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ABSTRACT 

Determination of reservoir parameters by the analysis of wellbore pressure data obtained 

from variable rate tests requires the use of superposition. However, because implementation of 

superposition requires a flow model to be known a priori, then the results obtained from the 

analysis of test data may be affected by the model choice. This may be a serious drawback 

when information on reservoir flow geometry is sought from well tests. Furthermore, flow rate 

monitoring is not always performed, in which case the use of superposition may not be practi- 

cal or even possible. 

This work describes a general procedure to solve transient flow problems with boundary 

conditions which depend upon time. The method uses combinations of unit step functions to 

write a boundary condition which is valid for all times. Solution is then obtained by Laplace 

transformation. The procedure does not involve superposition. 

The method is applied to solve two classical transient flow problems: pressure buildup 

following either constant-rate or constant-pressure production. Both wellbore storage and a 

skin effect are included, even though production for the latter problem is at constant pressure. 

Solution to the drillstem test problem is discussed in detail. An original approach was 

used to model the drillstem test as a "slug test'' with a step change in wellbore storage. During 

production, the effect of fluid accumulation inside the drill string is described by a changing 

liquid level wellbore storage coefficient. Upon shut-in, wellbore storage becomes compressibil- 

ity dominated due to fluid compression below the shut-in point. The solutions are used to 

develop practical methods for analysis of drillstem-test pressure data. Applications to field data 

will provide the initial reservoir pressure, the formation permeability and the skin effect. The 

methods are also extended to include multiple production and shut-in phases. 

The procedure described here is not restricted to solution of the diffusivity equation. It 

may be applied to a variety of other interesting and useful problems. New transforms and 

operational rules to be used with the unit step function are also presented. 
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1. INTRODUCTION 

Pressure transient testing in wells has been studied extensively during the past five 

decades. A number of methods based on solutions to the difisivity equation have been pro- 

posed to analyze field data. Most methods are based upon constant-rate production. However, 

production rates are usually difficult to control. Flow rate monitoring is not always performed 

(or even possible), despite the fact that constant-rate test interpretations have become standard 

in the industry. 

Analytical interpretation methods may be based upon the superposition of fundamental 

constant rate solutions to the diffusivity equation. A pressure buildup is one type of test which 

is most likely to result in a constant rate, in this case a zero rate. In many cases the produc- 

tion phase is better represented by a constant-pressure flow, and the use of superposition may 

not be practical. In general, the effect of a variable rate is more important in short time tests. 

A drillstem test (DST) is a typical example of a test where both the flow rate and the bottom- 

hole pressure are uncontrolled and variable. Interpretation of DST pressure-time data by 

methods based on the solution to the constant-rate case may produce uncertain results. 

Practical use of well test analysis requires knowledge obtained from analysis of solutions 

to the diffusivity equation considering a wide range of boundary conditions. A well is often 

subject to physical conditions which may be best represented by a time-dependent boundary 

condition. If there is a change in the flow process in the wellbore, then a different boundary 

condition may be required to model the results of the test thereafter. Analytical solutions to 

these types of problems are usually difficult to obtain, and as a result such problems are often 

handled by finite difference methods. 

An example of a time-dependent boundary condition is found in a pressure buildup test. 

If the well is produced at a constant rate, on shut in there is a change in the numerical value of 

the flow rate, but the boundary condition conserves its form. In this case the solution is simple 

and may be promptly obtained by superposition. However if the well is produced at constant 
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pressure, the conditions describing the sandface flow are considerably different for both the 

production and shut-in phases of the test. This is not a trivial problem. 

A drillstem test represents another important problem in pressure transient testing. 

Analysis of pressure response obtained from a drillstem test provides important additional 

information for deciding whether it is economical to complete a well. Again, interpretation of 

DST pressure buildup data has classically been based on methods where the basic assumption 

is that the well has been produced at a constant rate. However, solution to the diffusivity 

equation for a constant rate production gives a declining flowing pressure with time, yet most 

DST’s show an increasing flowing pressure during production. This apparent paradox suggests 

that application of the Homer (1951) method to analysis of DST pressure buildup data may 

lead to uncertain results. 

An original approach was used to model the DST problem. A DST can be characterized 

as a changing wellbore storage problem following an instantaneous pressure drop at the well. 

During production, the wellbore storage coefficient is given by the rate of fluid accumulation 

inside the wellbore. On shut in, the wellbore storage mechanics change to a process of fluid 

compression below the bottom hole valve. This concept is useful to model both the flowing 

and pressure buildup phases with a single inner boundary condition. 

According to the previous discussion, there is a need to develop a procedure to solve the 

diffusivity equation with time-dependent boundary conditions. Such procedure could be appli- 

cable to important problems in well testing. 

This work describes a general procedure for solution of transient flow problems with 

time-dependent boundary conditions. The method uses the unit step function, or combinations 

of unit step functions, to write a boundary condition which is valid for all times. Applications 

to pressure buildup produce analytical solutions correct for both the flowing and shut-in 

periods. These solutions are obtained by solving the diffusivity equation with a single inner 

boundary condition which includes the mixed conditions for flow and buildup. Both a skin 

effect and wellbore storage may be considered. The solution is obtained by Laplace 
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transformation. The method can be used to solve a variety of other significant problems. 

Thus, another purpose is to present new transforms and operational rules useful for other prob- 

lems. 

This work is organized in sections with the object of describing a comprehensive 

approach to solutions of transient testing problems. Section 2 discusses briefly the history of 

well test analysis. Section 3 presents a description of the drillstem test. It also describes the 

formulation of the governing partial differential equations and appropriate boundary conditions 

for the drillstem test problem. A general method of solution to transient flow problems with 

time dependent boundary conditions is described in Section 4. The method is applied to solu- 

tion of two classical problems; pressure buildup following either constant-rate or constant- 

pressure production. 

Section 5 presents a solution to the drillstem test problem. The solution is used to 

develop interpretation methods for drillstem test pressure data. Solutions for drillstem tests 

with multiple cycles of production and shut-in are also presented. Two field cases are dis- 

cussed in detail. Section 6 discusses the implications of the theory developed in this study 

with respect to previous analysis methods of drillstem test pressure data. 

Conclusions and recommendations are presented in Section 7. A review of useful solu- 

tions to the diffusivity equation is presented in Appendix A. Finally, Appendix B presents the 

computer program used to calculate pressure buildup curves for drillstem tests. 
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2. PRESSURE TRANSIENT TESTING 

The literature on pressure transient testing is extensive. Because the diffusivity equation 

also describes the process of conduction of heat in solids, there have been similar advances in 

both well testing and heat conduction theory. Interest in solutions to the difisivity equation 

has also been shared with hydrologists in the study of groundwater flow, and important 

advances have also been made in that field of technology. 

Pressure buildup testing has been the most widely used method to evaluate oil and gas 

wells. Historically, equations for pressure buildup analysis have been obtained through the 

application of superposition or Duhamel’s theorem. 

Measurements of stabilized pressure in closed-in wells have been described since the 

early 1920’s. Moore, Schilthuis and Hurst (1933) suggested that the rise in the bottom-hole 

pressure in closed-in wells could be used to determine formation permeability. The authors 

described an oil well test in which annulus liquid levels were measured sonically to permit cal- 

culation of the sandface flow rate. It appears that the authors presented the first clear descrip- 

tion of the mechanics of well bore storage .... a changing sandface flow rate. 

Muskat (1 937) presented an equation to describe pressure buildup in wells. He suggested 

a trial and error graphical procedure to determine both formation permeability and reservoir 

pressure from pressure buildup data. 

Theis (1935) suggested a graphical method to determine aquifer transmissivity from field 

measurements of recovery in water wells. 

The problem of constant rate production including wellbore storage was first presented in 

the petroleum engineering industry by van Everdingen and Hurst (1949). They used the 

Laplace transform method described in Carslaw and Jaeger (1941) to obtain a general solution 

in terms of a Mellin integral. They evaluated the integral and presented the results in graphical 

form. A long time approximation for the wellbore pressure was also described. Later, van 

Everdingen (1953) and Hurst (1953) extended this solution to include a skin effect. It is some- 
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times overlooked that van Everdingen and Hurst (1949) presented the zero skin type curve in 

their classic study. 

Horner (1951) applied superposition to the constant terminal rate solution to obtain a 

pressure buildup equation similar to the one described by Theis (1935). Horner (1951) used 

this solution to propose a method to estimate both the formation permeability and the static 

reservoir pressure from pressure buildup data. He also studied the effect of closed reservoirs 

on pressure buildup in wells. He did not include the effect of wellbore storage in his theoreti- 

cal model. 

Apparently the first study of constant-pressure production followed by shut-in was 

presented by Jacob and Lohman (1952). An analytical solution to the problem of radial heat 

conduction with constant temperature at the inner boundary had already been presented by 

Jaeger (1942). He also presented an asymptotic expansion for the surface heat flux for large 

values of time. Later, Jaeger (1955) used that solution to evaluate the transient radial tempera- 

ture distribution. The author also computed the temperature change on the internal cylindrical 

surface after shutting off the supply of heat required to maintain a constant internal tempera- 

ture. This problem is analogous to pressure buildup following constant pressure production, 

including wellbore storage effects. In another study, Jaeger (1956) presented the solution to a 

heat conduction problem which is analogous to the constant-rate skin and wellbore storage 

problem. The author also considered a problem which was later identified to be equivalent to 

the flow period of a drillstem test, 

The drillstem test has been used as a primary tool for formation evaluation since its intro- 

duction in the petroleum industry in 1926. According to Olson (1967), in the early stages of 

its development a DST was mainly used to identify reservoir fluids. It was not until the early 

1950's that drillstem tests were properly designed to obtain reliable pressure buildup data. 

Saldana-Cortez (1983) presents a comprehensive literature review on drillstem tests. 

The flowing phase of a drillstem test is conceptually similar to a "slug test" in water well 

testing practise, which was introduced by Ferris and Knowles (1954) as a means of 
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determining aquifer transmissivity. The authors presented their solution based on the instan- 

taneous point source described in Carslaw and Jaeger (1947). They used the asymptotic nature 

of the solution to propose a graphical method to estimate aquifer transmissivity from long time 

data. The Fems and Knowles (1954) solution did not match both short and intermediate time 

responses of observed "slug test" data adequately. 

Jaeger (1956) presented a rigorous solution to an analogous heat conduction problem. He 

showed the difference between solutions for either positive or zero skin effect. Jaeger also 

presented short and late time approximations for the equivalent "slug test" problem. Cooper 

et af (1967) applied Jaeger's (1956) solution to develop a "slug test" type curve for estimating 

aquifer transmissivity. The authors did not consider a skin effect, however. 

Dolan et al (1957) discussed the application of the Homer equation to pressure buildup 

in drillstem tests. They concluded that in the case of a gradual change in the flow rate, the 

average flow rate should be used to compute the formation permeability. From their results, it 

was apparent that the correct Homer straight line would not develop for practical values of 

shut-in time. 

Matthews and Russell (1967) compiled and organized the information on pressure tran- 

sient testing. Their monograph included a chapter on drillstem tests. 

Agarwal et al (1970) presented a review of literature on heat conduction problems which 

included wellbore storage effects. They computed Jaeger's (1956) integral for the constant rate 

solution and presented the results as families of type curves. Ramey (1970) used those curves 

to describe the use of type curve matching in analysis of short term tests. 

Agarwal and Ramey (1972) showed that the wellbore pressure solution for the flowing 

phase of a drillstem test is proportional to the time derivative of the wellbore pressure solution 

for constant rate production with skin and wellbore storage effects. The authors also described 

an approximate solution for the problem of constant rate production with an abrupt change in 

wellbore storage. Earlougher er al (1973) discussed the effects of changing wellbore storage 

on injection well testing. 
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Ramey et al (1975) computed and correlated the "slug test" solution given by Jaeger 

(1956). The authors presented their results in terms of type curves which include both wellbore 

storage and skin effect combined into a correlating parameter. 

Earlougher (1977) presented a monograph on advances in well test analysis which 

included a chapter on drillstem testing. 

Ehlig-Economides and Ramey (1979) used the superposition integral to compute the 

shut-in pressure after production at constant pressure. They concluded that the correct Horner 

straight line could be obtained by using an equivalent production time based on material bal- 

ance. They also concluded that the flow rate at the time just prior to shut-in should be used to 

compute the reservoir permeability. 

Uraiet and Raghavan (1979) solved the same problem using a finite difference technique. 

They concluded that the Homer time ratio should be computed with the correct production 

time, and the average production rate should be used to determine reservoir permeability. 

Soliman (1981) used the unit step function to represent the inner boundary condition for 

pressure buildup following constant-rate production. He also derived an expression for the 

shut-in pressure after a very short production period. 

