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ABSTRACT 

A composite reservoir model is used to analyze well-tests from a variety of enhanced oil 

recovery projects, geothermal reservoirs, and acidization projects. A composite reservoir is 

made up of two or more regions. Each region has its own rock and fluid properties. Transient 

pressure behavior of a well in a two-region composite reservoir has been considered exten- 

sively in the literature, and several methods have been proposed to estimate front (or discon- 

tinuity) radius, or swept volume. This study considers transient pressure derivative behavior of 

a well in a two-region composite reservoir to establish the applicability and the limitations of 

different methods to estimate front radius or swept volume. A finite-radius well with wellbore 

storage and skin is assumed to produce (or inject) at a constant rate. Three outer boundary 

conditions are considered: infinite, closed, and constant-pressure. A study of drawdown and 

buildup responses has resulted in a set of correlating parameters for the pressure derivative 

responses, and new design and interpretation relations for well-tests in composite reservoirs. 

Guidelines have been presented for the applicability of different methods to estimate front 

radius. Roducing time effects on buildup responses show that analyzing a well-test after short 

producing (or injection) time may be difficult. 

Dynamic phenomena, such as phase changes and multi-phase flow effects in a region 

near the front, can cause a sharp pressure drop at the front. Such a sharp pressure drop is 

modeled as a thin skin at the front in this study. An analytical solution for the transient pres- 

sure behavior of a well in a two-region composite reservoir with a skin at the front is obtained 

using the Laplace transformation. A thin skin at the front can explain a short duration pseu- 

dosteady state even for small mobility and storativity contrasts. The effects of a skin at the 

front are similar to the effects of storativity ratio. Thus, neglecting a thin skin at the front can 

cause large errors in parameter estimation using a type-curve matching method. 

Pressure derivative behavior of a well in a homogeneous, or a three-region composite 

reservoir is also discussed. Several well tests from composite reservoirs are analyzed to estab- 

lish the applicability and the limitations of the deviation time method to estimate front radius. 
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1. INTRODUCTION 

A composite reservoir is made up of two or more regions. Each ngion has its own rock 

and fluid properties. A composite system can occur naturally or may be artificially created. 

Aquifers with two different permeabilities forming two regions, oil and water regions or gas 

and oil regions with different properties in a reservoir are examples of naturally occurring 

two-region composite systems. Secondary or tertiary recovery projects, like water flooding, 

polymer flood, gas injection, in-situ combustion, steam drive, and C02 miscible flooding 

artificially create conditions wherein the reservoir can be viewed as consisting of two regions 

with different rock and/or fluid properties. A stimulation program, such as acidizing, can result 

in a permeability discontinuity. Wattenburger and R m e y  (1970) treated a finite thickness skin 

region as a composite system. 

In a gas condensate or a geothermal reservoir, pressure reduction near the well causes 

changes in relative permeabilities as the fluid changes phase, and in the case of water, 

significant changes in compressibility (Horne er al., 1980; Grant and Sorey. 1979). Horne et 

al. (1980) state that the appearance of a flashing front in a water region or the start of conden- 

sation in a steam region may result in a sharp discontinuity in reservoir properties. 

Vaporizationhndensation at a sharp discontinuity may also resemble an apparent skin effect at 

the discontinuity. Mangold et al. (1981) studied the effects of a thermal discontinuity on well 

test analysis in geothermal reservoirs. They stated that the presence of different temperature 

regions in non-isothermal reservoirs may resemble permeability boundaries during well testing. 

Benron and Bodvarsson (1986) state that falloff data from geothermal reservoirs can be 

analyzed with a composite reservoir model. Thus, many well-test scenarios in geothermal and 

hydrocarbon reservoirs may be modeled by a composite reservoir. 

This study considers transient pressure derivative behavior of a well in a two-region, 

composite reservoir with an infinitesimally thin skin at the discontinuity. The effects of a thin 

skin at the discontinuity on the transient pressure and pressure derivative behavior of a well in 
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a composite reservoir is considered impom because a thin skin at the discontinuity may be a 

practical approach to model the following physical situations: 

1. Vaporization at the discontinuity while injecting cold water in a hot geothermal 

reservoir, 

2. Condensation at the steam front such as in steam injection projects, 

3. Cases where a transition region is apparent. For in-situ combustion cases, 

Onyekunwu (1985) observed a transition region. Pressure profiles presented in Figs. 

6.8 and 6.11 of Onyekonwu (1985) suggest that the system may be modeled as a 

two-region reservoir with a thin skin at the discontinuity, and 

4. Simulated C02 flooding results show that about 60% of the overall pressure drop 

occurs in a small region around the discontinuity (Tang and Ambastha, 1988). Such 

pressure drops at a discontinuity may be approximately modeled as a thin skin at 

the discontinuity. 

The mathematical model developed in this study is discussed in Sec. 4. Section 2 

presents the literature survey. Section 3 presents the problem statement and the objectives of 

this study. 

Since a homogeneous reservoir is a special case of a composite reservoir, transient pres- 

sure derivative behavior of a well in a homogeneous reservoir is discussed in Sec. 5. Section 

5 presents drawdown and buildup pressure derivative type-curves for a well producing at a 

c o n s t a n t  rate from the center of a finite, circular reservoir. The outer boundary may be closed, 

or at a constant pressure. Design relations are developed for the time to the beginning and the 

end of infinite-acting radial flow. Producing time effects on buildup responses are also dis- 

cussed. 

Section 6 presents transient pressure derivative behavior of a well in a two-region, radial, 

infinite or finite composite reservoir. Both drawdown and buildup pressure derivative 

responses are discussed in Sec. 6.  Design and interpretation equations developed in Sec. 6 
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should help estimate the test duration rtquirtd to observe a particular feature in well test data 

and thus, establish the applicability of an interpretation method to determine front radius or 

swept volume. 

A number of well tests reported in the literature exhibiting composite reservoir behavior 

have been analyzed in Sec. 7 to establish the applicability and the limitations of different 

methods to estimate a discontinuity (or front) radius or swept volume. Section 8 presents a 

discussion of results. Finally, Sec. 9 presents conclusions and recommendations for future 

research. 
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2. LITERATURE 

Figure 2.1 shows a schematic diagram of a two-region, radial composite reservoir. The 

inner and outer regions of a composite reservoir have different, but unifonn rock and fluid pro- 

perties, and are separated by a discontinuity. The distance R is the front (or discontinuity) 

radius, which is an important parameter sought from well tests in composite reservoirs. 

Strictly speaking, fronts in many composite reservoir configurations, such as thermal recovery 

and C02 flooding, are usually not cylindrical due to gravity and viscous fingering effects. 

Thus, the front (or discontinuity) radius exists only in some average sense. It is perhaps better 

to Speak Of the volume Of the inner region, especially when pseudosteady data are available 

( R m e y ,  1987). 

In 1958, Harebroek et al. analyzed pressure falloff data from water injection wells 

assuming water and oil bank properties to be different. Hursr (1960) and Mort& (1960) con- 

sidered interference between oil fields sharing a common aquifer by two regions of different 

properties. Hopkinson et al. (1960) presented a late time approximation for the pressure drop 

in the inner region. Adams et al. (1968) analyzed pressure buildup tests in a fractured dolom- 

ite reservoir using the Hursr (1960) solution. 

Loucks and Guerrero (196l), and Jones (1962) published solutions for radial composite 

reservoirs using Laplace transformation Rowan and Clegg (1962) presented approximate solu- 

tions for radial composite reservoirs. Bixel et al. (1963), and Bixel and van Poollen (1967) 

considered the effects of linear and radial discontinuities in composite reservoirs on pressure 

buildup and drawdown behaviors. Bixel and van Poollen (1967) recommended a semi-log 

type-curve matching method to determine the distance to the discontinuity. B a r w  and Horne 

(1987) used automated type-curve matching with success to analyze thermal recovery well test 

data. Larkin (1963) presented solutions to the diffusion equation for a line source located any- 

where in a region bounded by a circular discontinuity using a Green’s function presented by 

Jaeger (1 944). 



Figure 2.1 : Two-region, radial composite reservoir. 



-6 - 

Vun Poollen (1964) used the concept of drainage radius, and related the drainage radius 

(or the front radius in an in-situ combustion project) to a deviation time from the semi-log 

straight line corresponding to the inner region mobility. Later, van PoolZen (1965) used pres- 

sure falloff data from in-situ combustion projects to locate the burning front radius using the 

deviation time method. Kuzemi (1966) and Merrill et al. (1974) also discuss the deviation time 

method. Kuzem' et ul. (1972) discuss the problems in the interpretation of pressu~ falloff tests 

in reservoirs with and without fluid banks. 

Curter (1966) presented the pressure transient behavior of a closed, radial composite 

reservoir with the well producing at a constant rate. He noted that a pseudosteady state period, 

yielding a straight line on a Cartesian graph of pressure vs. time, developed after the end of the 

semi-log line corresponding to the inner region mobility, but that the volume calculated from 

the Cartesian slope would be greater than the inner region volume. Clusmunn and Rurliff 

'(1967) presented a solution for a well producing at a constant pressure from a closed, radial 

composite reservoir. Turk (1986). and Olurewuju and Lee (1987~) presented solutions in 

Laplace space for a well producing at a constant pressure from a radial, infinite or finite com- 

posite reservoir. 

Wartenburger and Rumey (1970) modeled a finite-thickness skin region as a composite 

reservoir. They obtained pressure transient behavior for such systems using finite-difference 

techniques. Their solutions correspond to a range of mobility ratio between 0.1 and 3.6. 

Mobility ratio, M, for a two-region composite reservoir is: 

Odeh (1969) observed that pressure data measured at a shut-in well in a composite reser- 

voir may exhibit a semi-log straight line corresponding to the inner region mobility. and then a 

transition followed by a second semi-log straight line comsponding to the outer region mobil- 

ity. He presented an equation relating the dimensionless discontinuity radius, RD, with the 

dimensionless intersection time, tDX, for equal storativity in both regions as: 



where: 
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R 
rW 

R*= - a d  

Ramey (1970) presented a more general relation between RD and rDx as: 

where the difisivity ratio, q. is: 

Merrill et al. (1974) presented a graphical correlation for the dimensionless intersection 

time using a numerical simulator. Brown (1985) also discusses the Merrill et al. correlation. 

The intersection time method depends on the observation of two semi-log straight lines in pres- 

sure data. Susa et al. (1981) studied the effects of relative permeability and mobility ratio on 

simulated pressure falloff behavior in water injection wells. Susa et al. (1981) used the devia- 

tion time and the intersection time methods to analyze simulated falloff tests. 

Eggenschwiler et al. (1979) developed a pseudosteady state method to estimate inner 

swept volume for composite reservoirs with large storativity and mobility contrasts between the 

two regions, such as in in-situ combustion and s team injection projects. They presented an 

analytical solution in Laplace space for the transient pressure behavior of a well producing at a 

constant rate from a two-region, radial infinite composite resemoir. Horne et al. (1980) 

extended the Eggenschwiler et al. solution to finite composite reservoirs. Eggenschwiler et al. 
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observed that for large mobility and storativity contrasts between the two xegions: 

1. The initial wellbore storage effect dies quickly, and a semi-log straight line 

corresponding to the inner region mobility develops almost immediately on shut-in, 

2. The first semi-log straight line corresponding to the inner xegion mobility is fol- 

lowed by a pseudosteady Cartesian straight line characteristic of the inner swept 

volume. The slope, m,, of the Cartesian line may be used to calculate the inner 

swept volume, V ,  through a relation expressed in field units as: 

3 ,and 5.615 B 
m, = (2.7) v, CI 

3. Finally, a second semi-log straight line conesponding to the outer region mobility 

may appear. 

The pseudosteady state method is independent of the geometry of the inner swept region, 

and has been applied by several investigators to field and simulated cases with apparent suc- 

cess. Wulsh et at. (1981), Messner and Williams (1982a and b), Onyekonwu et al. (1984 and 

1986). Farsihi (1988), Da Prut et at. (1985), Ziegler (1988), and Onyekonwu (1985) have 

applied the pseudosteady state method to well tests in in-situ combustion and steam injection 

projects. Home et al. (1980) analyzed geothermal well test data using the pseudosteady state 

method. MucAlZister (1987) used the pseudosteady state method to analyze well tests in CO, 

flooding projects. Tang (1982) and Sufrnun et uf. (1980) extended the pseudosteady state 

method to cases where pseudosteady state did not develop completely due to insufficient 

mobility and storativity contrasts between the two regions. Teng (1984) studied the conditions 

for the existence of pseudosteady state for rectangular shaped inner regions. 

Stanislav et at. (1987b) included the effects of heat losses on pressure behavior during 

the period of falloff testing in a radial, two-region composite reservoir. They found that under 

certain conditions, the net effect of heat losses on pressure behavior may be significant and 

may dominate the pseudosteady state period of pressure response. Abbaszudeh-Dehghani and 
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Kamal (1987) studied pressure transient testing of water injection wells using two-region and 

multi-region composite reservoir models. They found that the assumption of a stationary front 

during falloff is generally acceptable and that a waterflooding system is better represented by a 

multi-region reservoir. Abbaszudeh-Dehghuni and K m Z  used a type-me matching of pres- 

sure and pressure derivative data simultaneously to analyze pressure transient tests in water 

injection wells. Olaravuju and Lee (1987a) used type-curve matching of pressure and pressure 

derivative data simultaneously to analyze well tests exhibiting composite reservoir behavior due 

to acidizing and fracturing. 

Olarewaju and Lee (1987b) presented an analytical solution in Laplace space for two- 

region, radial composite reservoirs produced at either a constant bottomhole pressure or a con- 

stant rate. They included a wellbore phase redistribution model suggested by Fair (1981) in 

their solution. Ularewuju and Lee (1987b) analyzed field tests exhibiting composite reservoir 

behavior using an automatic type-curve matching procedure. 

Onyekonwu and Norm (1983) studied pressure transient behavior in reservoirs with 

spherically discontinuous properties. Satman (1981) presented an analytical study of transient 

flow in multilayered, radial, and infinitely large composite reservoirs with fluid banks. Using 

the analytical solution for multilayered, composite reservoirs (Sutman, 1981). Sutman and 

O s 4  (1985) studied the effects of a tilted front on well test analysis in radial composite reser- 

voirs. Obut (1983). and Obur and Errekin (1984) presented a composite reservoir solution for 

an elliptical flow geometry. They assumed that the swept volume in the presence of an 

infinite-conductivity vertical fracture at the injection well can be idealized as an elliptical 

region. Sranisluv et ul. (1987a) reponed a similar study. 

S u m n  (1985) presented an analytical study of interference in single-layer, radial, and 

infinitely large composite reservoirs. Hutzignutiou et ul. (1987) presented an analytical study 

of interference in multi-layered. radial, and infinitely large composite reservoirs with crossflow 

between layers. 
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Onyekonwu (1985). and Baruu and Horne (1985) presented analytical solutions for three- 

region, radially infinite, composite reservoirs. Thus, the transient pressure behavior of compo- 

site reservoirs has been considered extensively. However, when a straight line is sought on a 

pressure vs. a function of time graph, we seek a constant slope. Thus, pressure derivatives can 

be used to identify this condition. 

A pressure derivative graph can enhance a pressure signal, and may be more sensitive to 

disturbances in reservoir conditions (Bourdet et al., 1983a and b, and 1984). Also, times of 

specific flow events from pressure derivative analysis can often be different from those from 

pressure analysis (Aarsrud, 1987). Larsen (1983) stated that it is not appropriate to test the 

accuracy of design equations based on pressure derivatives with those based on pressure 

responses. However, such a comparison may show the need for improvements in well test 

design and interpretation. Appendix A shows the differences in the time to the beginning of 

infinite-acting radial flow for a line-source and a finite-radius well from pressure and the pres- 

sure derivative analysis. Vongvurhipornchui and Raghuvan (1988) discuss several design rela- 

tions for the end of the storage-dominated period, and for the start of infinite-acting radial flow 

for a well in an infinite reservoir. They concluded that for analysis techniques based on semi- 

log methods, a criterion based on the pressure derivative response is the appropriate criterion 

for determining the time at which the semi-log straight line begins. Design relations based on 

the pressure derivative responses also ensure that the slope is correct within a specified toler- 

ance. 

Because of enhancement of detail on a pressure derivative graph, improved type-curve 

matching may be possible using a pressure derivative type-cwe. To use pressure derivatives, 

design equations and type-curves based on pressure derivatives for the system under considera- 

tion are necessary. Brown (1985) investigated drawdown pressure derivative behavior of two- 

region, radial, and infinitely-large composite reservoirs. He limited his study to mobility ratios 

of the order of 0.4 to 2.0, and storativity ratios of the order of 0.3 to 3.0. Such mobility and 

storativity ratios are typical of cases with finite-thickness skin regions around the wellbore. 
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Storativity ratio, Fs, for a two-=@on composite reservoir is: 

In summary, different methods have been proposed to estimate a front (or discontinuity) 

radius from pressure-time data. These methods are: 

1. Deviation Time Method, 

2. Intersection Time Method, 

3. Type-curve Matching Method, and 

4. Pseudosteady State Method. 

The deviation time method uses the time at the end of the semi-log pressure-time line 

corresponding to the inner region mobility to calculate a fmnt (or discontinuity) radius, based 

on a theoretical dimensionless deviation time. The deviation time method was proposed by 

van Poollen (1964 and 1965). The intersection time method uses the intersection time of two 

semi-log lines corresponding to the mobilities of the inner and outer regions to calculate a front 

radius, using a theoretical dimensionless intersection time. The intersection time method was 

proposed by Odeh (1969). R m e y  (1970). and Merrill et al. (1974). A semi-log type-curve 

matching method was proposed by Bixel and van Poollen (1967). Eggemchwiler et al. (1979) 

proposed a pseudosteady state method for large mobility and storativity contrast situations. 

However, design relations based on pressure derivative analysis of composite reservoirs have 

not appeared in the literature. Accurate design relations should help establish the applicability 

of the interpretation methods to detennine front radius or swept volume. A detailed study of 

drawdown and buildup pressure derivative behavior for two-region. radial composite reservoirs 

has not appeared in the literature to our knowledge. The effects of a thin skin at the discon- 

tinuity on the transient response of a well in a two-region, composite Eservoir also does not 

appear to have been considered previously in the literature. 
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3. PROBLEM STATEMENT 

As discussed in Sec. 2, transient pressure behavior of composite tescrvoirs has been con- 

sidered extensively. However, transient pressure derivative behavior of composite reservoirs 

has attracted little attention. Therefore, this study investigates drawdown and buildup pressure 

derivative behavior of two-region, radial composite reservoirs. The objectives of this study 

are: 

1. 

2. 

3. 

4. 

To develop an analytical solution, similar to the Eggenschwiler et al. (1979) solu- 

tion, for two-region, radial composite reservoirs with an infinitesimally thin skin at 

the discontinuity, 

To develop design and interpretation relations based on pressure derivative behavior 

for well tests in either homogeneous or composite reservoirs, 

To develop new pressure derivative type-cuntes for type-curve matching analysis of 

well tests in either homogeneous or composite reservoirs, and 

To analyze well tests reported in the literature exhibiting composite reservoir 

behavior to establish the applicability and the limitations of different methods to 

estimate a discontinuity (or front) radius, or swept volume. 
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4. MATHEMATICAL MODEL FOR A TWO-REGION COMPOSITE 

RESERVOIR WITH A SKIN AT THE DISCONTINUITY 

Eggemchwilet et d. (1979) presented an analytical solution in Laplace space for a well 

with storage and skin, and producing at a constant rate from a two-region, radial, and infinitely 

large composite reservoir. Home et al. (1980) extended the Eggenschwiler et 41. solution to 

finite composite reservoirs with a closed or a constant-pressure outer boundary, but with no 

wellbore storage or skin. 

In this section, a mathematical model for a two-region, radial composite reservoir with 

wellbore storage and skin at the active (injection or pmduction) well. and an infinitesimally 

thin skin at the discontinuity is presented. The surface production or injection rate at the active 

well is assumed constant. The outer boundary may be infinite, closed or at a constant pressure. 

Other assumptions include: 

1. The formation is horizontal, of uniform thickness, and homogeneous on each side of 

the discontinuity, 

2. The front (or discontinuity) is of infinitesimal thickness in the radial direction, and 

can be considered stationary throughout the test period, 

3. Flow is laminar and radial, 

4. Single phase flow of a fluid with slight, but constant compressibility occurs in each 

region, 

5. Gravity and capillarity effects are negligible, 

4.1 MATHEMATICAL DEVELOPMENT 

The goveming equations and boundary conditions in dimensionless form for a radial, 

two-region composite reservoir are: 



Governing equations: 

Inner boundary conditions: 

Conditions at the discontinuity: 

Outer boundary conditions: 

Closed: - = 0 at ?D = rd , a P D 2  

a r D  

Constant-pressure: p D z ( r &  ,tD) = 0 . 

Initial conditions: 

(4.9) 

(4.10) 
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The dimensionless variables used in Eqs. (4.1) through (4.1 1) are: 

A, h 

(4.1 1) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 
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Following the approach of Eggenschwiler et al. (1979), a general solution to Eqs. (4.1) 

and (4.2) with appropriate initial and boundary conditions was obtained using the Laplace 

transformation. A general solution for the dimensionless pressure drops in Laplace space for 

regions I and I1 is: 

In Eqs. (4.24) and (4.25) and all  subsequent equations, the transformed time variable is 

identified by the symbol, 1. The dimensionless wellbore pressure drop in Laplace space is: 

The constants C1 through C, are obtained by solving the following system of equations result- 

ing from the use of boundary conditions (Eqs. (4.3) through (4.9)) in Laplace space: 

Using Eqs. (4.3) and (4.4): all C1 + a12 C2 = - 1 
I '  

(4.27) 

Using Eq. (4.6): aZl C1 + a= C2 + au C3 + aza C4 = 0 , (4.28) 

Using Eq. (4.5): a31 C1 + a32 C2 + a33 C3 + a% C4 = 0 , and (4.29) 

Using Eq. (4.7) or (4.8) or (4.9): a43 C3 + ahr, C4 = 0 , (4.30) 

The term aU denotes the coefficient of Cj in the ith equation. Equation (4.27) is the first equa- 

tion, and Eq. (4.30) is the fourth equation in the system of equations. The terms qj are: 
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= Io(RD *+ s ~ R D  a I l ( R D  4ij , (4.33) 

= KdR,  -@ - RD K1(RD dij , (4.34) 

%=- KO@, %I 9 (4.35) 

agl = MGI~(R,  4ij , (4.36) 

a32 = - Ma KI(RD , and (4.37) 

a34 = fi KI(RD .Ilril> (4.38) 

The remaining a's depend on the specified outer boundary condition and are given by: 

Infinite outer boundary: 

A bounded solution for jji)2 (r, + = , r )  is obtained from Eq. (4.25) provided C3 = 0, as 

10 (TD fi) + = as r~ + -. Therefore, aB, a33 and a,,3 in Eqs. (4.28) through (4.30) are set to 

zero. A l s o ,  Q = 0, as KO (r, q) in Eq. (4.25) approaches zero as rD + =. Thus: 

au=a33=a,3=c144=0. (4.39) 

Closed outer boundary: 

(4.40) 

(4.41) 

(4.42) 

(4.43) 

(4.40) 
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a33 - fi Il@D f i )  * (4.41) 

q 3  = I&g %) and (4.44) 

ul4 = KO('& (4.45) 

This completes the solution of the transient pressure problem for a radial, two-region 

composite reservoir with a thin skin at the discontinuity. Transient pressure and pressure 

derivative responses for different cases were generated by inverting the solution numerically 

from Laplace space to real space using the Stehfesr (1970) inversion algorithm. 

4.2 VERIFICATION OF SOLUTION 

The solution presented in Sec. 4.1 includes a thin skin at the discontinuity. In the 

absence of a thin skin at the discontinuity (sf= 0). the solution presented in Sec. 4.1 is identical 

to the Eggenschwiler et al. (1979) solution for an infinitely large reservoir. The solution 

presented in Sec. 4.1 is identical to the H o m e  et al. (1980) solution for finite composite reser- 

voirs if sf = C, = s = 0. Eggenschwiler et al. checked their solution against Agarwal et al. 

(1970), and Wattenbarger and R m e y  (1970) solutions for a well in a homogeneous reservoir. 

For a homogeneous reservoir, the two regions have the same properties and thus, M = 11 = 1. 

For a homogeneous reservoir with sf = 0, RD is arbitrary, and the subscript 1 may be dropped 

from the definitions of the dimensionless variables in Eqs. (4.12) through (4.22). Tang (1982) 

also discusses the Eggenschwiler et d. verification efforts. No further verification seems 

necessary. 
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. 5. HOMOGENEOUS RESERVOXR 

This swtion presents design equations for a well producing from the center of either an 

infinitely large or a finite, circular, homogeneous reservoir. This section also presents draw- 

down and buildup pressure derivative type-curves for a well producing at a constant rate from 

the center of a finite, circular, homogeneous reservoir. Early time response (wellbore storage 

and skin effects) is correlated by C M ~  and late time response (outer boundary effects) by 

& , X D .  The outer boundary may be closed, or at a constant pressure. Producing time effects 

on buildup responses of a well in a finite, homogeneous reservoir are also discussed. Transient 

pressure or pressure derivative responses for a well in a homogeneous reservoir have been gen- 

erated using the solution presented in Sec. 4.1 by setting M = q = 1, sf = 0, and an arbitrary 

R D .  Several pressure derivatives used in th is  section are given as: 

5.1 INFINITELY LARGE RESERVOIR 

Design equations are developed based on the drawdown pressure derivative behavior for 

a well with or without wellbore storage, and producing from an infinitely large, homogeneous 

reservoir. The well is assumed to produce at a constant rate. 

