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ABSTRACT

The use of the Hurst Simplified Model to history match the drawdown
behavior of liquid dominated geothermal reservoirs is studied. Liquid dominated
reservoirs virtually always have a region of intimately mixed vapor and liquid
(two-phase zone). Such regions have high compressibilities up to three orders of
magnitude greater than that of liquid only. It is therefore important that a
reservoir model remains valid over a large range of compressibilities, and that it

not require reservoir compressibility as an input parameter.

The Hurst Simplified Model, linear and radial geometries, is formulated for
use in liquid dominated geothermal reservoirs. The model is tested on draw-
down histories of five reservoirs (Ahuachapan, Broadlands, Ellidaar, Svartsengi,
and Wairakei) spanning a large range of compressibilities. The matches yielded
reasonable compressibilities and fits to histories in most cases, with the fields at

either compressibility extreme introducing only slight problems.
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1. INTRODUCTION

When producing a geothermal reservoir, it is important to be able to
predict the drawdown behavior of the reservoir. Many theoretical and empirical
models exist, but even the simplest generally require information on reservoir
geometry (shape, dimensions), flow characteristics (porosity, permeability), and
fluid properties (viscosity). Further, most commercial fields have recharge of
reservoir fluids, meaning that characteristics of the supporting aquifer are also
needed. In practical applications, many of these parameters are not known and
their values must be assumed. Through history matching, some of those unk-

nowns may be determined.

Water influx models in use are of two types: numerical and lumped parame-
ter. The numerical model involves dividing the reservoir into blocks, assigning
values (of permeability and porosity, for example) to each block, and solving the
flow equations in finite difference form. Note that much reservoir data, such as
Permeability and porosity distributions and geometry is necessary to use this

type of model.

Lumped parameter models are solutions of the flow equations for simplified
situations which are then assumed applicable to various real situations. Water
influx methods originating in the petroleum industry (e.g. Hurst (1958) and
Schilthuis (1936)) fall into this category and are applicable to geothermal reser-
voirs (Olsen, 1984). The advantage to Lumped parameter methods is that less
reservoir information is necessary, and that some reservoir information may be

obtained through history matching.

The Hurst Simplified Model (Hurst, 1958) is widely used in the petroleum in-
dustry. This study examines its use in geothermal situations where some of the

system parameters are not known. The following questions are investigated:
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1. How is the Hurst Simplified model applied to geothermal systems?

2. Of the reservoir parameters, which must be accurately known for success-
ful modeling? In practical situations, what values are usually known or are

easily estimable?

3. What is the effect of compressibility in lumped parameter reservoir model-
ing?
4.  What information can a Hurst model history match reveal?

5.  Can the Hurst model be applied to any general situation, or is it limited

strictly to the specific geometry for which it is derived ?

6. Is either of the formulations (linear or radial) of the Hurst model more ac-

curate or convenient?

The focus of this report is on the modeling of geothermal reservoirs using a
method developed for oil reservoirs. In doing so, it seems that the thermo-
dynamics of the geothermal reservoir are being ignored. But while thermo-
dynamics is not implicitly part of the depletion model, a knowledge of the ther-
modynamics of the liquid dominated geothermal reservoir is needed to explain
and interpret the results of the modeling. Whiting and Ramey (1969) and
Donaldson et al. (1983) discuss the thermodynamics of geothermal systems, the
former focusing on production engineering, the latter on reservoir description.
Further models of geothermal reservoir thermodynamics are those of Brigham

and Morrow (1977) and Martin (1975).

A few authors have reviewed the use of water influx models for geothermal
modeling. Olsen (1985) compares numerous models using the Svartsengi reser-
voir as an example. Fradkin et al. (1981) compare models using data from

Wairakei. A more general review of models is that of Grant (1983). Among water
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influx models in the petroleum literature are those of Schilthuis {1949), Hurst
(1958), Carter and Tracy (19680), Fetkovitch (1971), and Allard and Chen (1984).
Studies and models of specific geothermal fields include Gudmundsson and Olsen
(1985), Gudmundsson et al. (1984), and Regaldo (1981) for Svartsengi; Hitchcock
and Bixley (1976) for Broadlands; Atkinson et al. (1978) for Bagnore; and Brig-

ham and Neri (1980) for Lardarello.
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2. THERMODYNAMICS OF GEOTHERMAL RESERVOIRS

The thermodynamics of geothermal reservoirs are discussed by several au-
thors (Whiting and Ramey, 1969; Martin, 1975; and Grant et al., 1982). Contained
here is just enough general thermodynamics to allow discussion of two-phase

zones and two-phase compressibilities.

2.1 Temperature Profiles

The highest temperature at which liquid may exist is given by the vapor
pressure or boiling curve of the liquid. If the liquid has a hydrostatic pressure
profile, deeper portions are at higher pressure and have a higher boiling point.
Figure 1 is a vapor pressure (pressure vs. temperature) curve for pure water.
Turned on its side, it can become a temperature vs. depth diagram. Often
geothermal reservoirs will have this temperature distribution, called the
boiling-point-for-deptn (BPD) temperature profile.

Generally, geothsrmal reservoirs are subject to upflow (Donaldson et al.,
1983): hotter fluids flow upward and carry heat by convection. In such a convec-

tive environment, temperature is close to constant and linear with depth, at

least as long as the temperature remains less than the boiling point.

Thus a generalized geothermal reservoir description could be a tempera-
ture distribution which is linear at depth due to convection, then follows the
boiling point curve at the top of the reservoir. Figure 2 shows temperature vs.
depth data from the Svartsengi field in Iceland which exhibits this composite

behavior.

2.2 Two-Phase Zones

Consider a liquid reservoir whose initial temperature distribution is a com-
posite of BPD at the top, and linear at depth, as just discussed. When such a

reservoir is produced, pressure drops, the boiling point decreases, so the por-
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tion of the reservoir that lies on the boiling curve begins to boil. More of what
was previously the linear convective profile now lies along the boiling curve (Fig-

ure 3). When boiling occurs, a two-phase zone is created.

A more in-depth discussion of the formation of two-phase zones is not
necessary for our purposes. The above discussion is meant to give a qualitative
feel for how and why two-phase zones exist in geothermal reservoirs. Treat-
ments that discuss phase mobilities and gravity segregation include Martin

(1975) and Donaldson et al. (1983).

Boiling may occur due to production, resulting in a two-phase zone; that is,
a zone of mixed steam and water. Confirming this, Grant (1981) states that
nearly all high-temperature fields contain a two-phase zone, maintained in spite
of gravity segregation. This is important because, as will be shown, the
compressibility of a two-phase mixture is radically different than that of either

phase alone.

2_3 Compressibility

The isothermal compressibility relates the change of volume of a fluid due
to change in pressure under isothermal conditions. Petroleum reservoirs are al-
most always isothermal systems. Temperature decline in geothermal systems is
so gradual that they may be approximated as isothermal. The isothermal
compressibility (hereafter refered to simply as compressibility) of water and

steam are available.

Compressibility c is defined:

1 av

==Y gD 1
TV apP 1)
The compressibility of a substance may be calculated from isotherms on a PV

diagram of the substance. The compressibility is related to the inverse of the

slope of the isotherm.
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Figures 4 and 5 are sample P-V diagrams for a pure substance and a mix-
ture (Macias-Chapa, 1985). The isotherms in the liquid region are much steeper
than those in the vapor region, which are in turn steeper than those in the two-
phase region. Thus, liquid compressibilities are smaller than gas compressibili-
ties, while two-phase compressibilities are greater than either liquid or vapor
alone. For water at 240 °C, the liquid compressibility is 1.2x107°pPa ! , while the

vapor compressibility is greater: 3.0x1077Pa ! (Grant et al., 1982).

