INJECTION THROUGH FRACTURES

A ReportSubmitted to the Department of Petroleum Engineeringof Stanford University
in Partial Fulfillment of the Requirements
for the Degree of
Master of Science
by
ROBERT ANTHONY JOHNS
May, 1987

ACKNOWLEDGEMENTS

I would like to thank Prof. R. N. Horne for his guidance and insight, which was invaluable help in completing this project. In addition, Prof. Home's outstanding sense of humor made this study a pleasure to conduct, even when my progress in the laboratory seemed so painstakingly slow.

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS ii
TABLE OF CONTENTS iii
LIST OF FIGURES vi
ABSTRACT viii

1. INTRODUCTION 1
2. PREVIOUS WORK 3
3. EXPERIMENTAL APPARATUS 7
3.1 Flow Systems 7
3.2 Tracer Detection Systems 9
3.3 Data Collection Systems. 11
3.4 Core Description. 11
4. EXPERIMENTAL PROCEDURE 14
4.1 Flow System Operation 14
4.2 Data Collection Methods 15
4.3 Data Processing Methods 16
5. EXPERIMENTAL RESULTS 18
5.1 Unfractured Core Samples. 18
5.2 Fractured Core Tests 22
6. MODELLING EXPERIMENTAL DATA 27
6.1 Conventional Analytical Models 27
6.1.1 Taylor Dispersion Model 30
6.1.2 Matrix Diffusion Model 33
6.2 Inlet Dispersion Mechanism 35
6.3 Modified Conventional Analytical Models 43
6.3.1 Matrix Diffusion Model with Dispersed Inlet Bounary Condition 43
6.3.2 Taylor Model with Dispersed Inlet Boundary Condition 47
7. MATRIX DIFFUSION MODEL MATCH PARAMETERS 50
7.1 Datum Time Correction 50
7.2 BreakthroughTime 50
7.3 Dimensionless Dispersion Coefficient 51
7.4 Discussion of Fracture Aperture from Model Match Parameters 57
8. TRACER ADSORPTION: Calculated \& Measured Tracer Retained in the Core 59
8.1 Tracer Retention for a Sorbing Tracer 59
8.2 Tracer Retention for a Non-Sorbing Tracer 63
8.3 Tracer Retention for Low Flowrate Tests 65
9. INLET BOUNDARY CONDITION EFFECTS ON TEST RESULTS 68
10. CORE FRACTURE APERTURE: Calculated vs. Measured 71
11. SUMMARY AND CONCLUSIONS 73
12. RECOMMENDATIONS 75
13. NOMENCLATURE 76
REFERENCES 78
TABLE 1: Unfractured Core Test Summary 81
TABLE 2: Fractured Core Test Summary 82
TABLE 3: Tubing Dispersion Test Summary 83
TABLE 4: Diffusion Model Match Parameters 84
TABLE 5: Diffusion Model Match Parameters 85
APPENDIX A: Reservoir Equivalent Slug Tests for Laboratory
"Step Up" Tracer Tests. 86
APPENDIX B: Derivation of the Modifed Matrix Model Solution 97
-v-
I
APPENDIX C: FORTRAN Optimization Routine for Modified Matrix
Diffusion Model with Sample Input and 102
APPENDIX D: Modified Matrix Diffusion Model Match of Laboratory "Step Up" Tracer Tests 132
APPENDIX E: Miscellaneous Computer Programs 142
APPENDIX F: Complete Data Set for Test Number 11 156

-vi-

LIST OF FIGURES

Fig. 1 Photograph of Core Holder, Switching Valves and Inlet and Outlet Electrodes
Fig. 2 Electrode Circuit and Flow Tee Diagram
Fig. 3 Schematic of Pipe Length Test Section
Fig. 4 Graphical Representation of Voltage Pulsing Procedure
Fig. 5 Core Photographs Before and After Tracer Tests
Fig. 6 Pore Volume Plots for Unfractured Core Tests
Fig. 7 Fractured Core Tracer Test using 80 Mesh Fracture Proppant
Fig. 8 Voltage Profile for Step Up at 3.7 cchnin
Fig. 9 Concentration Profile for Step Up at $3.7 \mathrm{cc} / \mathrm{min}$
Fig. 10 Equivalent Slug Test for Step Up at $3.7 \mathrm{cc} / \mathrm{min}$
Fig. 11 Voltage Profile for Step Down at $\mathbf{3 . 7} \mathrm{cc} / \mathrm{min}$
Fig. 12 Concentration Profile for Step Down at $3.7 \mathrm{cc} / \mathrm{min}$
Fig. 13 Equivalent Slug Test for Step Down at $\mathbf{3 . 7}$ cchnin
Fig. 14 Pore Volume Plots for Fractured Core Tests
Fig. 15 Fossum Model Match of $1.4 \mathrm{cc} / \mathrm{min}$ Test
Fig. 16 Fossum Model Match of $1.4 \mathrm{cc} / \mathrm{min}$ Test using Datum Correction as a Regression Variable
Fig. 17 Jensen Model Match of $1.4 \mathrm{cc} / \mathrm{min}$ Test
Fig. 18 Jensen Model Match of $\mathbf{1 6} \mathrm{cc} / \mathrm{min}$ Test
Fig. 19 Inlet Electrode Response to Tracer 'Front at $1.4 \mathrm{cc} / \mathrm{min}$
Fig. 20 Inlet Electrode Response to Tracer Front at $16 \mathrm{cc} / \mathrm{min}$
Fig. 21 Tubing Dispersion Test: Tracer Front at 1st Electrode
Fig. 22 Tubing Dispersion Test: Tracer Front at 2nd Electrode
Fig. 23 Tubing Dispersion Test: Tracer Front at 3rd Electrode

Fig. 24 Tubing Dispersion Test: Tracer Front Matched with Error Function at $1.2 \mathrm{cc} / \mathrm{min}$
Fig. 25 Tubing Dispersion Test: Tracer Front Matched with Error Function at $4.0 \mathrm{cc} / \mathrm{min}$
Fig. 26 Tubing Dispersion Test: Tracer Front Matched with Error Function at $8.0 \mathrm{cc} / \mathrm{min}$
Fig. 27 Tubing Dispersion Test: Tracer Front Matched with Error Function at 16. cc/min
Fig. 28 Tubing Dispersion Correlation
Fig. 29 Matrix Diffusion Model with Error Function Inlet Boundary Condition: Match of $1.75 \mathrm{cc} / \mathrm{min}$ Test
Fig. 30 Matrix Diffusion Model with Error Function Inlet Boundary Condition: Match of $3.7 \mathrm{cc} / \mathrm{min}$ Test
Fig. 31 Taylor Dispersion Model with Ermr Function Inlet Boundary Condition: Match of $\mathbf{0 . 8} \mathrm{cc} / \mathrm{min}$ Test
Fig. 32 Taylor Dispersion Model with Ermr Function Inlet Boundary Condition: Match of $16 \mathrm{cc} / \mathrm{min}$ Test
Fig. 33 Core Inlet and Outlet Tracer Concentration Proiiles at $16 \mathrm{cc} / \mathrm{min}$
Fig. 34 Core Inlet and Outlet Tracer Concentration Proiiles $\pm 1.4 \mathrm{cc} / \mathrm{min}$
Fig. 35 Core Inlet and Outlet Tracer Concentration Profiles at $0.8 \mathrm{cc} / \mathrm{min}$
Fig. 36 Cumulative Tracer Mass Retained in Core as a Function of Pore Volumes Injected Fig. 37 Tracer Concentration for Sorbing Tracer in Matrix Pore Fluid after 16 whin Test Fig. 38 Tracer Mass Retained in Core for Sorbing Tracer after 16 whin Test

Fig. 39 Tracer Concentration for Non-Sorbing Tracer in Matrix Pore Fluid after 16 whin Test
Fig. 40 Tracer Mass Retained in Core for Non-Sorbing Tracer after $16 \mathrm{cc} / \mathrm{min} \mathrm{Test}$
Fig. 41 Tracer Concentration for Sorbiig Tracer in Matrix Pare Fluid after $1.4 \mathrm{cc} / \mathrm{min}$ Test
Fig. 42 Tracer Mass Retained in Core for Sorbing Tracer after $1.4 \mathrm{cc} / \mathrm{min}$ Test

Abstract

Tracer tests are conducted in geothermal reservoirs as an aid in forecasting thermal breakthrough of reinjection water. To interpret tracer tests, mathematical models have been developed based on the various transport mechanisms in these highly fractured reservoirs. These tracer flow models have been applied to interpret field tests. The resulting matches between the model and field data were excellent and the model parameters were used to estimate reservoir properties. However, model fitting is an indirect process and the model's ability to estimate reservoir properties cannot be judged solely on the quality of the match between field data and model predictions. The model's accuracy in determining reservoir characteristics must be independently verified in a closely controlled environment.

In this study, the closely controlled laboratory environment was chosen to test the validity and accuracy of tracer flow models developed specifically for flow in fractured rocks. The laboratory tracer tests were performed by flowing potassium iodide (KI) through artificially fractured core samples. The tracer test results were then analyzed with several models to determine which best fit the measured data. A Matrix Diffusion model was found to provide the best match of the tracer experiments. The core properties, as estimated by the Matrix Diffusion model parameters generated from the indirect matching process, were then determined. These calculated core parameters were compared to the measured core properties and were found to be in agreement. This verifies the use of the Matrix Diffusion flow model in estimating fracture widths from tracer tests.

-1-

1: INTRODUCTION

In many geothermal development6 it is necessary to reinject low temperature fluids as a means of waste disposal. Reinjection is also desirable as a means to provide pressure maintenance and to enhance recovery by extracting heat left behind when fluids originally in place have been produced. Unfortunately reinjection can also have detrimental effects if premature breakthrough of cold reinjection water occurs. Home (1982) noted several cases in which production wells were adversely impacted in response to the start of reinjection operations. Tracer tests were subsequently conducted in the reinjection wells to identify the cold fluids' path to the production wells. These tests revealed extremely fast breakthrough between injection and production wells. This was believed to be due to the highly permeable fractures which are the primary fluid conduits in these geothermal systems.

In order to quantitatively interpret these tracer tests, a reservoir flow model is required to represent the mechanisms controlling tracer transport. Due to the extensive fracturing, conventional convection/dispersion models for flow in uniform porous media were not considered applicable. Field test results were also far different than those seen before in more uniformly porous reservoirs. These test results confirmed the need for a model which considers the extreme contrast between fracture and matrix properties in these reservoirs.

In response to this need, several models have recently been developed specifically to interpret these tracer tests. Generally, these models relate the test response to fracture aperture and tracer dispersivity. However, some of the model parameters are difficult to measure when matching field tests. Thus, the modal accuracy in predicting reservoir properties cannot be directly verified. This uncertainty turns out to be critical in any further quantitative predictions. For example, thermal breakthrough calculations are extremely sensitive to the fracture width used in forecast models. This indicates the importance of assessing the models accuracy in estimating fracture properties.

To test the accuracy of the tracer model, a test must be conducted in which reservoir characteristics are known precisely. The heterogeneity and uncertainty found in nature makes field scale verification of the tracer flow models impractical. However, the models can be tested in experimental tracer tests conducted in a closely controlled laboratory environment where reservoir parameters can be directly measured on the core sample. Flow models verified in this way can then be applied to interpret field tests, generating reliable reservoir property estimates for use in thermal breakthrough calculations.

Thus, the objective of this study is divided into five tasks, namely; (1) Develop experimental techniques to simulate field tracer tests in a laboratory environment, (2) Conduct tracer tests on fractured cores, (3) Analyze test results with analytical models to evaluate the ability to match experimental results, (4) Measure core properties and compare with estimates from model match parameters, and (5) Modify existing models and/or propose new ones to accurately estimate core properties from tracer test results.

2: PREVIOUS WORK

Previous experimental and analytical work has been conducted to address specific flow mechanisms active in fractured reservoirs during tracer the mathematical models subsequently developed for tracer flow in fractures were based on the physical mechanisms observed in the experimental work. However, laboratory tests which truly emulate a fracured geothermal reservoir tracer test have only recently been undertaken. The experimental results from this work can be incorporated into calibrating specific models for fractured reservoir tracer tests.

Tracer flow models for fracured systems evolved from the classical convectiondispersion model. Johnston and Perkins (1963) presented correlations for using the convectiondispersion model to analyze tracer tests in uniform porous media. Coats and Smith (1964) later modified the model to include mass transfer to an immobile phase from a mobile phase flowing through the porous medium. Dean (1963) also presented a model to reflect interaction between a flowing and non-flowing fraction. However, fracture transport is different from flow in a porous medium and these models are not well suited for use in geothermal environments. Models specifically developed for fractured reservoirs have more recently developed. These models are generally of two types depending on the physical reservoir description. One description assumes discrete matrix blocks in a parallelipiped fracture network. The other common description considers only a single fracture and the adjacent matrix rock which makes up the fracture walls.

Bibby (1980) presented a finite dement model for a fracture network depicting transport in the fractures and diffusion into the matrix. This model concluded that diffusion between mobile fracture fluids and static matrix pore fluid retards solute transport. Sudicky et \mathbf{d} (1982) also modelled a fracture network and concluded that fracture spacing can influence solute retardation. However, he noted fracture spacing effects are less important at wider fracture spacings and higher flow rates. Although the reservoir description in a fractured geothermal reservoir may be somewhat different from the description used in these models, the results of the two studies provide insight into the types of tracer models required for a geothermal system. For
example, in Wairakei. New Zealand, tracer tests were studied by McCabe et al (1983) concluding flow from injection wells is at relatively high rates and predominantly associated with a single fracture. The conclusions of Sudicky's fracture network analysis suggest that a single fracture flow model, which is less complex, should provide accurate results in this reservoir since it has such high flow rates and only a few, major fracture zones.

Many investigators have proposed models for and conducted experimental studies of solute transport in a single fracture. Several studies were conducted to investigate radionuclide migration in a nuclear waste repository, Neremieks (1980) presented an analytical model for solute transport in a fissure and adjacent matrix. Diffusion and adsorption were the only mechanisms governing transport in the rock matrix. Neretnieks concluded that diffusion is an important mechanism retarding solute movement. Later, Neretnieks (1982) conducted laboratory experiments using both sorbing and non-sorbing solutes and verified his earlier flow model. Grisak and Pickens (1980) developed a more complicated finite difference model also for modeling nuclear waste movement in a repository. Their model considered not only matrix diffusion but also hydrodynamic dispersion within the fracture. Tang et al. (1981) also developed a model with hydrodynamic dispersion within the fracture and used the model to match experimental data. The results of these studies showed that diffusion into the rock matrix is a significant retardation mechanism and also indicated that hydrodynamic dispersion within the fracture only effects solute transport at low flow velocities. The experiments of Grisak et al.(1980) added further evidence to support these conclusions.

Studies more specifically aimed t tracer movement in geothermal systems have also been conducted concurrent with much of the waste disposal work. Rodriguez and Home (1981) proposed a single fracture flow nuclear model in which Taylor diffusion was the mechanism responsible for fluid mixing in the fracture. This Taylor dispersion flow model was subsequently verified by a series of experiments in a Hele-Shaw cell by Gilardi(1984) and Bouett(1986) and was incorporated into a tracer test analysis model by Fossum and Horne(1982). The model was used to match Wairakei field test $d a$. The early time field test response was matched by
this flow model but the late time response observed in the field tests could not be precisely represented. This suggested that some additional mechanism lead to tracer retention within the fracture system.

The question of the tracer retention mechanism was investigated experimentally by Breitenbach (1982) in a series of laboratory core tests. Motivated by Breitentach's experimental findings Jensen and Home (1983) later applied a matrix diffusion approach incorporating the Nerernieks (1980) model. This model matched Wairakei field data well. In particular it showed a good match of the late time tracer arrivals which the earlier Taylor dispersion model could not match. Unfortunately, this diffusion model did not provide a direct estimate of fracture aperture. The fracture aperture was coupled with the matrix diffusivity in one of the two dimensionless variables used by the model, so in order to estimate fracture aperture a value for matrix diffusivity needed to be known. Neretnieks (1980) earlier had also reported difficulty in estimating tracer diffusivity without a calibration basis.

To develop a model which provided a unique fracture aperture estimate, Walkup and Home (1985) later presented another matrix diffusion model based on a more complex retention mechanism. This model considered convection, diffusion, dispersion and absorption processes. The result was the decoupling of the fracture aperture from other system variables. The fracture aperture could therefore be determined uniquely from the model parameters generated by a match of field test data.

Pulskamp (1985) conducted laboratory experiments to test the validity of these matrix diffusion models. The results of his tests were not conclusive, however, due the data collection methods employed in his study. Pulskamp made tracer concentration measurements of discrete core effluent samples in a manner similair to field test sampling procedures. Pulskamp later noted that the sampling frequency did not adequately define the tracer response under laboratory condiuons. Pulskamp's work was subsequently used to establish the criteria for tracer concentration measurements adopted in this study.

In summary, a significant amount of work has been conducted, suggesting that matrix diffusion is a dominant transport mechanism in fractured, low matrix permeability rocks. The studies also indicate that hydrodynamic dispersion within the fracture may not be an important factor a the high flow rates in geothermal reinjection operations. This study investigated these two propositions by comparing the model responses to closely controlled laboratory experiments.

3: EXPERIMENTAL APPARATUS

3.1 Flow Systems

The experimental equipment consisted of a core holder suspended in a high temperature air bath with three primary control systems. A confining pressure system consisted of a hydraulically pressurized sleeve around the core plug providing a simulated overburden as well as a tight seal around the core. A water flow system, including a pump, an excess flow loop and a constant pressure accumulator, regulated the flow of distilled water through the core. Tracer, contained in a pressurized vessel, was flowed through the core under the control of a pressure regulator and a pressurized nitrogen bottle. This equipment was initially designed and constructed by Sageev (1980), modified by Breitenbach (1982) and subsequently used by Pulskamp (1985). This setup had been used on all unfractured core samples, however, it was found less suitable for the fractured cores due to the low pressure drops across the core. For fractured samples, the flow loops were modified to take advantage of the low head requirements.

The fractured cores utilized a simple gravity flow system for controlling flow. Distilled water and tracer solutions were stored in constant pressure reservoirs. Pressure was kept constant on the fluid exiting the vessel by locating the air suction at a point below the water surface. The air suction elevation was held a the same position for the duration of a run. These constant pressure vessels were constructed by Gilardi (1984) and later used also by Bouett (1986). The flow rate was controlled by adjusting the elevation difference between the air suction port in the vessel and the core outlet. This system was found to provide extremely steady flows through the core at the $1-3$ psi pressure drops required for the various runs. This constant, steady rate was desired not only to simplify model analyses but also to allow a high fiequency of tracer concentration measurements.

FIGURE 1

Photograph of Corc Holder, Switching Valves, and Inlet and Outlet Electrodes

FIGURE 2
Elcctrode Circuit and Flow Tce Diagram

3.2 Tracer Detection Systems

Tracer concentrations measurements were made at two locations in the core flow loop. At these locations electrodes were installed in the flow system to provide the very high sampling frequency that previous work by Pulskamp(1985) had indicated was necessary. As shown in Figure 1, these two electrodes and their reference resistors were installed immediately outside the core holder inlet and outlet. The locations were chosen so that the tracer could be detected as it entered the core and the tracer concentration in the effluent was measured as it left the core.

The gold plated electrodes were identical to those previously used by Gilardi (1984) and Bouett (1986) in their Hele-Shaw cell. They were installed in brass flow tees connected directly into the flow loop. The measurement end of the electrode, positioned perpendicular to and in the center of the flow strm, was grounded to the brass tee (see Figure 2). The electrodes were held in the tees by snug brass fittings with teflon packing to provide a pressure seal..A common electrical ground was established between the flow tees and the data measurement equipment to assure a similair reference voltage.

These same electrodes were also used to measure tracer flow through a pipe loop assembled to test dispersion in the flow system. A 1.75 meter pipelength was assembled with electrodes located 13,65 and 165 cm from the three way inlet valve at the start of the pipe loop. The apparatus was actually assembled with the same tubings, tees and valves previously used in the core holder circuit. The same gravity flow system consisting of the constant pressure vessels was used to regulate flow through the network. A schematic of the equipment (Figure 3) illustrates this system.

FIGURE 3
Schematic of Pipe Length Test Scction

FIGURE 4
Graphical Represcntation of Voltage Pulsing Procedure

33 Data Collection System

The voltage drop across the electrode (and hence the tracer concentration) was monitored by a KEITHLEY/das Series 500 Measurement and Control System. This unit is capable of ana\log input and output of conditioned signals, switching and 12 bit analog to digital conversion. The KEITHLEY unit is also capable of digital input and output which serves as a communication pathway for receiving instructions from and sending data to a command controller. The command unit used was a COMPAQ personal computer. The personal computer contained the real time clock for sequencing tracer measurement requests and referencing data measurements. The unit also stored data accumulated for the entire run. The same command unit and controller was used earlier by Bouett (1986) to sequence and collect voltage measurements for electrodes in a Hele-Shaw cell.

The electrode voltage was measured in the following way. A positive five volt analog output signal was driven across the resistors and electrodes to the common ground. The voltage drop was then measured between the positive electrode pole and the ground. Immediately after taking measurements at all locations, a negative five volt output signal was driven for the same length of time as the positive voltage pulse. The voltage was then set to zero until the next data measurement request was made. Using this method (seFigure 4), there is no average net charge on the electrode preventing a buildup of ions on the electrode surface. The software driver for this routine, in BASIC, and can be found in Appendix E. The program does the following: (1) Sets the real time clock, (2) Reads the clock, sends output voltages and requests data at predetermined elapsed fres (3) Receives the measured data and (4) Stores the measured data.

3.4 Core Description

The cores for these experiments were cut from a Bandera sandstone from Redfeld, Kansas. This finely grained uniform sandstone was determined to have 17% porosity $\boldsymbol{m}_{\text {measured }}$ from the core dry weight and water saturated core weight). A liquid permeability was measured from tests on the unfractured core and found to be 13 millidarcy.

Several 25 cm diameter and 15.25 cm length cores were cut for use in the tracer experiments. To simulate fractures, cores were sawed in half down the central axis and then reassembled with a fracture proppant to prevent fracture closure under confining pressure. Photographs of a sawed core are shown in Figure 5. One core used an 80-100 mesh sand applied sparingly as a proppant The proppant for the other core was a $\mathbf{2 0 4 0}$ mesh sand applied liberally in the fracture. Apertures created with the $\mathbf{2 0 4 0}$ mesh proppant were on the order of 0.05 cm . Those for the 80-100 mesh sand were only 0.01 cm .

The actual core fracture width was measured in a destructive test conducted after all tracer experiments were completed. A clear epoxy resin was mixed with an oil based red dye and a hardening catalyst and then injected into the core under gas pressure. The core was released from overburden 24 hrs later and the hardened fracture cast removed. Photographs of the core and cast are in Figure 5. Some areas were observed to be unfilled by the resin, but this is most likely due to channelling low pressure gas through the core. as gas breakthrough was observed in the core effluent. Using this fracture cast, twenty fracture width measurements were madeusing a micrometer and the average aperture was found to be 0.0817 cm . The standard deviation for the twenty observations was 0.0116 cm .

The tracer used in the experiments was potassium iodide (KI), selected because of its extensive use in geothermal reservoir field tests. The tracer solution was made by mixing a 1 molar KI solution with distilled water to create a concentration of 105 ppm .

FIGURE
Photograph of Sawed Core before Asscmbly with Proppant

Uunc: 'AE
$4 \vdots \prod_{?}^{10}$
Photographs of Core and Epoxy Facture Cast after Tracer Tests

4 EXPERIMENTAL PROCEDURE

There were three primary tasks required in conducting the tracer tests namely, (1) flowing the background distilled water, (2) switching to the tracer solution and (3) measuring the tracer concentrations in the core effluent.

4.1 Flow System Operation

Prior to conducting the tracer it was necessary to flush 5-10 pore volumes of distilled water through the core. The flushing was required to stabilize the ions dissolved in the core effluent. The ions in the effluent were due to a non-equilibrium exchange between the core and distilled water. This exchange was a function of flow rate and the outlet fluid concentration ranged from 2 to 10 ppm dissolved ionic solids at rates of 16 to $1 \mathrm{cc} / \mathrm{min}$, respectively. This pre-flow stabilization period had an additional benefit. The pre-flow period and the constant pressure at the core inlet and outlet assured a steady rate through the core. The inlet pressures were controlled by maintaining a constant suction port elevation in the liquid vessel. The outlet pressures were held constant by a constant elevation atmospheric discharge. Only after all conditions such as flow rate, pressure and effluent composition had stabilized would the actual test begin.

When the core effluent had stabilized in rate and background concentration, the inlet valve of the core holder was switched to accept inlet from the tracer solution vessel. The tracer vessel was identical in size, location and suction part elevation to the distilled water vessel to assure identical flow rates from each vessel. Tracer flow was then continued util breakthrough occurred and the tracer concentration at the core outlet stabilized. Thus, the tracer input was in the form of a step change maintaining continuous tracer injection until the completion of the test. In contrast to continuous injection tests, slug or spike tests are another type of tracer test commonly used in the field. In a slug test, a single pulse of tracer is sent through the system. Since small volumes of fluid are used in the laboratory, it is obviously difficult to introduce a
discrete slug into the core. For this reason, step tests are more practical in the laboratory.
After first flowing distilled water followed by continuous injection of the tracer solution, the process was reversed. This determined the reversibility of the test The reverse test consist$\boldsymbol{e d}$ of a step change from tracer solution back to distilled water long after the tracer solution flow conditions had stabilized. This reverse procedure should have generated a response simikir in shape but exactly opposite in direction to the initial step change from distilled water to tracer solution. By comparing the shape of these two tests, the reversibility of the tracer retention process could be evaluated.

Flow rates and pressure gradients for the tests were chosen to represent conditions typical of those in geothermal reservoirs. The flow rates varied between 0.75 and $\mathbf{1 6 ~ c c} / \mathrm{min}$ and the pressure drop across the core varied from 0.1 to 2.0 psi. This corresponds to flow velocities of 4 to $80 \mathrm{~m} / \mathrm{hr}$ and a pressure gradient of up to $4 \mathrm{psi} / \mathrm{ft}$. The purpose in considering such a wide range of flow rates was to generate a sharp contrast between the tracer response curves for the tests. This was necessary as the shape of the tracer curve does not vary linearly with velocity. For most of the dispersion flow models, the dimensionless dispersion coefficient varies with the square root of the velocity. Thus, a 50% change in velocity results in only a 25% change in the dispersion characteristics of the system. By covering one and a half orders of magnitude, a five fold change in the dimensionless dispersion coefficient could be observed.

4.2 Data Collection Methods

Using the data collection system described earlier, the voltage drop across the electrode was measured $15-30$ times per minute. The data collection frequency varied with flow rate. The highest sampling rate was for the highest flow rates. During the first trial tests, it was observed that immediately after initiating the voltage pulses the electrode response would drift for a shart time until the system capacitance was charged. The drift problem was resolved by simply pulsing the electrodes for several minutes during the pre-flow stabilization period prior to beginning the tracer test Actual data collection began one minute before switching the flow to the tracer solution and continued for several minutes after the tracer in the core effluent had
stabilized. Following these procedures, data collection lasted anywhere from five to forty minutes depending on the flow rates. The entire data set collected during each run was stored in the microcomputer memory and later transferred to disk.

The measured data is in the form of voltage vs. time. In order to generate tracer concentration profiles it was necessary to correlate the measured electrode voltage to fluid tracer concentration. The correlation was made by first mixing several test samples to a known concentration by diluting an Iodide Standard solution with distilled water. Solution concentrations were mixed to cover the range of $\mathbf{4 - 1 0 0} \mathrm{ppm}$. The voltage drop across the electrode was then measured in the various solutions and plotted to establish a correlation between sample concentration and electrode voltage. The calibration sample voltage measurements were found to be semi-log linearly dependent on the tracer concentration as Gilardi(1984) had noted in his work. The followong semi-log relation was used to convert all tracer test voltage measurements into effluent tracer concentrations.

$$
\begin{gathered}
\frac{C_{e}}{C_{i}}=10^{4.1-\text { Vols }}-2.0 \\
\text { where } \\
C_{\epsilon}=\text { Effuent Tracer Concentration ppm } \\
C_{i}=\text { Injected concentration ppm } \\
\text { Volts }=\text { Measured Electrode Voltage volts } \\
4.1=\text { Effluent Background Voltage volts } \\
2.0=\text { Effluent Background Concentration ppm }
\end{gathered}
$$

A copy of the FORTRAN code which made this conversion is included in the Appendix E.

43 Data Processing Methods

The test data collected represents the core response to continuous tracer injection. This step function response is easily converted into a slug test response by differentiating the continuous injection measurements with respect to time. The resulting response is then directly comparable to the standard spike injection well to well tracer test conducted in the field. This slug response also has more sensitivity than the step response during the transient flow period so critical to model analyses. For both these reasons the slug test data presentation was pre-
ferred for analysis of the experimental data.
The slug test response was generated from the continuous injection test data by differentiating the tracer concentration measurements with respect to time. Two methods were evaluated for differentiating the continuous injection test data to determine which gave the best results. A finite difference method was attempted, however the results generally had a high noise level. A least squares method was used and proved superior to the finite difference algorithm. The least squares technique used a number of adjacent points and fit a straight line through them. The slope of the fitted straight line was then used to represent the derivative at the central point. The optimum number of adjacent points was found to be five. Less points left some signal noise and more points removed some of the definition of the curve. A copy of the program used to generate the slug test data (by differentiation) is contained in the Appendix E.

5: EXPERIMENTAL RESULTS

Several experiments with an unfractured core were conducted first. The unfractured core tracer response is well known and thus it served as a test of the experimental procedures and tracer detection techniques employed. The tests also provided an estimate of rock permeability to distilled water when fully saturated with water and a method of determining the tubing volume between the measurement electrodes. After evaluating the testing procedures using the unfractured samples, fractured cores were tested next. The fractured core tracer response, which is not as well known as the response of unfractured samples, could then be determined with confidence.

5.1 Unfractured Core Samples

The unfractured core tests were conducted with the original distilled water pump and pressurized tracer vessel that Pulskamp (1985) had used. The core permeability was calculated from Darcy's law, where

$$
\begin{gathered}
k=14.7 \frac{q}{A} \frac{L}{p_{i}-p_{e}} \\
\text { where } \\
k=\text { core permeability darcy's } \\
q=\text { flowrate } \frac{\mathrm{cm}^{3}}{\mathrm{sec}} \\
A=\text { core cross sectional area } \quad \mathrm{cm}^{2} \\
L=\text { core length cm } \\
p_{i}=\text { core inlet pressure psia } \\
p_{e}=\text { core exit pressure psia }
\end{gathered}
$$

The measured flowrates and pressures and the calculated permeabilities for the four tests of the unfractured core sample are summarized in Table 1. Average permeability was found to be 13 md with' good agreement between all the cases. The equivalent slug test responses for four of these cases are plotted in Figure 6. The data is plotted on a pore volume basis to allow for a direct comparison of results on a dimensionless time scale. As the plots show, the curves are
almost symmetrical and effectively collapse to one curve indicating that the response is independent of flow velocity. In this plot the symmetrical tracer concentration profile reflects a common property of dispersion often found for uniform porous media. This property is reflected in the dimensionless dispersion coefficient, the Peclet number.

The Peclet number is defined as

$$
\begin{gathered}
P,=\frac{u L}{D_{p}} \\
\text { where } \\
P,=\text { dimensionless Peclet number } \\
u=\text { flow velocity } \quad \frac{\mathrm{cm}}{\mathrm{sec}} \\
L=\text { flow length } \quad \mathrm{cm}
\end{gathered}
$$

$D_{p}=$ total porous media dispersion coefficient

$$
\frac{\mathrm{cm}^{2}}{\mathrm{sec}}
$$

where

$D_{p}=D_{m}+D_{h}=$ molecular diffusion coefficient + media hydrodynamic dispersion coeficient

It has generally been observed for porous media that the medium hydrodynamic dispersion coefficient increases linearly with flow velocity. Also, the hydrodynamic dispersion is much greater than the molecular diffusion allowing the total media dispersion coefficient to be calculated ignoring molecular diffusion effects. Thus, the ratio of the total media dispersion coefficient to the flow velocity, termed the medium dispersivity, is a constant for a uniform porous medium. This constant media dispersivity has been observed to remove flow velocity as a system variable when test results are displayed in dimensionless form. The experimental data from this study exhibits this property and therefore agrees with these observations. This result is a good indication that the experimental procedures, data collection and data analysis methods used are reliable.

The unfractured test results were further examined to obtain a direct measurement of the tubing volume between the inlet and outlet electrodes. The slug response in Figure 6 should reach a peak value at a pore volume of one. The volume used in generating these plots, corresponding to both pore and tubing volume, can be treated as a variable to adjust the \mathbf{x}-axis. By shifting this curve slightly to the right, the correct combined core and tubing volume can be
estimated as 13.6 cc . The 11 cc core pore volume is then subtracted from the $\mathbf{1 3 . 6} \mathrm{cc}$ used to shift the test data so the peak coincides with a pore volume of one. This leaves 2.6 cc for the tubing volume which agrees well with calculations made from equipment drawings.

FIGURE 6
Porc Volume Plots for Unfractured Core Tests

FIGURE 7
First Fractured Core Test with both Fracture and Matrix Response

5.2 Fractured Core Tests

The initial fractured core tests were conducted with an 80-100 mesh sand as a fracture proppant. The volume of proppant was deliberately kept as small as possible to minimize any flow restrictions within the fracture. Unfortunately this proppant was only partially effective in keeping the fi-acture open. The equivalent slug test response for this core (Figure 7) shows the response indicative of two flow paths. This is probably due to the separate responses of the fracture and core matrix. A total flow rate of $\mathbf{4 . 5} \mathrm{m} / \mathrm{min}$ was measured at a 185 psi pressure drop. This indicates that the total core permeability has been enhanced from $\mathbf{1 3}$ to only $\mathbf{2 0} \mathrm{md}$. Matrix flow at this pressure drop is calculated to be $3.0 \mathrm{cc} / \mathrm{min}$ leaving $1.5 \mathrm{cc} / \mathrm{min}$ as fracture flow. This degree of matrix flow agrees with the two peak concentration profile where the low storage fracture responds first and the matrix later. Although these results are interesting, the core is obviously not representative of flow in most geothermal reservoirs. For example. at Wairakei matrix permeability is responsible for only a small percentage of total flow directly into wells and fractures are the dominant flow comdors. This type of system could be better emulated if the fracture size (and thus permeability) were increased substantially so the flow through the core matrix is negligible.

To increase the fracture width, a 2040 mesh sand was chosen as proppant and inserted liberally in a new fractured core sample. Only one layer of proppant was inserted into the fracture as two layers would be unstable under overburden pressure. The initial flow tests using this new core indicated that the larger proppant was effective. The fracture totally dominated the flow through the core and calculated average permeability increased to 7800 md . Matrix flow was estimated at only 0.1% of the total flow. The tracer response profiles later confirmed the lack of matrix flow as no secondary matrix pulse was seen in the core effluent tracer concentration curves. This sample was used in all subsequent fractured core tests.

The data measured for the fractured core tests is summarized in Table 2. As examples of the tracer concentration data handling procedures, the entire suite of tracer profiles generated for the $3.7 \mathrm{cc} / \mathrm{min}$ test are shown in Figures 8 through 13. This includes the actual measured
voltage data, the corresponding tracer concentration profiles and also the equivalent slug test response. The voltage responses measured during the step change injection tests for both the "step up" and "step down" tests are in Figures $\mathbf{8}$ and 11, respectively. The "step up" refers to the stabilized flow of distilled water as the background fluid followed by the switch to tracer solution. This case is representative of a continuous injection tracer test. The "step down" is the reverse test resulting from flow of tracer as the background fluid followed by a change back to distilled water. The voltage data of Figures $\mathbf{8}$ and 11 was then used to convert to tracer concentration generating Figures 9 and 12. These tracer concentrations are in response to continuous tracer injection and they were differentiated to yield the equivalent slug test responses shown in Figures 10 and 13. This entire series of plots was generated for each test, however they are not all shown here in the interest of brevity. Only the reservoir equivalent slug test is shown for the other tests in appendix \mathbf{A}. One complete tabular data set for the $3.7 \mathrm{ml} / \mathrm{min}$ test is contained in Appendix F.