There are other pertinent and important references on pressure transient testing. During 

the past ten years the Stehfest (1970) algorithm has been widely used to compute pressure tran- 

sient solutions from the inversion of Laplace transform solutions. With the advances in digital 

computing power, it is now possible to compute solutions for very complex models. Also, 

automated interpretation of well test data using non-linear regression techniques is now practi- 

cal. Recent developments in measurement of bottom hole rates enable the use of deconvolu- 

tion methods in analysis of well test data. However, analytical solution methods will still play 

an important role in the future trend of well test analysis. 
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3. STATEMENT OF THE DRILLSTEM TEST PROBLEM 

A description of the drillstem test is presented in this section. The physical processes 

and fluid flow mechanisms taking place both in the reservoir and in the wellbore are discussed 

in order to establish a mathematical model for the drillstem test problem. The partial 

differential equation describing radial flow in the reservoir and appropriate boundary conditions 

for the drillstem test problem are presented. Wellbore storage mechanics are discussed for 

both the production and shut-in phases of a drillstem test. 

3.1. DRILLSTEM TEST DESCRIPTION 

Basically a drillstem test may be considered to be a temporary completion of a well. A 

DST tool, which is connected to the lower end of the drill string, is run into a mud-filled 

borehole in order to isolate the interval of interest from the surrounding zones. A sequence of 

production and shut-in phases is then performed. 

The basic equipment comprising a modern DST tool, from bottom to top, are; 

1) pressure gauges 

2) perforated pipes 

3) by-pass valve 

4) tester valve 

5) drill string 

A schematic of the operation of a basic DST tool for the several phases of a test is 

presented in Fig. 3.1. Bottom hole charts connected to the pressure gauges record the pressure 

history of the test. A typical pressure-time chart is presented in Fig. 3.2. 

The following discussion refers to the fluid mechanics im and around the tool as displayed 

in Fig. 3.1 and to the DST chart presented in Fig. 3.2. The base line (line A-H) in Fig. 3.2 is 

drawn before the pressure gauge is assembled into the drill siring, and it shows a record of the 
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Figure 3.2. DST pressure-time chart 
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atmospheric pressure at the well location. During the trip down the borehole (line A-B in Fig. 

3.2), the pressure gauge records the increase in the hydrostatic mud pressure. The opened by- 

pass valve (Fig. 3.1-1) avoids pressure surges into the formation. 

As the DST tool reaches the testing depth, the pressure gauge records the hydrostatic 

mud pressure (point By Fig. 3.2), while the wellhead flow equipment is being assembled. The 

packer is then set, the by-pass valve is closed, and a complete isolation of the testing interval 

is obtained. Compression of the DST tool after setting the packer activates a hydraulically 

operated time-delay mechanism which controls the opening of the tester valve. 

By the time the tester valve is opened, a sudden pressure drawdown is imposed on the 

formation (line B-C in Fig. 3.2), because the pressure immediately above the tester valve is 

either atmospheric or controlled by any liquid or gas cushion used in the test. During the fol- 

lowing production phase, formation fluids flow into the drill string (Fig. 2.1-2). The fluid 

accumulation inside the drill string causes an increasing back pressure on the formation (line 

C-D in Fig. 3.2), which is typical of liquid production wells. 

At point D (Fig. 3.2) the tester valve is closed (Fig. 3.1-3), and line D-E (Fig. 3.2) 

reflects the pressure buildup taking place at the sandface. During this phase, the fluid in the 

storage chamber between the packer and the bottom of the hole is continuously compressed, as 

the reservoir fluid approaches a new equilibrium state represented by the static reservoir pres- 

sure. 

At the end of the pressure buildup phase, the packer is released (Fig. 3.1-4 and line E-F 

in Fig. 3.2), and the final hydrostatic mud pressure is recorded (line F-G in Fig. 3.2). Finally, 

the DST tool is pulled out of the hole (line G-H in Fig. 3.2) and the test is completed, 

Pressure-time data obtained from drillstem tests are used with methods of interpretation to 

provide estimates of reservoir parameters and well condition. 
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RESERVOIR PROBLEM 

In order to use DST pressure data for determining reservoir properties, a mathematical 

model is required to describe the physical processes occurring during the test. Fluid produc- 

tion and wellbore pressure response reflect the characteristics of the reservoir. Reservoir pres- 

sure is considered to be a function of position and time. Fluid flow in the reservoir may be 

described by a partial differential equation, and we seek a solution satisfying the conditions of 

a drillstem test. 

3.2.1. Reservoir Equation 

mow of fluids through porous media may be modeled by the diffusivity equation, which 

is derived from the principle of mass conservation and Darqy's law, with an appropriate equa- 

tion of state for the fluid. See Manhews and Russell (1967) for a more detailed derivation of 

this governing equation. Because the drillstem test may be viewed as a short term test, and due 

to the cylindrical geometry of the well, the flow in the reservoir may be described by the radial 

form of the diffusivity equation, which is: 

where: 

r =  

t =  

Po-, t) = 

Q , =  

c , =  

cL= 

k =  

radial distance from the center of the well, EL], 

elapsed time, [TI, 

reservoir pressure, [MI L]-' PId2, 

reservoir porosity, fraction of bulk volume, 

total compressibility of the system, [MI-' L] [TI2, 

fluid viscosity at reservoir conditions, [MI L]-' [TI2, 

reservoir permeability, &I2. 
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In the derivation of the diffusivity equation, the following assumptions were made: 

(1) radial horizontal flow, 

(2) isotropic and homogeneous porous medium, 

(3) single phase flow, 

(4) constant fluid viscosity, 

(5)  constant fluid compressibility, 

(6) small enough pressure gradients everywhere in the reservoir such that the pressure 

gradient squared term in the rigorous equation can be neglected. 

3.2.2. Reservoir Initial Condition 

The reservoir is assumed to have a homogeneous pressure distribution before the start of 

the test. The initial reservoir condition may be represented by: 

pi = initial reservoir pressure, [MI L1-I 

rw = wellbore radius, L]. 

This condition may be obtained if the testing interval is properly isolated from the sur- 

rounding zones. Furthermore this condition assumes no "super-charge" forces in the reservoir. 

"Super-charge" is caused by a pressure gradient near the wellbore resulting from the invasion 

of the porous zone to be tested by water loss from the drilling fluid. "Super-charge" effects 

may be eliminated if the radius of investigation during the flowing phase of the test is greater 

than the invaded zone. This usually can be achieved with a relatively short flow period. 

3.2.3. Outer Boundary Condition 
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Due to the short term nature of a drillstem test, the wellbore pressure response is not 

likely to be affected by the external reservoir boundaries during the test period. Therefore, the 

outer boundary condition for the drill stem test problem may be represented by assuming a 

reservoir of infinite extent in the radial direction, which is given by: 

lim p(r, t) = pi . (3.3) 

For the case of a well located either close to a reservoir boundary or in a highly transmis- 

sive formation, boundary effects may play an important role in the late: time wellbore pressure 

response. These cases will not be considered in this work, however. 

r--)m 

3.3. WELLBORE PROBLEM 

As the reservoir energy drives formation fluids towards the surface, fluid flow in the drill 

string must be considered in order to establish the equation for the wellbore pressure. The 

general wellbore problem should include both frictional and inertial effects due to possible 

multiphase flow in the drill pipe. However, if the production rate is small as in the case of 

low productivity wells, the wellbore problem may be simplified to the equation for a material 

balance on the produced fluids. 

3.3.1. Wellbore Initial Condition 

Fluid production in a DST begins by imposing an instantaneous pressure drawdown at 

the sandface due to opening of a bottom hole valve. It may be described by the following 

wellbore initial condition: 

PW(0,) = Po 9 (3.4) 
where: 

pw(t) = wellbore pressure, [MI b1- I  

po = initial flowing pressure, [MI b]-' 
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Drillstem tests may be run with a liquid cushion inside the drill string. In this case, the 

initial flowing pressure po is given by the product of the height and the average density of the 

liquid cushion, plus any existing gas pressure at the top of the liquid column. 

Another point to be considered is that the wellbore initial condition is based on the idea 

that the tester valve is opened instantaneously. Because these valves are mechanical devices, 

they usually require a finite time to be fully opened. However, this effect should only be 

important for very short flow periods, and thus they would affect short-time pressure data 

analysis only for highly productive wells. 

3.3.2. Flowing Phase 

In liquid-producing wells, the flow period of a DST is characterized by a continuous 

accumulation of reservoir fluids inside the drill string. As production time increases, the bot- 

tom hole wellbore pressure increases due to the increasing liquid level of produced fluids. 

Because the flow period is usually short and no liquid is produced at the surface, the rate of 

fluid accumulation in the wellbore must equal the sandface flow rate. Thus, a material balance 

for the produced fluid yields: 

where: 

O < t < $ ,  

and: 

B = formation volume factor, dimensionless, 

g = gravity acceleration constant, [LI  TI-^, 

pw(t) = bottom-hole wellbore pressure, [MI E-.]-' 

qw(t) = instantaneous flow rate at sandface, &I3 [TI-'. 

rp = internal radius of the drill string, [LI2, 

(3.5) 
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p = average density of the liquid in the wellbore, [MI [L]-3, 

CF = flowing-phase wellbore storage factor, [M]-'[L]4[T]2, 

tp = production time, PI. 

The DST flow period condition is similar to the "slug test" condition, where a change in 

pressure may be obtained by instantaneously removing a column of water from a well with an 

initial hydrostatic level. Because the amount of liquid initially in the borehole is maximized in 

a "slug test", inertial effects are important and oscillations in the fluid level may occur. An 

oilfield DST with a gas cushion tends to minimize inertial effects in the wellbore. However, 

because of the mass of liquid in the formation, inertial effects may affect fluid flow in the 

reservoir. This problem has not yet been studied , and it may be important when testing high 

rate inflow wells, 

3.3.3. Shut-in Phase 

After a well is closed by means of a bottom-hole valve, the reservoir fluid reaching the 

wellbore during the pressure recovery phase is compressed below the shut-in point. This may 

be described by: 

where: 

cs = c, v w  Y 

and: 

Vw = wellbore volume below the shut-in point, [L: 13, 

c, = compressibility of the fluid in the wellbore, [MI-'[L] [TI2, 

Cs  = shut-in phase wellbore storage factor, [M]-'[LI4[Tl2. 

Similarities between Eq. (3.5) and Eq. (3.7) suggest that the DST problem may be 

viewed as a "slug test" with a changing wellbore storage coefficient. During the production 
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phase, the wellbore storage mechanism is controlled by a changing liquid level, and after the 

shut-in of the well, wellbore storage becomes compressibility dominated. The compressibility- 

dominated wellbore storage coefficient may be orders of magnitude smaller than the changing 

liquid level wellbore storage factor. This may be observed by a sharp change in a DST 

pressure-time curve after the shut-in time. 

3.3.4. Coupling Conditions 

So far the reservoir and wellbore pressures have been treated independently. However 

the two pressures may be coupled by a condition which considers a skin effect at the wellbore 

and by the definition of the sandface flow rate. 

The instantaneous flow rate at the sandface is given by Darcy’s law. For the case of 

radial flow, it is given by: 

r 1 

where: 

h = formation thickness, [L]. 

As described by van Everdingen (1953) and Hurst (1953), the assumption of an 

infinitesimal skin around the sandface leads to the following condition: 

(3.10) 

where: 

S = skin effect. 

The case of a negative skin effect may be handled by the effective wellbore radius con- 

cept as defined in Matthews and Russell (1967), which yields: 

PW(0 = p(r4, t) Y s 0 9 ’  

and the effective wellbore radius rw’ is defined as: 

(3.11) 
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r,,,' = rw e-S . (3.12) 

In practice, Eqs. (3.10) and (3.11) are applicable for cases where the extent of either a 

damaged or stimulated region around the wellbore is of the order of a few wellbore radii. If 

the extent of the altered region is large, the coupling condition should be modified to consider 

both the radius of the altered zone and its transmissivity, using the composite reservoir con- 

cept. 

3.4. NORMALIZED EQUATIONS 

For the sake of simplicity, the equations describing the drillstem test problem can be nor- 

malized by introducing the dimensionless variables defined in Table 3.1. The DST problem is 

then summarized by the following equations: 

Reservoir Equation: 

Reservoir Initial Condition: 

Reservoir Outer Boundary Condition: 

Wellbore Initial Condition: 

Wellbore Flowing Equation: 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 
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Wellbore Shut-in Equation: 

Sandface Flow Rate: 

Skin Effect: 

(3.18) 

(3.19) 

(3.20) 

(3.21) 
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time 

radius 

reservoir pressure 

wellbore pressure 

sandface flow rate 

cummulative recovery 

wellbore storage factor 

TABLE 3.1 - Definitions of Dimensionless Variables 
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4. SOLUTION METHOD 

This section describes the use of the Laplace transform and the unit step function to solve 

transient fluid flow problems with time-dependent boundary conditions. Operational rules for 

the unit step function are also derived. The proposed solution method has been applied to 

solve the problems of pressure buildup following either constant-rate or constant-pressure pro- 

duction. 

4.1. LAPLACE TRANSFORMATION 

The method of Laplace transformation has been used extensively to solve transient fluid 

flow problems. The Laplace transform of a function g(t) is defined as: 

LEg(t)l = g(s) 

where: 

m 

= 1 e"' g(t) dt , (4.1) 

s = complex Laplace transform variable, [TI-', 

g(t) = original function to be transformed, 

g(s) = Laplace-transformed function, - 

L[ ] = Laplace transform operator notation. 