As shown in App. A, the time to the beginning of infinite-acting radial flow with an error 

in slope of 2% for a well with no wellbore storage is: 



. .  
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2 140 . (5.4) 

The time in Eq. (5.4), though correct, is of little practical importance because of storage and 

skin. However, it is much larger than the time based on a 2% enor in pressure, and this 

emphasizes an important result of this study. Pressure and pressure derivatives may appear to 

indicate greatly different event times. 

Aganvul et ul. (1970) presented a log-log type-curve for the drawdown pressure behavior 

of a well with wellbore storage and skin, and producing at a c o n s t a n t  rate. They used CD and s 

as the parameters on their type-curve. Earbugher and Kersch (1974) first used CDeB, but 

Gringarten et al. (1979) presented storage and skin type-curve with C# as it is now popu- 

larly used. This appears to be the type-curve that will be used in the future. Bourdet et al. 

(1983a) presented a drawdown pressure derivative type-curve with CDeb as the correlating 

parameter. 

Transient pressure response for a well in an infinitely large, homogeneous reservoir exhi- 

bits the following flow regimes as time grows longer: 1. Storage-dominated period, 2. Transi- 

tion period, and 3. Infinite-acting radial flow period. 

Dunng the storage-dominated period, the dimensionless wellbore pressure drop and the semi- 

log pressure derivative are: 

. t i  

During the transition period, the pressure derivative response shows a maximum for CDeB > 1 

(Fig. A.l). At late time, wellbore storage effects cease to be important, and an infinite-acting 

radial flow develops. During the infinite-acting radial flow period, the dimensionless wellbore 

pressure drop and the semi-log pressure derivative are: 



c 
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-= d P w D  112 . 
d In to 

Design equations for the time to the end of storage-dominated period and the time to the 

beginning of infinite-acting radial flow are developed in App. B. Appendix B also reports the 

development of additional design equations to be presented elsewhere in this study. The 

dimensionless time to the end of storage-dominated period is: 

Equation (5.9) describes the time by which the slope of a log-log graph of pressure vs. time 

has decreased by 2% from the initial value of unity. 

Aganval er al. (1970) approximated the time to the end of storage-dominated period as 

the time at which the sandface rate is equal to 20% of the surface rate. They approximated the 

time to the end of storage-dominated period by: 

- =  0.4 for s = 0, and 
CD 

= 0.2 s for s > 0 , 

Gringarten et al. (1979) presented the time to the end of storage-dominated period as: 

(5.10) 

(5.11) 

Equation (5.1 1) was derived by comparing the pwD values from the rigorous solution for the 

drawdown response for a well with storage and skin, and located in an infinite homogeneous 

reservoir with those from Eq. (5.5). The parameter a is the tolerance, in fraction, defining the 

difference between the two solutions. Gringarten et al. (1979) used three values of a: 0.01, 

0.05, and 0.1. 
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Table 5.1 presents a comparison of the times forecast from as. (5.9), (5.10), and (5.11) 

for selected values of Cot?‘, C,, and s. The results from Eq. (5.1 1) presented in Table 5.1 are 

obtained using a = 0.02 and 0.1. 

Table 5.1 - A comparison of design relations for 
the time to the end of storage-dominated period 

z&, from 
CsL S CD 

This Study Gringarten et al. Agarwal et al. 

E q .  (5.9) Eq. (5.1 1) Eq. (5.1 1) E q .  (5.10) 
with a t 0.03 with a = 0.1 

io4 

1.61 8.06 1 o3 

1.15 5.76 I d  

0.69 3.45 ld 

0.23 1.15 

10 10 16 2.07 
ld 17.27 3.45 

lo2 4.14 20.72 

ios 1.03 0.17 0.46 0.22 2.30 lo3 

10 4.6 1 

1o*O 2.18 0.4 1.38 0.47 6.9 1 lo4 

Ido 4.48 0.86 3.68 0.97 18.42 lo4 

+ 1 
4.38 10 

Table 5.1 shows that the results from Eq.  (5.9), and Eq. (5.1 1) with a - 0.02 are compar- 

able, even though fdcD from Eq. (5.9) is always slightly larger than that from Eq. (5.1 1) with 

a = 0.02. Thus, the results from the design relations based on the pressure derivative analysis 

(Eq. (5.9)) and the pressure analysis (Eq. (5.1 1) with a = 0.02) are the same for the time to the 

end of storage-dominated period. Vongvuthipornchai and Raghavan (1988) also discuss this 

observation. Using the preceding observation, Vongvuthipornchai and Raghavan also showed 

that the time for the end of storage-dominated period from Eq. (5.10) should be the same as 

the time from Eq. (5.11) with a = 0.1. Though the results from Eq. (5.10), and Eq. (5.11) 

with a = 0.1 are not exactly the same in Table 5.1, it is apparent that for a given CDe”, the 

results from Eq. (5.10), and Eq.  (5.1 1) with a = 0.1 would be approximately the same, if s 

were large. 
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Appendix B shows that the time at which the semi-log pressure derivative is within 2% 

of 0.5 is: 

(5.12) 

and the time at which the semi-log pressure derivative is within 5% of 0.5 is: 

- = 30 + 110 log (CDe&) , 
tD 

C D  
(5.13) 

The dimensionless time estimates from the design equations (5.12) and (5.13) are considerably 

larger than the dimensionless time estimates from the presently available design equations 

derived from an analysis of pressure responses such as tdCD > (a0 + 3.5 s) of R m e y  et nl. 

(1973), and rdCD > 50 of Chen and Brigham (1978). Again the pressure derivative 

results are quite different from pressure results. The Chen and Brigham results were based on 

times when slopes of the pressure graphs were approximately valid. 

5.2 FINITE RESERVOIR 

Transient pressure response for a well producing from a finite reservoir of circular, 

square, and rectangular drainage shapes has been studied by van Everdingen and Hursr (1949); 

Miller et al. (1954); Aziz and Flock (1963); Earlougher et ul. (1968); R m e y  and Cobb (197 1); 

Kwnar and Ramey (1 974); Cobb and Smith (1975); and Chen and Brighum (1978), among oth- 

ers. Mishra and Rumey (1987) presented a buildup derivative type-curve for a well with 

storage and skin, and producing from the center of a closed, circular reservoir. Their type- 

curve applies for large producing times such that rpD > rDps. This section presents drawdown 

and buildup pressure derivative type-curves for a well producing at a constant rate from the 

center of a finite, circular reservoir. The outer boundary may be closed, or at a constant pres- 

sure. The differences between the responses for a well in a closed, circular reservoir (fully- 
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developed field), and a well in a circular reservoir with a constant-pressure outer boundary 

(active edgewater drive system, or developed five-spot fluid-injection pattern) are discussed. 

Design relations are developed to estimate the time period which corresponds to infinite-acting 

radial flow, or to a semi-log straight line on a pressure vs. logarithm of time graph. Producing 

time effects on buildup responses are studied using the slope of a dimensionless Agawal 

(1 980) buildup graph. 

5.2.1 Drawdown Response 

Table 5.2 shows the dimensionless wellbore pressure drop and the semi-log pressure 

derivative expressions for a well in a finite, circular reservoir during specific flow periods. 

Table 5.2 - Dimensionless wellbore drawdown pressure and derivative 
expressions for a well in a finite, circular homogeneous reservoir 

C1 = In (CDel”) + 0.80907 , and C, = 0.5 In 2.2458 A 
~ 

All expressions in Table 5.2 may be written as combinations of t&D, CDeZI, and & K D .  For 

example, 

In (r9) + s = - In - CDeh , and ; [; ] (5.14) 

(5.15) 
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Thus, if the dimensionless drawdown pressure and the pressure derivative responses are 

graphed against rdC,, the parameters CD@ and &,ICD may be selected as the correlating 

parameters. A verification of C,c" and ?JC, as the conelating parameters is also shown in 

Fig. 5.1 for both closed and constant-pressure outer boundary cases. The individual values of 

CD, s, and r d  used to generate the pressure derivative responses are shown on Fig. 5.1. 

Figure 5.2 shows the drawdown pressure derivative type-curve developed in this study. 

Both closed and constant-pressure outer boundary cases arc shown. From App. B, the dimen- 

sionless times at which the semi-log pressure derivative is within 2% of 0.5 are: 

(5.16) 

(5.17) 

Design Eqs. (5.16) and (5.17) apply for both closed and constant-pressure outer boundaries. 

Equations (5.16) and (5.17) yield a condition for the development of at least half a log cycle of 

semi-log straight line as: 

53.2 Buildup Response 

The dimensionless buildup pressure is: 

(5.18) 

(5.19) 

where pus is the shut-in pressure at time Ar, and p,,, is the bottomhole flowing pressure at the 

instant of shut-in. The slope of a dimensionless MDH (Miller, Dyes, and Hutchinson, 1950) 

buildup graph is: 
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Figure 5.1: Verification of C D ~ ,  and as correlating parameters for 
drawdown responses. 
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Figure 5.2: Drawdown pressure derivative type-curve. 



- 28 - 

(5.20) 

For large producing times such that rpD > tDpn Mishra and R m e y  (1987) presented a 

type-curve as a log-log graph of MDH slope vs. with the umelating parameters as 

C D 8  and & E D .  Their type-curve applies for a well in the center of a closed, circular reser- 

voir. For large producing times such that tpD > tD@, Fig. 5.3 verifies that C D ~  and &JCD are 

correlating parameters for the buildup pressure derivative responses of a well in the center of a 

circular reservoir with a constant-pressure outer boundary. Figure 5.4 presents a buildup 

derivative type-curve for a well in the Center of a circular reservoir with a constant-pressure 

outer boundary. From App. B, the dimensionless times at which a semi-log buildup pressure 

derivative is within 2% of 0.5 on Fig. 5.4 are: 

= 280 + 180 log ( C s k ,  , and 
ls&rl 

(5.21) 

(5.22) 

Equations (5.21) and (5.22) yield a condition for the development of at least half a log cycle of 

semi-log straight line, the same as Eq. (5.18). 

Figure 5.5 shows buildup derivative responses for a well in a circular reservoir with two 

different outer boundary conditions: closed and constant-pressure. Figure 5.5 applies for 

CD$ = lo00 and ;$/CD = lo6. Figure 5.5 shows that for the same values of CDe2 and & X D ,  

the semi-log straight line is longer for a well in a circular reservoir with a constant-pressure 

outer boundary than for a closed outer boundary. 

From App. B, the dimensionless times at which the slope of a dimensionless MDH 

buildup graph for a well in a closed reservoir is within 2% of 0.5 are: 

(5.23) 
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(5.24) 

Equation (5.23) is the same as Eq. (5.21). The criterion for &/cD] presented by Mzshra 

and R m e y  (1987) corresponds to a dimensionless time at which the slope of a dimensionless 

MDH buildup graph is approximately within 14% of 0.5. A comparison of Eqs. (5.22) and 

(5.24) shows that a semi-log straight line on a MDH buildup graph for a constant-pressure 

outer boundary is about one to one-and-a-half log cycles longer than a semi-log straight line on 

a MDH buildup graph for a closed reservoir, with all other conditions being the same. Thus, if 

buildup pressure derivative data for a well in a circular reservoir with a constant-pressure outer 

boundary is matched on a type-curve for a closed reservoir (Fig. 2 of Mishra and Ramey, 

1987), the value for ?&CD may be overestimated. Similarly, if the buildup pressure derivative 

data for a well in a closed reservoir is matched on a type-curve shown in Fig. 5.4, &/CD may 

be underestimated. 

ran 

52.3 Producing Time Effects on Buildup Response 

The Horner (1951) method is widely used for analysis of buildup data. The slope of a 

dimensionless Horner (1951) graph is: 

(5.25) 

Agarwal (1980) presented the concept of an equivalent drawdown time for analysis of 

buildup data using drawdown type-curves for a well in an infinite reservoir. The dimensionless 

equivalent drawdown time is: 
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(5.26) 

Aganval (1980) showed that a graph of pwD, vs. Atts correlated buildup responses for a 

well in an infinite reservoir with a drawdown response. The correlation was reasonable for 

producing times larger than the time for storage effects to become negligible. For producing 

times less than the time for storage effects to become negligible, early time buildup responses 

did not correlate well. The slope of a dimensionless Aganval(l980) buildup graph is: 

(5.27) 

A comparison of Eqs. (5.25) and (5.27) shows that the Horner slope is equal, but opposite in 

sign to the Agarwal slope. Thus, producing time effects on buildup responses may be studied 

by using either the Aganval or the Horner slope. 

Aarsrad (1987) presents the Agarwul (1980) slope as a function of dimensionless shut-in 

time, &DAY for several producing times, tpDA, for wells without storage or skin, and located in a 

square or a rectangle. Aarstad showed that a graph of the Aganval slope vs. AtDA does not 

result in a single curve for all producing times, if a well is located in a square or a rectangle. 

Therefore, Aarsrad used t&, as a parameter to present producing time effects on buildup 

responses for a well in a square or a rectangle. 

Figure 5.6 presents an investigation of tpDA as a correlating parameter for buildup 

behavior of a well in the Center of a closed, circular reservoir. Figure 5.6 applies for CDeZI = 

lo4 and & , E D  = lo6. The values of CD, s, fpD,  and rd used for various responses are shown on 

Fig. 5.6. From Fig. 5.6, the early time responses for tpDA I lo-’ do not agree with the 

responses for tpDA 2 10-4. For tpDA I IO-’, the producing time is less than the time for storage 

effects to become negligible. Thus, the lack of correlation at early times is consistent with 

Agarwal’s (1980) finding. At late times, the buildup responses for all producing times do not 

form a single curve which is consistent with the work by Aarsrad (1987). The lack of correla- 

tion at late times is due to the finite reservoir size. 
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For buildup derivative data analysis, a log-log graph of d - p,,,)/d In (Ar,) vs. At may 

be matched with a type-curve such as Fig. 2 of Mishru and R m e y  (1987). But Fig. 5.6 shows 

that a type-cwe matching without considering producing time effects may yield an overes- 

timated ?$,XD for smaller producing times. 

Figure 5.7 shows an investigation of r*,, as a correlating parameter for the buildup 

behavior of a well in the center of a circular reservoir with a constant-pressure outer boundary. 

Figure 5.7 applies for CDc2" = 10'' and &/CD = 10'. The remarks for Fig. 5.6 also apply to Fig. 

5.7. Thus, producing time effects may not be ignored in a type-curve matching analysis of 

buildup derivative data obtained from a well in a finite, circular reservoir. 
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6. COMPOSITE RESERVOIR 

As discussed in Sec. 1, a composite reservoir represents a number of well test scenarios. 

Front (or discontinuity) radius, or swept volume is an important parameter sought from well 

tests in composite reservoirs. A brief description of the methods proposed to estimate a front 

(or discontinuity) radius, or swept volume appears in Sec. 2. This section considers drawdown 

and buildup responses for two-region composite reservoirs. Both infinitely large and finite 

reservoirs are considered. Implications of this study on different methods to estimate a front 

radius or swept volume are discussed. The effect of an infinitesimally thin skin at the discon- 

tinuity and the responses for three-region composite reservoirs are also considered. 

6.1 TWO-REGION COMPOSITE RESERVOIR 

Figure 2.1 shows a schematic diagram of a two-region, radial composite reservoir. Sec- 

tion 6.1.1 considers drawdown responses. Section 6.1.2 describes buildup responses. Section 

6.1.3 discusses the effect of a thin skin at the discontinuity on the pressure derivative responses 

for a two-region composite reservoir. 

6.1.1 Drawdown Response 

When the outer region is sufficiently large, a two-region composite reservoir may be con- 

sidered infinitely large. Since the pressure derivative is not affected by the presence of 

wellbore skin as long as wellbore storage is negligible, the parameters for drawdown pressure 

derivative responses in the absence of wellbore storage are M, Fs, and RD. A consideration of 

wellbore storage and skin introduces two additional parameters: CD and s. 

Sarman er al. (1980) and Tang (1982) graphed pwD - In (RdSOO) vs. rD, to correlate pres- 

sure responses for all front radii with the response for R D  = 500. The choice R D  = 500 is arbi- 

trary. Sumtan er ul. and Tung correlated pressure responses neglecting wellbore storage or 
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skin. Their approach suggests that a graph of @wD I d In to vs. rD, should apply for all front 

radii. An example of such a correlation is shown in Fig. 6.1. Figure 6.1 shows semi-log pres- 

sure derivative behavior for several dimensionless front radii. Mobility and storativity ratios 

are 10 and 100, respectively. 

Curves for RD - 50, 100 and 1000 appear to form a single curve for all times. The curve 

for RD .E 10 is also shown on Fig. 6.1. The curve for RD = 10 is slightly different from the 

other curves for tDc I 0.5. Thus, the correlation is valid for practical purposes. It is likely that 

wellbore storage and other practical matters could affect results for RD e 50 and tD, c 0.5. 

Figure 6.2 shows the effect of mobility ratio on the semi-log pressure derivative behavior 

for a fixed storativity ratio of 100 neglecting wellbore storage. The semi-log pressure deriva- 

tive behavior for a homogeneous reservoir ( M  = 1, Fs = 1) is also shown on Fig. 6.2. The first 

semi-log straight line of slope 1/2 develops on a dimensionless graph of pwD vs. In (lo). After 

the end of the first semi-log line, the pressure derivative rises for M 2 1. During the transition 

period, the pressure derivative goes through a maximum above the slope of the second semi- 

log line corresponding to the outer region mobility, if mobility, or storativity ratio, or both, are 

greater than unity. Even in the case of unit mobility ratio, there is a long transition between 

the two semi-log straight lines. The second semi-log line slope is M / 2 .  For large mobility and 

storativity ratios, the inner region may behave like a closed reservoir for some time during the 

transition period after the end of the first semi-log line. Pseudosteady state behavior of the 

inner region during the transition was found by Eggenschwiler et al. (1979). Thus, during the 

early transition period, a Cartesian graph of pressure vs. time may contain a straight line, 

whose slope is related to the volume of the inner region. From Fig. 6.2, the following is 

apparent for a storativity ratio of 100: 

1. The first semi-log line ends at rD, of about 0.18, for all values of mobility ratio stu- 

died. 

2. There is a long transition period between the end of the fist semi-log line and the 

beginning of the second semi-log line. 
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3. The transition period is longer for larger mobility ratios. This translates to a longer 

time to the beginning of the second semi-log line for large mobility ratios. 

4. The time to the maximum derivative and the magnitude of the maximum derivative 

is affected by mobility ratio. 

Brown (1985) reports a minimum transition time of approximately two log cycles for 

composite reservoirs. Long transition periods are also observed in the solution presented by 

Warrenburger and R m e y  (1 970) for pressure transient behavior for a single well with wellbore 

storage and a finite skin thickness in an infinitely large reservoir. The skin region was treated 

as the inner region, and the formation as the outer region. 

Figure 6.3 presents the effect of storativity ratio on semi-log pressure derivative behavior 

for a mobility ratio of 10. For storativity ratios greater than unity, the pressure derivative rises 

above the value M / 2  during the transition period, and passes through a maximum slope. Thus, 

a hump occurs in the pressure derivative behavior for mobility and storativity ratios larger than 

unity. Figure 6.3 shows the following for a mobility ratio of 10: 

1. Storativity ratio does not affect the time to the end of the first semi-log line 

corresponding to the inner region mobility, and mildly affects the time to the begin- 

ning of the second semi-log line corresponding to the outer region mobility. The 

transition time between the two semi-log lines is approximately three log cycles in 

duration. 

2. Storativity ratio affects the derivative behavior at intermediate times. The storativity 

ratio mildly affects the time to maximum slope, and the magnitude of the maximum 

slope. 

Figure 6.4 presents a graph of semi-log pressure derivative vs. rD, with mobility and 

storativity ratios as parameters. Figure 6.4 is a pressure derivative type-curve for composite 

reservoirs in the absence of wellbore storage. Analysis of Fig. 6.4 results in several empirical 

well test design equations for composite reservoirs. These design equations are summarized in 

the following. 
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From Fig. 6.4, the time to the end of the first semi-log straight line is: 

(tge).d = 0.18 . 

From App. B, the time to the maximum derivative in the transition is: 

(rD.)- = (1.8 + 0.4 log Fs) M , and 

the time of start of the second semi-log line is: 

(rDC),, = 90 (1 + log Fs) M . (6.3) 

Equations (6.2) and (6.3) apply if mobility and storativity ratios are greater than unity. From 

App. A, the time to the beginning of the first semi-log line corresponding to inner region 

mobility is: 

which is the same as the time to the beginning of the semi-log line for a finite-radius well with 

no wellbore storage in an infinitely large homogeneous reservoir. Design equations presented 

in Eqs. (6.1) through (6.4) are accurate to within 2% in pressure derivative. The time to the 

end of the first semi-log straight line, (rDJed, is approximately 0.21 for a 5% change from the 

slope of 1/2. Several investigators have developed criteria for (rDJcnd and (rDr)ll using pressure 

data to certain precision. In the following, we compare Eqs.  (6.1) and (6.3) with other design 

criteria. 

The time to the end of the first semi-log line, also called deviation time, has been used 

widely to calculate front radius. The appropriate equation in field units to calculate the front 

radius is: 
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where t,rd is the time to the end of the first semi-log line on a pressure vs. log (time) graph, in 

hours, and (rDJrrd is the dimensionless deviation time based on front radius. Equation (6.5) is 

the basis of the deviation time method to estimate a front (or discontinuity) radius. Previous 

investigators have proposed a number of values for dimensionless deviation time. Dimension- 

less deviation time values were derived by either the drainage-radius concept, or a graphical 

analysis of numerical or analytical pressure responses from composite reservoirs. A summary 

of dimensionless deviation times, (tD,),& proposed by several authors is presented in Table 6.1. 

Table 6.1 - Dimensionless deviation times presented in the literature 

Reference I (fDe)end 

Tek et al. (1957) 
Hurst (1960) 
Jones (1 962) 

Van Poollen (1964) 
Merrill et aI. (1974) 

Tung (1982) 
This studv f 19881 4- 

0.054 
0.143 
0.063 
0.25 

0.13 - 1.39 (Average = 0.389) 
0.4 

0.18 -I 

Van Poollen (1965) used a value for (zDJgd derived on the basis of the radius of drainage 

concept in an earlier paper (Van Poollen, 1964). Merrill et al. (1974) derived a value for 

(rDc)rrd by generating a large number of pressure falloff curves for two-zone, radial composite 

reservoirs using a numerical simulator. They found the dimensionless deviation time to lie 

between 0.13 and 1.39 by running several cases. The arithmetic average dimensionless devia- 

tion time was 0.389. They stated that the range of error using the arithmetic average value of 

(f&).d = 0.389 would be: 

0.58 I 
R using ( tDJCd = 0.389 in Eq. (6.5) 

Actual R 
I 1.89 . 

They felt that this range of error was too large, and advised against indiscriminate use of devi- 

ation time to calculate the radius of a fluid bank. Sosa et al. (1981) used an average dimen- 

sionless deviation time of 0.389 to analyze simulated falloff tests in water injection wells. 
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Sum et al. observed that the front radius using the deviation time method was not an accurate 

estimate for the radius of the water-flooded region. 

Tung (1982) approximated to be 0.4 by observing the pressure response from the 

Eggenschwiler et 41. (1979) analytical solution. Figure 6.5 shows the semi-log pressure deriva- 

tive responses from the Eggenschwiler et al. solution for several values of mobility and stora- 

tivity ratios. Figure 6.5 also includes the responses for M e 1 and Fs c 1. Figure 6.6 shows 

the pressure responses on a log-log graph for the same combinations of M and FS as used in 

Fig. 6.5. The dimensionless deviation time of 0.4 on Fig. 6.6 corresponds to approximately 

2% departure of the pressure response from the semi-log line corresponding to the inner region 

mobility. However, Fig. 6.5 shows semi-log pressure derivatives of 0.80 for M = Fs = 100, 

and 0.33 for M = Fs = 0.1 at the dimensionless time r ~ ,  - 0.4. Thus, on a derivative graph, rD, 

= 0.4 may correspond to approximately +60% or -34% change in slope compared to 1/2, 

depending on the mobility ratio. Also, though (rDJed of 0.18 and 0.4 are not dramatically 

different, a front radius calculated by using (tDe)ed = 0.4 will be approximately 0.67 times a 

front radius calculated by using (rDJed = 0.18, with all other parameters remaining the same, 

This is a significant difference in answers for front radius, indicating the need for accurate 

specification of deviation time to obtain meaningful results from the deviation time method. 

Using (rDJed = 0.18 in Eq.  (6.5), a convenient expression in field units to calculate R is: 

L d  .=.\/A 681.8 a 

Using ( t D J e d  = 0.4 in E q .  (6.5) yields: 

Mobility, or storativity ratio, or both should be about one order of magnitude away from unity 

to obtain a deviation time precisely, and thus obtain reasonable results from the use of Eq. 

(6.7) or (6.8). Equation (6.7) or (6.8) can be used if the assumptions of the analytical model 
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are reasonably satisfied, and wellbore storage does not mask the first semi-log line correspond- 

ing to the inner region mobility. 

As will be shown in Sec. 7, the geometry of the swept region is also a critical factor in 

the application of the deviation time method. If tht swept inner region is not cylindrical, then 

the deviation time should correspond to the closest discontinuity affecting the transient 

response at the well. Thus, deviation time could correspond to a "minimum" front radius, and 

an underestimated swept volume. The swept region may not be cylindrical because of: 

1. Gravity ovemde and undemde, as in case of thermal processes. 

2. Viscous fingering, as in the case of unfavorable mobility ratio processes, such as 

COz flooding. 