In general, the resolution of the data was good. Repeat tests were conducted at similair flow rates and near identical results were observed, indicating the repetibility of the test. Test reversibility was evaluated by comparing the step up and step down data in Figures $\mathbf{8}$ through 13. Although the curve shape and peak values are similair, the plots are not mirror images of each other. This suggests some hysteresis in the tracer transport mechanism. However, the remainder of the analyses in this report centered on the reservoir equivalent slug test data (the "step up" slug tests) and the reverse test results are left as a subject for further study.

Reviewing the fractured core slug tests, results are seen to be quite different from the unfractured core tests. The slug test response, the highest resolution plot, shows a great degree of asymmetry, similair to the field results observed in Wairakei. These responses show the same early steep rise and late time "tails" characteristic of the field test responses. The similarity between 'the laboratory and field test results indicates that the experimental geometry adequately emulates reservoir conditions. It was therefore considered justifiable to begin quantitative analysis of the experimental results.

FIGURE 8
Volage Profile for Step Up at $3.7 \mathrm{ml} / \mathrm{min}$

FIGURE 9
Concentration Profitc for Step Up at $3.7 \mathrm{~m} / / \mathrm{min}$

FIGURE 10
Eequivalem Sluy Test for Step Up at $3.7 \mathrm{~m} / \mathrm{min}$

FIGURE 11
Voltage Profile for Step Down at $3.7 \mathrm{ml} / \mathrm{min}$

FIGURE 12
Concentration Profile for Step Down at $3.7 \mathrm{ml} / \mathrm{min}$

FIGURE 13
Equivalent Slup Test for Sicp Down at $3.7 \mathrm{ml} / \mathrm{min}$

Before any further analysis of the data was possible, it was necessary to adjust the time datum of the measured response to reflect the actual time of tracer entry into the core. It is important to note the time scale for Figures 8 through 13 and the plots in Appendix A reflects the start of the data collection clock and it is NOT time measured from when the tracer entered the core. Thus, a shift of time datum by $20-200$ secs was required depending on the flow rate. This time datum correction was estimated using the inlet electrode response as follows:

$$
\begin{gathered}
t_{d c}=t_{i e}+\frac{V_{t}}{q} \\
\text { where } \\
t_{d c}=\text { calculated time datum correction } \operatorname{secs} \\
t_{i e}=\text { measured inlet electrodefirst tracer arrival } \mathrm{t} \text { ime } \mathrm{secs} \\
V_{\mathrm{t}}=\text { tubing volume between electrodes } \mathrm{cm}^{3} \\
q=\text { flowrate } \frac{\mathrm{cm}^{3}}{\mathrm{sec}}
\end{gathered}
$$

This time datum correction was then subtracted from the measured times correcting the plots to a true time scale.

$$
\begin{gather*}
t_{a}=t_{o c}-t_{d c} \tag{5}\\
\text { where }
\end{gather*}
$$

$\boldsymbol{t}_{\boldsymbol{a}}=$ actual test time reflecting tracer entry into the core secs
$t_{0 \varepsilon}=$ measured clock time at outlet electrode secs
These shifted plots were later used to develop pore volume plots and in the model analyses. In fact, model analyses were found to be sensitive to the actual test start time and the shift parameter was often used as a system variable. This is discussed in more detail in the modeling section.

6: MODELING THE EXPERIMENTAL DATA

The experiments conducted on the fractured core resulted in an asymmetrical tracer breakthrough profile characteristic of the Wairakei field tracer tests. It should be possible to match this profile shape using the models which have been applied to the Wairakei field test data. However, before attempting any mathematical analysis of the experimental data, a pore volume plot was made so that the results from all of the rums could be viewed on a single plot. The fractured core results (Figure 14) are quite different from those obtained earlier using the unfractured core (Figure 6). The curves for different flow rates no longer collapse to a single uniform shape on this dimensionless scale, indicating that the mechanisms controlling tracer dispersion in the fractured core are velocity dependent. This velocity dependent dispersivity, which was not observed in the uniform core, was further investigated using several analytical fracture flow models.

6.1 Conventional Analytical Models

Several models are available for analysis of flow in fractured porous media. However, only models which are representative of the physical system constructed in the laboratory were deemed relevant for analyses. In the laboratory, as in real geothermal reservoirs, the flow was almost totally in the fracture and the matrix acted only through exchange with the fluid in the fracture. This restricted the choice of models to those considering 1) the matrix impermeable to fluid flow 2) linear flow in a single fracture and 3) fracture/matrix exchange only \pm the fracture wall. The models in this category vary greatly in terms of complexity and the mechanisms they consider. As the goal of this work was partly to evaluate the dominant tracer transport mechanism, several models were considered even though they were expected to be shown to be inappropriate. The philosophy used was to start with the simplest model. Complexity was only added as required to better match experimental results. Models which consider complex mechanisms which could not be precisely quantified were not investigated. The additional com-
plexities of these models were thought to risk clouding the evaluation of the dominant mechanisms by introducing transport phenomena that were not well understood.

FIGURE 14

Pore Volume Plots for Fractured Cores

Interpretation of the experimental results required solution of an inverse problem in which the stimulus and response are known and are used to identify the system. In order to decide whether a particular model is appropriate for the system and also estimate the most likely model parameters, several methods can be used. The simplest and most time consuming is trial and em. Slightly more complicated analyses use dimensionless type curves to identify the effects of system variables on the output response. Another more quantitative method uses non-linear optimization methods. The greatest accuracy and lowest error is associated with these optimization methods and thus one was chosen to fit the models to the results. A least squares non-linear regression porgram named VARPRO, which is based on a paper by Golub and Pereya (1973), was used to fit the experimental results with all the various flow models.

6.1.1 Taylor Dispersion Model

Home and Fossum (1982) developed a model for fracture flow in which planar Taylor Dispersion is the only tracer dispersion mechanism. No interaction is considered with the matrix in this model and thus results are almost symmetrical about the peak concentration. Using this model, attempts were made here to fit the experimental data from several rums. The FORTRAN code and equations for the model can be found in Fossum's report (1982).

The attempts at model regression were not successful. The asymmetrical experimental data resulted in a poor match with this model, just as field test data had. The strong asymmetry of the curves indicates that in an equivalent spike injection tracer would be held up in the core and released again at a later time, producing the long tailing effect observed in the data. This caused predictions with the model to be inaccurate, as shown in Figure 15.

However, it was noted that the model could match the experimental data by allowing the optimization routine to also treat the test start time as a variable. The resulting match of the experimental data (Figure 16) is better, but the start time used in the match does not correspond with the measured start time. Furthermore, the Taylor diffusion solution as presented by Fossum is most likely not valid at these early times for two reasons.

FIGURE 15
Match with Fossum Model without Adjusting Start Time
Modcl (-) and Data (*)

FIGURE 16
Match with Fossum Modcl using Start Time as a Regression Variable (calculated start time draws data so close to origin that an) (insufficient time has elapsed for Fossum solution to be valid)

First, the true Taylor solution is

$$
\begin{equation*}
\frac{C_{s}}{C_{i}}=\operatorname{erfc} \frac{x-u t}{2 \sqrt{\eta t}}+e^{\frac{u x}{\eta}} \text { erfc } \frac{x+u t}{2 \sqrt{\eta t}} \tag{6}
\end{equation*}
$$

However, Fossum's model uses an approximation of Equation 5 which ignores the second tern in the equation. This approximation is valid a late times as the second term diminishes to zero rapidly as time increases. The time scale for the test match in Figure 16 and the fast breakthrough of tracer in the laboratory cores. however, results in conditions where the late time approximation is not appropriate. Thus, Fossum's model is not valid for the times shown in much of Figure 16.

A second reason for discounting this match again relates to the small values of time in Figure 16. The dimensionless time for this model

$$
\begin{gathered}
t_{d}=4 \frac{D_{m}}{W^{2}} t \\
\text { where } \\
t_{d}=\text { dimensionless time } \\
D_{m}=\text { tracer molecular diffusion coeficient } \frac{\mathrm{cm}^{2}}{\mathrm{sec}} \\
t=\text { time secs } \\
W=\text { fracture aperture } \mathrm{cm}
\end{gathered}
$$

must be greater than one half for the tracer concentration to equalize across the fracture aperture. Prior to a dimensionless time of one half, the Taylor solution given in Equation 5 is not actually valid. As Figure 16 clearly shows, some of the solution occurs at a time when the proper velocity profile has not yet developed.

Considering the two points above, if matching experimental data requires shifting the test start time close to the origin where: (1) the solution deviates from the differential equations describing the system and (2) the model uses an approximate solution not valid at such early tres then the model is inappropriate for describing the system.

6.1.2 Matrix Diffusion Model

The tracer diffusion model premnted by Jensen and Home (1983) was the second model used to match experimental results. The solution for this model and the corresponding computer code is presented in Jensen's report (1983). The regression attempts using this model were more successful than those with Fossum's model and resulted in less error between calculated and measured values. As shown in Figures 17 and 18, the match was still only fair. However, during the early time period, the model was in error, showing later tracer breakthrough at a higher concentration than the experimental data. Before abandoning the model, the possibility of some deviation from ideality in the laboratory tests was considered.

Reviewing the model match, the early time predictions indicated a later first tracer arrival than the test results. The model also predicted higher peak concentrations at breakthrough. The early time error could be caused by a deviation from the unit step change assumed to occur at the core inlet face. A less abrupt change in the inlet concentration would result in lower breakthrough tracer concentrations and lower values in the curve peak. The cause of a ramp increase tracer solution concentration (as opposed to a sudden step change) could be mixing of the distilled water and tracer solutions in the volume of pipework between the tracer valve and the core.

To reveal the magnitude of any mixing before the core inlet, the inlet electrode responses for the 16 and $1.75 \mathrm{cc} / \mathrm{min}$ tests (Figures 19 and 20) were examined. The tracer front as it passed the inlet electrode is obviously not an ideal step change and is closer to an exponential rise. The time duration of the transient response period is short, however, in comparison to the total test time it is still significant. The mixing occurring before the core entrance must, therefore, be considered in the boundary conditions of any model solution.

This upstream mixing is apparently due to dispersion in the tubing between the three way valve and the core inlet. The dispersian mechanism for laminar flow in a pipe has been studied by Taylor (1956). The model developed by Taylor was tested to determine its applicability to the data measured ta the inlet electrode.

FIGURE 17
Jensen Model Match at $1.4 \mathrm{cc} / \mathrm{min}$: Fair Agreement with Data but Late Breakthrough
Modcl (-) and Data (*)

FIGURE 18
Jensen Model Match at $16 \mathrm{cc} / \mathrm{min}$: Again Later Tracer Breakthrough
Modcl (-) and Data (*)

63 Inlet Dispersion Mechanism

With the goal of developing the functionally correct form of the tracer front at the core inlet, experiments were carried out to properly characterize the mechanism of dispersion in the inlet tubing. This was then used as the boundary condition to obtain the general solution of the tracer models by developing a new model solution including the new modified inlet boundary condition. Initially the inlet front in Figures $\mathbf{1 9}$ and $\mathbf{2 0}$ was represented by an exponential function. This generated a solution capable of matching experimental results fairly well, however the results were not consistent between the various experiments. It became obvious that the solution for the inlet boundary must be consistent with the forces causing the mixing and that more data would be required to better define the tracer front as it enters the core.

Two problems had to be overcome in determining the correct inlet boundary condition. First, the tracer concentration was needed exactly as the tracer front entered the core rather than at the inlet electrode location. Installing an electrode within the core holder was not possible. Second, the shape of the front previously measured at the inlet electrode location did not reflect the Taylor solution. These problems were overcome by making a series of experiments in a length of pipe. The tracer front was observed as it traveled down the tubing and this data was used to predict the front shape as it enters the core.

The tracer fronts observed at a $1.2 \mathrm{cc} / \mathrm{min}$ flow rate at distances of $\mathbf{1 3}, 65$ and 165 cm from the inlet valve are plotted in Figures 21, 22 and 23, respectively. The $\mathbf{1 3} \mathrm{cm}$ location corresponds to the $\mathbf{1 3} \mathrm{cm}$ distance between inlet electrode and the tracer inlet in the actual core flow loop. As before the front at the $\mathbf{1 3} \mathbf{~ c m}$ location does not have the symmetry observed for Taylor Dispersion and the data matches an exponential function. However, the fronts further downstream do have the symmetrical shape associated with Taylor dispersion in a pipe and do not fit the exponential function (see Figures 22 and 23). Subsequent runs at other flow rates also revealed that the first location deviated from Taylor's model. This is either due to the effects of the inlet valve or because sufficient time had not elapsed to develop a Taylor front (dimensionless time is roughly one-half). The locations further downstream, which correspond
to the core inlet location (and beyond), all conformed to Taylor's model.

FIGURE 19
Inlet Electrode Measurement of Tracer Front Prior
to Entering the Core -Front Rescmblcs Exponential
Exponcntial (-) and Data (*) at $1.4 \mathrm{cc} / \mathrm{min}$

FIGURE 20
Inlet Electrode Mcasurement of Tracer Front Prior to Entering the Core -Front Resembles Exponcntial

FIGURE 21
Tracer Front at 1st Elccuodc (13 cm): Note Lack of Symmetric Profile

FIGURE 22
Tracer Front at 2nd Elcctrode (65 cmin): Taylor Dispersion Profilc Poorly Matchad by Exponential

Tracer Front at 3rd Electrode (165 cm): Taylor Dispersion Profile Poorly Matched by Exponential

Thus, the data from several runs were fit to the following complimentary error function solution initially developed by Taylor(1956).

$$
\begin{gathered}
\frac{C_{i}}{C_{o}}=\text { erfc } \frac{x-u t}{2 \sqrt{\eta t}} \\
\text { where } \\
x=\text { measurement electrode location } \mathrm{cm} \\
u=\text { flow velocity } \frac{c m}{\mathrm{sec}} \\
t=\text { time } \mathrm{sec}
\end{gathered}
$$

$\boldsymbol{\eta}=$ Taylor Dispersion Coefficient
 cm^{2}

$C_{o}=$ inlet concentration ppm
The match for all runs, with flow rates ranging from 0.7 to $16 \mathrm{cc} / \mathrm{min}$, were quite good. Figures $\mathbf{2 4}$ through 27 show examples of the model match of the tracer front at the 65 cm location. The calculated dispersivity value\$ for all of the pipe flow experiments are shown in Table 3. The conclusion was that the mixing did agree with a Taylor dispersion model by the time the front reached the core inlet face and an error function solution (Equation 5) was the correct core inlet boundary condition.

Having successfully described the mixing of tracer and distilled water before the core inlet, a correlation (Figure 28) was developed between injection rate, tubing mixing length and the dispersion coefficient. The correlation was used to determine the appropriate tubing dispersion parameter at a mixing length equivalent to the core inlet. The actual core inlet face is only some 35 cm from the tracer switching valve, however, the equivalent mixing length is longer due the mixing head in the core holder apparatus. $\boldsymbol{A} \boldsymbol{n}$ estimate of the mixing length was made from the tubing volume and cross sectional area as follows:

$$
\begin{equation*}
L_{m}=\frac{V_{t}}{A_{p}}=\frac{2.7 \mathrm{~cm}^{3}}{0.27 \mathrm{~cm}^{2}}=100 \mathrm{~cm} \tag{9}
\end{equation*}
$$

The Taylor Dispersion coefficient for each flowrate was then estimated from Figure 28 at the core inlet mixing length of 100 cm . This generated the constants in Equation 5 which were then used to develop a new solution for the Matrix Diffusion model with a dispersed boundary condition.

FIGURE 24
Tracer Front at 2nd Electrode : Data (*) and Matched Error Function (-)

FIGURE 25
Tracer Front at 2nd Electrode : Data (*) and Matchcd Error Function (-)
Flowrate $=4 \mathrm{cc} / \mathrm{min}$

FIGURE 26
Traccr Front at 2nd Electrode : Data (*) and Matched Error Function (-) Flowrate $=8 \mathrm{cc} / \mathrm{min}$

FIGURE 27
Tracer Front at 2nd Electrode : Data (*) and Matched Error Function (-)

FIGURE 28
Correlation Between Dispersion Cocfficient and Distance from Tubing Inlet

$$
\begin{array}{llll}
1=0.7 \mathrm{ml} / \mathrm{min} & 2=1.25 \mathrm{ml} / \mathrm{min} & 3=4.1 \mathrm{ml} / \mathrm{min} & 4=5.5 \mathrm{ml} / \mathrm{min} \\
5=8.5 \mathrm{ml} / \mathrm{min} & 6=11.0 \mathrm{ml} / \mathrm{min} & 7=15.5 \mathrm{ml} / \mathrm{min} & 8=16 . \mathrm{ml} / \mathrm{min}
\end{array}
$$

63.1 Matrix Diffusion Model with Dispersed Inlet Boundary Condition

The Matrix Diffusion Model solution previously applied to the test data was developed assuming a unit step change inlet boundary condition. This solution was modified for an error function inlet boundary condition to reflect Taylor dispersion in the inlet tubing. The solution was obtained by transforming the error function inlet boundary condition into Laplace space and applying it to the Laplace transform of the solution to the matrix diffusion model. This generated the specific solution for the error function inlet condition. The continuous injection solution was then multiplied by the Laplace variable s to differentiate the continuous solution into the slug test solution. The Laplace space solution was found to be:

$$
\begin{gathered}
C_{f}=s e^{-2 b \frac{\sqrt{s+a}-\sqrt{a}}{\sqrt{s+a}(\sqrt{s+a}-\sqrt{a})}} e^{-\frac{s}{\beta}} e^{-2 a \frac{\sqrt{s}}{\sqrt{\beta}}} \\
\text { where } \\
a=\frac{u^{2}}{4 \eta} \quad \text { inlet dispersion parameter } \mathrm{sec}^{-1} \\
b=\frac{x}{2 \sqrt{\eta}} \text { inlet dispersion parameter } \mathrm{sec}^{-0.5} \\
\eta=\text { Taylor Dispersion Coeficient inlet parameter } \frac{\mathrm{cm}^{2}}{\mathrm{sec}} \\
\alpha=\frac{D_{e}}{W \sqrt{D_{a} \beta}}=\text { dimensionless dispersion coeficient } \\
\beta=\text { reciprical breakthrough time } \frac{1}{\mathrm{sec}} \\
D_{a}=\text { apparent diffusivity } \quad \mathrm{cm}^{2} \\
\mathrm{sec}_{e}
\end{gathered}
$$

Detailed derivation of this equation is in Appendix B.

This slug test solution could not be inverted from Laplace space to real space analytically and the equation was inverted into real space using the Stehfest numerical inversion method (Stehest 1970). The VARPRO nonlinear regression was used to fit the new model (Equation 9) to experimental data. A listing of the FORTRAN program which was used and a sample output is given in Appendix C.

Three variable parameters were used in the VARPRO nonlinear regression routine. The nonlinear variables were: (1) the tracer breakthrough time , (2) the dimensionless core dispersion parameter, and (3) the time datum correction reflecting tracer entry into the core. The first two regression parameters were truly unknowns and a function of the core properties. These same core parameters were used as regression variables in the unmodified Matrix Diffusion model. The third regression parameter, the datum time correction, was actually not an unknown. The datum correction could be determined from the inlet electrode response to the tracer front and the tubing volume between the two electrodes. However, the regression analysis treated the datum time correction as a possible variable, allowing a better fit of the data. The regressed values for the time datum corrections were found to be generally consistent with measured values, but the regression procedure provided a small adjustment to the datum corrections accounting for any errors in the measured time datum correction. The slight variations between measured and regressed time datums most probably reflect actual tubing volume changes due to small flow system modifications made during the course of the experiments. The regression method, therefore, provided a better match of the data with only a minor adjustment in the test start time.

The only terms in Equation 9 not treated as regression parameters were the inlet dispersion terms. These test constants were fairly well known from the tubing dispersion experiments. Regression on these boundary condition terms was attempted but without success. The coupling'of the tracer dispersion in the tubing and the tracer dispersion in the core presented a problem whose solution was nonunique. Thus, the regression routine could not converge on a unique set of model parameters when the tubing dispersion terms were included as regression
parameters.

FIGURE 29
Marrix Diffusion Model with Error Function Inlet Boundary Condition Model ($(-)$ and Data $\left({ }^{*}\right)$ at flowrate $=1.75 \mathrm{cc} / \mathrm{min}$

FIGURE 30
Matrix Diffusion Model with Error Function Inlet Boundary Condition

The tracer profiles for the seven fractured core tests were fitted to the modified matrix diffusion model and the calculated regression variables are listed in Table 4. The measured and calculated tracer profiles are shown for two cases in Figures 29 and 30. The agreement between the calculated and observed response is excellent, indicating that the model is applicable to the system. Plots for all the test matches are in Appendix D. They generally show the same excellent agreement between model predictions and experimental data depicted in the two examples shown here. The modified inlet boundary condition model correctly matched the early time period where the step boundary condition model lead to considerable errors. A summary of model match variables and input parameters is in Table 4.

The model match parameters listed in Table 4 represent the following system variables,

$$
\begin{gathered}
\alpha=\frac{D_{e}}{W \sqrt{D_{a} \beta}} \\
\text { where } \\
\beta=\text { reciprocal breakthrough time } \frac{1}{\mathrm{sec}} \\
D_{e}=\text { effective diffusivity } \frac{\mathrm{cm}^{2}}{\mathrm{sec}} \\
D_{a}=\text { apparent diffusivity } \frac{\mathrm{cm}^{2}}{\mathrm{sec}} \\
W=\text { fracture width } \mathrm{cm}
\end{gathered}
$$

The estimated fracture apertures can thus be calculated using the model match parameters, providing that values for the molecular diffusivity, matrix porosity and apparent dispersion coefficient can be obtained.

63.2 Taylor Dispersion Model with Dispersed Inlet Boundary Condition

Although the Matrix Diffusion model as modified for an error function inlet boundary condition had already matched the experimental data well, the Taylor Dispersion model was also modifed and fitted to the data. Detailed derivation of the modified solution is not presented, however, it is similair in principal to that for the Matrix Diffusion model modification and
the final solution is shown in Appendix B.
The resulting match with this model (Figures 31 and 32) is worse than the unmodified version. Fitting the data shifted the test start time some 20-50 seconds AFTER the tracer had already broken through in the core effluent. The model is obviously not practical for matching experimental test data, however, this negative result is presented for completeness.

FIGURE 31
Fossum Modcl with Modificd Boundary Condition :Note Breakthrough Before Start Time Model (-) and Data (*) at $0.8 \mathrm{cc} / \mathrm{min}$ flowrate

FIGURE 32
Fossum Modcl with Modified Boundary Condition :Note Breakthrough Bcfore Start Time Modcl (-) and Data (*) at $16 \mathrm{cc} / \mathrm{min}$ flowrate

7: MATRIX DIFFUSION MODEL MATCH PARAMETERS

The three parameters matched with the modified Matrix Diffusion model were used to estimate core properties and checked for consistency with other experimental observations. The matched datum time correction was used to calculate the tubing volume between the two electrodes. The matched breakthrough time was used to calculate a unique fracare width. The third parameter, the dimensionless dispersion coefficient, provided another fracture width estimate and also characterized the tracer matrix diffusion and absorption mechanisms.

7.1 Datum Time Correction

The model matched datum correction times for all runs are listed in Table 4. These datum corrections were used in Equation 4 together with the inlet electrode tracer arrival time and the measured test fluid flow rate to calculate the tubing volume between the electrodes. The calculated tubing volumes are shown in Table 4 for all the runs. The estimates generally show little scatter and agree with the tubing volume estimates previously made. The average value is 2.6 cc with only a few cases deviating more than $5-10 \%$.

Although the tubing volume has no bearing on deriving core property estimates, the figures are included because they provide a quality control check on the experimental data. Generally, the rums significantly deviating from the 2.6 cc average are suspect and the quality of the experimental data should be scanned for any errors. The model predictions for these runs (nos. 9 and 10) actually do not tit the measured data very well, further indicating a problem with the data. These test results me most likely skewed by a changing flow rate during the course of the run. In any respect, these tests results should be weighed lightly when evaluating core properties.

72 Breakthrough Time

The model matched core effluent breakthrough times provided a unique opportunity to estimate the fracture aperture directly.,In field tests, the areal (or vertical) extent of the fracture
is seldom known. Even if some approximation can be made, the degree to which the tracer actually flows within the full areal extent is never known. The laboratory test differs from field tests as the core is confined and a direct estimate of the fracture length and cross-section is available. Using the measured core dimensions and the flow rates a simple formula for fracture width can be derived.

$$
\begin{gathered}
W=\frac{q}{L D \beta} \\
\text { where } \\
W=\text { fracture width } \mathrm{cm} \\
\beta=\text { matched reciprocal breakthrough time } \frac{1}{\mathrm{sec}} \\
q=\text { flow rate } \frac{\mathrm{cm}^{3}}{\mathrm{sec}} \\
L=\text { core length }=15.24 \mathrm{~cm} \\
D=\text { core diameter }=2.36 \mathrm{~cm}
\end{gathered}
$$

The fracture width values calculated using this equation are listed in Table $\mathbf{4}$ along with the matched tracer breakthrough times, Values range from 0.06 cm down to 0.004 cm . The estimates vary widely, but not randomly. There is an obvious correlation between rate and estimated aperture, with larger apertures inferred at the higher flow rates. It may be the that results at low rates suffer from an uncertainty similair to that which exists a field scale; that is the unknown flow distribution across the fracture width. At higher rates the flow may fully distribute across the core diameter, however, at low flow rates a preferential flow path within the fracture may inhibit the flow from fully developing across the full fracture width. The actual cause of the variation remains uncertain, however the fracture aperture estimates from the core cast $(0.08 \mathrm{~cm})$ and the hydraulic calculations $(0.012 \mathrm{~cm})$ generally bound the model estimates, indicating the approximation is fairly good.

73 Dimensionless Dispersion Coefficient

After evaluating the fracture aperture using the matched breakthrough time, the dimensionless dispersion parameter was used to provide a second estimate of the fracture aperture and to investigate the tracer diffusion and adsorption within the core. The coupling of these
effects into one parameter prevents a unique estimate of the effects of any single parameter unless other information is available. As stated earlier, the dimensionless dispersion parameter represents the following:

$$
\begin{equation*}
a=\frac{D_{e}}{W \sqrt{D_{a} \beta}} \tag{13}
\end{equation*}
$$

© \boldsymbol{f} the five terms in this equation, three are unknown. Only the first breakthrough time and the dimensionless dispersion parameter are known from the model match. Thus, estimates for the effective and apparent diffusivities must be made to calculate the fracture aperture. The tracer effective diffusivity is difficult to precisely estimate, however, it is usually taken as the product of molecular diffusion and the matrix porosity. Thus,

$$
\begin{equation*}
D_{e}=D_{m} \phi \tag{14}
\end{equation*}
$$

or, more specifically for these tests:

$$
D_{e}=2.1 \times 10^{-5} \frac{\mathrm{~cm}^{2}}{\mathrm{sec}} \times 0.17=3.57 \times 10^{-6} \frac{\mathrm{~cm}^{2}}{\mathrm{sec}}
$$

The effective diffusivity is generally found to be within an order of magnitude of this estimate for a porous medium.

The fourth parameter, the apparent diffusivity is more difficult to estimate mainly because such a wide range of values are observed in field and laboratory situations. Generally,

$$
\begin{gather*}
D_{a}=\frac{D_{e}}{K_{d} \rho_{p}} \tag{15}\\
\text { where }
\end{gather*}
$$

$K_{d} \rho_{p}=$ the dimensionless solidlliquid partition coefficient

For non-sorbing solutes, Neremieks (1980) has shown this parameter is equal to the matrix porosity. He also indicates that for strongly sorbing solutes values up to 10000 are not uncommon. This wide range of possible values ($0.01-10000$) for the adsorption parameter usually far outweighs the uncertainty in the effective diffusion coefficient and thus warranted more investigation into the appropriate value for the laboratory The specific solute of interest, KI , is usually considered non-sorbing in geothermal rocks, but the core sample in this study is an unfired sandstone. As the sandstone may contain some clays with adsorption sites available to
the solutes, the adsorption of KI was investigated using the experimental data already available and by means of a laboratory adsorption experiment.

The degree of any tracer adsorption was initially evaluated by integrating the effluent tracer concentration profiles (minus the influent profile) to calculate the cumulative volume of tracer retained in the core. Results for several runs were reviewed and the results from three typical runs are shown in Figures 33 through 36. Figures 33, 34 and 35 show the core inlet and outlet tracer concentration as a furction of pore volume for three different flow rates. The area between the curves can be integrated to determine the volume of tracer actually retained within the core. The integration results (Figure 36) indicates the cumulative tracer mass retained in the core as a function of pone volumes injected. In some cases up to 0.8 mg of KI has been retained in the core. Using the 11.5 cc core pore volume, this suggests an average core fluid concentration of $\mathbf{5 2} \mathrm{ppm}$ or 50% of the injected tracer concentration. However, this is not possible if diffusion (a very slow process) is the only process considered to be retaining tracer within the core. Rough calculations show that an average tracer concentration of only 35 ppm would exist in the matrix if diffusion were soley responsible for the tracer retained within the matrix. This 3-5 ppm tracer concentration can only account for some 0.05 mg of tracer in the core matrix. Summing the tracer mass retained in the core mamx with the 0.10 0.15 mg in the fracture results in only $\mathbf{0 . 1 5}$ to 0.20 mg of total tracer mass in the core. This figure falls far short of the tracer mass indicated by Figures 33 through 36. Adsorption, or another similar process, must be the cause of this additional tracer retention in the core.

The adsorption parameter was quantified by means of a simple experiment. A 6.4 cc bulk volume piece of core was crushed to its $\mathbf{5 . 3 4} \mathrm{cc}$ granular volume. The rock was then mixed with 170 sc of a 105 ppm tracer solution. The tracer solution subsequently decreased in concentration to 69 ppm . Using this data, \boldsymbol{o} dimensionless sorption parameter of 17 was calculated. This is ihdicative of a very weakly sorbing solute, which is reasonable for KI in a low porosity sandstone.

Finally, all the terms in the dimensionless dispersion parameter have been quantified ex.
cept the fracture aperture. The adsorption and diffusion terms and the two model match parameters were then used to make a second estimate of the fracture aperture. The following values for the coefficients in Equation 13 were used in estimating the fracture aperture:

$$
\begin{aligned}
& D_{a}=3.57 \times 10^{-6} \frac{\mathrm{~cm}^{2}}{\mathrm{sec}} \\
& D_{a}=2.1 \times 10^{-7} \frac{\mathrm{~cm}^{2}}{\mathrm{sec}}
\end{aligned}
$$

$a=$ known model matchparameter dimensionless

$$
\beta=\text { known modal match parameter } \mathrm{sec}^{-1}
$$

Calculated values are tabulated with the match parameters in Table 4. The calculated apertures all range from 0.01 to 0.09 cm , which agrees well with other estimates.

FIGURE 33
Corc Inlct(-) and Outlct (--) Profiles Showing Traccr Retained In Core
Flowrate $=\mathbf{1 6} \mathrm{cc} / \mathrm{min}$

FIGURE 34
Corc Inlet(-) and Outlet(--) Profilcs Showing Traccr Retained In Core
Note lcss area between curves as rate dccreascs

FIGURE 35
Core Inlct(-) and Outlet(--) Profilcs Showing Traccr Retained In Core
Note less arca between curves as rate decreases

FIGURE 36
Cumulative Tracer Mass Retained in Core at 3 Flowrates
Note tracer retention decreases with flowrate

Another method for estimating the fracture aperture from the model dimensionless dispersion parameter was also evaluated. The reciprocal breakthrough time was treated as an unknown and Equation 12 was substituted into equation 13 . The result is the following equation for fracture aperture based on the, model matched dimensionless dispersion parameter, the apparant and effective diffusivities, and the injection flow rate:

$$
\begin{equation*}
W={\frac{D_{a}}{\alpha}}^{2} \frac{L D}{q D_{a}} \tag{16}
\end{equation*}
$$

Using this formula, the fracture apertures shown in Table 5 were estimated. These estimates are the more consistent than the previous estimates, with an average value of 0.073 cm and a 33% standard deviation from the average value. If the two suspect cases ($\mathbf{8}$ and 13) are disregarded, the average is 0.068 cm with an 18% standard deviation. This fracture aperture determination is by far the most accurate of the three methods used. Unforetunately, this method is difficult to use in a field test analysis where the fracture areal extent is not known.

7.4 Discussion of Fracture Aperture Estimates from Model Match Parameters

In the preceding two sections, the two diffusion model parameters were used to generate fracture aperture estimates ranging from 0.005 to 0.090 cm . The average estimate using the breakthrough time parameter is 0.0245 cm with a standard deviation of 0.0212 cm or 87% of the predicted value. The average value derived with both parameters is 0.0463 cm with a standard deviation of 0.025 cm , or 53% of the predicted value. The average value derived using only the dimensionless dispersion parameter is 0.07 cm with a 33% standard deviation. If runs 9 and 13 are disregarded (discrepancy between measured and regressed time datum corrections and a poor model match of the measured data), the standard deviation for aperture estimates using only the breakthrough time parameter drops to $83 \%, \mathbf{4 \%}$ when using both parameters and 18% when using only the dimensionless dispersion parameter. All aperture estimates of $0.025 \mathrm{~cm}, 0.046 \mathrm{~cm}$ and 0.07 cm are reasonable, however, the third value is obviously more reliable based on the standard deviation parameters. The greater precision in the estimate made with only the dimensionless match parameter suggests 0.07 cm is the best estimate of the actu-
al fracture aperture.
The cause of the increased precision in the second and third aperture estimates may be due to errors in the breakthrough parameter. This lower precision in aperture values estimated from the tracer breakthrough time could be due to errors introduced into the model through the inlet dispersion function. Slight changes were ma\& to the constants in the inlet dispersion function to reflect the degree of uncertainty associated with the inlet dispersion correlation (Figure 28). These changes were found to have far less effect on the regressed dimensionless dispersion parameter than the regressed value for the breakthrough time. Thus, errors inherent in an empirical correlation such as Figure 28 would have a greater impact on the aperture values derived from only the breakthrough time, which is far more sensitive to the inlet boundary condition. The possible errors in the inlet boundary condition, therefore, would result in the widest range of apertures derived from the breakthrough time parameter alone. The error would be reduced when using both parameters and almost eliminated if the breakthrough term was ignored. This is parameters and elimated when the breakthrough term was ignored.

The exact cause of the greater efror in the apertures derived using only the breakthrough time remains a subject for further work. It is clear, though, that the dimensionless dispersion coefficient provides a more reliable fracture aperture estimate and should be given far greater weight in any field test analyses.

8: TRACER ADSORPTION : Calculated and Measured Tracer Retention in the Core

The previous fracture aperture calculations from model match parameters noted the significance of the adsorption and diffusion terms in estimating fracture aperture. If a totally non-sorbing solute had been assumed, the fracture aperture calculated from the match parameters would have been an order of magnitude below the estimate made from the breakthrough times and the aperture observed in the epoxy fracture cast. This stresses the importance of quantifying tracer adsorption when interpreting test results. Even if the tracer is very weakly sorbing, assuming no adsorption can lead to considerable errors in estimating fracture aperture. As adsorption has such a significant impact on the model aperture estimate, the tracer retained within the core due to adsorption was modelled to determine whether model calculations agreed with the measured values from the core inlet and outlet tracer concentration profiles (Figures 33 through 36)

8:1 Tracer Retention for a Sorbing Tracer

The tracer retention within the core was determined in two steps. First, the tracer concentration distribution was determined. Second, the distribution was integrated over the core to determine the total mass within the core. To accomplish the first step, the flow model, match parameters and dispersion and adsorption terms were used to calculate the final tracer concentration distribution within the core when the tracer test was terminated. The concentration distribution was determined using the fallowing Laplace space equation for the modified Matrix Diffusion model derived in Appendix B:

$$
\begin{gathered}
C_{m}=e^{-\frac{\sqrt{s+a}-\sqrt{a}}{\sqrt{\sqrt{s}+a}(\sqrt{s+a}-\sqrt{a})}} e^{-\frac{s}{\beta}} e^{-2 \alpha \frac{\sqrt{s}}{\sqrt{\beta}}} e^{-2 \frac{\sqrt{s}}{D_{a}}} \\
\text { where }
\end{gathered}
$$

$C_{m}=$ concentration within the core at z
$z=$ distancefracture wall cm
The concentration within the fracture is obtained by setting z to zero.

