A LABORATORY INVESTIGATION OF STEAM ADSORPTION IN GEOTHERMAL RESERVOIR ROCKS

A REPORT
SUBMITTED TO THE DEPARTMENT OF PETROLEUM ENGINEERING

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FORTHEDEGREEOF
MASTER OF SCIENCE

By
Jeralyn Luetkehans
March 1988

I certify that I have read this report and that in my opinion it is fully adequate, in scope and quality, as a report for the degree of Master of Science.

Frank \&. miller

Dr. Frank G. Miller, co-advisor

I certify that I have read this report and that in my opinion it is fully adequate, in scope and quality, as a report for the degree of Master of Science.

Dr. Henry Ramey, Jr, co-advisor

ACKNOWLEDGEMENTS

Although there are many people associated with the petroleum engineering department who have made my years at Stanford special in some way, I would like to express my appreciation to four people in particular.

My thanks to my advisor and editor, Dr. Frank G. Miller, whose unfailing patience and encouragement lifted my spirits and allowed me to continue when I felt as if this report would never be finished.

My thanks to my other advisor, Dr. Henry Ramey, Jr., who took the time to talk to a bewildered sophomore in search of a major that could become a career. He has taught me so much more than petroleum engineering.

My thanks to Paul Pettit who helped a novice discover that working with tools and building an experimental apparatus can be fun. I am also grateful for his friendship and the long hours of talks about every subject imaginable.

My thanks to Jean Cook who helped me keep my perspective at this wonderfully crazy school by letting me share the little things as well as the big.

In addition, I would like to express my appreciation for the financial support received from the Stanford Geothermal Program under the Department of Energy contracts DE-AS03-80SF11459 and DE-ASO7-84ID12529.

CONTENTS

Contents iv
Abstract vi
List of Tables vii
List of Figures x
1.0 INTRODUCTION 1
1.1 The Adsorption Phenomenon 1
1.2 Vapor Dominated Geothermal Systems 5
1.3 Natural Gas Systems 7
1.4 Statement of Problem 8
2.0 LITERATURE SURVEY 9
3.0 ANALYTICAL PROCEDURES 14
3.1 Background 14
3.1.1 The Kelvin Equation 14
3.1.2 Langmuir-BET Type Equations 19
3.2 Adsorption Calculations 25
3.3 Details of the BET Analysis 28
3.4 Development of Computer Program 30
4.0 APPARATUS AND PROCEDURES 31
4.1 Apparatus 31
4.1.1 Low Temperature System 31
4.1.2 High Temperature System 34
4.1.3 Data Logging 42
4.2 Procedures 42
4.2.1 Basic Procedures for an Experimental Run 44
4.2.2 General Equipment Preparation and Maintenance 48
4.2.3 Core Preparation 52
4.2.4 Dead Volume Determination 54
4.2.5 Low Temperature Adsorption 55
4.2.6 High Temperature Adsorption 56
4.3 Limitations of Apparatus and Procedures 60
5.0 DATA ANALYSIS AND INTERPRETATION 68
5.1 Application of Analytical Procedures 69
5.2 Adsorption Results 74
5.3 BET Results 95
6.0 CONCLUDING REMARKS 98
7.0 NOMENCLATURE 102
8.0 REFERENCES 106
9.0 APPENDICES 109
9.1 Appendix A -- Computer Program 109
9.2 Appendix B -- Data Checklists 125
9.3 Appendix C -- Tables of Adsorption Results 164
9.4 Appendix D -- Tables of BET Results 180

Abstract

Some vapor-dominated geothermal reservoirs and low-permeability gas reservoirs exhibit anomalous behavior that may be caused by surface adsorption. For example, geothermal reservoirs in the Larderello area of Italy and reservoirs in the The Geysers Geothermal Field, California produce little, if any, liquid. Yet to satisfy material balance constraints, another phase besides steam must be present. If steam adsorption occurring in significant amounts is not accounted for, the reserves will be grossly under-estimated. In addition, well tests may be misinterpreted because the pressure response is delayed owing to the adsorbed material leaving or entering the gaseous phase.

In the present research the role of adsorption in geothermal reservoirs is investigated. Two sets of laboratory equipment were constructed to measure adsorption isotherms of cores from Berea sandstone, Larderello, and The Geysers. Seven experimental runs were completed using nitrogen on the low temperature apparatus at -196 ${ }^{\circ} \mathrm{C}$. Eight runs were conducted using steam on the high temperature apparatus at temperatures ranging from $150^{\circ} \mathrm{C}$ to $207^{\circ} \mathrm{C}$. The largest specific surface area and the greatest nitrogen adsorption isotherm were measured on the Berea sandstone, followed by a core from Larderello and then The Geysers. Difficulties in determining whether a system had reached equilibrium at the end of each step lead to questions regarding the magnitude of adsorption measured by the steam runs. Nevertheless, adsorption was observed and the difficulties themselves were useful indicators of needed future research.

LIST OF TABLES

Table 4.1 Correlation of Temperature Versus Resistance for a Platinum Resistance Thermometer 39

Table 4.2 Data Checklist 46
Table 5.1 Nitrogen Run 1 at $-196^{\circ} \mathrm{C}$ on Sample \#2 from Montiverdi Well \#2

Table 5.2 BET Results of Nitrogen Run 1 at $-196^{\circ} \mathrm{C}$ on Sample \#2 from Montiverdi Well \#2 75

Table 5.3 Nitrogen Run 1 at $-196^{\circ} \mathrm{C}$ on Sample \#2 of Berea Sandstone 76
Table 5.4 Steam Run 1 at $169^{\circ} \mathrm{C}$ on Sample \#1 of Berea Sandstone 85

Table 5.5 Comparison of BET Results 97
Table C. 1 Nitrogen Run 1 at $-196^{\circ} \mathrm{C}$ on Sample \#2 of Berea Sandstone 165
Table C. 2 Nitrogen Run 2 at $-196^{\circ} \mathrm{C}$ on Sample \#2 of Berea Sandstone 166
Table C. 3 Nitrogen Run 4 at $-196^{\circ} \mathrm{C}$ on Ssample \#2 of Berea Sandstone 167
Table C. 4 Nitrogen Run 1 at $-196^{\circ} \mathrm{C}$ on Sample \#1 of The Geysers 168
Table C. 5 Nitrogen Run 1 at $-196^{\circ} \mathrm{C}$ on Sample \#2 from Montiverdi Well \#2

Table C. 6 Nitrogen Run 2 at $-196^{\circ} \mathrm{C}$ on Sample \#2 from Montiverdi Well \#2

Table C. 7 Nitrogen Run 3 at $-196^{\circ} \mathrm{C}$ on Sample \#2 from Montiverdi Well \#2
Table C. 8 Steam Run 1 at $169^{\circ} \mathrm{C}$ on Sample \#1 of Berea Sandstone 172
Table C. 9 Steam Run 2 at $207{ }^{\circ} \mathrm{C}$ on Sample \#1 of Berea Sandstone 173
Table C. 10 Steam Run 3 at $150^{\circ} \mathrm{C}$ on Sample \#1 of Berea Sandstone 174
Table C. 11 Steam Run 1 at $167.4^{\circ} \mathrm{C}$ on Sample \#2 of Berea Sandstone 175
Table C. 12 Steam Run 1 at $153^{\circ} \mathrm{C}$ on Sample \#1 from The Geysers 176
Table C. 13 Steam Run 2 at $200^{\circ} \mathrm{C}$ on Sample \#1 from The Geysers 177
Table C. 14 Steam Run 3 at $180^{\circ} \mathrm{C}$ on Sample \#1 from The Geysers 178
Table C. 15 Steam Run 1 at $180^{\circ} \mathrm{C}$ on Sample \#3 from Montiverdi Well \#2 179
Table D. 1 BET Results of Nitrogen Run 1 at -196° on Sample \# 2 from Berea Sandstone 181
Table D. 2 BET Results of Nitrogen Run 4 at $-196^{\circ} \mathrm{C}$ on Sample \#2 from Berea Sandstone 182
Table D. 3 BET Results of Nitrogen Run 1 at $-196^{\circ} \mathrm{C}$ on Sample \#1 from The Geysers 183
Table D. 4 BET Results of Nitrogen Run 1 at $-196^{\circ} \mathrm{C}$ on Sample \#2 from Montiverdi Well \#2 184
Table D. 5 BET Results of Nitrogen Run 2 at $-196^{\circ} \mathrm{C}$ on Sample \#2 from Montiverdi Well \#2 185
Table D. 6 BET Results of Nitrogen Run 3 at $-196^{\circ} \mathrm{C}$ on Sample \#2 from Montiverdi Well \#2 186Table D. 7 BET Results of Steam Run 2 at $200^{\circ} \mathrm{C}$ on Sample \#1 from
The Geysers 187
Table D. 8 BET Results of Steam Run 3 at $180^{\circ} \mathrm{C}$ on Sample \#1 from
The Geysers 188

LIST OF FIGURES

Figure 11 Progression from Monolayer Adsorption to Adsorption Plus
Capillary Condensation 4
Figure 3.1 Model Adsorption Isotherm 17
Figure 3.2 Schematic of Two Spheres with Adsorption and Capillary Condensation 18
Figure 4.1 Schematic of the Low Temperature System 32
Figure 4.2 Schematic of the High Temperature System 33
Figure 4.3 Schematic of Modified Diaphragm Assembly 36
Figure 4.4 Schematic of Pressure-Measurement System Outside of Air Bath 37
Figure 4.5 Idealized Pressure Versus Time Showing the First Steps of an Adsorption Experiment 63
Figure 4.6 Idealized Pressure Versus Time Showing Adsorpiton Experiment with Estimated Pressures 65
Figure 5.1 Raw Data from Nitrogen Run \#1 at $-196^{\circ} \mathrm{C}$ on Core Sample \#2 from Montiverdi Well \#2 70
Figure 5.2 Adsorption Isotherm of Nitrogen Run \#1 at $-196^{\circ} \mathrm{C}$ on Core
Sample \#2 from Montiverdi Well \#2 73
Figure 5.3 Adsorption Isotherm of Nitrogen Run \#4 at $-196^{\circ} \mathrm{C}$ on Core
Sample \#2 of the Berea Sandstone 78

Figure $\mathbf{5 . 4}$ comparison of the Adsorption Curves of LT2 and LT4 at $196{ }^{\circ} \mathrm{C}$ on Core Sample \#2 of the Berea Sandstone 79

Figure 5.5 Adsorpiton Isotherm of Nitrogen Run \#1 at $\mathbf{- 1 9 6}{ }^{\circ} \mathrm{C}$ on Core Sample \#1 from The Geysers 80

Figure 5.6 Comparison of the Adsorpiton Curves from the Nitrogen Runs on Core Sample \#2 from Montiverdi Well \#2

Figure 5.7 Comparison of the Adsorption Curves of LT4 on Sample \#2 of Berea, LT1 on Sample \#2 from Montiverdi Well \#2, LT1 on Sample \#1 from The Geysers, and a Lot Temperature Run from Hsieh (1980) on Sample \#1 of Berea82

Figure 5.8 Adsorpiton Isotherm of Steam Run \#1 at $167^{\circ} \mathrm{C}$ on Core Sample \#2 of Berea84

Figure 5.9 Idealized Case in which $\delta p_{2}=0$ for Desorption Resulting in No Compensation

Figure 5.10 Idealized Case in which the δp_{2} Values Fully Compensate on the Last Step

Figure 5.11 Comparison of the Adsorpiton Curves form the Steam Runs on Core Samples \#1 and \#2 of Berea 92

Figure 5.12 Adsorption Isotherm of Steam Run \#2 at $200{ }^{\circ} \mathrm{C}$ on Core Sample \#1 from The Geysers

Figure 5.13 Comparison of Adsorption Curves of HT2 at $200{ }^{\circ} \mathrm{C}$ and HT3 at $180^{\circ} \mathrm{C}$ on Core Sample \#1 from The Geysers 94

Figure 5.14 Adsorption Isotherm of Steam Run \#1 at $180^{\circ} \mathrm{C}$ on Core
Sample \#3 form Montiverdi Well \#2 96

1.0 INTRODUCTION

In the highly competitive atmosphere of the energy industry, the objective, as in any business, is to make a profit. Once a resource is discovered, two issues must be addressed: whether the reserves warrant development and if so, the design of the optimum development scheme. To respond to these issues one should have an understanding of the natural production mechanism. Unfortunately there exist a variety of unknowns which greatly complicate the matter. One of these, the phenomenon of adsorption, has a significant impact on vapor-dominated geothermal reservoirs and evidently on low-permeability natural gas reservoirs as well.

This report describes the equipment, experimental procedures, and analysis techniques needed to generate and evaluate adsorption data. Some adsorption isotherms, plots of adsorption per gram of sample versus relative vapor pressure at constant temperature, are presented for experimental runs conducted on actual field samples. This work is not intended to provide a statistical basis for definitive conclusions about these reservoirs, but rather to set the stage for more extensive investigations in the future.

1.1 THE ADSORPTION PHENOMENON

One of the difficulties in understanding adsorption is the confusion regarding terminology and nomenclature. Adsorption and the related subject of capillarity have been studied in different scientific disciplines for many years. The focus and the
approach vary according to the discipline as do the terms and symbols. The use in this report of important terms is outlined in the ensuing paragraphs.

Adsorption may be defined as the adhesion of molecules of gases, solutes or pure liquids in an extremely thin layer to the surfaces of solid bodies or liquids with which they are in contact. The material that is adsorbed is called the adsorbate, while the material on which the adsorption takes place is called the adsorbent. In contrast to adsorption, absorption in simply the movement of one substance into the bulk of another by some transport mechanism such as convection or diffusion. Though sometimes used to describe these phenomena in general, adsorption and absorption can refer to the processes in the forward direction only. Sorption also describes the forward direction of either process while desorption does the same in the backward direction.

Adsorption may be physical or chemical in nature, or a combination of both. Physical adsorption, also called physisorption, tends to dominate at low temperatures. The heat of adsorption is similar to the heat of condensation because the intermolecular forces involved are the same type as those responsible for the condensation of vapor to liquid. These forces are described in detail in the doctoral dissertation of Hsieh (1980). Normally the time to attain equilibrium, that state in which the mass of adsorption remains fixed, is short. However, the low mass transport rates in lowpermeability cores lengthen this time considerably. Unlike physical adsorption, chemisorption involves chemical reactions causing it to be much more active at higher temperatures. Correspondingly, the adsorption energy is higher and the equilibrium time depends much more on the reaction kinetics. In addition, chemisorption is more likely to cause irreversible changes in both the adsorbent and adsorbate. An example of this
phenomenon is found with oxygen adsorbed on solid carbon. Because of the strength of the bond between the two, heating results in the release of CO and CO_{2}. If the magnitude of the adsorption energy is similar to that of the surface energy of the adsorbent on a per molecular unit basis, then the adsorbent surface is apt to undergo structural changes. In short, a rock surface is less likely to be altered due to adsorption if the primary mechanism is physical. A chemisorbed bed tends to be monomolecular; however, it is possible for a multi-layer physisorbed bed to form on top. Much of the experimental work is at either end of the spectrum where one or the other process dominates. For the present research physical adsorption dominates even though the use of distilled water adds complexity because of inherent polar effects.

While the same type of forces causing adsorption also cause capillary condensation, the two phenomena are not the same. In studies of capillarity it is assumed that enough molecules are present to model thermodynamically with the Kelvin equation (Eq. 3.1). Figure 1.1 illustrates the progression from adsorption to a combination of capillarity and adsorption. Consider the surface of two adjacent sand grains as a gas is brought into contact with them (Fig. 1.1A). Initially, the gas is adsorbed as a monolayer. As more gas is introduced, the number of layers increases. The converging pore walls where the grains meet promote adsorption preferentially. When the number of adsorbed molecular layers is high enough, the concepts and equations of capillarity begin to apply (Fig. 1.1B). The question of how to model these systems is addressed in the next two chapters.

Confusion in terminology is compounded by the close relationship of adsorption and capillarity. For example, adsorption isotherms in general do not show adsorption

- 4 -

alone. They usually include all the molecules clinging to the surface and to each other in a phase composed of adsorbate and capillary condensation. Indeed, it is this total quantity which is so important in estimating reserves. Capillary condensation often does not make a significant contribution until relative pressures are very high as will be shown in Section 2.1. For simplicity, the total quantity will often be referred to in this report in terms of "adsorption" or even as the "condensed" or "dense" phase to differentiate it from the free gas phase. It should be understood that not all the molecules are condensed in the sense of changing from vapor to liquid. The concept of liquid no longer has meaning on the scale of micropores; yet, the molecules are compressed into a denser packing. Any discussion here requiring differentiation between the effects of adsorption and capillary condensation should be evident from the treatment given.

1.2 VAPOR-DOMINATED GEOTHERMAL SYSTEMS

Steam was once thought to be the only significant constituent of vapor-dominated reservoirs exemplified by The Geysers in California and the Larderello area in Italy. An early model, proposed by James (1968) and extended by White et al. (1971), suggests that the vapor zone is underlain by a liquid zone and that any vapor that condenses percolates downward. There may in fact be reservoirs with distinct zones where one or the other phase dominates. There is, however, an increasing amount of evidence to support the idea that a dense $\mathrm{H}_{2} \mathrm{O}$ phase is adsorbed within the vapordominated zones even though pressures are below saturation pressures.

Gravity measurements conducted at The Geysers by Denlinger, Isherwood, and Kovach (1981) show a significant reduction in mass caused by fluid withdrawal at a depth within the steam producing horizon. If steam was the only phase in that zone, its removal alone would not account for the magnitude of the reduction observed. Furthermore, Sanyal (1980) reported abnormally high neutron \log measurements for some vapor-dominated reservoirs. Adsorbed water might account for the anomaly because of the elevated hydrogen concentration. In experiments on porous media saturated with superheated steam, Macias-Chapa (1981) observed radon emanations far exceeding the levels expected for a gaseous phase alone.

Laboratory studies of the effect of adsorption in porous media were conducted by the United States Geological Survey (U.S.G.S.) as well as by Hsieh and Ramey (1983). Their findings indicate that a large mass of water can exist as an adsorbed phase even at pore pressures below the saturation vapor pressure. In addition, the work of the U.S.G.S. examines adsorption during transient flow of steam. Atkinson and Moench (1978) developed a numerical steam flow model that was modified by Moench and Herkelrath (1978) to include adsorption. By using the model in conjunction with adsorption isotherms determined in the laboratory, Herkelrath, Moench, and O'Neal (1983) attained reasonable agreement with data from their transient flow experiments. This work demonstrates analytically and experimentally that adsorption tends to delay the fluid pressure response during a flow test.

The most significant result of these studies is that reserve estimates which assume steam to be the only existing phase are too low. According to Economides and Miller (1985), the estimates may be as much as a full order of magnitude too low. This error
in material balance propagates throughout the reservoir calculations used to predict future behavior." The problem is compounded if a well test which felt the cushioning effect of adsorption is analyzed without accounting for the resultant time lag. Consequently, the technical and economic evaluations, upon which important decisions are based, may promote a view of the resource which is misleading.

1.3 NATURAL GAS SYSTEMS

Two kinds of natural gas systems exhibit anomalous behavior that could be explained by adsorption: gas storage reservoirs and certain natural tight gas reservoirs. In a gas storage reservoir, the pressure increases with the injection of gas. One might assume that producing until the pressure decreases to its original value would yield a gas volume equal to that injected. Yet, the produced volume is usually less than the injected volume for the same pressure change. Likewise, low permeability gas systems often show some time delay between the production of gas and the average pressure drop in the reservoir. This behavior was noticed in the late 1950's by Ramey . Under conditions of no water encroachment, he saw that many $\frac{p}{Z}$ versus cumulative-gasproduced graphs were still concave upward instead of linear as expected. Though adsorption is a possible explanation, flow of gas from very tight sands within the system and peripheral to the drainage area may also account for this phenomenon.

[^0]
1.4 STATEMENT OF THE PROBLEM

Adsorption can have a large potential impact on the validity of traditional methods for assessing vapor-dominated geothermal reservoirs and certain natural gas reservoirs. Evaluations that underestimate reserves and incorporate erroneous well test interpretations can be misleading when employed in the decision-making process. The experimental work completed thus far identifies adsorption as a topic worthy of further research. The ultimate goal is to provide enough information to allow for integration of adsorption effects into technical and economic evaluations.

This research effort builds on the work of Hsieh (1980), who determined that adsorption and capillary condensation were responsible for vapor pressure lowering in porous materials. He then conducted experiments to generate adsorption isotherms for nitrogen, steam, and natural gas using Berea sandstone almost exclusively. While the results of his work with natural gas work were inconclusive because of the low pressures used, the steam results were far more encouraging because more adsorbate is formed from steam at low pressures than from natural gas. The general purpose of the present research is to develop the equipment and methodology to generate more isotherms with actual field cores under extended ranges of pressures and temperatures. Specific goals are three-fold: (1) to construct the apparatus and test it, the procedures, and the analysis techniques; (2) to identify potential problems and limitations of the apparatus, procedures, and analysis and to suggest improvements; and (3) to identify areas of interest suitable for further research.

2.0 LITERATURE SURVEY

As the previous section indicates, capillary condensation and adsorption significantly impact many disciplines, the result being a plethora of literature on these subjects. This survey provides a general overview of the development of some fundamental theories. The histories of capillarity and adsorption are traced separately until about the mid-1970's. Thereafter, they are reviewed jointly with an emphasis on the work pertinent to this research. Though mathematical equations are mentioned in this section, details are reserved for Chapter 3.

While the effect of capillary condensation on porous solids has been studied for about 250 years, the Kelvin equation was not developed until 1871. This important basic equation was not derived on the basis of rigorous thermodynamics as the condition for chemical equilibrium between phases had not yet been set forth by Gibbs. was unknown at the time. Lord Kelvin (Thomson) assumed the vapor to be ideal and the liquid to be incompressible. Nonetheless, since its first application to data on porous solids by Zsigmondy (1911), the Kelvin equation has remained a useful tool. A great volume of material on this subject has been published during the twentieth century. Some important publications which include literature reviews are McBain (1932), Brunauer (1943), and Melrose (1986). A modified Kelvin equation with a rigorous thermodynamic derivation was developed by Melrose in 1966. A year later, he applied the idea of pendular rings based on Gibbs dividing surfaces to the problem of capillary-held liquid. Further theoretical refinement came in 1986 followed by experimental work in 1987. He found that the relation was valid for capillary pressures as high as 4000 psi and that the corrections to the classical form are negligible below a capillary pressure of about 1450 psi.

The vapor pressure at a plane surface of gas-liquid phase separation is higher than the vapor pressure at a curved surface of phase separation. Thus, the vapor pressure in a porous medium is lower than the vapor pressure in a non-swelling, non-porous container. Observed by Edelfson and Anderson (1943), the vapor pressure lowering (VPL) effect was also noticed by Calhoun and his co-workers in their landmark studies on core plugs in 1949. Stanford University began its investigations into the matter in 1966. Cady (1969) and Bilhartz (1971) discovered that VPL was not significant in unconsolidated sands. In contrast, consolidated sands studied by Strobel (1973) and Chicoine (1975) did show significant lowering. Later research by Hsieh (1980) demonstrated that although capillary condensation is a factor, adsorption also makes a contribution.

Unlike investigations of capillary condensation, adsorption studies are more a product of this century. Langmuir presented a theory in 1918 based on the kinetic theory that works best for monolayers. Brunauer, Emmett, and Teller (1938) applied the BET equation to multi-layered systems. It is often used to find surface areas and has been widely used because of its simplicity. Chapter 3 details this equation as well as a modified form presented by Drain and Morrison (1953).

In general, three approaches have been used to develop theoretical equations that would fit adsorption isotherm behavior: the Langmuir-BET type, the two dimensional equation of state treatment, and the potential method. This last method suggests that the adsorbed layer is similar to the atmosphere surrounding a planet in that the density decreases with an increase in distance from the surface. A field of potential may be defined by a potential function which represents the amount of work done in bringing
an adsorbed molecule from the surface to a specific distance above the surface. The major difference between the approaches lies not in how they fit the isotherm data, but in how they agree with the heats and entropies of adsorption. Adamson (1982) compares and contrasts these methods, though the discussion is by his own-admission "restrained because it turns out that for nearly all systems studied an ovemding effect makes it virtually impossible to make an experimental verification of the validity of the model or to set up any but remotely austere fundamental theoretical treatments". (Adamson 1982, 573-574) He is referring to surface heterogeneity.

The present research employs the BET equation; however, there is another quation called the Frenkel-Halsey-Hill (FHH) equation which is often mentioned in the literature. It is one of the potential models, and its basic form was suggested first by Frenkel (1946). Halsey (1948), Hill (1952) and McMillan and Teller (1951) extended that work. As with the BET equation, many modifications and justifications were presented in the years after its inception.

Since about 1978 there has been an increasing amount of attention focused on the effect of adsorption and associated capillarity on the petroleum and geothermal industries. Stanford University's research on the VPL effect revealed a significant contribution by adsorption. Hsieh (1980) calculated a minimum relative pressure below which capillary condensation is not important using the Kelvin equation and a minimum radius the size of a water molecule. He discovered that some of the data of Calhoun et al. (1949) was below this level as was that of the foregoing Stanford researchers. He began to measure adsorption isotherms for Berea sandstone using nitrogen, steam and to a small extent natural gas and used a BET analysis. As mentioned earlier, the
natural gas results were inconclusive because the pressures and temperatures were too low. The steam information revealed a significant mass of a dense phase even at pressures below the vapor pressure. In 1983, Economides incorporated this extra source of reserves into a vapor-dominated geothermal reservoir model.

Other research investigations similar to those of Economides and Hsieh were in progress since 1978 at the United States Geological Survey. A numerical model for a vapor-dominated geothermal reservoir with radial steam flow was developed by Moench and Atkinson (1978). Soon thereafter, Moench and Herkelrath (1978) modified the model to include adsorption and the VPL effect. Herkelrath et al. (1983) then conducted experiments to verify the model. Using methods similar to Hsieh, they generated adsorption isotherms to be entered into the model. Next, they repeated the classic transient flow experiments of Aronofsky (1954) and Wallick and Aronofsky (1954) to test their equipment. Finally, they ran transient flow experiments with steam and noticed a definite time delay in the pressure response. The agreement between the model and the data was within acceptable limits.

Morrow and his associates $(1984,1985)$ measured desorption isotherms for water vapor in low permeability gas sands at room temperature. Kelvin capillary pressures were calculated from about $10,150 \mathrm{psi}$ (700 bar) to 200 psi (14 bar). Comparisons with high-speed centrifuge data for pressures below 800 psi (55 bar) were favorable suggesting that the Kelvin equation was valid for $\mathbf{8 0 0} \mathbf{- 2 0 0}$ psi.

Melrose, who derived the corrected form of the Kelvin equation, recently studied the effects of capillary condensation in the presence of adsorption $(1986,1987)$. Using
the pendular ring approach and a modified form of the FHH adsorption theory, the model calculates the quantity of liquid held by capillary effects with respect to the total quantity of adsorbate. It also allows for a comparison of the mercury extrusion curve at high pressures which excludes adsorption with the appropriate curve which includes adsorption. Melrose contends that the contribution of capillary condensation to the adsorption isotherm is somewhat larger than Hsieh (1980) suggested because of uncertainties in the surface tension and the liquid phase specific volume. However, the major contribution does not occur until the very high relative pressure ranges.

3.0 ANALYTICAL PROCEDURES

3.1 BACKGROUND

In deference to the close link between adsorption and capillarity, the Kelvin equation is discussed in Sub-Section 3.1.1 with focus on its range of applicability. SubSection 3.1.2 provides a derivation of the BET equation. Although the thermodynamics of adsorption is important, it is not of immediate interest in the current research. For a discussion of adsorption thermodynamics, the reader is referred to Hsieh (1980) or to a general reference such as Adamson (1982).

3.1.1 THE KELVIN EQUATION

In the last 100 years, the Kelvin equation has been applied successfully to many different capillary systems. Several mathematical forms using the same basic relationship have evolved over the years. A form used freqently is

$$
\begin{equation*}
\ln \frac{p}{P O}=-\frac{y V L}{R T}\left(\frac{1}{R}+\frac{4}{r_{1}}\right) \tag{3.1}
\end{equation*}
$$

where $\frac{p}{P O}=$ relative vapor pressure
$\gamma=$ interfacial tension
$V_{L}=$ volume per mole of liquid
$\mathrm{R}=$ gas constant
$\mathrm{T}=$ absolute temperature
r_{1} and $r_{2}=$ the two principal radii of curvature

When the two radii are nearly equal, the term $\frac{1}{r_{1}}+\frac{1}{r_{2}}$ is often replaced by $\frac{\underline{2}}{r_{m}}$ where r_{m} is defined by the mean radius of curvature.

The classical Kelvin equation assumes an ideal gas phase and an incompressible liquid phase. Melrose $(\mathbf{1 9 6 6}, 1986)$ examined the phenomenon from a rigorous thermodynamic standpoint using Gibbs' condition for a chemical equilibrium between phases. The Gibbs condition had not yet been discovered when Lord Kelvin (Thomson) developed his equation. The corrected form suggested by Melrose has two additional terms which are insignificant for air/brine capillary pressures less than about 1450 psi (Melrose, 1987). He found the corrected form to be valid for capillary pressures as high as about 4000 psi . Yet, at some point even the corrected form is not applicable because of the increase in liquid compressibility with the decrease in vapor pressure and liquid density. This equation coupled with an extrapolation of various PVT data for water (Speedy, 1982) provides a theoretical limit on thermodynamic stability. This limit at room temperature is about $\mathbf{- 3 0 , 0 0 0} \mathrm{psi}$, which corresponds to a capillary pressure of about the same magnitude, a p / p_{0} of about $\mathbf{0 . 2 2}$, and a Kelvin radius of $\mathbf{2 . 5}$ molecular diameters. The diameter of a water molecule is approximately $2{ }^{\circ} \mathrm{A}\left(2 \times 10^{-10} \mathrm{~m}\right)$.

Negative pressures have been measured in various experiments, though never so low as the theoretical limit. Values as low as $\mathbf{- 4 0 0 0}$ psi were observed by Briggs
(1950) with the accompanying values of $\mathbf{0 . 8 2}$ for the relative vapor pressure and 19 molecular diameters, roughly $40^{\circ} \mathrm{A}$ for water, for the Kelvin pore radius. Later experiments on cyclohexane by Fisher and Isrealachvili (1979, 1981). achieved negative pressures of about -870 psi which indicates a relative pressure of $\mathbf{0 . 7 6}$ and a Kelvin pore radius of $\mathbf{1 6}$ molecular diameters.

