913
894.2291	2.6740	1.4628	4.9011	2.1123	0.8230	0.8913
897.2648	2.6740	1.4628	4.9011	2.1172	0.8278	0.8962
900.4352	2.6740	1.4628	4.9011	2.1172	0.8278	0.8962
904.2218	2.7082	1.5067	4.9011	2.1612	0.8669	0.9109

Appendix J


VARPRO Regression Subroutine

This appendix presents the VARPRO nonlinear regression subroutine. Documentation is contained within the code. The program listing begins on the next page.

С		
	SUBROUTINE VARPRO (L, NL, N, NMAX, LPP2, IV, T, Y, W, ADA, A,	1
a	X IPRINT, ALF, BETA, IERR)	2.
C	ATTACA A COMPANY AND A CONSTRAINT OF TAXABLE N/11	3.
C	GIVEN A SET OF N OBSERVATIONS, CONSISTING OF VALUES Y(1),	4.
C	$\mathbf{Y}(2), \ldots, \mathbf{Y}(N)$ OF A DEPENDENT VARIABLE \mathbf{Y} , WHERE $\mathbf{Y}(I)$	5.
C	. CORRESPONDS TO THE IV INDEPENDENT VARIABLE(S) T(I,1) , T(I,2),	6.
C	T (I,IV), VARPRO ATTEMPTS TO COMPUTE A WEIGHTED LEAST	7.
C	SQUARES FIT TO A FUNCTION ETA (THE 'MODEL') WHICH IS A LINEAR	8.
C	COMBINATION	9.
C C	L STA(ALF, BETA; T) = SUM BETA * PHI (ALF; T) + PHI (ALF; T)	10. 11.
C	$J=1 \qquad J \qquad J \qquad Lt1$	12.
C		13.
C	OF NONLINEAR FUNCTIONS PHI(J) (E.G., A SUM OF EXPONENTIALS AND/	14.
C	OR GAUSSIANS). THAT IS, DETERMINE THE LINEAR PARAMETERS	15.
č	BETA(J) AND THE VECTOR OF NONLINEAR PARAMETERS ALF BY MINIMIZ-	16.
c	ING	17.
C	110	18.
C	2 N _ 2	19.
Ĉ	NORM (RESIDUAL) $= \frac{1}{2} + \frac{1}{2$	20.
Ĉ	I=1 I I I I	21.
C		22.
Ĉ	THE $(L+1)$ -ST TERM IG OPTIONAL, AND IS USED WHEN IT IS DESIRED	23.
С	TO FIX ONE OR MORE OF THE BETA'S (RATHER THAN LET THEM BE	24.
С	DETERMINED). VARPRO REQUIRES FIRST DERIVATIVES OF THE PHI'S.	25.
С		26.
С	NOTES :	27.
С		28.
С	A) THE ABOVE PROBLEM IS ALSO REFERRED TO AS `MULTIPLE	29.
С	NONLINEAR REGRESSION', FOR USE IN STATISTICAL ESTIMATION,	30.
С	VARPRO RETURNS THE RESIDUALS, THE COVARIANCE MATRIX OF THE	31.
С	LINEAR AND NONLINEAR PARAMETERS, AND THE ESTIMATED VARIANCE OF	32.
С	THE OBSERVATIONS.	33.
С		34.
C	3) AN ETA OF THE ABOYE FORM IS CALLED 'SEPARABLE'. THE	35.
C	CASE OF A NONSEPARABLE ETA CAN BE HANDLED BY SETTING L = 0	36.
C	AND USING PHI(L+1),	37.
C C	C) VARPRO MAY ALSO 🕃 USED TO SOLVE LINEAR LEAST SQUARES	39.
C	PROBLEMS (IN THAT CASE NO ITERATIONS ARE PERFORMED). SET	40.
C	NL = 0.	41.
C		42.
C	D) THE MAIN ADVANTAGE OF VARPRO OVER OTHER LEAST SQUARES	43.
č	PROGRAMS IS THAT NO INITIAL GUESSES ARE NEEDED FOR THE LINEAR	44.
C	PARAMETERS. NOT ONLY DOES THIS MAKE IT EASIER TO USE, BUT IT	45.
C	OFTEN LEADS TO FASTER CONVERGENCE.	46.
C		47.
Ĉ		48.
Ĉ	DESCRIPTION OF PARAMETERS	49.
Ĉ		50.
C	L NUMBER OF LINEAR PARAMETERS BETA (MUST BE ,GE, 0).	51.
С	NL NUMBER OF NONLINEAR PARAMETERS ALF (MUST BE .GE. 0).	52.
С	N NUMBER OF OBSERVATIONS. N MUST BE GREATER THAN L + NL	53.
С	(I.E., THE NUMBER OF OBSERVATIONS MUST EXCEED THE	54.
С	NUMBER OF PARAMETERS)	55.
С	IV NUMBER OF INDEPENDENT VARIABLES T.	56.
С	T REAL N BY IV MATRIX OF INDEPENDENT VARIABLES. T(I, J)	57.
С	CONTAINS TH \sharp VALUE OF THE I-TH OBSERVATION OF THE J-TH	58.
С	INDEPENDENT VARIABLE.	59.
С	Y N-VECTOR OF OBSERVATIONS, ONE FOR EACH ROW OF T.	60.
С	W N-VECTOR OF NONNEGATIVE WEIGHTS. SHOULD BE SET TO 1'S	61
С	IF WEIGHTS ARE NOT DESIRED. IF VARIANCES OF THE	62
С	INDIVIDUAL OBSERVATIONS ARE KNOWN, W(I) SHOULD BE SET	63
С	TO 1./VARIANCE (I).	64
С	INC NL X (L+1) INTEGER INCIDENCE MATRIX. INC(K, J) = 1 IF	65

