INJECTION THROUGH FRACTURES

A Report

Submitted to the Department of Petroleum Engineering

of Stanford University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

by

ROBERT ANTHONY JOHNS

May, **1987**

ACKNOWLEDGEMENTS

I would like to thank Prof. R. N. Horne for his guidance and insight, which was invaluable help in completing this project. In addition, Prof. Horne's outstanding sense of humor made this study a pleasure to conduct, even when my progress in the laboratory seemed so painstakingly slow.

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF FIGURES	vi
ABSTRACT	viii
1. INTRODUCTION	1
2. PREVIOUS WORK	3
3. EXPERIMENTAL APPARATUS	7
3.1 Flow Systems	7
3.2 Tracer Detection Systems	9
3.3 Data Collection Systems	11
3.4 Core Description	11
4. EXPERIMENTAL PROCEDURE	14
4.1 Flow System Operation	14
4.2 Data Collection Methods	15
4.3 Data Processing Methods	16
5. EXPERIMENTAL RESULTS	18
5.1 Unfractured Core Samples	18
5.2 Fractured Core Tests	22
6. MODELLING EXPERIMENTAL DATA	27
6.1 Conventional Analytical Models	27
6.1.1 Taylor Dispersion Model	30
6.1.2 Matrix Diffusion Model	33

-iv-

6.2 Inlet Dispersion Mechanism	35
6.3 Modified Conventional Analytical Models	43
6.3.1 Matrix Diffusion Model with Dispersed Inlet Bounary Condition	43
6.3.2 Taylor Model with Dispersed Inlet Boundary Condition	47
7. MATRIX DIFFUSION MODEL MATCH PARAMETERS	50
7.1 Datum Time Correction	50
7.2 Breakthrough Time	50
7.3 Dimensionless Dispersion Coefficient	51
7.4 Discussion of Fracture Aperture from Model Match Parameters	57
8. TRACER ADSORPTION: Calculated & Measured Tracer Retained in the Core	59
8.1 Tracer Retention for a Sorbing Tracer	59
8.2 Tracer Retention for a Non-Sorbing Tracer	63
8.3 Tracer Retention for Low Flowrate Tests	65
9. INLET BOUNDARY CONDITION EFFECTS ON TEST RESULTS	68
10. CORE FRACTURE APERTURE: Calculated vs. Measured	71
11. SUMMARY AND CONCLUSIONS	73
12. RECOMMENDATIONS	75
13. NOMENCLATURE	76
REFERENCES	78
TABLE 1: Unfractured Core Test Summary	81
TABLE 2: Fractured Core Test Summary	82
TABLE 3: Tubing Dispersion Test Summary	83
TABLE 4: Diffusion Model Match Parameters	84
TABLE 5: Diffusion Model Match Parameters	85
APPENDIX A: Reservoir Equivalent Slug Tests for Laboratory	
"Step Up" Tracer Tests	86
APPENDIX B: Derivation of the Modifed Matrix Model Solution	97

I	
APPENDIX C: FORTRAN Optimization Routine for Modified Matrix	
Diffusion Model with Sample Input and	102
APPENDIX D: Modified Matrix Diffusion Model Match of Laboratory	
"Step Up" Tracer Tests	132
APPENDIX E: Miscellaneous Computer Programs	142
APPENDIX F: Complete Data Set for Test Number 11	156

LIST OF FIGURES

- Fig. 1 Photograph of Core Holder, Switching Valves and Inlet and Outlet Electrodes
- Fig. 2 Electrode Circuit and Flow Tee Diagram
- Fig. 3 Schematic of Pipe Length Test Section
- Fig. 4 Graphical Representation of Voltage Pulsing Procedure
- Fig. 5 Core Photographs Before and After Tracer Tests
- Fig. 6 Pore Volume Plots for Unfractured Core Tests
- Fig. 7 Fractured Core Tracer Test using 80 Mesh Fracture Proppant
- Fig. 8 Voltage Profile for Step Up at 3.7 cchnin
- Fig. 9 Concentration Profile for Step Up at 3.7 cc/min
- Fig. 10 Equivalent Slug Test for Step Up at 3.7 cc/min
- Fig. 11 Voltage Profile for Step Down at 3.7 cc/min
- Fig. 12 Concentration Profile for Step Down at 3.7 cc/min
- Fig. 13 Equivalent Slug Test for Step Down at 3.7 cchnin
- Fig. 14 Pore Volume Plots for Fractured Core Tests
- Fig. 15 Fossum Model Match of 1.4 cc/min Test
- Fig. 16 Fossum Model Match of 1.4 cc/min Test using Datum Correction as a Regression Variable
- Fig. 17 Jensen Model Match of 1.4 cc/min Test
- Fig. 18 Jensen Model Match of 16 cc/min Test
- Fig. 19 Inlet Electrode Response to Tracer 'Front at 1.4 cc/min
- Fig. 20 Inlet Electrode Response to Tracer Front at 16 cc/min
- Fig. 21 Tubing Dispersion Test: Tracer Front at 1st Electrode
- Fig. 22 Tubing Dispersion Test: Tracer Front at 2nd Electrode
- Fig. 23 Tubing Dispersion Test: Tracer Front at 3rd Electrode

-vi-

Fig. 24 Tubing Dispersion Test: Tracer Front Matched with Error Function at 1.2 cc/min

Fig. 25 Tubing Dispersion Test: Tracer Front Matched with Error Function at 4.0 cc/min

Fig. 26 Tubing Dispersion Test: Tracer Front Matched with Error Function at 8.0 cc/min

Fig. 27 Tubing Dispersion Test: Tracer Front Matched with Error Function at 16. cc/min

Fig. 28 Tubing Dispersion Correlation

Fig. 29 Matrix Diffusion Model with Error Function Inlet Boundary Condition: Match of 1.75 cc/min Test

Fig. 30 Matrix Diffusion Model with Error Function Inlet Boundary Condition: Match of 3.7 cc/min Test

Fig. 31 Taylor Dispersion Model with Ermr Function Inlet Boundary Condition: Match of **0.8** cc/min Test

Fig. 32 Taylor Dispersion Model with Ermr Function Inlet Boundary Condition: Match of 16 cc/min Test

Fig. 33 Core Inlet and Outlet Tracer Concentration Proiiles at 16 cc/min

Fig. 34 Core Inlet and Outlet Tracer Concentration Proiiles at 1.4 cc/min

Fig. 35 Core Inlet and Outlet Tracer Concentration Profiles at 0.8 cc/min

Fig. 36 Cumulative Tracer Mass Retained in Core as a Function of Pore Volumes Injected

Fig. 37 Tracer Concentration for Sorbing Tracer in Matrix Pore Fluid after 16 whin Test

Fig. 38 Tracer Mass Retained in Core for Sorbing Tracer after 16 whin Test

Fig. 39 Tracer Concentration for Non-Sorbing Tracer in Matrix Pare Fluid after 16 whin Test

Fig. 40 Tracer Mass Retained in Core for Non-Sorbing Tracer after 16 cc/min Test

Fig. 41 Tracer Concentration for Sorbiig Tracer in Matrix Pore Fluid after 1.4 cc/min Test

Fig. 42 Tracer Mass Retained in Core for Sorbing Tracer after 1.4 cc/min Test

-viii-

ABSTRACT

Tracer tests are conducted in geothermal reservoirs **as** an aid in forecasting thermal breakthrough of reinjection water. To interpret tracer tests, mathematical models have been developed based on the various transport mechanisms in these highly fractured reservoirs. These tracer flow models have been applied to interpret field tests. The resulting matches between the model and field **data** were excellent and the model parameters were used to estimate reservoir properties. However, model fitting is an indirect process and the model's ability to estimate reservoir properties cannot **be** judged solely on the quality of the match between field **data** and model predictions. The model's accuracy in determining reservoir characteristics must be independently verified in a closely controlled environment.

In this study, the closely controlled laboratory environment was chosen to test the validity and accuracy of tracer flow models developed specifically for flow in fractured rocks. The laboratory tracer tests were performed by flowing potassium iodide (KI) through artificially fractured core samples. The tracer test results were then analyzed with several models to determine which best fit the measured **data**. A Matrix Diffusion model was found to provide the best match of the tracer experiments. The core properties, **as** estimated by the Matrix Diffusion model parameters generated from the indirect matching process, were then determined. These calculated core parameters were compared to the measured core properties and were found to be in agreement. This verifies the use of the Matrix Diffusion flow model in estimating fracture widths from tracer tests.

1: INTRODUCTION

In many geothermal development6 it is necessary to reinject low temperature fluids **as** a means of waste disposal. Reinjection is **also** desirable **as** a means to provide pressure maintenance and to enhance recovery by extracting heat left behind when fluids originally in place have been produced. Unfortunately reinjection can also have detrimental effects if premature breakthrough of cold reinjection water occurs. Home (**1982**) noted several cases in which production wells were adversely impacted in response to the start of reinjection operations. Tracer tests were subsequently conducted in the reinjection wells to identify the cold fluids' path to the production wells. These **tests** revealed extremely fast breakthrough between injection and production wells. This was believed to be due to the highly permeable fractures which are the primary fluid conduits in these geothermal systems.

In order to quantitatively interpret these tracer tests, a reservoir flow model is required to represent the mechanisms controlling tracer transport. Due to the extensive fracturing, conventional convection/dispersion models for flow in uniform porous media were not considered applicable. Field test results were also far different than those seen before in more uniformly porous reservoirs. These test results confirmed the need for **a** model which considers the extreme contrast between fracture and matrix properties in these reservoirs.

In response to this need, several models have recently been developed specifically to interpret these tracer tests. Generally, these models relate the test response to fracture aperture and tracer dispersivity. However, some of the model parameters are difficult to measure when matching field **tests.** Thus, the modal accuracy in predicting reservoir properties cannot be directly verified. **This** uncertainty turns out to **be** critical in any further quantitative predictions. For example, thermal breakthrough calculations are extremely sensitive to the fracture width used in forecast models. This indicates the importance of assessing the models accuracy in estimating fracture properties.

-1-

To test the accuracy of the **tracer** model, a test must **be** conducted in which reservoir characteristics are known precisely. The heterogeneity and uncertainty found in nature makes field scale verification of the tracer **flow** models impractical. However, the models *can* **be** tested in experimental tracer tests conducted in a closely controlled laboratory environment where reservoir parameters can be directly measured on the core sample. **Flow** models verified in this way can then **be** applied to interpret field tests, generating reliable reservoir property estimates for use in thermal breakthrough calculations.

Thus, the objective of this study is divided into five tasks, namely; (1) Develop experimental techniques to simulate field tracer tests in a laboratory environment, (2) Conduct tracer tests on fractured cores, (3) Analyze test results with analytical models to evaluate the ability to match experimental results, (4) Measure core properties and compare with estimates from model match parameters, and (5) Modify existing models and/or propose new ones to accurately estimate core properties from tracer test results.

2: PREVIOUS WORK

Previous experimental and analytical work has been conducted to address specific flow mechanisms active in fractured reservoirs during tracer **tests**. The mathematical models subsequently developed for tracer flow in fractures were based on the physical mechanisms observed in the experimental work. However, laboratory tests which truly emulate a fractured geothermal reservoir tracer test have only recently been undertaken. The experimental **results from** this work can be incorporated into calibrating specific models for fractured reservoir tracer **tests**.

Tracer flow models for fractured systems evolved from the classical convectiondispersion model. Johnston and Perkins (1963) presented correlations for using the convectiondispersion model to analyze tracer tests in uniform porous media. Coats and Smith (1964) later modified the model to include mass transfer to an immobile phase from a mobile phase flowing through the porous medium. **Dean** (1963) also presented a model to reflect interaction between a flowing and non-flowing fraction. However, fracture transport is different from flow in a porous medium and these models are not well suited for use in geothermal environments. Models specifically developed for fractured reservoirs have more recently developed. These models are generally of *two* types depending on the physical reservoir description. One description assumes discrete matrix blocks in a parallelipiped fracture network. The other common description considers only a single fracture and the adjacent matrix rock which makes up the fracture walls.

Bibby (1980) presented a finite dement model for a fracture network depicting transport in the fractures and diffusion into the **matrix**. This model concluded that diffusion between mobile fracture fluids and static matrix pore fluid retards solute transport. Sudicky et \mathbf{a} (1982) also modelled a fracture network and concluded that fracture spacing can influence solute retardation. However, he noted fracture spacing effects are less important at wider fracture spacings and higher flow rates. Although the reservoir description in a fractured geothermal reservoir may be somewhat different from the description **used** in these models, the results of the two studies provide insight **into** the **types** of tracer models required for a geothermal system. For

- 3 -

example, in Wairakei. New Zealand, tracer tests were studied by McCabe et al (1983) concluding flow from injection wells is at relatively high rates and predominantly associated with a single fracture. The conclusions of Sudicky's fracture network analysis suggest that a single fracture flow model, which is less complex, should provide accurate results in this reservoir since it has such high flow rates and only **a** few, major fracture zones.

Many investigators have proposed models for and conducted experimental studies of solute transport in a single fracture. Several studies were conducted to investigate radionuclide migration in a nuclear waste repository. Neremieks (1980) presented an analytical model for solute transport in a fissure and adjacent matrix. Diffusion and adsorption were the only mechanisms governing transport in the rock matrix. Neretnieks concluded that diffusion is an important mechanism retarding solute movement. Later, Neretnieks (1982) conducted laboratory experiments using both sorbing and non-sorbing solutes and verified his earlier flow model. Grisak and Pickens (1980) developed a more complicated finite difference model also for modeling nuclear waste movement in a repository. Their model considered not only matrix diffusion but also hydrodynamic dispersion within the fracture. Tang et al. (1981) also developed a model with hydrodynamic dispersion within the fracture and used the model to match experimental data. The results of these studies showed that diffusion into the rock matrix is a significant retardation mechanism and also indicated that hydrodynamic dispersion within the fracture only effects solute transport at low flow velocities. The experiments of Grisak et al.(1980) added further evidence to support these conclusions.

Studies more specifically aimed **a** tracer movement in geothermal systems have also been conducted concurrent with much of the **waste** disposal work. Rodriguez and Home (1981) proposed **a** single fracture flow nuclear model in which Taylor diffusion was the mechanism responsible for fluid mixing in the fracture. **This** Taylor dispersion flow model was subsequent-ly verified by a series of experiments in **a** Hele-Shaw cell by Gilardi(1984) and Bouett(1986) and was incorporated into **a** tracer test analysis model by Fossum and Horne(1982). The model was used to match Wairakei field test **data.** The early time field test response was matched by

- 4 -

this flow model but the late time response observed in the field **tests** could not be precisely represented. **This** suggested that some additional mechanism **lead** to tracer retention within the fracture system.

The question of the tracer retention mechanism was investigated experimentally by Breitenbach (1982) in a series of laboratory core tests. Motivated by Breitenbach's experimental findings Jensen and Home (1983) later applied a matrix diffusion approach incorporating the Neremieks (1980) model. This model matched Wairakei field **data** well. In particular it showed a **good** match of the late time tracer arrivals which the earlier Taylor dispersion model could not match. Unfortunately, this diffusion model did not provide a direct estimate of fracture aperture. The fracture aperture was coupled with the matrix diffusivity in one of the two dimensionless variables used by the model, *so* in order to estimate fracture aperture a value for matrix diffusivity needed to be known. Neretnieks (1980) earlier had also reported difficulty in estimating tracer diffusivity without a calibration basis.

To develop a model which provided a unique fracture aperture estimate, Walkup and Home **(1985)** later presented another matrix diffusion model based on a more complex retention mechanism. This model considered convection, diffusion, dispersion and absorption processes. The result was the decoupling of the fracture aperture from other system variables. The fracture aperture could therefore be determined uniquely from the model parameters generated by a match of field test data.

Pulskamp (1985) conducted laboratory experiments to test the validity of these matrix diffusion models. The results of his tests were not conclusive, however, due the **data** collection methods employed in his study. Pulskamp made tracer concentration measurements of discrete core effluent samples in a manner similair to field test sampling procedures. Pulskamp later noted that the sampling frequency did not adequately define the tracer response under laborato*ry* condiuons. Pulskamp's work was subsequently used to establish the criteria for tracer concentration measurements adopted in this study. In summary, a significant amount of work has been conducted, suggesting that matrix diffusion is a dominant transport mechanism in fractured, low matrix permeability rocks. The studies also indicate that hydrodynamic dispersion within the fracture may not be an important factor at the high flow rates in geothermal reinjection operations. This study investigated these two propositions by comparing the model responses to closely controlled laboratory experiments.

3: EXPERIMENTAL APPARATUS

3.1 Flow Systems

The experimental equipment consisted of a core holder suspended in a high temperature *air* bath with three primary control systems. A confining pressure system consisted of a hydraulically pressurized sleeve around the core plug providing a simulated overburden **as** well **as a** tight *seal* around the core. A water flow system, including a pump, an excess flow loop and a constant pressure accumulator, regulated the flow of distilled water through the core. Tracer, contained in a pressurized vessel, was flowed through the core under the control of a pressure regulator and a pressurized nitrogen bottle. This equipment was initially designed and constructed by Sageev (1980), modified by Breitenbach (1982) and subsequently used by Pulskamp (1985). This setup had been **used** on all unfractured core samples, however, it was found less suitable for the *fractured* cores due **to** the low pressure drops across the core. For fractured samples, the flow loops were modified **to** take advantage of the low head requirements.

The fractured cores utilized a simple gravity flow system for controlling flow. Distilled water and tracer solutions were stored in constant pressure reservoirs. Pressure was kept constant on the fluid exiting the vessel by locating the *air* suction at a point below the water surface. The *air* suction elevation was held **a** the same position for the duration of a run. These constant pressure vessels were constructed by Gilardi (1984) and later **used** also by Bouett (1986). The flow rate was controlled by adjusting the elevation difference between the *air* suction **port** in the vessel and the core outlet. This system was found to provide extremely steady flows through the core at the 1-3 psi pressure drops required for the various runs. This constant, steady rate was desired not only to simplify model analyses but also to allow **a** high fiequency of **tracer** concentration measurements.

- 7 -

FIGURE 2

Electrode Circuit and Flow Tee Diagram

- 8 -

FIGURE 1

3.2 Tracer Detection Systems

Tracer concentrations measurements were made at two locations in the core flow loop. At these locations electrodes were installed in the flow system to provide the very high sampling frequency that previous work by Pulskamp(1985) had indicated was necessary. **As** shown in Figure 1, these two electrodes and their reference resistors were installed immediately outside the core holder inlet and outlet. The locations were chosen **so** that the tracer could be detected **as** it entered the core and the tracer concentration in the effluent **was** measured **as** it left the core.

The gold plated electrodes were identical to those previously used by Gilardi (1984) and Bouett (1986) in their Hele-Shaw cell. They were installed in brass flow tees connected directly into the flow loop. The measurement end of the electrode, positioned perpendicular to **and** in the center of the flow strm, was grounded to the brass tee (see Figure 2). The electrodes were held in the tees by snug brass fittings with teflon packing to provide **a** pressure seal...A common electrical ground was established between the flow tees and the **data** measurement equipment to assure a similair reference voltage.

These same electrodes were also used to measure tracer flow through a pipe loop assembled to test dispersion in the flow system. A 1.75 meter pipelength was assembled with electrodes located 13, 65 and 165 cm **frcm** the three way inlet valve at the start of the pipe loop. The apparatus was actually assembled with the same tubings, tees and valves previously used in the core holder circuit. The same gravity flow system consisting of the constant pressure vessels was used to regulate flow through the network. A schematic of the equipment (Figure 3) illustrates this system.

.9.

- 10 -

FIGURE 3

Schematic of Pipe Length Test Section

FIGURE 4

Graphical Representation of Voltage Pulsing Procedure

33 Data Collection System

The voltage drop across the electrode (and hence the tracer concentration) was monitored by a KEITHLEY/das Series 500 Measurement and Control System. This unit is capable of analog input and output of conditioned signals, switching and 12 bit analog to digital conversion. The KEITHLEY unit is also capable of digital input and output which serves as a communication pathway for receiving instructions from and sending data to a command controller. The command unit used was a COMPAQ personal computer. The personal computer contained the real time clock for sequencing tracer measurement requests and referencing data measurements. The unit also stored data accumulated for the entire run. The same command unit and controller was used earlier by Bouett (1986) to sequence and collect voltage measurements for electrodes in a Hele-Shaw cell.

The electrode voltage was measured in the following way. A positive five volt analog output signal was driven across the resistors and electrodes to the common ground. The voltage drop was then measured between **the** positive electrode pole and the ground. Immediately after taking measurements at **all** locations, a negative five volt output signal was driven for the same length of time **as** the positive voltage pulse. The voltage was then set to zero until the next data measurement request was made. Using this method (**see** Figure **4**), there is no average net charge on the electrode preventing a buildup of ions on the electrode surface. The software driver for this routine, in BASIC, and can be found in Appendix E. The program does the following: (1) Sets the real time clock, (2) **Reads** the clock, sends output voltages and re**quests** data at predetermined elapsed **trres** (3) Receives the measured data and **(4)** Stores the measured data.

3.4 Core Description

The cores for these experiments were cut from a Bandera sandstone from Redfield, Kanses. This finely grained uniform sandstone was determined to have 17% porosity (esceneasured from the core dry weight and water saturated core weight). A liquid permeability was measured from tests on the unfractured core and found to be 13 millidarcy.

11 -

Several **25** cm diameter and **15.25** cm length cores were cut for use in the tracer experiments. To simulate fractures, cores were sawed in half down the central axis and then reassembled with a fracture proppant to prevent fracture closure under confining pressure. Photographs of a sawed core **are** shown in Figure **5**. One core **used** an **80-100** mesh sand applied sparingly **as** a proppant The proppant for the other core was a **2040** mesh sand applied liberally in the fracture. Apertures created with the **2040** mesh proppant were on the order of 0.05 cm. Those for the **80-100** mesh sand were only **0.01** cm.

The actual core fracture width was measured in a destructive test conducted after all tracer experiments were completed. A clear epoxy resin was mixed with an oil based red dye and a hardening catalyst and then injected into the core under gas pressure. The core was released from overburden 24 hrs later and the hardened fracture cast removed. Photographs of the core and cast are in Figure 5. Some areas were observed to be unfilled by the resin, but this is most likely due to channelling low pressure gas through the core. as gas breakthrough was observed in the core effluent. Using this fracture cast, twenty fracture width measurements were madeusing a micrometer and the average aperture was found to be 0.0817 cm. The standard deviation for the twenty observations was 0.0116 cm.

The tracer used in the experiments was potassium iodide (KI), selected because of its extensive use in geothermal reservoir field tests. The tracer solution was made by mixing a **1** molar KI solution with distilled water to create a concentration of **105** ppm.

Photographs of Core and Epoxy Fracture Cast after Tracer Tests

4 EXPERIMENTAL PROCEDURE

There were three **primary** *tasks* required in conducting the tracer tests namely, **(1)** flowing the background distilled water, **(2)** switching to the tracer solution and **(3)** measuring the tracer concentrations in the core effluent.

4.1 Flow System Operation

Prior to conducting the tracer **test**, it was necessary to flush **5-10** pore volumes of distilled water through the core. The flushing was required to stabilize the ions dissolved in the core effluent. The ions in the effluent were due to a non-equilibrium exchange between the core and distilled water. This exchange was **a** function of flow rate and the outlet fluid concentration **ranged** from **2** to 10 ppm dissolved ionic **solids** at rates of 16 to 1 cc/min, respectively. This pre-flow stabilization period had an additional benefit. The pre-flow period and the constant pressure at the core inlet and outlet assured **a** steady rate through the core. The inlet pressures were controlled by maintaining a constant suction **port** elevation in the liquid vessel. The outlet pressures were held constant by a constant elevation atmospheric discharge. Only **after** all conditions such **as** flow rate, pressure and effluent composition had stabilized would the actual test begin.

When the core effluent had stabilized in rate and background concentration, the inlet valve of the core holder was switched to accept inlet from the tracer solution vessel. The tracer vessel was identical in *size*, location and suction **port** elevation *to* the **distilled** water vessel **to** assure identical flow **rates** from each **vessel**. Tracer flow was then continued **uttil** breakthrough occurred and the tracer concentration at the core outlet stabilized. Thus, the tracer input was in **the** form of a step change maintaining continuous tracer injection until the completion of the **test**. In contrast to continuous injection **tests**, slug or spike tests are another type of tracer test commonly **used** in the field. In a **slug test**, a single **pulse** of *tracer* is sent through the system. Since **small** volumes of fluid **are used in** the laboratory, it is obviously difficult to introduce a

- 14 -

discrete slug into the core. For this reason, step tests are more practical in the laboratory.

After first flowing distilled water followed by continuous injection of the tracer solution, the process was reversed. This determined the reversibility of the test The reverse test consisted of a step change from tracer solution back to distilled water long after the tracer solution flow conditions had stabilized. This reverse procedure should have generated a response similair in shape but exactly opposite in direction to the initial step change from distilled water to tracer solution. By comparing the **shape** of these two tests, the reversibility of the tracer retention process could be evaluated.

Flow rates and pressure gradients for the tests were chosen to represent conditions typical of **those** in geothermal reservoirs. The flow rates varied between 0.75 and 16 cc/min and the pressure **drop** across the core varied **from 0.1** to 2.0 psi. This corresponds to flow velocities of **4** to 80 m/hr and a pressure gradient of up to **4** psi/ft. The purpose in considering such **a** wide range of **flow** rates was to generate a sharp contrast between the tracer response curves for the **tests. This** was necessary **as** the shape of the tracer curve does not vary linearly with velocity. For most of the dispersion flow models, the dimensionless dispersion coefficient varies with the square root of the velocity. Thus, a 50% change in velocity results in only **a 25%** change in the dispersion characteristics of the system. **By** covering one and **a** half orders of magnitude, **a** five fold change in the dimensionless dispersion coefficient could be observed.

4.2 Data Collection Methods

Using the **data** collection system described earlier, the voltage **drop** across the electrode was measured 15-30 times per minute. The data collection frequency varied with flow rate. The highest sampling rate was for the highest flow **rates**. During the first trial tests, it was observed that immediately after initiating the voltage pulses the electrode response would drift for a **short** time until the system capacitance **was** charged. The drift problem was resolved by simply pulsing the electrodes for several minutes during the pre-flow stabilization period prior to **be**-ginning the tracer test Actual **data** collection began one minute before switching the flow to the tracer solution and continued for several minutes after **the** tracer in the core effluent had

- 15 -

stabilized. Following these procedures, data collection lasted anywhere from five to forty minutes depending on the flow rates. The entire data set collected during each run was **stored** in the microcomputer memory and later transferred to disk.

The measured **data** is in the form of voltage vs. time. In order to generate tracer concentration profiles it **was** necessary to correlate the measured electrode voltage to fluid tracer concentration. The correlation was made by first mixing several test samples to a known concentration by diluting **an** Iodide Standard solution with distilled water. Solution concentrations were mixed to cover the range of **4-100** ppm. The voltage drop across the electrode was then measured in the various solutions and plotted to establish a correlation between sample concentration and electrode voltage. The calibration sample voltage measurements were found to **be** semi-log linearly dependent on the tracer concentration **as** Gilardi(1984) had noted in his work. The followong semi-log relation was used to convert all tracer test voltage measurements into effluent tracer concentrations.

$$\frac{C_e}{C_i} = 10^{4.1 - Volus} - 2.0 \tag{1}$$

 $C_{e} = Effluent Tracer Concentration ppm$ $C_{i} = Injected concentration ppm$ Volts = Measured Electrode Voltage volts 4.1 = Effluent Background Voltage volts2.0 = Effluent Background Concentration ppm

where

A copy of the FORTRAN code which made this conversion is included in the Appendix E.

43 Data Processing Methods

The test data collected represents the core response to continuous tracer injection. This step function response is easily converted into a slug test response by differentiating the continuous injection measurements with respect to time. The resulting response is then directly comparable to the standard spike injection well to well tracer test conducted in the field. This slug response also has more sensitivity than the step response during the transient flow period so critical to model analyses. For both these reasons the slug test data presentation was pre-

ferred for analysis of the experimental data.

The slug test response was generated from the continuous injection test **data** by differentiating the tracer concentration measurements with respect to time. Two methods were evaluated for differentiating the continuous injection test **data** to determine which gave the best results. A finite difference method was attempted, however the results generally had a high noise level. A least **squares** method was used and proved superior to the finite difference algorithm. The least squares technique **used** a number of adjacent points and fit a straight line through them. The slope of the fitted straight line was then **used** to represent the derivative at the central point. The optimum number of adjacent points was found to be five. **Less** points left some signal noise and more points removed some of the definition of the curve. A copy of the program used to generate the slug test **data** (by differentiation) is contained in the Appendix E.

5: EXPERIMENTAL RESULTS

Several experiments with an unfractured core were conducted **first**. The unfractured core tracer response is well known and thus it served **as** a test of the experimental procedures and tracer detection techniques employed. The tests also provided an estimate of rock permeability **to** distilled water when fully saturated with water and a method of determining the tubing volume between the measurement electrodes. After evaluating the testing procedures using the unfractured samples, fractured cores were tested next. The fractured core tracer response, which is not **as** well known **as** the response of unfractured samples, could then **be** determined with confidence.

5.1 Unfractured Core Samples

The unfractured core tests were conducted with the original distilled water pump and pressurized tracer vessel that Pulskamp (1985) had used. The core permeability was calculated from Darcy's law, where

$$k = 14.7 \frac{q}{A} \frac{L}{p_i - p_e}$$
where
$$k = core \ permeability \ darcy's$$

$$q = flowrate \quad \frac{Cm^3}{sec}$$

$$A = core \ cross \ sectional \ area \ cm^2$$

$$L = core \ length \ cm$$

$$p_i = core \ inlet \ pressure \ psia$$

$$p_e = core \ exit \ pressure \ psia$$
(2)

The measured flowrates and pressures and the calculated permeabilities for the four tests of the unfractured core sample are summarized in Table 1. Average permeability was found to be 13 md with good agreement between all the cases. The equivalent slug test responses for four of these cases are plotted in Figure 6. The data is plotted on a pore volume basis to allow for a direct comparison of results on a dimensionless time scale. As the plots show, the curves are

- 18 -

almost symmetrical and effectively collapse to one curve indicating that the response is independent of flow velocity. In this plot the symmetrical tracer concentration profile reflects a common property of dispersion often found for uniform porous media. This property is reflected in the dimensionless dispersion coefficient, the Peclet number.

The Peclet number is defined as

$$P_{r} = \frac{uL}{D_{p}}$$
where
$$P_{r} = dimensionless Peclet number$$

$$u = flow velocity \quad \frac{cm}{sec}$$

$$L = flow length \quad cm$$

$$D_{p} = total porous media dispersion coefficient \quad \frac{cm^{2}}{sec}$$
where

$D_p = D_m + D_h = molecular diffusion coefficient + media hydrodynamic dispersion coefficient$

It has generally been observed for **porous** media that the medium hydrodynamic dispersion coefficient increases linearly with flow velocity. Also, the hydrodynamic dispersion is much greater than the molecular diffusion allowing the total media dispersion coefficient to be calculated ignoring molecular diffusion effects. Thus, the ratio of the total media dispersion coefficient to the flow velocity, termed the medium dispersivity, is a constant for a uniform porous medium. This constant media dispersivity has been observed to remove flow velocity as a system variable when test results are displayed in dimensionless form. The experimental data from this study exhibits this property and therefore agrees with these observations. This result is a good indication that the experimental procedures, data collection and data analysis methods used are reliable.

The unfractured test results were further examined to obtain a direct measurement of the tubing volume between the inlet and outlet electrodes. The slug response in Figure 6 should reach a **peak** value at a pore volume of one. The volume used in generating **these** plots, corresponding to both pore and tubing volume, *can* be treated as a variable to adjust the x-axis. By shifting this curve slightly to the right, the correct combined core and tubing volume can be

estimated as 13.6 cc. The 11 cc core pore volume is then subtracted from the 13.6 cc used to shift the test data so the peak coincides with a pore volume of one. This leaves 2.6 cc for the tubing volume which agrees well with calculations made from equipment drawings.

First Fractured Core Test with both Fracture and Matrix Response

5.2 Fractured Core Tests

The initial fractured core tests were conducted with an **80-100** mesh sand **as** a fracture proppant. The volume of proppant was deliberately kept **as** small **as** possible to minimize any flow restrictions within the fracture. Unfortunately this proppant was only partially effective in keeping the fi-acture open. The equivalent slug test response for this core (Figure **7**) shows the response indicative of two flow paths. This is probably due to the separate responses of the fracture and core matrix. A total flow rate of **4.5** ml/min was measured at **a 185** psi pressure drop. **This** indicates that the total core permeability has been enhanced from **13** to only **20** md. Matrix flow at **this** pressure drop is calculated to be **3.0** cc/min leaving **15** cc/min **as** fracture flow. This degree of matrix flow agrees with the two **peak** concentration profile where the low storage fracture responds first and the matrix later. Although these results are interesting, the core is obviously not representative of flow in most geothermal reservoirs. For example, at Wairakei matrix permeability is responsible for only a small percentage of total flow directly into wells and fractures are the dominant flow comdors. This type of system could be better emulated if the fracture size (and thus permeability) were increased substantially so the flow through the core matrix is negligible.

To increase the fracture width, a **2040** mesh sand was chosen **as** proppant and inserted liberally in a new fractured core sample. Only one layer of proppant was inserted into the fracture **as** two layers would be unstable under overburden pressure. The initial flow tests using **this** new core indicated that the larger proppant was effective. The fracture totally dominated the flow through the core and calculated average permeability increased **to 7800** md. Matrix flow was estimated at **only 0.1%** of the total flow. The tracer response profiles later confirmed the **lack** of matrix flow **as** no secondary matrix pulse was seen in the core effluent tracer concentration curves. This sample was used in all subsequent fractured core **tests**.

The data measured for the fractured core tests is summarized in Table 2. As examples of the tracer concentration data handling procedures, the entire suite of tracer profiles generated for the 3.7 cc/min test are shown in Figures 8 through 13. This includes the actual measured

- 22 -

voltage data, the corresponding tracer concentration profiles and also the equivalent slug test response. The voltage responses measured during the step change injection tests for both the "step up" and "step down" tests are in Figures 8 and 11, respectively. The "step up" refers to the stabilized flow of distilled water **as** the background fluid followed by the switch to tracer solution. This case is representative of **a** continuous injection tracer test. The "step down" is the reverse test resulting from flow of tracer **as** the background fluid followed by a change back to distilled water. The voltage data of Figures 8 and 11 was then used to convert to tracer concentration generating Figures 9 and 12. These tracer concentrations are in response to continuous tracer injection and they were differentiated to yield the equivalent slug test responses shown in Figures 10 and 13. This entire series of plots was generated for each test, however they are not all shown here in the interest of brevity. Only the reservoir equivalent slug test is shown for the other tests in appendix **A**. One complete tabular data set for the **3.7** ml/min test is contained in Appendix F.

In general, the resolution of the **data** was good. Repeat tests were conducted at similair flow rates and near identical results were observed, indicating the repetibility of the test. Test reversibility was evaluated by comparing the step up and step down data in Figures 8 through **13.** Although the curve shape and **peak** values are similair, the plots are not mirror images of each other. This suggests some hysteresis in the tracer **transport** mechanism. However, the remainder of the analyses in this report centered on the reservoir equivalent slug test data (the "step up" slug tests) and the reverse test results are left **as** a subject for further study.

Reviewing the fractured core slug tests, results are seen to be quite different from the unfractured core **tests.** The slug test response, the highest resolution plot, shows **a** great degree of asymmetry, similair to the field results observed in Wairakei. These responses show the same early steep rise and late time **"tails"** characteristic of the field test responses. The similarity between 'the laboratory and field test results indicates that the experimental geometry adequately emulates reservoir conditions. It was therefore considered justifiable to begin quantitative analysis of the experimental **results**.

FIGURE 9

Concentration Profile for Step Up at 3.7 ml/min

FIGURE 10

Equivalent Slug Test for Step Up at 3.7 ml/min

Voltage Profile for Step Down at 3.7 ml/min

Concentration Profile for Step Down at 3.7 ml/min

Equivalent Slug Test for Step Down at 3.7 ml/min

Before any further **analysis** of the data was possible, it was **necessary** to adjust the time datum of the measured response to reflect the actual time of tracer entry into the core. It is important to note the time scale for **Figures 8** through 13 and the plots in Appendix A reflects the **start** of the data collection clock and it is NOT time measured from when the tracer entered the **core.** Thus, a shift of time datum by 20-200 **secs was** required depending on the flow **rate.** This time datum correction was estimated using the inlet electrode response **as** follows:

$$t_{dc} = t_{ie} + \frac{V_t}{q}$$
where
$$t_{dc} = calculated time datum correction secs$$
(4)

 $t_{ie} = measured inlet electrode first tracer arrival time secs$ $V_t = tubing \ volume \ between \ electrodes \ cm^3$ $q = flowrate \ \frac{cm^3}{sec}$

This time datum correction was then subtracted from the measured times correcting the plots to **a** true time scale.

$$t_a = t_{oe} - t_{dc} \tag{5}$$
where
$$T_{ac} = t_{oe} - t_{dc} \tag{5}$$

t_a = actual test time reflecting tracer entry into the core secs t_{oe} = measured clock time at outlet electrode secs

These shifted plots were later used to develop pore volume plots and in the model analyses. In fact, model analyses were found to be sensitive to the actual test start time and the shift parameter was often used as a system variable. This is discussed in more detail in the modeling *sec*-tion.

6: MODELING THE EXPERIMENTAL DATA

The experiments conducted on the fractured core resulted in an asymmetrical tracer breakthrough profile characteristic of the Wairakei field tracer tests. It should be possible to match this profile shape using the models which have been applied to the Wairakei field test data. However, before attempting any mathematical analysis of the experimental **data**, a pore volume plot was made **so** that the results **from** all of the **runs** could **be** viewed on a single plot. The fractured core results (Figure **14**) are quite different from those obtained earlier using the unfractured core (Figure **6**). The curves for different flow rates no longer collapse to a single uniform shape on **this** dimensionless scale, indicating that the mechanisms controlling tracer dispersion in the fractured core are velocity dependent. **This** velocity dependent dispersivity, which was not observed in the uniform core, was further investigated using several analytical fracture flow models.

61 Conventional Analytical Models

Several models are available for analysis of flow in fractured porous media. However, only models which are representative of the physical system constructed in the laboratory were deemed relevant for analyses. In the Laboratory, as in real geothermal reservoirs, the flow was almost totally in the fracture and the matrix acted only through exchange with the fluid in the fracture. This restricted the choice of models to those considering **1**) the matrix impermeable to fluid flow **2**) linear flow in a single fracture and **3**) fracture/matrix exchange only **a** the fracture wall. The models in this category vary greatly in terms of complexity and the mechanisms they consider. **As** the goal **of** this work was partly to evaluate the dominant tracer transport mechanism, several models were considered even though they were expected to be shown to be inappropriate. The philosophy used was to start with the simplest model. Complexity was only added **as** required to better match experimental results. **Models** which consider complex mechanisms which could not be precisely quantified were not investigated. The additional com-

plexities of these models were thought to risk clouding the evaluation of the dominant mechan-

isms by introducing transport phenomena that were not well understood.

Pore Volume Plots for Fractured Cores

- 29 -

Interpretation of the experimental results required solution of an inverse problem in which the stimulus and response are **known** and **are used** to identify the system. In order to decide whether a particular model is appropriate for the system and also estimate **the** most likely model parameters, several methods *can* be **used**. The simplest and most time consuming is **trial** and e m. Slightly more complicated analyses **use** dimensionless **type** curves **to** identify the effects of system variables on the output response. Another more quantitative method uses non-linear optimization methods. The greatest accuracy and lowest error is **associated** with **these** optimization methods **and** thus one was chosen **to** fit the models **to** the results. A least squares non-linear regression **porgram** named VARPRO, which is based on a paper by Golub and Pereya **(1973)**, was used to fit the experimental results with **all** the various flow models.

6.1.1 Taylor Dispersion Model

Home and Fossum (1982) developed a model for fracture flow in which planar Taylor Dispersion is the only tracer dispersion mechanism. No interaction is considered with the matrix in this model and thus results are almost symmetrical about the **peak** concentration. Using this model, attempts were made here to fit the experimental data from several **runs**. The FOR-TRAN code and equations for the model can be found in Fossum's **report** (1982).

The attempts at model regression were not successful. The asymmetrical experimental data resulted in a poor match with this model, just **as** field test data had. The strong asymmetry of the curves indicates that in an equivalent spike injection tracer would be held up in the core and released again at **a** later time, producing the long tailing effect observed in the data. This **caused** predictions with the model to be inaccurate, **as** shown in Figure **15**.

However, it was noted that the model could match the experimental data by allowing the optimization routine to also treat the test start time as a variable. The resulting match of the experimental data (Figure 16) is better, but the start time used in the match does not correspond with the measured start time. Furthermore, the Taylor diffusion solution as presented by Fossum is most likely not valid at these early times for two reasons.

- 30 -

Match with Fossum Model without Adjusting Start Time

Model (-) and Data (*)

FIGURE 16

Match with Fossum Model using Start Time as a Regression Variable (calculated start time draws data so close to origin that an) (insufficient time has elapsed for Fossum solution to be valid)

Tracer Concen(ppb) 2000 1000 0 0 100 Test Time (secs)

Model (-) and Data (*)

First, the true Taylor solution is

$$\frac{C_e}{C_i} = erfc \; \frac{x - ut}{2\sqrt{\eta} t} \; + \; e^{\frac{ux}{\eta}} \; erfc \; \frac{x + ut}{2\sqrt{\eta} t} \tag{6}$$

However, Fossum's model uses an approximation of Equation 5 which ignores the second term in the equation. This approximation is valid at late times as the second term diminishes to zero rapidly as time increases. The time scale for the test match in Figure 16 and the fast breakthrough of tracer in the laboratory cores. however, results in conditions where the late time approximation is not appropriate. Thus, Fossum's model is not valid for the times shown in much of Figure 16.

A second reason for discounting this match again relates to the small values of time in Figure 16. The dimensionless time for this model

$$t_{d} = 4 \frac{D_{m}}{W^{2}} t$$
where
$$t_{d} = dimensionless time$$

$$D_{m} = tracer molecular diffusion coefficient \frac{cm^{2}}{\sec}$$

$$t = time \quad secs$$
(7)

W = fracture aperture cm

must be greater than one half for the tracer concentration to equalize across the fracture aperture. Prior to a dimensionless time of one half, the Taylor solution given in Equation **5** is not actually valid. **As** Figure **16** clearly shows, some **of** the solution **occurs** at a time when the proper velocity profile has not yet developed.

Considering the two points above, if matching experimental **data** requires shifting the test start time close to the origin where: (1) the solution deviates **from** the differential equations describing the system and (2) the model uses an approximate solution not valid **at** such early **trees** then the model is inappropriate for describing the system.

6.1.2 Matrix Diffusion Model

The tracer diffusion model premnted by Jensen and Home (1983) was the second model **used** to match experimental results. **The** solution for this model and the corresponding computer code is presented in Jensen's report (1983). The regression attempts using this model were more successful **than** those with Fossum's model and resulted in less error between calculated and measured values. **As** shown in Figures 17 and 18, the **match was still** only **fair**. However, during the early time period, the model was in error, showing later tracer breakthrough at a higher concentration than the experimental **data**. Before abandoning the model, the possibility of some deviation from ideality in the laboratory **tests** was considered.

Reviewing the model match, the early time predictions indicated a later first tracer arrival than the test results. The model also predicted higher **peak** concentrations at breakthrough. The early time error could be caused by a deviation from the unit step change assumed to **occur** at the core inlet face. A less abrupt change in the inlet concentration would result in lower break-through tracer concentrations and lower values in the curve **peak**. The cause of a ramp increase tracer solution concentration **(as** opposed to a sudden step change) could be mixing of the distilled water and tracer solutions in the volume of pipework between the tracer valve and the core.

To reveal the magnitude of any mixing before the core inlet, the inlet electrode responses for the 16 and 1.75 cc/min tests (Figures 19 and 20) were examined. The tracer front as it passed the inlet electrode is obviously not an ideal step change and is closer to an exponential rise. The time duration of the transient response period is short, however, in comparison to the tctal test time it is still significant. The mixing occurring before the core entrance must, therefore, be considered in the boundary conditions of any model solution.

This upstream mixing is apparently due to dispersion in the tubing between the three way valve and the core inlet. The dispersian mechanism for laminar flow in a pipe has been studied by Taylor (1956). The model developed by Taylor was tested to determine its applicability to the data measured at the inlet electrode.

• 34 -

Jensen Model Match at 1.4 cc/min: Fair Agreement with Data but Late Breakthrough

FIGURE 18

Jensen Model Match at 16 cc/min : Again Later Tracer Breakthrough

Modcl (-) and Data (*)

63 Inlet Dispersion Mechanism

With the goal of developing the functionally correct form of the tracer front at the core inlet, experiments were carried out to properly characterize the mechanism of dispersion in the inlet tubing. This was then **used as** the boundary condition to obtain the general solution of the tracer models by developing a new model solution including the new modified inlet boundary condition. Initially the inlet front in Figures **19** and **20** was represented by an exponential function. This generated a solution capable of matching experimental results fairly well, however the results were not consistent between the various experiments. It became obvious that the solution for the inlet boundary must **be** consistent with the forces causing the mixing and that more **data** would **be** required to better define the tracer front as it enters the core.

