COMPRESSIBILITY EFFECTS IN MODELING TWO-PHASE LIQUID DOMINATED GEOTHERMAL RESERVOIRS

A Report
Submitted to the Department of Petroleum Engineering
of Stanford University
in Partial Fulfillment of the Requirements for the
Degree of Master of Science

by

David C. Brock

June, 1986.
ABSTRACT

The use of the Hurst Simplified Model to history match the drawdown behavior of liquid dominated geothermal reservoirs is studied. Liquid dominated reservoirs virtually always have a region of intimately mixed vapor and liquid (two-phase zone). Such regions have high compressibilities up to three orders of magnitude greater than that of liquid only. It is therefore important that a reservoir model remains valid over a large range of compressibilities, and that it not require reservoir compressibility as an input parameter.

The Hurst Simplified Model, linear and radial geometries, is formulated for use in liquid dominated geothermal reservoirs. The model is tested on drawdown histories of five reservoirs (Ahuachapan, Broadlands, Ellidaar, Svartsengi, and Wairakei) spanning a large range of compressibilities. The matches yielded reasonable compressibilities and fits to histories in most cases, with the fields at either compressibility extreme introducing only slight problems.
ACKNOWLEDGEMENT

The author wishes to thank Professor Jon S. Gudmundsson, principal advisor of this research, for his invaluable guidance. Thanks also to the students, faculty, and staff of the Department of Petroleum Engineering at Stanford University, particularly Professor Roland N. Horne, for their support.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>ii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. THERMODYNAMICS OF GEOTHERMAL RESERVOIRS</td>
<td>4</td>
</tr>
<tr>
<td>2.1. Temperature Profiles</td>
<td>4</td>
</tr>
<tr>
<td>2.2. Two-Phase Zones</td>
<td>4</td>
</tr>
<tr>
<td>2.3. Compressibility</td>
<td>5</td>
</tr>
<tr>
<td>2.4. Other Variables</td>
<td>8</td>
</tr>
<tr>
<td>3. WATER INFLUX MODELING</td>
<td>10</td>
</tr>
<tr>
<td>3.1. Hurst Simplified Method</td>
<td>11</td>
</tr>
<tr>
<td>3.1.1. Linear Model Derivation</td>
<td>11</td>
</tr>
<tr>
<td>3.1.2. Radial Model Derivation</td>
<td>14</td>
</tr>
<tr>
<td>4. MODEL APPLICATION</td>
<td>18</td>
</tr>
<tr>
<td>4.1. History Matching Method</td>
<td>18</td>
</tr>
<tr>
<td>4.2. Computer Application</td>
<td>20</td>
</tr>
<tr>
<td>4.3. Field Descriptions</td>
<td>21</td>
</tr>
<tr>
<td>4.3.1. Ahuachapan</td>
<td>21</td>
</tr>
<tr>
<td>4.3.2. Broadlands</td>
<td>21</td>
</tr>
<tr>
<td>4.3.3. Ellidaar</td>
<td>22</td>
</tr>
<tr>
<td>4.3.4. Svartsengi</td>
<td>22</td>
</tr>
<tr>
<td>4.3.5. Wairakei</td>
<td>22</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

1. Vapor pressure curve for pure water. (Whiting and Ramey, 1969)

2. Reservoir temperature with depth at Svartsengi (Gudmundsson, 1966)

4. Pressure versus specific volume for a pure material. (Macias-Chapa, 1985)

5. Pressure versus specific volume for a binary mixture. (Macias-Chapa, 1965)

6. Comparison of the variability of model input parameters.

7. Production history of the Ahuachapan field.

8. Production history of the Broadlands field.

11. Production history of the Wairakei field.

12. Standard deviation vs sigma (radial fit) for Ahuachapan.

13. Standard deviation vs lambda (linear fit) for Ahuachapan.

14. Standard deviation vs sigma (radial fit) for Svartsengi.

15. Standard deviation vs lambda (linear fit) for Svartsengi.

16. Standard deviation vs sigma (radial fit) for Wairakei.

17. Standard deviation vs lambda (linear fit) for Wairakei.

18. Standard deviation vs sigma (radial At) for Broadlands.
19. Standard deviation vs lambda (linear fit) for Broadlands.