a			66
С		NON-LINEAR PARAMETER ALF (X) APPEARS IN THE J-TH	66.
С		FUNCTION $PHI(J)$ (THE PROGRAM SETS ALL OTHER INC(K, J)	67.
С		TO ZERO.) IF PHI(L+1) IS INCLUDED IN THE MODEL,	68.
С		THE APPROBRIATE ELEMENTS OF THE (L+1)-ST COLUMN SHOULD	69.
С		BE SET TO $1/$, INC IS NOT NEEDED WHEN L = 0 OR NL = 0.	70.
С		CAUTION: THE DECLARED ROW DIMENSION OF INC (IN ADA)	71.
С		MUST CURRENTLY BE SET TO 12. SEE 'RESTRICTIONS' BELOW.	72.
С	NMAX	THE DECLARED ROW DIMENSION OF THE MATRICES A AND T.	73.
С		IT MUST BE AT LEAST MAX(N, $2 \times 1 + 3$).	74.
С	LPP2	L+9+2, WHERE ? IS THE NUMBER OF ONES IN THE MATRIX INC.	75.
	2000		
С		THE DECLARED COLUMN DIMENSION OF A MUST BE AT LEAST	76.
С		LPP2. (IF L = 0, SET LPP2 = $NL+2$, IF $NL = 0$, SET LPP2	77.
С		L+2,)	78.
С	A	REAL MATRIX OF SIZE MAX(N, 2*NL+3) BY L+P+2. ON INPUT	79.
С		IT CONTAINS THE $\mathfrak{PHI}(J)$ ' S and their derivatives (see	80.
С		BELOW). ON OUTPUT, THE FIRST L+NL ROWS AND COLUMNS OF	81.
С		A WILL CONTAIN AN APPROXIMATION TO THE (WEIGHTED)	82.
С		COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS	83.
С		CORRESPOND TO THE LINEAR PARAMETERS, THE LAST NL TO THE	84.
С		NONLINEAR 'ONES), COLUMN L+NL+1 WILL CONTAIN THE	85.
č			
С		WEIGHTED RESIDUALS (Y = ETA), A(1, L+NL+2) WILL CONTAIN	86.
С		THE (EUCLIDEAN) NORM OF THE WEIGHTED RESIDUAL, AND	87.
C		A(2, L+NL+2) WILL CONTAIN AN ESTIMATE OF THE (WEIGHTED)	88.
С		VARIANCE OF THE OBSERVATIONS, NORM (RESIDUAL) **2/	89.
С		(N - L - NL)	90.
С	IPRINT	INPUT INTEGER CONTROLLING PRINTED OUTPUT. IF IPRINT IS	91.
	IPRINI		
С		POSITIVE, 'THENONLINEAR PARAMETERS, THE NORM OF THE	92.
Ĉ		RESIDUAL, AND THE MARQUARDT PARAMETER WILL BE OUTPUT	93.
С		EVERY IPRINT-TH ITERATION (AND INITIALLY, AND AT THE	94.
		FINAL ITERATION). THE LINEAR PARAMETERS WILL BE	95.
С			
С		PRINTED AT THE FINAL ITERATION. ANY ERROR MESSAGES	96.
			97.
С		WILL ALSO BE PRINTED. (IPRINT = 1 IS RECOMMENDED AT	
С		FIRST.) IF'IPRINT = 0_7 ONLY THE FINAL QUANTITIES WILL	98.
С		BE PRINTED, AS WELL AS ANY ERROR MESSAGES. IF IPRINT =	99.
С		-1, NO PRINTING WILL BE DONE. THE USER IS THEN	100.
		•	
С		RESPONSIE LE FOR CHECKING THE PARAMETER IERR FOR ERRORS.	TOT.
С	ALF	NL-VECTOR OF ESTIMATES OF NONLINEAR PARAMETERS	102.
	1 1111		
С		(INPUT). ON OUTPUT IT WILL CONTAIN OPTIMAL VALUES OF	103.
С		THE NONLINEAR PARAMETERS.	104.
	עשינים		
С	BETA	L-VECTOR OF LINEAR PARAMETERS (OUTPUT ONLY).	105.
С	IERR	INTEGER ERROR FLAG (OUTPUT):	106.
Ĉ		,GT, 0 - SUCCESSFUL CONVERGENCE, IERR IS THE NUMBER OF	107.
C			
С		ITERATIONS TAKEN.	108.
С		-1 TERMINATED FOR TOO MANY ITERATIONS.	109.
С		-2 TERMINATED FOR ILL-CONDITIONING (MARQUARDT	110.
С		PARAMETER TOO LARGE.) ALSO SEE IERR $=$ -8 BELOW.	111.
С		-4 INPUT ERROR IN PARAMETER N, L, NL, LPP2, OR NMAX	112.
		-5 INC MATRIX IMPROPERLY SPECIFIED, OR P DISAGRESS	113.
C			
С		WITH LPP2.	114.
C		-6 A WEI GHT W AS NEGATIVE.	115.
С		-7 'CONSTANT' COLUMN WAS COMPUTED MORE THAN ONCE.	116.
C		-8 CATASTROPHIC FAILURE • A COLUMN OF THE A MATRIX HAS	
С		BECOME,ZERO. SEE 'CONVERGENCE FAILURES' BELOW.	118.
C			119.
С		(IF IERR LE4, THE LINEAR PARAMETERS, COVARIANCE	120.
Ĉ		MATRIX, ETC. ARE NOT RETURNED.)	121.
		TRAILER, EIN, AND NOT REFORMED.	
С			122.
C		ES REOUIRED	123.
	20DICOUTTINE		
С			124.
Ĉ	NTINE	SUBROUTINES, DPA, ORFAC1, ORFAC2, BACSUB, POSTPR, COV,	125.
С	XNORM,	INIT, AND VAREAR ARE PROVIDED. IN ADDITION, THE USER	126.
		ROVIDE A SUBROUTINE (CORRESPONDING TO THE ARGUMENT ADA)	
С			127.
С	WHICH.	GIVEN ALF, WILL EVALUATE THE FUNCTIONS PHI(J) AND THEIR	128.
		JERIVATIVES D PHI(J)/D ALF(K), AT THE SAMPLE POINTS	
С			129.
С	т(І).	THIS ROUTINE MUST BE DECLARED 'EXTERNAL' IN THE CALLING	130.
C		1. ITS CALLING SEQUENCE IS	131.
C	FILOGRAD		тэт.

С		132.
C	SUBROUTINE ADA (L+1, NL, N, NMAX, LPP2, IV, A, INC, T, ALF,	133.
С	ISEL)	134.
С		135.
C	THE USER SHOULD MODIFY THE EXAMPLE SUBROUTINE 'ADA' (GIVEN	136.
C	ELSEWHERE) FOR HIS OWN FUNCTIONS.	137.
C		138.
C	THE VECTOR SAMPLED FUNCTIONS PHI(J) SHOULD BE STORED IN THE	139.
C		140.
С		141.
C		142.
C		143.
C		144.
C		145.
С		146.
C		147.
C		148.
Ĉ		149.
C		150.
C		151.
C		152.
C		153.
C	D ALF(1) D ALF(1) D ALF(1) D ALF(1) D ALF(2)	154.
C		155.
C		156.
C		157.
C	D ALF(2) $D ALF(2)$ $D ALF(NL)$ $D ALF(NL)$	158.
C		159.
C		160.
C		161.
C		162.
C		163.
C		164.
C		165.
C		166.
C		167.
C	A. FILL IN THE INCIDENCE MATRIX INC	168.
C		169.
C		170.
C		171.
C		172.
C	= 3 MEANS COMPUTE ONLY THE DERIVATIVES	173.
C		174.
C	(when the problem IS linear ($nL = 0$) only isel = 1 is used, AND	
C	DERIVATIVES ARE NOT NEEDED.)	176.
C		177.
	RESTRICTIONS	178.
C		179.
C	THE SUBROUTINES DPA, INIT (AND ADA) CONTAIN THE LOCALLY	180.
C	DIMENSIONED MATRIX INC, WHOSE DIMENSIONS ARE CURRENTLY SET FOR	181.
C	MAXIMA OF L+1 = 8, NL = 12. THEY MUST BE CHANGED FOR LARGER	182.
C	PROBLEMS. DATA PLACED IN ARRAY A IS OVERWRITTEN ('DESTROYED').	183.
C	DATA PLACED IN ARRAYS T, Y AND INC IS LEFT INTACT. THE PROGRAM	
C	RUNS IN WATFIV, EXCEPT WHEN $L = 0$ OR $NL = 0$.	185.
C	YOUR TH WHITTY , DUCHET WHITH I - O OK HI - O'	186.
C	IT IS ASSUMED THAT THE MATRIX PHI(J, ALF; T(I)) HAS FULL	187.
C	COLUMN RANK. THIS MEANS THAT THE FIRST L COLUMNS OF THE MATRIX	
C	A MUST BE LINEARLY INDEPENDENT.	189.
C		190.
C	OPTIONAL NOTE: AS WILL BE NOTED FROM THE SAMPLE SUBPROGRAM	191.
C	ADA, THE DERIVATIVES D PHI $(J)/D$ ALF (K) (ISEL = 3) MUST BE	192.
C	COMPUTED INDEPENDENTLY OF THE FUNCTIONS $PHI(J)$ (ISEL = 2),	192.
C	SINCE THE FUNCTION VALUES ARE OVERWRITTEN AFTER ADA IS CALLED	194.
C	WITH ISEL = 2. THIS IS DONE TO MINIMIZE STORAGE, AT THE POS-	195.
	SIBLE EXPENSE OF SOME RECOMPUTATION (SINCE THE FUNCTIONS AND	195.
C	DERIVATIVES FREQUENTLY HAVE SOME COMMON SUBEXPRESSIONS). TO	196.
<u> </u>	DEVIATION LUNGORATOI HAVE DOWE COMMON DODEVLYEDDIOND). IO	

