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ABSTRACT 

The use of the  Hurst Simplified Model to history match the drawdown 

behavior of liquid dominated geothermal reservoirs is studied. Liquid dominated 

reservoirs virtually always have a region of intimately mixed vapor and liquid 

(two-phase zone). Such regions have high compressibilities up to three orders of 

magnitude greater than that of liquid only. I t  is therefore important that a 

reservoir model remains valid over a large range of compressibilities, and that it  

not require reservoir compressibility as an input parameter. 

The Hurst Simplified Model, linear and radial geometries, is formulated for 

use in liquid dominated geothermal reservoirs. The model is tested on draw- 

down histories of five reservoirs (Ahuachapan, Broadlands, Ellidaar, Svartsengi, 

and Wairakei) spanning a large range of compressibilities. The matches yielded 

reasonable compressibilities and fits to histories in most cases, with the fields a t  

either compressibility extreme introducing only slight problems. 
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1. INTRODUCTION 

When producing a geothermal reservoir, it is important to be able to  

predict the drawdown behavior of the reservoir. Many theoretical and empirical 

models exist, but even the simplest generally require information on reservoir 

geometry (shape, dimensions), flow characteristics (porosity, permeability), and 

fluid properties (viscosity). Further, most commercial fields have recharge of 

reservoir fluids, meaning that characteristics of the supporting aquifer are also 

needed. In practical applications, many of these parameters are not known and 

their values must be assumed. Through history matching, some of those unk- 

nowns may be determined. 

Water influx models in use are of two types: numerical and lumped parame- 

ter. The numerical model involves dividing the reservoir into blocks, assigning 

values (of permeability and porosity, for example) to each block, and solving the 

flow equations in finite difference form. Note that much reservoir data, such as 

Permeability and porosity distributions and geometry is necessary to use this 

type of model. 

Lumped parameter models are solutions of the flow equations for simplified 

situations which are then assumed applicable t o  various real situations. Water 

influx methods originating in the petroleum industry (e.g. Hurst (1958) and 

Schilthuis (1936)) fall into this category and are applicable to geothermal reser- 

voirs (Olsen, 1984). The advantage to Lumped parameter methods is that  less 

reservoir information is necessary, and that  some reservoir information may be 

obtained through history matching. 

The Hurst Simplified Model (Hurst, 1958) is widely used in the petroleum in- 

dustry. This study examines its use in geothermal situations where some of the 

system parameters are not known. The following questions are investigated: 
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1. How is the Hurst Simplified model applied to geothermal systems? 

2. Of the reservoir parameters,  which must be accurately known for success- 

ful modeling? In practical situations, what values are usually known or are 

easily estimable? 

3. What is the effect of compressibility in lumped parameter reservoir model- 

ing? 

4. What information can a Hurst model history match reveal? 

5. Can the Hurst model be applied to any general situation, or is it limited 

strictly to the specific geometry for which it  is derived ? 

6. Is either of the formulations (linear or radial) of the Hurst model more ac- 

curate or convenient? 

The focus of this report is on the modeling of geothermal reservoirs using a 

method developed for oil reservoirs. In doing so, it seems that the thermo- 

dynamics of the geothermal reservoir are being ignored. But while thermo- 

dynamics is not implicitly part  of the depletion model, a knowledge of the ther- 

modynamics of the liquid dominated geothermal reservoir is needed to explain 

and interpret the results of the modeling. Whiting and Ramey (1969) and 

Donaldson e t  al. (1983) discuss the thermodynamics of geothermal systems, the 

former focusing on production engineering, the latter on reservoir description. 

Further models of geothermal reservoir thermodynamics are those of Brigham 

and Morrow (1977) and Martin (1975). 

A few authors have reviewed the  use of water influx models for geothermal 

modeling. Olsen (1985) compares numerous models using the Svartsengi reser- 

voir as an example. Fradkin e t  al. (1981) compare models using data from 

Wairakei. A more general review of models is that  of Grant (1983). Among water 
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influx models in the petroleum literature are those of Schilthuis (1949), Hurst 

(1958), Carter and Tracy (1960), Fetkovitch (1971), and Allard and Chen (1984). 

Studies and models of specific geothermal fields include Gudmundsson and Olsen 

(1985), Gudmundsson e t  al. (1984), and Regaldo (1981) for Svartsengi; Hitchcock 

and Bixley (1976) for Broadlands; Atkinson e t  al. (1978) for Bagnore; and Brig- 

ham and Neri (1980) for Lardarello. 
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2. THERb€ODYNAMICS OF GEOTHERMAL RESEHVOIRS 

The thermodynamics of geothermal reservoirs are discussed by several au- 

thors (Whiting and Ramey, 1969; Martin, 1975; and Grant e t  al., 1982). Contained 

here is just enough general thermodynamics to allow discussion of two-phase 

zones and two-phase compressibilities. 

2.1 Temperature Profiles 

The highest temperature a t  which liquid may exist is given by the vapor 

pressure or boiling cgrve of the  liquid. If the liquid has a hydrostatic pressure 

profile, deeper portions are a t  higher pressure and have a higher boiling point. 

Figure 1 is a vapor pressure (pressure vs. temperature) curve for pure water. 

Turned on its side, it can become a temperature vs. depth diagram. Often 

geothermal reservoirs will have this temperature distribution, called the 

boiling-point-for-deptn (BPD) temperature profile. 

Generally, geothsrmal reservoirs are subject to upflow (Donaldson e t  al., 

1983): hotter fluids flow upward and carry heat by convection. In such a convec- 

tive environment, temperature is close to constant and linear with depth, a t  

least as long as the temperature remains less than the boiling point. 

Thus a generalized geothermal reservoir description could be a tempera- 

ture distribution which is linear a t  depth due to  convection, then follows the 

boiling point curve at the top of the reservoir. Figure 2 shows temperature vs. 

depth data from the Svartsengi field in Iceland which exhibits this composite 

behavior. 

2.2 Two-Phase Zones 

Consider a liquid reservoir whose initial temperature distribution is a com- 

posite of BPD at the top, and linear a t  depth, as just discussed. When such a 

reservoir is produced, pressure drops, the boiling point decreases, so the por- 
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tion of the reservoir that  lies on the boiling curve begins t o  boil. More of what 

was previously the linear convective profile now lies along the boiling curve (Fig- 

ure 3). When boiling occurs, a two-phase zone is created. 

A more in-depth discussion of the formation of two-phase zones is not 

necessary for our purposes. The above discussion is meant to give a qualitative 

feel for how and why two-phase zones exist in geothermal reservoirs. Treat- 

ments that discuss phase mobilities and gravity segregation include Martin 

(1975) and Donaldson e t  al. (1983). 

Boiling may occur due to production, resulting in a two-phase zone; that is, 

a zone of mixed steam and water. Confirming this, Grant (1981) states that  

nearly all high-temperature fields contain a two-phase zone, maintained in spite 

of gravity segregation. This is important because, as will be shown, the 

compressibility of a two-phase mixture is radically different than that of either 

phase alone. 

2.3 Compressibility 

The isothermal compressibility relates the change of volume of a fluid due 

to change in pressure under isothermal conditions. Petroleum reservoirs are al- 

most always isothermal systems. Temperature decline in geothermal systems is 

so gradual that  they may be approximated as isothermal. The isothermal 

compressibility (hereafter refered to  simply as compressibility) of water and 

steam are available. 

Compressibility c is defined: 

1 dV 
V dP 

f.-.--- 

The compressibility of a substance may be calculated from isotherms on a P-V 

diagram of the substance. The compressibility is related to  the inverse of the 

slope of the isotherm. 
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Figures 4 and 5 are sample P-V diagrams for a pure substance and a mix- 

ture (Macias-Chapa, 1985). The isotherms in the liquid region are much steeper 

than those in the vapor region, which are in turn steeper than those in the two- 

phase region. Thus, liquid compressibilities are smaller than gas compressibili- 

ties, while two-phase compressibilities are greater than either liquid or vapor 

alone. For water at 240 C, the liquid compressibility is 1 . 2 ~ l O - ~ P u - '  , while the 

vapor compressibility is greater: 3.0~1O-~Pu- '  (Grant e t  al., 1982). 

While the concept of compressibility normally implies a confined system, an 

unconfined compressibility arising from a rising or falling water level can also be 

computed. This is a real situation as many geothermal reservoirs communicate, 

through fractures, to  the surface and may thereby be nearly unconfined. Consid- 

er  a porous medium of area A, porosity p ,  and height h. Adding a volume of 

liquid dV causes the level to  rise by dh, and the pressure to  rise by p g dh. 

Compressibility c is defined 

1 dV 
v d P  

c =-- - 

where 

V = A h  

dV = - Apdh 

d P  = pgdh 

Substituting into Eq. 1, 

Considering an aquifer 500 m thick with 15 % porosity, at 240 O C, the compressi- 
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bility is 

c =3.8~ Pa-' 

(Grant e t  al., 1982) 

Consider liquid water and steam in equilibrium in a porous medium. A 

small reduction in pressure causes a large increase in volume because some of 

the liquid will vaporize into steam. The rock must cool to  supply the heat of va- 

porization, so the rock thermal properties affect the system compressibility. 

Grant and Sorey (1979) give the following derivation. 

As long as two phases exist in the system, the presure and temperature are 

related by the vapor pressure curve. If pressure drops by A P, the temperature 

change A T is 

The heat released by the rock as its temperature drops by A T is 

where 

(PC) ,  = (l-~P)Pmcm + ( ~ s w ~ w c w  

This heat is used to  vaporize the water. The resulting change in volume is 

Using Eq. 2 and 5 in Eq. 1, the two-phase compressibility C T  is 

A two-phase mixture at 240 C, 15% porosity, and ( P C ) ~ = ~ . ~ M J /  m3K, the 

compressibility is 1 . 4 ~  10-BPu-l 
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The compressibilities observable in geothermal reservoirs have a large 

range. Recall and compare the values arrived a t  above: 

c o n f  k e d  water C =1.2X10-g Pa-' 
u n c o n f  i n e d  water c =3.8x Pa-' 

c o n f i n e d  steam c =3.0x10-' pa-' 
c o n f i n e d  two -phase = 1 . 4 ~  10-6 pa-' 

Compressibilities of geothermal fluids can thus range over three orders of mag- 

nitude. 