The time to the beginning of the second semi-log line has been of interest to many inves- 

tigators. Development of a second semi-log line is required for the intersection time method to 

determine front radius. Odeh (1969) investigated reservoirs with mobility ratios equal to 

difisivity ratios (i.e, FS = l), that varied from 0.25 to 50 using an analytical solution. He 

found, by graphical methods, that the second semi-log line starts at: 

(to,)][ = 7.7 M , for FS = 1 . (6.9) 

By comparing the pressure response from the Eggenschwiler et al. (1979) analytical solu- 

tion with Ramey's (1970) approximate solution, Tang (1982) obtained: 

10 M2 =0.44 + - , 
F S  

for MIFs < 1 . (6.10) 

Substituting Fs = 1 in E q .  (6.10) for MIF, 2 1 results in: 

(6.11) 
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Thus, Eqs. (6.9) and (6.11) produce a time to the beginning of the second semi-log line 

in the same range, for Fs = 1. Equation (6.9) is accurate to within 98, and E q .  (6.1 1) to 

within 5%. The late time dimensionless wellbore pressure-drop for a well in 811 infinitely large 

composite reservoir is: 

(6.12) 

Although a brief derivation of Eq. (6.12) is presented in the paper by R m e y  (1970), Eq. 

(6.12) is derived starting from Rmey’s (1970) approximate solution in App. C. A late time 

drawdown solution for a well in a finite composite reservoir with a constant-pressure or a 

closed outer boundary is also derived in App. C. For a well in an infinitely large composite 

reservoir, the derivation in App. C provides criteria for the time to the beginning of the second 

semi-log line as: 

> l o o ,  for MIFs 5 1 . (6.13) 

Thus, Eq. (6.13) establishes a lower limit for (tDC),,. Any design equation presented for (rD,),, 

must produce (f&)ll larger than, or equal to those from Eq. (6.13). 

Results from Eq. (6.10) were compared with those from Eq. (6.13). Results from Eq. 

(6.10) were poor. Equation (6.10) applies if M ,  Fs and -q are all greater than unity. Equation 

(6.3) developed previously in this study results in a longer time than Eq. (6.10). 

The difference between times computed from Eqs. (6.3) and (6.1) is the uansition time to 

reach the second semi-log line after the end of the first semi-log line. Even for moderate 

mobility ratio cases, the transition time is so long that well tests would seldom be run long 

enough to observe the second semi-log line. The second semi-log line may also be masked by 

outer boundary effects. It is likely that only one semi-log line will be evident in most cases. 
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Next, a derivative type-curve matching method based on Fig. 6.4 is considered. 

Wellbore storage should be small to use the type-curve presented in Fig. 6.4 for an 

infinitely large composite reservoir. Well test data collection to a time slightly larger than the 

time indicated by E q .  (6.2) is recommended, so that a bending over of the semi-log pressure 

derivative is observed. From App. B, an approximate expression for the maximum semi-log 

pressure derivative at the time ( t ~ ~ ) m u  in an infinitely large composite reservoir is: 

= (0.7 + log FS) M , for M 2 10 (6.14) 

Equation (6.14) is applicable for cases where M 2 1, and FS > 10. 

If the conditions listed are satisfied, then type-curve matching can provide values of M 

and Fp The pressure derivative match point can be used to calculate by: 

(6.15) 

and the time match point yields an estimate of front radius, R,  if the inner region properties are 

known. An estimate of front radius, R ,  is given by: 

(6.16) 

In the following, the pseudosteady state method is considered and a correlation for the 

time to the end of pseudosteady state behavior is presented. Pseudosteady state behavior may 

be observed when t ~ ,  > 0.1, where IDA is based on area, A - zU2.  Eggenschwiler et al. (1979) 

used Eq. (2.7) to relate the slope of a Cartesian straight line on a graph of pressure vs. time, 

and the inner zone swept volume. 
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During pseudosteady state, the dimensionless pressure for a well in a homogeneous reser- 

voir is given by (Ramey and Cobb, 1971): 

Differentiating Eq. (6.17) with respect to tDA results in: 

(6.17) 

(6.18) 

where f D A  is based on area, A 6 Mi. The Cartesian pressure derivative during infinite-acting 

(semi-log) radial flow for inner and outer regions, respectively, are given by: 

(6.19) 

(6.20) 

Thus, based on Eqs. (6.18) through (6.20), on a log-log presentation, a Cartesian derivative 

would show a slope of - 1 during infinite-acting radial flow of inner and outer regions, and 

would be constant at 2 x during the pseudosteady state period. This is shown in Fig. 6.7. 

Dimensionless front radii of 100, 500 and 1000 are presented on Fig. 6.7. Mobility and stora- 

tivity ratios are both 100; in Fig. 6.7. 

Figure 6.8 presents the effect of mobility ratio on the Cartesian pressure derivative for Fs 

of 100. Early and late time behaviors shown on Fig. 6.8 follow Eqs. (6.19) and (6.20). From 

Fig. 6.8, after the end of the infinite-acting radial flow corresponding to the inner region mobil- 

ity, a short duration pseudosteady state period is evident, depending on the value of mobility 

ratio. The larger the value of mobility ratio, the longer is the duration of the pseudosteady 

state period. 
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Figure 6.9 presents the effect of storativity ratio on the Cartesian pressure derivative for 

M = 100. Remarks for Fig. 6.8 also apply to Fig. 6.9. For a given mobility ratio, the pseudo- 

steady state period increases for increasing storativity ratios. Storativity ratio also affects the 

Cartesian pressure derivative at intermediate times. The late time Cartesian pressure derivative 

is independent of the storativity ratio, and follows behavior forecast by Eq. (6.20). 

Correlations for the time to the end of pseudosteady state behavior are shown on Fig. 

6.10. Table 6.2 presents selected data used to develop the correlations on Fig. 6.10. 

Table 6.2 - Time to the end of pseudosteady state behavior 
corresponding to the inner swept volume 

tDA for Cartesian slope fDA for Cartesian slope 
within 2% of 2x within 5% of 2x 

0.108 0.119 
0.1 16 0.13 1 
0.126 0.157 
0.131 0.177 
0.136 0.208 
0.148 0.37 1 
0.177 0.8 1 1 
0.192 1.092 
0.294 1516  
0.126 0.155 
0.138 0.207 
0.158 0.438 
0.173 0.584 
0.191 0.792 
0.403 1.483 
0.900 3.589 
1.207 4.972 
1.67 3 7.070 
0.145 0.237 
0.168 0.422 
0.3 14 0.929 
0.435 1.26 1 
0.600 1.762 
1.085 3.444 
2.545 8.468 
3.54 1 11.818 
5.01 2 16.854 
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From Fig. 6.10, the time to the end of pseudosteady state behavior is larger for larger 

values of mobility and storativity ratios. Using the correlation for the slope to be within 2% of 

21c in Fig. 6.10, empirically, we observe that pseudosteady state behavior is likely to appear for 

cases with MFs 2 104 and M 2 10, if pseudosteady state behavior is desired to last up to fDA = 

0.2. Correlations presented in Fig. 6.10 should be of help in choosing the correct pseudosteady 

Cartesian line to calculate swept volume. 

Well test analysis using any of the preceding methods discussed may fail because of: 

I. Wellbore storage effects, and/or 

2. Outer boundary effects. 

Wellbore storage may mask the evidence of a semi-log line corresponding to the inner 

region mobility. An empirical criterion for the time to the end of wellbore storage effects 

based on an analysis of pressure derivative response for a well in an infinitely large homogene- 

ous reservoir is given by Eq. (5.9). Equation (5.9) may be used to calculate whether wellbore 

storage effects would decrease sufficiently approximately one-and-a-half log cycles before 

(rDJCd = 0.18. However, the limitations on the deviation time method due to wellbore storage 

effects may be studied directly by comparing (tD8)8d with the time to the beginning of the 

semi-log line corresponding to the inner region mobility given by Eqs. (5.12) and (5.13). 

Using Eq. (5.12) and = 0.18, the following relation may be obtained to observe at 

least one-half log cycle of a semi-log line corresponding to the inner region mobility: 

- 2 17.6 [280 + 180 log (CDe2b>J . R2, 
CD 

(6.21) 

Another form of Eq. (6.21) is: 

RD 2 4.2 ~ C D  1280 + 180 log (CDe?] . (6.22) 

For CD = 100 and s = 0, Eq. (6.22) yields RD 2 1062. This result emphasizes the need to mini- 

mize wellbore storage effects in composite reservoir well tests. 
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Less strict criteria for RPCD and RD to observe at least one-half log cycle of the semi-log 

line corresponding to the inner region mobility result by using Eq. (5.13) and (t~J=d = 0.21 as: 

- 2 15.2 [30 + 110 log ( C a ]  , a d  R i  
C D  

(6.23) 

RD 2 3.9 ~ C D  [30 + 110 log ( C H ~ ]  . (6.24) 

For CD = 100 and s = 0, Eq. (6.24) yields RD 2 617, again emphasizing the need to minimize 

wellbore storage effects in composite reservoir well tests. 

A comparison of the time to the end of wellbore storage effects (Eq. (5.9)) with tDA = 0.1 

yields criteria for observing pseudosteady state data despite wellbore storage effects: 

R$ [0.048 log (CD~?) - 0.031 
-2 
CD 0.1 x 

, and (6.25) 

RD 2 1.784 .IC, [0.048 log (CDe? - 0.031 . (6.26) 

Even after the end of storage-dominated period, there is a transition time before the onset 

of pseudosteady state. The transition time between the end of storage domination and the 

onset of pseudosteady state is not considered in the development of Eqs. (6.25) and (6.26). 

The transition time between the end of wellbore storage effects and the beginning of infinite- 

acting radial flow corresponding to the inner region mobility is considered in the development 

of Eqs. (6.21) through (6.24). Thus, Eqs. (6.25) and (6.26) are less reliable criteria than Eqs. 

(6.21) through (6.24). In practice, R2CD or RD would have to be larger than those forecast 

from Eq. (6.25) or (6.26) to observe pseudosteady state behavior. Still, a comparison of the 

results from Eq. (6.22) or (6.24), and Eq. (6.26) is important qualitatively. 

For CD - 100 and s = 0, Eq. (6.26) yields RD 2 5. Thus, the results from Eq. (6.22) or 

(6.24), and Eq. (6.26) suggest that in some cases, wellbore storage effects may mask the semi- 

log line corresponding to the inner region mobility, but pseudosteady state data may still be 

obtained. That is, due to wellbore storage effects, there may be cases when the inner region 
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mobility may not be .obtained, and the deviation time method may not be applicable, but the 

pseudosteady state method may be used to estimate a swept volume provided sufficient mobil- 

ity and storativity contrasts exist between the inner and the outer region. Drawdown pressure 

derivative responses for a well with storage and skin, and l o c a t e d  in the center of an infinitely 

large composite reservoir is considered in the following. 

Five parameters, CD, s, RD, M, and Fs, describe the drawdown pressure and pressure 

derivative responses for a well with storage and skin, and located in an infinitely large compo- 

site reservoir. However, the pressure and the pressure derivative expressions during the 

wellbore storage period, the infinite-acting radial flow period corresponding to the inner region 

mobility, and the pseudosteady state period corresponding to the inner swept volume are simi- 

lar to the corresponding expressions in Table 5.2 for a well in a finite, homogeneous reservoir. 

Thus, these expressions can be written as combinations of f & ) ,  CDe2', and R ~ C D .  Similarly, 

as shown in Eq. (6.27), the expression for the drawdown wellbore pressure drop during the 

infinite-acting radial flow period corresponding to the outer region mobility can be written as a 

combination of f & ) y  cDe2', R&c~,  M, and F ~ :  

p , , , D = i  [Mln[ 2.2458 rl f D e  ] + I n  [.I] + S  

(6.27) 

Therefore, four parameters, C#, R2CD, M, and F,, describe the drawdown response for a well 

with storage and skin, and located in an infinitely large composite reservoir. Also, pressure 

and/or pressure derivative may be graphed as a function of either f & )  or fDe because: 

(6.28) 

and R&CD is one of the correlating parameters. 
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A grouping of three parameters, CD, s, and RD, into two parameters, CDe2’ and R ~ C D ,  is 

indicated graphically in Figs. 6.11 through 6.13 for M = 10, and Fs = 100. Figure 6.1 1 is a 

graph of semi-log pressure derivative as a function of fdcD. Figure 6.12 is a graph of semi- 

log pressure derivative as a function of IDe. Figure 6.12 also shows the response for CD = 0. 

Figure 6.13 is a graph of Cartesian pressure derivative as a function of tDA, where tDA = tgdX. 

Curve A on Figs. 6.11 through 6.13 is for C f l  - lO1O and R&CD = 104. Curve B on Figs. 

6.1 1 through 6.13 is for C 2  = 1O’O and R&CD = 100. The individual combinations of C,, s, 

and RD used to generate curves A and B of Figs. 6.1 1 through 6.13 are shown below Fig. 6.1 1 

Figure 6.1 1 shows a correlation of early time wellbore storage dominated response in 

terms of a single parameter C D ~ ~ .  However, depending on the values of CDea and R$/CD, 

infinite-acting radial flow corresponding to the inner region mobility may develop as in curve 

A, or may not develop as in curve B. At late time, the semi-log slope is M/2.  

Figure 6.12 shows the merger of pressure derivative responses for given values of CDeb 

and R ~ C D  to the response for CD = 0 after wellbore storage effects are no longer important, 

Thus, after discarding storage dominated data, it may be possible to use a type-curve, such as 

Fig. 6.4, based on zero wellbore storage to obtain M and Fs by type-curve matching. 

Curve A in Fig. 6.13 shows the development of infinite-acting radial flow corresponding 

to the inner and outer region mobilities as lines of -1 slope on a log-log graph of Cartesian 

derivative vs. to,+ A constant derivative of 27t depicts pseudosteady state flow corresponding 

to the inner swept volume. However, on Fig. 6.13, a constant derivative up to a IDA = 0.01 for 

curve B shows the depletion of the wellbore fluid. Curve B of Fig. 6.13 illustrates a flattening 

of Cartesian pressure derivative at a value of approximately 2x for a short duration, even 

though no infinite-acting radial flow corresponding to the inner region mobility develops. 

Figures 6.14 and 6.15 show the effect of R3CD for M = 10, Fs = 100, and C,e2 = 10”. 

Figure 6.14 is a log-log graph of semi-log pressure derivative vs. toI. Figure 6.15 is a log-log 

graph of Cartesian pressure derivative vs. fD,+ The response for RbCD 2 106 on Figs. 6.14 and 

6.15 is the same as the response for CD = 0 or @CD + 00, Thus, if is large, storage 
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Figure 6.1 1: Correlation of drawdown semi-log slope responses for a two- 
region composite reservoir with wellbore storage and skin (M = 10, Fs = 100). 
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Figure 6.12: Correlation of drawdown semi-log slope responses for a two- 
region composite reservoir with wellbore storage and skin (M = 10, FS = 100). 
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Figure 6.14: Effect of R&CD on semi-log slope response for a two-region 
composite reservoir with wellbore storage and skin. 
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effects may not be important, and well-test data may be analyzed by neglecting wellbore 

storage. However, if R9CD is small, the inner region may be so small that the infinite-acting 

radial flow corresponding to the inner region mobility, and the pseudosteady state flow 

corresponding to the inner swept volume may be masked by wellbore storage effects, as in 

Figs. 6.14 and 6.15 for R3CD 5 1. For R3CD I 1 on Fig. 6.14, the pressure derivative 

responses show infinite-acting radial flow corresponding to the outer region mobility after a 

transition period following the end of wellbore storage effects. 

For CDeZI = lo'', Eq. (6.21) yields R&CD 2 36608 to observe at least one-half log cycle of 

the semi-log line corresponding to the inner region mobility. The responses on Fig. 6.14 are 

consistent with the limit on RPCD from Eq.  (6.21). 

For C D 9  = lo'', Eq. (6.25) yields R&, 2 1.5 to observe pseudosteady state behavior 

corresponding to the inner swept volume. But Fig. 6.15 shows a flattening of Cartesian pres- 

.sure derivative for a short duration at a value of approximately 2x for RbCD 2 100. Thus, Eq. 

(6.25) provides only an approximate lower limit for R&CD to observe pseudosteady state 

behavior. Also, the time to start of flattening of Cartesian pressure derivative in the presence 

of storage and skin effects may not correspond to fDA = 0.1, as for ~ f , / c ~  = 100 on Fig. 6.15. 

Figures 6.16 and 6.17 show the effect of C&' for M = 10, Fs = 100, and RgCD = 10. 

Figure 6.16 is a log-log graph of semi-log pressure derivative vs. fD,. Figure 6.17 is a log-log 

graph of Cartesian pressure derivative vs. fDA,  where f D A  = rD/x. The response for C, = 0 is 

also shown on both figures. Initially, a unit slope line on Fig. 6.16 and a flat Cartesian deriva- 

tive on Fig. 6.17 characterize wellbore storage effects. The value of C,eL affects the time at 

which pressure derivative responses merge with the response for C, = 0. At late time, the 

semi-log slope is M12 characterizing the infinite-acting radial flow corresponding to the outer 

region mobility. The parameter R2CD relates the inner swept volume with wellbore storage. 

For R ~ C D  = 10, the inner region is so small that wellbore storage effects mask the semi-log 

line corresponding to the inner region mobility even for CDe" - lo3. A flattening of Cartesian 

pressure derivative at a value of approximately 2x is also not obvious even for cDe2' = lo3. 
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Figure 6.16: Effect of C D 8  on semi-log slope response for a two-region 
composite reservoir with wellbore storage and skin. 

Figure 6.17: Effect of C~e2' on Cartesian slope for a two-region composite 
reservoir with wellbore storage and skin. 
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The deviation time method and the pseudosteady state method are not applicable for these 

values of C# and R3CD. But thermal well test data consistently appear to exhibit either both 

the semi-log line corresponding to the inner region mobility and the pseudosteady state data, or 

at least pseudosteady state data (Ramey, 1987). Thus, thermal well test data are characterized 

by a large value of R9CD and a small value of CS~. 

Figures 6.18 and 6.19 present the effects of R9CD, M, and Fs on the pressure derivative 

responses for a fixed value of C&'. Figure 6.18 applies for C#& = 1000, and Fig. 6.19 for 

CD$ = 10''. The magnitude of CH" may be obtained by type-curve matching the early por- 

tion of well-test data on a homogeneous reservoir type-curve, such as the Bourdet et al. 

(1983a) type-curve reproduced as Fig. A.l. Then a type-curve, such as Fig. 6.18 or 6.19, may 

be used to estimate R&, M, and Fs by type-curve matching, provided test data exists to a 

time larger than the time given by Eq. (6.2). Estimates for discontinuity radius or inner swept 

volume from the deviation time method and the pseudosteady state method may then be com- 

pared with the type-curve matching estimate for inner swept volume deduced from RbCD to 

place confidence in analysis. 

Figure 6.20 presents the effects of CD$, M, and Fs on the pressure derivative responses 

for RbCD = 104. If RD has been obtained from the deviation time method or the pseudosteady 

state method, and CD has been obtained from a unit slope line on a log-log graph of pressure 

vs. time for the data dominated by storage effects, then the parameter R$CD is known. For a 

known R ~ C D ,  a type-curve, such as Fig. 6.20, may be used to obtain CDeZS, M, and Fs by 

type-curve matching, provided test data exists to a time larger than the time given by Eq. (6.2). 

Outer boundary effects are considered next in the absence of wellbore storage. 

For finite outer boundary, Figs. 6.21 and 6.22 illustrate typical results neglecting wellbore 

storage effects. Figures 6.21 and 6.22 apply for M = 10, Fs = IOOO, and rg / RD = 10. Three 

cases of RD = 50, 100 and 1000 are shown on both figures. The group r,  / RD is a third corre- 

lating parameter for finite, composite reservoirs in addition to M and Fs. 
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A reservoir approaches steady-state behavior at late times for a constant-pressure outer 

boundary. On a pressure derivative graph, such as Fig. 6.21, steady-state is indicated by a 

pressure derivative of zero. Since a large mobility and storativity contrast implies closed reser- 

voir behavior, the semi-log pressure derivative rises for some time after the end of the first 

semi-log line corresponding to the inner region mobility on Fig. 6.21. But eventually, the 

outer boundary effects dominate, and the reservoir approaches steady-state after exhibiting a 

maximum semi-log pressure derivative. As derived in App. C, the dimensionless wellbore 

pressure drop at late time for a constant-pressure outer boundary is: 

pwD = In (RD)  + M In (-) + s . reD 
R D  

(6.29) 

A reservoir approaches pseudosteady state behavior at late times for a closed outer boun- 

dary produced at a constant rate. Pseudosteady state is characterized by a linearly-inmasing 

semi-log pressure derivative on either a Cartesian graph or the log-log graph of Fig. 6.22. The 

effects of mobility and storativity contrasts, and the outer boundary are such that stabilization 

at a maximum derivative, and bending over of the pressure derivative is not seen in Fig. 6.22. 

Instead, the reservoir goes to pseudosteady state directly. As derived in App. C, the dimen- 

sionless wellbore pressure drop at late time for a closed outer boundary is: 

where: 

(6.30) 

(6.31) 
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Figures 6.23 and 6.24 show pressure derivative behavior for constant-pressure and closed 

outer boundaries, respectively, for several values of r g  / RD. Mobility and storativity ratios are 

10 and 1000, respectively, for Figs. 6.23 and 6.24. Interaction of the effects of mobility and 

storativity contrasts, and the outer boundary detennines the pressure derivative behavior at any 

time. Depending on the size of the outer region, a second semi-log line may or may not 

appear. Figures 6.23 and 6.24 show that r g  / RD should be greater than 1000 for the second 

semi-log line to be evident, if M = 10 and Fs = 1000. Thus, even if one is willing to run a 

well test long enough, the second semi-log line may be masked by outer boundary effects. 

Analysis of pressure derivative behavior for several values of M, Fs and rg 1 RD, for closed and 

constant-pressure outer boundaries, resulted in the following relation for the dimensionless time 

at which the pressure derivative response for a finite, composite reservoir departs from that of 

an infinitely large composite reservoir: 

(6.32) 

Equation (6.32) should only be applied to cases where M 2 10 and Fs 2 10. Equation 

(6.32) is best for large values of M and Fs compared to unity. Equation (6.32) applies to both 

closed and constant-pressure outer boundaries. For the homogeneous reservoir case (M = 1, Fs 

= 11, E q .  (6.32) yields that the pressure derivative response departs from infinite-acting 

behavior at rDA = 0.211. Here ?DA is the dimensionless time based on area A = x r:. A com- 

parison of 02/11 with 0.1 (which is ( I D & ,  for a well producing at a constant rate in a closed 

homogeneous reservoir) indicates the results of Eq. (6.32) when M and Fs are close to unity. 

Equation (6.32) quantifies the outer boundary effects on transient responses in composite 

reservoirs, and is a means to determine whether desired features will be seen on a pressure 

transient test. A comparison of Eq. (6.32) with Eq. (6.3) provides a limit for r g  I RD to see at 

least one-half log cycle of second semi-log line on a pressure transient test as: 

- > 4450 (1 + log Fs) Fs . reD 
R D  

(6.33) 
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Similarly, a comparison of Eq. (6.32) with Eq. (6.2) provides a limit for rg / R D  to observe a 

maximum semi-log pressure derivative one-half log cycle before the departure of slope 

response from that of an infinitely large composite reservoir as: 

- > (lo)'" d(9 + 2 log Fs) Fs r.0 
RD 

(6.34) 

Equations (6.33) and (6.34) show that the limiting value of r g  1 RD for observing a 

second semi-log line or maximum semi-log derivative is only a function of the storativity ratio. 

Equation (6.33) shows that for a large storativity ratio, a second semi-log line will be masked 

because of outer boundary effects. The limit on r g  / RD posed by Eq. (6.33) suggests that the 

intersection time method is not applicable for composite reservoir well test analysis. 

There may be cases where the limit based on Eq. (6.34) is not satisfied, and therefore, a 

type-curve like Fig. 6.4 is not appropriate. In such cases, analysis should consider the parame- 

ter r g  / RD and the outer boundary condition in addition to M and Fs. One option is to use 

automated type-curve matching in these cases. However, if any of the three parameters are 

known with reasonable accuracy by independent means, then a type-curve can be prepared 

showing the effects of the other two parameters, and usual type-curve matching can be per-  

formed to estimate those parameters. 

The limit on r d  / RD to observe pseudosteady state behavior to a time fDA = 0.2 results 

from comparing fDA = 0.2 with Eq. (6.32). This limit is: 

(6.35) 

The limit of Eq. (6.35) is more likely to be satisfied than the limits of Eq. (6.33) or (6.34), for 

typical values of M and Fs encountered in most fluid injection projects. Also, since the pseu- 

dosteady state method is independent of the geometry of the swept region, this method should 

yield reasonably correct swept volume and "average" front radius for irregularly swept regions. 
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6.1.2 Buildup Response 

Semi-log analysis method for buildup data uses the slope of either a Miller-Dyes- 

Hutchinson (1950) graph or a Homer (1951) graph. A comparison of Eqs. (5.20) and (5.25) 

provides the relationship between the two slopes as: 

Horner Slope = - [ tpo ] MDH Slope . 'pD -k AtD (6.36) 

Aganval (1980) developed the concept of equivalent drawdown time ( E q .  (5.26)) to con- 

sider producing time effects when drawdown type-curves are used to analyze pressure buildup 

data. Aganvul (1980) showed that a graph of pwDs (defined by Eq. (5.19)) vs. A t 4  (defined by 

Eq. (5.26)) correlated buildup responses from infinitely large, homogeneous or fractured reser- 

voirs with the corresponding drawdown responses. As discussed in Sec. 5, a comparison of 

Eqs. (5.25) and (5.27) shows that: 

Agarwal Slope = - Horner Slope . (6.37) 

Thus, producing time effects on buildup responses may be studied by using either the Agarwal 

or the Horner slope. In this section, Agarwd slope has been used to illustrate the producing 

time effects on buildup responses from composite reservoirs. 