SQUARES TECHNIQUES (SEE REF. 1). 264. 265. THE MINIMIZATION IS BY A MODIFICATION OF OSBORNE'S (REF. 3) 266. MODIFICATION OF THE LEVENBERG-MARQUARDT ALGORITHM. INSTEAD OF 267. SOLVING THE NORMAL EQUATIONS WITH MATRIX 268. 269. 270. (JJ + NU * D). WHERE J = D(ETA)/D(ALF). 271. 272. STABLE ORTHOGONAL (HOUSEHOLDER) REFLECTIONS ARE USED ON A 273. MODIFICATION OF THE MATRIX 274. (----) 275. 276.) (NU*D) 277. 278. WHERE D IS A DIAGONAL MATRIX CONSISTING OF THE LENGTHS OF THE 279. COLUMNS OF J. THIS MARQUARDT STABILIZATION ALLOWS THE ROUTINE 280 TO RECOVER FROM SOME RANK DEFICIENCIES IN THE JACOBIAN. 281. OSBORNE'S EMPIRICAL STRATEGY FOR CHOOSING THE MARQUARDT PARAM-282. ETER HAS PROVEN REASONABLY SUCCESSFUL IN PRACTICE. (GAUSS-283 NEWTON WITH STEP CONTROL CAN BE OBTAINED BY MAKING THE CHANGE 284. INDICATED BEFORE THE INSTRUCTION LABELED 5). A DESCRIPTION CAN 285. BE FOUND IN REF. (3), AND A FLOW CHART IN (2), P. 22. 286. 287. FOR REFERENCE, SEE 288. 289. GENE H. GOLUB AND V. PEREYRA, 'THE DIFFERENTIATION OF 1. 290. PSEUDO-INVERSES AND NONLINEAR LEAST SQUARES PROBLEMS WHOSE VARIABLES SEPARATE,' SIAM 3. NUMER, ANAL. 10, 413-432 291 292. (1973). 293. , SAME TITLE, STANFORD C.S. REPORT 72-261, FEB. 1972. 294. 2. OSBORNE, MICHAEL R., 'SOME ASPECTS OF NON-LINEAR LEAST SQUARES CALCULATIONS,' IN LOOTSMA, ED., 'NUMERICAL METHODS 295. 3 296. FOR NON-LINEAR OPTIMIZATION, ' ACADEMIC PRESS, LONDON, 1972. 297. 4. KROGH, FRED, 'EFFICIENT IMPLEMENTATION OF A VARIABLE PRO-298. JECTION ALGORITHM FOR NONLINEAR LEAST SQUARES PROBLEMS, 299. COMM. ACM 17, PP. 167-169 (MARCH, 1974). KAUFMAN, LINDA, 'A VARIABLE PROJECTION METHOD FOR SOLVING 300. 5. 301. SEPARABLE NONLINEAR LEAST SQUARES PROBLEMS', B.I.T. 15, 302. 49-57 (1975). 303. 6. DRAPER, N., AND SMITH, H., APPLIED REGRESSION ANALYSIS, 304 WILEY, N.Y., 1966 (FOR STATISTICAL INFORMATION ONLY) 305. C. LAWSON AND R. HANSON, SOLVING LEAST SQUARES PROBLEMS, PRENTICE-HALL, ENGLEWOOD CLIFFS, N. J., 1974. 7. 306. 307. 308. JOHN BOLSTAD 309 COMPUTER SCIENCE DEPT., SERRA HOUSE 310. C STANFORD UNIVERSITY 311. С JANUARY, 1977 312. C 313. С 314. 315 DOUBLE PRECISION A (NMAX, LPP2), BETA (L), ALF (NL), T (NMAX, IV), 316. 2 W(N), Y(N), ACUM, EPS1, GNSTEP, NU, PRJRES, R, RNEW, XNORM 317. INTEGER B1, OUTPUT 318. LOGICAL SKIP 319. EXTERNAL ADA 320. DATA EPS1 /1.D-6/, ITMAX /40/, OUTPUT /6/ 321. 322. THE FOLLOWING TWO PARAMETERS ARE USED IN THE CONVERGENCE 323. TEST: EPS1 IS AN ABSOLUTE AND RELATIVE TOLERANCE FOR THE C 324. NORM OF THE PROJECTION OF THE RESIDUAL ONTO THE RANGE OF THE 325. C C JACOBIAN OF THE VARIABLE PROJECTION FUNCTIONAL. 326. C ITMAX IS THE MAXIMUM NUMBER OF FUNCTION AND DERIVATIVE 327. EVALUATIONS ALLOWED. CAUTION: EPS1 MUST NOT BE С 328 C SET SMALLER THAN 10 TIMES THE UNIT ROUND-OFF OF THE MACHINE. 329.

C

C

C

č

C C C C C

C

C C

C

C C

C

0000000000

C C C C

C

C C

C

C C C C C C C C

C

C C

С

C

C

C

C

C C

C

C

C

330. C Č---330.005 _____ CALL LIB MONITOR FROM VARPRO, MAINTENANCE NUMBER 509, DATE 77178 330.006 C***PLEASE DON'T REMOVE OR CHANGE THE ABOVE CALL. IT IS YOUR ONLY 330.008 C***PROTECTION AGAINST YOUR USING AN OUT-OF-DATE OR INCORRECT 330.009 C***VERSION OF THE ROUTINE. THE LIBRARY MONITOR REMOVES THIS CALL, 330.01 C***\$0 IT ONLY OCCURS ONCE, ON THE FIRST ENTRY TO THIS ROUTINE. 330.011 C------330.012 IERR = 1331. ITER = 0332. LP1 = L + 1333. B1 = L + 2 334. LNL2 = L + NL + 2 335. NLP1 = NL + 1336. SKIP = .FALSE. MODIT = IPRINT 337. 338. 339. IF (IPRINT .LE. 0) MODIT = ITMAX + 2 $\mathbf{N}\mathbf{I} = \mathbf{0}.$ 340. С IF GAUSS-NEWTON IS DESIRED REMOVE THE NEXT STATEMENT. 341. 342. Nu = 1.C C C C C C 343 BEGIN OUTER ITERATION LOOP TO UPDATE ALF. 344. CALCULATE THE NORM OF THE RESIDUAL AND THE DERIVATIVE OF 345. THE MODIFIED RESIDUAL THE FIRST TIME, BUT ONLY THE 346. DERIVATIVE IN SUBSEQUENT ITERATIONS. 347. Č 348. 5 CALL DPA (L, NL, N, NMAX, L222, IV, T, Y, W, ALF, ADA, IERR, 349. 350. X IPRINT, A, BETA, A(1, LP1), R) GNSTEP = 1.0351. ITERIN = 0352. IF (ITER.GT. 0) GO TO 10 353. \hat{IF} (NL $(\Xi Q, 0)$ GO TO 90 354. 355. IF (IERR .NE. 1) GO TO 99 С 356. IF (IPRINT .LE. 0) GO TO 10 357. WRITE (OUTPUT, 207) ITERIN, R WRITE (OUTPUT, 200) NU 358 359. BEGIN TWO-STAGE ORTHOGONAL FACTORIZATION 360. C 10 CALL ORFACI(NLP1, NMAX, N, L, IPRINT, A(1, B1), PRJRES, IERR) 361. IF (IERR, LT, 0) GO TO 99 362 IERR = 2363. IF (NU .EQ, 0,) GO TO 30 364. С 365. С BEGIN INNER ITERATION LOOP FOR GENERATING NEW ALF AND 366. С TESTING IT FOR ACCEPTANCE. 367. С 368. 369. 25 CALL ORFAC2 (NLP1, NMAX, NU, A(1, B1)) C 370. С SOLVE A NL X NL UPPER TRIANGULAR SYSTEM FOR DELTA-ALF. 371. THE TRANSFORMED RESIDUAL (IN COL. LNL2 OF A) IS OVER-372. C С WRITTEN BY THE RESULT DELTA-ALF. 373. С 374. 30 CALL BACSUB (NMAX, NL, A(1, B1), A(1, LNL2)) 375. DO 35 K = 1, NL 376. A(K, B1) = ALF(K) + A(K, LNL2)35 377. NEW ALF(K) = ALF(K) + DELTA ALF(K) 378. CCCCCC 379. STEP TO THE NEW POINT NEW ALF, AND COMPUTE THE NEW 380. NORM OF RESIDUAL, NEW ALF IS STORED IN COLUMN 31 OF A. 381. 382. CALL DPA (L, NL, N, NAX L982, IV, T, Y, W, A(1, B1), ADA, 383, 40 IERR, IPRINT, A, BETA, A(1, LP1), RNEW) х 384. IF (IERR .NE. 2) GO TO 99 385. ITER = ITER + 1 386. ITERIN = ITERIN + 1 387. SKIP = MOD (ITER, MODIT) .NE. 0 388.

