COMPUTER GENERATION OF TYPE CURVES

A REPORT

SUBMITTED TO THE DEPARTMENT OF PETROLEUM ENGINEERING OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FORTHEDEGREEOF

MASTER OF SCIENCE

by

BRENNA L. SURRITT

June, 1986

To Timothy

ABSTRACT

Type curves are a useful tool for analyzing transient well test data. This paper presents some previously published type curves and the computer programs that were used to generate these type curves. The governing equations of the curves and their references the programs are presented as well. In addition, some previously unpublished type curves are developed. These include drawdown **type** curves for locating a sealed linear boundary, and **type** curves for a well located between two parallel sealing faults. The governing equations for these curves are derived.

The computer generated working type curves are included in the Appendix.

ACKNOWLEDGEMENTS

The author wishes to express appreciation to the following: to Avrami Sageev, for the guidance and supervision that made the completion of this research possible; to Stanford University, for financial assistance provided; and to the Stanford Geothermal Program, for financial assistance provided under Department of Energy Contract No. DE-ASO3-80SF11459.

TABLE OF CONTENTS

Page

Ab	stract	111
Ac	knowledgements	iv
Lis	t of Figures	vi
1.	Introduction	1
2.	Drawdown Build-up Curve (Line Source Solution)	3
3.	Pressure Distribution in a Square Reservoir with No Flow Outer Boundaries	5
4.	Finite Radius Wellbore. Infinite System. Constant Terminal Rate	8
5.	Transient Linear Behavior	10
6.	Hurst Simplified Water Influx. Constant Rate Inner Boundary. Infinite Radial System .	13
7.	Linear Fault Type Curve for a Drawdown Interference Test (small r_2/r_1 ratios)	15
8.	Pressure Distribution for a Reservoir Between Two Sealed Parallel Boundaries	20
9.	Conclusions and Recommendations	27
No	menclature	28
Re	ferences	30
Ap	pendix A: Computer Programs	31
Ap	pendix B: Selected Data	50
Ap	pendix C: Large Scale Type Curves	70

LIST OF FIGURES

Fig. 2.1-	P_D versus t_D/r_D^2 for a drawdown-builduptest (After Ramey 1979).	4
Fig. 3.1-	Octant of a square drainage system showing well and pressure point locations.	6
Fig. 3.2-	P_D versus t_{DA} at various points in a closed-square system with the well at the center, $\sqrt{A}/r_w = 2000$ (After <i>Earlougher, Ramey, and Miller</i> 1968).	7
Fig. 4.1-	$P_D(r_D)$ versus t_D for finite radius wellbore in an infinite system, constant terminal rate, (After <i>Mueller and Witherspoon</i> 1965).	9
Fig. 5.1-	Dimensionless pressure change and efflux functions $F(t_D)$ for linear aquifers (After <i>Nabor and Barham</i> 1964).	12
Fig. 6.1-	$P_D(\sigma, t_D)$ versus t_D for and undersaturated oil reservoir, subjected to radial water drive (After <i>Hurst</i> 1953).	14
Fig. 7.1-	Well geometry for linear fault interference test	15
Fig. 7.2-	P_D versus t_D for a well near a sealed linear fault, a drawdown interference test, with small r_2/r_1 ratios (After <i>Stallman</i> 1952).	17
Fig. 7.3-	Semi-log plot of P_D versus t_D for a sealed linear fault drawdown interference test, small r_2/r_1 ratios (After <i>Stallman</i> 1952).	18
Fig. 7.4-	Dimensionless pressure derivative, P'_D , versus t_D for a sealed linear fault draw- down interference test, small r_2/r_1 ratios.	19
Fig. 8.1-	Image well configuration for two parallel sealing faults.	21
Fig. 8.2-	P_D versus t_D for a well located midway between two parallel sealing faults, (L_D varies from 5 to 10,000).	23
Fig. 8.3-	P_D versus t_D/L_D^2 for a well located midway between two parallel sealing faults, $(L_D$ varies from 5 to 10,000).	24
Fig. 8.4-	P_D versus t_D for a well between two parallel sealing faults, $b_D = 0.05, 0.1, 0.2,$ and 0.5 .($L_D = 10, 100, 1000, 10000$).	25
Fig. 8.5-	P_D versus t_D/L_D^2 for a well between two parallel. sealing faults, $b_D = 0.05, 0.1, 0.2, \text{ and } 0.5$. ($L_D = 10, 100, 1000, 10000$).	26

1: INTRODUCTION

Type curves are a useful tool for transient well test analysis. The curves are used to obtain quantitative answers to well test problems (using type-curve matching techniques). In addition, the curves are a meaningful qualitative picture of the reservoir behavior, an analogue for identifying an appropriate reservoir model. Many type curves are available. The curves are useful for drawdown, build-up, interference, constant pressure, constant rate, or any transient well test with a known P_D and t_D .

This research is part of a larger effort to produce a manual of type curves. The purpose of this research specifically, is to generate P_D versus t_D values using a computer. Some curves were first prepared by draftspersons, and have been re-done using computer graphics capabilities. Others have not been presented before.

Unless otherwise stated, t_D , and P_D are defined as:

$$t_D = \frac{0.000264 \ k \ t}{\phi \mu c_t r_w^2} \tag{1}$$

$$P_D = \frac{k h}{141.2 q B \mu} \left(p_i - p_{r,i} \right)$$
(2)

where the parameters are defined in the nomenclature.

In this report, twelve type curves are presented. Some of these are from the literature, others have not been presented before in their large scale form. These include:

- 1) Drawdown Build-Up Curve (Line Source Solution)
- 2) Pressure Distribution In A Square Reservoir
- 3) Finite Radius Wellbore, Infinite System, Constant Terminal Rate
- 4) Transient Linear Behavior
- 5) Hurst Simplified Water Influx, Constant Rate Inner Boundary
- 6) Linear Fault Type Curve For A Drawdown Interference Test
- 7) Semi-log Linear Fault Type Curve For A Drawdown Interference Test
- 8) Pressure Derivative For Linear Fault Type Curve
- 9) Parallel Sealing Faults, Well Located Midway Between Faults.
- 10) Shifted Parallel Sealing Faults Type Curve, Well Midway Between Faults.
- 11) Parallel Sealing Faults, Well At Various Locations.
- 12) Shifted Parallel Sealing Faults, Well At Various Locations.

The governing equations are presented for each of the type curves. The equations are programmed in Fortran to generate the curves. The complete, working type curves are in **Appen**dix C; the report contains smaller versions **of** the working curves.

Of the type curves listed, 7 - 12 are previously unpublished in their large form. The first are a modification of the linear fault type curve (*Stallman* 1952) for a drawdown interference test, small r_2/r_1 ratios. The others are for the behavior of a well located between two parallel sealing faults. The locations of the well, in addition to the distance between the faults is varied.

2: DRAWDOWN BUILD-UP CURVE (LINE SOURCE SOLUTION)

The dimensionless pressure response to a diminishing radius constant rate well in an infinite reservoir, the line source, is:

$$P_D = -\frac{1}{2} Ei \left[\frac{-r_D^2}{4t_D} \right]$$
(3)

For a production time t_p , the dimensionless pressure is:

$$P_D = -\frac{2}{R} Ei \left[\frac{-r_D^2}{4t_{pD}} \right]$$
(4)

If the well is closed in for a time At, the pressure drop at time $(t_p + At)$ is the difference between the pressure drop caused by rate **q** for a time $(t_p + \Delta t)$ and the pressure increase caused by rate of -**q** for time At, yielding:

$$P_D = P_D \left[t_p + \Delta t \right] - P_D \left[\Delta t \right]$$
⁽⁵⁾

$$P_D = -\frac{1}{2} Ei \left[\frac{-r_D^2}{4(t_p + \Delta t)_D} \right] + \frac{1}{2} Ei \left[\frac{-r_D^2}{4\Delta t_D} \right]$$
(6)

Fig. 2.1 presents the log-log type curves for the drawdown-buildup tests.

-4-

3: PRESSURE DISTRIBUTION IN A SQUARE RESERVOIR WITH NO FLOW OUTER BOUNDARIES

Earlougher, Ramey, and Miller (1968) presented type curves for a constant terminal rate well in a closed square reservoir. The type curves show P_D versus t_{DA} functions at various locations within a bounded square that has a well at its center.

The analytical solution used is the line source solution.

$$P_D = -\frac{1}{2} \quad Ei \left[\frac{-r_D^2}{4t_D} \right] \tag{3}$$

Matthews, Brons and Hazebroek (1954) demonstrated that solutions such as Eq. (3) can be superposed to generate the behavior of bounded geometric shapes. In this case, the behavior of a single well in a bounded square reservoir is calculated by adding the pressure disturbances together caused by the appropriate array of an infinite number of wells producing from an infinite system.

$$P_D(x_{D,} y_{D,} t_{DA}) = \sum_{i=1}^{\infty} P_D(a_{iD}^2, t_{DA})$$
(7)

$$P_D = -\frac{1}{2} \sum_{i=1}^{\infty} Ei \left[-\frac{((x_{iD} - x_D)^2 + (y_{iD} - y_D)^2)/4}{4t_D} \right]$$
(8)

Where:	$a_{iD} =$	a_i/\sqrt{A}
	$a_i =$	distance from i^{th} well to (x,y) .
	A =	drainage area of the bounded system.
	$x_D =$	x/L
	$y_D =$	y/L
	<i>L</i> =	√ <u>A</u> /2

Fig. 3.1 shows the square grid used to generate Fig. 3.2. Because of the symmetry of the square drainage region, it is necessary to compute pressures only within the octant shown in Fig. 3.1.

The summation of exponential integrals were carried out until the contribution from additional perimeter image wells was less than 10^{-9} of P_D . The results are graphed in Fig. 3.2. In the case of the pressures at the well, the calculations were carried out for $\sqrt{A}/r_w = 2000$.

Fig. 3.1 - Octant of a square drainage system showing well and pressure point locations.

Fig. 3.2 - P_D versus t_{DA} at various points in a closed-square system with the well at the center, $\sqrt{A}/r_w = 2000$ (After *Earlougher, Ramey, and Miller* 1968).

4: FINITE RADIUS WELLBORE, INFINITE SYSTEM CONSTANT TERMINAL RATE

Mueller and Witherspoon (1965) presented type curves for radial flow at constant terminal rate in an infinite medium, for a finite radius wellbore. They pointed out that at early times and at short distances from the inner boundary, the line source solution ($r_D = \infty$) is not valid. They concluded that for $t_D > 10$ and $r_D > 20$, all the dimensionless pressure responses are similar to the line-source response.

Van Everdingen and Hurst (1949) describe the governing equations for the finite radius constant terminal rate case. The Laplace transform solution **is:**

$$\overline{P}_D = \frac{K_0(r_D\sqrt{s})}{s\sqrt{s}\ K_1(r_D\sqrt{s})} \tag{9}$$

The Stehfest algorithm (1970) was used to invert the Laplace solution for various values of r_D , presented in Fig. 4.1.