While the concept of compressibility normally implies a confined system, an
unconfined compressibility arising from a rising or falling water level can also be
computed. This is areal situation as many geothermal reservoirs communicate,
through fractures, to the surface and may thereby be nearly unconfined. Consid-
er a porous medium of area A, porosity ¢, and height h. Adding a volume of
liquid dV causes the level to rise by dh, and the pressure to rise by p g dh.

Compressibility c is defined

i

1dv
STV ar (1)

where
V = 4h
dV = - Apdh
dF = pgdh

Substituting into Eq. 1,

_ 1 Agdh
© = W pgadn (2)

o= b (3)

Considering an aquifer 500 m thick with 15% porosity, at 240 ° C, the compressi-




bility is
c=3.8x107¢ Pa-"
(Grant et al., 1982)

Consider liquid water and steam in equilibrium in a porous medium. A
small reduction in pressure causes a large increase in volume because some of
the liquid will vaporize into steam. The rock must cool to supply the heat of va-
porization, so the rock thermal properties affect the system compressibility.

Grant and Sorey (1979) give the following derivation.

As long as two phases exist in the system, the presure and temperature are

related by the vapor pressure curve. If pressure drops by A P, the temperature

change A T is

AP

AT = m (4)

The heat released by the rock as its temperature drops by AT is
Qinermar = V (pC)7AT (5)
where
(pC)r = (1~0)pm G + ¢ Swpuw Cu (6)

This heat is used to vaporize the water. The resulting change in volume is

V(pC)rAT (Lo 1y )

AV =
HLutant Ps Pw

Using EQ- 2 and 5in Eq. 1,the two-phase compressibility ¢y is

_ 1 (pO)r pw —ps (47,

= (8)
¢ Huatent  PuwPs dS sat

cr

A two-phase mixture at 240°C, 15%porosity, and {pC);=2.5MJ/ m3K, the

compressibility is 1.4x1078pg !
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The compressibilities observable in geothermal reservoirs have a large

range. Recall and compare the values arrived at above:

confined water ¢=1.2x107° Pa!
unconfined water ¢=3.8x1078 pg-!
confined steam ¢ =3.0x10"7 pg!
confined two —-phase c=1.4x10"8 pg-!

Compressibilities of geothermal fluids can thus range over three orders of mag-

nitude.

The analyses just done were concerned mainly with the compressibilities of
the fluids themselves. Geothermal reservoirs consist of compressible fluids in a

compressible porous medium. The total system compressibility is given by

Cr = Cy +Cj (9)

where c; is the formation compressibility. Craft and Hawkins (1959) state that
formation compressibilities range from 4.3x1071°Pg~! to 15x1071°Pg "1, These
are of the order of the compressibility of liquid water. Ramey (1964) states that

the total compressibility is the correct compressibility to use in modeling.

2.4 Other Variables

Other reservoir and fluid parameters used in the water influx modeling are
viscosity w, permeability k, porosity », and fluid density p. In most cases, values
of these are known from tests, or reasonable values can be inferred. For exam-
ple, experience shows that reasonable values of ¢ might range from 5 to 20%.
Values for k might range from 1to 100mD , but approximate values usually ex-
ist from well tests. The variability of some of the parameters used in the Hurst
analysis are compared in Figure 6, which shows the range (in orders of magni-

tude) of these reasonable values for the parameters.

Compressibility easily has the largest range, the compressibility depending

on the extent of the two-phase zone. The extent of the two-phase zone in a
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geothermal reservoir is generally not known (Donaldson et al., 1983). Thus, a
useful model for the reservoir is one which does not have compressibility as an
input parameter but instead computes and outputs it. The Hurst model as for-
mulated and used in this report determines compressibility through a history
match. Then from this compressibility, an idea of the existence and extent of

two-phase zone may be inferred.
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3. WATER INFLUX MODELING

There are two general categories of reservoir models: numerical simula-
tions and lumped parameter models. In numerical simulation, the reservoir sys-
tem is divided into small blocks, each block having its own properties, and finite
difference forms of the governing equations are used to calculate the time and
space variation of, for example, pressure in the reservoir. In lumped-parameter
models, average values of fluid and flow properties are assumed throughout the

reservoir, and analytic solutions are derived.

Lumped-parameter models are generally the method of choice. Numerical
methods demand much computer time and more input information than is gen-
erally known. For example, a lumped parameter model uses an average porosity
and permeability, while a numerical model requires porosities and permeabili-
ties for each block, which are unlikely to be known. Although lumped parameter
models assume average properties and regular geometries, they are useful and

accurate in many practical situations, and easy to use.

A lumped parameter model is a material balance on a closed reservoir: pro-
ducing an amount of fluid causes a pressure drop in the reservoir. Both oil and
geothermal fields are often connected to a supporting aquifer, however, which
adds an influx term to the material balance. Many authors in the petroleum
literature have modeled this situation for different geometries and conditions:
Schilthuis (1948), Hurst (1958), and Fetkovitch (1971). Olsen (1984) tested all of

these models on data from the Svartsengi geothermal field.

These models address flow from an aquifer more or less horizontally adja-
cent to the reservoir ("edge-water drive"). Allard and Chen (1984) did a numeri-
cal simulation of "bottom-water drive"”, noting that edge-water models do not ac-
curately model bottom water situations as the ratio of reservoir thickness to

reservoir radius increases.
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3.1 Hurst Simplified Method

A commonly used water influx model is the Hurst Simplified Method (Hurst,
1956). It treats edge-water drive in linear and radial cases. The method takes a
material balance on the reservoir and applies the solution of the diffusivity equa-
tion in Laplace space (Van Everdingen and Hurst, 1949) to account for water
influx from the aquifer. The "simplification™ is that by using the Laplace
transformation, an expression for drawdown as an explicit function of produc-
tion rate and time is found. A parameter containing the ratio of aquifer to reser-

voir compressibility is central to this derivation.

Hurst's paper develops the method for use in oil reservoir-aquifer systems.
It is easily adapted for use in geothermal reservoir systems by using hot geoth-
ermal fluid properties in place of oil properties in the Hurst formulation. Olsen
(1964) rederived the Hurst linear model for geothermal applications. Because
the derivation is often neglected, and to identify some important points in the
use of the method, the Hurst derivations for both linear and radial cases will now

be given.