С	45	WF WF WF IF (II CZ	SKIP) GO TO 45 RITE (OUTPUT, 203) IT RITE (OUTPUT, 216) (A RITE (OUTPUT, 207) IT ITER, LT, ITMAX) GO T ERR = -1 ALL VARERR (IPRINT, I	(K, 31), H ERIN, RNEV O 50	K = 1, NL) W	389. 390. 391. 392. 393. 394. 395. 396.
	50		O TO 95 RNEW - R .LT, EP\$1* (R	+ 1.DO))	GO TO 75	397. 398.
C C			RETRACT THE STEP JU	ST TAKEN		399. 400.
С		IH	F (NU .NE. 0.) GO TO	60		401. 402.
С		II	NSTEP = 0.5*gnstep F (gnstep.lt. epsi) (GAUSS-NEWTON OPTION ONLY	403. 404. 405.
	55		O 55 K = 1, NL A(K, 81) = ALF(K) + O TO 40	GNSTEP * A	(K, LNL2)	406. 407.
С	60			ENI	LARGE THE MARQUARDT PARAMET	
	00	IF	J = 1.5*NU F (.NOT. SKIP) WRITE F (NU .LE. 110.) GO T(IERR = -2		206) NU	410. 411. 412.
			CALL VARERR (IPRINT, GO TO 95	, IERR, 1))	413. 414.
C C			GO 10 93		IRIEVE UPPER TRIANGULAR FOR	
C	65	KS	0 K = 1, NL SUB = L91 + K C 70 J = K, NL91	ANL) RESIDUAL OF FIRST STAGE.	417. 418. 419. 420.
	70		JSUB = LP1 + J ISUB = NLP1 + J A(K, JSUB) = A(ISUB)	, KSUB)		421. 422. 423.
C C		GO TC	CCEPT THE STEP JUST TA	ENI	O OF INNER ITERATION LOOP	424. 425.
Ĉ	75 r =					426. 427.
		80 K	= 1, NL () = A(X, B1)			428. 429.
C C	ACI		BNSTEP * XNORM (NL, A(1,	CAI LNL2))/XN	LC. NORM (DELTA ALF)/NORM (AI YORM (NL, ALF)	432.
С С С С			F ITERIN IS GREATER TH HIS OUTER ITERATION.	HAN 1, A S	STEP WAS RETRACTED DURING	433. 434. 435.
C		(SKI) WRITZ	RIN,EQ, 1) NU = 0.5*1 P) GO TO 85 E (OUTPUT. 200) NU E (OUTPUT;208) ACUM	NU		436. 437. 438. 439. 440.
C			3 RES .gt, Eps1*(R + 1.1 ND OF OUTER ITERATION		5 5	441. 442. 443.
C C C C			ALCULATE FINAL QUANTI DVARIANCE MATRIX,,ETC		INEAR PARAMETERS, RESIDUALS	444. 445. 446.
C	XAI CAI XA	(NL . DA, 4, LL POS (1, LP	GT. 0) CALL DPA(L, N , IPRINT, A, BETA, A(1)	1, LP1), R	<, L292, IV, Τ, Υ, W, ALF, ³⁾ L , R, IPRINT, ALF, W, A,	447. 448. 449. 450. 451. 452.
С	99 REI	I'URN				453. 454.

200 FORMAT (9H NU =, E15.7) 455. 203 FORMAT (12H0 ITERATION, 14, 24H 206 FORMAT (25H STEP RETRACTED, N NONLINEAR PARAMETERS) 456. STEP RETRACTED, NU =, E15.7) 457. 207 FORMAT (1H0, I5, 20H NORM OF RESIDUAL =, E15.7) 458. 208 FORMAT (34H NORM (DELTA-ALF) / NORM (ALF) =, E12.3) 459. 216 FORMAT (1H0, 7315.7) 460. END 461. С 462. SUBROUTINE ORFAC1 (NLP1, NMAX, N, L, IPRINT, B, PRJRES, IERR) 463. C 464. STAGE 1: HOUSEHOLDER REDUCTION OF C 465. С 466. (DR'. R3) C 467. NL (DR R2) то C (----. ---), 468. C (0 . R4) N-L-NL 469. С 470. С NL NL 1 1 471. C 472. WHERE DR = $-D(Q2) \star Y$ IS THE DERIVATIVE OF THE MODIFIED RESIDUAL 473. C C PRODUCED BY DPA, R2 IS THE TRANSFORMED RESIDUAL FROM DPA, AND 474. DR' IS IN UPPER TRIANGULAR FORM (AS IN REF. (2), P. 18). C 475. Ċ DR IS STORED IN ROWS L+1 TO N AND COLUMNS L+2 TO L + NL + 1 OF 476. THE MATRIX A (I.E., COLUMNS 1 TO NL OF THE MATRIX B). R2 IS STORED IN COLUMN L + NL + 2 OF THE MATRIX A (COLUMN NL + 1 OF С 477. C 478. B). FOR K = 1, 2, ..., NL, FIND REFLECTION I - U U' / BETA 479. C C 480. WHICH ZEROES B(I, K), I = L+K+1, ..., N. C 481. C 482. C 483. DOUBLE PRECISION ACUM, ALPHA, B(NMAX, NLP1), BETA, DSIGN, PRJRES, 484. X U, XNORM 485. С 486. NL = NLPl = 1487. NL23 = 2*NL + 3488. LP1 = L + 1489. С 490. DO 30 K = 1, NL 491. LPK = L + K492. ALPHA = DSIGN(XNORM(N+1-LPK, B(LPK, K)), B(LPK, K))493. U = B(LPK, K) + ALPHA494. $B(LPK, K) = U_{\star}$ 495. BETA = ALPHA τī 496. IF (ALPHA .NE. 0.0) GO TO 13 497. COLUMN WAS ZERO 498. C 499. IERR = -8CALL VARERR (IPRINT, IERR, LP1 + K) 500. GO TO 99 501. C APPLY REFLECTIONS TO REMAINING COLUMNS 502. С OF B AND TO RESIDUAL VECTOR. 503. 13 KP1 = K + 1504. DO 25 J = KP1, NLP1 505. ACUM = 0.0506. DO 20 I = LPK, N 507. ACUM = ACUM + B(I, K) * B(I, J)508. 20 ACUM = ACUM / BETA509. DO 25 I = LPK, N 510. B(I, J) = B(I, J) - B(I, K) * ACUM25 511. 30 512. B(LPK, K) = -ALPHAС 513. PRJRES = XNORM(NL, B(LP1, NLP1))514. С 515. SAVE UPPER TRIANGULAR FORM AND TRANSFORMED RESIDUAL, FOR USE 516. C C IN CASE A STEP IS 'RETRACTED. ALSO COMPUTE COLUMN LENGTHS. 517. C 518. 519. IF (IERR .EQ. 4) GO TO 99 DO 50 K = 1, NL 520.

```
LPK = L + K
                                                                                 521.
         DO 40 J = K, NLP1
                                                                                 523.
             JSUB = NLPl + J
                                                                                 524.
             B(K, J) = B(LPK, J)
                                                                                 525.
   40
             B(JSUB, K) = B(LPK, J)
                                                                                 526.
          B(NL23, K) = XNORM(K, B(LP1, K))
   50
                                                                                 526.5
С
                                                                                 527.
   99 RETURN
                                                                                 528.
      END
                                                                                 529.
С
                                                                                 530.
      SUBROUTINE ORFAC2 (NLP1, NMAX, NU, B)
                                                                                 531.
С
                                                                                 532.
С
          STAGE 2: SPECIAL HOUSEHOLDER REDUCTION OF
                                                                                 533.
CCCCCCCCCC
                                                                                 534.
                                                      (DR' _ R5 )
                                        R3 )
                         NL
                                   DR'
                                                                                 535.
                                                       ____
                                                            __
                                                      ( •
                                          ---
                                             ۱,
                                                                 Ι
                                                                                 536.
                                        -.
                                       . R4 )
                     N-L-NL
                                     0
                                                 ТО
                                                         0
                                                           . R4 )
                                                                                 537.
                                                              ---
                                                                                 538.
                                          _ _
                                                                 Ι
                                              Ι
                                                            .
                                  (NU*D
                                          Ô
                         NT.
                                                         0
                                                            . R6
                                        .
                                             )
                                                      (
                                                                                 539.
                                                                 -)
                                                                                 540.
                                    NL
                                           1
                                                       NL
                                                              1
                                                                                 541.
                                                                                 542.
С
          WHERE DR', R3, AND R4 ARE AS IN ORFAC1, NU IS THE MARQUARDT
                                                                                 543.
С
          PARAMETER, D IS A DIAGONAL MATRIX CONSISTING OF THE LENGTHS OF
                                                                                 544.
С
          THE COLUMNS OF DR', AND DR'' IS IN UPPER TRIANGULAR FORM.
                                                                                 545.
          DETAILS IN (1), PP. 423-424. NOTE THAT THE (N-L-NL) BAND OF
С
                                                                                 546.
Ĉ
          ZEROES, AND R4, ARE OMITTED IN STORAGE.
                                                                                 547.
С
                                                                                 548.
С
       549.
С
                                                                                 550.
      DOUBLE PRECISION ACUM, ALPHA, B(NMAX, NLP1), BETA, DSIGN, NU, U,
                                                                                 551.
     X XNORM
                                                                                 552.
С
                                                                                  553.
      NL = NLPl - 1
                                                                                  554.
      NL2 = 2 \times NL
                                                                                 555.
      NL23 = NL2 + 3
                                                                                  556.
      DO 30 K = 1, NL
                                                                                  557.
          KP1 = K + 1
                                                                                  558.
          NLPK = NL + K
                                                                                  559.
          NLPKM1 = NLPK - 1
B(NLPK, K) = NU B(NL23, K)
                                                                                  560.
                                                                                  561.
          B(NL, K) = B(K, K)
                                                                                  562.
          ALPHA = DSIGN(XNORM(K+1, B(NL, K)), B(K, K))
                                                                                  563.
          U = B(K, K) + ALPHA
                                                                                  564.
          BETA = ALPHA
                          TT
                                                                                  565.
          B(K, K) = -ALPHA
                                                                                  566.
                            THE K-TH REFLECTION MODIFIES ONLY ROWS K,
С
                                                                                  567.
                            NL+1, NL+2, ..., NL+K, AND COLUMNS K TO NL+1.
C
                                                                                  568.
          DO 30 J = KP1, NLP1
                                                                                  569.
             \begin{array}{l} B(NLPK, J) = 0. \\ ACUM = U & B(K, J) \end{array}
                                                                                  570.
                                                                                  571.
             DO 20 I = NLP1, NLPKM1
ACUM = ACUM + B(I, K)
                                                                                  572.
                                        * B(I,J)
    20
                                                                                  573.
             ACUM = ACUM / BETA
B(K,J) = B(K,J) - U ACUM
                                                                                  574.
                                                                                  575.
             DO 30 I = NLP1, NLPK
                                                                                  576.
                 B(I,J) = B(I,J) = B(I,K) \bullet ACUM
    30
                                                                                  577.
C
                                                                                  578.
       RETURN
                                                                                  579.
       END
                                                                                  580.
С
                                                                                  581.
       SUBROUTINE DPA (L, NL, N, NAX L222, IV, T, Y, W, ALF, ADA, ISEL, 582.
      X IPRINT, A, U, R, RNORM)
                                                                                  583.
С
                                                                                  584.
С
          COMPUTE THE NORM OF THE RESIDUAL (IF ISEL = 1 OR 2), OR THE
                                                                                  585.
С
           (N-L) X NL DERIVATIVE OF THE MODIFIED RESIDUAL (N-L) VECTOR
                                                                                  586.
```