Equation 17 was inverted from Laplace to real space with the Stehfest algorithm (1970), and used to calculate the tracer concentration distribution away from the fracture wall at locations $2,4,6,8,10,12$ and 15 cm from the core inlet. The calculations were made for the end of the $16 \mathrm{cc} / \mathrm{min}$ run (400 seconds). The tracer concentration distributions determined using Equation 17 (Figure 37) were found to vary little with the distance from the core inlet. The test time was found to be far more important in determining the tracer distribution within the rock matrix. Thus, the tracer concentration distribution calculated at only one location (Figure 37) was used to represent the entire core length. The calculated distribution was then used in the following numerical integration scheme to determine the cumulative mass retained within the core matrix:

$$
\begin{gathered}
M_{m}=\frac{C_{z}+C_{d z}}{2} d z L D \quad \phi+K_{d} \rho_{p} \\
\text { where } \\
C_{z}=\text { tracer concentration at } z \quad \frac{\mathrm{mg}}{\mathrm{~cm}^{3}} \\
C_{z+d z}=\text { tracer concentration at } z+d z \frac{\mathrm{mg}}{\mathrm{~cm}^{3}} \\
d z=\text { increment in } z \text { direction } \mathrm{cm} \\
D=\text { core diameter } 2.5 \mathrm{~cm}
\end{gathered}
$$

Using equation 18 , the total mass wa\$ summed over the core matrix. The total mass in the core was then determined as

$$
\begin{gather*}
M_{t}=M_{m}+M_{f}=M_{m}+W L D C_{f} \tag{19}\\
\text { where } \\
M_{t}=\text { total mass in core } \mathrm{mg} \\
M_{f}=\text { mass infracture } \mathrm{mg} \\
C_{f}=\text { tracer concentration infracture } \frac{\mathrm{mg}}{\mathrm{~cm}^{3}}
\end{gather*}
$$

Using Equations 18 and 19 , the cumulative mass retained in the core was calculated as a function of matrix penetration depth (Figure 38). The model estimates a total of 0.9 mg is retained within the entire core. This figure agrees with the 0.76 mg estimate made using the core inlet and outlet tracer concentration profiles (Figures 33 and 36). Of the 0.9 mg calculated, 0.173 mg is estimated to be in the fracture, only 0.007 gm is dissolved in the matrix pore fluid
and 0.72 gm is adsorbed onto the rock.

FIGURE 37
Tracer Concentration in the Matrix Porc Fluid after $16 \mathrm{cc} / \mathrm{m}$ Test

FIGURE 38
Total Tracer Mass in the Core at a Given Matrix Penetration Depth

8:2 Tracer Retention for a Non-Sorbing Tracer

The previous tracer retention calculations used the adsorption coefficients derived in Section 7. If, however, no tracer adsorption occurred in the core (i.e. a non-sorbing solute as a tracer), diffusion alone into the matrix could act as a tracer retardation mechanism. An estimate of the tracer concentration distribution and total tracer mass retained within the core assuming a non-sorbing tracer was possible using Equations 17-19 by using the following definition for the dimensionless adsorption parameter:

$$
K_{d} \rho_{p}=\phi
$$

Using this modification, the tracer concentration dismbution for a non-sorbing tracer was calculated from Equation 17 at the end of the $16 \mathrm{cc} / \mathrm{m}$ flowrate test (Figure 39). As expected, the non-sorbing racer is retarded less and penetrates deeper into the core. These non-sorbing tracer concentrations (Figure 39) were then used in Equations 18 and 19 to estimate the total mass retained in the core for a non-sorbing tracer (Figure 40). The non-sorbing tracer resulted in only 0.24 mg of tracer retained in the core. Of this 0.24 mg , roughly 0.06 is within the matrix pore fluid and 0.17 mg is within the fracture. This low retention within the matrix reflects the slow diffusion of tracer into the rock pore volume. Thus, tracer retained with a non-sorbing solute is significantly lower than the 0.76 mg actually calculated previously using influent and effluent data. Considering the large discrepancy between the non-sorbing tracer calculations and the experimental observations, and the fair agreement between the adsorption model estimates and the experimental data, tracer adsorption at the levels assumed in the fracture apertm calculations are justified. Tracer retention due only to matrix diffusion ($\mathbf{0 . 2 4} \mathbf{~ m g}$) can not account for the 0.8 mg of tracer retained in the core during the test.

FIGURE 39
Tracer Concentration in the Matrix for a Non-Sorbing Tracer

FlGURE 40
Total Tracer Mass Retained in the Core for a Non-Sorbing Tracer

8:3 Tracer Retention for Low Flowrate Tests

To further test the above conclusions, core tracer concentration profiles (Figure 41) and core mass retention estimates (Figure 42) for a sorbing solute using the effective and apparent diffusivities from Section 7 were made for the end of the $1.4 \mathrm{cc} / \mathrm{min}$ flow rate test $\mathbf{9 0 0}$ seconds). These calculations actually \$how larger tracer masses retained in the core at the end of the test than the tracer retention estimates for the $16 \mathrm{cc} / \mathrm{min}$ case. The higher retention for the lower rate case predicted by the model occurs because the test time at lower flowrates is longer. The actual test flowrate is a significant factor effecting tracer retention within the core until tracer breakthrough in the core affluent. After breakthrough, tracer concentrations rise rapidly reaching 50 to 60% of the injected tracer concentration in a short time. The effect of flowrate, therefore, diminishes rapidly after only $\mathbf{0 . 3 - 0 . 4}$ pore volumes injected. After $\mathbf{0 . 4}$ pore volumes are injected, tracer concentrations within the fracture are high enough regardless of flowrate to allow effective diffusion into the rock matrix and the most important parameter effecting tracer mass retained in the core is time, as diffusion is the limiting process. Therefore, according to the model the lower rate case, which takes twice as much time to run as the higher rate test, should retain more tracer.

These calculations predicting a larger tracer mass retained in the core at the lower flowrates, however, contradict the experimental data from the tracer retention plots (Figures 33 through 36). The experimental data shows a decrease in tracer mass retained in the core as flowrate decreases. The cause for this discrepancy remains unknown. A concentration dependent adsorption parameter which decreases with concentration could, perhaps, explain the reduced tracer mass retention at the lower flowrate. The longer time period when the low flowrate case has a lower effluent tracer concentration would then be more significant, reducing the total mass adsorbed in the core. However, if a lower adsorption parameter were assumed for the lower rate case, the model matched fracture aperture for the low flowrate cases (already below average) would drop more than an order of magnitude. Also, if a concentration dependent adsorption parameter existed, one would expect the adsorption parameter to increase (rath-
er than decrease) with decreasing concentration as more adsorption sites would be available to the solute on a unit mass basis.

Considering the anomalous tracer breakthrough times and the unexplained adsorption characteristics of the lowest flowrate tests, some deviation from the flow model is apparent in the laboratory tests. A reduced core flow area due to channeling within the fracture could cause premature breakthrough and also lower tracer retention by reducing the surface anea for mass transfer into the rock matrix. The possibility of hydrodynamic dispersion within the fracture also could explain the experimental results. The cause for the discrepancy remains uncertain and is the subject for further work.
-67.

FIGURE
Tracer Concentration in the Matrix Pore Fluid after the $1.4 \mathrm{cc} / \mathrm{m}$ Test

FIGURE
Toual Tracer Mass in the Core after the $1.4 \mathrm{cc} / \mathrm{m}$ Test

9: INLET BOUNDARY CONDITION EFFECTS ON TEST RESULTS

The dispersed inlet boundary condition obviously had an effect on test results as modification of the tracer flow model was necessary to accurately match the laboratory data. To evaluate the effects of tracer dispersion in the inlet tubing on the experimental results, the model match parameters generated for the various core tests were used in the standard slug injection Matrix Diffusion model to estimate the core response without the dispersed inlet condition. Taking the model match parameters for the reciprocal breakthrough time and the dimensionless dispersion coefficient from the runs at $16 \mathrm{cc} / \mathrm{min}$ and $0.8 \mathrm{cc} / \mathrm{min}$, the core response to a uniform tracer slug at the core inlet was simulated (Figures 43 and 44). Comparing the ideal slug test results with the actual experimental data, the inlet dispersion effects on test results is significant. The simulated test indicates a higher peak value and steeper early time response would occur without any tracer dispersion before entry into the core. A pore volume plot of the simulated test data was also generated (figure 45). The pore volume plot for the simulated test more clearly shows breakthrough at dear peak concentration levels after a pore volume on the order of the fracture volume has been injected. The pore volume plot also shows a change in the trend seen in the actual experimental data (Figure 14). The simulated pore volume plot shows similair peak arrival concentrations for both rates, whereas, a higher peak was observed at the lower rates in figure 14. This result is more consistent with expectations, as the breakthrough times for both tests are so small, the effect of diffusion on the slug peak should be relatively in significant. Thus, the somewhat anomalous result Seen in the actual data is an artifact of the mixing in the inlet tubing prior to the tests.

Comparing the simulated slug tests with the experimental data collected in the laboratory, the laboratory test conditions could be improved to provide a laboratory test which is more similair to field tests. The two simulated cases (Figure 43 and 44) show the experimental data deviates from the standard slug test response more than indicated by the initial match attempted with the unmodified Matrix Diffusion model (Figures 19 and 20). The simulated slug test
response has a much stronger asymmetry than the laboratory and, thus, actually better emulates the asymmetry of the field test response seen in Wairakei. A preliminary review of the data collected in this study was conducted before detailed modeling efforts were undertaken. The review (swell as the initial model match attempts in Figures 19 and 20) had indicated the laboratory tests were responding similarly to the Wairakei tests. However, the final analysis indicates the laboratory conditions had a significant impact on the tracer test results. The impact of the mixing of the tracer solution with the background distilled water before entering the core is greater than initially expected, As the real goal of this work was to emulate the field test conditions, it is recommended that the mixing effects be eliminated in any further testing efforts. This could be accomplished by using a longer core, reducing the effects of the tracer mixing zone at the core inlet until they were negligible. Calculations based on the experiences in this study could be made to determine the required core length for the new test apparatus so that the dispersed zone in the core effluent would not impact the test response.

FIGURE 43
Simulated Core Response(-) Compared with Experimental Results(*)

Simulated Corc Response(-) Compared wilh Experimental Results(*)

Porc Volume Plot for Simulated Core Tests, $16 \mathrm{cc} / \mathrm{min}(-) \& 0.8 \mathrm{cc} / \mathrm{min}(*)$

10: CORE FRACTURE APERTURE:Calculated vs. Measured

One of the objectives of this study was to verify the accuracy of the tracer model in estimating fracture aperture. Three estimates of the fracture aperture were made during the course of this work. Fracture permeability calculations were made using the following cubic fracture flow equation:

$$
\begin{equation*}
q=\frac{W^{3}}{12} \frac{p_{i}-p_{e}}{L} \tag{19}
\end{equation*}
$$

The results of these calculations provided an estimate of the fracture aperture (0.012 cm). An estimate of the fracture aperture was also available from physical observations of the fracture cast. The fracture cast, created with epoxy resin, indicated a mean aperture of 0.08 cm . Finally, the tracer model match parameters were used to obtain two fracture aperture estimates. Fracture aperture estimated from the breakthrough time was 0.025 cm , with a 85% standard deviation. Using both match parameters, an average aperture of 0.047 cm with a 45% standard deviation in the data was calculated. Using only the dimensionless dispersion parameter, an average value of 0.07 cm was calculated with a $\mathbf{3 3 \%}$ standard deviation. The differences between the various estimates and the fairly broad range in the tracer model estimates can be explained by comparing the physical conditions of the tests to the assumptions inherent in the models used to evaluate the fracture aperture.

The aperture estimate determined using flow rate and pressure drop measurements in the cubic fracture aperture equation assumes that a uniform fracture exists throughout the core. In reality, proppant within the fracture creates substantial restrictions impeding flow. It is not surprising, then, that a lower value is predicted using this simple equation. The equation could be adjusted to account for the fracture proppant by modifying the flow area to reflect this flow restriction. This roughly works out to a $\mathbf{2 5 \%}$ increase in fracture aperture for a $\mathbf{5 0 \%}$ reduction in flow area. Using this order of magnitude approximation and the visual observation that as much as $80-90 \%$ of the fracture area is blocked by sand grains in the epoxy cast, a fracture
aperture on the order of 0.05 cm is more likely. Another unknown, influencing the fracture permeability estimate of fracture aperture, is the pressure drop in the laboratory flow system. The pressure drops across the fracture were initially anticipated to be 10 to 20 psi and the 0.2 to 0.5 psi head losses in the flow system were considered negligible. However, at the lower pressure drops (0.3 to 1.5 psi) required to minimize matrix flow, the flow system losses cannot be ignored. Considering this factor, the actual pressure drop occurring within the core would be reduced, increasing the aperture estimate by as much as 50%. The actual pressure drop within the flow system is, however, difficult tu calculate due to the complex mixing heads used in the core holder. For this reason, a quantitative impact of flow system head losses is not possible. In summary, the $\mathbf{0 . 0 1 2} \mathrm{cm}$ aperture estimate represents a likely lower bound on the true aperture as all of the errors inherent in this estimate tend to lower the calculated values.

The fracture aperture indicated by the epoxy cast is, perhaps, a good estimate of the hue fracture aperture. The low standard deviation of the measured values suggests little error in the measurements, however, the error in this estimate is not due to the physical measurement system. The main uncertainty is whether the fracture cast actually represents the overburden core conditions, or, if the fracture cast swelled when released from the core holder. The cast could not totally dry without air in the core holder and it is possible the aperture (and the cast) expanded once released from overburden pressure. Considering this possibility, the core cast is most likely a good upper bound on the fracture aperture.

The fracture aperture estimate from the tracer flow model, which is the main reason for this study, has a fairly wide range of variability. However, errors apparrent when estimating the fracture aperture from the first breakthrough time alone actually are responsible for the majority of the uncertainty in the model estimates. The variation in apertures arising when only the second match parameter is used to determine the aperture is not extreme and the range of error in the estimate is well within $\mathbf{2 0} \%$ of the average value. This result would suggest the aperture as derived by the tracer analysis model is roughly 0.07 cm , fitting extremely well into the above upper and lower bounds on the actual fracture aperture from physical measurements.

11: SUMMARY AND CONCLUSIONS

1) Tracer tests on fractured cores were conducted in the laboratory resulting in tracer response profiles similair to those observed in fractured geothermal reservoirs such as Wairakei.
2) Laboratory tracer tests were analyzed with two analytical flow models. The Taylor Dispersion model was found to be inappropriate for matching the data even after adjusting the model for experimental conditions. The Mamx Diffusion model was found to match the test data reasonably and, once modified for the tracer dispersion in the inlet of the laboratory equipment, gave a very accurate match of the measured data.
3) Parameters arising from the match of the data to the Matrix Diffusion model were used to estimate core properties. Estimated average fracture apertures was found to be 0.07 cm which, agrees well with other estimates. The tracer/rock adsorption characteristics were also defined. A value of 17 for the dimensionless partition coefficient was estimated.
4) The Matrix Diffusion model realistically reflects tracer transport mechanisms in fracture dominated, low porosity reservoirs. The model's parameters can be used to provide reliable estimates of reservoir properties such as the fracture aperture and tracer adsorption and diffusion characteristics.
5) Adsorption effects, even for very weakly sorbing tracers, are significant and these
effects should be included in fracture aperture estimates.

12: RECOMMENDATIONS

1) Further studies of the reverse tracer tests and the adsorption characteristics of the lower flowrate tests should be conducted to gain insight into the diffusion/adsorption of tracer in field slug tests.
2) Future tests in laboratory samples should use a longer core length $\mathbf{(2 0 0 - 3 0 0} \mathbf{~ c m})$ to minimize the effects of tracer mixing prior to entering the core. Samples of lower matrix porosity and permeability should be used as they will be more representative of flow rates, pressure drops and fracture widths observed in the field.
3) Tracer test models which can provide a unique fracture estimate in field tests should be investigated to model the laboratory tests from this study. The uncertainty in the effects of diffusion and adsorption effects on tracer transport could thus be eliminated.
4) Until the development of a model which decouples diffusion and adsorption effects from the mechanisms which characterize the fracture aperture, the Matrix Diffusion model can be used to give a good estimate of fracture aperture. When estimating the fracture width, reservoir adsorption properties should be considered due to the strong coupling of these two terms in the model solution.

13: NOMENCLATURE

$C_{f} \quad$ Tracer concentration in fracture $p p m$
$C_{m} \quad$ Tracer concentration in matrix $p p m$
$\boldsymbol{C}_{\boldsymbol{o}} \quad$ Tracer concentration in injected tracer solution ppm
$p_{i} \quad$ Core inlet pressure $p s i a$
$\boldsymbol{p e}_{\boldsymbol{c}} \quad$ Core outlet pressure $\boldsymbol{p s i a}$
$\boldsymbol{P}_{\boldsymbol{\varepsilon}} \quad$ Peclet number, dimensionless
$\boldsymbol{D}_{\boldsymbol{a}} \quad$ Apparent diffusioncoefficient $\frac{\mathrm{cm}}{}{ }^{2}$
$\boldsymbol{D}_{\boldsymbol{m}} \quad$ Molecular diffusion coefficient $\frac{\mathrm{cm}^{2}}{\mathrm{sec}}$
$\boldsymbol{D}_{\boldsymbol{p}} \quad$ Porous media dispersion coefficient cm^{2} sec
$\boldsymbol{D}_{\boldsymbol{h}} \quad$ Porous media hydrodynamic dispersion coefficient $\frac{m^{2}}{\sec }$
De Effective diffusion coefficient $\frac{\mathrm{cm}^{2}}{\mathrm{sec}}$
$\boldsymbol{t}_{\boldsymbol{a}} \quad$ Actual test time relative to tracer entry into core sec
$\boldsymbol{t}_{d a}$ Datum time correction from clock time to actual test time sec
$\boldsymbol{t}_{\boldsymbol{d}}$ Dimensionless time
$\boldsymbol{t}_{i e} \quad$ Measured inlet electrode tracer arrival time sec
t Time sec
$V_{t} \quad$ Tubing volume between electrodes $\boldsymbol{c m}^{3}$
$\boldsymbol{M}_{\boldsymbol{m}} \quad$ Tracer mass in core matrix $\boldsymbol{m g}$
$\boldsymbol{M}_{\boldsymbol{f}} \quad$ Tracer mass in core fracture $\boldsymbol{m g}$
$\boldsymbol{M}_{\boldsymbol{t}} \quad$ Total tracer mass in core $\boldsymbol{m g}$
$\boldsymbol{K} \quad$ Permeability darcy
Flowrate $\frac{\mathrm{cm}^{3}}{\mathrm{sec}}$
q Flowrate sec

A Cross sectional area cm^{2}
$L \quad$ Core length cm
u Flow velocity $\underset{\mathrm{sec}}{\mathrm{em}}$
$x \quad$ Tubing length cm
D Core diameter cm
W \quad Fracture aperture $c m$
a Inlet dispersion parameter $=\frac{u^{2}}{4 \eta} \mathrm{sec}$
b Inlet dispersion parameter $=\frac{x}{2 \sqrt{\eta}} \sec ^{\frac{1}{2}}$
$\eta \quad$ Taylor dispersion coefficient $\frac{\mathrm{cm}^{2}}{\mathrm{sec}}$
$\beta \quad$ Reciprocal breakthrough time $\frac{1}{\text { sec }}$
$\phi \quad$ Matrix porosity void fraction
a Dimensionless dispersion coefficient

REFERENCES

1- HORNE, R. N., "Geothermal Reinjection Experience in Japan," Journal of Petroleum Technology, March 1982

2- FOSSUM, M. P., Tracer Analysis in a Fractured Reservoir: Field Results From Wairakei, New Zealand, Stanford Geothermal Program, SGP-TR-56 Stanford CA, June 1982.

3- FOSSUM, M. P. and HORNE, R. N.,"Interpretation of the Tracer Return Profiles at Wairakei Geothermal Field Using Fracture Analysis," Geothermal Resources Council, Transactions, Vol. 6, October 1982.

4- HORNE R. N. and RODRIGUEZ, F.,"Dispersion in Tracer Flow in Fractured Geothermal Systems," Geophysical Research Letters, Vol. 10, No. 4 , 289-292, 1983

5- GRISAK, G. E. and PICKENS, J. F., "Solute Transport Through Fractured Media ," Water Resources Research, Vol. 16, no. 4, 719-739, 1980

6- NERETNIEKS, I., "Diffusion in the Rock Matrix: An Important factor in Radionuclide Retardation ?, " J. Geophysical Research, Vol. 85, no.B8, 4379,4397, 1980

7- NERETNIEKS, I., ERIKSEN,J. and TAHTINEN, P., "Tracer Movement in a Single Fissure Granitic Rock: Some Experimental Results and Their Interpretation," Water Resources Research, Vol. 18,No. 4, 849-858, 1982

8- DEANS, H. A., "A Mathematical Model for Dispersion in the Direction of Flow in Porous Media," Trans. AIME Vol.228,49-52, 1963

9- PERKINS, R. K. and JOHNSTON, O. C.," A Review of Diffusion and Dispersion in Porous Media," Trans. AIME Vol.228,70-84, 1963

10- COATS, K. H. and SMITH, B. D.,"Dead End Pore Volume and Dispersion in Porous Media," SPE of AIME Trans., 73-84, March 1964

11- CARSLA.W, H. S., and JAEGER, J. C., "Conduction of Heat in Solids", 2nd Edition, Oxford University Press, 1959

12- JENSEN, C. L.," Matrix Diffusion and Its Effect On the Modeling of Tracer Returns from the Fractured Geothermal Reservoir at Wairakei, New Zealand," Stanford Geothermal Program, SGP-TR, Stanford CA, December 1983

13- TAYLOR, G.I.," Dispersion of Soluble Matter in Solvent Flowing Slowly Through a Tube," Proc. Royal Society London, Vol. 219,186-203, 1953

14- GOLUB, G. H. and PEREYA, V.,"The Differentiation of Pseudo-Inverses and Non-linear Least squares Problems Whose Variables Separate," SIAM J. Numerical Analysis, Vol. 10,No. 2, 413431,1973

15- STEHFEST, H.,"Algorithm 368 Numerical Inversion of Laplace Transforms," Communications of the ACM, January 1970

16- VARPRO, Computer Science Department, Stanford CA
17- GIIARDI, J. R.,"Experimental Determination of the Effective Dispersivity in a Fracture," Stanford Geothermal Program, SGP-TR-78,Stanford, CA, 1984

18- BOUETT, L. W.,"The Effect of Transverse Mixing on Tracer Dispersion in a Fracture," Stanford Geothermal Program, SGP-TR-103, Stanford, CA, 1986

19- BIBBY, R.,"Mass Transport in Dual Porosity Media," Water Resour. Res. 17,1075-1081, 1981

20- GRISAK, G. E. and PICKENS, J. F.,"An Analytical Solution for Solute Transport through Fractured Media with Matrix Diffusion," J. Hydrol. 52,47-57, 1981

21- SUDICKY, E. A., and frind, E. O.,"Contaminant Transport in Fractured Porous Media: Analytical Solutions for a System of Parallel Fractures," Water Resour. Res.

18, 1634-1642, 1982
22- TANG, D. H., et al.,"Contaminant Transport in Fractured Porous Media: Analytical Solutions for a Single Fracture," Water Resour. Res. 17, 555-564, 1981

23- KOCABAS, I.,"Analysis of Injection-Backflow Tracer Tests," Stanford Geothermal Program, SGP-TR-96,Stanford, CA, 1986

24- MCCABE, W. J. et al., "Radioactive Tracers in Geothermal Underground Water Flow Studies," Geothermics, vol. 12,no 2/3, pp. 83-110, 1983

Table 1
Unfractured Core Test Summary

	Date	Pressures			Rates and Permeabilty			
		1986	Upstream	Downstream	Delta P	Flow Rate	Calc K	
	PSIG		PSIG	CC/MIN	(md)	Error		
1	Jul 22	285	80	205	3.0	12.0	-8.4%	
2	Jul 23	335	50	285	4.0	11.5	-12.2%	
3	Jul 24	460	60	400	7.6	15.5	$+18.3 \%$	
4	Aug 4	180	150	30	0.5	13.6	$+3.8 \%$	

Mean Permeability $=13.1$

Table 2
Fractured Core Test Summary

	Date	Measured Data		Calculated Parameters			
		Delta P	Flow Rate	Bulk Core	Fracture	Aperature	Deviation
	PSIG	CC/MIN	(md)	(darcy)	MM	Error	
5	Oct 22	185	4.5	20	1001	0.011	NA
6	Oct 29	NA	16.0	NA	NA	NA	NA
7	Oct 30	NA	4.0	NA	NA	NA	NA
8	Nov 3	NA	1.4	NA	NA	NA	NA
9	Nov 5	0.379	8.7	9372	1323	0.126	$+10.5 \%$
10	Nov 6	1.011	9.7	7837	1180	0.119	$+4.4 \%$
11	Nov 6	0.408	3.7	7407	1121	0.116	$+1.7 \%$
12	Nov 8	0.238	1.75	600	990	0.109	-4.4%
13	Nov 8	1.69	16.3	7846	1180	0.119	$+4.4 \%$
14	Nov 13	0.108	0.7	5278	874	0.099	-13.2%
15	Nov 18	0.108	0.75	5655	936	0.106	-7.0%

Men Fracture Width $=0.114 \mathrm{~mm}$
Most Likely Value $=0.119 \mathrm{~mm}$ (ignoring low rates)

Fracture Pore Volume $=(0.0119 \mathrm{~cm})(2.36 \mathrm{~cm})(15.24 \mathrm{~cm})=0.46 \mathrm{cc}$
Core Matrix Pore Vol $=(0.7854)(15.24 \mathrm{~cm})(2.36 \mathrm{~cm})(2.36 \mathrm{~cm})(0.17)=11.35 \mathrm{cc}$
Total Pore Vol $=11.81 \mathrm{cc}$

Table 3
Tubing Dispersion Test Summary

TEST	Date	Measured Data		Calculated Dispersion Parameters			
				Second Electrode		Third Electrode	
	1986	Flowrate	1st Electrode	Location	Dis. Param.	Location	Dis. Param.
		CCMMIN	Correlation Number	CM	SQ-CM/SEC	CM	SQ-CM/SEC
16	Jan 26	1.25	2	65	12.5	165	61
17	Jan 26	16.0	8	65	121.5	165	547
18	Feb 3	15.5	7	65	121.9	165	602
19	Feb 3	11.0	6	65	83.6	165	Elec. Fail
20	Feb 3	4.1	3	65	48.9	165	204
21	Feb 3	5.5	4	65	59.9	165	321
22	Feb 5	0.7	1	65	2.6	165	17
23	Feb 5	8.5	5	65	52.5	165	473

Table 4
Diffusion Model Match Parameters

TEST	Flowrate	Inlet Dispersion Parameters		Model Parameters and Fracture Aperatures			
				Start Time Match		Reciprocal Beta Match	
	$\mathrm{cu}-\mathrm{cm} / \mathrm{min}$	Inlet Length	Dispersion Parameter	Time 0	Tub Vol	Model	Aperture
		CM	SQ-CM/SEC	Seconds	CC	Secs	MM
6	16.0	100	270	23.4	2.8	8.61	0.65
7	4.0	100	60	125	4.1	10.35	0.19
8	1.4	100	10	189	2.11	12.42	0.08
9	8.7	100	90	141	4.4	1.0	0.04
10	9.7	100	100	87	3.3	7.7	0.35
11	3.7	100	60	59.4	2.6	15.3	0.26
12	1.75	100	15	174	3.0	14.7	0.12
13	16.3	100	270	57.0	4.3	8.18	0.606
14	0.7	100	3	214	2.3	28.8	0.093
15	0.75	100	3.5	267	2.6	18.9	0.06

Mean Aperture using Breakthrough Time $=0.25 \mathrm{~mm}$
Standard Deviation = 87\%

Table 5
Diffusion Model Match Parameters

TEST	Flowrate	Fracture Aperture from Alpha Only		Model Parameters and Fracture Apertures			
	cu-cm/min	Alpha	Aperture	Model	Aperture	Model	Aperature
	Dimensionless	MM	Dimensionless	MM	Secs	MM	
6	16.0	0.34	0.76	0.34	0.73	8.61	0.65
7	4.0	0.69	0.74	0.69	0.39	10.35	0.19
8	1.4	1.208	0.69	1.208	0.25	12.42	0.08
9	8.7	0.73	0.304	0.73	0.12	1.0	0.04
10	9.7	0.49	0.605	0.49	0.48	7.7	0.35
11	3.7	1.03	0.36	1.03	0.32	15.3	0.26
12	1.75	1.23	0.532	1.23	0.26	14.7	0.12
13	163	0.24	1.501	0.24	0.99	8.18	0.606
14	0.7	139	1.04	1.39	0.33	28.8	0.093
15	0.75	1.66	0.73	1.66	0.22	18.9	0.06

Mean Aperture using Breakthrough Time $=0.25 \mathrm{~mm}$
Standard Deviation = 87\%

Mean Aperture using Dimensionless Dispersion Coefficient $=0.7 \mathrm{~mm}$ Standard Deviation $=33 \% \quad(18 \%$ without runs 13 and 9)

Mean Aperture using Dinersianless Dispersion and Residence Time Coefficients $=0.47 \mathrm{~mm}$
Standard Deviation = 50\%

APPENDIX A: Reservoir Equivalent Slug Test Plots for Laboratory "Step Up" Tracer Tests

APPENDIX B: Derivation of the Matrix Diffusion Model with an Error Function Inlet Boundary Condition

APPENDIX B: Derivation of the Matrix Diffusion Model Solution with an Error Function Inlet Boundary Condition

The system of governing differential equations is,

$$
\begin{gather*}
\left.\frac{\partial C_{f}}{\partial t}-\frac{2 D_{e}}{\delta} \frac{\partial C_{p}}{\partial y}\right]_{y=0}+u \frac{\partial C_{f}}{\partial x}=0 \tag{B1}\\
D_{a} \frac{\partial^{2} C_{p}}{\partial y^{2}}=\frac{\partial C_{p}}{\partial t} \tag{B2}
\end{gather*}
$$

The boundary and initial conditions are,

$$
\begin{gathered}
C_{f}=C_{p}=0 \quad \text { at } \quad r=0 \\
\frac{C_{f}}{C_{o}}=e r f c\left[\frac{100-u t}{2 \sqrt{\eta t}}\right] \text { at } x=0 \text { for }>0 \\
C_{P}=C_{f} \quad \text { at } \\
C_{p} \rightarrow 0 \quad y=0 \\
\text { as }
\end{gathered}
$$

The general solution to this system of partial differential equations is obtained by transforming the problem into Laplace space. The Laplace space solution is,

$$
\begin{equation*}
\bar{C}_{f}=A e^{-\frac{\varepsilon}{\beta}} e^{-\frac{2 \alpha}{\sqrt{\beta}} \sqrt{s}} \tag{B3}
\end{equation*}
$$

To apply the boundary condition the error fuction inlet boundary condition must first be inverted into Laplace space. The resulting error function inversion is,

$$
\begin{equation*}
\frac{\bar{C}_{f}}{C_{o}}=e^{-2 b \frac{\sqrt{s+a}-\sqrt{a}}{\sqrt{s+a}(\sqrt{s+a}-\sqrt{a})}} \tag{B4}
\end{equation*}
$$

where

$$
\begin{aligned}
& a=\frac{u^{2}}{4 \eta} \\
& b=\frac{100}{2 \sqrt{\eta}}
\end{aligned}
$$

Finally applying the boundary condition

$$
\frac{\bar{C}_{f}}{C_{0}}=e^{-2 b \frac{\sqrt{s+a}-\sqrt{a}}{\sqrt{s+a}(\sqrt{s+a}-\sqrt{a})}} \text { at } x=0 \text { implies } A=e^{-2 b \frac{\sqrt{s+a}-\sqrt{a}}{\sqrt{s+a}(\sqrt{s+a}-\sqrt{a})}}
$$

Thus, the solution for continuous injection is

$$
\begin{equation*}
\bar{C}_{f}=e^{-2 b \frac{\sqrt{s+a}-\sqrt{a}}{\sqrt{s+a} \sqrt{s+a}-\sqrt{a}}} e^{-\frac{s}{\beta}} e^{-2 \alpha \frac{\sqrt{s}}{\sqrt{\beta}}} \tag{B5}
\end{equation*}
$$

To find the solution for a slug injection, the Laplace solution is simply multiplied by the Laplace parameter s,

$$
\begin{equation*}
\bar{C}_{f}=s e^{-2 b \frac{\sqrt{s+a}-\sqrt{a}}{\sqrt{s+a}(\sqrt{s+a}-\sqrt{a})}} e^{-\frac{s}{\beta}} e^{-2 \alpha \frac{\sqrt{s}}{\sqrt{\beta}}} \tag{B6}
\end{equation*}
$$

Thus, the solution for the concentration within the porous matrix is

$$
\begin{equation*}
\bar{C}_{f}=s e^{-2 b \frac{\sqrt{s+a}-\sqrt{a}}{\sqrt{s+a}(\sqrt{s+\alpha}-\sqrt{a})}} e^{-\frac{s}{\beta}} e^{-2 a \frac{\sqrt{s}}{\sqrt{\beta}}} e^{-2 \sqrt{s-D_{a}}} \tag{B7}
\end{equation*}
$$

There is no closed form real space inversion to this Laplace space solution, however, the Stehfest Algorithm gave a good appmximation of the real space solution. This inversion method was susequently used in data analysis.