20. Standard deviation vs sigma (radial fit) for Ellidaar.

21. Standard deviation vs lambda (linear fit) for Ellidaar.

22. Radial match for Ahuachapan.

23. Linear match for Ahuachapan.

24. Radial match for Broadlands.

25. Linear match for Broadlands.

26. Radial (line source) match for Ellidaar.

27. Radial match for Svartsengi.

28. Linear match for Svartsengi.

29. Radial match for Wairakei.

LIST OF TABLES

1. Reservoir parameters input to the history matches.

2. Hurst parameters, least-squares constants and standard deviations of best linear and radial fits for each field.

3. Compressibilities and permeability-thickness products found from the radial fits.
1. INTRODUCTION

When producing a geothermal reservoir, it is important to be able to predict the drawdown behavior of the reservoir. Many theoretical and empirical models exist, but even the simplest generally require information on reservoir geometry (shape, dimensions), flow characteristics (porosity, permeability), and fluid properties (viscosity). Further, most commercial fields have recharge of reservoir fluids, meaning that characteristics of the supporting aquifer are also needed. In practical applications, many of these parameters are not known and their values must be assumed. Through history matching, some of those unknowns may be determined.

Water influx models in use are of two types: numerical and lumped parameter. The numerical model involves dividing the reservoir into blocks, assigning values (of permeability and porosity, for example) to each block, and solving the flow equations in finite difference form. Note that much reservoir data, such as Permeability and porosity distributions and geometry is necessary to use this type of model.

Lumped parameter models are solutions of the flow equations for simplified situations which are then assumed applicable to various real situations. Water influx methods originating in the petroleum industry (e.g. Hurst (1958) and Schilthuis (1936)) fall into this category and are applicable to geothermal reservoirs (Olsen, 1984). The advantage to Lumped parameter methods is that less reservoir information is necessary, and that some reservoir information may be obtained through history matching.

The Hurst Simplified Model (Hurst, 1958) is widely used in the petroleum industry. This study examines its use in geothermal situations where some of the system parameters are not known. The following questions are investigated:
1. How is the Hurst Simplified model applied to geothermal systems?

2. Of the reservoir parameters, which must be accurately known for successful modeling? In practical situations, what values are usually known or are easily estimable?

3. What is the effect of compressibility in lumped parameter reservoir modeling?

4. What information can a Hurst model history match reveal?

5. Can the Hurst model be applied to any general situation, or is it limited strictly to the specific geometry for which it is derived?

6. Is either of the formulations (linear or radial) of the Hurst model more accurate or convenient?

The focus of this report is on the modeling of geothermal reservoirs using a method developed for oil reservoirs. In doing so, it seems that the thermodynamics of the geothermal reservoir are being ignored. But while thermodynamics is not implicit in the depletion model, a knowledge of the thermodynamics of the liquid dominated geothermal reservoir is needed to explain and interpret the results of the modeling. Whiting and Ramey (1969) and Donaldson et al. (1983) discuss the thermodynamics of geothermal systems, the former focusing on production engineering, the latter on reservoir description. Further models of geothermal reservoir thermodynamics are those of Brigham and Morrow (1977) and Martin (1975).

A few authors have reviewed the use of water influx models for geothermal modeling. Olsen (1985) compares numerous models using the Svartsengi reservoir as an example. Fradkin et al. (1981) compare models using data from Wairakei. A more general review of models is that of Grant (1983). Among water
influx models in the petroleum literature are those of Schilthuis (1949), Hurst (1958), Carter and Tracy (1960), Fetkovitch (1971), and Allard and Chen (1984).

Studies and models of specific geothermal fields include Gudmundsson and Olsen (1985), Gudmundsson et al. (1984), and Regaldo (1981) for Svartsengi; Hitchcock and Bixley (1976) for Broadlands; Atkinson et al. (1978) for Bagnore; and Brigham and Neri (1980) for Lardarello.
2. THERMODYNAMICS OF GEOTHERMAL RESERVOIRS

The thermodynamics of geothermal reservoirs are discussed by several authors (Whiting and Ramey, 1969; Martin, 1975; and Grant et al., 1982). Contained here is just enough general thermodynamics to allow discussion of two-phase zones and two-phase compressibilities.