The model adsorption isotherm presented in Fig. 3.1 reflects the progression from adsorption alone to adsorption plus capillary condensation (Fig. 1.1). Region A represents adsorption alone. The corrected Kelvin equation suggests that Region B between the theoretical and experimental limits of p / p_{0} has at least some capillarity. In Region C, the contribution of capillarity begins growing, particularly for very high relative pressures like $\mathbf{0 . 9 8}$ or $\mathbf{0 . 9 9}$.

The Kelvin equation is appropriate for cases in which capillarity totally dominates or merely contributes significantly. In the latter case, the adsorption and capillarity may be treated separately provided that some method exists to differentiate between the two. Indeed, more than one such method exists. An approach used by Melrose (1986) is based on the concept of dividing surfaces. His model (Fig. 3.2) has two solid spheres with an adsorbed film of constant thickness and capillary liquid held between the converging pore walls.

The dividing surface for the gas and the capillary-held liquid is not a circular arc, but rather a nodoid, or a pendular ring. This surface is assumed to be tangent to and continuous with the surface for the gas and adsorbed film. Because the pore structure has converging walls instead of parallel ones, Melrose developed a minor modification to the Kelvin equation.

FIGURE 3.1 Modl Adsorption Isotherm

YJOY ¥o SSVW LIN $\operatorname{\text {redNOILdyOSGV}}$

FIGURE 3.2 Schematic of Two Spheres with Adsorption and Capillary Condensation
(from Melrose, 1986, with modifications)

The adsorbed film may be analyzed by several different methods. Melrose (1986, 1987) used a modified FHH equation with satisfactory results. In the present research, the BET equation was found to be simpler to apply and sufficient for this purpose.

3.1.2 LANGMUIR - BET TYPE EQUATIONS

Langmuir (1918) applied the kinetic theory to surface adsorption, but his equation can only be applied to monolayers. Brunauer, Emmett and Teller (1938), following the same principles, developed the BET equation for multi-layered systems. Later, this equation was modified to accommodate specific numbers of layers.

The following assumptions are required to formulate this modified BET equation:

1. The surface of the solid is uniform. The possible sites of adsorption are identical and can only accept one gas molecule at a time.
2. A gas phase molecule will be adsorbed upon striking an unoccupied site.
3. If a site is already occupied, the gas phase molecule will be adsorbed on top as a next-layer molecule.
4. There are n possible layers at each site.
5. Adsorbed molecules will rejoin the gas phase under conditions of desorption. If there is more than one layer, the uppermost layer will evaporate first, followed by the next, and so on.
6. All layers above the first layer have the same physical properties.

Consider a surface with a total number of adsorption sites, S , and let S_{0} denote the unoccupied sites. In addition, let the number of sites covered by one layer be S_{1}, the number of sites with two layers be S_{2}, the number of sites with three layers be S_{3}, and so on. Thus, S_{i} refers to the number of sites with i layers.

The rate of condensation to the i-th layer, $N_{a_{i}}$, depends partly on the pressure of the gas phase and the amount of surface covered by the $i-1$ layer:

$$
\begin{equation*}
N_{a_{i}}=p a_{i} S_{i-1} \tag{3.2}
\end{equation*}
$$

where $a_{i}=$ coefficient of condensation for the i-th layer
$i=$ layer index ranging from 0 to n.

Similarly, an equation may be written for the rate of evaporation from the i-th layer:

$$
\begin{equation*}
N_{b_{i}}=b_{i} S_{i} \tag{3.3}
\end{equation*}
$$

where $\quad b_{i}=$ coefficient of evaporation for the i-th layer.

Consider the system at equilibrium when the rates of condensation and evaporation are equal. Combining Eqs. 3.2 and 3.3 yields

$$
\begin{equation*}
p a_{i} S_{i-1}=b_{i} S_{i} \tag{3.4}
\end{equation*}
$$

from which

$$
\begin{equation*}
\frac{S_{i}}{S_{i-1}}=\frac{p a_{i}}{b_{i}}=\frac{\theta_{i}}{\theta_{i-1}} \tag{3.5}
\end{equation*}
$$

where $\theta_{i}=\frac{S_{i}}{S}$, the fraction of surface covered by i layers. The sum of the surface fractions from 0 to n equals unity. The sixth assumption states that all the physical properties of the layers above the first are identical:

$$
\begin{equation*}
a_{2}=a_{3}=a_{4}=\cdots=a_{n}=a \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{2}=b_{3}=b_{4}=\cdots=b_{n}=b \tag{3.7}
\end{equation*}
$$

Only two nontrivial expressions result from writing Eq. $\mathbf{3 . 5}$ for every layer.
Let

$$
\begin{equation*}
\alpha=\frac{\theta_{1}}{\theta_{0}}=\frac{p a_{1}}{b_{1}} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta=\frac{\theta_{2}}{\theta_{1}}=\frac{\theta_{3}}{\theta_{2}}=\cdots=\frac{\theta_{n}}{\theta_{n-1}}=\frac{p a}{b}=\frac{\alpha}{C} \tag{3.9}
\end{equation*}
$$

where C is a constant equal to $\frac{b a_{1}}{a b_{1}}$ for a specific fluid at a specific temperature. From Eqs. 3.8 and 3.9,

$$
\begin{equation*}
\theta_{i}=\alpha \beta^{i-1} \theta_{0}=C \beta^{i} \theta_{0} . \tag{3.10}
\end{equation*}
$$

If the total number of moles of adsorbate is \mathbf{X}, then

$$
\begin{equation*}
X=X_{m}\left(\theta_{1}+2 \theta_{2}+3 \theta_{3}+\cdots+n \theta_{n}\right) \tag{3.1}
\end{equation*}
$$

where \boldsymbol{X}, equals the number of moles of adsorbate in the first layer if that layer fully covers the surface. It is often called the monolayer adsorption. Substitution of Eq. 3.10 into Eq. $\mathbf{3 . 1 1}$ yields

$$
\begin{gather*}
X=X_{m} C\left(\beta+2 \beta^{2}+3 \beta^{3}+\cdots+n \beta^{n}\right) \\
X=X_{m} C \sum_{i=1}^{n} i \beta^{i} \tag{3.12}
\end{gather*}
$$

The summation term may be evaluated as follows:

$$
\begin{gather*}
\sum_{i=1}^{n} i \beta^{i}=\frac{d}{d \beta} \sum_{i=2}^{n+1} \beta^{i}-\sum_{i=1}^{n} \beta^{i} \\
\sum_{i=1}^{n} i \beta^{i}=\frac{d}{d \beta}\left[\frac{\beta^{2}\left(1-\beta^{n}\right)}{1-\beta}\right]-\frac{\beta-\beta^{n+1}}{1-\beta} \\
\sum_{i=1}^{n} i \beta^{i}=\frac{\beta-(n+1) \beta^{n+1}-n \beta^{n+2}}{(1-\beta)^{2}} \tag{3.13}
\end{gather*}
$$

Thus,

$$
\begin{equation*}
x-x_{m} \subset \theta_{0} \frac{\beta-(n+1) \beta^{n+1}-n \beta^{n+2}}{(1-\beta)^{2}} \tag{3.14}
\end{equation*}
$$

The term θ_{0} may be eliminated with the realization that $\sum_{i=0}^{n} \theta_{i}=1$. Therefore,
Eq. 3.10 may be reduced:

$$
\begin{gathered}
\theta_{0}\left(1+C \beta+C \beta^{2}+\cdots+C \beta^{n}\right)=1 \\
\theta_{0}+C \theta_{0}\left(\frac{\beta-\beta^{n+1}}{1-\beta}\right)=1 \\
\theta_{0}=\frac{1}{1+C\left(\frac{\beta-\beta^{n+1}}{1-\beta}\right)}
\end{gathered}
$$

$$
\begin{equation*}
\theta_{0}=\frac{1}{1+(C-1) \beta-C \beta^{n+1}} \tag{3.15}
\end{equation*}
$$

Substituting the right-hand side of Eq. 3.15 for $\boldsymbol{\theta}_{0}$ in Eq. 3.14 yields

$$
\begin{equation*}
\frac{X}{X_{m}}=\frac{C \beta}{1-\beta}\left[\frac{1-(n+1) \beta^{n}+n \beta^{n+1}}{1+(C-1) \beta-C \beta^{n+1}}\right] . \tag{3.16}
\end{equation*}
$$

Equation 3.16 relates the total adsorption, X, to X, n, C, and β. The parameter $\boldsymbol{\beta}$ is physically significant in that it equals the relative vapor pressure. If a flat interface has a saturation vapor pressure identical to the equilibrium vapor pressure, \boldsymbol{p}, then $n=\infty$ and $\boldsymbol{\beta}=1$. From the definition of $\boldsymbol{\beta}$ (Eqn. 3.9),

$$
\begin{equation*}
\frac{P_{0} a}{b}=1 \tag{3.17}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\beta=\left(\frac{p a}{b}\right)\left(\frac{b}{p_{0} a}\right)=\frac{p}{p_{0}} . \tag{3.18}
\end{equation*}
$$

The values of X and $\boldsymbol{\beta}$ are determined experimentally; then a least squares fit of Eq. 3.16 will give \mathbf{X}, \ldots, n, and C.

In many situations, the number of layers will be large. The BET relation results from evaluating Eq. 3.16 for $n=\infty$. As $\boldsymbol{\beta} \boldsymbol{c} 1, \beta^{n}$ and β^{n+1} tend to zero giving

$$
\begin{equation*}
\frac{X}{X_{m}}=\frac{C \beta}{(1-\beta)(1+C \beta-\beta)} \tag{3.19}
\end{equation*}
$$

This simplification is valid for the range $0.05<\beta<0.30$ (Hiemenz 1986, 521-523). In some instances, the upper limit may be extended to approximately 0.35 which was the value used in the present research.

The initial assumptions upon which Eq. 3.19 is based cause the equation at times to be invalid. Generally, surfaces are energetically non-uniform resulting in adsorption at the most favorable sites first. There may also be interaction between molecules of the same layer. Furthermore, the prospect for adsorption may diminish as the distance from the surface increases. If $\boldsymbol{\infty} \boldsymbol{\Omega}$ the physical properties of the layers above the first would not be identical as assumed.

3.2 ADSORPTION CALCULATIONS

The adsorption calculations indicate the amount of condensed phase at a particular pressure and temperature per unit mass of the porous medium under investigation. The objective is to determine the total number of molecules in the dead volume ${ }^{--}$the annular space in the coreholder plus the pore space and tubing space up to Valve \mathbf{C} (Fig. 4.1) -- and subtract the molecules existing as a free gas. Those remaining are ascribed to adsorption and capillary condensation. This method assumes that the only significant condensation is within the core itself.

The first step is to calculate the dead volume (DV). The data, collected in an adsorption-like run described in Sub-section 4.2.4, can be analyzed with the ideal gas law. For Step 1, the appropriate expression is

$$
\begin{equation*}
D V=\frac{p_{1} V_{1}}{P 2}-V_{1}=V_{1}\left(\frac{n_{2}}{\stackrel{P}{P} 2}-1\right) \tag{3.20}
\end{equation*}
$$

where $p_{1}=$ equilibrium pressure in sampling bottle section near the beginning of the step with all valves closed
$p_{2}=$ equilibrium pressure in DV and V_{1} at the end of a step Valve \mathbf{C} open
$V_{1}=$ sampling bottle volume plus tubing volume.

Each additional step yields another estimate of DV; however, these steps begin with some molecules already in the system, under which conditions the correct equation is

$$
\begin{equation*}
D V=V_{1}\left(\frac{p_{1}-P 2}{p_{2}-P 2}\right) \tag{3.21}
\end{equation*}
$$

where $p_{2}{ }^{\prime}$ is the equilibrium pressure in DV and V_{1} at the end of the immediately preceding step. The slight pressure change that occurs in DV and V_{1} when Valve \boldsymbol{C} is closed in preparation for the next step is assumed to be negligible in the current research. The average of the estimates for DV is taken as the final value.

Low and high temperature runs cannot be analyzed until the dead volume is known. Although pressure versus time is recorded during the entire adsorption run,
only the final equilibrium pressures of p_{1} and p_{2} are used to obtain the isotherm plots. The analysis depends on accurately accounting for the movement of molecules in and out of DV by examining the movement in and out of V_{1}. Let

$$
\begin{aligned}
n_{t o t}= & \text { total number of micromoles inside of } \mathrm{DV} \text { at } p_{2} \text { at the } \\
& \text { end of a particular step; } \\
n_{t o t}^{\prime}= & n_{t o t} \text { at the end of the immediately preceding step; and }
\end{aligned}
$$

$\boldsymbol{A} \boldsymbol{n}=$ net entry into DV of new molecules, expressed in micromoles.

Then $n_{t o t}=n_{t o t}^{\prime}+\boldsymbol{A n} . \mathbf{T} \mathbf{0}$ determine $\boldsymbol{A n}$, it is evident that

$$
A n=\left(\text { micromoles in } V_{1} \text { at } p_{1}\right)-\left(\text { micromoles in } V_{1} \text { at } p_{2}\right) .
$$

Applying the real gas law,

$$
\begin{equation*}
A n=\frac{p_{1} V_{1}}{Z_{1} R T}-\frac{p_{2} V_{1}}{Z_{2} R T} \tag{3.22}
\end{equation*}
$$

where Z_{1} is the compressibility factor at p_{1}, Z_{2} is the compressibility factor at p_{2}, and temperature, \mathbf{T}, is constant. Substituting for $\boldsymbol{A n}$, Eq. $\mathbf{3 . 2 2}$ can be put in the form

$$
\begin{equation*}
n_{t o t}=n_{t o t}^{\prime}+\left(\frac{p_{1}}{Z_{1}}-\frac{p_{2}}{Z_{2}}\right) \frac{V_{1}}{R T} \tag{3.23}
\end{equation*}
$$

The number of micromoles existing as a gas in DV is

$$
\begin{equation*}
n_{g a s}=\frac{p_{2}(D V)}{Z_{2} R T} \tag{3.24}
\end{equation*}
$$

Thus, the mass of adsorbed gas in DV is given by

$$
\begin{equation*}
n_{\text {ads }}=n_{\text {tot }}-n_{g a s} \tag{3.25}
\end{equation*}
$$

For the low temperature runs with nitrogen, it is assumed that the compressibility factor, \mathbf{Z}, is constant at about $\mathbf{0 . 9 5}$ and the saturation vapor pressure, p_{0}, is 1 atm (taken as $\mathbf{1 4 . 7} \mathrm{psi}$). For steam, values for Z_{1}, Z_{2}, and p_{0} are calculated for each step. If the mass of the rock sample is m_{r}, the adsorption isotherms are then plotted as $n_{\text {ads }} / \boldsymbol{m}$ versus the relative vapor pressure, p_{2} / p_{0}.

3.3 DETAILS OF THE BET ANALYSIS

The BET analysis is based on the straight line form of the BET equation:

$$
\begin{equation*}
\frac{\beta}{X(1-\beta)}=\frac{1}{C X_{m}}+\frac{C-1}{C X_{m}} \beta \tag{3.26}
\end{equation*}
$$

where $\quad \boldsymbol{\beta}=$ relative vapor pressure, p_{2} / p_{0}
$\mathrm{X}=$ adsorption (same as n_{ads}), micromoles
$\mathrm{C}=$ fitting factor, $1 /$ micromoles
$\mathrm{X}_{m}=$ monolayer adsorption, micromoles

$$
\begin{aligned}
& \text { slope }=(C-1) /\left(C X_{m}\right) \\
& \text { intercept }=1 /\left(C X_{m}\right)
\end{aligned}
$$

Only data fram the proper range for $\boldsymbol{\beta}$ are analyzed, the adsorption side being examined separately from the desorption side. The desorption results are likely to be less accurate as more experimental cumulative errors are involved. A least squares fit provides the slope and intercept. Simple algebra can then give values for C and X

The surface area is found by multiplying $X_{,}$, by Avogadro's number, N_{a}, and the cross-sectional area, \boldsymbol{A}, of the molecule. A nitrogen molecule has a cross-sectional area of about $16.2{ }^{\circ} A$ or $16.2 \times 10^{-20} m^{2}$ (Adamson 1982,573). The value of A, for a liquid water molecule is given by

$$
\begin{equation*}
A_{x}=\pi\left(\frac{3 V_{L}}{4 x N_{a}}\right)^{2 / 3} \tag{3.27}
\end{equation*}
$$

in which V_{L} is the liquid mole volume and Avogadro's Number equals 6.023×10^{17} molecules/micromole. Adamson (1982) gives a similar equation expressing \boldsymbol{A}, in terms of area per mole. The specific surface area is simply the surface area divided by the mass of the sample.

3.4 DEVELOPMENT OF COMPUTER PROGRAM

The equations described in the two previous sections have been incorporated into a computer program written in fortran. This program has been designed for easy use. The documentation enhances understanding of its present form and would facilitate any future modification.

The program consists of three parts: one input section and two calculation and output sections. For input of data, the program relies on one input file containing the values of p_{1} and p_{2} as well $\boldsymbol{a s}$ a series of questions to be answered during execution by the user. Once the proper information has been entered, the amount of adsorption for each step is calculated and the results are sent to an output file. To aid in the construction of adsorption isotherms, a second output file is created containing the relative vapor pressure and the amount of adsorption or desorption per unit mass of core Sample. The program then proceeds to the BET analysis and prints the results in a third output file.

Additional details on the structure and use of the analysis program are located in Appendix \mathbf{A}.

4.0 APPARATUS AND PROCEDURES

4.1 APPARATUS

Hsieh's work provided a foundation for the apparatus designed as a part of the present research. Two similar sets of equipment are used to measure adsorption. One set is for fluids with a boiling temperature below room temperature such as nitrogen (Fig. 4.1), and the other is for fluids such as steam with a boiling temperature above room temperature (Fig. 4.2).

4.1.1 THE LOW TEMPERATURE SYSTEM

The principal features of the low temperature system are the sampling bottle and the coreholder sections. Often, the different components of the apparatus such as the sampling bottle section are referred to by the names Hsieh originated to maintain consistency with his work. The sampling bottle section is a not a place to take fluid samples, but rather a storage reservoir that allows for calculation of the flow of gas into and out of the dead volume. A supply line feeds gas into this section; a vacuum line takes gas out. The section itself consists of a stainless steel sampling bottle and $1 / 8$ inch tubing. All joints are sealed with apoxy to prevent leaks. The coreholder section consists of the coreholder and $1 / 4$ inch tubing. Bellows-type valves and Swagelok fittings are used in both the low and high temperature systems. A two-stage mechanical pump with a cold trap provides the necessary vacuum which in tum is monitored with a McLeod gauge. The pressure in the sampling bottle volume is measured with a

FIGURE 4.1 Schematic of the Low Temperature System

FIGURE 4.2 Schematic of the High Temperature System
reluctance type plate transducer. The plate has a 25 psi differential capacity and the signal from the instrument is in volts. A thermocouple is placed inside a modified coreholder to monitor temperature.

This system can be used to determine the dead volume as well as the amount of adsorption. The dead volume measurements are performed at room temperature, but during the adsorption measurements, the coreholder is immersed in a dewar filled with liquid nitrogen.

4.1.2 THE HIGH TEMPERATURE SYSTEM

The principal elements of the low temperature system are also found in the high temperature system. When the measurements of the dead volume and low temperature adsorption are completed, the coreholder section is transferred intact from the low temperature system to the high temperature system. Refemng to Fig. 4.2, this system has been doubled to accommodate two coreholders at the same time. The oven houses the test-fluid reservoirs which are connected to the sampling bottles which are in turn connected to their respective coreholders. The tubing is all $1 / 4$ inch. A single line leading outside the oven links the sampling bottles to a two-stage mechanical pump and a cold trap.

Although the valves are the same type used in the low temperature system, the control knobs must be outside the air bath while the valves themselves must be inside.

Thus, long steel rods must be joined to the valve stems with couplings on the inside and also joined to the knobs on the outside. The couplings must be able to withstand the large torque required to fully close the valves at elevated temperatures.

Elevated temperatures also create complications with respect to the pressure measurement instruments. Following the lead of Hsieh, thin steel diaphragms are used to transfer the pressure responses outside the oven to standard reluctance plate transducers. The pressure differential for these transducers is 500 psi . An improved diaphragm design, shown in Fig. 4.3, has several advantages over its predecessor. The plate, normally .003-.004 inches thick, has a larger diameter for enhanced sensitivity. No longer soldered into place, it is held by the pressure of two sides of the unit bolted together. In this way, the diaphragm assembly can be taken apart, inspected, cleaned, and if necessary the plate can be replaced. The entire unit is stainless steel. One chamber is filled with the test gas. The opposite one is filled with diffusion pump silicon al of high quality, as is the tubing that connects the chamber to the transducer. This oil can withstand high temperature without significant degradation or vaporization. It must, however, go through a long period of outgassing before enough light ends are drawn off to achieve the desired characteristics. A lower grade oil would require even more time. Replacing a broken plate is fairly easy; replacing and outgassing the oil consumes the most time. Thus, a spare diaphragm unit and tubing are filled with oil and attached to a vacuum pump in readiness for emergencies. Figure 4.4 shows the configuration of the pressure measurement system outside the oven. For safety reasons, there is an overflow oil reservoir which is separated from the two transducers by valves. When warming or cooling the oven, the valves are opened to avoid unnecessary stress on the plates. Although this method of measuring pressure is valid,
tapered 2.5°

FIGURE 4.3 Schematic of Modified Diaphragm Assembly

FIGURE 4.4 Schematic of Pressure-Measurement System Outside of Air Bath

the time and effort required to use it can be counter-productive, and hence, high temperature pressure transducers are recommended as a replacement.

Constant temperature is assumed to simplify the data analysis. To determine how well this constraint is met, the temperature is monitored at various places throughout the equipment. Platinum resistance thermometers constructed by Hsieh are located inside the sampling bottles. A constant current generator sends a current through the thermometers and the voltage drops are measured. The resistances can be calculated and the corresponding temperatures found using Tables 4.1a-4.1c. First, one must find the calculated resistance in the main part of the appropriate table. For example, the value of 108.855 ohms is located in Table 4.1a in the third row, second column of the resistance entries. By following the row to the base temperature column, one can see that the base temperature is $20^{\circ} \mathrm{C}$. By following the column up from the resistance entry, one can see that the temperature increment is $3^{\circ} \mathrm{C}$. The actual temperature is the sum of these values, namely $\mathbf{2 3}{ }^{\circ} \mathrm{C}$. Because of the structure of the tables, the only interpolation necessary is between two adjacent values of the same row. Further information on Hsieh's platinum resistance thermometers are available in hist doctoral thesis (1980). The temperature of the air bath is checked with a thermocouple next to an inside wall of the oven, and if necessary, the room temperature can be recorded as well. Sometimes the oven temperature varies with large fluctuations in room temperature. These variations, usually related to day and night changes, become significant when one considers that an experimental run can last a week or more. When these monitoring devices indicate the need, a heater or an air-conditioner are used to provide a stable room temperature.
TABLE 4.1a Correlation of Temperature (0-129 ${ }^{\circ}$ C) Versus Resistance for a Platinum Resistance Thermometer

Base Temperature	Temperature Increment Above Base Temperature, \mathbf{C}									
${ }^{\circ} \mathrm{C}$	0	1	2	3	4	5	6	7	8	9
	Resistance in Ohms									
0	100.000	100.385	100.770	101.155	101.540	11.925	102.310	102.695	103.080	103.465
10	103.850	104.235	104.620	105.005	105.390	105.775	106.160	106.545	106.930	107.315
20	107.700	108.085	108.470	108.855	109.240	109.625	110.01	110.395	110.780	111.165
30	111.550	111.935	112.320	112.705	113.090	113.475	113.860	114.245	114.630	115.015
40	115.400	115.785	116.170	116.555	116.940	117.325	117.710	118.095	118.480	118.865
50	119.250	119.635	120.020	120.405	120.790	121.175	121.560	121.945	122.330	122.715
60	123.100	123.485	123.870	124.255	124.640	125.025	125.410	125.795	126.180	126.565
70	126.950	127.335	127.720	128.105	128.490	128.875	129.260	129.645	130.300	130.415
80	130.800	131.185	131.570	131.955	132.340	132.725	133.110	133.495	133.880	134.265
90	134.650	135.035	135.420	135.805	136.190	136.575	136.960	137.345	137.730	138.115
100	138.500	138.885	139.270	139.655	140.040	140.425	140.810	141.195	141.580	141.965
110	142.350	142.735	143.120	143.505	143.890	144.275	144.660	145.045	145.430	145.815
120	146.200	146.585	146.970	147.355	147.740	148.125	148.510	148.895	149.280	149.665

TABLE ©b Correlation of Temperature (120-249 C) Versus Resistance for a Platinum Resistance Thermometer

Base Temperature ${ }^{\circ} \mathrm{C}$	Temperature Increment Above Base Temperature, C									
	0	1	2	3	4	5	6	7	8	9
	Resistance in Ohms									
120	146.200	146.585	146.970	147.355	147.740	148.125	148.510	148.895	149.280	149.665
130	150.050	150.435	150.820	151.205	151.590	151.975	152.360	152.745	153.130	153.515
140	153.900	154.285	154.670	155.055	155.440	155.825	156.210	156.595	156.980	157.365
150	157.750	158.135	158.52	158.905	159.290	159.675	160.060	160.445	160.830	161.215
160	161.600	161.985	162.370	162.755	163.140	163.525	163.910	164.295	164.680	165.065
170	165.450	165.835	166.220	166.605	166.990	167.375	167.760	168.145	168.530	168.915
180	169.300	169.685	170.070	170.455	170.840	171.225	171.610	171.995	172.380	172.765
190	173.150	173.535	173.920	174.305	174.690	175.075	175.460	175.845	176.230	176.625
200	177.000	177.385	177.770	178.155	178.540	178.925	179.310	179.695	180.080	180.465
210	180.850	181.235	181.620	182.005	182.390	182.775	183.160	183.545	183.930	184.315
220	184.700	185.085	185.470	185.855	186.240	186.625	187.010	187.395	187.780	188.165
230	188.550	188.935	189.320	189.705	190.090	190.475	190.860	191.245	191.630	192.015
240	192.400	192.785	193.170	193.555	193.940	194.325	194.710	195.095	195.480	195.865

TABLE 4．1c Correlation of mpem＜

	a		$\begin{aligned} & \tilde{0} \\ & \underset{\sim}{\alpha} \end{aligned}$	$$	$\begin{aligned} & \text { గ్ } \\ & \text { గิ } \end{aligned}$	每	$\begin{aligned} & \text { N } \\ & \underset{\sim}{n} \\ & \underset{N}{2} \end{aligned}$	$\frac{n}{n}$	※ © $\underset{\sim}{\infty}$	$\begin{aligned} & n \\ & \text { n } \\ & \text { N్丸 } \end{aligned}$		$\begin{aligned} & n \\ & n \\ & \hat{N} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { Non } \\ & \text { Nָ } \\ & \text { N్N } \end{aligned}$	$\stackrel{n}{c}$ $\underset{\sim}{\infty}$
	∞				$\begin{aligned} & \underset{\sim}{2} \\ & \underset{\sim}{\dot{R}} \end{aligned}$	웅	$\begin{aligned} & \text { O. } \\ & \text { O } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \underset{N}{\text { I }} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{n} \\ & \infty \\ & \underset{N}{\infty} \end{aligned}$			$$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \text { ले } \end{aligned}$	$\begin{aligned} & \text { ơ } \\ & \stackrel{0}{\circ} \\ & \stackrel{\sim}{\sim} \end{aligned}$
	\cdots		$\begin{aligned} & \text { K } \\ & \text { O} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { W } \\ & \text { © } \end{aligned}$	$\begin{aligned} & \text { Nั } \\ & \text { ふ్స } \end{aligned}$		$\begin{aligned} & \text { ๙ } \\ & \stackrel{\rightharpoonup}{7} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \underset{\sim}{*} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\varkappa}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { n్ } \\ & \text { ત્․ } \\ & \text { N } \end{aligned}$		$\begin{gathered} \text { N } \\ \underset{\sim}{\dot{N}} \end{gathered}$	$\begin{aligned} & \text { ñ } \\ & \text { N్స } \end{aligned}$	$\begin{aligned} & \tilde{n} \\ & \underset{\sim}{*} \end{aligned}$
	\bullet		$\begin{aligned} & \text { O} \\ & \underset{\text { T}}{ } \end{aligned}$	8 ∞ ∞ 	$\begin{aligned} & \underset{\sim}{\text { Nu}} \end{aligned}$	$\begin{aligned} & \mathbf{\sim} \\ & \text { ¿i } \\ & \text { N} \end{aligned}$	$\begin{aligned} & \text { 을 } \\ & \text { 을 } \end{aligned}$	$\begin{aligned} & \text { 우 } \\ & \stackrel{\mu}{N} \end{aligned}$	$\stackrel{\circ}{\infty}$	$\begin{aligned} & \text { Bi } \\ & \text { A্․ } \end{aligned}$		$\begin{aligned} & \text { ষ్ల } \\ & \text { స్సे } \end{aligned}$	$\begin{aligned} & \text { 극 } \\ & \underset{\sim}{j} \end{aligned}$	
	\cdots		$\begin{aligned} & \text { w } \\ & \underset{\sim}{d} \end{aligned}$	$\underset{\sim}{\infty}$	$\begin{aligned} & \text { ひ్ర్ત } \\ & \text { ర్ల } \end{aligned}$	$\begin{aligned} & n \\ & \underset{\infty}{\infty} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \text { N్ } \\ & \text { \$్N } \end{aligned}$	$\begin{aligned} & \underset{\sim}{n} \\ & \stackrel{m}{n} \end{aligned}$	$\stackrel{\sim}{\underset{\sim}{\star}}$		$\begin{aligned} & \text { N్ } \\ & \text { స్ } \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { ๙్సె } \end{aligned}$		$\begin{aligned} & \text { N్ర్ } \\ & \text { No } \\ & \text { Non } \end{aligned}$
	－		$\begin{aligned} & \text { 아 } \\ & \dot{\sigma} \end{aligned}$	$\stackrel{\text { 8, }}{\stackrel{1}{9}}$	$\begin{aligned} & \text { Ợ } \\ & \text { 웅 } \end{aligned}$	$\begin{aligned} & \text { \&্ণ } \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$	な্ণী	$\frac{8}{\underset{N}{N}}$	$\begin{aligned} & \text { 앙 } \\ & \stackrel{y}{j} \end{aligned}$	$\begin{aligned} & \text { \&్ } \\ & \text { ণi } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { Ợ } \\ & \text { ざ } \end{aligned}$	\％్ स्స	꿀	$\begin{aligned} & \text { ষ్స్ } \\ & \text { ণN } \end{aligned}$
	m		$\begin{aligned} & \tilde{n} \\ & \underset{\sigma}{\alpha} \end{aligned}$	$\begin{aligned} & \stackrel{n}{\overleftarrow{\circ}} \\ & \stackrel{1}{2} \end{aligned}$			$\begin{aligned} & \text { గ్ } \\ & \text { odi } \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { N } \\ & \text { Ǹ } \end{aligned}$	$\begin{aligned} & \tilde{0} \\ & \text { ou } \\ & \text { on } \end{aligned}$		$\begin{aligned} & \text { ñ } \\ & \text { dủ } \end{aligned}$	$\begin{aligned} & \text { గ్స్ } \\ & \text { N్స్ } \end{aligned}$	$\begin{aligned} & \tilde{o} \\ & \text { ल్ల. } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { ๙ò } \\ & \text { Ǹ } \\ & \text { N } \end{aligned}$
	N		$\stackrel{\digamma}{\Omega}$	$\begin{aligned} & \text { గ్ర్ర } \\ & \stackrel{\sigma}{\circ} \end{aligned}$	$\begin{aligned} & 0 \\ & \text { O } \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \text { Ni } \\ & \text { む゙̇ } \end{aligned}$		$\begin{aligned} & \text { Ti} \\ & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { Ho } \\ & \text { N} \end{aligned}$	$\begin{aligned} & \text { స్సి } \\ & \text { స్స } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N్ } \end{aligned}$	$\begin{aligned} & \text { 우 } \\ & \text { స్́ } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \underset{\sim}{\sim} \end{aligned}$	त్
	－		$\begin{gathered} \text { ~ } \\ \underset{\sim}{\alpha} \\ \text { O} \end{gathered}$	$$	$\begin{aligned} & \text { 侖 } \\ & \text { ờ } \end{aligned}$	n	$\underset{\sim}{\infty}$	$\begin{aligned} & \text { ๗ิ } \\ & \underset{\sim}{\mathrm{H}} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{\infty} \\ & \end{aligned}$	$\begin{aligned} & n \\ & \underset{\sim}{\dot{N}} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \text { N్ } \end{aligned}$	$\underset{\underset{\sim}{\mathrm{N}}}{\underset{\sim}{n}}$	$\stackrel{\sim}{\infty}$	$\stackrel{\sim}{n}$
			＋		8 Oin	$\begin{aligned} & \text { ిờ } \\ & \text { సิं } \end{aligned}$		$\begin{aligned} & \text { N } \\ & \text { in } \\ & \text { N } \end{aligned}$	$\begin{aligned} & 8 \\ & \\ & \text { ñ } \end{aligned}$	$\begin{aligned} & \stackrel{0}{2} \\ & \stackrel{N}{N} \\ & \stackrel{N}{2} \end{aligned}$	$\begin{aligned} & \text { ళ్M్ } \\ & \text { N్ } \end{aligned}$	$\stackrel{\text { Ö}}{\stackrel{\text { NH}}{1}}$	$\begin{aligned} & \text { \%ì } \\ & \text { ò } \\ & \text {. } \end{aligned}$	䚻
	U		\％	㫛	\％	\％	¢	\％	¢	을	\％	\％	而	\％

4.1.3 DATA LOGGING

Adsorption experiments, especially those involving a relatively large molecule such as steam, tend to be time-consuming and tedious. Automating the experiment would increase the quality and quantity of data as well as free the operator for other tasks. There are two areas in which to automate: the actual apparatus and the data aquisition system.