-9-

5: TRANSIENT LINEAR BEHAVIOR

Miller (1962) analyzed the performance of finite and infinite aquifers. His equations give pressure drop or cumulative influx at the linear aquifer-reservoir boundary as a function of time for an infinite aquifer, and a finite aquifer with a sealed outer boundary. *Nabor and Barham* (1964) developed the appropriate equations for a finite aquifer with constant pressure at the outer boundary.

The original curves developed by *Miller* were specific to a given size aquifer. *Nabor and Barham* modified his equations, reducing them to a form that yields a single working curve, applicable to any size aquifer.

For a constant rate of influx across the aquifer-reservoirboundary:

Infinite Linear Aquifer

$$\Delta p = \frac{kbh}{q\mu L} F_{1/2} (t_D) \tag{10}$$

Finite Linear Aquifer, Sealed Outer Boundary

$$\Delta p = \frac{kbh}{q\mu L} F_1(t_D) \tag{11}$$

Finite Linear Aquifer, Constant Pressure at Outer Boundary

$$\Delta p = \frac{kbh}{q\mu L} F_0(t_D) \tag{12}$$

For a constant pressure at the aquifer-reservoir boundary:

Infinite Linear Aquifer

$$W_{e} = \phi \ b \ h \ L \ c_{t} \ (\Delta p) \ F_{1/2} \ (t_{D}) \tag{13}$$

Finite Linear Aquifer, Sealed Outer Boundary

$$W_e = \phi \ b \ h \ L \ c_t \ (\Delta p) \ F_1 \ (t_D) \tag{14}$$

Finite Linear Aquifer, Constant Pressure at Outer Boundary

$$W_{e} = \phi \ b \ h \ L \ c_{t} \left(\Delta p\right) F_{0} \left(t_{D}\right) \tag{15}$$

Fig. 5.1 shows the plotted functions of dimensionless time, $F_0(t_D)$, $F_{1/2}(t_D)$, and $F_1(t_D)$.

-12-

Dimensionless pressure change and efflux functions $F(t_D)$ for linear aquifers (After Nabor and Barham 1964). Fig. 5.1 -

-12-

6: HURST SIMPLIFIED WATER INFLUX

CONSTANT RATE INNER BOUNDARY, INFINITE RADIAL SYSTEM

For a constant rate at the reservoir-aquifer boundary, the Laplace space solution for dimensionless pressure is:

$$\overline{P}_D = \sigma N(\sigma, s) \tag{16}$$

where:

$$\sigma = \frac{2\pi\phi c_w h r_w^2}{N B_{oi} c_o} \tag{17}$$

and

$$N(\sigma,s) = \frac{K_0(s\sqrt{s})}{s\sqrt{s} \left[\sigma K_1(s\sqrt{s}) + \sqrt{s} K_0(s\sqrt{s}) \right]}$$
(18)

This is the simplification of the material balance equation for an undersaturated oil reservoir, subject to radial water drive as developed **by** *Hurst* (1953).

Fig. 6.1 is a plot of p_D versus t_D for various O.

-14-

7: LINEAR FAULT TYPE CURVE FOR A DRAWDOWN INTERFERENCE TEST (SMALL r_2/r_1 RATIOS)

The drawdown linear fault type curve uses superposition of the line source solution in space to produce the effect of a linear fault. Fig. 7.1 illustrates the well geometry, pressure point r2 r1 source Linear Boundary

Fig. 7.1 • Well geometry for linear fault interference test

Production at the image well simulates the effect **of** a sealed linear fault halfway between the image **and** producing well. *Stallman* (1952) presented log-log type curves for a constant rate line source producing near a linear boundary.

The solution for dimensionless pressure is the sum of the individual effects of the producing and image wells.

$$P_D = P_D(r_{D1}, t_D) + P_D(r_{D2}, t_D)$$
(19)

Substitution of the exponential integral solution gives the sealed fault solution:

$$P_D = -\frac{1}{2} \left[Ei \left[\frac{-r_{D1}^2}{4t_D} \right] + Ei \left[\frac{-(r_2/r_1)^2 r_{D1}^2}{4 t_D} \right] \right]$$
(20)

-15-

Pressure-time responses can be matched to the type-curve and the ratio of r_2/r_1 may be estimated. The curves presented here are for small r_2/r_1 ranging from 1.0 to 10.0. Fig. 7.2 is a log log plot of the pressure response.

Fig. 7.3 is a semi-log plot of the same data.

Fig. 7.4 differs from most type curves presented; it is a plot of the dimensionless pressure derivative (denoted by P_D), versus time.

 P_D ' is defined as follows:

$$P'_D = \frac{d P_D}{d (lnt_D)}$$
(21)

For the line-source solution,

$$P'_{D} = \frac{1}{2} e^{r_{D}^{2/4t_{D}}}$$
(22)

Thus, for a well near a sealed linear fault:

$$P'_{D} = \frac{1}{2} \left[e^{-r_{D1}^{2}/4t_{D}} + e^{-((r_{2}r_{1})^{2}r_{D1}^{2})/4t_{D}} \right]$$
(23)

-17-

Dimensionless pressure derivative, P'_D , versus t_D/r_D^2 for a well near a sealed linear fault, a drawdown interference test, with small r_2/r_1 ratios. Fig. **B**

-19-

8: PRESSURE DISTRIBUTION FOR A WELL BETWEEN TWO PARALLEL SEALING FAULTS

Ramey, Kumar, and Gulati (1973) have tabulated dimensionless pressure data for the specific case of a well located midway between two parallel sealing faults. *Tiab and Kumar* expanded the pressure behavior to include off-center locations between the faults.

The analytical solution used is the line source solution.

$$P_D = -\frac{2}{2} Ei \left[\frac{-r_D^2}{4t_D} \right]$$
(3)

The line source solution can be superposed to generate the behavior bounded geometric shapes. In **this** case, the behavior of two parallel sealing faults is calculated by adding together the pressure disturbances caused by the appropriate combination of image wells, producing from an infinite system.

$$P_D(b_D, L_D) = \sum_{i=1}^{\infty} P_D(r_{iD}^2)$$
(24)

$$P_D = -\frac{1}{2} \sum_{i=1}^{\infty} Ei \left[-\frac{r_{iD}^2}{4t_D} \right]$$
(25)

Where:

L_D	=	dimensionless distance between faults, L/r_{y}
L	=	distance between faults
b_D	=	dimensionless distance to the nearest fault
Ь	=	distance to the nearest fault
r _{iD}	=	$r_i L_D$
r _i	=	distance from well to <i>i</i> th image well

Figure 8.1 show the image well system used to generate figures 8.2-8.4. Because of the symmetry of the drainage region, it is necessary to compute pressures only within half of the area shown.

Fig. 8.1- Image well configuration for two parallel sealing faults.

The summation of exponential integrals were carried out until the contribution from additional perimeter image wells was less than 10e-09 of P_D . The pressure behavior of a well located midway between the faults (b_D =0.5 was generated for various L_D and presented in figure 8.2.

By redefining t_D it is possible to mathematically collapse the late time pressure response to one curve, figure 8.3, representative of linear flow.

$$t_D^* = \frac{t_D}{L_D^2} \tag{26}$$

Moving the well closer to one of the faults causes an earlier deviation from line source behavior as expected. The curves shown in figure 8.4 are for $b_D = 0.05, 0.1, 0.2$ and 0.5, $L_D = 10, 100, 10000$.

Again, it is possible to mathematically collapse the late time pressure response using the same definition of t_D^* (eqn. 26), as in figure 8.3. Figure 8.5 shows the results.

-23-

-24-

 P_D versus t_D/L_D^2 for a well at various locations between two parallel seaving faults, $b_D = 0.05, 0.1, 0.2, \text{ and } 0.5 \cdot (L_D = 10, 100, 10000)$.

-26-

9: CONCLUSIONS

Type curves were generated using Fortran computer programs. The drawdown-buildup type curve was produced using superposition in time of the line source solution. The linear fault interference type curve, the pressure distribution in a closed square reservoir curves and the parallel sealing faults curves were generated using superposition in space of the line source solution.

The finite radius type curve, and *Hurst'* simplified water influx curves were generated by numerical inversion of their governing Laplace equations with the *Stehfest* algorithm (1970). This method was very efficient, reducing the required CPU time and the required programming.

The transient linear behavior type curve was generated by numerical integration of the published integral equations.

NOMENCLATURE

A		drainage area of the square bounded system
a_i	a_i = distance from i^{th} well to (x,y) .	
a_{iD}		a_i / \sqrt{A}
b	=	distance to nearest fault, parallel sealing faults section 8
b	=	aquifer width, chp.5
b_D	-	dimensionless distance to nearest fault, parallel faults
C _t	=	total formation compressibility (<i>psi</i> ⁻¹)
$F_{1/2}(t_D)$	<u></u>	infinite linear aquifer flow
$F_1(t_D)$		finite linear aquifer, sealed outer boundary
$F_0(t_D)$	-	finite linear aquifer, constant pressure outer boundary
h	=	formation sand thickness (ft)
K ₀	=	modified Bessel function of the second kind of order zero
K_1		modified Bessel function of the second kind of order one
L	=	1/4 the drainage area of the square bounded system, chp.3
L	=	distance between faults, parallel sealing faults, section 8
L_D	=	dimensionless distance between faults, L/r_w
P_D		dimensionless pressure
\overline{P}_D	=	Laplace transform of dimensionless pressure
P _{wf}	=	flowing pressure in the wellbore (psia)
P _i	-	static initial reservoir pressure (psia)
r _D	=	dimensionless radial distance
r_i	=	distance from with to i^{th} image well
r _{iD}	=	$r_i L_D$

r_w	-	= wellbore radius (ft)	
S	=	Laplace space variable	
t	=	time (hours)	
t_D	=	dimensionless time	
t_D^*	=	redefined dimensionless time t_D/L_D^2	
t _{DA}	=	dimensionless time based on a square drainage area	
t_{pD}	=	dimensionless producing time	
W_e		water influx	
(<i>x</i> , <i>y</i>)	=	location of pressure point in square bounded system	
(x_D, y_D)	-	dimensionless location of pressure point in square	
μ	=	fluid viscosity (centipoise)	
φ	=	formation porosity (fraction)	

formation porosity (fraction)
REFERENCES

- Earlougher, Robert C., Jr.: Advances in Well Test Analysis, Monograph Series, Society of Petroleum Engineers, Dallas (1967) Vol. 5.
- Earlougher, Robert C., Jr., Ramey, H.J., Jr., Miller, F.G., and Mueller, T.D.: "Pressure Distributions in Rectangular Reservoirs," J. Pet. Tech. (Feb. 1968) 199-208; Trans., AIME, 243.
- Eipper M.E.: Computer Generation of Type Curves. M.S. thesis, Stanford Geothermal Programme Report SGP-TR-83, Stanford University, (1985).
- Hurst, William: "The Simplification of the Material Balance Formulas by the Laplace Transformation," *Trans.*, AIME, (Vol. 213, 1953) 292-303. Miller, F.G.,: "Theory of Unsteady-State Influx of Water in Linear Reservoirs", *Journal Institute & Petroleum* (Nov. 1962) 48, 365.
- Mueller, Thomas D. and Witherspoon, Paul A.: "Pressure Interference Effects Within Reservoirs and Aquifers," J. Pet. Tech. (April 1965) 471-474; Tram., AIME, 234.
- Nabor, G.W., Barham, R.H.: "Linear Aquifer Behavior," J. Pet. Tech. (May 1964) 561-563.
- Ramey, H.J., Jr., Kumar, A., and Gulati, M.S.: *Gas Well Test Analysis Under Water-Drive Conditions*, Monograph on Project **61-51**, AGA Inc., Arlington, VA (1973).
- Stallman, R.W.: "Nonequilibrium Type Curves Modified for Two-Well Systems," U.S. Geol. Surv., Groundwater Note 3, (1952).
- Stehfest, H.: "Algorithm 368, Numerical Inversion of Laplace Transforms," Communication *et the ACM*, D-5(Jan. 1970) 13, No. 1., 47-49.
- Tiab, D., and Kumar, A.: "Detection and Location of Two Parallel Sealing Faults Around a Well," J. Pet. Tech. (Oct. 1980) 1701-1708.
- Van Everdingen, A.F., and Hurst, W.: "The Application of the Laplace Transformation to Flow Problems in Reservoirs," *Trans.*, AIME (Dec. 1949) 186, 305-324.