Two problems had to be overcome in determining the correct inlet boundary condition. First, the tracer concentration was needed exactly **as** the tracer front entered the core rather **than** at the inlet electrode location. Installing an electrode within the core holder was not possible. Second, the shape of the front previously measured **at** the inlet electrode location did not reflect the Taylor solution. These problems were overcome by making a series of experiments in a length of pipe. The tracer front **was** observed **as** it traveled down the tubing and this **data** was used to predict the front shape as it enters the core.

The tracer fronts observed at **a** 1.2 cc/min flow rate at distances of 13, 65 and 165cm from the inlet valve are plotted in Figures 21, 22 and 23, respectively. The 13 cm location corresponds to the 13 cm distance between inlet electrode and the tracer inlet in the actual core flow loop. As before the front at the 13 cm location does not have the symmetry observed for Taylor Dispersion and the data matches an exponential function. However, the fronts further downstream do have the symmetrical shape associated with Taylor dispersion in a pipe and do not fit the exponential function (see Figures 22 and 23). Subsequent runs at other flow rates also revealed that the first location deviated from Taylor's model. This is either due to the effects of the inlet valve or because sufficient time had not elapsed to develop a Taylor front (dimensionless time is roughly one-half). The locations further downstream, which correspond

to the core inlet location (and beyond), all conformed to Taylor's model.

FIGURE 19

Inlet Electrode Measurement of Tracer Front Prior to Entering the Corc -Front Resembles Exponential Exponential (-) and Data (*) at 1.4 cc/min

FIGURE 20

Inlet Electrode Mcasurement of Tracer Front Prior

to Entering the Core -Front Resembles Exponential

FIGURE 21

Tracer Front at 1st Elccuodc (13 cm): Note Lack of Symmetric Profile

Tracer Front at 2nd Electrode (65 cm): Taylor Dispersion Profile Poorly Matched by Exponential

Tracer Front at 3rd Electrode (165 cm): Taylor Dispersion Profile Poorly Matched by Exponential

Thus, the **data** from several **runs** were fit to the following complimentary error function solution initially developed by Taylor(1956).

$$\frac{C_i}{C_o} = erfc \frac{x - ut}{2\sqrt{\eta} t}$$
where
$$x = measurement \ electrode \ location \ cm$$

$$u = flow \ velocity \ \frac{cm}{\sec}$$

$$t = time \ \sec$$

$$\eta = Taylor \ Dispersion \ Coefficient \ \frac{cm^2}{\sec}$$

$$C_o = inlet \ concentration \ ppm$$

(8)

The match for all runs, with flow rates ranging from 0.7 to 16 cc/min, were quite good. Figures 24 through 27 show examples of the model match of the tracer front at the 65 cm location. The calculated dispersivity value\$ for all of the pipe flow experiments are shown in Table 3. The conclusion was that the mixing did agree with a Taylor dispersion model by the time the front reached the core inlet face and an error function solution (Equation 5) was the correct core inlet boundary condition.

Having successfully described the mixing of tracer and distilled water before the core inlet, a correlation (Figure 28) was developed between injection rate, tubing mixing length and the dispersion coefficient. The correlation was used to determine the appropriate tubing dispersion parameter at a mixing length equivalent to the core inlet. The actual core inlet face is only some 35 cm from the tracer switching valve, however, the equivalent mixing length is longer due the mixing head in the core holder apparatus. An estimate of the mixing length was made from the tubing volume and cross sectional area as follows:

$$L_m = \frac{V_t}{A_p} = \frac{2.7 \ cm^3}{0.27 \ cm^2} = 100 \ cm \tag{9}$$

The Taylor Dispersion coefficient for each flowrate was then estimated from Figure 28 at the core inlet mixing length of 100 cm. This generated the constants in Equation 5 which were then **used** to develop **a** new solution for the Matrix Diffusion model with a dispersed boundary condition.

Tracer Front at 2nd Electrode : Data (*) and Matched Error Function (-)

Flowratc = 1.2 cc/min

FIGURE 25

Tracer Front at 2nd Electrode : Data (*) and Matched Error Function (-)

Flowrate = 4 cc/min

Tracer Front at 2nd Electrode : Data (*) and Matched Error Function (-)

Flowrate = 8 cc/min

Tracer Front at 2nd Electrode : Data (*) and Matched Error Function (-)

FIGURE	28
--------	----

Correlation Between Dispersion Coefficient and Distance from Tubing Inlet

1 = 0.7 ml/min	2 = 1.25 ml/min	3 = 4.1 ml/min	4 = 5.5 ml/min
5 = 8.5 ml/min	6 = 11.0 ml/min	7 = 15.5 ml/min	8 = 16. ml/min

Tubing Distance (cm)

6 3 Modified Conventional Analytical Models

63.1 Matrix Diffusion Model with Dispersed Inlet Boundary Condition

The Matrix Diffusion Model solution previously applied to the test data was developed assuming a unit step change inlet boundary condition. This solution was **notified for an** error function inlet boundary condition to reflect Taylor dispersion in the inlet tubing. The solution was obtained by transforming the error function inlet boundary condition into Laplace space and applying it to the Laplace transform of the solution to the matrix diffusion model. This generated the specific solution for the error function inlet condition. The continuous injection solution was then multiplied by the Laplace variable s to differentiate the continuous solution into the slug test solution. The Laplace space solution was found to be:

$$C_{f} = s \ e^{-2b\frac{\sqrt{s+a} - \sqrt{a}}{\sqrt{s+a} (\sqrt{s+a} - \sqrt{a})}} \ e^{-\frac{s}{\beta}} \ e^{-2\alpha\frac{\sqrt{s}}{\sqrt{\beta}}}$$
(10)
where

$$a = \frac{u^{2}}{4\eta} \quad inlet \ dispersion \ parameter \ sec^{-1}$$

$$b = \frac{x}{2\sqrt{\eta}} \quad inlet \ dispersion \ parameter \ sec^{-0.5}$$

$$\eta = Taylor \ Dispersion \ Coeficient \quad inlet \ parameter \ \frac{cm^{2}}{sec}$$

$$\alpha = \frac{D_{e}}{W\sqrt{D_{a}\beta}} = dimensionless \ dispersion \ coeficient$$

$$\beta = reciprical \ breakthrough \ time \ \frac{1}{sec}$$

$$D_{a} = apparent \ diffusivity \ \frac{cm^{2}}{sec}$$

$$x = core \ inlet \ Location \ 100 \ cm$$

$$u = tubing flow \ velocity \ \frac{cm}{sec}$$

$$t = time \ sec$$

$$W = fracture \ width \ cm$$

Detailed derivation of this equation is in Appendix B.

- 43 -

This slug test solution could not be inverted from Laplace space to real space analytically and the equation was inverted into real space using the Stehfest numerical inversion method (Stehest 1970). The VARPRO nonlinear regression was used to fit the new model (Equation 9) to experimental data. A listing of the FORTRAN program which was used and a sample output is given in Appendix C.

Three variable parameters were used in the VARPRO nonlinear regression routine. The nonlinear variables were: (1) the tracer breakthrough time , (2) the dimensionless core dispersion parameter, and (3) the time datum correction reflecting tracer entry into the core. The first two regression parameters were truly unknowns and a function of the core properties. These same core parameters were used as regression variables in the unmodified Matrix Diffusion model. The third regression parameter, the datum time correction, was actually not an unknown. The datum correction could be determined from the inlet electrode response to the tracer front and the tubing volume between the two electrodes. However, the regression analysis treated the datum time correction as a possible variable, allowing a better fit of the data. The regressed values for the time datum corrections were found to be generally consistent with measured values, but the regression procedure provided a small adjustment to the datum corrections accounting for any errors in the measured time datum correction. The slight variations between measured and regressed time datums most probably reflect actual tubing volume changes due to small flow system modifications made during the course of the experiments. The regression method, therefore, provided a better match of the data with only a minor adjustment in the test start time.

The only terms in Equation 9 **not** treated **as** regression parameters were the inlet dispersion terms. These test constants were fairly well **known** from the tubing dispersion experiments. Regression **on** these **boundary** condition terms was attempted but without success. The coupling'of the tracer dispersion in the tubing and the tracer dispersion in the core presented a problem whose solution was nonunique. Thus, the regression routine could not converge on a unique set of model parameters when the tubing dispersion terms were included **as** regression parameters.

FIGURE 29

Matrix Diffusion Model with Error Function Inlet Boundary Condition

Matrix Diffusion Model with Error Function Inlet Boundary Condition

- 46 -

The tracer profiles for the seven fractured core tests were fitted to the modified matrix diffusion model and the calculated regression variables are listed in Table 4. The measured and calculated tracer profiles are shown for two cases in Figures 29 and 30. The agreement between the calculated and observed response is excellent, indicating that the model is applicable to the system. Plots for all the test matches are in Appendix D. They generally show the same excellent agreement between model predictions and experimental data depicted in the two examples shown here. The modified inlet boundary condition model correctly matched the early time period where the step boundary condition model lead to considerable errors. A summary of model match variables and input parameters is in Table 4.

The model match parameters listed in Table 4 represent the following system variables,

$$\alpha = \frac{D_e}{W\sqrt{D_a \beta}}$$
where
$$\beta = reciprocal \ breakthrough \ time \quad \frac{1}{\sec c}$$

$$D_e = effective \ diffusivity \quad \frac{cm^2}{\sec c}$$

$$D_a = apparent \ diffusivity \quad \frac{cm^2}{\sec c}$$

$$W = fracture \ width \quad cm$$
(11)

The estimated fracture apertures can thus be calculated using the model match parameters, providing that values for the molecular diffusivity, matrix porosity and apparent dispersion coefficient *can* be obtained.

63.2 Taylor Dispersion Model with Dispersed Inlet Boundary Condition

Although the Matrix Diffusion model **as** modified for an error function inlet boundary condition had already matched the experimental **data** well, the Taylor Dispersion model was **also** modified and fitted to the **data**. **Detailed** derivation of the modified solution is **not** presented, however, it is **similair** in principal to that for the **Matrix** Diffusion model modification and

the final solution is shown in Appendix B.

The resulting match with this model (Figures 31 and 32) is worse than the unmodified version. Fitting the data shifted the test start time some 20-50 seconds AFTER the tracer had already broken through in the core effluent. The model is obviously not practical for matching experimental test data, however, this negative result is presented for completeness.

Model (-) and Data (*) at 0.8 cc/min flowrate

FIGURE 31

Fossum Model with Modified Boundary Condition : Note Breakthrough Before Start Time

FIGURE 32

Fossum Model with Modified Boundary Condition : Note Breakthrough Before Start Time

7: MATRIX DIFFUSION MODEL MATCH PARAMETERS

The three parameters matched with the modified Matrix Diffusion model were used to estimate core properties and checked for consistency with other experimental observations. The matched datum time correction was used to calculate the tubing volume between the two electrodes. The matched breakthrough time **was** used to calculate a unique fracture width. The third parameter, the dimensionless dispersion coefficient, provided another fracture width estimate and also characterized the tracer **matrix** diffusion and absorption mechanisms.

7.1 Datum Time Correction

The model matched datum correction times for all runs are **listed** in Table 4. These datum corrections were used in Equation 4 together with the inlet electrode tracer arrival time and the measured test fluid flow rate to calculate the tubing volume between the electrodes. The calculated tubing volumes are shown in Table 4 for all the runs. The estimates generally show little scatter and agree with the tubing volume estimates previously made. The average value **is 2.6 cc** with only a few cases deviating more than 5-10%.

Although the tubing volume **has** no bearing on deriving core property estimates, the figures **are** included because they provide a quality control check on the experimental data. Generally, the **runs** significantly deviating from the **2.6 cc** average are suspect and the quality of the experimental data should be scanned for any errors. The model predictions for these **runs** (nos. **9** and 10) actually do not tit the measured data very well, further indicating a problem with the **data**. These test results me most likely skewed **by** a changing flow rate during the course of the run. In any respect, these **tests** results should **be** weighed lightly when evaluating core properties.

72 Breakthrough Time

The model matched core effluent breakthrough times provided a unique opportunity to estimate the fracture aperture directly., In field tests, the areal (or vertical) extent of the fracture

- 50 -

is seldom **known.** Even if some approximation *can* be made, the degree to which the tracer actually flows within the full areal extent is never **known.** The laboratory test differs from field **tests as** the core is confined and a direct estimate of the fracture length and cross-section is available. Using the measured core dimensions and the flow **rates** a simple formula for fracture width can **be** derived.

$$W = \frac{q}{L D \beta}$$
where
$$W = \text{fracture width } cm$$

$$\beta = matched \ reciprocal \ breakthrough \ time \quad \frac{1}{\sec c}$$

$$q = flow \ rate \quad \frac{cm^3}{\sec c}$$

$$L = core \ length = \ 15.24 \ cm$$

$$D = core \ diameter = \ 2.36 \ cm$$
(12)

The fracture width values calculated using this equation are listed in Table 4 along with the matched tracer breakthrough times, Values range from 0.06 cm down to 0.004 cm. The estimates vary widely, but not randomly. There is an obvious correlation between rate and estimated aperture, with larger apertures inferred at the higher flow rates. It may be the that **results** at low rates suffer from an uncertainty similair to that which exists **±** field scale; that is the unknown flow distribution across the fracture width. At higher rates the flow may fully distribute across the core diameter, however, at low flow rates a preferential flow path within the fracture may inhibit the flow from fully developing across the full fracture width. The actual cause of the variation remains uncertain, however the fracture aperture estimates from the core cast (0.08 cm) and the hydraulic calculations **(0.012** cm) generally bound the model estimates, indicating the approximation is fairly good.

7 3 Dimensionless Dispersion Coefficient

After evaluating the fracture aperture using the matched breakthrough time, the dimensionless dispersion parameter was **used** to provide a second estimate of the fracture aperture and to investigate the tracer diffusion and adsorption within the core. The coupling of these effects into one parameter prevents a unique estimate of the effects of any single parameter unless other information is available. **As stated** earlier, the dimensionless dispersion parameter represents the following:

$$a = \frac{D_e}{W\sqrt{D_a \beta}}$$
(13)

Cf the five terms in this equation, three are unknown. Only the first breakthrough time and the dimensionless dispersion parameter are known from the model match. Thus, estimates for the effective and apparent diffusivities must be made to calculate the fracture aperture. The tracer effective diffusivity is difficult to precisely estimate, however, it is usually taken **as** the product of molecular diffusion and the matrix porosity. Thus,

$$D_e = D_m \phi \tag{14}$$

or, more specifically for these tests:

$$D_e = 21 \times 10^{-5} \frac{cm^2}{sec} \times 0.17 = 3.57 \times 10^{-6} \frac{cm^2}{sec}$$

The effective diffusivity is generally found to be within an order of magnitude of this estimate for a porous medium.

The fourth parameter, the apparent diffusivity is more difficult to estimate mainly because such a wide range of values are observed in field and laboratory situations. Generally,

$$D_{a} = \frac{D_{e}}{K_{d} \rho_{p}}$$
(15)
where

$K_d \rho_p = the dimensionless solid/liquid partition coefficient$

For non-sorbing solutes, Neremieks (1980) has shown this parameter is equal to the matrix porosity. He also indicates that for strongly sorbing solutes values up to 10000 are not uncommon. This wide range of possible values (0.01-10000) for the adsorption parameter usually far outweighs the uncertainty in the effective diffusion coefficient and thus warranted more investigation into the appropriate value for the laboratory tests. The specific solute of interest, KI, is usually considered non-sorbing in geothermal rocks, but the core sample in this study is an unfired sandstone. As the sandstone may contain some clays with adsorption sites available to

the solutes, the adsorption of KI was investigated using the experimental data already available and by means of **a** laboratory adsorption experiment.

The **degree** of any tracer adsorption was initially evaluated by integrating the effluent tracer concentration profiles (minus the influent profile) to calculate the cumulative volume of tracer retained in the core. Results for several runs were reviewed and the results from three typical runs are shown in Figures 33 through 36. Figures 33, 34 and 35 show the core inlet and outlet tracer concentration as a function of pore volume for three different flow rates. The area between the curves can be integrated to determine the volume of tracer actually retained within the core. The integration results (Figure 36) indicates the cumulative tracer mass retained in the core as a function of pone volumes injected. In some cases up to 0.8 mg of KI has been retained in the core. Using the 11.5 cc core pore volume, this suggests an average core fluid concentration of 52 ppm or 50% of the injected tracer concentration. However, this is not possible if diffusion (a very slow **process**) is the only process considered to be retaining tracer within the core. Rough calculations show that an average tracer concentration of only 3-5 ppm would exist in the matrix if diffusion were soley responsible for the tracer retained within the matrix. This 3-5 ppm tracer concentration can only account for some 0.05 mg of tracer in the core matrix. Summing the tracer mass retained in the core mamx with the 0.10-0.15 mg in the fracture results in only 0.15 to 0.20 mg of total tracer mass in the core. This figure falls far short of the tracer mass indicated by Figures 33 through 36. Adsorption, or another similar process, must be the cause of this additional tracer retention in the core.

The adsorption parameter was quantified by means of **a** simple experiment. A **6.4** cc bulk volume piece of core was crushed to its **5.34** cc granular volume. The **rock** was then mixed with 170 cc of a 105 ppm tracer solution. The tracer solution subsequently decreased in concentration to 69 ppm. Using this data, o dimensionless sorption parameter of **17** was calculated. This is indicative of **a** very weakly sorbing solute, which is reasonable for KI in a low porosity sandstone.

Finally, all the terms in the dimensionless dispersion parameter have been quantified ex-

cept the fracture aperture. The adsorption **and** diffusion terms **and** the two model match parameters were then used to make a second estimate of the fracture aperture. The following values for the coefficients in Equation 13 were used in estimating the fracture aperture:

$$D_{e} = 3.57 \times 10^{-6} \frac{cm^{2}}{sec}$$
$$D_{a} = 21 \times 10^{-7} \frac{cm^{2}}{sec}$$

a = known model match parameter dimensionless $\beta = known modal match parameter sec^{-1}$

Calculated values are tabulated with the match parameters in Table 4. The calculated apertures all range from 0.01 to 0.09 cm, which agrees well with other estimates.

Corc Inlet(-) and Outlet(--) Profiles Showing Tracer Retained In Corc

Note lcss area between curves as rate dccreases

- 55 -

FIGURE 33

FIGURE 35

Core Inlet(-) and Outlet(--) Profiles Showing Tracer Retained In Core

Note less area between curves as rate decreases

FIGURE 36

Cumulative Tracer Mass Retained in Core at 3 Flowrates

Note tracer retention decreases with flowrate

Another method for estimating the fracture aperture from the model dimensionless dispersion parameter was **also** evaluated. The reciprocal breakthrough time was treated **as** an **unknown** and Equation 12 was substituted into equation 13. The result is the following equation for fracture aperture based on the, model matched dimensionless dispersion parameter, the apparant and effective diffusivities, and the injection flow rate:

$$W = \frac{D_e^2}{\alpha} \frac{L D}{q D_a}$$
(16)

Using this **formula**, the fracture apertures shown in Table 5 were estimated. These estimates are the more consistent than the previous estimates, with an average value of 0.073 cm and **a** 33% standard deviation from the average value. If the two suspect cases (**8** and 13) are disregarded, **the** average is 0.068 cm with **an** 18% standard deviation. This fracture aperture determination is by far the most accurate **of** the three methods **used**. Unforetunately, this method is difficult to **use** in a field test analysis where the fracture areal extent is not known.

7.4 Discussion of Fracture Aperture Estimates from Model Match Parameters

In the preceding two sections, the two diffusion model parameters were used to generate fracture aperture estimates ranging from 0.005 to 0.090 cm. The average estimate using the breakthrough time parameter is 0.0245 cm with a standard deviation of 0.0212 cm or 87% of the predicted value. The average value derived with **both** parameters is 0.0463 cm with a *stan*-dard deviation of **0.025** cm, or **53% of** the predicted value. The average value derived using only the dimensionless dispersion parameter **is 0.07** cm with a 33% standard deviation. If runs 9 and 13 are disregarded (discrepancy between measured and regressed time **datum** corrections and a poor model match of the **measured data**), the standard deviation for aperture estimates using only the breakthrough time parameter drops to 83%, **44%** when using **both** parameters and 18% when using only the dimensionless dispersion parameter. All aperture estimates of **0.025** cm, 0.046 cm and 0.07 cm are **reasonable**, however, the third value **is** obviously more reliable based **on** the standard deviation parameters. The greater precision in the estimate made with only the dimensionless match parameter suggests 0.07 cm is the best estimate of the **actu-**

al fracture aperture.

The cause of the increased precision in the second and third aperture estimates may be due to errors in the breakthrough parameter. This lower precision in aperture values estimated from the tracer breakthrough time could be due to errors introduced into the model through the **inlet** dispersion function. Slight changes were ma& to the constants in the inlet dispersion function to reflect the degree of uncertainty associated with the inlet dispersion correlation (Figure **28**). These changes were found to have far less effect on the regressed dimensionless dispersion parameter than the regressed value for the breakthrough time. Thus, errors inherent in **an** empirical correlation such **as** Figure **28** would have a greater impact on the aperture values derived **from only** the breakthrough time, which is far more sensitive to the inlet boundary condition. The possible errors in the inlet boundary condition, therefore, would result in the widest range of apertures derived from the breakthrough time parameter alone. The error would be reduced when using both parameters and almost eliminated if the breakthrough term **was** ignored.

The exact cause of the greater error in the apertures derived using only the breakthrough time remains a subject for further work. It is clear, though, that the dimensionless dispersion coefficient provides a more reliable fracture aperture estimate and should be given far greater weight in any field test analyses.

8: TRACER ADSORPTION : Calculated and Measured Tracer Retention in the Core

The previous fracture aperture calculations from model match parameters noted the significance of the adsorption and diffusion terms in estimating fracture aperture. If a totally non-sorbing solute had been assumed, the fracture aperture calculated from the match parameters would have been an order of magnitude below the estimate made from the breakthrough times and the aperture observed in the epoxy fracture cast. This stresses the importance of quantifying tracer adsorption when interpreting test results. Even if the tracer is very weakly sorbing, assuming no adsorption can lead to considerable errors in estimating fracture aperture. As adsorption has such a significant impact on the model aperture estimate, the tracer retained within the core due to adsorption was modelled to determine whether model calculations agreed with the measured values from the core inlet and outlet tracer concentration profiles (Figures 33 through 36)

8:1 Tracer Retention for a Sorbing Tracer

The tracer retention within the core was determined in two steps. First, the tracer concentration distribution was determined. Second, the distribution was integrated over the core to determine the total mass within the core. To accomplish the first step, the flow model, match parameters and dispersion and adsorption terms were used to calculate the final tracer concentration distribution within the core when the tracer test was terminated. The concentration distribution was determined using the fallowing Laplace space equation for the modified Matrix Diffusion model derived in Appendix **B**:

$$C_{m} = e^{-\frac{\sqrt{s+a} - \sqrt{a}}{\sqrt{s+a} (\sqrt{s+a} - \sqrt{a})}} e^{-\frac{s}{\beta}} e^{-2\alpha \frac{\sqrt{s}}{\sqrt{\beta}}} e^{-z \frac{\sqrt{s}}{D_{a}}}$$
(17)
where
$$C_{m} = concentration within the core at z$$
$$z = distance fracture wall cm$$

The concentration within the fracture is obtained by setting z to zero.

Equation 17 was inverted from Laplace to real space with the Stehfest algorithm (1970), and used to calculate the tracer concentration distribution away from the fracture wall at locations 2, 4, 6, 8, 10, 12 and 15 cm from the core inlet. The calculations were made for the end of the 16 cc/min run (400 seconds). The tracer concentration distributions determined using Equation 17 (Figure 37) were found to vary little with the distance from the core inlet. The test time was found to be far more important in determining the tracer distribution within the rock matrix. Thus, the tracer concentration distribution calculated at only one location (Figure 37) was used to represent the entire core length. The calculated distribution was then used in the following numerical integration scheme to determine the cumulative mass retained within the core matrix:

$$M_{m} = \frac{C_{z} + C_{dz}}{2} dz L D \qquad \phi + K_{d} \rho_{p} \qquad (18)$$
where
$$C_{z} = tracer \ concentration \ at \ z \quad \frac{mg}{cm^{3}}$$

$$C_{z+dz} = tracer \ concentration \ at \ z + dz \quad \frac{mg}{cm^{3}}$$

$$dz = increment \ in \ z \ direction \ cm$$

$$D = core \ diameter \quad 2.5 \ cm$$

Using equation 18, the total mass wa\$ summed over the core matrix. The total mass in the core was then determined as

$$M_{t} = M_{m} + M_{f} = M_{m} + W L D C_{f}$$
where
$$M_{t} = total \text{ mass in core } mg$$

$$M_{f} = mass \text{ in fracture } mg$$

$$C_{f} = tracer \text{ concentration in fracture } \frac{mg}{cm^{3}}$$
(19)

Using Equations 18 and 19, the cumulative mass retained in the core was calculated **as** a function **of** matrix penetration depth (Figure **38**). The model estimates a **total** of **0.9** mg is retained within the entire core. This figure agrees with the 0.76 mg estimate made using the core inlet and outlet tracer concentration profiles (Figures 33 and 36). Of the 0.9 mg calculated, 0.173 mg is estimated to be in the fracture, only 0.007 gm is dissolved in the matrix pore fluid and 0.72 gm is adsorbed onto the rock.

Tracer Concentration in the Matrix Porc Fluid after 16 cc/m Test

FIGURE 37

Total Tracer Mass in the Core at a Given Matrix Penetration Depth

8:2 Tracer Retention for a Non-Sorbing Tracer

The previous tracer retention calculations used the adsorption coefficients derived in Section 7. If, however, no tracer adsorption occurred in the core (i.e. a non-sorbing solute as a tracer), diffusion alone into the matrix could act as a tracer retardation mechanism. An estimate of the tracer concentration distribution and total tracer mass retained within the core assuming a non-sorbing tracer was possible using Equations 17-19 by using the following definition for the dimensionless adsorption parameter;

$K_d \rho_p = \phi$

Using this modification, the tracer concentration dismbution for a non-sorbing tracer was calculated from Equation 17 at the end of the **16** cc/m flowrate test (Figure 39). As expected, the non-sorbing racer is retarded less and penetrates deeper into the core. These non-sorbing tracer concentrations (Figure 39) were then used in Equations **18** and 19 to estimate the total mass retained in the core for a non-sorbing tracer (Figure **40**). The non-sorbing tracer resulted in only **0.24** mg of tracer retained in the core. Of this 0.24 mg, roughly 0.06 is within the matrix pore fluid and 0.17 mg is within the fracture. This low retention within the matrix reflects the slow diffusion of tracer into the rock pore volume. Thus, tracer retained with a non-sorbing solute is significantly lower than the 0.76 mg actually calculated previously using influent and effluent data. Considering the large discrepancy between the non-sorbing tracer calculations and the experimental observations, and the fair agreement between the adsorption model estimates and the experimental data, tracer adsorption at the levels assumed in the fracture apertm calculations are justified. Tracer retention due only to matrix diffusion (0.24 mg) can not account for the 0.8 mg of tracer retained in the core during the test.

FIGURE **39**

FIGURE 40

Total Tracer Mass Retained in the Core for a Non-Sorbing Tracer

- 64 -
8:3 Tracer Retention for Low Flowrate Tests

To further test the above conclusions, core tracer concentration profiles (Figure 41) and core mass retention estimates (Figure 42) for a sorbing solute using the effective and apparent diffusivities from Section 7 were made for the end of the 1.4 cc/min flow rate test (900 seconds). These calculations actually show larger tracer masses retained in the core at the end of the test than the tracer retention estimates for the 16 cc/min **Case**. The higher retention for the lower rate case predicted by the model occurs because the test time at lower flowrates is longer. The actual test flowrate is a significant factor effecting tracer concentrations rise rapidly reaching 50 to 60% of the injected tracer concentration in a short time. The effect of flowrate, therefore, diminishes rapidly after only 0.3-0.4 pore volumes injected. After 0.4 pore volumes are injected, tracer concentrations within the fracture are high enough regardless of flowrate to allow effective diffusion into the rock matrix and the most important parameter effecting tracer mass retained in the core is time, as diffusion is the limiting process. Therefore, according to the model the lower rate *case*, which takes twice as much time to run as the higher rate test, should retain more tracer.

These calculations predicting a larger tracer **mass** retained in the core at the lower flowrates, however, contradict the experimental **data** from the tracer retention plots (Figures **33** through **36**). The experimental **data** shows a decrease in tracer mass retained in the core as flowrate decreases. The cause for this discrepancy remains unknown. A concentration dependent adsorption parameter which decreases with concentration could, perhaps, explain the reduced tracer mass retention at the lower flowrate. The longer time period when the low flowrate case **has** a lower effluent tracer concentration would then be more significant, reducing the total mass adsorbed in the core. However, if a lower adsorption parameter were assumed for the lower rate *case*, the model matched fracture aperture for the low flowrate cases (already below average) would drop more **than an** order of magnitude. Also, if a concentration dependent adsorption parameter existed, **one** would expect the adsorption parameter to increase (rather than decrease) with decreasing concentration **as** more adsorption sites would **be** available to **the** solute on a unit mass basis.

Considering the anomalous tracer breakthrough times and the unexplained adsorption characteristics of the lowest flowrate **tests**, some deviation from the flow model **is** apparent in the laboratory tests. A reduced core flow **area** due to channeling within the fracture could cause premature breakthrough and also lower tracer retention by reducing the surface **area** for mass transfer into the rock matrix. The **possibility** of hydrodynamic dispersion within the fracture also could explain the experimental **results**. The cause for the discrepancy remains uncertain and is the subject for further work.

Tracer Concentration in the Matrix Pore Fluid after the 1.4 cc/m Test

Total Tracer Mass in the Core after the 1.4 cc/m Test

9: INLET BOUNDARY CONDITION EFFECTS ON TEST RESULTS

The dispersed inlet boundary condition obviously had an effect on test results as modification of the tracer flow model was necessary to accurately match the laboratory data. To evaluate the effects of tracer dispersion in the inlet tubing on the experimental results, the model match parameters generated for the various core tests were used in the standard slug injection Matrix Diffusion model to estimate the core response without the dispersed inlet condition. Taking the model match parameters for the reciprocal breakthrough time and the dimensionless dispersion coefficient from the runs at 16 cc/min and 0.8 cc/min, the core response to a uniform tracer slug at the core inlet was simulated (Figures 43 and 44). Comparing the ideal slug test results with the actual experimental data, the inlet dispersion effects on test results is significant. The simulated test indicates a higher **peak** value and steeper early time response would occur without any tracer dispersion **before** entry into the core. A pore volume plot of the simulated test data was also generated (figure 45). The pore volume plot for the simulated test more clearly shows breakthrough at dear peak concentration levels after a pore volume on the order of the fracture volume has been injected. The pore volume plot also shows a change in the trend seen in the actual experimental data (Figure 14). The simulated pore volume plot shows similair peak arrival concentrations for both rates, whereas, a higher peak was observed at the lower rates in figure 14. This result is more consistent with expectations, as the breakthrough times for both tests are so small, the effect of diffusion on the slug peak should be relatively in significant. Thus, the somewhat anomalous result Seen in the actual data is an artifact of the mixing in the inlet tubing prior to the tests.

Comparing the simulated slug tests with the experimental **data** collected in the laboratory, the laboratory test conditions could **be** improved to provide a laboratory test which is more similair to field **tests.** The two **simulated cases** (Figure **43** and **44**) show the experimental **data** deviates from the standard slug test response more than indicated by the initial match attempted with **the** unmodified Matrix Diffusion model (Figures 19 and **20**). The simulated slug test

· 68 ·

response has a much stronger asymmetry than the laboratory tests and, thus, actually better emulates the asymmetry of the field test response seen in Wairakei. A preliminary review of the data collected in this study was conducted before detailed modeling efforts were undertaken. The review (asswell as the initial model match attempts in Figures 19 and 20) had indicated the laboratory tests were responding similarly to the Wairakei tests. However, the final analysis indicates the laboratory conditions had a significant impact on the tracer test results. The impact of the mixing of the tracer solution with the background distilled water before entering the core is greater than initially expected, As the real goal of this work was to emulate the field test conditions, it is recommended that the mixing effects be eliminated in any further testing efforts. This could be accomplished by using a longer core, reducing the effects of the tracer mixing zone at the core inlet until they were negligible. Calculations based on the experiences in this study could be made to determine the required core length for the new test apparatus so that the dispersed zone in the core effluent would not impact the test response.

Simulated Core Response(-) Compared with Experimental Results(*)

Simulated Corc Response(-) Compared wilh Experimental Results(*)

flowrate = **16 cc/min**

Porc Volume Plot for Simulated Corc Tests, 16 cc/min (-) & 0.8 cc/min(*)

10: CORE FRACTURE APERTURE : Calculated vs. Measured

One of the objectives of this study was to verify the accuracy of the tracer model in estimating fracture aperture. **Three** estimates of the fracture aperture were made during the **course** of this work. Fracture permeability calculations were made using the following cubic fracture flow equation:

$$q = \frac{W^3}{12} \frac{p_i - p_e}{L}$$
(19)

The results of these calculations provided an estimate of the fracture aperture (0.012 cm). An estimate of the fracture aperture was also available from physical observations of the fracture cast. The fracture cast, created with epoxy resin, indicated a mean aperture of 0.08 cm. Finally, the tracer model match parameters were used to obtain two fracture aperture estimates. Fracture aperture estimated from the breakthrough time was 0.025 cm, with a 85% standard deviation. Using both match parameters, an average aperture of 0.047 cm with a 45% standard deviation in the data was calculated. Using only the dimensionless dispersion parameter, an average value of 0.07 cm was calculated with a 33% standard deviation. The differences between the various estimates and the fairly broad range in the tracer model estimates can be explained by comparing the physical conditions of the tests to the assumptions inherent in the models used to evaluate the fracture aperture.

The aperture estimate determined using flow rate and pressure drop measurements in the cubic fracture aperture equation assumes that a uniform fracture exists throughout the core. In reality, proppant within the fracture creates substantial restrictions impeding flow. It is not surprising, then, that a lower value is predicted using this simple equation. The equation could be adjusted to account for the fracture proppant by modifying the flow **area** to reflect this flow restriction. **This** roughly works out to **a 25%** increase in fracture aperture for a **50%** reduction in flow **area**. Using this order of magnitude approximation and the visual observation that as much **as** 80-90% of the fracture **area** is blocked by sand **grains** in the epoxy cast, a fracture

aperture on the order of 0.05 cm is more likely. Another unknown, influencing the fracture permeability estimate of fracture aperture, is the pressure drop in the laboratory flow system. The pressure drops across the fracture were initially anticipated to be 10 to 20 psi and the 0.2 to 0.5 psi head losses in the flow system were considered negligible. However, at the lower pressure drops (0.3 to 1.5 psi) required to minimize matrix flow, the flow system losses cannot be ignored. Considering this factor, the actual pressure drop occurring within the core would be reduced, increasing the aperture estimate by as much as 50%. The actual pressure drop within the flow system is, however, difficult tu calculate due to the complex mixing heads used in the core holder. For this reason, a quantitative impact of flow system head losses is not possible. In summary, the 0.012 cm aperture estimate represents a likely lower bound on the true aperture as all of the errors inherent in this estimate tend to lower the calculated values.

The fracture aperture indicated by the epoxy cast is, perhaps, a good estimate of the hue fracture aperture. The low standard deviation of the measured values suggests little error in the measurements, however, the error in this estimate is not due to the physical measurement system. The main uncertainty is whether the fracture cast actually represents the overburden core conditions, or, if the fracture cast swelled when released from the core holder. The cast could not totally dry without air in the core holder and it is possible the aperture (and the cast) expanded once released from overburden pressure. Considering this possibility, the core cast is most likely a good upper bound on the fracture aperture.

The fracture aperture estimate from the tracer flow model, which is the main reason for this study, has a fairly wide range of variability. However, errors apparent when estimating the fracture aperture **from** the **first** breakthrough time alone actually **are** responsible for the majority of the uncertainty in the model estimates. The variation in apertures arising when only the second match parameter is used to determine the aperture is not extreme and the range of error in the estimate is well within **20** % of the average value. This result would suggest the aperture **as** derived by the tracer analysis model is roughly 0.07 cm, fitting extremely well into the above upper and lower bounds on the actual fracture aperture from physical measurements.

11: SUMMARY AND CONCLUSIONS

1) Tracer tests on fractured cores were conducted in the laboratory resulting in tracer response profiles similair to those observed in fractured geothermal reservoirs such as Wairakei.

2) Laboratory tracer tests were analyzed with two analytical flow models. The Taylor Dispersion model was found to be inappropriate for matching the **data** even after adjusting the model for experimental conditions. The Mamx Diffusion model was found to match the test **data** reasonably **and**, once modified for the tracer dispersion in the inlet of the laboratory equipment, gave a very accurate match of the measured **data**.

3) Parameters arising from the match of the data to the Matrix Diffusion model were **used** to estimate core properties. Estimated average fracture apertures was found to be 0.07 cm which, agrees well with other estimates. The tracer/rock adsorption characteristics were also defined. A value of 17 for the dimensionless partition coefficient was estimated.

4) The Matrix Diffusion model realistically reflects tracer transport mechanisms in fracture dominated, low porosity reservoirs. The model's parameters *can* be used to provide reliable estimates of reservoir properties such *as* the fracture aperture and tracer adsorption and diffusion characteristics.

5) Adsorption effects, even for very weakly sorbing tracers, are significant and these

effects should be included in fracture aperture estimates.

12: RECOMMENDATIONS

1) Further studies of the reverse tracer tests and the adsorption characteristics of the lower flowrate tests should be conducted to *gain* insight into the diffusion/adsorption of tracer in field slug tests.

2) Future tests in laboratory samples should use a longer core length (200-300 cm) to minimize the effects of tracer **mixing** prior to entering the core. Samples of lower matrix porosity and permeability should be used as they will be more representative of flow rates, pressure drops and **fracture** widths observed in the field.

3) Tracer test models which can provide a unique fracture estimate in field tests should be investigated to model the laboratory tests from this study. The uncertainty in the effects of diffusion and adsorption effects on tracer transport could thus be eliminated.

4) Until the development of a model which decouples diffusion and adsorption effects from the mechanisms which characterize the fracture aperture, the Matrix Diffusion model can be used to give a **good** estimate of fracture aperture. When estimating the fracture width, reservoir adsorption properties should be considered due to the strong coupling of these two **terms** in the model solution.

13: NOMENCLATURE

C_f	Tracer concentration in fracture <i>ppm</i>
C _m	Tracer concentration in matrix <i>ppm</i>
Co	Tracer concentration in injected tracer solution ppm
P i	Core inlet pressure <i>psia</i>
p.	Core outlet pressure <i>psia</i>
P _e	Peclet number, dimensionless
D _a	Apparent diffusion coefficient $\frac{cm^2}{sec}$
D_m	Molecular diffusion coefficient $\frac{cm^2}{sec}$
D _p	Porous media dispersion coefficient $\frac{cm^2}{sec}$
D _k	Porous media hydrodynamic dispersion coefficient $\frac{2}{\sec^2}$
D,	Effective diffusion coefficient $\frac{cm^2}{sec}$
ta	Actual test time relative to tracer entry into core sec
t _{da}	Datum time correction from clock time to actual test time sec
t _d	Dimensionless time
t _{ie}	Measured inlet electrode tracer arrival time sec
t	Time sec
V_t	Tubing volume between electrodes <i>cm</i> ³
M _m	Tracer mass in core matrix mg
M_{f}	Tracer mass in core fracture mg
M_t	Total tracer mass in core mg
K	Permeability darcy
q	Flowrate $\frac{cm^3}{sec}$

- *L* Core length cm
- v Flow velocity $\frac{em}{sec}$
- *x* **Tubing length** cm
- *D* Core diameter cm
- W Fracture aperture *cm*

a Inlet dispersion parameter =
$$\frac{u^2}{4\eta}$$
 sec

b Inlet dispersion parameter =
$$\frac{x}{2\sqrt{\eta}}$$
 sec $\frac{1}{2}$

η Taylor dispersion coefficient
$$\frac{cm^2}{\sec}$$

$$\beta$$
 Reciprocal breakthrough time $\frac{1}{\sec}$

- φ Matrix porosity void fraction
- a Dimensionless dispersion coefficient

REFERENCES

- 1- HORNE, R. N., "Geothermal Reinjection Experience in Japan," Journal of Petroleum Technology, March 1982
- 2- FOSSUM, M. P., Tracer Analysis in a Fractured Reservoir: Field Results From Wairakei, New Zealand, Stanford Geothermal **Program**, SGP-TR-56 Stanford CA, June 1982.
- 3- FOSSUM, M. P. and HORNE, R. N.,"Interpretation of the Tracer Return Profiles at Wairakei Geothermal Field Using Fracture Analysis," Geothermal Resources Council, Transactions, Vol. 6, October 1982.
- 4- HORNE R. N. and RODRIGUEZ, F.,"Dispersion in Tracer Flow in Fractured Geothermal Systems," Geophysical Research Letters, Vol. 10, No. 4, 289-292, 1983
- GRISAK, G. E. and PICKENS, J. F., "Solute Transport Through Fractured Media,"
 Water Resources Research, Vol. 16, no. 4, 719-739, 1980
- 6- NERETNIEKS, I., "Diffusion in the Rock Matrix: **An** Important factor in Radionuclide Retardation?, " J. Geophysical Research, Vol. 85, no.B8, 4379,4397, 1980
- 7- NERETNIEKS, I., ERIKSEN, J. and TAHTINEN, P., "Tracer Movement in a Single Fissure Granitic Rock: Some Experimental Results and Their Interpretation," Water Resources Research, Vol. 18, No. 4, 849-858, 1982
- 8- DEANS, H. A., "A Mathematical Model for Dispersion in the Direction of Flow in Porous Media," Trans. AIME Vol.228,49-52, 1963
- 9- PERKINS, R. K. and JOHNSTON, O. C.," A Review of Diffusion and Dispersion in Porous Media," Trans. AIME Vol.228,70-84, 1963

- 10- COATS, K. H. and SMITH, B. D., "Dead End Pore Volume and Dispersion in Porous Media," SPE of AIME Trans., 73-84, March 1964
- 11- CARSLAW, H. S., and JAEGER, J. C., "Conduction of Heat in Solids", 2nd Edition, Oxford University Press, 1959
- 12- JENSEN, C. L.," Matrix Diffusion and Its Effect On the Modeling of Tracer Returns from the Fractured Geothermal Reservoir at Wairakei, New Zealand," Stanford Geothermal Program, SGP-TR, Stanford CA, December 1983
- 13-TAYLOR, G.I.," Dispersion of Soluble Matter in Solvent Flowing Slowly Through a Tube," Proc. Royal Society London, Vol. 219,186-203, 1953
- 14- GOLUB, G. H. and PEREYA, V., "The Differentiation of Pseudo-Inverses and Non-linear Least squares Problems Whose Variables Separate," SIAM J. Numerical Analysis, Vol. 10, No. 2, 413431,1973
- 15- STEHFEST, H., "Algorithm 368 Numerical Inversion of Laplace Transforms," Communications of the ACM, January 1970
- 16- VARPRO, Computer Science Department, Stanford CA
- 17- GILARDI, J. R., "Experimental Determination of the Effective Dispersivity in a Fracture," Stanford Geothermal Program, SGP-TR-78, Stanford, CA, 1984
- 18-BOUETT, L. W.,"The Effect of Transverse Mixing on Tracer Dispersion in a Fracture," Stanford Geothermal Program, SGP-TR-103, Stanford, CA, 1986
- 19- BIBBY, R., "Mass Transport in Dual Porosity Media," Water Resour. Res. 17,1075-1081, 1981
- 20- GRISAK, G. E. and PICKENS, J. F., "An Analytical Solution for Solute Transport through Fractured Media with Matrix Diffusion," J. Hydrol. 52,47-57, 1981
- 21- SUDICKY, E. A., and FRIND, E. O., "Contaminant Transport in Fractured Porous Media: Analytical Solutions for a System of Parallel Fractures," Water Resour. Res.