The high temperature apparatus presents a problem because of the valves. Normally, one would use pressure actuated valves that can respond to a computer signal, but those that are commercially available cannot withstand the high temperatures used in the present research. In contrast, the data aquisition system can be automated with commercially available equipment. An IBM Portable in conjunction with the LabMaster cards by Tecmar reads pressures and temperatures in terms of voltage input and converts to digital output. The major limitation is that the cards cannot always read all the voltage signals simultaneously.

4.2 PROCEDURES

The quality of experimental data does not depends solely on the apparatus design; it also depends on how that apparatus is used. The procedures are outlined in detail in the six sub-sections.

Basic Procedures for an Experimental Run

describes the basic tasks required during an experimental run.

General Equipment Preparation and Maintenance

 describes some of the activities required to ensure that the machinery is ready for an experimental run.
Core Preparation

describes what is done to the core sample prior to a run.

Dead Volume Determination

describes how to obtain the data for the dead volume calculations.

Low Temperature Adsorption

describes how to obtain the adsorption data for substances with relatively low boiling temperatures.

High Temperature Adsorption

describes how to obtain the adsorption data for substances
with relatively high boiling temperatures.

4.2.1 BASIC PROCEDURES FOR AN EXPERIMENTAL RUN

The routine followed for any experimental run involves three time periods: before, during and after the run. Regardless of the type of experiment ${ }^{-}$dead volume determination, low temperature adsorption, or high temperature adsorption -- the activities during the run itself are almost identical. Initially, the system should be at operational temperature and the coreholder and sampling bottle sections should be exposed to the vacuum pump. Consequently, Valves A and C are open and B is closed (Fig. 4.1 and Fig. 4.2). The basic procedures are outlined below.

1. Close Valves \mathbf{A} and \mathbf{C}.
2. Open Valve B until pressure nears desired p_{1} and then close. Adjustments can be make with Valve A as well if too much test gas is allowed in. Wait a few minutes for a stable p_{1}.
3. Open Valve C to allow contact between the sampling bottle and coreholder. Wait for a stable p_{2}. Depending on sample permeability, equilibrium may require one hour, 20 hours, or more.
4. Close Valve C. This action marks the end of one step.
5. Repeat Numbers 2-4 until peak of cycle is obtained (i.e. the point of greatest p_{2} and the end of adsorption).
6. Open Valve A to decrease pressure in sampling bottle; then close.

Make any adjustments necessary to bring pressure near desired p_{1} and wait for equilibrium.
7. Open Valve C and wait for equilibrium.
8. Close Valve C.
9. Repeat Numbers 6-8 until cycle and run are completed.

The Data Checklist shown in Tables 4.2a and 4.2b prompts the operator to record the pertinent data and stores the information in an orderly fashion. The experimental temperature is determined by a thermocouple in the coreholder for the low temperature system. For the high temperature system, platinum resistance thermometers in the sampling bottles are used as well as a thermocouple inside the oven. As the temperature is assumed to be constant, appreciable variations should be noted. For the present research, the atmospheric pressure was measured with a mercury-filled, brass manometer. The height of the mercury column depends on temperature because of the thermal properties of brass. Consequently, the atmospheric pressures are corrected for room temperature so that they can be reported using a standard of $0^{\circ} \mathrm{C}$. Copies of the Data Checklists for each of the experimental runs are in Appendix B.

Table 4.2a
DATA CHECKLIST

DATE
SAMPLE NAME \qquad RUN NUMBER \qquad
SAMPLE WEIGHT \qquad $g m$

COMMENTS
\qquad
\qquad
\qquad
\qquad
\qquad

CIRCLE TYPE OF EXPERIMENT AND MEDIUM USED (E.G. ADSORBATE)
dead volume low temperature high temperature helium nitrogen steam natural gas
other medium \qquad

TEMPERATURE OF EXPERIMENT \qquad C or K

DEAD VOLUME (if already known) \qquad cc

SAMPLING BO'ITLE VOLUME (circle one)
low T system 45.07 cc
high T system: Number $1 \quad 158.62$ cc OR Number 2513.30 cc
other \qquad cc

PRESSURE TRANSDUCER CALIBRATION INFORMATION:
plate differential: $25 \mathrm{psi} \quad 100 \mathrm{psi} 500 \mathrm{psi}$ other \qquad
atmospheric pressure (corrected for room T): \qquad psia
vacuum pressure: \qquad psia \qquad volts

Table 4.2b
RAW EQUILIBRIUM PRESSURE DATA

* Entries are in volts for computer program which converts to psia.

4.2.2 GENERAL EQUIPMENT PREPARATION AND MAINTENANCE

Experimental research requires a continuous effort to preserve the integrity of the equipment. The question arises as to what tasks are required to ensure that the apparatus is truly ready for an experimental run. This sub-section addresses that question in part; further details are discussed later.

While some tasks are repeated prior to every run, others are repeated at more irregular intervals. Leak checks, for example, are carried out when the equipment has been idle for too long or when the pressure data looks suspicious. Obviously a failure to maintain pressure, above or below atmospheric, in a supposedly isolated volume at equilibrium suggests a problem. An added complication is the fact that some leaks occur within a discreet temperature range. The high temperature system sometimes exhibits this behavior. The longer the test, the less tolerance there is for a leak -- be it past a valve to another chamber or directly to the atmosphere. For a lengthy run, even a pinhole leak in the tubing can adversely affect the data. Thus, identifying and repairing leaks is crucial to the quality of the test.

Another task which requires attention at irregular intervals is that of removing corrosion and impurities from the interior of the system. As with leak checks, a thorough examination is conducted when the equipment has been idle for too long or when the data or external evidence so indicates. Care must be taken when choosing a solvent, especially when cleaning the rubber vacuum hoses. Some solvents such as acetone will actually be absorbed by the rubber, thereby forcing a long period of
outgassing before a suitable vacuum can be achieved. In some instances, there is no choice but to replace the affected part.

The need for replacement also applies when repairs are impossible on a part that has failed or is about to fail. A supply of crucial, hard-to-obtain parts should be kept in the laboratory, especially those that are prone to failure. If unprepared, something as small as a broken rod coupling on a valve can result in a premature finish to the run and several days delay while acquiring parts, building and installing a replacement, and preparing for a new run. Moreover, parts such as the diaphragm unit from a machine shop or the pressure transducers from a manufacturer can take weeks to be delivered. Thus, planning ahead is important.

One of the primary concerns for any operator is that the measurement devices be reliable. Two types of devices are used to monitor temperature. Whereas the thermocouples are fairly easy to maintain and use, the platinum resistance thermometers may pose problems. Vulnerable parts of these thermometers include the wiring, switches, and constant current generator. The constant current generator presently in use is sometimes difficult because a small change in the setting produces a large change in the temperature calculations. The current was normally set as near a possible to 100 microamps to make the calculations simpler. With data logging, the only constraint is that the level be consistent with the input capabilities of the computer card. Unfortunately, the initial current setting tends to drift requiring the operator to make the appropriate adjustments.

The pressure-measurement devices used are vacuum gauges, reluctance plate pressure transducers, and steel diaphragm assemblies. Both the vacuum gauges are susceptible to poisoning by impurities. The gauge tube of the Hastings Vacuum Gauge is particularly vulnerable to substances released from the core or elsewhere in the system at elevated temperatures. This situation is encountered during the baking out process described in the next sub-section (Core Preparation). The reliability of the transducers depends on whether the plates have a well-behaved deformation pattern. As a safety precaution, the differential pressure that the plates can withstand should be marked clearly on the outside of the transducers and should be kept in mind at all times. Ideally, the plates should deform in such a way that the relationship between the voltage reading and the pressure is linear. This linearity makes the conversion from volts to psia very simple. Thus, upon installation the transducers are checked with a deadweight tester at experimental temperatures. Subsequent checks are performed whenever that linearity is in doubt. The question of plate strength as well as linearity applies also to the thin steel plates in the diaphragm assemblies. The first check is carried out once the devices are in place and the silicon oil has been properly outgassed. Later checks occur whenever there is a significant change such as a new diaphragm. Of course, Valves \mathbf{Y} and Z (Fig. 4.4) leading to the overflow reservoir should be closed when putting pressure on the diaphragms.

The purpose of outgassing the silicon oil is to draw off the more volatile components, thereby reducing the compressibility. The oil can then transfer the pressure response from the diaphragms to the transducers with greater accuracy. The procedure is simple, but generally time-consuming. Boiling the oil before placing it in the system may accelerate the process.

The outgassing procedures can be described by first referring to Fig. 4.4. Valve \mathbf{X} and a clear tube are shown above the U-shaped section and the overflow reservoir. During periods of disuse, this valve is closed and the ends of the U-shaped section are plugged. For outgassing, a vacuum pump is attached to one end and the Hastings Gauge to other. The Hastings gauge tube is connected to the left-hand end of the U shaped tubing and is higher as a precaution against contamination. All the valves are closed initially, exposing only the reservoir section to the pump, and thereafter the system is periodically back-flushed until the vacuum is about 50 microns or less. To back-flush the system, the pump is turned off and the connecting hose to the gauge tube is removed from the steel tubing. Then a slight suction is created in the clear tubing above the reservoir by sucking on it. Valve \mathbf{X} is opened all the way to allow gas bubbles to reach the liquid surface. Drawing the liquid level some distance up the tube and letting it drop again helps the process because the bubbles will drop more slowly than the liquid. The valve is closed just before the surface disappears from view.

Once the reservoir section is outgassed, one of the diaphragm sections can be added by opening Valve \mathbf{Y} or \mathbf{Z}. The same procedure is followed until the entire volume is outgassed -- a task which can require as much as a few months. Turning on the oven and using the heat gun sometimes reduces the time element. One of the advantages of adding the diaphragm sections on separately is that one may check each section for leaks in addition to the outgassing.

In view of the prospect for delays and problems inherent in the pressure- measurement system consisting of all the equipment shown in Fig 4.4 plus the diaphragms
shown in Fig. 4.2, it is recommended that high temperature pressure transducers be used instead. Not only would this change simplify the process, it would also facilitate any experiments done in the future on transient flow behavior.

Before every run, the transducers (Fig. 4.4) must be calibrated so that the voltage readings can be converted to pressure units. The first step is to measure the atmospheric pressure inside the room and if necessary correct to $0^{\circ} \mathrm{C}$ and convert to psia. The zero on the voltmeter should correspond to zero plate deflection. For the current research, zero plate deflection was chosen as atmospheric pressure. To set the span, a strong vacuum is applied so the reading becomes negative. The expected voltage for this vacuum is calculated in the following manner:

Thereafter, the voltage corresponds to pressure in psig. The computer program can convert all the readings in volts to psia.

4.2.3 CORE PREPARATION

The samples for the present research have been provided by outside organizations from Iceland, Italy, Mexico, and the United States. Some are cuttings or cores fram wells, while others are from outcrops. Though several different reservoirs are
represented in the collection thus far, the current research emphasis is on Larderello, Italy and The Geysers, California. The Larderello field is composed largely of various limestone units as well as some anhydrites. The sample from Montiverdi Well \#2 is a micaschist. The Geysers is a naturally fractured reservoir of greywacke with low matrix porosity and permeability. Berea sandstone is included in the tests because of the relatively high porosity and permeability and because it allows for comparison with the work of Hsieh (1980). Permeability and porosity data were collected on test core samples to gain added information of the reservoir rocks.

Because adsorption depends in part on the nature of the rock surfaces, the treatment of a sample prior to an experiment can significantly affect the results. As there is no control over that treatment while the sample is in the possession of the outside organization, it is important to learn as much as possible about the history of the sample. For example, some drilling fluids can change the surface characteristics as can certain tests to determine other parameters such as porosity found by mercury injection.

Preparations for an adsorption experiment are not complicated. First, the sample size is adjusted to fit the coreholder. For large cores, a drill press is used to cut plugs that are about an inch in diameter and six inches long. Some coreholders can accommodate a slightly larger diameter. If one continuous plug is impossible, two or three pieces are used to fill the volume. Large, irregular cuttings may require a rotary saw to provide the proper shape. Next the sample is dried out in a small oven under a vacuum. When dry, it is weighed and placed inside the coreholder which is then attached to the low temperature system. A heating tape is placed around the
coreholder to heat it to the desired temperature. Once this temperature has been attained, the coreholder is left open overnight to the vacuum pump and cold trap. Impurities still in the coreholder at this stage are released, so it is important to keep the trap filled with liquid nitrogen. The last step preceding the dead volume test is to turn off and remove the heating tape and allow the temperature to return to ambient conditions.

4.2.4 DEAD VOLUME DETERMINATION

Eqs. 3.20 and 3.21 which involve only pressures and volumes can be applied to calculate the dead volume as described in Section 3.2. A simple experimental approach is to vacuum out the system, close all valves, allow some gas into the sampling bottle volume, and measure p_{1}. Then open Valve C (Fig. 4.1), wait for equilibrium and measure p_{2}. These actions together constitute one step of the adsorption procedures (Sub-section 4.2.1). Therefore, one can follow the general pattern of an adsorption run, generating one estimate per step. Unlike adsorption runs, the relationship of consecutive p_{2} values does not matter and the operational temperature is room temperature.

Originally, helium was used for the dead volume determination, but scatter in the estimates prompted further examination. A second run often produced data with better agreement; however, subsequent work with nitrogen proved it to be more satisfactory for these measurements.

An alternate method of determining the dead volume exists which might yield more accurate results because of the higher pressures used. Attach pressure transducers with plate differentials of 500 psi to the sampling bottle and coreholder sections. Now pressures in each section can be recorded after Valve C is closed, thereby eliminating the need for equilibrium prior to closing the valve and accounting for the slight volume change upon closing. Helium is supplied to both sections until the pressure reaches approximately 400 psi. Valves \mathbf{B} and C are closed and Valve A opened to evacuate the sampling bottle volume. Then Valve C is opened to allow some expansion into the sampling bottle and closed again. By applying the real gas law with the known sampling bottle volume and the appropriate pressures, one estimate for DV can be obtained. As with the first method, more estimates can be obtained by continuing the experiment in the same manner and modifying the analysis slightly.

4.2.4 LOW TEMPERATURE ADSORPTION

A low temperature adsorption run is different frem the dead volume determination in two respects. First, the coreholder is immersed in a dewar filled with the liquid form of the test fluid. Second, the consecutive p_{2} values must increase during adsorption and decrease during desorption. Otherwise, the computer program will not operate properly. Thus far, only nitrogen has been used as an test fluid, though other substances such as argon are possible. After the system is vacuumed out, the basic procedures shown in Sub-section 4.2.1 can be applied.

It is important that the coreholder be isolated from the vacuum and supply lines. During the course of a run, the liquid level in the dewar must be as close as possible to constant as even small changes can cause an appreciable difference in the pressure readings. Insulation fiber on top of the dewar retards evaporation; however, liquid must still be added periodically.

4.2.6 HIGH TEMPERATURE ADSORPTION

Like the low temperature system, the high temperature system can accommodate a variety of substances, including steam and hydrocarbon gases. In the present research, only distilled water has been used. The adsorption of brines cannot be determined with the current apparatus.

Although the basic procedures for an adsorption test are independent of temperature, the high temperature tests present more problems. The valves are more difficult to operate and the chances of something breaking or leaking are increased. Moreover the equipment must be properly warmed prior to the test and cooled afterwards. It often takes a few days to prepare, a week or more for a test and a day or so to cool the equipment.

The procedures required to prepare the equipment safely are outlined below. Those activities already described in Sub-section 4.2.2 as general preparation. While the order of some steps is arbitrary, others obviously must occur in the order given.

1. Fill the test-fluid reservoirs to capacity.
2. Set the current for the platinum resistance thermometers, adjusting to obtain reasonable readings.
3. Make sure the oven damper is open and that all foreign objects are removed.
4. Open Valves \mathbf{Y} and \mathbf{Z} next to the transducers to allow for expansion during heating (Fig. 4.4) .
5. Vacuum most of the gas out of the system leaving only enough to help with the heating.
6. Close all valves inside the oven.
7. Close oven doors and commence heating.
8. Once proper temperature has been reached throughout the system, close Valves \mathbf{Y} and Z .
9. Vacuum out the system starting with one sampling bottle volume.
10. Once that volume has a vacuum of about 10-50 microns, close off the valve (B_{1} or B_{2} in Fig. 4.2).
11. Wait for a few minutes, then open the valve and at the same time check the gauge for a loss in vacuum. A loss indicates a possible leak.
12. Continue in this manner adding onto the volume section by section until the entire system with the exception of the test-fluid reservoirs has been vacuumed.

The method of vacuuming described in Steps 9-12 also serves as a final leak check.

Regarding the run itself, the directions given in Sub-section 4.2.1 may be applied to both parts of the system. In other words, when Valve \mathbf{A} is mentioned, one should mentally substitute \boldsymbol{A}, and A_{2}, likewise for the other valves. To avoid confusion, keep both cores on the same step at the same time. This allows for a comparison of the transient behavior in the two cores.

Operating the valves is more difficult in the high temperature system. Greater force is required to fully close the valves which, in turn, means that greater force also is required to open them. Wrenches are often necessary, but must be used with care. The knob on a valve should not be forced all the way open, but left loose as an indication of the open status. Sometimes, especially when there several operators working in shifts, a knob that has been forced open is mistaken for one that has been forced closed. This situation can result in breakage.

A problem arises during the desorption process because of the distance between the diaphragms and Valves B_{1} and B_{2}. When one of those valves is opened wide, the sudden surge of molecules away from the diaphragm causes a large pressure drop. If, however, the valve is quickly closed in response to that drop, the many molecules still remaining in the volume move back towards the diaphragm. The pressure reading goes up until equilibrium is reached. Many times the new pressure is only slightly lower than the old pressure. A better method is to crack the valve open slowly, never opening it all the way. The molecules then move in a slower, more controlled manner and the pressure reading decreases accordingly. When the reading nears the desired p_{1}, the valve can be closed again.

The criterion for determining whether or not equilibrium has been attained is a constant pressure. This choice leads to some significant problems, some of which will be discussed in more detail in the next section (Limitations of Apparatus and Procedures). In general, one must consider those things causing pressure changes that are not directly related to the equilibrium process. Leaks are an obvious source of changes, though the effects may be subtle and difficult to detect. If the run is continued despite a suspected leak, all pertinent information should be recorded under "Comments" in the Data Checklist (Table 4.2). Fluctuations in room temperature may also cause small pressure changes regardless of the equilibrium status. The link may be established by comparing a trace of room temperature versus time and a trace of coreholder pressure and temperature versus time.

The final issue in terms of test procedures is that of keeping the cold trap in good operating condition. For some test fluids, this requirement is easily satisfied. Steam, however, presents a problem when it condenses because it tends to emulsify the vacuum pump oil. The steam also causes the liquid nitrogen to evaporate quickly, so the trap must be refilled fairly often. Moreover, if present in sufficient quantities, the water freezes in the cold trap and completely blocks access to the pump. The trap must then be removed, cleaned, and reinstalled before the pump is used again on the next step.

Once the test is completed, the cooling down process starts by exposing the sampling bottles and coreholders to the vacuum pump. Evacuating the system becomes especially important if the test fluid changes to a condensed phase at room temperature. After the vacuuming is completed, Valves \boldsymbol{A}_{1} and $\boldsymbol{A}_{\mathbf{2}}$ may be closed or open and
the pump turned off. Valves Y and Z near the transducers must be opened to allow for the change in oil volume with cooling. Then the oven is turned off. After room temperature is restored, Valves \boldsymbol{Y} and Z are closed, and the ends of the U-shaped tubing should be plugged. These precautions minimize the contact between the atmosphere and the oil, thereby reducing the effects of reabsorption of air in the oil.

4.3 LIMITATIONS OF APPARATUS AND PROCEDURES

When conducting experimental research, one must eventually consider the various factors which have an impact on the quality and usefulness of the final data. For this research effort, these factors may be grouped into the following categories: events unrelated to the phenomenon under investigation; equipment design; core selection and preparation; test-fluid selection; and procedures.

The first category includes all those Occurrences that can change the data but have nothing to do with adsorption in a core sample. For example, corrosion in the system would result in inflated values for adsorption in the core since it was assumed that no signification adsorption occurs on the steel walls contacted by the test fluid. One of the most significant problems is that of subtle leaks. Large leaks are troublesome; yet they are also comparatively easy to identify and repair. Small leaks that go undetected can cause the adsorption estimates to be too high -- a discrepancy that increases with time. A hysteresis loop on an adsorption isotherm may merely be the result of such a leak.

Limitations resulting from the present equipment design affect the scope of investigation as well as data quality. Difficulties manipulating the valves, a sensitivity to the liquid nitrogen level in the dewar on the low temperature system and a sensitivity of the high temperature system to room temperature are some of the features that affect data quality. The design of the test-fluid reservoirs is the major limitation to the scope of investigation. Brines cannot be tested because salt would remain in solution while the water vaporized. In addition, the highest pressure that can be achieved in theory is the vapor pressure inside the reservoir. In practice, however, that pressure is difficult to reach. Measurements at relative pressures above $\mathbf{0 . 9}$ are possible, but the adsorption isotherm curve tends to change quickly in that region. Detailed studies of that region would require high data resolution that can be difficult to obtain.

The degree to which the data are useful depends in part on the core selection. Using a general rock type is not as reliable as testing the appropriate outcrop sample which in turn is not as reliable as testing a core from the zone of interest. Once the core is chosen, the preparations must not disturb its surfaces to any significant extent as already discussed in Sub-section 4.2.3. Two main considerations are the effect of washing and drying on clays and the effect of breaking the sample into small pieces to reduce the testing time.

Just as the core itself has an impact on data quality, so too does the test fluid have an effect. The choice of distilled water complicates matters because it is a polar fluid with different interaction behavior than a non-polar fluid. As a result of the added forces, the thickness of the adsorbed layer tends to be slightly greater. If clays are present in significant quantities, the interactions become even more complex.

Unfortunately, of the substances of interest to the geothermal industry, distilled water and some noncondensable gases are only test fluids that can be used in the present apparatus.

Applying the experimental procedures incorrectly will obviously lead to incorrect data. Although the procedures, applied correctly, should lead to reliable data, there is one major area of concern: the equilibration of p_{2}.

Equilibrium is determined by observing when the change in pressure becomes negligible with time. The low temperature system can record changes as low as 0.0025 psi , though it is more accurate above 0.01 psi . The high temperature system can measure a change as low as about 0.5 psi. The difficulty comes in deciding what constitutes a negligible amount and whether the equilibration process is indeed the source of change. A rate of 0.05 psi per hour may seem small, but it has a significant impact if it continues for a day or more. Were the operator to end a step too early, the equilibrium estimate would be off by at least $\mathbf{1 . 2} \mathbf{p s i}$. Unfortunately, small changes in the direction of equilibrium may also be caused by a leak, a fluctuation in room temperature, a drop in the liquid nitrogen level, or by some other cause.

An alternate approach to the equilibrium problem which depends on the use of early transient data may be possible. Figure 4.5 is an idealized graph of pressure versus time such as that obtained during the first few steps of an adsorption experiment. Initially, the pressure in the sampling bottle is at a vacuum. Then gas is introduced to the sampling bottle when a valve is opened and closed again. In response the pressure increases sharply until it reaches a stable level designated p_{1}. After a short

G7LLOG פNITdWVS U! ヨצNSSEYd
time, the valve to the coreholder is opened. The pressure drops quickly at first, then more gently as the pressure-time slope nears zero. Eventually, when p_{2} is reached, the valve between the two volumes (V, and DV) is closed again. The next step begins when the valve (A) to the test-fluid reservoir is opened. The current analysis uses only p_{1} and p_{2}. Transient pressure data on the pressure-time curve could also be collected in more detail and analyzed.

Closer examination of Fig. 4.5 reveals that the general shapes are similar to those for various well tests: draw-down, build-up, and injectivity. To draw the parallel further, the adsorption side is something like successive periods of injection followed by shut-in, while the desorption side is more like draw-downs and shut-ins. The field of well testing has the techniques to predict equilibrium pressures from early transient data. Conceivably, the same type of techniques could be developed for adsorption/desorption data. If so, p_{2} could be predicted after only a fraction of the equilibrium time has elapsed.

The immediate advantage of such a development is that the operator would have an advance target pressure for p_{2}. A leak or some other problem would be indicated if the pressure remained unstable beyond the target value.

If the analytical techniques could be modifies to the extent that it is not necessary to attain an equilibrium pressure before progressing to the next step, the savings in time and effort would be enormous. Figure 4.6 is the same type of graph as Fig. 4.5 except that each step is terminated before p_{2} is reached. If Step 1 proceeds until time, t_{1}, as in Fig 4.5, there could be enough data to predict p_{2} with modified analytical

FIGURE 4.6 Idealized Pressure Versus Time Showing an Adsorption
Experiment with Estimated Equilibrium Pressures

GTLLOG ĐNITdWVS U! G\&OSSG甘d
techniques. The dashed line shows how the curve might have continued to p_{2} if left undisturbed. Now Valve C to the coreholder is closed and because the system is not at equilibrium, there are fewer molecules in the dead volume than there were at the end of Step 1 in Fig. 4.5. The difference could be calculated simply by measuring the pressure in the sampling bottle section. This volume would still be important in accounting for the flow in and out of the dead volume. Nonetheless, the difference causes a problem since the predicted p_{2} corresponds to the $n_{t o t}$ of the old method. For clarity, let $n_{\text {tot }}^{*}$ denote the actual number of moles in DV when the valve is closed before equilibrium.

One solution is to estimate what $n_{t o t}$ as well as p_{2} would have been had the valve been left open. Step 2 begins much as before leaving the dead volume a little more time to equilibrate, but without the addition of new molecules. Once Valve C is opened at t_{2}, the pressure responds to the new influx into DV and to the disturbance of Step 1. If left long enough, the entire system would reach a state identical to the end of Step 2 in Fig. 4.5. If that p_{2} and $n_{t o t}$ can be predicted from the data before $t 3$, Valve C may be closed and Step 3 started. Again, there will be a difference between the $n_{t o t}^{*}$ in DV and the predicted value, $n_{\text {tot }}$. The experiment would continue in this manner using superposition to combine the effects of the current step with those of the previous steps. This approach would, in theory, reproduce the same points to generate the isotherm as the present method of waiting for equilibrium.

The second solution presupposes the same experimental conditions as the first. Though more closely related to the real physical situation, it too uses an imaginary state, namely that state arising from closing Valve C and then waiting for equilibrium
in DV. Now the important prediction is that of the equilibrium pressure, p_{2}^{*}, which corresponds to $\boldsymbol{n}_{\text {tot }}^{*}$. Pressure data taken fram inside the dead volume between t_{0} and t_{2} may be required for such a prediction. During the first part of Step 2 the core is still isolated, but after t_{2} the perturbation begins again. Like the other solution, the superposition principle would be needed to analyze the pressure responses of the remaining steps. This method should also produce the same isotherm but with a different set of data points.

In the future, measurement of adsorption isotherms may well be a routine matter for geothermal and low permeability natural gas reservoirs. The data may be widely used for reserve estimates as well as for reservoir simulations and well test analyses. Advancements in technique such as those suggested would require much effort, but would be well worthwhile.