The analyses just done were concerned mainly with the compressibilities of 

the fluids themselves. Geothermal reservoirs consist of compressible fluids in a 

compressible porous medium. The total system compressibility is given by 

C T  = c, + CI (9) 

where cI is the formation compressibility. Craft and Hawkins (1959) s tate  that 

formation compressibilities range from 4.3~ 10-'oPa-' to  15x 10-'oPa-'. These 

are of the order of the compressibility of liquid water. Ramey (1964) states that 

the total compressibility is the correct compressibility to use in modeling. 

2.4 Other Variables 

Other reservoir and fluid parameters used in the water influx modeling are 

viscosity p ,  permeability k, porosity p ,  and fluid density p. In most cases, values 

of these are known from tests, or reasonable values can be inferred. For exam- 

ple, experience shows that  reasonable values of p might range from 5 to 20%. 

Values for k might range from 1 to 100 mD , but approximate values usually ex- 

ist from well tests. The variability of some of the parameters used in the Hurst 

analysis are compared in Figure 6, which shows the range (in orders of magni- 

tude) of these reasonable values for the parameters. 

Compressibility easily has the largest range, the compressibility depending 

on the extent of the two-phase zone. The extent of the two-phase zone in a 
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geothermal reservoir is generally not known (Donaldson e t  al., 1983). Thus, a 

useful model for the reservoir is one which does not have compressibility as an 

input parameter but instead computes and outputs it. The Hurst model as for- 

mulated and used in this report determines compressibility through a history 

match. Then from this compressibility, an idea of the existence and extent of 

two-phase zone may be inferred. 



3. WATER INFLUX YODELlNG 

There are two general categories of reservoir models: numerical simula- 

tions and lumped parameter models. In numerical simulation, the reservoir sys- 

tem is divided into small blocks, each block having its own properties, and finite 

difference forms of the  governing equations are used to  calculate the time and 

space variation of, for example, pressure in the reservoir. In lumped-parameter 

models, average values of fluid and flow properties are assumed throughout the 

reservoir, and analytic solutions are derived. 

Lumped-parameter models are generally the method of choice. Numerical 

methods demand much computer time and more input information than is gen- 

erally known. For example, a lumped parameter model uses an average porosity 

and permeability, while a numerical model requires porosities and permeabili- 

ties for each block, which are unlikely to be known. Although lumped parameter 

models assume average properties and regular geometries, they are useful and 

accurate in many practical situations, and easy to use. 

A lumped parameter model is a material balance on a closed reservoir: pro- 

ducing an amount of fluid causes a pressure drop in the reservoir. Both oil and 

geothermal fields are often connected to  a supporting aquifer, however, which 

adds an influx term to  the material balance. Many authors in the petroleum 

literature have modeled this situation for different geometries and conditions: 

Schilthuis (1949), Hurst (1958), and Fetkovitch (1971). Olsen (1984) tested all of 

these models on data from the Svartsengi geothermal field. 

These models address flow from an aquifer more or less horizontally adja- 

cent to  the reservoir ("edge-water drive"). Allard and Chen (1984) did a numeri- 

cal simulation of "bottom-water drive", noting that edge-water models do not ac- 

curately model bottom water situations as the ratio of reservoir thickness to 

reservoir radius increases. 
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3.1 Hurst Simplified Method 

A commonly used water influx model is the Hurst Simplified Method (Hurst, 

1956). I t  treats edge-water drive in linear and radial cases. The method takes a 

material balance on the reservoir and applies the solution of the diffusivity equa- 

tion in Laplace space (Van Everdingen and Hurst, 1949) to  account for water 

influx from the aquifer. The "simplification" is that  by using the Laplace 

transformation, an expression for drawdown as an explicit function of produc- 

tion rate and time is found. A parameter containing the ratio of aquifer to  reser- 

voir compressibility is central to  this derivation. 

Hurst's paper develops the method for use in oil reservoir-aquifer systems. 

I t  is easily adapted for use in geothermal reservoir systems by using hot geoth- 

ermal fluid properties in place of oil properties in the Hurst formulation. Olsen 

(1964) rederived the Hurst linear model for geothermal applications. Because 

the derivation is often neglected, and to  identify some important points in the 

use of the method, the Hurst derivations for both linear and radial cases will now 

be given. 

3.1.1 Linear Model Derivation 

The material balance on the geothermal reservoir is written 

w = wi - wp + w, (10) 

(Mass of water in the reservoir equals the initial mass, less produced mass, plus 

encroached mass.) For a confined system, masses W and Wi are simply related 

to the reservoir volume: 

so that Eq. 10 becomes 

liy = vpp 
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The difference in densities may be approximated 

t 

P - P i = f +  0 

The isothermal compressibility is written 

c = p  d P  
Ldp 

Substituting Eq. 15 into Eq. 14, 

Assuming constant production rate, 

w, = W P t  

and writing drawdown 

Pa - P = hP 

Eq. 18 becomes 

- V ~ C P ~ ~ A P  = We - wP t 

The cumulative water influx is written as the convolution integral: 

where dimensionless time is defined 
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nite aquifer, L is assigned unit length. Substituting Eq. 22 and 23 into 

The Laplace transform of Eq. 24 is 

For the infinite linear aquifer geometry, the influx function B o ,  as a result of the 

Laplace space solution of the diffusivity equation (van Everdingen and Hurst, 

1949) is written 

and 

B = APcaPa 

Substituting Eq. 26 and 27 into 25, 

A P C ~ P , S P S - ~ / ~  + VQP,C,L\P = BPa Ca W p  

kas2  

Solving Eq. 28 for TP: 

Defining the Hurst parameter h 

Eq. 29 becomes 
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Inverting Eq. 31 to  real space, 

Eq. 32 may be superposed to account for changing flow rates: 

where 

Equation 33 is explicit for AP, and is in real space. Other water influx 

methods previous to Hurst were not explicit in AP. As soon will be shown, the ra- 

dial model is explicit in AP, but is not analytically invertible to  real space. 

An important thing to note is the form of the constant A: a ratio of compres- 

sibilities and densities and a geometry term. I t  was commented earlier that the 

reservoir compressibility is an important value to determine, so it is important 

that we can calculate it  from A. In the next section, h will be compared to  the 

analogous parameter o, which has no geometric term. 

3.1.2 Radial Model Derivation 

The previous derivation is unchanged for the radial case through Eq. 22. 

For the  radial case, dimensionless time is defined as follows: 

where the  r is reservoir radius. 
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One may question why in the infinite linear case the characteristic length 

was taken as unity, whereas in the radial cilse an actual physical dimension is 

used. The dimensionless time is used in the Wp term, the te rm describing the 

flow from the aquifer. In the  linear case, a linear aquifer of infinite extent, there 

is no characteristic length. (The length of the reservoir is irrelevant to the 

aquifer.) Bu t  in the radial case, the reservoir radius is a characteristic length 

for the aquifer as it  describes the inner radics of aquifer flow. 

Continuing as before, 

In Laplace space: 

For the radial case, the dimensionless influx ’unction is 

and the influx constant is 

Substituting Eq. 38 and 39 into 37, 

Defining the radial Hurst parameter 0: 
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Substituting into Eq. 41, 

In real space, 

where 

N(u,t,) = L-' 

As before, Eq. 44 may be written in superposition form for varying rate: 

(45) 

Again, the expression is convenient as it is explicit in AP. However, in this 

case the Hurst function is not analytically invertible to real space. Numerical 

methods can be used to invert the function; the Stehfest algorithm is a suitable 

method. 

A special case of the general radial solution is the solution for large u. In 

the limit, the drawdown is 

where p ~ ( t ~ )  is the familiar line source solution (Earlougher, 1977) 

Eq. 48 may be approximated 
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when (approximately) tD>5. 

The physical interpretation of using the line source solution is that the 

reservoir is small compared to the aquifer, so that  the reservoir response is 

negligible compared to the aquifer drawdown response. 

The Hurst radial parameter u is a ratio of compressibilities and densities 

only. (The linear parameter A had a geometric te rm as  well.) Good estimates or 

values for aquifer compressibility and density as well as reservoir liquid density 

usually are known. Therefore, once B is found (through the history match), 

reservoir compressibility may be found without direct geometric information. 

In the radial case, the geometric information is contained in the dimensionless 

time term. In this way compressibility is a less strong function of the geometric 

term in the radial case than in the linear case. 
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4. MODEX APPLICATION 

4.1 History Matching Method 

The history matching scheme used in this report is that used by Olsen 

(1984) and Marcou (1985). The computer programs used in this report are 

modifications of programs used by those authors. 

Recall the general Hurst model equation for the linear case: 

where 

The data (history) consists of values of Ah,  t ,  and wj. We generally have a 

value or an estimate of the other reservoir and fluid constants, but not h. Define 

k 
z ( k :  = CAwj M [X.(t, - t ~ ~ ) ]  

j = l  

AP 
P9 

y ( k )  = -= bhk 

A plot of x(.) vs y(n) v\.ill be linear for a system which fits the Hurst Model. Using 

data, a linear least squares regression on these x and y yields a slope, uLh, which 

from Eq. 33 is 

All of these equations depend on A, which is unknown. Thus, h must first be 

guessed, the least squares fit done, the Hurst model drawdown calculated, and a 

standard deviation between the data and the Hurst model found. Another h is 

chosen, and the process is repeated. The h (and its urk) that minimizes the 
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standard deviation is the correct reservoir parameter 

In the radial case, the general procedure is nearly identical. However in the 

radial case, the Hurst function, N, is not. given analytically in real space: 

Because the history match is being done in the computer, a numerical method 

such as the Stehfest Algorithm (Stehfest, 1970) can be used to invert the equa- 

tion. 

The history match method for the radial model is identical to  the linear 

case. Recall Eq. 50: 

As before, define 

AP 
PS 

y ( n )  = -- - A h  (54) 

The slope, %&, from the least squares fit is: 

As explained previously, values for 0 and h d  will result from the history match. 

Compressibility can then be determined from LT and the permeability-thickness 

product can be determined from q&. 

In his paper, Hurst(l958) states that  large radial systems can be modeled 

as linear systems. When looking a t  only early data, any system appears "large" 

(its boundaries are not felt), so the linear analysis should work. Thus, if a linear 

analysis works on the  early data only, the system is probably radial. 
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In some cases, a linear fit could not be obtained; there was no minimum in 

the graph of standard deviation vs X. In these cases however, a linear fit could 

be obtained by using only the early data. This phenomenon indicates that the 

reservoir is of radial geometry. 