Laplace transformation is useful in solving transient problems described by linear 

differential equations. When the transformation is applied to an ordinary differential equation 

it reduces the original problem to an algebraic problem. A partial differential equation can be 

reduced to an ordinary differential equation in Laplace space. Once the transformed problem is 

solved, in many cases the real time solution may be found directly from tables of Laplace 

transforms. A summary of some useful operational rules and a table of Laplace transforms are 

presented by Churchill (1 944). 

If the inverse Laplace transform can not be found directly, it may be determined by the 



- 22 - 

use of the inversion formula, which is given by the Mellin inversion integral: 

a+i- 

where: 

i = complex number, Gi , 

a = real number lying to the right of the singularities of g(s). 

The use of the inversion formula may sometimes lead to solution forms which are 

difficult to compute. However, several methods have been developed to invert the Laplace 

transform numerically. Among them, the Stehfest (1970) algorithm has proven to be efficient 

in the computation of inverse Laplace transforms obtained from well test problems. 

The Laplace transform method is also useful in determining both early and late time lim- 

iting analytical forms of solutions to transient flow problems. For late time, the transformed 

solution is evaluated as the transform variable, s, approaches zero. For early time, the 

transform is evaluated as s + 00. 

42. OPERATIONAL RULES FOR THE UNIT STEP FUNCTION 

The unit step function is defined by Churchill (1944), as: 

and its Laplace transform is: 

The unit step function and its complement are presented graphically in Figure 4.1. This 

function is useful in expressing boundary conditions which depend upon time. Often this pro- 

cedure leads to forms requiring the transform of a product of the step function and some other 

function of time, i.e., S,f(t). 
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Due to the nature of the unit step function, the Laplace transform of s k  f(t) is given by: 

Note in Eq. (4.5) that the lower limit of integration is k rather than zero, since Sk is zero 

for 0 < t < k. Equation (4.5) can also be expressed as an ordinary Laplace transform integral 

from 0 to 00 as follows: 

L[sk f(t)] = 3 s )  - j e-" f(t) dt . (4.6) 

Also, according to the uniqueness of the Laplace transform, the following inversion formula 

can be obtained from Eq. (4.6): 

The Laplace transform of the product of the unit step function and the time derivative of 

f(t) is: 

or, following the logic leading to Eq. (4.6): 

which m ay be integrated by parts to yield: 

Because the function f(t) may be discontinuous at t = k, the notation f(k) in Eq. (4.10) 

refers to the limit of f(t) as t approaches k from the left. Similarly, f(k+) represents the limit as 

t approaches k from the right. From Eq. (4.7) and Eq. (4.10): 
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Another application of the unit step function is to find the Laplace transform of time- 

derivatives of sectionally continuous functions. Let f(t) be a sectionally continuous function as 

presented in Figure 4.2.1, with discontinuities at tl, t2, ....,t,,. This may be represented as: 

f(t) = fo(t) , 0 < t < t1 , (4.12) 

= fl(t) , tl e t < t2 , 

= fJt) 9 t > g ,  
where fk(t) are piecewise continuous functions defined in the intervals tk < t e tkd -1 9 

k = 0, 1, ,.., n, with t,, = 0. For times greater than fn, the sectionally continuous function f(t) 

may be represented by a combination of unit step functions, or: 

(4.13) 

and a typical segment of f(t) is presented in Figure 4.2.2. 

The Laplace transform of the derivative of this piecewise continuous function, f(t), is 

given by: 

which results in: 

tk+l n -  1 00 

L[ f(t) 1 = e-st f((t) dt + e-st f,'(t) dt . 
k = O  h 

Each integral term in Eq. (4.15) may be integrated by parts to yield: 

n -  1 n - 1  4+l 
L[ f(t) I = x [ fk(t) 12 - S x J e"' fk(t) dt + 

k = O  k = O  4 

00 

[ fn(t) - s I e-st fn(t) dt . 
b 

(4.14) 

(4.15) 

(4.16) 
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Figure 4.2.1. Graph of a piecewise continuous function 
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Figure 4.2.2. Segment of a piecewise continuous function 



Because a continuous interval may be divided into a finite number of subintervals, 

integration of a function along a given interval may be expressed as a series of integrals along 

the subintervals. Hence, the Laplace transform of the piecewise continuous function f(t) of 

Figure 4.2 may be expressed as: 

where: 

Equation (4.16) may be written as: 

(4.17) 

(4.18) 

which provides an operational rule for the transform of the first derivative of sectionally con- 

tinuous functions. Note that for a continuous function such that f{k+) = f(k) ,  Eq. (4.19) 

reduces to the standard operational rule for derivatives of continuous functions, as described by 

Churchill (1944). 

A summary of operational rules for the unit step function is presented in Table 4.1. 

43. APPLICATION OF THE UNIT STEP FUNCTION METHOD 

In order to establish a method of solution for transient flow problems with time- 

dependent boundary conditions, Laplace transformation and the unit step function were used to 

solve two important problems in well test analysis; pressure buildup following either constant- 

rate or constant-pressure production. 

43.1. Pressure Buildup Following Constant-Rate Production 

This problem considers pressure buildup in a well with skin and wellbore storage, follow- 
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ORIGINAL, FUNCTION TRANSFORM 

TABLE 4.1 - Operational Rules for the Unit Step Function 
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ing constant-rate production at the wellhead. The problem for the production phase is dis- 

cussed in detail in Appendix A. The shut-in, or pressure buildup phase, has usually been han- 

dled by superposition. In this treatment the unit step function is used to write an inner boun- 

dary condition which describes both production and shut-in by a single solution. 

During the production phase the inner boundary condition for the constant rate problem, 

assuming both skin and wellbore storage effects, is given by: 

(4.20) 

where: 

q = constant wellhead flow rate, IL]3F]-'. 

Note that definitions of dimensionless variables commonly used in solutions of constant 

rate problems differ from the definitions employed in this study, which are described in Table 

3.1. Equation (4.20) states that the wellhead flow rate, qD, is given by the sum of the sandface 

flow rate, qwD, and the rate of unloading of wellbore fluids, CD dhD/dtD. A more detailed dis- 

cussion of this inner boundary condition is presented in Appendix A. 

The wellbore pressure solution for the production phase may be expressed as: 

(4.21) 

where gwD( s, CD, tD) is the dimensionless wellbore pressure response to a unit production at 

the wellhead. The notation for gwD was chosen in order to avoid confusion with the actual 

dimensionless wellbore pressure &D. The function gwD( S ,  CD, tr,) could represent the 

wellbore pressure response for a generic system, including linear, radial, spherical or other flow 

geometries. Usually &D( s, CD, tD) has been obtained by inversion of Laplace transformed 

solutions. Appendix A describes the process employed to obtain the Laplace transformed pres- 

sure response for radial flow, which is given by Eq. (A.22). The real time inversion of this 

solution is presented graphically in Figure A. 1. 
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The solution described by Eq. (4.21) is valid as long the wellhead flow rate remains con- 

stant. Upon shut in, the surface flow rate becomes zero, and the new inner boundary condition 

is described by: 

(4.22) 

Equations (4.20) and (4.22) may be combined into one expression using the unit step 

function sk, as described in Eq. (4.3, resulting in: 

where k is equivalent to the production time tp. Factoring and cancelling like terms, Eq. (4.23) 

yields: 

(4.24) 

For times less than k, Eq. (4.24) yields the usual constant rate condition. For times 

greater than k, the condition of Eq. (4.22) results. Equation (4.24) provides an inner boundary 

condition correct for all times, which can be transformed to provide a general solution for both 

production and buildup. Application of the Laplace transform to Eq. (4..24) yields: 

A relationship between the transforms of the sandface flow rate and the wellbore pressure 

is presented in Appendix A, Eq. (A.14). Substitution of Eq. (A.14) into Eq. (4.25), and 

observing the definition of gwD( S ,  CD, s) given in Eq. (A.22), yields the following Laplace 

space solution: 

- 
PWD(~) - - -  - &D( s, CD, s) - e-ks &D( s, CD, SI - (4.26) 

qD 

The first transform is that of the storage-skin constant rate well for the total time t, while 
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the second transform is the same function evaluated for (t - k). This is the familiar result 

obtained by superposition. Eq. (4.26) may be inverted as follows: 

where: 

At = elapsed shut-in time, [TI. 

This example provides a demonstration of the essential difference between a conventional 

use of the unit step function, sk, and the new use proposed here. The unit step function is nor- 

mally used to provide a time translation of a function f(t) by k time units. Churchill (1944) 

emphasizes this point by noting that Sk is simply the translation of f(t) = 1. This can be seen 

in Figure 4.3.1. 

The product of Sk and f(t) is essentially different in its behavior. The unit step function 

causes f(t) to have the value zero between times 0 and k. At t = k+, the product, Sk f(t) has 

the value f(t) = f&). This is shown in Figure 4.3.2, and it does not represent a translation. It 

actually represents a truncation of f(t) for times less than k. 

43.2. Pressure Buildup Following Constant-Pressure Production 

Although the analytical solution of the constant-pressure production problem has been 

studied in detail, the shut-in following a constant-pressure production has not been handled 

analytically in a complete manner. The shut in period has been conventionally expressed in 

terms of a superposition integral. 

This section presents an analytical solution which combines both the constant-pressure 

production phase to time k and the following shut-in period to the total time t. The skin effect 

acts in both periods. The shut-in period requires all flow from the formation to be stored 

within the wellbore. 
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During the production phase, the wellbore pressure is described by: 

P ~ D ( ~ D )  = 1 ; 0 t~ < t p ~  

with the following wellbore initial condition: 

pwD(O+) = 

After shutting the well in, the sandface flow rate must equal the rate 

(4.28) 

(4.29) 

of fluid accumula- 

tion inside the wellbore, which may be described by the following inner boundary condition: 

(4.30) 

Conditions given by Eqs. (4.28) and (4.30) may be combined by means of the unit step 

function, Eq. (4.3), yielding: 

which may be rearranged to give: 

(4.32) 

Observing the operational rules for the unit step function given by Eqs. (4.6) and (4.10), 

and using the fact that pW&) = 1, then Eq. (4.32) may be transformed to: 

where: 

z = variable of integration, [TI. 

Substituting Eq. (A.14) into Eq. (4.33) and solving for p w ~  we obtain: 

(4.34) 
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The first right hand term is the transform of the "slug test" solution. The second term is 

the product of the transformed "slug test" solution and an integral, which is a function of the 

Laplace variable only. Therefore, using the definition of gwD( S, CD, s) given in Eq. (A.22), 

the inverse transform of Eq. (4.34) may be found in terms of a convolution integral: 

L. 

The function gwD( S, cD, tD) represents the derivative with respect to time of the constant-rate 

skin and wellbore storage solution. The product of CD and g w ~ (  S ,  CD, tD) yields the "slug 

test" solution, as discussed in Appendix A. Because [l - Sk] is zero for times greater than k, 

Eq. (4.35) reduces to: 

PwD(tD) = CD &D( s, CD, tD) + gwD( s, CD, tD-D) qwD(7D) dTD i (4.36) 

Eq. (4.36) describes the solution for the pressure buildup phase following constant-pressure 

production. As the production time approaches zero, Eq. (4.36) converges to the "slug test" 

solution. 
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5. PRESSURE ANALYSIS OF DRILLSTEM TESTS 

This section describes the use of the unit step function method to develop an analytical 

solution for the drill stem test problem which is correct for both flowing and shut-in periods. 

The effects of both skin and wellbore storage are considered. 

The solution is used to generate new methods of interpretation of pressure-time data 

obtained from field cases. Application of these new methods to field data may provide the ini- 

tial reservoir pressure, the formation permeability and the skin effect. 

5.1. SOLUTION OF THE DRILLSTEM TEST PROBLEM 

The drillstem test problem is described in Section 3 of this work. A summary of the nor- 

malized equations is presented in Section 3.4. Recall that the drill stem test may be viewed as 

a "slug test" with a step change in wellbore storage. 

The internal boundary condition for the DST problem is described by Eqs. (3.17) and 

(3.18). The unit step function can be used to write an inner boundary condition which is valid 

for all times. Hence, Eqs. (3.17) and (3.18) may be combined as follows: 

where k is equivalent to the production time t,,. For times less than k, Sk is zero and the con- 

dition of the changing liquid level wellbore storage is obtained. For times greater than k, s, is 

unity and the compressibility dominated wellbore storage period results. Observing the opera- 

tional rule given in Eq. (4.10), Eq. (5.1) can be transformed to yield: 

r 1 k 

Using the wellbore initial condition, Eq. (3.16), and recalling the relationship defined in 

Eq. (A.14), Eq. (5.2) becomes: 
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Recalling the definition of ~WD( S ,  CSD, s) described in Eq. (A.22), Eq. (5.3) may be written 

as: 

In order to invert Eq. (5.4), it is useful to recall the transform of the time derivative of 

gwD( S ,  CSD, tD). Because &D( S ,  CSD, 0) = 0, it follows that: 

c -I 

Also, from the operational rule described by Eq. (4.7), we obtain: 

r 1 

L J 

Finally, using the transforms given in Eqs. (5.5) and (5.6), Eq. (5.4) may be inverted to 

yield: 

It should be emphasized that the unit step function presented in Eq. (5.7) is referenced to 

the dimensionless time described by the dummy variable of integration, ZD. Eq. (5.7) is the 

wellbore pressure solution of the drillstem test problem, and is valid for all times. However, 

Eq. (5.7) may be expanded to represent the flowing and the shut-in phases separately by more 

simple expressions. 