APPENDIX A

COMPUTER PROGRAMS

DRAWDOWN BUILD-UP CURVE (LINE SOURCE SOLUTION)

```
c This program calculates pD vs tD during the buildup
c portion of the drawdown buildup test.
С
c Dimensionless shut-in times considered are ,1,,2,,4,,6, 1,2,4,6,
c 10,20,40,60, 100,200,400,600, 1000,2000,4000,6000
С
  Variables used:
С
   mmdei= imsl routine to calculate the exponential integral
С
   tpd = dimensionless shut-in time
С
    pd = dimensionless pressure
С
        = dimensionless time
    td
С
     implicit real*8(a-h,o-z)
     dimension tdd(10000),pdd(10000)
     double precision mmdei
     iopt = \hat{1}
С
c This loop calculates pD vs tD for the various shut-in times.
С
     do 70 kk=1,5
       aaa=kk
       do 80 ll=1.6
         bbb=11
         if(ll.eq.3.or.ll.eq.5) go to 80
         tpd=0.001*(bbb*(10.0**aaa))
         nn=1
С
c Calculate the initial pD value at the shut-in time, tpd.
C
         arg=(-1.0)/(4.0*tpd)
         pd=-0.5*(mmdei(iopt,arg,ier))
         pdd(1)=pd
         tdd(1)=tpd
```

DRAWDOWN BUILD-UP CURVE (LINE SOURCE SOLUTION) cont.

```
С
c Generate values of tD between 0.1 and 10000 and calculate
c the corresponding pD values.
С
         do 30 i=1,15
          aa=i
          do 40 j=1,36
            bb=j
            dt = 0.0001*(1.+(bb-1)*.25)*(10.**(aa))
            td = tpd + dt
            if (dt.lt.0.01.or.td.gt. 1000000) go to 40
            arg1=(-1.0)/(4.0*td)
            arg2=(-1.0)/(4.0*dt)
            pd=-0.5*(mmdei(iopt,arg1,ier)-mmdei(iopt,arg2,ier))
            if (pd.lt.0.0001) go to 50
            nn=nn+1
            pdd(nn)=pd
            tdd(nn)=td
 40
           continue
 30
         continue
с
c Output the data for plotting
С
 50
         write(6,1000) nn
         do 60 m=1,nn
            time=tdd(m)
            pres=pdd(m)
             write(6,2000) time, pres
 60
         continue
 1000format(5x,i3)
 2000 format(5x,e10.5,5x,e15.7)
 80
        continue
 70
      continue
      stop
      end
```

PRESSURE DISTRIBUTION IN A SQUARE RESERVOIR WITH NO FLOW BOUNDARIES

Dimensionless pressure at various points in a closedс square system with the well at the center, no wellbore с storage, no skin, srt(A)/rw = 2,000. Log-log plot. с С Variables used: с mmdei= imsl routine to calculate the exponential integral с pd = dimensionless pressure с td = dimensionless timeс (xd,yd) =coordinates of pressure point (well is at the origin) с (xi,yi) = coordinates of image wellс ri2 = the distance from pressure point to image well (squared). с = half the length of the image well grid... it increases as n С td increases to achieve the pD error tolerance. С err = the percentage error in pD caused by a finite grid of с image wells rather than an infinite grid. С implicit real*8(a-h,o-z) dimension tdd(10000),pdd(10000) dimension ri2(80000) double precision rnmdei iopt = 1error = 10e-980 write(0,*)'input **xd** (type 0.0 to quit)' read(5,*)xdif(xd.eq.0.0)go to 90 write(0,*)'input yd' read(5,*)yd n=1 nn=1 np=0 do 10i=1.5do 20 j=1,50 tdlog = -4.+i+(j-1)/50.if(tdlog.gt.1.) go to 10 tdA=10.**tdlog pdsum=0.0 if(xd.eq.0.0.and.yd.eq.0.0)pdsum=-0.5*(dlog(1./(4.*2000.*2000.*tdA))+0.5772)ri2(nn)= (xd**2. + yd**2.) @

PRESSURE DISTRIBUTION IN A SQUARE RESERVOIR WITH NO FLOW BOUNDARIES (cont.)

```
c calculate the distance to the producing well
С
            ri2(nn) = (xd^{**2} + yd^{**2})
С
c calculate the distances to the image wells for layer n
С
            do 30 ii=1,8
1
             signx = 1.
             signy = 1.
             if(ii.ge.3.and.ii.le.6) signx = -1.
             if(ii.gt.4) signy = -1.
             do 40 jj=1,n
               an=n
               aj=jj
               if(ii.eq. l.or.ij.eq.5) then
                  \begin{array}{l} xi = signx * an * 2. \\ yi = signy * (aj-1.) * 2. \end{array} 
               elseif(ii.eq.2.or.ii.eq.6)then
                 xi= signx * (an-aj+1.) * 2.
yi= signy * an * 2.
               elseif(ii.eq.3.or.ii.eq.7)then
                 xi= signx * (aj-1.) * 2.
yi= signy * an * 2.
               else
                 xi = signx * an * 2.

yi = signy * (an-aj+1.) * 2.
               endif
               nn = nn + 1
               ri2(nn) = (xi-xd)^{**2} + (yi-yd)^{**2}
 40
              continue
 30
             continue
С
c calculate the pD
С
             dpd= 0.0
             do 50 k=1,nn
                arg1 = -(ri2(k)/4.)/(4.*tdA)
                if(arg1.eq.0.0)go to 50
                if(arg1.lt.-50.)go to 50
                pd=-0.5*(mmdei(iopt,arg1,ier))
                pdsum=pdsum +pd
                if(pdsum.lt.0.001)go to 21
                dpd=dpd + pd
  50
             continue
```

PRESSURE DISTRIBUTION IN A SQUARE RESERVOIR WITH NO FLOW BOUNDARIES (cont.)

```
С
c check to see if this layer has a significant effect
c on the pd summation
С
         if(pdsum.gt.0.0) err=dpd/pdsum
         if(dpd.lt.error) go to 60
         nn=0
         n=n+1
          go to 1
С
c assign data pts to array for plotting
60
          np=np+1
         pdd(np)=pdsum
          tdd(np)=tdA
c set counter of outer layer back to 0 and n to 1 for next td value
21
          nn = 1
          n=1
 20
        continue
     continue
 10
С
c write results to output file
С
      write(6,1000)np
      do 70 m=1,np
        time=tdd(m)
        pres=pdd(m)
        write(6,2000) time, pres
 70 continue
 1000format(5x,i3)
 2000 format(5x,e10.5,5x,e15.7)
      go to 80
 90
      continue
      stop
      end
```

CONSTANT TERMINAL RATE

```
c This program calculates the complete solution for
  an infinite radial system operating at constant
с
  terminal rate.(Mueller and Witherspoon)JPT 4/65,
с
С
  Rd values: 1., 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7,
с
                        2.0, 3.0, 5.0, 10.0, 20.
С
  Variables used:
С
с
     mmbsk0= IMSL routine to calculate modified Bessel function, KO
     mmbsk1= IMSL routine to calculate modified Bessel function, K1
с
     FA() = stehfest algoritm to invert solution
с
           = number of iterations used in stehfest
     Ν
с
           = radius of well, divided by ratius of reservoir
с
     rd
          = dimensionless time
с
     td
с
     pd
           = dimensionless pressure
     implicit real*8(a-h,o-z)
     dimension tdd(1000),pdd(1000)
     common rd
     write (0,888)
888 format ('enter N')
     read (5,*)N
     M=N+1
С
c rD loop
С
 10 write(0,*)'what rd value do you want?'
     write(0,*)' (type 0.0 to quit)'
     read(5,*) rd
     if(rd.eq.0.0)go to 70
     nn=0
     do 20 i=1,26
        aa=i
        do 30 j=1,36
            bb=j
            dt=0.000001*(1+(bb-1)*0.25)*(10.**aa)
            td=dt/(rd^{**2})
            T=dt
            if(td.lt.0.006.or.td.gt.1100) go to 30
            pd=FA(T,N,M)
            if (pd.lt.0.006) go to 30
            nn=nn+1
            pdd(nn)=pd
            tdd(nn)=td
        continue
 30
 20
    continue
```

FINITE RADIUS WELLBORE, INFINITE SYSTEM, CONSTANT TERMINAL RATE ,INCLUDING THE STEHFEST SUBROUTINE

```
С
c write results to output file
С
50
    write(6,1000) nn
    do 60 \text{ k}=1.\text{nn}
      time=tdd(k)
      pres=pdd(k)
      write(6,2000) time, pres
60
   continue
 1000 format(5x,i3)
2000 format(5x,e10.5,5x,e15.7)
     go to 10
70
    stop
     end
С
c THE STEHFEST ALGORITHM
С
  С
    FUNCTION FA(TD,N,M)
       THIS FUNTION COMPUTES NUMERICALLY THE LAPLACE TRNSFORM
С
       INVERSE OF F(S).
С
    IMPLICIT REAL*8 (A-H,O-Z)
    DIMENSION G(50), V(50), H(25)
С
       NOW IF THE ARRAY V(I) WAS COMPUTED BEFORE THE PROGRAM
С
       GOES DIRECTLY TO THE END OF THE SUBRUTINE TO CALCULATE
С
       F(S).
С
    IF (N.EQ.M) GO TO 17
    M=N
    DLOGTW=0.6931471805599
    NH=N/2
С
       THE FACTORIALS OF 1 TO N ARE CALCULATED INTO ARRAY G.
С
    G(1)=1
    DO 1 I=2,N
    G(I)=G(I-1)*I
```

```
1 CONTINUE
```

THE STEHFEST SUBROUTINE (cont.)