4.2 Computer Application 

The FORTRAN 77 computer codes used in this report are given, with details, 

in Appendix A. The algorithms are basically as described in Section 4.1. For 

each of the geometries (radial and linear) there are two programs: one to find 

the standard deviation and least-squares slope for a given u or X, and one which 

prepares the model and actual drawdown graphs for a given u or X and least- 

squares  slop^. 

In the radial case, recall that  the Hurst function is not given analytically in 

real space, so must be numerically inverted using the Stehfest Algorithm. 

Although the Stehfest Algorithm is well behaved in this application, i t  is slow. In 

this history match method, x(k) and y(k) are calculated for each k from one to n 

(the number of data points, often in the hundreds), and each x(k) has a summa- 

tion from one to  k. The Hurst function is inside a doubly nested loop. For a data 

history of 200 points, the Hurst function is evaluated over twenty thousand 

times. Thus, t o  speed execution time, it was investigated whether a simple real- 

space approximation for the Hurst function could be obtained for the ranges of u 

and t~ encountered in geothermal applications. 

In the history match, recall that a u is chosen, then all the data fit to  yield a 

slope and a standard deviation. Thus, the Hurst function N was graphed vs a 

range of t D ' s  for a given 0. Specifically, this was done for the maximum and 

minimum B expected in geothermal applications. While the functions are not 

very complex, they are not simple enough that an analytical approximation 
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would be superior to  a table lookup method. 

The program used here initially creates a table of N ( t D )  for the given 0, then 

employs a table lookup/interpolation subroutine for the Hurst function evalua- 

tions rather  than repeatedly performing the Stehfest inversion. On the Broad- 

lands data, a set of 66 points, a sample execution with repeated Stehfest inver- 

sions took over 1100 seconds of CPU time, while the table lookup program took 

only 45 seconds (on a VAX 11/750). Thus, the radial model is usable even on a 

microcomputer. 

4.3 Field Descriptions 

This section contains brief descriptions of the five fields studied in this re- 

port. The fields studied cover a full spectrum, ranging from the low-temperature 

Ellidaar in Iceland to the highly two-phase, high-temperature Broadlands field. 

The drawdown histories for all the fields are given in the Appendix, their sources 

are noted in each section below. 

4.3.1 Ahuachapan 

The Ahuachapan field is located in western El Salvador. The reservoir has 

areal extent of 7400 acres (Kestin, 1980) with many surface manifestations. The 

reservoir consists of fractured andesitic rock. The reservoir field temperature 

is reported as 230 O C by Kestin( 1980) and 240 C by Grant e t  al.(1982). Initially 

a fully liquid dominated reservoir, a two-phase zone has formed due to  exploita- 

tion. Reservoir drawdown history from Marcou (1985). 

4.3.2 Broadlands 

The Broadlands field is a high temperature geothermal resource located in 

New Zealand. The reservoir matrix is highly porous but not permeable: flow oc- 

curs in fracture zones which exist near faults and formation contacts (Hitchcock 
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and Bixley, 1975). I t  is a high-temperature (270 O C) liquid dominated reservoir 

with an extensive two-phase zone (Grant e t  al., 1982). Reservoir history provided 

by P. F. Bixley of the Ministry of Works and Development. 

4.3.3 Euidaar 

The Ellidaar field is one of three low-temperature fields in Reykjavik. I t  is a 

small, low-temperature reservoir. Cooling of up to 10' C has occurred, probably 

due to cold water influx (Palmasson e t  al., 1983). Reservoir data from Vatnaskil 

(1982). 

4.3.4 Svartsengi 

The Svartsengi field is one of three geothermal fields on the Reykjanes Pen- 

insula in southwest Iceland. I t  is a high-temperature liquid dominated reservoir. 

High permeability exists throughout the production area. (Gudmundsson and 01- 

sen, 1984). Produced fluids are not currently being reinjected, but the possibili- 

ty is being studied (Gudmundsson, 1983 and Gudmundsson e t  al., 1984). Svart- 

sengi drawdown c'ata from Olsen (1984). 

4.3.5 Wairakei 

The Wairakei, New Zealand, reservoir is approximately 15 km in extent. I t  

is believed that  the resource is due to  a hot plume rising through cold water 

from an ultimate magmatic source a t  depth of 10 km. A two-phase zone exists 

near the top of the reservoir and has increased with production (Fradkin e t  al., 

1981). Drawdown history for Wairakei from Marcou (1985). 
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5. RESULTS AND DISCUSSION 

Hurst method history matches, both linear and radial cases, were per- 

formed on the drawdown data of the five fields (Ahuachapan, Broadlands, Elli- 

daar, Svartsengi, and Wairakei). The input parameters used in the analyses are 

given in Table 1. The drawdown data (time, production rate, and drawdown) are 

given in the Appendix. Graphs of the rate histories are shown in Figures '7-11. 

(Drawdown histories are shown with the model fits.) Sample plots of standard de- 

viation vs LT and A used for determining the best match for each field are shown 

in figures 12-21. 

The u, X, a,,, % d ,  and standard deviations of the matches on the each field 

are given in Table 2. The reservoir cornpressibilities and permeability-thickness 

products resulting from the radial fit are given in Table 3. Plots of actual and 

modeled drawdown for all fields are given in Figures 22-29. 

The linear and radial fits are compared in table 2. Generally, the radial 

model gave better results (smaller standard deviations). Specifically, the 

Ahuachapan, Svartsengi, and Wairakei data were best fit by the radial model. 

For Wairakei, the linear model could not be fit to  the entire aata history, but 

could be fit to the early data. Such behavior confirms that it  is a strongly radial 

system (recall discussion, section 4.1). Figures 12, 14, and 16 are the radial fits 

for those fields, all are reasonable matches that  model well the true drawdown 

behavior of the reservoirs. 

In the Broadlands case, the linear model yielded a slightly better fit than 

did the radial, but from Figs. 24 and 25 it is seen that  neither match well. The 

high compressibility of the Broadlands field explains the poor drawdown predic- 

tions of Figures 24 and 25. In those figures, the actual data shows strong varia- 

tions while the prediction is very stable and insensitive, as if it had a strong 

pressure support. In a highly compressible fluid, pressure disturbances travel 
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slowly. In the Broadlands field, the delay across the field may be of the order of 

months (Grant, 1977) What this means is that the aquifer does not feel the pres- 

sure drops immediately and so cannot provide the support that  the Hurst model 

thinks it  will. Thus, the Hurst model assumes pressure support that is not there. 

I t  is encouraging that  although the match itself may not be satisfactory, the 

model yields a reasonable compressibility value: one of the order of the 

compressibility of two-phase mixture. 

The Ellidaar case was handled slightly differently. Figures 20 and 21  show 

no minimum standard deviation, only a flattening at high u. This behavior indi- 

cates that  the line source limit of the Hurst Model should be used. As described 

in Section 3.1.2, the line source’s physical interpretation is that  the reservoir is 

small compared to the aquifer, so that  the reservoir response is negligible com- 

pared to  the aquifer response. Thus in t,he line source limit, reservoir properties 

cannot be deduced. However, a model fit can still be done. The fit is shown in 

Fig. 26. 

Table 3 gives the compressibilities and thicknesses calculated from the ra- 

dial matches. The cornpressibilities range from 12.0 x 10 -6 for the  Broadlands 

field to 2.8 x 10 for Wairakei. From the previous discussion of compressibili- 

ties, these lie approximately in the range of values of compressibility of water 

systems in the configurations discussed. This confirms that the  Broadlands field 

is highly two-phase while at the other extreme Wairakei is mainly liquid with lit- 

tle two-phase zone. 

I t  was stated earlier that reservoir compressibility is an important quantity 

to determine from a history match. (Its wide range of possible values means i t  

can not be easily estimated initially, but once determined, it gives an estimate 

of the extent of the two-phase zone.) I t  was also seen that the  radial model ac- 

complishes this end most easily, as compressibility is calculated from u with less 
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dependence on the  geometric te rm (which is often uncertain). Table 3 shows 

that the radial model is generally applicable, and yielded reasonable compressi- 

bility results. The Hurst radial model is thus applicable to  a large range of 

reservoirs and easy t o  use with little reservoir information. I t  yields reasonable 

values for reservoir parameters, and history matches with predictive capability. 
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6. CONCLUSIONS 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Reservoir compressibility is an important parameter to determine for a 

field for two reasons: compressibility has such a large range of values that  i t  

is not readily estimable initially, and its value is useful as a way of estimat- 

ing the extent or existence of a two-phase zone in a liquid dominated geoth- 

ermal reservoir. 

The Hurst Simplified Method history match yields useful reservoir parame- 

ters  (c and kh) as well as a model useful in prediction. 

The matches on the various fields showed that  the Hurst radial model is 

useful on a wide range of liquid-dominated geothermal reservoirs. 

Comparing the standard deviation of the best linear and radial matches 

tells whether the reservoir geometry is closer to linear or radial. 

In highly compressible (highly two-,phase) systems, the Hurst model yields a 

reasonable compressibility, but the match itself has difficulty modeling the 

sharp changes in drawdown well. 

A flattening of the u vs standard deviation curve a t  high D (rather than a 

t rue minimum) indicates that the field is small, and that the line source 

limit of the  Hurst Model should be used. In that  case, a match (and predic- 

tions) can still be done, but reservoir characteristics cannot be deter- 

mined. 

Using a table-lookup formulation of the Hurst radial model, execution time 

was cut  drastically, enough that  the radial history match could be carried 

out on a microcomputer. 



NOMENCLATURE 

A 

B 

C 

C 

9 

h 

k 

1 

L 

M , N  

P 

Q 

T 

S 

S 

t 

T 

V 

'w 

W 

= lY 
P 

Area of the reservoir or cross-sectional area of the  aquifer(m2) 

Van Everdingen and Hurst water influx constant (kg/Pa) 

Heat capacity (kJ/kg.O K) 

Compressibility (Pa-l) 

Acceleration of gravity (9.81 m/s2) 

Height of reservoir (m) 

Permeability (m2) 

Length of reservoir (m) 

Length of aquifer (m) 

Hurst functions 

Pressure (Pa) 

Hurst influx function 

Radius (m) 

Variable in Laplace space 

Saturation 

Time (s) 

Temperature (K) 

Volume (m9) 

Mass rate (kg/s) 

Mass (kg) 

Least squares variable 

Viscosity (Pa s) 
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P Porosity 

P Density (kg/ms) 

A, a Hurst parameters 

a 

av 

D 

e 

f 

i 

n 

P 

T 

S 

sat 

T 

UI 

Aquifer 

Average 

Dimensionless 

Encroached 

Formation 

Initial 

Matrix 

Produced 

Reservoir 

Steam 

Saturated conditions 

Total or isothermal 

Liquid water 

Barred variables indicate Laplace space form. 
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PERMEABILITY 

A (x lo* m2) Q k ( ~ 1 0 - l ~  m2) 

AREA POROSITY 

Ahuachapan 

3.6 .05 .500 Svartsengi 

1.0 .05 .099 Ellidaar 

2.0 .15 .E29 Broadlands 

15.0 .21 .050 

W airakei .027 .20 15.0 

TEMPERATURE 

T (" c )  

240. 