2.1 Temperature Profiles

The highest temperature at which liquid may exist is given by the vapor pressure or boiling curve of the liquid. If the liquid has a hydrostatic pressure profile, deeper portions are at higher pressure and have a higher boiling point. Figure 1 is a vapor pressure (pressure vs. temperature) curve for pure water. Turned on its side, it can become a temperature vs. depth diagram. Often geothermal reservoirs will have this temperature distribution, called the boiling-point-for-depth (BPD) temperature profile.

Generally, geothermal reservoirs are subject to upflow (Donaldson et al., 1983): hotter fluids flow upward and carry heat by convection. In such a convective environment, temperature is close to constant and linear with depth, at least as long as the temperature remains less than the boiling point.

Thus a generalized geothermal reservoir description could be a temperature distribution which is linear at depth due to convection, then follows the boiling point curve at the top of the reservoir. Figure 2 shows temperature vs. depth data from the Svartsengi field in Iceland which exhibits this composite behavior.

2.2 Two-Phase Zones

Consider a liquid reservoir whose initial temperature distribution is a composite of BPD at the top, and linear at depth, as just discussed. When such a reservoir is produced, pressure drops, the boiling point decreases, so the por-
tion of the reservoir that lies on the boiling curve begins to boil. More of what was previously the linear convective profile now lies along the boiling curve (Figure 3). When boiling occurs, a two-phase zone is created.

A more in-depth discussion of the formation of two-phase zones is not necessary for our purposes. The above discussion is meant to give a qualitative feel for how and why two-phase zones exist in geothermal reservoirs. Treatments that discuss phase mobilities and gravity segregation include Martin (1975) and Donaldson et al. (1983).

Boiling may occur due to production, resulting in a two-phase zone; that is, a zone of mixed steam and water. Confirming this, Grant (1981) states that nearly all high-temperature fields contain a two-phase zone, maintained in spite of gravity segregation. This is important because, as will be shown, the compressibility of a two-phase mixture is radically different than that of either phase alone.

2.3 Compressibility

The isothermal compressibility relates the change of volume of a fluid due to change in pressure under isothermal conditions. Petroleum reservoirs are almost always isothermal systems. Temperature decline in geothermal systems is so gradual that they may be approximated as isothermal. The isothermal compressibility (hereafter referred to simply as compressibility) of water and steam are available.

Compressibility c is defined:

$$ c = -\frac{1}{V} \frac{dV}{dP} $$

(1)

The compressibility of a substance may be calculated from isotherms on a P-V diagram of the substance. The compressibility is related to the inverse of the slope of the isotherm.
Figures 4 and 5 are sample P-V diagrams for a pure substance and a mixture (Macias-Chapa, 1985). The isotherms in the liquid region are much steeper than those in the vapor region, which are in turn steeper than those in the two-phase region. Thus, liquid compressibilities are smaller than gas compressibilities, while two-phase compressibilities are greater than either liquid or vapor alone. For water at 240°C, the liquid compressibility is $1.2 \times 10^{-6} \text{Pa}^{-1}$, while the vapor compressibility is greater: $3.0 \times 10^{-7} \text{Pa}^{-1}$ (Grant et al., 1982).

While the concept of compressibility normally implies a confined system, an unconfined compressibility arising from a rising or falling water level can also be computed. This is a real situation as many geothermal reservoirs communicate, through fractures, to the surface and may thereby be nearly unconfined. Consider a porous medium of area A, porosity φ, and height h. Adding a volume of liquid dV causes the level to rise by dh, and the pressure to rise by $\rho \ g \ dh$. Compressibility c is defined

$$c = -\frac{1}{V} \frac{dV}{dP}$$

(1)

where

$$V = Ah$$

$$dV = -A \varphi dh$$

$$dP = \rho g dh$$

Substituting into Eq. 1,

$$c = \frac{1}{Ah} \frac{A \varphi dh}{\rho g dh}$$

(2)

$$c = \frac{\varphi}{\rho gh}$$

(3)

Considering an aquifer 500 m thick with 15% porosity, at 240°C, the compressi-
Consider liquid water and steam in equilibrium in a porous medium. A small reduction in pressure causes a large increase in volume because some of the liquid will vaporize into steam. The rock must cool to supply the heat of vaporization, so the rock thermal properties affect the system compressibility. Grant and Sorey (1979) give the following derivation.