5.0 DATA ANALYSIS AND INTERPRETATION

Thus far, five samples from among Berea, The Geysers, and Larderello cores were used to conduct a total of fifteen adsorption experiments. Though more samples were available from these and other sources, time constraints limited the quantity that could actually tested. High Temperature Runs 1,2 and 3 at $169^{\circ} \mathrm{C}, 207{ }^{\circ} \mathrm{C}$, and 150 ${ }^{\circ} \mathrm{C}$ respectively were completed on Sample \#1 of Berea sandstone. Sample \#2 of the Berea had one high temperature run at $167^{\circ} \mathrm{C}$ as well as three low temperature runs (LT1, LT2, and LT4) at $-196^{\circ} \mathrm{C}$. LT3 was aborted due to equipment failure. Only one sample from The Geysers was used for the following tests: LT1 at - $196{ }^{\circ} \mathrm{C}$, HT1 at $153{ }^{\circ} \mathrm{C}, \mathrm{HT} 2$ at $200{ }^{\circ} \mathrm{C}$, and HT 3 at $180^{\circ} \mathrm{C}$. Like the Berea, two samples from Montiverdi Well 2 in Larderello, Italy have been used in this study. Though Sample \#1 has not yet been tested, Sample \#2 has been subjected to three low temperature tests, while Sample \#3, which has been crushed into large fragments, has been used for one high temperature run at $180^{\circ} \mathrm{C}$.

Permeability and porosity were measured for small, cylindrical plugs that were cut from four samples: Sample \#1 of Berea, Sample \#1 of The Geysers, Sample \#1 of Montiverdi Well \#2, and Sample \#2 of Montiverdi Well \#2. A Ruska Gas Permeameter was used to determine permeability. The pore volume was determined by finding the difference between weight of the plug when saturated with distilled water and the weight when dyy. Vernier calipers were used to measure the plug dimensions from which the bulk volume was calculated. As expected, the Berea has the highest values of permeability and porosity at 212 md and 18.35%. The values for the other three
samples are quite similar. For example, the porosity of The Geysers, Sample \#1 is 1.34 \%, while for Samples \#1 and \#2 of Montiverdi Well \#2 the porosity is 1.15% and 1.28 \% respectively. Unfortunately, the Ruska Gas Permeameter could only provide an upper limit for the permeabilities of these plugs. Sample \#1 of The Geysers has a permeability less than $\mathbf{0 . 7 4 3} \mathbf{m d}$. Samples \#1 and \#2 of Montiverdi Well \#2 have permeabilities less than $\mathbf{0 . 7 7 7} \mathrm{md}$ and $\mathbf{0 . 7 6 8} \mathrm{md}$ respectively.

Chapter 4 describes the equipment and experimental procedures required to generate the data. The resultant Data Checklists (example shown in Table 4.2) are given in Appendix B. Sections $\mathbf{3 . 2}$ and $\mathbf{3 . 3}$ present the equations important to the analysis, and Section 3.4 and Appendix A present the corresponding computer program. In the next section, the application of the analytical procedures is examined for one experimental run.

5.1 APPLICATION OF ANALYTICAL PROCEDURES

The Low Temperature Run \#1 (LT1) conducted on Sample \#2 of Montiverdi Well \#2 continued for about 22 hours, yielding a record of pressure and time enabling the operator to choose the values of p_{1} and p_{2} for each step. Figure 5.1 is a graph of the raw data in which the voltage signals from the pressure transducers have been converted to pressure in psia. Initially, the apparatus is evacuated; then, the pressure rises quickly to p_{1} indicating that some gas has been introduced into the sampling bottle volume. The pressure declines sharply as the valve to the coreholder is opened

allowing gas to flow into DV. Eventually the system stablizes yielding p_{2} and the valve is closed again ending Step 1. When more gas is sent into the sampling bottle, the pressure rises dramatically and levels off at p_{1} for Step 2 . The process of adsorption continues through Step 11 with ever-increasing p_{2} values. Just over 14 hours into the experiment, desorption begins with step 12. Now gas is taken out of the sampling bottle at the beginning of the step which decreases the pressure. When p_{1} is established and the valve to the coreholder is opened, gas moves into the sampling bottle volume and the pressure rises. If there were a transducer in the coreholder instead of the sampling bottle volume, it would show the pressure decreasing as the gas exits. As a result, the p_{2} for Step 12 is lower than that of Step 11, consistent with the fact that desorption is taking place. The process continues until Step $\mathbf{2 0}$ when the run was terminated.

Using the values of p_{1} and p_{2}, the amount of adsorption was calculated with the results shown in Table 5.1. Columns (5), (6), and (7) have the following relationship: $n_{t o t}-n_{g a s}=n_{a d s}$. All values are positive indicating that they are realistic from a physical standpoint. Negative values are discussed in Section 5.2. The adsorption isotherm, Fig. 5.2, is generated with Columns (2) and (8). In Column (8), $n_{\text {ads }}$ is equivalent to \boldsymbol{X} in the BET analysis. The desorption curve denoted by a dashed line is slightly above the adsorption curve denoted by a solid line. Hysteresis of comparable magnitude was observed by Hsieh (1980), and similar to Hsieh's results, both curves are nearly linear. In the high pressure ranges, however, the curves become increasingly nonlinear. This behavior is usually evident when there is sufficient resolution for the higher values of p_{2} / p_{o}.

TABLE 5.1 Nitrogen Run 1 at $-1 \%^{\circ} \mathrm{C}$ on Sample \#2 from Montiverdi Well \#2

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Step	Pressure Data			Amount of Nitrogen in DV			
	p_{2} / p_{0}	p_{1}	p_{2}	$n_{\text {bt }}$	$n_{\text {gas }}$	$n_{\text {ads }}$	$n_{\text {ata }} / m_{r}$
	[dimensionless)	(psia)	(psia)	(umoles)	moles)	(1 moles)	($\mu \mathrm{moles} / \mathrm{gm}$)
1	0.07238	5.1965	1.0640	2102.637	511.111	1591.526	8.927
2	0.19347	8.8440	2.8440	5155.468	1366.165	3789.302	21.255
3	0.31881	10.8965	4.6865	8315.147	2251.243	6063.905	34.014
4	0.39517	9.6165	5.8090	10252.423	2790.455	7461.968	41.856
5	0.47034	10.6465	6.9140	12151.538	3321.261	8830.276	49.531
6	0.54585	11.8915	8.0240	14119.342	3854.469	10264.872	57.579
7	0.62238	12.9865	9.1490	16071.882	4394.883	11676.999	65.500
8	0.70452	14.6740	10.3565	18268.648	4974.927	13293.722	74.568
9	0.80146	16.9865	11.7815	20916.979	5659.451	15257.528	85.584
10	0.91286	20.2415	13.4190	24388.301	6446.053	17942.248	100.643
11	0.98701	22.1290	14.5090	28265.3\%	6969.653	21295.744	119.454
12	0.93990	9.2340	13.8165	25933.797	6636.999	19296.799	108.241
13	0.82612	4.8440	12.1440	$2 २ 219.520$	5833.584	16385.936	91.913
14	0.64942	0.0515	9.5465	17388.414	4585.829	12802.585	71.813
15	0.50503	0.0440	7.4240	13633.433	3566.249	10067.184	56.470
16	0.40112	0.0315	5.8965	10649.291	2832.488	7816.804	43.847
17	0.31201	0.0290	4.5865	8330.412	2203.206	6127.207	34.369
18	0.24143	0.0340	3.5490	6541.962	1704.825	4837.137	27.133
19	0.18735	0.0340	2.7540	5158.012	1322.932	3835.080	21.512
20	0.14500	0.0340	2.1315	4090.793	1023.904	3066.890	17.203

FIGURE 5.2 Adsorption Isotherm of Nitrogen Run \#1 at -196 ${ }^{\circ} \mathrm{C}$
on Core Sample \#2 from Montiverdi Well \#2

The adsorption and desorption parts provide for two BET analyses given in Table 5.2. Because the straight line form of the BET equation is used, the two variables, $\boldsymbol{\beta}$ and $\beta /\{X(1-\beta)\}$, are provided followed by the " C " factor, the monolayer adsorption, the sample weight, the surface area, and the specific surface area. In this case, the adsorption and desorption analyses agree fairly well with specific surface areas of $3.538 \mathrm{~m}^{2} / \mathrm{gm}$ and $3.633 \mathrm{~m}^{2} / \mathrm{gm}$ respectively.

5.2 ADSORPTION RESULTS

The focus of this section is on adsorption isotherms. Tables similar to Table $\mathbf{5 . 1}$ for all runs are presented in Appendix C. Tables 5.3 and 5.4 appear in the present section for convenience.

As stated previously, there were three nitrogen tests on Sample \#2 of Berea, one on Sample \#1 of The Geysers, and three on Sample \#2 of Montiverdi Well \#2. Of all the nitrogen experiments conducted, LT1 of Berea, Sample \#2 is the only run with negative values as seen in Columns (5), (7), and (8) of Table 5.3. Because it was the first run attempted, experimental errors and/or operator errors may have been factors. The problem of negative values was confronted in many of the high temperature runs. This topic is addressed further when the steam data are discussed.

Figure 5.3, the isotherm of LT4, is typical of the two positive value tests on Berea, Sample \#2. A small hysteresis exists as well as a turn upwards at high relative

TABLE 5.2 BET Results of Nitrogen Run 1 at $\cdot 196^{\circ} \mathrm{C}$ on Sample \#2

from Montiverdi Well \#2

*** Analysis Based on Adsorption
Rel. Pressure, $\beta \quad$ the factor $\beta /\{X(1-\beta)\}$ in $1 /$ mole
0.0723810 49.0276
0.1934694 63.3041
0.3188095 77.1810

The value of " C " factor in BET analysis is
The monolayer adsorption is
The weight of the sample is
178.2760 grams
3.7921 1/micromoles
6446.0050 micromoles
The specific surface area is
3.5280 square meters/gram

*** Analysis Based on Desorption

Rel. Pressure, $\beta \quad$ the factor $\beta /\{\mathrm{X}(1-\beta)\}$ in $1 /$ mole

$$
0.3120068 \quad 74.0146
$$

0.2414286
65.7967
0.1873469
60.1128
0.1450000
55.2973
The value of "C" factor in BET analysis is
The monolayer adsorption is
6638.4812 micromoles
The weight of the sample is 178.2760 grams
The total surface area is 647.7339 square meters
The specific surface area is
3.6333 square meters/gram

TABLE 5.3 Nitrogen Run 1 at $-196{ }^{\circ} \mathrm{C}$ on Sample \#2 of Berea Sandstone

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Stel	Pressure Data			Amount of Nitrogen in DV			
	p_{2} / p_{0}	p_{1}	p_{2}	$n_{\text {bot }}{ }^{*}$	$n_{8 a}$	$n_{\text {ads }}{ }^{*}$	$n_{\text {ch }} / m_{r}{ }^{*}$
	(dimensionless)	(psia)	(psia)	(umoles)	(umoles)	holes)	(μ moles/gm)
1	0.06122	1.5825	0.9000	347.259	468.634	-121.374	-0.799
2	0.11378	2.4625	1.6725	749.216	870.877	-121.662	-0.801
3	0.16803	3.2975	2.4700	1170.252	1286.139	-115.887	-0.763
4	0.32058	5.1475	4.7125	1391.582	2453.817	-1062.235	-6.995
5	0.40714	7.2850	5.9850	2053.029	3116.413	-1063.385	-7.002
6	0.48180	8.2125	7.0825	2627.978	3687.886	-1059.907	-6.979
7	0.55646	9.3025	8.1800	3199.112	4259.358	- 1060.246	-6.982
8	0.62942	10.3475	9.2525	3756.254	4817.813	-1061.560	-6.990
9	0.77483	13.5675	11.3900	4864.177	5930.818	-1066.642	-7.024
10	0.88690	14.6700	13.0375	5694.801	6788.678	-1093.876	-7.203
11	0.83707	11.5200	12.3050	5295.389	6407.262	-1111.873	-7.321
12	0.76582	10.1975	11.2575	4756.056	5861.825	-1105.769	-7.281
13	0.69235	9.0800	10.1775	4197.642	5299.465	-1101.823	-7.255
14	0.60867	7.7125	8.9475	3569.268	4658.999	-1089.73 1	-7.176
15	0.53180	6.6650	7.8175	2982.870	4070.603	-1087.733	-7.163
16	0.43673	5.0050	6.4200	2262.911	3342.919	-1080.009	-7.112
17	0.35442	3.9800	5.2100	1637.080	2712.868	-1075.787	-7.084
18	0.27228	2.8075	4.0025	1029.058	2084.118	-1055.059	-6.947
19	0.19915	1.8125	2.9275	461.741	1524.361	-1062.620	-6.997
20	0.13197	0.9275	1.9400	-53.425	1010.166	-1063.590	-7.004

* Negative values are physically unrealistic. For further discussion, see Section 5.2.
pressures. Figure 5.4 comparing the adsorption curves from LT2 and LT4 shows close agreement of the two.

The nitrogen run conducted on The Geysers yields and isotherm, Fig. 5.5, which exhibits very little hysterisis. The smoothness of the curves reflect the increased resolution of data compared to other runs. The changing slope at the top is still evident, though less pronounced than before.

Sample \#2 from Montiverdi 2 was the subject of three nitrogen tests, the first having been the focus of Section 5.1. An isotherm typical of the runs has already appeared as Fig. 5.2. In Fig. 5.6, the adsorption curves of LT2 and LT1 constitute the high and low boundaries while LT3 falls between them slightly above LT1.

Because adsorption behavior depends partly upon the properties of each core Sample, examining isotherms of different samples should provide a comparison of the properties of one in relation to another. In Fig. 5.7, the following adsonption curves are shown: LT4 on Sample \#2 of Berea, a nitrogen run conducted by Hsieh (1980) on his Sample \#1 of Berea, LT1 of The Geysers Sample \#1, and LT1 on Sample \#2 of Montiverdi 2. The highest curve by far is that of Sample \#2 of Berea, followed in descending order by Sample \#2 of Montiverdi 2, Sample \#1 of The Geysers, and Hsieh's Sample \#1 of Berea. Thus, for the same relative vapor pressure, more nitrogen per gram of sample is adsorbed on Sample \#2 of Berea than on any other core. This outcome suggests that the specific surface areas should follow a similar pattern, and upon inspection, the BET analyses do indeed indicate that Sample \#2 of Berea has the largest specific surface area followed in order by the others (Table 5.5, next section).

NOLLdyOSEG 10 NOLLddOSGV

FIGURE 5.5 Adsorption Isotherm of Nitrogen Run \#1 at -196 ${ }^{\circ}$ C
on Core Sample \#1 from The Geysers

Runs on Core Sample \#2 from Montiverdi Well \#2

SSVW YJOy Iad NOILdyOSa甘

Eight high temperature runs were made using four of the five samples. Unlike the nitrogen tests, the steam tests yield results that are anomalous yet not without pattern. The shapes of the adsorption curves are as expected, but many are translated downward such that negative values of adsorption result. Moreover, the desorption curves fall below the corresponding adsorption curves contrary to the expected hysteresis pattern. In his tabular data, Hsieh (1980) reported similar behavior with all his samples -- three samples of Berea, one unconsolidated silica sandpack, and two field cores from an unspecified field -- when he used methane at room temperature as the test fluid. Several of his steam runs using the silica sandpack exhibited the same tendencies.

High Temperature Run \#1 (HT1) conducted at $167^{\circ} \mathrm{C}$ on Sample \#2 of Berea is indicative of this anomalous behavior, as may be seen in Fig. 5.8. The adsorption results provided in Table 5.4 include negative values in Columns (5), (7), and (8) that are physically unrealistic. Even the positive values are too small if the entire isotherm is depressed. Because of the relationship between Columns (5), (6) and (7), a negative quantity in (7) suggests that (5) is too small and/or (6) is too large. The negative value in (5) at Step 17 indicates that at the very least $n_{\text {tot }}$ is too small.

Examination of the equations used to calculate $n_{t o t}$ and $n_{g a s}$ provides some insight regarding the occurrence of negative values. As seen in Eq. 3.23,

$$
\begin{equation*}
n_{t o t}=n_{t o t}^{\prime}+\left(\frac{p_{1}}{Z_{1}}-\frac{p_{2}}{Z_{2}}\right) \frac{V_{1}}{R T} \tag{3.23}
\end{equation*}
$$

FIGURE 5.8 Adsorption Isotherm of Steam Run \#1 at 167 C
on Core Sample \#2 of Berea

TABLE 5.4 Steam Run \#1 at $169^{\circ} \mathrm{C}$ on Sample \#1 of Berea Sandstone

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
itep	Pressure Data			Amount of Nitrogen in DV			
	p_{2} / p_{0}	p_{1}	p_{2}	$n_{201}{ }^{*}$	$n_{\text {gas }}$	$n_{\text {adr }}{ }^{*}$	$n_{\text {mbe }} / m_{r}{ }^{*}$
	(dimensionless)	(psia)	(psia)	(poles)	(poles)	(umoles)	(umoles/gm)
1	0.21226	25.9040	22.6540	994.998	1988.552	-993.553	-8.419
2	0.30549	36.1540	32.6040	2093.675	2876.735	-783.060	-6.635
3	0.39450	45.7040	42.1040	3219.691	3733.741	-514.050	-4.356
4	0.48960	56.1040	52.2540	4438.274	4659.569	-221.294	-1.875
5	0.59220	67.5040	63.2040	5817.703	5670.774	146.929	1.245
6	0.68356	76.9040	72.9540	7100.115	6582.569	517.546	4.385
7	0.78006	87.4540	83.2540	8482.271	7558.089	924.182	7.831
8	0.87095	97.2540	92.9540	9916.054	8488.919	1427.135	12.092
9	0.95106	105.6540	101.5040	11316.257	9319.632	1996.625	16.918
10	1.04757	117.1040	111.8040	13132.71	10333.740	2799.021	23.716
11	1.24714	139.1040	133.1040	15258.429	12480.472	2777.957	23.538
12	1.13002	105.6040	120.6040	10127.246	11212.285	-1085.039	-9.194
13	0.96746	91.1040	103.2540	6064.233	9490.884	-3426.651	-29.034
14	0.83253	81.2540	88.8540	3564.151	8094.000	-4529.849	-38.382
15	0.65029	60.7040	69.4040	774.201	6249.302	-5475.101	-46.391
16	0.52755	50.6040	56.3040	-1028.406	5032.041	-6060.447	-51.351
17	0.42308	40.5540	45.1540	-2465.501	4010.817	-6476.318	-54.875
18	0.32657	30.6540	34.8540	-3763.047	3078.901	-6841.948	-57.973
19	0.23194	20.7040	24.7540	-5000.955	2175.227	-7176.182	-60.805
20	0.18977	18.2540	20.2540	-510.062	1775.709	-7385.771	-62.581

[^1]the accuracy of $\boldsymbol{n}_{\text {tot }}$ depends on the determination of \boldsymbol{p}_{1} and \boldsymbol{p}_{2}. Moreover, the error for each step is added into the next step because of the term $n_{t o t}^{\prime}$, thereby causing the error to accumulate. Though an incorrect p_{2} introduces error into $\boldsymbol{n}_{g a s}$ that error is confined to its own step as shown by Eq. 3.24:
\[

$$
\begin{equation*}
n_{g a s}=\frac{p_{2}(D V)}{Z_{2} R T} \tag{3.24}
\end{equation*}
$$

\]

Two possible sources of error are (1) leaks and (2) choosing p_{1} and p_{2} before equilibrium has been attained. In both instances, the error caused in p_{1} is likely to be small because of the shorter time required for equilibrium. Suppose, however, that there is a significant error in p_{2} denoted by δp_{2} such that the measured value is ($p_{2}+$ δp_{2}). Then the equations become

$$
\begin{equation*}
n_{t o t}=n_{t o t}^{\prime}+\left(\frac{p_{1}}{Z_{1}}-\frac{p_{2}+\delta p_{2}}{Z_{2}}\right) \frac{V_{1}}{R T} \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
n_{g a s}=\frac{\left(p_{2}+\delta p_{2}\right)(D V)}{Z_{2} R T} \tag{5.2}
\end{equation*}
$$

The cumulative error in $\boldsymbol{n}_{\boldsymbol{t o t}}$ for a particular step is

$$
\begin{equation*}
-\sum_{i=1}^{s t e p \#} \delta p_{2_{i}} \frac{V_{i}}{Z_{2_{i}} R T} \tag{5.3}
\end{equation*}
$$

while the error in $n_{\text {gas }}$ for each step is simply

$$
\begin{equation*}
\delta p_{2} \frac{(D V)}{Z_{2} R T} \tag{5.4}
\end{equation*}
$$

Thus, the error for $n_{\text {ads }}$ becomes

$$
\begin{equation*}
\text { error }_{i}=-\sum_{i=1}^{\text {step }} \delta p_{2_{i}} \cdot Z_{2_{i}} \frac{V_{1}}{}-\delta p_{2_{i}} \frac{(D V)}{Z_{2_{i}} R T} \tag{5.5}
\end{equation*}
$$

If a leak is present, the measured p_{2} is too low indicating that δp_{2} is negative. The calculations for $n_{t o t}$ become more inflated with each step and the values for $n_{g a s}$ are are consistently low with the result that the adsorption is over-estimated by continually increasing amounts. On an isotherm, this effect would exaggerate height, especially for the desorption curve, causing a hysteresis loop where there might otherwise have been none. Thus, a leak could not be the cause of the negative adsorption estimates.

The effect of choosing p_{2} before equilibrium has been established may result in negative values with the desorption curve below the adsorption curve depending on the value of the error terms for desorption. Figure 5.1, a typical raw data graph, shows that the pressure decreases towards a stable p_{2} during adsorption. Thus, choosing a value too soon would mean that the δp_{2} 's are positive and the p_{2} 's are too high. The corresponding values of $n_{t o t}$ are increasingly under-estimated, and the $n_{g a s}$ values are over-estimated leading to $n_{\text {ads }}$ values that are increasingly under-estimated. When desorption begins, gas is taken out of the sampling bottle so the pressure is low. Then
the valve to the coreholder opens and the pressure rises. Normally the expected trend is a continued slow rise in pressure. In this case, it seems that moving to the next step prematurely would yield a p_{2} that is too low and a δp_{2} that is negative leading to a compensation of errors. The amount of compensation would depend on the particular δp_{2} values.

Figures 5.9 and 5.10 illustrate two extreme idealized cases -- that of no compensation and that of full compensation for δp_{2}. The depictions include for both cases (1) the same assumed true isotherm for reference, and (2) the same adsorption path for the measured isotherms. This path slopes more gently than the true path yielding the apparent maximum error at the top. When there is virtually no compensation, Fig. 5.9, the desorption curve parallels the true desorption curve but is displaced downward by an amount equal to the apparent maximum error. However, when there is full compensation as in Fig. 5.10, the desorption eventually rejoins its true path.

These characteristics would change, of course, if the δp_{2} values did not become negative at the outset. Suppose that the error at the top of the isotherm is large due to poor penetration. In this instance, the measured adsorption occurs on the outside surfaces of the sample and on surfaces some small distance within. At the beginning of desorption, some of the gas that would have been adsorbed is taken out. The initial response when the valve is opened remains the same, yet if there are sufficient molecules left in the system, conditions may still favor adsorption over desorption. Thus, the δp_{2} would be smaller but still positive, and the difference between the true and the measured desorption curves would increase with decreasing relative pressure. Eventually the δp_{2} 's may become zero or even negative resulting in a gentler slope,

RELATIVE VAPOR PRESSURE p_{2} / p_{0}
FIGURE 5.9 $\begin{aligned} & \text { Idealized Case in which } \delta p_{2}=0 \text { for } \\ & \text { Desorption Resulting in No Compensation }\end{aligned}$
${ }^{4} w / X$ YフOч јо SSVW LINの ıəd NOILd\&OSEG 1o NOILddosay

but the measured desorption curve would still fall below the measured adsorption curve. Although this theory appears to explain the anomalous behavior of steam isotherms such as Fig. 5.8, it is not unlikely that other factors may contribute to this phenomenon.

Three high temperature runs were conducted on Sample \#1 of Berea sandstone, whereas only one was completed on Sample \#2 of the Berea. The isotherm of the latter is given in Fig. 5.8. A comparison of the four runs provided by Fig. $\mathbf{5 . 1 1}$ shows a band of results in which the high boundary is formed by the adsorption curve of HT2 at $207^{\circ} \mathrm{C}$ on Sample \#1 and the low boundary is formed by the adsorption curve of HT3 at $150{ }^{\circ} \mathrm{C}$ on Sample \#l.

Although the HT1 at $153{ }^{\circ} \mathrm{C}$ on Sample \#1 from The Geysers is similar to those completed for Berea and Montiverdi Well \#2, the other two high temperature runs for that sample are distinct in that the values for the adsorption curve are all positive. Figure 5.12 is the isotherm for HT 2 conducted at $200{ }^{\circ} \mathrm{C}$ which, as seen in Fig. 5.13, compares quite favorably with the adsorption curve of HT3 conducted at $180{ }^{\circ} \mathrm{C}$. Comparison of the time allowed for equilibrium for each run supports the theory that in most cases the steps were ended prematurely. For HT1 the average waiting time was only an hour, while for HT2 the time varied from six to eight hours and for HT3 the time varied from eight to twelve hours.

Sample \#3 consisting of crushed fragments from Montiverdi Well \#2 was the subject of one steam run at $180{ }^{\circ} \mathrm{C}$. The isotherm in Fig. $\mathbf{5 . 1 4}$ has a rather flat adsorption curve, but the desorption curve has a significant slope change from very steep at

[^2]

- 94 -

high relative pressures to more moderate at lower relative pressures. As already mentioned this behavior may occur if δp_{2} is positive when desorption begins, but diminishes with time until it becomes negative.

5.3 BET RESULTS

The results of the BET analysis consist of estimates of the " C " factor in the BET equation, the monolayer adsorption, the surface area, and the specific surface area. An example of the results for one run, namely the LT1 on Sample \#2 from Montiverdi Well \#2, has already been presented in Table 5.2. A complete listing of results, excluding those from runs or parts of runs having negative values, is given in Appendix D. Because of the above restriction on negative values, the majority of the tests presented are nitrogen tests.

Table 5.5 highlights the similarities between the BET results for the same core as well as contrasts between cores. The " C " factor, monolayer adsorption per weight and specific surface area from a variety of runs are given for Sample \#2 of Berea, Sample \#1 of Berea fram Hsieh's work (1980), Sample \#1 of The Geysers, and Sample \#2 from Montiverdi Well \#2. As mentioned in the previous section, Sample \#2 of Berea has the largest specific surface area and the highest isotherm, followed in descending order by Sample \#2 of Montiverdi Well \#2, Sample \#1 of The Geysers, and Hsieh's Sample \#1 of Berea.

TABLE 5.5 Comparison of BET Pesults

Sample \& Run	"C" factor	Monolayer Adsorption/Weight	specific Surface Area
	(1/4mole)	(μ moles/gram)	(m^{2} / gram)
Berea			
Sample \#2			
LT2 ${ }^{-}$ads.	12.3224	68.228	6.6572
LT4-ads.	11.5873	75.941	7.4098
LT4-des.	17.4894	82.027	8.0036
Hsieh's Berea *			
Sample \#1			
LT - ads.	100.2559	13.050	1.2733
LT - des.	126.8745'	13.400	1.3075
HT -ads.	6.8615	16.015	1.3075
$\left(107{ }^{\circ} \mathrm{C}\right)$ des.	5.2691	17.001	1.2316
HT -ads.	6.7979	13.985	1.0763
$\left(195^{\circ} \mathrm{C}\right.$) des.	66.3525	21.667	1.6674
The Geysers			
Sample \#1			
LT1-ads.	2.6224	27.564	2.6895
LT1-des.	3.2250	26.353	2.5713
HT2 - ads.	4.9360	26.583	2.0818
Montiverdi Well \#2			
Sample \#2			
LT1-ads.	3.7921	36.157	3.5280
LT1-des.	3.8518	37.237	3.6333
LT2 - ads.	3.8958	37.997	3.7075
LT3 - ads.	3.3077	40.120	3.9146
LT3 - des.	4.3935	38.235	3.7307

* Data for Hsieh's Berea \#1 from Hsieh's doctoral thesis (1980).

6.0 CONCLUDING REMARKS

Although the main objective of the present research was to construct laboratory equipment to determine adsorption isotherms for nitrogen and steam on various geothermal reservoir rocks, only a part of this objective could be achieved. Considerably more success was gained with the nitrogen experiments than with the steam.

Nitrogen was chosen as one of the test fluids because it is a relatively small molecule, it is easily available, it is fairly safe to handle, and it has been widely used by researchers studying adsorption. The rocks tested were Berea sandstone, core material from Larderello wells and core material from The Geysers wells. The constant temperature used in the nitrogen experiments varied slightly from one experiment to another but was in all instances within $1^{\circ} \mathrm{C}$ from the critical temperature. The relative vapor pressure $\left(p_{2} / p_{o}\right)$ ranged from as low as 0.003 to unity.

The configuration of the nitrogen isotherms developed in these experiments was what would be expected considering earlier investigations of other researchers. However, they were higher on the X / m_{r} vs. p_{2} / p_{o} graphs than those obtained by Hsieh (1980). This discrepancy could be due to differences in experimental procedures.

Significantly, no physically impossible results such as negative adsorption were obtained with nitrogen except for the first run which may have been performed incorrectly. Such was not the case with steam. The nitrogen experiments indicate that the low temperature apparatus was functioning as intended and that confidence could be placed in it for further experimentation.

The experiments with steam yielded mixed results. With the exception of one additional sample from Larderello, the same rocks were used with steam as were used with nitrogen. The tests were run at eight different constant temperatures, the lowest being $150^{\circ} \mathrm{C}$ and the highest $207{ }^{\circ} \mathrm{C}$. The relative pressures ranged from 0.064 to approximately unity.

The adsorption part of the hysteresis loop for two experiments on The Geysers core material yielded results that were close to what might be expected. However, negative adsorption was recorded for the desorption part of this loop corresponding to lower p_{2} / p_{0} values. The whole loop may be too low on the X / m_{r} vs. p_{2} / p_{0} graph. Thus, the positive adsorption curve must represent a lower limit.

As was shown analytically in Chapter 5.0, leaks cause a cumulative error such that both the adsorption and desorption curves would rise with the desorption part rising more. Thus, leaks could not cause negative-adsorption results.