270. 

110. 

240. 

260. 

TABLE-1. Reservoir parameters  input t o  the  history matches. 



Ahuac hapan 

Broadlands 

Ellidaar 

Svartsengi 

Wairakei 

A 

~10-5 

12.1 

0.9 1 

I 

11.5 

* 

LINEAR 

%in 

x 10-10 

15.8 

0.13 

* 

4.31 

* 

* -- No linear fit 
lss - Line source limiting case 

STD. DEV. 

5.82 

1.16 

* 

2.05 

* 

U 

X 10-4 

373. 

1.6 

lss 

16. 

720. 

R A D I A L  

%ad 

.133 

.040 

lss 

.087 

,072 

STD. DEV. 

5.69 

1.19 

18.6 

1.77 

6.56 

1 

TABLE-2. Hurst parameters,  least-squares constants and standard deviations 
of best linear and radial fits for each field. 



c RESERVOIR PERM.-THICK. 
COMPRESSIBILITY PRODUCT 

c,(xlo-*Pu-*)  kh (D -m ) 

. Ahuachapan 

Broadlands 

Svartsengi 

I Wairakei I 

5.2 

1200. 

118. 

2.8 

17.4 

6.1 

26.3 

33.4 

TABLE-3. Compressibilities and permeability-thickness products found from 
the radial fits. 
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APPENDIX: Data Files and Computer Programs. 

A 1. Data Files 

The drawdown histories for the five fields are given in this section. They are 

presented in the  format used by the programs: data triples, sets  of time (in 

days), ra te  (kg/sec), and drawdown (m water). Their use with the programs is 

described in comment statements in the programs. 

A2. The Computer Programs 

The major programs used in this report are given here. Programs are writ- 

ten in FORTRAN '77 and were run under the UNIX operating system on the Stan- 

ford University Petroleum Engineering Department VAX 11/750 computer. In- 

structions for the programs are given as comments in the codes. 

A- 1 



AIWACHAPAN 

14 
0. 0. 0 

3 6 5 . 0 0 0  
7 3 0 . 0 0 0  
1095 .OO 
1 4 6 0 . 0 0  
1 8 2 5 . 0 0  
2 1 9 0 . 0 0  
2555 .OO 
2 9 2 0 . 0 0  
3285  .OO 
3 6 5 0 . 0 0  
4 0 1 5 . 0 0  
4 3 8 0 . 0 0  
4745  .OO 

126 .481  
1 0 5 . 9 3 9  
2 4 0 . 9 4 7  
9 0 . 3 0 6 3  
117.174 
1 9 5 . 6 4 3  
407 .214  
5 9 2 . 5 8 3  
5 7 5 , 7 3 3  
5 7 5 . 9 2 0  
5 6 4 . 2 2 8  
6 9 8 . 9 4 7  
5 5 0 . 2 9 8  

6 . 3 7 1 0 5  

3 5 . 6 7 7 9  
19 .1131  

3 1 . 8 5 5 2  
2 8 . 0 3 2 6  
2 5 . 4 8 4 2  
5 4 . 7 9 1 0  
7 0 . 0 8 1 6  
9 4 . 2 9 1 5  
1 0 9 . 5 8 2  
1 2 1 . 0 5 0  
1 4 5 . 2 6 0  
1 5 6 . 7 2 8  

WAIRAKEI 

25 
0. 0. 0 .  

3 6 5 . 0 0 0  
7 3 0 . 0 0 0  
1095 .OO 
1 4 6 0 . 0 0  
1825 .OO 
2 1 9 0 . 0 0  
2555 .OO 
2 9 2 9 . 0 0  
3285  . f l0  
3 6 5 0 . 0 0  
401  5 .OO 
4 3 8 0 . 0 0  
4 7 4 5 . 0 0  
5 1  10.00 
5475  .OO 

6205  .OO 
6 5 7 0 . 0 0  
6935  .OO 
7 3 0 0 . 0 0  
7665 .OO 
8 0 3 0 . 0 0  
8395  .OO 
8 7 6 0 . 0 0  

5 a 4 0 . 0 0  

1 1 8 4 . 0 0  
1 5 1 7 . 0 0  
1 3 4 0 . 0 0  
1 6 4 3 . 0 0  
2327  .OO 
2 2 4 5  .OO 
2087  .OO 
203  9 . 0 0  
1 8 9 0 . 0 0  
1 5 1 3 . 0 0  
1769 .OO 
1 7 7 6 . 0 0  
1 7 2 2 . 0 0  
1665 .OO 
1 5 2 8 . 0 0  
1 4 9 0 . 0 0  
1 4 6 2 . 0 0  
1509  .OO 
1 4 7 5 . 0 0  
1532 .OO 
1454 .OO 
1 5 1 2 . 0 0  
1 4 9 0 . 0 0  
1 4 8 7 . 0 0  

3 7 . 0 0 0 0  
8 9 . 2 0 0 0  
1 1 0 . 9 0 0  
1 4 2 . 7 0 0  
1 8 6 . 0 0 0  
2 2 1 . 7 0 0  
2 3 8 . 3 0 0  
2 4 7 . 2 0 0  
2 5 6 . 1 0 0  
2 6 5 . 0 0 0  
2 7 5 . 2 0 0  
2 8 6 . 7 0 0  
2 9 3 . 1 0 0  
2 9 8 . 2 0 0  
3 0 2 . 0 0 0  

3 0 5 . 8 0 0  
3 0 3 . 3 0 0  

3 0 7 . 1 0 0  
3 0 9 . 6 0 0  
3 1 0 . 9 0 0  
3 1 2 . 2 0 0  
3 0 9 . 6 0 0  
3 0 5 . 8 0 0  
3 0 5 . 8 0 0  



ELLIDAAR 

1 8 4  
3 1 .0000 
5 9 . 0 0 0 0  
9 0 . 0 0 0 0  
1 2 0 . 0 0 0  
1 5 1 . 0 0 0  
1 8 1 . 0 8 0  
2 1 2 . 0 0 0  
2 4 3 . 0 0 0  
2 7 3 . 0 0 0  
3 0 4 . 0 0 0  
3 3 4 . 0 0 0  
3 6 5 . 0 0 0  
3 9 6 . 0 0 0  
4 2 4 . 0 0 0  
4 5 5 . 0 0 0  
4 8 5 . 0 0 0  
5 1 6 . 0 0 0  
5 4 6 . 0 0 0  
5 7 7 . 0 0 0  
6 0 8 . 0 0 0  
6 3 8 . 0 0 0  
6 6 9 . 0 0 0  
6 9 9 . 0 0 0  
7 3 0 . 0 0 0  
7 6 1 . 0 0 0  
7 8 9 . 0 0 0  
8 2 0 . 0 0 0  
8 5 0 . 0 0 0  
8 8 1 . 0 0 0  
9 1  1 . 0 0 0  
9 4 2 . 0 0 0  
9 7 3 . 0 0 0  
1 0 0 3 . 0 0  
1034  .OO 
1 0 6 4  .OO 
1 0 9 5  .OO 
1 1 2 6 . 0 0  
1 1 5 4 . 0 0  
1 1 8 5 . 0 0  
1 2 1 5 . 0 0  
1 2 4 6 . 0 0  
1 2 7 6 . 0 0  
1 3 0 7 . 0 0  
1 3 3 8  .OO 

1 3 9 9 . 0 0  
1 3 6 8 . 0 0  

1 4 2 9 . 0 0  
1 4 6 0 . 0 0  
1 4 9 1  .OO 
1 5 1 9 . 0 0  
1 5 5 0 . 0 0  
1 5 8 0 . 0 0  
1 6 1  1 .OO 

1 5 . 3 1 2 0  6 . 1 4 8 0 0  
4 3 . 3 7 8 0  11 .7000  
3 7 . 3 9 7 0  1 7 . 8 5 0 0  
4 6  - 0 1  10 2 3 . 8 0 0 0  
3 5 . 6 2 2 0  2 9 . 9 5 0 0  
3 3 . 1 2 3 0  3 5 . 8 9 0 0  
2 0 . 6 5 4 0  4 2 . 0 4 0 0  
4 6 . 3 0 7 0  4 4 . 2 7 0 0  
3 4 . 2 3 0 0  2 2 . 3 8 0 0  

2 2 . 8 2 0 0  2 0 . 8 9 0 0  
0 .  2 8 . 0 0 0 0  

4 0 . 9 5 5 0  
6 7 . 7 6 3 0  
7 0 . 0 1 4 0  
6 0 . 3 1 2 0  
3 6  7 8 6 0  
3 . 4 5 1 6 0  
3 . 4 5 1 6 0  
7 . 0 6 6 3 0  
8 . 8 7 9 8 0  
1 7 . 6 3 0 0  
4 3 . 8 0 8 0  
8 8 . 6 3 6 0  
1 1 0 . 1 9 0  

1 3 5 . 5 6 0  
1 3 7 . 0 9 0  
9 4 . 9 8 0 0  
8 8 . 3 0 2 0  
1 0 4 . 7 5 0  
8 9 . 3 7 1 0  
9 2 . 8 3 4 0  
6 9 . 9 6 6 0  
9 5 . 1 0 4 0  
1 5 5 . 4 1 0  
1 3 7 . 2 8 0  
1 3 7 . 1 9 0  
1 3 5 . 1 8 0  
1 3 6 . 6 1 0  
1 2 9 . 9 3 0  
5 1 . 5 8 3 0  
3 4 . 0 8 6 0  
3 4 . 3 7 3 0  
8 3 . 3 9 9 0  
1 2 1 . 0 6 0  
1 2 6 . 1 2 0  
1 4 1 . 3 8 0  
1 3 7 . 0 9 0  
1 4 5 . 3 9 0  
1 5 0 . 1 6 0  
1 4 4  - 0 5 0  
1 3 5 . 6 6 0  
1 2 6 . 0 2 0  