O2*Y (IF ISEL = 1 OR 3). HERE O * PHI = S, I.E., C 587 C C C 588. \mathbf{L} (Q1) ((S.R1.F1) 589. (----) (PHI . Y . D(PHI)) = (--- . -- . ----) 590. C (Q2) ((0.R2. F2) N-L 591.) C C 592. N L 1 Ρ ь 1 р 593. C 594. 00000000 WHERE Q IS N X N ORTHOGONAL, AND S IS L X L UPPER TRIANGULAR. 595. THE NORM OF THE RESIDUAL = NORM(R2), AND THE DESIRED DERIVATIVE 596. ACCORDING TO REF. (5), IS 597. 598. $D(Q2 * Y) = -Q2 * D(PHI) * S^{-1} Q1 * Y.$ 599. 600. 601. C 602. DOUBLE PRECISION A (NMAX, LPP2), ALF (NL), T (NMAX, IV), W(N), Y(N), X ACUM, ALPHA, BETA, RNORM, DSIGN, DSQRT, SAVE, R(N), U(L), XNORM 603. 604. INTEGER FIRSTC, FIRSTR, INC(12, 8) LOGICAL NOWATE, PHILP1 605. 606. EXTERNAL ADA 607. 608. С 609. IF (ISEL .NE. 1) GO TO 3 LP1 = L + 1610. LNL2 = L + 2 + NL611. LP2 = L + 2612. LPPl = LPP2 - 1613. 614, FIRSTC = 1LASTC = LPPl615. FIRSTR = LP1616. CALL INIT(L, NL, N, NMAX, LPP2, IV, T, W, ALF, ADA, ISEL, 617. х IPRINT, A, INC, NCON, NCONP1, PHILP1, NOWATE) 618. IF (ISEL .NE. 1) GO TO 99 619. GO TO 30 620. С 621. 3 CALL ADA (LP1, NL, N, NMAX, LPP2, IV, A, INC, T, ALF, MINO(ISEL, 622. X 3)) 623. IF (ISEL .EQ. 2) GO TO 6 624. C ISEL = 3 OR 4625. FIRSTC = LP2626. LASTC = LPP1627. FIRSTR = (4 - ISEL)*L + 1628. GO TO 50 629. ISEL = 2С 630. 6 FIRSTC = NCONP1631. LASTC = LP1632. IF (NCON .EQ. 0) GO TO 30 633. IF (A(1, NCON) .EQ. SAVE) GO TO 30 634. ISEL = -7635. CALL VARERR (IPRINT, ISEL, NCON) 636. GO TO 99 637. ISEL = 1 OR 2С 638. 30 IF (PHILP1) GO TO 40 639. DO 35 I = 1, N 640. 35 R(I) = Y(I)641. GO TO 50 642. 40 DO 45 I = 1, N 643. R(I) = Y(I) - R(I)45 644. C WEIGHT APPROPRIATE COLUMNS 645. 50 IF (NOWATE) GO TO 58 646. DO 55 I = 1, N 647. ACUM = W(I)648. DO 55 J = FIRSTC, LASTC 649. 55 A(I, J) = A(I, J) * ACUM650. С 651. COMPUTE ORTHOGONAL FACTORIZATIONS BY HOUSEHOLDER C 652.

C C C	REFLECTIONS. IF ISEL = 1 OR 2, REDUCE PHI (STORED IN THE FIRST L COLUMNS OF THE MATRIX A) TO UPPER TRIANGULAR FORM, (Q*PHI = S), AND TRANSFORM Y (STORED IN COLUMN L+1), GETTING	
ουοοοοοοοοοοοοοοοοοοοοοοοοοοοοοοοοοοο	Q*Y = R. IF ISEL = 1, ALSO TRANSFORM J = D PHI (STORED IN COLUMNS L+2 THROUGH L+P+1 OF THE MATRIX A), GETTING $Q*J = F$. IF ISEL = 3 OR 4, PHI HAS ALREADY BEEN REDUCED, TRANSFORM ONLY J. S, R, AND F OVERWRITE PHI, Y, AND J, RESPECTIVELY, AND A FACTORED FORM OF Q IS SAVED IN U AND THE LOWER TRIANGLE OF PHI.	656. 657. 658. 659. 660. 661.
	58 IF (L.EQ. 0) GO TO 75 DO 70 K = 1, I_1	662. 663. 664.
	$\begin{array}{l} \text{KP1} = \text{K} + 1 \\ \text{IF} (\text{ISEL}, \text{GE}, 3 \text{ .or.} (\text{ISEL}, \text{EQ}, 2 \text{ .AND}, \text{K}, \text{LT}, \text{NCONP1})) \text{GO} \text{TO} 66 \\ \text{ALPHA} = \text{DSIGN} \left(\text{XNORM} \left(\text{N+1-K}, \text{A}(\text{K}, \text{K}) \right), \text{A}(\text{K}, \text{K}) \right) \\ \text{U}(\text{K}) = \text{A}(\text{K}, \text{K}) + \text{ALPHA} \end{array}$	665. 666. 667. 668.
	A(K, K) = -ALPHA FIRSTC = KP1 IF (ALPHA .NE. 0.0) GO TO 66	669. 670. 671.
	ISEL = -8 CALL VARERR (IPRINT, ISEL, K) GO TO 99	672. 673. 674.
	APPLY REFLECTIONS TO COLUMNS FIRSTC TO LASTC. 66 BETA = $-A(K, K) * U(K)$	675. 676. 677.
	DO 70 J = FIRSTC, LASTC ACUM = $U(K) * A(K, J)$	678. 679.
	DO 68 I = KP1, N 68 ACUM = ACUM + A(I, K) $A(I, J)$ ACUM = ACUM / BETA	680. 681. 682.
	A(K,J) = A(K,J) - U(K) * ACUM DO 70 I = KP1, N	683. 684.
	70 $A(I, J) = \dot{A}(I, J) - A(I, K) * ACUM$	685. 686.
	75 IF (ISEL.GE. 3) GO TO 85 RNORM = XNORM(N-L, R(LP1)) IF (ISEL.EQ. 2) GO TO 99 IF (VICEN CT. 2) GO TO 99	687. 688. 689.
	IF (NCON.GT. 0) SAVE = $A(1, NCON)$	690. 691.
	F2 IS NOW CONTAINED IN ROWS L+1 TO N AND COLUMNS L+2 TO L+P+1 OF THE MATRIX A. NOW SOLVE THE L X L UPPER TRIANGULAR SYSTEM $S*BETA = R1$ FOR THE LINEAR PARAMETERS BETA. BETA OVERWRITES R1.	694. 695.
	85 IF (L.GT. 0) CALL BACSUB (NMAX, L, A, R)	696. 697. 698.
	MAJOR PART OF KAUFMAN'S SIMPLIFICATION OCCURS HERE. COMPUTE THE DERIVATIVE OF ETA WITH RESPECT TO THE NONLINEAR PARAMETERS	
	$\begin{array}{cccc} T & D & ETA & T & L & D & PHI(J) & D & PHI(L+1) \\ Q & & = & Q & (SUM BETA(J) & & + & I & = & F2*BETA \\ & D & ALF(K) & J=1 & D & ALF(K) & D & ALF(K) \end{array}$	703. 704. 705. 706.
	AND STORE THE RESULT IN COLUMNS L+2 TO L+NL+1. IF ISEL NOT = 4, THE FIRST L ROWS ARE OMITTED. THIS IS $-D(Q2) *Y$. IF ISEL NOT = 4 THE RESIDUAL R2 = $Q2*Y$ (IN COL. L+1) IS COPIED TO COLUMN L+NL+2. OTHERWISE ALL OF COLUMN L+1 IS COPIED.	707. 708. 709. 710.
	DO 95 I = FIRSTR, N IF (L _EQ. NCON) GO TO 95 M = LP1	711. 712. 713. 714.
	$ \begin{array}{r} M = D \Gamma I \\ DO 90 K = 1, NL \\ ACUM = 0. \\ DO 88 J = NCONP1, L \end{array} $	715. 716.
	IF (INC(K, J) .EQ. 0) GO TO 88	717. 718.