A critical factor in the experimentation is the determination of p_{2}, the final pressure in the sampling bottle and coreholder. It is an equilibrium pressure. If p_{2} is assigned before equilibrium has been attained, then the assigned value would differ from the true value by an amount δp_{2} which becomes a cumulative error as the experiment progresses from step to step. This cumulative error depresses the adsorption curve over its entire extent because δp_{2} is positive. The experiments showed three possible effects of δp_{2} on the desorption curve. First, the sign of δp_{2} reverses at the beginning of desorption becoming negative and the cumulative error diminishes. It continues to do so throughout the desorption process until such time, if ever, that the
error is nullified. Second, δp_{2} may remain positive at the start of desorption but diminish in magnitude until it becomes zero and thereafter become increasingly negative. Third, $\delta \rho_{2}$ may remain approximately zero throughout the desorption process.

At this point, it is clearly evident that a main objective of future research with the kind of apparatus described herein should be to make every effort to reduce δp_{2} to a negligible quantity.

In essence the findings and recommendations considered most important as a result of the present research are the following:

1. Berea sandstone has the largest specific surface area and the greatest nitrogen adsorption isotherm followed by Montiverdi Well \#2 from Larderello and then The Geysers.
2. Steam adsorption was observed; however, the true magnitude is still in question probably due to difficulties in establishing equilibrium.
3. Modifications which may help eliminate negative-adsorption results should be investigated. These include the alternative technique for determining dead volume, placing a pressure transducer in the coreholder section, and using high temperature pressure transducers in the high temperature system.
4. Among important topics requiring further study are techniques for
establishing equilibrium values of p_{2}, core preparation, and the use of brines as test fluids.

Once laboratory studies have progressed to the point where adsonption data can be generated with a high degree of confidence, the information should be applied on a reservoir engineering level. If it becomes possible to shorten each step by predicting p_{2} from early-time transient data, the duration of the experiments will be greatly reduced. In time, perhaps a correlation between adsorption properties and rock type might be developed which enables an engineer to make an approximation of the impact of adsorption on a particular field. Laboratory tests could then provide a more complete picture resulting in better performance predictions and reserve estimates.

7.0 NOMENCLATURE

a	coefficient of condensation for any adsorbed layer excluding the first
a_{i}	coefficient of condensation for the i-th layer
A_{x}	cross-sectional area of a molecule
b	coefficient of evaporation for any adsorbed layer excluding the first
b_{i}	coefficient of evaportation for the i-th layer
C	ennctant in RFT equatinn frem oponifin adooebato at a opooifo oot of conditions
DV	dead volume, i.e. annular volume in coreholder plus pore volume plus tubing volume to valve C
HT1, 2, 3, ...	high temperature run $1,2,3, \ldots$
i	index ranging from 0 to n which may refer to specific layer or step number depending on context
LT1, 2, 3, ...	low temperature run $1,2,3, \ldots$
m_{r}	mass of the rock sample
n	maximum number for index i or amount of gas (usually in poles)
$n_{\text {ads }}$	amount of adsorption (usually in pmoles) at p_{2}, same as
	\boldsymbol{X} in BET equation

$n_{\text {gas }}$	amount of gas (usually in pmoles) at p_{2} in DV
$n_{\text {tot }}$	total amount of material (usually in pmoles) at p_{2} in DV
$n_{t o t}^{I}$	total amount of material (usually in pmoles) at $p_{2}{ }^{\prime}$ in DV ,
	i.e. at the end of the immediately preceding step
$n_{\text {tot }}$	total amount of material in DV at $p_{2}{ }^{*}$ if valve C is opened

equilibrium pressure of gas in system near end of step when only Valve C is open
same as p_{2} but for immediately preceding step
predicted equilibrium pressure in DV if valve C is opened and then closed before the end of the step, corrensponds to $n_{t o t}^{*}$

r_{1}	one of two principal radii of curvature found in the Kelvin equation
r_{2}	same as above
R	gas constant, $1206.2379 * 10^{-6}$ cc- $\mathrm{psia} /(\mathrm{gm}-\mu \mathrm{mole}-\mathrm{K})$
S	total number of adsorption sites on a surface
S_{i}	number of adsorption sites covered by i layers
$t_{0}, t_{1}, t_{2}, \ldots$	specific points in time during the experiment, found in Figure 4.8
T	temperature
V_{L}	volume per mole of liquid
V_{1}	sampling bottle volume plus tubing volume
X	total amount of adsorption, in micromoles
X_{m}	the monolayer adsorption, in micromoles
Z_{1}	compressibility factor at p_{1}
Z_{2}	compressibility factor at p_{2}
a	ratio of 8 , to θ_{2}
$\boldsymbol{\beta}$	ratio of $\boldsymbol{\theta}_{\boldsymbol{i}}$ to θ_{i-1} where $\mathbf{i}>1$, also relative vapor pressure, p_{2} / p_{0}
γ	interfacial tension

$\Delta \mathrm{n}$	net entry of new molecules (usually in poles) into DV
δp_{2}	amount of error in p_{2} estimate
θ_{i}	fraction of surface covered by \boldsymbol{i} layers
π	pi, 3.1416...

8.0 REFERENCES

Adamson, Arthur W.: Physical Chemistry of Surfaces, 4th ed., John Wiley \& Sons, Inc., New York (1982).

Aronofsky, J.S.: "Effect of Gas Slip on Unsteady Flow of Gas Through Porous Media", J. Appl. Phys. (1954) 25(1), 48-53.

Bilhartz, H.L., Jr.: "Fluid Production from Geothermal Steam Reservoirs", M.S. Report, Stanford University, Stanford, CA (1971).

Briggs, L.J.: "Limiting Negative Pressure of Water", J. Appl. Phys. (1950) 21, 721722.

Brunauer, S.: The Adsorption of Gases and Vapors, Princeton University Press, Princeton, NJ (1943) 120-139.

Brunauer, S., Emmett, P.H., and Teller, E.: "Adsorption of Gases in Multimolecular Layers", J. Am. Chem. Soc. (1938) 60, 309-319.

Cady, G.V.: "Model Studies of Geothermal Fluid Production", PhD dissertation, Stanford University, Stanford, CA (1969).

Calhoun, J.C., Jr., Lewis, M., and Newman, R.C.: "Experiments on the Capillary Properties of Porous Solids", Trans. AIME (1949) 186, 189-196.

Chicoine, S.D.: "A Physical Model of a Geothermal System: Its Design and Construction and Its Application to Reservoir Engineering", Engineer's Thesis, Stanford University, Stanford, CA (1975).

Denlinger, R.P., Isherwood, W.F., and Kovach, R.L.: "California Geodetic Analysis of Reserfoir Depletion at The Geysers Steam Field in Northern California", Jour. of Geoph. Res. (1981) B, 86, No. 7, 6091-6096.

Economides, M.J. and Miller, F.G.: "The Effects of Adsorption Phenomena in the Evaluation of Vapour-Dominated Geothermal Reservoirs", Geothermics (1985) 14, No. 1, 3-27.

Edelfson, N.E. and Anderson, A.B.C.: "The Thermodynamics of Soil Moisture", Hilgardia (1943) 16, 31-299.

Fisher, L.R. and Isrealachvili, J.N.: "Direct Experimental Verification of the Kelvin Equation for Capillary Condensation",Nature (1979) 227, 548-549.

Fisher, L.R. and Isrealachvili, J.N.: "Experimental Studies on the Applicability of the Kelvin Equation to Highly Curved Concave Menisci", J. Colloid and Interface Sci. (1981) 80, 528-951.

Frenkel, Y.L.: Kinetic Theory of Liquids, The Clarendon Press, Oxford (1946).
Halsey, G.D., Jr.: J. Chem. Phys. (1948) 16, 931.

Herkelrath, W.N., Moench, A.F.and O'Neal, C.F., 11: "Laboratory Investigations of Steam Flow in a Porous Medium", Water Resour. Res. (1983) 19, No. 4, 931-937.

Hiemenz, Paul C.: Principles of Colloid and Surface Chemistry, 2nd ed., Marcel Dekker, Inc., New York (1986).

Hill, T.L.: Adv. Catal. (1952) 4, 211.
Hsieh, C.H.: "Vapor Pressure Lowering in Porous Media", PhD dissertation, Stanford University, Stanford, CA (1980).

Hsieh, C.H. and Ramey, H.J., Jr.: "Vapor-Pressure Lowering in Geothermal Systems", Soc. Pet. Eng. J. (1983) 23(1), 157-167.

James, R.: "Wairakei and Larderello; Geothermal Power Systems Compared", N.Z. Jl. Sci. Technol. (1968) 11, 706-719.

Langmuir, I.: J. Am. Chem. Soc. (1918) 40, 1361.
McBain, J.W.: The Sorption of Gases and Vapours by Solids, George Routledge and Sons, Ltd., London (1932) 432-446.

Macias-Chapa, L.: "Radon Emanation in Geothermal Reservoirs", Engineer's Thesis, Stanford University, Stanford, CA (1981).

McMillan, W.G. and Teller, E.: J. Chem. Phys. (1951) 19, 25.
Melrose, J.C.: "Model Calculations for Capillary Condensation", AI.Ch.E. Journal (1966) 12, 986-994.

Melrose, J.C.: "Role of Capillary Ccondensation in Adsorption at High Relative Pressures", paper 85 presented at 60 h Colloid and Surface Science Symposium, ACS Division of Colloid and Surface Chemistry, Atlanta, Georgia, June 1986.

Melrose, J.C.: "Use of Water Vapor Desorption Data in the Determination of Capillary Pressures", alternate paper at 1987 SPE International Symposium on Oilfield Chemistry, San Antonio, Texas, Feb. 4-6.

Moench, A.F. and Atkinson, P.G.: "Transient-Pressure Analysis in Geothermal Steam Reservoirs with an Immobile Vaporizing Liquid Phase", Geothermics (1978) 7, 253. 264.

Moench, A.F. and Herkelrath, W.N.: "The Effect of Vapor-Pressure Lowering upon Pressure Drawdown and Buildup in Geothermal Steam Wells", Trans. Geotherm. Resour. Counc. (1978) 2, 465-468.

Morrow, N.R., Brower, K.R., and Kilmer, N.H.: "Relationship of Pore Sstructure to Fluid Behavoir in Low Permeability Gas Sands", final report, DOE/BC/10216-13 (DE84012721), U.S. DOE, Bartlesville (1984) 60-71.

Sanyal, S.R.: Personal communication from Sanyal of Stanford University to M.J. Economides (1980).

Speedy, R.J.: "Stability-Limit Conjecture. An Interpretation of the Properties of Wa-
ter", J. Phys. Chem. (1982) 86, 982-991.
Strobel, C.J.: "Model Studies of Geothermal Fluids-Production from Consolidated Porous Media", Engineer's Thesis, Stanford University, Stanford, CA (1973).

Thomson, N. (Lord Kelvin): "On the Equilibrium of Vapour at a Curved Surface of Liquid", Proc. Roy. Soc. Edinburgh (1870) 7, 63-67; Phil. Mag. (1871) 42, Ser. 4, 448-452.

Wallick, G.C. and Aronofsky, J.S.: "Effect of Gas Slip on Unsteady Flow of Gas Through Porous Media - Experimental Verification", Tram. Am. Imt. Min. Metall. Pet. Eng. (1954) 201, 322-324.

Ward, J.S. and Morrow, N.R.: "Capillary Pressures and Gas Relative Permeabilities of Low Permeability Sandstone", paper 13882 presented at the 1985 SPE/DOE Symposium on Low Permeability Reservoirs, Denver, Colorado, May.

White, D.E., Muffler, L.J.P. and Truesdell, A.H.: "Vapor-Dominated Hydrothermal Systems Compared with Hot-Water Systems", Econ. Geol. (1971) 66,75-97.

Zsigmondy, R.: "Uber Die Struktur des Gels der Kieselsaure Theorie der Entwasserung", Zeits.fur Anorgan. Chemie (1911) 71, 356-377.

9.0 APPENDICES

9.1 APPENDIX A .. COMPUTER PROGRAM

The analysis program located at the end of this appendix consists of a main program with six subroutines. Variable descriptions and comments are provided throughout. The main program consists of three general sections, all of which have some computations. The first is an input section while the latter two are output sections.

The input section allows the program to obtain and manipulate parameter values in readiness for the adsorption calculations. Much of the data are entered by the user in response to questions asked during execution. The Data Checklists of Appendix B contain the pertinent information for each run. If the dead volume (DV) is already known, it is entered directly. Otherwise, it is calculated by the subroutine DEDVOL. Because there are usually several estimates of DV, the user has the option of combining all or part of those estimates to obtain the final figure. The pressures are read in volts from an input file designated "plp2" which has p_{1} values in the first column and p_{2} values in the second. Subroutine PSIA changes all pressure tranducer signals from volts into psia. Near the end of this section are options to "echo" the data and to allow for re-entry if necessary.

The second section of the main program emphasizes the adsorption calculations described in Section 3.2. It uses the subroutine VOLUME to evaluate the specific volume and the 2-factor of superheated steam and the subroutine SVAPP to calculate the saturation vapor pressure. NTOT, NGAS, NADS, B (the array for the relative vapor pressure), and XW (the array for NADS/weight) are calculated and sent to a file named "results" along with P1 and P2. A second output file named "isoplot" records the number of steps for adsorption and desorption and their respective B and XW values. In addition, the values needed for the straight line form of the BET equation are calculated and stored in the arrays $\mathbf{F}, \mathbf{G}, \mathrm{F} 1$, and G1.

The last section uses the BET equation to determine the surface area. The adsorption arrays \mathbf{G} and \mathbf{F} correspond to the \mathbf{x} and \mathbf{y} values of a straight line that is analyzed by the method of least squares with subroutine LSTSQ. For steam tests, subroutine VOLIQD provides the specific volume of liquid water. Once the adsorption data are processed, the desorption arrays G1 and F1 are transferred to G and F so the same calculation commands may be used again. The results are sent to a file named "BET".

EXPLANATION OF KEY VARIABLES

Do $20 \mathrm{I}=1,100$
$\mathrm{P} 1(\mathrm{I})=0.0$
P2 (I) -0.0
$B(I)=0.0$
Continue
Do $30 I=1,30$
$F(I)=0.0$
$F 1(I)=0.0$
$G(I)=0.0$
$G 1(I)=0.0$
Continue
Default value for constant z factor set for nitrogen
Z=0.95
$\mathrm{R}=1206.2379 \mathrm{E}-6$
Enter basic information
Write (6, 3)
Format ('What is the weight of the sample in grn?', /)
Read (5, *) W
Write (6, 4)
Format ('Is this a nitrogen run (enter 0) or a steam run (enter

* 1)', /)

Read (5, *) ANS
Write $(6,5)$
Format ('What is the sampling bottle volume, V1, in cc (for NIT usu.

* 45.07 cc$\left.) ?^{\prime}, /\right)$
$\operatorname{Read}(5, \star)$ V1
Write $(6,6)$
Format ('How many steps are there?',/)
Read (5,*)N
Write (6,7)
Format ('Do you need to calculate the dead volume? ($0=$ no, $\left.1=y e s)^{\prime}, 1\right)$
Read (5,*) ANS1
If (ANSI.EQ.O) then
Write $(6,8)$
Format ('Enter the dead volume in ce.' ,/)
$\operatorname{Read}(5, *) D V$
Else
Call DEDVOL (V1, DV)
DEDVOL will calculate dead volume
Endif
Write (6,9)
Fomat ('Do you want to enter temperature in centigrade (enter 0)
* or Kelvin (enter 1) ?', /)

Read (5,*)ANS2
Write (6,11)
Format ('What is the temperature?', /)
If (ANS2.EQ.O) then
Read (5,*) TC
$T=T C+273.16$
Else
$\operatorname{Read}(5, *) T$
$T C=T-273.16$
Endif
Open(unit=4, file='p1p2', status='old')
Do $41 \mathrm{I}=1, \mathrm{~N}$
$\operatorname{Read}(4, *) P 1(I), P 2(I)$
Continue
Option to echo input data and make changes
Write $(6,16)$
Format ('Do you want to echo input data? ($0=n 0,1=y e s)^{\prime}$, $/$)
Read (5, *) ANS 3
If (ANS3.EQ.O) go to 60

Write（6，17）\quad－113－
Format（／：weight（gm）V1（cc）DV（cc）＂，／）
Write $(6, *) W, V 1, D V$
Write $(6,18)$ T．TC

Write（6，19）
Format（＇Step P1（vi P2（v）＇，／／）
Do 50 I＝1，N ${ }^{\text {Write }}(6,21) I, P 1(I), P 2(I)$
Format（I4，F10．4，F10．4，／）
Continue
Write（6，22）
Format（＇Do you want to change input？（ $0=$ no， $1-y e s$ ）＇，／）
Read（5，＊）ANS4
If（ANS4．EQ．1）go to 10

Change pressures to psia－data in volts is replaced by psia form
to save space．
Call PSIA（N，P1，P2）
Output headings for adsorption table．
Open（unit＝1，file＝＇results＇，status＝＇new＇）
If（ANS．EQ．O）then
Write（1，24）
Else
Write（1，51）
Endif
Format（＇Step＇， \mathbf{x} ，＇Pressure Data＇， \mathbf{x} ，＇Amount of Nitrogen in DV＇，／）
Format（＇Step＇， \mathbf{x} ，＇Pressure Data＇， \mathbf{x} ，＇Amount of Steam in DV＇，／）
Write（1，25）
Format（＇$\$ p$ sub $2 \$ / \$ p$ sub $0 \$^{\prime}, x$, ＇Sp sub $1 \$^{\prime}, x,{ }^{\prime} \$ p$ sub $2 \$^{\prime}, x$ ，
＊＇Total＇，x ，＇Free Gas＇，x，＇Adsorption＇，x^{\prime}＇Ads．／Weight＇，／） Write（1，52）

＊$\left.x,{ }^{\prime \prime}(\$ m u \$ m o l e s)^{\prime}, x^{\prime},(\$ m u \$ m o l e s)^{\prime}, x^{\prime},^{\prime}(\$ m u \$ m o l e s / g m) ', /\right)$
Calculation of B, NTOT，NGAS，NADS，and XW for isotherm
B and XW are arrays that are saved．Only last value of other 3 will
be saved．B and $B /\{X(1-B)\}$ are saved in arrays for BET range．
Adsorption and desorption are stored separately．
J－0
$J 1=0$
NTOT＝0．0
NUP $=0$
NDOWN $=0$
If（ANS．EQ．1）call SVAPP（TC，PO）
SVAPP calculates the saturation vapor pressure for steam．
Do $90 I=1, N$
If（ANS．EQ．O）go to 70
Steam calculations follow．For nit．jump down to 70.
Call VoLume（TC，P1（I），V，Z1） Call VOLUME（TC，P2（I），V，22）

VOLUME finds V and Z for a given $T(i n C)$ and P（in psia）． Calculations for moles are based on real gas law keeping track of flow in and out of DV．
$A=V 1 /\left\langle R^{\star} T\right\rangle$

```
```

 C=P1(I)/Z1
    ```
```

 C=P1(I)/Z1
 -114 -
 -114 -
 D = P2(I)/22
 D = P2(I)/22
 NTOT = NTOT + (C-D)*A
 NTOT = NTOT + (C-D)*A
 NGAS = P2 (I)*DV/(Z2*R*T)
 NGAS = P2 (I)*DV/(Z2*R*T)
 NADS = NTOT - NGAS
 NADS = NTOT - NGAS
 XW(I) = NADS/W
 XW(I) = NADS/W
 B(I) = P2(I)/PO
 B(I) = P2(I)/PO
 Go to }8
 Go to }8
 Nitrogen calculations with constant 2-0.95.
 Nitrogen calculations with constant 2-0.95.
 ZRT = Z*R*T
 ZRT = Z*R*T
 NTOT = NTOT + (P1 (I)-P2 (I))*V1/ZRT
 NTOT = NTOT + (P1 (I)-P2 (I))*V1/ZRT
 NGAS = P2 (I)*DV/ZRT
 NGAS = P2 (I)*DV/ZRT
 NADS = NTOT - NGAS
 NADS = NTOT - NGAS
 XW(I) = NADS/W
 XW(I) = NADS/W
 B(I) = P2(I)/14.7
 B(I) = P2(I)/14.7
 Assume PO for nit. is 14.7 psia. Rest calc. OK for steam & nit.
 Assume PO for nit. is 14.7 psia. Rest calc. OK for steam & nit.
 Write (1,26)I,B(I),P1 (I),P2 (I) ,NTOT,NGAS,NADS,XW (I)
 Write (1,26)I,B(I),P1 (I),P2 (I) ,NTOT,NGAS,NADS,XW (I)
 Format (I2,X,F7.5,X,F8.4, X,F8.4, X,F10.3, X,F9.3,X,
 Format (I2,X,F7.5,X,F8.4, X,F8.4, X,F10.3, X,F9.3,X,
 F10.3, x,F8.3,/)
 F10.3, x,F8.3,/)
 If (P2(I).LT.P2(I+1)) then
 If (P2(I).LT.P2(I+1)) then
 NUP=NUP+1
 NUP=NUP+1
 Else
 Else
 NDOWN=NDOWN+1
 NDOWN=NDOWN+1
 Endif
 Endif
 Check values to see if they are in BET range. If not, jump to
 Check values to see if they are in BET range. If not, jump to
 bottom of DO LOOP.
 bottom of DO LOOP.
 If (B(I).LT.0.05) go to 90
 If (B(I).LT.0.05) go to 90
 If (B(I).GT.0.35) go to 90
 If (B(I).GT.0.35) go to 90
 If (P2(I).LT.P2(I+1)) then
 If (P2(I).LT.P2(I+1)) then
 true for adsorption
 true for adsorption
 J = J+1
 J = J+1
 F(J)=B(I)*1.0E6/(NADS*(1.0-B(I)))
 F(J)=B(I)*1.0E6/(NADS*(1.0-B(I)))
 G(J)=B(I)
 G(J)=B(I)
 Else
 Else
 true for desorption
 true for desorption
 J1 = J1+1
 J1 = J1+1
 FI(J1) = B(I)*1.0E6/(NADS* (1.0-B(I)))
 FI(J1) = B(I)*1.0E6/(NADS* (1.0-B(I)))
 G1(J1) = B(I)
 G1(J1) = B(I)
 Endif
 Endif
 Continue
Continue
Open (unit-2,file='isoplot' ,status='new')
Open (unit-2,file='isoplot' ,status='new')
Write (2,\star) NUP
Write (2,\star) NUP
DO 160 I=1,NUP
DO 160 I=1,NUP
Write (2,*)B(I),XW(I)
Write (2,*)B(I),XW(I)
Continue
Continue
Write (2,*) NDOWN
Write (2,*) NDOWN
Do 170 I=1,NDOWN
Do 170 I=1,NDOWN
Write (2,*) B(T+NTID) YW/T\MTIDI
Write (2,*) B(T+NTID) YW/T\MTIDI
Continue
Continue
Analysis of BET data -- starts with adsorption section
Analysis of BET data -- starts with adsorption section
If (J.EQ.0) go to 130
If (J.EQ.0) go to 130
Open(unit=3, file=' BET',status='new')
Open(unit=3, file=' BET',status='new')
Write (3,27)
Write (3,27)
Format (/,"*** Analysis Based on Adsorption ***',//)

```
Format (/,"*** Analysis Based on Adsorption ***',//)
```

```
Desorption section jumps back to here for calculations.
```

```
Desorption section jumps back to here for calculations.
```

Write (3, 28)

- 115 -

Format (11x,'Rel. Pressure, \$beta\$', 10x,

* 'the factor \$beta\$/\{X(1-\$beta\$)\} in 1/mole',//)
X and NADS are the same variable.
Do $110 \mathrm{I}=1, \mathrm{~J}$
Write $(3,29) \mathrm{G}(\mathrm{I}), F(I)$
Format (F24.7, F32.4)
Continue
If (J.EQ.1) go to 130
Call LSTSQ(J,G,F,S,YINT)
LSTSQ is a least squares routine to find the slope and y-intercept of the BET eqn.
$C F=S / Y I N T+1.0$
$X M=1.0 \mathrm{E} 6 /(Y I N T * C F)$
Surface area calculations for nitrogen use Avogadro's No. and a cross-sectional area of 16.2 angstroms.

If (ANS.EQ. O) then
$S A=X M * 0.006023 * 16.2$
Go to 120
Endif
Steam SA calculations
Call VOLIQD (TC,PO, V)
VOLIQD finds the specific volume of liq. water. V is then changed to molar volume.
$\mathrm{V}=\mathrm{V} * 180.0 / 6.023$
$P I=3.141593$
POW $=2.0 / 3.0$
$\mathrm{XA}=((\mathrm{V} * 3 . \dot{0} /(4.0 * \mathrm{PI})) * * \mathrm{POW}){ }^{*} \mathrm{PI}$
$S A=X M * 0.006023 * X A$
Continue
SA1 $=S A / W$
Output of results
Write (3,31) CF
Format (//, The value of "C" factor in BET analysis is .,

* F16.4, $2 x$,'1/micromoles' ,/)

Write $(3,32) \mathrm{XM}$
Format ('The monolayer adsorption is ',F31.4, 2 x, 'micromoles', /)
Write (3, 33) w
Format ('The weight of the sample is ',F31.4,2x, 'grams', /)
Write (3, 34) SA
Format ('The total surface area is ', F33.4, 2 x, 'square meters', $/ 1$
Write (3, 35) SA1
Format('The specific surface area is', E31.4,2x,

* 'square meters/gram',/)

Desorption analysis -- if no desorption data is left, the analysis of the run is done.

If (J1.EQ.O) go to 150
Write (3, 36)
Format (/, *** Analysis Based on Desorption ***', //)
Reset variables so they will work in adsorption section calculations.
$\boldsymbol{J}=\boldsymbol{J} 1$
$J 1=0$
DO $140 \mathrm{I}=1$, J $G(I)=G 1(I)$ $F(I)=F 1(I)$
Continue
Go back to calculations under adsorption section
Go to 100
C
150
Continue
STOP
END

This subroutine calculates the dead volume -- i.e. the space in the coreholder section that can be occupied by a gas. The gas is assumed to be an ideal gas.

Input: V1
Output: DV
Explanation of variables
V1 known volume -- usu. sampling bottle volume
DV dead volume in CC
NUM number of steps
PR1 array of P1 values in volts
PR2 array of P2 values in volts
PRV pressure at vacuum
DDV array to keep track of DV estimates
ANS... decision variables
OPT decision variable
CC keeps track of sum of DDV's for average
AA numerator for DV calculations
BB denominator for DV calculations
AVG arithmetic average of DV estimates
SN array to keep track of step numbers of estimates used in avg

Implicit Real*8 (a-h,o-z)
Dimension PR1(15), PR2(15), DDV(15), SN(15)
Zero out arrays
Do $10 \mathrm{I}=1,15$
PR1 (I) $=0.0$
PR2 (I) $=0.0$
$\operatorname{DDV}(I)=0.0$
SN(I) $=0.0$
Continue
Enter data
Write (6,1)
Format ('How may steps are there?' ,/)
Read (5, *) NUM
Write $(6,2)$
Format ('Enter pressures, PR1 and PR2, in volts by step
number.', /)
Do $20 I=1$, NUM
Write $(6,3)$ I
Format ('Steq', 2x, 14, /)
Read (5, *) PR1 (I) , PR2 (I)
Continue
Write (6, 4)
Format ('What is the pressure in volts for a vacuum?',/)
Read $(5, \star)$ PRV
Call PSIA (NUM, PRV, PR1,PR2)
PSIA changes pressure from volts to psia.
Step 1 estimate of DV
$\operatorname{DDV}(1)=\mathrm{V} 1 *($ PR1 (1)/PR2 (1)-1.0)
$C C=\operatorname{DV}(1)$
Write (6,5)DDV(1)
Format ('Estimates for DV in cc', //,'Step', 3x,'1',F15.4,/)

```
Estimates for other steps
Do \(30 \mathrm{I}=2\), NUM \(A A=P R 1(I)-P R 2(I)\) \(B B=P R 2(I)-P R 2(I-1)\) \(\operatorname{DDV}(\mathrm{I})=\mathrm{V} 1 * \mathrm{AA} / \mathrm{BB}\) \(C C=C C+D D V(I)\) Write ( 6,6 ) I, DDV (I) Format('Step', I4,F15.4,/)
Continue
Calculation of arithmetic average
AVG \(=\mathrm{CC} / \mathrm{NUM}\)
Write ( 6,7 ) AVG
Format ('The arithmetic average is ', F18.4, \(2 x^{\prime},^{\prime} \mathrm{Cc}^{\prime}\), /)
Write (6,8)
Format ('Do you wish to use this average for DV? ( \(0=\) no, \(1=y e s\) )', ()
Read (5, *) ANS
If (ANS.EQ.1) then
DV = AVG
Return
Endif
Go to 200
Repeat output of DDV when viewing options more than once.
Write (6,9)
Format ('Estimates for DV in \(\mathrm{Cc}^{\prime}, /\) )
Do \(40 \mathrm{I}=1\), NUM
Write (6,11)I, DDV (I)
Format ('Step', I4,F15.4,/)
Continue
List of options
Write (6,12)
Format ('You have the following options:',/,'1. Use any one
* estimate for DV'./.'2. Throw out questionable values and
* calculate new average.', /
Read (5, *) OPT
If (OPT.EQ.2) go to 300
Write (6,13)
Format ('Enter step number of estimate to be used as DV.', /)
Read (5,*)K
\(\mathrm{DV}=\mathrm{DDV}(\mathrm{K})\)
Return
Continues here only if new average calculated.
Write (6, 14)
Format('How many points would you like to include in the
* new AVG?', /)
Read (5,*) L
Write (6,15)
Format ('Enter the step numbers of the values to be used.",/)
Do \(50 \mathrm{I}=1\), L
Read (5, *) SN (I)
Continue
cc-0. 0
Do \(60 \mathrm{I}=1\), L
\(\mathrm{M}=\mathrm{SN}\) (I)
\(C C=C C+D D V(I)\)
Continue
\(A V G=C C / L\)
```

Write (6,16) AVG
Format ('The new average is', F18.4, $2 \mathrm{x},{ }^{\prime} \mathrm{cc}$ ', /) Write (6,17)
Format ('Do you wish to use this average for DV? ($0=$ no, $1=y e s$)', $/$) Read (5, *) ANS 1

If (ANS1.EQ.1) then

$D V=A V G$
Return
Endif
If new AVG is not acceptable, the program goes back to print out estimates and options again.

Go to 100
C
C
END

This subroutine replaces all pressures in volts with pressures in psia. The values in volts are not saved. The calibration is based on ambient P, the plate differential, and the voltage range (set at 10 V default). It is assumed to be linear, so the P measurement system must be checked out to see that it complies reasonably well with that assumption.

Input: N, P1, P2
Output : P1,P2 (new values)
Explanation of variables
N number of steps
P1 array P1 in main program
P2 array P2 in main program
PA ambient pressure -- must already be corrected for temperature and entered in psia
DIFF plate differential in psi of the pressure transducer
VOLT voltage range (in positive direction) set at default of 10 V

Implicit Real*8 (a-h,o-z)
Dimension P1(100), P2(100)
Enter information
Write (6,1)
Format (/, What is the plate differential in psi of the P

* transducer?', /)

Read (5,*)DIFF
Write (6,2)
Format ('What is the ambient pressure in psia (with temperature

* correction if needed) ?' ,/)

Read (5, *) PA
VOLT $=10.0$
Change to psia
Do $10 \mathrm{I}=1, \mathrm{~N}$
$P 1(I)=P 1(I) * D I F E / V O L T+P A$
P2 (I) $=$ P2 (I)*DIFE/VOLT + PA
Continue
Output results
Write (6, 3)
Format (///,10x,'Pressure in psia', //, 2 x, 'Step', 15x,'P1', 15x, * 'P2', /1

Do 20 I-l,N
Write (6, 4) I, P1 (I), P2 (I)
Format (2x, I4, 10x, F10.4, 7x, F10.4)
Continue
Return
End
SUBROUTINE SVAPP (T, PO) - 121 -

This subroutine will calculate the saturated steam vapor pressure for a nonporous container by using the 1968 IFC formula for scientific and research purposes. It was copied from Hsieh's program.

Input: T
output: PO
Explanation of variables
T temperature in Centigrade
PO saturated steam vapor pressure in psia