9 9 . a 8 4 0  

4 1 .0408 .  
4 6 . 9 6 0 0  
5 0 . 8 1 0 0  
4 0 . 8 0 0 0  
3 4 . 4 0 0 0  
3 1 . 0 5 0 0  
2 7 . 8 1 0 0  
24 . a 6 0 0  
2 1 . 1 1 0 0  
1 7 . 8 6 0 0  
4 0 . 7 1 0 0  
5 6 . 1 0 0 0  
8 4 . 4 3 0 0  
6 8 . 5 7 0 0  
1 0 5 . 3 0 0  
1 1 6 . 3 0 0  
8 5 . 3 2 0 0  
6 6 . 0 3 8 0  
6 5 . 4 0 0 0  
6 6 . 4 0 0 0  
6 6 . 1 2 0 0  
6 9 . 5 1 0 0  
9 3 . 8 4 0 0  
1 0 3 . 4 0 0  
1 0 5 . 8 0 0  
1 0 6 . 8 0 0  
1 0 7 . 5 0 0  
1 0 8 . 1 0 0  
100.400 
4 5 . 0 5 0 0  
35 .7300  
3 5 . 5 0 0 0  
5 7 . 3 7 8 0  
9 0 . 7 7 0 0  
1 0 1  . 8 0 0  

1 1 2 . 9 0 0  
1 1 1 . 2 0 0  

1 1 3 . 5 0 0  
1 1 3 . 9 0 0  
1 1 4 . 0 0 0  
9 9 . 5 1 0 0  
8 6 . 2 7 0 0  

1 6 4 1  .OO 
1 6 7 2 . 0 0  
1 7 0 3 . 0 0  
1 7 3 3 . 0 0  
1 7 6 4 . 0 0  
1 7 9 4 . 0 0  
1 8 2 5 . 0 0  
1 8 5 6 . 0 0  
1 8 8 4  .OO 
1 9 1 5 . 0 0  
1 9 4 5 . 0 0  
1 9 7 6 . 0 0  
2 0 0 6 . 0 0  
2 0 3 7 . 0 0  
2 0 6 8 . 0 0  
2 0 9 8 . 0 0  
2 1 2 9 . 0 0  
2 1 5 9  .OO 
2 1 9 0 . 0 0  
2 2 2 1  .OO 
2 2 4 9  .OO 
2 2 8 0 . 0 0  
2 3 1 0 . 0 0  
2 3 4 1  .OO 
2 3 7 1  .OO 
2 4 0 2 . 0 0  
2 4 3 3 . 0 0  
2 4 6 3  .OO 
2 4 9 4 . 0 0  
2 5 2 4  .OO 
2 5 5 5  .OO 
2 5 8 6  .OO 
2 6 1 4 . 0 0  
2 6 4 5  .OO 
2 6 7 5 . 0 0  
2 7 0 6  .OO 
2 7 3 6 . 0 0  
2 7 6 7 . 0 0  
2 7 9 8  .OO 
2 8 2 8  .OO 
2 8 5 9 . 0 0  
2 8 8 9  .OO 
2 9 2 0 . 0 0  
2 9 5 1  .OO 
2 9 7 9  .OO 
3 0 1 0 . 0 0  
3 0 4 0 . 0 0  
307  1 . 0 0  
3 1 0 1  .OO 
3 1 3 2 . 0 0  
3 1 6 3 . 0 0  
3 1 9 3 . 0 0  
3224  .OO 
3254  .OO 

1 0 7 . 3 2 0  
1 0 7 . 9 0 0  
8 3 . 2 9 4 0  
1 5 2 . 2 6 0  
1 4 6 . 0 6 0  
1 4 3 . 5 8 0  
1 4 2 . 6 2 0  
1 4 3 . 1 0 0  
1 4 2 . 0 5 0  
1 4 2 . 1 5 0  
1 4 2 . 0 5 0  
1 2 2 . 4 9 0  
6 9 . 7 6 6 0  
7 0 . 9 4 9 0  
5 0 . 5 2 4 0  
7 4  . 0 1 1 0  
1 2 8 . 6 0 0  
1 4 6 . 4 4 0  
1 4 3 . 8 6 0  
1 4 2 . 3 4 0  
1 4 1 . 1 0 0  
1 4 1 . 6 7 0  
1 2 6 . 8 8 0  
1 1 4 . 4 8 0  
9 4 . 6 5 6 0  
7 4 . 5 2 6 0  
8 4 . 8 1 1 0  
1 1 1 . 8 1 0  
1 1 7 . 9 1 0  
1 3 8 . 4 3 0  
1 4 1 . 6 7 0  
1 4 2 . 3 4 0  
1 2 6 . 4 0 0  
1 2 8 . 7 9 0  
1 2 6 . 2 1 0  
1 2 6 . 6 0 0  
1 4 3 . 4 8 0  
1 0 6 . 2 8 0  
1 2 2 . 4 9 0  
1 3 0 . 1 3 0  
1 2 3 . 8 3 0  
1 3 1 . 9 4 0  
1 3 1 . 0 8 0  
1 2 6 . 9 8 0  
1 2 7 . 5 5 0  
1 2 1 . 6 3 0  
1 3 2 . 8 9 0  
1 1 8 . 3 0 0  
1 2 6 . 6 9 0  
1 0 7 . 9 9 0  
1 1 0 . 9 5 0  
1 0 5 . 5 1 0  
1 2 6 . 1 2 0  
1 3 1 . 6 5 0  

8 2 . 5 7 0 0  
8 0 . 1 2 0 0  
9 7 . 8 6 0 0  
1 0 8 . 6 0 0  
1 0 9 . 2 0 0  
1 0 9 . 7 0 0  
1 1 0 . 2 0 0  
1 1 0 . 7 0 0  
111.100 
1 1 1 . 7 0 0  
1 1 2 . 1 0 0  
1 1 2 . 7 0 0  
1 1 3 . 2 0 0  
1 1 3 . 7 0 0  
1 1 4 . 2 0 0  
114 .700  
1 1 5 . 2 0 0  
115 .700  
1 1 6 . 2 0 0  
1 1 6 . 7 0 0  
1 1 7 . 2 0 0  
1 1 3 . 8 0 1  
1 0 3 . 8 0 0  
8 9 . 6 2 0 0  
7 5 . 6 7 0 0  
7 4 . 3 8 0 0  
8 3 . 0 6 0 0  
9 1 . 4 6 0 0  
9 0 . 3 6 0 0  
9 9 . 1 4 0 0  
1 0 8 . 2 0 0  
1 1 6 . 7 0 0  
1 1 6 . 0 0 0  
1 1 5 . 3 0 0  
1 1 4 . 6 0 0  
1 1 3 . 9 0 0  
1 1 3 . 2 0 0  
112 .500  
1 1 1 . 8 0 0  
1 1 1 . 1 0 0  
1 1 0 . 3 0 0  
1 0 9 . 7 0 0  
1 0 7 . 7 0 0  
1 0 5 . 0 0 0  
1 0 2 . 6 0 0  
9 9 . 9 2 0 0  
9 7 . 3 4 0 0  
9 4 . 6 6 0 0  
9 2 . 0 8 0 0  
8 9 . 4 1 0 0  
86 .7400  
8 5 . 9 3 0 0  
1 0 5 . 5 0 0  
1 0 9 . 9 0 0  



3 2 8 5  .OO 
3 3 1 6 . 0 0  
3344  .OO 
3 3 7 5  .OO 
3 4 0 5  .OO 
3436 .00  
3 4 6 6  .OO 
3 4 9 7  .OO 
3 5 2 8  .OO 
3 5 5 8  .OO 
3 5 8 9  .OO 
3 6 1 9 . 0 0  
3 6 5 0 . 0 0  
3 6 8 1  .OO 
3 7 0 9 . 0 0  
3 7 4 0 . 0 0  
3 7 7 0 . 0 0  
3 8 0 1  .OO 
3 8 3 1  .OO 
3 8 6 2 . 0 0  
3 8 9 3 . 0 0  
3923 .00  
3954  .OO 
3984  .OO 
4015 .00  
4046  .OO 
4074  .OO 
4 105  .OO 
4 1 3 5 . 0 0  
4166 .00  
4 1 9 6 . 0 0  
4227 .00  
4 2 5 8 . 0 0  
4 2 8 8 . 0 0  
4319 .00  
4 3 4 9 . 0 0  
4 3 8 0 . 0 0  
4 4 1  1 .OO 
4 4 3 9 . 0 0  
4 4 7 0 . 0 0  
4 5 0 0 . 0 0  
4 5 3 1  .OO 
4 5 6 1  .OO 
4592  .OO 
4623  .OO 
4653  .OO 
4684  .OO 
4714 .00  
4745 .OO 
4776 .00  
4804  .OO 
4 8 3 5 . 0 0  
4 8 6 5 . 0 0  
4 8 9 6 . 0 0  
4926 .00  
4 9 5 7  .OO 
4 9 8 8  .OO 
5.0 1 8 .OO 
5 0 4 9  .OO 
5 0 7 9  .OO 
5 1  1 0 . 0 0  
51'41 .OO 
5 1 6 9 . 0 0  
5 2 0 0 . 0 0  
5 2 3 0 . 0 0  
5 2 6 1  .OO 
5 2 9 1  .OO 
5 3 2 2  .OO 
5 3 5 3  .OO 
5 3 8 3  .OO 
5 4 1 4 . 0 0  
5 4 4 4  .OO 
5 4 7 5  .OO 
5 5 0 6  -00 
5 5 3 4  .OO 
5 5 6 5 . 0 0  
5 5 9 5  .OO 