18, 1634-1642, 1982

- 22- TANG, D. H., et al., "Contaminant Transport in Fractured Porous Media: Analytical Solutions for a Single Fracture," Water Resour. Res. 17, 555-564, 1981
- 23- KOCABAS, I.,"Analysis of Injection-Backflow Tracer Tests," Stanford Geothermal Program, SGP-TR-96,Stanford, CA, 1986
- 24- MCCABE, W. J. et al., "Radioactive Tracers in Geothermal Underground Water Flow Studies," Geothermics, vol. 12,no 2/3, pp. 83-110, 1983

,	Table	1	
Unfractured	Core 7	Fest	Summary

TEST	Data			Rates and Permeability			
	Date	Pressures		Measu	ured Data	Calculated Data	
	1096	Upstream	Downstream	Delta P	Flow Rate	Calc K	Deviation
	1980	PSIG	PSIG	PSIG	CC/MIN	(md)	Error
1	Jul 22	285	80	205	3.0	12.0	-8.4%
2	Jul 23	335	50	285	4.0	11.5	-12.2%
3	Jul 24	460	60	400	7.6	15.5	+18.3%
4	Aug 4	180	150	30	0.5	13.6	+3.8%

Mean Permeability =13.1

Table 2Fractured Core Test Summary

	D	Measured Data		Calculated Parameters				
TEST	Date			Permeabilties		Fracture Estimate		
	1097	Delta P	Flow Rate	Bulk Core	Fracture	Aperature	Deviation	
	1980	PSIG	CC/MIN	(md)	(darcy)	MM	Error	
5	Oct 22	185	4.5	20	1001	0.011	NA	
6	Oct 29	NA	16.0	NA	NA	NA	NA	
7	Oct 30	NA	4.0	NA	NA	NA	NA	
8	Nov 3	NA	1.4	NA	NA	NA	NA	
9	Nov 5	0.379	8.7	9372	1323	0.126	+10.5%	
10	Nov 6	1.011	9.7	7837	1180	0,119	+4.4%	
11	Nov 6	0.408	3.7	7407	1121	0.1 16	+1.7%	
12	Nov 8	0.238	1.75	6000	990	0.109	-4.4%	
13	Nov 8	1.697	16.3	7846	1180	0.1 19	+4.4%	
14	Nov 13	0.108	0.7	5278	874	0.099	-13.2%	
15	Nov 18	0.108	0.75	5655	936	0.106	-7.0%	

Mean Fracture Width = 0.114 mm

Most Likely Value = 0.119 mm (ignoring low rates)

Fracture Pore Volume =(0.0119cm)(2.36cm)(15.24cm)=0.46 cc

Core Matrix Pore Vol =(0.7854)(15.24cm)(2.36 cm)(2.36cm)(0.17)=11.35 cc Total Pore Vol =11.81 cc

Table 3 Tubing Dispersion Test Summary

	Data	Date Massured Data		Calculated Dispersion Parameters			
TEST	Date			Second	d Electrode	Third Electrode	
	4090	Flowrate	1st Electrode	Location	Dis. Param.	Location	Dis. Param.
	1980	CC/MIN	Correlation Number	CM	SQ-CM/SEC	CM	SQ-CM/SEC
16	Jan 26	1.25	2	65	12.5	165	61
17	Jan 26	16.0	8	65	121.5	165	547
18	Feb 3	15.5	7	65	121.9	165	602
19	Feb 3	11.0	6	65	83.6	165	Elec. Fail
20	Feb 3	4.1	3	65	48.9	165	204
21	Feb 3	5.5	4	65	59.9	165	321
22	Feb 5	0.7	1	65	2.6	165	17
23	Feb 5	8.5	5	65	52.5	165	473

Table 4Diffusion Model Match Parameters

	Flourata	Inlet Dispersion Parameters		Model Parameters and Fracture Aperatures			
TEST	Flowfate			Start Time Match		Reciprocal Beta Match	
	cu_cm/min	Inlet Length	Dispersion Parameter	Time 0	Tub Vol	Model	Aperture
		СМ	SQ-CM/SEC	Seconds	CC	Secs	MM
6	16.0	100	270	23.4	2.8	8.61	0.65
7	4.0	100	60	125	4.1	10.35	0.19
8	1.4	100	10	189	2.11	12.42	0.08
9	8.7	100	90	141	4.4	1.0	0.04
10	9.7	100	100	87	3.3	7.7	0.35
11	3.7	100	60	59.4	2.6	15.3	0.26
12	1.75	100	15	174	3.0	14.7	0.12
13	16.3	100	270	57.0	4.3	8.18	0.606
14	0.7	100	3	214	2.3	28.8	0.093
15	0.75	100	3.5	267	2.6	18.9	0.06

Mean Aperture using Breakthrough Time = 0.25 mm Standard Deviation = 87%

Table 5 Diffusion Model Match Parameters

				Model Parameters and Fracture Apertures			
TEST	Flowrate	Fracture Aperture from Alpha Only		Alpha and Be	ta Match	Reciprocal Beta Match	
		Alpha	Aperture	Model	Aperture	Model	Aperature
	cu-ciii/iiiii	Dimensionless	MM	Dimensionless	MM	Secs	MM
6	16.0	0.34	0.76	0.34	0.73	8.61	0.65
7	4.0	0.69	0.74	0.69	0.39	10.35	0.19
8	1.4	1.208	0.69	1.208	0.25	12.42	0.08
9	8.7	0.73	0.304	0.73	0.12	1.0	0.04
10	9.7	0.49	0.605	0.49	0.48	7.7	0.35
11	3.7	1.03	0.36	1.03	0.32	15.3	0.26
12	1.75	1.23	0.532	1.23	0.26	14.7	0.12
13	163	0.24	1.501	0.24	0.99	8.18	0.606
14	0.7	139	1.04	1.39	0.33	28.8	0.093
15	0.75	1.66	0.73	1.66	0.22	18.9	0.06

Mean Aperture using Breakthrough Time = 0.25 mm Standard Deviation = 87%

Mean Aperture using Dimensionless Dispersion Coefficient = 0.7 mm Standard Deviation = 33% (18% without runs 13 and 9)

Mean Aperture using Dimensionless Dispersion and Residence Time Coefficients = 0.47mm Standard Deviation = 50% APPENDIX A: Reservoir Equivalent Slug Test Plots for Laboratory "Step Up" Tracer Tests

APPENDIX B: Derivation of the Matrix Diffusion Model with an Error Function Inlet Boundary Condition

APPENDIX B: Derivation of the Matrix Diffusion Model Solution with an

Error Function Inlet Boundary Condition

The system of governing differential equations is,

$$\frac{\partial C_f}{\partial t} - \frac{2D_e}{\delta} \left. \frac{\partial C_p}{\partial y} \right|_{y=0} + u \frac{\partial C_f}{\partial x} = 0$$
(B1)

$$D_{a}\frac{\partial^{2}C_{p}}{\partial y^{2}} = \frac{\partial C_{p}}{\partial t}$$
(B2)

The boundary and initial conditions are,

$$C_f = C_p = 0$$
 at $r = 0$

$$\frac{C_f}{C_o} = erfc \left[\frac{100 - u t}{2\sqrt{\eta t}} \right] at x=0 \text{ for } t>0$$

$$C_p = C_f \qquad at \qquad y = 0$$

$$C_p \to 0 \qquad as \qquad y \to \infty$$

The general solution to this system of partial differential equations is obtained by transforming the problem into Laplace space. The Laplace space solution is,

$$\overline{C}_{f} = A \ e^{-\frac{s}{\beta}} \ e^{-\frac{2\alpha}{\sqrt{\beta}}\sqrt{s}}$$
(B3)

To apply the boundary condition the error fuction inlet boundary condition must first be inverted into Laplace space. The resulting error function inversion is,

$$\frac{\overline{C}_f}{C_o} = e^{-2b\frac{\sqrt{s+a}-\sqrt{a}}{\sqrt{s+a}(\sqrt{s+a}-\sqrt{a})}}$$
(B4)

where

$$a = \frac{u^2}{4\eta}$$
$$b = \frac{100}{2\sqrt{\eta}}$$

Finally applying the boundary **condition**

$$\frac{\overline{C}_f}{C_o} = e^{-2b\frac{\sqrt{s+a}-\sqrt{a}}{\sqrt{s+a}(\sqrt{s+a}-\sqrt{a})}} at x = 0 implies A = e^{-2b\frac{\sqrt{s+a}-\sqrt{a}}{\sqrt{s+a}(\sqrt{s+a}-\sqrt{a})}}$$

Thus, the solution for continuous injection is

$$\overline{C}_{f} = e^{-2b\frac{\sqrt{s+a}-\sqrt{a}}{\sqrt{s+a}(\sqrt{s+a}-\sqrt{a})}} e^{-\frac{s}{\beta}} e^{-2\alpha\frac{\sqrt{s}}{\sqrt{\beta}}}$$
(B5)

To find the solution for a slug injection, the Laplace solution is simply multiplied by the Laplace parameter s,

$$\overline{C}_{f} = s \ e^{-2b \frac{\sqrt{s+a} - \sqrt{a}}{\sqrt{s+a} (\sqrt{s+a} - \sqrt{a})}} \ e^{-\frac{s}{\beta}} \ e^{-2\alpha \frac{\sqrt{s}}{\sqrt{\beta}}}$$
(B6)

Thus, the solution for the concentration within the porous matrix is

$$\overline{C}_{f} = s e^{-2b \frac{\sqrt{s+a} - \sqrt{a}}{\sqrt{s+a} (\sqrt{s+a} - \sqrt{a})}} e^{-\frac{s}{\beta}} e^{-2\alpha \frac{\sqrt{s}}{\sqrt{\beta}}} e^{-z \sqrt{s-D_{a}}}$$
(B7)

There is no closed form real space inversion to this Laplace space solution, however, the Stehfest Algorithm gave a good appmximation of the real space solution. This inversion method was susequently used in data analysis.

Following the same methodology **used** above. the Laplace space solution for the Taylor Dispersion model with an error function inlet boundary condition was found to be,

$$\overline{C}_{f} = s \, e^{-\frac{2b \sqrt{s+a} - \sqrt{a}}{\sqrt{s+a} (\sqrt{s+a} - \sqrt{a})}} \frac{e^{\frac{r_{1} - \sqrt{r_{2}}}{\sqrt{a}\beta}}}{r_{1}^{2} - r_{1} \sqrt{r_{2}}}$$
(B8)

where

$$r_1 = (r_2 + s)^{0.5}$$

 $r_2 = \frac{\beta}{4 \alpha}$

- 2 -

APPENDIX C: FORTRAN Optimization Routine for Modified Matrix Diffusion Model with Sample Program Input and Output
PROGRAM TO FIT THE LABORATORY DATA TO THE MODIFIED MATRIX С С DIFFUSION MODEL AND ESTIMATE THE OPTIMUM MODEL MATCH PARAMETERS С 1) FIRST THE DATA IS READ С 2) NEXT THE INITIAL GUESSES FOR THE NON-LINEAR PARAMETERS С ARE ENTERED С 3) THE INLET DISPERSION CONSTANTS ARE **READ** IN С 4) THE FITTING ROUTINE VARPRO IS CALLED С 5) VARPRO CALLS THE SUBROUTINE ADA, WHICH CONTAINS С THE MATRIX DIFFUSION MODEL AND ESTIMATES DERIVATIVES C OF THE NON-LINEAR PARAMETERS C C 1002 С implicit real*8(a-b,d-h,o-z) common /INP/ xip,uip,disip common /v/ v(50),g(50),h(25) dimension y(400), t(400), alf(14), beta(7), w(400), a(400, 13), *inc(14,8),c(400,8),ctitle(20),ct(400),cy(400),dim(7),out(7) *,out1(7),t1(400) double precision alf, xip, uip, disip external ada nmax=400 iprint=1 read (5,70) ctitle 70 format (20a4) write(6,71) ctitle format (1h0,10x,20a4) 71 read(5,*) nl write (6,12) nl format(1h0,10x,'number of nonlinear parameters'//(i3)) 12 l=nl/3read (5,*) (dim(i),out(i),out1(i),i=1,1) do 80 i=1,1 ii=2*i-1 alf(ii+2)=1./out1(i) alf(ii)=dim(i) 80 alf(ii+1) =1, /out(i) write(6,21) (alf(i), i=1, nl) format(1h0,10x,'initial est. of nonlin. parameters'//(f7.3)) 21 write(6,20) (dim(i),out(i),out1 (i),i=1,1) format(/,'0 dimensionless number
(5x,f9.5,22x,f7.3,x,f7.3)) 20 tracer arrival time inletA',/, lp=1+1 1pp2=1+n1+2 read(5,) n write(6,35) n $read(5, \star)$ xip $read(5, \star)$ uip read(5, *) disip 35 format(/1h0,10x,'number of observations'//(i4)) iv=1 read(5,*) (t(i),y(i),i=1,n)
do_695 i=1,n t(i) = t(i)695 y(1)=y(1)*-1000.0 write(6,60) (t(i),y(i),i=1,n) 60 format(1h0, 'independent variables dependent variables *'//,(5x,f8.3,21x,f9.3)) wt=0 do 1 i=1, n 1 w(i) =1. jj=12 . nn=10 call vector(jj,nn) call varpro(1,nl,n,nmax, lpp2, iv,t,y,w,ada,a *, iprint, alf, beta, ierr)

```
write(6,13)
     1p1=1+1
     call ada (lp1, nl, n, nmax, lpp2, iv, a, inc, t, alf, 2)
     do 8 i=1,n
     tl(i)=t(i)-1./alf(3)
     c(i,1p1)-0.
     do 9 j=1,1
     c(i,j)=beta(j) *a(i,j)
 9
     c(i, lp1) =c(i, lp1) +c(i, j)
     write(6,14) t1(i),y(i),c(i,lp1),(c(i,j),j=1,1)
     cy(i) = y(i)
     ct(i) = t(i)
 8
     continue
     do 888 i=1,n
     c(i,lp1)=0.
     do 999 j=1,1
     c(i,j)=beta(j)*a(i,j)
999 c(i,lp1)=c(i,lp1)+c(i,j)
     write(6,14) t1(i),y(i)
     cy(i) = y(i)
     ct(i) =t(i)
888 continue
     do 887 i=1,n
     c(i, ip1) = 0.
     do 998 j=1,1
     c(i,j)=beta(j) *a(i,j)
998 c(i, lp1) = c(i, lp1) + c(i, j)
     write(6,14) t1(i),c(i,lp1),(c(i,j),j=1,l)
     cy(i) = y(i)
     ct(i)=t(i)
887
    continue
 13 format(lh0,
                            actual
                                          calc
                                                                  comp#2' .//)
                    time
                                                      comp#1
 14 format(1x,8f10.4)
     do 22 i=1,1
     ii=2*i-1
     out1(i)=1./alf(ii+2)
     dim(i) = alf(ii)
 22 out(i)=1./alf(ii+1)
     sum=0.
     do 25 j=1,1
 25 sum=sum+beta(j)
     do 93 i=1,1
 93 beta(i)=beta(i)/sum
     write(6,38) (beta(i),dim(i),out(i),out1(i),i=1,1)
919
     format(e12.5)
 38 *format(/,'0 fractian dimensionless number arrival t
inlet A fit ',/,(5x,f7.3,5x,f7.3,22x,f7.3,10x,f7.4))
                                                            arrival time
     stop
     end
     subroutine ada(lp,nl,n,nmax,lpp2,iv,a,inc,t,alf,isel)
     implicit real*8(a-h,o-z)
     dimension alf(nl), a (nmax, lpp2), t (nmax), inc(14,8), d(400,7)
     double precision alf,pwd,pwd1,pwd2,pwd3,dalf,old
     l=lp-1
     if(isel.eq.2) go to 90
     if (isel.eq.3) go to 165
     inc(1,1) = 1.0
     inc(2,1)=1.0
     inc(3, 1) = 1.0
90
     do 81 i=1, n
     do 81 j=1,1
     k1=2*j-1
    . k2=2*j
     if (alf(2)*t (i)*alf (3)/(alf (3)+alf (2)) .gt.1.0) go to 82
     a(i,j) = 0.0
     d(i, j) = 0.
```

```
go to 81
  82 nn1=12
      mm1=10
      a(i,j)=PWD(T(i),NN1,MM1,ALF,n1,nmax)
      d(i,j)=a(i,j)
  81 continue
      if (isel.eq.2) go to 200
  165 do 170 i=1, n
      do 170 j=1,nl
      k1 = (j+1)/2
      k2=2*k1
      k3=k2-1
      jj=1+j+1
      if(alf(2)*t(i)*alf(3)/(alf(2)+alf(3)) .gt.1.0) go to 171
      a(i, jj) = 0.
      go to 170
  171 if(),eq.2) go to 300
      if(J,eq.3) go to 310
      nn1=12
      mml=10
      a(i,jj)=PWD1(T(i),Nn1,Mm1,ALF,n1,nmax)
      go to 170
  300 nn1=12
      mm1=10
      a(i,jj)=PWD2(T(i),Nn1,Mm1,ALF,n1,nmax)
  go to 170
310 nn1=12
      mm1=10
      a(i,jj)=PWD3(T(i),Nn1,Mm1,ALF,n1,nmax)
      go to 170
  170 continue
      write(6,111) a(50,3),a(50,4),a(50,5),a(50,6),a(50,7)
  111 format(e12.5, 3x, e12.5, 3x, e12.5, 3x, e12.5)
  200 continue
      return
      END
      function vector (n, m)
      IMPLICIT REAL*8 (A-H, O-Z)
      common /V/v(50), q(50), h(25)
      M=N
      DLOGTW-0.6931471805599
      NH=N/2
С
С
           THE FACTORIALS OF 1 TO N ARE CALCULATED INTO ARRAY G.
      G(1) = 1
      DO 1 1-2,N
         G(I) = G(I-1) *I
1
      CONTINUE
С
С
           TERMS WITH K ONLY ARE CALCULATED INTO ARRAY H.
      H(1) = 2./G(NH-1)
      DO 6 I=2,NH
         T = I
         IF (I-NH) 4, 5, 6
4
         H(I)=FI**NH*G(2*I)/(G(NH-I)*G(I)*G(I-1))
         GO TO 6
         H(I)=FI**NH*G(2*I)/(G(I)*G(I-1))
5
6
      CONTINUE
С
С
           THE TERMS (-1)**NH+1 ARE CALCULATED.
С
           FIRST THE TERM FOR 1=1
    . SN=2*(NH-NH/2*2)-1
Ç
С
           THE REST OF THE SN'S ARECALCULATED IN THE MAIN RUTINE.
C
C
```

```
С
           THE ARRAY V(I) IS CALCULATED.
      DO 7 I=1, N
С
С
           FIRST SET V(I)=0
         V(I)=0.
С
С
           THE LIMITS FOR K ARE ESTABLISHED.
           THE LOWER LIMIT IS K1=INTEG((I+1/2))
С
         X1 = (I+1)/2
С
С
           THE UPPER LIMIT IS K2 = MIN (IN/2)
         K2=I
         IF (K2-NH) 8,8,9
9
         K2=NH
С
С
           THE SUMMATION TERM IN V(I) IS CALCULATED.
         DO 10 K=K1,K2
8
             IF (2*K-I) 12,13,12
12
             IF (I-K) 11, 14, 11
            V(I) = V(I) + H(K) / (G(I-K) * G(2*K-I))
11
            GO TO 10
            V(I) = V(I) + H(K) / G(I - K)
13
            GO TO 10
14
            V(I) = V(I) + H(K) / G(2 \times K - I)
10
         CONTINUE
С
С
           THE V(I) ARRAY IS FINALLY CALCULATED BY WEIGHTING
С
           ACCORDING TO SN.
         V(I) = SN \times V(I)
С
С
            THE TERM SN CHANGES ITS SIGN EACH ITERATION.
         SN=-SN
7
      CONTINUE
      Return
      end
С
                   THE STEHFEST ALGORITHM
                *****
С
С
      FUNCTION PWD (TD, N, M, ALF, nl, nmax)
С
            THIS FUNTION COMPUTES NUMERICALLY THE LAPLACE TRNSFORM
С
            INVERSE OF F(S).
       IMPLICIT REAL*8 (A-HO-Z)
      common /V/ v(50),g(50),h(25)
      DIMENSION ALF (nl)
      double precision alf, arg, pwdl, pwd
С
С
            NOW IF THE ARRAY V(I) WAS COMPUTED BEFORE THE PROGRAM
С
            GOES DIRECTLY TO THE END OF THE SUBRUTINE TO CALCULATE
Ĉ
            F($)
      DLOGTW=0.6931471805599
С
C
C
С
            THE NUMERICAL APPROXIMATION IS CALCULATED.
       A=DLOGTW/TD
       PWD=0
       DO 15 I=1,N
          ARG=A*I
          PWD=PWD+V(I) *PWDL(ARG,ALF,NL,NMAX,kk1,kk2)
       CONTINUE
15
       PWD=PWD *A
18
       RETURN
       END
С
С
       FUNCTION PWDL (ARGALF, NL, NMAX)
```

```
common /INP/ xip, uip, disip
      DIMENSION ALF (nl)
      double precision alf, arg, pwdl, u, x, ds, b, a, rts, xip, uip, disip
      u=uip/(60.*0.0325)
      x=xip
      ds=disip
     b=x/(2.*(ds**0.5))
a=u/(2.*(ds**0.5))
      rts=(arg+a**2,)**0,5
      bc1=(arg*dexp(-2.*b*(rts-a)))/(rts*(rts-a))
      bc=bc1
      PWDL=dexp(-arg/alf(2))*dexp(-2.*alf(1)*((arg/alf(2))**0.5))*
     *dexp(-arg/alf(3)) *bc
      return
      end
С
С
С
                   THE STEHFEST ALGORITHM
C
C
                *****
      FUNCTION PWD1(TD, N, M, ALF, n1, nmax)
С
            THIS FUNTION COMPUTES NUMERICALLY THE LAPLACE TRNSFORM
С
            INVERSE OF F(\$).
      IMPLICIT REAL*8 (A-H,O-Z)
      common /V/v(50), g(50), h(25)
      DIMENSION ALF (nl)
      double precision alf, arg, pwdl1, pwdl
С
C
C
            NOW IF THE ARRAY V (I) WAS COMPUTED BEFORE THE PROGRAM
            GOES DIRECTLY TO THE END OF THE SUBRUTINE TO CALCULATE
С
           F(S)
      DLOGTW=0.6931471805599
C
С
            THE NUMERICAL APPROXIMATION IS CALCULATED.
      A=DLOGTW/TD
      PWD1=0
      DO 15 I=1,N
          ARG=A*I
         PWD1=PWD1+V (I)*PWDL1 (ARG ALF, NL, NMAX)
15
      CONTINUE
      PWD1=PWD1*A
      RETURN
      END
С
С
      FUNCTION PWDL1 (ARG, ALF, NL, NMAX)
      common /INP/ xip,uip,disip
      DIMENSION ALF (n1)
      double precision alf, arg, pwdll, u, x, ds, b, a, rts, xip, uip, disip
      u = uip / (60.0325)
      x-xip
      ds=disip
      b=x/(2.*(ds**0.5))
a=u/(2.*(ds**0.5))
      rts=(arg+a**2,)**0.5
      bc1=(arg*dexp(-2.*b*(rts-a)))/(rts*(rts-a))
      bc=bc1
      PWDL1=(-2.*((arg/alf(2))**0.5))*dexp(-arg/alf(3))*
      *dexp(-arg/alf (2)) *dexp (-2.*alf (1)* ((arg/alf (2)) **0.5)) *
      bc
       return
       end
С
С
С
С
                    THE STEHFEST ALGORITHM
```

```
С
               ******
C
      FUNCTION PWD2(TD, N, M, ALF, n1, nmax)
С
           THIS FUNTION COMPUTES NUMERICALLY THE LAPLACE TRNSFORM
           INVERSE OF F(S) .
С
      IMPLICIT REAL*8 (A-H, 0-Z)
      common /V/v(50), g(50), h(25)
      DIMENSION ALF(nl)
      double precision alf, arg, pwd12, pwd2
С
C
           NOW IF THE ARRAY V (I) WAS COMPUTED BEFORE THE PROGRAM
С
           GOES DIRECTLY TO THE END OF THE SUBRUTINE TO CALCULATE
С
           F(S).
      DLOGTW=0.6931471805599
С
С
           THE NUMERICAL APPROXIMATION IS CALCULATED.
      A=DLOGTW/TD
      PWD2=0
      DO 15 I=1,N
         ARG=A*I
         PWD2=PWD2+V(I) * PWDL2(ARG, ALF, NL, NMAX)
15
      CONTINUE
      PWD2=PWD2*A
18
      RETURN
      END
С
С
      FUNCTION PWDL2 (ARG, ALF, NL, NMAX)
      common /INP/ xip,uip,disip
      DIMENSION ALF(nl)
      double precision alf, arg, pwdl2, u, x, ds, b, a, rts, xip, uip, disip
      u=uip/(60.*0.0325)
      x=xip
      ds=disip
      b=x/(2.*(ds**0.5))
a=u/(2.*(ds**0.5))
      rts=(arg+a**2,)**0.5
      bc1=(arg*dexp(-2,*b*(rts-a)))/(rts*(rts-a))
      bc=bc1
      PWDL2=((arg/(alf(2)**2,))+(alf(1)*(arg**0.5))/(alf(2)**1,5))*
     *dexp(-arg/alf(3))*bc*
     *dexp(-arg/alf(2))*dexp(-2.*alf(1)*((arg/alf(2))**0.5))
      return
      end
С
С
                  THE STERFEST ALGORITHM
С
               ******
С
      FUNCTION PWD3(TD, N, M, ALF, nl, nmax)
С
           THIS FUNTION COMPUTES NUMERICALLY THE LAPLACE TRNSFORM
С
           INVERSE OF F(S) .
      IMPLICIT REAL*8 (A-H, 0-2)
      common /V/v(50), g(50), h(25)
      DIMENSION ALF(n1)
      double precision alf, arg, pwd13, pwd3
С
С
           NOW IF THE ARRAY V(I) WAS COMPUTED BEFORE THE PROGRAM
С
           GOES DIRECTLY TO THE END OF THE SUBRUTINE TO CALCULATE
           F(S) _
С
      DLOGTW-0.6931471805599
С
С
           THE NUMERICAL APPROXIMATION IS CALCULATED.
    . A=DLOGTW/TD
     PWD3=0
      DO 15 I=1,N
         ARG=A*I
```

	PWD3=PWD3+V(I)*PWDL3(ARG,ALF,NL,NMAX)	
15	CONTINUE	
10		
18		
с		
C		
	FUNCTION PWDL3 (ARG, ALF, NL, NMAX)	
	common /INP/ xip,uip,disip	
	DIMENSION ALF (n1)	
	u=uip/(60.*0.0325)	
	x=xip	
	ds=disip	
	b=x/(2.*(ds**0.5))	
	$d=u/(2. (ds^0.5))$ rts=(arg+a**2))**0.5	
	bcl = (arg*dexp(-2.*b*(rts-a))) / (rts*(rts-a))	
	bc=bc1	
	pwdl3=dexp(-arg/alf(3))*(arg/(alf(3)**2.))*bc*	
	$\operatorname{acxp}(-\operatorname{arg}/\operatorname{alf}(2)) \times \operatorname{acxp}(-2. \times \operatorname{alf}(1) \times ((\operatorname{arg}/\operatorname{alf}(2)) \times 0.5))$	
	end	
С	end	
	SUBROUTINE VARF'RO (L, NL, N, NMAX, LPP2, IV, T, Y, W, ADA, A,	1.
a	X IPRINT, ALF, BETA, IERR)	2.
C	GIVEN A SET OF N OBSERVATIONS CONSISTING OF VALUES Y(1).	3. 4
C	$\mathbf{Y}(2), \ldots, \mathbf{Y}(N)$ OF A DEPENDENT VARIABLE \mathbf{Y} , WHERE $\mathbf{Y}(1)$	5.
C	CORRESPONDS TO THE IV INDEPENDENT VARIABLE(S) T(I,1), T(I2),	6.
С	, T(I,IV), V W R O ATTEMPTS TO COMPUTE A WEIGHTED LEAST	7.
C	SQUARES FIT TO A FUNCTION ETA (THE 'MODEL') WHICH IS A LINEAR	U. G
C	COMBINATION T.	9. 10
C	ETA(ALF, BETA; T) = \overline{SUM} BETA * PHI (ALF; T) + PHI (ALF; T)	11.
С	J=1 J J L+1	12.
C	OF NONITMEND FUNCTIONS DUT (I) (F.C. & SUM OF EXPONENTIALS AND / "	10.
C	OR GAUSSIANS). THAT IS, DETERMINE THE LINEAR PARAMETERS	15.
С	BETA(J) AND THE VECTOR OF NONLINEAR PARAMETERS ALF BY MINIMIZ-	16.
C	ING	17.
C	2 N 2	18. 10.
C	NORM(RESIDUAL) = SIM W $*$ (Y - ETA(ALF, BETA; T)) .	20.
Ĉ		21.
С		22.
C	THE (L+1)-ST TERM IS OPTIONAL, AND IS USED WHEN IT IS DESIRED	23. 24
C	TO FIX ONE OR MORE OF THE BEIA'S (RATHER THAN LET THEM BE	24. 25
C	DETERMINED). What he requires First Derivatives of the first.	26.
Ĉ	NOTES :	27.
C		28.
C	A) THE ABOVE PROBLEM IS ALSO REFERRED TO AS 'MULTIPLE'	29. 30
C	VARPRO RETURNS THE RESIDIALS. THE COVARIANCE MATRIX OF THE	31.
č	LINEAR AND NONLINEAR PARAMETERS, AND THE ESTIMATED VARIANCE OF	32.
С	THE OBSERVATIONS.	33.
C	B) AN FUA OF THE ABOVE FORM IS CALLED (SEPARABLE) THE	34. 25
C	CASE OF A NONSEPARABLE ETA CAN BE HANDLED BY SETTING $L = 0$	36.
C	AND USING PHI (L+1).	37.
Ĉ		38.
С	C) VARPRO MAY ALSO BE USED TO SOLVE LINEAR LEAST SQUARES	39.
C	PROBLEMS (IN THAT CASE NO ITERATIONS ARE PERFORMED). SET	40. 41
C	NL - U.	42.
\sim		•