```
Implicit Real*8 (a-h,0-z)
```

$F 1=-741.9242$
$F 2=-29.72100$
$F 3=-11.55286$
$F 4=-0.8685635$
$F 5=0.1094098$
$F 6=0.439993$
F7 $=0.2520658$
F8 $=0.05218684$
$\mathrm{X}=0.65-0.01 * T$
$S=(((F 8 * X+F 7) * X+F 6) * X+F 5) * X+F 4) * X$
$S=((S+F 3) * X+F 2) * X+F 1$
$\mathrm{PO}=\exp (0.01 /(\mathrm{T}+273.15) \star(374.136-\mathrm{T}) \star \mathrm{S})$
$\mathrm{PO}=\mathrm{PO} * 3203.599344$
Return
END

This subroutine calculates the specific volume and z factor of superheated steam by using a 1967 formula for industrial utilization. Copied from program Hsieh wrote.

Input: T, P
output: V, Z
Explanation of variables

| \mathbf{T} | temperature in Centigrage |
| :--- | :--- |
| \mathbf{P} | pressure in psia |
| \mathbf{V} | specific volume |
| $\mathbf{2}$ | $\mathbf{2}$ factor |

```
Implicit Real*8 (a-h,o-z)
```

If (P.GT.1.0E-5) go to 10
$\mathrm{Z}=1.0$
$\mathrm{V}=1$. 0 E 5
Return
$T H=(T+273.15) / 647.3$
$B=P / 3208.2335$
$\mathrm{X}=\exp (2.29 *(1.0-T H) / 3.0)$
$\mathbf{x 2}=x^{\star} x$
$\mathbf{x} 3=\mathbf{x} 2 * x$
$\mathrm{x} 6=\mathrm{x} 3 * \mathrm{x} 3$
X8 = X2*X6
$\mathrm{X} 10=\mathrm{X} 8 * \mathrm{X} 2$
$\mathrm{X11}=\mathrm{X10} \mathrm{X} \mathrm{X}$
$\mathrm{X14}=\mathrm{X} 6 * \times 8$
$\mathbf{X 1 6}=\mathbf{X 8 *} 88$
$\mathrm{X} 27=\mathrm{X} 11 * \mathrm{X} 16$
$B 2=B * B$
$B 3=B * B 2$
$\mathrm{B} 4=\mathrm{B} 2$ * $_{\mathrm{B}} 2$
$\mathrm{B} 5=\mathrm{B} 2 * \mathrm{~B} 3$
$\mathrm{B} 6=\mathrm{B} 3 * \mathrm{~B} 3$
$\mathrm{B7}=\mathrm{B} 6 * \mathrm{~B}$
$\mathrm{TO}=4.260321148 * \mathrm{TH} / \mathrm{B}$
$T 1=-\mathrm{X} 3 *(0.06670375918 * \times 10+1.388983801)$
$T 2=0.08390104328 * \mathrm{X} 16+0.02614670893$
$T 2=-2.0 * B *(T 2 * X 2-0.03373439453 * \mathrm{X})$
$T 3=-3.0 * B 2 *(0.4520918904 * X 8+0.1069036614) * X 10$
$\mathrm{T} 4=4.0 * \mathrm{~B} 3 *(0.5975336707 * \mathrm{XI1}+0.08847535804) * \mathrm{X} 14$
$T 5=0.5958051609 \star$ X10*X8 - $0.5159303373 *$ X14 + 0.2075021122*X10
$T 5=-5.0 * B 4 * T 5 * X 14$
AUX $=1.0 / \mathrm{B4}+0.4006073948 * \times 14$
$A U X=A U X * A U X$
T6 $=-4.0 / \mathrm{B} 5 *(0.1190610271 \star \mathrm{X}-0.09867174132) * \mathrm{X11} / \mathrm{AUX}$
AUX $=1.0 / B 5+0.08636081627 * X 11 * X 8$
AUX $=$ AUX ${ }^{\star} A U X$
$T 8=-6.0 / B 7 *(0.006552390126 * \times 10+0.0005710218649) * \times 14 / \mathrm{AUX}$
$T 9=((527.5718623 * X-2693.088365) * X-5745.984054) * X$
$T 9=(((T 9-6508.211677) * X+4126.607219) * X-1388.522425) * X$
$T T=(\mathrm{B} /(15.74377327-34.17061978 * \mathrm{TH}+19.31380707 * \mathrm{TH} \mathrm{TH})) * * 10$
$T T=11.0 * T T$
$T 9=T T *(T 9+193.6587558)$
$\mathrm{V}=\mathrm{T} 9+\mathrm{T} 8+\mathrm{T} 7+\mathrm{T} 6+\mathrm{T} 5+\mathrm{T} 4+\mathrm{T} 3+\mathrm{T} 2+\mathrm{T} 1+\mathrm{TO}$
$\mathrm{z}=\mathrm{V} / \mathrm{TO}$
$\mathbf{v}=\mathrm{v} * 3.17$
Return
END