Following the same methodology used above. the Laplace space solution for the Taylor Dispersion model with an error function inlet boundary condition was found to be,

$$
\begin{equation*}
\bar{C}_{f}=s e^{-2 b \frac{\sqrt{s+a}-\sqrt{a}}{\sqrt{s+a}(\sqrt{s+a}-\sqrt{a})}} \frac{e^{\frac{r_{1}-\sqrt{n}}{\sqrt{\alpha \beta}}}}{r_{1}{ }^{2}-r_{1} \sqrt{r_{2}}} \tag{B8}
\end{equation*}
$$

where

$$
r_{1}=\left(r_{2}+s\right)^{0.5}
$$

$$
r_{2}=\frac{\beta}{4 \alpha}
$$

APPENDIX C: FORTRAN Optimization Routine for Modified Matrix Diffusion Model with Sample Program Input and Output

```
C PROGRAM TO FIT THE LABORATORY DATA TO THE MODIFIED MATRIX
\(\cap \cap \cap \cap \cap \cap \cap \cap O \cap \cap \cap\)
    DIFFUSION MODEL AND ESTIMATE THE OPTIMUM MODEL MATCH PARAMETERS
        1) FIRST THE DATA IS READ
        2) NEXT THE INITIAL GUESSES FOR THE NON-LINEAR PARAMETERS
        ARE ENTERED
        3) THE INLET DISPERSION CONSTANTS ARE READ IN
        4) THE EITTING ROUTINE VARPRO IS CALLED
        5) VARPRO CALLS THE SUBROUTINE ADA, WHICH CONTAINS
        THE MATRIX DIFFUSION MODEL AND ESTIMATES DERIVATIVES
        OF THE NON-LINEAR PARAMETERS
    implicit real* \(8(a-b, d-h, o-z)\)
    common /INP/ xip,uip,disip
    common /V/ v(50),g(50), h(25)
    dimension \(Y(400), t(400), a 1 f(14), \operatorname{beta}(7), w(400), a(400.131)\).
    *inc \((14,8), c(400,8), \operatorname{ctitle}(20), \operatorname{ct}(400), \operatorname{cy}(400), \operatorname{dim}(7)\), out (7)
    *, out1(7),t1(400)
        double precision alf,xip,uip,disip
    external ada
    max=400
    iprint=1
    read \((5,70)\) ctitle
70 format (20a4)
    write(6,71) ctitle
71 format (1h0,10x, 20a4)
    read (5, x) \(n 1\)
    write (6,12) nl
12 format(1n0,10\%,'nurber of nonlinear parameters'//(i3))
    \(1=n 1 / 3\)
    read (5,*) (dim(i),out(i),outl(i), \(i=1,1)\)
    do \(80 \quad i=1,1\)
    ii=2*i-1
    alf(ii+2)=1./out1(i)
    alf(ii)=dim(i)
    alf(ii+1)=1./out(i)
    write \((6,21)\) (alf(i), \(i=1, n i)\)
21 format(1h0,10x,'initial est. of nonlin. parameters'// (f7.3))
    write ( 6,20 ) (dim(i), out(i), outi (i), \(i=1,1\) )
    format(/,'O dimensionless number tracer arrival time inlet \(\boldsymbol{A}^{\prime}\)./,
    * ( \(5 \mathrm{x}, \mathrm{f} 9.5,22 \mathrm{x}, \mathrm{f} 7.3, \mathrm{x}, \mathrm{f} 7.3\) ) )
    \(1 p=1+1\)
    \(1 \mathrm{pp} 2=1+n 1+2\)
    read \((5, *) \mathrm{n}\)
    write(6, 35) n
    read \((5, *)\) xip
    read \((5, \star)\) uip
    read(5,*) disip
    35 format(/1h0,10\%,'number of observations'//(i4))
    iv=1
    \(\operatorname{read}(5, *)(t(i), y(i), i=1, n)\)
    do \(695 \mathrm{i}=1\), n
    \(t(i)=t(i)\)
\(695 \boldsymbol{y}(i)=y(i) *-1000.0\)
    write \((6,60)\) ( \(t(i), y(i), i \neq 1, n)\)
    60 format(1h0,'independent variables dependent variables
    * (/7, (5x,f8.3,21x,£9.3))
        wt \(=0\).
        do \(1 \quad 1=1, n\)
    \(\omega(i)=1\).
    \(j j=12\)
    \(n n=10\)
    call vector(jj, nn)
    call varpro (1,nl, n, nmax, lpp2, iv,t,y,w, ada, a
    *, iprint,alf,beta, ierr)
```

write (6, 13)
$101=1+1$
call ada ($1 p 1, n 1, n, n m a x, 1 p p 2, i v, a, i n c, t, a 1 f, 2$)
do $8 i=1, n$
$t 1$ (i) $=t$ (i)-1./alf (3)
c(i, lpi)-0.
do $\quad 9 j=1,1$
c (i,j)=beta(j)*a (i,j)
$9 \quad c(i, 1 p 1)=c(i, 1 p 1)+c(i, j)$
write $(6,14) t i(i), Y(i), c(i, l p l),(c(i, j), j=1,1)$
$c y(i)=y(i)$
ct (i) $=t(i)$
continue
do $888 \quad i=1, n$
$\mathrm{c}(1,1 p 1)=0$.
do $999 j=1,1$
c (i,j)=beta(j)*a (i,j)
$c(i, 1 p 1)=c(i, 1 p 1)+c(i, j)$
write $(6,14)$ t $1(i), y(i)$
$c y(i)=y(i)$
$c t(1)=t(1)$
do $887 \mathrm{i}=1$, n
$\mathrm{c}(i, 1 p 1)=0$.
do $998 j=1,1$
c (i,j)=beta(j)*a (i,j)
$c(i, 1 p 1)=c(i, 1 p 1)+c(i, j)$
write $(6,14) t i(i), c(i, i p 1),(c(i, j), j=1,1)$
cy (i) $x y(i)$
$c t(i)=t(i)$

887
13
format(1no, time actual calc comp半1 comp\#2',/1)
format (1x,8f10.4)
do $22 i=1,1$
ii=2*i-1
out1 (i)=1./alf(ii+2)
$\operatorname{dim}(i)=a l f(i i)$
out (i) =1. $/$ alf (ii+1)
sum=0.
do $25 j=1,1$
sum=sumtbeta (j)
do $93 i=1,1$
93 beta (i)=beta(i)/sum
write $(6,38)$ (beta (i), dim(i),out (i),out $(i), i=1,1)$
919 format(e12.5)
38 * format (/, fractian dimensionless number arrival time
inlet A fit,$/,(5 x, f 7.3,5 x, f 7.3,22 x, f 7.3,10 x, f 7.4)$)
stop
end
subroutine ada ($1 p, n i, n, n m a x, 1 p p 2, i v, a, i n c, t, a l f, i s e l$)
implicit real*8(a-h, o-z)
dimension alf(nl), a(nmax, lpp2),t(nmax), inc (14, 8), d(400,7)
double precision alf,pwd, pwd1, pwd2,pwd3, dalf,old
$1=1 p-1$
if(isel.eq.2) go to 90
if (isel.eq.3) go to 165
$\operatorname{inc}(1,1)=1.0$
$\operatorname{inc}(2,1)=1.0$
$\operatorname{inc}(3,1)=1,0$
90
do $81 i=1, n$
do $81, j=1,1$
$k 1=2 * j-1$
. $\mathrm{k} 2=2$ * j
if (alf(2)^t (i)*alf (3)/(alf(3)talf(2)).gt.1.0) go to 82
$a(i, j)=0.0$
$d(i, j)=0$.
go to 81
$82 \pi n 1=12$
$\mathrm{mml}=10$
$a(i, j)=P W D(T(i), N N 1, M M 1, R L F, n l, n m a x)$
$d(i, j)=a(i, j)$
81 continue
if (isel.eq.2) go to 200
165 do $170 \mathrm{i}=1, \mathrm{n}$
do $170 j=1, n l$
$k i=(j+1) / 2$
$k 2=2 * k 1$
k3=k2-1
$j j=1+j+1$
if(alf(2)*t(i)*alf(3)/(alf(2)+alf(3)).gt.1.0) go to 171
$a(i, j j)=0$.
go to 170
171 if(j.eq.2) go to 300
if(J.eq.3) go to 310
กn $1=12$
$\mathrm{mml}=10$
$a(i, j j)=$ QWD1 (T (i), Nni,Mmi, ALF, ni, nmax)
go to 170
300
nnl $=12$
$\mathrm{mml}=10$
$a(i, j j)=P W D 2(T(i), N n 1, M m 1, A L F, n l, n m a x)$
go to 170
310 กn1 $=12$
$\mathrm{mm} 1=10$
a ($i, j j)=$ PWD3 ($T(i), N n 1, M m 1, A L F, n l, n m a x)$
go to 170
170 continue
write $(6,111)$ a $(50,3), a(50,4), \mathbf{a}(50,5), a(50,6), a(50,7)$
111 format(e12.5,3x,e12.5,3x,e12.5,3x,e12.5)
200 continue
return
END
function vector (n, m)
IMPLICIT REAL*8 (A-H,O-2)
common /V/v(50),g(50),h(25)
$\mathrm{M}=\mathrm{N}$
DLOGTW-0. 6931471805599
$\mathrm{NH}=\mathrm{N} / 2$
C
C
$G(1)=1$
DO $1 \mathrm{I}-2, \mathrm{~N}$
$G(I)=G(I-1) * I$
CONTINUE
TERMS WITH K ONLY ARE CALCULATED INTO ARRAY H.
$H(1)=2 . / G(N H-1)$
DO $6 \mathrm{I}=2$, NH
$\bar{T} \mathrm{I}=\mathrm{I}$
IF (I-NH) 4,5,6
$H(I)=F I * * N H * G(2 * I) /(G(N H-I) * G(I) * G(I-1))$
GO TO 6
$H(I)=F I * * N H * G(2 * I) /(G(I) * G(I-1))$
CONTINUE
THE TERMS (-1)**NH+1 ARE CALCULATED.
FIRST THE TERM FOR 1=1
$\mathrm{SN}=2 *(\mathrm{NH}-\mathrm{NH} / 2 \star 2)-1$
THE REST OF THE SN'S ARECALCULATED IN THE MAIN RUTINE.

[^0]common/INP/ xip,uip,disip
DIMENSION ALF (nl)
double precision alf, arg, pwdl, $u, x, d s, b, a, r t s, x i p, u i p, d i s i p$
u=uip/ (60.*0.0325)
$x=x i p$
$d s=d i s i o$
$b=x /\left(2 ._{*}^{*}(d s * * 0.5)\right)$
$a=u /\left(2 .^{*}(d s * * 0.5)\right)$
rts $=(a r g+a * * 2) * * 0,$,
bol $=\left(a r g * d e x p\left(-2 . \star b^{*}(r t s-a)\right)\right) /(r$ rs* (rts-a))
bc=bcl
PWDL=dexp $(-a r g / a 1 f(2)) * \operatorname{dexp}(-2 . \star a 1 f(1) *((a r g / a 1 f(2)) * * 0.5))$ *
*dexp(-arg/alf(3)) *bc
return
end

FUNCTION PMD1 (TD, N, M, ALE, M1, Mmax) THIS EUNTION COMPUTES NUMERICALLY THE LAPLACE TRNSEORM INVERSE OF $\mathrm{F}(\mathrm{S})$.
IMPLICIT REAL*\& (A-H,O-Z)
common /V/v(50),g(50),h(25)
DIMENSION ALF (nl)
double precision alf, arg, pwdll, pwdl
NOW IF THE ARRAY V (I) WAS COMPUTED BEFORE THE PROGRAM GOES DIRECTLY TO THE END OF THE SUBRUTINE TO CALCULATE $F(S)$.
DLOGTW=0.6931471805599

```
A=DLOGTM/TD
```

 PWD1=0
 DO \(15 \mathrm{I}=1 \mathrm{~N}\)
 \(A R G=A * I\)
 PWD1=PWD1+V (I)*2WDL1 (ARG,ALF, NL, NMAX)
 CONTINUE
 PKD1=PKD1*A
 RETURN
 END
 FUNCTION QWDII (ARG, ALF,NL, NMAX) common /INP/ xip,uip,disip
DIMENSION ALF (ni)
double precision alf,arg, pwdll, $v, x, d s, b, a, r t s, x i p$, uip, disip
u=uip/(60."0.0325)
x-xip
$d s=d i s i o$
$b=x /\left(2 .{ }_{*}^{*}(d s * * 0.5)\right)$
$a=u /(2 . *(d s * * 0.5))$
rts $=(a r g+a * * 2) * *$,
$b c 1=\left(a r g^{\star} \operatorname{dexp}\left(-2 . * b^{*}(r t s-a)\right)\right) /\left\langle r t s^{*}(r t s-a)\right)$
bc=bcl
PWDL1=(-2,* ((arg/alf(2))**0.5))*dexp $(-\arg / \operatorname{alf}(3)) *$
$\star \operatorname{dexp}(-\arg / a \operatorname{f}(2)) * \operatorname{dexp}\left(-2 . \star a 1 \in(1)^{\star}((\arg / a 1 f(2)) * * 0.5)\right) *$

* bc
return
end
FUNCTION PTD2(TD,N,M,ALE, M1, nmax)
THIS FUNTION COMPUTES NUMERICALLY THE LAPLACE TRNSFORM
INVERSE OF F(S) -
IMPLICIT REAL*\& (A-H,O-Z)
common /V/v(50),g(50),h(25)
DIMENSION ALF(nl)
double precision alf,arg,pwdl2,pwdZ
NOW IF THE ARRAY V (I) WAS COMPUTED BEFORE THE PROGRAM
GOES DIRECTLY TO THE END OF THE SUBRUTINE TO CALCULATE
F(S).
DLOGTH=0.6931471805599
C
C
FUNCTION PWDL2 (ARG,ALF,NL,NMAX)
common /INP/ xip,uip,disip
DIMENSION ALF(nl)
double precision alf,arg,psdl2,u,x,ds,b,a,rts, xip,uip,disip
u=uip/(60.*0.0325)
x=xip
ds=disiq
b=x/(2.* (ds**0.5))
a=u/(2.*(ds**0,5))
zts=(arg+a**2.)**0.5
bci=(arg*dexp(-2,*b* (rts-a)))/(rts* (rts-a))
bc=001
PWDL2=((arg/(alf (2)**2,)) +(alf(1)* (arg**0.5))/(alf (2)**1.5))*
*desp(-arg/alf(3))*bc*
*dexp(-arg/alf(2))*dexp(-2.*alf(1)*((arg/alf(2))**0.5))
return
end
PMD 2=0
DO 15 I=1,N
ARG=A*I
PWD2=PWD2+V (I)*PWDL2 (ARG,ALF,NL,NMAX)
CONTINUE
PWD2=PWD2 * A
RETURN
END
THE STEHEEST ALGORITHM
FUNCTION QYD3(TD,N,M,ALF,N1, nmax)
THIS FUNTION COMPUTES NUMERICALLY THE LAPLACE TRNSFORM
INVERSE OF F(S).
IMPLICIT REAL*8 (A-H,O-2)
common /V/v(50),g(50),h(25)
DIMENSION ALF(ni)
double precision alf, arg,pwdl3,pwd3
NOW IF THE ARRAY V(I) WAS COMPUTED BEFORE THE PROGRAM
GOES DIRECTLY TO THE END OF THE SUBRUTINE TO CALCULATE
F(S).
DLOGTW-0.6931471805599
C
THE NUMERICAL APPROXIMATION IS CALCULATED.
. A=DIOGTH/TD
2WD 3=0
DO 15 I=1,N
ARG=A*I

```

CONTINUE
PWD \(3=\) PWD 3 * \(A\)
RETURN
END

FUNCTION QWDL3 (ARG,ALF,NL,NMAX)
common / INP/ xip, uip, disip
DIMENSION ALF (nl)
double precision alf, arg, pwdl3, u, \(x, d s, b, a, r t s, x i p, u i p, d i s i p\)
u=uip/ (60.*0. 0325)
x=xip
ds=disip
\(\mathrm{b}=\mathrm{x} /(2 . \star(\mathrm{ds} \star * 0.5))\)
\(a=u /(2 . *(d s * * 0.5))\)
rts \(=(\mathrm{arg}+\mathrm{a} * * 2.) \star * 0.5\)
bc1=(arg*dexp (-2. *b* (rts-a))) /(rts* (rts-a))
\(b c=b c 1\)
pwdi 3=dexp (-arg/alf (3))*(arg/(alf(3)**2.))*bc*
\(\star \operatorname{dexp}(-\arg / \operatorname{alf}(2))^{\star d e x p}(-2 . \star a l f(1) *((a r g / a l f(2)) \star * 0.5))\)
return
end
SUBROUTINE VARF'RO (L, NL, N, NMAX, LPP2, IV, T, Y, W, ADA, A,

GIVEN A SET OF N OBSERVATIONS, CONSISTING OF VALUES Y(1), \(\mathbf{Y}(2), \ldots, \mathbf{Y}(N)\) OF A DEPENDENT VARIABLE Y, WHERE Y (I) CORRESPONDS TO THE IV INDEPENDENT VARIABLE(S) T (I,1), T (I, 2), ..., T (I,IV), V W R O ATTEMPTS TO COMPUTE A WEIGHTED LEAST SQUARES FIT TO A FUNCTION ETA (THE 'MODEL') WHICH IS A LINEAR COMBINATION
\(\operatorname{ETA}(A L E, B E T A ; T\rangle=\underset{J=1}{L} \quad B E T A{ }_{J}^{*} \operatorname{PHI}(A L F ; T)+P H I_{J+1}(A L F ; T)\) OF NONLINEAR FUNCTIONS PHI(J) (EGG. A SUM OF EXPONFNTTATS ANN/ UK GAUSSIANS). THAT IS, DETERMINE THE LINEAR PARAMETERS BETA(J) AND THE VECTOR OF NONLINEAR PARAMETERS ALF BY MINIMIZING

THE (L+1)-ST TERM IS OPTIONAL, AND IS USED WHEN IT IS DESIRED TO FIX ONE OR MORE OF THE BETA'S (RATHER THAN LET THEM BE DETERMINED). VARPRO REQUIRES FIRST DERIVATIVES OF THE PHI'S.

NOTES:
A) THE ABOVE PROBLEM IS ALSO REFERRED TO AS 'MULTIPLE NONLINEAR REGRESSION'. FOR USE IN STATISTICAL ESTIMATION, 30. VARPRO RETURNS THE RESIDUALS, THE COVARIANCE MATRIX OF THE 31. LINEAR AND NONLINEAR PARAMETERS, AND THE ESTIMATED VARIANCE OF THE OBSERVATIONS.
B) AN ETA OF THE ABOVE FORM IS CALLED 'SEPARABLE'. THE 35. CASE OF A NONSEPARABLE ETA CAN BE HANDLED BY SETTING L \(=0\) AND USING PHI ( \(\mathrm{L}+1\) ).
C) VARPRO MAY ALSO BE USED TO SOLVE LINEAR LEAST SQUARES 37. PROBLEMS (IN THAT CASE NO ITERATIONS ARE PERFORMED). SET 39. \(\mathrm{NL}=0\).
41.
42.
D) THE MAIN ADVANTAGE OF VARPRO OVER OTHER LEAST SQUARES ..... 43.
PROGRAMS IS THAT NO INITIAL GUESSES ARE NEEDED FOR THE LINEAR ..... 44.
PARAMETERS. NOT ONLY DOES THIS MAKE IT EASIER TO USE, BUT IT ..... 45.
OFTEN LEADS TO FASTER CONVERGENCE. ..... 46.
47.
DESCRIPTION OF PARAMETERS ..... 49
50.
L NUMBER OF LINEAR PARAMETERS BETA (MUST BE .GE. 0). ..... 51.
NL NUMBER OF NONLINEAR PARAMETERS ALF (MUST BE GE, 0) ..... 52.
N NUMBER OF OBSERVATIONS. N MUST BE GREATER THAN L + NL ..... 53.
(I. \(\mathbf{\Sigma}\), , THE NUMBER OF OBSERVATIONS MUST EXCEED THE ..... 54.
NUMBER OF PARAMETERS). ..... 55.
IV NUMBER OF INDEPENDENT VARIABLES T. ..... 56.
\(T\) REAL N BY IV MATRIX OF INDEPENDENT VARIABLES. T (I, J) ..... 57.
CONTAINS THE VALUE OF THE I-TH OBSERVATION OF THE J-TH ..... 58.
INDEPENDENT VARIABLE.59.
Y N-VECTOR OF OBSERVATIONS, ONE FOR EACH ROW OF T. ..... 60.
W N-VECTOR OF NONNEGATIVE WEIGHTS. SHOULD BE SET TO 1's ..... 61.
IF WEIGHTS RRE NOT DESIRED. IF VARIANCES OF THE ..... 62.
INDIVIDUAL OBSERVATIONS ARE KNOWN, W(I) SHOULD BE SET ..... 63.
TO 1./VARIANCE (I). ..... 64.
INC NL X (L+1) INTEGER INCIDENCE MATRIX. INC (X, J) \(=1 \mathrm{IF}\) ..... 65.
NON-LINEAR PARAMETER ALF (K) APPEARS IN THE J-TH ..... 66.
FUNCTION PHI(J). (THE PROGRAM SETS ALL OTHER INC (K, J) ..... 67.
TO ZERO.) IF PHI(L+1) IS INCLUDED IN THE MODEL, ..... 68.
THE APPROPRIATE ELEMENTS OF THE (L+1)-ST COLUMN SHOULD ..... 69.
BE SET TO \(1^{\prime} \mathrm{s}\). INC IS NOT NEEDED WHEN \(L=0 \quad O R\) NL \(=0\). ..... 70.
CAUTION: THE DECLARED ROW DIMENSION OF INC (IN ADA) ..... 71,
MUST CURRENTLY BE SET TO 12. SEE 'RESTRICTIONS' BELOW. ..... 72.
NMAX THE DECLARED ROW DIMENSION OF THE MATRICES A AND T. ..... 73.
IT MUST BE AT LEAST MAX (N, \(2 * N L+3\) ). ..... 74.
L+P+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC. LPP 2 ..... 75.THE DECLARED COLUMN DIMENSION OF A MUST BE AT LEAST
LPP2. (IF L = 0, SET LPP2 = NL+2. IF NL = 0, SET LPP2 ..... 77.76.
L+2.) +2 .
REAL MATRIX OF SIZE MAX (N, 2*NL+3) BY L+P+2. ON INPUT ..... 79.
IT CONTAINS THE \(9 R I(J)^{\prime}\) 's AND THEIR DERIVATIVES (SEE ..... 80.
BELOW). ON OUTPUT, THE FIRST L+NL ROWS AND COLUMNS OF ..... 81.
A WILL CONTAIN AN APPROXIMATION TO THE (WEIGHTED)
COVARIANCE MATRIX AT THE SOIUTION (THE FTRST I RON ..... 82.
CORRESPOND TO THE LINEAR PARAMETERS, THE LAST NL TO THE83.
NONLINEAR ONES), COLUMN L+NL+1 WILL CONTAIN THE ..... 85.
WEIGHTED RESIDUALS ( \(Y\) - ETA), A ( \(1, ~ L+N L+2\) ) WILL CONTAIN ..... 86.THE (EUCLIDEAN) NORM OF THE WEIGHTED RESIDUAL, AND
A (2, L \(+N L+2\) ) WILL CONTAIN AN ESTIMATE OF THE (WEIGHTED) ..... 81.VARIANCE OF THE OBSERVATIONS, NORM (RESIDUAL)**2/( N - L - NL) .89.
91.INPUT INTEGER CONTROLLING PRINTED OUTPUT. IF IPRINT IS
POSITIVE, THE NONLINEAR PARAMETERS, THE NORM OF THE ..... 92.
RESIDUAL, AND THE MARQUARDT PARAMETER WILL BE OUTPUT ..... 93.
EVERY IPRINT-TH ITERATION (AND INITIALLY, AND AT THE ..... 94.
FINAL ITERATION). THE LINEAR PARAMETERS WILL BE ..... 95.
PRINTED AT THE FINAL ITERATION. ANY ERROR MESSAGES ..... 96.
WILL AL\$O BE PRINTED. (IPRINT = 1 IS RECOMMENDED AT ..... 97.
FIRST.) IF IPRINT \(=0\), ONLY THE FINAL QUANTITIES WILL ..... 98.
BE PRINTED, AS WELL AS ANY ERROR MESSAGES. IF IPRINT = ..... 99.
-1, NO PRINTING WILL BE DONE. THE USER IS THEN ..... 100.
RESPONSIBLE FOR CHECKING THE PARAMETER IERR FOR ERRORS. ..... 101.
ALF NL-VECTOR OF ESTIMATES OF NONLINEAR PARAMETERS ..... 102.
(INPUT), ON OUTPUT IT WILL CONTAIN OPTIMAL VALUES OF ..... 103.
THE NONLINEAR PARAMETERS.104.
BETA L-VECTOR OF LINEAR PARAMETERS (OUTPUT ONLY). ..... 105.IERR
INTEGER ERROR FLAG (OUTPUT): ..... 106.
.GT. O - SUCCESSFUL CONVERGENCE, IERR IS THE NUMBER OF ..... 107.ITERATIONS TAKEN.
-1 TERMINATED FOR TOO MANY ITERATIONS. 109.
-2 TERMINATED FOR ILL-CONDITIONING (MARQUARDT 110. PARAMETER TOO LARGE.) ALSO SEE IERR = -8 BELOW. 111. - 4 INPUT ERROR IN PARAMETER N, L, NL, LPP2, OR NMAX. 112.
-5 INC MATRIX IMPROPERLY SPECIFIED, OR P DISAGREES 113. WITH LPP2.
-6 A WEIGHT WAS NEGATIVE.
-7 'CONSTANT' COLUMN WAS COMPUTED MORE THAN ONCE 115.
-8 CATASTROPHIC FAILURE - A COLUMN OF THE A MATRIX HAS 117. BECOME ZERO. SEE 'CONVERGENCE FAILURES' BELOW. 118.
119.
(IF IERR .LE. - 4, THE LINEAR PARAMETERS, COVARIANCE MATRIX, ETC. ARE NOT RETURNED.)

SUBROUTINES REQUIRED
NINE SUBROUTINES, DPA, ORYAC1, ORFAC2, BACSUB, POSTPR, COV, XNORM, INIT, AND VARERR ARE PROVIDED. IN ADDITION, THE USER MUST PROVIDE A SUBROUTINE (CORRESPONDING TO THE ARGUMENT ADA) WHICH, GIVEN ALE, WILL EVALUATE THE FUNCTIONS \(\mathrm{FHI}(J)\) AND THEIR PARTIAL DERIVATIVES D PHI (J)/D ALE (K), AT THE SAMPLE POINTS T(I). THIS ROUTINE MUST BE DECLARED 'EXTERNAL' IN THE CALLING PROGRAM. ITS CALLING SEQUENCE IS
SUBROUTINE ADA ( \(L+1, N L, N\), MMX LPQ2, IV, A, INC, T, ALF, ISEL)

THE USER SHOULD MODIFY THE EXAMPLE SUBROUTINE 'ADA' (GIVEN ELSEWHERE) FOR HIS OWN FUNCTIONS.

THE VECTOR SAMPLED FUNCTIONS \(2 H I(J)\) SHOULD BE STORED IN THE FIRST N ROWS AND FIRST L+1 COLUMNS OF THE MATRIX A, I.E., A (I, J) SHOULD CONTAIN PHI (J, ALF; T(I, 1), T(I, 2), ..., \(T(I, I V)), I=1, \ldots, N ; J=1, \ldots, L(O R I+1) . \quad\) THE \((L+1)-S T\) COLUMN OF A CONTAINS PHI(L+1) IF PHI(L+1) IS IN THE MODEL, OTHERWISE IT IS RESERVED FOR WORKSPACE. THE 'CONSTANT' FUNCTIONS (THESE ARE FUNCTIONS \(? ~ H I(J)\) WHICH DO NOT DEPEND UPON ANY NONLINEAR PARAMETERS ALF, E.G., T (I)**J) (IF ANY) MUST APPEAR FIRST, STARTING IN COLUMN 1. THE COLUMN N-VECTORS OF NONZERO PARTIAL DERIVATIVES D PHI (J) / D ALF (K) SHOULD BE STORED SEQUENTIALLY IN THE MATRIX A IN COLUMNS L+2 THROUGH \(L+{ }^{2}+1\), THE ORDER IS
\begin{tabular}{|c|c|c|c|c|}
\hline D PHI (1) & D_Pri (2) & D PHI(L) & D \(\operatorname{PHI}(L+1)\) & D PHI (1) \\
\hline D ALF (1) & D ALF (1) & D ALF (1) & D ALE(1) & D ALE (2) \\
\hline D_qHI (2) & D PHI (L+1) & & 9HI (1) & D 2HI (L+1) \\
\hline D ALE (2) & D ALE (2) & & ALE (NL) & D ALF (NL) \\
\hline
\end{tabular}

OMITTING COLUMNS OF DERIVATIVES WHICH ARE ZERO, AND OMITTING PHI(L+1) COLUNN IF PHI(L+1) IS NOT IN THE MODEL. NOTE THAT THE LINEAR PARAMETERS BETA ARE NOT USED IN THE MATRIX A. COLUMN L+P+2 IS RESERVED FOR WORKSPACE.

THE CODING OF ADA SHOULD BE ARRANGED SO THAT:
ISEL = 1 (WHICH OCCURS THE FIRST TIME ADA IS CALLED) MEANS: 167 ,
A. FILL IN THE INCIDENCE MATRIX INC
A. FILL IN THE INCIDENCE MATRIX INC
B. STORE ANY CONSTANT PHI'S IN A.
168.
\(\begin{array}{lll}\text { B. STORE ANY CONSTANT PHI'S IN A. } & 169 . \\ \text { C. COMPUTE NONCONSTANT PHI'S AND PARTIAL DERIVA- } & 170 .\end{array}\) Ttys.
\(=2\) MEANS COMPUTE ONLY THE NONCONSTANT FUNCTIONS PHI
\(=3\) MEANS COMPUTE ONLY THE DERIVATIVES
171.
172.
173.
174.
THE SUBROUTINES DPA, INIT (AND ADA) CONTAIN THE LOCALLY DIMENSIONED MATRIX INC, WHOSE DIMENSIONS ARE CURRENTLY SET FOR MAXIMA OF \(L+1=8, N L=12 . \quad\) THEY MUST BE CHANGED FOR LARGER 182. PROBLEMS. DATA PLACED IN ARRAY A IS OVERWRITTEN ('DESTROYED'). 183. DATA PLACED IN ARRAYS T, Y AND INC IS LEFT INTACT. THE PROGRAM 184. RUNS IN WATFIV, EXCEPT WHEN L = O OR NL = 0 .
185.
IT IS ASSUMED THAT THE MATRIX PHI (J, ALF; T (I)) HAS FULL COLUMN RANK. THIS MEANS THAT THE FIRST L COLUMNS OF THE MATRIX A MUST BE LINEARLY INDEPENDENT.
OPTIONAL NOTE: AS WILL BE NOTED FROM THE SAMPLE SUBPROGRAM ADA, THE DERIVATIVES D PHI(J)/D ALF (K) (ISEL = 3) MUST BE COMPUTED INDEPENDENTLY OF THE FUNCTIONS PHI (J) (ISEL = 2), SINCE THE EUNCTION VALUES ARE OVERWRITTEN AFTER ADA IS CALLED WITH ISEL = 2. THIS IS DONE TO MINIMIZE STORAGE, AT THE POSSIBLE EXPENSE OF SOME RECOMPUTATION (SINCE THE FUNCTIONS AND DERIVATIVES FREQUENTLY HAVE SOME COMMON SUBEXPRESSIONS). TO REDUCE THE AMOUNT OF COMPUTATION AT THE EXPENSE OF SOME STORAGE, CREATE A MATRIX B OF DIMENSION NMAX BY L+1 IN ADA, AND AFTER THE COMPUTATION OF THE PHI'S (ISEL = 2), COPY THE VALUES INTO B. THESE VALUES CAN THEN BE USED TO CALCULATE THE DERIVATIVES (ISEL = 3). (THIS MAKES USE OF THE FACT THAT WHEN A CALL TO ADA WITH ISEL = 3 FOLLOWS A CALL WITH ISEL = 2, THE 202 ALFS ARE THE SAME.)
TO CONVERT TQ OTHER MACHINES, CHANGE THE OUTPUT UNIT IN THE DATA STATEMENTS IN VARPRO, DPA, POSTPR, AND VARERR. THE PROGRAM HAS BEEN CHECKED FOR PORTABILITY BY THE BELL LABS PFORT VERIFIER. FOR MACHINES WITHOUT DOUBLE PRECISION HARDWARE, IT MAY BE DESIRABLE TO CONVERT TO SINGLE PRECISION. THIS CAN BE DONE BY CHANGING (A) THE DECLARATIONS 'DOUBLE PRECISION' TO 'REAL', (B) THE PATTERN '.D' TO ' .E' IN THE 'DATA' STATEMENT IN VARPRO, (C) DSIGN, DSQRT AND DABS TO SIGN, SQRT AND ABS, RESPECTIVELY, AND (D) DEXP TO EXP IN THE SAMPLE PROGRAMS ONLY.
NOTE ON INTERPRETATION OF COVARIANCE MATRIX
FOR USE IN STATISTICAL ESTIMATION (MULTIPLE NONLINEAR REGRESSION) VARPRO RETURNS THE COVARIANCE MATRIX OF THE LINEAR AJD NONLINEAR PARAHETERS, THIS MATRIX WILL BE USEFUL ONLY IF THE USUAL STATISTICAL ASSUMPTIONS HOLD: AFTER WEIGHTING, THE ERRORS IN THE O8SERVATIONS ARE INDEPENDENT AND NORMALLY DISTRIBUTED, WITH MEAN ZERO AND THE SAME VARIANCE. IF THE ERRORS DO NOT HAVE MEAN ZERO (OR ARE UNKNOWN), THE PROGRAM WILL ISSUE A 224. 218. 219. 220. 221. 222. WARNING MESSAGE (UNLESS IPRINT , IT, 0) AND THE COVARIANCE MATRIX WILL NOT BE VALID. IN THAT CASE, THE MODEL SHOULD BE \begin{tabular}{llll} 
\\
ALTERED TO INCLUDE A CONSTANT TERM & 226. \\
\hline
\end{tabular}
NOTE ALSO THAT, IN ORDER FOR THE USUAL ASSUMPTIONS TO HOLD, EACH OBSERVATION), OTHERWISE THE VARIANCES WILL NOT BE THE SAME. IF THE OBSERVATIONS ARE NOT THE SAME SIZE, THIS CAN BE CURED BY WEIGHTING.
IF THE USUAL ASSUMPTIONS HOLD, THE SQUARE ROOTS OF THE DIAGONALS OF THE COVARIANCE MATRIX A GIVE THE STANDARD ERROR S (I) OF EACH PARAMETER. DIVIDING A (I, J) BY S (I)*S (J) YIELDS THE CORRELATION MATRIX OF THE PARAMETERS. PRINCIPAL AXES AND CONFIDENCE ELLIPSOIDS CAN BE OBTAINED BY PERFORMING AN EIGEN-
VALUE/EIGENYECTOR ANALYSIS ON A. ONE SHOULD CALL THE EISPACK ..... 241.
PROGRAM TRED2, FOLLOWED BY TQL2 (OR USE THE EISPAC CONTROL ..... 242.

PROGRAM) . ..... 243.
CONVERGENCE FAILURES ..... 244 ..... 245.
IF CONVERGENCE FAILURES OCCUR, FIRST CHECK FOR INCORRECT ..... 247.246
CODING OF THE SUBROUTINE ADA. CHECK ESPECIALLY THE ACTION OF ..... 248.CODI AND THE COMPUTATION OF THE
ISEL, AND THE COMPUTATION OF THE PARTIAL DERIVATIVES. IF THESE ..... 249.
ARE CORRECT, TRY SEVERAL STARTING GUESSES FOR ALF. IF ADA ..... 250.
IS CODED CORRECTLY, AND IF ERROR RETURNS IERR \(=-2\) OR -8 ..... 251
PERSISTENTLY OCCUR, THIS IS A SIGN OF ILL-CONDITIONING, WHICH ..... 252.
MAY BE CAUSED BY SEVERAL THINGS. ONE IS POOR SCALING OF THE ..... 253.
PARAMETERS; ANOTHER IS AN UNFORTUNATE INITIAL GUESS FOR THE ..... 254.
PARAMETERS, STILL ANOTHER IS A POOR CHOICE OF THE MODEL. ..... 255.
ALGORITHM ..... 257.256.
THE RESIDUAL R IS MODIFIED TO INCORPORATE, FOR ANY FIXED258.
ALF, THE OPTIMAL LINEAR PARAMETERS FOR THAT ALF. IT IS THEN ..... 260.
POSSIBLE TO MINIMIZE ONLY ON THE NONLINEAR PARAMETERS. AFTER ..... 261.
THE OPTIMAL VALUES OF THE NONLINEAR PARAMETERS HAVE BEEN DETER- ..... 262
MINED, THE LINEAR PARAMETERS CAN BE RECOVERED BY LINEAR LEAST ..... 263
SQUARES TECHNIQUES (SEE REF. 1). ..... 264.
THE MINIMIZATION IS BY A MODIFICATION OF OSBORNE'S (REF. 3)65
MODIFICATION OF THE LEVENBERG-MARQUARDT ALGORITHM. INSTEAD OF ..... 267.
SOLVING THE NORMAL EQUATIONS WITH MATRIX ..... 268
T \({ }^{2}\) * ..... 269.
(J J + NU * D), WHERE J = D (ETA)/D \(\langle\mathrm{ALE}\}\), ..... 271.272.
STABLE ORTHOGONAL (HOUSEHOLDER) REFLECTIONS ARE USED ON A ..... 273
MODIFICATION OF THE MATRIX274.
\(\left(\begin{array}{c}(N U * D) \\ (-n)\end{array}\right.\), ..... 275.
277.278.
WHERE D IS A DIAGONAL MATRIX CONSISTING OF THE LENGTHS OF THE ..... 279.
COLUMNS OF J. THIS MARQUARDT STABILIZATION ALLOWS THE ROUTINE ..... 280
TO RECOVER FROM SOME RANK DEFICIENCIES IN THE JACOBIAN. ..... 281.
OSBORNE'S EMPIRICAL STRATEGY FOR CHOOSING THE MARQUARDT PARAM- ..... 282.
ETER HAS PROVEN REASONABLY SUCCESSFUL IN PRACTICE. (GAUSS- ..... 283.
NEWTON WITH STEP CONTROL CAN BE OBTAINED BY MAKING THE CHANGE ..... 284.
INDICATED BEFORE THE INSTRUCTION LABELED 5). A DESCRIPTION CAN ..... 285.
BE FOUND IN REF. (3), AND A FLOW CHART IN (2), P. 22. ..... 286.287.
FOR REFERENCE, SEE ..... 288.
1. GENE H. GOLUE AND V. PEREYRA, 'THE DIFFERENTIATION OF ..... 290.289.
PSEUDO-INVERSES AND NONLINEAR LEAST SQUARES PROBLEMS WHOSE
VARIABLES SEPARATE,' SIAM J. NUMER. ANAL. 10, 413-432 ..... 292.
(1973). ..... 293.
2. ------, SAME TITLE, STANFORD C.S. REPORT 72-261, FEB. 1972
2. ------, SAME TITLE, STANFORD C.S. REPORT 72-261, FEB. 1972 ..... 295.
SQUARES CALCULATIONS,' IN LOOTSMA, ED., 'NUMERICAL METHODS ..... 296.
FOR NON-IINGAR OPTIMIZATION,' ACADEMIC PRESS, LONDON, 1972 ..... 297.
4. KROGH, FRED, 'EFFICIENT IMPLEMENTATION OF A VARIABLE PRO- ..... 298.
JECTION ALGORITHM FOR NONLINEAR LEAST SQUARES PROBLEMS,' ..... 299.
COMM. ACM 17, PP. 167-169 (MARCH, 1974). ..... 300.
5. KAUFMAN, LINDA, 'A VARIABLE PROJECTION METHOD FOR SOLVING ..... 301.
SEPARABLE NONLINEAR LEAST SQUARES PROBLEMS', B.I.T. 15, ..... 302.
49-57 (1975). ..... 303.
6. DRAPER, N., AND SMITH, H., APPLIED REGRESSION ANALYSIS, ..... 304.
WILEY, N.Y., 1966 (FOR STATISTICAL INFORMATION ONLY). ..... 305.
7. C. LANSON AND R. HANSON, SOLVING LEAST SQUARES PROBLEMS, ..... 306.
```