46. 45. 57. 57. 58. 57. 58. 57. 58. 57. 58. 57. 58. 57. 58. 57. 58. 57. 58. 57. 58. 57. 58. 57. 58. 57. 58. 57. 58. 57. 58. 57. 58. 57. 58. 57. 59. 57. 50. 57. 58. 57. 59. 57. 50. 57. 57. 57. 58. 57. 59. 57. 50. 57. 57. 57. 58. 57. 59. 57. 50. 57. 57. 57. 57. 57. 57. 57. 57. 57. 57. 5		D) THE PROGRAM PARAMETI OFTEN LI	MAIN ADVANTAGE OF VARPRO OVER OTHER LEAST SQUARES S IS THAT NO INITIAL GUESSES <i>ARE</i> NEEDED FOR THE LINEAR ERS. NOT ONLY DOES THIS MAKE IT EASIER TO USE, BUT IT EADS TO FASTER CONVERGENCE.	43. 44. 45. 46. 47.
L NUMBER OF LINEAR PARAMETERS BETA (MUST BE .GE. 0). 53. NL NUMBER OF NORLINEAR PARAMETERS ALF (MUST BE .GE. 0). 53. NL NUMBER OF COSSERVATIONS. N MUST BE GREATE THAN L + NL 53. (1.8., TTE NEARMETER PARAMETERS ALF (MUST BE .GE. 0). 53. NUMBER OF INDERSENT OF DESERVATIONS MUST EXCRED THE 54. NUMBER OF NEARMETER VARIABLES T. 55. T ENL N BY IV MATRIX OF INDEFENDENT VARIABLES. T(I, J) 57. C NUMBER OF NORMEATING, ONE PHE IST. 55. NUMBER OF NORMEATING, ONE POR EACH ROW OF T. 60. N-VECTOR OF OSERVATIONS, ONE FOR EACH ROW OF T. 60. N-VECTOR OF OSERVATIONS ALE FOR EACH ROW OF T. 60. N-VECTOR OF OSERVATIONS ALE INVALUES OF THE 62. INC NLX (J-1) INTEGER INCIDENCE MATRIX. INC(K, J) = 1 IF 63. C NULX (J-1) INTEGER INCIDENCE MATRIX. INC(K, J) = 1 IF 64. NOLLINGE ADAMMENTING (I). INTEGER INCIDENCE MATRIX. INC(K, J) = 1 IF 65. C TO L.X (J-1) INTEGER INCIDENCE MATRIX. INC(K, J) = 1 IF 65. C TO ZERO.) IF PHI(J-1) IS INCIDED IN THE MODEL, 68. T DEARMENTS OF THE L(L).ST COLUMN SHOULD 68. D BE SET TO 15. INC IN OT NEEDED WHEN L • 0 OR NL = 0. 70. C CATTION: THE DECLARED ROM DIMENSION OF INC (I MADA) 77. C MMAX THE DECLARED COLUMN DIMENSION OF ANUST BE AT LEAST 76. LPP2. L+P+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 74. IT MUST BE AT LEAST MAX(N, 2*NL+3). 74. ILP2. L+P+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 74. C MMAX THE DECLARED COLUMN DIMENSION OF A MUST BE AT LEAST 76. LPP2. L+P+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 74. ILP2. L+P+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 74. C MARA THE DECLARED COLUMN DIMENSION OF A MUST BE AT LEAST 76. LPP2. L+P+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 74. C MARA THE DECLARED COLUMN DIMENSION OF A MUST BE AT LEAST 76. LPP2. L+P+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 74. C MARA THE DECLARED COLUMN DIMENSION OF A MUST BE AT LEAST 76. LPP2. L+P+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 74. C MARA THE DECLARED COLUMN DIMENSION OF AND COLUMNS OF 81. A WILL CONTAIN MA PROVINTING THE PARA	C C C	DESCRIPTIO	N OF PARAMETERS	48. 49.
 NIL NUMBER OF NONLINEAR PARAMETERS ALF (MUST BE [36, 0], 52, 0], 52, 11.8., THE NUMBER OF OSSERVATIONS MUST EXCEED THE 1.5., 11.8., THE NUMBER OF OSSERVATIONS MUST EXCEED THE 55, 11.8., THE NUMBER OF DESCREVATIONS MUST EXCEED THE 55, 11.8., THE NAMETERS). T REAL N BY IV MATRIX OF INDEPENDENT VARIABLES T. 56, 11.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	C	L	NUMBER OF LINEAR PARAMETERS BETA (MUST BE .GE. 0).	51.
<pre>C N NUMBER OF OBSERVATIONS. N MUST BE GREATER THAN L + NL 63. (I.E., THE NUMBER OF OBSERVATIONS MUST EXCEED THE 54. NUMBER OF PARAMETERS). 55. C NUMBER OF PARAMETERS). 56. T REAL N BY IV MATRIX OF INDEPENDENT VARIABLES T. (I.J.) 57. C CONTAINS THE VALLE OF THE I-TH OBSERVATION OF THE J-TH 58. INDEPENDENT VARIABLE. 7. C NUMEROF OF DESERVATIONS, ONE FOR EACH ROW OF T. 60. NUMEROF OF NONNEGATIVE WEIGHTS. SHOULD BE SET TO 1/S 61. IF WEIGHTS ARE NOT DESERVATIONS, ONE FOR EACH ROW OF T. 60. IF WEIGHTS ARE NOT DESERVATIONS ARE KNOWN, W(I) SHOULD BE SET 63. C TO 1./VARIANCE(I). C NUMERA FARAMETER ALF (K) APPEARS IN THE J-TH 65. NON-LINEAR PARAMETER ALF (K) APPEARS IN THE J-TH 65. C TO ZERO.) IF PHI(1-1) IS INCLIDENCE MATRIX. INC(K, J) = 1 IF 65. C TO ZERO.) IF PHI(1-1) IS INCLIDENT OF THEN KOULD. 66. C TO ZERO.) THE PHI(1-1) IS INCLIDED IN THE MODEL, 66. C TO ZERO.) THE PHI(1-1) IS INCLIDED IN THE MODEL, 66. C TO ZERO.) THE PHI(1-1) IS INCLIDED IN THE MODEL, 67. C AUTION: THE DECLARED ROW DIMENSION OF INC (IN ADA) 71. C AUTION: THE DECLARED ROW DIMENSION OF INC (IN ADA) 71. C AUTION: THE DECLARED ROW DIMENSION OF INC (IN ADA) 71. C AUTION: THE DECLARED ROW DIMENSION OF A MUST BE AT LEAST 76. C LFP2 L+P42, WHER P IS THE NUMBER OF ONES IN THE MATRIX INC. 75. C THE DECLARED COLUNN DIMENSION OF A MUST BE AT LEAST 77. C LF22. (IF L = 0, SET IP2 = NL+2. IF NL = 0, SET LP2 77. C LF2.) THE DECLARED ROW DIMENSION OF A MUST BE AT LEAST 77. C LF2.) THE DECLARED COLUNN THE FIRST L ROWS AND COLUMNS OF 81. A WILL CONTAIN THE FIRST L WILL CONTAIN THE 84. NONLINEAR ONESS. (COLUNN L+NL+1 WILL CONTAIN THE 84. NONLINEAR ONESS.) COLUNN L+NL+1 WILL CONTAIN THE 84. C CORRESPOND TO THE LINEAR PARAMETERS, THE LAST TH 78. C A WILL CONTAIN THE SOBERVATION (MERISIDUAL, AND 81. A A(2, L+NL+2) WILL CONTAIN AN ESTIMATE OF THE WEIGHTED RESIDUALS (Y = ETA), A(1, L+NL+2) WILL CONTAIN 86. C WEIGHTED RESIDUALS (Y = ETA), A(1, L+NL+2) WILL CONTAIN 86. C WEIGHTED RESIDUALS (Y = ETA), A(1, L+NL+2) WILL CONTAIN 86. C WEIGHTED RESIDUALS (Y = ETA), A(1,</pre>	C	NL	NUMBER OF NONLINEAR PARAMETERS ALF (MUST BE , GE, 0).	52.
 C (I.E., THE NUMBER OF DESERVATIONS MUST EXCEED THE 54. NUMBER OF INDEPENDENT VARIABLES T. 55. C IV NUMBER OF INDEPENDENT VARIABLES T. 55. C T REAL N BY IV MATRIX OF INDEPENDENT VARIABLES. 7(I, J) 57. C CONTAINS THE VALUE OF THE I-TH ORSERVATION OF THE J-TH 58. INDEPENDENT VARIABLE. 59. C Y N-VECTOR OF OBSERVATIONS, ONE FOR EACH ROW OF T. 60. W N-VECTOR OF ONNEGATIVE PEIGHTS. SHOLD BE STT 01. C IF VEIGHTS ARE NOT DESIRED. IF VARIANCES OF THE 65. IND VIEUTO VARIABLE. 100 DESERVATIONS ARE KNOWN W(I) SHOULD BE SET 63. TO 1./VARIANCE(I). C INC NLX (L+1) INTEGER INCIDENCE MATRIX. INC(K, J) = 15 C INC NLX (L+1) INTEGER INCIDENCE MATRIX. INC(K, J) = 67. TO ZERO.) IF PHIL+1) IS INCLUDED IN THE MODEL. C ATTON: THE DECLARED ROW DIMENSION OF THE (L+1)-57 COLUMN SHOLD 69. DE SET TO 1'S. INC IS NOT NEEDED WHEN L = 0 OR L = 0. 70. C CANTTON: THE DECLARED ROW DIMENSION OF INC (IN ADA) 71. MUST CURRENTLY BE SET TO 1.2. SEE 'RESTRUCTIONS' BELOM. 72. IT MUST DE AT LEAST MAX(N, 2*NL+3). LPP2 L++2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 75. THE DECLARED CON DIMENSION OF A MUST BE AT LEAST 77. LP2 L++2, WIER P IS THE NUMBER OF ONES IN THE MATRIX INC. 75. THE DECLARED COLUMN DIMENSION OF A MUST BE AT LEAST 77. LP2 L++2, WIER P IS THE NUMBER OF ONES IN THE MATRIX INC. 75. THE DECLARED COULDNE DIMENSION OF A MUST BE AT LEAST 77. LP2 L++2, WIER OF SIZE NAX(N, 2*NL+3). C CORATIANCE MATRIX AT THE SOLUTION THE MATRIX INC. 75. C LP2. (IF L * 0, SET LP2 2''NL+2. ON INDUT 79. C A REAL MATRIX OF SIZE MAX(N, 2*NL+3). BY L+2+2. ON INDUT 79. C A REAL MATRIX OF SIZE NAX(N, 2*NL+3). C CONTAINN THE FAIL (Y) S AND THEIR DERIVATIONS OF THE MATRI	С	N	NUMBER OF OBSERVATIONS. N MUST BE GREATER THAN L + NL	53.
 NUMBER OF PARAMETERS). IV NUMBER OF PARAMETERS). IV NUMBER OF INDEPENDENT VARIABLES T. T REAL N BY IV MATRIX OF INDEPENDENT VARIABLES. (I, J) T REAL N BY IV MATRIX OF INDEPENDENT VARIABLES. (I, J) C T REAL N BY IV MATRIX OF INDEPENDENT VARIABLES. C NUPEPENDENT VARIABLE. V N-VECTOR OF OSERVATIONS, ONE FOR EACH ROW OF T. INDEPENDENT VARIABLE. W N-VECTOR OF OSERVATIONS, ONE FOR EACH ROW OF T. IND VIDUAL OBSERVATIONS ANE KNOWN, W(I) SHOLD BE SET TO 1'6 INC INIX (L+1) INTEGER INCIDENCE MATRIX. INC(K, J) = 1 IF INC NIX (L+1) INTEGER INCIDENCE MATRIX. INC(K, J) = 1 IF TO 1./VARIANCE(I). C INC NIX (L+1) INTEGER TRADEVER AND THE J-TH FUNCTION PHI(J). (THE PROGRAM SETS ALL OTHER INC(K, J) C TO 2 ERO.) IF PHI(L+1) IS INCIDED IN THE MORE INC(K, J) C INC NIX (L+1) INTEGER TO THE (L+1)-51 COLUMN SHOULD 68. BE SET TO 1'5. INC IS NOT INEED WHEIN L = 0 OR NL = 0. FO CAUTION: THE DECLARED ROW DIMENSION OF INC (IN ADA) MUXT THE DECLARED ROW DIMENSION OF THE MATRIX INC. INMAX THE DECLARED ROW DIMENSION OF THE MATRIX INC. LP22 L+F42, WHERE P IS THE NUMBER OF OMES IN THE MATRIX INC. LP22 L+F42, WHERE P IS THE NUMBER OF OMES IN THE MATRIX INC. LP22 L+F42, WHERE P IS THE NUMBER OF OMES IN THE MATRIX INC. C LP22 (T L * 0, SET LP22 * NH-2. (F NH L = 0, SET LEAST C LP22 (T L * 0, SET LP22 * NH-2. (F NH L = 0, SET CAUTA INTER DECLARED COLUMN AND PORVATIVES (SEE 80. C CONTAINS THE PH (J)('S AND THEID BRIVATIVES (SEE 80. C CONTAINS THE PH (J)('S AND THEID BRIVATIVES (SEE 80. C CONTAINS THE PH (J)('S AND THEID BRIVATIONS FO 81. C AREL MATRIX OF SIZE MAX(N, 2*NL+3) BY L+P+2. ON INPUT 73. C C AREL MATRIX OF SIZE MAX(N, 2*NL+3) BY L+P+2	С		(I, É, THE NUMBER OF OBSERVATIONS MUST EXCEED THE	54.
<pre>C</pre>	C	T 1 7	NUMBER OF PARAMETERS) .	55.
<pre>C</pre>	C		NUMBER OF INDEPENDENT VARIABLES T.	50. 57
<pre>C</pre>	C	T	CONTAINS THE VALUE OF THE I-TH OBSERVATION OF THE I-TH	58
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	c		INDEPENDENT VARIABLE.	59.
C W N-VECTOR OF NONNEGATIVE WEIGHTS. SHOULD BE SET TO 1'S fl. IF WEIGHTS A22 NOT DESIRED. IF VARIANCES OF THE fl. C INDIVIDUAL OBSERVATIONS ARE KNOWN, W(I) SHOULD BE SET 63. TO 1./VARIANC2(I). 64. C INC NLX (1+1) INTEGER INCIDENCE MATRIX. INC(K, J) = 1 IF 65. NON-LINEAR PARAMETER ALF (K) APPEARS IN THE J-TH 66. FUNCTION PHI(J). (THE PROGRAM SETS ALL OTHER INC(K, J) 67. TO ZERO.) IF PHI(1+1) IS INCLUDED IN THE MODEL, 66. THE APPROPRIATE ELEMENTS OF THE (1+1)-ST COLUMN SHOULD 69. BE SET TO 1'S. INC IS NOT NEEDED WHEN L = 0 OR NL = 0. 70. C AUTION: THE DECLARED ROW DIMENSION OF INC (IN ADA) 71. MUST CURRENTLY BE SET TO 12. SEE TRESTRICTIONS' BELOW. 72. C NMAX THE DECLARED ROW DIMENSION OF A MUST BE AND T. 73. IT MUST BE AT LEAST MAX(N, 2*NL+3). 74. C LEP2 L+P+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 75. C LEP2 L+P+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 76. C LEP2 L+P+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 76. C LEP2 L+P+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 75. C LEP2 L+P+2, WHERE P SIZE MAX(N, 2*NL+3) BY L+P+2. ON INPUT 79. C LEP2 L+P+2, ON OUTPUT, THE FIRST L+NL ROWS AMD COLUMNS OF 81. A REAL MATRIX OF SIZE MAX(N, 2*NL+3) BY L+P+2. ON INPUT 79. C A REAL MATRIX OF SIZE MAX(N, 2*NL+3) BY L+P+2. ON INPUT 79. C IT CONTAINS THE PHI(J)'S AND THEIR DERIVATIVES (SEE 86. C CORRESPOND TO THE LINEAR PARAMETERS, THE LAST NL TO THE 84. NONLINEAR ONES). COLUMN L+NL+1 WILL CONTAIN THE 85. WEIGHTED RESIDUALS (Y = TA), A (1, L+NL+2) WILL CONTAIN 86. C CORRESPOND TO THE LINEAR PARAMETERS, THE LAST NL TO THE 84. NONLINEAR ONES). COLUMN L+NL+1 WILL CONTAIN THE 85. WEIGHTED RESIDUALS (Y = TA), A (1, L+NL+2) WILL CONTAIN 86. C MULINEAR ONES). COLUMN L+NL+1 WILL CONTAIN THE 85. WEIGHTED RESIDUALS (Y = TA), A (1, L+NL+2) WILL CONTAIN 86. C WEIGHTED RESIDUALS (Y = TA), A (1, L+NL+2) WILL CONTAIN 86. C WEIGHTED CONTROLINEAR PARAMETERS. THE NORM OF THE 92. R SIDUAL, AND THE MARQUARD PARAMETERS WILL BE OUTPUT 93. C WALANCE OF THE OBSERVATIONS, NORM (RESID	C	Y	N-VECTOR OF OBSERVATIONS, ONE FOR EACH ROW OF T.	60.
C IF WEIGHTS A&R NOT DESIRED. IF VARIANCES OF THE 62. IND VIDUAL OBSERVATIONS ARE KNOWN, W(I) SHOULD BE SET G INC NLX (L+1) INTEGER INCIDENCE MATRIX. INC(K, J) = 1 IF C NON-LINEAR PARAMETER ALF (K) APPEARS IN THE J-TH 66. FUNCTION PHI(J). (THE PROGRAM SETS ALL OTHER INC(K, J) 67. TO ZERO.) IF PHI(L+1) IS INCLUDED IN THE MODEL, 66. C TO ZERO.) IF PHI(L+1) IS INCLUDED IN THE MODEL, 66. C THE APPROPRIATE ELEMENTS OF THE (L+1)-ST COUMN SHOULD 69. BE SET TO 1'S. INC IS NOT NEEDED WHEN L = 0 OR NL = 0. 70. CAUTION: THE DECLARED ROW DIMENSION OF INC (IN ADA) 71. MUST CURRENTLY BE SET TO 12. SEE 'RESTRICTIONS' BELOW. 72. C NMAX THE DECLARED ROW DIMENSION OF THE MATRIXES A AND T. 73. IT MUST BE AT LEAST MAX(N, 2*NL+3) BY L+F+2. C LPP2 L+F+2. WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 75. THE DECLARED COLUMN DIMENSION OF A MUST BE AT LEAST 76. C LFP2. (IF L = 0, SET LPP2 = NL+2. IF NL = 0, SEE LPP2 77. C L+2.) 78. C A REAL MATRIX OF SIZE MAX(N, 2*NL+3) BY L+F+2. ON INPUT 79. C A REAL MATRIX OF SIZE MAX(N, 2*NL+3) BY L+F+2. ON INPUT 79. C A REAL MATRIX OF SIZE MAX(N, 2*NL+3) BY L+F+2. ON INPUT 79. C A REAL MATRIX OF SIZE MAX(N, 2*NL+3) BY L+F+2. ON INPUT 79. C A WILL CONTAINS THE FMI(J)'S AND THEIR DERIVATIVES (SEE 80. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L-NL ROWS AND COLUMNS OF 81. A WILL CONTAIN AN APPROXIMATION TO THE (WEIGHTED) 88. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L-NU ROWS 83. C CORRESPOND TO THE LINEAR PARAMETERS, THE LAST NL TO THE 84. NONLINEAR ONES). COLUMN L+NL+1 WILL CONTAIN 86. THE (EUCLIDEAN) NORM OF THE WEIGHTED RESIDUAL, AND 81. C WEIGHTED RESIDUALS (Y - ETA), A (1, L+NL+2) WILL CONTAIN 86. C WEIGHTED RESIDUALS (Y - ETA), A (1, L+NL+2) WILL CONTAIN 86. C WARIANCE OF THE OBSERVATIONS, NORM (RESIDUAL) **2/ 89. C WARIANCE OF THE OBSERVATIONS, NORM (RESIDUAL) **2/ 89. C WARIANCE OF THE OBSERVATIONS, NORM (RESIDUAL) **2/ 89. C WARIANCE OF THE OBSERVATIONS AND SETTMENTE OF THE WEIGHTED 85. C WILL ALSO BE FRINTED. (IPRINT = 1 IS RECOMMENDED AT 79.	C	W	N-VECTOR OF NONNEGATIVE WEIGHTS. SHOULD BE SET TO 1'S	61.
C INDIVIDUAL OBSERVATIONS ARE KNOWN, W(I) SHOULD BE SET 63. TO 1./VARIANCE (I). 64. INC NL X (L+1) INTEGGE INCIDENCE MATRIX. INC(K, J) = 1 IF 65. NON-LINEAR PARAMETER ALF (K) APPEARS IN THE J-TH 66. FUNCTION PHI(J). (THE PROGRAM SETS ALL OTHER INC(K, J) 67. C TO ZERO.) IF PHI(L+1) IS INCLUDED IN THE MODEL, 68. C THE APPROPRIATE ELEMENTS OF THE (L+1)-ST COLUMN SHOULD 69. BE SET TO 1'S. INC IS NOT NEEDED WHEN L • 0 OR NL = 0. 70. C CUTION: THE DECLARED ROW DIMENSION OF INC (IN ADA) 71. MUST CURRENTLY BE SET TO 12. SEE 'RESTRUCTIONS' BELOW. 72. IT MUST BE AT LEAST MAX(N, 2*NL+3). 74. C LPP2 L+8+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 75. C LPP2 L+8+42, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 75. C LPP2 L+8+42, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 75. C LPP2 L+8+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 75. C LPP2 L+8+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 75. C LPP2 L+8+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 75. C LPP2 L+8+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 75. C LPP2. (IF L = 0, SET LP2 = NL+2. IF NL = 0, SET LP2 77. L+2.) C A REAL MATRIX OF SIZE MAX(N, 2*NL+3) BY L+92. ON INPUT 79. IT CONTAINS THE PHI(J)'S AND THEIR DERIVATIVES (SEE 80. BELOW). ON OUTPUT, THE FIRST L+NL ROWS AND COLUMNS OF 81. A WILL CONTAIN AN APPROXIMATION TO THE (MEIGHTED) 82. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 33. C CORRESPOND TO THE LINEAR PARAMETERS, THE LAST NL TO THE 84. NONLINEAR ONES). COLUMN L'NL'1 WILL CONTAIN 86. A(2, L+NL+2) WILL CONTAIN AN ESTIMATE OF THE AS 10. C MARIANCE OF THE OBSERVATIONS, NORM (RESIDUAL, AND 81. A(2, L+NL+2) WILL CONTAIN AN ESTIMATE OF THE (WEIGHTED) 88. C WEIGHTED RESIDUALS (Y = ETA), A(1, L+NL+2) WILL CONTAIN 86. C WEIGHTED AS WELLAS ANY ERROR MESSAGES. 96. WILL AL3CO BE PRINTED. (IPRINT = 1 IS RECOMMENDED AT 97. FIRST.) IF IPRINT = 0, ONLY THE PINAL ULADITIES WILL BE OUTPUT 99. C FRINTEDA AT WHE FIRST LIME ASAMETERS (ILL ME 99. FINNEL DA SUBLE ASA NY ERROR MESSAGES. 10	С		IF WEIGHTS ARE NOT DESIRED. IF VARIANCES OF THE	62.
C TO 1./VARIANCE (1). 64. INC NL X (1+1) INTEGER INCIDENCE MATRIX. INC(K, J) = 1 IF 65. NON-LINEAR PARAMETER ALF (K) APPEARS IN THE J-TH 66. FUNCTION PHI(J). (THE PROGRAM SETS ALL OTHER INC(K, J) 67. TO ZERO.) IF PHI(L+1) IS INCLUEDD IN THE MODEL, 68. THE APPROPRIATE ELEMENTS OF THE (L+1)-57 COLUMN SHOLD 69. BE SET TO 1'S. INC IS NOT NEEDED WHEN L • 0 OR NL = 0. 70. CAUTION: THE DECLARED ROW DIMENSION OF INC (IN ADA) 71. MUST CURRENTLY BE SET TO 12. SEE 'RESTRICTIONS' BELOW. 72. C MMAX THE DECLARED ROW DIMENSION OF THE MATRICES A AND T. 73. IT MUST BE AT LEAST MAX(N, 2*NL+3). 74. C LPP2 L+P+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 75. THE DECLARED COLUMN DIMENSION OF A MUST BE AT LEAST 76. C LPP2. (IF L = 0, SET LPP2 = NL+2. IF NL = 0, SET LPP2 77. C L+2.) 78. C A REAL MATRIX OF SIZE MAX(N, 2*NL+3) BY L+P+2. ON INPUT 79. IT CONTAINS THE PHI(J)'S AND THEIR DERIVATIVES (SEE 80. DELOW). ON OUTPUT, THE FIRST L+NL ROWS AND COLUMNS OF 81. C A WILL CONTAIN APPROXIMATION TO THE (MEIGHTED) 82. COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE INETS NIL TO THE 84. NONLINEAR ONES). COLUMN L+NL+1 WILL CONTAIN THE 86. WEIGHTED RESIDUALS (Y - ETA), A (1, L+NL+2) WILL CONTAIN 86. C MEIGHTED RESIDUALS (Y - ETA), A (1, L+NL+2) WILL CONTAIN 86. C MARIANCE OF THE OBSERVATIONS, NORM (FESIDUAL, AND 81. A (2, L+NL+2) WILL CONTAIN AN ESTIMATE OF THE (WEIGHTED) 89. POSIFIVZ, THE NONLINEAR PARAMETERS, THE LAST NL TO THE 44. NONLINEAR ONES). COLUMN L+NL+1 WILL CONTAIN 71. C MARIANCE OF THE OBSERVATIONS, NORM (FESIDUAL)*2/ C MARIANCE OF THE DESERVATIONS, NORM (FESIDUAL)*2/ C MARIANCE OF THE DESERVATIONS, NORM (FESIDUAL)*2/ C MARIANCE OF THE DESERVATIONS, NORM (FESIDUAL)*2/ C MARIANCE OF THE DOSERVATIONS, NORM (FESIDUAL)*2/ C MARIANCE OF THE DASERVATIONS, NORM (FESIDUAL)*2/ C MARIANCE AT MALTIREAR PARAMETERS WILL BE 95. FINNELD AS WELL AS ANY ERROR MESSAGES. IF IPRINT 94. C MARIANTIFICHE	С		INDIVIDUAL OBSERVATIONS ARE KNOWN, W(I) SHOULD BE SET	63.
C INC NL X (L+1) INTEGER INCIDENCE MATRIX. INC(K, J) = 1 IF 65. C NON-LINEAR PARAMETER ALF (K) APPEARS IN THE J-TH 66. FUNCTION PHI(J). (THE PROGRAM SETS ALL OTHER INC(K, J) 67. TO ZERO.) IF PHI(L+1) IS INCLUDED IN THE MODEL, 68. THE APPROPRIATE ELEMENTS OF THE (L+1)-ST COLUMN SHOULD 69. BE SET TO 1'S. INC IS NOT NEEDED WHEN L • 0 OR NL = 0. 70. C CUTION: THE DECLARED ROW DIMENSION OF INC (IN ADA) 71, MUST CURRENTLY BE SET TO 12. SEE 'RESTRICTIONS' BELOW. 72. THE DECLARED ROW DIMENSION OF THE MATRICES A AND T. 73. IT MUST BE AT LEAST MAX(N, 2*NL+3). 74. LPP2 L+P42, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 75. THE DECLARED COLUMN DIMENSION OF A MUST BE AT LEAST 76. C LPP2. (IF L • 0, SET LPP2 = NL+2. IF NL = 0, SET LPP2 77. L+2.) 78. C A REAL MATRIX OF SIZE MAX(N, 2*NL+3) BY L+P+2. ON INPUT 79. IT CONTAINS THE PHI(J)'S AND THEIR DERIVATIVES (SEE 80. DELOW). ON OUTPUT, THE FIRST L+NL ROWS AND COLUMNS OF 81. A WILL CONTAIN AN APPROXIMATION TO THE (MEIGTED) 82. COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C CORRESPOND TO THE LINEAR PARAMETERS, THE LAST NI TO THE 44. NONLINEAR ONES), COLUMN L+NL+1 WILL CONTAIN ME 85. WEIGHTED RESIDUALS (Y - ETA), A (1, L+NL+2) WILL CONTAIN 86. A (2, L+NL+2) WILL CONTAIN AN ESTIMATE OF THE (MEIGTED) 88. C WEIGHTED RESIDUALS (Y - ETA), A (1, L+NL+2) WILL CONTAIN 86. A (2, L+NL+2) WILL CONTAIN AN ESTIMATE OF THE (MEIGHTED) 84. C WARIANCE OF THE OBSERVATIONS, NORM (RESIDUAL, AND 81. A (2, L+NL+2) WILL CONTAIN AN ESTIMATE OF THE (WEIGHTED) 84. C PRINTED AT THE FINAL ITERATION ANY ERROR MESSAGES 96. WILL ALSO BE PRINTED. (IPRINT IS 91. PRINT INPUT INTEGER CONTROLLING PRIMETER WILL BE OUTPUT 93. C FRINTED, AS WELL AS ANY ERROR MESSAGES 96. WILL ALSO BE PRINTED. (IPRINT = 1 IS RECOMMENDED AT 97. FIRST.) IF IPRINT = 0, ONLY THE FINAL QUANTITIES WILL 89. C FRINTED, AS WELL AS ANY ERROR MESSAGES. 10. C FRINTED, AS WELL AS ANY ERROR MESSAGES. 10. C FIRST.) IF IPRINT = 0, ONLY THE FINAL QUANTITIES WILL 89. C FIRST.) IF IPRINT = 0, ONLY THE F	С		TO 1, /VARIANCE(I),	64.
C NON-LINEAR PARAMETER ALF (K) APPEARS IN THE J-TH 66. FUNCTION PHI(J-1). (THE PROGRAM SETS ALL OTHER INC(K, J) 67. C TO ZERO.) IF PHI(L+1) IS INCLUDED IN THE MODEL, 68. THE APPOPRIATE ELEMENTS OF THE (L+1)-ST COLUMN SHOULD 69. BE SET TO 1'S. INC IS NOT NEEDED WHEN L = 0 OR NL = 0. C CAUTION: THE DECLARED ROW DIMENSION OF INC (IN ADA) 71. MUST CURRENTLY BE SET TO 12. SEE 'RESTRICTIONS' BELOW. 72. C NMAX THE DECLARED ROW DIMENSION OF THE MATRICES A AND T. TH MUST EURLEAST MAX(N, 2*NL+3). 74. C LPP2 L+P+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 75. THE DECLARED COLUMN DIMENSION OF A MUST BE AT LEAST 76. LPP2. (IF L = 0, SET LPP2 = NL+2, IF NL = 0, SET LPP2 77. C L+2.) C A REAL MATRIX OF SIZE MAX(N, 2*NL+3) BY L+P+2, ON INPUT 79. IT CONTAINS THE PHI(J)'S AND THEIR DERIVATIVES (SEE 60. BELOW). ON OUTPUT, THE FIRST L+NL ROWS AMD COLUMNS OF 81. A WILL CONTAIN AW APPROXIMATION TO THE (WEIGHTED) 83. C CORRESPOND TO THE LINEAR PARAMETERS, THE LAST NL TO THE 84. C MORLINEAR ONES), COLUMN OF THE WEIGHTER DESIDUAL, AND 84. A (2, L+NL+2) WILL CONTAIN AN ESTIMATE OF THE (WEIGHTED) 83. C CORRESPOND TO THE DESERVATIONS, NORM(RESIDUAL)**2/ MALACE OF THE OBSERVATIONS, NORM (RESIDUAL)**2/ MARIANCE OF THE OBSERVATIONS, NORM (RESIDUAL) **2/ MARIANCE OF THE OBSERVATIONS, NORM (RESIDUAL) **2/ MARIANCE OF THE OBSERVATION, ANY ERROR MESSAGES 96. C IPRINT INTEGER CONTROLLING PRINTED OUTPUT. IF IPRINT IS 91. C FORSTIVE, THE NONLINEAR PARAMETERS WILL BE 0150 C FORSTIVE, THE NONLINEAR PARAMETERS WILL BE 95. C FORNTED AT THE FINAL ITERATION (AND INITIALLY, AND AT THE 94. FINAL ITERATION). THE LINEAR PARAMETERS WILL BE 95. C FORNTED AT THE FINAL ITERATION (AND INITIALLY, AND AT THE 94. FINAL ITERATIONS INLE ONLY THE VILL CONTAIN THE 94. C FORNTED AT THE FINAL INTERATION (AND INITIALLY, AND AT THE 94. C FORNTED AT THE FINAL INTERATION (AND INITIALLY, AND AT THE 94. C FORNTED AS DEPRINTED. (IPRINT = 1 IS RECOMMENDED AT 97. FIRST.) IF IPRINT = 0, ONLY THE FIRAR PARAMETERS WILL BE 95. C HERN LASS BE	C	INC	NL X (L+1) INTEGER INCIDENCE MATRIX. INC(K , J) = 1 IF	65.
C TO ZERO.) IF PHI(J-1) IS INCLUDE IN THE MORENT SCIENTING (K, J) 67. TO ZERO.) IF PHI(J-1) IS INCLUDE IN THE MODEL, 68. C THE APPROPRIATE ELEMENTS OF THE (J-1)-57 COLUMN SHOULD 69. BE SET TO 1'S. INC IS NOT NEEDED WHEN L = 0 OR NL = 0. C CATTION: THE DECLARED ROW DIMENSION OF INC (IN ADA) 71. MUST CURRENTLY BE SET TO 12. SEE 'RESTRICTIONS' BELOW. 72. IT MUST ELEARED ROW DIMENSION OF THE MATRICES AND T. 73. C IFP2 L+P+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 75. C L+P22 L+P+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 75. C L+P22 (IF L = 0, SET LP22 = NL+2, IF NL = 0, SET LP22 77. C L+22.) 78. C A REAL MATRIX OF SIZE MAX(N, 2*NL+3) BY L+P42, ON INPUT 79. IT CONTAINS THE PHI(J)'S AND THEIR DERIVATIVES (SEE 80. BELOW). ON OUTPUT, THE FIRST L+NL ROMS AND COLUMNS OF 81. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C COVARIANCE OF THE OBSERVATIONS, NORM (RESIDUAL)**2/ (N - L • NL). C AL(2, L+NL+2) WILL CONTAIN AN ESTIMATE OF THE (WEIGHTED) 88. C VARIANCE OF THE OBSERVATIONS, NORM (RESIDUAL)**2/ S SIDUAL, AND THE MARQUARDT PARAMETERS WILL BE OUTPUT 33. C VERY IPRINT-TH THE TERATION (AND INITIALLY, AND AT THE 94. FINNEL TERATION). THE LINEAR PARAMETERS WILL BE OUTPUT 33. C S FINTED AT THE FINAL ITERATION. ANY ERROR MESSAGES 96. C WILL ALSO BE PRINTED. (IPRINT= 1 IS RECOMMENDED AT 97. FIRST.) IF IPRINT *0, ONLY THE FINAL QUANTITIES WILL BE 95. C HENNIED AT THE FINAL INTERATION. ANY ERROR MESSAGES 96. C WILL ALSO BE PRINTED. (IPRINT = 1 LENCER FARAMETERS 100. C ALF NL-VECTOR OF ELIMER PARAMETERS (OUTPUT ONLY). 106. C ALF NL-VECTOR OF STIMATES OF NONLINEAR P	C		NON-LINEAR PARAMETER ALF (K) APPEARS IN THE J-TH	66.
C THE APPROPRIATE ELEMENTS OF THE $(L+1)$ -ST COLUMN SHOLD (5). C THE APPROPRIATE ELEMENTS OF THE $(L+1)$ -ST COLUMN SHOLD (6). C BE SET TO 1'S. INC IS NOT NEEDED WHEN L = 0 OR NL = 0. C CAUTION: THE DECLARED ROW DIMENSION OF INC (IN ADA) 71. C MUST CURRENTLY BE SET TO 12. SEE 'RESTRICTIONS' BELOW. 72. IT MUST CURRENTLY BE SET TO 12. SEE 'RESTRICTIONS' BELOW. 73. IT MUST ELEARED ROW DIMENSION OF A MUST BE AT LEAST 76. C LPP2 L+P+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 75. C LFP2. (IF L = 0, SET LPP2 = NL+2, IF NL = 0, SET LPP2 77. L+2.) 78. C A REAL MATRIX OF SIZE MAX(N, 2*NL+3) BY L+P+2. ON INPUT 79. C A REAL MATRIX OF SIZE MAX(N, 2*NL+3) BY L+P+2. ON INPUT 79. C IT CONTAINS THE PHI(J)'S AND THEIR DERIVATIVES (SEE 80. C COVARIANCE MATRIX AT PROXIMATION TO THE (WEIGHTED) 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L NOWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L NOWS 83. C CORRESPOND TO THE LINEAR PARAMETERS, THE LAST NL TO THE 84. C MUELCENTAIN AN APPROXIMATION TO THE (WEIGHTED) 88. C CORRESPOND TO THE LINEAR PARAMETERS, THE LAST NL TO THE 84. C MUELCENT RESIDUALS (Y - ETA), A (1, L+NL+2) WILL CONTAIN 86. C THE (EUCLIDEAN) NORM OF THE WEIGHTED RESIDUAL, AND 81. A (2, L+NL+2) WILL CONTAIN AN ESTIMATE OF THE (WEIGHTED) 88. C WARIANCE OF THE OBSERVATIONS, NORM (RESIDUAL)**2/ 89. C IPRINT INPUT INTEGER CONTROLLING PRINTED OUTPUT. IF IPRINT 18 91. C POSITIVE, THE NONLINEAR PARAMETERS, WILL BE OUTPUT 93. C WEIGHTED AT THE FINAL ITERATION. ANY ERROR MESSAGES 96. C WILL ALSO BE PRINTED. (IPRINT = 1 IS RECOMMENDED AT 97. FIRST.) IF IPRINT = 0, ONLY THE FIRAL QUANTITIES WILL BE 91. C PRINTED AT THE FINAL ITERATION. ANY ERROR MESSAGES 95. C WILL ALSO BE PRINTED. (IPRINT = 1 IS RECOMMENDED AT 97. C FIRST.) IF IPRINT = 0, ONLY THE FIRAL QUANTITIES WILL 94. E PRINTED AT THE FINAL ITERATION. ANY ERROR MESSAGES 95. C WILL ALSO BE PRINTED. (IPRINT = 1 IS RECOMMENDED AT 97. C ALF NL-VECTOR OF ESTIMATES OF NONLINEAR PARAMETERS INTEN 100. C ALF NL-VECTOR OF ESTIMATE	Ċ		FUNCTION PHI(U). (THE PROGRAM SETS ALL OTHER INC(κ_i , J) TO ZERO () TE DUT($i \pm 1$) IS INCLUDED IN THE MODEL	67. 68
C BEE SET TO 1'\$. INC IS NOT NEEDED WHEN L = 0 OR NL = 0. 70. C CAUTION: THE DECLARED ROW DIMENSION OF INC (IN ADA) 71. C MUST CURRENTLY BE SET TO 12. SEE "RESTRICTIONS' BELOW. 72. C NMAX THE DECLARED ROW DIMENSION OF THE MATRICES A AND T. 73. C LPP2 L+P+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 75. C LPP2 (IF L = 0, SET LPP2 = NL+2). IF NL = 0, SET LPP2 77. C L+P+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 75. C L+P+2, (IF L = 0, SET LPP2 = NL+2, IF NL = 0, SET LPP2 77. C L+P+2, (IF L = 0, SET LPP2 = NL+2, IF NL = 0, SET LPP2 76. C A REAL MATRIX OF SIZE MAX(N, 2*NL+3) BY L+P+2. ON INPUT 79. C A WILL CONTAIN AM APPROXIMATION TO THE (WEIGHTED) 82. C A WILL CONTAIN AM APPROXIMATION TO THE (WEIGHTED) 82. C NONLINEAR ONES), COLUMN L+NL+1 WILL CONTAIN THE 83. C NONLINEAR ONES), COLUMN L+NL+1 WILL CONTAIN THE 84. C NONLINEAR ONES), COLUMN L+NL+1 WILL CONTAIN THE 85. C NONLINEAR ONES), COLUMN L+NL+1 WILL CONTAIN THE 85. C WEIGHTED RESID	C		THE APPROPRIATE ELEMENTS OF THE (141) +ST COLUMN SHOULD	69.
C CAUTION: THE DECLARED ROW DIMENSION OF INC (IN ADA) MUST CURRENTLY BE SET TO 12. SEE "RESTRICTIONS' BELOW. 72. IT MUST EE AT LEAST NAX(N, 2*NL*3). C LPP2 L+P+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 75. C LPP2 L+P+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 75. C LPP2 L+P+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 75. C LPP2 (IF L = 0, SET LPP2 = NL+2, IF NL = 0, SET LPP2 77. L+2.) C A REAL MATRIX OF SIZE MAX(N, 2*NL+3) BY L+P+2, ON INPUT 79. C BELON). ON OUTPUT, THE FIRST L+NL ROWS AMD COLUMNS OF 81. C BELON). ON OUTPUT, THE FIRST L+NL ROWS AMD COLUMNS OF 81. C C WILL CONTAIN AM APPROXIMATION TO THE (WEIGHTED) 82. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C CORRESPOND TO THE LINEAR PARAMETERS, THE LAST NL TO THE 84. NONLINEAR ONES), COLUMN L+NL+1 WILL CONTAIN THE 84. C CORRESPOND TO THE LINEAR PARAMETERS, THE LAST NL TO THE 84. C MORLINEAR ONES), COLUMN L+NL+1 WILL CONTAIN THE 84. C WEIGHTED RESTDUALS (Y = ETA), A (1, L+NL+2) WILL CONTAIN 86. C WEIGHTED RESTDUALS (Y = ETA), A (1, L+NL+2) WILL CONTAIN 86. C WEIGHTED RESTDUALS (Y = ETA), A (1, L+NL+2) WILL CONTAIN 86. C WARIANCE OF THE OBSERVATIONS, NORM (RESIDUAL) **2/ 80. C (N = L • NL). C IPRINT INPUT INTEGER CONTROLLING PRINTED OUTPUT. IF IPRINT IS 91. C POSITIVE, THE NONLINEAR PARAMETERS, THE NORM OF THE 92. RESIDUAL, AND THE MARQUARDT PARAMETERS WILL BE 0TPUT 93. EVERY UPRINT-TH ITERATION (AND INITIALLY, AND AT THE 94. FINAL ITERATION). THE LINEAR PARAMETERS WILL BE 95. C WILL ALSO BE PRINTED. (IPRINT = 1 IS RECOMMENDED AT 97. FIRST.) IF IPRINT = 0, ONLY THE FINAL QUANTITIES WILL 98. C PRINTED AT THE FINAL ITERATION. ANY ERROR MESSAGES 96. C WILL ALSO BE PRINTED. (IPRINT = 1 IS RECOMMENDED AT 97. FIRST.) IF IPRINT = 0, ONLY THE FINAL QUANTITIES WILL 98. C PRINTED AT THE FINAL ITERATION ANY ERROR MESSAGES. IF IPRINT 99. C -1, NO PRINTING WILL BE DONE. THE USER IS THEN 100. C ALF NL-VECTOR OF ESTIMATES OF NONLINEAR PARAMETERS (02. (INPUT), ON OUTPUT IT WILL CONTAIN OPTIMAL VAL	Č		BE SET TO 1'S. INC IS NOT NEEDED WHEN L = 0 OR NL = 0.	70.
C MUST CURRENTLY BE SET TO 12. SEE 'RESTRICTIONS' BELOW. 72. NMAX THE DECLARED ROW DIMENSION OF THE MATRICES A AND T. 73. IT MUST BE AT LEAST MAX(N, $2*NL^{+}3$). 74. C LPP2 L+P+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 75. THE DECLARED COLUMN DIMENSION OF A MUST BE AT LEAST 76. LPP2. (IF L = 0, SET LPP2 = NL+2. IF NL = 0, SET LPP2 77. C L+2.) 78. C A REAL MATRIX OF SIZE MAX(N, $2*NL^{+}3$) BY L+P+2. ON INPUT 79. IT CONTAINS THE PHI(J)'S AND THEIR DERIVATIVES (SEE 80. C BELOW). ON OUTPUT, THE FIRST L+NL ROWS AND COLUMNS OF 81. C A WILL CONTAIN AW APPROXIMATION TO THE (WEIGHTED) 82. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C CORESPOND TO THE LINEAR PARAMETERS, THE LAST NL TO THE 84. NONLINEAR ONES), COLUMN L+NL+1 WILL CONTAIN THE 85. C WEIGHTED RESIDUALS (Y - ETA), A (1, L+NL+2) WILL CONTAIN 86. C HE (C LULEAN) NORM OF THE WEIGHTED RESIDUAL, AND 81. A (2, L+NL+2) WILL CONTAIN AN ESTIMATE OF THE (WEIGHTED) 83. C (N - L + NL). 90. C IPRINT INPUT INTEGER CONTROLLING PRINTED OUTPUT. IF IPRINT IS 91. C VARIANCE OF THE ONSERVATIONS, NORM(RESIDUAL)**2/ 90. C IPRINT INPUT INTEGER CONTROLLING PRINTED OUTPUT. IF IPRINT 18 91. C POSITIVE, THE NONLINEAR PARAMETERS, THE NORM OF THE 92. RESIDUAL, AND THE MARQUARDT PARAMETERS WILL BE OUTPUT 93. C PRINTED AT THE FINAL ITERATION (AND INITIALLY, AND AT THE 94. C PRINTED AT THE FINAL ITERATION (AND MESSAGES 96. C WILL ALSO BE PRINTED. (IPRINT = 1 IS RECOMMENDED AT 97. FIRST.) IF IPRINT = 0, ONLY THE FINAL QUANTITIES WILL 98. C PRINTED A THE FINAL ITERATION (AND MESSAGES 196. C WILL ALSO BE PRINTED. (IPRINT = 1 IS RECOMMENDED AT 97. FIRST.) IF IPRINT = 0, ONLY THE FINAL QUANTITIES WILL 98. C PRINTED AT THE FINAL ITERATION (AND SERGES IF PRINTED 91. C ALF NL-VECTOR OF ESTIMATES OF NONLINEAR PARAMETERS WILL BE 95. C PRINTED, AS WELL AS ANY ERROR MESSAGES 101. C ALF NL-VECTOR OF LINEAR PARAMETERS. (IDTPUT 0NLY). 105. C IERR INTEGER ERROR FLAG (OUTPUT): 105. C IERR INTEGER ERROR FLAG (OUTPUT): 105. C IERR INTEGER ERROR FLA	С		CAUTION: THE DECLARED ROW DIMENSION OF INC (IN ADA)	71,
C NMAX THE DECLARED ROW DIMENSION OF THE MATRICES A AND T. 73. IT MUST BE AT LEAST MAX(N, 2*NL+3). 74. C LPP2 L+P+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 75. THE DECLARED COLUMN DIMENSION OF A MUST BE AT LEAST 76. LPP2 (IF L = 0, SET LPP2 = NL+2. IF NL = 0, SET LPP2 77. L+2.) 78. C A REAL MATRIX OF SIZE MAX(N, 2*NL+3) BY L+P+2. ON INPUT 79. IT CONTAINS THE PHI(J)'S AND THEIR DERIVATIVES (SEE 80. BELOW). ON OUTPUT, THE FIRST L+NL ROWS AND COLUMNS OF 81. C A WILL CONTAIN AW APPROXIMATION TO THE (WEIGHTED) 82. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 63. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 63. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 63. C COVARIANCE MATRIX AT THE SOLUTION (THE INTERST L NOW 63. C COVARIANCE MATRIX AT THE SOLUTION (THE INTERST L NOW 63. C COVARIANCE MATRIX AT THE SOLUTION (THE INTERST L NOW 63. C COVARIANCE OF THE UNEAR PARAMETERS, THE LAST NL TO THE 84. NONLINEAR ONES), COLUMN L+NL+1 WILL CONTAIN THE 65. WEIGHTED RESIDUALS (Y - ETA), A (1, L+NL+2) WILL CONTAIN 86. C WEIGHTED RESIDUALS (Y - ETA), A (1, L+NL+2) WILL CONTAIN 86. C NOLINEAR ONES), COLUMN LNNE OF THE (WEIGHTED) 88. VARIANCE OF THE OBSERVATIONS, NORM(RESIDUAL) AND 81. C NOLINEAR ONES), COLUMN LNNE ASTIMATE OF THE (WEIGHTED) 88. VARIANCE OF THE OBSERVATIONS, NORM(RESIDUAL) **2/ 89. (N - L • NL). 90. C IPRINT INPUT INTEGER CONTROLLING PRINTED OUTPUT. IF PRINT IS 91. POSITIVE, THE NONLINEAR PARAMETERS, THE NORM OF THE 92. RESIDUAL, AND THE MARQUARDT PARAMETERS WILL BE OUTPUT 93. C EVERY IPRINT-H ITERATION (AND INITIALLY, AND AT THE 94. FINAL ITERATION). THE LINEAR PARAMETERS WILL BE 95. C PRINTED AT THE FINAL ITERATION ANY ERROR MESSAGES 95. C WILL ALSO BE PRINTED. (IPRINT = 1 IS RECOMMENDED AT 97. FIRST.) IF IPRINT = 0, ONLY THE FINAL QUANTITIES WILL 98. C FIRST.) IF IPRINT = 0, ONLY THE FINAL QUANTITIES WILL 98. C FIRST.) ON OUTPUT IT WILL CONTAIN OPTIMAL VALUES OF 103. C HIVETOR OF ESTIMATES OF NONLINEAR PARAMETERS 100. C HIVETOR OF ESTIMATES	С		MUST CURRENTLY BE SET TO 12. SEE 'RESTRICTIONS' BELOW.	72.
C IT MUST BE AT LEAST MAX(N, 2*NL+3). 74. C L+P+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 75. C L+P+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 75. C L+P+2, (IF L = 0, SET LPP2 = NL+2, IF NL = 0, SET LPP2 76. C L+2.) REAL MATRIX OF SIZE MAX(N, 2*NL+3) BY L+P+2. ON INPUT 79. C A REAL MATRIX OF SIZE MAX(N, 2*NL+3) BY L+P+2. ON INPUT 79. C BELOW). ON OUTPUT, THE FIRST L+NL ROWS AND COLUMNS OF 81. C BELOW). ON OUTPUT, THE FIRST L+NL ROWS AND COLUMNS OF 81. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C COVARIANCE ONES), COLUMN L+NL+1 WILL CONTAIN THE 84. C WEIGHTED RESIDUALS (Y - ETA), A (1, L+NL+2) WILL CONTAIN 86. 81. C WEIGHTED NORM OF THE WEIGHTED NESIDUAL, AND 81. C WEIGHTED NORM OF THE WEIGHTED OUTPUT. IF IPRINT IS 91. C IPRINT INPUT INTEGER CONTROLLING PRINTED OUTPUT. IF IPRINT IS 91. C IPRINT INPUT INTEGER CONTROLLING PRINTED OUTPUT. IF NORM OF THE 92. C I	С	NMAX	THE DECLARED ROW DIMENSION OF THE MATRICES A AND T.	73.
C LPP2 L+P+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. 75. THE DECLARED COLUMN DIMENSION OF A MUST BE AT LEAST LPP2, (IF L = 0, SET LPP2 = NL+2, IF NL = 0, SET LPP2 T. 75. C L+2.) 78. C L+2.) 78. C A REAL MATRIX OF SIZE MAX(N, 2*NL+3) BY L+P+2. ON INPUT IT CONTAINS THE PHI(J)'S AND THEIR DERIVATIVES (SEE BELOW). ON OUTPUT, THE FIRST L+NL ROWS AND COLUMNS OF A WILL CONTAIN AN APPROXIMATION TO THE (WEIGHTED) 82. C A WILL CONTAIN AN APPROXIMATION TO THE (WEIGHTED) 82. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS AND COLUMNS OF COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS AS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS AS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS AS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS AS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS AS 84. C NONLINEAR ONES), COLUMN L+NL+1 WILL CONTAIN THE ASIDUAL, AND 84. C WEIGHTED RESIDUALS (Y - ETA), A (1, L+NL+2) WILL CONTAIN AS 81. C WEIGHTED RESIDUALS (Y - ETA), A (1, L+NL+2) WILL CONTAIN AS 81. C WEIGHTED RESIDUALS (Y - ETA), A (1, L+NL+2) WILL CONTAIN AS 81.	С		IT MUST BE AT LEAST MAX(N, 2*NL+3).	74.
CTHE DECLARED COLUMN DIMENSION OF A MUST BE AT LEAST76.CLPP2, (IF L = 0, SET LPP2 = NL+2, IF NL = 0, SET LPP277.CL+2.)78.CAREAL MATRIX OF SIZE MAX(N, 2*NL+3) BY L+P+2, ON INPUT79.CIT CONTAINS THE PHI(J)'S AND THEIR DERIVATIVES (SEE80.CBELOW). ON OUTPUT, THE FIRST L+NL ROWS AND COLUMNS OF81.CA WILL CONTAIN AW APPROXIMATION TO THE (WEIGHTED)82.CCOVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS83.CCOVARIANCE OF THE UNEAR PARAMETERS, THE LAST NL TO THE84.CNONLINEAR ONES), COLUMN L+NL+1 WILL CONTAIN THE85.CWEIGHTED RESIDUALS (Y - ETA), A (1, L+N+2) WILL CONTAIN86.CWARIANCE OF THE OBSERVATIONS, NORM(RESIDUAL, AND81.CN - L • NL).90.CIPRINT INFUT INTEGER CONTROLLING PRINTED OUTPUT. IF IPRINT IS 91.CFOSITIVE, THE NONLINEAR PARAMETERS, THE NORM OF THE92.CFOSITIVE, THE MARQUARDT PARAMETERS WILL BE OUTPUT93.CFINAL ITERATION). THE LINEAR PARAMETERS WILL BE94.CFINAL ITERATION). THE LINEAR PARAMETERS WILL BE95.CFINAL ITERATION. ANY ERROR MESSAGES96.CWILL ALSO BE PRINTED. (IPRINT = 1 IS RECOMMENDED AT 77.97.CFIRST.) IF IPRINT	C	LPP 2	L+P+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC.	75.
C L+72. (IF L * 0, SET LP72 * NL+2. IF NL = 0, SET LP72 //. C L+2.) C A REAL MATRIX OF SIZE MAX (N, 2*NL+3) BY L+P+2. ON INPUT 79. C IT CONTAINS THE PHI(J)'S AND THEIR DERIVATIVES (SEE 80. DELDOW). ON OUTPUT, THE FIRST L+NL ROWS AMD COLUMNS OF 81. C BELOW). ON OUTPUT, THE FIRST L+NL ROWS AMD COLUMNS OF 81. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L, ROWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L, ROWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L, ROWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L, ROWS 83. C COVARIANCE OF THE LINEAR PARAMETERS, THE LAST NL TO THE 84. C WEIGHTED RESIDUAL) (Y = ETA), A (1, L+NL+2) WILL CONTAIN 86. C THE (EUCLIDEAN) NORM OF THE WEIGHTED RESIDUAL, AND 81. C THE (EUCLIDEAN) NORM OF THE WEISIDUAL)**2/ C NA (2, L+NL+2) WILL CONTAIN AN ESTIMATE OT THE 91. C	C		THE DECLARED COLUMN DIMENSION OF A MUST BE AT LEAST	76.
C A REAL MATRIX OF SIZE MAX(N, 2*NL+3) BY L+P+2, ON INPUT 79. C IT CONTAINS THE PHI(J)'S AND THEIR DERIVATIVES (SEE 80. C BELOW). ON OUTPUT, THE FIRST L+NL ROWS AND COLUMNS OF 81. C A WILL CONTAIN AW APPROXIMATION TO THE (WEIGHTED) 82. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 84. C NONLINEAR ONES), COLUMN L+NL+1 WILL CONTAIN THE 85. C WEIGHTED RESIDUAL (Y - ETA), A (1, L+NL+2) WILL CONTAIN ME 86. C THE (EUCLIDEAN) NORM OF THE WEIGHTED OUTPUT. IF IPRINT IS 91. C IPRINT INTHEGER CO	Ċ		LPP2, (LF L = 0, SET LPP2 = NL+2, LF NL = 0, SET LPP2	//. 78
C IT CONTAINS THE PHT (J) 'S AND THEIR DERIVATIVES (SEE 80. C BELOW). ON OUTPUT, THE FIRST L+NL ROWS AND COLUMNS OF 81. C A WILL CONTAIN AN APPROXIMATION TO THE (WEIGHTED) 82. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C WEIGHTED RESIDUALS (Y - ETA), A (1, L+NL+2) WILL CONTAIN 86. C WEIGHTED RESIDUALS (Y - ETA), A (1, L+NL+2) WILL CONTAIN 86. C WARIANCE OF THE OBSERVATIONS, NORM(RESIDUAL) AND 81. C A (2, L+NL+2) WILL CONTAIN AN ESTIMATE OF THE (WEIGHTED) 86. C VARIANCE OF THE OBSERVATIONS, NORM(RESIDUAL) AND 81. C IPRINT INFUT 81. C VARIANCE OF THE OBSERVATIONS, NORM(RESIDUAL) *2/	C	Δ	DT2.) DENT MATTERY OF CTZE MAY (N $2*NI.+3$) by $1.+9+2$ ON TNDIT	70. 79
C BELOW). ON OUTPUT, THE FIRST L+NL ROWS AND COLUMNS OF 81. C A WILL CONTAIN AN APPROXIMATION TO THE (WEIGHTED) 82. C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C CORESPOND TO THE LINEAR PARAMETERS, THE LAST NL TO THE 84. C NONLINEAR ONES), COLUMN L+NL+1 WILL CONTAIN THE 85. C WEIGHTED RESIDUALS (Y - ETA), A (1, L+NL+2) WILL CONTAIN 86. C WEIGHTED RESIDUALS (Y - ETA), A (1, L+NL+2) WILL CONTAIN 86. C WEIGHTED RESIDUALS (Y - ETA), A (1, L+NL+2) WILL CONTAIN 86. C WEIGHTED RESIDUALS (Y - ETA), A (1, L+NL+2) WILL CONTAIN 86. C WEIGHTED RESIDUALS (Y - ETA), A (1, L+NL+2) WILL CONTAIN 86. C WEIGHTED RESIDUALS (Y - ETA), A (1, L+NL+2) WILL CONTAIN 86. C WEIGHTED RESIDUALS (Y - ETA), A (1, L+NL+2) WILL CONTAIN 86. C WEIGHTED NESSONCE, CONTROLLINEAR PARAMETERS, THE NERDIDUAL, AND 81. C IPRINT INPUT INTEGER CONTROLLING PRINTED OUTPUT. IF IPRINT IS 91. 90. C IPRINT INPUT INTEGER CONTROLLINEAR PARAMETERS, THE NORM OF THE 92. 92. C RESIDUAL, AND THE MARQUARDT PARAMETERS WILL BE OUTPUT 93. <	C		TT CONTAINS THE PHI (J) 'S AND THEIR DERIVATIVES (SEE	80.
CA WILL CONTAIN AN APPROXIMATION TO THE (WEIGHTED)82.CCOVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS83.CCORRESPOND TO THE LINEAR PARAMETERS, THE LAST NL TO THE84.CNONLINEAR ONES), COLUMN L+NL+1 WILL CONTAIN THE85.CWEIGHTED RESIDUALS (Y - ETA), A (1, L+NL+2) WILL CONTAIN86.CTHE (EUCLIDEAN) NORM OF THE WEIGHTED RESIDUAL, AND81.CA(2, L+NL+2) WILL CONTAIN AN ESTIMATE OF THE (WEIGHTED)88.CVARIANCE OF THE OBSERVATIONS, NORM (RESIDUAL)**2/89.C(N - L • NL).90.CIPRINT INPUT INTEGER CONTROLLING PRINTED OUTPUT. IF IPRINT IS91.CRESIDUAL, AND THE MARQUARDT PARAMETERS, THE NORM OF THE92.CRESIDUAL, AND THE MARQUARDT PARAMETERS WILL BE OUTPUT93.CEVERY IPRINT-TH ITERATION. ANY ERROR MESSAGES96.CWILL AL\$0 BE PRINTED. (IPRINT = 1 IS RECOMMENDED AT97.CFIRST.) IF IPRINT = 0, ONLY THE FINAL QUANTITIES WILL 98.98.CBE PRINTED, AS WELL AS ANY ERROR MESSAGES. IF IPRINT =99.C-1, NO PRINTING WILL BE DONE. THE USER IS THEN100.CRES\$PON\$[3LE FOR CHECKING THE PARAMETER IERR FOR ERRORS.101.CALFNL-VECTOR OF ESTIMATES OF NONLINEAR PARAMETERS102.CUNPUT), ON OUTPUT IT WILL CONTAIN OPTIMAL VALUES OF103.CEETAL-VECTOR OF LINEAR PARAMETERS (OUTPUT ONLY).105.CIERRINTEGER ERROR FLAG (OUTPUT):106.CETAL-VECTOR OF	Ĉ		BELOW). ON OUTPUT, THE FIRST L+NL ROWS AND COLUMNS OF	81.
C COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS 83. C CORRESPOND TO THE LINEAR PARAMETERS, THE LAST NL TO THE 84. C NONLINEAR ONES), COLUMN L+NL+1 WILL CONTAIN THE 85. C WEIGHTED RESIDUALS (Y - ETA), A (1, L+NL+2) WILL CONTAIN 86. C THE (EUCLIDEAN) NORM OF THE WEIGHTED RESIDUAL, AND 81. C A(2, L+NL+2) WILL CONTAIN AN ESTIMATE OF THE (WEIGHTED) 88. C VARIANCE OF THE OBSERVATIONS, NORM(RESIDUAL)**2/ 890. C (N - L • NL). 90. C IPRINT INPUT INTEGER CONTROLLING PRINTED OUTPUT. IF IPRINT IS 91. C POSITIVE, THE NONLINEAR PARAMETERS, THE NORM OF THE 92. C RESIDUAL, AND THE MARQUARDT PARAMETERS WILL BE OUTPUT 93. C EVERY IPRINT-TH ITERATION (AND INITIALLY, AND AT THE 94. C FINAL ITERATION). THE LINEAR PARAMETERS WILL BE 95. C FINAL ITERATION). THE LINEAR PARAMETERS WILL BE 95. C PRINTED AT THE FINAL ITERATION. ANY ERROR MESSAGES 96. C WILL AL\$0 BE PRINTED. (IPRINT = 1 IS RECOMMENDED AT 97. C FIRST.) IF IPRINT = 0, ONLY THE FINAL QUANTITIES WILL	С		A WILL CONTAIN AN APPROXIMATION TO THE (WEIGHTED)	82.
C CORRESPOND TO THE LINEAR PARAMETERS, THE LAST NL TO THE 84. C NONLINEAR ONES), COLUMN L+NL+1 WILL CONTAIN THE 85. C WEIGHTED RESIDUALS (Y - ETA), A (1, L+NL+2) WILL CONTAIN 86. C THE (EUCLIDEAN) NORM OF THE WEIGHTED RESIDUAL, AND 81. C A(2, L+NL+2) WILL CONTAIN AN ESTIMATE OF THE (WEIGHTED) 88. C VARIANCE OF THE OBSERVATIONS, NORM(RESIDUAL, AND 81. C (N - L • NL). C IPRINT INTEGER CONTROLLING PRINTED OUTPUT. IF IPRINT IS 91. C POSITIVE, THE NONLINEAR PARAMETERS, THE NORM OF THE 92. C RESIDUAL, AND THE MARQUARDT PARAMETER WILL BE OUTPUT 93. C EVERY IPRINT-TH ITERATION (AND INITIALLY, AND AT THE 94. C FINAL ITERATION). THE LINEAR PARAMETERS WILL BE 95. C FINAL ITERATION). THE LINEAR PARAMETERS WILL BE 95. C FIRST.) IF IPRINT = 0, ONLY THE FINAL QUANTITIES WILL 98. C BE PRINTED, AS WELL AS ANY ERROR MESSAGES 96. C HILL ALSO BE PRINTED. (IPRINT = 1 IS RECOMMENDED AT 97. C FIRST.) IF IPRINT = 0, ONLY THE FINAL QUANTITIES WILL 98. C BE PRINTED, AS WELL AS ANY ERROR MESSAGES. IF IPRINT = 99. C -1, NO PRINTING WILL BE DONE. THE USER IS THEN 100. C ALF	С		COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS	83.
C NONLINEAR ONES), COLUMN L+NL+1 WILL CONTAIN THE 85. C WEIGHTED RESIDUALS (Y - ETA), A (1, L+NL+2) WILL CONTAIN 86. C THE (EUCLIDEAN) NORM OF THE WEIGHTED RESIDUAL, AND 81. C A(2, L+NL+2) WILL CONTAIN AN ESTIMATE OF THE (WEIGHTED) 88. C VARIANCE OF THE OBSERVATIONS, NORM(RESIDUAL)**2/ 89. C IPRINT INPUT INTEGER CONTROLLING PRINTED OUTPUT. IF IPRINT IS 91. C IPRINT INPUT INTEGER CONTROLLING PRINTED OUTPUT. IF IPRINT IS 91. C RESIDUAL, AND THE MARQUARDT PARAMETERS, THE NORM OF THE 92. C RESIDUAL, AND THE MARQUARDT PARAMETER WILL BE OUTPUT 93. C EVERY IPRINT-TH ITERATION (AND INITIALLY, AND AT THE 94. C FINAL ITERATION). THE LINEAR PARAMETERS WILL BE 95. C PRINTED AT THE FINAL ITERATION. ANY ERROR MESSAGES 96. C WILL AL\$0 BE PRINTED. (IPRINT = 1 IS RECOMMENDED AT 97. 91. C FIRST.) IF IPRINT = 0, ONLY THE FINAL QUANTITIES WILL 98. 98. C FIRST.) AS WELL AS ANY ERROR MESSAGES. IF IPRINT = 99. -1, NO PRINTING WILL BE DONE. THE USER IS THEN 100. C RESPONSIBLE FOR CHECKING THE PARAMETER IERR FOR ERRORS. 101.	С		CORRESPOND TO THE LINEAR PARAMETERS, THE LAST NL TO THE	84.
CWEIGHTED RESIDUALS (Y - ETA), A (1, L+NL+2) WILL CONTAIN 86.CTHE (EUCLIDEAN) NORM OF THE WEIGHTED RESIDUAL, AND81.CA(2, L+NL+2) WILL CONTAIN AN ESTIMATE OF THE (WEIGHTED) 88.CVARIANCE OF THE OBSERVATIONS, NORM(RESIDUAL)**2/89.CIPRINT INPUT INTEGER CONTROLLING PRINTED OUTPUT. IF IPRINT IS91.CPOSITIVE, THE NONLINEAR PARAMETERS, THE NORM OF THE92.CRESIDUAL, AND THE MARQUARDT PARAMETER WILL BE OUTPUT93.CEVERY IPRINT-TH ITERATION (AND INITIALLY, AND AT THE94.CFINAL ITERATION). THE LINEAR PARAMETERS WILL BE95.CPRINTED AT THE FINAL ITERATION. ANY ERROR MESSAGES96.CWILL ALSO BE PRINTED. (IPRINT = 1 IS RECOMMENDED AT97.CFIRST.) IF IPRINT = 0, ONLY THE FINAL QUANTITIES WILL 98.CBE PRINTED, AS WELL AS ANY ERROR MESSAGES. IF IPRINT = 99.C-1, NO PRINTING WILL BE DONE. THE USER IS THEN100.RESSONSIBLE FOR CHECKING THE PARAMETER IERR FOR ERRORS. 101.102.CALFNL-VECTOR OF ESTIMATES OF NONLINEAR PARAMETERS102.CINPUT), ON OUTPUT IT WILL CONTAIN OPTIMAL VALUES OF 103.104.CBETAL-VECTOR OF LINEAR PARAMETERS (OUTPUT ONLY).105.CIERRINTEGER ERROR FLAG (OUTPUT):106.CIERRINTEGER ERROR FLAG (OUTPUT):106.C.3444.C.3444.C.3444.C.34.	C		NONLINEAR ONES), COLUMN L+NL+1 WILL CONTAIN THE	85.
CA (2, L+NL+2) WILL CONTAIN AN ESTIMATE OF THE (WEIGHTED RESIDUAL, AND31.CA (2, L+NL+2) WILL CONTAIN AN ESTIMATE OF THE (WEIGHTED)88.CVARIANCE OF THE OBSERVATIONS, NORM (RESIDUAL) **2/89.CIPRINT INPUT INTEGER CONTROLLING PRINTED OUTPUT. IF IPRINT IS91.CIPRINT INPUT INTEGER CONTROLLING PRINTED OUTPUT. IF IPRINT IS91.CPOSITIVE, THE NONLINEAR PARAMETERS, THE NORM OF THE92.CRESIDUAL, AND THE MARQUARDT PARAMETER WILL BE OUTPUT93.CEVERY IPRINT-TH ITERATION (AND INITIALLY, AND AT THE94.CFINAL ITERATION). THE LINEAR PARAMETERS WILL BE95.CPRINTED AT THE FINAL ITERATION. ANY ERROR MESSAGES96.CWILL AL\$0 BE PRINTED. (IPRINT = 1 IS RECOMMENDED AT97.CFIRST.) IF IPRINT = 0, ONLY THE FINAL QUANTITIES WILL98.BE PRINTED, AS WELL AS ANY ERROR MESSAGES. IF IPRINT =99.C-1, NO PRINTING WILL BE DONE. THE USER IS THEN100.CRES\$ON\$18L\$ FOR CHECKING THE PARAMETER IERR FOR ERRORS. 101.CALFNL-VECTOR OF ESTIMATES OF NONLINEAR PARAMETERS102.C(INPUT), ON OUTPUT IT WILL CONTAIN OPTIMAL VALUES OF103.CBETAL-VECTOR OF LINEAR PARAMETERS (OUTPUT ONLY).105.CIERRINTEGER ERROR FLAG (OUTPUT):106GT. 0 • SUCCESSFUL CONVERGENCE, IERR IS THE NUMBER OF107.CITERATIONS TAKEN.108.	C		WEIGHTED RESIDUALS (Y = ETA), A (1, L+NL+2) WILL CONTAIN	86. 91
CX(2, DINER2, WILL CONTAIN AN ESTIMATE OF THE (WEIGHED) **2/ 90.CVARIANCE OF THE OBSERVATIONS, NORM(RESIDUAL)**2/ 90.CIPRINTCIPRINTINPUT INTEGER CONTROLLING PRINTED OUTPUT. IF IPRINT IS 91.POSITIVE, THE NONLINEAR PARAMETERS, THE NORM OF THE 92.RESIDUAL, AND THE MARQUARDT PARAMETER WILL BE OUTPUT 93.CEVERY IPRINT-TH ITERATION (AND INITIALLY, AND AT THE 94.CFINAL ITERATION). THE LINEAR PARAMETERS WILL BE 95.CPRINTED AT THE FINAL ITERATION. ANY ERROR MESSAGES 96.CWILL AL\$0 BE PRINTED. (IPRINT = 1 IS RECOMMENDED AT 97.CFIRST.) IF IPRINT = 0, ONLY THE FINAL QUANTITIES WILL 98.CBE PRINTED, AS WELL AS ANY ERROR MESSAGES. IF IPRINT = 99.C-1, NO PRINTING WILL BE DONE. THE USER IS THEN 100.RESSPONSIBLE FOR CHECKING THE PARAMETER IERR FOR ERRORS. 101.CALFNL-VECTOR OF ESTIMATES OF NONLINEAR PARAMETERSCINPUT), ON OUTPUT IT WILL CONTAIN OPTIMAL VALUES OF 103.CBETAL-VECTOR OF LINEAR PARAMETERS (OUTPUT ONLY).CIERRINTEGER ERROR FLAG (OUTPUT):C	C		ITE (EUCLIDEAN) NORM OF ITE WEIGHTED RESIDUAL, AND $\lambda/2$ [40](42) WIII CONTAIN AN ECTIMATE OF THE (WEICHTED)	01. 88
C(N - L • NL).90.CIPRINTINPUT INTEGER CONTROLLING PRINTED OUTPUT. IF IPRINT IS91.CIPRINTINPUT INTEGER CONTROLLING PRINTED OUTPUT. IF IPRINT IS91.CPOSITIVE, THE NONLINEAR PARAMETERS, THE NORM OF THE92.RESIDUAL, AND THE MARQUARDT PARAMETER WILL BE OUTPUT93.CEVERY IPRINT-TH ITERATION (AND INITIALLY, AND AT THE94.CFINAL ITERATION).THE LINEAR PARAMETERS WILL BE95.CPRINTED AT THE FINAL ITERATION. ANY ERROR MESSAGES96.CWILL AL\$0 BE PRINTED. (IPRINT = 1 IS RECOMMENDED AT97.CFIRST.) IF IPRINT = 0, ONLY THE FINAL QUANTITIES WILL98.CBE PRINTED, AS WELL AS ANY ERROR MESSAGES. IF IPRINT =99.C-1, NO PRINTING WILL BE DONE. THE USER IS THEN100.RES\$ON\$IBLE FOR CHECKING THE PARAMETER IERR FOR ERRORS.101.CALFNL-VECTOR OF ESTIMATES OF NONLINEAR PARAMETERS102.C(INPUT), ON OUTPUT IT WILL CONTAIN OPTIMAL VALUES OF103.CBETAL-VECTOR OF LINEAR PARAMETERS (OUTPUT ONLY).105.CIERRINTEGER ERROR FLAG (OUTPUT):106GT. 0 • SUCCESSFUL CONVERGENCE, IERR IS THE NUMBER OF107108.CCCCCC <td>C</td> <td></td> <td>VARIANCE OF THE OBSERVATIONS NORM (RESIDUAL) **2/</td> <td>89.</td>	C		VARIANCE OF THE OBSERVATIONS NORM (RESIDUAL) **2/	89.
CIPRINTINPUT INTEGER CONTROLLING PRINTED OUTPUT. IF IPRINT IS91.CPOSITIVE, THE NONLINEAR PARAMETERS, THE NORM OF THE92.RESIDUAL, AND THE MARQUARDT PARAMETER WILL BE OUTPUT93.CEVERY IPRINT-TH ITERATION (AND INITIALLY, AND AT THECFINAL ITERATION). THE LINEAR PARAMETERS WILL BECPRINTED AT THE FINAL ITERATION. ANY ERROR MESSAGESCWILL ALSO BE PRINTED. (IPRINT = 1 IS RECOMMENDED ATCFIRST.) IF IPRINT = 0, ONLY THE FINAL QUANTITIES WILL98.CFIRST.) IF IPRINT = 0, ONLY THE FINAL QUANTITIES WILL99.C-1, NO PRINTING WILL BE DONE. THE USER IS THEN100.CRESPONSIBLE FOR CHECKING THE PARAMETER IERR FOR ERRORS.CIND-VECTOR OF ESTIMATES OF NONLINEAR PARAMETERSCUNPUT), ON OUTPUT IT WILL CONTAIN OPTIMAL VALUES OFCTHE NONLINEAR PARAMETERS.CBETAL-VECTOR OF LINEAR PARAMETERS (OUTPUT ONLY).CIERRINTEGER ERROR FLAG (OUTPUT):	C		$(N - L \cdot NL)$.	90.
CPOSITIVE, THE NONLINEAR PARAMETERS, THE NORM OF THE92.CRESIDUAL, AND THE MARQUARDT PARAMETER WILL BE OUTPUT93.CEVERY IPRINT-TH ITERATION (AND INITIALLY, AND AT THE94.CFINAL ITERATION). THE LINEAR PARAMETERS WILL BE95.CPRINTED AT THE FINAL ITERATION. ANY ERROR MESSAGES96.CWILL AL\$0 BE PRINTED. (IPRINT = 1 IS RECOMMENDED AT97.CFIRST.) IF IPRINT = 0, ONLY THE FINAL QUANTITIES WILL98.CBE PRINTED, AS WELL AS ANY ERROR MESSAGES. IF IPRINT =99.C-1, NO PRINTING WILL BE DONE. THE USER IS THEN100.CRESPONSIBLE FOR CHECKING THE PARAMETER IERR FOR ERRORS.101.CALFNL-VECTOR OF ESTIMATES OF NONLINEAR PARAMETERS102.CUINPUT), ON OUTPUT IT WILL CONTAIN OPTIMAL VALUES OF103.CBETAL-VECTOR OF LINEAR PARAMETERS104.CIERRINTEGER ERROR FLAG (OUTPUT):105.CIERRINTEGER ERROR FLAG (OUTPUT):106.C107.CCCCCCCCC<	C	IPRINT	INPUT INTEGER CONTROLLING PRINTED OUTPUT. IF IPRINT IS	91.
CRESIDUAL, AND THE MARQUARDT PARAMETER WILL BE OUTPUT93.CEVERY IPRINT-TH ITERATION (AND INITIALLY, AND AT THE94.CFINAL ITERATION). THE LINEAR PARAMETERS WILL BE95.CPRINTED AT THE FINAL ITERATION. ANY ERROR MESSAGES96.CWILL AL\$0 BE PRINTED. (IPRINT = 1 IS RECOMMENDED AT97.CFIRST.) IF IPRINT = 0, ONLY THE FINAL QUANTITIES WILL98.CBE PRINTED, AS WELL AS ANY ERROR MESSAGES. IF IPRINT =99.C-1, NO PRINTING WILL BE DONE. THE USER IS THEN100.CRESPONSIBLE FOR CHECKING THE PARAMETER IERR FOR ERRORS.101.CALFNL-VECTOR OF ESTIMATES OF NONLINEAR PARAMETERS102.CUINPUT), ON OUTPUT IT WILL CONTAIN OPTIMAL VALUES OF103.CBETAL-VECTOR OF LINEAR PARAMETERS (OUTPUT ONLY).105.CIERRINTEGER ERROR FLAG (OUTPUT):106.C.GT. 0 • SUCCESSFUL CONVERGENCE, IERR IS THE NUMBER OF107.CITERATIONS TAKEN.108.	С		POSITIVE, THE NONLINEAR PARAMETERS, THE NORM OF THE	92.
CEVERY IPRINT-TH ITERATION (AND INITIALLY, AND AT THE94.CFINAL ITERATION). THE LINEAR PARAMETERS WILL BE95.CPRINTED AT THE FINAL ITERATION. ANY ERROR MESSAGES96.CWILL AL\$0 BE PRINTED. (IPRINT = 1 IS RECOMMENDED AT97.CFIRST.) IF IPRINT = 0, ONLY THE FINAL QUANTITIES WILL98.CBE PRINTED, AS WELL AS ANY ERROR MESSAGES. IF IPRINT =99.C-1, NO PRINTING WILL BE DONE. THE USER IS THEN100.CRESPONSIBLE FOR CHECKING THE PARAMETER IERR FOR ERRORS.101.CALFNL-VECTOR OF ESTIMATES OF NONLINEAR PARAMETERS102.C(INPUT), ON OUTPUT IT WILL CONTAIN OPTIMAL VALUES OF103.CBETAL-VECTOR OF LINEAR PARAMETERS.104.CBETAL-VECTOR OF LINEAR PARAMETERS (OUTPUT ONLY).105.CIERRINTEGER ERROR FLAG (OUTPUT):106.C	С		RESIDUAL, AND THE MARQUARDT PARAMETER WILL BE OUTPUT	93.
CFINAL ITERATION). THE LINEAR PARAMETERS WILL BE95.CPRINTED AT THE FINAL ITERATION. ANY ERROR MESSAGES96.CWILL AL\$O BE PRINTED. (IPRINT = 1 IS RECOMMENDED AT97.CFIRST.) IF IPRINT = 0, ONLY THE FINAL QUANTITIES WILL98.CBE PRINTED, AS WELL AS ANY ERROR MESSAGES. IF IPRINT =99.C-1, NO PRINTING WILL BE DONE. THE USER IS THEN100.CRESPONSIBLE FOR CHECKING THE PARAMETER IERR FOR ERRORS.101.CALFNL-VECTOR OF ESTIMATES OF NONLINEAR PARAMETERS102.CUNPUT), ON OUTPUT IT WILL CONTAIN OPTIMAL VALUES OF103.CBETAL-VECTOR OF LINEAR PARAMETERS (OUTPUT ONLY).105.CIERRINTEGER ERROR FLAG (OUTPUT):106.C.GT. 0 • SUCCESSFUL CONVERGENCE, IERR IS THE NUMBER OF107.CITERATIONS TAKEN.108.	C		EVERY IPRINT-TH ITERATION (AND INITIALLY, AND AT THE	94.
CFRINTED AT THE FINAL THEATTION. ANT ERROR MESSAGES30.CWILL AL\$O BE PRINTED. (IPRINT = 1 IS RECOMMENDED AT97.CFIRST.) IF IPRINT = 0, ONLY THE FINAL QUANTITIES WILL98.CBE PRINTED, AS WELL AS ANY ERROR MESSAGES. IF IPRINT =99.C-1, NO PRINTING WILL BE DONE. THE USER IS THEN100.CRE\$PONSIBLE FOR CHECKING THE PARAMETER IERR FOR ERRORS.101.CALFNL-VECTOR OF ESTIMATES OF NONLINEAR PARAMETERS102.C(INPUT), ON OUTPUT IT WILL CONTAIN OPTIMAL VALUES OF103.CBETAL-VECTOR OF LINEAR PARAMETERS.104.CBETAL-VECTOR OF LINEAR PARAMETERS (OUTPUT ONLY).105.CIERRINTEGER ERROR FLAG (OUTPUT):106.C.GT. 0 • SUCCESSFUL CONVERGENCE, IERR IS THE NUMBER OF107.CITERATIONS TAKEN.108.	C		FINAL ITERATION). THE LINEAR PARAMETERS WILL BE	95. Q6
CFIRST.) IF IPRINT = 0, ONLY THE FINAL QUANTITIES WILL 98.CFIRST.) IF IPRINT = 0, ONLY THE FINAL QUANTITIES WILL 98.CBE PRINTED, AS WELL AS ANY ERROR MESSAGES. IF IPRINT = 99.C-1, NO PRINTING WILL BE DONE. THE USER IS THEN 100.CRESPONSIBLE FOR CHECKING THE PARAMETER IERR FOR ERRORS. 101.CALFNL-VECTOR OF ESTIMATES OF NONLINEAR PARAMETERS 102.C(INPUT), ON OUTPUT IT WILL CONTAIN OPTIMAL VALUES OF 103.CBETACL-VECTOR OF LINEAR PARAMETERS. 104.CBETAL-VECTOR OF LINEAR PARAMETERS (OUTPUT ONLY). 105.CIERRINTEGER ERROR FLAG (OUTPUT): 106.C.GT. 0 • SUCCESSFUL CONVERGENCE, IERR IS THE NUMBER OF 107.CITERATIONS TAKEN. 108.	C		WILL ALSO BE DEINTED (IDEINT – 1 IS RECOMMENDED AT	90. 97
CBE PRINTED, AS WELL AS ANY ERROR MESSAGES. IF IPRINT = 99.C-1, NO PRINTING WILL BE DONE. THE USER IS THENCRESPONSIBLE FOR CHECKING THE PARAMETER IERR FOR ERRORS. 101.CALFNL-VECTOR OF ESTIMATES OF NONLINEAR PARAMETERSC(INPUT), ON OUTPUT IT WILL CONTAIN OPTIMAL VALUES OFCTHE NONLINEAR PARAMETERS.CBETAL-VECTOR OF LINEAR PARAMETERS (OUTPUT ONLY).CIERRINTEGER ERROR FLAG (OUTPUT):C.GT. 0 • SUCCESSFUL CONVERGENCE, IERR IS THE NUMBER OFCITERATIONS TAKEN.	C		FIRST) IF IPRINT = 0 . ONLY THE FINAL CHANTITIES WILL	98.
C-1, NO PRINTING WILL BE DONE. THE USER IS THEN100.CRESPONSIBLE FOR CHECKING THE PARAMETER IERR FOR ERRORS.101.CALFNL-VECTOR OF ESTIMATES OF NONLINEAR PARAMETERS102.C(INPUT), ON OUTPUT IT WILL CONTAIN OPTIMAL VALUES OF103.CTHE NONLINEAR PARAMETERS.104.CBETAL-VECTOR OF LINEAR PARAMETERS (OUTPUT ONLY).105.CIERRINTEGER ERROR FLAG (OUTPUT):106.C.GT. 0 • SUCCESSFUL CONVERGENCE, IERR IS THE NUMBER OF107.CITERATIONS TAKEN.108.	C		BE PRINTED, AS WELL AS ANY ERROR MESSAGES. IF IPRINT =	99.
CRESPONSIBLE FOR CHECKING THE PARAMETER IERR FOR ERRORS. 101.CALFNL-VECTOR OF ESTIMATES OF NONLINEAR PARAMETERS102.C(INPUT), ON OUTPUT IT WILL CONTAIN OPTIMAL VALUES OF103.CTHE NONLINEAR PARAMETERS.104.CBETAL-VECTOR OF LINEAR PARAMETERS (OUTPUT ONLY).105.CIERRINTEGER ERROR FLAG (OUTPUT):106.C.GT. 0 • SUCCESSFUL CONVERGENCE, IERR IS THE NUMBER OF107.CITERATIONS TAKEN.108.	C		-1, NO PRINTING WILL BE DONE. THE USER IS THEN	100.
CALFNL-VECTOR OF ESTIMATES OF NONLINEAR PARAMETERS102.C(INPUT), ON OUTPUT IT WILL CONTAIN OPTIMAL VALUES OF103.CTHE NONLINEAR PARAMETERS.104.CBETAL-VECTOR OF LINEAR PARAMETERS (OUTPUT ONLY).105.CIERRINTEGER ERROR FLAG (OUTPUT):106.C.GT. 0 • SUCCESSFUL CONVERGENCE, IERR IS THE NUMBER OF107.CITERATIONS TAKEN.108.	С		RESPONSIBLE FOR CHECKING THE PARAMETER IERR FOR ERRORS.	101.
C(INPUT), ON OUTPUT IT WILL CONTAIN OPTIMAL VALUES OF103.CTHE NONLINEAR PARAMETERS.104.CBETAL-VECTOR OF LINEAR PARAMETERS (OUTPUT ONLY).105.CIERRINTEGER ERROR FLAG (OUTPUT):106.C.GT. 0 • SUCCESSFUL CONVERGENCE, IERR IS THE NUMBER OF107.CITERATIONS TAKEN.108.	С	ALF	NL-VECTOR OF ESTIMATES OF NONLINEAR PARAMETERS	102.
CTHE NONLINEAR PARAMETERS.104.CBETAL-VECTOR OF LINEAR PARAMETERS (OUTPUT ONLY).105.CIERRINTEGER ERROR FLAG (OUTPUT):106.C.GT. 0 • SUCCESSFUL CONVERGENCE, IERR IS THE NUMBER OF107.CITERATIONS TAKEN.108.	С		(INPUT), ON OUTPUT IT WILL CONTAIN OPTIMAL VALUES OF	103.
CBETAL-VECTOR OF LINEAR PARAMETERS (OUTPUT ONLY).105.CIERRINTEGER ERROR FLAG (OUTPUT):106.C.GT. 0 • SUCCESSFUL CONVERGENCE, IERR IS THE NUMBER OF107.CITERATIONS TAKEN.108.	C	5	THE NONLINEAR PARAMETERS.	104.
C IERR INTEGER ERROR FLAG (OUTPOT). 100. C .GT. 0 • SUCCESSFUL CONVERGENCE, IERR IS THE NUMBER OF 107. C ITERATIONS TAKEN. 108.	C	BETA	L-VECTOR OF LINEAR PARAMETERS (OUTPUT ONLY).	105.
C ITERATIONS TAKEN. 108.	C	TEKK	AL PRICERCERUL CONVERCENCE TERR TO THE MIMORE OF	107
	C		ITERATIONS TAKEN.	108.