As long as two phases exist in the system, the pressure and temperature are related by the vapor pressure curve. If pressure drops by \(\Delta P \), the temperature change \(\Delta T \) is

\[
\Delta T = \frac{\Delta P}{(dP/dT)_{sat}}
\]

(4)

The heat released by the rock as its temperature drops by \(\Delta T \) is

\[
Q_{\text{thermal}} = V (\rho C)_T \Delta T
\]

(5)

where

\[
(\rho C)_T = (1-\varphi)\rho_m C_m + \varphi S_w \rho_w C_w
\]

(6)

This heat is used to vaporize the water. The resulting change in volume is

\[
\Delta V = \frac{V(\rho C)_T \Delta T}{H_{\text{latent}}} \left(\frac{1}{\rho_s} - \frac{1}{\rho_w} \right)
\]

(7)

Using Eq. 2 and 5 in Eq. 1, the two-phase compressibility \(c_T \) is

\[
c_T = \frac{1}{\varphi} \frac{V(\rho C)_T}{H_{\text{latent}}} \frac{\rho_w - \rho_s}{\rho_w \rho_s} \left(\frac{dP}{dS}_{\text{sat}} \right)
\]

(8)

A two-phase mixture at 240 °C, 15% porosity, and \((\rho C)_T = 2.5 \text{MJ/m}^3 \text{K} \), the compressibility is \(1.4 \times 10^{-8} \text{Pa}^{-1} \).
The compressibilities observable in geothermal reservoirs have a large range. Recall and compare the values arrived at above:

- **confined water**: \(c = 1.2 \times 10^{-6} \text{ Pa}^{-1} \)
- **unconfined water**: \(c = 3.8 \times 10^{-6} \text{ Pa}^{-1} \)
- **confined steam**: \(c = 3.0 \times 10^{-7} \text{ Pa}^{-1} \)
- **confined two-phase**: \(c = 1.4 \times 10^{-6} \text{ Pa}^{-1} \)

Compressibilities of geothermal fluids can thus range over three orders of magnitude.

The analyses just done were concerned mainly with the compressibilities of the fluids themselves. Geothermal reservoirs consist of compressible fluids in a compressible porous medium. The total system compressibility is given by

\[
\varepsilon_T = \varepsilon_w + \varepsilon_f
\]

where \(\varepsilon_f \) is the formation compressibility. Craft and Hawkins (1959) state that formation compressibilities range from \(4.3 \times 10^{-10} \text{ Pa}^{-1} \) to \(15 \times 10^{-10} \text{ Pa}^{-1} \). These are of the order of the compressibility of liquid water. Ramey (1964) states that the total compressibility is the correct compressibility to use in modeling.

2.4 Other Variables

Other reservoir and fluid parameters used in the water influx modeling are viscosity \(\mu \), permeability \(k \), porosity \(\varphi \), and fluid density \(\rho \). In most cases, values of these are known from tests, or reasonable values can be inferred. For example, experience shows that reasonable values of \(\varphi \) might range from 5 to 20\%. Values for \(k \) might range from 1 to 100 mD, but approximate values usually exist from well tests. The variability of some of the parameters used in the Hurst analysis are compared in Figure 6, which shows the range (in orders of magnitude) of these reasonable values for the parameters.

Compressibility easily has the largest range, the compressibility depending on the extent of the two-phase zone. The extent of the two-phase zone in a
geothermal reservoir is generally not known (Donaldson et al., 1983). Thus, a useful model for the reservoir is one which does not have compressibility as an input parameter but instead computes and outputs it. The Hurst model as formulated and used in this report determines compressibility through a history match. Then from this compressibility, an idea of the existence and extent of two-phase zone may be inferred.
3. WATER INFLUX MODELING

There are two general categories of reservoir models: numerical simulations and lumped parameter models. In numerical simulation, the reservoir system is divided into small blocks, each block having its own properties, and finite difference forms of the governing equations are used to calculate the time and space variation of, for example, pressure in the reservoir. In lumped-parameter models, average values of fluid and flow properties are assumed throughout the reservoir, and analytic solutions are derived.