\cap\cap\cap\cap\cap\cap\cap\Omega\Omega
RRENTICE-HALL, ENGLEWOOD CLIFFS,N.J., 1974.
307.
JOHN BOLSTAD 308
COMPUTER SCIENCE DEPT., SERRA HOUSE
STANEORD UNIVERSITY
JANUARY, }197
310.
311.
312.
313.
DOUBLE PRECISION A(NMAX, LPR2), BETA(L), ALF (NL), T(NMAX, IV), }315
2 W(N), Y(N), ACUM, EPS1, GNSTEP, NU, PRJRES, R, RNEW, XNORM 316.
INTEGER 81, OUTPUT 317.
LOGICAL SKIP
318.
DATA EPSl /1.D-6/, ITMAX /40/, OUTPUT /6/
319.
320.
321.
322.
THE FOLLOWING TWO PARAMETERS ARE USED IN THE CONVERGENCE
TEST: EPSl IS AN ABSOLUTE AND RELATIVE TOLERANCE FOR THE
NORM OF THE PROJECTION OF THE RESIDUAL ONTO THE RANGE OF THE
JACOBIAN OF THE VARIABLE PROJECTION FUNCTIONAL
ITMAX IS THE MAXIMUM NUMBER OF FUNCTION AND DERIVATIVE
EVALUATIONS ALLOWED. CAUTION: EPSI MUST NOT BE 327.
SET SMALLER THAN }10\mathrm{ TIMES THE UNIT ROUND-OFF OF THE MACHINE. 329.
330.
330.005
330.00E
330.00E
L LIB MONITOR FROM YARPRO, MAINTENANCE NUMBER 509, DATE 77178
C***qLEASE DON'T REMOVE OR CHANGE THE ABOVE CALL. IT IS YOUR ONLY
C***PROTECTION AGAINST YDUR USING AN OUT-OF-DATE OR INCORRECT
C***YERSION OF THE ROUTINE. THE LIBRARY MONITOR REMOVES THIS CALL,
C***SO IT ONLY OCCURS ONCE, ON THE FIRST ENTRY TO THIS ROUTINE.
C
IERR = 1
330.002
330.01
330.011
ITER = 0
330.012
331.
LP1 = L + 1
B1 = L + 2
INL2 = L t NL + 2
NLPl = NL + 1
SKIP = .FALSE.
MODIT = IPRINT
IF (IPRINT .LE. O) MODIT = ITMAX t 2
IF GAUSS-NEWTON IS DESIRED REMOVE THE NEXT STATEMENT.
Nu = 1.
C BEGIN OUTER ITERATION LOOP TO UPDATE ALF.
CALCULATE THE NORM OF THE RESIDUAL AND THE DERIVATIVE OF
THE MODIFIED RESIDUAL THE FIRST TIME, BUT ONLY THE
DERIVATIVE IN SUBSEQUENT ITERATIONS.
S CALL DPA (L, NL, N, NMAX, LPQ2, IV, T, Y, W, ALE, ADA, IERR,
X IPRINT, A, BETA, A(1, LP1), R)
GNSTEP = 1.0
ITERIN = 0
IF (ITER.GT. 0) GO TO 10
IF (NL, \&Q, 0) GO TO 90
IF (IERR.NE. 1) GO TO 99
C
IF (IPRINT .LE. 0) GO TO 10
WRITE (OUTPUT, 207) ITERIN, R
WRITE (OUTPUT, 200) NU
C
BEGIN TWO-STAGE ORTHOGONAL FACTORIZATION
10 CALL ORFAC1 (NLP1, NMAX, N, L, IPRINT, A(1, B1), PRJRES, IERR)
IF (IERR.IT. O) GO TO 99
IERR = 2
IF (NU, \XiQ, O.) GO TO 30
C

```



\(U=B(K, K)+{ }_{*}\) ALPHA ..... 564.
BETA \(=\) ALPHA \({ }^{*} \mathrm{U}\) ..... 565.
\(\mathrm{B}(\mathrm{K}, \mathrm{K})=\)-ALPHA ..... 566
THE K-TH REFLECTION MODIFIES ONLY ROWS K, ..... 567.
NL+1, NL+2, ..., NL+K, AND COLUMNS K TO NL+1. ..... 568.
DO \(30 \mathbf{J}=K P 1, ~ N L P 1\) ..... 569.
\(B(N L P K, J)=0\). ..... 570.
\(\mathrm{ACUM}=\mathrm{U} \quad \mathrm{B}(\mathrm{K}, \mathrm{J})\) ..... 571.
DO \(20 \mathbf{I}=\) NLP1, NLPKMl ..... 572.
\(\mathrm{ACUM}=\mathrm{ACUM}+\mathrm{B}(I, K){ }^{*} \mathrm{~B}(I, J)\) ..... 573.
\(\mathrm{ACUM}=\mathrm{ACUM} / \mathrm{BETA}\) ..... 574.
\(B(K, J)=B(K, J)-U^{*} A C U M\) ..... 575.
576.DO \(\begin{aligned} 30 I & =N L P 1, ~ N L P K ~ \\ B(I, J) & =B(I, J)-B(I, K)\end{aligned} \quad\) ACUM
577578
RETURN ..... 579.
END ..... 580.
SUBROUTINE DPA (L, NL, N, MMX LPP2, IV, T, Y, W, ALF, ADA, ISEL, ..... 581.
X IPRINT, A, U, R, RNORM) ..... 583.
COMPUTE THE NORM OF THE RESIDUAL (IF ISEL = 1 OR 2), OR THE ..... 585.
( \(\mathrm{N}-\mathrm{L}\) ) \(X\) NL DERIVATIVE OF THE MODIFIED RESIDUAL ( \(\mathrm{N}-\mathrm{L}\) ) VECTOR ..... 586.
Q2*Y (IF ISEL = 1 OR 3). HERE \(Q^{*}\) PHI \(=S\), I.E., ..... 587.
L ( Q1 ) (589.
\[
590 .
\]
\[
591 .
\]
\[
592 .
\]
\[
593 .
\]
\[
594 .
\]
\[
\text { WHERE Q IS N X N ORTHOGONAL, AND S IS L X L UPPER TRIANGULAR. } 595 .
\] THE NORM OF THE RESIDUAL \(=\) NORM (R2), AND THE DESIRED DERIVATIVE ACCORDING TO REF. (5), IS596.ACCORDING TO REF. (5), IS597.
\(D(Q 2 * Y)=-Q 2 * D(P H I) * S^{-1} \star Q 1 \star Y\). ..... 598.
600.601.602.
DOUBLE PRECISION A (NMAX, LPR2), ALF (NL), T (NMAX, IV), \(W(N), Y(N)\), ..... 603.
\(\mathbf{x}\) ACUM, ALPHA, BETA, RNORM, DSIGN, DSQRT, SAVE, \(R(N), U(L), X N O R M\)INTEGER FIRSTC, FIRSTR, \(\operatorname{INC}(12,8)\)LOGICAL NOWATE, RHILPI606.
EXTERNAL ADA ..... 607.
IF (ISEL .NE. 1) GO TO 3
CLNL2 \(=\mathrm{L}+2+\mathrm{NL}\)\(\mathrm{LP} 2=\mathrm{L}+2\)LPP1 = LPP2 - 1FIRSTC \(=1\)LASTC \(=\) LPP1FIRSTR = LP1CALL INIT (I, NL, N, NMAX LPP2, IV, T, W, ALF, ADA, ISEL,608.
\(L P 1=L+1\) ..... 610.
611.612.
\(\mathbf{x}\) IPRINT, A, INC, NCON, NCONP1, FHILP1, NOWATE) 618.IF (ISEL .NE. 1) GO TO 99617.
GO TO 30619.
620.
C ..... 621.
3 CALL ADA (LP1, NL, N, MMA LPP2, IV, A, INC, T, ALF, MINO (ISEL, ..... 622.
X 3) ..... 623.
IF (ISEL .EQ. 2) GO TO 6 ..... 624.
c
FIRSTC \(=\) LP2
GO TO 50 ..... 629.



C
762.

NOWATE \(=\).TRUE. 763.
DO \(9 \mathrm{I}=1\), N ( 764.
NOWATE \(=\) NOWATE , AND. (W(I) . \(\Xi Q, 1.0) 765\). IF ( \(\mathrm{W}(\mathrm{I}\) ) , GE, O.) GO TO 9 766.
C
ISEL \(=-6\) CALL VARERR (IPRTNT TSET, I) (IPRINT, ISEL, I) 769

9 W(I) 99 770.

C
\(\mathrm{NCON}=\mathrm{L}\)
NCONP1 = LP1 772. 773.

PHILPl = L, EQ, 0 774.

IF ( \(2 H I L P 1\).OR. NL . \(\varepsilon Q, 0\) ) GO TO 99
\(P=0\)
CHECK INC MATRIX FOR VALID INPUT AND 77b. DETERMINE NUMBER OF CONSTANT FCNS. 778.

DO \(11 \mathrm{~J}=1\), LQ1 780 .
IF 〈? . EQ, O〉 NCONPI = J 781.
DO \(11 \mathrm{~K}=1\), NL
782.

INCKJ = INC (K, J) 783.
IF (INCKJ .NE. O .AND. INCKJ .NE. 1) GO TO 15784.
IF (INCKJ. EQ. 1) \(\mathrm{P}=\mathrm{P}+1 \quad 785\).
11
CONTINUE
786.

C
NCON = NCONPI - 1
787.

\section*{788.}

IF (IPRINT.GE, 0) WRITE (OUTPUT, 210) NCON
IF (IPRINT, G®, WRITE (OUTPUT, 210) NCON 789.
IF (L+P+2, \(\varepsilon Q . L P P 2)\) GO TO \(20 \quad 790\).
15 INPUT ERROR IN INC MATRIX 791.

\section*{15 ISEL = - 5}

CALL VARERR (IPRINT, ISEL, 1)
792.

GO TO 99
793.

C
20 DO \(25 \mathrm{~K}=1\), NL
C 25 (INC (K, LP 1) , \(\Omega\) Q. 1) PHILPl = .TRUE.
797.

C
99 RETURN 799
210 FORMAT (33H0 NUMBER OF CONSTANT FUNCTIONS =, I4 /) 800.
```

END
801.

```

SUBROUTINE BACSUB (NMAX, N, A, X)
BACKSOLVE THE \(N \mathbf{X}\) N UPPER TRIANGULAR SYSTEM A*X = B. THE SOLUTION X OVERWRITES THE RIGHT SIDE B.

DOUBLE PRECISION A (NMAX, N) , X (N), ACUM
\(X(N)=X(N) / A(N, N)\)
IF (N, EQ, 1) GO TO 30
\(\mathrm{NP} 1=\mathrm{N}+1\)
DO 20 IBACK \(=2, \mathrm{~N}\)
C \(\quad I=N D 1-I B A C K\)
IPI \(=I+1\)
ACUM \(=X(I)\)
DO \(10 \mathrm{~J}=\) IR1, N \(A C U M=A C U M-A(I, J) * X(J)\)
\(\begin{aligned} & 10 \quad \mathrm{ACUM}=\mathrm{ACUM} \\ & 20\end{aligned} \mathrm{X}(\mathrm{I})=\mathrm{ACUM} / \mathrm{A}(I, I)\)
C
30 RETURN
802. 803.
804.
805.
806.
807.

C
808.
809.
809.
810.
811.
812.
813.
814.
815.
816.
817.

END 822
SUBROUTINE POSTPR(L, NL, N, NMAX, LNL2, EPS, RNORM, IPRINT, ALF, 823.
X \(\mathrm{W}, \mathrm{A}, \mathrm{R}, \mathrm{U}, \mathrm{IERR)}\)
824.

C
C
C
CAICUIATE RFSIDUAIS ON INPUT, U CONTAINS INFORMATION ABOUT HOUSEHOLDER REFLECTIONS 827.
    \(L P 1=L+1\)
832.
    833.
    LPNL \(=\) LNL2 -2
    LNLI \(=\) LPNL +1
834.
    835.
    DO \(10 \mathrm{I}=1, \mathrm{~N}\)
    10
    \(10 W(I)=W(I) \star * 2\)
                    UNWIND HOUSEHOLDER TRANSFORMATIONS TO GET RESIDUALS,
                    AND MOVE THE LINEAR PARAMETERS FROM R TO U.

        UNWIND HOUSEHOL

AND MOVE THE
IF (L , *Q, O) GO TO 30
DO 25 KBACK \(=1, ~ L\)
    \(K=L P 1-\) KBACK
        \(K P 1=K+1\)
        \(\mathrm{ACUM}=0\).
        DO \(20 I=K 21, N\)

        SAVE \(=R(K)\)
        \(R(K)=A C U M / A(K, K)\)
\(A C U M=-A C U M /\left(U(K){ }_{*} A(K, K)\right)\)
        \(\mathrm{RCUM}=-\mathrm{ACUM}\)
\(U(K)=\) SAVE
    DO \(25 I=\) KP1, N 855.
    \(25 R(I)=R(I)-A(I, K) \star A C U M\)
            COMPUTE MEAN ERROR
    836.
    30 ACUM \(=0\).
    DO \(35 \mathrm{I}=1, \mathrm{~N}\)
    35 ACUM \(=A C U M+R(I) \quad 860\).
    SAVE = ACUM / N
    THE FIRST L COLUMNS OF THE MATRIX HAVE BEEN REDUCED TO
UPPER TRIANGULAR FORM IN DPA. FINISH BY REDUCING ROWS
    THE FIRST L COLUMNS OF THE MATRIX HAVE BEEN REDUCED TO
UPPER TRIANGULAR FORM IN DPA. FINISH BY REDUCING ROWS
                \(L+1\) TO N AND COLUMNS L+2 THROUGH L+NL+1 TO TRIANGULAR
                    837.
    838.
    839.
    840.
        841.
    842.
    843.
    844.
    844.
845.
    846.
    847.
    848.
    849.
    849.
    851.
    852.
    853.
    854.
C
    \(20 \quad \begin{aligned} \text { DO } 20 ~ I ~ & =K P 1, N \\ \text { ACUM } & =A C U M+A(I, K){ }^{*} R(I)\end{aligned}\)
                            COMPUIE MEAN ERROR
857.
        859.
C
C
C
C
C
C
C
861.

        862.
                TO N AND COIUMS I N DHROUGH 864.
                \(\begin{array}{lllll}L+1 \\ \text { TO N AND COLUMNS L+2 THROUGH L+NL+1 TO TRIANGULAR } & 865 . \\ \text { FORM. THEN SHIFT COLUMNS OF DERIVATIVE MATRIX OVER ONE } & 866 .\end{array}\)
                TO THE LEFT TO BE ADJACENT TO THE FIRST L COLUMNS. 867.
    IF (NL \(\Xi Q, 0\) ) GO TO 45 869.
    868.
    CALL ORFACi (NL+1, NMAX, N, L, IPRINT, A(1, L+2), PRJRES, 4) 870.
    DO \(40 I=1, \mathbf{N}\)
        871.
        \(A(I, L N L 2)=R(I)\)
        872.
        DO \(40 \mathrm{~K}=\mathrm{LQ} 1\), LNLI 873.
    \(40 \quad \mathrm{~A}(\mathrm{I}, \mathrm{K})=\mathrm{A}(\mathrm{I}, \mathrm{K}+1) \quad\) COMPUTE COVARIANCE MATRIX 875.
C
    \(40 \quad A(I, K)=A(I, K+1) \quad\) COMPUTE COVARIANCE MATRIX
    45 A (1, LNL2) \(=\) RNORM
    874.
875.
    ACUM \(=\) RNORM*RNORM/( \(\mathrm{N}-\mathrm{L}-\mathrm{NL})\)
    \(\mathrm{A}(2, \mathrm{LNL} 2)=\mathrm{ACUM} \quad 878\).
    CALL COV (NMAX, LPNL, ACUM, A)
c
877.
    \(-\quad-\quad 879\).
    IF (IPRINT. IT. 0) GO TO 99
    879.
880.
    881.
    WRITE (OUTPUT, 209) 882.
    \(\operatorname{IF}(L, G T, 0) \operatorname{WRITE}(O U T P U T, 210)(U(J), J=1, L) \quad 883\).
    IF (NL , GT, O) WRITE (OUTPUT, 211) (ALF (K), K = 1, NL) 884.
    WRITE (OUTPUT, 214) RNORM, SAVE, ACUM 88.
    IF (DABS (SAVE) ,GT, EPS) WRITE (OUTPUT, 215)
886.
    \(\begin{array}{ll}\text { IF } \\ \text { WRITE (OUTPUT, } 209 \text { ) } & 886 . \\ 887 .\end{array}\)
    99 RETURN
888.
C
209 FORMAT ( 1 H0, \(\left.50\left(1 H^{\prime}\right)\right)\)
210 FORMAT \((20 H 0\) INEAR
889.
890.
210 FORMAT (20H0 LINEAR PARAMETERS // (7315.7)) 891.
211 FORMAT (2340 NONLINEAR PARAMETERS // (7315.7)) 892 .
214 FORMAT (21H0 NORM OF RESIDUAL =, E15.7, 33H EXPECTED ERROR OF OBS 893.

```

 4 WRITE (OUTPUT, 104)
 GO TO 99
 5 WRITE (OUTPUT, 105)
 GO TO 99 963.
 6 WRITE (OUTPUT, 106) K
 GO TO 99
 7 WRITE (OUTPUT, 107) K
 GO TO 99 967.
 8 WRITE (OUTPUT, 108) K
 C
99 RETURN (46H0 PROBLEM TERMINATED FOR EXCESSIVE ITERATIONS //)
99 RETURN (4640 PROBLEM TERMINATED FOR EXCESSIVE ITERATIONS //)
961.
962.
963.
964.
967.
968.
969.
102 FORMAT (49H0 PROBLEM TERMINATED BECAUSE OF ILL-CONDITIONING //) 972.
104 FORMAT (/ 50H INPUT ERROR IN PARAMETER L, NL, N, LPQ2, OR NMAX. /) 973.
105 FORMAT (68H0 ERROR -- INC MATRIX IMPROPERLY SPECIFIED, OR DISAGRE 974.
XES WITH LPP2. /)
-975.
106 FORMAT (19H0 ERROR -- WEIGHT(, 14, 14H) IS NEGATIVE. /) 976.
107 FORMAT (28H0 ERROR -- CONSTANT COLUMN , 13, 37H MUST BE COMPUTED 977.
XONLY WHEN ISEL = 1. /)
XONLY WHEN ISEL = 1. /)}978
108 FORMAT (33H0 CATASTROPHIC FAILURE -- COLUMN , 14, 28H IS ZERO, SE 979.
XE DOCUMENTATION. /)
END
980
981.
DOUBLE PRECISION FUNCTION XNORM (N, X) 982.
C 983.
C COMPUTE THE L2 (EUCLIDEAN) NORM OF A VECTOR, MAKING SURE TO 984.
OVERFLOWS
985.
986.
987.
DOUBLE PRECISION X(N), RMAX, SUM, TERM, DABS, DSQRT 988.
C 989.
C FIND LARGEST (IN ABSOLUTE VALUE) ELEMENT 990.
RMAX = 0.
DO 10 I = 1, N
IF {DABS(X(I)) .GT. RMAX) RMAX = DABS (X(I))
10 CONTINUE (I)) NON RNAX) RNAX = DABS(X(I))
CONTINUE
SUM = 0.
IF (RMAX .EQ. 0.) GO TO 30
DO 20 I = 1, N
TERM = 0. 999.
IF (RMAX + DABS(X(I)) .NE. RMAX) TERM = X(I)/RMAX 1000.
20 SUM = SUM + TERM*TERM 1001.
C
30 XNORM = RMAX*DSQRT (SUM) 1003.
1002.
30 XNORM = RMAX*DSQRT (SUM) 1003.
END
1005.

```
\(0 \quad\) Match 1118 Erfc
0 number of nonlinear parameters

\section*{3}

0
initial est. of nonlin. parameters

> 1.600
> 0.025
> 0.004

0 dimensionless number tracer arrival time inleta \(1.60000 \quad 40.000280 .000\)

0
number of observations
316
Oindependent variables dependent variables
\begin{tabular}{lr}
294.775 & 1.824 \\
300.102 & 1.849 \\
305.327 & 1.899 \\
310.530 & 2.055 \\
315.807 & 2.362 \\
321.068 & 2.823 \\
326.347 & 3.393 \\
331.609 & 4.170 \\
336.833 & 5.206 \\
342.119 & 6.454 \\
347.321 & 7.937 \\
352.583 & 9.716 \\
357.938 & 11.930 \\
363.220 & 14.566 \\
368.557 & 17.537 \\
373.840 & 20.874 \\
379.044 & 24.524 \\
384.381 & 28.645 \\
389.586 & 33.119 \\
394.847 & 38.042 \\
400.134 & 43.190 \\
405.414 & 48.553 \\
410.762 & 54.168 \\
415.963 & 60.181 \\
421.224 & 66.212 \\
423.855 & 69.216 \\
426.502 & 72.162 \\
429.115 & 75.101 \\
431.726 & 77.877 \\
434.338 & 80.628 \\
436.929 & 83.414 \\
439.594 & 86.179 \\
442.207 & 88.846 \\
444.819 & 91.714 \\
447.410 & 94.446 \\
450.022 & 97.114 \\
452.694 & 102.659 \\
455.343 & 104.728 \\
457.955 & 107.065 \\
460.569 & 109.381 \\
463.239 & 114.867 \\
465.979 & 117.179 \\
468.591 & 125.9885 \\
471.239 & 128.813 \\
473.849 & \\
476.461 & \\
479.074 & \\
481.742 & \\
& \\
\hline
\end{tabular}
484.409
487.022
489.671
492.284
494.951
497.563
500.176
502.822
505.435
508.106
510.717
513.329
515.927
518.601
521.252
523.934
526.551
529.199
531.814
534.428
537.096
539.768
542.440
545.053
547.645
550.315
552.928
555.598
558.270
560.942
563.612
566.285
568.957
571.627
574.241
576.835
579.577
582.250
584.901
587.515
590.130
592.800
595.471
598.142
600.814
603.485
606.099
608.767
611.418
614.031
616.644
619.314
621.988
624.658
627.328
629.999
632.614
635.328
637.942
640.556
643.224
645.895
648.567
651.237
653.851
656.445
131.440
134.065
136.156
137.900
139.686
141.449
143.297
145.169
147.244
149.143
150.940
152.701
154.215
155.610
157.081
158.310
159.583
161.202
162.520
163.891
165.658
167.318
169.055
169.870
170.469
170.890
171.473
171.937
172.941
174.281
175.402
176.483
177.960
179.952
181.394
182.991
184.431
185.647
186.930
187.469
187.772
188.326
188.806
188.880
188.678
188.365
187.601
187.070
186.710
187.017
186.876
186.753
186.516
186.244
186.823
187.219
187.632
188.266
189.289
190.455
190.989
191.359
191.367
190.752
189.262
189.032
\begin{tabular}{|c|c|}
\hline 659.059 & 186.992 \\
\hline 661.652 & 185.304 \\
\hline 664.321 & 184.196 \\
\hline 666.936 & 183.359 \\
\hline 669.585 & 182.283 \\
\hline 672.200 & 181.586 \\
\hline 674.816 & 181.366 \\
\hline 677.489 & 180.957 \\
\hline 680.083 & 180.343 \\
\hline 682.755 & 180.217 \\
\hline 685.369 & 180.352 \\
\hline 687.962 & 179.986 \\
\hline 690.634 & 179.587 \\
\hline 693.376 & 179.118 \\
\hline 696.046 & 179.220 \\
\hline 698.719 & 179.292 \\
\hline 701.391 & 178.696 \\
\hline 704.004 & 177.447 \\
\hline 706.673 & 175.875 \\
\hline 709.323 & 173.561 \\
\hline 711.939 & 172.621 \\
\hline 714.554 & 169.967 \\
\hline 717.147 & 168.054 \\
\hline 719.814 & 166.812 \\
\hline 722.428 & 165.911 \\
\hline 725.078 & 164.259 \\
\hline 727.694 & 163.461 \\
\hline 730.309 & 163.002 \\
\hline 732.957 & 162.463 \\
\hline 735.632 & 162.336 \\
\hline 738.246 & 162.013 \\
\hline 740.861 & 162.500 \\
\hline 743.511 & 161.293 \\
\hline 746.124 & 159.991 \\
\hline 748.802 & 158.004 \\
\hline 751,474 & 156.756 \\
\hline 754.144 & 155.686 \\
\hline 756.758 & 154.331 \\
\hline 759.352 & 152.618 \\
\hline 762.023 & 150.879 \\
\hline 764.638 & 148.584 \\
\hline 767.232 & 147.084 \\
\hline 769.905 & 144.500 \\
\hline 772.576 & 142.619 \\
\hline 775.190 & 141.147 \\
\hline 777.859 & 140.230 \\
\hline 780.452 & 139.616 \\
\hline 783.067 & 141.367 \\
\hline 785.661 & 141.952 \\
\hline 788.333 & 142.943 \\
\hline 791.006 & 144.441 \\
\hline 793.677 & 145.099 \\
\hline 796.349 & 146.515 \\
\hline 799.021 & 146.398 \\
\hline 801.636 & 146.069 \\
\hline 804.435 & 145.509 \\
\hline 807.048 & 144.820 \\
\hline 809.640 & 144.062 \\
\hline 812.312 & 143.387 \\
\hline 814.927 & 142.438 \\
\hline 817.519 & 141.320 \\
\hline 820.189 & 140.478 \\
\hline 822.804 & 139.682 \\
\hline 825.397 & 138.527 \\
\hline 828.011 & 136.211 \\
\hline 830.604 & 133.982 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 833.272 & 132.179 \\
\hline 835.887 & 129.988 \\
\hline 838.537 & 129.839 \\
\hline 841.153 & 128.974 \\
\hline 843.765 & 127.315 \\
\hline 846.438 & 125.036 \\
\hline 849.088 & 122.921 \\
\hline 851.702 & 120.883 \\
\hline 854.315 & 118.550 \\
\hline 856.986 & 117.190 \\
\hline 859.656 & 116.269 \\
\hline 862.335 & 115.138 \\
\hline 864.983 & 113.867 \\
\hline 867.599 & 113.438 \\
\hline 870.213 & 111.194 \\
\hline 872.861 & 109.774 \\
\hline 875.552 & 109.224 \\
\hline 878.222 & 108.545 \\
\hline 880.836 & 109.166 \\
\hline 883.429 & 106.975 \\
\hline 886.042 & 105.347 \\
\hline 888.710 & 103.282 \\
\hline 891.360 & 101.436 \\
\hline 893.975 & 99.498 \\
\hline 896.588 & 100.110 \\
\hline 899.238 & 99.235 \\
\hline 901.855 & 97.252 \\
\hline 904.526 & 95.509 \\
\hline 907.140 & 92.961 \\
\hline 909.789 & 91.615 \\
\hline 912.403 & 90.030 \\
\hline 917.758 & 88.765 \\
\hline 923.098 & 89.377 \\
\hline 928.306 & 89.975 \\
\hline 933.587 & 92.481 \\
\hline 938.849 & 93.528 \\
\hline 944.134 & 90.984 \\
\hline 954.680 & 86.460 \\
\hline 959.967 & 84.275 \\
\hline 965.174 & 82.785 \\
\hline 970.382 & 81.951 \\
\hline 975.709 & 82.155 \\
\hline 980.975 & 82.157 \\
\hline 986.203 & 81.492 \\
\hline 996.750 & 77.633 \\
\hline 1002.090 & 73.991 \\
\hline 1007.370 & 74.014 \\
\hline 1012.648 & 74.171 \\
\hline 1025.799 & 75.604 \\
\hline 1031.149 & 75.945 \\
\hline 1036.429 & 75.704 \\
\hline 1041.687 & 72.546 \\
\hline 1046.907 & 69.705 \\
\hline 1052.186 & 65.971 \\
\hline 1057.518 & 60.805 \\
\hline 1062.796 & 58.738 \\
\hline 1068.055 & 58.329 \\
\hline 1073.280 & 57.720 \\
\hline 1078.538 & 59.034 \\
\hline 1083.762 & 61.015 \\
\hline 1089.107 & 61.249 \\
\hline 1094.364 & 59.109 \\
\hline 1099.585 & 54.895 \\
\hline 1104.864 & 51.004 \\
\hline 1110.142 & 47.685 \\
\hline 1115.474 & 45.548 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 1120.698 & 47.959 \\
\hline 1125.957 & 46.999 \\
\hline 1131.241 & 47.106 \\
\hline 1136.499 & 50.121 \\
\hline 1141.853 & 53.607 \\
\hline 1147.077 & 55.784 \\
\hline 1152.337 & 52.231 \\
\hline 1157.616 & 47.310 \\
\hline 1162.897 & 46.946 \\
\hline 1168.179 & 44.714 \\
\hline 1173.513 & 42.272 \\
\hline 1178.772 & 40.242 \\
\hline 1184.056 & 39.348 \\
\hline 1189.282 & 39.679 \\
\hline 1199.756 & 43.575 \\
\hline 1205.038 & 42.788 \\
\hline 1210.297 & 36.491 \\
\hline 1215.518 & 32.145 \\
\hline 1220.856 & 31.948 \\
\hline 1226.134 & 31.035 \\
\hline 1231.337 & 27.821 \\
\hline 1236.597 & 26.934 \\
\hline 1241.880 & 26.704 \\
\hline 1255.106 & 32.282 \\
\hline 1260.388 & 35.521 \\
\hline 1278.802 & 37.034 \\
\hline 1284.026 & 35.551 \\
\hline 1289.231 & 34.686 \\
\hline 1294.491 & 32.162 \\
\hline 1299.776 & 28.506 \\
\hline 1305.058 & 29.774 \\
\hline 1307.671 & 28.031 \\
\hline 1310.404 & 27.790 \\
\hline 1313.016 & 27.530 \\
\hline 1315.663 & 26.644 \\
\hline 1318.275 & 24.993 \\
\hline 1320.888 & 25.120 \\
\hline 1323.557 & 24.256 \\
\hline 1326.224 & 24.363 \\
\hline 1328.835 & 25.744 \\
\hline 1331.505 & 28.699 \\
\hline 1334.117 & 28.309 \\
\hline 1336.764 & 28.248 \\
\hline 1339.453 & 27.273 \\
\hline 1342.065 & 25.106 \\
\hline 1344.713 & 23.637 \\
\hline 1347.325 & 21.117 \\
\hline 1349.938 & 19.048 \\
\hline 1352.611 & 16.929 \\
\hline 1355.279 & 15.536 \\
\hline 1357.893 & 16.210 \\
\hline 1360.485 & 17.426 \\
\hline 1363.097 & 17.249 \\
\hline 1365.745 & 18.359 \\
\hline 1368.487 & 19.239 \\
\hline 1371.100 & 18.570 \\
\hline 1373.713 & 19.100 \\
\hline 1376.383 & 18.891 \\
\hline 1379.052 & 18.019 \\
\hline 1381.718 & 17.822 \\
\hline 1384.331 & 18.976 \\
\hline 1387.000 & 22.009 \\
\hline 4389.613 & 22.740 \\
\hline 1392.261 & 24.490 \\
\hline 1394.950 & 25.255 \\
\hline 1397.620 & 25.938 \\
\hline
\end{tabular}
```

 1400.232 25.192
 1402.878
 1405.490
 25.647
 24.644
 1408.102
 23.246
 NUMBER OF CONSTANT FUNCTIONS = 0
 O NORM OF RESIDUAL = 0.6945794e+03
 NU = 0.1000000e e+01
 ITERATION 1 NONLINEAR PARAMETERS
 0.1601724e+01 0.3664138e-01 0.4109866e-02
 1 NORM OF RESIDUAL = 0.1622322 e+03
 NU = 0.5000000e+00
 NORM(DELTA-ALE) / NORM(ALE) = 0.735e-02
 ITERATION 2 NONLINEAR PARAMETERS
 0.1594719e+01 0.4457335e-01 0.4002702e-02
 1 NORM OF RESIDUAL = 0.9674819e+02
 NU = 0.2500000e+00
 NORM(DELTA-ALE) / NORM(ALF) = 0.663e-02
 ITERATION 3 NONLINEAR PARAMETERS
 0.1596320e+01 0.4828995e-01 0.3928502e-02
1 NORM OF RESIDUAL = 0.9298198e+02
NU = 0.1250000e+00
NORM (DELTA-ALF) / NORM(ALF) = 0.253e-02
ITERATION 4 NONLINEAR PARAMETERS
0.1613556e+01 0.4985469e-01 0.3914612e-02
1 NORM OF RESIDUAL = 0.9289213e+02
NU = 0.6250000e-01
NORM(DELTA-ALF) / NORM(ALF) = 0.107e-01
ITERATION 5 NONLINEAR PARAMETERS
0.1663352e+01 0.5289702e-01 0.3897484e-02
1 NORM OF RESIDUAL = 0.9289590e+02
STEP RETRACTED, NU =0.9375000e-01
ITERATION 6 NONLINEAR PARAMETERS
0.1636594e+01 0.5124610e-01 0.3907576e-02
2 NORM OF RESIDUAL = 0.9289102e+02
NU = 0.9375000e-01
NORM(DELTA-ALE) / NORM(ALE) = 0.141e-01
ITERATION 7 NONLINEAR PARAMETERS
0.1674215e+01 0.5366816e-01 0.3892669e-02
1 NORM OF RESIDUAL = 0.9289297e+02
STEP RETRACTED, NU =0.1406250e+00
ITERATION 8 NONLINEAR PARAMETERS
0.1653582e+01 0.5237304e-01 0.3900245e-02
2 NORM OF RESIDUAL = 0.9289135e+02
STEP RETRACTED, NU = 0.2109375e+00
ITERATION 9 NONLINEAR PARAMETERS
0.1644180e+01 0.5178155e-01 0.3903733e-02
3 NORM OF RESIDUAL = 0.9289130e+02
STEP RETRACTED, NU =0.3164063e+00
ITERATION 10 NONLINEAR PARAMETERS
0.1639956e+01 0.5151327e-01 0.3905372e-02
4 NORM OF RESIDUAL = 0.9289126e+02
STEP RETRACTED, NU = 0.4746094e+00
ITERATION 11 NONLINEAR PARAMETERS
0.1638074e+01 0.5138938e-01 0.3906222e-02
5 NORM OF RESIDUAL = 0.9289119e+02
STEP RETRACTED, NU = 0.7119141e+00
ITERATION 12 NONLINEAR PARAMETERS
0.1637241e+01 0.5132898e-01 0.3906751e-02
6 NORM OF RESIDUAL = 0.9289109e+02
NU = 0.7119141e+00
NORM(DELTA-ALF)/NORM(ALE) = 0.398e-03
ITERATION 13 NONLINEAR PARAMETERS
0.1637443e+01 0.5131336e-01 0.3907253e-02
1 NORM OF RESIDUAL =0.9289085e+02
NU = 0.3559570e+00

```
```