С C C Ċ С С C C С C C Ċ С С С С С С С С С С С С Ċ C C C C С С C C Ċ С C C С C C C C C С

-1 TERMINATED FOR TOO MANY ITERATIONS. 109. TERMINATED FOR ILL-CONDITIONING (MARQUARDT PARAMETER TOO LARGE.) ALSO SEE IERR = -8 BELOW. -2 110. 111. -4 INPUT ERROR IN PARAMETER N, L, NL, LPP2, OR NMAX. 112. -5 INC MATRIX IMPROPERLY SPECIFIED, OR P DISAGREES 113. WITH LPP2, 114. -6 A WEIGHT WAS NEGATIVE. 115. -7 'CONSTANT' COLUMN WAS COMPUTED MORE THAN ONCE. 116. -8 CATASTROPHIC FAILURE - A COLUMN OF THE A MATRIX HAS 117. BECOME ZERO. SEE 'CONVERGENCE FAILURES' BELOW. 118 119 (IF IERR .LE. -4, THE LINEAR PARAMETERS, COVARIANCE 120. MATRIX, ETC. ARE NOT RETURNED.) 121. 122. SUBROUTINES REQUIRED 123. 124. NINE SUBROUTINES, DPA, ORFAC1, ORFAC2, BACSUB, POSTPR, COV, 125. XNORM, INIT, AND VARERR ARE PROVIDED. IN ADDITION, THE USER 126. MUST PROVIDE A SUBROUTINE (CORRESPONDING TO THE ARGUMENT ADA) 127. WHICH, GIVEN ALF, WILL EVALUATE THE FUNCTIONS PHI(J) AND THEIR 128. PARTIAL DERIVATIVES D PHI(J)/D ALF(K), AT THE SAMPLE POINTS $T\left(I\right)$. This routine must be declared 'external' in the calling 129. 130. PROGRAM. ITS CALLING SEQUENCE IS 131. 132. SUBROUTINE ADA (L+1, NL, N, NMAX LPP2, IV, A, INC, T, ALF, 133. 134. ISEL) 135. THE USER SHOULD MODIFY THE EXAMPLE SUBROUTINE 'ADA' (GIVEN 136. ELSEWHERE) FOR HIS OWN FUNCTIONS. 137. 138. THE VECTOR SAMPLED FUNCTIONS PHI(J) SHOULD BE STORED IN THE 139. FIRST N ROWS AND FIRST L+1 COLUMNS OF THE MATRIX A, I.E., 140. A(I, J) SHOULD CONTAIN PHI (J, ALF; T(I, 1), T(I, 2), ..., T(I, IV), I = 1, ..., N; J = 1, ..., L (OR L+1). THE (L+1)-ST COLUMN OF A CONTAINS PHI(L+1) IF PHI(L+1) IS IN THE MODEL, OTHERWISE IT IS RESERVED FOR WORKSPACE. THE 'CONSTANT' FUNC-141. 142. 143. 144. 145. TIONS (THESE ARE FUNCTIONS PHI(J) WHICH DO NOT DEPEND UPON ANY NONLINEAR PARAMETERS ALF, E.G., T(I)**J) (IF ANY) MUST APPEAR 146. FIRST, STARTING IN COLUMN 1. THE COLUMN N-VECTORS OF NONZERO PARTIAL DERIVATIVES D PHI (J) / D ALF (K) SHOULD BE STORED 147. 148. SEQUENTIALLY IN THE MATRIX A IN COLUMNS L+2 THROUGH L+P+1, 149. THE ORDER IS 150. 151. D PHI(1) D PHI(2) D PHI(L) D PHI(L+1) D PHI(1) 152. 153. -----D ALF(1) D ALF(1) D ALF(2)D ALF (1) D ALF (1) 154. 155. D PHI(2) D PHI(L+1) D PHI(1) D PHI(L+1) 156. ---- / .../ 157. D ALF(2) D ALF (NL) D ALF(2) D ALF(NL) 158. 159. OMITTING COLUMNS OF DERIVATIVES WHICH ARE ZERO, AND OMITTING 160. PHI(L+1) COLUMNS IF PHI(L+1) IS NOT IN THE MODEL. NOTE THAT 161. THE LINEAR PARAMETERS BETA ARE NOT USED IN THE MATRIX A. 162. COLUMN L+P+2 IS RESERVED FOR WORKSPACE. 163. 164. THE CODING OF ADA SHOULD BE ARRANGED SO THAT: 165. 166, (WHICH OCCURS THE FIRST TIME ADA IS CALLED) MEANS: ISEL = 1167. A. FILL IN THE INCIDENCE MATRIX INC 168 B. STORE ANY CONSTANT PHI'S IN A. 169. COMPUTE NONCONSTANT PHI'S AND PARTIAL DERIVA-170. С. TIVES_ 171. MEANS COMPUTE ONLY THE NONCONSTANT FUNCTIONS PHI = 2 172. = 3 MEANS COMPUTE ONLY THE DERIVATIVES 173. 174.

С (WHEN THE PROBLEM IS LINEAR (NL = 0) ONLY ISEL = 1 IS USED, AND 175. C C DERIVATIVES ARE NOT NEEDED.) 176. 177. С RESTRICTIONS 178. C C C C 179. THE SUBROUTINES DPA, INIT (AND ADA) CONTAIN THE LOCALLY $180 \\ 181$: DIMENSIONED MATRIX INC, WHOSE DIMENSIONS ARE CURRENTLY SET FOR 182. MAXIMA OF L+1 = 8, NL = 12. THEY MUST BE CHANGED FOR LARGER C C C PROBLEMS. DATA PLACED IN ARRAY A IS OVERWRITTEN ('DESTROYED'). 183. DATA PLACED IN ARRAYS T, Y AND INC IS LEFT INTACT. THE PROGRAM 184. RUNS IN WATFIV, EXCEPT WHEN L = 0 OR NL = 0. 185. С 186. C C IT IS ASSUMED THAT THE MATRIX PHI(J, ALF; T(I)) HAS FULL COLUMN RANK. THIS MEANS THAT THE FIRST L COLUMNS OF THE MATRIX 188. Ċ A MUST BE LINEARLY INDEPENDENT. 189. С 190: С OPTIONAL NOTE: AS WILL BE NOTED FROM THE SAMPLE SUBPROGRAM С ADA, THE DERIVATIVES D PHI(J)/D ALF(K) (ISEL = 3) MUST BE 192. COMPUTED INDEPENDENTLY OF THE FUNCTIONS PHI(J) (ISEL = 2), С 193 194: С SINCE THE FUNCTION VALUES ARE OVERWRITTEN AFTER ADA IS CALLED С WITH ISEL = 2. THIS IS DONE TO MINIMIZE STORAGE, AT THE POS-195. С SIBLE EXPENSE OF SOME RECOMPUTATION (SINCE THE FUNCTIONS AND 196. C C DERIVATIVES FREQUENTLY HAVE SOME COMMON SUBEXPRESSIONS). TO 197. REDUCE THE AMOUNT OF COMPUTATION AT THE EXPENSE OF SOME STORAGE, CREATE A MATRIX B OF DIMENSION NMAX BY L+1 IN ADA, AND 199. С С AFTER THE COMPUTATION OF THE PHI'S (ISEL = 2), COPY THE VALUES 200. С INTO B. THESE VALUES CAN THEN BE USED TO CALCULATE THE DERIV-201. С ATIVES (ISEL = 3), (THIS MAKES USE OF THE FACT THAT WHEN A 202. С CALL TO ADA WITH ISEL = 3 FOLLOWS A CALL WITH ISEL = 2, THE 203. Ĉ ALFS ARE THE **SAME**.) 204. С 205: C C TO CONVERT TO OTHER MACHINES, CHANGE THE OUTPUT UNIT IN THE DATA STATEMENTS IN VARPRO, DPA, POSTPR, AND VARERR. THE 207:208: С PROGRAM HAS BEEN CHECKED FOR PORTABILITY BY THE BELL LABS PFORT С 209. VERIFIER. FOR MACHINES WITHOUT DOUBLE PRECISION HARDWARE, IT C C MAY BE DESIRABLE TO CONVERT TO SINGLE PRECISION. THIS CAN BE 210. DONE BY CHANGING (A) THE DECLARATIONS 'DOUBLE PRECISION' TO "REAL', (B) THE PATTERN . D' TO .E' IN THE 'DATA' STATEMENT IN 212. VARPRO, (C) DSIGN, DSQRT AND DABS TO SIGN, SQRT AND ABS, 213 RESPECTIVELY AND (D) DEVD TO THE THE AND ABS, 213 С С 213_{214} : RESPECTIVELY, AND (D) DEXP TO EXP IN THE SAMPLE PROGRAMS ONLY. С С 215. Ċ NOTE ON INTERPRETATION OF COVARIANCE MATRIX 216. С 217. С FOR USE IN STATISTICAL ESTIMATION (MULTIPLE NONLINEAR 218. С REGRESSION) VARERO RETURNS THE COVARIANCE MATRIX OF THE LINEAR 219. С AND NONLINEAR PARAMETERS, THIS MATRIX WILL BE USEFUL ONLY IF 220. С THE USUAL STATISTICAL ASSUMPTIONS HOLD: AFTER WEIGHTING, THE 221. С ERRORS IN THE OSSERVATIONS ARE INDEPENDENT AND NORMALLY DISTRI-222. С BUTED, WITH MEAN ZERO AND THE SAME VARIANCE. IF THE ERRORS DO 223. NOT HAVE MEAN ZERO (OR ARE UNKNOWN), THE PROGRAM WILL ISSUE A WARNING MESSAGE (UNLESS IPRINT , LT, 0) and the covariance С 2.2.4. С 225. С MATRIX WILL NOT BE VALID. IN THAT CASE, THE MODEL SHOULD BE 226. С ALTERED TO INCLUDE A CONSTANT TERM (SET PHI(1) = 1.). 227. С 2.2.8. С NOTE ALSO THAT, IN ORDER FOR THE USUAL ASSUMPTIONS TO HOLD, 229. C C THE OBSERVATIONS MUST ALL BE OF APPROXIMATELY THE SAME 230. MAGNITUDE (IN THE ABSENCE OF INFORMATION ABOUT THE ERROR OF 231. EACH OBSERVATION), OTHERWISE THE VARIANCES WILL NOT BE THE CCCCCCCC 232. SAME. IF THE OBSERVATIONS ARE NOT THE SAME SIZE, THIS CAN BE 233. CURED BY WEIGHTING. 234. 235. IF THE USUAL ASSUMPTIONS HOLD, THE SQUARE ROOTS OF THE 236. DIAGONALS OF THE COVARIANCE MATRIX A GIVE THE STANDARD ERROR 237. **s** (I) of each parameter. Dividing A (IJ) by **s** (I) \star s(J) yields 238. THE CORRELATION MATRIX OF THE PARAMETERS. PRINCIPAL AXES AND 239. С CONFIDENCE ELLIPSOIDS CAN BE OBTAINED BY PERFORMING AN EIGEN-240

C	VALUE/EIGENVECTOR ANALYSIS ON A. ONE SHOULD CALL THE EISPACK	241.
C	PROGRAM TREDZ, FOLLOWED BY TQLZ (OR USE THE EISPAC CONTROL PROGRAM).	242. 243.
C C	CONVERGENCE FAILURES	244. 245.
00000000 0 000	IF CONVERGENCE FAILURES OCCUR, FIRST CHECK FOR INCORRECT CODING OF THE SUBROUTINE ADA. CHECK ESPECIALLY THE ACTION OF ISEL, AND THE COMPUTATION OF THE PARTIAL DERIVATIVES. IF THESE ARE CORRECT, TRY SEVERAL STARTING GUESSES FOR ALF. IF ADA IS CODED CORRECTLY, AND IF ERROR RETURNS IERR = -2 OR -8 PERSISTENTLY OCCUR, THIS IS A SIGN OF ILL-CONDITIONING, WHICH MAY BE CAUSED BY SEVERAL THINGS. ONE IS POOR SCALING OF THE PARAMETERS; ANOTHER IS AN UNFORTUNATE INITIAL GUESS FOR THE PARAMETERS, STILL ANOTHER IS A POOR CHOICE OF THE MODEL.	246. 247. 248. 250. 251. 252. 253. 254. 255.
C	ALGORITHM	257.
00000000	THE RESIDUAL R IS MODIFIED TO INCORPORATE, FOR ANY FIXED ALF, THE OPTIMAL LINEAR PARAMETERS FOR THAT ALF. IT IS THEN POSSIBLE TO MINIMIZE ONLY ON THE NONLINEAR PARAMETERS. AFTER THE OPTIMAL VALUES OF THE NONLINEAR PARAMETERS HAVE BEEN DETERMINED, THE LINEAR PARAMETERS CAN BE RECOVERED BY LINEAR LEAST SQUARES TECHNIQUES (SEE REF. $1)$.	258. 259. 260. 261. 262. 263. 264. 265
	THE MINIMIZATION IS BY A MODIFICATION OF OSBORNE'S (REF. 3) MODIFICATION OF THE LEVENBERG-MARQUARDT ALGORITHM. INSTEAD OF SOLVING THE NORMAL EQUATIONS WITH MATRIX	266. 267. 268. 269
C C	T = 2 (JJ + NU * D), WHERE J = D(ETA)/D(ALF),	270. 271.
C C	STABLE ORTHOGONAL (HOUSEHOLDER) REFLECTIONS ARE USED ON A	272. 273.
C C	MODIFICATION OF THE MATRIX	274. 275.
C C	(/ / (NU*D)	276.
C		278.
0 0 0 0 0 0 0 0 0	WHERE D IS A DIAGONAL MATRIX CONSISTING OF THE LENGTHS OF THE COLUMNS OF J. THIS MARQUARDT STABILIZATION ALLOWS THE ROUTINE TO RECOVER FROM SOME RANK DEFICIENCIES IN THE JACOBIAN. OSBORNE'S EMPIRICAL STRATEGY FOR CHOOSING THE MARQUARDT PARAM- ETER HAS PROVEN REASONABLY SUCCESSFUL IN PRACTICE. (GAUSS- NEWTON WITH STEP CONTROL CAN BE OBTAINED BY MAKING THE CHANGE INDICATED BEFORE THE INSTRUCTION LABELED 5). A DESCRIPTION CAN BE FOUND IN REF. (3), AND A FLOW CHART IN (2), P. 22.	279. 280. 281. 282. 283. 284. 285. 286. 287
C	FOR REFERENCE, SEE	288.
	 GENE H. GOLUB AND V. PEREYRA, 'THE DIFFERENTIATION OF PSEUDO-INVERSES AND NONLINEAR LEAST SQUARES PROBLEMS WHOSE VARIABLES SEPARATE,' SIAM J. NUMER. ANAL. 10, 413-432 (1973) 	290. 291. 292. 293
	 SAME TITLE, STANFORD C.S. REPORT 72-261, FEB. 1972. OSBORNE, MICHAEL R., 'SOME ASPECTS OF NON-LINEAR LEAST SQUARES CALCULATIONS,' IN LOOTSMA, ED., 'NUMERICAL METHODS FOR NON-LINEAR OF INITIAL OF A CADEMIC DEFECT LONDON 1973. 	294. 295. 296.
CCCC	 4. KROGH, FRED, 'EFFICIENT IMPLEMENTATION OF A VARIABLE PRO- JECTION ALGORITHM FOR NONLINEAR LEAST SQUARES PROBLEMS,' COMM. ACM 17, PP. 167-169 (MARCH, 1974). 	297. 298. 299. 300.
C C C	5. KAUFMAN, LINDA, 'A VARIABLE PROJECTION METHOD FOR SOLVING SEPARABLE NONLINEAR LEAST SQUARES PROBLEMS', B.I.T. 15, 49-57 (1975)	301. 302. 303
C C	6. DRAPER, N., AND SMITH, H., APPLIED REGRESSION ANALYSIS, WILEY, N.Y., 1966 (FOR STATISTICAL INFORMATION ONLY).	303. 304. 305.
Ĉ	7. C. LAWSON AND R. HANSON, SOLVING LEAST SQUARES PROBLEMS,	306.

С PRENTICE-HALL, ENGLEWOOD CLIFFS, N. J., 1974. 307. CCCCCCCC 308. JOHN BOLSTAD 309. COMPUTER SCIENCE DEPT., SERRA HOUSE 310. STANFORD UNIVERSITY 311. JANUARY, 1977 312. $313 \\ 314$: С 315. DOUBLE PRECISION A (NMAX, LPP2), BETA(L), ALF(NL), T(NMAX, IV), 316. 2 W(N), Y(N), ACUM, EPS1, GNSTEP, NU, PRJRES, R, RNEW, XNORM 317. INTEGER 81, OUTPUT 318. LOGICAL SKIP 319. EXTERNAL ADA 320. DATA EPS1 /1.D-6/, ITMAX /40/, OUTPUT /6/ 321. С 322. С THE FOLLOWING TWO PARAMETERS ARE USED IN THE CONVERGENCE 323. 324: TEST: EPS1 IS AN ABSOLUTE AND RELATIVE TOLERANCE FOR THE C C C C C C C C NORM OF THE PROJECTION OF THE RESIDUAL ONTO THE RANGE OF THE 325. JACOBIAN OF THE VARIABLE PROJECTION FUNCTIONAL. 326. ITMAX IS THE MAXIMUM NUMBER OF FUNCTION AND DERIVATIVE 327. EVALUATIONS ALLOWED. CAUTION: EPS1 MUST NOT BE SET SMALLER THAN 10 TIMES THE UNIT ROUND-OFF OF THE MACHINE. 329. С С 330. 330.005 CALL LIB MONITOR FROM VARPRO, MAINTENANCE NUMBER 509, DATE 77178 330.00E C***PLEASE DON'T REMOVE OR CHANGE THE ABOVE CALL. IT IS YOUR ONLY 330.00E C***PROTECTION AGAINST YOUR USING AN OUT-OF-DATE OR INCORRECT 330.002 C***VERSION OF THE ROUTINE. THE LIBRARY MONITOR REMOVES THIS CALL, 330.01 C***SO IT ONLY OCCURS ONCE, ON THE FIRST ENTRY TO THIS ROUTINE. 330.011 C-----330.012 IERR = 1331. ITER = 0 332. LP1 = L + 1333. B1 = L + 2334. LNL2 = L t NL + 2335. NLP1 = NL + 1336. SKIP = .FALSE. 337. MODIT = IPRINT 338. IF (IPRINT .LE. 0) MODIT = ITMAX t 2 339. $\mathbf{N}\mathbf{u} = \mathbf{0}$. 340. С IF GAUSS-NEWTON IS DESIRED REMOVE THE NEXT STATEMENT. 341. Nu = 1. 342. С 343. C C BEGIN OUTER ITERATION LOOP TO UPDATE ALF. CALCULATE THE NORM OF THE RESIDUAL AND THE DERIVATIVE OF 344. С THE MODIFIED RESIDUAL THE FIRST TIME, BUT ONLY THE 346. С DERIVATIVE IN SUBSEQUENT ITERATIONS. 347. С 348. 5 CALL DPA (L, NL, N, NMAX, LPP2, IV, T, Y, W, ALF, ADA, IERR, X IPRINT, A, BETA, $\lambda(1, LP1), R)$ 349. 350. GNSTEP = 1.0 351. ITERIN = 0 352. IF (ITER.GT. 0) GO TO 10 353. IF (NL, EQ, 0) GO TO 90 354. IF (IERR .NE. 1) GO TO 99 355. 356: С IF (IPRINT .LE. 0) GO TO 10 357. WRITE (OUTPUT, 207) ITERIN, R WRITE (OUTPUT, 200) NU BEGIN TWO-STAGE ORTHOGONAL FACTORIZATION 360. С 10 CALL ORFAC1 (NLP1, NMAX, N, L, IPRINT, A(1, B1), PRJRES, IERR) 361. . IF (IERR .LT. 0) GO TO 99 362. IERR = 2 363. IF $(NU, \Xi Q, 0.)$ GO TO 30 364. С 365.