719. M = M + 1ACUM = ACUM + A(I, M) * R(J)720. 88 721. CONTINUE KSUB = L91 + K 722. IF (INC(K, LP1) , EQ, 0) GO TO 90 723. M = M + 1724. ACUM = ACUM + A(I, M)725. 90 A(I, KSUB) = ACUM726. 95 A(I, LNL2) = R(I)727. 728. С 99 RETURN 729. END 730. С 731. SUBROUTINE INIT(L, NL, N, NMAX, LPP2, IV, T, W, ALF, ADA, ISEL, 732. X IPRINT, A, INC, NCON, NCONP1, PHILP1, NOWATE) 733. С 734. CHECK VALIDITY OF INPUT PARAMETERS, AND DETERMINE NUMBER OF 735. С С CONSTANT FUNCTIONS. 736. С 737. С 738. С 739. DOUBLE PRECISION A (NMAX, LP92), ALF(NL), T (NMAX, IV), W(N), 740. X DSORT 741. INTEGER OUTPUT, P, INC(12, 8) 742. LOGICAL NOWATE, PHILP1 743. DATA OUTPUT /6/ 744. 745. С $L_{21} = L + 1$ 746. LNL2 = L + 2 + NL747. CHECK FOR VALID INPUT 748. С IF (L,GE, O .AND. NL .GE. O .AND. L+NL .LT. N .AND. LN X LPP2 .AND. 2*NL t 3 .LE, NMAX AND N .LE. NMAX AND LNL2 .LE. 749. 750. X IV , GT, 0 , AND, .NOT. (NL , EQ, 0 .AND. L , EQ, 0)) GO TO 1 751. ISEL = -4752. CALL VARERR (IPRINT, ISEL, 1) 753. GO TO 99 754. С 755. 1 IF (L ,EQ, 0 .OR. NL .EQ. θ) go to 3 756. DO 2 J = 1, LP1 757. DO 2 K = 1, NL 758. INC(K, J) = 02 759. С 760. 3 CALL ADA (LP1, NL, N, NMAX, LP22, IV, A, INC, T, ALF, ISEL) 761. C 762. NOWATE = .TRUE. 763. DO 9 I - 1, N 764. NOWATE = NOWATE , AND, (W(I), EQ, 1.0)765. IF (W(I) ,GE, 0.) GO TO 9 766. ERROR IN WEIGHTS 767. С 768. ISEL = -6CALL VARERR (IPRINT, ISEL, I) 769. GO TO **99** 770. 9 W(I) = DSQRT(W(I))771. С 772. NCON = L773. NCONPl = LP1 774. PHILP1 = L, ΞQ , 0 775. IF (PHILP1 .OR. NL ,EQ, 0) GO TO 99 776. С CHECK INC MATRIX FOR VALID INPUT AND 777. С DETERMINE NUMBER OF CONSTANT FCNS. 778. P = 0779. DO 11 J = 1, LP1 780. IF (P, EQ, 0) NCONPl = J 781. DO 11 K = 1, NL 782. INCKJ = INC(K, J)IF (INCKJ .NE. 0 **.AND.** INCKJ .NE. 1) GO TO 15 INCKJ = INC(K)783. 784.