3.1.1 Linear Model Derivation
The material balance on the geothermal reservoir is written
W:Wi_Wp-I-WG (10)

(Mass of water in the reservoir equals the initial mass, less produced mass, plus
encroached mass.) For a confined system, masses ¥ and #; are simply related

to the reservoir volume:
W = Vep (11)
so that Eq. 10becomes

Ve(p —pi) = —Wp + W, (12)
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The difference in densities may be approximated

t
d
p_ptz_{]%dt (13)
P
_tdp dP
p=pi= [ G5 g (1)
i

- 1dp 15
c = 4P (15)
Substituting Eq. 15into Eq. 14,
P
p—pi= fcpdP (16)
13
p=pi=Cpa(P — F) (17)

Substituting into the material balance {(Eq. 12)
V;OCPM,(P '—Pi) = _Wp+We (18)

Assuming constant production rate,

Wy =wpt (19)
and writing drawdown
P, -P = AP (20)
Egq. 18becomes
—V@Cpay AP = Wy — wpt (21)

The cumulative water influx is written as the convolution integral:

tp
dAP o gy
W, =B{dt5 Qp(tp—tp)dt) (22)

where dimensionless time is defined
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kgt
tp = ——— (23)
Py caLaz

In the infinite aquifer, L is assigned unit length. Substituting Eq. 22 and 23 into

21.
tp ,
. . w,l ¢, L
~Vye,p AP = BfM‘Qp(tp—tD)dtD _ WplpPHeCala (24)
o dip kq
The Laplace transform of Eq. 24 is
T e o LEw
~Vepyc,BP = BsAPQ, - ";"_'36__‘1_8.5_2_ (25)
a

For the infinite linear aquifer geometry, the influx function @p, as a result of the

LaPlace space solution of the diffusivity equation (van Everdingen and Hurst,

1949) is written

675 =g %2 (26)
and

B = Agc,p, (27)
Substituting Eq. 26 and 27 into 25,

— PlaCatWyp

ApCopgsAPs /2 + Vyp.c, AP = P (=8)
[+ ]
Solving Eq. 28 for &AP:
AP = l‘aca:); (29)
8/2|ale | 1/2
kgAlc,.p.s ‘lcrpr s ]
Defining the Hurst parameter A
= fala (30)
lerpr

EQ. 29 becomes




_14_

o _ Hawp | 1 ]
ap = k,A;a lss’z ()\+sl/2)J (3L

Inverting Eq. 31to real space,

LW A2 AN
AP = ’%—;;:i—{ Perfc(Atg’?) -1+ ~72 (32)

Eqg. 32 may be superposed to account for changing flow rates:

AP =

k, A 2 Wp M[)‘ (tp— tDJ)] (33)

1] 2% RAtp/®
M[A.tp] = r{ DBTfC()\tDl/Q) -1+ TI/T—] (34)

Equation 33 is explicit for AP, and is in real space. Other water influx

where

methods previous to Hurst were not explicit in AP. As soon will be shown, the ra-

dial model is explicit in AP, but is not analytically invertible to real space.

An important thing to note is the form of the constant A: aratio of compres-
sibilities and densities and a geometry term. It was commented earlier that the
reservoir compressibility is an important value to determine, so it is important
that we can calculate it from A. In the next section, A will be compared to the

analogous parameter g, which has no geometric term.

3.1.2 Radial Model Derivation

The previous derivation is unchanged for the radial case through Eq. 22.

For the radial case, dimensionless time is defined as follows:

_ _kt
pucrs

(35)

where the r is reservoir radius.
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One may question why in the infinite linear case the characteristic length

was taken as unity, whereas in the radial case an actual physical dimension is

used. The dimensionless time is used in the Wp term, the term describing the

flov from the aquifer. Inthe linear case, a linear aquifer of infinite extent, there

is no characteristic length. (The length of the reservoir is irrelevant to the

aquifer.) But in the radial case, the reservoir radius is a characteristic length

for the aquifer as it describes the inner radics of aquifer flow.

Continuing as before,

tp 2
. wyt CaoT
~VierprbP = B[ S22 gn (2 -15)at, — “EREEee
0 D a
In Laplace space:
— S CaTrW
—Vep,c, AP = BsAPQ;, - 2&‘—‘;6—‘55;—"—
a

For the radial case, the dimensionless influx “unctionis

K\(NF)
SRR

@ =
and the influx constant is

B =2nr2pcenah

Substituting Eqg. 38 and 39 into 37,

AP ¢ pr Vs Ko(Vs ) + 2Capa}(1(\/§)] - HMaCqgWp
Vs Ko(Vs) J kg hs?
AP = g CaWp Ko(Vs')
mhghs¥ *c, . p,

VEKG(F )+2 55 i (VF)

THT

Defining the radial Hurst parameter o:

5= pfaPa

(36)

(37)

(38)

(39)

(40)

(41)

(42)
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Substituting into Eq. 41,

_ ow Ko(Vs
ap = Ha%t o(Vs ) (43)
Thkahpa  $83/25K (VS) + VS Ko(VE)
In real space,
= Ha¥pT —t, .
AP = 21rkahp‘, N(U,tD tDJ) (44)
where
Ko(VF) ]
N{o,tp) =L 45
(9:¢p) s¥ 2K (Vs ) + \/EKO(\/E)]J (45)
As before, Eq. 44 may be written in superposition form for varying rate:
= HaO —t.
AP = o Y dw, N(otp —tp;) (48)

Again, the expression is convenient as it is explicit in AP. However, in this
case the Hurst function is not analytically invertible to real space. Numerical
methods can be used to invert the function; the Stehfest algorithm is a suitable

method.

A special case dof the general radial solution is the solution for large u. In

the limit, the drawdown is

_ Ma \ _ i
AP = —Zﬂkahpa Z A'w_,, PD(tD tD]) (47)

where pp(tp) is the familiar line source solution (Earlougher, 1977)

-1

o (48)

1 .
poltp) = -5 B
EQ- 48 may be approximated

po(tp) = -;—[m(t,,) + .80907] (49)
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when (approximately) tp>5.

The physical interpretation of using the line source solution is that the
reservoir is small compared to the aquifer, so that the reservoir response is

negligible compared to the aquifer drawdown response.

The Hurst radial parameter o is a ratio of compressibilities and densities
only. (The linear parameter A had a geometric term as well.) Good estimates or
values for aquifer compressibility and density as well as reservoir liquid density
usually are known. Therefore, once 7 is found (through the history match),
reservoir compressibility may be found without direct geometric information.
In the radial case, the geometric information is contained in the dimensionless
time term. In this way compressibility is a less strong function of the geometric

term in the radial case than in the linear case.




4. MODEL APPLICATION

4.1 History Matching Method

The history matching scheme used in this report is that used by Olsen
(1984) and Marcou (1985). The computer programs used in this report are

modifications of programs used by those authors.

Recall the general Hurst model equation for the linear case:

ap = Hak Sy M[)\ (tp—t )] (33)
- /CaAPa j:l wp D Dj
where
1 2¢ ZAt /2
MIntp] = F[e* Perfec(Np/?) -1+ ﬂlfz (34)

The data (history) consists of values of Ah, t, and w;. We generally have a

value or an estimate of the other reservoir and fluid constants, but not h. Define

2( = 30wy # Mty 1)) (50)
=
_ AP _
y(k) = 20 on, (51)

A plot of x(n) vs y(n) will be linear for a system which fits the Hurst Model. Using
data, a linear least squares regression on these x and y yields a slope, a;,, which

from Eq. 33 is

Ha

= ¢ 3 (52)
kApaprg

Qin

All of these equations depend on A, which is unknown. Thus, A must first be
guessed, the least squares fit done, the Hurst model drawdown calculated, and a
standard deviation between the data and the Hurst model found. Another A is

chosen, and the process is repeated. The A (and its g;,) that minimizes the
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standard deviation is the correct reservoir parameter

In the radial case, the general procedure is nearly identical. However in the

radial case, the Hurst function, N, is not.given analytically in real space:

Ko(Vs) ]

N(oitp) = LM 573 [0k (V5 ) + Vs Ko(vV5)] |

(45)

Because the history match is being done in the computer, a numerical method

such as the Stehfest Algorithm (Stehfest, 1970) can be used to invert the equa-

tion.