C C		BEGIN INNER ITERATION LOOP FOR GENERATING NEW ALF TESTING IT FOR ACCEPTANCE.	AND	366. 367.
C	25	CALL ORFAC2(NLP1, NMAX, NL, A(1, B1))		368. 369. 370
		SOLVE A NL X NL UPPER TRIANGULAR SYSTEM FOR DELTA THE TRANSFORMED RESIDUAL (IN COL. LNL2 OF A) IS C WRITTEN BY THE RESULT DELTA-ALF.	A-ALF. DVER-	371. 372. 373.
C	30	CALL BACSUB (NMAX, NL, $A(1, B1)$, $A(1, LNL2)$) DO 35 K = 1, NL		375. 376.
C	35	A(K, B1) = ALF(K) + A(K, LNL2) NEW ALF(K) = ALF(K) + DELTA ALF(K)		377. 378.
		STEP TO THE NEW POINT NEW ALF, AND COMPUTE THE NE NORM OF RESIDUAL. NEW ALF IS STORED IN COLUMN B1	IW . OF A.	379. 380. 381.
C	40 x	CALL DPA (L, NL, N, NMAX, LPP2, IV, T, Y, W, A(1, B1), IERR, IPRINT, A, BETA, A(1, LP1), RNEW) IF (IERR .NE. 2) GO TO 99 ITER = ITER + 1 ITERIN = ITERIN + 1 SKIP = MOD (ITER, MODIT) .NE. 0 IF (SKIP) GO TO 45	ADA,	382. 383. 384. 385. 386. 387. 388. 388.
C		WRITE (OUTPUT, 203) ITER WRITE (OUTPUT, 216) (A(K, B1), K = 1, NL) WRITE (OUTPUT, 207) ITERIN, RNEW		390. 391. 392.
C	45	IF (ITER .LT. ITMAX) GO TO 50 IERR = -1 CALL VARERR (IPRINT, IERR, 1)		393. 394. 395. 396.
a	50	GO TO 95 IF (RNEW - R ,LT, EP\$1*(R t 1.DO)) GO TO 75		397. 398.
C C C		RETRACT THE STEP JUST TAKEN		399. 400. 401.
С		IF (NU .NE. 0.) GO TO 60 GAUSS-NEWTON OPTIC	ON ONLY	402. 403.
		GNSTEP = 0.5*GNSTEP IF (GNSTEP,LT, EPS1) GO TO 95 DO 55 K = 1, NL		404. 405. 406.
	55	A(K, B1) = ALF(K) + GNSTEP * A(K, LNL2) GO TO 40		407. 408.
С	60	ENLARGE THE MARQUARDT E	ARAMETER	409. 410.
		IF (.NOT. SKIP) WRITE (OUTPUT, 206) NU IF (NU .LE. 110.) GO TO 65 IERR = -2		411. 412. 413.
a		CALL VARERR (IPRINT, IERR, 1) GO TO 95		414. 415.
C	65	AND RESIDUAL OF FIRST	STAGE.	416. 417. 418.
	0.5	KSUB = LP1 + K $DO 70 J = K, NLP1$ $JSUB = LP1 + J$ $TSUB = NLP1 + J$		419. 420. 421.
	70	A(K, JSUB) = A(ISUB, KSUB) GO TO 25		422. 423. 424
C C C		END OF INNER ITERATION ACCEPT THE STEP JUST TAKEN	LOOP	425. 426. 427.
~	75 R D(R = RNEW DO 80 k = 1 , NL		428. 429.
С	80	ALF(K) = A(K, B1) CALC. NORM (DELTA ALF)/3	NORM (ALF)	430. 4 31.

ACUM = GNSTEP*XNORM(NL, A(1, LNL2))/XNORM(NL, ALF) 432. С 433. Ċ IF ITERIN IS GREATER THAN 1, A STEP WAS RETRACTED DURING 434. С THIS OUTER ITERATION. 435. С 436. 437. IF (ITERIN, EQ. 1) $NU = 0.5 \times NU$ IF (SKIP) GO TO 85 438. 439. WRITE (OUTPUT, 200) NU WRITE (OUTPUT, 208) ACUM 440. **85** TERR = **3** 441. IF (PRJRES.GT, EP\$1*(R + 1.D0)) GO TO 5 442. С END OF OUTER ITERATION LOOP 443. C C C C 444. CALCULATE FINAL OUANTITIES -- LINEAR PARAMETERS, RESIDUALS, 445. COVARIANCE MATRIX, ETC. 446. С 447. 90 IERR = ITER 448. 95 IF (NL .GT. 0) CALL DPA(L, NL, N, NMAX, LPP2, IV, T, Y, W, ALF, 449. X ADA, 4, IPRINT, A, BETA, A(1, LP1), R) 450. CALL POSTPR(L, NL, N, NMAX, LNL2, EPS1, R, IPRINT, ALF, W, A, 451. X A(1, LP1), BETA, IERR) 452. 99 RETURN 453 С 454. 200 FORMAT (9H NU ≠, E15.7) 455. 203 FORMAT (12H0 ITERATION, 14, 24H NONLINEAR PARAMETERS) 456. STEP RETRACTED, NU =, E15.7) 206 FORMAT (25H 457. 207 FORMAT (1H0, 15, 20H NORM OF RESIDUAL =, E15.7) 458. 208 FORMAT (34H NORM(DELTA-ALF) / NORM(ALF) =, E12.3) 459. 216 FORMAT (1H0, 7E15.3) 460. END 461. С 462. SUBROUTINE ORFACI (NLP1, NMAX N, L, IPRINT, B, PRJRES, IERR) 463. С 464. STAGE 1: HOUSEHOLDER REDUCTION OF 465. 466. 467. (DR'. R3) NT. (----, --), 468. DR . R2) ТО (0 .R4) N-L-NL 469. 470. NL1 NL1 471. 472. WHERE DR = $-D(Q^2) \star Y$ is the derivative of the modified residual 473. PRODUCED BY DPA, R2 IS THE TRANSFORMED RESIDUAL FROM DPA, AND 474. С 475. DR' IS IN UPPER TRIANGULAR FORM (AS IN REF. (2), P. 18). С DR IS STORED IN ROWS L+1 TO N AND COLUMNS L+2 TO L + NL + 1 OF 476. THE MATRIX A (I.E., COLUMNS 1 TO NL OF THE MATRIX B), R2 IS STORED IN COLUMN L + NL + 2 OF THE MATRIX A (COLUMN NL + 1 OF B). FOR K = 1, 2, ..., NL, FIND REFLECTION I – U U' / BETA WHICH ZEROES B(I, K), I = L+K+1, ..., N. С 477. С 478. Ĉ 479. С 480. С 481. C 482. 483. С 484. DOUBLE PRECISION ACUM, ALPHA, B(NMAX, NLP1), BETA, DSIGN, PRJRES, 485. X u, XNORM 486. С 487. NL = NLPl - 1 NL23 = 2 * NL + 3488. LP1 = L + 1489. 490. С 491. DO 30 K = 1, NL 492. LPK = L + K 493. ALPHA = DSIGN(XNORM(N+1-LPK, B(LPK, K)), B(LPK, K))494. $\mathbf{U} = \mathbf{B} (LPK, K) + ALPHA$ 495. B(LPK, K) = UBETA = ALPHA * V496. IF (ALPHA .NE. 0.0) GO TO 13 497.

С COLUMN WAS ZERO 498. IERR = -8499. CALL VARERR (IPRINT, IERR, LP1 + K) 500. GO TO 99 501. С APPLY REFLECTIONS TO REMAINING COLUMNS 502. С OF B AND TO RESIDUAL VECTOR. 503. KP1 = K + 1 13 504. DO 25 J = KP1, NLP1 505. ACUM = 0.0 506. DO 20 I = LPK, N 507. 20 ACUM = ACUM + B(I, K) * B(I, J)508. ACUM = ACUM / BETA 509. DO 25 I = LPK, N 510. B(I, J) = B(I, J) - B(I, K) * ACUM25 511. 30 B(LPK, K) = -ALPHA512. С 513. PRJRES = XNORM(NL, B(LP1, NLP1)) 514. С 515. С SAVE UPPER TRIANGULAR FORM AND TRANSFORMED RESIDUAL, FOR USE 516. С IN CASE A STEP IS RETRACTED. ALSO COMPUTE COLUMN LENGTHS. 517. С 518. IF (IERR, EQ, 4) GO TO 99 519. DO 50 K = 1, NL 520. LPK = L + K 521. DO 40 J = K, NLPl 523. JSUB = NLP1 + J524. 525. B(K, J) = B(LPK, J)B(JSUB, K) = B(LPK, J)40 526. 50 B(NL23, K) = XNORM(K, B(LP1, K))526.5 С 527. 99 RETURN 528. END 529. 530. С SUBROUTINE ORFAC2(NLP1, NMAX NU, B) 531. С 532. С STAGE 2: SPECIAL HOUSEHOLDER REDUCTION OF 533. С 534. .R3) (DR' .R5) CCCCCCCCC NLDR' 535. . --(____ -Ι) 536. . R4 0 .R4 0 N-T-NT) TO) 537. ____ ---I) 538. (NU*D _ 0 0 NL(. R6)) 539. 540. NT. 1 NL1 541. 542. WHERE DR', R3, AND R4 ARE AS IN ORFAC1, NU IS THE MAROUARDT С 543. C C PARAMETER, D IS A DIAGONAL MATRIX CONSISTING OF THE LENGTHS OF 544. THE COLUMNS OF DR', AND DR'' IS IN UPPER TRIANGULAR FORM. DETAILS IN (1), PP. 423-424. NOTE THAT THE (N-L-NL) BAND OF 545. С 546. С ZEROES, AND R4, ARE OMITTED IN STORAGE. 547. С 548. С 549. 550. С DOUBLE PRECISION ACUM, ALPHA, B(NMAX, NLP1), BETA, DSIGN, NU, U, 551. X XNORM 552. C 553. NL = NLPl - 1 554. $NL2 = 2 \star NL$ 555. NL23 = NL2 + 3 556. DO 30 K = 1, NL KP1 = K + 1 557. 558. NLPK = NL + K 559. NLPKMl = NLPK - 1 560. B(NLPK, K) = NU * B(NL23, K)561. B(NL, K) = B(K, K)562. ALPHA = DSIGN(XNORM(K+1, B(NL, K)), B(K, K)) 563.

U = B(K, K) + ALPHABETA = ALPHA U 564. 565. 566. B(K, K) = -ALPHAС THE K-TH REFLECTION MODIFIES ONLY ROWS K, 567. С NL+1, NL+2, ..., NL+K, AND COLUMNS K TO NL+1. 568. DO 30 J = KP1, NLP1 569. B(NLPK, J) = 0. ACUM = U * B(K,J) DO 20 I = NLP1, NLPKM1 ACUM = ACUM + B(I,K) * B(I,J)570. 571. 572. 20573. 574. ACUM = ACUM / BETAB(K,J) = B(K,J) - U * ACUM575. DO 30 I = NLP1, NLPK 576. B(I,J) = B(I,J) = B(I,K) * ACUM30 577. С 578. RETURN 579. 580. END С 581. SUBROUTINE DPA (L, NL, N, NMAX LPP2, IV, T, Y, W, ALF, ADA, ISEL, 582. X IPRINT, A, U, R, RNORM) 583. С 584. С COMPUTE THE NORM OF THE RESIDUAL (IF ISEL = 1 or 2), or the 585. Ċ (N-L) X NL DERIVATIVE OF THE MODIFIED RESIDUAL (N-L) VECTOR 586. Ċ Q2*Y (IF ISEL = 1 OR 3). HERE Q * PHI = S, I.E., 587. С 588. С L (Q1) ((S. R1. F1) I 589. (PHI . Y . D(PHI) č (----) (Q2) = (---) . --590. (O . R2 . Ċ N-L F2) 591. C C C C 592. Ν ь 1 Р L 1 Р 593. 594. Ĉ WHERE Q IS N X N ORTHOGONAL, AND S IS L X L UPPER TRIANGULAR. 595. Ċ THE NORM OF THE RESIDUAL = NORM(R2), AND THE DESIRED DERIVATIVE 596. C C C C ACCORDING TO REF. (5), IS 597. 598. D(O2 * Y) = -O2 * D(PHI) * S * O1* Y.599. 600. С 601. С 602. DOUBLE PRECISION A (NMAX, LPP2), ALF(NL), T (NMAX, IV), W(N), Y(N), 603. X ACUM, ALPHA, BETA, RNORM, DSIGN, DSQRT, SAVE, R(N), U(L), XNORM 604. INTEGER FIRSTC, FIRSTR, INC(12, 8) LOGICAL NOWATE, PHILP1 605. 606. EXTERNAL ADA 607. С 608. IF (ISEL .NE. 1) GO TO 3 609. LP1 = L + 1610. LNL2 = L + 2 + NL611. LP2 = L + 2612. LPP1 = LPP2 - 1613. FIRSTC = 1614. LASTC = LPP1 615. FIRSTR = LP1616. CALL INIT(L, NL, N, NMAX LPP2, IV, T, W, ALF, ADA, ISEL, 617. х IPRINT, A, INC, NCON, NCONP1, PHILP1, NOWATE) 618. IF (ISEL .NE. 1) GO TO 99 619. GO TO 30 620. 621. C 3 CALL ADA (LP1, NL, N, NMAX LPP2, IV, A, INC, T, ALF, MINO(ISEL, 622. **X** 3)) 623. IF (ISEL .EQ. 2) GO TO 6 624. С ISEL = 3 OR 4625. . FIRSTC = LP2626. LASTC = LPP1627. $FIRSTR = (4 - ISEL) \star L + 1$ 628. GO TO 50 629.

С			ISEL = 2	620
	б	FI	IRSTC = NCONPl	630.
		LAS	ASTC = LP1	632
		IF	F (NCON,EQ, 0) GO TO 30	633.
		IF	F (A(1, NCON) .EQ. SAVE) GO TO 30	634.
			ISEL = -7	635.
			CALL VARERR (IPRINT, ISEL, NCON)	636.
С				637.
0	30	IF	F (PRILP1) GO TO 40	638.
			DO 35 I = 1, N	639.
	35		R(I) = Y(I)	640.
			GO TO 50	642.
	40		DO $45 I = 1, N$	643.
a	45		R(I) = Y(I) R(I)	644.
C	۶O	тъ	WEIGHT APPROPRIATE COLUM	NS 645.
	50		(NOWALE) GO IO 56	646.
		DU	ACIM = W(I)	647.
			DO 55 $\mathbf{J} = \mathrm{FIRSTC}$, LASTC	648.
	55		$A(I, J) = A(I, J)^* ACUM$	650
С				651.
C			COMPUTE ORTHOGONAL FACTORIZATIONS BY HOUSEHOLDER	652.
C			REFLECTIONS. IF ISEL = 1 OR 2, REDUCE PHI (STORED IN THE EXPERIMENTAL OF THE MATRIX A) TO HERE TRANSMIT AD FORM	653.
C			$(\Delta \times P \times T - S)$ AND TRANSFORM V (STORED IN COLUMN 1.41) CETTIN	JC 655
C			$(\mathbf{y}, \mathbf{n}) = 0_{\mathbf{j}}$ AND TRANSFORM T (STORED IN COLOMN $\mathbf{F}(\mathbf{j})$, GETTE $0^{\mathbf{x}}\mathbf{y} = \mathbf{R}$ IF ISEL = 1. ALSO TRANSFORM $\mathbf{J} = \mathbf{D}$ PHT (STORED IN	656
C			COLUMNS L+2 THROUGH L+P+1 OF THE MATRIX A). GETTING $O*J = H$. 657.
Ĉ			IF ISEL = 3 OR 4, PHI HAS ALREADY BEEN REDUCED, TRANSFORM	658.
С			ONLY J. S, R, AND F OVERWRITE PHI, Y, AND J, RESPECTIVELY	, 659.
С			AND A FACTORED FORM OF ${f Q}$ is saved in u and the lower	660.
C			TRIANGLE OF PHI.	661.
C	ΕO	тp		662.
	20		$\Gamma (L, LQ, 0) = 0.75$ $\Gamma 70 K = 1 T.$	663.
		DO	KP1 = K + 1	664.
			IF (ISEL, GE, 3 .OR. (ISEL, EQ, 2 .AND. K, LT, NCONP1)) GO TO (66 666:
			ALPHA = DSIGN(XNORM(N+1-K, A(K, K)), A(K, K))	667
			U(K) = A(K, K) + ALPHA	668.
			A(K, K) = -ALPHA	669.
			FIRSTC = KP1	670.
			IF (ALPHA .NE. 0.0) GO TO 66	671.
			CALL VARERR (IDRINT ISEL K)	672.
			GO TO 99	673.
C			APPLY REFLECTIONS TO COLUMNS	675
Ĉ			FIRSTC TO LASTC.	676
	66		BETA = -A(K, K) U(K)	677.
			DO 70 J = FIRSTC, LASTC	678.
			ACUM = U(K) * A(K, J)	679.
	68		DO 08 I = RPI, N	680.
	00		ACIM = ACIM / BETA	681.
			A(K,J) = A(K,J) = U(K) * ACUM	683
			DO 70 I = KP1, N	684.
	70		A(I, J) = A(I, J) = A(I, K) * ACUM	685.
С	-			686.
	15	LF	F (1SEL, GE, 3) GO TO 85	681.
		TE	F (TSET, EO 2) CO TO 99	688.
		고도 고도	F (NCON, GT, 0) SAVE = A(1, NCON)	689.
С			-(1,0,1,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0	691.
С	•		F^2 is now contained in rows L+1 to n and columns L+2 to	692.
С			L+P+1 OF THE MATRIX A. NOW SOLVE THE L \mathbf{X} L UPPER TRIANGULA	<u>AR 693.</u>
C			SYSTEM S*BETA = R1 FOR THE LINEAR PARAMETERS BETA. BETA	694.
Ċ			OVERWRITES RI.	695.

С 696. 85 IF (L .GT. 0) CALL BACSUB (NMAX, L, A, R) 697. ¢ 698. С MAJOR PART OF KAUFMAN'S SIMPLIFICATION OCCURS HERE. COMPUTE 699. С THE DERIVATIVE OF ETA WITH RESPECT TO THE NONLINEAR 700. С 701. PARAMETERS С 702. т, C C + D PHI(L+1) т D ETA D PHI(J) Τ. Q * _____ = F2*BETA 704: = Q (SUM BETA(J) -----C C D ALF(K) D ALF(K) D ALF(K) ປັ≖1 705. 706. AND STORE THE RESULT IN COLUMNS L+2 TO L+NL+1, IF ISEL NOT = 4, THE FIRST L ROWS ARE OMITTED. THIS IS $-D(Q2) \times Y$, IF ISEL NOT = 4 THE RESIDUAL R2 = $Q2 \times Y$ (IN COL. L+1) IS COPIED С 707. С 708. С 709. С TO COLUMN L+NL+2, OTHERWISE ALL OF COLUMN L+1 IS COPIED. 710. C 711. DO 95 I = FIRSTR, N 712. IF (L , EQ, NCON) GO TO 95713. M = LP1714. DO 90 K = 1, NL 715. ACUM = 0. 716. DO 88 J = NCONP1, L 717. IF (INC(X_1 , J), EQ, 0) GO TO 88 718. M = M + 1719. ACUM = ACUM + A(I, M) * R(J)720. 88 CONTINUE 721. KSUB = LP1 + K 722. IF (INC(K, LP1) ,EQ. 0) GO TO 90 723. M = M + 1724. ACUM = ACUM + A(I, M)725. 90 A(I, KSUB) = ACUM726. 95 A(I, LNL2) = R(I)727. С 728. 99 RETURN 729. END 730. С 731. SUBROUTINE INIT(L, NL, N, NMAX, LPP2, IV, T, W, ALF, ADA, ISEL, X IPRINT, A, INC, NCON, NCONP1, PHILP1, NOWATE) 732. 733. C C 734. CHECK VALIDITY OF INPUT PARAMETERS, AND DETERMINE NUMBER OF 735. C 736: CONSTANT FUNCTIONS. C C 738. 739. 740. DOUBLE PRECISION A (NMAX, LPP2), ALF(NL), T (NMAX, IV), W(N), 741. X DSQRT 742. INTEGER OUTPUT, P, INC(12, 8) 743. LOGICAL NOWATE, PHILP1 744. DATA OUTPUT /6/ 745. С LP1 = L + 1 746. LNL2 = L + 2 + NL747. 748. С CHECK FOR VALID INPUT IF (L,GE, O .AND. NL,GE, O .AND. L+NL, LT, N .AND. LNL2 .LE. 749. X LPP2 , AND, 2*NL + 3 .LE. NMAX .AND. N .LE. NMAX .AND. 750. X IV, GT, 0 .AND. .NOT. (NL .EQ. 0 .AND. L .EQ. 0)) GO TO 1 751. 752. ISEL = -4753. CALL VARERR (IPRINT, ISEL, 1) 754. GO TO 99 755. С 756. 1 IF (L ,EQ, 0 .OR. NL ,EQ, 0) GO TO 3757. DO 2 J = 1, L91 758. DO 2 K = 1, NL INC(K, J) = 0759. 2 760. С 761. 3 CALL ADA (LP1, NL, N, NAX LPP2, IV, A, INC, T, ALF, ISEL)

```
С
                                                                                 762.
      NOWATE = .TRUE.
                                                                                 763.
      DO 9 I = 1, N
                                                                                 764.
         NOWATE = NOWATE , AND, (W(I), EQ, 1.0)
                                                                                 765.
          IF (W(I) .GE, 0.) GO TO 9
                                                                                 766.
767.
С
                                                     ERROR IN WEIGHTS
          ISEL = -6
                                                                                 768.
          CALL VARERR (IPRINT, ISEL, I)
                                                                                 769.
          GO TO 99
                                                                                 770.
    9
         W(I) = DSQRT(W(I))
                                                                                 771.
С
                                                                                 772.
      NCON = L
                                                                                 773
      NCONPl = LP1
                                                                                 774.
      \texttt{PHILPl} = \texttt{L},\texttt{EQ}, \ \mathbf{0}
                                                                                 775.
      IF (PHILP1 .OR. NL , EQ. 0) GO TO 99
С
                                       CHECK INC MATRIX FOR VALID INPUT AND 776.
С
                                       DETERMINE NUMBER OF CONSTANT FCNS.
                                                                                 778.
      P = 0
                                                                                 779.
      DO 11 J = 1, LP1
                                                                                 780.
          IF (P .EQ. 0) NCONPl = \mathbf{J}
                                                                                 781.
          DO 11 K = 1, NL
                                                                                 782.
             INCKJ = INC(K, J)
                                                                                 783.
             IF (INCKJ .NE. 0 .AND. INCKJ .NE. 1) GO TO 15
                                                                                 784.
             IF (INCKJ, EQ. 1) P = P + 1
                                                                                 785.
   11
             CONTINUE
                                                                                 786.
С
                                                                                 787.
      NCON = NCONPl - 1
                                                                                 788.
      IF (IPRINT.GE, 0) WRITE (OUTPUT, 210) NCON
                                                                                 789.
      IF (L+P+2 ,EQ, LPP2) GO TO 20
                                                                                  790.
С
                                                   INPUT ERROR IN INC MATRIX 791.
   15 \text{ ISEL} = -5
                                                                                 792.
      CALL VARERR (IPRINT, ISEL, 1)
                                                                                 793.
      GO TO 99
                                                                                 794.
С
                                      DETERMINE IF PHI(L+1) IS IN THE MODEL. 795.
   20 DO 25 K = 1, NL
                                                                                 796.
   25 IF (INC(K, LP1) . EQ. 1) PHILPL = .TRUE.
                                                                                 797.
C
                                                                                 798.
   99 RETURN
                                                                                 799.
  210 FORMAT (33H0 NUMBER OF CONSTANT FUNCTIONS =, 14 /)
                                                                                 800.
      END
                                                                                 801.
       SUBROUTINE BACSUB (NMAX, N, A, X)
                                                                                 802.
С
                                                                                 803.
С
          BACKSOLVE THE N X N UPPER TRIANGULAR SYSTEM A*X = B.
                                                                                 804.
С
          THE SOLUTION X OVERWRITES THE RIGHT SIDE B.
                                                                                 805.
С
                                                                                 806.
      DOUBLE PRECISION A (NMAX, N), X (N), ACUM
                                                                                 807.
С
                                                                                 808.
      X(N) = X(N) / A(N, N)
                                                                                 809.
      IF (N .EQ. 1) GO TO 30
NP1 = N \stackrel{+}{+} 1
                                                                                 810.
                                                                                 811.
      DO 20 IBACK = 2, N
                                                                                 812.
          I = NP1 - IBACK
                                                                                 813.
          I = N-1, N-2, \dots, 2, 1
IP1 = I + 1
С
                                                                                 814.
                                                                                 815.
          ACUM = X(I)
                                                                                 816.
          DO 10 J = IP1, N
                                                                                 817.
             ACUM = ACUM - A(I, J) * X(J)
                                                                                 818.
    10
   20
          X(I) = ACUM / A(I, I)
                                                                                 819.
С
                                                                                 820.
   30 RETURN
                                                                                 821.
                                                                                  822.
       END
       SUBROUTINE POSTPR(L, NL, N, NMAX, LNL2, EPS, RNORM, IPRINT, ALF,
                                                                                 823.
     X W, A, R, U, IERR)
                                                                                 824
С
                                                                                 825.
          CALCULATE RESIDUALS, SAMPLE VARIANCE, AND COVARIANCE MATRIX.
С
                                                                                 826.
С
          ON INPUT, U CONTAINS INFORMATION ABOUT HOUSEHOLDER REFLECTIONS 827.
```

C	FROM DPA. ON OUTPUT, IT CONTAINS THE LINEAR PARAMETERS.	828.
	DOUBLE PRECISION À (NMAX, LNL2), ALF (NL), R(N), U(L), W(N), ACUM, X EPS, PRJRES, RNORM, SAVE, DABS INTEGER OUTPUT DATA OUTPUT /6/	830. 831. 832. 833.
С	LP1 = L + 1 LPNL = LNL2 - 2 LNL1 = LPNL + 1 DO 10 I = 1, N	834. 835. 836. 837. 838.
С	$10 W(I) = W(I) \star 2$	839. 840.
C C C	UNWIND HOUSEHOLDER TRANSFORMATIONS TO GET RESIDUALS, AND MOVE THE LINEAR PARAMETERS FROM R TO U.	841. 842. 843.
	IF (L. EQ. 0) GO TO 30 DO 25 KBACK = 1, L K = LP1 - KBACK KP1 = K + 1 ACUM = 0.	844. 845. 846. 847. 848
	DO 20 I = KP1, N $ACUM = ACUM + A(I, K) * R(I)$ $SAVE = R(K)$ $R(K) = ACUM / A(K, K)$	849. 850. 851. 852.
	ACUM = -ACUM / (U(K) * A(K, K)) U(K) = SAVE DO 25 T = KP1, N	853. 854.
С	25 $R(I) = R(I) - A(I, K) * ACUM$ COMPUTE MEAN ERROR	856. 857.
~	30 ACUM = 0. DO 35 I = 1, N 35 ACUM = ACUM + R(I) SAVE = ACUM / N	858. 859. 860. 861.
	THE FIRST L COLUMNS OF THE MATRIX HAVE BEEN REDUCED TO UPPER TRIANGULAR FORM IN DPA. FINISH BY REDUCING ROWS L+1 TO N AND COLUMNS L+2 THROUGH L+NL+1 TO TRIANGULAR FORM. THEN SHIFT COLUMNS OF DERIVATIVE MATRIX OVER ONE TO THE LEFT TO BE ADJACENT TO THE FIRST L COLUMNS.	862. 863. 864. 865. 866. 867.
C	<pre>IF (NL .EQ. 0) GO TO 45 CALL ORFAC1(NL+1, NMAX, N, L, IPRINT, A(1, L+2), PRJRES, 4) DO 40 I = 1, N A(I, LNL2) = R(I) DO 40 K = LP1, LNL1</pre>	868. 869. 870. 871. 872. 873.
С	40 $A(I, K) = A(I, K+1)$ COMPUTE COVARIANCE MATRIX	874. 875.
	45 $A(1, LNL2) = RNORM$ ACUM = RNORM * RNORM / (N - L - NL) A(2, LNL2) = ACUM CALL COV(NMAX LENT, ACUM A)	876. 877. 878. 878.
С	IF (IPRINT.LT, 0) GO TO 99	880. 881.
C	<pre>WRITE (OUTPUT, 209) IF (L .GT. 0) WRITE (OUTPUT, 210) (U(J), J = 1, L) IF (NL .GT. 0) WRITE (OUTPUT, 211) (ALF(K), K = 1, NL) WRITE (OUTPUT, 214) RNORM, SAVE, ACUM IF (DABS(SAVE) .GT. EPS) WRITE (OUTPUT, 215) WRITE (OUTPUT, 209) 99 RETURN</pre>	882. 883. 884. 885. 886. 887. 888. 888.
C	<pre>209 FORMAT (1H0, 50(1H')) 210 FORMAT (20H0 LINEAR PARAMETERS // (7315.7)) 211 FORMAT (23H0 NONLINEAR PARAMETERS // (7315.7)) 214 FORMAT (21H0 NORM OF RESIDUAL =, E15.7, 33H EXPECTED ERROR OF OBS</pre>	890. 891. 892. 893.

XERVATIONS =, E15.7, / 39H ESTIMATED VARIANCE OF OBSERVATIONS =, 894. 895. X E15.7) 215 FORMAT (95H WARNING -- EXPECTED ERROR OF OBSERVATIONS IS NOT ZERO 896. X. COVARIANCE MATRIX MAY BE MEANINGLESS. /) 897. END 898. SUBROUTINE COV (NMAX, N, SIGMA2, A) 899. С 900. COMPUTE THE SCALED COVARIANCE MATRIX OF THE L + NL 901. PARAMETERS. THIS INVOLVES COMPUTING 902. 903. 2 * T 904. - T SIGMA 905. 906. WHERE THE (L+NL) X (L+NL) UPPER TRIANGULAR MATRIX T IS 907. DESCRIBED IN SUBROUTINE POSTPR. THE RESULT OVERWRITES THE 908. FIRST L+NL ROWS **AND** COLUMNS OF THE MATRIX A. THE RESULTING MATRIX IS SYMMETRIC. SEE REF. 7, PP. 67-70, 281. C C C C C C C C C 909. 910. 911. 912. 913. 914. DOUBLE PRECISION A (NMAX, N), SUM, SIGMA2 С 915. DO 10 J = 1, N 916. 10 A(J, J) = 1./A(J, J)917. С 918. С INVERT T UPON ITSELF 919. C 920. IF (N , EQ, 1) GO TO 70 921. NM1 = N - 1922. DO 60 I = 1, NM1 923. IP1 = I + 1924. 925. DO 60 J = IP1, N JM1 = J - 1926. 927. SUM = 0. DO 50 M = I, JM1 928. SUM = SUM + A(I, M) * A(M, J)A(I, J) = -SUM * A(J, J) 50 929. 930. 60 C C C 931. NOW FORM THE MATRIX PRODUCT 932. 933. 934. 70 DO 90 I = 1, N DO 90 $\mathbf{J} = \mathbf{I}$, N 935. 936. SUM = 0. 937. DO 80 M = J, N SUM = SUM + A(I, M) * A(J, M)938. 80 939. SUM = SUM * SIGMA2 A(I, J) = SUMA(J, I) = SUM940. 941. 90 942. С RETURN 943. 944. END 945. SUBROUTINE VARERR (IPRINT, IERR, K) 946. С 947. С PRINT ERROR MESSAGES 948. С 949. INTEGER ERRNO, OUTPUT 950. DATA OUTPUT /6/ 951. С 952. IF (IPRINT, LT, 0) GO TO 99 953. ERRNO = IABS(IERR)GO TO (1, 2, 99, 45, 6, 7, 8), ERRNO 954. 955. С 956. 1 WRITE (OUTPUT, 101) 957. GO TO 99 958. 2 WRITE (OUTPUT, 102) 959. GO TO 99

960. 4 WRITE (OUTPUT, 104) 961. GO TO 99 962. 5 WRITE (OUTPUT, 105) **GO TO** 99 963. 964. 6 WRITE (OUTPUT, 106) K GO TO 99 965. 966. 7 WRITE (OUTPUT, 107) K 967. GO **TO** 99 8 WRITE (OUTPUT, 108) K 968. C 969. 99 RETURN 970. 101 FORMAT (46H0 PROBLEM TERMINATED FOR EXCESSIVE ITERATIONS //) 971. 102 FORMAT (49H0 PROBLEM TERMINATED BECAUSE OF ILL-CONDITIONING //) 972. 104 FORMAT (/ 50H INPUT ERROR IN PARAMETER L, NL, N, LPP2, OR NMAX. /) 973. 105 FORMAT (68H0 ERROR -- INC MATRIX IMPROPERLY SPECIFIED, OR DISAGRE 974. XES WITH LPP2, /) 975. 106 FORMAT (19H0 ERROR -- WEIGHT(, 14, 14H) IS NEGATIVE. /) 107 FORMAT (28H0 ERROR -- CONSTANT COLUMN, 13, 37H MUST BE COMPUTED 976. 977. XONLY WHEN ISEL = 1. /) 978. 108 FORMAT (33H0 CATASTROPHIC FAILURE -- COLUMN, 14, 28H IS ZERO, SE 979. 980. XE DOCUMENTATION. /) 981. END 982. DOUBLE PRECISION FUNCTION XNORM (N, X) С 983. С COMPUTE THE L2 (EUCLIDEAN) NORM OF A VECTOR, MAKING SURE TO 984. AVOID UNNECESSARY UNDERFLOWS. NO ATTEMPT IS MADE TO SUPPRESS 985. C С 986. OVERFLOWS. С 987. 988. DOUBLE PRECISION X(N), RMAX, SUM, TERM, DABS, DSORT 989. С 990. С FIND LARGEST (IN ABSOLUTE VALUE) ELEMENT RMAX = 0. 991. 992. DO 10 I = 1, N 993. IF (DABS(X(I)), GT, RMAX) RMAX = DABS(X(I))994. 10 CONTINUE 995. С 996. SUM = 0. 997. IF (RMAX ,EQ, 0.) GO TO 30 998. DO 20 I = 1, N999. TERM = 0. 1000. IF (RMAX + DABS(X(I)) .NE. RMAX) TERM = X(I)/RMAX 1001. 20 SUM = SUM + TERM*TERM 1002. С 1003. 30 XNORM = RMAX*DSQRT (SUM) 1004. 99 RETURN 1005. END

0 Match 1118 Erfc 0 number of nonlinear parameters 3 0 initial est. of nonlin. parameters 1.600 0.025 0.004 0 dimensionless number tracer arrival time inletA 1.60000 40.000 280.000 0 number of observations 316 Oindependent variables dependent variables 294.775 1.824 300.102 1.849 305.327 1.899 310.530 2.055 315.807 2.362 321.068 2.823 326.347 3.393 331.609 4.170 336.833 5.206 342.119 6.454 347.321 7.937 352.583 9.716 357.938 11.930 363.220 14.566 368.557 17.537 373.840 20.874 379.044 24.524 384.381 28.645 389.586 33.119 394.847 38.042 400.134 43.190 405.414 48.553 410.762 54.168 415.963 60.181 421.224 66.212 423.855 69.216 426.502 72.162 429.115 75.101 431.726 77.877 434.338 80.628 436.929 83.414 439.594 86.179 442.207 88.846 444.819 91.714 447.410 94.446 450.022 97.114 452.694 99.659 455.343 102.223 457.955 104.728 460.569 107.065 463.239 109.381 465.979 111.867 468.591 114.393 471.239 117.177 . 473.849 119.988 476.461 122.985 479.074 125.954 481.742 128.813

484.409	131.440
487.022	134.065
489.671	136.156
492.284	137.900
494.951	139.686
497.563	141.449
500.176	143.297
502.822	145.169
505.435	147.244
508.106	149.143
510./1/	150.940
515.329	152.701
519 601	154.215
521 252	155.610
523 934	159 310
526 551	150.510
529,199	161 202
531,814	162 5202
534.428	163 891
537.096	165 658
539.768	167 318
542.440	169 055
545.053	169.870
547.645	170,469
550.315	170,890
552.928	171.473
555.598	171.937
558.270	172.941
560.942	174.281
563.612	175.402
566.285	176.483
568.957	177.960
571.627	179.952
574.241	181.394
576.835	182.991
579.577	184.431
582.250	185.647
584.901 587 515	186.930
507.515	
590.130	18/.//2
592.000	100.320
598.142	188 880
600.814	188 678
603.485	188.365
606.099	187,601
608.767	187.070
611.418	186.710
614.031	187.017
616.644	186.876
619.314	186.753
621.988	186.516
624.658	186.244
627.328	186.823
629.999	187.219
632.614	187.632
635.328	188.266
637.942	189.289
640.556	190.455
643.224	190.989
645.895	191.359
. 648.567	100 550
651.237 CE2 851	190.752
653.851 656 445	100 000
020.443	TQA.035

659.059	186.992
661.652	185.304
664.321	184.196
666.936	183.359
669.585	182.283
674.016	181.586
0/4.010 677 490	181.366
680 083	180.957
682.755	180.343
685.369	180.217
687.962	170.352 179.986
690.634	179.500
693.376	179,118
696.046	179.220
698.719	179.292
701.391	178.696
704.004	177.447
706.673	175.875
709.323	173.561
711.939	172.621
717 147	169.967
719.814	168.054
722.428	
725.078	164 250
727.694	163 461
730.309	163.002
732.957	162.463
735.632	162.336
738.246	162.013
740.861	162.500
743.511	161.293
746.124	159.991
748.802	158.004
/51,4/4 754 144	156.756
/34.144 756 759	155.686
759.352	154.331
762.023	152.010
764.638	148 584
767.232	147.084
769.905	144.500
772.576	142.619
775.190	141.147
777.859	140.230
780.452	139.616
783.067	141.367
785.661	141.952
788.333	142.943
/91.000 703 677	144.441
796 349	145.099
799.021	146.313
801.636	146 069
804.435	145.509
807.048	144.820
809.640	144.062
812.312	143.387
814.927	142.438
817.519	141.320
820.189	140.478
022.0U4	139.682
828 011	138.527
830 604	136.211
000.001	133.982

833.272	132.179
835.887	129.988
838.537	129.839
841.153	128.974
843.765	127.315
846.438	125.036
849.088	122.921
851.702	120.883
854.315	118.550
856.986	117.190
859.656	116.269
864 983	115.138
004.903 067 500	LL3.867
870 213	111 10 <i>4</i>
872 861	100 774
875.552	109.774
878.222	108 545
880.836	109.166
883.429	106.975
886.042	105.347
888.710	103.282
891.360	101.436
893.975	99.498
896.588	100.110
899.238	99.235
901.855	97.252
904.526	95.509
907.140	92.961
909.789	91.615
912.403	90.030
917.758	88.765
923.098	89.377
928.306	89.975
933.587	92.481
930.049	93.528
954 680	90.984
959,967	84 275
965.174	82.785
970.382	81.951
975.709	82.155
980.975	82.157
986.203	81.492
996.750	77.633
1002.090	73.991
1007.370	74.014
1012.648	74.171
1025.799	75.604
1031.149	75.945
1036.429	75.704
1041.687	72.546
1046.907	69.705
1052.100	65.971
1062 796	50.8UJ 50.730
1068.055	DO./30 E8 320
1073.280	50.529
1078.538	57.720
1083.762	61 015
1089.107	61,249
1094.364	59.109
1099.585	54.895
1104.864	51.004
1110.142	47.685
1115.474	45.548

1120.698	47.959
1125.957	46.999
1131.241	47.106
1136.499	50.121
	53.607
1152 337	55.784
1157 616	52.231 47 310
1162.897	47.510
1168.179	44.714
1173.513	42.272
1178.772	40.242
1184.056	39.348
1189.282	39.679
1199.756	43.575
1205.038	42.788
1210.297	36.491
	32.145
1220.050	31.948
1231.337	27 821
1236.597	27.021
1241.880	26.704
1255.106	32.282
1260.388	35.521
1278.802	37.034
1284.026	35.551
1289.231	34.686
	32.162
1305 058	28.506
1307.671	23.77
1310.404	27.790
1313.016	27.530
1315.663	26.644
1318.275	24.993
1320.888	25.120
1326 224	24.250
1328.835	25 744
1331.505	28,699
1334.117	28.309
1336.764	28.248
1339.453	27.273
1342.065	25.106
1344.713	23.637
1347.325	21.11/
1352.611	16 929
1355.279	15.536
1357.893	16.210
1360.485	17.426
1363.097	17.249
1365.745	18.359
1368.487	19.239
1373,713	10.570
1376.383	18,891
1379.052	18.019
1381.718	17.822
1384.331	18.976
1387.000	22.009
4389.613	22.740
1392.261	24.490
1394.950	25.255
1331.020	43.938