1 3 0 . 8 9 0  
1 3 0 . 7 0 0  
1 2 9 . 9 3 0  
1 3 2 . 7 0 0  
1 1 9 . 3 5 0  
1 0 4 . 9 4 0  
1 0 5 , 7 0 0  
1 0 5 . 3 2 0  
1 0 6 . 6 6 0  
1 1 9 . 2 5 0  
1 2 9 . 2 7 0  
1 3 0 . 3 2 0  
1 2 3 . 4 5 0  
1 2 8 . 8 9 0  
122 .300  
1 2 2 . 0 2 0  
1 1 6 . 3 9 0  
1 2 2 . 8 8 0  
1 1 9 . 5 4 0  
103 .320  
9 3 . 6 4 5 0  
9 5 . 5 9 1 0  
9 5 . 9 7 2 0  
117 .530  
1 0 8 . 5 7 0  
1 1 4 . 7 7 0  
1 3 5 . 4 7 0  
1 2 1 . 7 3 0  
1 1 6 . 4 8 0  
1 1 2 . 4 8 0  
9 1 . 3 2 6 0  
8 0 . 0 6 9 0  
91 .0690  
1 0 2 . 9 4 0  
1 1 2 . 5 7 0  
1 3 6 . 1 4 0  
1 2 9 . 2 7 0  
134 .610  
1 3 3 . 9 4 0  
1 3 3 . 4 6 0  
1 3 4 . 0 4 0  
1 2 5 . 8 3 0  
1 0 2 . 4 6 0  
9 2 . 1 2 8 0  
9 4 . 7 7 0 0  
1 0 0 . 0 7 0  
1 3 3 . 0 8 0  
1 3 4 . 0 4 0  
1 4 8 . 3 5 0  
1 3 7 . 1 9 0  
1 5 9 . 9 9 0  
114 .100  
1 3 5 . 0 9 0  
128 .120  
1 1 8 . 8 7 0  
9 7 . 4 0 3 0  
1 0 1 . 1 2 0  
1 1 3 . 5 3 0  
1 4 7 . 5 8 0  
1 3 4 . 3 2 0  
153 .400  
1 4 0 . 1 4 0  
1 4 0 . 5 2 0  
1 4 7 . 1 1 0  
1 4 9 . 2 1 0  
1 1 9 . 2 5 0  
8 8 . 1 9 7 0  
8 7 . 5 1 0 0  
93 .9690  
2 9 . 0 4 9 0  
1 2 3 . 9 2 0  
1 6 5 . 0 4 0  
1 5 0 . 6 4 0  
1 8 0 . 5 9 0  
1 7 4 . 9 6 0  
169 .140  
1 7 3 . 3 4 0  

1 1 2 . 2 0 0  
1 1 2 . 6 0 0  
1 1 3 . 9 0 0  
1 1 4 . 4 0 0  
106 .600  
9 1 .0000 
8 7 . 1 4 0 0  
8 4 . 0 8 0 0  
8 5 . 0 0 0 0  
9 7 . 5 0 0 0  
9 9 . 0 0 0 0  
1 0 4 . 2 0 0  
1 1 0 . 5 0 0  
1 1 2 . 1 0 0  
1 1 3 . 3 0 0  
1 1 3 . 0 0 0  
1 1 4 . 9 0 0  
1 1 5 . 0 0 0  
1 1 1 . 4 0 0  
9 1 . 7 1 0 0  
8 7 . 9 1 0 0  
8 4 . 4 5 0 0  
8 5 . 0 0 0 0  
9 8 . 6 7 0 0  
1 0 6 . 2 0 0  
1 1 0 . 8 0 0  
1 1 1 . 8 0 0  
1 1 2 . 9 0 0  
1 0 8 . 3 0 0  
1 0 6 . 6 0 0  
8 3 . 6 2 0 0  
8 4 . 8 8 0 0  
8 8 . 1 2 0 0  
9 4 . 0 2 0 0  
1 0 0 . 1 0 0  
1 0 6 . 0 0 0  
1 1 0 , 7 0 0  
1 0 9 . 9 0 0  
1 0 8 . 4 0 0  
1 0 6 . 8 0 0  
1 0 5 . 2 0 0  
1 0 3 . 6 0 0  
1 0 2 . 0 0 0  
1 0 0 . 4 0 0  
9 8 . 8 1 0 0  
9 7 . 2 4 0 0  
9 5 . 6 3 0 0  
9 4 . 0 6 0 0  
9 2 . 4 4 0 0  
9 0 . 8 3 0 0  
8 9 . 3 7 0 0  
8 7 . 7 5 0 0  
8 6 . 1 8 0 0  
8 4 . 5 6 0 0  
8 3 . 0 0 0 0  
8 1 . 3 8 0 0  
7 9 . 7 6 0 0  
7 8 . 2 0 0 0  
7 6 . 5 8 0 0  
7 5 . 0 2 0 0  
7 3 . 4 0 0 0  
7 1 . 7 8 0 0  
7 0 . 3 2 0 0  
6 8 . 7 0 0 0  
6 7 . 1 4 0 0  
6 5 . 5 2 0 0  
6 3 . 9 5 0 0  
6 2 . 3 4 0 0  
6 0 . 7 2 0 0  
5 9 . 1 5 0 0  
9 8 . 8 8 0 0  
1 0 5 . 5 0 0  
1 0 6 . 8 0 0  
1 1 5 . 2 0 0  
115 .400  
1 1 6 . 1 0 0  
1 0 5 . 6 0 0  

6 6  
0. 0 .  
243.3 
273.7  
304.2  
486.7  
517 .1  
5 4 7 . 5  
577 .9  
608 .3  
638 .7  
669.2  
699 .6  
7 3 0 . 0  
7 6 0 . 4  
790.8  
821.3  
8 5 1 . 7  
8 8 2 . 1  
912 .5  
942 .9  
973 .3  
1004 .  
1034 .  
1065 .  
1095 .  
1125.  
1156 .  
1186 .  
1217 .  
1247 .  
1278.  
1308 .  
1338 .  
1369 .  
1399 .  
1430 .  
1460 .  
1490 .  
1521 .  
1551.  
1582 .  
1612 .  
1 6 4 3 .  
1 6 7 3 .  
1 7 0 3 .  
1734 .  
1764 .  
1795 .  
1825 .  
1855 .  
1886 .  
1916 .  
1947 .  
1977.  
2008 .  
2 0 3  8. 
206  8.  
2 1 9 0 .  
2 5 5 5 .  
2 9 2 0 .  
3285 .  
3 6 5 0 .  
4 0 1  5 .  
4380 .  
4745.  
5 1  10 .  

BROADLANDS 

0. 
2 .949 
9 4 . 8 0  
23 .59  
4 .820  
4 . 5 6 6  
33 .88  
9 6 . 6 1  
9 7 . 0 2  
1 2 4 . 9  
1 4 9 . 1  
112 .6  
1 6 3 . 2  
1 9 8 . 7  
184.3  
194 .7  
1 5 9 . 0  
83 .32  

0. 
0. 

31.96  
1 6 8 . 1  
2 2 3 . 5  
311 .1  
295 .4  
2 9 5 . 8  
2 6 5 . 0  
2 5 2 . 0  
263 .7  
2 9 6 . 6  
2 3 1 . 1  
239 .5  
2 3 9 . 1  
2 3 4 . 1  
2 5 2 . 0  
2 3 3 . 8  
3 2 4 . 0  
2 5 5 . 5  
2 2 5 . 0  
227 .7  
286.1  
1 4 5 . 1  
2 6 1 . 9  
3 3 9 . 2  
343 .8  
449 .3  
3 4 5 . 7  
3 7 7 . 3  
424.5 
3 1 8 . 7  
254 .7  
296.6  
228 .8  
252.4  
408 .1  
435 .2  
1 5 1 . 1  

0. 
0. 
0 .  
0. 
0. 
0. 
0. 
0. 
0. 

1 .029 
1 .157 
1 .286  
2 .057 
2 .186  
2.314 
2 .443  
2 . 5 7 1  
2 . 7 0 0  
2 . 8 2 9  
2 .957  
3 .086 
3 .214 
3 . 3 4 3  
3 . 4 7 1  
3 . 6 0 0  
3 .729 
3 . 8 5 7  
3 .986 
4 .114  
4 .243  
4 .372  
4 . 5 0 0  
4 .629 
4 .757  
4 .886  
5 . 0 1 4  
5 .143 
5 . 2 7 1  
5 . 4 0 0  
4 . 6 1 6  
5 . 0 3 1  
5 .428  
5 . 8 2 6  
6 . 2 2 2  
6 .619  
6 .993  
6 .827  
6 . 6 6 0  
6 . 5 2 0  
7 . 0 3 0  
7 . 5 4 0  
8 .049 
8 .559  
9 .069  
9 . 5 8 0  
1 0 . 0 9  
1 0 . 6 0  
1 1 . 1 1  
11 .62  
12 .13  
12 .64  
13 .15  
13 .66  
14 .17  
14 .68  
13 .15  
12 .33  
10 .85  
9 .741 
9 .046  
8 .828  
8 . 6 1 1  
8 .407  
8 . 6 2 9  



SVARTSENGI 

123 

12.00 
14 .OO 
15.00 

133.00 
146 .OO 
154.00 
162 .OO 
241 .OO 
317.00 
388 .OO 
419.00 
424 -00 
510.00 
520.00 
534 .OO 
547 .OO 
576 -00 
580.00 
600.00 
641 .OO 
702.00 
764 -00 
77 1 .OO 
781 .OO 
792 .OO 
804.00 
890 .OO 
927 .OO 
945 .OO 
948 .OO 
101 2 .OO 
1086 .OO 
1099 .OO 
1104 .OO 
1130.00 
1138.00 
1223.00 
1234.00 
1235.00 
1237 .OO 
1248.00 
1250.00 
1251 .OO 
1252.00 
1258.00 
1260 .OO 
1274.00 
1288.00 
1292.00 
1297.00 
1302 .OO 
1305.00 

0 .  
48.00 
30.00 
5 .OO 

30.00 
45.00 
30.00 
58 .OO 
30.00 
31 .OO 
30.00 
51 .OO 
30.00 
57.00 
48 .OO 
45 .OO 
45 .OO 
30.00 
30.00 
56.00 
52 .OO 
48 .OO 
53 .OO 
7 1 .OO 
50.00 
55 .OO 
85 .OO 
90.00 
155.00 
95 .OO 
65.00 
95.00 
130.00 
115.00 
50.00 
115.00 
121 .OO 

0 .  