Figure 6.25 verifies rpo / RJ as a correlating parameter for buildup responses for a well in 

a composite reservoir. MDH slope, and the negative Horner slope are graphed in Fig. 6.25 for 

C, = 0, M = 10, Fs = 1000, and $0 / Ri = lo. Solid lines in Fig. 6.25 are for zpD = Id and RD 

= 100. Circles in Fig. 6.25 are for tpo = lo' and RD - 1000. The MDH and Horner slopes are 

graphed against a dimensionless shut-in time based on the discontinuity radius as: 

(6.38) 
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Figure 6.25: Verification of zpdRi  as a correlating parameter for buildup 
response for an infinite, two-region composite reservoir. 
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Figure 6.25 shows that a semi-log line comsponding to the inner region mobility appears in 

both MDH and Horner graphs. But a semi-log line corresponding to the outer region mobility 

develops only on a Homer graph. The derivation in App. D explains this observation. Using 

Eqs. (D.5) and @.a), MDH and Horner slopes at late time are: 

Horner Slope = dPwDs M 
tpD + AtD 

(6.39) 

(6.40) 

if: 

A r ~ ~ 2 1 0 0 q  ,for q 2 1  ,and 

2100 ,for q S l  . (6.41) 

Equation (6.39) shows that for AtD >> rpD, a MDH slope approaches zero at late time. Equation 

(6.40) shows that at late time, Horner graph develops a semi-log line of slope - M / 2 .  The late 

time data for RD = lo00 are lower than those for RD = 100 because of possible instability in the 

Stehfest (1 970) algorithm. 

Figures 6.26 and 6.27 show the effect of rJRi  on MDH and Aganval slopes for CD = 0, 

M = 10, and Fs = 1000. Thus, for Figs. 6.26 and 6.27, q = 0.01. Figures 6.26 and 6.27 also 

show drawdown responses for CD = 0, M = 10, and Fs = 1000. Figures 6.26 and 6.27 show 

that the dimensionless deviation time depends on r&R$. For small values of tpdRi, deviation 

from the semi-log line corresponding to the inner region mobility occurs earlier than ( t D l ) c d  E: 

0.1 8. Thus, the deviation time method may produce an inaccurate front radius estimate for 

small producing times. Also, for t&R$ I 10, MDH and Aganvul slopes decrease in magnitude 

on Figs. 6.26 and 6.27 after deviating from the slope value of 112. At intermediate time, the 

pressure derivative goes through a maximum. The value of rpdRi affects significantly the 
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magnitude of maximum pressure derivative. But tpdR$ affects mildly the time to a maximum 

pressure derivative. However, for f,,dR$2 IO00 on Figs. 6.26 and 6.27, the time and the mag- 

nitude of maximum pressure derivative are the same as those for drawdown responses. Thus, 

for large r,,dR$, design equations such as Eqs. (6.1), (6.2), and (6.14) are applicable. For 

f&R; 2 1O00, Agurwal slope response on Fig. 6.27 is the same as the drawdown pressure 

derivative response. Thus, Agarwul slope does not correlate responses for all f&R$ into a sin- 

gle curve. But a log-log graph of Agurwul slope vs. At may be analyzed by a type-curve like 

Fig. 6.4, provided r&R$ is sufficiently large. For a reliable type-curve matching, rpdRb should 

be large enough for expected values of M and Fs that a maximum slope as forecast from Eq. 

(6.2) would appear in well-test data. The value of rpdR$ required to observe a maximum slope 

as forecast from Eq. (6.2) depends on M and Fs as illustrated in Table 6.3. Table 6.3 presents 

the value of tp&, for selected values of M and Fs to observe a maximum Aganval slope 

within 5% of maximum drawdown semi-log slope. Based on the data in Table 6.3, the tpD/Ri 

required for maximum Agarwul slope to be within 5% of maximum drawdown semi-log slope 

is: 

(6.42) 

Figure 6.28 presents a comparison of the results from Eq.  (6.42) and the data of Table 

6.3. Equation (6.42) should be helpful in well test design and interpretation to estimate 

whether rpdRb is large enough that the well-test data may be type-curve matched on a draw- 

down type-curve such as Fig. 6.4. The value of +@, large enough for type-curve matching to 

be applicable implies that well-test data can also be analyzed by the deviation time method and 

the pseudosteady state method. For large values of t&R&, Fig. 6.29 illustrates the applicabil- 

ity of the pseudosteady state method. Figure 6.29 presents a log-log graph of Cmesian slope 

as a function of At, ,  for C, - 0, M = 10, and Fs - 1000. A short period of constant slope of 

2x develops only for f,dR$ 2 100 on Fig. 6.29. For i,dR$ e 100, a flattening of a Cartesian 

derivative to a value other than 27t is apparent. Thus, for short producing times or small values 
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Table 6.3 - $,dRi required for Agarwal maximum slope to be within 5% of 
drawdown maximum semi-log slope for a two-region composite reservoir 
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Figure 6.28: zpdR$ required to obsexve maximum Agarwal slope within 5% 
of drawdown maximum semi-log slope for a two-region composite resentoir. 
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of rp&,, there may be an appearance of an apparent Cartesian straight line on a graph of pres- 

sure vs. shut-in time. Analysis based on an apparent Cartesian straight line would result in an 

overestimated swept volume. 

Figures 6.30 through 6.32 present the MDH slope, AgarwaZ slope, and Cartesian slope 

behavior for CD = 0, M = 100, and Fs = 10. Thus, for Figs. 6.30 through 6.32, q = 10. 

Corresponding drawdown responses are also shown on Figs. 6.30 through 6.32. Remarks for 

Figs. 6.26, 6.27, and 6.29 also apply to Figs. 6.30 through 6.32. A decrease in MDH or 

Aguwul slope after the end of infinite-acting radial flow corresponding to the inner region 

mobility may indicate a test after short producing (injection) time. However, a decrease in 

semi-log pressure derivative after a semi-log line corresponding to the inner region mobility 

may also result due to: 

1. A two-region composite reservoir with either M e 1, or Fs e 1, or both M e 1 and 

Fs < 1 as shown in Fig. 6.5 for selected cases, or 

2. A three-region composite reservoir with either intermediate region mobility more 

than the inner region mobility, or intermediate region storativity more than the inner 

region storativity, or both intermediate region mobility and storativity more than the 

corresponding values for the inner region. The responses for a three-region reser- 

voir discussed in Sec. 6.2 illustrate this observation. 

The preceding discussion points out that well tests in composite reservoirs following a 

short producing (injection) time may be difficult to analyze. Also, other reservoir parameters 

or configurations may produce well-test data resembling a test after short producing time. 

Therefore, an analyst has to be careful to identify a plausible reason for a particular behavior in 

a well test. 

6.1.3 Effect of a Thin Skin at the Discontinuity 

Figures 6.33 and 6.34 show the effect of a thin skin at the discontinuity for an infinitely 
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Figure 6.33: Effect of si on semi-log slope response for M = 1, Fs = 1, and 
CD = 0. 
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large, homogeneous reservoir (M = 1, Fs = 1) in terms of semi-log and Cartesian pressure 

derivatives. Figures 6.33 and 6.34 are for CD = 0. The responses in solid lines on Fig. 6.33 

are for RD = 100. The circles in Fig. 6.33 show the response for RD = lo00 and sf - 20. Thus, 

a graph of semi-log pressure derivative as a function of rD, correlates the responses for all R,  

even in the presence of a thin skin at the discontinuity. 

Figure 6.33 shows that the dimensionless deviation time from a semi-log line correspond- 

ing to the inner region mobility is not affected by the value of s,. But the value of s~ affects 

the magnitude and the time of maximum semi-log slope. The time to start of the second 

semi-log line is only slightly affected by the value of sf, and Eq. (6.3) approximately applies 

even in the presence of a thin skin at the discontinuity. 

Depending on the value of sf, Fig. 6.34 shows the development of a short duration pseu- 

dosteady state period even for homogeneous reservoirs. Thus, a short duration pseudosteady 

state period may result because of a positive value of sf even for small mobility and storativity 

contrasts. For a homogeneous reservoir, the Srehfesr (1970) algorithm produced meaningless 

results for negative values of sf 

The time interval during which the effects of sf is important is illustrated in Fig. 6.35. 

Figure 6.35 shows a graph of dpwdd sf as a function of foe for an infinitely large, homogeneous 

reservoir with CD = 0. The derivative dpW& sf for a given sf at any toe is calculated numeri- 

cally. The dimensionless wellbore pressure drops from the Stehfesr (1970) algorithm for 

SJ + 0.1 and sf - 0.1 at the time tD# are used to obtain: 

(6.43) 

The curve for sf = O+ on Fig. 6.35 shows the effect of a vanishingly small skin at the 

discontinuity on 4 p W &  sf Initially, during the infinite-acting radial flow period corresponding 

to the inner region, the dimensionless wellbore pressure drop is given by Eq. (5.7), and is 

independent of sf Thus, dpw& sf= 0 at early time. However, after the end of infinite-acting 
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radial flow corresponding to the inner region mobility, there is a short time period during 

which the inner region is being depleted. Inner region depletion corresponds to pseudosteady 

state flow in the inner region, and a Cartesian slope of 2n develops as in Fig. 6.34. During the 

pseudosteady state period, flow does not occur across the discontinuity and (40,dd sf remains 

zero. For a finite value of sf, however, flow across the discontinuity occurs eventually, and 

dpwdd  sf becomes non-zero. At late time, all the fluid wmes from the outer region, and an 

infinite-acting radial flow corresponding to the outer region mobility develops. At late time, 

the dimensionless wellbore pressure drop for an infinitely large, homogeneous reservoir with a 

skin at the discontinuity is: 

p w ~  = ' [. (lo) + 0.80907 + 2 s + 2 s . 
2 fl 

Equation (6.44) shows that at late time, dpwJd sf = 1. The derivative dpwJd sf approaches 1 at 

late time on Fig. 6.35 also. Similarly, the dimensionless wellbore pressure drop at late time for 

an infinitely large, two-region composite reservoir with a skin at the discontinuity is: 

(6.45) 

Equation (6.45) also shows that at late time, dpwdd sf = 1. 

Figures 6.36 and 6.37 show pressure profiles for f d R i  = 10 and 1000 respectively. Fig- 

ures 6.36 and 6.37 are for M - 1, Fs = 1, and CD - 0. The solid lines in Figs. 6.36 and 6.37 

are for RD = 100. The profiles for RD = 1000 and sf 5 20 are shown by circles in Figs. 6.36 

and 6.37. Thus, the pressure profile in the reservoir at a given time for all RD is correlated to 

that for an arbitrary RD = 100, if the dimensionless pressure drop is graphed as a function of 

to x (100lR~). Figures 6.36 and 6.37 show that the pressure drop is significant at the discon- 

tinuity compared to the pressure drop in the swept inner region. 

Figures 6.38 through 6.40 are for M = 10, FS = 100, and CD = 0. Figure 6.38 shows 

semi-log pressure derivative behavior for several values of s/. Figure 6.39 shows Cartesian 
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pressure derivative behavior. For M = 10 and Fs = 100, the Srehfesr (1970) algorithm produced 

meaningful results even for sf= - 5. Figure 6.38 shows that the dimensionless deviation time 

from a semi-log line corresponding to the inner region mobility, and the time to start of second 

semi-log line are not affected by the value of sf But a thin skin at the discontinuity affects the 

pressure derivative response at intermediate time. The value of sf affects the magnitude of 

maximum semi-log pressure derivative, and the time to maximum semi-log slope. Figure 6.39 

shows that for a positive sf, the pseudosteady state period is longer than that for sj = 0. Also, 

for a negative sf, the pseudosteady state period is shorter than that for sf = 0. Figure 6.40 

shows the pressure profile in the reservoir for r d R z ,  = 50. As shown in Figs. 6.36 and 6.37, 

Fig. 6.40 also illustrates that the pressure drop is significant at the discontinuity compared to 

the pressure drop in the swept inner region. 

Neglecting a thin skin at the discontinuity in type-curve matching analysis of well-test 

data may cause an overestimation of storativity ratio for a positive sj and an underestimation of 

storativity ratio for a negative sf This observation is illustrated in Fig. 6.41. Figure 6.41 

shows semi-log pressure derivative behavior for M = 10, Fs = 100, CD = 0, and sf = 20 by a 

solid line. The circles on Fig. 6.41 represent semi-log pressure derivative behavior for M = 10, 

Fs = 5152, CD = 0, and sf = 0. The value of FS = 5152 is derived using Eq. (6.14), and the 

maximum semi-log slope, dpwdd In f D ,  of 19.16 for the response for sf = 20. The diamonds on 

Fig. 6.41 show the response for M = 20, Fs = 32, CD = 0, and sf = 0. The value of Fs = 32 for 

M = 20 is derived using Eq. (6.14), and the same maximum semi-log slope of 19.16. The 

responses shown by the solid line and the circles are identical illustrating the possibility of 

obtaining a large Fs fiom well-test data, if the effects of a positive sf are not considered. Also, 

if well-test data is collected up to a time slightly beyond (rDC)- given by Q. (6.2), non-unique 

answers for the parameters may be obtained by type-curve matching. Figure 6.41 shows that 

for sf = 0, well-test data can be matched to obtain either M = 10 and Fs = 5152, or M = 20 and 

FS = 32. Barua and Home (1985) also discussed briefly the non-uniqueness problems in type- 

curve matching of well-test data from composite reservoirs. Thus, a knowledge about the 
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expected range of parameter values may help to obtain reasonable estimates for the parameters 

by type-curve matching. 

Table 6.4 presents the time at which the Cartesian slope has changed by 5% of 25c for sf 

= 5, 10, and 20, and selected values of M and Fs. Figures 6.42 through 6.44 present graphi- 

cally the correlation for the time to the end of pseudosteady state behavior based on the data in 

Table 6.4. The conelations in Fig. 6.10 for sf = 0, and Figs. 6.42 through 6.44 should help in 

well-test data analysis using the pseudosteady state method. 

Table 6.4 - Time to the end of pseudosteady state behavior corresponding 
to the inner swept volume with a skin at the discontinuity 
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6.2 THREE-REGION COMPOSITE RESERVOIR 

An analytical solution in Laplace space for the transient pressure behavior of a well in a 

three-region composite reservoir has been presented by Onyekonwu (1985). and Barua and 

Home (1985). To study the effects of an intermediate @on on the deviation time method 

and the pseudosteady state method, an analytical solution for a three-region reservoir presented 

by Onyekonwu (1985) is useful. A schematic diagram of a three-region reservoir is presented 

in Fig. 6.45. The variables R 1  and R z  are the inner and intermediate region radii, respectively. 

The parameters of an infinitely large three-region reservoir are M12, M13, Fs12, F~13,  R D 1 ,  and RD2 

in the absence of wellbore storage and skin. 

For a corresponding two-region reservoir, 

M = M12= M13 , (6.46) 

Fs = Fs12 = Fs13 * (6.47) 

R D =  R D ~  . (6.48) 

Should Eqs. (6.46) through (6.48) be appropriate, region 1 forms the inner region, and regions 

2 and 3 form the outer region of a two-region composite reservoir. 

Figure 6.46 presents a graph of semi-log pressure derivative as a function of dimension- 

less time defined by: 

EgUR 6.46 aSSuneS FS12 = Fs13 = 1, M13 = IO, CD = 0, RD1 = 100, and R D ~  = 150. The param- 

eter of interest is M12 on Fig. 6.46. A two-region composite reservoir solution is obtained for 

M12 = 10. For RD1 = 100 and RDz = 150, the intermediate region is significant, as the inter- 

mediate region volume is 1.25 times the inner region volume. Figure 6.46 shows that the 

dimensionless deviation time is not affected significantly, unless M12 is near unity. Thus, the 
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deviation time method .would result in a front radius R1.  

Figure 6.47 shows that the two parameters R D ~  and Rm can be correlated into one param- 

eter R D ~ R D ~  or RdR1. Figure 6.47 applies for M12= 10, Mi3  = 20, F ~ z  = Fn3 = 10, RdR,  = 

125, and CD = 0. The responses for three different R D ~  values of 100, 500, and lo00 are 

shown on Fig. 6.47. Thus, the pressure transient response for a well in a three-region compo- 

site reservoir can be represented by five parameters, M12, M13, Fs12. Fn3, and R2/R1, in the 

absence of wellbore storage and skin. 

Figure 6.48 shows the effect of Fs12 on the semi-log pressure derivative response for M12 

= M13 = 1, Fs13 = 100. R2/R1 = 1.1, and C, = 0. The responses for FSl2 = 1 corresponds to a 

two-region reservoir with the inner region radius as R2 The response for Fs12 = 100 

corresponds to a two-region reservoir with the inner region radius as R1.  The response for Fs12 

= 1 and 100 appear essentially identical because of a small intermediate region corresponding 

to R$Rl = 1.1. The responses for FsI2 = 0.1 and 0.01 illustrate a decrease in semi-log pressure 

derivative after the end of infinite-acting radial flow corresponding to the inner region mobility. 

The dimensionless deviation time, (tDg).,& is 0.18. Thus, the deviation time method would 

result in a front radius corresponding to R1.  Also, for Fs12 e I, Fsr2 affects significantly the 

time to maximum semi-log slope, and the time to start of infinite-acting radial flow correspond- 

ing to the outer region mobility. The parameter Fs12 affects mildly the magnitude of maximum 

semi-log slope. At late time, semi-log slope is M142 on Fig. 6.48, and since in th is  case, M,,  = 

1, the late-time slope is the same as the early-time slope. 

Figure 6.49 shows the effect of Fs12 on the Cartesian pressure derivative response for 

M12 = M,3 = 1, Fn3 = 100, RdR1 = 1.1, and CD = 0. Figure 6.49 shows that pseudosteady state 

does not develop for two-region reservoir situations of Fs12 = 1 and 100 because mobility and 

storativity contrasts are not large enough. For Fs12 = 0.1, the Cartesian pressure derivative 

starts to flatten at tDA) of about 0.3, but does not develop a constant Cartesian pressure deriva- 

tive. However, for Fs12 = 0.01, the Cartesian pressure derivative flattens at a value of approxi- 

mately 0.264 for a period of time between fDAl  of 0.5 and 1.1. The dimensionless time, fDA], is 
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Figure 6.48: Effect of Fs12 on semi-log slope response for an infinitely large, 
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given by: 

(6.50) 

The development of a shon duration of a constant Cartesian pressure derivative may be 

lelated to the pseudosteady state companding to the swept volume of R2. For Fsl2 = 0.01. 

and M12 = M I ,  = 1, pseudosteady state corresponding to the volume of RI  does not exist 

because of pressuxe-support type behavior after the end of the semi-log line corresponding to 

the inner region mobility. 

To explore the possibility of observing a pseudosteady state period corresponding to the 

swept volume of R2, a graph of (dpwddrDA)eb as a function of (rD& should be helpful. The 

expressions for effective values are: 

where: 

(6.51) 

(6.52) 

(6.53) 

(6.54) 

if the swept volume extends to R2 for a three-region reservoir. Equations (6.53) and (6.54) are 

derived in App. F. 

To compute (rD&, both RD1 and R,, are needed, Figures 6.48 and 6.49 were generated 

for R D ~  = 100, and RD, = 110. Figure 6.50 presents a graph of (dp,&ft,,& as a function of 

(fD& Figure 6.50 shows that pseudosteady state behavior is not observed for Fslz = 0.1, 1, 
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and 100. However, for FSl2 = 0.01, an effective Cartesian slope with a constant value of 

approximately 5.81 exists for a period of time between (rD,,)#,, of 0.023 and 0.05. An analysis 

using the effective Cartesian slope of 5.81 would result in a volume qual  to 21t / 5.81 = 1.08 

times the volume of R2, provided correct (&Ja as given by Eq. (6.53) is used for analysis. 

Thus, the error in estimating the volume at R2 is not large. However, since an approximately 

constant effective Cartesian slope started at (tD& of 0.023. and not at (tD& = 0.1, only an 

apparent pseudosteady flow corresponding to the volume at R2 developed for Fs12 = 0.01. An 

effective Cartesian slope of 2 x  starting at (lD,Ja = 0.1 would result in a correct volume at R2. 

Thus, a calculation of (lD,,)# corresponding to the time of s t a t  of approximately constant 

effective Cartesian slope may provide an idea of whether a true, or an apparent pseudosteady 

state has been reached. A calculation of (tD& requires evaluations of Eqs. (6.53) and (6.54). 

An analysis of approximately constant Cartesian slope using (e&, requires an evaluation of 

E q .  (6.53) only. 

An evaluation of Eq. (6.53) requires estimates for RdR, and Fn2, provided (@cJ1 is 

known. Approximations for R21RI and Fs12 may be obtained by experimental or numerical 

simulation studies for a particular process. From a numerical simulation study of in-situ 

combustion falloff tests, Onyekonwu (1985) obtained: 

R2lR1= Jz * and (6.55) 

1 
FSl2 = - 9 (6.56) 

1 - so, 

where So, is residual oil saturation. Equations (6.55) and (6.56) result from an inspection of 

equations presented by Onyekonwu (1985) in !kc. 7.5.2. Similar numerical simulation studies 

should be made in the future to develop correlations for RdR1 and Fn2 for other enhanced oil 

recovery processes such as steam injection and C02 flooding. To calculate (tDA)@ an estimate 

for M12 is also needed, assuming that the deviation time method has been success full^^ used to 

obtain R1 Or R D ~ .  Also, RDZ = R D ~  x (RdRl). Correlations for M12 may be developed using 
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experimental or numerical simulation studies. 

Figures 6.51 through 6.53 show the effect of R$RI on semi-log slope, Cartesian slope, 

and effective Cartesian slope response for M12 = M13 = 1, CD = 0, Fa2 = 0.01, and Fn3 = 100. 

To calculate the effective Cartesian slope, the value for RD1 = 100 used to generate the 

responses in Figs. 6.51 and 6.52 was used. Figure 6.51 shows a dimensionless deviation time 

of 0.18. After the end of infinite-acting radial flow corresponding to the inner region mobility, 

the semi-log slope declines as Fn2 = 0.01. However, as the outer region effects are felt, the 

semi-log slope starts to rise. A maximum semi-log slope develops at intermediate time. At 

late time, the semi-log slope approaches M142. The parameter RdRl affects the time to max- 

imum semi-log slope significantly, and the time to start of infinite-acting radial flow 

corresponding to the outer region mobility. However, the parameter R$R1 affects the magni- 

tude of maximum semi-log slope mildly. 

The response for R2/R1 = 1.1 on Fig. 6.52 is the same as the response for FSI2 = 0.01 on 

Fig. 6.50, and has been discussed already. The responses for R i R ,  = 1.5 and 2 on Figs. 6.52 

and 6.53 do not exhibit an unambiguous flattening of the Cartesian slope. But as observed 

from Fig. 6.53, well-test data during the time (rD& between 0.02 and 0.06 may still be 

analyzed to obtain a slightly overestimated value for the volume at the radius R,, even though a 

correct pseudosteady state with an effective Cartesian slope of 271 does not appear. To analyze 

the data using the pseudosteady state method, an estimate for is required. 

Figure 6.54 shows the effect of Fn2 on the semi-log pressure derivative response for M12 

= 10, M13 = 100, Fs13 = 100, RdR1 = 1.2, and C, = 0. For Fs12 = 1 and 100, the dimensionless 

deviation time is 0.18, and the deviation time method would result in a front radius R1.  How- 

ever, for Fs12 = 0.1, the dimensionless deviation time is 0.35 to observe a 2% change from a 

semi-log slope value of 1/2, and thus, Eq. (6.7) would produce an inaccurate, and probably 

meaningless result for the front radius. There is a time period after tDcl = 0.18 when the 

opposing effects of M12 > I, and Fn2 e I are balanced in a way to produce an apparently longer 

semi-log line corresponding to the inner region mobility for Fn2 = 0.1 on Fig. 6.54. 
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Figure 6.53: Effective Cartesian slope as a function of (tDA)cfl for an 
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Figure 6.54 also shows that for Fn2 e 1, Fn2 affects the time to maximum semi-log slope 

significantly, and the time to the stan of infinite-acting radial flow corresponding to the outer 

region mobility. The parameter Fs12 affects the magnitude of maximum semi-log dope mildly. 

At late time, the semi-log slope is M1& 

FiguIie 6.55 shows the effect of Fslz on the Cartesian pres- derivative response for M12 

= 10, M13 = 100, Fs13 = 100, R$Rl = 1.2, and CD = 0. Figure 6.55 uses R D ~  = 100. For Fn2 = 

100, a Cartesian slope of approximately 2rc develops on Fig. 6.55 for tDAl between 0.1 and 

about 0.6. By rDAl = 0.6, the Cartesian slope has changed by 5% from 2rc. Thus, for Fn2 = 

100, and M12 = 10, it appears that the pseudosteady state method using (@cJ1 may be used to 

obtain the volume of the inner Egion. However, based on the data in Table 6.2, the Cartesian 

slope changes by 5% from 2n by lDA = 0.155 for M = 10, and Fs = 100 in a two-region compo- 

site reservoir. Thus, it is unlikely that an intermediate region with R$Rl = 1.2, M12 = 10, and 

Fs12 = 100 can produce a pseudosteady state period corresponding to the inner region volume 

lasting to fDAl of 0.6. Thus, the existence of a Callesian slope of approximately constant value 

of 2n to tDAl = 0.6 probably corresponds to the volume of R2. Also, approximately constant 

Cartesian slopes for some duration for Fslz = 1 and 0.1 are also expected to correspond to 

pseudosteady state for the volume of R2. 