С	TERMS WITH K ONLY ARE CALCULATED INTO ARRAY H.
	H(1)=2./G(NH-1)
	DO 6 I=2,NH
	FI=I
	IF(I-NH) 4,5,6
4	H(I)=FI**NH*G(2*I)/(G(NH-I)*G(I)*G(I-1))
	GO TO 6
5	$H(I) = FI^{**}NH^{*}G(2^{*}I)/(G(I)^{*}G(I-1))$
6	CONTINUE
С	
C	THE TERMS (-1)**NH+1 ARE CALCULATED.
С	FIRST THE TERM FOR 1=1
	SN=2*(NH-NH/2*2)-1
С	
С	THE REST OF THE SN'S ARECALCULATED IN THE MAIN RUTINE.
C	
C	
C	THE ARRAY V(I) IS CALCULATED.
	DO 7 I=1,N
C	
C	FIRST SET V(I)=0
	V(I)=0.
C	
C	THE LIMITS FOR K ARE ESTABLISHED.
C	THE LOWER LIMIT IS K1≠INTEG(((1+1/2))
	K = (1+1)/2
C	
C	THE UPPER LIMIT IS K2=MIN(1,N/2)
	K2=1
~	IF (K2-NH) 8,8,9
9	K2=NH
C	
C	THE SUMMATION TERM IN V(1) IS CALCULATED.
8	$DO_{10} K = K_{1}, K_{2}$
10	$IF(2^{K}-I)$ 12,13,12
12	$\frac{1F(1-K)}{1}$
11	$V(I) = V(I) + H(K)/(G(I-K)^*G(2^*K-I))$
10	
15	$Y(1) = Y(1) + \Pi(\Lambda) / U(1 - \Lambda)$
14	$\frac{U}{U} = \frac{U}{U} $
14	$Y(1) = Y(1) + \Pi(\Lambda)/U(2^{T}\Lambda^{-1})$
10	CONTINUE

THE STEHFEST SUBROUTINE (cont.)

С	
С	THE V(I) ARRAY IS FINALLY CALCULATED BY WEIGHTING
С	ACCORDING TO SN.
	V(I)=SN*V(I)
С	
С	THE TERM SN CHANGES ITS SIGN EACH ITERATION.
	SN=-SN
7	CONTINUE
С	
С	THE NUMERICAL APPROXIMATION IS CALCULATED.
17	fa=0.
	A=DLOGTW/TD
	DO 15 I=1,N
	ARG=A*I
	fa=fa+V(I)* p(arg)
15	CONTINUE
	fa=fa*A
18	RETURN
	END

TRANSIENT LINEAR BEHAVIOR

Constant Rate of Influx Across Aquifer-Reservoir Boundary с С Variables used: с td dimensionless time с = с **pd** = dimensionless pressure С implicit real*8(a-h,o-z) dimension tdd(10000),Fdd(10000) pi=3.141592654 error=10e-9 c Calculate F1/2(td) c Constant We inner boundary, infinite outer boundary. c Constant P inner boundary, infinite outer boundary. nn=0 do 10i=1,10 aa=i do 20 j=1,36 bb-j dt = 0.0001*(1. +(bb-1)*0.25)*(10.**(aa))td= dt if(td.lt.0.006.or.td.gt.10) go to 20 F=2.*((td/pi)**0.5)if(F.lt.0.01)go to 20 nn=nn+1 Fdd(nn)=Ftdd(nn)=td 20 continue 10 continue write(6,1000) nn do **30** m=1,nn time=tdd(m) efff=Fdd(m)write(6,2000) time,efff 30 continue 1000 format(5x,i3) 2000 format(5x,e10.5,5x,e15.7)

TRANSIENT LINEAR BEHAVIOR (cont.)

- c Calculate F1(td)...finite linear aquifer
- c Constant We inner boundary, sealed outer boundary.
- c Constant P inner boundary, constant pressure outer boundary.

nn=0 do 40 i=1,10 aa=i do 50 j=1,72 bb=j dt = 0.001*(1. +(bb-1)*0.25)*(10.**(aa))td = 0.25 + dtif(td.gt.10) go to 50 sum=0.0 do 60 k=1,1000 sum 1=sum $sum=sum+(1./k^{**2})^{dexp(-(k^{**2}.)^{td})}$ err=dabs(sum 1-sum) if (err.lt.error)go to 70 continue 60 70 F1=(td+1./3.) - (2./(pi**2.))*sumif(F1.lt.0.01)go to 50 nn=nn+1 Fdd(nn)=F1tdd(nn)=td 50 continue 40 continue

write(6,1000) nn do 80 m=1,nn time=tdd(m) eff2=Fdd(m) write(6,2000) time,eff2

80 continue

TRANSIENT LINEAR BEHAVIOR (cont.)

- c Calculate F0(td)...finite linear aquifer
- c Constant We inner boundary, constant pressure outer boundary.
- c Constant P inner boundary, sealed outer boundary.

```
nn=0
     do 81 i=1,10
      aa=i
      do 82 j=1,36
        bb=i
        dt = 0.001*(1. +(bb-1)*0.25)*(10.**(aa))
        td = 0.25 + dt
        if(td.gt.10) go to 82
        sum=0.0
        do 83 k=1,1000
         ak = (2.*k) - 1
         sum 1=sum
         sum=sum+(1./ak^{*2})^{dexp((-(ak^{*2}.)^{(pi^{*2}.)^{td})/4.)}
         err=dabs(sum1-sum)
         if (err.lt.error)go to 84
83
        continue
        FO= 1. - (8./pi**2.)*sum
84
        if(F0.lt.0.01)go to 82
        nn=nn+1
        Fdd(nn)=F0
        tdd(nn)=td
82
       continue
     continue
81
     write(6,1000) nn
     do 85 m=1,nn
        time=tdd(m)
        eff2=Fdd(m)
        write(6,2000) time,eff2
85
    continue
     stop
     end
```

CONSTANT RATE INNER BOUNDARY, INFINITE RADIAL SYSTEM

```
Variables used:
с
           = dimensionless time
     td
С
С
            = dimensionless pressure
     pd
     sigma = spunginess ratio relating aquifer compressibility
С
                to reservoir compressibility.
С
     FA
            = stehfest algorithm to invert Laplace: space solution.
С
     implicit real*8(a-h,o-z)
     dimension tdd(1000),pdd(1000)
     common sigma
     N = 10
     M=N+1
 10 write(0,*)'enter sigma (type 0.0 to quit)'
     read(5,*) sigma
     if(sigma.eq.0.0)go to 70
     nn=0
     dt = 0.0
     do 20 i=1,15
       aa=i
       do 30 j=1,36
           bb-j
           tdlog=-4.+ aa + (bb-1)/36.
           td=10,**tdlog
           if(td.lt..001.or.td.gt.10000.) go to 30
           pd=FA(td,N,M)
           if (pd.lt.0.00006.or.pd.gt. 10) go to 30
           nn=nn+1
           pdd(nn)=pd
           tdd(nn) = td
 30
        continue
 20 continue
 40 write(6,1000) nn
     do 50 k=1,nn
        time=tdd(k)
        pres=pdd(k)
        write(6,2000) time, pres
 50 continue
 1000
           format(5x,i3)
           format(5x,e17.5,5x,e15.7)
 2000
      go to 10
 70 stop
      end
```

LINEAR FAULT, DRAWDOWN INTERFERENCE TEST (SMALL R2/R1 RATIOS)

```
c This program calculates pD and pD' versus tD for the sealed linear
  fault type curve.
с
c R2/R1 ratios used were: 1.0, 1.1, 1.2, 1.5, 2.0, 3.0, 5.0 and 10.0.
С
  Variables used:
с
      mmdei- IMSL routine to calculate the exponential integral
с
      rd = r2/r1 ratios desired
с
     pd = dimensionless pressure
с
     dpd = dimensionless pressure derivative
с
      td = dimensionless time
с
      implicit real*8(a-h,o-z)
      dimension tdd(1000),pdd(1000)
      double precision mmdei
      iopt=1
10
      write(0,*)'input r2/r1'
      write(0, *)' (type 0.0 to quit)'
      read(5,*)rd
      if(rd.eq.0.0)go to 90
      nn=0
С
c calculate dimensionless pressure
С
      do 20 i=1,15
        aa=i
        do 25 j=1,20
            bb=j
            tdlog=-3.+aa+(bb-1.)/20.
            td=10.**tdlog
            if(td.gt.1000) go to 40
            arg1 = -1./(4.*td)
            arg2 = -(rd*rd)/(4.*td)
            if(arg2.lt.-50.) go to 30
            pd=-0.5*(mmdei(iopt,arg1,ier)+mmdei(iopt,arg2,ier))
            go to 35
 30
            pd=-0.5*mmdei(iopt,arg1,ier)
 35
            if (pd.lt.O.00001) go to 25
            nn=nn+1
            pdd(nn)=pd
            tdd(nn)=td
         continue
 25
 20
      continue
```

LINEAR FAULT, DRAWDOWN INTERFERENCE TEST (SMALL R2/R1 RATIOS)

```
40
     write(6,1000) nn
     do 45 k=1,nn
        time=tdd(k)
        pres=pdd(k)
        write(6,2000) time, pres
45 continue
1000format(5x,i3)
2000 format(5x,e10.5,5x,e15.7)
С
c calculate the dimensionless pressure derivative
С
     do 50 i=1,15
        aa=i
        do 55 j=1,20
           bb=j
           tdlog=-3.+aa+(bb-1.)/20.
           td=10.**tdlog
           if(td.gt.1000) go to 60
           arg1 = -1./(4.*td)
           arg2 = -(rd*rd)/(4.*td)
           dpd = 0.5*(dexp(arg1)+dexp(arg2))
           nn=nn+1
           dpdd(nn)=dpd
           tdd(nn)=td
 55
        continue
 50
      continue
      write(6,1000) nn
 60
      do 65 k=1,nn
        time=tdd(k)
        deriv=dpdd(k)
         write(6,2000) time,deriv
 65
      continue
      go to 10
 90
      stop
      end
```

PRESSURE DISTRIBUTION, RESERVOIR BETWEEN TWO PARALLEL SEALING FAULTS

Dimensionless pressure at various points between two С parallel linear faults, no wellbore storage, no skin. С С С Variables used: mmdei= imsl routine to calculate the exponential integral С **pd** = dimensionless pressure С = dimensionless time td С bd = dimensionless location of well С rdl = the distance from well to image well (in positive direction) С rd2 = the distance from well to image well (in negative direction) С Ld = the ratio of L to rw Where L is the actual distance С between faults. С = half the length of the image well grid.... it increases as n С td increases to achieve the pD error tolerance. С err = the percentage error in pD caused by a finite grid of С image wells rather than an infinite grid. С implicit real*8(a-h,o-z) real*8 Ld dimension tdd(10000),pdd(10000) double precision mmdei iopt = 1error = 10e-9err = 1080 write(0,*)'Input bd (type 0.0 to quit)' read(5,*)bdif(bd.eq.0.0) go to 90 write(0,*)'Input Ld' read(5,*)Lddr2 = bddr1 = 1.-bdnp = 0