~~ 
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First consider the case where tD < tpD = k . Then, Sk is zero and Eq. (5.7) reduces to: 

PWDW = csD &D< S ,  cSD, tD) + 

b 

GD - cFD) iwD< S, cSD, tD*D) P ~ D G D )  d7D 9 tD < k . d (5.8) 

From physical considerations, Eq. (5.8) must be the "slug test" solution with a changing liquid 

level wellbore storage coefficient, gwD( S ,  Cm, tD). This may be demonstrated by assuming 

that Eq. (5.8) is valid for all times, so it can be Laplace transformed yielding: 

&D(S) = CSD s gwD( SY CSDY s) + 

CSD - CFD 1 s &D( s, CSD, s) [ s FWD - pwD(o+) 1 n (5.9) 

Recalling that &D(O+) = 1, and using the definition of gwD( S ,  CsD, s) given by Eq. (A.22), 

then Eq. (5.9) may be solved for FWD(s) to yield: 

&D(S) = 
CFD 

1 = CFD s jFWd Sy CFD, (5.10) 
s c m +  

gwD( s, s) 

which, using the fact that gwD( s, C,, 0) = 0, may be inverted to real time space as: 

PwD(tD) = c m  &D( SY CFD, tD) ; tD < k (5.11) 

Eq. (5.1 1) describes the wellbore pressure response during the production phase of a drillstem 

test. 

Another important component of the solution is the equation for the shut-in phase. 

Because for tD > k it follows that Sk = 1, then Eq. (5.7) becomes: 

PWDW = csD i k ~  S ,  cSD, tD> + 

(cSD - cFD) iA S ,  csDY tD-D) P L ( T D )  d7D tD > k (5.12) i 
This solution has some interesting features. First, consider the case where the production time 



- 39 - 

approaches zero. Then, the integral term in Eq. (5.12) vanishes and the result converges to the 

"slug test" solution with a compressibility dominated wellbore storage. 

Also, because for the production phase a relationship between the sandface rate and the 

wellbore pressure may be obtained from the wellbore condition given by Eq. (3.17): 

(5.13) 

(5.14) 

Now, consider the case of pressure buildup following constant-pressure production. For 

o < tD < k, it follows that pwD (tD) = 1 and then &D(tD) = 0. merefore, in this case Q. 

(5.14) simplifies to: 

This result is identical to Eq. (4.36). Equation (5.15) is a particular case of the drillstem test 

solution, which could have been obtained by assuming Cm > CsD in Eq. (5.12). In fact, Eq. 

(5.15) may be viewed as the limiting case of the drillstem test solution as CFD + 00. This 

could be ideally represented by production of a weightless fluid. 

5.1.1. Late-Time Approximation 

During the shut-in phase of a drillstem test, the sandface flow rate rapidly approaches 

zero, yielding a smooth pressure recovery curve. Pressure-time data collected during this phase 

are ideal for engineering analysis and may be used with interpretation methods to obtain reli- 



able estimates of reservoir parameters. 

A practical method of analysis for DST pressure buildup data can be developed based 

upon a late-time approximation for the solution given in Eq. (5.12). Consider that the shut-in 

time is long enough so that the following approximation may be used: 

Using this relationship, the integrand in Eq. (5.12) reduces to p&zD) and may be 

promptly integrated. Also, using the fact that pw~(0)  = 1, then Eq. (5.12) yields: 

Because the average production rate is given by: 

where: 

(5.18) 

q: = average production rate, [Ll3F]-', 

Qdt)  = cumulative fluid recovery, LI3, 

and recalling that during the flow period fluid accumulation in the drill string equals the cumu- 

lative sandface flow, or QwD(k) = Cm [ 1 - p,~(k)], then EQ. (5.17) may be expressed as: 

(5.19) 

Substituting the expression for the late-time approximation for gwD( S ,  csD, tD) given by 

Eq. (A.33) into Eq. (5.19), we obtain the late-time pressure response for the shut in phase, 

which becomes: 

(5.20) 

Recalling the definitions of the dimensionless variables described in Table 3.1, Eq. (5.20) may 
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be expressed in terms of dimensional variables, resulting in a Cartesian straight line: 

with slope: 

where the average production rate, q;, is computed from: 

and where: 

(5.21) 

(5.22) 

(5.23) 

Q = slope of the Cartesian straight line, [MI j&]-'[T]-2, 

pfi = initial flowing pressure, po, [MI j&]-'[T]-2, 

pff = final flowing pressure, [MI &]-'[T]-2, 

hS = wellbore shut-in pressure, [MI [L]-'[T]-2. 

From Eqs. (5.21) and (5.22) it is apparent that a Cartesian plot of pws versus the ratio V($+At) 

for field pressure buildup data may yield a straight line with slope proportional to the recipro- 

cal of permeability. Extrapolation of the straight line to an infinite shut-in time, 

#, / ($+At) + 0, should yield the initial reservoir pressure. 

The expression: 

(5.24) 

is a volumetric ratio, comparing the additional volume of fluid that could be compressed into 

the storage chamber during the pressure buildup phase to the fluid volume recovered during the 

production phase. For most DST's the factor or, is negligible compared to unity, and the for- 

mation transmissivity may be determined from a simplified version of Eq. (5.22), which is: 

* 
k h  qw - -  - (5.25) 
P 4nmc 
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5.1.2. Results 

Another important aspect of the solution presented in Eq. (5.20) is that for long shut-in 

times, the pressure buildup data are not influenced by the skin effect. The skin effect may 

affect the time of the start of the Cartesian straight line, but not the slope. Hence, in order to 

determine the degree of formation damage (or stimulation) of the well, information from the 

previous flow period is required. 

If wellbore storage effects have become negligible for the wellbore pressure response of a 

constant-rate well, then gwD( S, cD, tD) may be expressed by a logarithmic approximation. 

According to Ramey et al (1975), this is true when the production time meets the following 

criterion: 

t D > C D ( 6 0 + 3 S S ) ,  s > o .  (5.26) 

Because the "slug test" solution may be expressed as the time derivative of the constant 

rate skin and wellbore storage solution, it may be expected that the start of the Cartesian "slug 

test" straight line may be defined by a similar criterion. However, additional work has yet to 

be done in order to verify this point. Furthermore, according to Eq. (5.26), both the skin effect 

and wellbore storage should affect the beginning of the straight line. 

Fig. 5.1 presents the influence of skin effect on the pressure buildup response of a DST. 

The Cartesian straight line only exists for very small values of the ratio $/($,+At), when skin is 

large. If the skin effect is expected to be large, the well should remain shut in for an extended 

period of time. 

The influence of the compressibility-dominated wellbore storage coefficient on the pres- 

sure buildup is presented in Fig. 5.2. A more reliable pressure buildup analysis may be 

accomplished if the wellbore storage factor for the shut-in phase is minimized. A small 

wellbore storage coefficient during pressure buildup may be achieved by reducing the dead 

volume below the bottom-hole valve. 
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5.1.3. Damage Ratio 

A common parameter used in well test analysis is the damage ratio, which is defined as 

the ratio of the theoretical flow rate that would be obtained if the well were not damaged (or 

stimulated), and the actual flow rate, assuming the same wellbore pressure drop is applied in 

both cases, According to this definition, the damage ratio for transient flow may be expressed 

as the ratio EY2 In (4tDly) + SI/[% ln(4t&)]. Therefore, the damage ratio changes with time, 

and a more general definition is required in order to quantify the degree of formation damage 

or stimulation. 

In general, low productivity wells are more likely to be produced at a condition of con- 

stant bottom-hole pressure rather than at a constant flow rate. Considering the case of constant 

pressure production, the long-term response of a well in a closed drainage area may be charac- 

terized by an exponential rate decline, which according to Ehlig-Economides and Ramey 

(1979) is given by: 

(5.27) 

(5.28) 

where: 

A = drainage area, [LI2, 

P = geometric factor, 

CA = Dietz shape factor. 

Assuming a well producing from the center of a closed square (CA = 30.88), exponential rate 

decline starts at tDA = 0.1. The damage ratio at the onset of exponential rate decline may be 

computed from the ratio between flow rates defined by Eq. (5.27) considering a finite and a 

zero skin effect. For an equivalent drainage radius of / rw = 2,000 then P = 6.29, and the 



- 46 - 

expression for the damage ratio becomes: 

-- 0.1 s 
DR = [ 1 + 0.1592 S ] e 6.29 + . (5.29) 

Eq. (5.29) may be modified to consider any particular drainage shape or reservoir size, as well 

as to consider a steady-state flow regime. 

5.2. SOLUTION OF THE GENERAL DST PROBLEM 

In this section we consider the general case of the changing wellbore storage problem, 

including step changes in the wellbore pressure drop. Figure 5.3 presents a schematic of the 

general case of the DST problem. 

So far we have studied the case where no discontinuity is present in the wellbore pres- 

sure, by the time the wellbore storage factor is changed. For instance, when the well is shut- 

in, the wellbore storage coefficient changes instantaneously from CF to Cs, but the wellbore 

pressure remains continuous, pwD(k) = pwD(k+). 

In most DST's, after the first pressure buildup is completed, the bottom hole valve is 

opened again, and a new cycle of production and shut-in begins. When the valve is opened, 

wellbore storage changes sharply from Cs to CF, and there is also a discontinuity in the 

wellbore pressure, which drops from psfl to pfi2, as shown in Fig. 5.4. In view of Fig. 5.4, the 

following definitions apply: 

pfil = initial flowing pressure, first cycle, [MI EL]-' 

pfi2 = initial flowing pressure, second cycle, [MI L1-l 

pffl = final flowing pressure, first cycle, [MI L1-l 

pfc = final flowing pressure, second cycle, [MI &I-' 

psfl = final shut-in pressure, first cycle, [MI L1-l 

pSn = final shut-in pressure, second cycle, [MI L1-l 
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Figure 5.3 DST General Case 
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Figure 5.4 Pressure-Time Behavior for DST 



- 49 - 

As long as the wellbore storage coefficient remains constant during a given time interval, 

t,-l < t < tj, the general expression for the inner boundary condition of the DST problem is 

given by: 

dpwD c. - + qwD(tD) = 0, tE1 t c tj ; j = 1, n . (5.30) ’ dtD 

Considering the time interval k-1 < t < k, the function (sk-1 - sk) is unity in this interval 

and zero elsewhere. This is shown in Fig. 5.5, where k = 0, 1, 2, ..., n correspond to the 

elapsed time 0, tl, t2, ..., b. Using this convention, each term of Eq. (5.30) may be expressed 

as : 

[ sk-1 - Sk ] (5.31) 

For time greater than n-1, these expressions may be combined into a single equation, resulting 

in a general inner boundary condition which is valid for all times: 

Equation (5.32) may also be written as: 

I = 0 . (5.32) 

Applying the definition of the Laplace transform, it can be shown that: 

k 

L [ (Sk-1 - S3 F(t) ] = J e-st F(t) dt , 
k- 1 

(5.33) 

(5.34) 

and therefore the Laplace transform of Eq. (5.33) becomes: 

Due to the nature of the unit step function, the second integral term in Eq. (5.35) may be 

expanded as: 
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Figure 5.5 Combination of Unit Step Functions 
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and because the function pwD(tD) is only sectionally continuous, the Laplace transform of its 

derivative in Eq. (5.36) is given by the operational rule defined in Eq. (4.19). Therefore, using 

Eqs. (4.19) and (5.36), Eq. (5.35) reduces to: 

Noting that &~(0+)  = 1 and using the relation between j.Tw~ and g w ~  defined in Eq. 

(A.14), Eq. (5.37) may be algebraically manipulated to yield: 

(5.38) 

This result is general and may be used to represent any reservoir model described by the 

diffusivity equation. Recalling the definition of gw~(  S, CD, s) given in Eq. (A.22), and solving 

Eq. (5.38) for FW~(s )  we obtain: 

(5.39) 

The wellbore pressure solution for the multi-cycle DST problem is then obtained by 

inverting Eq. (5.39) from Laplace space, which yields: 
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(5.40) 

This solution can be applied to interesting practical cases. 

5.2.1. Change in Pipe Diameter 

In some DST's the flow period is characterized by a change in the wellbore storage 

coefficient due to different drill collar and drill string internal diameters. Figure 5.6 shows a 

typical wellbore pressure response for this case. Notice the change in slope as the liquid level 

reaches the interface between the drill collars and the drill pipe at time tl. 