115.00 
137.00 
131 .OO 
138 .OO 
161 .OO 
147.00 
134 .OO 
115.00 
125 .OO 
60.00 
110.00 
116.00 
131 .OO 
161 .OO 
151 .OO 
168 -00 

0. 
0.90 
0.95 
0.97 
3.59 
3.98 
4.26 
4.62 
7.05 
7.94 

10.38 
8.68 

10.67 
13.30 
13.60 
13.84 
13.76 
13.50 
13.80 
14.50 
15.19 
15.72 
17.54 
17.95 
18.54 
19.18 
19.61 
23.07 
23.99 
25.33 
25.85 
27.61 
29.44 
29.76 
29.88 
30.52 
30.72 
32.82 
33.09 
33.11 
33.16 
33.44 
33.49 
33.51 
33.53 
33.68 
33.73 
34.08 
34.40 
34.58 
34.92 
35.40 
35.82 

1309 .OO 
1319.00 
1339.00 
1343.00 
1345 .OO 
1348.00 
1353 .OO 
1358 .OO 
1368.00 
1415.00 
1435 .OO 
1437.00 
1438.00 
1442.00 
1443 .OO 
1451 .OO 
1452 .OO 
1453.00 
1472.00 
1473 .OO 
1487.00 
1491 .OO 
1504 .OO 
1517.00 
1521 .OO 
1523.00 
1524.00 
I571 .OO 
1590.00 
1595.00 
1618.00 
1660.00 
1669 .OO 
1676.00 
1681 .OO 
1688.00 
1702.00 
1761 .OO 
1762 .OO 
1764 .OO 
1768.00 
1769.00 
1787 .OO 
1789 .OO 
1790.00 
1808 .OO 
1839 .OO 
1862.00 
1864.00 
1869 .OO 
1872.00 
1901 .OO 
1932 .OO 
1937.00 

1940.10 
1947 .OO 
1956 .OO 
2025 .OO 
2075 .OO 

2122.00 
2111.00 ., 

2129.00 
2133.00 
2143.00 
2146.00 
2150.00 
2157.00 
2265 .OO 
2319.00 
2331 .OO 

188 .OO 
21 1 .OO 
116.00 
140.00 
150.00 
171 .OO 
186 .OO 
205.00 
226 .OO 
116.00 
120.00 
164.00 
163 .OO 
175 .OO 
183.00 
186 .OO 
192.00 
209.00 
129 .OO 
164.00 
172 .OO 
202.00 
129 .OO 
129 .OO 
135.00 
339.00 
279 .OO 
326 -00 
344 .OO 
294 .OO 
347 .OO 
342.00 
336 .OO 
274 .OO 
280.00 
218.00 
222 .OO 
149.00 
152.00 
214.00 
149.00 
152 .OO 
206.00 
212.00 
272 .OO 
360.00 
341.00 
322 .OO 
273 .OO 
269 .OO 
249 .OO 
301.00 
299 .OO 
245 .OO 

299.00 
275 .OO 
281 .OO 
284 .OO 
224 .OO 
219.00 
269 .OO 
230.00 
280.00 
271 .OO 
31 1 .OO 
315.00 
263 .OO 
308.00 
283 .OO 
328 .OO 

36.36 
37.55 
36.71 
37 .O1 
37.21 
37.58 
38.11 
38.54 
38.64 
38.03 
38.57 
38.71 
38.79 
39.29 
39.43 
40.24 
40.22 
40.19 
40.11 
40.14 
4 1.04 
41.28 
43.15 
45.51 
46.23 
46.60 
46.78 
54.95 
59.07 
59.76 
63.02 
68.44 
69.24 
69.65 
69.83 
69,52 
70.11 
68.20 
68.25 
68.33 
68.50 
68.55 
69.37 
69.42 
69.44 
73.44 
77.21 
79.40 
79.46 
79.61 
79.86 
82.49 
84.73 
84.96 

85.10 
85.25 
85.63 
88.16 
90.30 
91.03 
91.44 
91.82 
92.20 
92.90 
93.28 
93.62 
94.02 
98.91 

103.30 
103.83 



C C C C C C C C c C C C C C C C c c C C c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c  

C hsl 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

Revised form of program hurslmplin (Olsen, 1985) 

This program i s  used to flnd the standard deviation and "slope' 
term in the hurst simplified linear analysis, for a glven value 
of the Hurst parameter lambda. 

USING THE PROGRAM: 
The object i s  to find the lambda which mfnlmizes the standard 
deviation. The method used here was to automize the following steps: 
(On the U N I X  system, a c-shell program di d  the following) 
Create a n  input file o f  lambdas, In increasing order 
R u n  hsl 
Find lambda corresponding to m i n i m u m  std. deviation 
Make new ftle of lambdas ran g l n g  above an d  below the above sigma 
Repeat to desired accuracy. 
INPUT: 
"t.q.dh" contains the field data of time, production, and drawdown. 
The first line i s  the number o f  data points, subsequent lines contain 
tlme(days), production rate(kg/sec), an d  drawdown(meters of water). 

"k.fi" contains the following parameters: permeabtlity(sq. meters), 
porosfty(unitless), an d  area of field(sq. meters) 

Input from the standard lnput i s  the value for lambda. This value 
i s  NOT prompted, as usually the program reads these lambdas from a 
file of m a n y  lambda values. The program contains a loop such that 
if a file of lambdas i s  redirected into the standard Input, lambdas 

ead until the file i s  finished. Note: after the last lambda 
the program will attempt to read the end o f  ftle, resulting 
le error statements. As this caused no problems with the 
system used, extra code for stopping the data input was not 

C will be r 8  
C i s  read, 
C in possib 
C operating 
C used. 

C OUTPUT I 
C output i s  

C 

made to standard output. For each lambda input, the output 
C i s  lambda, standard deviatlon, and "slope". 
C 
C 
C c C C C C C C C c C C C C C C C c C c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c  

program hsl 
implicit real(a-h,o-z) 
real k,mu,lam 
dimenslon x(350),t(350) ~ 3 5 0 ) , d ~ 3 5 0 ) , d c ( 3 5 0 ) , c u m ( 3 5 0 )  
open(unit=l ,f ile='t.q.d~y,status='old') 
open(unit=7,file='k.fi',status='old') 
rewind(unlt=l) 

C 
read(l,*) npts 
read(l,*) It(i),w(i),d(i),i=l,npts) 



4 00 

100 

2 00 

3 00 

1 

C 
C 
C 

read(7,*) k,fi 
mu=ll0.e-6 
c=l  .e-9 
tc=3600.*24.*k/(fi*mu*c) 
cont 1 nue 
cum( 1 ) = 0 .  
read(5,*) lam 
do 200 n=2,npts 
x x = 0 .  
do 100 j12.n 
tlme=(t(n)-t(.j-l))*tc 
x x ~ x x + ~ w ~ j ~ - w ~ j - l ~ ~ * f ~ l a m , t i m e ~  
cont 1 nue 
x(n) = x x  
cum(n)=cum(n-l)+w(n)*(t(n)-t(n-l~~*24.*3600. 
cont 1 nue 
x( 1 )=0. 
call lsq(npts,x,d,slope) 
tot=0. 
do 300 i=l,npts 
dc(i)=x(i)*slope 
tot=tot+(dc(i)-d(f))**2. 
continue 
sd=sqrt(tot/float(npts-1)) 
write(6.1) lam,sd,slope 
format(3(g12.5,5~)) 
go to 400 
stop 
end 



C C C C C C C C C c C C C C C C C C c C c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c  
C 
C 
C 
C 

C 
C 
C 

C 
C 

C 
C 
C 
C 

C 
C 
C 

C 

C 
C 
C 

C 
C 
C 
C 

C 
C 
C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 
C 
C 

C 
C 
C 
C 

h s r t a b  

Revised fo rm o f  program ' h u r s r a d f l t '  (Marcou, 1985) 
The major r e v l s i o n  Is t h a t  a t a b l e  lookup program It used f o r  
e v a l u a t l o n  o f  t h e  H u r s t  f u n c t i o n ,  g r e a t l y  l n c r e a s l n g  e x e c u t i o n  
speed. 

T h i s  program I s  used t o  f f n d  t h e  
te rm i n  t h e  h u r s t  s i m p l i f i e d  r a d  
o f  t h e  Hurs t  parameter sigma. 

s tandard  d e v l a t l o n  and "s lope '  
l a 1  a n a l y s i s ,  f o r  a g fven  va lue 

U S I N G  THE PROGRAM: 
The o b j e c t  f s  t o  f i n d  t h e  sigma which m l n i m i z e s . t h e  s tandard  
(On t h e  U N I X  system, a c - s h e l l  program d i d  t h e  f o l l o w i n g )  
d e v i a t i o n .  The method used here  was t o  automlze t h e  f o l l o w i n g  s teps:  
Create  an i n p u t  f l l e  o f  sigmas, I n  l n c r e a s l n g  o rde r  
Run h s r t a b  
F i n d  sigma cor respond ing t o  minlmum s td .  d e v i a t i o n  
Make new f i l e  o r  sigmas r a n g i n g  above and below t h e  above sigma 
Repeat t o  d e s l r e d  accuracy.  
I N P U T :  
" t . q . d h "  c o n t a i n s  t h e  f i e l d  da ta  o f  t l m e ,  p r o d u c t i o n ,  and drawdown. 
The f i r s t  l i n e  i s  t h e  number o f  da ta  p o i n t s ,  subsequent l i n e s  c o n t a i n  
t i m e ( d a y s ) ,  p r o d u c t i o n  r a t e ( k g / s e c ) ,  and drawdown(meters o f  wa te r ) .  

" k . f l "  c o n t a i n s  t h e  f o l l o w i n g  parameters:  p e r m e a b l l l t y ( s q .  meters) .  
p o r o s l t y ( u n i t l e s s ) ,  and area o f  f i e l d ( s q .  meters)  

I n p u t  f rom t h e  s tandard  I n p u t  f s  t h e  value f o r  sigma. T h i s  va lue  
i s  NOT prompted, a s  u s u a l l y  t h e  program reads these  sigmas f rom a 
f i l e  o f  many sigma va lues.  The program c o n t a i n s  a loop such t h a t  
lf a f i l e  o f  sigmas ls r e d i r e c t e d  i n t o  t h e  s tandard  i n p u t ,  sigmas 
will be read  u n t i l  t h e  f i l e  is f l n f s h e d .  Note: a f t e r  t h e  l a s t  slgma 
i s  read,  t h e  program w I l l  a t t empt  t o  read t h e  end o f  f l l e ,  r e s u l t l n g  
I n  p o s s i b l e  e r r o r  s ta tements .  A 5  t h i s  caused no problems w l t h  t h e  
o p e r a t i n g  system used, e x t r a  code f o r  s t o p p i n g  t h e  data  i n p u t  was n o t  
used. 