The history match method for the radial model is identical to the linear

case. Recall Eq. 50:

Ho U B,
=2 Jdp —tp 0
S R o
As before, define

n
z(n) =Y, Mw; o N{o,tp —tp;) (53)

j=1

AP

n)y=—=A 54
y(n) og = Mn (54)

The slope, a,44, from the least squares fit is:

Ka

Qrad = 575 ~ ~
? 7 2nkhapaprg

As explained previously, values for g and apgq Will result from the history match.
Compressibility can then be determined from ¢ and the permeability-thickness

product can be determined from g,qq4.

In his paper, Hurst(1958) states that large radial systems can be modeled
as linear systems. When looking at only early data, any system appears "large”
(its boundaries are not felt), so the linear analysis should work. Thus, if a linear

analysis works on the early data only, the system is probably radial.
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In some cases, a linear fit could not be obtained; there was no minimum in
the graph of standard deviation vs X. In these cases however, a linear fit could
be obtained by using only the early data. This phenomenon indicates that the

reservoir is of radial geometry.

4.2 Computer Application

The FORTRAN 77 computer codes used in this report are given, with details,
in Appendix A. The algorithms are basically as described in Section 4.1. For
each of the geometries (radial and linear) there are two programs: one to find
the standard deviation and least-squares slope for a given ¢ or X, and one which
prepares the model and actual drawdown graphs for a given ¢ or X and least-

squares slope.

In the radial case, recall that the Hurst function is not given analytically in
real space, so must be numerically inverted using the Stehfest Algorithm.
Although the Stehfest Algorithm is well behaved in this application, it is slow. In
this history match method, x{(k) and y(k) are calculated for each k from one to n
(the number of data points, often in the hundreds), and each x{k) has a summa-
tion from one to k. The Hurst function is inside a doubly nested loop. For a data
history of 200 points, the Hurst function is evaluated over twenty thousand
times. Thus, to speed execution time, it was investigated whether a simple real-
space approximation for the Hurst function could be obtained for the ranges of ¢

and fp encountered in geothermal applications.

In the history match, recall that a ¢ is chosen, then all the data fit to yield a
slope and a standard deviation. Thus, the Hurst function N was graphed vs a
range of tp's for a given ¢. Specifically, this was done for the maximum and
minimum ¢ expected in geothermal applications. While the functions are not

very complex, they are not simple enough that an analytical approximation
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would be superior to a table lookup method.

The program used here initially creates a table of N(t,) for the given g, then
employs a table lookup/interpolation subroutine for the Hurst function evalua-
tions rather than repeatedly performing the Stehfest inversion. On the Broad-
lands data, a set of 66 points, a sample execution with repeated Stehfest inver-
sions took over 1100 seconds of CPU time, while the table lookup program took
only 45 seconds (on a VAX 11/750). Thus, the radial model is usable even on a

microcomputer.

4.3 Field Descriptions

This section contains brief descriptions of the five fields studied in this re-
port. The fields studied cover a full spectrum, ranging from the low-temperature
Ellidaar in Iceland to the highly two-phase, high-temperature Broadlands field.
The drawdown histories for all the fields are given in the Appendix, their sources

are noted in each section below.

4_3.1Ahuachapan

The Ahuachapan field is located in western El Salvador. The reservoir has
areal extent of 7400 acres (Kestin, 1980) with many surface manifestations. The
reservoir consists of fractured andesitic rock. The reservoir field temperature
is reported as 230 ° C by Kestin{1980) and 240 ° C by Grant et al.{(1982). Initially
a fully liquid dominated reservoir, a two-phase zone has formed due to exploita-

tion. Reservoir drawdown history from Marcou (1985).

4.3.2 Broadlands

The Broadlands field is a high temperature geothermal resource located in
New Zealand. The reservoir matrix is highly porous but not permeable: flow oc-

curs in fracture zones which exist near faults and formation contacts (Hitchcock
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and Bixley, 1975). It is a high-temperature (270 ¢ C) liquid dominated reservoir
with an extensive two-phase zone (Grant et al., 1982). Reservoir history provided

by P. F. Bixley of the Ministry of Works and Development.

4.3.3 Elidaar

The Ellidaar field is one of three low-temperature fields in Reykjavik. Itis a
small, low-temperature reservoir. Cooling of up to 10° C has occurred, probably
due to cold water influx (Palmasson et al., 1983). Reservoir data from Vatnaskil

(1982).

4.3.4 Svartsengi

The Svartsengi field is one of three geothermal fields on the Reykjanes Pen-
insula in southwest Iceland. It is a high-temperature liquid dominated reservoir.
High permeability exists throughout the production area. (Gudmundsson and Ol-
sen, 1984). Produced fluids are not currently being reinjected, but the possibili-
ty is being studied (Gudmundsson, 1983 and Gudmundsson et al., 1984). Svart-

sengi drawdown ¢ ata from Olsen (1984).

4.3.5 Wairakei

The Wairakei, New Zealand, reservoir is approximately 15km 2 in extent. It
is believed that the resource is due to a hot plume rising through cold water
from an ultimate magmatic source at depth of 10 km. A two-phase zone exists
near the top of the reservoir and has increased with production (Fradkin et al.,

1981). Drawdown history for Wairakei from Marcou (1985).
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5. RESULTS AND DISCUSSION

Hurst method history matches, both linear and radial cases, were per-
formed on the drawdown data of the five fields (Ahuachapan, Broadlands, Elli-
daar, Svartsengi, and Wairakei). The input parameters used in the analyses are
given in Table 1. The drawdown data (time, production rate, and drawdown) are
given in the Appendix. Graphs of the rate histories are shown in Figures 7-11.
(Drawdown histories are shown with the model fits.) Sample plots of standard de-
viation vs ¢ and A used for determining the best match for each field are shown

in figures 12-21.

The o, X, a4, e, and standard deviations of the matches on the each field
are given in Table 2. The reservoir cornpressibilities and permeability-thickness
products resulting from the radial fit are given in Table 3. Plots of actual and

modeled drawdown for all fields are given in Figures 22-29.

The linear and radial fits are compared in table 2. Generally, the radial
model gave better results (smaller standard deviations). Specifically, the
Ahuachapan, Svartsengi, and Wairakei data were best fit by the radial model.
For Wairakei, the linear model could not be fit to the entire data history, but
could be fit to the early data. Such behavior confirms that it is a strongly radial
system (recall discussion, section 4.1). Figures 12, 14, and 16 are the radial fits
for those fields, all are reasonable matches that model well the true drawdown

behavior of the reservoirs.

In the Broadlands case, the linear model yielded a slightly better fit than
did the radial, but from Figs. 24 and 25 it is seen that neither match well. The
high compressibility of the Broadlands field explains the poor drawdown predic-
tions of Figures 24 and 25. In those figures, the actual data shows strong varia-
tions while the prediction is very stable and insensitive, as if it had a strong

pressure support. In a highly compressible fluid, pressure disturbances travel
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slowly. In the Broadlands field, the delay across the field may be of the order of
months (Grant, 1977) What this means is that the aquifer does not feel the pres-
sure drops immediately and so cannot provide the support that the Hurst model
thinks it will. Thus, the Hurst model assumes pressure support that is not there.
It is encouraging that although the match itself may not be satisfactory, the
model yields a reasonable compressibility value: one of the order of the

compressibility of two-phase mixture.

The Ellidaar case was handled slightly differently. Figures 20 and 21 show
no minimum standard deviation, only a flattening at high . This behavior indi-
cates that the line source limit of the Hurst Model should be used. As described
in Section 3.1.2, the line source’s physical interpretation is that the reservoir is
small compared to the aquifer, so that the reservoir response is negligible com-
pared to the aquifer response. Thus in the line source limit, reservoir properties
cannot be deduced. However, a model fit can still be done. The fit is shown in

Fig. 26.