Lumped-parameter models are generally the method of choice. Numerical methods demand much computer time and more input information than is generally known. For example, a lumped parameter model uses an average porosity and permeability, while a numerical model requires porosities and permeabilities for each block, which are unlikely to be known. Although lumped parameter models assume average properties and regular geometries, they are useful and accurate in many practical situations, and easy to use.

A lumped parameter model is a material balance on a closed reservoir: producing an amount of fluid causes a pressure drop in the reservoir. Both oil and geothermal fields are often connected to a supporting aquifer, however, which adds an influx term to the material balance. Many authors in the petroleum literature have modeled this situation for different geometries and conditions: Schilthuis (1949), Hurst (1958), and Fetkovitch (1971). Olsen (1984) tested all of these models on data from the Svartsengi geothermal field.

These models address flow from an aquifer more or less horizontally adjacent to the reservoir ("edge-water drive"). Allard and Chen (1984) did a numerical simulation of "bottom-water drive", noting that edge-water models do not accurately model bottom water situations as the ratio of reservoir thickness to reservoir radius increases.
3.1 Hurst Simplified Method

A commonly used water influx model is the Hurst Simplified Method (Hurst, 1956). It treats edge-water drive in linear and radial cases. The method takes a material balance on the reservoir and applies the solution of the diffusivity equation in Laplace space (Van Everdingen and Hurst, 1949) to account for water influx from the aquifer. The "simplification" is that by using the Laplace transformation, an expression for drawdown as an explicit function of production rate and time is found. A parameter containing the ratio of aquifer to reservoir compressibility is central to this derivation.

Hurst's paper develops the method for use in oil reservoir-aquifer systems. It is easily adapted for use in geothermal reservoir systems by using hot geothermal fluid properties in place of oil properties in the Hurst formulation. Olsen (1964) rederived the Hurst linear model for geothermal applications. Because the derivation is often neglected, and to identify some important points in the use of the method, the Hurst derivations for both linear and radial cases will now be given.

3.1.1 Linear Model Derivation

The material balance on the geothermal reservoir is written

\[W = W_i - W_p + W_e \] \hspace{1cm} (10)

(Mass of water in the reservoir equals the initial mass, less produced mass, plus encroached mass.) For a confined system, masses \(W \) and \(W_i \) are simply related to the reservoir volume:

\[W = V_f \rho \] \hspace{1cm} (11)

so that Eq. 10 becomes

\[V_f (\rho - \rho_e) = -W_p + W_e \] \hspace{1cm} (12)
The difference in densities may be approximated

\[\rho - \rho_i = \int_0^p \frac{d \rho}{d \rho} d \rho \] \hspace{1cm} (13)

\[\rho - \rho_i = \int\frac{d \rho}{\rho_i} \frac{d \rho}{d \rho} dt \] \hspace{1cm} (14)

The isothermal compressibility is written

\[c = \frac{1}{\rho} \frac{d \rho}{d \rho} \] \hspace{1cm} (15)

Substituting Eq. 15 into Eq. 14,

\[\rho - \rho_i = \int\frac{c \rho d \rho}{\rho_i} \] \hspace{1cm} (16)

\[\rho - \rho_i = c P_{av} (P - P_i) \] \hspace{1cm} (17)

Substituting into the material balance (Eq. 12)

\[V \phi c P_{av} (P - P_i) = -W_p + W_e \] \hspace{1cm} (18)

Assuming constant production rate,

\[W_p = w_p t \] \hspace{1cm} (19)

and writing drawdown

\[P_i - P = \Delta P \] \hspace{1cm} (20)

Eq. 18 becomes

\[-V \phi c P_{av} \Delta P = W_e - w_p t \] \hspace{1cm} (21)