 NORM(DELTA-ALE) / NORM(ALE) = 0.124e-03
 O ITERATION 14 NONLINEAR PARAMETERS
0 0.1637217e+01 0.5125649e-01 0.3908455e-02
1 NORM OF RESIDUAL = 0.9289066e+02
NU = 0.1779785e+00
NORM(DELTA-ALE) / NORM(ALF) = 0.142e-03
O ITERATION 15 NONLINEAR PARAMETERS
0 0.1638332e+01 0.5130045e-01 0.3908949e-02
1 NORM OF RESIDUAL = 0.9289066e+02
NU = 0.8898926e-01
NORM(DELTA-ALE) / NORM(ALE) = 0.681e-03
ITERATION 16 NONLINEAR PARAMETERS
0.1663297e+01 0.5290327e-01 0.3898719e-02
1 NORM OF RESIDUAL = 0.9289106e+02
STEP RETRACTED, NU = 0.1334839e+00
O ITERATION 17 NONLINEAR PARAMETERS
0 0.1649630e+01 0.5204870e-01 0.3903667e-02
2 NORM OF RESIDUAL = 0.9289069e+02
NU = 0.1334839e+00
NORM(DELTA-ALE) / NORM(ALE) = 0.686e-02
O ITERATION 18 NONLINEAR PARAMETERS
0 0.1653957e+01 0.5235399e-01 0.3901368e-02
1 NORM OF RESIDUAL = 0.9289084e+02
STEP RETRACTED, NU = 0.2002258e+00
ITERATION 19 NONLINEAR PARAMETERS
0.1651561e+01 0.5220181e-01 0.3902244e-02
2 NORM OF RESIDUAL =0.9289084e+02
STEP RETRACTED, NU = 0.3003387e+00
O ITERATION 20 NONLINEAR PARAMETERS
0 0.1650480e+01 0.5213151e-01 0.3902683e-02
3 NORM OF RESIDUAL = 0.9289082e+02
STEP RETRACTED, NU =0.4505081e+00
ITERATION 21 NONLINEAR PARAMETERS
0.1649999e+01 0.5209743e-01 0.3902954e-02
4 NORM OF RESIDUAL = 0.9289079e+02
STEP RETRACTED, NU = 0.6757622e+00
O ITERATION 22 NONLINEAR PARAMETERS
0 0.1649787e+01 0.5207874e-01 0.3903175e-02
5 NORM OF RESIDUAL = 0.9289076e+02
NU = 0.6757622e+00
NORM(DELTA-ALF) / NOWM(ALE) = 0.968e-04
ITERATION 23 NONLINEAR PARAMETERS
0 0.1650156e+01 0.5207729e-01 0.3903726e-02
1 NORM OF RESIDUAL = 0.9289066e+02
NU = 0.3378811e+00
NORM(DELTA-ALE)/NORM(ALE) = 0.223e-03
ITERATION 24 NONLINEAR PARAMETERS
0 0.1650193e+01 0.5200836e-01 0.3905514e-02
1 NORM OF RESIDUAL = 0.9289081e+02
STEP RETRACTED, NU = 0.5068216e+00
O ITERATION 25 NONLINEAR PARAMETERS
0 0.1650198e+01 0.5202016e-01 0.3905200e-02
2 NORM OF RESIDUAL = 0.9289074e+02
NU = 0.5068216e+00
NORM(DELTA-ALE) / NORM(ALE) = 0.430e-04
O ITERATION 26 NONLINEAR PARAMETERS
0 0.1650371e+01 0.5204088e-01 0.3904920e-02
1 NORM OF RESIDUAL = 0.9289070e+02
NU=0.2534108e+00
NORM(DELTA-ALE) / NORM(ALE) = 0.105e-03
O ITERATION 27 NONLINEAR PARAMETERS
0 0.1652047e+01 0.5216982e-01 0.3903733e-02
.1 NORM OF RESIDUAL = 0.9289064e+02
NU = 0.1267054e+00
NORM(DELTA-ALF) / NORM(ALE) = 0.102e-02
O ITERATION 28 NONLINEAR PARAMETERS

```
```

 0.1664336e+01 0.5295119e-01 0.3899315e-02
 1 NORM OF RESIDUAL = 0.9289064e+02
 NU = 0.6335270e-01
 NORM(DELTA-ALF) / NORM(ALF) = 0.740e-02
 ITERATION 29 NONLINEAR PARAMETERS
 0.1709641e+01 0.5593425e-01 0.3881342e-02
 1 NORM OF RESIDUAL = 0.9289444e+02
 STEP RETRACTED, NU = 0.9502906e-01
 ITERATION 30 NONLINEAR PARAMETERS
 0.1685012e+01 0.5436086e-01 0.3889965e-02
 2 NORM OF RESIDUAL = 0.9289119e+02
 STEP RETRACTED, NU = 0.1425436e+00
 ITERATION 31 NONLINEAR PARAMETERS
 0.1673604e+01 0.5363090e-01 0.3893991e-02
 3 NORM OF RESIDUAL = 0.9289106e+02
 STEP RETRACTED, NU =0.2138154e+00
 ITERATION 32 NONLINEAR PARAMETERS
 0.1668441e+01 0.5329797e-01 0.3895881e-02
 4 NORM OF RESIDUAL = 0.9289103e+02
 STEP RETRACTED, NU =0.3207231e+00
 ITERATION 33 NONLINEAR PARAMETERS
 0.1666131e+01 0.5314415e-01 0.3896856e-02
 5 NORM OF RESIDUAL = 0.9289097e+02
 STEP RETRACTED, NU =0.4810846e+00
 ITERATION 34 NONLINEAR PARAMETERS
 0.1665108e+01 0.5306783e-01 0.3897506e-02
 6 NORM OF RESIDUAL = 0.9289088e+02
 STEP RETRACTED, NU =0.7216269e+00
 ITERATION 35 NONLINEAR PARAMETERS
 0.1664663e+01 0.5302400e-01 0.3898071e-02
 7 NORM OF RESIDUAL = 0.9289078e+02
 STEP RETRACTED, NU =0.1082440e+01
 ITERATION 36 NONLINEAR PARAMETERS
 0.1664473e+01 0.5299581e-01 0.3898564e-02
 8 NORM OF RESIDUAL = 0.9289071e+02
 NU = 0.1082440e+01
 NORM(DELTA-ALF)/NORM(ALF) = 0.864e-04
 ITERATION 37 NONLINEAR PARAMETERS
 0.1664408e+01 0.5296275e-01 0.3899089e-02
 1 NORM OF RESIDUAL = 0.9289064e+02
 NU = 0.5412202e+00
 NORM(DELTA-ALE) / NORM(ALE) = 0.436e-04
 ITERATION 38 NONLINEAR PARAMETERS
 0.1664089e+01 0.5290563e-01 0.3900271e-02
 1 NORM OF RESIDUAL = 0.9289072e+02
 NU = 0.2706101e+00
 NORM(DELTA-ALF) / NORM(ALE) = 0.195e-03
 ITERATION 39 NONLINEAR PARAMETERS
 0.1664677e+01 0.5303803e-01 0.3897548e-02
 1 NORM OF RESIDUAL = 0.9289087e+02
 STEP RETRACTED, NU =0.4059151e+00
 ITERATION 40 NONLINEAR PARAMETERS
 0.1664313e+01 0.5300315e-01 0.3897986e-02
 2 NORM OF RESIDUAL = 0.9289078e+02
 PROBLEM TERMINATED FOR EXCESSIVE ITERATIONS
    ```

O LINEAR PARAMETERS

\section*{\(0.1336236 \mathrm{e}+06\)}

0 NONLINEAR PARAMETERS
\(0.1664089 \mathrm{e}+01 \quad 0.5290563 \mathrm{e}-01 \quad 0.3900271 \mathrm{e}-02\)
0 NORM OF RESIDUAL \(=0.9289072 \mathrm{e}+02\) EXPECTED ERROR OF OBSERVATIONS \(=0.4932102\) ESTIMATED VARIANCE OF OBSERVATIONS \(=0.2765604 \mathrm{e}+02\)

0 time actual calc comp\#1 comp\#2
\begin{tabular}{rrrr}
38.3827 & 1.8235 & -19.6515 & -19.6515 \\
43.7097 & 1.8485 & -19.4165 & -19.4165 \\
48.9346 & 1.8990 & -18.8172 & -18.8172 \\
54.1380 & 2.0546 & -17.8456 & -17.8456 \\
59.4145 & 2.3619 & -16.4626 & -16.4626 \\
64.6751 & 2.8230 & -14.7231 & -14.7231 \\
69.9542 & 3.3934 & -12.5847 & -12.5847 \\
75.2166 & 4.1699 & -10.0791 & -10.0791 \\
80.4402 & 5.2062 & -7.2663 & -7.2663 \\
85.7262 & 6.4545 & -4.0410 & -4.0410 \\
90.9285 & 7.9373 & -0.5443 & -0.5443 \\
96.1907 & 9.7157 & 3.2686 & 3.2686 \\
101.5460 & 11.9302 & 7.4539 & 7.4539 \\
106.8276 & 14.5660 & 11.8324 & 11.8324 \\
112.1647 & 17.5365 & 16.4919 & 16.4919 \\
117.4472 & 20.8742 & 21.3063 & 21.3063 \\
122.6511 & 24.5239 & 26.2550 & 26.2550 \\
127.9887 & 28.6451 & 31.5493 & 31.5493 \\
133.1932 & 33.1190 & 36.8047 & 36.8047 \\
138.4546 & 38.0416 & 42.1726 & 42.1726 \\
143.7419 & 43.1900 & 47.6998 & 47.6998 \\
149.0213 & 48.5530 & 53.3131 & 53.3131 \\
154.3692 & 54.1679 & 58.9761 & 58.9761 \\
159.5709 & 60.1808 & 64.6133 & 64.6133 \\
164.8315 & 66.2116 & 70.2242 & 70.2242 \\
167.4629 & 69.2158 & 73.0212 & 73.0212 \\
170.1091 & 72.1615 & 75.8602 & 75.8602 \\
172.7227 & 75.1012 & 78.6278 & 78.6278 \\
175.3339 & 77.8774 & 81.3673 & 81.3673 \\
177.9454 & 80.6284 & 84.0878 & 84.0878 \\
180.5365 & 83.4144 & 86.8315 & 86.8315 \\
183.2016 & 86.1787 & 89.6495 & 89.6495 \\
185.8148 & 88.8456 & 92.2686 & 92.2686 \\
188.4266 & 91.7140 & 94.9484 & 94.9484 \\
191.0172 & 94.4462 & 97.5540 & 97.5540 \\
193.6300 & 97.1135 & 100.1855 & 100.1855 \\
196.3016 & 99.6587 & 102.8656 & 102.8656 \\
198.9501 & 102.2227 & 105.4882 & 105.4882 \\
201.5626 & 104.7279 & 108.0162 & 108.0162 \\
204.1762 & 107.0649 & 110.5140 & 110.5140 \\
206.8465 & 109.3806 & 113.0904 & 113.0904 \\
209.5870 & 111.8670 & 115.6854 & 115.6854 \\
212.1989 & 114.3932 & 117.9985 & 117.9985 \\
214.8461 & 117.1770 & 120.4276 & 120.4276 \\
217.4571 & 119.9880 & 122.6455 & 122.6455 \\
220.0687 & 122.9847 & 125.0285 & 125.0285 \\
222.6812 & 125.9543 & 127.3167 & 127.3167 \\
225.3496 & 128.8129 & 129.5283 & 129.5283 \\
228.0170 & 131.4396 & 131.7604 & 131.7604 \\
230.6291 & 134.0652 & 133.9063 & 133.9063 \\
233.2782 & 136.1555 & 136.0021 & 136.0021 \\
235.8915 & 137.9003 & 137.9954 & 137.9954 \\
238.5582 & 139.6857 & 140.2126 & 140.2126 \\
241.1706 & 141.4489 & 142.1093 & 142.1093 \\
243.7841 & 143.2968 & 143.9917 & 143.9917 \\
246.4299 & 145.1695 & 145.9161 & 145.9161 \\
251.0423 & 147.2435 & 147.7991 & 147.7991 \\
254.3248 & 149.1434 & 149.5606 & 149.5606 \\
256.9362 & 150.9403 & 151.3486 & 151.3486 \\
& 152.7013 & 153.1387 & 153.1387 \\
20 & & \\
20
\end{tabular}
\begin{tabular}{llll}
259.5341 & 154.2151 & 154.7001 & 154.7001 \\
262.2082 & 155.6101 & 156.1596 & 156.1596 \\
264.8599 & 157.0810 & 157.8764 & 157.8764 \\
267.5418 & 158.3104 & 159.2651 & 159.2651 \\
270.1587 & 159.5834 & 160.7646 & 160.7646 \\
272.8069 & 161.2017 & 162.1602 & 162.1602 \\
275.4217 & 162.5199 & 163.5924 & 163.5924 \\
278.0356 & 163.8914 & 164.9672 & 164.9672 \\
280.7036 & 165.6580 & 166.3875 & 166.3875 \\
283.3752 & 167.3184 & 167.5735 & 167.5735 \\
286.0474 & 169.0554 & 168.7519 & 168.7519 \\
288.6603 & 169.8702 & 169.7838 & 169.7838 \\
291.2527 & 170.4694 & 170.9051 & 170.9051 \\
293.9225 & 170.8903 & 172.1285 & 172.1285 \\
296.5356 & 171.4725 & 173.0262 & 173.0262 \\
299.2052 & 171.9365 & 173.9401 & 173.9401 \\
301.8777 & 172.9412 & 174.9304 & 174.9304 \\
304.5491 & 174.2807 & 175.8568 & 175.8568 \\
307.2192 & 175.4018 & 176.7502 & 176.7502 \\
309.8927 & 176.4825 & 177.6919 & 177.6919 \\
312.5641 & 177.9602 & 178.3747 & 178.3747 \\
315.2347 & 179.9525 & 178.9825 & 178.9825 \\
317.8487 & 181.3936 & 179.6428 & 179.6428 \\
320.4422 & 182.9913 & 180.2796 & 180.2796 \\
323.1849 & 184.4306 & 180.8622 & 180.8622 \\
325.8572 & 185.6468 & 181.2784 & 181.2784 \\
328.5082 & 186.9301 & 181.8872 & 181.8872 \\
331.1227 & 187.4693 & 182.5038 & 182.5038 \\
333.7381 & 187.7723 & 182.6564 & 182.6564 \\
336.4076 & 188.3262 & 183.1446 & 183.1446 \\
339.0786 & 188.8056 & 183.8735 & 183.8735 \\
341.7497 & 188.8801 & 184.0369 & 184.0369 \\
344.4211 & 188.6776 & 184.2899 & 184.2899 \\
347.0926 & 188.3654 & 184.4442 & 184.4442 \\
349.7066 & 187.6011 & 184.6327 & 184.6327 \\
352.3751 & 187.0695 & 184.8844 & 184.8844 \\
355.0261 & 186.7095 & 185.0851 & 185.0851 \\
357.6387 & 187.0170 & 185.2810 & 185.2810 \\
360.2516 & 186.8762 & 185.4096 & 185.4096 \\
362.9214 & 186.7531 & 185.2772 & 185.2772 \\
365.5952 & 186.5157 & 185.2939 & 185.2939 \\
368.2656 & 186.2435 & 185.2267 & 185.2267 \\
370.9357 & 186.8235 & 185.1730 & 185.1730 \\
373.6066 & 187.2187 & 185.0812 & 185.0812 \\
376.2219 & 187.6319 & 184.9059 & 184.9059 \\
378.9357 & 188.2657 & 184.8094 & 184.8094 \\
381.5495 & 189.2887 & 184.7125 & 184.7125 \\
384.1636 & 190.4552 & 184.3968 & 184.3968 \\
386.8320 & 190.9889 & 184.2835 & 184.2835 \\
389.5024 & 191.3587 & 183.8231 & 183.8231 \\
392.1751 & 191.3674 & 183.6956 & 183.6956 \\
394.8444 & 190.7521 & 183.4767 & 183.4767 \\
397.4584 & 189.2618 & 182.8467 & 182.8467 \\
400.0530 & 189.0318 & 182.4107 & 182.4107 \\
402.6671 & 186.9921 & 182.5278 & 182.5278 \\
405.2600 & 185.3042 & 181.6877 & 181.6877 \\
407.9287 & 184.1964 & 181.4369 & 181.4369 \\
410.5435 & 183.3589 & 180.7336 & 180.7336 \\
413.1922 & 182.2827 & 180.0509 & 180.0509 \\
415.8079 & 181.5858 & 179.9125 & 179.9125 \\
418.4235 & 181.3664 & 179.4642 & 179.4642 \\
421.0967 & 180.9570 & 178.6277 & 178.6277 \\
423.6902 & 180.3430 & 178.0924 & 178.0924 \\
426.3629 & 180.2167 & 177.6105 & 177.6105 \\
428.9768 & 180.3516 & 177.3008 & 177.3008 \\
431.5696 & 179.9862 & 176.3284 & 176.3284 \\
& & & \\
2 & &
\end{tabular}
434.2417 436.9833 439.6537 442.3262
444.9981
447.6121
450.2809
452.9309 455.5461
458.1612 460.7546 463.4219 466.0357 468.6859 471.3017 473.9169 476.5649 479.2391 481.8540 484.4689 487.1183 489.7318 492.4101 495.0820 497.7520 500.3656 502.9599 505.6307 508.2452 510.8397 513.5129 516.1835 518.7975 521.4670 524.0592 526.6741 529.2686 531.9405 534.6138 537.2843 539.9564 542.6287 545.2435 548.0423 550.6554 553.2472 555.9199 558.5341 561.1271 563.7967 566.4114 569.0044 571.6184 574.2120 576.8797 579.4944 582.1442 584.7602 587.3726 590.0454 592.6954 595.3097 597.9228 600.5935 603.2637 605.9422
179.5872 179.1179 179.2202 179.2919 178.6962 177.4470 175.8752 173.5610 172.6212 169.9674 168.0538 166.8122 165.9114 164.2587 163.4609 163.0024 162.4626 162.3363 162.0127 162.5000 161.2932 159.9908 158.0041 156.7562 155.6862 154.3313 152.6177 150.8792 148.5842 147.0839 144.5001 142.6186 141.1468 140.2305 139.6164 141.3674 141.9524 142.9428 144.4409 145.0994 146.5152 146.3978 146.0686 145.5095 144.8197 144.0618 143.3865 142.4381 141.3198 140.4777 139.6817 138.5271 136.2106 133.9824 132.1792 129.9878 129.8393 128.9742 127.3148 125.0356 122.9208 120.8830 118.5498 117.1897 116.2688 115.1381
175.6392
175.0811
174.1795
174.0948
172.9648
172.6150
171.7519
170.9424
170.3399
169.5974
168.8795
168.3873
167.1640
166.6424
165.4285
164.9401
163.9931
163.2228
162.2241
161.2600
161.3127
159.7881
159.2700
158.1557
157.1763
156.5488
156.2839
155.0039
154.0197
153.8511
152.3297
151.5382
149.9920
150.1364
148.2687
147.8773
146.9919
145.7171
144.4457
143.7948
142.7938
141.5581
141.6913
140.5435
1388.9692
138.5317
137.4518
136.3805
135.3958
134.1985
133.5657
132.8240
131.2397
130.6805
129.4308
128.6840
128.0924
127.1613
126.1870
124.7999
123.5807
123.1119
121.5194
120.7794
120.0666
118.7771
175.6392
175.0811
174.1795
174.0948
172.9648
172.6150
171.7519
170.9424
170.3399
169.5974
168.8795
168.3873
167.1640
166.6424
165.4285
164.9401
163.9931
163.2228
162.2241
161.2600
161.3127
159.7881
159.2700
158.1557
157.1763
156.5488
156.2839
155.0039
154.0197
153.8511
152.3297
151.5382
149.9920
150.1364
148.2687
147.8773
146.9919
145.7171
144.4457
143.7948
142.7938
141.5581
141.6913
140.5435
138.9692
138.5317
137.4518
136.3805 135.3958 134.1985 133.5657 132.8240 131.2397 130.6805 129.4308 128.6840 128.0924 127.1613 126.1870 124.7999 123.5807 123.1119 121.5194 120.7794 120.0666 118.7771
\begin{tabular}{lrrr}
608.5908 & 113.8665 & 117.3811 & 117.3811 \\
611.2061 & 113.4384 & 117.0150 & 117.0150 \\
613.8202 & 111.1937 & 116.4186 & 116.4186 \\
616.4685 & 109.7738 & 114.9616 & 114.9616 \\
619.1598 & 109.2243 & 113.6988 & 113.6988 \\
621.8294 & 108.5452 & 113.2048 & 113.2048 \\
624.4438 & 109.1664 & 112.1189 & 112.1189 \\
627.0366 & 106.9753 & 111.2646 & 111.2646 \\
629.6500 & 105.3465 & 111.0712 & 111.0712 \\
632.3177 & 103.2818 & 108.9701 & 108.9701 \\
634.9674 & 101.4356 & 109.5511 & 109.5511 \\
637.5823 & 99.4982 & 107.9271 & 107.9271 \\
640.1961 & 100.1102 & 107.1721 & 107.1721 \\
642.8460 & 99.2354 & 105.8094 & 105.8094 \\
645.4629 & 97.2518 & 105.5612 & 105.5612 \\
648.1340 & 95.5088 & 104.5390 & 104.5390 \\
650.7472 & 92.9610 & 104.1234 & 104.1234 \\
653.3967 & 91.6147 & 102.8556 & 102.8556 \\
656.0107 & 90.0298 & 101.6042 & 101.6042 \\
661.3652 & 88.7645 & 100.4630 & 100.4630 \\
666.7053 & 89.3768 & 98.3606 & 98.3606 \\
671.9135 & 89.9745 & 97.0109 & 97.0109 \\
677.1944 & 92.4808 & 94.7621 & 94.7621 \\
682.4569 & 93.5277 & 93.5596 & 93.5596 \\
687.7413 & 90.9837 & 91.8691 & 91.8691 \\
698.2877 & 86.4601 & 89.7127 & 89.7127 \\
703.5747 & 84.2749 & 88.9175 & 88.9175 \\
708.7817 & 82.7852 & 86.4864 & 86.4864 \\
713.9892 & 81.9508 & 84.3947 & 84.3947 \\
719.3165 & 82.1551 & 82.8624 & 82.8624 \\
724.5826 & 82.1571 & 81.3761 & 81.3761 \\
729.8104 & 81.4923 & 79.8106 & 79.8106 \\
740.3575 & 77.6327 & 77.6827 & 77.6827 \\
745.6976 & 73.9912 & 76.2762 & 76.2762 \\
750.9776 & 74.0136 & 74.6502 & 74.6502 \\
756.2556 & 74.1712 & 73.3995 & 73.3995 \\
769.4066 & 75.6037 & 69.1196 & 69.1196 \\
774.7566 & 75.9449 & 68.0986 & 68.0986 \\
780.0366 & 75.7037 & 67.3316 & 67.3316 \\
785.2946 & 72.5462 & 67.1097 & 67.1097 \\
790.5146 & 69.7054 & 64.3117 & 64.3117 \\
795.7936 & 65.9712 & 63.2520 & 63.2520 \\
801.1255 & 60.8050 & 62.3054 & 62.3054 \\
806.4036 & 58.7375 & 60.7731 & 60.7731 \\
811.6627 & 58.3286 & 60.2851 & 60.2851 \\
816.8876 & 57.7197 & 58.2631 & 58.2631 \\
822.1456 & 59.0337 & 57.8806 & 57.8806 \\
827.3696 & 61.0149 & 57.2286 & 57.2286 \\
832.7147 & 61.2493 & 55.9266 & 55.9266 \\
837.9716 & 59.1091 & 55.8183 & 55.8183 \\
843.1926 & 54.8946 & 54.4666 & 54.4666 \\
848.4716 & 51.0037 & 51.8594 & 51.8594 \\
853.7496 & 47.6852 & 51.8046 & 51.8046 \\
859.0816 & 45.5484 & 50.9492 & 50.9492 \\
864.3056 & 47.9593 & 51.0342 & 51.0342 \\
869.5646 & 46.9994 & 49.9051 & 49.9051 \\
874.8486 & 47.1061 & 47.2613 & 47.2613 \\
880.1066 & 50.1209 & 47.2773 & 47.2773 \\
885.4606 & 53.6070 & 45.8223 & 45.8223 \\
890.6846 & 55.7845 & 45.2751 & 45.2751 \\
895.9446 & 52.2314 & 44.8765 & 44.8765 \\
901.2236 & 47.3098 & 43.0840 & 43.0840 \\
906.5046 & 46.9460 & 44.5544 & 44.5544 \\
911.7866 & 44.7140 & 42.0871 & 42.0871 \\
917.1205 & 42.2721 & 41.9071 & 41.9071 \\
922.3796 & 40.2422 & 41.8761 & 41.8761 \\
& & & \\
\hline
\end{tabular}


APPENDIX D: Modified Matrix Diffusion Model Match of Laboratory "Step Up" Tracer Tests




Model Match(-) vs Data(*) at \(3.7 \mathrm{ml} / \mathrm{min}\)

\(200 \quad 400\)
Injection Time (secs)




Model Match(-) vs \(\operatorname{Data}\left({ }^{*}\right)\) at \(10 \mathrm{ml} / \mathrm{min}\)

Model Match(-) vs Data(*) at \(16 \mathrm{ml} / \mathrm{min}\)

(qdd)ио!̣едиәәиоว ләэе.ц
Model Match(-) vs Data(*) at \(16.3 \mathrm{ml} / \mathrm{min}\)

\(\begin{array}{llll}0 & 50 & 100 & 150\end{array}\)
Injection Time (secs)

\section*{APPENDIX E: Miscellaneous Computer Programs}

1000 REM PROGRAM FOR READING ELECTRODE RESPONSE
1010 DEF SEG=\&HAFEO
1020 REM SET INTERVAL TIMER
\(1030 C 0=85500\) !
\(1040 \mathrm{CZ}=65500\) !
1043 CWRIT=0
1045 OPEN "C:INREFP.DAT" FOR OUTPUT AS *1
1046 OPEN "C :EXREFP.DAT" FOR OUTPUT AS \(\$ 2\)
1047 OPEN "C:INLETP.DAT" FOR OUTPUT AS \#3
1048 OPEN "C :EXITP .DAT" FOR OUTPUT AS * 4
1050 OPEN "C:INREEN.DAT" FOR OUTPUT AS \(\# 5\)
1051 OPEN "C:EXREFN.DAT" FOR OUTPUT AS \(\# 8\)
1052 OPEN "C:INLETN.DAT" FOR OUTPUT AS \#7
1053 OPEN "C:EXITN.DAT" FOR OUTPUT AS \#8
1054 CNRIT=CWRIT+1
1055 IF CHRIT=5 GOTO 2100
1056 IF CWRIT=2 THEN PRINT CWRIT
1057 IF CWRIT=4 THEN PRINT CWRIT
\(1058 \mathrm{HZ}-\mathrm{INT}(\mathrm{CZ} / 256\) )
1060 LZ \(=\mathrm{CZ}-(\mathrm{HZ}\) 夫256)
\(1070 \mathrm{HO}=\mathrm{INT}(\mathrm{CO} / 256)\)
1080 LO \(=\mathrm{CO}-(\mathrm{HO} * 256)\)
1090 POKE \& \(4 E 0,1\)
1100 POKE \& \(4 C 3,54\)
1110 POKE \& \(4 C O, L Z\)
1120 POKE \& \(\mathrm{HCO}, \mathrm{HZ}\)
1130 POKE \& \(4 C 3,116\)
1140 POKE \& \(4 C 1\), LO
1150 POKE \& HC1, HO
1160 PT=0
1205 GOSUB 8010
1210 FOR 1=1 TO 100:NEXT I
1225 GOSUB 8010
\(1300 \mathrm{BEG}=\mathrm{TIME}\)
\(1400 \mathrm{PT}=? \mathrm{~T}+1\)
1401 GOSUB 8010
1500 BEG1=TIME
1600 ELAP=8EG1-8EG
1700 IF ELAPく. 25 GOTO 1401
1800 IF PT>20 GOTO 1054
1900 GOSUB 4100
2000 GOTO 1400
2100 CLOSE
2200 END
4000 REM SUBROUTINE: SET VOLTAGE AND TAKE READINGS
4100 DEF \(S E G=\& H A F E O\)
\(4200 \mathrm{KB1}=15\)
4300 L81=255
4310 POKE \&H9A, 0:REM SEL GAIN 1
4350 POKE \& \(49 \mathrm{D}, 64\)
4400 POKE \& \(482,2:\) REM SEL SLOT2 CHAN 1
4500 POKE \&H83, LB1
4600 POKE \& 482,3
4700 POKE \&H83,HB1
4750 POKE \&H9D, 1
4770 FOR I=1 TO 200:NEXT I
4800 GOSUB 9400
4900 IF (CNRIT=2)OR(CWRIT=4) THEN PRINT *1,
USING "\#\#\#\#\#, \#\#\#\#\#\#\#, \#\#\#\#\#\#\#"; TIME, DVOLTS
5000 GOSUB 9600
5010 IF (CWRIT=2)OR (CWRIT=4) THEN PRINT \#2, USING "\#\#\#\#\#, \#\#\#\#\#\#\#, \#\#\#\#\#\#\#" - TIME, DVOLTS
5020 GOSUB 6400


5040 GOSUB 6600
```

5050 IF(CNRIT=2)OR(CNRIT=4) THEN PRINT **,

```

```

5300 HB2=0
5310 L82=0
5320 POKE \&H82,2
5330 POKE \&H83,LB2
5340 POKE \&H82,3
5350 POKE \&H83,HB2
5355 POKE \&H9D,1
5358 FOR 1=1 TO 200:NEXT I
5360 GOSUB 9400
5370 IF (CWRIT=2)OR(CWRIT=4) THEN RRINT \#5,
USING 「兰\#\#\#\#\#,\#
5375 GOSUB 9600
5380 IF(CWRIT=2)OR(CWRIT=4) THEN PRINT \# %,
USING "\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#,\#\#\#\#\#\#\#\#\#\#\#
5390 GOSUB 6400
5400 IF(CWRIT=2)OR(CWRIT=4) THEN PRINT \#7,
USING "\#\#\#\#\#\#\#\#\#\#\#\#\#\#,\#\#\#\#\#\#\#\#" ; TIME,DVOLTS
5410 GOSUB 6600
5420 IF(CWRIT=2)OR(CWRIT=4) THEN PRINT \#8,
USING "\#\#\#\#\#\#,\#\#\#\# \#\#\#.*\#\#\#\#\#\#\#\#" ; TIM\&,DVOLTS
5426 H83=8
5428 -83=0
5430 POKE \&482,2
5440 POKE \&H83,LB3
5445 POKE \&482,3
5450 POKE \&H83,HB3
5452 POKE \&H9D,1
550 GOSUB 8010
5560 BEG=TIME
6000 RETURN
6200 DEF SEG=\&HAPEO
6395 REM SUBROUTINE: READ INLET VOLTAGE
6400 DEF SEG=\&HAFEO
6415 POKE \&H9A, 1:REM SEL GAIN 2
6505 POKE \&H80,1
6510 POKE \&H81,1:REM SEL SLT 1
6520 POKE \&H98, 255:REM STARTS A/D CONVER
6 5 2 2 ~ I F ~ P E E K (\& H 9 B) < > 1 2 7 ~ G O T O ~ 6 5 2 2 ~
6525 DLOW=2EER({H80);REM READS LO BYTE
6530 DHIGH=\&gEK(\&H81):REM READS HIGH BYTE
6535 DHIGH=(DHIGH-240)*256:REM WTS HIGH BYTE
6540 DRES=DLON+DHIGH
6 5 4 5 DVOLTS=DRES*(5/4095)
6550 RETURN
6 5 9 0 ~ R E M ~ S U B R O U T I N E : ~ R E A D ~ O U T L E T ~ V O L T A G E ~
6600 DEF SEG=\&HAFEO
6 6 1 5 ~ P O K E ~ \& H 8 0 , 2
6620 POKE \&H81,1:REM SEL SLOT 1
6625 POKE \&H9A,1:REM SETS GAIN 2
6640 POKE \&H98,255
6642 IF PEEK(\&H9B)<>127 GOTO 6642
6650 DLOW=PE\SigmaK(\&480)
6660 DHIGH=9EEK (\&H81)
6670 DHIGH=(DHIGH-240)*256
6680 DRES=DLOW+DHIGH
6690 DVOLTS=DRES* (5/4095)
6 7 0 0 ~ R E T U R N
8000 REM SUROUTINE: READING THE INTERVAL TIMER
8010 DEF SEG=GHAFEO
8020 POKE \&HC3,0
8030 LZ=PE\Sigma\ (\&HCO)
8040 H2=?EER(\&HCO)
8050 CCZ=L2+{H2*256}
8060 POKE \&HC3,64

```
```

8070 LO=PEER(\&HC1)
8080 HO=?EEK (\&HC1)
8090 CCO=LO+(HO*256)
8100 CURRENTCOUNT* = (((CZ-CCZ)*CO) + (CO-CCO))/2
8110 TIME=CURRENTCOUNT\#*,000001046*
8 1 2 0 ~ R E T U R N
9400 DEF SEG=\&HAFEO
9415 POKE \&H9A,1:REM SEL GAIN 2
9505 POKE \&H80, 3
9510 POKE \&H81,1:REM SEL SLT 1
9520 POKE \&H9B,255:REM STARTS A/D CONYER
9522 IF PEEK(\&H9B)<>127 GOTO 9522
9525 DLOW=\&\XiEX(\&H80);REM READS LO BYTE
9530 DHIGH=REEK(\&H81):REM READS HIGH BYTE
9535 DHIGH=(DHIGH-240)*256:REM WTS HIGH BYTE
9540 DRES=DLON+OHIGH
9 5 4 5 ~ D V O L T S = D R E S * ~ (5 / 4 0 9 5)
9550 RETURN
9590 REM SUBROUTINE: READ OUTLET VOLTAGE
9600 DEF SEG=\&HAEFO
9615 POKE \& H80,4
9620 POKE \&H81,1;REM SEL SLOT 1
9625 POKE \&H9A,1:REM SETS GAIN 2
9640 POKE \&H9B,255
9642 IF PEEK (\&H9B)<>127 GOTO 9642
9650 DLOW=?\&EK (\&H8O)
9660 DHIGH=QEER(\&H81)
9670 DHIGH= (DHIGH-240)*256
9680 DRES=DLOW+DHIGH
9690 DVOLTS=DRES*(5/4095)
9700 RETURN

```
```

 Program to difterentiate continuous injection data into
 slug test data using least squares method
 dimension t(10000), x(10000)
 read (5,100) np
 reza in number of points in file
 and the number of points used for. least
 squares fit
 read (5,100) nplus
 nplot=np-2*n\rholus
 urite(b,100) riplot
 do 3 i=1,np
 read (5,101) t(i),x(i)
 n3=2*nplus+1
 do 1 i=nplus+1, np-nplus
 jumx=0.0
 sumy=0.0
 zumxy=0.0
 Tunx2=0.0
 do 2 s=i-nplus,itnplus
 sumx=sumx+t(J)
 sumy=sumy+x(j)
 sumxy=5umxy+x(j)*t(J)
 #umx2=sumx2+t(J)*t(J)
 continue
 grad=-{sumx*sumy-n`*sumxy):(sumx*sumx-n3*sumx 2)
 write (b,101) t(i),grad
 continue
 G formst(is)
 :i format(f10.4,x,f11.7)
-\&-の
F-ogram to convert from elertrode voltages to trager conrentration
read(5,103) ipt
sTite(b,103) ipt
\therefore0 o k=1,ipt
remd(5,102) t.x1
==10.0枓(4.024-x1)-5.75
write(b,102) t, c
firmat (i\&)
format (+10.4,x,f11.7)
Brd