Table 3 gives the compressibilities and thicknesses calculated from the ra-
dial matches. The cornpressibilities range from 12.0 x 10 ¢ for the Broadlands
field to 2.8 x 10 “8 for Wairakei. From the previous discussion of compressibili-
ties, these lie approximately in the range of values of compressibility of water
systems in the configurations discussed. This confirms that the Broadlands field
is highly two-phase while at the other extreme Wairakei is mainly liquid with lit-

tle two-phase zone.

It was stated earlier that reservoir compressibility is an important quantity
to determine from a history match. (Its wide range of possible values means it
can not be easily estimated initially, but once determined, it gives an estimate
of the extent of the two-phase zone.) It was also seen that the radial model ac-

complishes this end most easily, as compressibility is calculated from ¢ with less
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dependence on the geometric term (which is often uncertain). Table 3 shows
that the radial model is generally applicable, and yielded reasonable compressi-
bility results. The Hurst radial model is thus applicable to a large range of
reservoirs and easy to use with little reservoir information. It yields reasonable

values for reservoir parameters, and history matches with predictive capability.
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6. CONCLUSIONS

Reservoir compressibility is an important parameter to determine for a
field for two reasons: compressibility has such a large range of values that it
is not readily estimable initially, and its value is useful as a way of estimat-
ing the extent or existence of a two-phase zone in a liquid dominated geoth-

ermal reservoir.

The Hurst Simplified Method history match yields useful reservoir parame-

ters (c and kh) as well as a model useful in prediction.

The matches on the various fields showed that the Hurst radial model is

useful on a wide range of liquid-dominated geothermal reservoirs.

Comparing the standard deviation of the best linear and radial matches

tells whether the reservoir geometry is closer to linear or radial.

In highly compressible (highly two-,phase)systems, the Hurst model yields a
reasonable compressibility, but the match itself has difficulty modeling the

sharp changes in drawdown well.

A flattening of the ¢ vs standard deviation curve at high ¢ (rather than a
true minimum) indicates that the field is small, and that the line source
limit of the Hurst Model should be used. In that case, a match (and predic-
tions) can still be done, but reservoir characteristics cannot be deter-

mined.

Using a table-lookup formulation of the Hurst radial model, execution time
was cut drastically, enough that the radial history match could be carried

outon a microcomputer.




NOMENCLATURE

A Area of the reservoir or cross-sectional area of the aquifer{m?)
B Van Everdingen and Hurst water influx constant (kg/Pa)
c Heat capacity {(kJ/kg-°K)

c Compressibility (Pa™!)

g Acceleration of gravity (9.81m/s?)
h Height of reservoir (m)

k Permeability (m?)

l Length of reservoir (m)

L Length of aquifer (m)

M.N Hurst functions

P Pressure (Pa)

Q Hurst influx function

T Radius (m)

s Variable in Laplace space

S Saturation

t Time (s)

T Temperature (K)

V Volume (m?)

w Mass rate (kg/s)

W Mass (kg)

z,y Least squares variable

i Viscosity (Pas)

27




A0

av

Porosity
Density (kg /m?)

Hurst parameters

SUBSCRIPTS

Aquifer

Average
Dimensionless
Encroached
Formation

Initial

Matrix

Produced
Reservoir

Steam

Saturated conditions
Total or isothermal

Liquid water

Barred variables indicate Laplace space form.
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PERMEABILITY | POROSITY AREA TEMPERATURE

K (x10~12 m?) P A (x10° m?) T (°C)
Ahuachapan .050 21 15.0 240.
Broadlands .8B29 .15 2.0 2/0.
Ellidaar .099 .05 1.0 110.
Svartsengi .500 .05 3.6 240.
Wairakei .027 .20 15.0 260.

TABLE-1. Reservoir parameters input to the history matches.




/1
LINEAR RADIAL
L]
A Qyin STD. DEV. o Q.¢ | STD. DEV.
x107% [ x10710 x1074

Ahuachapan | 12.1 15.8 5.82 373. | .133 5.69
Broadlands 0.91 0.13 1.16 16 | .040 1.19
Ellidaar . * . Iss | Iss 18.6
Svartsengi 115 4.31 2.05 16. .087 1.77
Wairakei ¥ * * 720. ,072 6.56

* .- No linear fit

Iss — Line source limiting case

TABLE-2. Hurst parameters, least-squares constants and standard deviations

of best linear and radial fits for each fleld.




RESERVOIR PERML.-THICK.
COMMRIESSIBILITY PRODUCT

¢, (x1078pg 1) kh (B=m.)

Ahuachapan 5.2 17.4
Broadlands 1200. 6.1
Svartsengi 118. 26.3
Wairakei 2.8 33.4

TABLE-3. Compressibilities and permeability-thickness products found from
the radial fits.
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APPENDIX: Data Files and Computer Programs.

A 1. Data Files

The drawdown histories for the five fields are given in this section. They are

presented in the format used by the programs: data triples, sets of time (in

days), rate (kg/sec), and drawdown (m water). Their use with the programs is

described in comment statements in the programs.

A2 . The Computer Programs

The major programs used in this report are given here. Programs are writ-
ten in FORTRAN '77 and were run under the UNIX operating system on the Stan-

ford University Petroleum Engineering Department VAX 11/750 computer. In-

structions for the programs are given as comments in the codes.




AHUACHAPAN

14

0. 0. O
365.000 126.481 6.37105
730.000 105.939 19.1131
1095.00 240.947 35.6779
1460.00 90.3063 31.8552
1825.00 117.174 28.0326
2190.00 195.643 25.4842
2555 .00 407.214 54.7910
2920.00 592.583 70.0816
3285.00 575,733 94.2915
3650.00 575.920 109.582
4015.00 564.228 121.050
4380.00 698.947 145.260
4745 .00 550.298 156.728

WAIRAKEI

25
0. O. O.
365.000 1184.00 37.0000
730.000 1517.00 89.2000
1095.00 1340.00 110.900
1460.00 1643.00 142.700
1825.00 2327 .00 186.000
2190.00 224% .00 221.700
2555 .00 2087 .00 238.300
2929.00 2039.00 247.200
3285.00 1890.00 256.100
3650.00 1513.00 265.000
4015 .00 1769.00 275.200
4380.00 1776.00 286.700
4745.00 1722.00 293.100
5110.00 1665 .00 298.200
5475 .00 1528.00 302.000
5849.00 1490.00 303.300
6205 .00 1462.00 305.800
6570.00 1509.00 307.100
6935 .00 1475.00 309.600
7300.00 1532.00 310.900
7665 .00 1454 .00 312.200
8030.00 1512.00 309.600
8395 .00 1490.00 305.800
8760.00 1487.00 305.800




ELLIDAAR

184

31.90888
59.0000
90.0000

120.
151.

i81

973

000
000

o8B
212.
243.
273.
304.
334.
365.
396.
424,
455,
485.
516.
546.
577.
608.
638.
669.
699.
730.
761.
789.
820.
850.
881.
911.
942.