PRESSURE DISTRIBUTION, RESERVOIR BETWEEN TWO PARALLEL SEALING FAULTS (cont.)

```
c Time Loop
С
      do 10 i=1,12
        do 20 j=1,10
          tdlog = -3+i+(j-1)/10.
          if(tdlog.gt.9.1) go to 10
          td=10.**tdlog
           if(td.lt.0.035) go to 20
С
c calculate pd at well
С
           arg0 = -1./(4.*td)
          pdsum= -0.5*mmdei(iopt,arg0,ier)
С
c initialize rdl and rd2
С
 21
          rd1 = 0.0
           rd2 = 0.0
c Loop to calculate the pD contribution from image wells
c switch drl and dr2 to alternate a and b
С
 30
           dummy = drl
           drl = dr2
           dr2 = dummy
С
    calculate distance to next two image wells
с
С
           rd1 = rd1 + 2.*dr1
           rd2 = rd2 + 2.*dr2
С
           dpd = 0.0
           argl = -(rd1*rd1*Ld*Ld)/(4.*td)
           if(arg1.eq.0.0.or.arg1.lt.-50.0)go to 40
           pd= -0.5*mmdei(iopt,arg1,ier)
           pdsum=pdsum+pd
           dpd=pd
           arg2 = -(rd2*rd2*Ld*Ld)/(4.*td)
 40
           if(arg2.eq.0.0.or.arg2.lt.-50.0)go to 41
           pd= -0.5*mmdei(iopt,arg2,ier)
           pdsum=pdsum+pd
           dpd=dpd+pd
```

PRESSURE DISTRIBUTION, RESERVOIR BETWEEN TWO PARALLEL SEALING FAULTS (cont.)

```
check error
С
с
          if(pdsum.lt.0.0001) go to 20
41
          if(pdsum.ne.0.0)err=dpd/pdsum
          if(err.lt.error) go to 50
          go to 30
50
          np=np+1
          pdd(np)=pdsum
          tdd(np)=td
 20
        continue
 10
     continue
¢
c write results to output file
С
      write(6,1000)np
      do 70 m=1,np
        time=tdd(m)
        pres=pdd(m)
        write(6,2000) time, pres
 70 continue
 1000format(5x,i3)
 2000 format(5x,e10.5,5x,e15.7)
      go to 80
 90
      stop
      end
```

APPENDIX B

SELECTED DATA FROM THAT GENERATED BY THE COMPUTER PROGRAMS

SELECTED BUILDUP TEST VALUES (LINE SOURCE SOLUTION)

$\frac{t_{pD}}{r_D^2}$	$\frac{t_D}{r_D^2}$	P _D
0.1	$\begin{array}{c} 0.1000\\ 0.1600\\ 0.2500\\ 0.4000\\ 0.6250\\ 1.0000\\ 1.6000\\ 2.6000\\ 4.1000\\ 6.3500\\ 10.1000\end{array}$	0.0125 0.0440 0.0705 0.0698 0.0563 0.0405 0.0275 0.0178 0.0116 0.0076 0.0049
1.0	$\begin{array}{c} 1.0000\\ 1.6000\\ 2.5000\\ 4.0000\\ 6.2500\\ 10.0000\\ 16.0000\\ 26.0000\\ 41.0000\\ 63.5000\\ 101.0000\end{array}$	0.5221 0.377 1 0.2242 0.1338 0.0834 0.05 13 0.03 18 0.0194 0.0123 0.0079 0.0050
10.0	$\begin{array}{c} 10.0000\\ 16.0000\\ 25.0000\\ 40.0000\\ 62.5000\\ 100.0000\\ 160.0000\\ 260.0000\\ 410.0000\\ 635.0000\\ 1010.0000\end{array}$	1.5683 0.4776 0.2521 0.1428 0.0868 0.0525 0.0322 0.0 196 0.0123 0.0079 0.0050

SELECTED BUILDUP TEST VALUES (LINE SOURCE SOLUTION - CONTINUED)

100.0 100.0000 2.7084 160.0000 0.4891 250.0000 0.255 1 400.0000 0.1437 625.0000 0.0871 1000.000 0.0871 1000.000 0.0323 2600.0000 0.0123 6350.0000 0.0079 10100.0000 0.0079 10100.0000 0.4903 2500.0000 0.4903 2500.0000 0.1438 6250.0000 0.0872 1000.0000 0.0872 1000.0000 0.0323	$\frac{t_{pD}}{r_D^2}$	$\frac{t_D}{r_D^2}$	P _D
41000.0000 0.0123 63500.0000 0.0079 101000 0000 0.0050	100.0	$\begin{array}{c} 100.0000\\ 160.0000\\ 250.0000\\ 400.0000\\ 625.0000\\ 1000.0000\\ 1600.0000\\ 2600.0000\\ 4100.0000\\ 6350.0000\\ 10100.0000\\ 1600.0000\\ 2500.0000\\ 4000.0000\\ 6250.0000\\ 10000.0000\\ 16000.0000\\ 16000.0000\\ 26000.0000\\ 41000.0000\\ 63500.0000\\ 41000.0000\\ 63500.0000\\ 401000.0000\\ 63500.0000\\ 401000.0000\\ 63500.0000\\ 4000.0000\\ 0000\\ 00000\\ 0000\\ 00000\\ 00000\\ 00$	2.7084 0.4891 0.255 1 0.1437 0.087 1 0.0527 0.0323 0.0196 0.0123 0.0079 0.0050 3.8585 0.4903 0.2554 0.1438 0.0872 0.0527 0.0323 0.0196 0.0123 0.0079 0.0050

PRESSURE DISTRIBUTIONS IN A CLOSED SQUARE RESERVOIR

SELECTED TYPE-CURVE VALUES

(x_D, y_D)	t _{DA}	P _D
(0.0,0.0)	$\begin{array}{c} 0.0010\\ 0.0016\\ 0.0025\\ 0.0040\\ 0.0063\\ 0.0100\\ 0.0158\\ 0.0251\\ 0.0251\\ 0.0398\\ 0.0631\\ 0.1000\\ 0.1585\\ 0.2512\\ 0.3981\\ 0.6310\\ 1.0000\\ 1.5849\\ 2.5119\\ 3.9811\\ 6.3096\\ 10.0000\end{array}$	4.55 16 4.78 18 5.0121 5.2423 5.4726 5.7029 5.9331 6.1634 6.3942 6.6319 6.9063 7.2850 7.8686 8.7918 10.2548 12.5736 16.2486 22.0730 31.3042 45.9346 69.1222
(.25,.25)	0.0025 0.0040 0.0063 0.0100 0.0158 0.025 1 0.0398 0.063 1 0.1000 0.1585 0.25 12 0.3981 0.6310 1.0000 1.5849 2.51 19 3.98 11 6.3096 10.0000	0.0057 0.0258 0.0746 0.1607 0.2842 0.4396 0.6204 0.8287 1.0902 1.4656 2.0489 2.9720 4.4351 6.7538 10.4288 16.2533 25.4845 40.1149 63.3025

PRESSURE DISTRIBUTIONS IN A CLOSED SQUARE RESERVOIR

SELECTED TYPE-CURVE VALUES (CONTINUED)

(x_D, y_D)	t _{DA}	P
(.50,.50)	0.0100 0.0158 0.0251 0.0398 0.0631 0.1000 0.1585 0.2512 0.3981	0.0056 0.0254 0.0742 0.1638 0.3098 0.5417 0.9092 1.4916 2.4147
	$\begin{array}{c} 0.6310 \\ 1.0000 \\ 1.5849 \\ 2.5119 \\ 3.9811 \\ 6.3096 \\ 10.0000 \end{array}$	3.8778 6.1965 9.8715 15.6960 24.9272 39.5576 62.7452
(1.0,1.0)	$\begin{array}{c} 0.0251\\ 0.0398\\ 0.0631\\ 0.1000\\ 0.1585\\ 0.2512\\ 0.3981\\ 0.6310\\ 1.0000\\ 1.5849\\ 2.5119\\ 3.9811\\ 6.2006\end{array}$	$\begin{array}{c} 0.0024\\ 0.0219\\ 0.1004\\ 0.2939\\ 0.6505\\ 1.2317\\ 2.1548\\ 3.6178\\ 5.9366\\ 9.6116\\ 15.4361\\ 24.6672\\ 30.2076\end{array}$
	3.9811 6.3096 10.0000	24.6672 39.297 62.485

FINITE RADIUS WELLBORE, INFINITE SYSTEM

SELECTED TYPE-CURVE VALUES

		·
<i>r</i> _D	$\frac{t_D}{r_D^2}$	P _D
1.0	0.0100 0.0150 0.0250 0.0400 0.0625 0.1000 0.1250 0.1500 0.2500 0.4000 0.6250 1.0000	0.1081 0.13 12 0.1669 0.2077 0.2546 0.3142 0.3466 0.3751 0.4659 0.5646 0.6727 0.8021
1.2	0.0104 0.0156 0.0260 0.0417 0.0625 0.1042 0.1562 0.2604 0.4 167 0.6250	0.0188 0.0344 0.0638 0.1021 0.1449 0.2129 0.2790 0.3789 0.4879 0.5953
1.5	0.0200 0.0256 0.0400 0.0667 0.1000 0.1556 0.2556 0.4000 0.6667 1.0000	0.0093 0.0 162 0.0376 0.0789 0.1266 0.1950 0.2929 0.4004 0.5446 0.6744

FINITE RADIUS WELLBORE, INFINITE SYSTEM

SELECTED TYPE-CURVE VALUES (CONTINUED)

r _D	$\frac{t_D}{r_D^2}$	P _D
3.0	0.0556 0.0639 0.1000 0.1667 0.2500 0.4167 0.6389 1.0000	0.0087 0.0131 0.0386 0.0961 0.1673 0.2897 0.4179 0.5738
20.0	0.0875 0.1000 0.1625 0.2500 0.4375 0.6250 1.0000	0.0087 0.0136 0.0494 0.1124 0.2435 0.3537 0.5242

PRESSURE DROP AND CUMULATIVE INFLUX, LINEAR AQUIFERS

F-FUNCTIONS

t _D	$F_0(t_D)$	$\frac{F_{1}(t_{D})}{2}$	$F_1(t_D)$
0.2500 0.3000 0.3500 0.4000 0.4500 0.5500 0.5500 0.6500 0.6500 0.7500 0.7500 0.8000 0.8500 0.8500 0.9000 0.9500 1.2500 1.7500 2.2500	0.5622 0.6132 0.6582 0.6979 0.7330 0.7640 0.79 13 0.8156 0.8370 0.8559 0.8726 0.8874 0.9005 0.9120 0.9222 0.9629 0.9892 0.9969 0.9001	0.5642: 0.6180 0.667 6 0.7136 0.7569 0.7979 0.8368, 0.8740 0.9097 0.944 1 0.9772. 1.0093 1.0403 1.0705, 1.0998 1.2616 1.4927 1.6926 1.8712	0.5661 0.6228 0.67 69 0.7294 0.7809 0.8319 0.8824 0.9328 0.9830 1.033 1 1.0832 1.1333 1.1833 1.2333 1.2833 1.2833 1.5833 2.0833 2.5833 2.0833
2.7300	0.3331	1.07 12/	0.0000

(CONSTANT RATE INNER-BOUNDARY,,INFINITE SYSTEM)

σ	t _D	P _D
.01	$\begin{array}{c} 1.0000\\ 1.5849\\ 2.5\ 119\\ 3.9811\\ 6.3096\\ 10.0000\\ 15.8489\\ 25.1189\\ 39.8\ 107\\ 63.0957\\ 100.0000\\ 158.4893\\ 251.1886\\ 398.1072\\ 630.9573\\ 1000.0000\\ \end{array}$	0.0099 0.0156 0.0247 0.0389 0.0611 0.0958 0.1494 0.2314 0.3549 0.5371 0.7976 1.1536 1.6110 2.1516 2.7259 3.2676
.02	$\begin{array}{c} 1.0000\\ 1.5849\\ 2.5119\\ 3.9811\\ 6.3096\\ 10.0000\\ 15.8489\\ 25.1189\\ 39.8107\\ 63.0957\\ 100.0000\\ 158.4893\\ 251.1886\\ 398.1072\\ 630.9573\\ 1000.0000\\ \end{array}$	0.0196 0.0309 0.0485 0.0760 0.1186 0.1837 0.2821 0.4278 0.6375 0.9274 1.3069 1.7679 2.2774 2.7826 3.235 1 3.6166

(CONSTANT RATE INNER-BOUNDARY, INFINITE SYSTEM) - cont.