Because for this case the wellbore pressure is continuous, Eq. (5.40) is simplified, and the 

equation for the pressure buildup period becomes: 

'ID 

pWD(tD) = csD &D(S, cSD, tD) + (cSD - c1D) iWD(s, cSD, ~D-w P~D(TD) ~ T D  + 

If the shut-in time is large, so that gWD(s, cSD, tD-t@) = gWD(s, cSD, tD), then the 

integrands in Eq. (5.41) become &D(TD). Performing the integrals and using a long time 

approximation for the "slug test" solution described in Appendix A, which is given by 

&(s, CSD, tD) = Csd(2 tD), Eq. (5.41) reduces to: 

(5.42) 

where the average flow rate is given by: 

The long time behavior of the shut-in pressure is not influenced by the change in storage dur- 
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Figure 5.6 DST with Change in Pipe Diameter 
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ing production. An important consequence of this equation is that even for large changes in 

the wellbore storage coefficient during the flow period, the average flow rate should be used 

for computing the permeability from analysis of pressure buildup data. This fact may be useful 

in the analysis of pressure data obtained from closed chamber tests. 

5.2.2. Second DST Cycle 

A pressure response for a double-cycle DST is presented in Fig. 5.4. For the general 

case of a double cycle where the storage coefficients are unequal, Eq. (5.40) becomes: 

For the case where C1 = C3 = CF and C2 = C4 = Cs, Eq.  (5.44) reduces to: 

Making the assumptions that each shut-in time is large compared to its corresponding 

flowing time, the terms inside the first and second integrals of Eq. (5.45) can be approximated 

by gwD(s, cSD, tD) and gWD(s, cSD, tD-t2D) respectively. Using the fact that at late time 

~wD(S,  CSD, tD) = Csd(:! tD), Eq. (5.45) becomes: 
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Applying the nomenclature defined in Fig. 5.4, EQ. (5.46) results in: 

where the dimensionless time ratio & is given by: 

and the coefficients ~ ’ s  are given by: 

and: 

(5.46) 

(5.47) 

(5.48) 

(5.49) 

(5.50) 

53. FIELD CASES 

So far we have discussed the use of an analytical solution to the DST problem only for 

the purpose of analyzing pressure buildup data. However, a DST flow period is an extra 

source of data that may be used to gather information on the reservoir parameters. Although 

the solution described in Eq. (5.7) may be used to automatically match DST data with a non- 

linear regression process, this will not be discussed here. Nevertheless, we will consider an 

integrated approach to analysis of DST pressure data which uses information from both 

flowing and shut-in phases separately. 
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53.1. High Productivity Well 

This field test is related to an open hole DST performed in an oil well, which fully 

penetrates a conglomerate reservoir. The DST pressure-time chart is presented in Fig. 5.7. 

Detailed pressure-time data and additional well and reservoir data are presented in Table 5.1. 

Pressure buildup data are plotted against the Cartesian time ratio, RC = V($+At), as 

shown in Fig. 5.8. A representative straight line may be traced through the last 15 points, 

indicating a fairly homogeneous behavior of the reservoir during pressure recovery. Extrapola- 

tion of the data to an infinite shut-in time such that $,/($,+At) + 0, gives the initial reservoir 

pressure, pi = 892 psi. The slope of the Cartesian straight line is found to be mc = 45.8 psi. 

An estimate of the formation permeability is found by means of Eq. (5.25), which yields: 

k = 70.6 - = 4; * P 70.6 (539) (1.055) (60) = 1.38 x 103 md . 
(45.8) (38) 

(5.51) 
m c h  

The conversion factor 70.6 in Eq. (5.51) is required when oilfield units, as given in Table 

5.1, are used in Eq. (5.25). Note the introduction of the oil formation volume factor B to 

correct the flow rate to bottom-hole condition. 

The skin effect should be determined from the analysis of flow period data. The shape of 

the flowing pressure curve in Fig. 5.7 suggests a stimulated well. A plot of flowing wellbore 

pressure versus square root of flowing time is displayed in Fig. 5.9. A straight line may be 

drawn using the first 15 points, excluding the very first one (t = 0). In fact, it seems that the 

reported initial flowing pressure, po = 142.4 psi, is in error. An estimate of the initial flowing 

pressure from Fig. 5.9 gives po = 86 psi. The early time behavior of the test may be 

represented by: 

where the slope of the straight line is found from the early time approximation for the zero 

skin "slug test" solution, p,D(tD) = 1 - (2/cD) (dw), described in Appendix A, Eq. (A.30), 
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Rock and Fluid Data 

= 0.062 h = 3 8 f t  ct = 10.2 x lod p s i '  r,,, = 0.354f.t 

Bo = 1.055 RBISTB po = 60 cp q: = 539 STBID CF = 0.0365 RBlpsi 

Pressure Data 

Flow Period Shut-in Period 

t, hr pwfi psi t, hr p,,,p psi At, hr pws, psi At, hr pws, psi 

O.OO0 142.4 0.264 
0.022 186.2 0.295 
0.026 195.1 0.334 
0.034 209.9 0.372 
0.04 1 22 1.6 0.4 18 
0.053 239.3 0.470 
0.067 261.8 0.528 
0.084 282.3 0.590 
0.106 3 10.5 0.662 
0.132 333.4 0.774 
0.166 364.0 0.835 
0.187 380.0 0.938 
0.209 394.9 1.051 
0.235 412.2 1.126 

430.3 
449.6 
470.9 
491.0 
511.1 
537.7 
56 1 .O 
583.9 
607.3 
630.2 
655.1 
677.2 
698.9 
7 12.2 

O.OO0 
0.022 
0.026 
0.034 
0.04 1 
0.053 
0.067 
0.084 
0.106 
0.132 
0.166 
0.187 
0.209 
0.235 
0.264 
0.295 
0.334 

7 12.2 
766.9 
798.7 
8 16.4 
824.0 
830.9 
835.7 
838.9 
841.3 
844.1 
846.9 
848.5 
849.8 
85 1.4 
852.6 
853.8 
855.4 

0.372 856.6 
0.418 858.2 
0.470 859.4 
0.528 861.0 
0.590 862.2 
0.662 863.4 
0.774 864.6 
0.835 865.8 
0.938 867.4 
1.05 1 868.7 
1.181 870.3 
1.325 871.5 
1.486 872.3 
1.666 873.5 
1.870 874.7 
2.098 876.3 
2.189 876.3 

I 

TABLE 5.1 - DST Data for Well A 
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resulting in: 

(5.53) 

Assuming that stimulated wells present an effective wellbore radius given by rk = rw e- S , 

then Eq. (5.53) may be solved for the skin effect, yielding: 

where the constant 0.0205 used in Eq. (5.54) is required when the oilfield units defined in 

Table 5.1 are used. 

Using the available data, the skin effect for well this is computed from Eq. (5.54) as fol- 

lows: 

- - 
I I 

S = In 0.0205 (892 - 86) (0.354) d(877) (2.4 X 

(680) (0.0365) J = -3.4 . (5.55) 

The damage ratio may be determined by using this result for the skin effect in Eq. (5.29), 

yielding: 

DR = [ 1 + 0.1592 ( -3.4)] exp = 0.41 , (5.56) 
6.29 + (-3.4) 

and the productivity ratio, which is defined as the reciprocal of the damage ratio, can be found 

to be PR = 2.5. 

Although the well has not been artificially stimulated, the figures have shown that pro- 

duction has improved on the order of 150%. This fact has been systematically observed from 

the analysis of DST’s performed in open hole wells, and it is believed to be related to the 

stimulation effect of the sudden initial pressure drop imposed on the formation. 



53.2. Low Productivity Well 

This example discusses the case of DST in a low productivity well. Figure 5.10 displays 

a pressure-time chart obtained from a DST performed in the oil well producer, 7-APR-lO-BA, 

located at the Reconcavo Basin in Brazil. Rock, fluid and detailed pressure-time data are 

presented in Table 5.2. Figure 5.11 presents a Cartesian graph of the wellbore pressure versus 

the time ratio &(At) for both shut-in periods. For the final pressure buildup phase, &(At) is 

given by Eq. (5.48), while for the initial shut-in, Rc(At) = $,/($,+At). 

Extrapolation of the shut-in pressure to Rc = 0 in Fig. 5.1 1 indicates an initial reservoir 

pressure of pi = 2,405 psi. The Cartesian straight lines for both shut-in phases extrapolate to 

the same pressure value, indicating that no major anomaly was detected during the test period, 

and that homogeneous reservoir behavior was obtained. 

The slopes of the straight lines representing the initial and final pressure buildup phases 

were computed from Fig. 5.1 1 to be m,-l = 1,105 psi and ma = 850 psi respectively. The 

reservoir permeability may be determined by applying Eq. (5.51) independently to both the ini- 

tial and final shut-in periods. It may be anticipated that the poor fluid recovery indicates a low 

permeability zone. The computed reservoir permeability from the initial pressure buildup 

period is: 

kl = 70.6 SGl B CL - 70.6 (214) (1.27) (0.8) = o.28 m d ,  
mcl h (1,105) (49) 

- 

and for the final shut-in the permeability is computed as: 

(5.57) 

(5.58) 

Although the DST chart in Fig. 5.10 could be read, let us consider the case in which 

pressure-time data for both production periods were not available. In that case, the integrated 

approach to calculate the skin effect, based on early time solutions to the production phase, 

would not be appropriate. However, it is possible to estimate the skin effect using the 
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Figure 5.10 DST Chart for Well 7-APR-l O-BA 
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Rock and Fluid Data 

p = 0.15 h = 4 9 8  ct = 10 X lo4 psT' rw = 0.40 f t  

5, = 1.27 RBISTB p, = 0.8 cp (Ifwl = 214 STBID q:2 = 140 STBID 

sl, = 0.0403 RBlpsi Cs = 0.1 x RBlpsi 

)Pi = 0.538 h tsl = 1.435 h pJl = 265 psi p m  = 384 psi 

tp2 = 1.555 h ts2 = 2.947 h p m  = 439 psi p n  = 664 psi 

Pressure Buildup Data 

First Shut-in Period Second Shut-in Period 

O.Oo0 
0.101 
0.115 
0.134 
0.154 
0.182 
0.211 
0.250 
0.269 
0.298 
0.322 
0.355 
0.394 
0.432 
0.485 
0.542 
0.610 
0.691 
0.792 
0.917 
1.095 
1.301 
1.435 

1 .ooo 
0.842 
0.824 
0.800 
0.778 
0.747 
0.718 
0.683 
0.667 
0.644 
0.626 
0.602 
0.577 
0.554 
0.526 
0.498 
0.469 
0.438 
0.404 
0.370 
0.33 1 
0.292 
0.273 

384 
944 

1013 
1129 
1198 
1335 
1438 
1561 
1589 
1644 
1678 
1719 
1754 
1788 
1819 
1852 
1891 
1925 
1959 
2001 
2035 
2076 
2095 

O.OO0 
0.264 
0.302 
0.346 
0.394 
0.45 1 
0.523 
0.605 
0.701 
0.821 
0.970 
1.056 
1.152 
1.262 
1.382 
1.526 
1.690 
1.882 
2.102 
2.366 
2.688 
2.947 

1.083 
0.932 
0.9 14 
0.893 
0.872 
0.849 
0.820 
0.79 1 
0.758 
0.722 
0.68 1 
0.659 
0.637 
0.613 
0.589 
0.562 
0.535 
0.506 
0.477 
0.446 
0.4 13 
0.390 

664 
1472 
1527 
1555 
1596 
1637 
1678 
17 12 
1747 
1785 
1822 
1839 
1863 
1884 
1904 
1925 
1951 
1973 
2001 
2028 
2055 
2079 

~~ 

TABLE 5.2 - DST Data for Well 7-APR-IO-BA 
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following procedure. 

For the first flow period, compute both the dimensionless time and pressure at the end of 

the flow period as follows: 

= 0.000295 - k h $ 0.000295 (0.28) (49) (0.538) = o.068 , 
(0.8) (0.0403) CFD c1 CF 

- (5.59) 

and: 

(5.60) 

With these intermediate results interpolate with the "slug test" type curve given by Ramey 

et al (1973), which yields CD e2' = lo2. The skin effect can then be computed as: 

(5.61) 

If the wellbore pressure at the end of the first pressure buildup phase is close to the initial 

reservoir pressure, then a similar procedure may be applied to compute the skin effect for the 

final cycle. The dimensionless variables at the end of the second flow period are: 

= 0.000295 - k h fp - 0.000295 (0.24) (49) (1.555) = o.167 , 
CFD CF (0.8) (0.0403) 

(5.62) 

and: 

(5.63) 

Interpolation with the "slug test" type curve in Ramey et al (1975), yields CD e2' = 35, 

and the skin effect is: 

(5.64) 

In both cases the well shows a stimulation condition. 

As discussed by Sageev (1986), there is not a unique correlation for the slug test solution 
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with respect to the dimensionless group CD e2’, and therefore this procedure may produce unc- 

ertain results for the skin effect. However, because the permeability and the initial reservoir 

pressure may be obtained from pressure buildup analysis, customized type curves where the 

only unknown is the skin effect may be generated easily. The skin effect may be found by 

interpolation with these appropriate type curves. 
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6. DISCUSSION 

The initial objective of this study was to evaluate the significance of a new approach to 

drillstem test analysis. This approach is to consider the shut-in portion of a DST as a con- 

tinuation of the production phase in which wellbore storage changes abruptly to a smaller 

value. These abrupt changes were handled through the use of the unit step function. This con- 

cept is original and probably the most important result of this study. 