1400.232 25.192 1402.878 25.647 1405.490 24.644 1408.102 23.246 0 NUMBER OF CONSTANT FUNCTIONS = 0 0 NORM OF RESIDUAL = 0.6945794e+03NU = 0.1000000e+010 ITERATION 1 NONLINEAR PARAMETERS 0.1601724e+01 0.3664138e-01 0.4109866e-02 0 0 1 NORM OF RESIDUAL = 0.1622322e+03 NU = 0.5000000e+00NORM (DELTA-ALF) / NORM (ALF) = 0.735e-02 0 ITERATION 2 NONLINEAR PARAMETERS 0.1594719e+01 0.4457335e-01 0.4002702e-02 Ω 1 NORM OF RESIDUAL = 0.9674819e+02 0 NU = 0.2500000e+00NORM (DELTA-ALF) / NORM (ALF) = 0.663e-02 ITERATION 3 NONLINEAR PARAMETERS 0.1596320e+01 0.4828995e-01 0.3928502e-02 0 0 Λ 1 NORM OF RESIDUAL = 0.9298198e+02 NU = 0.1250000e+00NORM (DELTA-ALF) / NORM (ALF) = 0.253e-02 0 ITERATION 4 NONLINEAR PARAMETERS 0.1613556e+01 0.4985469e-01 0.3914612e-02 0 1 NORM OF RESIDUAL = 0.9289213e+020 NU = 0.6250000e-01NORM (DELTA-ALF) / NORM (ALF) = 0.107e-01 NONLINEAR PARAMETERS 0 ITERATION 5 0.1663352e+01 0.5289702e-01 0.3897484e-02 0 1 NORM OF RESIDUAL = 0.9289590e+02 0 STEP RETRACTED, NU = 0.9375000e-01 ITERATION 6 NONLINEAR PARAMETERS 0.1636594e+01 0.5124610e-01 0.3907576e-02 0 0 2 NORM OF RESIDUAL = 0.9289102e+02 Ω NU = 0.9375000e-01NORM (DELTA-ALF) / NORM (ALF) = 0.141e-01 ITERATION 7 NONLINEAR PARAMETERS 0 0.1674215e+01 0.5366816e-01 0.3892669e-02 0 1 NORM OF RESIDUAL = 0.9289297e+02 Λ STEP RETRACTED, NU = 0.1406250e+00ITERATION 8 NONLINEAR PARAMETERS 0.1653582e+01 0.5237304e-01 0.3900245e-02 2 NORM OF RESIDUAL = 0.9289135e+02 STEP RETRACTED, NU = 0.2109375e+00 0 0 0 ITERATION 9 NONLINEAR PARAMETERS 0.1644180e+01 0.5178155e-01 0.3903733e-02 0 0 Λ 3 NORM OF RESIDUAL = 0.9289130e+02 STEP RETRACTED, NU = 0.3164063e+00 NONLINEAR PARAMETERS ITERATION 10 0 0.1639956e+01 0.5151327e-01 0.3905372e-02 0 4 NORM OF RESIDUAL = 0.9289126e+02STEP RETRACTED, NU = 0.4746094e+000 ITERATION 11 0 NONLINEAR PARAMETERS 0.1638074e+01 0.5138938e-01 0.3906222e-02 0 5 NORM OF RESIDUAL = 0.9289119e+02STEP RETRACTED, NU = 0.7119141e+00Λ 0 ITERATION 12 NONLINEAR PARAMETERS 0.1637241e+01 0.5132898e-01 0.3906751e-02 6 NORM OF RESIDUAL = 0.9289109e+02 0 Ω NU = 0.7119141e+00NORM (DELTA-ALF) / NORM (ALF) = 0.398e-03 ITERATION 13 NONLINEAR PARAMETERS 0.1637443e+01 0.5131336e-01 0.3907253e-02 Ω 0 1 NORM OF RESIDUAL = 0.9289085e+02Λ NU = 0.3559570e+00

```
NORM (DELTA-ALF) / NORM (ALF) = 0.124e-03
0
                    NONLINEAR PARAMETERS
   ITERATION 14
  0.1637217e+01 0.5125649e-01 0.3908455e-02
0
     1 NORM OF RESIDUAL = 0.9289066e+02
0
     NU = 0.1779785e+00
     NORM (DELTA-ALF) / NORM (ALF) =
                                     0.142e-03
0
   ITERATION 15 NONLINEAR PARAMETERS
  0.1638332e+01 0.5130045e-01 0.3908949e-02
0
0
     1 NORM OF RESIDUAL = 0.9289066e+02
     NU = 0.8898926e-01
     NORM (DELTA-ALF) / NORM (ALF) = 0.681e-03
0
   ITERATION 16
                   NONLINEAR PARAMETERS
   0.1663297e+01 0.5290327e-01 0.3898719e-02
0
     1 NORM OF RESIDUAL = 0.9289106e+02
0
     STEP RETRACTED, NU = 0.1334839e+00
   ITERATION 17 NONLINEAR PARAMETERS
0
  0.1649630e+01 0.5204870e-01 0.3903667e-02
0
     2 NORM OF RESIDUAL = 0.9289069e+02
0
     NU = 0.1334839e+00
     NORM (DELTA-ALF) / NORM (ALF) =
                                    0.686e-02
0
   ITERATION 18
                   NONLINEAR PARAMETERS
  0.1653957e+01 0.5235399e-01 0.3901368e-02
0
     1 NORM OF RESIDUAL = 0.9289084e+02
STEP RETRACTED, NU = 0.2002258e+00
0
                   NONLINEAR PARAMETERS
0
   ITERATION 19
  0.1651561e+01 0.5220181e-01 0.3902244e-02
0
     2 NORM OF RESIDUAL # 0.9289084e+02
0
     STEP RETRACTED, NU = 0.3003387e+00
٥
   ITERATION 20
                   NONLINEAR PARAMETERS
  0.1650480e+01 0.5213151e-01 0.3902683e-02
0
     3 NORM OF RESIDUAL = 0.9289082e+02
0
     STEP RETRACTED, NU = 0.4505081e+00
   ITERATION 21 NONLINEAR PARAMETERS
0
  0.1649999e+01 0.5209743e-01 0.3902954e-02
0
     4 NORM OF RESIDUAL = 0.9289079e+02
STEP RETRACTED, NU = 0.6757622e+00
0
0
   ITERATION 22 NONLINEAR PARAMETERS
   0.1649787e+01 0.5207874e-01 0.3903175e-02
0
0
     5 NORM OF RESIDUAL = 0.9289076e+02
     NU = 0.6757622e+00
    NORM (DELTA-ALF) / NORM (ALF) =
                                    0.968e-04
0
   ITERATION 23
                  NONLINEAR PARAMETERS
  0.1650156e+01 0.5207729e-01 0.3903726e-02
0
Λ
     1 NORM OF RESIDUAL = 0.9289066e+02
     NU = 0.3378811e+00
                                    0.223e-03
     NORM (DELTA-ALF) / NORM (ALF) =
                   NONLINEAR PARAMETERS
0
   ITERATION 24
   0.1650193e+01 0.5200836e-01 0.3905514e-02
0
     1 NORM OF RESIDUAL = 0.9289081e+02
0
  STEP RETRACTED, NU = 0.5068216e+00
ITERATION 25 NONLINEAR PARAMETERS
0
  0.1650198e+01 0.5202016e-01 0.3905200e-02
0
0
     2 NORM OF RESIDUAL = 0.9289074e+02
     NU = 0.5068216e+00
     NORM (DELTA-ALF) / NORM (ALF) = 0.430e-04
0
   ITERATION 26
                  NONLINEAR PARAMETERS
0
   0.1650371e+01 0.5204088e-01 0.3904920e-02
0
     1 NORM OF RESIDUAL = 0.9289070e+02
     NU = 0.2534108e+00
     NORM (DELTA-ALF) / NORM (ALF) =
                                     0.105e-03
   ITERATION 27
                   NONLINEAR PARAMETERS
   0.1652047e+01 0.5216982e-01 0.3903733e-02
0
    1 NORM OF RESIDUAL = 0.9289064e+02
Ω
     NU = 0.1267054e+00
     NORM (DELTA-ALF) / NORM (ALF) = 0.102e-02
0
  ITERATION 28
                   NONLINEAR PARAMETERS
```

```
0.1664336e+01 0.5295119e-01 0.3899315e-02
0
0
    1 NORM OF RESIDUAL = 0.9289064e+02
    NU = 0.6335270e-01
    NORM(DELTA-ALF) / NORM(ALF) =
                                  0.740e-02
0
  TTERATION 29
                  NONLINEAR PARAMETERS
  0.1709641e+01 0.5593425e-01 0.3881342e-02
0
    1 NORM OF RESIDUAL = 0.9289444e+02
STEP RETRACTED, NU = 0.9502906e-01
0
                  NONLINEAR PARAMETERS
0
   ITERATION 30
  0.1685012e+01 0.5436086e-01 0.3889965e-02
0
    2 NORM OF RESIDUAL = 0.9289119e+02
0
    STEP RETRACTED, NU = 0.1425436e+00
0
   ITERATION 31
                  NONLINEAR PARAMETERS
   0.1673604e+01 0.5363090e-01 0.3893991e-02
0
     3 NORM OF RESIDUAL = 0.9289106e+02
Ω
     STEP RETRACTED, NU = 0.2138154e+00
0
   ITERATION 32
                   NONLINEAR PARAMETERS
   0.1668441e+01 0.5329797e-01 0.3895881e-02
0
     4 NORM OF RESIDUAL = 0.9289103e+02
0
     STEP RETRACTED, NU = 0.3207231e+00
0
   ITERATION 33
                  NONLINEAR PARAMETERS
   0.1666131e+01 0.5314415e-01 0.3896856e-02
Ω
     5 NORM OF RESIDUAL = 0.9289097e+02
0
     STEP RETRACTED, NU = 0.4810846e+00
   ITERATION 34
0
                  NONLINEAR PARAMETERS
   0.1665108e+01 0.5306783e-01 0.3897506e-02
0
     6 NORM OF RESIDUAL = 0.9289088e+02
     STEP RETRACTED, NU = 0.7216269e+00
Λ
   ITERATION 35
                  NONLINEAR PARAMETERS
   0.1664663e+01 0.5302400e-01 0.3898071e-02
Ω
0
     7 NORM OF RESIDUAL = 0.9289078e+02
     STEP RETRACTED, NU = 0.1082440e+01
   ITERATION 36 NONLINEAR PARAMETERS
0
0
   0.1664473e+01 0.5299581e-01 0.3898564e-02
     8 NORM OF RESIDUAL = 0.9289071e+02
0
     NU = 0.1082440e+01
     NORM(DELTA-ALF) / NORM(ALF) = 0.864e-04
                   NONLINEAR PARAMETERS
0
   ITERATION 37
   0.1664408e+01 0.5296275e-01 0.3899089e-02
0
     1 NORM OF RESIDUAL = 0.9289064e+02
Λ
     NU = 0.5412202e+00
     NORM(DELTA-ALF) / NORM(ALF) = 0.436e-04
0
   ITERATION 38 NONLINEAR PARAMETERS
   0.1664089e+01 0.5290563e-01 0.3900271e-02
0
     1 NORM OF RESIDUAL = 0.9289072e+02
Ω
     NU = 0.2706101e+00
     NORM(DELTA-ALF) / NORM(ALF) = 0.195e-03
   ITERATION 39
                   NONLINEAR PARAMETERS
Ω
   0.1664677e+01 0.5303803e-01 0.3897548e-02
     1 NORM OF RESIDUAL = 0.9289087e+02
     STEP RETRACTED, NU = 0.4059151e+00
                  NONLINEAR PARAMETERS
0
   TTERATION 40
   0.1664313e+01 0.5300315e-01 0.3897986e-02
0
     2 NORM OF RESIDUAL = 0.9289078e+02
0
   PROBLEM TERMINATED FOR EXCESSIVE ITERATIONS
LINEAR PARAMETERS
n.
  0.1336236e+06
```

```
0 NONLINEAR PARAMETERS
```

0.1664089e+01 0.5290563e-01 0.3900271e-02

0 NORM OF RESIDUAL = 0.9289072e+02 EXPECTED ERROR OF OBSERVATIONS = 0.4932102 ESTIMATED VARIANCE OF OBSERVATIONS = 0.2765604e+02

WARNING -- EXPECTED ERROR OF OBSERVATIONS IS NOT ZERO. COVARIANCE MATRIX MAY

0	time	actual	calc	comp#1	comp#2
	38.382	7 1.8235	-19.6515	-19.6515	
	43.709	7 1.8485	-19.4165	-19.4165	
	48.934	6 1.8990	-18.8172	-18.8172	
	54.138		-17.8456	-17.8456	
	59.414	5 2.36L9	-16.4626	-16.4626	
	69 954	L2 2.0230	-12 5847	-14.7231 -12.5847	
	75.216	6 4.1699	-10.0791	-10.0791	
	80.440	5.2062	-7.2663	-7.2663	
	85.726	6.4545	-4.0410	-4.0410	
	90.928	35 7 . 9373	-0.5443	-0.5443	
	96.190	9.7157	3.2686	3.2686	
	101.546		7.4539	7.4539	
	112 164	0 14.5660	11.8324	11.8324	
	117 447	2 20 8742	21 3063	10.4919 21 3063	
	122.651	1 24.5239	26.2550	26 2550	
	127.988	28.6451	31.5493	31.5493	
	133.193	33.1190	36.8047	36.8047	
	138.454	46 38.0416	42.1726	42.1726	
	143.741	.9 43.1900	47.6998	47.6998	
	149.021	48.5530	53.3131	53.3131	
	154.369	54.1679	58.9761	58.9761	
	164 931	5 66 2116	04.0133	64.6133	
	167.462	69.2158		73 0212	
	170.109	1 72.1615	75.8602	75.8602	
	172.722	7 75.1012	78.6278	78.6278	
	175.333	39 77.8774	81.3673	81.3673	
	177.945	54 80.6284	84.0878	84.0878	
	180.536	5 83.4144	86.8315	86.8315	
	183.201		89.6495	89.6495	
	100 /24	8 88.8456	92.2686	92.2686	
	191 017	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	94.9484	94.9484	
	193.630	97.1135	100.1855	100.1855	
	196.301	6 99.6587	102.8656	102.8656	
	198.950	102.2227	105.4882	105.4882	
	201.562	26 104.7279	108.0162	108.0162	
	204.176	52 107.0649	110.5140	110.5140	
	206.840	5 L09.3806		113.0904	
	209.507	29 114 3932	117 0094	117 0095	
	214.846	51 117.1770	120.4276	120.4276	
	217.457	1 119.9880	122.6455	122.6455	
	220.068	37 122.9847	125.0285	125.0285	
	222.681	L2 125.9543	127.3167	127.3167	
	225.349	6 128.8129	129.5283	129.5283	
	228.017	131.4396	131.7604	131.7604	
	230.625	91 134.0652	133.9063	133.9063	
	233.2/0	5 127 0002	130.0021	130.0021	
	238 559	139.6857	140 2126	140 2126	
	241.170	141.4489	142.1093	142.1093	
	243.784	143.2968	143.9917	143.9917	
	246.429	9 145.1695	5 145.9161	145.9161	
	249.042	147.2435	5 147.7991	147.7991	
	251.714	149.1434	149.5606	149.5606	
	254.324	18 150.9403	151.3486	151.3486	
	256.936	52 152.7013	153.1387	153.1387	

259.5341	154.2151	154.7001	154.7001
262.2082	155.6101	156.1596	156.1596
264.8599	157.0810	157.8764	157.8764
267.5418	158.3104	159.2651	159.2651
270.1587	159.5834	160.7646	160.7646
272.8069	161.2017	162.1602	162.1602
275.4217	162.5199	163.5924	163.5924
278.0356	163.8914	164.9672	164.9672
280.7036	165.6580	166.3875	166.3875
283.3752	167.3184	167.5735	167.5735
286.0474	169.0554	168.7519	168.7519
288.6603	169.8702	169.7838	169.7838
291.2527	170.4694	170,9051	170,9051
293.9225	170.8903	172.1285	172.1285
296.5356	171.4725	173.0262	173.0262
299.2052	171,9365	173 9401	173 9401
301.8777	172 9412	174 9304	174 9304
304 5491	174 2807	175 8568	175 8568
307 2192	175 4018	176 7502	176 7502
200 0027	176 4025	177 6010	177 6010
309.092/ 313 ECA1	177 0602	170 2747	170 2747
312.3041 315 3347	170 0505	170.3/4/	170.3/4/
315.234/	1/9.9525	1/8.9825	1/8.9825
317.8487	181.3936	179.6428	179.6428
320.4422	182.9913	180.2796	180.2796
323.1849	184.4306	180.8622	180.8622
325.8572	185.6468	181.2784	181.2784
328.5082	186.9301	181.8872	181.8872
331.1227	187.4693	182.5038	182.5038
333.7381	187.7723	182.6564	182.6564
336.4076	188.3262	183.1446	183.1446
339.0786	188.8056	183.8735	183.8735
341.7497	188.8801	184.0369	184.0369
344.4211	188.6776	184.2899	184.2899
347.0926	188.3654	184.4442	184.4442
349.7066	187.6011	184.6327	184.6327
352.3751	187.0695	184.8844	184.8844
355.0261	186.7095	185.0851	185.0851
357.6387	187.0170	185.2810	185.2810
360.2516	186.8762	185.4096	185.4096
362.9214	186.7531	185.2772	185.2772
365.5952	186.5157	185.2939	185.2939
368.2656	186.2435	185.2267	185.2267
370.9357	186.8235	185.1730	185,1730
373,6066	187.2187	185.0812	185.0812
376.2219	187.6319	184.9059	184.9059
378,9357	188.2657	184.8094	184 8094
381 5495	189 2887	184 7125	184 7125
384 1636	190 4552	184 3968	184 3968
386 8320	100 0000	194 2935	194 2925
389 5024	101 2507	193 9231	102 0001
202 1751	101 2674	103.0231	103.0231
392.1731	100 7521	103.0950	103.0950
394.0444	190.7521	103.4/0/	103.4/0/
397.4384	100.0010	102.040/	
400.0530	105.0318	102.410/	182.410/
402.6671	186.9921	182.5278	182.5278
405.2600	185.3042	181.6877	181.6877
407.9287	184.1964	181.4369	181.4369
410.5435	183.3589	180.7336	180.7336
413.1922	182.2827	180.0509	180.0509
415.8079	181.5858	179.9125	179.9125
418.4235	181.3664	179.4642	179.4642
421.0967	180.9570	178.6277	178.6277
423.6902	180.3430	178.0924	178.0924
426.3629	180.2167	177.6105	177.6105
428.9768	180.3516	177.3008	177.3008
431.5696	179.9862	176.3284	176.3284

434.2417	179.5872	175.6392	175.6392
436,9833	179.1179	175.0811	175.0811
439.6537	179.2202	174.1795	174.1795
442 3262	170 2010	174 0948	174 0049
112.5202	179 6062	172 0640	172 0640
444.9901	177 4470	172 6150	172.9040
44/.0121	177.4470	172.0130	172.0130
450.2809	175.8752	171.7519	171.7519
452.9309	173.5610	170.9424	170.9424
455.5461	172.6212	170.3399	170.3399
458.1612	169.9674	169.5974	169.5974
460.7546	168.0538	168.8795	168.8795
463.4219	166.8122	168.3873	168.3873
466.0357	165.9114	167.1640	167.1640
468.6859	164.2587	166.6424	166.6424
471.3017	163,4609	165.4285	165.4285
473,9169	163.0024	164,9401	164,9401
476 5649	162 4626	163 9931	163 0031
470.0040	162 2262	162 2220	162 2220
401 0540	162.3303	162 2241	103.2220
401.0540	162.012/	162.2241	162.2241
484.4689	162.5000	161.2600	161.2600
487.1183	161.2932	161.3127	161.3127
489.7318	159.9908	159.7881	159.7881
492.4101	158.0041	159.2700	159.2700
495.0820	156.7562	158.1557	158.1557
497.7520	155.6862	157.1763	157.1763
500.3656	154.3313	156.5488	156.5488
502.9599	152.6177	156.2839	156.2839
505.6307	150.8792	155.0039	155.0039
508.2452	148.5842	154.0197	154.0197
510.8397	147.0839	153,8511	153,8511
513 5129	144 5001	152 3297	152 3297
516 1025	142 6196	151 5202	151 5297
510.1055	142.0100	140 0020	140 0020
518./9/5	141.1400	149.9920	149.9920
521.4670	140.2305	150.1364	150.1364
524.0592	139.6164	148.2687	148.2687
526.6741	141.3674	147.8773	147.8773
529.2686	141.9524	146.9919	146.9919
531.9405	142.9428	145.7171	145.7171
534.6138	144.4409	144.4457	144.4457
537.2843	145.0994	143.7948	143.7948
539.9564	146.5152	142.7938	142.7938
542.6287	146.3978	141.5581	141.5581
545.2435	146.0686	141.6913	141.6913
548.0423	145.5095	140.5435	140.5435
550.6554	144.8197	1388,9692	138,9692
553,2472	144.0618	138.5317	138.5317
555,9199	143.3865	137 4518	137 4518
558 5341	142 4381	136 3805	136 3805
561 1271	1/1 2100	125 2059	125 2050
561.12/1	141.3190	134 1005	134 1005
565.1901	120 6017	134.1903	134.1985
566.4114	139.681/	133.565/	133.5657
569.0044	138.5271	132.8240	132.8240
571.6184	136.2106	131.2397	131.2397
574.2120	133.9824	130.6805	130.6805
576.8797	132.1792	129.4308	129.4308
579.4944	129.9878	128.6840	128.6840
582.1442	129.8393	128.0924	128.0924
584.7602	128.9742	127.1613	127.1613
587.3726	127.3148	126.1870	126.1870
590.0454	125.0356	124,7999	124.7999
592,6954	122.9208	123.5807	123,5807
595,3097	120,8830	123 1110	123 1110
597 0000	110 5/00	123.1119	121 5104
500 5025	117 1007	120 7704	120 7704
	116 2600	120.//94	120.1/94
003.2637	116.2088	120.0666	110 DD5
005.9422	TT2'T3RT	TT8.7771	TT0.///T

608.5908	113.8665	117.3811	117.3811
611.2061	113.4384	117.0150	117.0150
613.8202	111.1937	116.4186	116.4186
616.4685	109.7738	114.9616	114.9616
619.1598	109.2243	113.6988	113.6988
621.8294	108.5452	113.2048	113.2048
624.4438	109.1664	112.1189	112.1189
627.0366	106.9753	111.2646	111.2646
629.6500	105.3465	111.0712	111.0712
632.3177	103.2818	108.9701	108.9701
634.9674	101.4356	109.5511	109.5511
637.5823	99.4982	107.9271	107.9271
640.1961	100.1102	107.1721	107.1721
642.8460	99.2354	105.8094	105.8094
645.4629	97.2518	105.5612	105.5612
648.1340	95.5088	104.5390	104.5390
650.7472	92.9610	104.1234	104.1234
653.3967	91.6147	102.8556	102.8556
656.0107	90.0298	101.6042	101.6042
666.7053	89.3768	98.3606	98.3606
671.9135	89.9745	97.0109	97.0109
677.1944	92.4808	94.7621	94.7621
682.4569	93.5277	93.5596	93.5596
687.7413	90.9837	91.8691	91.8691
698.2877	86.4601	89.7127	89.7127
703.5747	84.2749	88.9175	88.9175
708.7817	82.7852	86.4864	86.4864
713.9892	81.9508	84.3947	84.3947
719.3165	82.1551	82.8624	82.8624
724.5826	82.1571	81.3761	81.3761
729.8104	81.4923	79.8106	79.8106
745.6976 750.9776 756.2556 769.4066 774.7566 780.0366	73.9912 74.0136 74.1712 75.6037 75.9449 75.7037	76.2762 74.6502 73.3995 69.1196 68.0986 67.3316	77.0827 76.2762 74.6502 73.3995 69.1196 68.0986 67.3316
785.2946	72.5462	67.1097	67.1097
790.5146	69.7054	64.3117	64.3117
795.7936	65.9712	63.2520	63.2520
801.1255	60.8050	62.3054	62.3054
806.4036	58.7375	60.7731	60.7731
811.6627	58.3286	60.2851	60.2851
816.8876	57.7197	58.2631	58.2631
822.1456	59.0337	57.8806	57.8806
827.3696	61.0149	57.2286	57.2286
832.7147	61.2493	55.9266	55.9266
837.9716	59.1091	55.8183	55.8183
843.1926	54.8946	54.4666	54.4666
848.4716	51.0037	51.8594	51.8594
853.7496	47.6852	51.8046	51.8046
859.0816	45.5484	50.9492	50.9492
864.3056	47.9593	51.0342	51.0342
869.5646	46.9994	49.9051	49.9051
874.8486	47.1061	47.2613	47.2613
880.1066	50.1209	47.2773	47.2773
885.4606	53.6070	45.8223	45.8223
890.6846	55.7845	45.2751	45.2751
895.9446	52.2314	44.8765	44.8765
901.2236	47.3098	43.0840	43.0840
906.5046	46.9460	44.5544	44.5544
911.7866	44.7140	42.0871	42.0871
917.1205	42.2721	41.9071	41.9071
922.3796	40.2422	41.8761	41.8761

927.6636	39,3479	40 8414	40 8414	
932.8896	39.6786	39,4891	30 4801	
943.3636	43.5747	36.3387	36 3387	
948.6456	42.7876	37.5535	37 5535	
953,9046	36,4911	36,4697	36 4697	
959.1255	32.1449	35,1967	35 1967	
964.4636	31,9476	34 2865	34 2865	
969.7416	31.0352	34 5297	34 5207	
974,9446	27.8214	34 6187	34.5297 34.6197	
980.2046	26 9335	32 5561	32 5561	
985,4876	26.7042	33 4520	32.3501	
998.7136	32,2822	30 7285	30 7285	
1003,9955	35.5211	32,6771	32 6771	
1022.4096	37.0344	29.0456	29 0456	
1027.6336	35.5505	26.2208	26 2208	
1032.8386	34,6864	27.3412	20.2200	
1038.0986	32.1623	26.7125	26 7125	
1043.3836	28.5063	27.5415	27.5415	
1048.6656	29.7738	26.3356	26 3356	
1051.2786	28,0307	24.7366	20.3350	
1054.0117	27.7896	27.5914	27.5914	
1056.6236	27.5298	24,2819	24 2819	
1059.2706	26.6440	24.0350	24 0350	
1061.8826	24.9929	25.2757	25.2757	
1064.4955	25.1205	24.0639	24.0639	
1067.1646	24.2564	24.8365	24.8365	
1069.8316	24.3626	24.2628	24.2628	
1072.4426	25.7436	25.7201	25.7201	
1075.1126	28.6990	24.9973	24.9973	
1077.7245	28.3092	24.9385	24.9385	
1080.3716	28.2476	24.1864	24.1864	
1083.0606	27.2727	23.8891	23.8891	
1085.6725	25.1065	22.9446	22.9446	
1088.3206	23.6371	24.1602	24.1602	
1090.9326	21.1173	22.4505	22.4505	
1093.5456	19.0480	23.4984	23.4984	
1096.2186	16.9293	22.0360	22.0360	
1098.8867	15.5363	20.5462	20.5462	
1101.5005	16.2103	20.8751	20.8751	
1104.0926	17.4262	22.2364	22.2364	
1106.7046	17.2487	22.3762	22.3762	
1109.3526	18.3594	21.2054	21.2054	
1112.0947	19.2389	20.3507	20.3507	
1117 2206	18.5696	22.1273	22.1273	
1110.0007	19.1002	20.5125	20.5125	
1100.9907	18.8912	23.1070	23.1070	
1122.0590	18.0187	20.7307	20.7307	
1127 0297	1/.8219	19.8335	19.8335	
1120 6076	18.9/5/	21.7118	21.7118	
1122 2206	22.0090	21.6331	21.6331	
1135 9696	22./4VI	20.0348	20.0348	
1138 5576	24.4904 25 2554	19.0220	19.0220	
1141 2276	23.2334 25 0200	10 5022	19.6142	
1143 8397	25.9300 25 1010	19.3932 20 1000	19.5932	
1146,4857	25.6474	20.1089 10 1000	20.1089	
1149,0976	24.6439	19 9979	19.1009 19.2272	
1151.7097	23.2459	19 3862	10.43/4 10 3069	
0 fraction	dimensio	nless numb	LJ.JODZ	val time
1.000	1.66	54	4111	18.902
				· · • • •

inlet A fit ****** APPENDIX D: Modified Matrix Diffusion Model Match of Laboratory "Step Up" Tracer Tests

Model Match(-) vs Data(*) at 16.3 ml/min

APPENDIX E: Miscellaneous Computer Programs

1000 REM PROGRAM FOR READING ELECTRODE RESPONSE 1010 DEF SEG=&HAFF0 1020 REM SET INTERVAL TIMER 1030 CO=65500 1040 CZ=65500 1043 CWRIT=0 1045 OPEN "C:INREFP.DAT" FOR OUTPUT AS #1 1046 OPEN "C :EXREFP.DAT" FOR OUTPUT AS #2 1047 OPEN "C :INLETP.DAT" FOR OUTPUT AS #3 1048 OPEN "C EXITP DAT" FOR OUTPUT AS #4 1050 OPEN "C:INREFN,DAT" FOR OUTPUT AS #5 1051 OPEN "C:EXREFN.DAT" FOR OUTPUT AS #6 1052 OPEN "C: INLETN. DAT" FOR OUTPUT AS #7 1053 OPEN "C:EXITN.DAT" FOR OUTPUT AS #8 1054 CWRIT=CWRIT+1 1055 IF CWRIT=5 GOTO 2100 1056 IF CWRIT=2 THEN PRINT CWRIT 1057 IF CWRIT=4 THEN PRINT CWRIT 1058 HZ-INT(C2/256) 1060 L2=C2-(H2*256) 1070 HO=INT(CO/256) 1080 LO=CO-(HO*256) 1090 POKE &HE0,1 1100 POKE &HC3,54 1110 POKE &HCO, LZ 1120 POKE &HCO, HZ 1130 POKE &HC3, 116 1140 POKE &HC1, LO 1150 POKE & HC1, HO **1160** PT=0 1205 GOSUB 8010 1210 FOR 1=1 TO 100;NEXT I 1225 GOSUB 8010 1300 BEG=TIME 1400 PT=PT+1 1401 GOSUB 8010 1500 BEG1=TIME 1600 ELAP=8EG1-8EG 1700 IF ELAP<,25 GOTO 1401 1800 IF PT>20 GOTO 1054 1900 GOSUB 4100 2000 GOTO 1400 2100 CLOSE 2200 END 4000 REM SUBROUTINE: SET VOLTAGE AND TAKE READINGS 4100 DEF SEG=&HAFF0 4200 HB1=15 4300 LB1=255 4310 POKE &H9A, 0:REM SEL GAIN 1 4350 POKE & H9D, 64 4400 POKE &H82,2;REM SEL SLOT2 CHAN 1 4500 POKE &H83, LB1 4600 POKE & H82, 3 4700 POKE &H83,HB1 4750 POKE & H9D, 1 4770 FOR I=1 TO 200:NEXT I 4800 GOSUB 9400 4900 IF(CWRIT=2)OR(CWRIT=4) THEN PRINT #1, 5000 GOSUB 9600 5010 IF(CWRIT=2)OR(CWRIT=4) THEN PRINT #2 5020 GOSUB 6400 5030 IF(CWRIT=2)OR(CWRIT=4) THEN PRINT #3, 5040 GOSUB 6600

5050 IF(CWRIT=2)OR(CWRIT=4) THEN PRINT #4, 5300 HB2=0 5310 LB2=0 5320 POKE &H82,2 5330 POKE &H83, LB2 5340 POKE &H82,3 5350 POKE &H83,HB2 5355 POKE &H9D,1 5358 FOR 1=1 TO 200;NEXT I 5360 GOSUB 9400 5370 IF (CWRIT=2) OR (CWRIT=4) THEN PRINT #5. 5375 GOSUB 9600 5380 IF(CWRIT=2)OR(CWRIT=4) THEN PRINT #6, 5390 GOSUB 6400 5400 IF(CWRIT=2)OR(CWRIT=4) THEN PRINT #7 5410 GOSUB 6600 5420 IF(CWRIT=2)OR(CWRIT=4) THEN PRINT #8, 5426 HB3=8 5428 L83≃0 5430 POKE & H82,2 5440 POKE &H83, LB3 5445 POKE & H82, 3 5450 POKE &H83, HB3 5452 POKE & H9D, 1 5550 GOSUB 8010 5560 BEG=TIME 6000 RETURN 6200 DEF SEG=&HAFF0 6395 REM SUBROUTINE: READ INLET VOLTAGE 6400 DEF SEG=4HAFF0 6415 POKE &H9A, 1:REM SEL GAIN 2 6505 POKE & H80,1 6510 POKE & H81, 1; REM SEL SLT 1 6520 POKE & H9B, 255; REM STARTS A/D CONVER 6522 IF PEEK(&H9B)<>127 GOTO 6522 6525 DLOW=PEEK (&H80) : REM READS LO BYTE 6530 DHIGH=PEEK(&H81) : REM READS HIGH BYTE 6535 DHIGH=(DHIGH-240) *256:REM WTS HIGH BYTE 6540 DRES=DLOW+DHIGH 6545 DVOLTS=DRES*(5/4095) 6550 RETURN 6590 REM SUBROUTINE: READ OUTLET VOLTAGE 6600 DEF SEG≈&HAFF0 6615 POKE &H80,2 6620 POKE &H81,1:REM SEL SLOT 1 6625 POKE &H9A, 1:REM SETS GAIN 2 6640 POKE & H9B, 255 6642 IF PEEK(&H9B)<>127 GOTO 6642 6650 DLOW=PEEK (&H80) 6660 DHIGH=PEEK(&H81) 6670 DHIGH=(DHIGH-240) *256 6680 DRES=DLOW+DHIGH 6690 DVOLTS=DRES*(5/4095) 6700 RETURN 8000 REM SUROUTINE: READING THE INTERVAL TIMER 8010 DEF SEG=&HAFF0 8020 POKE &HC3,0 8030 LZ=PEEK (&HCO) 8040 HZ=PEEK(&HC0) 8050 CCZ=LZ+(HZ*256) 8060 POKE & HC3, 64

```
8070 LO=PEEK(&HC1)
8080 HO=PEEK(&HC1)
8090 CCO=LO+(HO*256)
8100 CURRENTCOUNT #= (((CZ-CCZ)*CO) + (CO-CCO))/2
8110 TIME=CURRENTCOUNT#*,000001046#
8120 RETURN
9400 DEF SEG=&HAFF0
9415 POKE &H9A,1:REM SEL GAIN 2
9505 POKE & H80,3
9510 POKE & H81, 1; REM SEL SLT 1
9520 POKE &H9B, 255:REM STARTS A/D CONVER
9522 IF PEEK(&H9B)<>127 GOTO 9522
9525 DLOW=PEEK (&H80) ; REM READS LO BYTE
9530 DHIGH=PEEK(&H81) : REM READS HIGH BYTE
9535 DHIGH=(DHIGH-240) *256:REM WTS HIGH BYTE
9540 DRES=DLOW+DHIGH
9545 DVOLTS=DRES*(5/4095)
9550 RETURN
9590 REM SUBROUTINE: READ OUTLET VOLTAGE
9600 DEF SEG=&HAFF0
9615 POKE & H80,4
9620 POKE &H81,1:REM SEL SLOT 1
9625 POKE &H9A,1:REM SETS GAIN 2
9640 POKE &H9B,255
9642 IF PEEK(&H9B)<>127 GOTO 9642
9650 DLOW=PEEK(&H80)
9660 DHIGH=PEEK(&H81)
9670 DHIGH=(DHIGH-240) *256
9680 DRES=DLOW+DHIGH
9690 DVOLTS=DRES*(5/4095)
9700 RETURN
```

rrogram to differentiate continuous injection data into slug test data using least squares method dimension t(10000), x(10000) read (5,100) np read in number of points in file and the number of points used for least squares fit read (5,100) nplus nplot=np-2*nplus write(6,100) nplot do 3 i=1, np read (5, 101) t(i), x(i)n3=2*nplus+1 do 1 i=nplus+1, np-nplus sumx=0. 0 sumy=0. 0 sumxy=0.0 sumx2=0.0 do 2 j=i-nplus, i+nplus sum x = sum x + t(j)sumy=sumy+x(j) sum xy = sum xy + x(j) + t(j)sumx2=sumx2+t(j)*t(j) continue grad=-(sumx*sumy-n3*sumxy)/(sumx*sumx-n3*sumx2) write (6, 101) t(i), grad continue format(i5) format(f10.4, x, f11.7) ----

Frogram to convert from electrode voltages to tracer concentration read(5,103) ipt write(6,103) ipt do & k=1, ipt read(5,102) t,x1 c=10.0**(4.024-x1)-9.75 write(6,102) t.c 103 format (i6) 102 format (f10.4, x, f11.7) and

00 $\odot 1$

*r*____

APPENDIX F: Complete Data Set for Test Number 11

Entire data set for Run No. 11, November 6, 1986

Flowrate = 3.7cc/min Pressure Drop = 0.408 psi Tracer Concentration = 102 ppm Step Up Cycle Actual Test Start Time = 59.3 secs

Clock Time	Electrode	Tracer in	Equivalent
(seconds)	Voltage	Core. Efflue	nt Slug Test
(v	volts) (pp	m) (ppn	n/sec)
16.8063	4.1575089	0.0151740	0.0000800
18.1735	4.1575089	0.0166443	-0.0000513
19.5406	4.1575089	0.0176342	-0.0001619
20.9080	4.1636138	0.0146735	-0.0002622
22.2721	4.1599512	0.0117314	-0.000351~0
23.6601	4.1648359	0.0092464	-0.0004226
25.0271	4.1648359	0.0087560	-0.00048184
26.3934	4.1636138	0.0053347	-0.0005179
27.7600	4.1648359	0.0063130	-0.0005647
29.1272	4.1684980	0.0068020	-0.0005861
30.4973	4.1623931	0.0068001	-0.0005853
31.8637	4.1636138	0.0063111	-0.0005531
33.2522	4.1636138	0.0048208	-0.0004887
34.6185	4,1660562	0.0043710	-0.0004050
35.9855	4.1721611	0.0038719	-0.0003277
37.4170	4.1636138	0.0019307	-0.0002649
38.7841	4.1648359	0.0019288	-0.0002239
40.1732	4.1684980	0.0028803	-0.0001863
41.5396	4.1660562	0.0009641	-0.0001887
42.9061	4.1697192	0.0004556	-0.0001912
44.3477	4.1684980	0.0014539	-0.0002086
45.7145	4.1660562	0.0014596	-0.0002305
47.0814	4.1660562	0.0019240	-0.0002527
48.4488	4.1660562	0.0014378	-0.0003134
49.8165	4.1684980	0.0024107	-0.0003645
51.1846	4.1697192	0.0028899	-0.0004068
52.5707	4.1636138	0.0024192	-0.0004503
53.9372	4.1648359	0.0019222	-0.0004932
55.3030	4.1672769	0.0009527	-0.0004793
56.6698	4.1697192	-0.0009886	-0.0005001
58.0374	4.1721611	-0.0034063	-0.0005130
59.4077	4.1684980	-0.0053397	-0.0005033
60.7969	4.1709409	-0.0058275	-0.0004430
62.1639	4.1721611	-0.0096931	-0.0002918
63.5302	4.1709409	-0.0091869	-0.0000257
64.8968	4.1819291	-0.0092506	0.0004398
66.4142	4.1672769	-0.0086193	0.001 1829
67.7842	4.1709409	-0.0096154	0.0022729
69.1541	4.1709409	-0.0058256	0.0038009
70.5242	4.1733818	-0.0082335	0.0058569
71.8933	4.1721611	-0.0077564	0.0085393
73.2625	4.1733818	-0.0073016	0.0119259
74.6858	4.1697192	-0.0028575	0.0162067
76.0558	4.1697192	0.0059072	0.0213947
77.4263	4.1623931	0.0191251	0.0275904

78.7957	4.1501832	0.04 11468	0.0348346
80.1663	4.1404152	0.0741711	0.0433285
81.5549	4.1159959	0.1188998	0.052942 1
82.9247	4.0915751	0.17793 18	0.0639241
84.2950	4.0622711	0.2529412	0.0762564
85.6651	4.0231991	0.346875 1	0.0898989
87.0351	3.98901 10	0.4588909	0.1047354
88.4640	3.9389501	0.6013127	0.1207807
89.8342	3.8974359	0.7587447	0.1379174
91.2051	3.8473749	0.9451517	0.1559591
92.5747	3.7997561	1.1489518	0.1746171
93 9449	3 7509160	1 3936436	0 1938763
95 3155	3.7069600	1 6596735	0 2136417
96 7504	3 6459100	1 9736292	0.2339207
98 1207	3603 1749	2 31 14529	0.2542504
99 4909	3 5543351	2 6846509	0.2042004
100 8620	3 50/2730	3 0788414	0.20/5000
100.0020	3 4627600	3 5135/15	0.2340030
102.2473	2 /151 /11	2 0995652	0.3142110
105.0000	3.4131411	3.9003032	0.3529909
100.0000	2.2257761	4.4759502	0.331 1000
100.4137	3.3337701	4.9739347	0.3000733
107.7709	3.290/031	5.5065432	0.3848230
109.1631	3.2001779	6.0689902	0.4002737
110.0029	3.2222221	0.08/2010	0.4149042
111.9650	3.1929181	7.2798247	0.4286213
113.3287	3.1575091	7.9 130225	0.4413258
114.7130	3.1294260	8.5070095	0.4538881
116.0764	3.1013429	9.1756115	0.4650684
117.4404	3.0818069	9.8057308	0.4/5/83/
118.8076	3.0427351	10.4792433	0.4855327
120.1940	3.0244200	11.1/16032	0.4945955
121.5575	2.9963369	11.8123760	0.5032695
122.9213	2.9743590	12.5205660	0.5 108534
124.3052	2.9682541	13.2483292	0.5175985
125.7956	2.9218559	14.0330725	0.5237576
127.1820	2.9084251	14.7552042	0.5295969
128.5462	2.8864470	15.5630245	0.5349529
129.9110	2.8705740	16.2581882	0.5390203
131.2971	2.8559220	17.0471287	0.5429287
132.7358	2.8302810	17.8195267	0.5465601
134.0997	2.8107450	18.5900021	0.5497385
135.4642	2.7985351	19.3937206	0.5533285
136.8290	2.7814410	20.1104488	0.5558663
138.2160	2.7667890	20.8679695	0.5584098
139.5805	2.7545791	21.628 1548	0.5607560
141.0210	2.7338221	22.4595089	0.5619744
142.3845	2.7228329	23.2064648	0.5621282
143.7474	2.7057390	23.9373913	0.5640453
145.1325	2.6971920	24.7164078	0.5631891
146.4973	2.6886449	25.5231266	0.5622876
147.9418	2.6666670	26.3277302	0.5617395
149.3068	2.6544571	27.1873436	0.5612012
150.6720	2.6434679	27.9419460	0.5601251
152.0360	2.6288 159	28.7532463	0.5588968

153.4223	2.6300371	29.5485039	0.5567831
154.8513	2.6056170	30.2817707	0.5543105
156.2163	2.5970700	30.9966316	0.5516585
157.6029	2.5934069	31.9069176	0.5487024
158.9680	2.5787549	32.4621201	0.5450063
160.3321	2.5689869	33.1965904	0.541 1336
161.6963	2.5689869	34.0277977	0.5374206
163.0805	2.5494511	34,7906647	0.5332156
164.4452	2.5409040	35,4535141	0.5306333
165.8098	2.5323570	36.2345200	0.5290055
167.1953	2.5286939	36 9295845	0 5246505
168.5605	2.5225890	37.6482849	0.5216019
170.0012	2.5091579	38 3807411	0.5182681
171.3653	2,4993899	39 1024323	0 5145242
172 7298	2 4932849	39 7954369	0.5127546
174 1172	2.4932049	40 51 11732	0.5127540
175 4809	2.4004002	41 2025261	0.50812256
176 0267	2.4047301	41.2023201	0.50612250
178 2022	2.4/130/0	41.9040042	0.5010252
170.2922	2.4027000	42.0710032	0.5019555
19.0377	2.4390909	43.4772110	0.3000921
181.0230	2.4493289	45.8207441	0.4979700
182.3882	2.4444449	44.5/21016	0.4952094
185.7748	2.4542129	45.31033/1	0.4922138
185.2680	2.4261301	46.018/569	0.4842775
180.0545	2.4236879	46./308540	0.488/835
188.0198	2.4188039	47.5979919	0.4848108
189.3852	2.4114/80	48.1432571	0.4801459
190.7512	2.4139199	48.7796440	0.47518835
192.1345	2.4017100	49.4330177	0.4715013
193.4988	2.3956039	50.0283661	0.4680496
194.8638	2.3907199	50.6583366	0.4665695
196.2290	2.3858359	51.3224258	0.4614437
197.6161	2.3870580	51.9422569	0.4574807
199.0355	2.3736269	52.6170807	0.4530579
200.4239	2.3699639	53.2859039	0.4477556
201.7876	2.3638589	53.9782600	0.44 1932 1
203.1515	2.3589749	54.3164330	0.43543954
204.5370	2.3589749	54.9712143	0.43512859
205.9000	2.3601961	55.5907631	0.4315856
207.3453	2.3443229	56.2321663	0.4284188
208.7101	2.3394389	56.8996582	0.4251587
210.0746	2.3357761	57.4438553	0.4238390
211.4380	2.3333340	58.0963097	0.4199675
212.8233	2.3394389	58.5960350	0.4188943
214.2516	2.3199029	59.1198845	0.4133633
215.6154	2.3211229	59.5830040	0.4107259
217.0015	2.3174601	60.2659760	0.4016176
218.3653	2.3162391	60.7477875	0.4008165
219.7298	2.3150189	61.3355103	0.3934437
221.1142	2.3028080	61.9418030	0.3864381
222,4774	2.3003671	62.5042419	0.3803550
223 8412	2.2967031	63 2541389	0.3755156
225 2269	2.2967031	63 5117531	0 3678637
226 5916	2.2893779	64,1301880	0.3621864
		2	0.000

227.9563	2.2942619	64.5668793	0.3558511
229.3186	2.2796099	65.1189804	0.3478935
230.7051	2.2820511	65.4982681	0.3397265
232.0674	2.2783880	65.8688202	0.3391628
233.4314	2.2771671	66.2391968	0.3332739
234.8172	2.2820511	66.7301178	0.3268932
236.2401	2.2673991	67.2821426	0.3221210
237.6260	2.2661779	67.7831802	0.3 177231
238.9891	2.2612939	67.9648743	0.3149710
240.3529	2.2612939	68.5016937	0.3103975
241.7386	2.2759471	68.9237976	0.3079519
243.2310	2.2503059	69.2770386	0.3044240
244.6165	2.2527471	69.7516022	0.3023368
245.9807	2.2515261	70.8095474	0.2996406
247.3453	2.2466421	70 7677689	0.2950883
248.7086	2.2429790	71 0479889	0.2912192
250.0955	2 2515261	71 5329056	0.2878646
251 5352	2.2442000	71 9170914	0.2852382
252 8998	2.2368741	72 1997223	0.2828719
254.2644	2.2356541	72 6032181	0.2816225
255 6288	2.2344320	73.0570526	0.2010223
257.0152	2 2393160	73 3463135	0.2702232
258 4556	2.2393100	73 78358/16	0.2722201
259 8210	2.2307701	7/ 1550525	0.26/23/5
261 1863	2.2203270	74.1557525	0.2042345
267 5/03	2.2234430	74.4017238	0.2000882
262.3473	2.2234430	75 2007044	0.2007830
265 3501	2.2319901	75.2907944	0.2000073
266 7/61	2.2101101	75.0473270	0.2640002
268 1114	2.2175581	75.9304023	0.2024951
200.1114	2.2130730	76.0793303	0.2000337
202.4700	2.2146900	76.02045770	0.2309213
270.8403	2.2112341	70.9804011	0.2332001
272.2210	2.2210021	11.3120119	0.2496046
275.0302	2.2039070	78 0440140	0.2473932
275 1066	2.2020801	78.0440140	0.2441071
270.4000	2.2039070	18.5151599	0.241/428
270.1201	2.2039070	/8.9353943	0.2308542
2/9.1381	2.2063489	79.1134109	0.2308/00
280,5000	2.1941390	79.3815079	0.2244951
281.8802	2.19/8021	/9./9419/1	0.2185200
285.2511	2.1965809	80.0182953	0.2168260
284.0102	2.1929181	80.2001038	0.2072963
285.9803	2.2002439	80.6093063	0.2019395
287.3654	2.1892550	80.9820175	0.19/4633
288./311	2.1868131	81.2114410	0.1938195
290.0907	2.1868131	81./18/2/1	0.1895404
291.461/	2.1868 131	81.62/2430	0.1892596
292.84/1	2.1868131	81.76515%	0.1869384
294.2123	2.19 16969	81.9918/47	0.1836542
295.6585	2.1831501	82.33/5092	0.1799351
297.0244	2.1807079	82.6602402	0.1767890
298.3896	2.1782660	82.6061478	0.1771467
299.7557	2.1782660	83.1219635	0.1738061
301.1218	2.1929181	83.3980408	0.1716606