6	_	D
	۲D	r _D
		
.04	1.0000	0.0385
	1.5849	0.0602
	2.5 119	0.0939
	3.98 11	0.1454
	6.3096	0.2234
	10.0000	0.3390
	15.8489	0.5062
	25.1 189	0.7394
	39.8107	1.0489
	63.0957	1.4335
	100.0000	1.8731
	158.4893	2.3289
	251.1886	2.7582
	398.1072	3.1362
	630.9573	3.463 1
	1000.0000	3.7532
.06	1.0000	0.0567
	1.5849	0.0882
	2.5 119	0.1363
	3.98 11	0.2089
	6.3096	0.3 163
	10.0000	0.47 10
	15.8489	0.6861
	25.1189	0.9708
	39.8107	1.3242
	63.0957	1.7291
	100.0000	2.1520
	158.4893	2.5563
	251.1886	2.9 190
	398.1072	3.2386
	630.9573	3.5256
	1000.0000	3.79 18
l 🛌	<u> </u>	

(CONSTANT RATE INNER-BOUNDARY, INFINITE SYSTEM) - cont.

σ	t _D	P _D
.10	1.0000 1.5849 2.5 119 3.98 11 6.3096 10.0000 15.8489 25.1189 39.8107 63.0957 100.0000 158.4893 251.1886	0.0910 0.1400 0.2132 0.3204 0.4728 0.68 11 0.95 18 1.2811 1.6513 2.0336 2.3993 2.7328 3.0339
	398.1072 630.9573 1000.0000	3.3104 3.5707 3.8205
.20	$\begin{array}{c} 0.1000\\ 0.1585\\ 0.25\ 12\\ 0.398\ 1\\ 0.63\ 10\\ 1.0000\\ 1.5849\\ 2.5\ 119\\ 3.98\ 11\\ 6.3096\\ 10.0000\\ 15.8489\\ 25.1189\\ 39.8107\\ 63.0957\\ 100.0000\\ \end{array}$	0.0190 0.0297 0.0462 0.0714 0.1096 0.1666 0.2498 0.3682 0.5308 0.7440 1.0079 1.3131 1.6410 1.9697 2.2832 2.5758

(CONSTANT RATE INNER-BOUNDARY, INFINITE SYSTEM) - cont.

σ	t_D	P _D
		_
.40	0.1000 0.1585	0.0362 0.0558
	0.25 12	0.0853
	0.398 1	0.1291
	0.63 10	0.1929
	1.0000	0.2835
	1.5849	0.4080
	2.5 119	0.5721
	3.98 11	0.7779
	6.3096	1.0215
	10.0000	1.2923
	15.8489	1.5760
	25.1189	1.8593
	39.8107	2.1343
	63.0957	2.3987
	100.0000	2.6534
.60	0.1000	0.05 17
	0.1585	0.0788
	0.25 12	0.1187
	0.398 1	0.1763
	0.63 10	0.2576
	1.0000	0.3685
	1.5849	0.5138
	2.5 119	0.6956
	3.98 11	0.91 11
	6.3096	1.1527
	10.0000	1.4097
	15.8489	1.6717
	25.1189	1.93 14
	39.8 107	2.1857
	63.0957	2.4341
	100.0000	2.6775
	<u> </u>	

r ₂ /r	1.0	r_2/r	1.1
P _D	P_D'	P _D	P_D'
0.0249 0.0499 0.0892 0.1457 0.2211 0.3160 0.4297 0.5612 0.7088 0.8704 1.0443 1.2285 1.4213 1.6213 1.6213 1.8272 2.0379 2.2525 2.4702 2.6904 2.9126 3.1365 3.3617 3.5879 3.8149 4.0426 4.2708 4.4995 4.7285 4.9577 5.1871 5.4167 5.6465 5.8763 6.1063 6.3363 6.5663 6.7964 7.0266 7.2567	P D 0.0821 0.1373 0.2065 0.2857 0.3696 0.4536 0.5337 0.6072 0.6729 0.7300 0.7788 0.8199 0.854 1 0.8822 0.9053 0.9240 0.9391 0.95 13 0.9690 0.9753 0.9803 0.9843 0.9875 0.9901 0.9921 0.9937 0.9950 0.9960 0.9975 0.9984 0.9987 0.9994 0.9995 0.9996	$\begin{array}{c} F_{D} \\ \hline \\ 0.0188 \\ 0.0391 \\ 0.0724 \\ 0.1217 \\ 0.1892 \\ 0.2760 \\ 0.3820 \\ 0.5062 \\ 0.647 1 \\ 0.8030 \\ 0.97 19 \\ 1.1519 \\ 1.3412 \\ 1.5383 \\ 1.7418 \\ 1.9505 \\ 2.1635 \\ 2.3799 \\ 2.599 1 \\ 2.8206 \\ 3.0438 \\ 3.2684 \\ 3.4942 \\ 3.7209 \\ 3.9484 \\ 4.1764 \\ 4.4048 \\ 4.6337 \\ 4.8628 \\ 5.0922 \\ 5.3217 \\ 5.5514 \\ 5.7812 \\ 6.0111 \\ 6.2411 \\ 6.7012 \\ 6.93 13 \\ 7.1614 \end{array}$	P D 0.0653 0.1139 0.1774 0.2526 0.3348 0.4189 0.5007 0.577 1 0.6460 0.7066 0.7589 0.803 1 0.8402 0.8708 0.8959 0.9164 0.9330 0.9464 0.9572 0.9658 0.9728 0.9783 0.9783 0.9827 0.9658 0.9728 0.9783 0.9821 0.9945 0.9956 0.9956 0.9956 0.9956 0.9956 0.9956 0.9956 0.9956 0.9972 0.9978 0.9956 0.9956 0.9972 0.9978 0.9983 0.9983 0.9986 0.9989 0.9991 0.9994 0.9994 0.9994 0.9996
	<i>r</i> ₂ / <i>r</i> <i>P</i> _D 0.0249 0.0499 0.0892 0.1457 0.2211 0.3160 0.4297 0.5612 0.7088 0.8704 1.0443 1.2285 1.4213 1.6213 1.8272 2.0379 2.2525 2.4702 2.6904 2.9126 3.1365 3.3617 3.5879 3.8149 4.0426 4.2708 4.4995 4.7285 4.9577 5.1871 5.4167 5.6465 5.8763 6.1063 6.3363 6.3363 6.7964 7.0266 7.2567	r_2/r 1.0 P_D P_D' 0.02490.08210.04990.13730.08920.20650.14570.28570.22110.36960.31600.45360.42970.53370.56120.60720.70880.67290.87040.73001.04430.77881.22850.81991.42130.85411.62130.8221.82720.90532.03790.92402.25250.93912.47020.95132.69040.96122.91260.96903.13650.97533.36170.98033.58790.98433.81490.98754.04260.99014.27080.99214.49950.99374.72850.99504.95770.99605.18710.99695.41670.99755.64650.99805.87630.99846.10630.99876.33630.99906.56630.99926.79640.99947.02660.9995	r_2/r 1.0 r_2/r P_D P_D' P_D 0.02490.08210.01880.04990.13730.03910.08920.20650.07240.14570.28570.12170.22110.36960.18920.31600.45360.27600.42970.53370.38200.56120.60720.50620.70880.67290.647 10.87040.73000.80301.04430.77880.97 191.22850.81991.15191.42130.854 11.34121.62130.88221.53831.82720.90531.74182.03790.92401.95052.25250.93912.16352.47020.95 132.37992.69040.96 122.599 12.91260.96902.82063.13650.97533.04383.36170.98033.26843.58790.98433.49423.81490.98753.72094.04260.99013.94844.27080.99214.17644.49950.99374.40484.72850.99504.63374.95770.99604.86285.18710.99695.09225.41670.99755.32175.64650.99805.55145.87630.99876.01116.36330.99906.241116.56630.99926.47 116.79640.9994