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

1003.00
1034 .00
1064.00
1095.00
1126.00
1154.00
1185.00
1215.00
1246.00
1276.00
1307.00
1338.00
1368.00
1399.00
1429.00
1460.00
1491.00
1519.00
1550.00
1580.00
1611.00

15.3120 6.14800
43.3780 11.7000
37.3970 17.8500
46.4110 23.8000
35.6220 29.9500
33.1230 35.8900
20.6540 42.0400
46.3070 44.2700
34.2300 22.3800
0. 28.0000
22.8200 20.8900
40.9550 41.0408
67.7630 46.9600
70.0140 50.8100
60.3120 40.8000
36.7860 34.4000
3.45160 31.0500
3.45160 27.8100
7.06630 24,4688
8.87980 21.1100
17.6300 17.8600
43.8080 40.7100
88.6360 56.1000
110.190 84.4300
99.8840 68.5700
135.560 105.300
137.090 116.300
94.9800 85.3200
88.3020 66.0380
104.750 65.4000
89.3710 66.4000
92.8340 66.1200
69.9660 69.5100
95.1040 93.8400
155.410 103.400
137.280 105.800
137.190 106.800
135.180 107.500
136.610 108.100
129.930 100.400
51.5830 45.0500
34.0860 35.7300
34.3730 35.5000
83.3990 57.3780
121.060 90.7700
126.120 101.88%
141.380 111.200
137.090 112.900
145.390 113.500
150.160 113.900
144.858 114.000
135.660 99.5100
126.020 86.2700

1641.00

1672

.00

1703.00

1733
1764
1794

.00
.00
.00

1825.00

1856
1884
1915
1945
1976

2006.

.00
.00
.00
.00
.00

00

2037.00
2068.00

2098.

2129
2159

2190.

2221
2249

2280.
2310.

2341
2371

2402.
2433.

2463

2494.

2524
2555
2586

2614.

2645

2675.

2706

2736.
2767.

2798
2828

2859.

2889

2920.

2951
2979

3010.
3040.
3071.

3101

3132.
3163.
3193.

3224
3254

00
.00
.00

00
.00
.00
00
00
.00
.00
00
00
.00
00
.00
.00
.00
00
.00

00
.00
00
00
.00
.00
00
.00

00
.00
.00
00
00
00
.00
00
00
00
.00
.00

107.

107.

320
900

83.2940

152.
146.
143.
142.
143.
142.
142.
142.

122

260
060
580
620
100
050
150
050

.490

69.7660
70.9490
50.5240
74.8118

128.
146.
143.
142.
141.
141.
126.
114.

600
440
860
340
100
670
880
480

94.6560
74.5260
84.8110

111
117
138
141
142
126
128
126

126.
143.
106.
122.
130.
123.
131.
131.
126.
127.
121.
132.
118.
126.
107.
110.
105.
126.
131.

.810
.910
.430
.670
.340
.400
.790
.210
600
480
280
490
130
830
940
080
980
550
630
890
300
690
990
950
510
120
650

82.5

700

80.1200
97.8600

108.
109.
1009.
110.
110.
111.
111.
112.
112.
113.
113.
114.
114.
115.
115.
116.
116.

117

600
200
700
200
700
100
700

100
700

200
700
200
700

200
700

200
700
.200

113.84%

103

.800

89.6200
75.6700
74.3800
83.0600
91.4600
90.3600
99.1400

108
116
116

115.
114.
113.
113.
112.
111.
111.
110.
1009.
107.
105.
102.

.200
.700
.000
300
600
900
200
500
800
100
300
700
700
000
600

99.9200
97.3400
94.6600
92.0800
89.4100
86.7400

85.9300
105.500

109

.900
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3285.00
3316.00
3344 .00
3375.00
3405.00
3436.00
3466 .00
3497 .00
3528.00
3558.00
3589.00
3619.00
3650.00
3681.00
3709.00
3740.00
3770.00
3801.00
3831.00
3862.00
3893.00
3923.00
3954 .00
3984 .00
4015.00
4046 .00
4074 .00
4105.00
4135.00
4166.00
4196.00
4227.00
4258.00
4288.00
4319.00
4349.00
4380.00
4411.00
4439.00
4470.00
4500.00
4531.00
4561 .00
4592 .00
4623 .00
4653 .00
4684 .00
4714.00
4745 .00
4776.00
4804 .00
4835.00
4865.00
4896.00

4926.00
4957 .00
4988 .00
5818 .00
5049.00
5079.00
5110.00
51'41 .00
5169.00
5200.00
5230.00
5261.00
5291.00
5322.00
5353.00
5383 .00
5414.00
5444 .00
5475 .00
5506.04
5534.00
5565.00
5595.00

130.890
130.700
129.930
132.700
119.350
104.940
105,700
105.320
106.660
119.250
129.270
130.320
123.450
128.890
122.300
122.020
116.390
122.880
119.540
103.320
93.6450
95.5910
95.9720
117.530
108.570
114.770
135.470
121.730
116.480
112.480
91.3260
80.0690
91.0690
102.940
112.570
136.140
129.270
134.610
133.940
133.460
134.040
125.830
102.460
92.1280
94.7700
100.070
133.080
134.040
148.350
137.190
159.990
114.100
135.090
128.120

118.870
97.4030
101.120
113.530
147.580
134.320
153.400
140.140
140.520
147.110
149.210
119.250
88.1970
87.5100
93.9690
29.0490
123.920
165.040
150.640
180.590
174.960
169.140
173.340

112.200
112.600
113.900
114.400
106.600
91.80988
87.1400
84.0800
85.0000
97.5000
99.0000
104.200
110.500
112.100
113.300
113.000
114.900
115.000
111.400
91.7100
87.9100
84.4500
85.0000
98.6700
106.200
110.800
111.800
112.900
108.300
106.600
83.6200
84.8800
88.1200
94.0200
100.100
106.000
110,700
109.900
108.400
106.800
105.200
103.600
102.000
100.400
98.8100
97.2400
95.6300
94.0600
92.4400
90.8300
89.3700
87.7500
86.1800
84.5600

83.0000
81.3800
79.7600
78.2000
76.5800
75.0200
73.4000
71.7800
70.3200
68.7000
67.1400
65.5200
63.9500
62.3400
60.7200
59.1500
98.8800
105.500
106.800
115.200
115.400
116.100
105.600

BROADLANDS

©00000000;

.029
.157
.286
.057
.186
.314

.443
.571
.700
.829
.957
.086
.214
.343
471
.600
.729

.857
.986

114
.243

.372

.500
.629

.757

.886

.014
.143

271
.400
.616

.031

.428

.826

.222

.619

.993

.827
.660
.520

.030
.540
.049
.559
.069

.580
10.09
10.60
11.11
11.62
12.13
12.64

13.15
13.66
14.17
14.68
13.15
12.33
10.85
9.741
9.046
8.828
8.611
8.407
8.629

OCOOONNODOOOOOOOUUIUTACIUICIOADRDMBRRADRNDRADRNWWWWWWWWNNNNNNNNR R R
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48.00
30.00
5.00
30.00
45.00
30.00
58 .00
30.00
31.00
30.00
51 .00
30.00
57.00
48 .00
45 .00
45 .00

30.00
56.00
52 .00
48 .00
53 .00
71 .00
50.00
55 .00
85 .00
90.00
155.00
95.00
65.00
95.00
130.00
115.00
50.00
115.00
121 .00
115.00
137.00
131 .00
138 .00
161 .00
147.00
134 .00
115.00
125 .00
60.00
110.00
116.00
131 .00
161 .00
151 .00
168.88

0.90
0.95
0.97
3.59
3.98
4.26
4.62
7.05
7.94
8.68
10.38
10.67
13.30
13.60
13.84
13.76
13.50
13.80
14.50
15.19
15.72
17.54
17.95
18.54
19.18
19.61
23.07
23.99
25.33
25.85
27.61
29.44
29.76
29.88
30.52
30.72
32.82
33.09
33.11
33.16
33.44
33.49
33.51
33.53
33.68
33.73
34.08
34.40
34.58
34.92
35.40
35.82

1309.
1319.
1339.
1343.
1345 .
1348.
1353.
1358.
1368.
1415.
1435.
1437.
1438.
1442.
1443 .
1451 .
1452 .
1453.
1472.
1473 .
1487.
1491 .
1504 .
1517.
1521 .
1523.
1524.
1571 .
1590.
1595.
1618.
1660.
1669 .
1676.
1681 .
1688.
1702.
1761 .
1762 .
1764 .
1768.
1769.
1787 .
1789.
1790.
1808.
1839.
1862.
1864.
1869 .
1872.
1901 .
1932.
1937.