This section discusses the implications of this new analysis technique for drillstem test 

pressure data as compared to previous methods of interpretation available in the literature. 

6.1. INTEGRATED MATERIAL BALANCE METHOD 

Initially it appeared that a solution to the problem of a "slug test" with changing wellbore 

storage was already available. Agarwal and Ramey (1972) presented a solution for a problem 

with an abrupt change in wellbore storage for a constant flow rate and a constant skin. The 

time derivative of that solution should have been appropriate as a solution to the "slug test". 

Time derivatives are readily obtained by multiplying the transformed solution by the Laplace 

parameter, s. Correa (1982) applied this concept to produce a solution to the DST problem. 

Although the pressure solution seemed to match the latter portion of pressure buildup curves, 

poor results were obtained for times immediately following well shut-in. 

The method proposed by Agarwal and Ramey (1972) is reviewed briefly. To be con- 

sistent with the previous nomenclature, let us assume a well producing at a constant wellhead 

flow rate in which wellbore storage changes from CF to Cs at time 5 = k. The inner boundary 

condition for this problem becomes: 

where: 

(6.2a) 
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Agarwal and Ramey (1972) proposed the use of an integrated material balance technique 

to handle the boundary condition of Eqs. (6.1), (6.2a) and (6.2b). The method consists of 

integration of Q. (6.1) with respect to time, and then Laplace transformation of the resulting 

equation. The authors have shown that the integrated material balance technique provides the 

following solution to the proposed problem: 

Due to the nature of the method used, Eq. (6.3) is only valid for times greater than k. 

The first component of the solution is the constant-rate skin and wellbore storage solution. 

The second component is the "slug test" solution, which approaches zero at late times. 

Although the integrated material balance technique appears to be rigorously correct, it is 

in fact only a good approximation to the exact solution. Laplace transformation involves 

integration over the entire time domain, which implies that information from all times is 

mapped into Laplace space. The integrated version of Eq. (6.1) does not contain chronological 

information about the production process before the step change in wellbore storage. There- 

fore, the Laplace transform of the integrated equation does not reflect the correct boundary 

condition. At times far from the change, transients due to early production effects have little 

influence on the wellbore pressure response, and Eq. (6.3) becomes a very good approximate 

solution for the problem. 

The step function method may be applied to the proposed changing wellbore storage 

problem. The key point is to rewrite Eqs. (6.1), (6.2a) and (6.2b) as: 

Applying the procedure described in Section 4 of this study, the following solution may be 

obtained: 
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Equation (6.5) is valid for all times. For times greater than k, it follows that (1 - sk) is 

zero, and Eq. (6.5) may be simplified to: 

The integral term in E q ,  (6.6) may be evaluated by parts, and the solution takes the form: 

At late time such that gWD(s, cSD, tD-k) = gwD( s,cSD, tD)y Q. (6.7) reduces to the 

integrated material balance solution, Eq. (6.3). Figure 6.1 displays results obtained from 

evaluation of both the integrated material balance and the step function solutions for an 

increase in wellbore storage. The values used in this figure were 

Cm = 1,000, C ~ D  = 100,000, S = 0. Although results seem to agree, this is not true for all 

cases. Despite the fact that both solutions present similar forms, it may be shown that the 

wellbore pressure response given by Eq. (6.3) is discontinuous at time k. This led to the con- 

clusion that the Agarwal and Ramey (1972) solution was approximate, and the step function 

solution was accurate. Figure 6.2 presents both solutions for a case where there is a decreas- 

ing wellbore storage coefficient (C, = 1,000, CsD = 10, S = 0). In this case there is a 

significant difference between the two solutions at small shut-in times. This explains why the 
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derivative of the Agarwal and Ramey (1972) solution failed to match short time pressure 

buildup of drillstem tests. 

In the course of this study, it became apparent that the use of the unit step function 

should offer a new method to derive solutions for problems in which the boundary conditions 

depend upon time. Investigation of this method indicated that new operational rules would be 

necessary to handle other interesting problems. After the development of the step function 

mathematics, it was discovered that solutions of many problems with mixed boundary condi- 

tions could be obtained promptly. One such example is the problem of pressure buildup fol- 

lowing constant-pressure production. This often arises in drillstem testing of gas wells. 

6.2. DST WITH CONSTANT-PRESSURE FLOW 

Although the step function method is applicable to solutions of linear partial differential 

equations only, the theory presented in this study may be extended to pressure analysis of gas 

wells. This requires the near linearization of the gas equation through the real gas potential 

theory, as presented by Al-Hussainy et al (1966) and Al-Hussainy and Ramey (1966). In 

many cases the real gas potential is directly proportional either to pressure or to pressure 

squared. 

It has been observed that most DST's performed in gas wells lead to constant-pressure 

flow. A solution of the problem of pressure buildup following constant-pressure production 

has been presented in Section 4 of this study. Solution for the pressure buildup phase is given 

by Eq. (4.36). It has also been shown in Section 5 that this solution may be considered a par- 

ticular case of the changing storage "slug test" solution, in which the first wellbore storage 

coefficient is assumed to approach infinity. Therefore, the use of a long time approximation 

for the pressure buildup phase as discussed in Section 4.1 is appropriate. Figure 6.3 presents 

the effect of production time on shut-in pressure, while Fig. 6.4 presents the effect of wellbore 

storage and Fig. 6.5 shows the effect of skin. In all three cases pressure buildup follows con- 

stant pressure production. At late time, the results converge to a unit slope log-log straight line. 
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Hence, at late time, a graph of pws versus td($,+At) may yield a straight line which extrapolates 

to the initial reservoir pressure. The slope of that straight line may provide an estimate of the 

formation permeability. 

The skin effect may be obtained from information collected during the previous flow 

period. Because flow is held at constant-pressure, information other than pressure should be 

used. Jacob and Lohman (1952) described an expression for the flow rate in a well produced 

at constant pressure. Earlougher (1977) included a skin effect in the original formula, resulting 

in: 

If the flow rate at shut-in is known, then Eq. (6.8) may be coupled with the expression 

for the pressure buildup straight line to yield the skin effect: 

Jacob and Lohman (1952) used the Theis (1935) method to analyze a recovery curve in a 

water well operated at constant-pressure. Recall that both the Theis (1935) and Horner (1951) 

equations are based on superposition of constant-rate solutions. Ehlig-Economides and Ramey 

(1979) and Uraiet and Raghavan (1979) have studied the implication of constant-pressure pro- 

duction in the Horner analysis. Uraiet and Raghavan concluded that in the presence of 

wellbore storage, the Agarwal et al (1970) type curve could be used to analyze pressure 

buildup data if tpD 2 200 CD and S 1 0. These criteria are usually not satisfied for short-time 

drillstem tests in low productivity wells. 

It is possible to show that Eq. (4.36) may be expanded to yield: 

If the shut-in time is small compared to the production time such that tp + At = tp, then Eq. 
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(6.10) may be integrated to yield: 

This result was first obtained by Ehlig-Economides and Ramey (1979). For early shut-in 

times, pressure buildup behavior should match the standard constant-rate drawdown type 

curves. As the shut-in time increases, pressure buildup behavior will deviate from the 

constant-rate type curve, however. 

It would be helpful to apply a desuperposition technique in order to eliminate the effect 

of production from the pressure buildup data. Desuperposition methods for other problems 

have been presented by Slider (1971) and Agarwal (1980). Because production is held at con- 

stant pressure, a method to desuperpose the transients caused during the previous flow period is 

not evident. 

In order to develop a desuperposition technique for this case, we seek a relation between 

terminal constant-rate and constant-pressure solutions. A common basis to correlate these solu- 

tions may be found in the cumulative production. Figure 6.6 presents the pressure drop distri- 

bution in the reservoir for both constant-rate and constant-pressure production. Notice that the 

pressure drop is normalized with respect to the sandface flow rate. For that for tD > lo4 the 

two distributions are in good agreement. For a given cumulative production, constant-rate and 

the constant-pressure production cause a similar normalized pressure drop in a reservoir. 

Hence, if a well produced at constant-pressure is shut-in at time by then the following pressure 

buildup phase may be described by the use of superposition, which yields: 

where: 

t i  = equivalent production time, [TI. 
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The equivalent production time is given by the ratio between the cumulative production 

and the sandface flow rate at the time of shut-in of the well, yielding: 

(6.13) 

This approach indicates that, at least for the infinite acting period, desuperposed pressure 

buildup data may be analyzed using standard constant-rate drawdown type curves. It also sug- 

gests that application of the Homer method to constant pressure flow problems may be correct, 

provided the equivalent production time and the flow rate at shut-in are used. This is identical 

to the results obtained by Ehlig-Economides and Ramey (1979). The ideas presented in this 

study may also be useful in the development of methods for pressure buildup analysis in wells 

produced at constant pressure from either constant-pressure or no-flow external reservoir boun- 

daries. These boundary conditions have not been studied herein. 

63. HORNER ANALYSIS 

So far the discussion of the use of the Homer method has been restricted to the case of 

constant pressure production. However, in practice, most DST pressure buildups are analyzed 

by the Homer method. 

The internal boundary condition for a drillstem test flow period, Eq. (3.2), deserves some 

comments. In a drillstem test, production follows a finite wellbore pressure drop at time zero. 

If the flow rate is assumed to be constant, from Eq. (3.2) it follows that wellbore pressure must 

increase linearly with time. Hence, for any type, shape or size reservoir, fluid must be sup- 

plied to the wellbore in order to maintain a steady increase in the wellbore pressure. This is 

not feasible practically, and to study constant-rate production a more complex wellbore model 

should be considered. Frictional losses, inertial effects and critical flow are among the factors 

that may affect wellbore performance. These factors do not usually affect production at low 

flow rates however, and flow rate naturally decreases with time. There are cases when the rate 
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of decrease in the flow rate is slow, and production seems to be held at constant flow rate. 

This effect may be better observed in wells with high values of the skin effect. The main 

point is that in a DST with an increasing liquid level, flow rates change faster than in 

constant-pressure production, and the Homer method may not be applicable. 

63.1. High Productivity Well 

The following discussion is referred to Well A of Section 6.3.1. of this study. Figure 6.7 

displays a Horner graph in which the pressure buildup data of Table 5.1 has been used. The 

Horner ratio in Fig. 6.7 was computed using the actual production time. Examination of the 

Homer graph suggests the possible existence of a linear flow barrier near the well. Recall that 

the same pressure buildup data was graphed in Figure 5.8, in which the time function is given 

by $J($ + At). An analysis of Figures 5.8 and 6.7 indicates that there may be an important 

difference between results from the two methods. The apparent sealing fault evident in the 

Homer display on Figure 6.6 appears erroneous in view of Figure 5.8. Also differences in 

buildup extrapolated formation pressures often attributed to depletion (or supercharge by mud 

pressure) may be an artifact of the conventional Homer graphing. The "slug test" solution 

appears to be a better description of DST conditions. 

Although this type of Horner analysis has been widely used in the industry, there have 

been methods available to correct for variations in the flow rate. Odeh and Selig (1963) pro- 

posed a correction for both production time and flow rate to be used in a conventional Horner 

graph. A better result from a Horner analysis for well A may be obtained if the fast decrease 

in the flow rate is considered. The flow rate at the shut-in time may be computed from the 

"slug test" condition: 

The equivalent production time is computed as: 
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(6.15) 

Figure 6.8 presents another Homer graph for the same pressure buildup data of well A. 

The Homer time ratio has now been computed with the equivalent production time $. The 

shape of the pressure recovery curve indicates a homogeneous reservoir. The extrapolated 

buildup pressure yields pi = 890 psi. The formation permeability may be found from the equa- 

tion for the slope of the semilog straight line, which yields: 

k =  162.6 qw($) - - 162.2 (115) (1.055) (60) = l.oo x 103 mD , (6.16) 
mH (3 1.0) (38) 

where: 

mH = slope of the Homer graph, [MI’ [LI-’’ [T]-2/log -. 

These results are in good agreement with the interpretation described in Section 5.3.1., 

which give k = 1.035 x lo3 mD and pi = 892 psi. Although the Homer straight line in Fig. 

6.8 starts earlier than the Cartesian straight line in Fig. 5.8, this is not always the case for com- 

parisons with other DST data. Both graphs present no indication of discontinuities or reservoir 

heterogeneities during the period of the test. 

The skin effect may be computed from: 

1.151 (890) - (712.2) (LOO X lo3) (4.92) 
(3 1 .O) log (0.062) (60) (10.2 x lo4) (0.354)2 

- + 3.23 = - 0.1 . (6.17) 1 
There is a considerable difference between this value of the skin effect, and the value 

S = -3.4 computed in section 5.3.1. of this work. This difference deserves comments. In the 

derivation of Eq. (6.16) it was implicitly assumed that the constant-rate solution could be 

applied to compute the flowing wellbore pressure at the shut-in time. Although this solution 

may be used to correlate the constant-pressure production case, there is no evidence that it may 
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be used for the case of a liquid DST, which presents an increasing flowing pressure with time. 