Figure 6.56 presents a graph of (dp ,&f~~, , ) ,~  as a function of (zD&. Figure 6.56 shows 

that for Fs12 = 0.1, 1, and 100, an effective Cartesian slope of approximately 2 x  develops at 

( t~ ,& = 0.1 representing pseudosteady state depletion of the volume of R2. For Fs12 = 100, and 

RdR1 = 1.2, Eq. (6.53) yields: 

Using Eq. (6.57) in Eq. (6.51) yields: 

[%I,= 1.0044 [%I . 

(6.57) 

(6.58) 
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Figure 6.56: Effective Cartesian slope as a function of (rDJCfl for an 
infinitely large, three-region composite reservoir with C, = 0, M12 = 10, MI3 = 
100, Fsl3 = 100, and R2/R1 = 1.2. 
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Equation (6.58) explains the development of a Cartesian slope of appmximately 2x  on 

Figs. 6.55 and 6.56 for FS2 = 100. 

In summary, for a three-region reservoir, the deviation time method would result in a 

front radius R1 if the effects of M12 and Fs12 are not balanced in a way to produce an incorrect 

deviation time. The pseudosteady state method would result in a front radius R2 if (@ct)., is 

used to analyze the pseudosteady data However, at times, the development of an apparent 

pseudosteady state may yield an overestimated value for the volume of R2. An idea about the 

development of an apparent pseudosteady state may be obtaiied by calculating (tDJefj 

corresponding to the time to start of an approximately constant Cartesian slope. 



7. ANALYSIS OF WELL TESTS 

A number of well tests reported in the literature exhibiting composite nservoir behavior 

are analyzed in this section to establish the applicability and the limitations of different 

methods to estimate a discontinuity (or front) radius, or swept volume. Well tests considered 

in this section represent field and simulated data from in-situ combustion, steam injection, COz 

flood, waterflood and acidization projects. A simulated example of an ideal composite reser- 

voir by Kazemi et al. (1972) is also considered. Analysis shows the estimate of front radius to 

be sensitive to the real deviation time. The estimated front radius from the deviation time 

method may represent a lower bound for front radius, if the swept region is not cylindrical. 

Also, obtaining an accurate deviation time for small mobility contrasts may be difficult. 

All well tests have been analyzed by the deviation time method in addition to other 

methods. Except for Ex. 10, deviation time has been obtained from a semi-log graph of pres- 

sure vs. time, and therefore, ( t ~ ~ ) ~ ~  - 0.4 (or Eq. (6.8)) is used to calculate an estimated front 

radius. For Ex. 10, a pressure derivative graph has been used to obtain a deviation time, and 

therefore ( t ~ ~ ) ~ ~  = 0.18 (or Eq. (6.7)) is used to calculate an estimated front radius. The use 

of Eq. (6.7) or (6.8), depending on how deviation time is obtained, maintains the consistency 

between real data and the interpretation equation derived from the system response in dimen- 

sionless terms. Well-test data is not available in a form suitable to prepare a pressure deriva- 

tive graph for any example, except Ex. 10. 

7.1 WELL TEST EXAMPLES 

Example 1 concerns a simulated in-situ combustion falloff test reported by Onyekonwu et 

al. (1984). The semi-log graph of pressure vs. time is shown in Fig. 4 of Onyekonwu et al. 
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They calculated of 25,001 md/q and reported (+c,), of 3.3915 X lo4 per psi. The 

burning front in this example was at Block 14. The center of Block 14 in the simulation 

model was at 53.3 ft. However, a sharp drop in mobility occurred between Blocks 18 and 19 

(see Table 2 of Onyekomvu et al.). The center of Block 18 in the simulation model was at 

84.5 ft. They found that the pseudosteady state method yielded an estimate of swept volume 

corresponding to a radius of 84.5 ft. However, Fig. 4 of Onyekonwu et al. indicates a devia- 

tion time of 70 seconds yielding a front radius of 30.8 ft using Eq.  (6.8). The estimated front 

radius of 30.8 ft does not correspond to the burning front radius. 

As per Onyekonwu et al. (1984), a semi-log line corresponding to the inner region mobil- 

ity for their example should develop at a time 2 18.5 seconds, based on the criterion of rD 1 25 

for the beginning of a semi-log line!. Thus, a modified semi-log line starting from 30 seconds 

as shown in Fig. 7.1 may be a more accurate semi-log line for this example. Figure 7.1 also 

shows the semi-log line originally chosen by Onyekomvu et al. The modified semi-log line has 

a slope of 0.16 psikycle yielding an estimated ( k l ~ ) ~  of 21,25 1 md/cp. The modified semi-log 

line on Fig. 7.1 ends at about 250 seconds. Using a deviation time of 250 seconds in Eq. (6.8) 

results in an estimated front radius of 53.6 ft which is close to the burning front radius of 53.3 

ft. This example shows the sensitivity of the deviation time method to the estimated real devi- 

ation time. Therefore, the selection of a proper semi-log line and an accurate deviation time 

are crucial for the success of the deviation time method. 

Example 2 concerns a field in-situ combustion test reported by Onyekonwu et af. (1986). 

The semi-log graph of pressure vs. time is shown in Fig. 12 of Onyekonwu et al. They calcu- 

lated (Wp)l of 5,685.5 md/cp and (+cl), of 35.3 X lo4 per psi for this example. Figure 12 of 

Onyekonwu et al. shows a deviation time of 600 seconds yielding a front radius of 13.3 ft. 

Onyekonwu et al. calculated a swept pore volume of 10,300 cubic ft or a front radius of 12.8 ft 

from the pseudosteady state method. The estimated front radii from the deviation time method 
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Figure 7.1: Semi-log graph for Example 1 (modified from Onyekomvu et ut., 
1984). 
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and the pseudosteady state method are quite close for this example. 

Example 3 concerns a field in-situ combustion test in well B reported by Onyekonwu 

(1985). The semi-log graph of pressure vs. time is shown in Fig. 9.6 of Onyekonwu. He cal- 

culated of 4,907.45 md/cp and reported (@cJl of 1.0262 x lo4 per psi. Figure 9.6 of 

Onyekomu shows a deviation time of 0.5 hour yielding a front radius of 126 ft. Onyekonwu 

calculated a swept pore volume of 432,361.6 cubic ft or a front radius of 166 ft from the pseu- 

dosteady state method. A significant difference between the estimated front radii from the 

deviation time method and the pseudosteady state method indicates significant gravity override 

effects. If the swept region is not cylindrical, a deviation time could correspond to a 

"minimum" front radius ( S a w n  and Oskuy, 1985). However, the pseudosteady state method 

is independent of the geometry of the swept region, and the pseudosteady state method should 

yield an "average" front radius for any swept region shape. For this example, 126 ft  appears 

to be an estimate of the "minimum" front radius, whereas 166 ft appears to be an estimate of 

the "average" front radius corresponding to the swept volume. 

Example 4 concerns a field in-situ combustion test reported as Case A by Walsh er a2. 

(1981). The semi-log graph of pressure vs. time is shown in Fig. 5 of Walsh et al. They cal- 

culated ( W F ) ~  of 12,647 md/cp and reported (@cI)l of 119 X 10" per psi. They reported the 

semi-log line shown on Fig. 5 of their paper to last until 0.5 hour. A deviation time of 0.5 

hour yields a front radius of 187 ft. Walsh et al. calculated a swept pore volume of 878,000 

cubic ft or a front radius of 236 ft from the pseudosteady state method. A comparison of 187 

ft with 236 ft suggests significant gravity override effects. But Barua and Horne (1987) 

obtained a front radius of 1 4 4  ft for this example, using an automated type-curve matching 

method. Barua and Home state that the automated type-curve matching method results in a 

volumetric "average" front radius. Baruu and Horne also state that Walsh er al. were not able 

to locate the correct Cartesian straight line for this example and therefore, the estimate of 236 
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ft is not correct. But since the estimate from the deviation time method represents the radius 

to the closest discontinuity affecting the pressure transient behavior, and hence a "minimum" 

front radius, the difference between 187 ft from the deviation time method and 144 ft from the 

automated type-curve matching method requires explanation. One possible explanation may lie 

in the sensitivity of the deviation time method to real deviation time. An examination of Fig. 5 

of Wulsh et ul. suggests that a deviation time of 0.3 hours is also reasonable, which yields a 

front radius estimate of 144.8 ft. This estimate of 144.8 ft  is in excellent agreement with the 

estimate of 144 ft by Boruu and Home. Thus, this example also shows the sensitivity of the 

deviation time method to real deviation time and therefore, the deviation time method should 

be used with caution. A pressure derivative graph may be useful in obtaining deviation time 

accurately, provided enough pressure data are recorded to prepare a smooth pressure derivative 

graph. Also, any error in estimating front radius results in a magnified error for the swept 

volume, because the swept volume is proportional to the square of the front radius. 

Example 5 concerns a field in-situ combustion falloff test reported as Case B by Wulsh et 

al. (1981). The semi-log graph of pressure vs. time is shown in Fig. 7 of Wulsh et al. Their 

Fig. 7 indicates a deviation time of 1 hour. Using (Wp), of 28,839 md/cp and ( 9 ~ ~ ) ~  of 6.258 

X lo4 per psi reported by Wulsh et d., Eq. (6.8) yields an estimated front radius of 174.4 ft. 

Using the pseudosteady state method, Wukh et ul. (1981) computed a swept pore volume of 

2,015,000 cubic ft or a front radius of 193 ft. Using an automated type-curve matching 

method, Bnrua and Home (1987) obtained a front radius of 173.7 ft for this example. Thus, 

the difference between 173.7 ft from the automated type-curve matching method and 193 ft  

from the pseudosteady state method may be due to the difficulty of choosing a proper Carte- 

sian straight line for the pseudosteady state method, as both estimates should represent "aver- 

age" front radius. Since a front radius of 174.4 ft from the deviatian time method is close to 

the estimate of 173.7 ft, this example indicates minimal gravity effects. 
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Example 6 concerns 8 steam injection falloff test in Well 502 of Project A reponed by 

Messner and Williams (1982). An analysis of the falloff test in Well 502 is presented in the 

Appendix of Messner and WilZim.  They reported of 11.200 mUcp and (4~31 of 9.408 

x per psi. The semi-log graph of pressure vs. time is shown in Fig. 5 of Messner and 

WiZZiums. Their Fig. 5 indicates a deviation time of 10 hours, yielding a €font radius of 28 ft 

from Eq. (6.8). Messner and W i l l i m  obtained a swept pore volume of 101,700 cubic ft or a 

front radius of 3 1.8 ft using the pseudosteady state method. The front radius estimate from the 

deviation time method compares well with the front radius estimate from the pseudosteady 

state method for this example. 

Sosa et al. (1981) studied the influence of saturation gradients on pressure falloff data by 

considering the relative permeability characteristics of the porous medium. Simulated 

waterflood cases cover a range of mobility ratios from 0.5 to 2. Table 3 of Sosa et al. pro- 

vides estimates of front radii from the deviation time method using (tDc)cnd = 0.389. The devi- 

ation time method is referred to as the "breakpoint" lime method by Sosa et al. The estimated 

front radii using (tDc)cnd = 0.4 will be = 0.99 times the front radii reported in 

column 5 of Table 3 in Sosa et al. The front radii using = 0.4 also do not estimate the 

radius of the swept region accurately. The main reason for this is probably the difficulty of 

obtaining an accurate deviation time for small mobility contrasts. 

Example 7 concern a pressure transient test in a Devonian Shale well after acidization 

reported by Ohrewaju and Lee (1987a) as Ex. 2 in their paper. The well and the buildup data 

are provided in Table 2 of their paper. They reported ( k l ~ ) ~  of 64.53 md/cp and ( 4 ~ ~ ) ~  of 

3.6512 X 1p per psi. From type-cuwe matching, they obtained a front radius of 3.9 ft. 
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A semi-log graph of pressure vs. time is shown in Fig. 7.2, indicating a deviation time of 0.5 

hour. A semi-log line on Fig. 7.2 was chosen with a slope of 9.2 psi/cycle to obtain (Up)I of 

64.53 md/cp. Equation (6.8) yields a front radius of 7.6 ft. Thus, the two front radii estimates 

are quite different. However, since the inner region mobility is 10 times larger than the outer 

region mobility (Olarewaju and Lee, 1987a), the inner region may behave as a closed system 

for some time after the end of the semi-log line corresponding to the inner region mobility. 

Figure 7.3 shows a Cartesian graph of pressm as a function of time for Ex. 7. The pseudos- 

teady state behavior of the inner region is apparent as a Cartesian line of slope 11 psihour on 

Fig. 7.3. A Cartesian slope of 11 psihour results in a swept pore volume of 1552.5 cubic ft 

or a front radius of 8.3 ft. The front radius estimate of 8.3 f t  agrees closely with the estimated 

front radius of 7.6 f t  using the deviation time method. 

* Example 8 concerns simulated falloff tests without wellbore storage for a liquid-lilled 

two-region reservoir with a moving front reported by Kazemi et al. (1972). They reported 

(Up), of 100 md/cp and ( @ c , ) ~  of 0.895 x lo4 per psi. A semi-log graph of pressure vs. time 

is shown in Fig. 2 of Kazemi et al. (1972), indicating a deviation time of 0.1 hour. Equation 

(6.8) yields a front radius of 86 ft. Kazemi et aZ. simulated a front radius of 80 ft. Thus, the 

front radius estimate from the deviation time method compares well with the input value of 80 

ft. 

Example 9 concerns a field C02 injection well test in Reservoir 1 well No. 29 reported 

by MacAlZister (1987). Pressure falloff data is provided in Table 6 of his paper. He reported 

(UP), of 102.6 mdhp and (@cI)l of 6.84 X IO4 per psi. Using the pseudosteady state method, 

he obtained a swept pore volume of 1,820,000 reservoir bbls, or a front radius of 386 ft. A 

deviation time of 1.5 hours (equivalent to the summation function, defined by Eq. (35) of 

MacAIlister (1987). of 2.3) is obtained from Fig. 5 of MucAllister’s paper. Equation (6.8) 

yields a front radius of 122 ft. Thus, the front radii estimates are quite different from the 
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pseudosteady state method, and the deviation time method, suggesting gravity ovemde, chan- 

neling, and/or viscous fingering effects, assuming that the pseudosteady state method was 

applied correctly by MacAllister. 

Example 10 concern a field C02 injection well test at a well in West Texas (Tung and 

Ambastha, 1988). This well was a water injector for a long time. After having converted the 

well into a C02 injector, 31.4 MMSCF COz was injected, and the last COz injection rate was 

1.576 MMSCFDay. Additional well and reservoir data used in analysis are provided in Table 

7.1. 

Table 7.1 - Reservoir and well data for Example 10 

Porosity 
Thickness 

Oil compressibility 
Water compressibility 

Formation compressibility 
Average COz compressibility at 

80°F, 1400-1800 psi 
COz formation volume factor 

C02 viscosity at bottomhole conditions 
Wellbore radius 

Total COz injected 
Last C02 injection rate 

128 x loa psi" 
0.438 RB/MSCF 
0.067 cp 
0.33 ft 
3 1.4 MMSCF 
1.576 MMSCF/Day 

After water injection and 
before C02 injection: 

Estimated water saturation 0.75 
Estimated oil saturation 0.25 

Table 7.2 presents pressure falloff data for this example. Pressure data were recorded using a 

Hewlett-Packard quartz crystal gauge and thus, pressure data should be accurate. Figure 7.4 

presents a log-log graph of pressure drop as a function of shut-in time for the test. Figure 7.4 

shows minimal wellbore storage effects because of a lack of a unit slope line through the initial 

data points. Figure 7.5 presents a semi-log graph of pressure as a function of shut-in time for 
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Table 7.2 - Pressure falloff data for Example 10 

Pressure, 
Psi 

1770.46 
1751.37 
1739.84 
1731.12 
1724.41 
1718.77 
1713.91 
1709.61 
1705.75 
1702.21 
1699.96 
1695.93 
1693.12 
1687.83 
1685.70 
1683.49 
168 1.40 
1679.40 
1677.51 
1675.70 
1673.96 
1672.28 
1669.15 
1666.22 
1663.47 
1657.27 
1651.82 
1646.03 
1642.46 
1638.29 
1634.38 
1630.73 
1627.32 
1624.1 1 
1621.08 
1618.23 
1615.50 
1612.91 

Time, 
minutes 

9.80 
10.74 
11.64 
12.69 
13.74 
14.79 
15.84 
16.74 
17.79 
18.84 
19.89 
21.84 
23.79 
25.89 
27.84 
29.94 
31.89 
33.84 
35.84 
37.84 
39.84 
41.84 
43.84 
45.84 
48.14 
49.9 1 
52.01 
54.1 1 
58.91 
64.22 
69.22 
74.22 
79.22 
84.22 
89.22 
94.22 
99.22 

105.22 

Pressure, 
psi 

1610.40 
1606.25 
1602.31 
1598.07 
1594.11 
1590.47 
1587.53 
1587.52 
1586.75 
1585.74 
1584.37 
158 1.57 
1578.86 
1575.93 
1573.21 
1570.45 
1568.10 
1565.84 
1563.53 
1561.24 
1559.23 
1557.09 
1554.83 
1552.73 
1550.46 
1548.72 
1546.72 
1544.69 
1540.28 
1535.76 
1532.60 
1528.82 
1525.32 
1522.68 
1519.74 
15 16.95 
1514.13 
1511.24 

Time, 
minutes 

109.22 
114.22 
1 19.22 
124.22 
129.22 
134.22 
139.22 
144.22 
154.22 
164.22 
174.22 
184.22 
194.22 
204.22 
214.22 
224.22 
234.22 
244.22 
264.22 
284.22 
304.22 
324.22 
344.22 
364.22 
384.22 
404.22 
424.22 
444.22 
464.22 
484.22 
534.22 
584.22 
634.22 
684.22 
709.22 
734.22 
784.22 

792.22 

Pressure, 
psi 

1509.18 
1507.06 
1504.64 
1502.52 
1500.81 
1498.99 
1496.61 
1494.50 
1490.62 
1488.03 
1485.56 
1484.06 
1482.75 
1480.84 
1478.91 
1476.38 
1474.46 
1472.03 
1468.06 
1464.29 
1460.57 
1456.56 
1452.62 
1449.28 
1445.61 
1442.09 
1439.0 1 
1436.14 
1432.74 
1430.03 
1424.39 
1418.46 
1413.32 
141 1.03 
1408.89 
1406.94 
1402.7 1 
1402.03 
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the test. Figure 7.5 does not exhibit an unambiguous semi-log line. Figure 7.6 shows a Carte- 

sian graph of pressure as a function of shut-in time for the test. Figure 7.6 shows a Cartesian 

line of slope 0.2 psi/min from 200 minutes to about 400 minutes. However, as Barua and 

Horne (1987) show for an in-situ combustion falloff test, selecting a correct Cartesian pseudos- 

teady line can be difficult. They used an automated type-curve matching method to locate the 

correct Cartesian pseudosteady line for their example. For Example 10, semi-log slope graphs 

were used to verify the existence of a correct Cartesian pseudosteady line. The pressure tran- 

sient data was differentiated using the algorithm described in App. E. Figure 7.7 shows the 

Aganval slope as a function of shut-in time for L = 0.1, 0.2, and 0.5. To compute the 

Aganval slope, an injection time, tP, of 31.4/1.576 = 19.9 days was used. Figure 7.8 shows 

the Cartesian slope, dpwJd At, as a function of shut-in time for L = 0.1, 0.2, and 0.5. The 

parameter L was used to reduce the effect of noise on calculated pressure derivatives. How- 

ever, for a large value of L, oversmoothing may result (Bourdet et al., 1984), as appears to be 

the case in Figs. 7 . 7 ~  and 7.8~.  Figure 7.7a indicates the existence of a semi-log line 

corresponding to the inner region mobility from 50 minutes to 150 minutes. The semi-log 

slope decreases after 150 minutes, and then follows a unit slope line from approximately 200 

minutes to 360 minutes. Thus, a pseudosteady Cartesian line should exist from 200 minutes to 

360 minutes. During the time between 200 and 360 minutes, the existence of pseudosteady 

state is observed on Fig. 7.8a as a flat Cartesian slope of 0.2 psi/min. 

Using a semi-log slope of 50 psi/ natural log cycle from Fig. 7.7a, (Up), is estimated to 

be 32.5 md/cp. Assuming a zero residual oil saturation after COz injection and a COz satura- 

tion, Ss, of 0.35 in the swept inner region, the total compressibility in the swept inner region 

is: 

c, = cr+ S,J, + Sgcg = (13 + 0.65 X 3 + 0.35 X 128) X lod = 59.75 X lod psi-' . (7.1) 
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Figure 7.6: Cartesian graph for Example 10. 
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Figure 7.7b: L = 0.2 
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Figure 7.7: Agarwal slope graph for Example 10 (a. L = 0.1, b. L = 0.2, 
and C. L = 0.5). 
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Figure 7.8a: L = 0.1 
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Figure 7.8: Cartesian slope graph for Example 10 (a. L = 0.1, b. L = 0.2, 
and C. L = 0.5). 
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Using a Cartesian slope of 0.2 psi/min, the swept pore volume is 40,114 reservoir bbls or a 

front radius of 114 It. Based on cumulative volume of C02 injected and a C02 saturation of 

0.35 in the swept region, the front radius is estimated to be 112.5 ft. Thus, front radii esti- 

mates from the material balance, and the pseudosteady state method compare well. If COz 

saturation in the swept inner region is different from 0.35, there will be a discrepancy in front 

radii estimates from the material balance, and the pseudosteady state method. Using a devia- 

tion time of 150 minutes in Eq. (6.7) yields a front radius of 104 ft. 

A decrease in semi-log slope on Fig. 7.7a after 150 minutes may be explained as either a 

short injection time effect for a falloff test in a two-region reservoir, or the effect of an inter- 

mediate region with a larger storativity than the inner region storativity for a three-region reser- 

voir. For an injection time, rp, of 31.4/1.576 E 19.9 days, and a front radius, R, of 114 ft, the 

'parameter, t pD/~h ,  is: 

'pD= O.OOO2637 k1 t 0.0002637 X 32.5 X (19.9 X 24) = 28.5 
R2, (9WJ1 R2 (0.185) (59.75 x lo4) (1  14)2 

- - 

From a water injection falloff test prior to C02 injection, k / p  of 15.2 md/cp was calcu- 

lated (Tung and Ambasrha, 1988). This klp of 15.2 m d / q  was assumed to be for a 

two-region, composite reservoir configuration resulting after C02 injection. Thus, M = 

32315.2 = 2.14. Since water injection continued for a long time before C02 injection in this 

well, an approximation for the total compressibility in the unswept region after C02 injection 

is: 

c, = c f +  S,,,c,,, + Soco = (13 + 0.65 X 3 + 0.35 X 7) xlOd = 17.4 X lod psi-' . (7.3) 

Thus, for a two-region composite reservoir configuration resulting after C02 injection, Fs = 

59.7317.4 = 3.4. For M = 2.14, and Fs = 3.4, the Agarwal falloff pressure derivative is 
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within 4% of a drawdown pressure derivative, if t,,d R $ 2 10, and does not exhibit a decrease 

in semi-log slope after the end of infinite-acting radial flow corresponding to the inner region 

mobility. Thus, a decrease in semi-log slope on Fig. 7.7a may be due to the effect of an inter- 

mediate region with a larger storativity than the inner region storativity for a three-region reser- 

voir. However, if a three-region reservoir model is appropriate, then M13 = 2.14, Fs13 = 3.4, 

and Fs12 c 1 probably can not explain the development of a pseudosteady state Cartesian line 

corresponding to the volume of R2 unless Fs12 is quite small. Figures 7.9 through 7.1 1 show 

the effect of Fs12 on semi-log slope, Cartesian slope, and effective Cartesian slope. Figures 7.9 

through 7.11 are for RD2 = 114iO.33 = 345.5, assuming that pseudosteady state develops 

corresponding to a swept volume of R2. Assuming a 10 ft radial extent of the intermediate 

region, R,, = 104/0.33 = 315.15 was used to generate the responses. Also, the deviation time 

method yields a front radius of 104 ft corresponding to R1. Figures 7.9 through 7.1 1 use M I 2  

= 1. Figure 7.9 shows that the deviation time method should yield a front radius correspond- 

ing to Rl as the dimensionless deviation time is 0.18 for all values of Fs12. The semi-log slope 

decreases after the end of infinite-acting radial flow corresponding to the inner region mobility 

for FSl2 = 0.1 and 0.01. As the outer region effects are felt, the semi-log slope starts to 

increase, and at late time, the semi-log slope becomes M1d2 after exhibiting a maximum semi- 

log slope. The transition time between the minimum and the maximum semi-log slopes is 

about 1 log cycle for FSl2 = 0.1, and about 2 log cycles for Fs12 = 0.01. 

Figure 7.10 shows that the Cartesian slope shows an approximately constant value for a 

short time for Fs12 = 0.01 only. The effective Cartesian slope graph of Fig. 7.1 1 shows that 

for Fs12 = 0.01, an effective Cartesian slope of approximately constant value slightly less than 

27t develops for a short time. Thus, using an effective total compressibility, a slightly overes- 

timated value for the swept volume of R2 may be obtained, if Fsiz is of the order of 0.01. If 

Fsl2 is of the order of 0.01, then a much larger effective compressibility than c, given by E q .  
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Figure 7.9: Effect of Fs12 on semi-log slope for an infinitely-large three- 
region reservoir with CD = 0, M12 = 1, M13 = 2.14, R D ~  = 315.15, RD2 = 345.5, 
and Fs13 = 3.4. 