1942,
1947 .
1956.
2025 .
2075.
2111.
2122.
2129.
2133.
2143.
2146.
2150.
2157.
2265 .
2319.
2331.

188.
211 .
116.
140.
150.
171 .
186 .
205.
226 .
116.
120.
164.
163.
175.
183.
186 .
192.
209.
129.
164.
172.
202.
129.
129.
135.
339.
279 .
326.
344 .
294 .
347 .
342.
336.
274 .
280.
218.
222.
149.
152.
214.
149.
152 .
206.
212.
272 .
360.
341.
322 .
273 .
269 .
249 .
301.
299 .
245 .

299.
275 .
281 .
284 .
224 .
- 219.
269 .
230.
280.
271 .
311.
315.
263 .
308.
283 .
328.
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c

c hsl

c

c Revised form of program hursimplin (Olsen, 1985)

C

c This program is used to flnd the standard deviation and "slope®

c term in the hurst simplified linear analysis, for a given value

c of the Hurst parameter lambda.

c

c USING THE PROGRAM: )

c The object is to find the lambda which minimizes the standard

C deviation. The method used here was to automize the following steps:
c (On the UNIX system, a c-shell program did the following)

C greaﬁelan input file of lambdas, 1n increasing order

c un hs

C Find lambda corresponding to minimum std. deviation

c Make new file of lambdas ranging above and below the above sigma

c Tﬁ S?t to desired accuracy.

c :

c "t.q.dh" contains the field data of time, production, and drawdown. _
c The first line is the number of data points, subsequent lines contain
c time(days), production rate{kg/sec), and drawdowni{meters of water).

c

c *k.f1" contains the following parameters: permeability{sq. meters),

c porositylunitiess), and area of field(sq. meters)

C

c Input from the standard input is the value for lambda. This value

c is NOT prompted, as usually the program reads these lambdas from a

c file of many lambda values. The program contains a loop such that

c if a file of lambdas is redirected into the standard Input, lambdas
c will be read until the file is finished. Note: after the last lambda
c is read, the program will attempt to read the end of file, resulting
c in possible error statements. As this caused no problems with the

c opegating system used, extra code for stopping the data input was not
c used.

C

c OUTPUT: i

c output is made to standard output. For each lambda input, the output
c is lambda, standard deviatlon, and "slope".

c

c

c

(of of off of o of of o off of off o o of of o o off ol off o off o o of o of o of ol off o of of off o o o ol o ol o ¥ o oF Y o o oY o o} of o off of ol of f f oY of o A of o
program hsl
implicit real{a-h,o0-2)
real k,mu,lam
dimenslon x{(358),t{358),w{(3%2),d(350),dc{358),cum{358)
open{unit=1,file='t.q.dh’,status="'0ld")
openlunit=7,file="k.fi’,status="'0l1d"’)
rewind{unit=1)

read{1,*) npts
Y (e

read{(l,* Y,wii),d{i),1=1,npts)




OO0

400

100

200

300

read{(7,*) k,fi

mu=11@.e-6

c=1.e-9
tc=3600.%24.*k/ L fi*mu*c)
continue

cum( 1)=0.

read(5,*) lam

do 200 n=2,npts

xxX=0.

do 100 j§=2,n
time={t{n)-t(J-1))*tc
xx=xxt{w(J)=-wlj=-1))*f(lam,t{me)
contlnue

x{n)=xx
cum{n)=cum{n=-1)+win)*{t(n)-ti{n-1))*24,.%36028.
continue

x{(1)=4.

call 1sqi{npts,x,d,slope)
tot=0.

do 300 t=1,npts
dc{t)=x{1)*slope
tot=tot+{dc{i)-d{({))**2,
continue
sd=sqrt{tot/floati{npts-1))
write(6,1) lam,sd,slope
format(3{(gl12.5,5x))

go to 400

stop

end

function f(d,td)
f={exp(d**2.*td)*erfcl{d*td**,5)-1,.+{2,.%d*td**.5)/1.772454)/d%*2.
return

end
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hsrtab

Revised form of program 'hursradflt’ (Marcou, 19B5)
The major revision is that a table lookup program {is used for

evaluatlon of the Hurst function, greatly Increaslng execution
speed.

This program {s used to find the standard devlatlon and "slope’

term in the hurst simplified radtal analysis, for a given value
of the Hurst parameter sigma.

USING THE PROGRAM:

The object is to find the sigma which minimizes .the standard

(On the UNIX system, a c-shell program did the following)

deviation. The method used here was to automlze the following steps:
Create an input flle of sigmas, In Increaslng order

Run hsrtab

Find sigma corresponding to minimum std. deviation

Make new file or sigmas ranging above and below the above sigma
Repeat to deslred accuracy.

INPUT:

“t.q.dh" contains the field data of time, production, and drawdown.
The first line is the number of data points, subsequent lines contain
timel{days), production rate{kg/sec), and drawdown{meters of water).

"k.f1" contains the following parameters: permeabilityl{sq. meters).
porositylunitless), and area of field{(sq. meters)

Input from the standard Input is the value for sigma. This value
is NOT prompted, as usually the program reads these sigmas from a

file of many sigma values. The program contains a loop such that
{f a file of sigmas s redirected into the standard input, sigmas
will be read until the file is flnfshed. Note: after the last sigma

is read, the program will attempt to read the end of file, resulting
in possible error statements. A5 this caused no problems wlth the
operating system used, extra code for stopping the data input was not

used.
OUTPUT:

Output is made to standard output. For each sigma input, the output
is sigma, standard deviatfen, and "slope".

OOOOOOOOOO0000000000000000000000000000000000

program hsr

{mplicit real*8{a~-h,o0~-2)

real*8 k,mu

dimension x{35@),t{(350),w{350),d(358),dc{352),cum(352)
{ ,ttab(58),ftab(59)

. open{unit=1l,file='t.q.dh’',status=’old"*)
open{unit=7,flle="k.fi’',status="01d")
rewindlunit=1)
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[eNeNe]

o000

OO0

OO0

400

200

300

i),dl1),1=1,npts)

r={(area/

te= 365% *24 . %k /(fi*mu*c*{r**2,})
continue

ngood=npts

cum{1)=9,

read{(5,*) sig

The subroutlne maktab creates a table of time vs.