On the other hand, determination of the skin effect in Section 5.3.1. used a short time approxi- 

mation for the "slug test" solution, which did not consider important factors such as frictional 

losses in the drill pipe or inertial effects in the fluid column. Also, the fact that the diffusivity 

equation does not include large pressure gradients in the reservoir, which always occur during 

the early phase of a "slug test", may impose a serious restriction on the determination of the 

skin factor by means of the early time "slug test" solution. This last remark is valid whether 

an analytical form of the solution or a graphical type curve is used. 

63.2. Low Productivity Well 

Another example of application of the Homer method to pressure buildup analysis of 

drillstem tests may be developed with the data for the low productivity well 7-APR-10-BA 

described in section 5.3.2. Pressure buildup and well data are given in Table 5.2. The shape 

of the DST curve in Fig. 5.10 indicates that the flow rates in both production phases were 

approximately constant. A Homer plot for this well is presented in Figure 6.9. Because the 

flow rates were almost constant, the Homer time ratio of Fig. 6.9 were computed with the 

actual production times. From the slopes of the semilog straight lines, the formation per- 

meabilities for the initial and final pressure buildups may be found to be 0.51 mD and 0.41 

mD respectively. These values differ almost 100% from the permeabilities found in Section 

5.3.2., which are 0.28 mD and 0.24 mD, respectively. The extrapolated buildup pressure may 

be found to be 2,280 psi from the Homer plot of Fig. 6.9, which gives a much lower value 

than the 2,405 psi obtained from the Cartesian analysis of Fig. 5.11. A close inspection of the 

Horner display in Fig. 6.9 shows a doubling of slope during the second pressure buildup phase. 

This apparent heterogeneity was not observed in the Cartesian analysis of Fig. 5.11. Also it 

seems that the last few points of the final buildup in Fig. 6.9 are still bending upwards, indicat- 

ing that a stabilized growth of the shut-in pressure was not achieved. 
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6.4. RADIUS OF INVESTIGATION 

A question that often arises in well test analysis is: How far into the formation has the 

test investigated. Kohlhass (1972) suggested that the distance investigated by a "slug test" may 

be on the order of a few wellbore radii. Ramey et a2 (1975) have shown that a "slug test" 

may cause measurable pressure drops at appreciable distances from the wellbore. In order to 

be detected by a single well transient pressure test, a reservoir anomaly should cause a measur- 

able effect in the wellbore pressure response. The effect of flow barriers may be handled by 

superposition of image wells. Linear faults are often recognized by the characteristic doubling 

of slope on a Homer graph. 

The duration of a test is the main factor in the detection of flow barriers. Because a DST 

may be viewed as a changing wellbore storage "slug test", the total time of the test should be 

considered in the computation of the radius of investigation. In the analysis method described 

in Section 5, the Cartesian straight line observed in DST pressure buildup data may be function 

of the total testing time. Intrinsic reservoir heterogeneities also affect the wellbore pressure 

response. Complex models such as double porosity systems often present a homogeneous 

behavior at late times, and anomalies detected during the latter part of a Cartesian straight line 

may be attributed to areal discontinuities. However, the amount of fluid withdrawn during the 

production phase should control the magnitude of the effect of a reservoir anomaly on the fol- 

lowing pressure buildup. If only a small amount of fluid is produced, the pressure recovery in 

the well is relatively fast, and the effect of flow barriers may not be detected with the equip- 

ment available. 

6.5. HORNER GRAPHS FOR SLUG TEST SOLUTIONS 

Perhaps the best way to demonstrate the weakness of Horner analysis of DST data is by 

Horner graphing simulated data with the "slug test" changing storage model. Figures 6.10 to 

6.12 present such results for dimensionless parameters typical of DST tests. The straight line 
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with a slope of 1.15lcycle is the correct Horner line. As can be seen from Figures 6.10 to 

6.12, the simulated data do appear to form approximate straight lines, but neither the slope nor 

the extrapolated pressure at infinite shut in appear correct. At very long shut-in times however, 

the simulated data approach the apparent Horner straight line. This may be due to the fact that 

for large At, the Cartesian relation, $,/(tp + At), and the Horner time ratio, Y2 In [(t, + At)/At], 

have approximately the same numerical value. 

These shows that Horner analysis results are approximate, at best. 

Application of the results of this study to drillstem test analysis should be important in 

this field. The constant rate Horner type analysis appears to have been an improper application 

to the DST problem. The abrupt change in the wellbore storage concept appears much closer 

to actual DST testing conditions. In view of the large number of DST’s run throughout the 

world yearly, this finding should have a significant impact on the oil industry. In the cases 

studied so far, the Horner analysis often indicates either a nearby fault, or a decline in forma- 

tion pressure. The new analysis indicates neither the presence of a fault, nor the apparent 

depletion between two shut-in periods. Results of the new analysis should lead to a decrease 

in loss of oil caused by rejection of formations for which the two shutins indicated a rapid 

pressure depletion -- or a very small reservoir. Review of geological maps which have been 

constructed with indications of nearby faults from well tests, should incorporate additional 

reserves and provide a better understanding of reservoir behavior. The changing wellbore 

storage concept is a new direction for models for DST analysis. 

As a result of this study, several conclusions and recommendations appear warranted. 

They are presented in the next section. 



- 92 - 

7. CONCLUSIONS AND RECOMMENDATIONS 

A general procedure to solve transient flow problems with time-dependent boundary con- 

ditions has been described. The method does not involve superposition and is not restricted to 

solution of the diffusivity equation. New transform and operational rules developed in this 

work are essential for application of the solution method to a variety of problems. 

An analytical solution to the problem of pressure buildup following constant-pressure pro- 

duction is presented. Both a skin effect and wellbore storage are included. Pressure buildup 

response may be considered as a particular case of a drillstem test. A rigorous analytical solu- 

tion to the drillstem test problem, which is valid for both production and shut-in phases, is 

obtained by modeling the DST inner boundary condition with a step change in the wellbore 

storage coefficient. A solution to the generalized drillstem test is also present. The solutions 

are used to develop practical methods for interpretation of DST pressure data. Application of 

the proposed methods to analysis of field data may provide estimates of the initial reservoir 

pressure, formation permeability and skin effect. 

Although the derivations carried out in this worked assumed an arbitrary reservoir model, 

practical applications have been limited to radial flow. However, the theory presented here 

may be extended to include several features usually found in more complex flow models. 

Among others, we recommed that the effect of the following factors on the DST pressure 

response be studied: 

1. Linear, spherical and elliptical flow patterns, 

2. Double porosity, double permeability and composite reservoir systems, 

3. Constant pressure and no-flow external boundaries. 

Because the drillstem test equation may expressed as combinations of both time deriva- 

tive and integral of the constant-rate skin and wellbore storage solution, previous solutions for 

the constant-rate problem available in the literature may be used to produce new DST solutions 

for other flow models. 
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8. NOMENCLATURE 

A 

B 

C 

C A  

c, 

c, 

d 

DR 

g 

gD 

gwD 

h 

IO 

k 

k 

KO 

K1 

L 

mC 

mF 

P 

Pi 

Po 

Pfi 

Pff 

drainage area, b12 

oil formation volume factor 

wellbore storage constant, [MI-' [LI4 [TI2 

Dietz shape factor 

total compressibility, [MI-' [L] [TI2 

compressibility of the wellbore fluid, [MI-' [L] PI2 

differential operator 

damage ratio 

gravity acceleration constant 

pressure response to a unit flow rate 

wellbore pressure response to a unit flow rate 

formation thickness, [L] 

modified Bessel function of first kind and zero order 

formation permeability, PI2 

dimensionless production time 

modified Bessel function of second kind and zero order 

modified Bessel function of second kind and first order 

Laplace transform operator 

slope of pws vs Rc(At) graph, [MI L1-l [TI-* 

slope of pwf vs .I; graph, [MI L1-l v]-2.5 
pressure, [MI [LI-' 

initial reservoir pressure, [MI L3-l 

initial flowing pressure, [MI L1-l 

initial flowing pressure, [MI [L]-' 
final flowing pressure, [MI L]-' 



Psf 

Pw 

PWf 

Pws 

PR 

Q 

qw 

9 w  
* 

Qw 

r 

'P 

rW 

rW 

RC 

S 

S 

Sk 

t 

tc 

5 
vw 

4y 

P 
At 

a 

Q 
CL 
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final shut-in pressure, [MI [LI-' 

wellbore pressure, [MI E]-' 

wellbore flowing pressure, [MI L3-I 

wellbore shut-in pressure, [MI [L]-' PIW2 

productivity ratio 

wellhead flow rate, [LI3 [TI-' 

variable production rate, PI3 [TI-' 

average volumetric production rate, [LI3 [TI-' 

cumulative fluid recorery, [LI3 

radial distance from wellbore, [L] 

internal radius of the production pipe, [L] 

wellbore radius, [L] 

effective wellbore radius, [L] 

function of the shut-in time 

Laplace space variable 

skin factor 

unit step function 

time, [TI 

cycle time, [TI 

production time, [TI 

volume of the bottom-hole storage chamber, [LI3 

volume ratio 

reservoir shape and size factor 

shut-in time, B] 

partial differential operator 

porosity, fraction of bulk volume 

viscosity, [MI L1-l [TI-' 
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P = average density of liquid in the wellbore, [MI 

2 = variable of integration 

Subscript 

D = dimensionless 

F = flow 

S = shut-in 

1 = first cycle 

2 = second cycle 

Physical Units 

I&] = length 

Frl = mass 

[TI = time 
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APPENDIX A 

FUNDAMENTAL SOLUTIONS OF THE DIFFUSIVITY EQUATION 

Due to the linear character of the diffusivity equation, solutions to complex problems may 

be simplified when expressed as combinations of basic solutions. A review of some useful fun- 

damental solutions of the diffusivity equation is presented in this section. 

A.l. SPECIFIED SANDFACE FLOW RATE 

Let us consider the case of radial flow with an arbitrarily specified sandface flow rate. 

For simplicity let the reservoir be considered to be of infinite extent in the radial direction. 

The partial differential equation with initial and outer boundary conditions are given by Eqs. 

(3.13), (3.14) and (3.15) in the main text. 

Solution of this problem may be obtained by Laplace transformation. Taking the Laplace 

transform of the partial differential equation in dimensionless variables, Eq. (3.13), and using 

the initial condition, Eq. (3.14), we obtain: 

where: 

- pD(rD, s) = Laplace-transformed dimensionless reservoir pressure 

Equation (A. 1) is the modified Bessel differential equation with the general solution: 

- 
pD(rD, S) = A Ko(rDG) -t B b(rD6) , 

where: 

Io = modified Bessel function of 1st kind and zero order, 

KO = modified Bessel function of 2nd kind and zero order, 

and A and B are parameters to be determined. Laplace transforming the outer boundary 
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condition, Eq. (3.15), yields: 

lim FD(rD, s) = 0 . 
rD --f - 

The function Io is unbounded as its argument approaches infinity. Hence inspection of 

Eq. (A.2) with respect to the constraint given by Eq. (A.3) yields, B = 0. Therefore Eq. (A.2) 

simplifies to: 

which gives the Laplace-transformed solution to the diffusivity equation with an arbitrary inner 

boundary condition, considering radial flow and the infinite reservoir. Specification of the 

internal boundary condition provides means to determine the parameter A. 

Taking the Laplace transform of the dimensionless sandface flow rate, Eq. (3.19), we 

obtain: 

Observing the rule for derivatives of Bessel functions given in Abramovitz and Stegun (1972), 

from Eq. (A.4) it follows that: 

where: 

Kl = modified Bessel function of 2nd kind and first order. 

Substituting Eiq. (A.6) into Eq. (AS) and evaluating the result at rD = 1, we obtain: 

Now, substituting Eq. (A.7) into Eq. (A.4), it follows that: 
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Defining: 

Eq. (A.8) may be written as: 

(A.lO) 

The function gwD( S, s) given in Eq. (A.9) is the Laplace-transformed reservoir pressure 

response to a continuous unit production rate at the sandface. Carslaw and Jaeger (1959) 

present an expression for the real time inversion of Eq. (A.9) in terms of a Mellin integral. 

Using the fact that gD(rD, 0) = 0, the solution for the variable rate case may be obtained by 

means of the convolution property of Laplace transforms: 

where the notation, *, in Eq. (A.11) represents the convolution integral given by: 

(A. 1 1) 

(A.12) 

and gD(rD, tD) is the time derivative of the function gD(rD, tD). 

The relationship given in Eq. (A.12) is known as the superposition theorem and is not 

restricted to radial flow nor to the infinite reservoir case. Table A.l presents the Laplace- 

transformed reservoir pressure response to a unit sandface production rate for several systems. 

The wellbore pressure considering a positive skin effect may be found from the condition given 

by Eq. (3.20), yielding: 

tD 
PwD(tD) = 1 qwD(%) &(I, tDflD) dzD -k s qwD(tD) 9 s > 0 (A. 13) 

In Laplace space Eq. (A. 13) becomes: 

(A. 14) 

where the functiongwD(S, s) is given by: 
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Infinite Reservoir - Line Source Well 

Infinite Reservoir - Cylindrical Source 

TABLE A.l - Laplace Transformed Solutions for Radial Flow 
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(A. 15) 

For a negative skin effect, Eq. (A.14) may be obtained by Laplace transforming Eq. 