APPENDIX J. VARPRO REGRESSION SUBROUTINE

```
IF (INCKJ .EQ. 1) P = P + 1
                                                                              785.
                                                                              786.
   11
            CONTINUE
С
                                                                              787.
      NCON = NCONPl - 1
                                                                              788.
      IF (IPRINT .GE. 0) WRITE (OUTPUT, 210) NCON
                                                                              789.
      IF (L+P+2 .EQ. LPP2) GO TO 20
                                                                              790.
                                                  INPUT ERROR IN INC MATRIX 791.
C
                                                                              792.
   15 \text{ ISEL} = -5
      CALL VARERR (IPRINT, ISEL, 1)
                                                                              793.
      GO TO 99
                                                                              794.
                                    DETERMINE IF PHI(L+1) IS IN THE MODEL.
                                                                             795.
C
   20 DO 25 K = 1, NL
                                                                              796.
         IF (INC(K, LP1) .EQ. 1) PHILP1 = .TRUE.
                                                                              797.
   25
                                                                              798.
С
   99 RETURN
                                                                              799.
  210 FORMAT (33H0 NUMBER OF CONSTANT FUNCTIONS =, 14 /)
                                                                              800.
      END
                                                                              801.
      SUBROUTINE BACSUB (NMAX, N, A, X)
                                                                              802.
С
                                                                              803.
С
         BACKSOLVE THE N X N UPPER TRIANGULAR SYSTEM A*X = B.
                                                                              804.
C
         THE SOLUTION X OVERWRITES THE RIGHT SIDE B.
                                                                              805.
C
                                                                              806.
      DOUBLE PRECISION A (NMAX, N), X(N), ACUM
                                                                              807.
C
                                                                              808.
      X(N) = X(N) / A(N, N)
                                                                              809.
      IF (N .EQ. 1) GO TO 30
                                                                              810.
      NP1 = N + 1
                                                                              811.
      DO 20 IBACK = 2, N
                                                                              812.
          I = NP1 - IBACK
                                                                              813.
             I = N-1, N-2, ..., 2, 1
C
                                                                              814.
         IP1 = I + 1
                                                                              815.
         ACUM = X(I)
                                                                              816.
         DO 10 J = IP1, N
                                                                              817.
            ACUM = ACUM - A(I,J) * X(J)
   10
                                                                              818.
   20
         X(I) = ACUM / A(I,I)
                                                                              819.
C
                                                                              820.
   30 RETURN
                                                                              821.
      END
                                                                              822.
      SUBROUTINE POSTPR(L, NL, N, NMAX LNL2, EPS, RNORM, IPRINT, ALF,
                                                                              823.
     X W, A, R, U, IERR)
                                                                              824.
C
                                                                              825.
C
          CALCULATE RESIDUALS, $AMPLE VARIANCE, AND COVARIANCE MATRIX.
                                                                              826.
C
          ON INPUT, U CONTAINS INFORMATION ABOUT HOUSEHOLDER REFLECTIONS
                                                                              827.
C
C
          FROM DPA. ON OUTPUT, IT CONTAINS THE LINEAR PARAMETERS.
                                                                              828.
                                                                              829.
      DOUBLE PRECISION A (NMAX, LNL2), ALF (NL), R (N), U (L), W (N), ACUM,
                                                                              830.
     X EPS, PRJRES, RNORM, SAVE, DABS
                                                                              831.
       INTEGER OUTPUT
                                                                              832.
      DATA OUTPUT /6/
                                                                              833.
C
                                                                              834.
      LP1 = L + 1
                                                                              835.
      LPNL = LNL2 = 2
                                                                              836.
      LNL1 = LPNL + 1
                                                                              837.
      DO 10 I = 1, N
                                                                              838.
   10
         W(I) = W(I) * 2
                                                                              839.
C
                                                                              840.
C
                UNWIND HOUSEHOLDER TRANSFORMATIONS TO GET RESIDUALS,
                                                                              841.
C
                AND MOVE THE LINEAR PARAMETERS FROM R TO U.
                                                                              842.
C
                                                                              843.
      IF (L .EQ. 0) GO TO 30
                                                                              844.
      DO 25 KBACK = 1, L
                                                                              845.
          K = LP1 - KBACK
                                                                              846.
          KP1 = K + 1
                                                                              847.
          ACUM = 0.
                                                                              848.
          DO 20 I = KP1, N
                                                                              849.
            ACUM = ACUM + A(I, K) * R(I)
   20
                                                                              850.
```

```
SAVE = R(K)
                                                                                 851.
          R(K) = ACUM / A(K, K)
                                                                                 852.
          ACUM = -ACUM / (U(K) * A(K, K))
                                                                                 853.
          U(K) = SAVE
                                                                                 854.
          DO 25 I = KP1, N
                                                                                 855.
             R(I) = R(I) - A(I, K) * ACUM
   25
                                                                                 856.
                                                  COMPUTE MEAN ERROR
С
                                                                                 857.
   30 ACUM = 0.
                                                                                 858.
      DO 35 I = 1, N
                                                                                 859.
       ACUM = ACUM + R(I)
   35
                                                                                 860.
      SAVE = ACUM / N
                                                                                 861.
C
                                                                                 862.
C
                THE FIRST L COLUMNS OF THE MATRIX HAVE BEEN REDUCED TO
                                                                                 863.
C
                UPPER TRIANGULAR FORM IN DPA. FINISH BY REDUCING ROWS
                                                                                 864.
c
                L+1 TO N AND COLUMNS L+2 THROUGH L+NL+1 TO TRIANGULAR
                                                                                 865.
C
                FORM. THEN SHIFT COLUMNS OF DERIVATIVE MATRIX OVER ONE
                                                                                 866.
C
                 TO THE LEFT TO BE ADJACENT TO THE FIRST L COLUMNS.
                                                                                 867.
C
                                                                                 868.
      IF (NL .EQ. 0) GO TO 45
CALL ORFAC1(NL+1, NMAX, N, L, IPRINT, A(1, L+2), PRJRES, 4)
                                                                                 869.
                                                                                 870.
      DO 40 I = 1, N
                                                                                 871.
          A(I, LNL2) = R(I)
                                                                                 872.
          DO 40 K = LP1, LNL1
                                                                                 873.
   40
             A(I, K) = A(I, K+1)
                                                                                 874.
                                               COMPUTE COVARIANCE MATRIX 875.
С
   45 A(1, LNL2) = RNORM
                                                                                 876.
      ACUM = RNORM * RNORM / (N - L - NL)
                                                                                 877.
       A(2, LNL2) = ACUM
                                                                                 878.
       CALL COV (NMAX, LPNL, ACUM, A)
                                                                                 879.
С
                                                                                 880.
      IF (IPRINT .LT. 0) GO TO 99
WRITE (OUTPUT, 209)
                                                                                  881.
                                                                                 882.
       IF (L .GT. 0) WRITE (OUTPUT, 210) (U(J), J = 1, L)
IF (NL .GT. 0) WRITE (OUTPUT, 211) (ALF(K), K = 1, NL)
                                                                                 883.
                                                                                 884.
       WRITE (OUTPUT, 214) RNORM, SAVE, ACUM
                                                                                 885.
       IF (DABS(SAVE) .GT. EPS) WRITE (OUTPUT, 215)
WRITE (OUTPUT, 209)
                                                                                 886.
                                                                                 887.
    99 RETURN
                                                                                 888.
C
                                                                                  889.
  209 FORMAT (1H0, 50(1H'))
210 FORMAT (20H0 LINEAR PARAMETERS // (7E15.7))
                                                                                  890.
                                                                                 891.
  211 FORMAT (23H0 NONLINEAR PARAMETERS // (7E15.7)) 892.
214 FORMAT (21H0 NORM OF RESIDUAL =, E15.7, 33H EXPECTED ERROR OF OBS 893.
      XERVATIONS =, E15.7, / 39H ESTIMATED VARIANCE OF OBSERVATIONS =, 894.
                                                                                  895.
      X E15.7 )
  215 FORMAT (95H WARNING -- EXPECTED ERROR OF OBSERVATIONS IS NOT ZERO 896.
                                                                                  897.
      X. COVARIANCE MATRIX MAY BE MEANINGLESS. /)
       END
                                                                                  898.
       SUBROUTINE COV (NMAX, N, SIGMA2, A)
                                                                                  899.
C
                                                                                  900.
              COMPUTE THE SCALED COVARIANCE MATRIX OF THE L + NL
C
                                                                                  901.
C
          PARAMETERS. THIS INVOLVES COMPUTING
                                                                                  902.
C
                                                                                  903.
                               2 -1 -T
SIGMA T T
С
                                                                                  904.
C
                                                                                 905.
C
                                                                                 906.
C
          WHERE THE (L+NL) X (L+NL) UPPER TRIANGULAR MATRIX T IS
                                                                                 907.
č
          DESCRIBED IN SUBROUTINE POSTPR. THE RESULT OVERWRITES THE
                                                                              908.
909.
C
          FIRST L+NL ROWS AND COLUMNS OF THE MATRIX A. THE RESULTING MATRIX IS SYMMETRIC. SEE REF. 7, PP. 67-70, 281.
C
                                                                                  910.
C
                                                                                  911.
C
       C
                                                                                  913.
                                                                                  914.
       DOUBLE PRECISION A (NMAX, N), SUM, SIGMA2
С
                                                                                  915.
       DO 10 J = 1, N
                                                                                  916.
```

```
917.
   10
         \lambda(J, J) = 1./A(J, J)
C
C
                                                                                 918.
                    INVERT T UPON ITSELF
                                                                                 919.
С
                                                                                 920.
      IF (N .EQ. 1) GO TO 70
NM1 = N = 1
                                                                                 921.
                                                                                 922.
      DO 60 I = 1, NM1
                                                                                 923.
         IP1 = I + 1
                                                                                 924.
          DO 60 J = IP1_{\ell} N
                                                                                 925.
             JM1 = J - 1
                                                                                 926.
             SUM = 0.
                                                                                 927.
             DO 50 M = I, JM1
                                                                                 928.
             SUM = SUM + A(I, M) * A(M, J)
A(I, J) = -SUM * A(J, J)
   50
                                                                                 929.
                                                                                 930.
   60
С
                                                                                 931.
C
                    NOW FORM THE MATRIX PRODUCT
                                                                                 932.
С
                                                                                 933.
   70 DO 90 I = 1, N
                                                                                 934.
          DO 90 J = I, N
                                                                                 935.
                                                                                 936.
             SUM = 0.
             DO 80 M = J, N
                                                                                 937.
             sum = sum + A(I, M) * A(J, M)
sum = sum * SIGMA2
   80
                                                                                 938.
                                                                                  939.
             A(I, J) = SUM
A(J, I) = SUM
                                                                                  940.
   90
                                                                                  941.
                                                                                  942.
С
      RETURN
                                                                                  943.
                                                                                  944.
       END
                                                                                  945.
       SUBROUTINE VARERR (IPRINT, IERR, K)
С
                                                                                  946.
С
          PRINT ERROR MESSAGES
                                                                                  947.
С
                                                                                  948.
       INTEGER ERRNO, OUTPUT
                                                                                  949.
       DATA OUTPUT /6/
                                                                                  950.
С
                                                                                  951.
       IF (IPRINT, LT, 0) GO TO 99
                                                                                  952.
       ERRNO = IABS(IERR)
                                                                                  953.
       GO TO (1, 2, 99, 4, 5, 6, 7, 8), ERRNO
                                                                                  954.
                                                                                  955.
С
     1 WRITE (OUTPUT, 101)
                                                                                  956.
       GO TO 99
                                                                                  957.
     2 WRITE (OUTPUT, 102)
                                                                                  958.
       GO TO 99
                                                                                  959.
     4 WRITE (OUTPUT, 104)
                                                                                  960.
       GO TO 99
                                                                                  961.
     5 WRITE (OUTPUT, 105)
                                                                                  962.
       GO TO 99
                                                                                  963.
     6 WRITE (OUTPUT, 106) K
                                                                                  964.
       GO TO 99
                                                                                  965.
     7 WRITE (OUTPUT, 107) K
                                                                                  966.
       GO TO 99
                                                                                  967.
     8 WRITE (OUTPUT, 108) K
                                                                                  968.
C
                                                                                  969.
    99 RETURN
                                                                                  970.
   101 FORMAT (46H0 PROBLEM TERMINATED FOR EXCESSIVE ITERATIONS //)
                                                                                  971.
   102 FORMAT (49H0 PROBLEM T)RMINATED BECAUSE OF ILL-CONDITIONING
                                                                                  972.
   104 FORMAT (/ 50H INPUT ERR & IN PARAMETER L, NL, N, L882, OR NAX /)
                                                                                 973.
   105 FORMAT (68H0 ERROR -- JNC MATRIX IMPROPERLY SPECIFIED, OR DISAGRE 974.
      XES WITH LPP2, /)
                                                                                  975.
   106 FORMAT (19H0 ERROR -- WEIGHT(, 14, 14H) IS NEGATIVE. /)
                                                                                  976.
   107 FORMAT (28H0
                      ERROR -- CONSTANT COLUMN , 13, 37H MUST BE COMPUTED
                                                                                  977.
      XONLY WHEN ISEL = 1. /)
                                                                                  978.
   108 FORMAT (33H)
                      CATASTROPHIC FAILURE -- COLUMN , 14, 28H IS ZERO, SE 979.
      XE DOCUMENTATION. /)
                                                                                  980.
       END
                                                                                  981.
       DOUBLE PRECISION FUNCTION XNORM(N, X)
                                                                                  982.
```