The cumulative water influx is written as the convolution integral:

\[W_e = B \int_0^t \frac{d \Delta P}{dt_B} Q_B(t_B - t_B^*) dt_B^* \] \hspace{1cm} (22)

where dimensionless time is defined
\[t_D = \frac{k_a t}{\varphi \mu_a c_a L_a^2} \]

In the infinite aquifer, L is assigned unit length. Substituting Eq. 22 and 23 into 21.

\[-V \varphi c_r \rho_r \Delta P = B \int_0^t \frac{d\Delta P}{dt_D} Q_D(t_D - t_D^*)dt_D^* - \frac{w_p t_D \varphi \mu_a c_a L_a^2}{k_a} \]

The Laplace transform of Eq. 24 is

\[-V \varphi c_r \rho_r \Delta P = B s \Delta P \bar{Q}_D - \frac{\varphi \mu_a c_a L_a^2 w_p}{k_a s^2} \]

For the infinite linear aquifer geometry, the influx function \(\bar{Q}_D \), as a result of the Laplace space solution of the diffusivity equation (van Everdingen and Hurst, 1949) is written

\[\bar{Q}_D = s^{-3/2} \]

and

\[B = A \varphi c_a \rho_a \]

Substituting Eq. 26 and 27 into 25,

\[A \varphi c_a \rho_a s \Delta P s^{-3/2} + V \varphi c_r \rho_r \Delta P = \frac{\varphi \mu_a c_a w_p}{k_a s^2} \]

Solving Eq. 28 for \(\Delta P \):

\[\Delta P = \frac{\mu_a c_a w_p}{k_a A l c_r \rho_r s^{3/2} c_a \rho_a \left[\frac{l c_r \rho_r}{l c_r \rho_r} + s^{1/2} \right]} \]

Defining the Hurst parameter \(\lambda \)

\[\lambda = \frac{c_a \rho_a}{l c_r \rho_r} \]

Eq. 29 becomes
Inverting Eq. 31 to real space,

$$\Delta P = \frac{\mu_a w_p^l}{k_a A p_0 \lambda} \left[\frac{1}{s^{3/2} (\lambda + s^{1/2})^2} \right]$$

(31)

Eq. 32 may be superposed to account for changing flow rates:

$$\Delta P = \frac{\mu_a w_p}{k_a A p_0 \lambda} \left[e^{\lambda t_d} \text{erfc} (\lambda t_d^{1/2}) - 1 + \frac{2\lambda t_d^{1/2}}{\pi^{1/2}} \right]$$

(32)

where

$$M[\lambda, t_D] = \frac{1}{\lambda^2} \left[e^{\lambda t_D} \text{erfc} (\lambda t_D^{1/2}) - 1 + \frac{2\lambda t_D^{1/2}}{\pi^{1/2}} \right]$$

(34)

Equation 33 is explicit for AP, and is in real space. Other water influx methods previous to Hurst were not explicit in AP. As soon will be shown, the radial model is explicit in AP, but is not analytically invertible to real space.

An important thing to note is the form of the constant λ: a ratio of compressibilities and densities and a geometry term. It was commented earlier that the reservoir compressibility is an important value to determine, so it is important that we can calculate it from λ. In the next section, λ will be compared to the analogous parameter σ, which has no geometric term.

3.1.2 Radial Model Derivation

The previous derivation is unchanged for the radial case through Eq. 22.

For the radial case, dimensionless time is defined as follows:

$$t_D = \frac{kt}{\varphi \mu c r^2}$$

(35)

where the r is reservoir radius.
One may question why in the infinite linear case the characteristic length was taken as unity, whereas in the radial case an actual physical dimension is used. The dimensionless time is used in the \(W_p \) term, the term describing the flow from the aquifer. In the linear case, a linear aquifer of infinite extent, there is no characteristic length. (The length of the reservoir is irrelevant to the aquifer.) But in the radial case, the reservoir radius is a characteristic length for the aquifer as it describes the inner radius of aquifer flow.