(3.21) and setting: 

These relationships are general and may be used in connection with other reservoir 

models. However, they are restricted to non rate-dependent skin effect problems. 

A.2. CONSTANT-RATE PRODUCTION WITH SKIN AND WELLBORE STORAGE 

This problem considers constant-rate production at the wellhead, as introduced by van 

Everdingen and Hurst (1949). Both skin effect and wellbore storage are considered. A review 

of the literature on similar heat conduction problems was presented by Agarwal et al (1970). 

The inner boundary condition may be determined by performing a material balance on the 

wellbore, yielding: 

where the constant dimensionless wellhead flow rate qD is defined as: 

(A.17) 

(A.18) 

The reason for the introduction of a dimensionless wellhead flow rate is because the 

dimensionless pressure definitions used in this work are different from the definitions for the 

dimensionless pressure used in constant rate problems. However, final solutions are indepen- 

dent of the choices for the dimensionless variables. 

For this problem the initial wellbore pressure is assumed to be: 

PwD(0) = 0 9 (A.19) 
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which makes the choice for po in Eq. (A.18) to be arbitrary. The Laplace transform of the 

internal boundary condition, Eq. (A.17), yields: 

Substitution of Eqs. (A.14) and (A.19) into Eq. (A.20) and solution for LD(s)  gives: 

Eq. (A.21) reduces to: 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

Eq. (A.22) describes the Laplace-transformed wellbore pressure response due to production 

with a unit dimensionless surface flow rate, including both skin effect and wellbore storage. 

Solution in real time space may be obtained by inverting Eq. (A.23), which may be expressed 

as: 

(A.24) 

The function gwD( S ,  cD,  tD) has been computed by Agarwal et a1 (1970) and presented 

both in the form of tables and graphically as families of type curves. Fig. A.l presents the 

solution to this problem as computed from Eq. (A.22) by means of the Stehfest (1970) algo- 

rithm. This form of the type curves was first presented by Gringarten et al (1979). Solutions 

for other flow models, such as linear or spherical flow patterns, may be obtained similarly, if 

the function gwD( S ,  s) is chosen properly. 

This solution deserves some comment. At early time the wellbore pressure response is 

primarily affected by wellbore storage, and the following approximation holds: 



1 

I 

0 
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(A.25) 

which describes the equation for the unit slope log-log straight line. As time increases, the 

solution departs from the log-log straight line. At late time the radial flow solution may be 

correlated with the semi-log approximation, which is given by: 

r '1 

(A.26) 

where y = 1.781 ... is the exponential of Euler's constant. 

For intermediate times, there is no simple analytical expression to represent the wellbore 

pressure response. Furthermore, as reviewed by Agarwal et al (1970), asymptotic short-time 

forms for positive and zero skin effects are differ from each other, although the Laplace solu- 

tion forms do not. The zero skin solution may also describe the wellbore pressure for stimu- 

lated wells (negative skin effect), provided the concept of effective wellbore radius applies. 

A.3. SLUG TEST SOLUTION 

The "slug test" was defined by Ferris and Knowles (1954); it consists of an instantaneous 

withdrawal or injection of a "slug" of fluid frodinto a well. The "slug test" has become popu- 

lar in ground water testing because of the ease of testing and short duration of the test. 

The flowing period of a drill stem test performed in liquid producing wells may also be 

described by the slug test conditions. The reservoir equation with the initial and outer boun- 

dary conditions are represented by Eqs. (3.13), (3.14) and (3.15) in the main text. The initial 

condition and wellbore equation are described by Eqs. (3.16) and (3.17). 

Taking the Laplace transform of the wellbore condition, Eq. (3.17), and using the initial 

condition, Eq. (3.16)' we obtain: 

(A.27) 

Substitution of Eq. (A.14) into Eq. (A.27) and solving for pWD(s) yields: 
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(A.28) 

As discussed by Agarwal and Ramey (1972), Eq. (A.28) may be written in terms of the 

constant-rate solution, Eq. (A.23), resulting in: 

which may be inverted to real time space to yield: 

(A.29) 

(A.30) 

Although Agarwal and Ramey (1 972) evaluated the Mellin inversion integral, the Stehfest 

(1970) algorithm has also been used here to evaluate the "slug test" solution, Eq. (A.30), and 

the results for the zero skin case are presented in Figure A.2. Evaluation of Mellin inversion 

integrals is often difficult. Jaeger (1942) frequently qualified his tabulated results with a com- 

ment that calculations were carried out to five places and it was hoped that results were good 

to four places. It is significant that the Agarwal and Ramey (1972) Mellin integral values and 

the results from the Stehfest inversion agree almost exactly. This sort of agreement was not 

often obtained by various groups using Mellin integral evaluation only. Use of the Stehfest 

algorithm has provided an alternate method to check previous Mellin integral evaluations, and 

has greatly aided the use of Laplace transformation in solving modern problems. 

Jaeger (1956) discussed the case of an equivalent heat transfer problem and showed that 

the early time approximations obtained from Eq. (A.30) differ for the zero and finite skin effect 

cases. According to Jaeger (1956), these short-time limiting forms are: 

(A.31) 

and: 

(A.32) 
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These relationships are useful for analyzing pressure data obtained from the production period 

of a drill stem test. 

An analytical expression for the wellbore pressure at late time may be obtained for the 

"slug test" problem by using the logarithmic approximation, Eq. (A.26). Differentiation of Eq. 

(A.26) with respect to time and substitution into Eq. (A.30), yields the following late time 

approximation for the "slug test": 

(A.33) 
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APPENDIX B 

COMPUTER PROGRAM 
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C 
C 
C 
C 

C 
C 
C 

C 
C 
C 

C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

This program calculates the DST wellbore pressure for 
the pressure buildup period. 

IMPLICIT REAL*8 (A-H,O-Z) 
DIMENSION TD(50),PWD(50) 
READ(5,*) S 
READ(S,*) CFD 
READ(S,*) CSD 
READ@,*) TPD 

Compute the dimensionless average flow rate 

pwDk = PDPRIME ( tpD , CFD, S ) 
qwDstar = CFD * ( 1.0 - pwDk ) / tpD 

Compute the equivalent time 

CTR = 0.0 
WRITE(6,*) 'TD DTD PWD HTR PDH HTRM PDHM' 
DO 50 I = 1,49 
CTR = CTR + 0.02 
TD(1) = TPDETR 
DTD = TD(1) - TPD 

Compute the Cartesian graph 

PWD(1) = PDST(DTD,TPD,CFD,CSD,S) 
write(7,lOl) CTR, PWD(1) 

Compute the Generalized Horner graph 

HTR = TD(1) / DTD 
PDH = PWD(1) / qwDsta 
write(8,lOl) HTR, PDH 

Compute the Generalized Modified Horner graph 

HTRM = ( tpDstar + DTD ) I DTD 
PDHM = PWD(1) I qwDtpD 
write(9,lOl) H T R M ,  PDHM 

WRITE(6,102) TD(I),DTD,PWD(I),HTR,PDH,HTRM,PDHM 
50 CONTINUE 
101 FORMAT(2x,F10.4,2x,flO.6) 
102 FORMAT(2x,f8.0,2x,f8.0,2x,f8.4,2(2x,f8.2,2x,f8.4)) 

STOP 
END 

REAL*8 FUNCTION PDST(DTD,TF'D,CFD,CSD,S) 
IMPLICIT REAL*8 (A-H,O-Z) 
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COMMON/FPRD/DTDC,TPDC,CFDC,CSDC,SC 
EXTERNAL FPROD 
IF (DTD .EQ. 0.0) THEN 

PWDCP = 1.0 
RETURN 

ENDIF 
DTDC = DTD 
TPDC = TPD 
CFDC = CFD 
CSDC = CSD 
sc = s 

C 
C NUMERICAL INTEGRATION OF THE CONVOLUTION TERM 

C RULE (ROUTINE QUANC8) 
C 
C 

C USING AN ADPTIVE QUADRATURE BASED ON A 9-POINT NEWTON-COTES 

RELERR = O.OD0 
ABSERR = 1.OD-8 
TUP = TPDC 
CALL QUANC8(FPROD,O.O,TUP,ABSERR,RELERR,RES~T,ERREST,NOFUN,~ 

IDBUG = 0 
C 

IF (IDBUG .NE. 0) THEN 
WRITE(6,1003) RESULT 
WRITE(6,1004) ERREST 
WRITE(6,1006) NOFUN 

ENDIF 
IF (FLAG .NE. O.OD0) WRITE(6,1005) FLAG 

1003 FORMAT(/Sx,’RESULT =’,F14.10) 
1004 FORMAT(Sx,’ERROR ESTIMATE FROM QUANC8 =’,E13.6) 
1005 FORMAT(44H WARNING..RESULT MAY BE UNRELIABLE. FLAG = ,F6.2) 
1006 FORMAT(4x,40H NUMBER OF FUNCTION EVALUATIONS NOFUN =,I6/) 

C 

C 
PDST = CSD * PDPRIME(TPD+DTD,CSD,S) + (1.ODO-CSD/CFD) * RESULT 

RETURN 
END 

REAL*8 FUNCTION FPROD(TAUD) 
IMPLICIT REAL*8 (A-H,O-Z) 
COMMON/FPRD/DTD,TPD,CFD,CSD,S 
TD = TPD + DTD 
FPROD = PDPRIME(TAUD,CSD,S) * RATESL(TD-TAUD,CFD,S) 
RETURN 
END 

REAL*8 FUNCTION PDPRIME(TD,CD,S) 
IMPLICIT REAL”8 (A-H,M,O-Z) 
DIMENSION V( 20) 
N =  16 
IF (ICALL .NE. 1) THEN 

CALL COEFF(N,V) 
ELSE 
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ICALL = 1 
ENDIF 
IF (TD .EQ. 0.0) THEN 

PDPRIME = 1.ODOICD 
RETURN 

ENDIF 
DLOGTW = 0.6931471805599453 

SUM = 0.ODO 
ARG = DLOGTW / TD 

D O 2 0 J  = 1 , N  
Z = J * A R G  
X = DSQRT(Z) 
IF (X .LE. 85.DO) THEN 

BKO = MMBSKO( l,X,ierr) 
BK1 = MMBSKl(l,X,ierr) 

BKO = MMBSK0(2,XYierr) 
BKl = MMBSK1(2,X,ierr) 

ELSE 

ENDIF 
FUNC = BKO/BKl/X + S 
PLAP = l.ODO/(Z*CD + l.ODO/FUNC) 

20 SUM = SUM + V(J) * PLAP 
PDPRIME = SUM * ARG 
RETURN 
END 

REAL*8 FUNCTION RATESL(TD,CD,S) 
C 
C This function computes the dimensionless sandface flow rate 
C during a slug test. 
C 

IMPLICIT REAL*8 (A-H,M,O-Z) 
DIMENSION V( 20) 
N =  16 
IF (ICALL .NE. 1) THEN 

CALL COEFF(N,V) 
ELSE 

ENDIF 
ICALL = 1 

DLOGTW = 0.6931471805599453 
SUM = O.OD0 

ARG = DLOGTW / TD 
D O 2 0 J  = 1 , N  

Z = J * A R G  
X = DSQRT(Z) 
IF (X .LE. 85.DO) THEN 

BKO = MMBSKO( l,X,ierr) 
BK1 = MMBSKl( 1 ,X,ierr) 

BKO = MMBSK0(2,XYierr) 
BKl = MMBSK1(2,XYierr) 

ELSE 

ENDIF 
FUNC = BKO/BKl/X + S 
QWDLAP = l.ODO/(Z*FUNC+l.O/CD) 



- 116 - 

20 SUM = SUM + V(J) * QWDLAF' 
RATESL = SUM * ARG 
RETURN 
END 

SUBROUTINE COEFF(N,V) 

DIMENSION H(lO),G(20),V(20) 
IMPLICIT REAL*8 (A-H,O-Z) 

C CALCULATE V-ARRAY 
M = N  
G(1) = 1. 
NH = N12 
D O 5 1 = 2 , N  

5 G(1) = G(1-l)*I 
H( 1) = 2./G(NH- 1) 
D O 1 0 1 = 2 , N H  
F I = I  
IF (I .EQ. NH) GO TO 8 
H(1) = FI**NH * G(2*I)/(G(NH-I) * G(1) * G(1-1)) 
GO TO 10 

10 CONTINUE 
8 H(1) FI**NH * G(2*I)/(G(I) * G(1-1)) 

SN = 2 * (NH - NH/2*2) - 1 
DO 50 I =1, N 

V(1) = 0.M) 
K1 = (I+1)/2 
K2 = I 
IF (K2 .GT. NH) K2 = NH 
DO 40 K = K1, K2 

IF (2*K-I .EQ. 0) GO TO 37 

V(1) = V(1) + H(K)/(G(I-K) * G(2*K-I)) 
IF (I .EQ. K) GO TO 38 

GO TO 40 

GO TO 40 

40 CONTINUE 

37 V(1) = V(1) + H(K)/G(I-K) 

38 V(1) = V(1) + H(K)/G(2*K-I) 

V(1) = SN * V(1) 
SN -SN 

50 CONTINUE 
1 0 0  CONTINUE 

RETURN 
END 