```
SUBROUTINE LSTSQ(N,X,Y,S,YINT)
123-
This subroutine uses the least squares method to find the slope and
y intercept of an equation of the form
    Y= YINT + SX
Input: X, Y, N
Output : S, YINT
Explanation of variables
X array of X values corresponding to B of BET eqn
Y array of Y values corresponding to B/{X(1-B)} of BET eqn
S slope corresponding to (CF-1)/XM of BET eqn
YINT y intercept corresponding to 1/(CF*XM) of BET eqn
A sum of x*x
C sum of }
D sum of Y
E sum of X*Y
N number of data points
DEN denominator needed in calculations
Implicit Real*8 (a-h,o-z)
Dimension X(30),Y(30)
A=0.0
C=0.0
D = 0.0
E = 0.0
Do 10 I=1,N
    A=A+X(I)*X(I)
    C=C+X(I)
    D=D + Y(I)
    E = E + X(I)*Y(I)
Continue
DEN = N*A - C*C
S = (N*E - C*D)/DEN
YINT = (A*D - C^E)/DEN
Return
END
```

SUBROUTINE VOLIQD (T, P, V)

- 124 -

This subroutine calculates the specific volume of liquid water for a given temperature and pressure. It was copied from Hsieh's program.

Input : T, P
output: \mathbf{V}
Explanation of variables
T temperature in Centigrade
$\mathrm{P} \quad$ pressure in psia
V specific volume of liquid water in cc/gm

Implicit Real*8 (a-h,0-2)

$T H=(T+273.15) / 647.3$
$B T=P * 6894.76 / 22120000.0$
All $=7.982692717$
$\mathrm{A} 12=-0.02616571843$
$A 13=0.00132241179$
$\mathrm{A} 14=0.02284279054$
$A 15=242.1647003$
$\mathrm{A} 16=1.269716 \mathrm{E}-10$
$\mathrm{A} 17=2.0748383-7$
$\mathrm{A} 18=2.174020 \mathrm{E}-8$
$\mathrm{A} 19=1.105710 \mathrm{E}-9$
$A 20=12.93441934$
$\mathrm{A} 21=0.00001308119072$
$\mathrm{A} 22=6.047626 \mathrm{E}-14$
$Y=1.0-0.8438375405 * T H * T H-0.005362162162 /$ TH** 6
$Z=1.72 \star Y * Y-0.14684556978 * T H+0.099517174 * B T$
$Z=Y+S Q R T(Z)$
$T 1=A 11 * 0.0497585887 * 2 * *(-5.0 / 17.0)$
$T 2=(\mathrm{A} 14 * T H+\mathrm{A} 13) * T H+\mathrm{A} 12+\mathrm{A} 15 *(0.6537154-\mathrm{TH}) * * 10$
$\mathrm{T} 2=\mathrm{T} 2+\mathrm{A} 16 /(1.15 \mathrm{E}-6+\mathrm{TH} * * 19)$
$\mathrm{T} 3=((3.0 * \mathrm{~A} 19 * \mathrm{BT}+2.0 * \mathrm{~A} 18) * \mathrm{BT}+\mathrm{A} 17) /(1.51 \mathrm{E}-5+\mathrm{TH} * * 11)$
$T 4=A 20 * T H * * 18 *(0.14188+T H * T H)$
$T 4=T 4 *(-3.0 /(7.002753165+\mathrm{BT}) * * 4+0.0002995284926)$
$T 5=(4.0 * A 22 *(T H * *(-20)) \star B T+3.0 * A 21 *(0.204-T H)) \star B T * B T$
$\mathrm{V}=(\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4+\mathrm{T} 5) * 3.17$
Return
END

9.2 APPENDIX B .. DATA CHECKLISTS

The Data Checklist was designed as a convenient means of recording data during an experimental run that will later be used by the analysis program. The first page identifies the date, the sample name, its weight, and the run number as well as providing space for any comments about the run. It also shows the type of experiment and test fluid, the temperature, the dead volume, the sampling bottle volume, and information about the pressure transducer calibration. The second page has places to list the step number, p_{1}, p_{2}, and any comments about the step. The present computer program assumes a constant temperature equal to the experiment temperature listed on the first page, thereby neglecting any variations in core temperature from one equilibrium state to the next. Though optional, recording the core temperature allows one to judge the validity of the constant temperature assumption. It also makes the information available for any future analysis which includes varations.

The following Data Checklists contain information from the fifteen experiemntal runs conducted for this study.

DATA CHECKLIST

DATE
SAMPLENAME_Berea, Sample \#1_ RUN NUMBER DV1 \& DV2
SAMPLE WEIGHT $\underset{\underline{18.02} \mathrm{gm}}{ }$
COMMENTS
DV1 is best. Let DV 084 cc .

CIRCLE TYPE OF EXPERIMENT AND MEDIUM USED (E.GADSORBATE)
dead volume
heliuns nitrogen
low temperature
high temperature
steam
natural gas \qquad
other medium \qquad

TEMPERATURE OF EXPERIMENT
\qquad
room
C or K

DEAD VOLUME (if already known) \qquad cc

SAMPLING BOTTLE VOLUME (circle one)
low T system 45.07 cc
high T system: Number 1 158.62 cc OR Number 2513.30 cc
other \qquad cc

PRESSURE TRANSDUCER CALIBRATION INFORMATION:
plate differential $25 \mathrm{psi} \quad 100 \mathrm{psi} \quad 500 \mathrm{psi}$ other \#1,

vacuum pressure: \qquad $\begin{array}{lll}\text { psia } \frac{-5.873}{-5.882} & \# 2\end{array}$

- 127 -

RAW EQUILIBRIUM PRESSURE DATA

DATA CHECKLIST

DATE 7/24/85
SAMPLE NAME Berea, Sample \#1
RUN NUMBER HT1
SAMPLE WEIGHT 118.02 gm
COMMENTS
\qquad
\qquad
\qquad
\qquad

CIRCLE TYPE OF EXPERIMENT AND MEDIUM USED (E.G. ADSORBATE)
dead volume low temperature high temperature helium nitrogen
steam natural gas \qquad other medium \qquad
TEMPERATURE OF EXPERIMENT 169 Cor K
DEAD VOLUME (if already known) 46. 084 cc
SAMPLING BOTTLE VOLIJME (circle one)
low T system 45.07 cc
high T system: Number 1158 OR cc OR Number 2513.30 cc
other \qquad cc

PRESSURE TRANSDUCER CALIBRATION INFORMATION:
plate differential: $25 \mathrm{psi} \quad 100 \mathrm{psi} \quad 500 \mathrm{ps}$ other \qquad
atmospheric pressure (corrected for room T) : $\xlongequal[14.604]{ }$ psia
vacuum pressure: \qquad psia -0. 292 \qquad volts

RAW EQUILIBRIWM PRESSURE DATA

| STEP | $\begin{gathered} \text { PI } \\ \text { (volts) } \end{gathered}$ | $\begin{gathered} \boldsymbol{p}_{2} \\ (\text { volts }) \end{gathered}$ |
| :---: | :---: | :---: |
| | 0.226 | 0.161 |
| 2 | 0.431 | 0. 360 |
| 3 | -622 | 0.550 |
| 4 | 0. 830 | 0. 753 |
| 5 | 1 | 0. 972 |
| 6 | 1246 | 1.167 |
| 7 | 1.457 | 1.373 |
| 8 | 1.653 | 1.567 |
| 9 | 1.821 | 1.738 |
| 10 | 2.050 | 1.944 |
| 11 | 2.490 | 2.370 |
| 12 | 1.820 | $\underline{2.120}$ |
| 13 | 1.530 | 1.773 |
| 14 | 1. 333 | 1.485 |
| 15 | -1922 | 1.096 |
| 16 | -120 | -834 |
| 17 | 0.519 | 0.611 |
| 18 | 0.321 | 0.405 |
| 19 | -0.122 | $\underline{0.203}$ |
| $\underline{20}$ | $\underline{0.073}$ | 0.133 |

COMMENTS
average equilibrium time about
\qquad
beginning of desorption
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\square
\square
\qquad
\qquad
\qquad

DATA CHECKLIST

DATE 8/8/85
SAMPLENAME Berea, Sample \#1
RUN NUMBER HT2
SAMPLE WEIGHT 118.02 - gm
COMMENTS
\qquad
\qquad
\qquad
\qquad
\qquad

CIRCLE TYPE OF EXPERIMENT AND MEDIUM USED (E.G. ADSORBATE)

other medium \qquad

TEMPERATURE OF EXPERIMENT 207 C or K
DEAD VOLUME (if already known) 46.084 cc
SAMPLING BOTTLE VOLIJME (circle one)
low T system 45.07 ce
high T system: Number 158.62 cc OR Number 2513.30 cc
other \qquad cc

PRESSURE TRANSDUCER CALIBRATION INFORMATION:
plate differential: $25 \mathrm{psi} \quad 100 \mathrm{psi} 500 \mathrm{psi}$ other \qquad atmospheric pressure (corrected for room T) : 14.675 psia vacuum pressure: \qquad psia -0.294 volts

RAW EQUILIBRIUM PRESSURE DATA

| STEP | $\begin{gathered} \boldsymbol{p}_{1} \\ \text { (volts) } \end{gathered}$ | $\begin{gathered} p_{2} \\ \text { (volls) } \end{gathered}$ |
| :---: | :---: | :---: |
| 1 | . 0.276 | 0.163 |
| 2 | -585 | 0.476 |
| 3 | 0. 886 | 0.786 |
| $\underline{4}$ | 1.167 | 1.078 |
| 5 | 1.416 | 1.334 |
| 6 | 1.768 | 1.660 |
| 7 | 2130 | 2.023 |
| 8 | 2.491 | 2.375 |
| 9 | 3.049 | 2.866 |
| 10 | 3.455 | 3.287 |
| 11 | 3.925 | 3.727 |
| 12 | 4.518 | 4.448 |

—————
$-13 \xrightarrow{1.826} \xrightarrow{3.218}$
_average equilibrium time about
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
beginning of desorption
$\underline{14} \underline{1.548} \underline{2.031}$
$\ldots 15 \xrightarrow[1.316]{1.503}$
$16-1.143-1.237$
$\underline{17} \underline{0.936} \underline{1.014}$
$\underline{18-734 ~}$
$19{ }^{0.533} \xrightarrow{0.601}$
$\underline{20} 0.332 \quad 0.399$
$\underline{21 ~} 0.202$
$22-0.025-0.038$

DATA CHECKLIST

DATE 8/13/85
SAMPLE NAME Berea, Sample \#l
RUN NUMBER HT3
SAMPLE WEIGHT 118.02 gm
COMMENTS
\qquad
\qquad
\qquad
\qquad

CIRCLE TYPE OF EXPERIMENT AND MEDIUM USED (E.G. ADSORBATE)
$\begin{array}{lll}\text { dead volume } & \text { low temperature } \text { nigh temperature } \\ \text { elium nitrogen natural gas }\end{array}$
other medium \qquad
TEMPERATURE OF EXPERIMENT 150 C or K
DEAD VOLUME (if already known) $\underline{46.084}$ cc
SAMPLING BOTTLE VOLUME (circle one)
low T system 45.07 cc
high T system: Number
158.62 cc OR Number $2 \quad 513.30 \mathrm{cc}$
other \qquad cc

PRESSURE TRANSDUCER CALIBRATION INFORMATION:
plate differential: 25 psi 100 psi 500 psi other \qquad
atmospheric pressure (corrected for room T): 14.760 psia vacuum pressure: \qquad psia
-0.295 volts

RAW EQUILIBRIUM PRESSURE DATA

STEP
p_{1}

p_{2}

(volts) (volts)
$10.105 \quad 0.059$
-2 $0.230 \quad 0.179$
$3 \quad 0.382 \quad 0.325$
$-4 \quad 0.521 \quad 0.464$

| 5 | 0.670 | 0.607 |
| :--- | :--- | :--- |

$\xrightarrow{6}-812 \quad 0 \quad 744$
$\rightarrow \quad 7 \quad 0 \quad 953 \quad 881$
ـ
$\underline{9} 1.2671 .173$
$10-1297 \quad 1.282$
\qquad
$11 \quad 1.174 \quad 1.221$
$12 \xrightarrow{0.999} 1.089$
$\underline{13} 0.815 \quad 0.920$
$\xrightarrow{14} \quad 0.719 \quad 0.792$
$\xrightarrow{15} 0.577 \quad 0.649$
16 - 0.539
$170.299 \quad 0.360$
$\xrightarrow{18} 0.137 \quad 0.213$
$19 \quad-0.001 \quad 0.067$

DATA CHECKLIST

DATE 6/25/85
SAMPLE NAME Berea, Sample \#2 RUN NUMBER DV1 \& DV2
SAMPLE WEIGHT 15, 1.865 gm
COMMENTS
Best average DV is 46.124 cc.

CIRCLE TYPE OF EXPERIMENT AND MEDIUM USED (E.G. ADSORBATE)
dead volume low temperature high temperature
helium nitrogen steam natural gas \qquad
other medium \qquad

TEMPERATURE OF EXPERIMENT \qquad 77.3 C

DEAD VOLUME (if already known) \qquad cc

SAMPLING BOTTLE VOLUME (circle one)
low T syste $\quad 5.07$ cc
high T system:Number 1 158.62 cc OR Number 2513.30 cc
other \qquad cc

PRESSURE TRANSDUCER CALIBRATION INFORMATION:
plate differential: $25 \mathrm{psi} \quad 100 \mathrm{psi} 500 \mathrm{psi}$ other \qquad atmospheric pressure (corrected for room T): 14.68 psia for DV2 vacuum pressure: \qquad psia \qquad volts

RAW EQUILIBRIUM PRESSURE DATA

DATA CHECKLIST

DATE 6/27/85
SAMPLE NAME _Berea, Sample \#2
RUN NUMBER \quad LTl
SAMPLE WEIGHT 151.865 gm
COMMENTS

RAW EQUILIBRIUM PRESSURE DATA

DATA CHECKLIST

DATE $4 / 10 / 85$
SAMPLE NAME Berea, Sample \#2
RUN NUMBER LT2
SAMPLE WEIGHT 151.865 gm
COMMENTS
Run aborted after adsorption section because of a leak. Therefore, there is no desorption section.

CIRCLE TYPE OF EXPERIMENT AND MEDIUM USED (E.G. ADSORBATE)

other medium \qquad

TEMPERATURE OF EXPERIMENT 77.3 C C K
DEAD VOLUME (if already known) 46. 124 cc
SAMPLING BOTTLE VOLUME (circle one)
low T system 45.07 cc
high T system: Number $1 \quad 158.62 \mathrm{cc}$ OR Number 2513.30 cc
other \qquad cc

PRESSURE TRANSDUCER CALIBRATION INFORMATION:
plate differential $25 \mathrm{psi} \quad 100 \mathrm{psi} \quad 500 \mathrm{psi}$ other \qquad
atmospheric pressure (corrected for room T): $\mathbf{1 4 . 7 2}$ psia
vacuum pressure: \qquad psia -5.888 volts

RAW EQUILIBRIUM PRESSURE DATA

DATA CHECKLIST

DATE
SAMPLE NAME _ Berea. Sample \#2_ RUN NUMBER LT4
SAMPLE WEIGHT 151.865 gm
COMMENTS
\qquad
\qquad
\qquad
\qquad
 low temperature
dead volume
high temperature
helium nitrogen
steam natural gas \qquad
other medium \qquad

TEMPERATURE OF EXPERIMENT \qquad 77.3 C

DEAD VOLUME (if already known) 46.124 cc

SAMPLING BOTTLE VOLUME (circle one)

low T system 45.07 cc
high T system: Number 1 158.62 cc OR Number 2513.30 cc
other \qquad cc

PRESSURE TRANSDUCER CALIBRATION INFORMATION:

plate differential $25 \mathrm{psi} \quad 100 \mathrm{psi} 500 \mathrm{psi}$ other \qquad atmospheric pressure (corrected for room T): 14.657 psia vacuum pressure: \qquad psia \qquad volts

RAW EQUILIBRIUM PRESSURE DATA

STEP$p_{1}$$p_{2}$(volts) (volts)$\underline{1}-2.655-5.818$$\underline{2} \quad \underline{-0.982}-5.114$
-3_0.409 -4.228
$-4 \quad 1.505 \quad-3.318$
-5.020 -2.365
6ـ 4.410 -1.489
$7.7 .333-0682$
$8 \quad 8.468-0.217$
-

\qquad
-9 -4.074 -0.467
$-10-5.124-0.849$$-11-5.843-1.326$
$12 \quad-5.848-1.829$
$-13 \quad-5.860-2.354$
$-14 \quad-5.860-2.843$
$15 \quad-5.860 \quad-3.190$
-16 -5.862 -3.599
$-17 \quad-5.862 \quad-3.952$
$-18 \quad-5.862 \quad-4.260$
\qquad
beginning of desorption
\qquad

DATA CHECKLIST

DATE 5/30/85
SAMPLE NAME Berea, Sample \#2
RUN NUMBER HT
SAMPLE WEIGHT 151.865 gm
COMMENTS
\qquad
\qquad
\qquad
\qquad

CIRCLE TYPE OF EXPERIMENT AND MEDIUM USED (E.G. ADSORBATE)

other medium \qquad
TEMPERATURE OF EXPERIMENT 167..4 C or K

DEAD VOLUME (if already known) 46.124 cc
SAMPLING BOTTLE VOLUME (circle one)
low T system 45.07 cc
high T system: Number 158.62 cc OR Number 2513.30 cc
other \qquad cc

PRESSURE TRANSDUCER CALIBRATION INFORMATION:
plate differential: $25 \mathrm{psi} \quad 100 \mathrm{psi} \quad 500 \mathrm{psi}$ other \qquad atmospheric pressure (corrected for room T): 14.744_ psia
vacuum pressure: \qquad psia \qquad volts

RAW EQUILIBRIUM PRESSURE DATA

DATA CHECKLIST

DATE 6/17/85
SAMPLE NAME The Gevsers, Sample \#1 RUN NUMBER DV1, DV2, \& DV3
SAMPLE WEIGHT 197.55 gm
COMMENTS
DVl average $=36.578 \mathrm{cc}$
DV2 average $=$ bad numbers because of a leak
DV3 averaee $=\mathbf{3 7 . 3 8 8} \mathrm{cc} \quad-$ - best estimate

CIRCLE TYPE OF EXPERIMENT AND MEDIUM USED (E.GADSORBATE)
dead volume low temperature high temperature
helium nitrogen
steam natural gas \qquad
other medium \qquad

TEMPERATURE OF EXPERIMENT \qquad 77.3 c.
DEAD VOLUME (if already known) \qquad cc

SAMPLING BOTTLE VOLUME (circle one)
low T system 45.07 cc
high T system: Number 1158.62 cc OR Number 2513.30 cc
other \qquad cc

PRESSURE TRANSDUCER CALIBRATION INFORMATION:
plate differential $25 \mathrm{psi} 100 \mathrm{psi} \quad 500 \mathrm{psi}$ other \qquad atmospheric pressure (corrected for room T): $14.687 \quad \mathrm{psia}$
vacuum pressure: \qquad psia \qquad volts

RAW EQUILIBRIUM PRESSURE DATA

DATA CHECKLIST

DATE 6/85
SAMPLE NAME The Gevsers. Sample \#1 RUN NUMBER LT1
SAMPLE WEIGHT 197.55 gm
COMMENTS
\qquad
\qquad
\qquad
\qquad

CIRCLE TYPE OF EXPERIMENT AND MEDIUM USED (E.G. ADSORBATE)
dead volume Llow temperature high temperature
helium nitrogen
steam natural gas \qquad
other medium \qquad

TEMPERATURE OF EXPERIMENT 77.3

DEAD VOLUME (if already known) 37.388 ce
SAMPLING BOTTLE VOLUME (circle one)
low T systea 45.07 cc
high T system: Number $1 \quad 158.62$ cc OR Number 2513.30 cc
other \qquad cc

PRESSURE TRANSDUCER CALIBRATION INFORMATION:
plate differential $25 \mathrm{psi} \quad 100 \mathrm{psi} \quad 500 \mathrm{psi}$ other \qquad atmospheric pressure (corrected for room T): $\quad 14.71$ psia vacuum pressure: \qquad psia $\underline{-5.884}$ volts

RAW EQUILIBRIUM PRESSURE DATA

| STEP | Pl
 (volts) | $\begin{gathered} p_{2} \\ \text { (volts) } \end{gathered}$ | COMMENTS |
| :---: | :---: | :---: | :---: |
| 1 | -5. 116 | -5.673 | average equilibrium time about |
| -2 | -4.673 | -5.400 | 30 minutes |
| 3 | -3, 941 | -4.998 | |
| 4 | -3. 388 | -4.559 | |
| 5 | -2. 806 | -4.082 | |
| 6 | -2.205 | -3.572 | |
| 7 | -1. 784 | -3.093 | |
| 8 | -0 925 | -2.503 | |
| 9 | -0.176 | -1.872 | |
| -10 | 0.232 | -1.328 | |
| 11 | 0.950 | -0.745 | |
| 12 | 1.200 | -0.302 | |
| 13 | 1.637 | -0.010 | beginning of desorption |
| 14 | -1.266 | -0.204 | |
| 15 | $\underline{-1.971}$ | $\underline{-0.577}$ | |
| -16 | -3.025 | -1. 190 | |
| 17 | -4.268 | -2.002 | |
| 18 | -5.116 | -2.837 | |
| $\underline{-19}$ | -5.883 | -3.659 | |
| $\underline{20}$ | -5. 878 | -4.260 | |
| $\underline{-21}$ | -5-877 | -4.699 | |
| $\underline{22}$ | -5.874 | -5.020 | |
| $\underline{23}$ | -5. 879 | -5.252 | |

DATA CHECKLIST

DATE 8/20/85
SAMPLE NAME The Geysers. Sample \#l RUN NUMBER HT1
SAMPLE WEIGHT 197.55 gm
COMMENTS
average equilibrium time about one hour

CIRCLE TYPE OF EXPERIMENT AND MEDIUM USED (E.G. ADSORBATE)
dead volume low temperature high temperature
helium nitrogen

steam natural gas \qquad
other medium \qquad
TEMPERATURE OF EXPERIMENT 153 C Ir K
DEAD VOLUME (if already known) 37.388
cc
SAMPLING BOTTLE VOLUME (circle one)
low T system 45.07 cc
high T system: Number 158.62 cc OR Number 2513.30 cc
other \qquad cc

PRESSURE TRANSDUCER CALIBRATION INFORMATION:
plate differential: $25 \mathrm{psi} 100 \mathrm{psi} \quad 50 \mathrm{psi}$ other \qquad
atmospheric pressure (corrected for room T): 14.696 psia
vacuum pressure: \qquad psia -0.294 volts

RAW EQUILIBRIUM PRESSURE DATA

 COMMENTS

\qquad
\qquad
\qquad
\qquad

\qquad
beginning of desorption
\qquad
\qquad -

DATA CHECKLIST

DATE 3/20/86
SAMPLE NAME The Geysers. Sample \#1 RUN NUMBER HT2
SAMPLE WEIGHT 197.55 gm
COMMENTS
average_equilibrium time usuallv 6_8 hours. though as high as 12 hours

CIRCLE TYPE OF EXPERIMENT AND MEDIUM USED (E.GADSORBATE)

dead volume low temperature
high temperature
helium nitrogen
steam natural gas \qquad
other medium \qquad

TEMPERATURE OF EXPERIMENT \qquad
DEAD VOLUME (ifalready known) 37.388 cc
SAMPLING BOTTLE VOLUME (circle one)
low T system 45.07 cc
high T system: Number 1 158.62 cc OR Number 2513.30 cc
other \qquad cc

PRESSURE TRANSDUCER CALIBRATION INFORMATION:

plate differential: $25 \mathrm{psi} \quad 100 \mathrm{psi} \quad 500 \mathrm{psi}$ other \qquad
atmospheric pressure (corrected for room T): 14.851 psia
vacuum pressure: \qquad psia -0.346 volts

RAW EQUILIBRIUM PRESSURE DATA

| STEP | $\begin{gathered} p_{1} \\ (\text { volts }) \end{gathered}$ | $\begin{gathered} \boldsymbol{p}_{\mathbf{2}} \\ (\text { volts) } \end{gathered}$ | COMMENTS |
| :---: | :---: | :---: | :---: |
| | 0.1998 | 0.0186 | |
| 2 | 0.9117 | $\underline{0.6192}$ | |
| 3 | 1.2257 | 1.0711 | |
| 4 | 1.6926 | 1.3765 | |
| | 2.278 | $\underline{1.983}$ | |
| 6 | 2.589 | $\underline{2.416}$ | |
| 7 | 3.046 | $\underline{2.839}$ | |
| 8 | 3.468 | 3.287 | |
| 9 | 3.785 | 3.723 | |
| -10 | 3.859 | 3.773 | |

$11.3 .385 \quad 3.611$
$\ldots \quad 2.525 \quad 2.897$
131.98212 .252
$141.668 \quad 1.858$
$15 \quad 1.073 \quad 1.314$
$16-0.5320 .802$
170.1900 .462
$-18-0.068-0.160$
$\underline{19 \quad-0.121 \quad 0.034}$
beginning of desorption
beginning a desorption
\qquad

DATA CHECKLIST

DATE 7/3/86
SAMPLE NAME The Geysers, Sample \#1 RUN NUMBER HT3
SAMPLE WEIGHT 197.55 gm

COMMENTS

Average equilibrium time about 12 hours.

CIRCLE TYPE OF EXPERIMENT AND MEDIUM USED (E.G. ADSORBATE)

TEMPERATURE OF EXPERIMENT 180 - C or K
DEAD VOLUME (if already known) 37. 388 cc
SAMPLING BOTTLE VOLUME (circle one)
low T system 45.07 cc
high T system: Number 158.62 cc OR Number 2513.30 cc
other \qquad cc

PRESSURE TRANSDUCER CALIBRATION INFORMATION:
plate differential: $25 \mathrm{psi} \quad 100 \mathrm{psi} \quad 500 \mathrm{psi}$ other \qquad atmospheric pressure (corrected for room T): 14.905 psia vacuum pressure: \qquad psia \qquad volts

RAW EQUILIBRIUM PRESSURE DATA

DATE 6/17/85
SAMPLE NAME Montiverdi 2. Sample \#2 RUN NUMBER DV1 \& DV2
SAMPLE WEIGHT 178.276 gm
COMMENTS
DV2 better than DV1. Average DV2 $=42.551$ cc.
\qquad
\qquad
\qquad
\qquad

CIRCLE TYPE OF EXPERIMENT AND MEDIUM USED (E.G.ADSORBATE)

| dead volume low temperature high temper | |
| :---: | :---: |
| helium nitrogen | steam natural gas |

other medium \qquad
TEMPERATURE OF EXPERIMENT 23 C or K

DEAD VOLUME (if already known) \qquad cc

SAMPLING BOTTLE VOLUME (circle one)

low T system 45.07 cc
high T system: Number 1 158.62 cc OR Number 2513.30 cc
other \qquad cc

PRESSURE TRANSDUCER CALIBRATION LNFORMATION:
 atmospheric pressure (corrected for room T): 14.708 psia vacuum pressure: \longrightarrow psia , -5. 883 volts

RAW EQUILIBRIUM PRESSURE DATA

DATA CHECKLIST

DATE 5/25/85
SAMPLE NAME Montiverdi 2, Sample \#2 RUN NUMBER LT1
SAMPLE WEIGHT 178.276 gm
COMMENTS
\qquad
\qquad
\qquad
\qquad

CIRCLE TYPE OF EXPERIMENT AND MEDIUM USED (E.G. ADSORBATE)

| dead volume low temperature high temper |
| :---: | :---: | :---: | :---: |
| helium nitrogen steam natural gas |

other medium \qquad

TEMPERATURE OF EXPERIMENT 77.3 $C \pi$
DEAD VOLUME (if already known) 42.551_ cc
SAMPLING BOTTLE VOLUME (circle one)
low T syster 45.07 cc
high T system: Number 1 158.62 cc OR Number 2513.30 cc
other \qquad cc

PRESSURE TRANSDUCER CALIBRATION INFORMATION:
plate differential: $25 \mathrm{psi} \quad 100 \mathrm{psi} 500 \mathrm{psi}$ other \qquad
atmospheric pressure (corrected for room T): 14. 684 psia
vacuum pressure: \qquad psia $\quad \underline{-5.873}$ volts

RAW EQUILIBRIUM PRESSURE DATA

| STEP | $\begin{gathered} \boldsymbol{P}_{1} \\ \text { (volts) } \end{gathered}$ | $\begin{gathered} p_{2} \\ (\text { volls }) \end{gathered}$ |
| :---: | :---: | :---: |
| 1 | -3.795 | -5.448 |
| 2 | $\underline{-2.336}$ | -4.736 |
| 3 | -1.515 | -3.999 |
| 4 | $\underline{-2.027}$ | -3.550 |
| 5 | -1. 615 | -3.108 |
| 6 | -1. 117 | -2.664 |
| 7 | -0679 | -2.214 |
| 8 | $\underline{-0.004}$ | -1.731 |
| 9 | 0.921 | -1.161 |
| 10 | 2.223 | -0.5 06 |
| 11 | 2.978 | -0.070 |
| 12 | -2. 180 | -0.347 |
| $\underline{13}$ | -3. 936 | -1.016 |
| 14 | -5. 853 | -2.055 |
| 15 | -5.856 | -2.904 |
| 16 | -5. 861 | -3.515 |
| 17 | -5.862 | -4.039 |
| -18. | م68-5 | -4.454 |
| 19 | -5.860 | -4.772 |
| 20 | -5. 860 | $\underline{-5.021}$ |

COMMENTS
\square
\qquad

> beginning of desorption
\qquad

DATA CHECKLIST

DATE 2/1/86
SAMPLE NAME Montiverdi 2, Sample \#2 RUN NUMBER LT2
SAMPLE WEIGHT 178.276 gm
COMMENTS
\qquad
\qquad
\qquad
\qquad

CIRCLE TYPE OF EXPERIMENT AND MEDIUM USED (E.G. ADSORBATE)
dead volume

high temperature
helium
nitrogen
steam natural gas \qquad
other medium \qquad

TEMPERATURE OF EXPERIMENT 77.3 C K
DEAD VOLUME (if already known) 42. 551 cc
SAMPLING BOTTLE VOLUME (circle one)
low T system 45.07 cc
high T system: Number $1 \quad 158.62 \mathrm{cc}$ OR Number 2513.30 cc
other \qquad cc

PRESSURE TRANSDUCER CALIBRATION INFORMATION:
plate differentia $25 \mathrm{psi} 100 \mathrm{psi} \quad 500 \mathrm{psi}$ other \qquad
atmospheric pressure (corrected for room T): 14.67 psia
vacuum pressure: \qquad psia -5.865 volts

RAW EQUILIBRIUM PRESSURE DATA

DATA CHECKLIST

DATE 2/13/86
SAMPLE NAME Montiverdi 2. Sample \# 2 RUN NUMBER LT3
SAMPLE WEIGHT 178.276 gm

COMMENTS

\qquad
\qquad
\qquad
\qquad
\qquad

CIRCLE TYPE OF EXPERIMENT AND MEDIUM USED (E.G. ADSORBATE)
\qquad
other medium

TEMPERATURE OF EXPERIMENT \qquad
DEAD VOLUME (if already known) 42.551 cc
SAMPLING BOTTLE VOLUME (circle one)
low T systen 45.07 cc
high T system: Number $1 \quad 158.62$ cc OR Number 2513.30 cc
other \qquad cc

PRESSURE TRANSDUCER CALIBRATION INFORMATION:
plate differentiaL $25 \mathrm{psi} \quad 100 \mathrm{psi} \quad 500 \mathrm{psi}$ other \qquad
atmospheric pressure (corrected for room T): $14.67 \quad$ psia
vacuum pressure: \qquad psia -5.868 \qquad volts

RAW EQUILIBRIUM PRESSURE DATA

DATA CHECKLIST

DATE
SAMPLE NAME Montiverdi 2, Sample \#3 RUN NUMBER HTl

SAMPLE WEIGHT $\xlongequal{\mathbf{9 5 . 6} \mathbf{~ g m}}$
COMMENTS
\qquad
\qquad
\qquad
\qquad
\qquad

CIRCLE TYPE OF EXPERIMENT AND MEDIUM USED (E.G. ADSORBATE)
dead volume low temperature high temperature
helium nitrogen steam natural gas \qquad other medium \qquad
TEMPERATURE OF EXPERIMENT $180 \quad$ C or K
DEAD VOLUME (if already known) 61.478 cc
SAMPLING BOTTLE VOLUME (circle one)
low T system 45.07 cc
high T system: Number $1 \mathbf{1 5 8 . 6 2}$ cc OR Number 2513.30 cc
other \qquad cc

PRESSURE TRANSDUCER CALIBRATION INFORMATION:

plate differential: $25 \mathrm{psi} \quad 100 \mathrm{psi} \quad 500 \mathrm{psi}$ other
atmospheric pressure (corrected for room T): 14.692 psia
vacuum pressure: \qquad psia \qquad volts

RAW EQUILIBRIUM PRESSURE DATA

9.3 APPENDIX C -- TABLES OF ADSORPTION RESULTS

Appendix C presents the tables of adsorption results from all fifteen experimental runs, starting with those conducted at low temperatures. Each table lists the pressure data gathered during the experiment as well as the values of $n \quad n_{g a s}$, and $n_{a d s}$ obtained from the analysis. The interpretation of these results is found in Section 5.2 as is a discussion on the issue of negative adsorption values. The tables also include the parameters required to construct adsorption isotherms: the relative vapor pressure, p_{2} / p_{0}, and the amount of adsorption or desorption per unit mass of the sample. Theoretically, the values of p_{2} / p_{0} should be less than unity. Values exceeding unity are due to small instrument errors.

TABLE C. 1 Nitrogen Run 1 at $-196^{\circ} \mathrm{C}$ on Sample \#2 of Berea Sandstone

| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Step | Pressure Data | | | Amount of Nitrogen in DV | | | |
| | p_{2} / p_{0} | p_{1} | p_{2} | $n_{\text {bot }}{ }^{*}$ | $n_{\text {gas }}$ | $n_{\text {ads }}{ }^{*}$ | $n_{\text {cat }} / m_{r}{ }^{*}$ |
| | (dimensionless) | | (psia) | (umoles) | (poles) | moles) | (1 moles/gm) |
| 1 | 0.06122 | 1.5825 | 0.9000 | 347.259 | 468.634 | -121.374 | -0.799 |
| 2 | 0.11378 | 2.4625 | 1.6725 | 749.216 | 870.877 | -121.662 | -0.801 |
| 3 | 0.16803 | 3.2975 | 2.4700 | 1170.252 | 1286.139 | -115.887 | -0.763 |
| 4 | 0.32058 | 5.1475 | 4.7125 | 1391.582 | 2453.817 | -1062.235 | -6.995 |
| 5 | 0.40714 | 7.2850 | 5.9850 | 2053.029 | 3116.413 | -1063.385 | -7.002 |
| 6 | 0.48180 | 8.2125 | 7.0825 | 2627.978 | 3687.886 | -1059.907 | -6.979 |
| 7 | 0.55646 | 9.3025 | 8.1800 | 3199.112 | 4259.358 | -1060.246 | -6.982 |
| 8 | 0.62942 | 10.3475 | 9.2525 | 3756.254 | 4817.813 | -1061.560 | -6.990 |
| 9 | 0.77483 | 13.5675 | 11.3900 | 4864.177 | 5930.818 | -1066.642 | -7.024 |
| 10 | 0.88690 | 14.6700 | 13.0375 | 5694.801 | 6788.678 | -1093.876 | -7.203 |
| 11 | 0.83707 | 11.5200 | 12.3050 | 5295.389 | 6407.262 | -1111.873 | -7.321 |
| 12 | 0.76582 | 10.1975 | 11.2575 | 4756.056 | 5861.825 | -1105.769 | -7.28 1 |
| 13 | 0.69235 | 9.0800 | 10.1775 | 4197.642 | 5299.465 | -1101.823 | -7.255 |
| 14 | 0.60867 | 7.7125 | 8.9475 | 3569.268 | 4658.999 | -1089.731 | -7.176 |
| 15 | 0.53180 | 6.6650 | 7.8175 | 2982.870 | 4070.603 | -1087.733 | -7.163 |
| 16 | 0.43673 | 5.0050 | 6.4200 | 2262.911 | 3342.919 | -1080.009 | -7.112 |
| 17 | 0.35442 | 3.9800 | 5.2100 | 1637.080 | 2712.868 | -1075.787 | -7.084 |
| 18 | 0.27228 | 2.8075 | 4.0025 | 1029.058 | 2084.118 | -1055.059 | -6.947 |
| 19 | 0.19915 | 1.8125 | 2.9275 | 461.741 | 1524.361 | -1062.620 | -6.997 |
| 20 | 0.13197 | 0.9275 | 1.9400 | -53.425 | 1010.166 | -1063.590 | -7.004 |

[^3]TABLE C. 2 Nitrogen Run 2 at $\cdot 196^{\circ} \mathrm{C}$ on Sample \#2 of Berea Sandstone

| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Step | Pressure Data | | | Amount of Nitrogen in DV | | | |
| | p_{2} / p_{0} | p_{1} | p_{2} | $n_{\text {bot }}$ | $n_{\text {gas }}$ | $n_{\text {ads }}$ | $n_{\text {ade }} / m_{7}$ |
| | (dimensionless) | (psia) | (psia) | (umoles) | moles) | (umoles) | (umoles/gm) |
| 1 | 0.00306 | 2.9575 | 0.0450 | 1481.895 | 23.432 | 1458.463 | 9.604 |
| 2 | 0.02109 | 5.1050 | 0.3100 | 3921.615 | 161.418 | 3760.197 | 24.760 |
| 3 | 0.07279 | 5.6250 | 1.0700 | 6239.223 | 557.153 | 5682.069 | 37.415' |
| 4 | 0.17143 | 9.8075 | 2.5200 | 9947.140 | 1312.174 | 8634.966 | 56.859 |
| 5 | 0.27364 | 11.9875 | 4.0225 | 13999.772 | 2094.532 | 11905.241 | 78.394 |
| 6 | 0.37534 | 13.3600 | 5.5175 | 17990.076 | 2872.984 | 15117.092 | 99.543 |
| 7 | 0.48078 | 15.4425 | 7.0675 | 22251.318 | 3680.075 | 18571.244 | 122.288 |
| 8 | 0.59269 | 18.0650 | 8.7125 | 27009.918 | 4536.633 | 22473.285 | 147.982 |
| 9 | 0.69830 | 20.7575 | 10.2650 | 32348.557 | 5345.026 | 27003.531 | 177.813 |
| 10 | 0.78759 | 22.3750 | 11.5775 | 37842.379 | 6028.450 | 31813.930 | 209.488 |
| 11 | 0.86088 | 24.5800 | 12.6550 | 43909.879 | 6589.509 | 37320.371 | 245.747 |
| 12 | 1.08724 | 26.4825 | 15.9825 | 49252.332 | 8322.151 | 40930.180 | 269.517 |

TABLE C. 3 Nitrogen Run 4 at $\cdot 196^{\circ} \mathrm{C}$ on Sample \#2 of Berea Sandstone

| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Step | Pressure Data | | | Amount of Nitrogen in DV | | | |
| | p_{2} / p_{0} | p_{1} | p_{2} | $n_{10 t}$ | $n_{\text {gas }}$ | $n_{\text {ads }}$ | $n_{\text {ata }} / m_{r}$ |
| | (dimensionless) | (psia) | (psia) | moles) | moles) | (umoles) | (umoles/gm) |
| 1 | 0.00762 | 8.0195 | 0.1120 | 4023.376 | 58.319 | 3965.058 | 26.109 |
| 2 | 0.12735 | 12.2020 | 1.8720 | 9279.333 | 974.758 | 8304.575 | 54.684 |
| 3 | 0.27803 | 15.6795 | 4.01870 | 15177.656 | 2128.117 | 13049.539 | 85.929 |
| 4 | 0.43279 | 18.4195 | 6.3620 | 21312.574 | 3312.719 | 17999.855 | 118.525 |
| 5 | 0.59486 | 22.2070 | 8.7445 | 28162.363 | 4553.296 | 23609.068 | 155.461 |
| 6 | 0.74384 | 25.6820 | 10.9345 | 35665.969 | 5693.638 | 29972.332 | 197.362 |
| 7 | 0.88109 | 32.9895 | 12.9520 | 45861.152 | 6744.158 | 39116.996 | 257.577 |
| 8 | 0.96017 | 35.8270 | 14.1145 | 56908.582 | 7349.476 | 49559.105 | 326.337 |
| 9 | 0.91765 | 4.4720 | 13.4895 | 52320.434 | 7024.036 | 45296.398 | 298.268 |
| 10 | 0.85269 | 1.8470 | 12.5345 | 46882.578 | 6526.764 | 40355.816 | 265.735 |
| 11 | 0.77156 | 0.0495 | 11.3420 | 41136.895 | 5905.824 | 35231.070 | 231.989 |
| 12 | 0.68602 | 0.0370 | 10.0845 | 36024.676 | 5251.039 | 30773.637 | 202.638 |
| 13 | 0.59673 | 0.0070 | 8.7720 | 31564.998 | 4567.615 | 26997.383 | 177.772 |
| 14 | 0.51357 | 0.0070 | 7.5495 | 27727.336 | 3931.055 | 23796.281 | 156.694 |
| 15 | 0.45456 | 0.0070 | 6.6820 | 24331.063 | 3479.344 | 20851.719 | 137.304 |
| 16 | 0.38500 | 0.0020 | 561505 | 21452.498 | 2946.924 | 18505.574 | 121.855 |
| 17 | 0.32497 | 0.0020 | 4.7770 | 19022.953 | 2487.403 | 16535.551 | 108.883 |
| 18 | 0.27259 | 0.0020 | 4.0070 | 16985.189 | 2086.461 | 14898.729 | 98.105 |

TABLE C. 4 Nitrogen Run 1 at $-196^{\circ} \mathrm{C}$ on Sample \#1 from The Geysers

| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| itep | Pressure Data | | | Amount of Nitrogen in DV | | | |
| | p_{2} / p_{0} | p_{1} | p_{2} | $n^{20 t}$ | $n_{\text {bar }}$ | $n_{\text {eds }}$ | $n_{\text {ata }} / m_{T}$ |
| | [dimensionless) | (psia) | (psia) | (umoles) | @moles) | (umoles) | (umoles/gm) |
| 1 | 0.03588 | 1.9200 | 0.5275 | 708.511 | 222.646 | 485.866 | 2.459 |
| 2 | 0.08231 | 3.0275 | 12100 | 1633.265 | 510.713 | 1122.552 | 5.682 |
| 3 | 0.15068 | 4.8575 | 22150 | 2977.782 | 934.900 | 2042.882 | 10.341 |