302.5795	2.1697190	83.6619339	0.1704840
303.9440	2.1733820	83.8935699	0.1703987
305.3083	2.1721611	84.3141174	0.1733260
306.6722	2.1721611	84.2664871	0.1723188
308.0567	2.1819291	84.5011368	0.1699571
309.4964	2.1709399	84.7089462	0.1661786
310.8603	2.1672771	84.8460846	0.1622870
312.2240	2.1672771	85.4690094	0.1582986
313.6099	2.1684980	85.4204941	0.1505205
314.9744	2.1660559	85.6159210	0.1457275
316.3375	2.172161 1	85.8086929	0.1422189
317.7202	2.1623931	86.1546783	0.1382230
319.0846	2.162393 1	86.3988876	0.1357896
320.4494	2.1599510	86.5452194	0.1399662
321.8121	2.1599510	86.7411728	0.1381622
323.1983	2.1684980	86.8394318	0.1366389
324.6204	2.1575091	86.9426270	0.1352107
326.0051	2.15995 10	87.0439606	0.1328226
327.3693	2.1575091	87.1365662	0.1343361
323.7332	2.1575091	87.3325882	0.1331758
330.1200	2.1660559	87.5800552	0.1314086
331.547 1	2.152625 1	87.6892776	0.1296302
332.9098	2.1538460	87.9833374	0.1279731
334.2947	2.1550670	88.6345215	0.1272440
335.6592	2.1501830	88.4827271	0.12518071
337.0242	2.1501830	88.6817474	0.1260825
338.4094	2.1562879	88.8850021	0.1255498
339.8503	2.1489620	89.0440369	0.1242726
341.2153	2.1501830	89.1941071	0.1210917
342.5791	2.1465199	89.3411179	0.11/9928
343.9435	2.1465199	89.4419479	0.1063074
345.3298	2.152625 1	89.5948639	0.0989132
346.7703	2.1465199	89.6502075	0.0916440
348.1353	2.1465199	89.8032303	0.0863572
349.5001	2.1452990	89.9007874	0.08/9206
330.8000	2.142607 1	90.2042007	0.0911000
352.2310	2.1301030	90.0000007	0.0920132
355.0737	2.1391940	90.5177550	0.09410001
356 4240	2 1416359	90.3700309	0.090070
357 7889	2 1416359	90.0560379	0.1010378
359.1542	2 1440780	90,5124359	0.1006649
360.5412	2.157509 1	90.7047 119	0.09918190
362 0335	2 1318679	90 8995590	0.0984692
363.4183	2.1367519	91.2041321	0.0966555
364.7818	2.1379731	91.8074112	0.0968148
366.1471	2.1367519	91.7563477	0.0965769
367.5108	2.1428571	91.8593216	0.0979134
368.8951	2.1330891	91,9663239	0.0985153
370.2605	2.1343100	92.1753998	0.0972258
371.6248	2.1355309	92.2274623	0.0988631
372.9898	2.1318679	92.1763229	0.0913543
374.3766	2.1416359	92.2256241	0.0869057
375.8178	2.1343 100	92.3880692	0.0821401

377.1831	2.1330891	92.4419937	0.0781718
378.5469	2.1318679	92.8036041	0.0752730
379.9125	2.1306469	92.6999512	0.0771906
381.3001	2.1330891	92.9620132	0.0761477
382.6646	2.1367519	92.9605713	0.0767929
384.0889	2.1269839	92.9644394	0.0784058
385.4757	2.1318679	93.2313232	0.0795958
386.8409	2.1306469	93.33148%	0.0834095
388.2062	2.1269839	93,4908447	0.0823756
389.5704	2.1343100	93.5437927	0.0820998
390.9445	2.1233211	93.7033997	0.0807551
392.3312	2.1306469	93.7590714	0.0808091
393.6957	2.1269839	93.8623428	0.0827317
395 0596	2 1257629	93 8095779	0.0819634
396.4237	2.13.18679	94 0757446	0.0807566
397 8085	2.1245420	94 2921829	0.07540306
399 173 1	2 1245420	94 2367706	0.0763044
400 5391	2.1243420	04 6653671	0.07033544
401.9236	2.1221001	04 5035620	0.0742578
401.9230	2.1209639	94.3033029	0.0000492
403.2871	2.1221001	94.0050542	0.0040004
404.0490	2.1282031	94,0040023	0.0001238
400.0554	2.1206769	94.9697337	0.0505757
407.3970	2.1221001	93.0433900	0.0527750
408.7022	2.1190380	95.09/00/8	0.0555172
410.1201	2.1208789	94.9920197	0.0515852
411.5100	2.1269839	95.1502304	0.05184382
412.9541	2.1233211	95.2673645	0.051/085
414.316/	2.11843/1	95.2629318	0.0524230
415.6812	2.11/2161	94.//54593	0.0567330
417.0456	2.1208/89	95.2624054	0.0583979
418.4310	2.13/9/31	95.2532272	0.0583979
419.9241	2.1123321	95.2785034	0.0578315
421.3103	2.11843/1	95.3860245	0.0596745
422.6737	2.1172161	96.0722961	0.0611111
424.0359	2.1184371	95.6930847	0.0608353
425.4207	2.1221001	95.96459%	0.0604118
426.7837	2.1208789	95.9635849	0.0591781
428.1462	2.1123321	96.1243591	0.0577521
429.5309	2.1172161	96.4561539	0.0582613
430.8942	2.1147740	96.4001846	0.05215940
432.2580	2.1 147740	96.2380981	0.0482069
433.6438	2.1221001	96.3457870	0.0456143
435.0823	2.1159949	96.4053116	0.0427289
436.4470	2.1 147740	96.4596329	0.0387013
437.8116	2.1135530	96.3464279	0.04118936
439.1758	2.1 135530	96.5654755	0.0409751
440.5610	2.1245420	96.4563675	0.0425408
441.9839	2.1111109	96.4571686	0.0428331
443.3701	2.1172161	96.5725327	0.0444113
444.7343	2.1135530	97.0036011	0.0481592
446.0989	2.1111109	96.6198883	0.0508310
447.4842	2.1 147740	96.9485474	0.0528471
448.8491	2.1 196580	97.0566406	0.0590925
450.2788	2.1098900	97.0076294	0.0575469

451. 6637	2.1111109	97.1740646	0.0607068
453.0266	2.1123321	97.2781525	0.0622390
454.3897	2.1111109	97.3892059	0.0598159
455.7546	2,1172161	97,3888245	0.0535901
457 1370	2 1074481	97 5011902	0.046539.1
458 5002	2 11 11100	97 4998398	0.0390461
459 8650	2 1008000	97.4990590	0.0330401
461 2520	2.1098900	97.5570557	0.0372333
401.2320	2.1111109	97.7700078	0.0200002
462 0772	2.1139949	97.0525500	0.0213421
403.9772	2.1023041	00 1120011	0.017.0011
403.3033	2.1090900	90.1120911	0.0129929
400.7207	2.1074481	98.2216949	0.0102160
408.0905	2.1074481	97.0005715	0.0 137084
469.4761	2.1135530	97.6677628	0.0158277
470.8416	2.1147740	97.6099548	0.01/0381
472.2862	2.1098900	97.5639572	0.0190766
473.6507	2.1086690	97.7807693	0.0207204
475.0142	2.1086690	97.3364639	0.0227273
476.3788	2.1086690	97.66786%	0.0249677
477.7647	2.1245420	97.7142334	0.0293548
479.2575	2.102564 1	97.7926254	0.0334539
480.6436	2.1074481	97.8494568	0.0388636
482.0065	2.1074481	98.4997177	0.0471503
483.3707	2.1074481	98.3332138	0.0466113
484.7354	2.1098900	98.3329391	0.0453068
486.1198	2.1062269	98.3895950	0.04510809
487.4852	2.1074481	98.4447479	0.0444517
488.8506	2.1062269	98.5011368	0.0436601
490.2366	2.1062269	98.3881760	0.0395151
491.5998	2.1086690	98.6125336	0.0372340
492.9636	2.1086690	98.5560303	0.0330350
494.3478	2.1025641	98.5573349	0.0290055
495.7118	2.1074481	98.7807083	0.0251444
497.0769	2.1062269	98.5007553	0.030525
498.44 18	2.1037850	98.5005951	0.0291918
499 8073	21 147740	98 7787399	0.0282004
501 1965	2 102564 1	98 8949966	0.0266780
502 5597	2 1013429	98 7806549	0.0281468
503 9223	2 1037850	99.0078735	0.028788.1
505 3078	2 1062269	99,0054626	0.0259885
506 6723	2 1002200	98 89094 54	0.0262297
508 101 1	2 1025641	98 9524612	0.0261506
500.1011	2 1027850	00.0024012	0.0201000
510 8/00	2.1007000	00 3/22775	0.0277068
510.0433	2.1023041	99.9 4 22779	0.0232300
512.2120	2.1030000	99.0000777	0.0154514
513.0022	2.1023041	99.0012940	0.0100975
514.9009	2.1090900	99.00442.0	0.01013000
510.339/	2.1023041	00 2200250	0.0163434
517./101	2.103/850	99.2308330	0.01012990
019.0805	2.1020641	99.2009039	0.0184149
520.4510	2.1001220	99.2305603	0.0110208
521.8194	2.1086690	99.3425522	0.00/16/1
523.2425	2.1037850	99.2289658	0.0023438
524.6131	2.1013429	99.1180878	U.

525.9998	2.1050060	99.1720505	0.0013605
527.3655	2.1025641	99.2862930	0.0045266
528.7310	2.1074481	99.3358383	0.0071668
530.1786	2.1013429	99.4590225	0.0096749
531.5437	2.1001220	99.4003830	0.0128868
532.9090	2.1025641	99.6808929	0.0166538
534.2738	2.1037850	98.8396454	0.0205603
535.6402	2.1013429	98.8966370	0.0241770
537.0271	2.1196580	98.9430923	0.0275991
538.5213	2.0989010	99.1349945	0.0298354
539.8885	2.1013429	99.1843567	0.0296883
541.2771	2.1001220	99.7350540	0.0339300
542.6436	2.1001220	99.6816635	0.0328947
544.0100	2.1074481	99.7927780	0.0330835
545.4518	2.1001220	99.7984161	0.0339027
546.8188	2.0989010	99.8551331	0.0327157
548 1861	2.1001220	99 8504868	0.0339818
549 5522	2.0989010	99 9078369	0.0294436
550 9188	2.1074481	99.8506546	0.0236390
552,3050	2.0989010	99 9083328	0.0187990
553 6717	2.1001220	99 8516998	0.0160807
555 0373	2.0989010	100 3047180	0.0106660
5564045	2.0000010	99 7390823	0.0099506
557 7716	2.1001220	99 8536377	0.00973500
559 1601	21111109	99 8500443	0.0056552
560 5865	2.0976801	00 73875/3	0.0030332
561 9518	2.0970001	99 7385330	0.0064186
563 3396	2.0000010	100.0180285	0.0108273
564 7068	2.1025041	00 064447 0	0.0108275
566 0741	2.0270001	100 1283722	0.0166451
567 5063	2.1050000	100.1203722	0.0100491
568 87/3	2.0909010	100.2301373	0.0104040
570 2/08	2.0002300	100.0215085	0.0170871
571 6281	2.1001220	00.0234140	0.0240890
572 00/18	2.1023041	99.9030007	0.0235050
574 4367	2.100000	00.0155807	0.0233939
575 8022	2.1001220	100 252/71/	0.0231892
577 1607	2.0989010	100.2334/14	0.0217130
578 5265	2.0970801	100.3323103	0.0157303
570.002.1	2.0932360	100.301/1/2	0.0137393
581 2710	2.0989010	100.4758148	0.0100362
582 6560	2.1037830	100.4756146	0.0070801
584.0004	2.0904389	100.3030107	0.0079801
505 2006	2.0970601	100.3022742	0.0077737
505.5000	2.0969010	100.3049393	0.01510455
580./555	2.09/0801	100.4163791	0.0150056
588.1234	2.1050060	100.4180298	0.015/393
589.4925	2.0940170	100.4745865	0.0146258
590.8813	2.09/6801	100.47/31/8	0.0130719
592.2475	2.09/6801	100.0/49359	0.01518//1
595.6153	2.09/6801	100.0259094	0.016510/
594.9820	2.1135530	100.0/19986	0.01/8107
390.498 I	2.0952380	100.212/304	0.02068 16
597.8650	2.0964589	100.4393768	0.0223609
599.2320	2.0952380	101.1616287	0.0248187

600.6005	2.0927961	100.8748169	0.0216797
601.9652	2.0976801	100.9900513	0.0199531
603.3306	2.1013429	100.8192062	0.0193763
604.7160	2.0940170	100.5898666	0.0178105
606.0826	2.0989010	100.6470261	0.0163924
607.4493	2.0976801	100.6465836	0.0157558
608.8151	2.0964589	100.6461334	0.0098219
610 1825	2 1013429	100 8170853	0.003~3429
611.5683	2.0940170	100 9337616	-0.0002621
612,9331	2 0952380	100.9329758	-0.0020288
614 2983	2.0952380	100.5919876	0.0041841
615 6640	2.0952500	100.5912693	0.0047982
617 0512	2 1086690	100.7016525	0.0145833
618 4761	2.1000000	100.7010525	0.0143035
619 8433	2.0940170	100.5047725	0.0103411
621 2331	2.0927901	101 1601715	0.0175030
622 5070	2.0970801	100.7505444	0.0173039
622.3979	2.0904389	100.7393444	0.01/304/
625,3033	2.0904369	100.7034378	0.0104002
023.3297	2.1023041	100.9204906	0.01/9223
020.7820	2.0940170	100.9383081	0.0192157
028.1481	2.0927961	101.0509567	0.0208551
629.5159	2.0964589	101.1014009	0.0210/25
630.8823	2.0940170	101.2192230	0.0172414
632.2486	2.1001220	100.9898834	0.0158377
633.6335	2.0927961	101.1623611	0.0134303
634.9995	2.0976801	101.1048508	0.0097062
636.3658	2.0927961	101.1044083	0.01 14293
637.7335	2.0952380	101.0469284	0.0057147
639.0998	2.1001220	101.1620789	-0.0000658
640.4858	2.0940170	101.0477142	-0.004/2172
641.8513	2.0952380	101.1049652	-0.0083125
643.2180	2.0952380	101.3339462	-0.00612303
644.5840	2.0940170	100.9898224	-0.0002615
645.9513	2.0952380	101.1616287	0.0054830
647.3191	2.1013429	101.2187195	0.0086724
648.6893	2.0915749	101.1607895	0.0121618
650.0777	2.0940170	101.1630859	0.0148129
651.4429	2.0952380	100.8155212	0.0185618
652.8088	2.0952380	100.8778305	0.0178015
654.1751	2.1086690	100.8124466	0.0201613
655.6926	2.0903540	101.0099564	0.0217109
657.0590	2.0952380	101.1204147	0.0230759
658.4266	2.0915749	101.6214981	0.0270639
659.7931	2.0927961	101.5639572	0.0264698
661.1600	2.0976801	101.6221695	0.0211767
662.5462	2.0915749	101.5066147	0.0219588
663.9124	2.0940170	101.5069504	0.0284950
665.2789	2.0940170	101.6792908	0.0273642
666.6452	2.0927961	101.3339462	0.0221859
668.0118	2.0940170	101.5636749	0.0164785
669.3791	2.0989010	101.6209869	0.0100000
670.7670	2.0891330	101.6229019	0.0021676
672.1331	2.0927961	101.6798553	-0.0032169

Entire data set for Run No. 11, November 6, 1986

Flowrate = 3.7cc/min Pressure Drop = 0.408 psi Tracer Concentration = 104 ppm Step Down Cycle Actual Test **Start** Time = 59.3 **secs**

Clock	Electrode	Effluent Eq	uivalent
	Voltage		Data
(sec)	Drop C	oncentration	Data m (aga)
16 0425	(voils) (102 0001 465	n/sec)
10.9423	2.0010009	103.9001403	0.0334343
10,6771	2.0818009	104.1554457	0.0195305
19.0//1	2.0830281	104.3438401	0.01012//
21.0448	2.0805800	103.///9999	0.0148/3/
22.4 113	2.0793030	104.0717920	0.0166593
25.1998	2.0970801	104.1265/22	0.0209240
23.2949	2.0737020	104.061/300	0.024/540
20.0020	2.0010009	103.9023092	0.0251774
28.0288	2.0818009	104.3470270	0.02/1925
29.4162	2.0818009	104.3001/28	0.0233780
20.7639	2.0634700	104.3070297	0.0185140
32.2003 22.5056	2.0795050	104.30/0090	0.0139461
33.3930	2.0830281	104.308/010	0.0120274
34.9623	2.0818069	104.3061676	0.0136531
30.3292	2.0818069	104.4253464	0.0064718
37.0904	2.0854700	104.0052555	0.0020238
39.0020	2.0709229	104.0025925	-0.0030227
40.4297	2.0793030	104.5458401	-0.0084259
41.8185	2.0818009	104.//94495	-0.0144246
43.1854	2.0830281	104.3059921	-0.0128447
44.5522	2.0805860	104.2482147	-0.0139569
45.9190	2.0866909	104.2464294	-0.0148886
4/.36/1	2.0805860	104.3084/93	-0.0151555
48./348	2.0818069	104.2504120	-0.0164603
50.1015	2.0818069	104.129/60/	-0.0142806
51.4681	2.0818069	104.1311417	-0.0133092
52.8349	2.0891330	104.013/939	-0.0080976
54.2880	2.0805860	104.014/171	-0.0022578
55.6548	2.0842490	104.0754776	0.0047360
57.0223	2.0818069	104.24/8/14	0.0117/66
58.3894	2.0805860	104.1301041	0.01418/0
59./5//	2.0854/00	104.1912/66	0.0147668
61.2010	2.0830281	104.2491989	0.0151847
62.56/2	2.0830281	104.1316605	0.0150474
63.9341	2.0805860	104.4844894	0.0154533
65.3015	2.0830281	104.2479248	0.0105884
66.6700	2.0781441	104.4845505	0.0065199
68.0388	2.0879121	104.5426865	0.0006765
69.4286	2.0781441	104.7226334	-0.0060877
70.7991	2.0793650	104.4851837	-0.0131218
72.1689	2.0793650	104.4845505	-0.0125741
73.5391	2.0830281	104.3683701	-0.0189105
74.9092	2.0879121	104.3651352	-0.0263960
76.3385	2.0805860	104.2524872	-0.0347437

77.7092	2.0793650	104.3691177	-0.0472337
79.0781	2.0818069	103.9528961	-0.0603170
80.4483	2.0805860	104.0189209	-0.0797135
81.8178	2.0964589	103.9482956	-0.1011385
83.3378	2.0793650	103.8443756	-0.1271037
84.7081	2.0805860	103.7290115	-0.1556257
86.0786	2.0842490	104.3069153	-0.1896588
87.4488	2.0830281	103.7156906	-0.2260490
88.8193	2.0842490	103.4813690	-0.2652498
90.1682	2.0915749	103.2516861	-0.3037317
91.5575	2.0854700	102.8382416	-0.3428416
92.9274	2.0891330	102.2565689	-0.3800762
94.2980	2.0915749	101.6215515	-0.4188707
95.6684	2,0964589	100 8819122	-0.4599733
97.0385	2.1050060	99 9780121	-0.5008913
98 4622	2 1013429	99 0494995	-0.5392412
99.8329	2.1086690	98 1620407	-0.5751563
101 2037	21 111109	97 2830582	-0.6022831
107 5889	2.1159949	96.4039764	-0.6295300
102.5007	2.1137747	95 7055969	-0.6535990
105.2555	2.12+3+20	94 8670197	-0.0535770
105.5770	2.1200707	94.0155106	0.6010328
100.7014	2.1243420	03 2820/27	0.7047331
100.1252	2.1254200	95.2629457	07158/17
1109.4090	2.1355509	91.9223337	0.7247628
112 2386	2.1410559	90.8310242 80.8187103	0.7238708
112.2300	2.1520251	88 7653046	0.7422500
115.0001	2.1501850	87 5730800	-0.7422309
116/11/0	2.1538400	86 5540164	0.7566/01
117 7006	2.1399310	80.3379107	0.7655002
110 1642	2.1709399	84 2212751	-0.7055002
120 6042	2.1782660	82 1528220	0.7760606
120.00-5	2.1782000	03.1330239	077015566
121.9077	2.1019291	02.2243003	-0.7784012
123.3313	2.1692330	01.2100170 90.2201424	•0.770 0 013
124./10/	2.1955599	00.2391434	-0.78481082
120.0007	2.2031280	79.1300430	-0.76916660
127.4427	2.2059070	77.0660620	-0.7935424
120.0290	2.2112341	76 1056024	-0.0011319
130.1942	2.2101181	70.1930024	-0.80/0550
122 0206	2.2230001	74.7439163	-0.8100142
134,9200	2.2293480	73.7039042	-0.0140/30
125 7202	2.2454219	72.4950104	-0.010/333
133.7293	2.241/381	71.4015121	-0.8248001
13/.113/	2.2515201	70.2552001	-0.8203214
138.4802	2.25/6311	68.82161/1	-0.8283620
139.8448	2.2649579	6/./263/18	-0.8308641
141.2315	2.2893779	66.5477600	-0.83118833
142./251	2.2//16/1	05.2382584	-0.83110826
144.1090	2.2893779	04.1112442	-0.82413/1
145.4/35	2.29/9240	03.2891350	-0.8225791
140.8383	2.3028080	62.0815315	-0.8184516
148.2032	2.31/4601	61.0312004	-0.8139834
149.5868	2.3186820	59.9160233	-0.8091668
150.9522	2.3260069	58.7003555	-0.8034723

152.3162	2.3369961	57.6455765	-0.7982470
153.6803	2.3467641	56.3173599	-0.799834
155.0664	2.3565321	55.2822762	-0.7929524
156.4316	2.3687429	54.1937332	-0.7894421
157.7939	2.3650801	53.1583748	-0.7870784
159.1807	2.3797319	52.2128105	-0.7845782
160.5455	2.3882790	51.1794930	-0.7787795
161.9097	2.3943839	50.0301819	-0.7705820
163.2740	2.4 114780	49.0417709	-0.7635571
164.6630	2 4139199	47,9443855	-0 7547896
166 0261	2 4224670	46 8368187	-0 7415819
167 3906	2 4358981	45 7571983	-0 7348356
168 7555	2.4444449	44 7586327	-0 7259685
170 1426	2 4615390	43 7875099	-0 7166160
171 5716	2.4615300	42 6929665	-0 7071356
172 0350	2.4010000	416015054	0.6070568
17/ 3215	2.4000049	40.0051247	-0.0979308
175 6957	2.4067071	40.3031247	-0.0679/097
173.0007	2.4907271	39.0410072	-0.0704007
177.0000	2.5018320	38.8743134	-0.0049767
170.4142	2.5177050	38.0811310	-0.6522412
1/9./9/6	2.5213680	37.2704201	-0.6389188
181.1634	2.5323570	36.4682388	-0.6265817
182.528 1	2.5409040	35.6228561	-0.61438/2
183.9141	2.5482299	34.7302361	-0.6044445
185.2784	2.5677660	33.8929977	-0.5935995
186.7191	2.5750921	32.9303284	-0.5833659
188.0833	2.5848601	32.0795364	-0.5724198
189.4488	2.5995121	31.3029366	-0.5591046
190.8149	2.6043961	30.6298504	-0.5464403
192.2014	2.6202691	29.9109001	-0.5310524
193.6246	2.6214900	29.2256699	-0.5231371
195.0098	2.634921 1	28.4900208	-0.5109562
196.3752	2.6471310	27.8442421	-0.4985226
197.7393	2.6581 199	26.9288197	-0.48517847
199.1052	2.6691091	26.3238354	-0.4737104
200.4927	2.6923079	25.6775436	-0.4613005
201.9846	2.6837609	25.0821152	-0.4503129
203.3701	2.6996341	24.5538349	-0.4403586
204.7325	2.7045181	24.0400963	-0.4301688
206.0965	2.7142861	23.4130993	-0.4198321
207.4829	2.7374849	22.8060188	-0.4042458
208,9016	2,7399271	22,1859474	-0.3986161 1
210 2878	2.7545791	21 5980339	-0.3877891
211 6513	2.7606840	21.0923920	-0.374827 1
213 0144	2 7704520	20.5768642	-0 3688268
214,3997	2 7875459	20 1110935	-0.3606056
215 8394	2,7924299	19 6022644	-0 3524465
217 2023	2 8021979	19 1101875	-0.3441668
218 5650	2.0021070	18 7161713	_0.33511777
210.0000	2.0.113003	19 2209252	0.3057611
2213.3017	2,02+1701	17 20232	-0.3232011
221.0 104	2.0010020	17 2657000	-0.3139189
222.0114	2.04/3/49	16,0000400	-0.3072310
224.0439	2.0490110	10.9000420	-0.2990798
223.4293	2.0044091	0086616.01	-0.2914235

226.7926	2.8705740	16.1556034	-0.2838525
228.1569	2.8803420	15.7736931	-0.2768447
229.5429	2.9010990	15.4206066	-0.2693521
230.9720	2.8998780	15.0113897	-0.2621068
232.3355	29 108670	14.6465702	-0.2553010
233.721 1	2.9242980	14.3342237	-0.2476613
235.085 1	2.9316239	13.9985046	-0.240674 1
236.4487	2.9450550	13.6617146	-0.2337569
237.8326	2.9487181	13.3592272	-0.2272050
239.1969	2.9609280	13.0672522	-0.2205926
240.5619	2.9694750	12.7743511	-0.2140665
241.9254	2.9768009	12.4570808	-0.2082256
243.3112	2.9914529	12,1945095	-0.2023174
244.6735	3.0000000	11.9274282	-0.1960406
246 0553	3 003663 1	11 6552830	-0 1902307
247 4194	3 0146520	11 4394999	-0 1849652
248 7836	3 0231991	11 1876163	-0 1792224
250 1484	3 0203040	10.0356/22	-0 1730038
251 53/1	3.0233040	10.000-22	-0.1739530
252 9574	3.0500610	10.0001049	-0.1039019
254 3434	3.0610/00	10.4415210	0.1697059
255 7077	3.0683761	0.0222250	0.1527690
255.7077	3.0003701	9.9032039	-0.1337060
251.0121	2 0015740	9.7952150	-0.1494173
250.4507	2 0001220	9.0220047	-0.1432032
237.0744	3.0091330	9.4207230	-0.1412070
201.2000	3.0904389	9.21 18740	-0.1376114
202.0217	3.1086690	9.0631618	-0.1338531
264.0062	3.1184371	8.8562746	-0.1301294
265.3690	3.1245420	8.6945448	-0.1266627
200.7337	3.1343100	8.5354328	-0.1234374
208.0903	3.1330891	8.3840761	-0.1204124
209.4834	3.1452990	8.2273130	-0.11/4802
270.8475	3.1538460	8.0000032	-0.1147168
272.2100	3.1611731	7.8900752	-0.1122330
273.5952	3.1758239	7.724 1359	-0.1094655
275.0356	3.1746030	7.5649638	-0.106/11/
276.4007	3.1868131	7.4120584	-0.104110/2
277.7659	3.1929181	7.2801242	-0.1015027
279.1318	3.2014649	7.1451173	-0.0989435
280.5 170	3.21 12341	7.0155578	-0.0969 170
281.9400	3.2112341	6.8804545	-0.0940756
283.3248	3.2222221	6.7638178	-0.091933
284.6899	3.2295489	6.6628242	-0.0889496
286.0553	3.2344320	6.5086308	-0.08659 10
287.4208	3.2405379	6.40707 16	-0.08431807
288.8079	3.2564099	6.297 1520	-0.08231794
290.2384	3.2527471	6.1776605	-0.08031262
291.6028	3.2625 15 1	6.0694356	-0.0789572
292.9677	3.2698419	5.9778390	-0.0768989
294.3547	3.2747259	5.8593454	-0.0749745
295.7203	3.2857151	5.7557697	-0.07311025
297.1611	3.2905991	5.6481647	-0.0716351
298.5262	3.2967031	5.5550408	-0.0699920
299.8918	3.3040299	5.4559212	-0.0682142

301.2576	3.3064711	5.3654780	-0.0669214
302.6420	3.3199029	5.2749615	-0.06541086
304.0815	3.3223441	5.1995769	-0.0639092
305.4444	3.3284500	5.1028476	-0.06241635
306.8070	3.3296709	5.0306153	-0.0610766
308.1914	3.3418801	4.9407096	-0.0595307
309.5555	3.3467650	4.8699274	-0.0583374
310.9191	3.3553121	4.7776737	-0.0571971
312.3075	3.3553121	4.7041616	-0.0561351
313.6715	3.3650801	4.6266689	-0.0549936
315.0343	3.3699639	4.5445633	-0.0538010
316.3982	3.3772900	4.4822764	-0.0526203
317.7830	3.3882790	4,4112587	-0.0513915
319.2757	3.3809519	4 3364868	-0.0500101
320.6623	3.3943839	4.2641282	-0.0300101
322 0248	3 3992679	4 2056055	-0.0474750
323 3873	3 4078150	4 1220565	-0.0464956
324 7717	3 4139199	4 0577884	-0.0453234
326 2102	3 4175830	3,9922822	-0.0442789
327 5743	3 4 2 2 4 6 7 0	3 9388945	-0.0431933
328 9394	3 4273510	3 8938725	-0.0421559
330 3264	3 4322350	3 8373611	0.0421000
331 6902	3 4346769	3 7903602	0.0412309
333.0538	3 4432240	3 7386544	-0.0402733
334 4373	3 4444440	3 6814435	-0.0393079
335 8017	3 4517710	3 6232007	-0.0376/27
337 1661	3 4590969	3 5650211	-0.0370+27
338 5299	3 4627600	3 5160022	-0.0303003
330 0171	3.4027000	3./677565	0.0301370
341 3410	3 4688649	3/230106	0.0350401
342 7265	3 4761910	3 3750236	-0.0332022
344 0898	3 4810750	3 3280866	0.0342100
345 4547	3 4871800	3 281/1353	-0.0342199
3/6 8182	3/057271	3 2308818	0.0330300
3/18 1018	3 1032810	3.2030010	-0.0330072
3/10 5702	3/081680	3.1910492	-0.0322930
350 0449	2 5067160	3.140000Z	-0.0310002
353 3000	2 5102701	3.1 10/3/4	-0.0309338
352.5030	3.5103791	2.0010200	-0.0302845
355 0580	3.5120210	3.0101730	-0.0290328
356 /08/	3.5250099	2.9709455	-0.0289072
357 86/0	3 5200151	2.9344318	-0.0282471
350 2201	3.5299151	2.074/330	-0.02/5/68
360 5042	3.5555779	2.00/0010	-0.0208954
261 0901	3.5500200 2.5457000	2.0222900	-0.0204203
262 2002	3.5457660	2.7092313	-0.0258912
202.3903 264 7047	3.0433409	2.7530709	-0.0254191
266 1500	3.549451	2.7213387	-0.0249326
267 54 46	3.3343331	2.6934462	-0.02411175
301.3140	3.5555561	2.001010/	-0.0237881
300.0193	3.3020019	2.0323104	-0.0233787
371 6330	3.3028819	2.0023104	-0.0229863
3/ 1.0330 272.0004	3.30//660	2.5677359	-0.0226460
312.9984	3.5/26500	2.5410573	-0.0223802
3/4.3636	3.5775340	2.4918351	-0.0220784

- 4 -

375.7508	3.5799761	2.4655931	-0.0217367
377.1147	3.5946281	2.4345667	-0.0213556
378.6080	3.5848601	2.4051926	-0.0209709
379.9950	3.5934069	2.3780782	-0.0205764
381.3597	3.5958490	2.3584073	-0.0201599
382.7236	3.5982909	2.3246198	-0.0198346
384.1094	3.6080589	2.2978005	-0.0195237
385.5281	3.6080589	2.2687764	-0.0191666
386.9 149	3.6117220	2.2390084	-0.0187690
388.2800	3 61 53 851	2 2183537	-0.0182633
389.6440	3 6190481	2.1977844	-0.0179273
391.0096	3 6227109	2 1772275	-0.0175060
392 3939	3 6227109	2 1548724	-0.0171219
303 7585	3.6263740	2.13+072+ 2.1313317	-0.01/1219
305 1235	3.6203740	2.1313317	-0.0107857
395.1255	2 6261420	2.1003733	-0.0104/80
207 9752	3.0301420	2.0727377	-0.0101551
200 2209	26471210	2.0432721	-0.0158740
399.2398	3.04/1310	2.0242739	-0.0158524
400.0807	3.04/1310	2.0074182	-0.0154140
402.0496	3.64/1310	1.9930983	-0.0152260
403.4121	3.6483519	1.9/56935	-0.0149610
404.7973	3.6520150	1.9612963	-0.0147046
406.1615	3.6605620	1.9426246	-0.0144166
407.5904	3.6581 199	1.9168353	-0.0141618
408.9755	3.6617830	1.8950272	-0.0138869
410.3406	3.6678879	1.8736439	-0.0136142
411.7041	3.6691091	1.8525827	-0.0134757
413.0880	3.6776559	1.8311927	-0.0133799
414.5277	3.6752141	1.8169880	-0.0132642
415.8925	3.6788771	1.7991753	-0.0131306
417.2572	3.6788771	1.7873809	-0.0 129426
418.6208	3.6837609	1.7652140	-0.0121672
420.0069	3.6874239	1.7487102	-0.0125551
421.3705	3.6935289	1.7269077	-0.0123222
422.7319	3.6923079	1.7124820	-0.0121381
424.1174	3.6971920	1.6978991	-0.0120168
425.4816	3.6959710	1.68072%	-0.0118397
426.8450	3.6996341	1.6667001	-0.0113848
428.2317	3.7081809	1.6539249	-0.01 17482
429.6550	3.7045181	1.6365974	-0.01 16802
431.0413	3.708 1809	1.6212175	-0.0115847
432.4047	3 7106230	1.6003940	-0.0113645
433 7686	3 7130649	15855596	-0.0111591
435 1320	3 7264960	1.5005050	-0.0111371
436 5004	37170/80	15535307	-0.01033-3
437.0536	3.7179409	1.5555507	-0.0100983
437.9330	3.7210120	1.5301392	-0.0104032
439.3170	3.7232730	1.5262225	-0.0102303
440.081/	3.1289381 2.7229201	1.3033330	-0.0100513
442.00/4	3./338221	1.4920132	-0.0098780
445.451/	3./38/061	1.4/02011	-0.0097073
444./938	3./338221	1.4658051	-0.009\$575
440.1794	3.7399271	1.45/8910	-0.0094145
447.5441	3./387061	1.4487543	-0.0092656
448.9075	3.7411480	1.4371617	-0.0091528

472529	1.4307261	-0.0090211
448111	1.4177556	-0.0089318
460320	1.4037459	-0.0088546
509160	1.3886471	-0.0087248
545791	1.3734660	-0.0086806
619050	1.3573351	-0.0088603
'594631	1.3444135	-0.0088960
619050	1.3309371	-0.0087099
631259	1.326 1302	-0.008677 1
680099	1.3112607	-0.0086061
667890	1.3016953	-0.0084624
741151	1.2896898	-0.00811255
716730	1.2795064	-0.0079601
753360	1.2688887	-0.0077085
777779	1.2594423	-0 0074950
777779	1 2464824	-0.0074060
7838831	1 2334633	-0.0073553
7851040	1 2225506	-0.0073140
287671	1 2120034	-0.0072832
7887671	1 2017133	0.00711697
28767 1	1 1092912	0.00711262
00/07 1	1.1902013	0.00711203
940720 7007671	1.1913000	-0.00/034/
06/071	1.1041743	-0.0009431
900930	1.1739432	-0.0068402
900930 1007561	1.1049427	-0.0067043
997001	1.1400907	-0.0004801
0040401	1.13/7392	
046404	1.12/733/	-0.00611215
040401	1.119/158	-0.006114444
070819	1.1130557	-0.00611052
6083031	1.0998030	-0.0060630
5119659	1.0956274	-0.0060336
3241761	1.0878589	-0.0059643
3095241	1.0788891	-0.0058518
3156290	1.0746171	-0.0057845
180709	1.0744832	-0.0057070
3168499	1.0636983	-0.0058936
3241761	1.055 1103	-0.0058936
3217340	1.0453186	-0.0058948
3253970	1.0357488	-0.0058383
290601	1.0294 143	-0.0059353
3278389	1.0154870	-0.0059083
315020	1.0092344	-0.0054176
376069	1.0029720	-0.0053423
3327229	0.9913812	-0.0053089
3363860	0.9841325	-0.0052721
3412700	0.9799960	-0.0051375
3400490	0.9717750	-0.0050630
3424909	0.9655997	-0.0049936
3424909	0.9633852	-0.0049257
3437121	0.9603761	-0.0048541
3437121	0.9522067	-0.0047566
3437121	0.9481924	-0.0047281
3522589	0.9411719	-0.0046630
	4/2529 4481 11 460320 509160 545791 619050 594631 619050 631259 680099 667890 741151 716730 777779 777779 7838831 851040 7887671 887671 887671 887671 887671 887671 887671 960930 9307561 0046401 005241 0052589 0052589 0052589 0052589 0052589 0055800000000	4/25291.43072614481111.41775564603201.40374595091601.38864715457911.37346606190501.35733515946311.34441356190501.33093716312591.32613026800991.31126076678901.30169537411511.28968987167301.27950647533601.26888877777791.25944237777791.25944237777791.24648247838311.233463378510401.22255067876711.19828139487201.19138887876711.19828139487201.19138887876711.18417439609301.16494279975611.145695700464011.13775920952411.02733700464011.119715800708191.113055700830311099865001562901.07461711807091.07488911562901.07461711807091.03574882906011.02941432773401.045318623539701.03574882906011.029414323763690.96338522417610.9799602449090.963385224127000.97996024249090.963385224127000.97996024249090.963385224371210.94819242525890.9411719

524.8968	3.8473749	0.9307016	-0.0046959
526.2638	3.8522589	0.9207729	-0.0045782
527.6307	3.8559220	0.9158559	-0.0046914
528.9961	3.8559220	0.9058957	-0.0046085
530.3843	3.8583641	0.8989260	-0.004~701
531.7507	3.8595850	0.8940606	-0.004'7128
533.1919	3.8608060	0.8899381	-0.004'7180
534.5574	3.8620269	0.8850418	-0.0046701
535.9229	3.8608060	0.8782163	-0.0046112
537.2885	3.8644691	0.8752961	-0.0046793
538.6549	3.8681321	0.8694597	-0.0044959
540.0406	3.8644691	0.8635690	-0.0044462
541.4060	3,8693531	0.8558181	-0.0043810
542,7706	3 8681321	0.8472125	-0.0042795
544.1373	3 8742371	0.8386576	-0.0041667
545,5256	3 8791211	0.8338150	-0.00410980
546 9503	3 8754580	0.8261012	-0.00410500
548 3177	3 8754580	0.8213815	-0.0040100
549 7058	3 8778000	0.818/083	0.0030300
551 0728	3 8803420	0.0104905	
552 4380	3 8827830	0.8054228	-0.0037700
553 8032	3 8013310	0.303 + 223	-0.0030041
555 3186	3 8766780	0.7997955	-0.0033602
556 6861	3.8852260	0.7979000	-0.0034950
559 0527	3.0052200	0.7900323	-0.0034330
550.0007	3.0027039	0.7959952	-0.0034175
559.4202	3.0002200	0.7870303	-0.0034566
500.7800	3.0913310	0.7839535	-0.0034747
502.1705	3.00/00/9	0.7774255	-0.0035163
203.2372	3.8901100	0.7719139	-0.0035075
566 9702	3.8913310	0.7004007	-0.0036876
500.2703	3.8925519	0.7609412	-0.0035261
507.0302	3.8980371	0.7572929	-0.0035298
509.0218	3.8949940	0.74997 12	-0.0035329
570.388 1	3.8949940	0.7427434	-0.0035087
5/1./530	3.9010990	0.7409784	-0.0034353
573.1190	3.9023 199	0.7320216	-0.0033121
574.5073	3.9010990	0.7283754	-0.0032245
5/5.8/33	3.9072039	0.7239538	-0.0031325
577.2988	3.8998780	0.7238937	-0.0030648
5/8.68/2	3.9072039	0.7 185325	-0.00310058
580.0538	3.9023 199	0.7158653	-0.0028393
581.4203	3.908425 1	0.7114794	-0.0028363
582.7868	3.9108670	0.7089223	-0.0029266
584.2186	3.9059830	0.7034948	-0.0029429
585.6067	3.9108670	0.7017316	-0.0029974
586.9724	3.9096460	0.6973310	-0.0030244
588.3389	3.9108670	0.6929726	-0.0030740
589.7053	3.9169719	0.6886187	-0.0030753
591.0708	3.9120879	0.6834039	-0.0030960
592.4582	3.9169719	0.6790251	-0.003071 1
593.8243	3.9169719	0.6772861	-0.00310696
595.1908	3.9169719	0.6669424	-0.003~1200
596.5584	3.9194 140	0.66263%	-0.003'1619
597.9245	3.9267399	0.6583748	-0.003'1553

599.2904	3.9230771	0.6532449	-0.0031437
600.6790	3.9230771	0.6489798	-0.0030998
602.0436	3.9242980	0.6472597	-0.0029631
603.4086	3.9255190	0.6481257	-0.0028825
604.7734	3.9291821	0.6430477	-0.0028~169
606.1414	3.9218559	0.6396667	-0.0027704
607.5282	3,9304030	0.6345555	-0.0027014
608.8936	3,9291821	0.6236283	-0.0026120
610.2596	3.9328451	0.6203609	-0.0025917
611.6245	3,9450550	0.6194962	-0.0025767
613.0613	3,9267399	0.6162304	-0.0025494
614.4480	3.9316239	0.6128926	-0.002551 1
615.8146	3.9340661	0.61.86416	-0.0025641
617.1801	3,9377289	0.6095340	-0.0025557
618.5458	3,9365079	0.6045857	-0.0023,557
619,9131	3,9401710	0.5996411	-0.0024168
621.2987	3,9389501	0.5987917	-0.0023577
622,6638	3,941,3919	0.5946965	-0.0022986
624.0303	3,9389501	0 5906064	-0 0022867
625.3962	3.9426129	0.5873534	-0.0023138
626.7622	3,9462759	0.5857312	-0.0023122
628,1478	3,9438341	0.5808193	-0.0022906
629,5153	3,9438341	0.5775803	-0.00221562
630,8823	3,9462759	0.5743611	-0 0021649
632.2472	3,9474969	0.5735690	-0.0021292
633 6341	3 9511600	0.5695192	-0.0021252
635.0586	3.9450550	0 5654315	-0.0021032
636,4241	3,9499390	0.5638730	-0.0020077
637,8118	3,9523809	0.5638503	-0.0020093
639,1777	3,9499390	0.5574626	-0.0020288
640 5441	3.9511600	0 5551051	-0.0019552
641,9102	3 9548230	0.5543539	-0.0010207
643,3616	3,9536021	0 5518492	-0.0019297
644 7281	3,9536021	0 5478956	-0.0019653
646 0938	3,9536021	0 5439537	-0.0019095
647,4602	3.9572649	0 5415940	-0.0010055
648 8261	3 9609280	0.5392280	
650 2133	3 9572649	0.5368585	-0.0020104
651 5795	3 9572649	0.5344006	-0.00201101
652 9454	3 9572649	0.5344801	-0.0020238
654 3 112	3 9609280	0.5313640	
655.6770	3 9609280	0.5266852	-0.00211012
657 0625	3 9621489	0.5211706	-0.0021509
658,4300	3 9645910	0.5196276	-0.0021947
659,7973	3.9658120	0 5173033	-0.0022213
661,1641	3 9633701	0.5126626	-0.0022215
662 5295	3 9645910	0.51 11519	-0.0021630
663 9173	3 9694750	0.5103719	-0.0021030
665 3430	3 9670320	0.5105/19	
666 7101	3 9670329	0.500-5-1	
668 0761	3 960/0323	0.2010014	-0.0020440
669 4643	3 0721 221	0.107127	-0.0017/33
670 8200	3.9731301	0.192/192	-0.0019234
672 2250	3 9694750	0.100019/	-0.0010073
0,200	J.JUJ=/JU	0.400004	0.00T0004