100 

10 

9 0.1 
a 
Q 

0.01 

0.001 
0.001 0.01 0.1 1 10 100 lo00 

~ D A  1 

Figure 7.10: Effect of Fs12 on Cartesian slope for an infinitely-large three- 
region reservoir with CD = 0, M12 = 1, = 2.14, RD1 = 315.15, & = 345.5, 
and Fs13 = 3.4. 
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Figure 7.1 1: Effect of Fs12 on effective Cartesian slope for an infinitely-large 
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(7.1) should be used for the pseudosteady state method, resulting in a smaller swept pore 

volume, and a smaller front radius than 114 ft obtained using c, given by Eq. (7.1). A smaller 

front radius than 114 ft would not be compatible with the material balance estimate for front 

radius. Also, Fig. 7.7a shows a much smaller transition time between the minimum and the 

maximum semi-log slopes than the transition time on Fig. 7.9 for Fslz = 0.01. Therefore, it 

appears that for this example, a decrease in semi-log slope after the end of infinite-acting radial 

flow corresponding to the inner region mobility may be due to L = 0.1 used in the 

differentiation algorithm, and is not due to three-region reservoir behavior. However, the 

applicability of a three-region reservoir model for C02 injection well tests should be addressed 

in future research projects through an analysis of simulated C02 falloff tests. 

Figure 7.7b indicates the existence of a semi-log line corresponding to the inner region 

mobility from 50 minutes to 230 minutes, with a slope of 52 psi/ natural log cycle resulting in 

a of 31.24 md/cp. The semi-log slope on Fig. 7.7b follows a unit slope line afier 230 

minutes to about 360 minutes. Figure 7.8b shows a Cartesian slope of 0.2 psi/min from 230 

minutes to 360 minutes, yielding a swept pore volume of 40,114 reservoir bbls, or a front 

radius of 114 ft. Using a deviation time of 230 minutes in Eq. (6.7) yields a front radius of 

126 ft. Thus, the results for (Up), and swept pore volume from slope graphs of Fig. 7.7a and 

7.7b are comparable. However, Fig. 7.7b suggests a two-region reservoir model with a skin at 

the discontinuity for this well test, as M = 2.14 and Fs = 3.4 are too small to produce a pseu- 

dosteady state Cartesian line if SI = 0 (see Fig. 6.10). The difference in conceptual models for 

this well test resulted because of the values of L used in the differentiation algorithm. The 

parameter L in differentiation algorithm may also cause confusion in the identification of a 

proper reservoir model in other well-test scenarios. 

Selecting a correct pseudosteady Cartesian line is facilitated by a unit slope line on semi- 

log slope graphs of Figs. 7.7a and b for Ex. IO. If only Cartesian slope graphs of Figs. 7.8a 
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and b were available, selecting a com pseudosteady line comsponding to the swept volume 

would have been difficult. 

7.2 SUMMARY 

To summarize, Table 7.3 presents the input data for the deviation time method for all 

examples. Examples 10a and lob refer to the results for Example 10 with L = 0.1 and 0.2, 

respectively, in the differentiation algorithm. Table 7.4 presents analysis results from the devi- 

ation time method in the column labelled "estimated R .  Percent difference in Table 7.4 is 

given by: 

"Reported R" for Exs. 1 and 8 are the input values in simulated tests. "Reported R" for 

Exs. 4 and 5 have been obtained by Barua and Horne (1987) using an automated type-curve 

matching method. "Reported R" for all other examples were obtained using the pseudosteady 

state method. A significantly smaller front radius estimate from the deviation time method 

than the front radius estimate from an automated type-curve matching method or the pseudos- 

teady state method suggests gravity override, channeling, and/or viscous fingering effects. A 

large positive percent difference for Exs. 3 and 9 in Table 7.4 suggests gravity, channeling, 

and/or viscous fingering effects. A large positive percent difference for Ex. 1 may be 

explained by the difference between the burning front radius and the front radius corresponding 

to a sharp mobility change. 

An alternative indicator for recognizing gravity override, channeling, and/or viscous 

fingering effects from the pressure transient data is: 
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Table 7 3  - Input data for the deviation time method 

Example 
Number 

( W  1 9 

m&cp 

1 
2 

21251 

31.24 1 Ob 
32.5 1 Oa 
102.6 9 
100 8 
64.5 7 

11200 6 
28839 5 
12647 4 
4907.5 3 
5685.5 

(+cJ 1, 
hours lo4 psi-' 

*end 

3.3915 0.0694 
35.343 0.1667 
1.0262 
1.19 

0.5 

1 6.258 
0.3 

940.8 10 
3.65 1 0.5 
0.895 0.1 
0.0684 1.5 
0.5975 2.5 
0 5975 3.83 

Table 7.4 - Analysis results from the deviation time method 

Example 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 Oa 
10b 

Reported R, 
ft 

84.5 
12.8 
166 
144 
173.7 
31.8 
8.3 
80 
386 
114 
114 

Estimated R, 
fi 

53.6 
13.3 
126 
144.8 
174.4 
28 
7.6 
86 
122 
104 
126 

8 difference 

-36.6 
3.9 

-24.1 
0.55 
0.004 

-1 1.9 
-8.4 
7.5 

-68.4 
-8.8 
19.5 
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G =  [kr , (7.5) 

if the pressure transient data is analyzed using the pseudosteady state and the deviation time 

methods. The pseudosteady state method yields a front radius estimate, Rps. The deviation 

time method yields a front radius estimate, Rh. Thus, G is a geometric factor proportional to 

the ratio of the swept volume estimates from the pseudosteady state and the deviation time 

methods. An expression for G in t e rn  of the parameters obtained from semi-log and Carte- 

sian graphs of the pressure transient data is: 

where m, is the slope of the semi-log graph of pressure vs. time in psilcycle, m, is the slope of 

a Cartesian graph of pressure vs. time in psi/day, and tend is the real deviation time in hours. 

If a pressure derivative graph is used to obtain the real deviation time, ( rDe)ed  = 0.18 should be 

used in Eq. (7.6). If a semi-log graph of pressure vs. time is used to obtain the real deviation 

time, ( t D e ) c d  = 0.4 should be used in Eq.  (7.6). 

A value of G larger than unity suggests gravity ovemde, channeling, and/or viscous 

fingering effects. Table 7.5 presents the calculated G values for all examples, except Ex. 8, 

because Ex. 8 was not analyzed using the pseudosteady state method. The Cartesian line slope 

for Ex. 4 is the slope obtained by Barua and Horne (1987) using an automated type-curve 

matching method. For Ex. 9, slopes m, and m, are in psi*-cp/cycle and psi2-cp/day, respec- 

tively. Examples 3 and 9 suggest significant gravity ovemde, channeling, and/or viscous 

fingering effects. A large value of G for Ex. 1 may be explained by the difference between the 

burning front radius and the front radius corresponding to a sharp mobility change. 



Example 
Number 

1 
2 
3 
4 
5 
6 
7 
9 
10a 
1 Ob 

mS* 

pdcycle 

0.16 
4.65 
6 
5.5 
0.8 
7.05 
9.2 
3.83 x lo6 

115.15 
119.8 
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Table 7.5 - Calculation of G Values 

me* 
psi/day 

15.05 
504 
114.8 
309.6 
13.75 
9.12 

264 

288 
288 

41.28 x lo5 

Gmd, 
hours 

0.0694 
0.1667 
0.5 
0.3 
1 
10 
0.5 
1.5 
2.5 
3.83 

(tDl)urd, 
Dimensionless 

0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.18 
0.1 8 

G, 
Dimensionless 

2.553 
0.922 
1.742 
0.99 
0.97 
1.29 
1.16 
10.3 
1.2 
0.8 1 
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8. SUMMARY OF RESULTS 

Radial composite reservoir models have been used to analyze well-tests from a variety of 

enhanced oil recovery projects, geothermal reservoirs, and acidization projects for a number of 

years. However, transient pressure responses for a well in a composite reservoir have not been 

well understood. This study presents transient pressure derivative responses for a well in a 

variety of two- and three- region composite reservoir situations. Both drawdown and buildup 

responses have been considered. This study presents new correlating parameters, and design 

equations for composite reservoirs. The applicability and the limitations of different methods 

proposed in the literature to estimate a front radius, or swept volume have been discussed. 

Guidelines are provided for sufficient test data collection to ensure reliable type-curve match- 

ing. Non-uniqueness problems in type-curve matching well-test data from composite reservoirs 

have been studied. 

An analytical solution for the pressure transient response for a well in a two-region com- 

posite reservoir with a thin skin at the discontinuity was developed. Such a model may be a 

practical approach to model well-tests from enhanced oil recovery projects such as steam injec- 

tion, in-situ combustion, and C02 flooding, and possibly geothermal reservoirs. This study 

shows that neglecting a thin skin at the discontinuity may cause significant errors in parameter 

estimation. Also, a thin skin at the discontinuity increases the likelihood of observing a short 

duration pseudosteady state behavior corresponding to the swept volume. 

New drawdown and buildup derivative type-curves for a well with storage and skin, and 

located in the center of a finite, homogeneous reservoir have been presented. Design equations 

for the time to the beginning and the end of the semi-log straight line have been developed. 

The drawdown and the buildup responses for a well in a closed reservoir were compared with 

the responses for a well in a reservoir with a constant-pressure outer boundary. Producing 

time effects and outer boundary condition should be considered for a proper type-curve match- 

ing analysis of buildup derivative data obtained from a well in a finite, homogeneous reservoir. 
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9. CONCLUSIONS AND RECOMMENDATIONS 

This study considers transient pressure derivative responses for a well in either a homo- 

geneous, a two-region, or a three-region reservoir. Correlating parameters identified for tran- 

sient pressure derivative responses in several situations are summarized in the following: 

1. The correlating parameters for drawdown response for a well in a finite, homogene- 

ous reservoir are C&’ and & E D .  A drawdown type-curve is presented in Fig. 

5.2. 

2. The parameters, C&’ and ;$/CD, describe buildup response after long producing 

times for a well in a finite, homogeneous reservoir with a constant-pressure or a 

closed outer boundary. A buildup pressure derivative type-curve for a well in the 

center of a circular, homogeneous reservoir with a constant-pressure outer boundary 

is presented in Fig. 5.4. A buildup pressure derivative type-curve for a closed outer 

boundary has been presented previously by Mishra and Ramey (1987). For buildup 

response after short producing time, the parameter t p ~ A  is the third parameter. The 

Aganval slope does not correlate buildup responses for a well in a finite, homogene- 

ous reservoir for all producing times. 

3. The parameters, mobility ratio (M) and storativity ratio (Fs), describe drawdown 

response for a well in an infinitely large, two-region composite reservoir in the 

absence of wellbore storage, and with no skin at the discontinuity. A drawdown 

type-curve is presented in Fig. 6.4. 

4. The correlating parameters for drawdown response for a well in a finite, two-region 

composite reservoir in the absence of wellbore storage and with no skin at the 

discontinuity are M, Fs, and r&D. The parameter rglRD is applicable for both a 

closed, or a constant-pressure outer boundary. 

5 .  The drawdown pressure derivative response or buildup response after long produc- 
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ing time for a well in an infinitely large, two-region composite reservoir with a skin 

at the discontinuity is described by the parameters - C&’, @CD, M, Fs, and sf For 

a finite outer boundary, ?&D is an additional parameter. For buildup after short 

producing time, rpdRi is an additional parameter. 

6. The drawdown pressure derivative response for a well in an infinitely large, three- 

region composite reservoir is described by the parameters, M12, M13, Fn2, Fn3, and 

R$RI, in the absence of wellbore storage and skin. 

9.1 CONCLUSIONS 

Based on this work and the publications resulting from this study (Ambastha and Ramey, 

1987, 1988 a and b, 1989; Tang and Ambasha, 1988). the following is concluded regarding 

different methods proposed in the literature to estimate swept volume, or a front radius: 

Deviation Time Method 

1. Ten well tests reported in the literature exhibiting composite reservoir behavior have 

been analyzed using the deviation time method. These well tests cover simulated 

and field test data from in-situ combustion, steam injection. C02 flooding, water 

flooding, and acidizing projects. 

2. The limitations on the deviation time method due to wellbore storage effects have 

been quantified. Wellbore storage effects should be minimized in a composite 

reservoir well test to obsexve a semi-log line corresponding to the inner region 

mobility. 

3. The estimate of discontinuity radius from the deviation time method is sensitive to 

the real and the dimensionless deviation times used. Thus, the identification of a 

proper semi-log line, and an accurate deviation time that corresponds to the accur- 

acy for are important considerations in the application of the deviation time 

method. A pressure derivative graph may be useful in identifying a proper semi-log 
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line, and in obtaining an accurate deviation time. 

4. If a semi-log graph of pressure as a function of time is being analyzed, ( Z D ~ ) . ~  = 0.4 

is appropriate. If a graph of semi-log pressure derivative as a function of time is 

being analyzed, (rD&, - 0.18 is appropriate. The use of (rDJd - 0.18 or 0.4, 

depending on how deviation time is obtained, maintains the consistency between 

real data and the system response in dimensionless terms. 

5. The estimated discontinuity radius from the deviation time method may represent a 

lower bound for discontinuity radius, if the swept inner region is not cylindrical. A 

comparison of the estimates of discontinuity radii from the deviation time and other 

methods may provide information about gravity override and viscous fingering 

effects. 

6. The deviation time method results in an estimate for inner region radius for a three- 

region composite reservoir. But the deviation time method may yield a meaningless 

front radius if the effects of mobility and storativity contrasts between the inner and 

the intermediate region produce an apparently longer semi-log line corresponding to 

the inner region mobility. 

7. Obtaining an accurate deviation time for small mobility contrasts may be difficult. 

Intersection Time Method 

1. The intersection time method is not suitable for composite reservoir well test 

analysis for three reasons. Either, a well test will not be run long enough in most 

cases to see a second semi-log line, or outer boundary effects will mask the second 

semi-log line. This conclusion is in agreement with qualitative observations of pre- 

vious investigators. Also, wellbore storage may mask the first semi-log line render- 

ing the intersection time method inapplicable. 

Pseudosteady State Method 

1. Correlations have been developed for the time to the end of pseudosteady state 
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behavior corresponding to the swept inner region for large mobility and storativity 

ratio cases, and with or without a thin skin at the discontinuity. These correlations 

should be of help in choosing a correct pseudosteady Cartesian line. If a pseudos- 

teady Cartesian line develops, the pseudosteady state method should yield a correct 

swept volume and "average" h n t  radius for irregular swept region shapes. 

2. The effect of a thin skin at the discontinuity is similar to the effect of storativity 

ratio on the pressure transient response. The pseudosteady state behavior 

corresponding to the volume of the inner region may be observed even for moderate 

values of skin at the discontinuity. 

3. The presence of a thin skin at the discontinuity can explain the development of 

pseudosteady state corresponding to the swept volume for small mobility and stora- 

tivity contrasts. 

4. A falloff test after short injection time may produce an apparent Cartesian slope 

which remains approximately constant for a short duration. Such a Cartesian slope 

may not be related to pseudosteady state corresponding to the swept volume. 

5. For a three-region composite reservoir, the pseudosteady state method results in a 

swept volume for the intermediate region radius, R2, if an effective total compressi- 

bility corresponding to the inner and the intermediate regions is used to analyze the 

pseudosteady state data. However, at times, the development of an apparent pseu- 

dosteady state may yield an overestimated value for the volume corresponding to R z .  

The development of an apparent pseudosteady state may be ascertained by comput- 

ing ( I ~ , , ) ~ ~  corresponding to the time to start of an approximately constant Cartesian 

slope. 

Type-Curve Matching 

1. Conditions have been established for the applicability of a derivative type-curve 

matching method. Guidelines have been provided for sufficient test data collection 

to ensure reliable type-curve matching. 
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2. A relation for rpdRfj required for a maximum Agarwal slope to be within 5% of the 

maximum drawdown semi-log pressure derivative has been developed. This rela- 

tion should be helpful in well-test design and interpretation to estimate whether 

rpdRfj is large enough for well-test data to be type-curve matched on a drawdown 

type-curve such as Fig. 6.4. 

3. Non-uniqueness problems in type-curve matching well-test data from a composite 

reservoir have been studied. Knowledge of the expected range of parameter values 

may assist in making reasonable estimates of the parameters by type-curve match- 

ing. 

9.2 RECOMMENDATIONS 

Future studies in composite reservoir well testing should address: 

1. Analysis of simulated C02 falloff tests, and 

2. Analysis of simulated steam injection falloff tests. 

Such simulation studies should be performed using one-dimensional radial model to 

investigate the effects of a thin skin at the discontinuity, and to develop correlations .for 

effective properties to be used in well-test analysis. Simulation studies using two- and three- 

dimensional models should be performed to investigate the effects of gravity override/ under- 

ride, viscous fingering, and channeling on well-test data. 
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NOMENCLATURE 

A =  

B =  

c, = 

C =  

c, = 

cj = 

Ei = 

Fs = 

FSlZ = 

FSl3 = 

G =  

h =  

Ij = 

k =  

Kj = 

I =  

L =  

L-1 = 

m, = 

m, = 

M =  

MI2 = 

MI3 = 

P =  

PD = 

Area, n R2 or IC r: 

Formation volume factor, bbYSTB 

Total system compressibility, psi 

Wellbore storage coefficient, bbVpsi 

Shape factor 

Arbitrary constants 

Exponential Integral 

Storativity ratio for a two-region reservoir, (@ c, c, h 

Storativity ratio between regions 1 and 2 for a three-region reservoir, (+ c, ),I(+ c, )2 

Storativity ratio between regions 1 and 3 for a three-region reservoir, (+ c, )1/(+ c, )3 

Geometric factor defined by Eq. (7.5) 

Formation thickness, ft 

Modified Bessel function of first kind of order j 

Permeability, md 

Modified Bessel function of second kind of order j 

Laplace parameter 

Parameter for the differentiation algorithm of App. E 

Inverse Laplace transform 

Cartesian line slope, psilday 

Semi-log line slope, psilcycle 

Mobility ratio for a two-region reservoir, (k / p )& / p )z 

Mobility ratio between regions 1 and 2 for a three-region reservoir, (k / p / p )2 

Mobility ratio between regions 1 and 3 for a three-region reservoir, (k / p ) l l (k  / p )3 

Pressure, psi 

Dimensionless pressure drop 
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Average reservoir pressure, psi 

Dimensionless pressure drop in Laplace space 

Flow rate, STBlDay 

Radius, ft 

Discontinuity radius for a two-region reservoir, ft 

Dimensionless discontinuity radius for region 1 for a three-region reservoir, Rl/rw 

Dimensionless discontinuity radius for region 2 for a three-region reservoir, R2/rw 

Skin effect at the wellbore, klh (&),~" / 141.2 qB pI 

Skin effect at the front (or discontinuity) 

Residual oil saturation, fraction 

Time, hour 

Dimensionless time based on area A, 0.000264(k / Q p cJ1r/A 

Dimensionless time based on R ,  0.000264(k / Q p c,),r/R2 

Dimensionless deviation time, 0.000264(k I Q p cJ1r,JR2 

Dimensionless time of the start of second semi-log line 

Dimensionless time for maximum semi-log slope 

Dimensionless time for slope response to deviate 

from infinitely large composite reservoir behavior 

Deviation time, hours 

Swept volume, ft' 

Greek Symbols 

a = Tolerance in Eq.  (5.1 1)) fraction 

au = Coefficients in Eqs. (4.27) through (4.30) 

p = Parameter in Eq. (B.11) 

a = Partial 

A p s  = Pressure drop across skin, psi 
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Aps, = Pressure drop across skin at the discontinuity, psi 

Ar = Shut-in time, hours 

9 = Diffusivity ratio, (k / @ p c,),/(k / @ p cJZ 

p = Viscosity, cp 

@ = Porosity, fraction 

x = Parameter defined by E q .  (6.31) 

Subscripts 

a =  

b =  

c =  

D =  

e =  

eff = 

f =  
a =  

P =  

pss = 

s =  

ss = 

I =  

X =  

w =  

1 =  

2 =  

3 =  

Time point u in App. E 

Time point b in App. E 

Cartesian 

Dimensionless 

Exterior or equivalent 

Effective 

Front or flowing 

Initial, or time point i in App. E 

Producing (or injection) 

Pseudosteady state 

Swept or shut-in 

Steady state 

Total 

Intersection 

Wellbore 

Inner region 

O u t e r  region for a two-region composite reservoir or 

intermediate region for a three-region composite reservoir 

Outer region for a three-region composite reservoir 
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APPENDIX A 

Beginning of Infinite-acting Radial Flow 

for a Line-source and a Finite-radius Well 

In this appendix, the time to the beginning of a semi-log straight line for a line-source 

well and for a finite-radius well is considered. Simple examples of line-source and finite- 

radius wells considered here illustrate that drawdown wellbore pressure behavior approaches a 

semi-log straight line at a later time on a derivative graph than on a pressure graph at the same 

specified accuracy for pressure and pressure derivative. 

Case I. Line-source Well 

For a line-source well producing at a constant rate in an infinitely large homogeneous 

reservoir, the pressure response at any location is given by (Theis, 1935): 

Equation (A.l) is also called the exponential-integral solution (Manhews and Russell, 1967; 

Homer, 1951), the lie-source solution or the Theis (1935) solution. The definition and 

approximations for the exponential-integral are presented in Abrumowifz and Sfegun (1964). 

Earbugher (1977) discusses the exponential-integral solution, and states that the exponential- 

integral solution can be approximated by: 

when: 
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However, Earbugher (1977) also points out that the difference between Eqs. (A.l) and 

(A.2) is only about 2% when r&j > 5. The semi-log derivative for the well pressure, rD = 1, 

from Eq. (A.l) is: 

The semi-log pressure derivative from Eq. (A.2) is: 

From Eqs. (A.4) and (AS), the semi-log derivative from the exponential-mtegral solution 

is within 2% and 5% of 0.5 when rD = 12.4 and 4.9, respectively. Thus, even though the pres- 

sures at the wellbore from the exponential-integral solution and log-approximation are within 

2% when rD > 5,  the semi-log slopes are within 2% when ZD > 12. Though ID of 5 and 12 are 

not dramatically different, the following is observed: 

1. About one-half more log cycle of time is required to get within 2% of 0.5 on a 

semi-log derivative graph. Thus, it may appear that a semi-log line has been 

reached on a pressure-log time graph, although the slope may change until a later 

time on a derivative graph before reaching a constant slope. 

2. The line-source well is a simple case. In more complicated cases, larger differences 

in design criteria may be observed by analyzing pressure and pressure derivative 

responses. 

Case II. Finite-radius Well 

Muellet and Witherspoon (1965) presented pD as a function of rD and tD for an infinitely 

large reservoir with a finite-radius well producing at a constant rate. Their work shows that 

the pressure transient response at a finite-radius well with no wellbore storage or skin develops 



- 150 - 

a semi-log line for rD 2 25. Bourdet et al. (1983a) presented a drawdown pressure derivative 

type-curve for a finite-radius well producing at a constant rate with wellbore storage and skin 

in an infinite resewoir. Their type cuwe is reproduced in Fig. A.l. The beginning of a semi- 

log line coxresponding to infinite-acting radial flow is characterized by an approach of 

(ID I CD) p’D to a value of 0.5, where: 

The group CD e” is a correlating parameter in Fig. A.1. The curve for CD e” = 0.1 

approximates the case of zero wellbore storage and skin. Figure A. l  shows that the curve for 

CD 8‘ = 0.1 approaches (10 / C D )  p ‘ ~  of 0.5 at t~ I CD = 1ooO. Considering s = 0, ID 1 CD = lo00 

is equivalent to tD = 100 for CD e2( = 0.1. 

On Fig. A.1, two design criteria for the beginning of a semi-log line available in the 

literature are shown. Criterion (1) is (Ramey et al., 1973): 

marked for s = 0 on Fig. A.l.  Criterion (2) is (Chen and Brighm, 1978): 

marked for s = 5 on Fig. A. 1. Equations (A.7) and (A.8) were both developed by analyzing 

pressure responses. Both criteria appear to underestimate the time to the beginning of the 

semi-log line on a derivative graph. 

Figure A.2 shows semi-log derivative behavior for a finite-radius well with no wellbore 

storage in an infinitely large homogeneous or composite reservoir. The semi-log derivative is 

within 5% and 2% of 0.5 at tD = 43, and 142, respectively, for homogeneous and composite 

reservoirs both. Tiub and K m r  (1980) stated that the semi-log derivative is within 5% of 0.5 

at ID 2 100. The cases shown for a composite reservoir suggest that the time to the beginning 
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Figure A.1: Pressure derivative type-curve for an infinite, homogeneous reservoir 
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of the first semi-log line corresponding to the inner region mobility is independent of M, F and 

RD. Comparing rD 2 142 for semi-log derivative to be within 2% of 0.5 with t~ 2 25 for pres- 

sure response to be within 2% of the log approximation of the exponential-integral solution, we 

obsexve that about one-half more log cycle of time is required to reach the beginning of a 

semi-log line on a derivative graph. 

Based on the analysis of these two examples, the following is observed: 

1. If a pressure derivative approach is to be used for well test analysis, well test design 

should be based on design equations develped from the analysis of derivative 

responses, as the derivative approach results in different design equations. 

2. Pressure derivative behavior for a reservoir model may yield design equations show- 

ing the need for longer tests than presently available design equations based on the 

analysis of pressure behavior, if a specialized method, dependent on the presence of 

a certain flow regime in test data, is to be used. 