OUTPUT: 
Output  is made t o  s tandard  o u t p u t .  For each stgma i n p u t ,  t h e  o u t p u t  
i s  s igma ,  s tandard  d e v l a t i o n ,  and " s l o p e " .  

program hs r  
i m p l l c l t  rea l *E(a-h ,o-z)  
r e a l * 8  k,mu 
dimension ~ ~ 3 5 0 ~ , t ~ 3 5 0 ~ , ~ ~ 3 5 0 ~ , d O , d c ( 3 5 8 ~ , d c ~ 3 5 0 ~ , c u m ~ 3 5 0 ~  

1 , t t a b ( 5 0 ) , f t a b ( 5 0 )  
, open(unit=l,fIle='t.q.dh',status='old'~ 
open(unit=7,file='k.fi',status='old') 
r e w i n d ( u n i t = l )  



C 

4 00 

C 
C 
C 
C 

C 
C 
C 

100 

2 00 

C 
C 
C 
C 

C 
C 
C 

300 

C 
C 
C 

read(l,*) npts 
read(l,*) (t(l),w(l),d(i),i=l,npts) 
read(7,*) k,fl,area 
r=(area/3.14159)**.5 
rnu=ll0.d-6 

tc=3600.*24.*k/lff*mu*c*(r**Z.)) 
C =  1 . d-9 
cont l nue 
ngood=npts 
cum( 1 )=0. 
read(5,*) sig 

The 
for 

subroutlne maktab 
the given sigma. 

creates a table of time 

call maktab(tc,t(npts),slg,ttab,ftab) 

Perform Hurst analysts 

do 200 n=2,npts 

do 100 j=2,n 
x x = 0 .  

time=(t(n)-t(j-l))*tc 
call lookup(ttab,ftab,50,time,hf) 
xx=xx+(W(j)-w(j-l))*hf 
cont i nue 
x(n)=xx*sig 
cum(n)=curn(n-l)+w(n)*(t(n)-t(n-l))*24.*3600. 
cont i nue 
x( 1 ) = 0 .  

The subroutine 
the orfgin). 

performs a least squares 

call lsqZ(npts,x,d,slope) 

Calculate drawdown and std. devlatlon 

tot=0. 
do 300 i = 1  ,npts 
dc(l)=x(i)*slope 
if(d(i).lt.-l.) then 

go to 300 
ngood=ngood-1 

else 
tot=t0t+(d~(i)-d(i))**2. 
end i f  
continue 
sd=sqrt(tot/float(ngood-l)) 

Output sigma, std.dev., and slope. 

write(6.500) slg.sd,slope 

V S .  

fit 

Hur st f unct ton 

(constra 1 ned through 



5 0 0  f o r r n a t ( 3 ( 2 x , g 1 4 . 6 ) )  
C 

C r e t u r n  f o r  new sfgma 
C 

go t o  400 
s t o p  
end 
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hursgraphrad, revised from Marcou(l985) 

This program I s  used to generate the Hurst predictlon, given 
sigma and "slope". The correct sigma and "slope" are found 
using program hsrtab. 

INPUT: 
"t.q.dh": time, production rate, and drawdown, as described 
in program hsrtab 
" k . f i " :  permeabfllty, poroslty, and reservoir area, as described 
i n  program hsrtab 
sigma and 'slope" are prompted inputs on the standard input. 

OUTPUT : 
"hsrpred.out" i s  the graph-routine-ready output 
o f  drawdown vs time. 

* * * * * * * * * t * * * * * * * * * * * * * * . * * * . * * * * * * * * * * * * * * * * R * * * * * * * * * * *  

implicit real*B(a-h,o-z) 
real*8 k,mu 
dimension t(225),q(225).dh(225),sum(225~,dhc(225~,cum~225) 
open (unit=3,flle='t.q.dh',status-'old') 
rewind (unit=3) 
open (unit=Z,file='hsrpred.out') 
rewind (unit=2) 
open (unit=l,file='k.fi') 

* * * * * * * * * a * * *  input data * i t * * ***********  

read ( 3 , * )  1 
read (3,*) (t(~),q(i),dh(i),l=l,l) 
read ( l , * )  k,fi,arsa 
r2=area/3.14159 
mu=llB.e-6 

tc=86400.*k/(fi*mu*c*rZ) 
c= 1. e-9 

write ( 6 , * )  ' * 
write ( 6 , * )  ' * 
write (6.*) 'what f s  the value o f  sigma?' 
read (5,*) s i g  
write (6,*) ' ' 
write (6,*) ' ' 
write (6.*) 'what i s  the slope?' 
read (5,*) slope 

* * * * * * * * * * * * * *  initialize and laplace solution **************  



C 

100 

2 00 
C 
C 
C 
C 
C 

300 
C 
C 
C 
C 
C 
C 

4 00 
C 
C 
C 

500 

do 200 i = l , 1  
if (i.eq.1) then 

n = l 0  
m= 150 
sum(l)=0.0 
dhc(l)=0.0 
cum(l)=0.0 

else 
do 100 .j=Z,i 

dtdmtc*(t(l)-t(j-l)) 
s u m ~ i ~ = s u m ~ i ~ + ~ q ~ j ~ - q ~ j - l ~ ~ * s i g * s ~ g m a n ~ d t d , n , m , s i g ~  

cum({)= cum(i-1) + (q(l)*(t(i)-t(i-l))*60.*60.*24.) 
end if 

cont i nue 

cont inue 

do 300 1-1.1 

continue 
dhc(i)=slope*sum(O 

* e * * * * * * * * * *  write to file "graph.dhc' * * * e * * * * * * * *  

* * * * * * * *  first write the calculated drawdown * * * * * *  
write (2,*) 1 
do 400 i = 1 , 1  

continue 

* * * * * * * * * *  now write the actual drawdown **********  
write (2,*) 1 
do 500 1=1 ,1  

cont i nue 
5 top 
end 

write ( 2 , * )  t(i),dhc(i) 

wrfte (2,*) t(i),dh(i) 
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hslpred, revised from Olsen(1985) 

This program i s  used to generate the Hurst prediction, given 
lambda and "slope". The correct lambda and 'slope" are found 
using program hsl. 

I N P U T S  
"t.q.dh"r time, production rate, and drawdown, as described 
in program hsrtab 
"k.fi": permeability, porosity, and reservoir area, as described 
in program hsrteb 
lambda and "slope" are prompted inputs on the standard input. 

OUTPUT: 
"hsrpred.out" i s  the graph-routine-ready output 

C The first series of points i s  actual data, 
C the second series i s  the calculated drawdown. 

C C C C C C C C C C C c C c C C C C c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c  
C 

program hslpred 
implicit real(a-h,o-z) 
real k,mu,lam 
dimension ~ ( 3 5 0 ) , t ( 3 5 0 ) , ~ ( 3 5 0 ) , d ( 3 5 0 ) , d c ( 3 5 0 ) . c u m ( 3 5 0 )  
open(unit=l,file='t.q.dh',statusP") 
rewlnd(unlt=l) 
open(unit=7,file='hs1pred.out9) 
rewind(unitP7) 
open(unft=8,file='k.fi',status='old') 
rewlnd(unit=B) 

C 
read(8,*) k,fi 
write(6,*) 'Enter lambda' 
read(5,*) lam 
write(6,*) 'Enter slope' 
read(5,*) slope 
read(l,*) npts 
read(l,*) (t(l),w(i),d(i),i=l,npts) 
mu=ll0.e-6 
c =  1 . e-9 
tc=3600.*24.*k/(fi*mu*c) 
cum( 1 )=0. 
do 200 n=2,npts 

do 100 J=E,n 
x x = 0 .  

time=(t(n)-t(j-l))*tc 
x x = x x + ( w ( j ) - w ( j - l ) ) * f ( l a m , t l m e )  

x ( n ) = x x  
cum(n)=cum(n-l)+w(n)*(t(n)-t(n-l))*24.*3600. 

x( 1 )=0. 
do 300 f=l,npts 

~- 

100 continue 

200 cont i nue 



d c ( i ) = x ( i ) * s l o p e  

w r i t e ( 7 , * )  n p t s  
w r i t e ( 7 , 1 0 )  ( c u r n ( i ) , d ( l ) , l - l , n p t s )  
w r i t e ( 7 , * )  n p t s  
w r i t e ( 7 , l B )  (curn(l),dc(i),t=l,npts) 
f o r r n a t ( Z ( 3 x . g l 2 . 5 ) )  
stop 
end 

3 0 0  c o n t i n u e  

1 0  

C 
C 
C 

f u n c t i o n  f ( d , t d )  
f=(exp(d**2.*td)*erfc(d*td**.5)-1.+(2.*d*td**.5)/1.772454)/d**Z. 
r e t u r n  
end 



C C C C c C C C C C C C C C C c C C C C c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c  
C 
C Program htrlssr Llne source solutlon hlstory match 
C See program hsr for general description, here there 
C is no input sigma. 

c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c  
C 

program hsrlss 
implicit real*8(a-h,o-z) 
real*8 k,mu 
dimension ~ ( 3 5 0 ) , t ( 3 5 0 ) , ~ ( 3 5 0 ) , d ( 3 5 0 ) , d c ( 3 5 0 ) , c u m ( 3 5 0 )  
o p e n ( u n i t = l , f i l e = ' t . q . d h ' , s t a t u s = ' o l d ' )  
open(unit=2,file='hsrpred.out') 
open(unit=7.file='k. 

C 
rewind(unitk1) 

read(l,*) npts 
ngood=npts 
read(l,*) (t(i),w(t 
read(7.*) k.fi.area 

f.i * ,status='old' ) 

,d(i),i=l,npts) 

r=(atea/3.14159)**.5 
mu=ll0.d-6 
c=l .d-9 
tc=3600.*24.*k/(fi*mu*c*(r**Z,)) 
c u m (  1 ) = 0 .  
do 200 n=Z,npts 

do 100 j=2,n 
x x = 0 .  

time=(t(n)-t(j-l))*tc 
xx=xx+(w(j)-w(j-l))*pdlss(time) 

x(n) = x x  
cum(n)=cum(n-1)+w(n)*(t(n)-t(n-l))*24.*3600. 

x (  1 )=0. 

tot=0. 
call lsqZfnpts,x,d,slope) 

do 300 i=l,npts 
dc(i)=x(i)*slope 
if(d(i).lt.-l0.) then 

go to 300 
ngood=ngood-1 

100 continue 

200 cont t nue 

else 
tot=tot+(dc(i)-d(O)**Z. 
end 1 f 

sd=sqrt(tot/float(ngood-l)) 
write(6,*) ' S D  S L O P E '  
wrfte(6.2) sd,slope 
wrlte(2,*) npts 
write(2.2)(cum(i),dc(i),i-l,npts) 
write(2,*) npts 

300 cont i nue 

2 
write(2,2)(cum(i),d(i),i~l,npts) 
format(Z(g12.5,5~)) 
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