```

Entire data set for Run No. 11, November 6, 1986
Flowrate \(=3.7 \mathrm{cc} / \mathrm{min} \quad\) Pressure Drop \(=0.408 \mathrm{psi}\) Tracer Concentration \(=102\) ppm \(\quad\) Step Up Cycle Actual Test Start Time \(=59.3\) secs

Clock Time Electrode Tracer in Equivalent (seconds) Voltage Core. EffluentSlug Test (volts) (ppm) (ppm/sec)
\begin{tabular}{llll}
16.8063 & 4.1575089 & 0.0151740 & 0.0000800 \\
18.1735 & 4.1575089 & 0.0166443 & -0.0000513 \\
19.5406 & 4.1575089 & 0.0176342 & -0.0001619 \\
20.9080 & 4.1636138 & 0.0146735 & -0.0002622 \\
22.2721 & 4.1599512 & 0.0117314 & \(-0.000351 \sim 0\) \\
23.6601 & 4.1643359 & 0.0092464 & -0.0004226 \\
25.0271 & 4.1648359 & 0.0087560 & -0.00048184 \\
26.3934 & 4.1636138 & 0.0053347 & -0.0005179 \\
27.7600 & 4.1648359 & 0.0063130 & -0.0005647 \\
29.1272 & 4.1684980 & 0.0068020 & -0.0005861 \\
30.4973 & 4.1623931 & 0.0068001 & -0.0005853 \\
31.8637 & 4.1636138 & 0.0063111 & -0.0005531 \\
33.2522 & 4.1636138 & 0.0048208 & -0.0004887 \\
34.6185 & 4.1660562 & 0.0043710 & -0.0004050 \\
35.9855 & 4.1721611 & 0.0038719 & -0.0003277 \\
37.4170 & 4.1636138 & 0.0019307 & -0.0002649 \\
38.7841 & 4.164359 & 0.00192888 & -0.00002339 \\
40.1732 & 4.1684980 & 0.0028803 & -0.0001863 \\
41.5396 & 4.1660562 & 0.0009641 & -0.0001887 \\
42.9061 & 4.1697192 & 0.0004556 & -0.0001912 \\
44.3477 & 4.1684980 & 0.0014539 & -0.0002086 \\
45.7145 & 4.1660562 & 0.0014596 & -0.0002305 \\
47.0814 & 4.1660562 & 0.0019240 & -0.0002527 \\
48.4488 & 4.1660562 & 0.0014378 & -0.0003134 \\
49.8165 & 4.1684980 & 0.0024107 & -0.0003645 \\
51.1846 & 4.1697192 & 0.0028899 & -0.0004068 \\
52.5707 & 4.1636138 & 0.0024192 & -0.0004503 \\
53.9372 & 4.1648359 & 0.0019222 & -0.0004932 \\
55.3030 & 4.1672769 & 0.0009527 & -0.000493 \\
56698 & 4.1697192 & -0.0009886 & -0.0005001 \\
58.0374 & 4.1721611 & -0.0034063 & -0.0005130 \\
59.4077 & 4.1684980 & -0.0053397 & -0.0005033 \\
60.7969 & 4.1709409 & -0.0058275 & -0.0004430 \\
62.1639 & 4.1721611 & -0.0096931 & -0.0002918 \\
63.5302 & 4.1709409 & -0.0091869 & -0.0000257 \\
64.8968 & 4.1819291 & -0.0092506 & 0.0004398 \\
66.4142 & 4.1672769 & -0.0086193 & 0.0011829 \\
67.7842 & 4.1709409 & -0.0096154 & 0.0022729 \\
69.1541 & 4.1709409 & -0.0058256 & 0.0038009 \\
70.5242 & 4.1733818 & -0.0082335 & 0.0058569 \\
71.8933 & 4.1721611 & -0.0077564 & 0.0085393 \\
73.2625 & 4.1733818 & -0.0073016 & 0.0119259 \\
74.6858 & 4.1697192 & -0.0028575 & 0.0162067 \\
76.0558 & 4.1697192 & 0.0059072 & 0.0213947 \\
77.4263 & 4.1623931 & 0.0191251 & 0.0275904 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 78.7957 & 4.1501832 & 0.0411468 & 0.03 \\
\hline 80.1663 & 4.1404152 & 0.0741711 & 0.0433285 \\
\hline 81.5549 & 4.1159959 & 0.1188998 & 0.0529421 \\
\hline 82.9247 & 4.0915751 & 0.1779318 & 0.0639241 \\
\hline 84.2950 & 4.0622711 & 0.2529412 & 0.0762564 \\
\hline 85.6651 & 4.0231991 & 0.3468751 & 0.0898989 \\
\hline 87.0351 & 3.9890110 & 0.4588909 & 0.1047354 \\
\hline 88.4640 & 3.9389501 & 0.6013127 & 0.1207807 \\
\hline 89.8342 & 3.8974359 & 0.7587447 & 0.1379174 \\
\hline 91.2051 & 3.8473749 & 0.9451517 & 0.1559591 \\
\hline 92.5747 & 3.7997561 & 1.1489518 & 0.1746171 \\
\hline 93.9449 & 3.7509160 & 1.3936436 & 0.1938763 \\
\hline 95.3155 & 3.7069600 & 1.6596735 & 0.2136417 \\
\hline 96.7504 & 3.6459100 & 1.9736292 & 0.2339207 \\
\hline 98.1207 & 3.6031749 & 2.3114529 & 0.2542504 \\
\hline 99.4909 & 3.5543351 & 2.6846509 & 0.2746824 \\
\hline 100.8620 & 3.5042739 & 3.0788414 & 0.2945090 \\
\hline 102.2473 & 3.4627600 & 3.5135415 & 0.3142118 \\
\hline 103.6650 & 3.4151411 & 3.9885652 & 0.3329909 \\
\hline 105.0503 & 3.3760691 & 4.4759502 & 0.3511608 \\
\hline 106.4137 & 3.3357761 & 4.9739547 & 0.3686733 \\
\hline 107.7769 & 3.2967031 & 5.5065432 & 0.3848256 \\
\hline 109.1631 & 3.2661779 & 6.0689902 & 0.4002737 \\
\hline 110.6029 & 3.2222221 & 6.6872616 & 0.4149042 \\
\hline 111.9650 & 3.1929181 & 7.2798247 & 0.4286213 \\
\hline 113.3287 & 3.1575091 & 7.9130225 & 0.4413258 \\
\hline 114.7130 & 3.1294260 & 8.5070095 & 0.4538881 \\
\hline 116.0764 & 3.1013429 & 9.1756115 & 0.4650684 \\
\hline 117.4404 & 3.0818069 & 9.8057308 & 0.4757837 \\
\hline 118.8076 & 3.0427351 & 10.4792433 & 0.4855327 \\
\hline 120.1940 & 3.0244200 & 11.1716032 & 0.4945955 \\
\hline 121.5575 & 2.9963369 & 11.8123760 & 0.5032695 \\
\hline 122.9213 & 2.9743590 & 12.5205660 & 0.5108534 \\
\hline 124.3052 & 2.9682541 & 13.2483292 & 0.5175985 \\
\hline 125.7956 & 2.9218559 & 14.0330725 & 0.5237576 \\
\hline 127.1820 & 2.9084251 & 14.7552042 & 0.5295969 \\
\hline 128.5462 & 2.8864470 & 15.5630245 & 0.5349529 \\
\hline 129.9110 & 2.8705740 & 16.2581882 & 0.5390203 \\
\hline 131.2971 & 2.8559220 & 17.0471287 & 0.5429287 \\
\hline 132.7358 & 2.8302810 & 17.8195267 & 0.5465601 \\
\hline 134.0997 & 2.8107450 & 18.5900021 & 0.5497385 \\
\hline 135.4642 & 2.7985351 & 19.3937206 & 0.5533285 \\
\hline 136.8290 & 2.7814410 & 20.1104488 & 0.5558663 \\
\hline 138.2160 & 2.7667890 & 20.8679695 & 0.5584098 \\
\hline 139.5805 & 2.7545791 & 21.6281548 & 0.5607560 \\
\hline 141.0210 & 2.7338221 & 22.4595089 & 0.5619744 \\
\hline 142.3845 & 2.7228329 & 23.2064648 & 0.5621282 \\
\hline 143.7474 & 2.7057390 & 23.9373913 & 0.5640453 \\
\hline 145.1325 & 2.6971920 & 24.7164078 & 0.5631891 \\
\hline 146.4973 & 2.6886449 & 25.5231266 & 0.5622876 \\
\hline 147.9418 & 2.6666670 & 26.3277302 & 0.5617395 \\
\hline 149.3068 & 2.6544571 & 27.1873436 & 0.5612012 \\
\hline 150.6720 & 2.6434679 & 27.9419460 & 0.5601251 \\
\hline 152.0360 & 2.6288159 & 28.7532463 & 0.5588968 \\
\hline
\end{tabular}
\begin{tabular}{llll}
153.4223 & 2.6300371 & 29.5485039 & 0.5567831 \\
154.8513 & 2.6056170 & 30.2817707 & 0.5543105 \\
156.2163 & 2.5970700 & 30.9966316 & 0.5516585 \\
157.6029 & 2.5934069 & 31.9069176 & 0.5487024 \\
158.9680 & 2.5787549 & 32.4621201 & 0.5450063 \\
160.3321 & 2.5689869 & 33.1965904 & 0.5411336 \\
161.6963 & 2.5689869 & 34.0277977 & 0.5374206 \\
163.0805 & 2.5494511 & 34.7906647 & 0.5332156 \\
164.4452 & 2.5409040 & 35.4535141 & 0.5306333 \\
165.8098 & 2.5323570 & 36.2345200 & 0.5290055 \\
167.1953 & 2.5286399 & 36.9295845 & 0.5246505 \\
168.5605 & 2.5225890 & 37.6482849 & 0.5216019 \\
170.0012 & 2.5091579 & 38.3807411 & 0.5182681 \\
171.3653 & 2.4993899 & 39.1024323 & 0.5145242 \\
172.7298 & 2.4932849 & 39.7954369 & 0.5127546 \\
174.1172 & 2.4884009 & 40.5111732 & 0.5111400 \\
175.4809 & 2.4847381 & 41.2025261 & 0.50812256 \\
176.9267 & 2.4713070 & 41.9040642 & 0.5060151 \\
178.2922 & 2.4627600 & 42.6716652 & 0.5019353 \\
179.6577 & 2.4590969 & 43.4772110 & 0.5006921 \\
181.0236 & 2.4493289 & 43.8267441 & 0.4979700 \\
182.3882 & 2.4444449 & 44.5721016 & 0.4952094 \\
183.7748 & 2.4542129 & 45.3103371 & 0.4922138 \\
185.2680 & 2.4261301 & 46.0187569 & 0.4842775 \\
186.6545 & 2.4236879 & 46.7308540 & 0.4887835 \\
188.0198 & 2.4188039 & 47.5979919 & 0.4848108 \\
189.3852 & 2.4114780 & 48.1432571 & 0.4801459 \\
190.7512 & 2.4139199 & 48.7796440 & 0.47518835 \\
192.1345 & 2.4017100 & 49.4330177 & 0.4715013 \\
193.4988 & 2.3956039 & 50.0283661 & 0.4680496 \\
194.8638 & 2.3907199 & 50.6583366 & 0.4665695 \\
196.2290 & 2.3858359 & 51.32425258 & 0.4614437 \\
197.6161 & 2.3870580 & 51.9422569 & 0.4574807 \\
199.0355 & 2.3736269 & 52.6170807 & 0.4530579 \\
200.4239 & 2.3699639 & 53.2859039 & 0.4477556 \\
201.7876 & 2.3638589 & 53.9782600 & 0.4419321 \\
203.1515 & 2.3589749 & 54.3164330 & 0.43543954 \\
204.5370 & 2.3589749 & 54.9712143 & 0.43512859 \\
205.9000 & 2.3601961 & 55.5907631 & 0.4315856 \\
207.3453 & 2.3443229 & 56.2321663 & 0.4284188 \\
208.7101 & 2.3394389 & 56.8996582 & 0.4251587 \\
210.0746 & 2.3357761 & 57.4438553 & 0.4238390 \\
211.4380 & 2.3333340 & 58.0963097 & 0.4199675 \\
212.8233 & 2.3394389 & 58.5960350 & 0.4188943 \\
214.2516 & 2.3199029 & 59.1198845 & 0.4133633 \\
215.6154 & 2.3211229 & 59.5830040 & 0.4107259 \\
217.0015 & 2.3174601 & 60.2659760 & 0.4016176 \\
218.3653 & 2.3162391 & 60.7477875 & 0.4008165 \\
219.7298 & 2.3150189 & 61.3355103 & 0.3934437 \\
221.1142 & 2.3028080 & 61.9418030 & 0.3864381 \\
222.4774 & 2.3003671 & 62.5042419 & 0.3803550 \\
223.8412 & 2.2967031 & 63.2541389 & 0.3755156 \\
225.2269 & 2.2667031 & 63.5117531 & 0.3678637 \\
226.5916 & 2.2893779 & 64.1301880 & 0.3621864 \\
& & & \\
\hline
\end{tabular}
\(\left.\begin{array}{llll}227.9563 & 2.2942619 & 64.5668793 & 0.3558511 \\ 229.3186 & 2.2796099 & 65.1189804 & 0.3478935 \\ 230.7051 & 2.2820511 & 65.4982681 & 0.3397265 \\ 232.0674 & 2.2783880 & 65.8688202 & 0.3391628 \\ 233.4314 & 2.2771671 & 66.2391968 & 0.3332739 \\ 234.8172 & 2.2820511 & 66.7301178 & 0.3268932 \\ 236.2401 & 2.2673991 & 67.2821426 & 0.3221210 \\ 237.6260 & 2.2661779 & 67.7831802 & 0.3177231 \\ 238.9891 & 2.2612939 & 67.9648743 & 0.3149710 \\ 240.3529 & 2.2612939 & 68.5016937 & 0.3103975 \\ 241.7386 & 2.2759471 & 68.9237976 & 0.3079519 \\ 243.2310 & 2.2503059 & 69.2770386 & 0.3044240 \\ 244.6165 & 2.2527471 & 69.7516022 & 0.3023368 \\ 245.9807 & 2.2515261 & 70.8095474 & 0.2996406 \\ 247.3453 & 2.2466421 & 70.7677689 & 0.2950883 \\ 248.7086 & 2.2429790 & 71.0479889 & 0.2912192 \\ 250.0955 & 2.2515261 & 71.5329056 & 0.2878646 \\ 251.5352 & 2.2442000 & 71.9170914 & 0.2852382 \\ 252.8998 & 2.2368741 & 72.1997223 & 0.2828719 \\ 254.2644 & 2.2356541 & 72.6032181 & 0.2816225 \\ 255.6288 & 2.2344320 & 73.0570526 & 0.2762232 \\ 257.0152 & 2.2393160 & 73.3463135 & 0.2722201 \\ 258.4556 & 2.2307701 & 73.7835846 & 0.26771104 \\ 259.8210 & 2.2283270 & 74.1559525 & 0.2642345 \\ 261.1863 & 2.2234430 & 74.4017258 & 0.2666882 \\ 262.5493 & 2.2234430 & 74.9071808 & 0.2667830 \\ 263.9354 & 2.2319901 & 75.2907944 & 0.2660675 \\ 265.3591 & 2.2161181 & 75.64752 \% & 0.2646602 \\ 266.7461 & 2.2173381 & 75.9504623 & 0.2624951 \\ 268.1114 & 2.2136750 & 76.6793365 & 0.2600557 \\ 269.4766 & 2.2148960 & 76.5045776 & 0.2569215 \\ 270.8409 & 2.2112341 & 76.9804611 & 0.2532801 \\ 272.2270 & 2.2210021 & 77.3720779 & 0.2498048 \\ 273.6562 & 2.2039070 & 77.7873840 & 0.2473952 \\ 275.0209 & 2.2026861 & 78.0440140 & 0.2441671 \\ 276.4066 & 2.2039070 & 78.5757599 & 0.2417428 \\ 277.7722 & 2.2039070 & 78.9353943 & 0.2368542 \\ 279.1381 & 2.2063489 & 79.1134109 & 0.2308700 \\ 280.5000 & 2.1941390 & 79.3815079 & 0.2244951 \\ 281.8862 & 2.1978021 & 79.7941971 & 0.2183200 \\ 283.2511 & 2.1965809 & 80.0182953 & 0.2168260 \\ 284.6162 & 2.1929181 & 80.2001038 & 0.2072963 \\ 285.9803 & 2.2002439 & 80.6093063 & 0.2019395 \\ 287.3654 & 2.1892550 & 80.9820175 & 0.1974633 \\ 288.7311 & 2.1868131 & 81.2114410 & 0.1938195 \\ 290.0967 & 2.1868131 & 81.7187271 & 0.1895404 \\ 291.4617 & 2.1868131 & 81.6272430 & 0.1892596 \\ 292.8471 & 2.1868131 & 81.76515 \% & 0.1869384 \\ 294.2123 & 2.1916969 & 81.9918747 & 0.1836542 \\ 299.3585 & 2.1831501 & 82.3375092 & 0.1799351 \\ 301.1218 & 2.1929181 & 2.1807079 & 82.6602402\end{array} 00.1767890\right\}\)
\begin{tabular}{|c|c|c|c|}
\hline 302.5795 & 2.1697190 & 83.6619339 & 0.1704840 \\
\hline 303.9440 & 2.1733820 & 83.8935699 & 0.1703987 \\
\hline 305.3083 & 2.1721611 & 84.3141174 & 0.1733260 \\
\hline 306.6722 & 2.1721611 & 84.2664871 & 0.1723188 \\
\hline 08.0567 & 2.1819291 & 84.5011368 & 0.1699571 \\
\hline 309.4964 & 2.1709399 & 84.7089462 & 0.1661786 \\
\hline 310.8603 & 2.1672771 & 84.8460846 & 0.1622870 \\
\hline 312.2240 & 2.1672771 & 85.4690094 & 0.1582986 \\
\hline 313.6099 & 2.1684980 & 85.4204941 & 0.1505205 \\
\hline 14.9744 & 2.1660559 & 85.6159210 & 0.1457275 \\
\hline 316.3375 & 2.1721611 & 85.8086929 & 0.1422189 \\
\hline 317.7202 & 2.1623931 & 86.1546783 & 0.1382230 \\
\hline 319.0846 & 2.1623931 & 86.3988876 & 0.1357896 \\
\hline 320.4494 & 2.1599510 & 86.5452194 & 0.1399662 \\
\hline 321.8121 & 2.1599510 & 86.7411728 & 0.1381622 \\
\hline 323.1983 & 2.1684980 & 86.8394318 & 0.1366389 \\
\hline 324.6204 & 2.1575091 & 86.9426270 & 107 \\
\hline 326.0051 & 2.1599510 & 87.0439606 & 0.1328226 \\
\hline 327.3693 & 2.1575091 & 87.1365662 & 0.1343361 \\
\hline 323.7332 & 2.1575091 & 87.3325882 & 0.1331758 \\
\hline 330.1200 & 2.1660559 & 87.5800552 & 0.1314086 \\
\hline 331.5471 & 2.1526251 & 87.6892776 & 0.1296302 \\
\hline 332.9098 & 2.1538460 & 87.9833374 & 0.1279731 \\
\hline 334.2947 & 2.1550670 & 88.6345215 & 0.1272440 \\
\hline 335.6592 & 2.1501830 & 88.4827271 & 0.12518071 \\
\hline 337.0242 & 2.1501830 & 88.6817474 & 0.1260825 \\
\hline 338.4094 & 2.1562879 & 88.8850021 & 0.1255498 \\
\hline 339.8503 & 2.1489620 & 89.0440369 & 0.1242726 \\
\hline 341.2153 & 2.1501830 & 89.1941071 & 0.1210917 \\
\hline 342.5791 & 2.1465199 & 89.3411179 & 0.1179928 \\
\hline 343.9435 & 2.1465199 & 89.4419479 & 0.1063074 \\
\hline 345.3298 & 2.1526251 & 89.5948639 & 0.0989132 \\
\hline 346.7703 & 2.1465199 & 89.6502075 & 0.0916440 \\
\hline 348.1353 & 2.1465199 & 89.8032303 & 0.0863572 \\
\hline 349.5007 & 2.1452990 & 89.9007874 & 0.0879206 \\
\hline 350.8660 & 2.1428571 & 90.2042007 & 0.0911666 \\
\hline 352.2518 & 2.1501830 & 90.3585587 & 0.0928132 \\
\hline 353.6737 & 2.1391940 & 90.5177536 & 0.09418331 \\
\hline 355.0591 & 2.1428571 & 90.5708389 & 0.0966070 \\
\hline 356.4240 & 2.1416359 & 90.8233185 & \(0.099 ' 1179\) \\
\hline 357.7889 & 2.1416359 & 90.0560379 & 0.1010378 \\
\hline 359.1542 & 2.1440780 & 90.5124359 & 0.1006649 \\
\hline 360.5412 & 2.1575091 & 90.7047119 & 0.09918190 \\
\hline 362.0335 & 2.1318679 & 90.8995590 & 0.0984692 \\
\hline 363.4183 & 2.1367519 & 91.2041321 & 0.0966555 \\
\hline 364.7818 & 2.1379731 & 91.8074112 & 0.0968148 \\
\hline 366.1471 & 2.1367519 & 91,7563477 & 0.0965769 \\
\hline 367.5108 & 2.1428571 & 91.8593216 & 0.0979134 \\
\hline 368.8951 & 2.1330891 & 91.9663239 & 0.0985153 \\
\hline 370.2605 & 2.1343100 & 92.1753998 & 0.0972258 \\
\hline 371.6248 & 2.1355309 & 92.2274623 & 0.0988631 \\
\hline 372.9898 & 2.1318679 & 92.1763229 & 0.0913543 \\
\hline 374.3766 & 2.1416359 & 92.2256241 & 0.0869057 \\
\hline 375.8178 & 2.1343100 & 92.3880692 & 0.0821 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 377 & 2.1330891 & 92.4419937 & 0.0 \\
\hline 378.5469 & 2.1318679 & 92.8036041 & 0.0752730 \\
\hline 379.9125 & 2.1306469 & 92.6999512 & 0.0771906 \\
\hline 1.3001 & 2.1330891 & 92.9620132 & 0.07 \\
\hline 382.6646 & 2.1367519 & 92.9 & 0.0767929 \\
\hline 384.0889 & 2.1269839 & 92.9644394 & 0.0784058 \\
\hline 385.4757 & 2.1318679 & 93.2313232 & 0.0795958 \\
\hline 86.8409 & 2.1306469 & 93.33148\% & 0.0 \\
\hline 8.2062 & 2.1269839 & 93.490844 & \\
\hline 389.5704 & 2.1343100 & 93.5437927 & \\
\hline 390.9445 & 2.1233211 & 93.7033997 & 0.0807551 \\
\hline 392.3312 & 2.1306469 & 93.7590714 & 0.0808091 \\
\hline 393.6957 & 2.1269839 & 93.8623428 & 0.0827317 \\
\hline 395.0596 & 2.1257629 & 93.8095779 & 0.0819634 \\
\hline 396.4237 & 2.1318679 & 94.0757446 & 0.0807566 \\
\hline 397.8085 & 2.1245420 & 94.2921829 & 0.07540306 \\
\hline 399.1731 & 2.1245420 & 94.2367706 & 0.0763944 \\
\hline 400.5391 & 2.1221001 & 94.6653671 & 0.0742578 \\
\hline 401.9236 & 2.1269839 & 94.5035629 & 0.0666492 \\
\hline 403.2871 & 2.1221001 & 94.665634 & 0.0640084 \\
\hline 404.6496 & 2.1282051 & 94.6640625 & 0.0601258 \\
\hline 406.0334 & 2.1208789 & 94.9897537 & 0.0583757 \\
\hline 407.3976 & 2.1221001 & 95.0433960 & 0.0527756 \\
\hline 408.7622 & 2.1196580 & 95.0970078 & 0.0553172 \\
\hline 410.1261 & 2.1208789 & 94.9920197 & 832 \\
\hline 411.5100 & 2.1269839 & 95.1502304 & 0.05184382 \\
\hline 412.9541 & 2.1233211 & 95.2673645 & 0.0517085 \\
\hline 414.3167 & 2.1184371 & 95.2629318 & 0.0524230 \\
\hline 415.6812 & 2.1172161 & 94.7754593 & 0.0567330 \\
\hline 417.0456 & 2.1208789 & 95.2624054 & 0.0583979 \\
\hline 418.4310 & 2.1379731 & 95.2532272 & 0.0583979 \\
\hline 419.9241 & 2.1123321 & 95.2785034 & 0.0578315 \\
\hline 421.3103 & 2.1184371 & 95.3860245 & 0.0596745 \\
\hline 422.6737 & 2.1172161 & 96.0722961 & 0.0611111 \\
\hline 424.0359 & 2.1184371 & 95.6930847 & 0.0608353 \\
\hline 425.4207 & 2.1221001 & 95.96459\% & 0.0604118 \\
\hline 426.7837 & 2.1208789 & 95.9635849 & 0.0591781 \\
\hline 428.1462 & 2.1123321 & 96.1243591 & 0.0577521 \\
\hline 429.5309 & 2.1172161 & 96.4561539 & 0.0582613 \\
\hline 430.8942 & 2.1147740 & 96.4001846 & 0.05215940 \\
\hline 432.2580 & 2.1147740 & 96.2380981 & 0.0482069 \\
\hline 433.6438 & 2.1221001 & 96.3457870 & 0.0456143 \\
\hline 435.0823 & 2.1159949 & 96.4053116 & 0.0427289 \\
\hline 436.4470 & 2.1147740 & 96.4596329 & 0.0387013 \\
\hline 437.8116 & 2.1135530 & 96.3464279 & 0.04118936 \\
\hline 439.1758 & 2.1135530 & 96.5654755 & 0.0409751 \\
\hline 440.5610 & 2.1245420 & 96.4563675 & 0.0425408 \\
\hline 441.9839 & 2.1111109 & 96.4571686 & 0.0428331 \\
\hline 443.3701 & 2.1172161 & 96.5725327 & 0.0444113 \\
\hline 444.7343 & 2.1135530 & 97.0036011 & 0.0481592 \\
\hline 446.0989 & 2.1111109 & 96.6198883 & 0.0508310 \\
\hline 447.4842 & 2.1147740 & 96.9485474 & 0.0528471 \\
\hline 448.8491 & 2.1196580 & 97.0566406 & 0.0590925 \\
\hline 450.2788 & 2.1098900 & 97.0076294 & 0.0575469 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 51.6637 & 09 & 97 & 0.0607068 \\
\hline 453.0266 & 2.1123321 & 97.2781525 & 0.0622390 \\
\hline 454.3897 & 2.1111109 & 97.3892059 & 0.0598159 \\
\hline 546 & 2.1172161 & 97.38882 & \\
\hline 7.1370 & 2.1074481 & & \\
\hline 458.5002 & 2.1111109 & 97. & 0.0390461 \\
\hline 459.8650 & 2.1098900 & 97.5578537 & 0.0372939 \\
\hline 1.2520 & 2.1111109 & 97.77886\% & 0.0268882 \\
\hline 2.6149 & 2.1159949 & 97.8325500 & 0.0215427 \\
\hline 9772 & 2.1025641 & 97.9412994 & 0, \\
\hline 633 & 2.1098900 & 98. & \\
\hline 6.7267 & 2.1074481 & 98.2216949 & 0.0102160 \\
\hline 8.0905 & 2.1074481 & 97.6685715 & 0.0137084 \\
\hline 4761 & 2.1135530 & 97.66776 & 0.0158277 \\
\hline . 8416 & 2.1147740 & 97 & \\
\hline 2.2862 & 2.1098900 & 97.5639572 & 0.0190766 \\
\hline 3.6507 & 2.1086690 & 97.7807693 & 0.0207204 \\
\hline 5.0142 & 2.1086690 & 97.3364639 & 0.0227273 \\
\hline 6.3788 & 2.1086690 & 97.66786\% & 0.0249677 \\
\hline 477.7647 & 2.1245420 & 97 & \\
\hline 257 & 102564 & 97.79 & \\
\hline 480.6436 & 2.1074481 & 97.8494568 & 36 \\
\hline 482.0065 & 2.1074481 & 98.4997177 & 0.0471503 \\
\hline 3.3707 & 2.1074481 & 98.33321 & 0.0466113 \\
\hline 484.7354 & 098 & 98.332939 & 0.0453068 \\
\hline 486.1198 & 2.1062269 & 98.3895950 & 0.04510809 \\
\hline 487.4852 & 2.1074481 & 98.4447479 & 0.0444517 \\
\hline 8.8506 & 2.1062269 & 98.5011368 & 0436601 \\
\hline 490.2366 & 2.1062269 & 98.3881760 & 51 \\
\hline . 5998 & 2.1086 & 98.6 & \\
\hline 492.9636 & 2.1086690 & 98.5560303 & 0.0330350 \\
\hline 94.3478 & 2.1025641 & 98.5573349 & 0.0290055 \\
\hline 55.7118 & 2.1074481 & 98.7807083 & 0.0251444 \\
\hline 69 & 2.1062269 & 98.50 & 0.030525 \\
\hline 4418 & 2.1037850 & 8.50059 & 0.0291918 \\
\hline 499.8073 & 2.1147740 & 98.7787399 & 0.0282004 \\
\hline 1.1965 & 2.1025641 & 98.8949966 & 0.0266780 \\
\hline 2.5597 & 2.1013429 & 98.7806549 & . 0281468 \\
\hline २23 & 2.1037850 & 99.007873 & 0287881 \\
\hline 5.3078 & 2.1062269 & 99.00546 & 0.0259885 \\
\hline 06.6723 & 2.1098900 & 98.890945 & 0.0262297 \\
\hline 08.1011 & 2.1025641 & 98.9524612 & 0.0261506 \\
\hline 9.4866 & 2.1037850 & 99.0084229 & 0.0244970 \\
\hline 0.8499 & 2.1025641 & 99.3422775 & 0.0232968 \\
\hline 2.2125 & 2.1050060 & 99.00557 & 0.0194314 \\
\hline 13.5822 & 2.1025641 & 99.0612946 & 0.0160975 \\
\hline 4.9509 & 2.1098900 & 99.0044250 & 0.01513886 \\
\hline 16.3397 & 2.1025641 & 99.1178665 & 0.0183454 \\
\hline 7.7101 & 2.1037850 & 99.2308350 & 0.01512995 \\
\hline 9.0805 & 2.1025641 & 99.2859039 & 0.0184149 \\
\hline 20.4510 & 2.1001220 & 99.2305603 & 0.0110208 \\
\hline 1.8194 & 2.1086690 & 99.3425522 & 0.0071671 \\
\hline 523.2425 & 2.1037850 & 99.2289658 & 0.0023438 \\
\hline 524.6131 & 2.1013429 & 99 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & 2.1050060 & 99.1720505 & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline 531.543 & 2.10 & 99. & \\
\hline 2.9090 & 2.10256 & 99.6 & 0.0166538 \\
\hline 273 & 2.103785 & & \\
\hline 535.6402 & & & \\
\hline & & & \\
\hline 82 & 2.098 & & 0.0298354 \\
\hline 539.8885 & 2.101342 & 99. & 0.0296883 \\
\hline 541.2771 & 2.1001220 & 99.735054 & \\
\hline 542.6436 & & & \\
\hline 退．000 & 2.107 & 99.7 & 835 \\
\hline 5.4518 & 2.1001220 & 99.798416 & 0.0339027 \\
\hline 546.8188 & 2.0989010 & 99.85513 & 0.03 \\
\hline 548.1861 & 2.1001220 & 99.850486 & \\
\hline ． 52 & ， & & \\
\hline 918 & 2.107 & 99.8506 & 0.0236390 \\
\hline ． 3050 & 2.0989010 & 99.908332 & 0187990 \\
\hline 3．6717 & 2.1001220 & 99.851699 & 0.0160807 \\
\hline ． 0373 & 2.098901 & 100.304718 & 0.0106660 \\
\hline ． 40 & 10012 & 99.739082 & \\
\hline 77 & 2.097680 & 99.8536377 & 0.00811861 \\
\hline ． 160 & 2.1111109 & 99.850044 & ． 00 \\
\hline ． 58 & 2.097680 & 99.73875 & \\
\hline ． 9518 & 2.098901 & 99.7385330 & \\
\hline 563.339 & 2.1025641 & 100.018928 & 0.0108273 \\
\hline 068 & 2.097680 & 99.9644470 & 0.0138025 \\
\hline 566.0741 & 2.1050060 & 100.128 & ． 0166451 \\
\hline 567.5063 & 2.0989010 & 100 & 0.0194948 \\
\hline 568.8743 & 2.095238 & 100.02130 & \\
\hline 570.2408 & 00 & 100.023 & \\
\hline 571.6281 & 2.10256 & 99.965606 & 24 \\
\hline 572.9948 & 2.105 & 99.7918 & 0.0235959 \\
\hline 574.4367 & 1001220 & 99.9 & 0.0231892 \\
\hline 575.8033 & ．098901 & 00.253 & \\
\hline 7.1697 & 2.097680 & 100.53251 & 0.0194415 \\
\hline 578.5365 & 09523 & 100.361717 & 0.0157393 \\
\hline 9031 & ． 0989 & 100.4758682 & ． 0108582 \\
\hline 581.2710 & 103 & 100.4758 & \\
\hline 656 & ， 0964 & 0030561 & \\
\hline ． 022 & 997 & 0.3 & 57 \\
\hline 585.3886 & ． 0989010 & 100.3049393 &  \\
\hline 7555 & 2.097680 & 100.418579 & 0．0156638 \\
\hline & 105006 & 100.41802 & \\
\hline 589.4925 & 2.09401 & 100.47458 & \\
\hline 0．8813 & 2.0976801 & 100.477317 & 0.0136719 \\
\hline 2475 & 2.0976801 & 100.0749359 & 01518771 \\
\hline ．6153 & 2.0976801 & 100.025909 & 0.0165107 \\
\hline ．9820 & ． 11355 & 100.071998 & \\
\hline ． 4981 & 2.0952 & 100.2 & \\
\hline 597.8650 & 2.0964589 & 100.4393768 & 0.0223609 \\
\hline 599.2320 & 2.0952380 & 101.1616287 & 0.02 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & & & \\
\hline & 2.0989010 & 100 & \\
\hline & & & \\
\hline & 2.096458 & & \\
\hline & & & \\
\hline & 2.0940170 & 100 & \\
\hline 2.933 & 2.095238 & 100.932 & -0.0020 \\
\hline 983 & . 09 & 100. & \\
\hline & & & \\
\hline  & & & \\
\hline 8.47 & 2.09401 & 100 & \\
\hline 9.8433 & 2.092796 & 100.59064 & 0.0171786 \\
\hline 183 & 097680 & 101 & \\
\hline & , & & \\
\hline & & & \\
\hline 329 & 10256 & 00.926 & \\
\hline 7820 & 2.0940170 & 100.938568 & \\
\hline 148 & 2796 & 101.050956 & \\
\hline & & 101 & \\
\hline 0.8823 & 0940170 & 101. & 0. 0172414 \\
\hline 248 & . 1001220 & 100.98988 & \\
\hline  & 2.0927961 & 101 & \\
\hline . 9995 & 2.0976801 & 101.104 & \\
\hline 636.3658 & , & 101. & \\
\hline 7733 & ,09523 & 101.04692 & \\
\hline & 1001220 & 101.162078 & -0.0000658 \\
\hline & 70 & 101.04 & \\
\hline  & 2.0952380 & 101 & \\
\hline & 2.095238 & 101.3339 & \\
\hline 644.5840 & 09401 & 100.98 & \\
\hline 645.9513 & , & 101. & \\
\hline & 10134 & 101.21871 & \\
\hline & 15 & 101 & \\
\hline . 077 & 20170 & 1 & \\
\hline . 4429 & 2.0952 & 100.8155 & \\
\hline 808 & 0952380 & 100.877830 & 15 \\
\hline & 8669 & 100 & \\
\hline & , 003 & 101.00 & \\
\hline & , & 1,12010 & \\
\hline 658.4266 & 9157 & 101.6 & \\
\hline & 2.09279 & 101.5 & \\
\hline 600 & 7680 & 101.622 & \\
\hline 462 & , 9157 & 101.50 & \\
\hline & 094017 & & \\
\hline 5.2789 & 2.0940170 & 101.679290 & \\
\hline 452 & 2.0927961 & 101.3339462 & , 22 \\
\hline 8. 0118 & 2.0940170 & 101.56367 & 0.0164785 \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}