| 4 | 0.22534 | 6.2400 | 3.3125 | 4467.309 | 1398.130 | 3069.180 | 15.536 |
| 5 | 0.30646 | 7.6950 | 4.5050 | 6090.397 | 1901.456 | 4188.941 | 21.204 |
| 6 | 0.39320 | 9.1975 | 5.7800 | 7829.239 | 2439.604 | 5389.635 | 27.282 |
| 7 | 0.47466 | 10.2500 | 6.9775 | 9494.304 | 2945.041 | 6549.263 | 33.152 |
| 8 | 0.57500 | 12.3975 | 8.4525 | 11501.540 | 3567.604 | 7933.936 | 40.162 |
| 9 | 0.68231 | 14.2700 | 10.0300 | 13658.874 | 4233.431 | 9425.443 | 47.712 |
| 10 | 0.77483 | 15.2900 | 11.3900 | 15643.214 | 4807.455 | 10835.759 | 54.851 |
| 11 | 0.87398 | 17.0850 | 12.8475 | 17799.275 | 5422.632 | 12376.644 | 62.651 |
| 12 | 0.94932 | 17.7100 | 13.9550 | 19709.838 | 5890.082 | 13819.756 | 69.956 |
| 13 | 0.99898 | 18.8025 | 14.6850 | 21804.844 | 6198.198 | 15606.646 | 79.001 |
| 14 | 0.96599 | 11.5450 | 14.2000 | 20453.967 | 5993.491 | 14460.477 | 73.199 |
| 15 | 0.90255 | 9.7825 | 13.2675 | 18680.781 | 5599.904 | 13080.877 | 66.216 |
| 16 | 0.79830 | 7.1475 | 11.7350 | 16346.638 | 4953.072 | 11393.566 | 57.674 |
| 17 | 0.66020 | 4.0400 | 9.7050 | 13464.257 | 4096.255 | 9368.002 | 47.421 |
| 18 | 0.51820 | 1.9200 | 7.6175 | 10565.340 | 3215.170 | 7350.170 | 37.207 |
| 19 | 0.37840 | 0.0025 | 5.5625 | 7736.383 | 2347.802 | 5388.581 | 27.277 |
| 20 | 0.27619 | 0.0150 | 4.0600 | 5678.267 | 1713.632 | 3964.635 | 20.069 |
| 21 | 0.20153 | 0.0175 | 2.9625 | 4179.835 | 1250.403 | 2929.433 | 14.829 |
| 22 | 0.14694 | 0.0250 | 2.1600 | 3093.537 | 911.686 | 2181.851 | 11.045 |
| 23 | 0.10748 | 0.0125 | 1.5800 | 2295.985 | 666.881 | 1629.103 | 8.247 |

TABLE C. 5 Nitrogen Run 1 at $\cdot 196{ }^{\circ} \mathrm{C}$ on Sample \#2 from Montiverdi Well \#2

| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Step | Pressure Data | | | Amount of Nitrogen in DV | | | |
| | p_{2} / p_{0} | p_{1} | p_{2} | $n_{\text {bot }}$ | $n_{\text {gar }}$ | $n_{\text {ods }}$ | $n_{\text {mate }} / m_{r}$ |
| | (dimensionless) | (psia) | (psia) | (umoles) | (poles) | (umoles) | ($\mu \mathrm{moles} / \mathrm{gm}$) |
| 1 | 0.07238 | 5.1965 | 1.0640 | 2102.637 | 511.111 | 1591.526 | 8.927 |
| 2 | 0.19347 | 8.8440 | 2.8440 | 5155.468 | 1366.165 | 3789.302 | 21255 |
| 3 | 0.31881 | 10.8965 | 4.6865 | 8315.147 | 2251.243 | 6063.905 | 34.014 |
| 4 | 0.39517 | 9.6165 | 5.8090 | 10252.423 | 2790.455 | 7461.968 | 41.856 |
| 5 | 0.47034 | 10.6465 | 6.9140 | 12151.538 | 3321.261 | 8830.276 | 49.531 |
| 6 | 0.54585 | 11.8915 | 8.0240 | 14119.342 | 3854.469 | 10264.872 | 57.579 |
| 7 | 0.62238 | 12.9865 | 9.1490 | 16071.882 | 4394.883 | 11676.999 | 65.500 |
| 8 | 0.70452 | 14.6740 | 10.3565 | 18268.648 | 4974.927 | 13293.722 | 74.568 |
| 9 | 0.80146 | 16.9865 | 11.7815 | 20916.979 | 5659.451 | 15257.528 | 85.584 |
| 10 | 0.91286 | 20.2415 | 13.4190 | 24388.301 | 6446.053 | 17942.248 | 100.643 |
| 11 | 0.98701 | 22.1290 | 14.5090 | 28265.3\% | 6969.653 | 21295.744 | 119.454 |
| 12 | 0.93990 | 9.2340 | 13.8165 | 25933.797 | 6636.999 | 19296.799 | 108.241 |
| 13 | 0.82612 | 4.8440 | 12.1440 | 2 2219.520 | 5833.584 | 16385.936 | 91.913 |
| 14 | 0.64942 | 0.0515 | 9.5465 | 17388.414 | 4585.829 | 12802.585 | 71.813 |
| 15 | 0.50503 | 0.0440 | 7.4240 | 13633.433 | 3566.249 | 10067.184 | 56.470 |
| 16 | 0.40112 | 0.0315 | 5.8965 | 10649.291 | 2832.488 | 7816.804 | 43.847 |
| 17 | 0.31201 | 0.0290 | 4.5865 | 8330.412 | 2203.206 | 6127.207 | 34.369 |
| 18 | 0.24143 | 0.0340 | 3.5490 | 6541.962 | 1704.825 | 4837.137 | 27.133 |
| 19 | 0.18735 | 0.0340 | 2.7540 | 5158.012 | 1322.932 | 3835.080 | 21.512 |
| 20 | 0.14500 | 0.0340 | 2.1315 | 4090.793 | 1023.904 | 3066.890 | 17203 |

TABLE C. 6 Nitrogen Run 2 at $-196^{\circ} \mathrm{C}$ on Sample \#2 from Montiverdi Well \#2

| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Step | Pressure Data | | | Amount of Nitrogen in DV | | | |
| | p_{2} / p_{0} | p_{1} | p_{2} | $n_{\text {bot }}$ | $n_{\text {gas }}$ | $n_{\text {ads }}$ | $n_{\text {cose }} / m_{T}$ |
| | (dimensionless) | (psia) | (psia) | (umoles) | moles) | (μ moles) | (μ moles/gm) |
| 1 | 0.01327 | 0.9200 | 0.1950 | 368.884 | 93.672 | 275.212 | 1.544 |
| 2 | 0.04218 | 2.2950 | 0.62:00 | 1221.132 | 297.828 | 923.304 | . 5.179 |
| 3 | 0.07789 | 3.4200 | 1.14.50 | 2378.664 | 550.021 | 1828.643 | 10.257 |
| 4 | 0.15272 | 6.1200 | 2.24 .50 | 4350.284 | 1078.425 | 3271.859 | 18.353 |
| 5 | 0.24796 | 8.5200 | 3.64.50 | 6830.709 | 1750.940 | 5079.769 | 28.494 |
| 6 | 0.35340 | 10.3950 | 5.1950 | 9476.4\% | 2495.510 | 6980.987 | 39.158 |
| 7 | 0.46650 | 13.4450 | 6.8575 | 12828.250 | 3294.121 | 9534.130 | 53.480 |
| 8 | 0.60170 | 16.2950 | 8.8450 | 16618.848 | 4248.851 | 12369.997 | 69.387 |
| 9 | 0.76497 | 19.3200 | 11.24 .50 | 20727.449 | 5401.733 | 15325.716 | 85.966 |
| 10 | 0.93503 | 27.2950 | 13.74 .50 | 27621.758 | 6602.652 | 21019.105 | 117.902 |
| 11° | 0.77687 | 0.0200 | 11.4200 | 21821.379 | 5485.798 | 16335.581 | 91.631 |
| 12 | 0.61020 | 0.1200 | 8.9700 | 17318.453 | 4308.897 | 13009.556 | 72.974 |
| 13 | 0.48265 | 0.0200 | 7.0950 | 13718.657 | 3408.208 | 10310.449 | 57.834 |
| 14 | 0.37381 | 0.0200 | 5.4950 | 10932.949 | 2639.620 | 8293.329 | 46.520 |

TABLE C. 7 Nitrogen Run 3 at $-196^{\circ} \mathrm{C}$ on Sample \#2 from Montiverdi Well \#2

| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SStep | Pressure Data | | | Amount of Nitrogen in DV | | | |
| | p_{2} / p_{0} | p_{1} | p_{2} | $n_{\text {bot }}$ | $n_{\text {gas }}$ | $n_{\text {eds }}$ | $n_{\text {ads }} / \mathrm{m}$ |
| | (dimensionless) | (psia) | @silk) | moles) | (4moles) | (1) moles) | (1 moles/gm) |
| 1 | 0.02857 | 2.0950 | 0.4200 | 852.249 | 201.754 | 650.494 | 3.649 |
| 2 | 0.07619 | 3.7700 | 1.1200 | 2200.582 | 538.012 | 1662.571 | 9.326 |
| 3 | 0.14592 | 5.7700 | 2.1450 | 4045.001 | 1030.388 | 3014.613 | 16.910 |
| 4 | 0.23095 | 7.7700 | 3.3950 | 6271.023 | 1630.848 | 4640.176 | 26.028 |
| 5 | 0.36701 | 12.1200 | 5.3950 | 9692.738 | 2591.583 | 7101.155 | 39.832 |
| 6 | 0.51837 | 15.2950 | 7.6200 | 13597.817 | 3660.401 | 9937.417 | 55.742 |
| 7 | 0.71054 | 20.2950 | 10.4450 | 18609.549 | 5017.439 | 13592.109 | 76.242 |
| 8 | 0.89592 | 24.8450 | 13.1700 | 24549.850 | 6326.441 | 18223.408 | 102.220 |
| 9 | 0.85170 | 10.0450 | 12.5200 | 23290.557 | 6014.202 | 17276.355 | 96.908 |
| 10. | 0.77347 | 7.1200 | 11.3700 | 21128.135 | 5461.779 | 15666.355 | 87.877 |
| 11 | 0.66122 | 4.0200 | 9.7200 | 18227.945 | 4669.173 | 13558.772 | 76.055 |
| 12 | 0.53197 | 0.9200 | 7.8.200 | 14717.189 | 3756.475 | 10960.715 | 61.482 |
| 13 | 0.41803 | $0.2 २ 00$ | 6.1450 | 11702.520 | 2951.859 | 8750.661 | 49.085 |
| 14 | 0.33129 | 0.1950 | 4.8700 | 9323.855 | 2339.390 | 6984.465 | 39.178 |
| 15 | 0.26156 | 0.1950 | 3.8450 | 7466.717 | 1847.013 | 5619.704 | 31.522 |

TABLE C. 8 Steam Run 1 at $169^{\circ} \mathrm{C}$ on Sample \#1 of Berea Sandstone

| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| itep | Pressure Data | | | Amount of Nitrogen in DV | | | |
| | p_{2} / p_{0} | p_{1} | p_{2} | $n_{\text {bot }}{ }^{*}$ | $n_{3 a s}$ | $n_{\text {ads }}{ }^{*}$ | $n_{\text {add }} / m_{r}{ }^{*}$ |
| | [dimensionless) | (psia) | (psis) | moles) | moles) | (umoles) | 'umoles/gm) |
| 1 | 0.21226 | 25.9040 | 22.6540 | 994.998 | 1988.552 | -993.553 | -8.419 |
| 2 | 0.30549 | 36.1540 | 32.6040 | 2093.675 | 2876.735 | -783.060 | -6.635 |
| 3 | 0.39450 | 45.7040 | 42.1040 | 3219.691 | 3733.741 | -514.050 | -4.356 |
| 4 | 0.48960 | 56.1040 | 52.2540 | 4438.274 | 4659.569 | -221.294 | -1.875 |
| 5 | 0.59220 | 67.5040 | 63.2040 | 5817.703 | 5670.774 | 146.929 | 1.245 |
| 6 | 0.68356 | 76.9040 | 72.9540 | 7100.115 | 6582.569 | 517.546 | 4.385 |
| 7 | 0.78006 | 87.4540 | 83.2540 | 8482.271 | 7558.089 | 924.182 | 7.831 |
| 8 | 0.87095 | 97.2540 | 92.9540 | 9916.054 | 8488.919 | 1427.135 | 12.092 |
| 9 | 0.95106 | 105.6540 | 101.5040 | 11316.257 | 9319.632 | 1996.625 | 16.918 |
| 10. | 1.04757 | 117.1040 | 111.8040 | 13132.761 | 10333.740 | 2799.021 | 23.716 |
| 11 | 1.24714 | 139.1040 | 133.1040 | 15258.429 | 12480.472 | 2777.957 | 23.538 |
| 12 | 1.13002 | 105.6040 | 120.6040 | 10127.246 | 11212.285 | -1085.039 | -9.194 |
| 13 | 0.96746 | 91.1040 | 103.2540 | 6064.233 | 9490.884 | -3426.65 1 | -29.034 |
| 14 | 0.83253 | 81.2540 | 88.8540 | 3564.151 | 8094.000 | -4529.849 | -38.382 |
| 15 | 0.65029 | 60.7040 | 69.4040 | 774.201 | 6249.302 | -5475.101 | -46.391 |
| 16 | 0.52755 | 50.6040 | 56.3040 | -1028.406 | 5032.041 | -6060.447 | -51.351 |
| 17 | 0.42308 | 40.5540 | 45.1540 | -2465.501 | 4010.817 | -6476.318 | -54.875 |
| 18 | 0.32657 | 30.6540 | 34.8540 | -3763.047 | 3078.901 | -6841.948 | -57.973 |
| 19 | 023194 | 20.7040 | 24.7540 | -5000.955 | 2175.227 | -7176.182 | -60.805 |
| 20 | 0.18977 | 18.2540 | 20.2540 | -5610.062 | 1775.709 | -7385.771 | -62.581 |

* Negative values are physically unrealistic. For further discussion, see Section 5.2.

TABLE C. 9 Steam Run 2 at 207° Con Sample \#1 of Berea Sandstone

| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| itep | Pressure Data | | | Amount of Nitrogen in DV | | | |
| | p_{2} / p_{0} | p_{1} | p_{2} | $n_{\text {ote }}{ }^{*}$ | $n_{\text {gas }}$ | $n_{\text {ads }}{ }^{*}$ | $n_{\text {ade }} / m_{r}{ }^{*}$ |
| | (:dimensionless) | (psia) | (psia) | moles) | (umoles) | (μ moles) | ' 4 moles/gm) |
| 1 | 0.08770 | 28.4750 | 22.8250 | 1574.716 | 1830.192 | -255.476 | -2.165 |
| 2 | 0.14783 | 43.9250 | 38.4750 | 3110.6 | 3101.945 | 8.732 | 0.074 |
| 3 | 0.20738 | 58.9750 | 53.9750 | 4535.869 | 4375.786 | 160.083 | 1.356 |
| 4 | 0.26348 | 73.0250 | 68.5750 | 5818.333 | 5589288 | 229.045 | 1.941 |
| 5 | 0.31266 | 85.475 | 81.3750 | 7011.842 | 6664.563 | 347.279 | 2.943 |
| 6 | 0.37528 | 103.0750 | 97.6750 | 8605.901 | 8050.005 | 555.896 | 4.710 |
| 7 | 0.44502 | 121.1750 | 115.8250 | 10210.042 | 9615.114 | 594.928 | 5.041 |
| 8 | 0.51264 | 139.2250 | 133.4250 | 11977.239 | 11156.704 | 820.535 | 6.953 |
| 9 | 0.60697 | 167.1250 | 157.9750 | 14835.479 | 13349.114 | 1486.364 | 12.594 |
| 10 | 0.68784 | 187.4250 | 179.0250 | 17514.506 | 15270.854 | 2243.652 | 19.011 |
| 11 | 0.77237 | $!10.9250$ | :201.0250 | 20748.832 | 17323.926 | 3424.906 | 29.020 |
| 12 | 0.91088 | 240.5750 | 237.0750 | 21935.451 | 20796.021 | 1139.430 | 9.655 |
| 13 | 0.67459 | 105.9750 | 175.5750 | 288.267 | 14953.111 | -14324.844 | -121.376 |
| 14 | 0.44656 | 92.0750 | 116.2250 | -6523.989 | 9649.884 | -16173.873 | -137.043 |
| 15 | 0.34512 | 80.4750 | 89.8250 | -9249.594 | 7380.472 | -16630.066 | -140.909 |
| 16 | 0.29402 | 71.8250 | 76.5250 | -10607.702 | 6255.853 | -16863.555 | -142.887 |
| 17 | 0.25118 | 1.4750 | 65.3750 | -11725.251 | 5322.151 | -17047.402 | -144.445 |
| 18 | 0.21103 | 51.3750 | 54.9250 | -12734.607 | 4454.337 | -17188.945 | -145.644 |
| 19 | 0.17184 | 41.3250 | 44.7250 | -13694.097 | 3613.843 | -17307.939 | -146.653 |
| 20 | 0.13304 | 31.2750 | 34.250 | -14632.617 | 2787.769 | -17420.387 | -147.605 |
| 21 | 0.09519 | 21.3750 | 24.7750 | -15578.524 | 1987.886 | -17566.410 | -148.843 |
| 22 | 0.06368 | 13.4250 | 16.5750 | -16449.994 | 1326.201 | -17776.195 | -150.620 |

* Negative values are physically unrealistic. For further discussion, see Section 5.2.

TABLE C. 10 Steam Run 3 at $\mathbf{1 5 0 \%}$ on Sample \#1 on Berea Sandstone
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

| Step | Pressure Data | | | Amount of Nitrogen in DV | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | p_{2} / p_{0} | p_{1} | p_{2} | $n_{\text {bot }}{ }^{*}$ | $n_{8 s}$ | $n_{\text {ads }}{ }^{*}$ | $n_{\text {ade }} / m_{r}{ }^{*}$ |
| | (dimensionless) | (psia) | (psia) | moles) | (poles) | (poles) | (μ moles/gm) |
| 1 | 0.25662 | 20.0100 | 17.7100 | 731.081 | 1615.765 | -884.684 | -7.4\% |
| 2 | 0.34356 | 26.2600 | 23.7100 | 1547.937 | 2171.148 | -623.211 | -5.281 |
| 3 | 0.44934 | 33.8600 | 31.0100 | 2469.813 | 2852.635 | -382.822 | -3.244 |
| 4 | 0.55005 | 40.8100 | 37.9600 | 3400.368 | 3507.569 | -107.201 | -0.908 |
| 5 | 0.65220 | 48.2600 | 45.0100 | 4472.294 | 4178.286 | 294.008 | 2.491 |
| 6 | 0.75291 | 55.3600 | 51.9600 | 5605.080 | 4846.024 | 759.056 | 6.432 |
| 7 | 0.85217 | 62.4100 | 58.8100 | 6816.937 | 5510.771 | 1306.166 | 11.067 |
| 8 | 0.95070 | 69.3100 | 65.6100 | 8075.583 | 6177.434 | 1898.149 | 16.083 |
| 9 | 1.06373 | 78.1100 | 73.4100 | 9695.554 | 6950.803 | 2744.750 | 23.257 |
| 10 | 1.14270 | 79.6100 | 78.8600 | 9955.521 | 7496.890 | 2458.630 | 20.832 |
| 11 | 1.09850 | 73.4600 | 75.8100 | 9147.005 | 7190.690 | 1956.315 | 16.576 |
| 12 | 1.00287 | 64.7100 | 69.2100 | 7617.40 | 6533.199 | 1084.204 | 9.187 |
| 13 | 0.88042 | 55.5100 | 60.7600 | 5856.647 | 5701.245 | 155.402 | 1.317 |
| 14 | 0.78769 | 50.7100 | 54.3600 | 4642.559 | 5078.167 | -435.608 | -3.691 |
| 15 | 0.68408 | 43.6100 | 472100 | 3457.245 | 4388.942 | -931.697 | -7.894 |
| 16 | 0.58482 | 36.7100 | 40.3600 | 2266.864 | 3735.166 | -1468.302 | -12.441 |
| 17 | 0.47470 | 29.7100 | 32.7600 | 1281.860 | 3016.974 | -1735.114 | -14.702 |
| 18 | 0.36820 | 21.6100 | 25.4100 | 66.876 | 2329.277 | -2262.400 | -19.170 |
| 19 | 0.26242 | 14.7100 | 18.1100 | -1010.572 | 1652.661 | -2663.233 | -22.566 |

[^4]TABLE C.Il Steam Run 1 at $167.4^{\circ} \mathrm{C}$ on Sample \#2 of Berea Sandstone

| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Step | Pressure Data | | | Amount of Nitrogen in DV | | | |
| | p_{2} / p_{0} | p_{1} | p_{2} | $n_{\text {bot }}{ }^{*}$ | $n_{\text {gas }}$ | $n_{\text {ads }}{ }^{*}$ | $n_{\text {cad }} / m_{r}{ }^{*}$ |
| | (dimensionless) | (psia) | (psis) | (4 moles) | (umoles) | (umoles) | (umoles/gm) |
| 1 | 0.20360 | 25.2440 | 21.9440 | 1008.562 | 1925.365 | -916.803 | -6.037 |
| 2 | 0.32793 | 40.7940 | 35.3440 | 2700.303 | 3122.632 | -422.329 | -2.78 1 |
| 3 | 0.45365 | 53.8940 | 48.8940 | 4275.915 | 4351.244 | -75.329 | -0.496 |
| 4 | 0.53669 | 61.1940 | 57.8440 | 5341.717 | 5173.250 | 168.467 | 1.109 |
| 5 | 0.60396 | 68.7440 | 65.0940 | 6513.426 | 5845.543 | 667.883 | 4.398 |
| 6 | 0.68468 | 78.3940 | 73.7940 | 8007.143 | 6660.20 | 1346.939 | 8.869 |
| 7 | 0.76030 | 86.0940 | 81.9440 | 9368.590 | 7431.508 | 1937.082 | 12.755 |
| 8 | 0.83452 | 94.9440 | 89.9440 | 11027.381 | 8196.604 | 2830.776 | 18.640 |
| 9 | 0.91571 | 105.4940 | 98.6940 | 13313.490 | 9042.876 | 4270.614 | 28.121 |
| 10 | 1.00339 | 115.2440 | 108.1440 | 15733.317 | 9968.430 | 5764.888 | 37.961 |
| 11 | 0.95097 | 94.9440 | 102.4940 | 13206.944 | 9413.580 | 3793.364 | 24.979 |
| 12 | 0.87164 | 86.2940 | 93.9440 | 10676.896 | 8582.223 | 2094.674 | 13.793 |
| 13 | 0.74963 | 72.0440 | 80.7940 | 7834.371 | 7322.184 | 512.188 | 3.373 |
| 14 | 0.60906 | 57.0940 | 65.6440 | 5108.106 | 5896.786 | -788.680 | -5.193 |
| 15 | 0.46571 | 42.7440 | 50.1940 | 2773.669 | 4470.111 | -1696.442 | -11.171 |
| 16 | 0.31309 | 26.4940 | 33.7440 | 542.528 | 2978.769 | -2436.241 | -16.042 |
| 17 | 0.20128 | 16.1940 | 21.6940 | -1130.337 | 1903.18 | -3033.526 | -19.975 |

* Negative values are physically unrealistic. For further discussion, see Section 5.2.

TABLE C. 12 Steam Run 1 at $153^{\circ} \mathrm{C}$ on Sample \#1 from The Geysers

| (1) | (2) | (3) | (4.) | (5) | (6) | (7) | (8) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| itep | Pressure Data | | | Amount of Nitrogen in DV | | | |
| | p_{2} / p_{0} | p_{1} | P2 | $n_{\text {bot }}$ | $n_{\text {gas }}$ | $n_{\text {adi }}{ }^{*}$ | $n_{\text {ch }} / m_{r}{ }^{*}$ |
| | (dimensionless) | (psia) | (psia) | (μ moles) | (1) moles) | (1 moles) | (μ moles/gm) |
| 1 | 0.26218 | 21.1460 | 19.5960 | 489.749 | 1441.360 | -951.610 | -4.817 |
| 2 | 0.33777 | 27.5460 | 25.2460 | 1221.879 | 1863.201 | -641.322 | -3.246 |
| 3 | 0.42272 | 34.1960 | 31.5960 | 2056.331 | 2340.850 | -284.519 | -1.440 |
| 4 | 0.50233 | 40.9960 | 37.5460 | 3172.800 | 2791.931 | 380.869 | 1.928 |
| 5 | 0.57859 | 47.4460 | 43.2460 | 4543.058 | 3227.363 | 1315.695 | 6.660 |
| 6 | 0.66221 | 54.2960 | 49.4.960 | 6123.22 | 3708.656 | 2414.565 | 12.223 |
| 7 | 0.85888 | 70.8960 | 64.1960 | 8379.224 | 4857.350 | 3521.874 | 17.828 |
| 8 | 1.01207 | 77.9960 | 75.6460 | 9181.742 | 5769.360 | 3412.382 | 17.274 |
| 9 | 0.95789 | 70.6460 | 71.5960 | 8860.143 | 5444.967 | 3415.175 | 17.288 |
| 10 | 0.95120 | 69.5460 | 71.0960 | 8336.063 | 5405.058 | 2931.005 | 14.837 |
| 11 | 0.85888 | 62.1460 | 64.1960 | 7650.250 | 4857.350 | 2792.900 | 14.138 |
| 12 | 0.76857 | 55.2960 | 57.4460 | 6938.003 | 4326.899 | 2611.104 | 13.217 |
| 13 | 0.68295 | 48.2960 | 51.0460 | 6035.494 | 3828.655 | 2206.839 | 11.171 |
| 14 | 0.57658 | 39.7460 | 43.0960 | 4948.295 | 3215.862 | 1732.434 | 8.770 |
| 15 | 0.46955 | 31.0960 | 35.0960 | 3664.190 | 2605.771 | 1058.419 | 5.358 |
| 16 | 0.36319 | 22.6960 | 27.1460 | 2250.265 | 2005.721 | 244.544 | 1238 |
| 17 | 0.27020 | 15.0960 | 20.1960 | 644.111 | 1486.019 | -841.908 | -4.262 |

* Negative values are physically unrealistic. For further discussion, se Section 5.2.

TABLE C. 13 Steam Run 2 at $200^{\circ} \mathrm{C}$ on Sample \#1 from The Geysers

| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| itep | Pressure Data | | | Amount of Nitrogen in DV | | | |
| | p_{2} / p_{0} | p_{1} | p_{2} | $n_{\text {bot }}{ }^{*}$ | $n_{\text {gas }}$ | $n_{\text {ads }}{ }^{*}$ | $n_{\text {cod }} / m_{r}{ }^{*}$ |
| | (dimensionless) | (psia) | (psia) | (4 moles) | (poles) | (poles) | ($\mu \mathrm{moles} / \mathrm{gm}$) |
| 1 | 0.07003 | 24.8412 | 15.7812 | 2555.259 | 1039.638 | 1515.620 | 7.672 |
| 2 | 0.20329 | 60.4362 | 45.8112 | 6786.004 | 3051.913 | 3734.091 | 18.902 |
| 3 | 0.30132 | 77.6012 | 67.9012 | 9637.902 | 4562.732 | 5075.170 | 25.691 |
| 4 | 0.37132 | 99.4812 | 83.6762 | 14361.588 | 5658.791 | 8702.798 | 44.054 |
| 5 | 0.50589 | 128.7512 | 114.0012 | 18893.643 | 7809.281 | 11084.362 | 56.109 |
| 6 | 0.60196 | 144.3012 | 135.6512 | 21600.750 | 9382.540 | 12218.210 | 61.849 |
| 7 | 0.69581 | 167.1512 | 156.8012 | 24915.115 | 10952.791 | 13962.324 | 70.677 |
| 8 | 0.79522 | 188.2512 | 179.2012 | 27883.555 | 12654.697 | 15228.857 | 77.089 |
| 9 | 0.88641 | 204.6012 | 199.7512 | 29508.789 | 14254.031 | 15254.758 | 77.220 |
| 10 | 0.90305 | 207.8012 | 203.5012 | 30955.701 | 14550.030 | 16405.67 | 83.046 |
| 11 | 0.86710 | 184.1012 | 195.4012 | 27223.619 | 13912.309 | 13311.311 | 67.382 |
| 12 | 0.70868 | 141.1012 | 159.7012 | 21339.600 | 11170.810 | 10168.790 | 51.475 |
| 13 | 0.56557 | 113,9512 | 127.4512 | 17194.340 | 8782.745 | 8411.595 | 42.580 |
| 14 | 0.47815 | 982512 | 107.7512 | 14325.571 | 7361.157 | 6964.414 | 35.254 |
| 15 | 0.35745 | 68.5012 | 80.5512 | 10777.375 | 5440.482 | 5336.893 | 27.015 |
| 16 | 0.24385 | 41.4512 | 54.9512 | 6887.440 | 3673.747 | 3213.693 | 16.268 |
| 17 | 0.16841 | 24.3512 | 37.9512 | 3020.331 | 2520.747 | 499.584 | 2.529 |
| 18 | 0.10140 | 11.4512 | 22.8512 | -187.415 | 1509.288 | -1696.704 | -8.589 |
| 19 | 0.07345 | 8.8012 | 16.5512 | -2360.976 | 1090.669 | -3451.645 | -17.472 |

* Negative values are physically unrealistic. For further discussion, see Section 5.2.

TABLE C. 14 Steam Run 3 at $180^{\circ} \mathrm{C}$ on Sample \#1 from The Geysers

| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Step | Pressure Data | | | Amount of Nitrogen in DV | | | |
| | p_{2} / p_{0} | p_{1} | \boldsymbol{p}_{2} | $n_{\text {tot }}$ | $n_{\text {gas }}$ | $n_{\text {ads }}{ }^{*}$ | $n_{\text {edr }} / m_{r}{ }^{*}$ |
| | (dimensionless) | (psia) | (psia) | moles) | moles) | (umoles) | ($\mu \mathrm{moles} / \mathrm{gm}$) |
| 1 | 0.18271 | 40.4550 | 26.5550 | 4156.388 | 1837.542 | 2318.846 | 11.738 |
| 2 | 0.30965 | 61.6050 | 45.0050 | 9216.763 | 3140.759 | 6076.004 | 30.757 |
| 3 | 0.48888 | 90.7050 | 71.0550 | 15383.369 | 5021.665 | 10361.704 | 52.451 |
| 4 | 0.67947 | 114.1550 | 98.7550 | 20360.059 | 7079.964 | 13280.095 | 67.224 |
| 5 | 0.95641 | 141.4050 | 139.0050 | 21169.363 | 10193.699 | 10975.664 | 55.559 |
| 6 | 0.87246 | 114.3050 | 126.8050 | 17059.631 | 9233.238 | 7826.393 | 39.617 |
| 7 | 0.71834 | 89.6050 | 104.4050 | 12329.806 | 7507.833 | 4821.973 | 24.409 |
| 8 | 0.54943 | 64.9550 | 79.8550 | 7696.822 | 5668.724 | 2028.098 | 10.266 |
| 9 | 0.37433 | 40.1050 | 54.4050 | 3363.801 | 3813.736 | -449.935 | -2278 |

* Negative values are physically unrealistic. For further discussion, see Section 5.2.

TABLE C. 15 Steam Run 1 at $180^{\circ} \mathrm{C}$ on Sample \#3 from Montiverdi Well \#2

| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Step | Pressure Data | | | Amount of Nitrogen in DV | | | |
| | p_{2} / p_{0} | p_{1} | p_{2} | $n_{\text {bt }}{ }^{*}$ | $n_{8 s}$ | $n_{\text {adt }}{ }^{*}$ | $n_{\text {mat }} / m_{r}{ }^{*}$ |
| | (dimensionless) | (psia) | (psia) | (poles) | @moles) | @moles) | ($\mu \mathrm{moles} / \mathrm{gm}$) |
| 1 | 0.21186 | 40.3420 | 30.7920 | 2861.171 | 3510.334 | -649.164 | -6.790 |
| 2 | 0.34465 | 59.3920 | 50.0920 | 5700.209 | 5761.999 | -61.790 | -0.646 |
| 3 | 0.51391 | 84.8420 | 74.6920 | 8881.432 | 8695.757 | 185.675 | 1.942 |
| 4 | 0.72995 | 118.7920 | 106.0920 | 13015.294 | 12556.296 | 458.998 | 4.801 |
| 5 | 0.88407 | 138.8420 | 128.4920 | 16475.582 | 15399.341 | 1076.241 | 11.258 |
| 6 | 1.01205 | 147.5420 | 147,0920 | 16628.785 | 17822.727 | -1 193.941 | -12.489 |
| 7 | 0.94393 | 113.1920 | 137.1920 | 8691.073 | 16525.457 | -7834.384 | -81.950 |
| 8 | 0.74234 | 89.7420 | 107,8920 | 2878.266 | 12781.881 | -9903.615 | -103.594 |
| 9 | 0.54212 | 64.9920 | 78.7920 | -1410.305 | 9192.158 | -10602.464 | -110.904 |
| 10 | 0.35841 | 39.6420 | 52.0920 | -5177.585 | 5997.766 | -11175.352 | -116.897 |
| 11 | 0.18434 | 14.0420 | 26.7920 | -8944.318 | 3048.807 | -11993.126 | -125.451 |

* Negative values are physically unrealistic. For further discussion, see Section 5.2.

9.4 APPENDIX D .. TABLES OF BET RESULTS

The BET analysis is used primarily to determine the amount of monolayer adsorption and the specific surface area. Appendix C presents the analysis results, and Section 53 their interpretation. Each table of Appendix D separates the information pertaining to adsorption from that pertaining to desorption, though desorption is sometimes absent due to a lack of data within the proper range $(0.05$ с β с 0.35 where β is the relative vapor pressure). The two parameters used in the straight line form of the BET equation are given as well. as the " C " factor, the monolayer adsorption, the weight of the sample, the surface area and the specific surface area.

Because negative adsorption values have no physical significance, the first nitrogen test conducted on sample \#2 of Berea and all the steam tests except HT2 (high temperature run 2) and HTI (high temperature run 3) using sample \#1 from The Geysers are excluded from this appendix. The desorption section of HT2 seen in Table D. 7 shows the consequences of analyzing negative adsorption values. The irregularities present in the analysis of HT3 (Table D.8) result fram the shape of the BET function itself. Though unusual, a similar phenomenon was recorded by Hsieh (1980) when unconsolidated silica sand was tested.

TABLE D. 1 BET Results of Nitrogen Run 1 at $\mathbf{- 1 \%}{ }^{\circ} \mathbf{C}$ on Sample 2 from Berea Sandstone

0.0727891
13.8160
0.1714286 23.9603
0.2736395
31.6438

The value of " C " factor in BET analysis is
The monolayer adsorption is
The weight of the sample is
The total surface area is
The specific surface area is
12.3224 1/micromoles
10361.4181 micromoles
151.8650 grams
1010.9906 square meters
6.6572 square meters/gram

TABLE D. 2 BET Results of Nitrogen Run 4 at $-1 \%^{\circ} \mathrm{C}$ on Sample \#2 from Berea Sandstone

*** Analysis Based on Adsorption ***

Rel. Pressure, $\boldsymbol{\beta} \quad$ the factor $\beta /\{\mathrm{X}(1-\beta))$ in $1 /$ mole
0.1273469
17.5723
0.2780272
29.5101

The value of " \mathbf{C} " factor in BET analysis is
11.5873 1/micromoles

The monolayer adsorption is 11532.7994 micromoles

The weight of the sample is 151.8650 grams

The total surface area is 1125.2853 square meters

The specific surface area is
7.4098 square meters/gram

*** Analysis Based an Desorption ***

Rel. Pressure, $\boldsymbol{\beta} \quad$ the factor $\boldsymbol{\beta} /[\mathbf{X}(1-\beta)]$ in $1 /$ mole
0.3249660
29.1134
0.2725850
25.1519

The value of "C" factor in BET analysis is
The monolayer adsorption is
The weight of the sample is
The total surface area is
The specific surface area is
17.6719 1/micromoles
12474.1029 micromoles
151.8650 grams
8.0146 square meters/gram

TABLE D. 3 BET Results of Nitrogen Run 1 at $-196^{\circ} \mathrm{C}$ on Sample \#1 from The Geysers
*** Analysis Based on Adsorption ***

Rel. Pressure, $\beta \quad$ the factor $\beta /\{X(1-\beta)\}$ in $1 /$ mole
$0.0823129 \quad 79.9037$
$0.1506803 \quad 86.8444$
0.2253401
0.3064626
94.7775
105.4881

The value of " C " factor in BET analysis is
The monolayer adsorption is
The weight of the sample is
The total surface area is
The specific surface area is
$2.6241 /$ micromoles
5445.2220 micromoles
197.5500 grams
531.3045 square meters
2.6895 square meters/gram
*** Analysis Based on Desorption ***

| Rel. Pressure, β | the factor $\beta /[\mathbf{X}(1-\beta)]$ in $1 /$ mole |
| :---: | :---: |
| | |
| 0.2761905 | 96.2457 |
| 0.2015306 | 86.1587 |
| 0.1469388 | 78.9462 |
| 0.1074830 | 73.9222 |

The value of "C" factor in BET analysis is
The monolayer adsorption is
The weight of the sample is
The total surface area is
The specific surface area is

32250 1/micromoles
5206.0115 micromoles
197.5500 grams
2.5713 square meters/gram
TABLE D. 4 BET Results of Nitrogen Run 1 at $.196^{\circ} \mathrm{C}$ on Sample \#2from Montiverdi Well 2
*** Analysis Based on Adsorption
Rel. Pressure, $\boldsymbol{\beta} \quad$ the factor $\beta /\{X(1-\beta)\}$ in $1 /$ mole
0.0723810 49.0276
0.1934694 63.3041
0.3188095 77.1810
The value of " \mathbf{C} " factor in BET analysis is 3.7921 1/micromoles
The monolayer adsorption is 6446.0050 micromoles
The weight of the sample is 178.2760 grams
The total surface area is 628.9535 square meters
The specific surface area is 3.5280 square meters/gram
*** Analysis Based on Desorption
Rel. Pressure, $\boldsymbol{\beta} \quad$ the factor $\beta /\{X(1-\beta)\}$ in $1 /$ mole
0.3120068 74.0146
0.2414286 65.7967
0.1873469 60.1128
0.1450000 55.2973
The value of " C " factor in BET analysis is
3.8518 1/micromoles
The monolayer adsorption is
6638.4812 micromoles
The weight of the sample is178.2760 grams
The total surface area is 647.7339 square meters
The specific surface area is
3.6333 square meters/gram

TABLE D. 5 BET Results of Nitrogen Run 2 at $-1 \%^{\circ} \mathrm{C}$ on Sample \#2 from Montiverdi Well \#2
*** Analysis Based on Adsorption ***

Rel. Pressure, $\beta \quad$ the factor $\beta /\{\mathrm{X}(1-\beta)$) in $1 /$ mole
0.0778912
0.1527211
46.1931
0.2479592
55.0907
$0.2479592 \quad 64.9075$

The value of " C " factor in BET analysis is
The monolayer adsorption is
6774.0261 micromoles

The weight of the sample is
178.2760 grams

The total surface area is 660.9594 square meters

The specific surface area is
3.7075 square meters/gram

TABLE D. 6 BET Pesilts of Nitrogen Run 3 at $\cdot 196^{\circ} \mathrm{C}$ on Sample \#2 from Montiverdi Well \#2

Analysis Based on Adsorption

Rel. Pressure, $\beta \quad$ the factor $\beta /\{X(1-\beta)\}$ in $1 /$ mole

$$
0.0761905 \quad 49.6065
$$

0.1459184
56.6734
0.2309524

The value of "C" factor in BET analysis is
The monolayer adsorption is
The weight of the sample is
The total surface area is
The specific surface area is
$3.30771 /$ micromoles 7152.4423 mictomoles 178.2760 grams 697.8824 square meters 3.9146 square meters/gram

Rel. Pressure, $\beta \quad$ the factor $\beta /\{X(1 \cdot \beta)\}$ in $1 /$ mole
0.3312925
70.9320
0.2615646

The value of "C" factor in BET analysis is
The monolayer adsorption is
The weight of the sample is
The todal surface area is
The specific surface area is
4.3935 1/micromoles
6816.3462 micromoles
178.2760 grams
665.0886 square meters
3.7307 square meters/gram

TABLE D. 7 BET Results of Steam Run 2 at $200^{\circ} \mathrm{C}$ on Sample \#1 from The Geysers

Analysis Based on Adsorption ***

Rel. Pressure, $\boldsymbol{\beta} \quad$ the factor $\beta /\{X(1-\beta)\}$ in $1 /$ mole
$0.0700300 \quad 49.6849$
$0.2032898 \quad 68.3330$
$0.3013155 \quad 84.9747$

The value of " C " factor in BET analysis is
4.9360

The monolayer adsorption is
5251.3935 micromoles

The weight of the sample is
197.5500 grams

The total surface area is
411.2543 square meters

The specific surface area is
2.0818 square meters/gram

Analysis Based on Desorption ***

Rel. Pressure, $\beta \quad$ the factor $\beta /\{X(1-\beta)\}$ in $1 /$ mole
$0.2438491 \quad 100.3479$
$0.1684106 \quad 405.3709$
$0.1014035-66.5093$
$0.0734469-22.9656$

The value of "C" factor in BET analysis is -13.4718

The monolayer adsorption is
The weight of the sample is
The total surface area is
The specific surface area is
801.8721 micromoles
197.5500 grams
62.7973 square meters
0.3179 square melers/gram

TABLE D. 8 BET Results of Steam Run 3 at 180 C on Sample \#1 from The Geysers

*** Analysis Based on Adsorption ***

Rel. Pressure, $\beta \quad$ the factor $\beta /\{X(1-\beta)]$ in $1 /$ mole
0.1827081
96.4070
0.3096509
73.8219

The value of " C " factor in BET analysis is
-0.3801 1/micromoles
The monolayer adsorption is $\mathbf{- 2 0 4 0 7 . 3 5 3 1}$ micromoles
The weight of the sample is 1975500 grams

The total surface area is -1575.9440 square meters

The specific surface area is
-7.9774 square meters/gram

[^0]: * Information gained through personal communication, fall 1985.

[^1]: * Negative values are physically unrealistic. For further discussion, see Section 5.2.

[^2]: FIGURE 5.11 Comparison of the Adsorption Curves from the Steam
 Runs on Core Samples \#1 and \#2 of Berea

[^3]: * Negative values are physically unrealistic. For further discussion, see Section 5.2.

[^4]: * Negative values are physically unrealistic. For further discussion, see Section 5.2.