SMALL R2/R1 RATIOS, INTERFERENCE TEST

	$r_2/r_1=11.2$		r_2/r_1	=1.5
t _D	P _D	<i>P_D</i> ′	P _D	<i>P</i> _D ′
<i>t</i> _D 0.1000 0.1259 0.1585 0.1995 0.2512 0.3162 0.3981 0.5012 0.6310 0.7943 1.0000 1.2589 1.5849 1.9953 2.5119 3.1623 3.9811 5.0119 6.3096 7.9433 10.0000 12.5893 15.8489 19.9526 25.1189 31.6228 39.8107 50.1187 63.0957 79.4328 100.0000 125.8925	P_D 0.0155 0.0327 0.0615 0.1050 0.1658 0.2454 0.3440 0.4611 0.5956 0.7456 0.9094 1.0850 1.2706 1.4646 1.6655 1.8722 2.0834 2.2985 2.5166 2.7371 2.9596 3.1837 3.4090 3.6353 3.8625 4.0903 4.3185 4.5472 4.7762 5.0055 5.2350 5.4646	P_D' 0.0547 0.0973 0.1548 0.2251 0.3041 0.3870 0.4693 0.5474 0.6190 0.6828 0.7382 0.7382 0.7856 0.8254 0.8586 0.8859 0.9082 0.9263 0.9410 0.9528 0.9624 0.9700 0.9761 0.9809 0.9848 0.9879 0.9848 0.9879 0.9904 0.9848 0.9879 0.9904 0.9924 0.99252 0.9952 0.9970 0.9976	P_D 0.0127 0.0260 0.0479 0.08 11 0.1282 0.1913 0.27 18 0.3703 0.4864 0.6192 0.7674 0.9292 1.1029 1.2867 1.4792 1.6788 1.8843 2.0946 2.3089 2.5263 2.7464 2.9684 3.1922 3.4172 3.6433 3.8703 4.0979 4.3261 4.5547 4.7836 5.0128 5.2423	P _D ' 0.0428 0.0744 0.1176 0.1727 0.2381 0.3112 0.3886 0.4664 0.5414 0.6113 0.6743 0.7298 0.7777 0.8183 0.8523 0.8805 0.9037 0.9226 0.9379 0.9226 0.9379 0.9226 0.9379 0.9226 0.9379 0.9226 0.9379 0.9226 0.9379 0.9226 0.9379 0.9226 0.9379 0.9226 0.9379 0.9226 0.9379 0.9226 0.9379 0.9226 0.9379 0.9226 0.9379 0.9226 0.9379 0.9226 0.9379 0.9226 0.9379 0.92503 0.9603 0.9683 0.9747 0.9799 0.9840 0.9872 0.9899 0.9919 0.9936 0.9949 0.9959 0.99684
199.5262 251.1886 316.2278 398.1072 501.1872 630.9573 794.3282 1000.0000	5.0944 5.9242 6.1542 6.3842 6.6142 6.8443 7.0745 7.3046 7.5348	0.9981 0.9985 0.9988 0.9990 0.9992 0.9992 0.9994 0.9995 0.9996 0.9997	5.7016 5.9314 6.1614 6.3914 6.6214 6.8515 7.0816 7.3118	0.9974 0.9980 0.9984 0.9987 0.9990 0.9992 0.9994 0.9995 0.9996

SMALL R2/R1 RATIOS, INTERFERENCE TEST (cont.)

r_2/r_1 2.0 r_2/r_1 3.0 P_D P_D' P_D P_D' t_D 0.0411 0.1000 0.0125 0.0125 0.0410 0.1259 0.0250 0.0688 0.0249 0.0686 0.1585 0.0447 0.1042 0.0446 0.1033 0.1995 0.0734 0.1462 0.0729 0.1428 0.2512 0.1125 0.1941 0.1849 0.1106 0.3162 0.1633 0.2480 0.1580 0.2272 0.3981 0.2686 0.2271 0.3074 0.2151 0.5012 0.3052 0.3716 0.2817 0.3092 0.6310 0.3985 0.4389 0.3576 0.3506 0.7943 0.5074 0.5070 0.4433 0.3944 1.0000 0.6318 0.5733 0.5395 0.4421 0.4937 1.2589 0.7711 0.6359 0.6472 0.5479 1.5849 0.9243 0.7671 0.6931 1.9953 1.0898 0.7440 0.8996 0.6030 2.5119 1.2664 0.7884 1.0447 0.6568 3.1623 1.4524 0.8264 1.2018 0.7074 3.9811 1.6465 0.8585 1.3701 0.7537 1.8474 5.0119 0.8852 1.5485 0.7948 6.3096 2.0538 0.8306 0.9073 1.7357 7.9433 2.2649 0.9254 1.9306 0.8612 10.0000 2.4797 0.9401 2.1319 0.8869 0.9083 12.5893 2.6976 0.9520 2.3387 15.8489 2.9179 0.9616 2.5500 0.9260 19.9526 3.1403 0.9693 2.7649 0.9405 3.3642 2.9829 0.9522 25.1189 0.9755 31.6228 3.5894 0.9805 3.2032 0.9617 39.8107 3.8 157 0.9845 3.4256 0.9694 50.1187 4.0427 0.9876 3.6495 0.9756 3.8748 63.0957 4.2705 0.9902 0.9805 79.4328 4.4987 0.9922 4.1010 0.9845 100.0000 4.7273 0.9938 4.3281 0.9876 125.8925 4.9563 0.9951 4.5558 0.9902 158.4893 5.1856 0.9961 4.7840 0.9922 199.5262 5.4150 0.9969 0.9938 5.0127 251.1886 5.6446 0.9975 5.2416 0.9950 316.2278 5.8744 0.9980 0.9961 5.4709 398.1072 6.1042 0.9984 5.7003 0.9969 501.1872 6.3342 0.9988 5.9299 0.9975 630.9573 6.5642 0.9990 6.1597 0.9980 794.3282 0.9984 6.7942 0.9992 6.3895 0.9988 1000.0000 7.0243 0.9994 6.6195

SMALL R2/R1 RATIOS, INTERFERENCE TEST (cont.)

SMALL R2/R1 RATIOS, INTERFERENCE TEST (cont.)

	$r_2/r_1=5.0$		$r_2/r_1=10.0$	
t _D	P _D	P_D'		<i>P_D</i> ′
0.1000	0.0125	0.0410	0.0125	0.0410
0.1239	0.0249	0.0080	0.0249	0.0080
0.1995	0.0729	0.1033	0.0440	0.1033
0.155	0.1106	0.1420	0.1106	0.1420
0.3162	0.1580	0.2268	0.1580	0.2268
0.3981	0.2149	0.2668	0.2149	0.2668
0.5012	0.2806	0.3036	0.2806	0.3036
0.6310	0.3544	0.3365	0.3544	0.3364
0.7943	0.4352	0.3652	0.4352	0.3650
1.0000	0.5223	0.3904	0.5221	0.3894
1.2589	0.6148	0.4134	0.6142	0.4099
1.5849	0.7 127	0.4367	0.7 107	0.4270
1.9953	0.8 162	0.4629	0.8107	0.4411
2.5119	0.9263	0.4942	0.9136	0.4527
3.1623	1.0442	0.5313	1.0190	0.4622
3.9811	1.1713	0.5736	1.1264	0.4705
5.0119	1.3086	0.6193	1.2357	0.4791
6.3096	1.4566	0.6663	1.3472	0.4901
7.9433	1.6154	0.7 122	1.4617	0.5060
10.0000	1.7844	0.7553	1.5807	0.5287
12.5893	1.9629	0.7945	1.7058	0.5588
15.8489	2.1499	0.8292	1.8386	0.5954
19.9526	2.3444	0.8593	1.9803	0.6366
25.1189	2.5453	0.8849	2.1319	0.6799
31.6228	2.7516	0.9064	2.2934	0.7229
39.8107	2.9624	0.9242	2.4646	0.7637
50.1187	3.1770	0.9389	2.6448	0.8011
63.0957	3.3946	0.9509	2.8332	0.8345
79.4328	3.6147	0.9606	3.0288	0.8634
100.0000	3.8368	0.9685	3.2305	0.8882
125.8925	4.0606	0.9748	3.43/5	0.9090
158.4893	4.2856	0.9799	3.6488	0.9262
199.5262	4.51 18	0.9840	3.8038	0.9405
231.1880	4./38/	0.98/2	4.081/	0.9321
310.2278	4.9003	0.9898	4.3021	0.9010
570.1072	5 / 22 1	0.9919	4.3244	0.9093
630 9573	5 6520	0.9950	4.7404	0.9734
794 3787	5 8812	0.9949	5 1008	0.984/
1000.0000	6.1106	0.9968	5.4268	0.9875
			·	
	L _D =5	<i>L_D</i> =10	<i>L_D</i> =50	L _D =100
---	---	---	--	---
t _D	P _D	P _D	P _D	P _D
<i>t</i> _D .1000e+01 .1334e+01 .1778e+01 .2371e+01 .3162e+01 4217e+01 5623e+01 7499e+01 1000e+02 1334e+02 1778e+02 2371e+02 3162e+02 4217e+02 5623e+02 7499e+02 1000e+03 1334e+03 .1778e+03 .2371e+03 .3162e+03 .4217e+03 .5623e+03	P_D 0.5224 0.6396 0.7671 0.9085 1.0695 1.2564 1.4748 1.7296 2.0260 2.3699 2.7683 3.2293 3.7624 4.3785 5.0904 5.9128 6.8626 7.9597 9.2267 10.6899 12.3796 14.3310 16.5844	P_D 0.5221 0.6380 0.7603 0.8876 1.0190 1.1537 1.2922 1.4370 1.5932 1.7674 1.9664 2.1962 2.4621 2.7697 3.1252 3.5361 4.0109 4.5592 5.1926 5.9241 6.7689 7.7446 8.8712	$\begin{array}{c} P_D \\ \hline 0.5221 \\ 0.6380 \\ 0.7603 \\ 0.8876 \\ 1.0189 \\ 1.1533 \\ 1.2900 \\ 1.4285 \\ 1.5683 \\ 1.7091 \\ 1.8507 \\ 1.9928 \\ 2.1354 \\ 2.2783 \\ 2.4215 \\ 2.5649 \\ 2.7086 \\ 2.8536 \\ 3.0025 \\ 3.1602 \\ 3.337 \\ 3.5301 \\ 3.7556 \end{array}$	P_D 0.5221 0.6380 0.7603 0.8876 1.0189 1.1533 1.2900 1.4285 1.5683 1.7091 1.8507 1.9928 2.1354 2.2783 2.4215 2.5649 2.7084 2.8520 2.9957 3.1394 3.2832 3.4274 3.5730
.5023e+03 .7499e+03 .1000e+04 .1334e+04 .1778e+04 .2371e+04 .3162e+04 .4217e+04 .5623e+04 .7499e+04 .1000e+05 .1334e+05 .1778e+05 .2371e+05 .3162e+05 .4217e+05 .5623e+05 .7499e+05	16.3844 19.1866 22.1917 25.6618 29.6691 34.2967 39.6406 45.8115 52.9377 61.1668 70.6697 81.6435 94.3158 108.9495 125.8483 145.3627 167.8976 193.9204	8.8712 10.1723 11.6748 13.4099 15.4135 17.7273 20.3992 23.4847 27.0478 31.1624 35.9138 41.4007 47.7368 55.0537 63.5031 73.2603 84.5277 97.5392	3.7556 4.0158 4.3163 4.6633 5.0640 5.5267 6.0611 6.6782 7.3908 8.2137 9.1640 10.2613 11.5286 12.9919 14.6818 16.6333 18.8867 21.4890	3.5730 3.7232 3.8835 4.0607 4.2621 4.4936 4.7608 5.0693 5.4256 5.8371 6.3122 6.8609 7.4945 8.2262 9.0711 10.0469 11.1736 12.4747