The second remark was shown to be true in this appendix for a line-source well, and a 

finite-radius well producing at a constant rate with no wellbore storage in an infinitely large 

homogeneous or composite reservoir. The time to the beginning of a semi-log line was con- 

sidered. 
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APPENDIX B 
Development of Design Equations 

This appendix presents the development of design equations reported in this study. The 

data used to develop the design equations are presented. Accuracy of design equations has 

also been investigated. 

1. Time to the End of Storage-Dominated Period 

During the storage-dominated period, the dope of a log-log graph of pvD vs. fD is: 

Table B.l  presents the tdCD values by which the dope d In @,,,D)/d In (to) has decreased by 2% 

from the initial value of unity. 

Table B.l - The tdCD values for the end of storage-dominated period 
(Log-log slope within 2% of 1) 

IdCD 
for slope = 0.98 

0.018 
0.058 
0.1 1 
0.16 
0.2 1 
0.264 
0.3 1 
0.46 
0.93 
1.4 

IdcD 
from Eq. (B.2) 

0.01 8 
0.066 
0.114 
0.162 
0.2 1 
0.258 
0.306 
0.45 
0.93 
1.41 

Based on the fdcD values from Table B.l, a design equation for the time to the end of 

storage-dominated period as a function of CDeZS is: 
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The rdCD values from Eq. (B.2) m presented in column 3 of Table B.1 for comparison 

with the rdCD values in mlumn 2 of Table B.1. Equation (B.2) applies for a well producing at 

a constant rate from an infinitely large or finite, and homogeneous or composite xeservoir. 

2. Time to the Beginning of Infinite-acting Radial Flow 

During the infinite-acting radial flow period, the dimensionless semi-log pressure deriva- 

tive is: 

Columns 2 and 3 of Table B.2 present the rdCD values for the semi-log slope to be within 2% 

and 5% of 0.5 for several values of CDt? shown in column 1 of Table B.2. 

Table B.2 - The tdCD values for the beginning of 
infinite-acting radial flow (Semi-log slope within 2% and 5% of 05 )  

l d c D  for 
Slope = 0.525 Slope = 0.51 C D e h  

rdCD from I ~ C D  from t d c D  for 
E q .  (B.5) Eq. (B.4) 

10 

Id 
lo00 445 985 104 

360 820 341 813 103 
250 640 245 641 100 
140 460 149 435 

470 
1208 559 1180 580 

lo6 1313 666 

3330 5680 4Q1 5619 
2230 3880 2595 3801 ldo 
1130 2080 1219 2019 1o'O 
800 1540 790 1494 1 07 
690 1360 

1030 

Based on the data in Table B.2, the semi-log slope is within 2% of 0.5 at the time: 

and the semi-log slope is within 5% of 0.5 at the time: 
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The rdCD values from E q s .  (B.4) and (B.5) are pnsenled in columns 4 and 5 of Table B.2. A 

good comparison between the rdCD values in columns 2 and 4, and the rdCD values in 

columns 3 and 5 demonstrates the validity of Eqs. (B.4) and (B.5). 

Equations (B.4) and (B.5) are valid for a well producing at a constant rate from an 

infinitely large or finite, homogeneous reservoir provided the outer boundary effects are not felt 

before the establishment of infinite-acting radial flow. Also, Eqs. (B.4) and (B.5) describe the 

time to the beginning of infinite-acting radial flow corresponding to the inner region mobility 

for a well in an infinitely large or finite, radial composite reservoir provided the outer region 

effects are not felt before the establishment of infinite-acting radial flow corresponding to the 

inner region mobility. 

3. Time to the End of Infinite-acting Radial Flow for a Well in a Finite, Circular Homo- 

geneous Reservoir 

From Fig. 5.2, the drawdown semi-log slope for a constant-pressure outer boundary drops 

faster than the drawdown slope for a closed outer boundary rises. However, the data presented 

in Table B.3 approximately applies for the drawdown response of a well in a finite homogene- 

ous reservoir with either a closed or a constant-pressure outer boundary. 

Table B.3 - The tdC, values for the end of infinite-acting radial flow 
(Semi-log slope within 2% of 0.5) 

&/CD IdCD rd CD 
for slope = 0.51 or 0.49 from Eq. (B.6) 

103 

175000 175000 lo6 
17500 17500 Id 
1750 1750 104 
175 175 

1 07 1 7 5 m  

For selected values of &CD, Table B.3 presents the rdCD values by which the semi-log pres- 

sure derivative has changed by 2% of 0.5. The data of Table B.3 suggests: 
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As observed from Fig. 5.4, Eq. (B.6) is also applicable for the buildup recsponse of a well 

in a 6nite homogeneous reservoir with a constant-pressure outer boundary provided f D  of Eq. 

(B.6) is modified to A t D .  The calculated rdCD values from Eq. (3.6) are prtstnted in column 3 

of Table B.3 for comparison with the f&D values in column 2 of Table B.3. 

The data presented in Table B.4 applies for the buildup response of a Well in a closed 

reservoir. 

Table B.4 - The AtdCD values for the end of infinite-acting radial flow 
(Semi-log slope within 2% of 05) 

&/CD bd CD W C D  

103 15 

SO00 SO00 lo6 
500 600 Id 
100 95 104 
10 

5oooo 5 m  

for slope = 0.49 from Q. (B.7) 

1 07 

For selected values of r2s/CD, Table B.4 presents the &dCD values by which the semi-log pres- 

sure derivative has decreased by 2% of 0.5. The data of Table B.4 suggests: 

The calculated & d c D  values from Eq. (€3.7) are presented in COlUmn 3 of Table B.4 for com- 

parison with the & d c D  values in column 2 of Table B.4. 

4. Maximum Semi-log Slope and the Time to the Maximum Derivative for a Two-Region 

Composite Reservoir 

Table B.5 presents the drawdown maximum semi-log pressure derivative, (dpydd In b),,, 

and the time to the maximum pressure derivative, (fD8)m.x. for a well in an infinitely large com- 
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Table B.5 - Maximum semi-log slope and the time to maximum slope 
for a two-region composite reservoir 

- 
M 

- 
1 

10 
20 
50 
70 

100 
200 
500 
700 
1ooo 

1 
10 
20 
50 
70 

100 
200 
500 
700 

1ooo 
1 

10 
20 
50 
70 

100 
200 
500 
700 
1ooo 

FS 

10 

1000 

Maximum slope, 
(&lydd tD)mu 

0.904 
7.36 

14.58 
36.07 
50.56 
72.30 

144.49 
359.62 
504.39 

721.88 
1 1.45 
22.69 
55.84 
78.56 

112.61 
225.06 
556.43 
783.67 

1124.49 

15.87 
3 1 S O  
78.40 

109.76 
156.54 
312.90 
78 1.90 

1095.46 
1563.57 

1.3544 

1.8136 

Time to 
maximum slope, 

(tD3mLn 

2 
25 
50 

150 
200 
250 
500 

1500 
2000 
2500 

25 
50 

100 
150 
250 
500 

1000 
1500 

2500 
3 

30 
60 

150 
200 
300 
600 

1500 
2000 

3000 

2.5 
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posite reservoir. The data of Table B.5 suggests: 

[ d t r t D ] , .  = (1.1 + log Fs) , for M = 1 

= (0.7 +log Fs) M , for M 2 10 , and (B.8) 

Equations (B .8) and (B.9) apply only if M 2 1, and Fs 2 10. Figum B.l and B.2 show the 

accuracy of Eqs. (B.8) and (B.9) compared to actual values for maximum semi-log slope and 

the time to maximum pressure derivative. Equations (B.8) and (B.9) apply for the drawdown 

response of a well in a finite composite reservoir provided the outer boundary effects do not 

mask the development of the maximum semi-log slope. Equations (B.8) and (B.9) also apply 

for the buildup response of a well in a composite mervoir provided the limit on rpD/Ri 

presented in Fig. 6.28 is satisfied. 

5. Time to the Beginning of Infinite-acting Radial Flow Corresponding to the Outer 

Region Mobility for a Two-Region Composite Reservoir 

Table B.6 presents the dimensionless time, (r&, values by which the drawdown semi- 

log slope, dp,dd In r ~ ,  is within 2% of M12. Based on the data in Table B.6, (rD8)l, is: 

Equation (B.lO) applies if M 2 10, and Fs 2 1. The accuracy of E q .  (B.lO) in forecasting the 

time to the beginning of infinite-acting radial flow corresponding to the outer region mobility is 

shown in Fig. B.3. 

6. Time to the Beginning of Outer Boundary Effects for a Finite Two-Region Composite 

Reservoir 
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10 

c,=o 
- Eq. (B.8) 

- Table B 5  

FS 
l o o 0  
100 
10 

10 100 lo00 

M 

Figure B. l :  Verification of the accuracy of Eq. (B.8). 

loo00 

100 

I 
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100 
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lo00 
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lo00 
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Figure B.2: Verification of the accuracy of Eq. (B.9). 



- 160 - 

Table B.6 - Time to the beginning of infinite-acting radial flow corresponding to 
the outer region mobility for a two-region composite reservoir 

- 
M 

10 
20 
50 
70 
100 
200 
500 
700 
1Mx) 
10 
20 
50 
70 
100 
200 
500 
700 

zoo0 
10 
20 
50 
70 
100 
200 
500 
700 
1ooo 

- 

10 

100 

lo00 

( ~ D ~ I I  

1871 
3607 
9000 
12945 
18418 
3571 1 
89 135 
1291 17 
181164 

2957 
5813 
14583 
202 10 
29309 
57857 
145600 
201 679 

289191 
3850 
7574 
19046 
26503 
382 19 
7546 1 
190266 
264736 
377133 
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10 
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M 

Figure B.3: Verification of the accuracy of Eq. @.IO). 
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The time to the StaR of outer boundary effects for a finite two-region composite reservoir 

is obtained as the time when the semi-log slope for the finite outer boundary case is different 

from the semi-log slope for the infinite outer boundary case by 2%. Table B.7 presents the 

dimensionless time, (tD&pnnt values for the start of outer boundary effects on drawdown 

behavior for a two-region composite reservoir with a closed outer boundary. The data of Table 

B.7 suggests: 

where 1 c p e 27t. For small 

f3 + 27t. The parameter B is insensitive to M, but depends on rJRD and Fs. Table B.8 

presents p values obtained empirically for several combinations of r&D and Fs. The data of 

Table B.8 is presented graphically on Fig. B.4. Figures B.5 through B.7 present a comparison 

of the results from Eq. @.I 1) with the ( t D g ) & p o n  values from Table B.7 for r d R D  = 10, 100, 

and 1000. For approximate calculations, p = 5 would forecast (tDg)hpnn reasonably well for 

rdRD 2 100, and Fs I 200. UShg p = 5 ,  a. (B.11) becomes: 

(B.12) 

Equation (B.11) or (€3.12) can also be used to forecast the time to the start of outer boun- 

dary effects for drawdown behavior, and the buildup behavior after a long producing time with 

a constant-pressure outer boundary, as shown in Fig. B.8. Figure B.8 shows the drawdown 

semi-log slope, and the buildup MDH slope for CD = 0, M = 10, FS = 1O00, and r g l R ~  = 1000 

for closed, constant-pressure. and infinite outer boundaries. Figure B.8 shows that the time to 

the s t a ~  of the outer boundary effects is the same for the drawdown responses for closed and 

constant-pressure outer boundaries, and the buildup response for a constant-pressure outer 

boundary. However, the outer boundary effects start earlier for the buildup response for a 

closed outer boundary. 
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Table B.7 - The time to the start of outer boundary effects 
on drawdown behavior for a two-region 

composite reservoir with a closed outer boundary 

M 

10 
20 
50 
100 
200 
500 

1000  
10 
20 
50 

100 
200 
500 

10 
20 
50 
100 
200 
500 
lo00 

22 1.56 x Id I 1;; 1 8106 
'32 17 3.17 x 16 
1585 I 8 x 16 I 

lo 1 g: I 32157 
15850 

I 1 1 

Table B.8 - fl values for Eq. (B.l l)  

I 1 1 t 10 I 5 6.25 6.25 
20 
50 
100 
200 
500 
lo00 

3.66 
2.7 
2 
1.58 
1.2 
0.8 

6.22 
5.75 
5.56 
4.8 
3.65 
2.86 

6.26 
6.27 
6.25 
6.25 
6.24 
6.25 
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Figure B.4: Parameter p as a function of Fs and rglRD. 
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Figure B.5: Verification of the accuracy of Eq. (B.11) for rglRD = 10. 
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Figure B.6: Verification of the accuracy of Eq. (B.11) for rJRD = 100. 
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Figure B.7: Verification of the accuracy of Eq. @.I 1) for rJRD = 1OOO. 
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Figure B.8: Drawdown semi-log slope, and the buildup MDH slope for a two- 
region composite reservoir with C, = 0, M = 10, Fs = 1O00, and r d R D  = lo00 for 
several outer boundary conditions. 
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APPENDIX C 

Late Time Drawdown Solution for a Well in a 

Two-Region Composite Reservoir 

1. Infinitely Large Reservoir 

Dimensionless wellbore pressure drop using Ramey's (1970) approximate solution is: 

All Ei terns can be replaced by their log approximations and the exponential tern will be 

within 1% of 1.00, if: 

2 100 , for MIFs I 1 . 

The simplification of Eq. (C.l) under the conditions of Eq. (C.2) results in: 

Equation (C.3) represents a late time drawdown solution for dimensionless wellbore pressure- 

drop. 



- 168 - 

2. Finite Reservoir with a Constant-Pressure Outer Boundary 

The reservoir approaches steady-state at late time for a constant-pressure outer boundary. 

At late time, total pressure dmp in the system is: 

Multiplying both sides of E q .  (C.4) by klh/141.2 qBpl and using the definitions for dimension- 

less terms given in Sec. 4, an expression for dimensionless wellbore pressure drop in a finite 

composite reservoir with a constant-pressure outer boundary results as: 

3. Finite Reservoir with a Closed Outer Boundary 

A reservoir approaches pseudosteady state behavior at late time for a closed outer boun- 

dary. In the following derivation, @1 = 4, and Darcy units have been used for convenience. 

At late time, flow rate at any r can be written as: 

q(r) = XOh * [(cJ1 (R2 - 3) + (c32 (e - R’)] for r I R,  and 
dt 

Also, the production rate at the well is: 

Using Eqs. (C.6) and (C.7). assuming R > r, and letting K = (cJ, R2 + (cJ2 (6 - R2) 
yields: 
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From Darcy's law: 

Integrating Eq. (C.9) from r to r,, and using Eq. (C.8) yields: 

(C.10) 

where M = (&~)~/(Wp2). Simplifjmg the right-hand-side of Eq. (C.10) assuming R > r, yields: 

The volumetric average reservoir pressure is: 

'e 

I 2 xrh pr  dr 

2 xrh dr 
' w  

assuming re r,. The expression for NUM can be written as: 

(C. 11) 

(C. 12) 
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Using Eq. (C.11). the integral Il becomes: 

(C. 13) 

(C.14) 

(C. 15) 

Similarly, using E q .  (C.1 I), the integral I2 becomes: 

( C J 1  R2 M (c32 (Rhw) - - In (rlR) - -]}I 3 -  R2 dr . (C.  16) 
2 K  K 2 

Integrating the right-hand-side of Eq. (C.16), and simplifying yields: 

(C. 17) 

Using Eqs. (C. 15) and (C. 17) in Eq. (C. 13). substituting the result in Eq. (C.12). and simplify- 

ing, we obtain: 
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Rearranging Eq. (C.18) yields: 

(C. 19) 

If R = r,, M = 1 = Fs, and re > rw then E q .  (C.20) yields: 

x = In (rJrw) - 314 . 

Equation (C.21) is the limiting f o n  of x for a homogeneous reservoir. 

At late time for a closed reservoir, equating production to expansion yields: 

q w = - c t v l  d- . 
dt 

Integrating E q .  (C.22) from 0 to t yields: 

(C.20) 

(C.21) 

(C.22) 

(C.23) 

Multiplying both sides by of Eq. (C.23) by 2 k1/p,, and rearranging yields: 
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(C.24) 

(C.25) 

Equation (C.25) includes wellbore skin as an additive term. The expression for x presented 

Eq. (C.20) can be simplified to: 

in 

(C.26) 
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APPENDIX D 
Late Time Buildup Solution for a Well in an 

Infinitely Large, Two-Region Composite Reservoir 

The dimensionless buildup pressure is: 

PwDx (&Dl PwD (tpD) I- PwD (&Dl - PwD (lpD + b D )  (D.1) 

Using individual expressions similar to Eq. (C.3) for the pwD terms on the right-hand-side 

of Eq. (D.l) yields: 

if: 

and: 

The pressure derivative, dpwDx (ArD) / d (AtD), is: 

where: 

if the condition represented by E q .  0 . 4 )  is satisfied. 
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APPENDIX E 
Differentiation Algorithm 

The differentiation algorithm described in this appendix is similar to the differentiation 

algorithm found most satisfactory by Bourdet et al. (1984). As per Bourdet et d. (1984). the 

differentiation algorithm uses one point before ("left") and one after ("right") the point of 

interest, calculates the two corresponding derivatives, and places their weighted mean at the 

point considered. 

Let the time point of interest be ti. Time point, r,,, to the right and time point, tb, to the 

left are: 

log (tb) = log (ti) - L . ( E 3  

A Cartesian pressure derivative is then calculated as: 

If measured pressure data is not available at time point t, or tb, then a linear interpolation 

scheme based on sequential search is used to calculate pa or pb .  Also, the derivative is not cal- 

culated, if tb is less than the time corresponding to the first measured time-pressure data, or if t, 

is larger than the time corresponding to the last measured time-pressure data. 

Bourdet et al. (1984) suggest common values for L to be between 0 and 0.5, excluding 

zero. The noise effect is reduced by choosing a value of L large enough. However, if L is 

large, more of the true signal is also lost, and the shape of the original type-curve may be 

affected. Thus, an analyst has to be careful in choosing a proper value of L. Figures E.l and 

E.2 present semi-log and Cartesian pressure derivatives calculated using the differentiation 

algorithm of this appendix for two values of L = 0.1 and 0.5. Solid lines on Figs. E. 1 and E.2 
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Figure E.l: Checking the differentiation algorithm for the calculation of semi-log 
slope for a two-region composite reservoir with CD = 0, M = 10, Fs = 10. 
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Figure E.2: Checking the differentiation algorithm for the calculation of Cartesian 
slope for a two-region composite reservoir with CD = 0, M = 10, Fs = 10. 
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show the derivatives calculated for a two-region composite nservoir response with CD = 0, M 

= 10, and Fs E 10 using the Stehfest (1970) algorithm. Circles and diamonds show the results 

of numerical differentiation of dimensionless pressure values using L = 0.1 and 05, respec- 

tively. Thirteen pressure values per cycle were used for the numerical differentiation A ran- 

dom noise in the pressure data was not introduced for this example. A good a p m e n t  

between the derivatives calculated from the Stehfest (1970) algorithm and the numerical 

differentiation suggests that the differentiation algorithm of this appendix may be a useful algo- 

rithm to differentiate well-test data from composite reservoirs. 
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APPENDIX F 

Effective Properties for a Three-Region Composite Reservoir 

1. Derivation of (e& 

If the inner and the intermediate regions are considered to form one region, then an 

expression for (@Ja is: 

Dividing both sides of Eq. (F.l) by ( @ J I R f ,  and using Fs12 = (@cJ1/(~J2 yields: 

2. Derivation of 

If the inner and the intermediate regions are considered to form one region, then for 

radial flow in beds in series, is (Craft and Hawkins, 1959): 
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Program # 1 --- Two-region composite reservoir with S~ 

Program # 2 --- Program for differentiation algorithm of App. E. 
Program # 3 --- Three-region composite reservoir 
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* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* PrOgram#l * *********** 
* Name : Anil Kwnar Ambastha 
* Date : May 11, 1988 

* Purpose of this program is to generate the 
* pressure transient response for a well 
* in a two-region composite reservoir. 

* Wellbore storage and skin at the well are 
* allowed. Well produces at a constant rate. 

* The outer boundary condition can be either 
* infinite, constant-pressure or closed. 

* There is a thin skin at the discontinuity. 

* Both buildup and drawdown responses 
* can be generated. 

VARIABLE IDENTIFICATION LIST 

* 

* 

* 

* 
* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

CD --- WELLBORE STORAGE AT THE ACTIVE WELL 
SKIN --- SKIN AT THE ACTIVE WELL 
SKIN2 --- SKIN AT THE DISCONTINUITY 
AMOB --- MOBILITY RATIO (Kl*MU2)/(K2*MUl) 
DIF --- DIFFUSIVITY RATIO (K1* PHICI'"U2)/(K2* PHIcIuu1)  
ST0 --- STORATIVITY RATIO (PHICXl/PHICT2) 
RD --- DIMENSIONLESS DISCONTINUITY RADIUS 
RED --- DIMENSIONLESS OUTER BOUNDARY RADIUS 

IMPLICIT REAL*8 (A-H,O-2) 
DMENSION TD(20) 
COMMON M,JCODE,CD,SKIN,AMOB,DIFPD,RED,SKIN2 

OPENING OUTPUT FILES . . . . . . . . . . . . . . . . . . . . .  

FOR DRAWDOWN: ************* 

pd --- contains pwd as a function of tde data 
pdp --- contains semi-log slope as a function of tde data 
pdc --- contains Cartesian slope as a function of tdA data 

FOR BUILDUP: ************ 

pd --- contains pwds as a function of DELTA tde data 
pdp --- contains MDH slope as a function of DELTA tde data 
pdc --- contains Cartesian slope as a function of DELTA tdA data 
pdh --- contains Agarwal slope as a function of DELTA tde data 
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O P E N ( U N I T = 7 ~ p d " )  

OPEN(UNIT=9,FIL€="pdc") 
OPEN(UNIT=8,F"pdp") 

0PEN(uNlT=10,FILE=''pdh") 

I_ Unformatted input section = 

.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
- 
--------------------------- 
PRINT *,'READ THE VALUE OF CD AND SKIN > ' 
READ(S,*)CD,SKIN 
PRINT *,'SKIN AT THE DISCONTINUlTY > ' 
READ(S,*)SKIN2 
PRINT *,'MOBILITY RATIO (ZONE 1 BY ZONE 2) > ' 
READ(S,*)AMOB 
PRINT *,'STORATIVITY RATIO (ZONE 1 BY ZONE 2) > ' 
READ(S,*)STO 
PRINT *,'DUIENSIONLESS DISCONTINUITY RADIUS > ' 
READ(S,*)RD 
PRINT *,'# OF CYCLES OF DATA REQUIRED > ' 
READ(S,*)NC 
PRINT *,'GIVE FIRST VALUE OF TD (BASED ON RW) > ' 
READ(S,*)TDl 
PRINT *,'NUMBER OF TERMS TO BE USED IN !jTEHFEST > ' 
READ(S,*)NTERM ..................................................... 
READ CODES FOR BOUNDARY CONDITIONS 

PRINT *,'SUPPLY RESPONSE FUNCI'ION CODE: ' 
PRINT *,'l ---- DRAWDOWN ' 
PRINT *,'2 ---- BUILDUP > ' 
READ(S,*)ICODE 

PRINT *,'SUPPLY OUTER BOUNDARY CONDITION CODE: ' 
PRINT *,' 1 --- INFINITE' 
PRINT *,'2 ---- CLOSED' 
PRINT *,'3 ---- CONSTANT-PRESSURE > ' 
READ(S,*)JCODE 

IF(ICODE.EQ.2)THEN 
PRINT *,'DIMENSIONLESS PRODUCING TUlE (BASED ON RW) > ' 
READ(S,*)TPD 

ENDIF 

IF(JC0DE.NE. 1)THEN 
PRINT *,'DIMENSIONLESS OUTER RADIUS > ' 
READ(S,*)RED 

ELSE 
For infinite reservoir, a fictitious red is supplied 

ENDIF 
**** input section ends *** . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

RED=l.e30 



- 181 - 

C 

C 

* 

C 
C 

* 

C 

C 

M=777 
PI=2.*ASIN( 1 .) 
COMPUTE DIFFUSrvlTy RATIO 
DIF=AMOB/STO 

GENERATE THE FIRST SET OF TD VECTOR 

TD( I )=TD 1 
TD(2)=1.5*TD1 
TD(3)=2.*TD1 
TD(4)=2.5*TDI 
TD(5)=3. *TD 1 
TD(6)=3.5*TD1 
TD(7)=4.*n>l 
TD(8)=4S*TDl 
TD(9)=5.*TDl 
TD(10)=6.*TDI 
TD(I1)=7.*TDl 
TD(12)=8.*TDl 
TD( 1 3 ) s .  *TD 1 
-----------------------------------___________ 

GENERATE AND PRINT THE PRESSURE TRANSIENT RESPONSE 

IF(ICODE.EQ.2)THEN 
CALL INV~RT(TPD.NTERM.PDI,PDP~) 

ENDIF 

DO I I=l,NC 
DO 2 J=l,13 
SPC=TD(J) 
IF(ICODE.EQ.2)THEN 

SPC 1 =SPC+TPD 
CALL INVERT(SPCI,NTERM,PD2,PDP2) 

ENDIF 
CALL INVERT(SPC,NTERM,PD,PDP) 
IF(ICODE.EQ.I)PDC=PDP 
IF(ICODE.EQ.2)THEN 

PD=PD 1 +PD-PD2 
PDGPDP-PDP2 

PDH=SPCImD*SPC*PDC 
ENDIF 
PDP=SPC*PDC 

CONVERT THE BASE OF 'SPC' FROM RW TO DISCONTINUITY RADIUS 
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SPC=SPC/RD/RD 

C REPORT THE RESULTS: * -- ---- --- ---- --- -- 
WRITE(7,9)SPCPD 
WRITE(8Q)SPCPDP 
WRITE(9Q)SPC/PIPDC*PI*RD*RD 
IF(ICODE.EQ.2) WRITE( 1OQ)SPC.PDH 

2 TD(J)=lO.*TD(J) 
1 CONTINUE 
9 FORMAT(2X,F20.6.2X,F20.6) 

STOP 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE LAP(SQWDL,PDPL) 

DOUBLE PRECISION MMBSIO,MMBSIl,"BSKO,MMBSKl 
COMMON MJCODE,CD,SKIN,AMOB,DEFRD,RED,S~2 

LMPLIClT REAL*8 (A-H,O-Z) 

C COMPUTE THE ARGUMENTS OF BESSEL FUNCTIONS 

ARG 1 =DSQRT(S) 
ARG2=RD*ARGl 
ARG3=DSQRT(DIF)*ARG2 
IF (JC0DE.m. 1) ARG4=DSQRT(S*DIF)*RED 

COMPUTE NEEDED BESSEL FUNCIIONS (THESE ARE SCALED BY EXPONENTIALS) 

AI=MMBSI0(2,ARGl,ER) 
A2=MMBSI0(2,ARG2,IER) 

Bl=MMBS11(2,ARGl,IER) 
B2=MMBSI 1 (2,ARG2,IER) 

D l=MMBSK0(2JiRG 1 ,IER) 
DZ=MMBSK0(2,ARG2,IER) 
D3=MMBSKO(2,ARG3,IER) 

El="BSKl(2,ARGl,IER) 
E2=MMBSKl(2,ARG2,XER) 
ES=MMBSK1(2,ARG3,IER) 

IF(JCODE.EQ.2)THEN 
C1 l=-MMBSK1(2,ARG4,IER) 
C22=MMBSIl(2,ARG4,IER) 

ENDIF 
IF(JCODE.EQ.3)THEN 
Cll=MMBSK0(2,ARG4,ER) 
C22=MMBSI0(2,ARG4,IER) 

ENDIF 
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IF(JC0DE.NE. 1)THEN 
A3="BSI0(2,ARG3,IER) 
B3=MMBSI1(2,ARG3,IER) 

ENDIF 
C CALCULATION OF MULTIPLYXNG FACTORS 

Fl=DEXP(ARGl) 
F2=DEXP(ARG2) 
F3=DEXP(ARG3) 

lF(ARG4.LE.88.)THEN 
M=DEXP(ARG4) 

ELSE 
F4=DEXP(88.oowO) 

ENDIF 
ENDIF 

IF(JC0DE.E. ])THEN 

c COMPUTATION OF THE coEmcIEms OF EQNS. FOR c1,c2 AND c3. 
C FOR FINITE RESERVOIRS, WE HAVE C4 ALSO. 