APPENDIX J. VARPROREGRESSION SUBROUTINE

```
С
                                                                            983.
С
         COMPUTE THE L2 (EUCLIDEAN) NORM OF A VECTOR, MAKING SURE TO
                                                                             984.
С
         AVOID UNNECESSARY UNDERFLOWS. NO ATTEMPT IS MADE TO SUPPRESS
                                                                             985.
С
         OVERFLOWS.
                                                                             986.
С
                                                                             987.
      DOUBLE PRECISION X(N), RMAX, SUM, TERM, DABS, DSQRT
                                                                             988.
С
                                                                            989.
С
       .
            FIND LARGEST (IN ABSOLUTE VALUE) ELEMENT
                                                                            990.
      RMAX = 0.
                                                                            991.
      DO 10 I = 1, N
                                                                            992.
         IF (DABS(X(I)) .GT. RMAX) RMAX = DABS(X(I))
                                                                            993.
   10
         CONTINUE
                                                                            994.
С
                                                                            995.
      SUM = 0.
                                                                            996.
      IF (RMAX .EQ. 0.) GO TO 30
                                                                            997.
      DO 20 I = 1, N
                                                                            998.
         TERM = 0.
                                                                            999.
         IF (RMAX + DABS(X(I))
                                 .NE. RMAX) TERM = X(I)/RMAX
                                                                           1000.
         SUM = SUM + TERM*TERM
   20
                                                                           1001.
C
                                                                           1002.
   30 XNORM = RMAX*DSORT (SUM)
                                                                           1003.
   99 RETURN
                                                                           1004.
      END
                                                                           1005.
```

Appendix K

Main Program – Nonlinear Regression

This main program inputs the data into the nonlinear regression program, VARPRO. The data are read from the file named ppm.in, and the output is sent to the file ppm.out. Six input lines precede the data. betal, alphal and alpha2 define the inlet condition. If "total" regression parameters are desired (see Chapter 9), then betal should be set equal to 1.0 while alphal and alpha2 should be set to 0. alf(1) is equivalent to σ and alf(2) is equivalent to θ . Initial guesses of these parameters must be provided before VARPRO can process the data. The program returns values for ξ (beta), σ [alf(1)] and θ [alf(2)].

```
С
       implicit real*8 (a-b,d+h,o-z)
      dimension y(400),t(400),alf(14),beta(7),w(400),a(400,13),
ctitle(20), cinit(400), ccalc(400)
     £
      external ada
      common betal, alphal, alpha2
      nmax=400
      iprint=1
      open(unit=5, file="ppm,in")
open(unit=6, file="ppm,out")
      read (5,1) ctitle
 1
      format (20a4)
      write(6,2) ctitle
 2
      format (20a4)
      read(5,*) 1
      write (6,3) 1
format('number of linear parameters)'//(i1))
 3
      read(5,*) nl
      write (\delta, 4) nl
 4
      format ('number of nonlinear parameters'// (13))
      read (5,*) betal, alpha1, alpha2
      read (5, \star) alf(1), alf(2)
      lp=1+1
      1pp2=1+n1+2
      read(5,*) n
      write (6,5) n
  5
      format ('number of observations'// (14))
      iv=1
      read(5,*) (t(i),y(i),i=1,n)
      wt=0.
      do 6 i=1, n
      cinit(i) = y(i)
 6
      \mathbf{w}(\mathbf{i}) = 1,
      call varpro(l, nl, n, nmax, lpp2, iv,t, y, w, ada, a
     *, iprint, alf, beta, ierr)
      write(6,7)
format(fierr')
 7
      write (6,*) ierr
      diffsum = 0
      diffno = n
      do 8 i = 1, n
         ccalc(i) = 0
         question * alpha2 # alf(2)
          if (t(i), le, question) go to 8
         ccalc(i) = beta(1) * betal
                      derfc( (alpha1 + alf(1)) /
     £
         £
         diff2 = diff**2
         diffsum = diffsum + diff2
         diffave = diffsum/diffno
```

```
8
     continue
     write(6,9)
     format ('linear parameter - beta')
9
     write (6, \star) beta(1)
     write(6,10)
10
     format('nonlinear panameters = alf1, alf2')
     write(\delta, \star) alf(1), alf(2)
     write(6,11)
11
     format ('mean of absolute value of differences')
     write(6, *) diffave
     write (6,*) n
     do 12 i = 1, n
        write(\delta, *) t(i), cdnit(i)
12
     continue
     write(6,*) n
     do 13, i = 1, n
        write(\delta, \star) t(i), ccalc(i)
13
     continue
     stop
     end
     subroutine ada(lp,nl,n,nmax,lpp2,iv,a,inc,t,alf,isel)
     implicit real*8 (a-hp+z)
     dimension alf(nl), a (nmax, lpp2), t (nmax), inc(14,8), d(400,7)
     double precision alf
     common betal, alphal, alpha2
     l = 1p - 1
     if (isel.eq.2) go to 90
     if(isel.eq.3) go to 165
     inc(1,1)-1.0
inc(2,1)-1.0
     do 81 i=1,n
90
     do 81 j=1,1
     k1=2*j-1
k2=2*j
     if (t(i)/(alpha2 + alf(2)).gt,1,0) go to 82
     a(i, j) = 0.0
     d(i,j)=0.
     go to 81
 82 \bar{a}(i,j) = betal *
    £
                     derfc( Kalphal + alf(1)) /
                     ((t(i) - alpha2 - alf(2))**0.5) )
     d(i,j)=a(i,j)
 81 continue
     if(isel.eq.2) go to 200
165 do 170 i=1,n
     do 170 j=1,nl
     k1 = (j+1)/2
     k2=2*k1
     k3=k2-1
     jj=1+j+1
     if (t(i)/(alpha2 + alf(2)).gt.1.0) go to 171
     a(i, jj) = 0.
     go to 170
171 if(j.eq.2) go to 300
     alup = alf (1)*1.0001
    aldn = alf(1) *0. 9999,
     a(i,jj) = ( betal
```

. . .

```
derfc( (alpha1 + alup) /
((t(i) alpha2 - alf(2))**0.5) ) -
    £
    &
    æ
                         betal
                         derfc( (alpha1 + a1dn) /
((t(i) - alpha2 - alf(2))**0.5) ) ) /
(alf(1)*0.0002)
    £
    £
    &
    go to 170
300 a2up = alf (2)*1,0001
a2dn = alf(2)*0.9999
     a(i,jj) = ( betal
                         £
    સસ
                         derfc( (alphal + alf(1)) /
((t(i) - alpha2 - a2dn)**0,5) )) /
(alf(2)*0.0002)
    Ş,
    Ł
    S.
170 continue
200 continue
     return
     END
```