SELECTED VALUES FROM PARALLEL SEALING FAULTS, b_D =0.5

	L _D =5	L _D =10	<i>L_D=5</i> 0	<i>L_D</i> =100
t _D	P _D	P _D	P	P _D
.1000e+06 .1334e+06 .1778e+06 .2371e+06 .3162e+06 .4217e+06 .5623e+06 .7499e+06 .1000e+07 .1334e+07 .1778e+07 .2371e+07 .3162e+07 .4217e+07 .5623e+07 .7499e+07 .1000e+08 .1334e+08 .1334e+08 .1778e+08 .2371e+08 .3162e+08 .4217e+08 .5623e+08 .7499e+08 .1000e+09 .1334e+09 .1778e+09 .2371e+09 .2371e+09 .3162e+09 .3162e+09 .4217e+09	223.9712 258.6732 298.7465 345.0225 398.4611 460.1710 531.4325 613.7240 708.7527 8 18.4901 945.2129 1091.5501 1260.5375 1455.6812 1681.0294 1941.2574 2241.7638 2588.7831 2989.5143 3452.2713 3986.6541 4603.7491 5316.3585 6139.2657 7089.5427 8186.9031 9454.1124 10917.4591 12607.3003 14558.6915	112.5645 129.9156 149.9522 173.0902 199.8095 230.6645 266.2952 307.4410 354.9554 409.8241 473.1856 546.3542 630.8480 728.4200 841.0942 971.2084 1121.4619 1294.9719 1495.3381 1726.7172 1993.9095 2302.4582 2658.7645 3070.2203 3545.3617 4094.0458 4727.6557 5459.3362 6304.2663 7279.9746	24.4941 27.9643 31.9716 36.5992 41.9431 48.1141 55.2403 63.4694 72.9723 83.9461 96.6183 111.2521 128.1509 147.6653 170.2001 196.2230 226.2738 260.9758 301.0491 347.3250 400.7636 462.4736 533.7351 616.0266 711.0553 820.7927 947.5155 1093.8527 1262.8401 11457.9837	13.9773 15.7124 17.7160 20.0298 22.7018 25.7873 29.3504 33.4649 38.2164 43.7032 50.0394 57.3563 65.8057 75.5629 86.8303 99.8417 114.8671 132.2181 152.2548 175.3928 202.1121 232.9670 268.5978 309.7436 357.2580 412.1267 475.4882 548.6568 633.1506 730.7225
.7499e+09 .1000e+10	19414.3125 22419.2680	9707.8252 11210.3339	19 43.5 600 2244.0664	973.5110 1123.7645

PARALLEL SEALING FAULTS, *b*_D=0.5 (cont.)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
t_D P_D P_D P_D P_D P_D .1000e+010.52210.52210.52210.5221.1334e+010.63800.63800.63800.6380.2778e+010.76030.76030.76030.7603.3162e+011.01891.01891.01891.0189.4217e+011.15331.15331.15331.1533.5623e+011.29001.29001.29001.2900.7499e+011.42851.42851.42851.4285.1334e+021.70911.70911.70911.7091.1778e+021.85071.85071.85071.8507.1354e+022.13542.13542.13542.1354.217e+022.27832.27832.27832.2783.5623e+022.42152.42152.42152.4215.7499e+022.56492.56492.56492.5649.1334e+032.85202.85202.85202.8520.2371e+033.13943.13943.13943.1394.3162e+033.28323.28323.28323.2832.2371e+033.42703.42703.42703.4270.7499e+033.71473.71473.71473.7147.7499e+033.57083.57083.57083.5708.3523e+044.29024.29024.29024.2902.2371e+044.29024.29024.29024.2902.7499e+044.86584.86584.8658.1334e+044.00244.002		<i>L_D</i> =500	<i>L_D</i> =1000	<i>L_D</i> =5000	L _D =10000
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	t _D	P _D	P _D	 P_D	P _D
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1000e+01	0.5221	0.5221	0.5221	0.5221
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.1334e+01	0.6380	0.6380	0.6380	0.6380
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.17780+01	0.7603	0.7603	0.7603	0.7603
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21620×01		0.8870	0.8876	0.88/6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12170+01	1.0189	1.0189	1.0189	1.0189
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	56230 01	1.1533	1.1555	1.1533	1.1533
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	74000 0 1	1.2900	1.2900	1.2900	1.2900
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.74990+01	1.4285	1.4285	1.4285	1.4285
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12240+02	1.3083	1.5083	1,2083	1.5083
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17780,02	1.7091	1./091	1.7091	1./091
1.23162e+02 1.9928 1.9928 1.9928 1.9928 1.9928 $3162e+02$ 2.1354 2.1354 2.1354 2.1354 $5623e+02$ 2.2783 2.2783 2.2783 2.2783 $5623e+02$ 2.4215 2.4215 2.4215 2.4215 $7499e+02$ 2.5649 2.5649 2.5649 2.5649 $1334e+03$ 2.8520 2.8520 2.8520 2.8520 $1778e+03$ 2.9957 2.9957 2.9957 2.9957 $2371e+03$ 3.1394 3.1394 3.1394 3.1394 $3162e+03$ 3.2832 3.2832 3.2832 3.2832 $4217e+03$ 3.4270 3.4270 3.4270 3.4270 $5623e+03$ 3.5708 3.5708 3.5708 3.5708 3.7147 3.7147 3.7147 3.7147 3.7147 $100e+04$ 3.8585 3.8585 3.8585 $3.334e+04$ 4.0024 4.0024 4.0024 4.0024 4.0024 4.0024 4.0024 $4.778e+04$ 4.1463 4.1463 4.1463 4.1463 4.1463 4.1463 4.1463 4.5780 4.5780 4.5780 4.5780 4.5780 4.5780 4.5780 4.5780 4.5780 4.5780 4.5780 4.5780 $1334e+05$ 5.1553 5.1536 5.1536 5.1000 5.0097 5.0097 5.0097 5.0097 5.0097 $5.623e+04$ 4.7219	1.17760+02	1.850/	1.0009	1.8507	1.0007
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31620 ± 02	1.9928	1.9928	1.9928	1.9928
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.31020+02	2.1554	2.1554	2.1334	2.1554
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5623 + 02	2.2703 2.4215	2.2785	2.2785	2.2765
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7400 ± 02	2.4213	2.4213	2.4213	2.4213
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1000e\pm03$	2.3049	2.3049	2.3049	2.3049
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	133/e+03	2.7084	2.7084	2.7084	2.7084
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17780103	2.8520	2.8520	2.6320	2.8520
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2371e+03	2.3337	2.3337	2.9937	2.9937
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3162e\pm03$	3 2832	3 2832	3 2822	3 2822
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4217e+03	3.2032	3.2032	3.2032	3 4270
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5623e+03	3.4270	3.4270	3.4270	3 5708
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7499e+03	3 7147	3 7147	3.5708	37147
1334e+04 4.0024 4.0024 4.0024 4.0024 $1778e+04$ 4.1463 4.1463 4.1463 4.1463 $2371e+04$ 4.2902 4.2902 4.2902 4.2902 $3162e+04$ 4.4341 4.4341 4.4341 4.4341 $4217e+04$ 4.5780 4.5780 4.5780 $5623e+04$ 4.7219 4.7219 4.7219 $7499e+04$ 4.8658 4.8658 4.8658 $1000e+05$ 5.0100 5.0097 5.0097 $1334e+05$ 5.1553 5.1536 5.1536 $1778e+05$ 5.3044 5.2975 5.2975 $2371e+05$ 5.4623 5.4415 5.4414 $3162e+05$ 5.6359 5.5854 5.854 $4217e+05$ 5.8324 5.7297 5.7293 5.7297 5.7293 5.7297 $5.623e+05$ 6.0580 5.8754 5.8732 5.8732 5.8732 5.8732 $5.7499e+05$ 6.3182 6.0257 6.0171	1000e+04	3 8585	3 8585	3 8585	3 8585
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.1334e+04	4 0024	4 0024	4 0024	4 0024
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.1778e+04	4.1463	4.1463	4 1463	4.1463
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.2371e+04	4.2902	4.2902	4.2902	4.2902
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.3162e+04	4.4341	4.4341	4.4341	4.4341
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.4217e+04	4.5780	4.5780	4.5780	4.5780
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$.5623e+04	4.7219	4.7219	4.7219	4.7219
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$.7499e+04	4.8658	4.8658	4.8658	4.8658
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$.1000e+05	5.0100	5.0097	5.0097	5.0097
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.1334e+05	5.1553	5.1536	5.1536	5.1536
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.1778e+05	5.3044	5.2975	5.2975	5.2975
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.2371e+05	5.4623	5.4415	5.4414	5.4414
.4217e+055.83245.72975.72935.729.5623e+056.05805.87545.87325.8732.7499e+056.31826.02576.01716.017	.3162e+05	5.6359	5.5854	5.5854	5.5854
.5623e+05 6.0580 5.8754 5.8732 5.8732 .7499e+05 6.3182 6.0257 6.0171 6.017	.4217e+05	5.8324	5.7297	5.7293	5.7293
.7499e+05 6.3182 6.0257 6.0171 6.017	.5623e+05	6.0580	5.8754	5.8732	5.8732
	.7499e+05	6.3182	6.0257	6.0171	6.0171

PARALLEL SEALING FAULTS,,*b*_D=0.5 (cont.)

	<i>L_D</i> =500	L _D =1000	L _D =5000	L _D =10000
t _D	P _D	P _D	P _D	P _D
.1000e+06 .1334e+06 .1778e+06 .2371e+06 .3162e+06 .4217e+06 .5623e+06 .7499e+06 .1000e+07 .1334e+07 .1778e+07 .2371e+07 .3162e+07 .4217e+07 .5623e+07 .7499e+07 .1000e+08 .1334e+08 .1778e+08 .2371e+08 .3162e+08 .4217e+08 .5623e+08 .7499e+08 .1000e+09 .1334e+09 .1346a+09 .1346a+09.1346a+09 .1346a+09.1346a+0000000000000000000	6.6187 6.9657 7.3665 7.8292 8.3636 8.9807 9.6933 10.5163 11.4665 12.5639 13.8312 15.2945 16.9844 18.9358 21.1893 23.7916 26.7967 30.2669 34.2742 38.9018 44.2457 50.4167 57.5428 65.7720 75.2749 86.2486 98.9209 113.5547 130.4534 149.9678 172.5027 198.5256 228 5763	6.1859 6.3632 6.5646 6.7961 7.0633 7.3719 7.7282 8.1396 8.6148 9.1635 9.7971 10.5288 11.3737 12.3494 13.4762 14.7773 16.2799 18.0150 20.0186 22.3324 25.0044 28.0899 31.6529 35.7675 40.5 190 46.0058 52.3420 59.6589 68.1082 77.8654 89.1329 102.1443 117.1697	6.1610 6.3049 6.4488 6.5927 6.7366 6.8806 7.0245 7.1684 7.3126 7.4579 7.6070 7.7649 7.9385 8.1350 8.3606 8.6208 8.9213 9.2683 9.2683 9.2683 9.2683 9.2683 9.2683 10.1318 10.6662 11.2833 11.9959 12.8188 13.7691 14.8665 16.1337 17.5971 19.2870 21.2384 23.4919 26.0942 29.0003	6.1610 6.3049 6.4488 6.5927 6.7366 6.8806 7.0245 7.1684 7.3123 7.4562 7.6001 7.7440 7.8880 8.0322 8.1780 8.3282 8.4885 8.6658 8.8672 9.0987 9.3659 9.6745 10.0308 10.4422 10.9174 11.4661 12.0997 12.8314 13.6763 14.6520 15.7788 17.0799 18.5824

PARALLEL SEALING FAULTS,,*b*_D=0.5 (cont.)