L ! Hur st function
for the given sigma.

call maktab{tc,t{(npts),sig,ttab,ftab)
Perform Hurst analysis

do 200 n=2,npts
xx=Q.

do 100 §=2,n
time={(t{n)-t{ 3~
call lookupltt
xxExx+{w(3)-wl
continue
x{n)=xx*st
cum{n)= cum(n 14win)*{4(n)-t{n-1))%*24,*36007.
COT?IQUG

x{ =g,

1))*te
bittab ,90,ttme,hf)

a
j=1))=*n

The subroutine 1sq performs a least squares fit (constratned through
the origin).

call 1sq2(npts,x,d,slope)

Calculate drawdown and std. devlatlon

tot=4.
do 300 i1=1,npts
dc{1)=x{1)*s]lope
ifl{d(i{}).1t.-1.) then
ngood=ngood-1
go to 300
else
tot=tot+{dcl{i)-d{1))}**2,
endif
continue

sd=sqrt{tot/float{ngood-1})
Output sigma, std.dev., and slope.
writel(6,509) sig,sd,slope




(¢]

500

format(3(2x,g14.6))

return for new sigma

go to 400
stop
end
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[eNeNeNe]

hursgraphrad, revised from Marcou(19885)

This program Is used to generate the Hurst prediction, given

sigma and "slope"™. The correct sigma and "slope"™ are found
using program hsrtab.

INPUT:

“t.q.dh": time, production rate, and drawdown, as described
in program hsrtab

“k.f1": permeability, poroslty, and reservoir area, as described
in program hsrtab

sigma and "slope" are prompted inputs on the standard input.

OUTPUT :

"hsrpred.out" is_the graph-routine-ready output
of drawdown vs time.

AR A AR KA A RN A AR AN RN AR AR RNN R AR ERRNRRR AR NRRK

main program

L2222 SRR RS2SRRSR R0 8]

implicit real*8(a-h,0-2)

real*8 k,mu

dimension t{225),q(225),dh(225),sum{(225),dhc{225),cum{225)
open {unit=3,f1le="t.q.dh',status='old*)

rewind (unit=3)

open {unit=2,f
rewind (unit=2
open {unit=1,f

{le="hsrpred.out’)
)
tle="k.f1')

LB ERERRERERRSE 1nput data TRakkkd kR KRR kAR

read (3,*) 1

read (3,*) (t(t),ql1),dh{1),i=1,1)
read (1,*) k,fi,area
r2=area/3.14159

mu=110.e-6

c=1.e-9

tc=86400.*k/{fi*murc*r2)

write (6,%) * °

write (6,*) * °

write {6,*) “what is the value of sigma?”
read (5,*) sig

write (6,*) * °

write (6,*) * °

write (6,*) "what is the slope?”

read (5,*) slope

wakxkuxxwnxnwxw jnitialize and laplace SOlULION **xwrxwxaxwxxawxx
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[eNe]

200

300

400

500

do 200 i=1,1

if (i.eq.1) then
n=19
m=150

{

t{i)-t{(3-1))

1 um{1)+{qlJr-qlJj-1))*sig*sigmani{dtd,n,m,sig)
cont inue

cum{i)= cum(i-1) + (qlII*(t{1)-t(i=-1))%6RQ,.*60.%24.)

end if
continue

Mok Ak NN WKW ca]cu‘!ate draWdown (A AR R L L2

do 300 1=1,1
dhc({)=slope*suml ()
continue

ARk RAXKRANX wprite to file "graph.dhc® **waswkaxwwx
wxaxwknw First write the calculated drawdown #xxx»x

write (2,*) 1
do 400 i=1,1

write {2,*) t{1),dhc(1)
continue

*ankxwnxxk now write the actual drawdown **wmwmwxxx

write (2,*) 1
do 500 i=1,1
write (2,%*) t{(f},dh(1)
continue
stop
end
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hslpred, revised from Ol1sen{1985)

This program s used to generate the Hurst prediction, given
lambda and "slope". The correct lambda and “slope" are found
using program hsl.

INPUT:

"t.q.dh”: time, production rate, and drawdown, as described
in program hsrtab

"k.fi": permeability, porosity, and reservoir area, as described
in program hsrteb

lambda and "slope" are prompted inputs on the standard input.

OUTPUT:
“hsrpred.out” is the graph-routine-ready output

The first series of points is actual data,
the second series is the calculated drawdown.
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Qro%(am hslpred

implicit real{a-h,o0-2)

real k,mu,lam

dimension x{358),t(35%),w{358),d(350),dc{358),cum(358)
open(unit=1,file="t.q.dh’,status="old"’)

rewind{unit=1)

open{unit=7,file='hslpred.out’)

rewind{unit=7)}

open{unit=8,f1le="k.f{',status='01d"’)

rewind{unit=8)

read(8,*) k,fi

writel6,*) "Enter lambda“”
read{(5,*) lam

write(6,*) "Enter slope”
read(5,*) slope
read(l,*) npts

read{l,*) (t{{§),wli),d{t),1=1,npts)
mu=112.e-6

c=1.e-9
tc=3600.%24.*k/{(fi*mu*c)
cum{ 1)=0.

do 200 n=2,npts

Xx=0.

do 100 j=2,n

time=(t{n)-t{Jg-1))%tc
xx=xx+{w(J)-wlj-1))*f{lam,time)

continue

x{n)=xx
cum{n)=cum{n-1)+win)*{t{n)-t{n-1))%*24 . .*3600.
conti{nue

x{1)=@.

do 300 f=1,npts
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deli)=x{1)*slope

continue

writel(7,*) npts

writel7,108) {(cum(1),d(i),1=1,npts)
write{7,*) npts

write(7,10) (cum(§),dcli),i=1,npts)
format{(2(3x,g12.5))

stop

end

function f{d,td)

f=(exp(d**2.*td)*erfc(d*td'*.s)—l.4(2.‘d'td‘*.5)/l.772454)/d**2.
return

end
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Program hsrlss: Line source solution hlstory match

See program hsr for general description, here there
is no input sigma.
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program hsrlss

implicit real*a(a h,o-2}

real*8 k,

dimension x(35ﬂ) t(354) ,wl354),d(350) ,dc(350),cuml{350)
open{unit=1,file="t.a.dh’ .status- old?)

openl{units= 2.file='hsrpred out')
openlunit=7,.f{le='k.fi’,status="o0l1d’)

rewindlunit=1)

read{(1,*) npts

ngood=npts

read{1,*) (+(1),wl1?,d{1),1=1,npts)

read{(7.*) k.fi.area

r={area/3.14159})*%.5

mu= llﬂ d-6

c=1.

tes 3655 *24 *k/UF i murc*{r®*2,))

cum(l)=8,

do 200 n=2,npts

xx=8,

do 100 j=2,

time={(t{n)- t(?—l))*tc

xx=xx+{wl{J)-wlj=-1))*pdliss(time)

continue

x{n)=xx

cumind=cumin-1)+win)*{tin)-tin-1})%24,%36049,

contfnue

x{1)=0,

call 1sq2{npts,x,d,slope)

tot=4.

do 300 {=1,npts

dcl{f)=x{{)*slope

ifld{i).1t.-18.) then
ngood=ngood-1

go to 300
else
tot=tot+{dc(1)~d{1))**2,
endlf
cont
sd= sqrt(tot/f]oat(ngood 1))
writelb6,*) *SD SLOPE'

writel6,2) sd,slope

write{2,*) npts
write(2,2)(cum{i),dc({),i=]l,npts)
write{Z2.%*}) npts

write(2, 2)(cum(1) d(I),1=l npts)
format{2{(gl2.5 x)




	ABSTRACT
	ACKNOWLEGEMENT
	LIST OF FIGURES
	LIST OF TABLES
	1 INTRODUCTION
	2 THERMODYNAMICS OF GEOTHERMAL RESERVOIRS
	2.1 Temperature Profiles
	2.2 Two-Phase Zones
	2.3 Compressibility
	2.4 Other Variables

	3 WATER INFLUX MODELING
	3.1 Hurst Simplified Method
	3.1.1 Linear Model Derivation
	3.1.2 Radial Model Derivation