ALl l=(CD*S*(Al-SKIN*ARGl*Bl)-ARGl*Bl)*Fl 
AL12=(CD*S*@l+SKXN*ARGI*El)+ARG1*E1)/Fl 
AL21=(SKW2*RD*ARGl*B2+A2)*F2 
AL22=@2-SKIN2*RD*ARG 1 *E2)/F2 
AL23=-D3/F3 
AL31=AMOB*ARGl*B2*F2 

AL33=DSQRT(S*DIF)*E3/F3 
AL32z-AMOB *ARG 1 *E2/F2 

IF(JC0DE.E. 1)THEN 
AL24=-A3*F3 
AL34=-DSQRT(S*DIF)*B3*F3 
AL43=Cl IF4 
AL44=C22*F4 

ENDIF 
C CALCULATION OF C1, C2 AND C3 
C C4 IS ALSO CALCULATED FOR FINITE RESERVOIRS 

Sl=AL21*AL33-A.L23*AL31 
S2=AL22*AL33-AL32*AL23 

IF(JCODE.EQ. ])THEN 
c2=sl/(s*(AL12*sl-ALl1*s2)) 
Cl=(l.-S*ALl2*C2)/S/ALI 1 
C3=-(AL3l*Cl+AL32*CZ)/AL33 

ENDIF 
IF(JC0DE.E. ])THEN 
s3=AL43/AIA4 
S4=AL24*AL3 1 -a12 1 *a34 
SS=Sl+S3*S4 
S6=AL22*AL34-AL24*&32 
S7=-ALll*S2+ALl2*Sl+S3*(AL12*S4+ALll*S6) 
C2=SS/S/S7 
C1=(l.-S*AL12*C2)/S/AL11 

C C4=S3*(AL3l*Cl+AL32*C2)/(AL33-AL34*S3) 
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C c3=-c4/s3 

ENDIF 
C CALCULATION OF TRANSFORMED SOLUTION 

C PWDL REPRESENTS LAPLACE TRANSFORM OF PWD 

PWDL=Cl*(Al-SKIN*ARGI*B1)*F1+C2*(Dl+SKIN*ARGl*El)/Fl 
PDPLrPWDL*S 
RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C 
C 
C 

C 
C 

C 
C 
C 
C 

C 
C 

1 
C 
C 

4 

5 
6 
C 
C 
C 

C 
C 

THE STEHFEST ALGORlTHM . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE INVERT(TD,N,PD,PDP) 
THIS FUNTION COMPUTES NUMERICALLY THE LAPLACE TRNSFORM 
INVERSE OF F(S). 

IMPLICIT REAL*8 (A-H,O-2) 
COMMON M,JCODE,CD,SKIN,AMOB,DIFRD,RED,SKIN2 
DWNSION G(SO),V(SO),H(25) 

NOW IF'THE ARRAY V(I) WAS COMPUTED BEFORE THE PROGRAM 
GOES DIRECTLY TO THE END OF THE SUBRUTINE TO CALCULATE 
F(S). 

IF (3J.EQ.M) GO TO 17 
M=N 
DLOGTW=0.6931471805599 
NH=N/z 

THE FAmOFUALS OF 1 TO N ARE CALCULATED INTO ARRAY G. 
G( 1 )= 1 
DO 1 1=2,N 
G(I)=G(I-I)*I 
CONTINUE 

TERMS W H  K ONLY ARE CALCULATED INTO ARRAY H. 
H( 1)=2./G(NH- 1) 
DO 6 I=2,NH 
FI=I 
F(1-NH) 4>,6 
H(I)=FI**NH*G(2*I)/(G(NH-I)*G(I)*G(I-I)) 
GO TO 6 
H(I)=FI**NH*G(2*I)/(G(I)*G(I-l)) 
CONTINUE 

THE TERMS (-I)**NH+l ARE CALCULATED. 
FIRST THE TERM FOR 1=1 

SN=2*(NH-NH/2*2)-1 

THE REST OF THE SN'S ARECALCULATED IN THE MAIN RUTINE. 
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C 
C 
C 

C 
C 

C 
C 
C 

C 
C 

9 
C 
C 
8 

12 
11 

13 

14 
10 
C 
C 
C 

C 
C 

7 
C 
C 
17 

15 

18 

THE ARRAY V(I) IS CALCULATED. 
Do 7 I=IN 

FIRST SET v(I)=o 
V(I)=O. 

THE LIMITS FOR K ARE ESTABLISHED. 
THE LOWER LIMIT IS KI=INTEG((I+1/2)) 

KI=(I+1)/2 

THE UPPER LIMIT IS K2=MIN(I,N/2) 
K 2 = I  
IF (K2-NH) 8.8.9 
K2=NH 

THE SUMMATION TERM IN V(I) IS CALCULATED. 
DO 10 K=KI,K2 
IF (2*K-I) 12,13,12 
IF (I-K) 11,14,11 
V(I)=V(I)+H(K)/(G(I-K)*G(2*K-I)) 

GO TO 10 
V(I)=V(I)+H(K)/G(I-K> 
GOT0 10 . 
V(I)=V(I)+H(K)/G(2*K-I) 
CONTINUE 

THE V(I) ARRAY IS FINALLY CALCULATED BY WEIGHTING 
ACCORDING TO SN. 

V(I)=SN*V(I) 

THE TERM SN CHANGES ITS SIGN EACH ITERATION. 
SN=-SN 
CONTINUE 

THE NUMERICAL APPROXIMATION IS CALCULATED. 
PD=O. 

PDP=O. 
A=DLOGTWflD 
DO 15 I=I,N 
ARG=A*I 
CALL LAP(ARG,PWDL,PDPL) 
PD=PD+V(I)*PwDL 
PDP=PDP+V(I)*PDPL 
CONTINUE 

PD=PD*A 
PDP=PDP*A 
RETURN 

END 
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c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* *  program#2 

c *  NAME: ANIL K. AMBASTHA 
c *  DATE: MAY 11, 1988 
c *  "HIS PROGRAM COMPUTES THE SLOPE OF A 
c *  GIVEN T VS. P ARRAY. 
c *  SLOPE=dP/dTordP/dlnTordlnP/dlnT 
c * Uses linear interpolation to get pressure 
c * values at time where there is no measured data c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C VARIABLE IDENTIFICATION LIST 

* *  ************ 

* ............................ 

C D --- INCREMENTAL TIME 
C NDATA --- NUMBER OF DATA POINTS ON A T VS. P ARRAY 
C T -- TIME POINTS (THIS IS INDEPENDENT VARIABLE) 
C P --- PRESSURE POINTS (THIS IS DEPENDENT VARIABLE) 
C ICODE -- CODE FOR THE TYPE OF SLOPE DESIRED 
C =1 --- CARTESIAN SLOPE 
C =2 -- SEMI-LOG SLOPE (MDH SLOPE FOR BUILDUP) 
C =3 --- LOG-LOG SLOPE 
C 4 --.- AGARWAL SLOPE (HORNER SLOPE IS NEGATIVE 
C OF AGARWAL SLOPE) 
C 

IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION T(200),P(200) 
OPEN(UNIT=7,FILE="data") 
OPEN(UNIT=8,FILE="output") 
WRlTE(6,*)'TuIE INCREMENT TO SELECT ' 
WRITE(6,*)'POINTS FOR SLOPE CALCULATION > * 
WRITE(6,*)'USE VALUE BETWEEN 0 AND 0.5 (RECOMMENDED = 0.2) > ' 
READ(S,*)D 

C ENTER THE CODE FOR TYPE OF SLOPE DESIRED 
WRITE(6,*)'1 -- CARTESIAN, 2 -- SEMI-LOG, * 
WRITE(6,*)'3 -- LOG-LOG, 4 -- AGARWAL SLOPE.' 
WRITE(6,*)'ENTER THE CODE FOR TYPE OF SLOPE DESIRED > ' 
READ(S,*)ICODE 
IF(IC0DE.EQd)THEN 

WRlTE(6,*)'ENTER PRODUCING TIME > ' 
READ(S,*)TP 

ENDIF 
C READ THE DATA c ************* 

READ(7,*)NDATA 
DO 1 I=l,NDATA 

1 READ(7,*)T(r)P(I) 
C CALCULATE THE SLOPES c .................... 

DO 2 I=l,NDATA 
TA=lO.OD00**@LOGlO(T(I))+D) 

IF(TB .LT.T( 1))THEN 
TB=lO.O~**@LOGlO(T(I))-D) 
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GO TO 2 
ENDIF 
IF(TA.GT.T(NDATA))THEN 

ELSE 
GO TO 2 

C TAKE THE ENTERED DERIVATIVE 
CALL TABSEQ(T,P,NDATA,TAQA) 
CALL TABSEQ(T,P,NDATA,TB,PB) 
S l=(PA-P(I))/(TA-T(I)) 
S2=(pcr)-PB)/Cr(I)-TB) 
SLOPE=OS*DAES(Sl+S2) 

ENDIF 

IF(ICODE.EQ.2)WRITE(8,1 lO)T(I),SLOPE*T(I) 
IF(ICODE.EQ.3)WRITE(8,1 lO)T(I),SLOPE*T(I)/P(I) 
IF(ICODE.EQ.4)WRITE(8,1 lO)T(I),SLOPE*T(I)*("P+T(I))/rP 

8 LF(ICODE.EQ.l)W"IE(8,1 lO)T(I),SLOPE 

2 CONTINUE 
110 FORMAT(2X,F15.6,2XPI5.6) 

STOP 
END 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE TABSEQ(X,Y,N,XX,YY) 

DIMENSION X(N),Y (N) 
IMPLICIT REAL*8(A-H,O-Z) 

C.....TABLE LOOK-UP USING SEQUENTIAL SEARCH 
C LINEAR INTERPOLATION BETWEEN TABLE VALUES USED. 
C 
C X-VECTOR OF INDEPENDENT VALUES (ARGUMENTS) 
C Y-VECTOR OF DEPENDENT VARIABLES(FUNCTI0N VALUES) 
C N-NUMBER OF TABLE ENTRIES 
C XX-ARGUMENT 
C YY-INTERPOLATED FUNCT'ION OF ARUGUMENT XX 

IF(XX.LT.X(I)) GO TO 99 
I= 1 

100 I=I+1 
XF(1.GT.N) GO TO 98 
IF(XX.GT.X(I)) GO TO 100 
~=Y(I-l~~~)-Y(I-l))*(xx-x(I-l))/(x~)-x(I-l)) 
RETURN 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* Program#3 * ************ 
* Name : Anil Kumar Ambastha 
* Date : May 11, 1988 

* Purpose of this program is to generate 
* pressure transient response for a well 
* in a &-region composite reservoir. 

* Wellbore storage and skin at the well are 
* allowed. Well produces at a constant rate. 

* The outer boundary is assumed to be infinite. 

VARIABLE IDENTIFICATION LIST 

* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

............................ 

CD --- WELLBORE STORAGE AT THE ACTIVE WELL 
SKIN --- SKIN AT THE ACI'IVE WELL 
AMOB12 --- MOBILITY RATIO (Kl*MU2)/(K2*MUl) 
AMOB23 --- MOBILITY RATIO (K2*MU3)/(K3*MU2) 
ST012 --- STORATIVITY RATIO (PHI~ l /PHlc IZ)  
ST013 --- STORATIVITY RATIO (PHICTl/PHI~3) 
DIF12 --- DIFFUSIVITY RATIO (K1* PHICTh4U2)/(K2* PHICI"U1) 
DIF13 --- DIFFUSIVITY RATIO (K1* PHICTMU3)/(K3* PHICTMUl) 
RD1 --- DIMENSIONLESS DISCONTINUITY DISTANCE (R~/Iw) 
RD2 --- DIMENSIONLESS DISCONTINUITY DISTANCE (R~/Iw) 
RED --- DIMENSIONLESS OUTER RADIUS 

IMPLICIT REAL*8 (A-H,O-2) 
DIMENSION TD(20) 
COMMON M,JCODE,CD,SKIN,AMOB12,AMOB23,DIF12,DF13RD1,RD2,RED 
OPEN(UNIT=7,FIL,E="pd") 

0PEN(UNIT=9,FILE="pdd1) 

PI=2.0WO*ASIN(1.0) 
-- Unfomatted input section = 

PRWT *,'READ THE VALUE OF CD AND SKIN > ' 

PRINT *,'MOBILITY RATIO (1 by 2 and 2 by 3) > ' 
READ(S,*)AMOB12,AMOB23 
PRINT *,'STORATIVITY RATIO (1 BY 2 and 1 by 3) > 
READ(S,*)STO12,ST013 
PRINT *,'DIMENSIONLESS DlSCONTINUITY DXSTANCE (RDl and RD2) > ' 
FtEAD(S,*)RDl,RD2 
PRINT *,'# OF CYCLES OF DATA REQUIRED > ' 
READ(S,*)NC 
PRINT *,'GIVE FIRST VALUE OF TD > ' 
READ(S,*)TDl 
PRINT *,'NUMBER OF TERMS TO BE USED IN STEHFEST > ' 
READ(S,*)NTERM 

OPEN(UNlT=8,FILE="pdp*') 

-- 

READ(S,*)CD,SKIN 
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C 

C 

C 

C 

C 

C 

C 

C 

PFUNT *.'SUPPLY OUTER BOUNDARY CONDlTION CODE: * 
PRINT *"l --- INFINITE' 
PRINT *,'2 ---- CLOSED' 
PRINT *.'3 ---- CONSTANT-PRESSURE > ' 
READ(S,*)JCODE 

IF(JCODE.NE. 1)THEN 
PRINT *,'DIMENSIONLESS OUTER RADIUS' 
READ(S,*)FED 

RED= 1 .e30 
ELSE 

ENDIF 
**** input section ends *** 
M=777 
CALCULATE DIFFUSIVITY RATIOS @IF12 AND DIF13) 
AMOB 13=AMOB 12*AMOB23 
DIFl2=AMOB 12/STO 12 
DIFl3=AMOB 13/ST013 

GENERATE THE FIRST SET OF TD VEmOR 

TD( l)=TDl 
TD(2)=1.5m1 
TD( 3)=2. *TD 1 
TD(4)=2.5*TDI 
TD(5)=3.w1 
TD(6)=3S*TDl 
TD(7)=4.*TD1 
TD(8)=4S*TDl 

TD( 10)=6.*TD 1 
TD( 11)=7.*TDl 
TD(12)=8.*TDl 
TD( 13)=9.*TD 1 

TD(9)=5.*TDl 

WRITE THE NUMBER OF DATA POINTS GENERATED 

WRITE(7,*)13*NC 
WRITE(8,*)13*NC 
WRITE(9,*)13*NC 

GENERATE AND PRINT THE PRESSURE TRANSIENT RESPONSE 

DO 1 I=l,NC 
DO 2 J=1,13 
SPC=TD(J) 
CALL INVERT(SPCNIERh4,PDPDP) 
CALCULATE CARTESIAN SLOPE 
PDC=PDP*PI*RD 1 * R D I  
CALCULATE SEMI-LOG GRAPH SLOPE (BASE e) 
PDP=SPC*PDP 
CONVERT BASE OF 'SPC' FROM RW TO DISCONTINUITY DISTANCE 
SPC=SPC/RDl/RDl 
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C REPORT THE RESULTS * ****************** 

WTU"E(7,9)SPC,PD 
WRITE(8,9)SPC,PDP 
WlU'IE(9,9)SPC/PI,PDC 

2 "D(J)=lO.*TD(J) 
1 CONTINUE 
9 FORh4AT(2X,FlS.S,2XP15.7) 

STOP 
END . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE LAP(S,PWDLQDPL) 

DOUBLE PRECISION MMBSIO,MMBSIl,"BSKO,h4MBSKl 
COMMON MJCODE,CD,SKIN,AMOBl2,AMOB23,DIF12,DIF13,RD1,RD2,FED 

IMPLICIT REAL*8 (A-H,O-2) 

C COMPUTE THE ARGUMENTS OF BESSEL FUNCTIONS 

ARG l=DSQRT(S) 
ARG2=RDl*ARGl 
ARG3=DSQRT@IF12)*ARG2 
ARG4=RD2*DSQRT(S*DIF12) 
ARGS=RD2*DSQRT(S*DIF13) 

C COMPUTE BESSEL FUNCTIONS SCALED BY EXPONENTIALS 

Al=MMBS10(2,ARG 1 ,IER) 
AZ-MMBSI0(2,ARG2,IER) 
A3=MMBSI0(2,ARG3,IER) 
AkMMBS10(2,ARG4,IER) 

Bl=MMBSI1(2,ARGl,IER) 
BZ=MMBSIl(2,ARG2,IER) 
B3="BSI1(2,ARG3,IER) 
B4="BSI1(2,ARGI,IER) 

Dl="BSK0(2,ARGl,IER) 
D2=MMBSK0(2,ARG2,IER) 
D3=MMBSK0(2,ARG3,IER) 
WMMBSK0(2,ARG4,IER) 
DS=MMBSK0(2,ARGS,IER) 

El=MMBSK1(2,ARGl,IER) 
E2=MMBSKl(2,ARG2,IER) 
E3=MMBSK1(2,ARG3,IER) 
M="BSK1(2,ARG4,IER) 
ES=MMBSKl(2,ARGS,IER) 

C CALCULATION OF MULTPI. 
Fl=DEXP(ARG 1) 

.YING Fa ACTORS 
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E=DEXP(ARG2) 
F3=DEXP(ARG3) 

M=DEXP(ARG4) 

M=DEXP(88.d00) 

IF(ARG4.L€.88.)THEN 

ELSE 

ENDIF 
IF(ARGS.LE.88.)THEN 

ELSE 

ENDIF 

FS=DEXP(ARG5) 

F5=DEXP(88.d00) 

C COMPUTATION OF THE COEFFICIENTS OF EQNS. FOR C1 THROUGH C5. 

ALll=(CD*S*(Al-SKIN*ARG1*Bl)-ARGl*Bl)*F1 
AL12=(CD*S*(Dl+SKIN*ARGl*El)+ARGl*El)/Fl 
AL21=A2*F2 
AL22=D2/F2 
AL23=-A3*F3 
AL24=-D3/F3 
AL31=AMOB12*ARGl*B2*F2 
AL32=-AMOB I2*ARGl *E2/F2 
AL33=-DSQRT(S*DIF12)*B3*F3 
AL34=DSQRT(S*DIF12)*€3/F3 
AL43=A4*F4 
AL44=D4/F4 
AL45=-D5/F5 
AL53=AMOB23*DSQRT(S*DIF12)*B4*F4 

AL55=DSQRT(S*DIFI3)*E5/F5 
AL54=-AMOB23*DSQRT(S*DIFl2)*W/F4 

C CALCULATION OF Cl THROUGH C5 

Xl=AL43*AI55-AU5*AL53 
X%A.L45*AL54-AL44*AL55 
X3=AL33*X2+AL34*Xl 
Sl=AL31*AL12-AL32*ALI 1 
S2=AL22*ALl l-AL21*AL12 
S3=AL23*X2+AL24*Xl 

IF(JCODE.EQ. 1)THEN 
c2=(S3*AL31-AL21*X3)/(S*(X3*S2+S1*s3)) 
Cl=(l.-S*AL12*C2)/S/ALl1 
C3=-(AL31*C1+AL32*c2)*x2/(AL33*X2+AL34*xl) 

C5=-(AL53*C3+AL54*C4)/AL55 
C4=(-XI*(AL31*Cl+AL32*C2))/(AL33*X2+AL34*Xl) 

ENDIF 

C CALCULATION OF TRANSFORMED SOLUTION 

C PWDL REPRESENTS LAPLACE TRANSFORM OF PWD 

PWDL=Cl*(Al-SKIN*ARGl*Bl)*FI+C2*@I+SKIN*ARGl*EI)/F1 
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PDPL=P,WL*S 
RETURN 
END 
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SUBROUTINE INVERT(TD,NQD,PDP) 
THIS FUNTION COMPUTES NUMERICALLY THE LAPLACE TRNSFORM 
INVERSE OF F(S). 

IMPLICIT REAL*8 (A-H,O-2) 
COMMON M,JCODE,CD,SKIN,AMOB 12,AMOB23,DIF12,DIF13JIDl JID2,RED 
DIMENSION G(SO),V(SO),H(25) 

NOW IF THE ARRAY V(I) WAS COMPUTED BEFORE THE PROGRAM 
GOES DIRECTLY TO THE END OF THE SUBRUTINE TO CALCULATE 
F(S). 

IF (N.EQ.M) GO TO 17 
M=N 
DLOGTW=0.6931471805599 
NH=N/2 

THE FAmORIALS OF 1 TO N ARE CALCULATED INTO ARRAY G. 
G(l)=l 
DO 1 1=2& 

CONTINUE 
G(I)=G(I-l)*I 

TERMS WITH K ONLY ARE CALCULATED INTO ARRAY H. 
H( 1)=2./G(NH- 1) 
DO 6 I = 2 W  
FI=I 
IF(1-NH) 4,5,6 
H(I)=FI**NH*G(2*r)/(G(NH-I)*G(I)*G(I-l)) 
GO TO 6 
H(I)=FI**NH*G(2*I)/(G(I)*G(I-l)) 
CONTINUE 

THE TERMS (-l)**NH+l ARE CALCULATED. 
FIRST THE TERM FOR 1=1 

SN=2*(NH-NH/2*2)-1 

THE REST OF THE SN'S ARECALCULATED R 

THE ARRAY Vu) IS CALCULATED. 
DO 7 1=13  

FIRST SET v(I)=o 
V(I)=O. 

THE LIMITS FOR K ARE ESTABLISHED. 

U T H E  MAD +JR :UTINE. 
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THE LOWER LIMIT IS Kl=INTEG((I+l/Z)) 
Kl=(I+1)/2 

THE UPPER LIMIT 1s K2=MIN(IJv/2) 
K2=I 
IF (K2-W 8,8,9 
K2=NH 

THE SUMMATION TEN IN V(I) IS CALCULATED. 
DO 10 K=Kl,K2 
IF (2*K-I) 12,13,12 
IF (I-K) 11,14,11 
V(I)=V(I)+H(K)/(G(I-K)*G(2*K-I)) 
GO TO 10 
V(I)=V(I)+H(K)/G(I-K) 

GO TO 10 
V(I)=V(I)+H(K)/G(2*K-I) 
CONTINUE 

THE V(I) ARRAY IS FINALLY CALCULATED BY WEIGHTING 
ACCORDING TO SN. 

VO=SN*V(I) 

THE TERM SN CHANGES ITS SIGN EACH ITERATION. 
S N d N  
CONTINUE 

THE NUMERICAL APPROXUlATION IS CALCULATED. 
PD=O. 

PDP=O. 
A=DLOGTW/TD 
DO 15 I=1& 
ARG=A*I 
CALL LAP(ARG,PWDL,PDPL) 
PD=PD+V(I)*PWDL 
PDP=PDP+V(I)*PDPL 
CONTINUE 

PD=PD*A 
PDP=PDP*A 
RETURN 

END 