Entire data set for Run No. 11, November 6, 1986
Flowrate \(=3.7 \mathrm{cc} / \mathrm{min} \quad\) Pressure Drop \(=0.408 \mathrm{psi}\)
Tracer Concentration \(=104\) ppm Step Down Cycle
Actual Test Start Time \(=59.3\) secs

\begin{tabular}{|c|c|c|c|}
\hline 92 & 2.0793650 & 104.3691177 & \\
\hline 79.0781 & 2.0818069 & 103.9528961 & -0.0603170 \\
\hline . 4483 & 2.0805860 & 104.0189209 & -0.0797135 \\
\hline 81.8178 & 2.0964589 & 103.9482956 & -0.1011385 \\
\hline 83.3378 & 2.0793650 & 103.8443756 & \(-0.1271037\) \\
\hline 84.7081 & 2.0805860 & 103.7290115 & -0.1556257 \\
\hline 86.0786 & 2.0842490 & 104.3069153 & -0.189 \\
\hline 87.4488 & 2.0830281 & 103.7156906 & -0.22 \\
\hline 88.8193 & 2.0842490 & 103.4813690 & \\
\hline 90.1682 & 2.0915749 & 103.2516861 & \(-0.3037317\) \\
\hline 91.5575 & 2.0854700 & 102.8382416 & \(-0.3428416\) \\
\hline 92.9274 & 2.0891330 & 102.2565689 & \(-0.3800762\) \\
\hline 94.2980 & 2.0915749 & 101.6215515 & -0.4188707 \\
\hline 95.6684 & 2.0964589 & 100.8819122 & -0.4599733 \\
\hline 97.0385 & 2.1050060 & 99.9780121 & \(-0.5008913\) \\
\hline 98.4622 & 2.1013429 & 99.0494995 & -0.5392412 \\
\hline 99.8329 & 2.1086690 & 98.1620407 & \(-0.5751563\) \\
\hline 101.2037 & 2.1111109 & 97.2830582 & -0.6022831 \\
\hline 102.5889 & 2.1159949 & 96.4039764 & \(-0.6295300\) \\
\hline 103.9533 & 2.1245420 & 95.7055969 & -0.6535990 \\
\hline 105.3976 & 2.1208789 & 94.8670197 & -0.6738004 \\
\hline 106.7614 & 2.1245420 & 94.0155106 & -0.6910328 \\
\hline 108.1252 & 2.1294260 & 93.2829437 & -0.7047331 \\
\hline 109.4890 & 2.1355309 & 91.9223557 & \(-0.7158417\) \\
\hline 110.8751 & 2.1416359 & 90.8310242 & -0.7247628 \\
\hline 112.2386 & 2.1526251 & 89.8187103 & \(-0.7338708\) \\
\hline 113.6881 & 2.1501830 & 88.7653046 & -0.7422509 \\
\hline 115.0516 & 2.1538460 & 87.5739899 & \(-0.7506344\) \\
\hline 116.4140 & 2.1599510 & 86.5549164 & -0.7566491 \\
\hline 117.7996 & 2.1709399 & 85.4284515 & -0.7655002 \\
\hline 119.1642 & 2.1782660 & 84.3313751 & -0.7714286 \\
\hline 120.6043 & 2.1782660 & 83.1538239 & \(-0.7760696\) \\
\hline 121.9677 & 2.1819291 & 82.2245865 & -0.77815566 \\
\hline 123.3313 & 2.1892550 & 81.2180176 & -0.7784013 \\
\hline 124.7167 & 2.1953599 & 80.2391434 & -0.78481682 \\
\hline 126.0807 & 2.2051280 & 79.1586456 & -0.78918886 \\
\hline 127.4427 & 2.2039070 & 78.1815872 & \(-0.7955424\) \\
\hline 128.8290 & 2.2112341 & 77.0660629 & -0.8011319 \\
\hline 130.1942 & 2.2161181 & 76.1956024 & -0.8076336 \\
\hline 131.5566 & 2.2258861 & 74.7459183 & \(-0.8106142\) \\
\hline 132.9206 & 2.2295480 & 73.7039642 & -0.8148736 \\
\hline 134.3061 & 2.2454219 & 72.4950104 & -0.8187335 \\
\hline 135.7293 & 2.2417581 & 71.4015121 & -0.8228061 \\
\hline 137.1157 & 2.2515261 & 70.2332001 & -0.8263214 \\
\hline 138.4802 & 2.2576311 & 68.8216171 & -0.8283620 \\
\hline 139.8448 & 2.2649579 & 67.7263718 & -0.8308641 \\
\hline 141.2315 & 2.2893779 & 66.5477600 & -0.83118833 \\
\hline 142.7231 & 2.2771671 & 65.2382584 & -0.83110826 \\
\hline 144.1090 & 2.2893779 & 64.1112442 & -0.8241371 \\
\hline 145.4735 & 2.2979240 & 63.2891350 & -0.8225791 \\
\hline 146.8383 & 2.3028080 & 62.0815315 & -0.8184516 \\
\hline 148.2032 & 2.3174601 & 61.0312004 & -0.8139834 \\
\hline 149.5868 & 2.3186820 & 59.9160233 & -0.8091668 \\
\hline 150.9522 & 2.3260069 & 58.7003555 & -0.8034723 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 152.3162 & 61 & 57.6455765 & -0.7982470 \\
\hline 153.6803 & 2.3467641 & 56.3173599 & -0.799834 \\
\hline 155.0664 & 2.3565321 & 55.2822762 & -0.7929524 \\
\hline 156.4316 & 2.3687429 & 54.1937332 & -0.7894421 \\
\hline 157.7939 & 2.3650801 & 53.1583748 & -0.7870784 \\
\hline 159.1807 & 2.3797319 & 52.2128105 & \(-0.7845782\) \\
\hline 160.5455 & 2.3882790 & 51.1794930 & -0.7787795 \\
\hline 161.9097 & 2.3943839 & 50.0301819 & 20 \\
\hline 163.2740 & 2.4114780 & 49.0417709 & -0.7635571 \\
\hline 164.6630 & 2.4139199 & 47.9443855 & -0.7547896 \\
\hline 166.0261 & 2.4224670 & 46.8368187 & -0.7415819 \\
\hline 167.3906 & 2.4358981 & 45.7571983 & -0.7348356 \\
\hline 168.7555 & 2.4444449 & 44.7586327 & -0.7259685 \\
\hline 170.1426 & 2.4615390 & 43.7875099 & -0.7166160 \\
\hline 171.5716 & 2.4615390 & 42.6929665 & -0.7071356 \\
\hline 172.9350 & 2.4688649 & 41.6915054 & -0.6979568 \\
\hline 174.3215 & 2.4884009 & 40.9051247 & -0.6875938 \\
\hline 175.6857 & 2.4957271 & 39.8416672 & \(-0.6784087\) \\
\hline 177.0508 & 2.5018320 & 38.8743134 & -0.6649767 \\
\hline 178.4142 & 2.5177050 & 38.0811310 & -0.6522412 \\
\hline 179.7976 & 2.5213680 & 37.2704201 & -0.6389188 \\
\hline 181.1634 & 2.5323570 & 36.4682388 & -0.6265817 \\
\hline 182.5281 & 2.5409040 & 35.6228561 & -0.6143872 \\
\hline 183.9141 & 2.5482299 & 34.7302361 & -0.6044445 \\
\hline 185.2784 & 2.5677660 & 33.8929977 & -0.5935995 \\
\hline 186.7191 & 2.5750921 & 32.9303284 & -0.5833659 \\
\hline 188.0833 & 2.5848601 & 32.0795364 & -0.5724198 \\
\hline 189.4488 & 2.5995121 & 31.3029366 & \(-0.5591046\) \\
\hline 190.8149 & 2.6043961 & 30.6298504 & -0.5464403 \\
\hline 192.2014 & 2.6202691 & 29.9109001 & -0.5310524 \\
\hline 193.6246 & 2.6214900 & 29.2256699 & \(-0.5231371\) \\
\hline 195.0098 & 2.6349211 & 28.4900208 & -0.5109562 \\
\hline 196.3752 & 2.6471310 & 27.8442421 & -0.4985226 \\
\hline 197.7393 & 2.6581199 & 26.9288197 & -0.48517847 \\
\hline 199.1052 & 2.6691091 & 26.323835 & -0.4737104 \\
\hline 200.4927 & 2.6923079 & 25.6775436 & -0.4613005 \\
\hline 201.9846 & 2.6837609 & 25.0821152 & -0.4503129 \\
\hline 203.3701 & 2.6996341 & 24.5538349 & -0.4403586 \\
\hline 204.7325 & 2.7045181 & 24.0400963 & -0.4301688 \\
\hline 206.0965 & 2.7142861 & 23.4130993 & -0.4198321 \\
\hline 207.4829 & 2.7374849 & 22.8060188 & -0.4042458 \\
\hline 208.9016 & 2.7399271 & 22.1859474 & \(-0.39861611\) \\
\hline 210.2878 & 2.7545791 & 21.5980339 & -0.3877891 \\
\hline 211.6513 & 2.7606840 & 21.0923920 & -0.374827 1 \\
\hline 213.0144 & 2.7704520 & 20.5768642 & \(-0.3688268\) \\
\hline 214.3997 & 2.7875459 & 20.1110935 & -0.3606056 \\
\hline 215.8394 & 2.7924299 & 19.6022644 & -0.3524465 \\
\hline 217.2023 & 2.8021979 & 19.1101875 & -0.3441668 \\
\hline 218.5659 & 2.8.119659 & 18.7161713 & \(-0.3351177\) \\
\hline 219.9517 & 2.8241761 & 18.2208252 & \(-0.3252611\) \\
\hline 221.3164 & 2.8315020 & 17.8083096 & \(-0.3159189\) \\
\hline 222.6774 & 2.8473749 & 17.3657990 & -0.3072316 \\
\hline 224.0439 & 2.8498170 & 16.9808426 & -0.2990798 \\
\hline 225.4293 & 2.8644691 & 16.5793800 & -0.2914235 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & 2.8705740 & 16.155603 & \\
\hline 8.1569 & 2.8803420 & 15.773693 & -0.2768447 \\
\hline 229.5429 & 2.9010990 & 15.4206066 & -0.2693521 \\
\hline 230.9720 & 2.8998780 & 15.0113897 & \(-0.2621068\) \\
\hline 232.3355 & 2.9108670 & 14.646570 & -0.2553010 \\
\hline 3.7211 & 2.9242980 & 14.3342237 & -0.2476613 \\
\hline 235.0851 & 2.9316239 & 13.998 & -0.240674 1 \\
\hline 236.4487 & 2.9450550 & 13.6617146 & -0.2337569 \\
\hline 237.8326 & 2.9487181 & 13.3592272 & -0.2272050 \\
\hline 9.1969 & 2.9609280 & 13.0672522 & -0.2205926 \\
\hline 0.5619 & 2.9694750 & 12.77435 & -0.2140665 \\
\hline 1.9254 & 2.9768009 & 12.457080 & \\
\hline 243.3112 & 2.9914529 & 12.1945095 & -0.2023174 \\
\hline 244.6735 & 3.0000000 & 11.9274282 & -0.1960406 \\
\hline 46.0553 & 3.0036631 & 11.655283 & -0.1902307 \\
\hline 47.4194 & 3.0146520 & 11.439499 & -0.1849652 \\
\hline 8.7836 & 3.0231991 & 11.1876163 & -0.17922२4 \\
\hline 250.1484 & 3.0293040 & 10.9356422 & -0.1739938 \\
\hline 251.5341 & 3.0451770 & 10.6861649 & -0.1689619 \\
\hline 252.9574 & 3.0500610 & 10.441521 & -0.16 \\
\hline 4.3434 & 3.0610499 & 10.215470 & -0.1587958 \\
\hline 25.7077 & 3.0683761 & 9.9832859 & -0.1537680 \\
\hline 257.0721 & 3.0732601 & 9.7932158 & -0.1494173 \\
\hline 258.4367 & 3.0915749 & 9.6228647 & -0.1452032 \\
\hline 59.8944 & 3.0891330 & 9.4207230 & \(-0.1412676\) \\
\hline 1.2586 & 3.0964589 & 9.211874 & \(-0.1376114\) \\
\hline 262.6217 & 3.1086690 & 9.0631618 & -0.1338531 \\
\hline 264.0062 & 3.1184371 & 8.8562746 & -0.1301294 \\
\hline 5.3690 & 3.1245420 & 8.6945448 & -0.1266627 \\
\hline 6.7337 & 3.1343100 & 8.535432 & -0.1234374 \\
\hline 8.0963 & 3.1330891 & 8.384076 & -0.1204124 \\
\hline 9.4834 & 3.1452990 & 8.2273130 & -0.1174802 \\
\hline 270.8475 & 3.1538460 & 8.0560532 & -0.1147168 \\
\hline 272.2106 & 3.1611731 & 7.8900752 & -0.1122330 \\
\hline 3.5 & 3.1758239 & 7.72413 & -0.1094655 \\
\hline 275.0356 & 3.1746030 & 7.5649638 & -0.1067117 \\
\hline 276.4007 & 3.1868131 & 7.4120584 & \(-0.10411072\) \\
\hline 277.7659 & 3.1929181 & 7.2801242 & -0.1015027 \\
\hline 7.1318 & 3.2014649 & 7.1451173 & -0.0989435 \\
\hline 280.5170 & 3.2112341 & 7.0155578 & -0.0969 170 \\
\hline 281.9400 & 3.2112341 & 6.8804545 & -0.0940756 \\
\hline 283.3248 & \(3.222 २ 221\) & 6.7638178 & -0.091933 \\
\hline 284.6899 & 3.2295489 & 6.6628242 & -0.0889496 \\
\hline 86.0553 & 3.2344320 & 6.5086308 & -0.0865910 \\
\hline 287.4208 & 3.2405379 & 6.4070716 & \(-0.08431807\) \\
\hline 288.8079 & 3.2564099 & 6.2971520 & -0.08231794 \\
\hline 290.2384 & 3.2527471 & 6.1776605 & -0.08031262 \\
\hline 291.6028 & 3.2625151 & 6.0694356 & -0.0789572 \\
\hline 292.9677 & 3.2698419 & 5.9778390 & -0.0768989 \\
\hline 294.3547 & 3.2747259 & 5.8593454 & -0.0749745 \\
\hline 295.7203 & 3.2857151 & 5.7557697 & -0.07311025 \\
\hline 297.1611 & 3.2905991 & 5.6481647 & -0.0716351 \\
\hline 298.5262 & 3.2967031 & 5.5550408 & -0.0699920 \\
\hline 299.8918 & 3.3040299 & 5.455921 & -0.0 \\
\hline
\end{tabular}
\begin{tabular}{llll}
301.2576 & 3.3064711 & 5.3654780 & -0.0669214 \\
302.6420 & 3.3199029 & 5.2749615 & -0.06541086 \\
304.0815 & 3.3223441 & 5.1995769 & -0.0639092 \\
305.4444 & 3.3284500 & 5.1028476 & -0.06241635 \\
306.8070 & 3.3296709 & 5.0306153 & -0.0610766 \\
308.1914 & 3.3418801 & 4.9407096 & -0.0595307 \\
309.5555 & 3.3467650 & 4.8699274 & -0.0583374 \\
310.9191 & 3.3553121 & 4.7776737 & -0.0571971 \\
312.3075 & 3.3553121 & 4.7041616 & -0.0561351 \\
313.6715 & 3.3650801 & 4.6266689 & -0.0549936 \\
315.0343 & 3.3699639 & 4.5445633 & -0.0538010 \\
316.3982 & 3.3772900 & 4.4822764 & -0.0526203 \\
317.7830 & 3.3882790 & 4.4112587 & -0.0513915 \\
319.2757 & 3.3809519 & 4.3364868 & -0.0500101 \\
320.6623 & 3.3943839 & 4.2641282 & -0.0483966 \\
322.0248 & 3.3992679 & 4.2056055 & -0.0474750 \\
323.3873 & 3.4078150 & 4.1220565 & -0.0464956 \\
324.7717 & 3.4139199 & 4.0577884 & -0.0453234 \\
326.2102 & 3.4175830 & 3.9922822 & -0.0442789 \\
327.5743 & 3.4224670 & 3.9388945 & -0.0431933 \\
328.9394 & 3.4273510 & 3.8938725 & -0.0421559 \\
330.3264 & 3.4322350 & 3.8373611 & -0.0412389 \\
331.6902 & 3.4346769 & 3.7903602 & -0.0402755 \\
333.0538 & 3.4432240 & 3.7386544 & -0.0393079 \\
334.4373 & 3.4444449 & 3.6814435 & -0.03841479 \\
335.8017 & 3.4517710 & 3.6232097 & -0.0376427 \\
337.1661 & 3.4590969 & 3.5659244 & -0.0363065 \\
338.5299 & 3.4627600 & 3.5169022 & -0.0361370 \\
339.9171 & 3.4713070 & 3.4677565 & -0.0356481 \\
341.3410 & 3.4688649 & 3.4230106 & -0.0352022 \\
342.7265 & 3.4761910 & 3.3750236 & -0.0345616 \\
344.0898 & 3.4810750 & 3.3280866 & -0.0342199 \\
345.4547 & 3.4871800 & 3.2814353 & -0.0336506 \\
346.8182 & 3.4957271 & 3.2398818 & -0.0330072 \\
348.1918 & 3.4932849 & 3.1916492 & -0.0322936 \\
349.5792 & 3.4981689 & 3.1480882 & -0.0316002 \\
350.9448 & 3.5067160 & 3.1167574 & -0.0309338 \\
352.3090 & 3.5103791 & 3.0615208 & -0.0302845 \\
353.6731 & 3.5128210 & 3.0181730 & -0.0296328 \\
355.0580 & 3.52380999 & 2.9769435 & -0.0289672 \\
356.4984 & 3.5225890 & 2.9344318 & -0.0282471 \\
357.8640 & 3.5299151 & 2.9947356 & -0.0275688 \\
359.2291 & 3.5335779 & 2.8573618 & -0.0268954 \\
360.5942 & 3.5360200 & 2.8222933 & -0.0264253 \\
361.9801 & 3.5457880 & 2.7892313 & -0.0258912 \\
363.3983 & 3.5433459 & 2.7536709 & -0.0254191 \\
364.7847 & 3.5494511 & 2.7213387 & -0.0249326 \\
366.1500 & 3.5543351 & 2.6934462 & -0.02411175 \\
367.5146 & 3.5555561 & 2.6618187 & -0.0237881 \\
368.8793 & 3.5668819 & 2.6323104 & -0.0233787 \\
370.2692 & 3.5628819 & 2.6025164 & -0.0229863 \\
371.6338 & 3.5677660 & 2.5677359 & -0.0226460 \\
372.9984 & 3.5726500 & 2.5410573 & -0.0223802 \\
374.3636 & 3.5775340 & 2.4918351 & -0.0220784 \\
\hline
\end{tabular}
\begin{tabular}{llll}
375.7508 & 3.5799761 & 2.4655931 & -0.0217367 \\
377.1147 & 3.5946281 & 2.4345667 & -0.0213556 \\
378.6080 & 3.5848601 & 2.4051926 & -0.0209709 \\
379.9950 & 3.5934069 & 2.3780782 & -0.0205764 \\
381.3597 & 3.5958490 & 2.3584073 & -0.0201599 \\
382.7236 & 3.5982909 & 2.3246198 & -0.0198346 \\
384.1094 & 3.6080589 & 2.2978005 & -0.0195237 \\
385.5281 & 3.6080589 & 2.2687764 & -0.0191666 \\
386.9149 & 3.6117220 & 2.2390084 & -0.0187690 \\
388.2800 & 3.6153851 & 2.2183537 & -0.0182633 \\
389.6440 & 3.6190481 & 2.1977844 & -0.0179273 \\
391.0096 & 3.6227109 & 2.1772275 & -0.0175060 \\
392.3939 & 3.6227109 & 2.1548724 & -0.0171219 \\
393.7585 & 3.6263740 & 2.1313317 & -0.0167857 \\
395.1235 & 3.6312580 & 2.1063733 & -0.0164786 \\
396.5103 & 3.6361420 & 2.0727377 & -0.0161331 \\
397.8753 & 3.6410260 & 2.0452721 & -0.0158740 \\
399.2398 & 3.6471310 & 2.0242739 & -0.0158524 \\
400.6867 & 3.6671310 & 2.0074182 & -0.0154140 \\
402.0496 & 3.6471310 & 1.9930983 & -0.0152260 \\
403.4121 & 3.6483519 & 1.9756935 & -0.0149610 \\
404.7973 & 3.6520150 & 1.9612963 & -0.0147046 \\
406.1615 & 3.6605620 & 1.9426246 & -0.0144166 \\
407.5904 & 3.6581199 & 1.9168353 & -0.0141618 \\
408.9755 & 3.6617830 & 1.8950272 & -0.0138869 \\
410.3406 & 3.6678879 & 1.8736439 & -0.0136142 \\
411.7041 & 3.6691091 & 1.8525827 & -0.0134757 \\
413.0880 & 3.6776559 & 1.8311927 & -0.0133799 \\
414.5277 & 3.6752141 & 1.8169880 & -0.0132642 \\
415.8925 & 3.6788771 & 1.7991753 & -0.0131306 \\
417.2572 & 3.7788771 & 1.7873809 & -0.0129426 \\
418.6208 & 3.6837609 & 1.7652140 & -0.0121672 \\
420.0069 & 3.6874239 & 1.7487102 & -0.0125551 \\
421.3705 & 3.6935289 & 1.7269077 & -0.0123222 \\
422.7319 & 3.6923079 & 1.7124820 & -0.0121381 \\
424.1174 & 3.6971920 & 1.6978991 & -0.0120168 \\
425.4816 & 3.6959710 & \(1.68072 \%\) & -0.0118397 \\
426.8450 & 3.6996341 & 1.6667001 & -0.0113848 \\
428.2317 & 3.7081809 & 1.6539249 & -0.0117482 \\
429.6550 & 3.7045181 & 1.63659744 & -0.0116802 \\
431.0413 & 3.0081809 & 1.6212175 & -0.0115887 \\
432.4047 & 3.7106230 & 1.6003940 & -0.0113645 \\
433.7686 & 3.7130649 & 1.5855596 & -0.0111591 \\
435.1320 & 3.7264960 & 1.5705979 & -0.0109345 \\
436.5904 & 3.7179489 & 1.5535307 & -0.0106985 \\
437.9536 & 3.7216120 & 1.5361392 & -0.0104652 \\
439.3170 & 3.7252750 & 1.5282223 & -0.0102363 \\
440.6817 & 3.7289381 & 1.5055356 & -0.0100513 \\
442.0674 & 3.7338221 & 1.4920132 & -0.0098780 \\
443.4317 & 3.7387061 & 1.4762611 & -0.0097073 \\
444.7938 & 3.7338221 & 1.4658051 & -0.0095555 \\
446.1794 & 3.7399271 & 1.4578910 & -0.0094145 \\
447.5441 & 3.7387061 & 1.4487543 & -0.0092656 \\
448.9075 & 3.7411480 & 1.4371617 & -0.0091528 \\
\hline
\end{tabular}
\begin{tabular}{llll}
450.2726 & 3.7472529 & 1.4307261 & -0.0090211 \\
451.6562 & 3.7448111 & 1.4177556 & -0.0089318 \\
453.0207 & 3.7460320 & 1.4037459 & -0.0088546 \\
454.3839 & 3.7509160 & 1.3886471 & -0.0087248 \\
455.7700 & 3.7545791 & 1.3734660 & -0.0086806 \\
457.1347 & 3.7619050 & 1.3573351 & -0.0088603 \\
458.5802 & 3.7594631 & 1.3444135 & -0.0088960 \\
459.9441 & 3.7619050 & 1.3309371 & -0.0087099 \\
461.3094 & 3.7631259 & 1.3261302 & -0.0086771 \\
462.6945 & 3.7680099 & 1.3112607 & -0.0086061 \\
464.0589 & 3.7667890 & 1.3016953 & -0.0084624 \\
465.4234 & 3.7741151 & 1.2896898 & -0.00811255 \\
466.8731 & 3.7716730 & 1.2795064 & -0.0079601 \\
468.2370 & 3.7753360 & 1.2688887 & -0.0077085 \\
469.6023 & 3.7777779 & 1.2594423 & -0.0074950 \\
470.9676 & 3.7777779 & 1.2464824 & -0.0074060 \\
472.3545 & 3.7838831 & 1.2334633 & -0.0073553 \\
473.7728 & 3.7851040 & 1.2225506 & -0.0073140 \\
475.1580 & 3.7887671 & 1.2120934 & -0.0072832 \\
476.5215 & 3.7887671 & 1.2017133 & -0.00711687 \\
477.8854 & 3.7887671 & 1.1892813 & -0.00711263 \\
479.2731 & 3.7948720 & 1.1913888 & -0.0070347 \\
480.7133 & 3.7887671 & 1.1841743 & -0.0069431 \\
482.0763 & 3.7960930 & 1.1739452 & -0.0068402 \\
483.4407 & 3.7960930 & 1.1649427 & -0.0067043 \\
484.8055 & 3.7997561 & 1.1456957 & -0.0064861 \\
486.1923 & 3.8046401 & 1.1377592 & -0.0063311 \\
487.5563 & 3.8095241 & 1.1277337 & -0.00611215 \\
489.0024 & 3.8046401 & 1.1197158 & -0.00611444 \\
490.3678 & 3.8070819 & 1.11130557 & -0.006610532 \\
491.7324 & 3.8083031 & 1.0998650 & -0.0060630 \\
493.0968 & 3.8119659 & 1.0956274 & -0.0060336 \\
494.4835 & 3.8241761 & 1.0878589 & -0.0059643 \\
495.9769 & 3.8095241 & 1.0788891 & -0.0058518 \\
497.3427 & 3.8156290 & 1.0746171 & -0.0057845 \\
498.7302 & 3.8180709 & 1.0744832 & -0.0057070 \\
500.0955 & 3.8168499 & 1.0636983 & -0.0058936 \\
501.4575 & 3.8241761 & 1.0551103 & -0.0058936 \\
502.8391 & 3.8217340 & 1.0453186 & -0.0058948 \\
504.2015 & 3.8253970 & 1.0357488 & -0.0058383 \\
505.5643 & 3.8290601 & 1.0294143 & -0.00593333 \\
506.9508 & 3.8278389 & 1.0154870 & -0.0059083 \\
508.3140 & 3.8315020 & 1.0092344 & -0.0054176 \\
509.6781 & 3.8376069 & 1.0029720 & -0.0053423 \\
511.0622 & 3.8327229 & 0.9913812 & -0.0053089 \\
512.4256 & 3.8363860 & 0.9841325 & -0.0052721 \\
513.7946 & 3.8412700 & 0.9799960 & -0.0051375 \\
515.1651 & 3.8400490 & 0.9717750 & -0.0050630 \\
516.5340 & 3.8424909 & 0.9655997 & -0.00499336 \\
517.9835 & 3.8444909 & 0.96338522 & -0.0049257 \\
559.3543 & 3.8437121 & 0.9603761 & -0.0048541 \\
520.7242 & 3.8437121 & 0.9522067 & -0.0047566 \\
522.0933 & 3.8437121 & 0.9481924 & -0.0047281 \\
523.4624 & 3.8522589 & 0.9411719 & -0.0046630 \\
& & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 524.8968 & 3.8473749 & 0.9307016 & -0.0046959 \\
\hline 526.2638 & 3.8522589 & 0.9207729 & -0.0045782 \\
\hline 527.6307 & 3.8559220 & 0.9158559 & \\
\hline 528.9961 & 3.8559220 & 0.9058957 & -0.0 \\
\hline 530.3843 & 3.8583641 & 0.8989260 & \(-0.004 \sim 701\) \\
\hline 531.7507 & 3.8595850 & 0.8940606 & -0.004'7128 \\
\hline 533.1919 & 3.8608060 & 0.8899381 & -0.0047180 \\
\hline 534.5574 & 3.8620269 & 0.8850418 & -0.0046701 \\
\hline 535.9229 & 3.8608060 & 0.8782163 & -0.0046112 \\
\hline 537.2885 & 3.8644691 & 0.8752961 & -0.0046793 \\
\hline 538.6549 & 3.8681321 & 0.8694597 & -0.0044959 \\
\hline 540.0406 & 3.8644691 & 0.8635690 & -0.0044462 \\
\hline 541.4060 & 3.8693531 & 0.8558181 & -0.0043810 \\
\hline 542.7706 & 3.8681321 & 0.8472125 & -0.0042795 \\
\hline 544.1373 & 3.8742371 & 0.8386576 & \(-0.0041667\) \\
\hline 545.5256 & 3.8791211 & 0.8338150 & -0.00410980 \\
\hline 546.9503 & 3.8754580 & 0.8261012 & -0.0040150 \\
\hline 548.3177 & 3.8754580 & 0.8213815 & -0.0038300 \\
\hline 49.7058 & 3.8778999 & 0.8184983 & \(-0.0038447\) \\
\hline 551.0728 & 3.8803420 & 0.8062420 & -0.003'7760 \\
\hline 552.4380 & 3.8827839 & 0.8054228 & -0.0036841 \\
\hline 553.8032 & 3.8913310 & 0.7997935 & -0.0035802 \\
\hline 55.3186 & 3.8766789 & 0.7979658 & -0.0034950 \\
\hline 56.6861 & 3.8852260 & 0.7960525 & -0.0034556 \\
\hline 558.0537 & 3.8827839 & 0.7959952 & -0.0034175 \\
\hline 559.4202 & 3.8852260 & 0.7876365 & -0.0034566 \\
\hline 60.7860 & 3.8913310 & 0.783953 & -0.0034747 \\
\hline 562.1705 & 3.8876679 & 0.7774255 & -0.0035163 \\
\hline 563.5375 & 3.8901100 & 0.7719139 & -0.0035075 \\
\hline 564.9045 & 3.8913310 & 0.7664067 & -0.0036876 \\
\hline 566.2703 & 3.8925519 & 0.7609412 & -0.0035261 \\
\hline 567.6362 & 3.8986571 & 0.7572929 & -0.0035298 \\
\hline 569.0218 & 3.8949940 & 0.7499712 & -0.0035329 \\
\hline 570.3881 & 3.8949940 & 0.7427434 & -0.0035087 \\
\hline 571.7536 & 3.9010990 & 0.7409784 & -0.0034353 \\
\hline 573.1190 & 3.9023199 & 0.7320216 & -0.0033121 \\
\hline 574.5073 & 3.9010990 & 0.7283754 & -0.0032245 \\
\hline 575.8733 & 3.9072039 & 0.7239538 & -0.0031325 \\
\hline 577.2988 & 3.8998780 & 0.7238937 & -0.0030648 \\
\hline 578.6872 & 3.9072039 & 0.7185325 & -0.00310058 \\
\hline 580.0538 & 3.9023199 & 0.7158653 & -0.0028393 \\
\hline 581.4203 & 3.9084251 & 0.7114794 & -0.0028363 \\
\hline 582.7868 & 3.9108670 & 0.7089223 & -0.0029266 \\
\hline 584.2186 & 3.9059830 & 0.7034948 & -0.0029429 \\
\hline 585.6067 & 3.9108670 & 0.7017316 & -0.0029974 \\
\hline 586.9724 & 3.9096460 & 0.6973310 & -0.0030244 \\
\hline 588.3389 & 3.9108670 & 0.6929726 & -0.0030740 \\
\hline 589.7053 & 3.9169719 & 0.6886187 & \(-0.0030753\) \\
\hline 591.0708 & 3.9120879 & 0.6834039 & -0.0030960 \\
\hline 592.4582 & 3.9169719 & 0.6790251 & -0.0030711 \\
\hline 593.8243 & 3.9169719 & 0.6772861 & -0.00310696 \\
\hline 595.1908 & 3.9169719 & 0.6669424 & \(-0.003 \sim 1200\) \\
\hline 596.5584 & 3.9194140 & 0.66263\% & -0.003'1619 \\
\hline 597.9245 & 3.9267399 & 0.6583748 & -0.003'1553 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & & & \\
\hline 600.6790 & 3.9230771 & 0.64 & -0, \\
\hline 602.0436 & 3.9242980 & 0.6472597 & \(-0.0029631\) \\
\hline 603.4086 & 3.9255190 & 0.6481257 & -0.0028825 \\
\hline 4.7 & 3.92918 & 0.643 & -0.002 \\
\hline 606.141 & 3.921 & 0.63 & \\
\hline 7.5282 & 3.93 & 0.63 & \\
\hline 608.8936 & 3.9291821 & 0.6236283 & \(-0.0026120\) \\
\hline 610.2 & 3.93284 & 0.62036 & -0.0025917 \\
\hline 1.624 & 3.94505 & 0.61 & -0.002 \\
\hline 3.0 & 3.92673 & 0.6 & -0.0025494 \\
\hline 614.4480 & 3.931 & 0. & \\
\hline 5.8146 & 3.934066 & 0.11 & -0.0025641 \\
\hline 61 & 3.937728 & 0.609 & -0.0025557 \\
\hline 618.5458 & 3.9365079 & 0.60458 & \\
\hline 619.9131 & 3.9401710 & 0.59 & \\
\hline 621.2987 & 3.938 & 0.59 & -0.0023577 \\
\hline 62 & 3.941391 & 0.59 & -0.0022986 \\
\hline 624 & 3.938950 & 0.590 & \\
\hline 62 & 3.94 & 0.587353 & -0.0023138 \\
\hline 626.7622 & 3.946 & 58 & -0.002 \\
\hline 628.1478 & 3. & 0.580819 & -0.0022906 \\
\hline 629.5153 & 3.9438341 & 0.577580 & \(-0.00221562\) \\
\hline 630.8823 & 3.946 & 0.57 & -0.0021649 \\
\hline 632.2472 & 3.94 & 0.57356 & -0.0021 \\
\hline 33.6 & 3.9511600 & 0.56 & -0.0021052 \\
\hline 635.0586 & 3.9450550 & 0.565431 & \(-0.0020977\) \\
\hline 636. & 3.949 & 0.56 & 93 \\
\hline 637 & 3.952 & & -0, \\
\hline 639.1777 & 3.94 & 0.55 & -0.00191866 \\
\hline 640.5441 & 3.9511600 & 0.5551051 & -0.0019552 \\
\hline 102 & 3.9548230 & 0.55 & -0.0019297 \\
\hline 643 & 3.9536021 & 0.55 & -0.0 \\
\hline 644.7281 & 3.9 & 0.5 & -0.0019653 \\
\hline 64 & 3.953 & 0.543 & -0.0019791 \\
\hline 7.4602 & 3.9572649 & 0.541594 & -0.0019955 \\
\hline 648.8261 & 3.96 & 0.539228 & -0.0020104 \\
\hline 650.2133 & 3.95 & 0.5 & -0.00201181 \\
\hline 1, & 3.957264 & 0.53 & -0.0020258 \\
\hline 652.945 & 3.957264 & 0.534489 & -0.0020282 \\
\hline 654.3 & 3.96 & 0.531364 & -0.00211012 \\
\hline 655.6770 & 3.9609280 & 0.526 & \(-0.0021569\) \\
\hline 657 & 3.962148 & 0.52117 & -0.0021947 \\
\hline 658.4300 & 3.96459 & 0.51962 & -0.0022~173 \\
\hline 59. & 3.965812 & 0.51 & \(-0.0022213\) \\
\hline 661 & 3.9633701 & 0.512662 & \(-0.00211866\) \\
\hline 662.5295 & 3.9645910 & 0.511151 & \(-0.0021630\) \\
\hline 73 & 3.9694750 & 0.5103 & -0.0021292 \\
\hline 666 & 3.96 & 0.506 & \(-0.0020804\) \\
\hline 666.7101 & 3.9670329 & 0.5010814 & -0.0020440 \\
\hline 668.0761 & 3.9694750 & 0.4942777 & -0.0019753 \\
\hline 669.4643 & 3.9731381 & 0.492743 & -0.0019234 \\
\hline 670.8309 & 3.9804640 & & -0.0018875 \\
\hline 72.3250 & 3.9694750 & 0.4866604 & -0.001888 \\
\hline
\end{tabular}```


[^0]:    FUNCTION PWDL (ARG,ALF,NL,NMAX)