Continuing as before,

\[
-V \varphi c_r \rho_r \Delta P = B \int_0^t \frac{d \Delta P}{dt} dt_D - \frac{u_p}{t_D} \frac{t_D}{t_D^*} \frac{\varphi \mu_a c_a r_r^2}{k_a}
\]

In Laplace space:

\[
-V \varphi \rho_r c_r \Delta \bar{P} = B s \Delta \bar{P} - \frac{\varphi \mu_a c_a r_r^2 u_p}{k_a s^2}
\]

For the radial case, the dimensionless influx function is

\[
\bar{Q}_D = \frac{K_1(\sqrt{s})}{s^{3/2} K_0(\sqrt{s})}
\]

and the influx constant is

\[
B = 2\pi r_r^2 \varphi c_a \rho_a h
\]

Substituting Eq. 38 and 39 into 37,

\[
\Delta P \left[\frac{c_r \rho_r \sqrt{s} K_0(\sqrt{s}) + 2 c_a \rho_a K_1(\sqrt{s})}{\sqrt{s} K_0(\sqrt{s})} \right] = \frac{\mu_a c_a u_p}{\pi k_a h s^2}
\]

Defining the radial Hurst parameter \(\sigma \):

\[
\sigma = 2 \frac{c_a \rho_a}{c_r \rho_r}
\]
Substituting into Eq. 41,

\[
\bar{\Delta P} = \frac{\mu_a w_p \sigma}{2\pi k_a h \rho_a} \frac{K_0(\sqrt{s})}{s^{3/2} \left[a\sqrt{K_1(\sqrt{s})} + \sqrt{s} K_0(\sqrt{s}) \right]}
\] \hspace{1cm} (43)

In real space,

\[
\Delta P = \frac{\mu_a w_p \sigma}{2\pi k_a h \rho_a} N(\sigma, t_D - t_D j)
\] \hspace{1cm} (44)

where

\[
N(\sigma, t_D) = L^{-1} \left[\frac{K_0(\sqrt{s})}{s^{3/2} \left[a\sqrt{K_1(\sqrt{s})} + \sqrt{s} K_0(\sqrt{s}) \right]} \right]
\] \hspace{1cm} (45)

As before, Eq. 44 may be written in superposition form for varying rate:

\[
\Delta P = \frac{\mu_a \sigma}{2\pi k_a h \rho_a} \sum \Delta w_p N(\sigma, t_D - t_D j)
\] \hspace{1cm} (46)

Again, the expression is convenient as it is explicit in \mathbf{AP}. However, in this case the Hurst function is not analytically invertible to real space. Numerical methods can be used to invert the function; the Stehfest algorithm is a suitable method.

A special case of the general radial solution is the solution for large u. In the limit, the drawdown is

\[
\Delta P = \frac{\mu_a}{2\pi k_a h \rho_a} \sum \Delta w_p \ p_D(t_D - t_D j)
\] \hspace{1cm} (47)

where $p_D(t_D)$ is the familiar line source solution (Earlougher, 1977)

\[
p_D(t_D) = -\frac{1}{2} \text{Ei} \left[-\frac{1}{4t_D} \right]
\] \hspace{1cm} (48)

Eq. 48 may be approximated

\[
p_D(t_D) \approx \frac{1}{2} \left[\ln(t_D) + .80907 \right]
\] \hspace{1cm} (49)
when (approximately) \(t_D > 5 \).

The physical interpretation of using the line source solution is that the reservoir is small compared to the aquifer, so that the reservoir response is negligible compared to the aquifer drawdown response.

The Hurst radial parameter \(\sigma \) is a ratio of compressibilities and densities only. (The linear parameter \(A \) had a geometric term as well.) Good estimates or values for aquifer compressibility and density as well as reservoir liquid density usually are known. Therefore, once \(\sigma \) is found (through the history match), reservoir compressibility may be found without direct geometric information. In the radial case, the geometric information is contained in the dimensionless time term. In this way compressibility is a less strong function of the geometric term in the radial case than in the linear case.
4. MODEL APPLICATION

4.1 History Matching Method

The history matching scheme used in this report is that used by Olsen (1984) and Marcou (1985). The computer programs used in this report are modifications of programs used by those authors.

Recall the general Hurst model equation for the linear case:

\[\Delta P = \frac{\mu_a}{k_a\rho_a} \sum_{j=1}^{n} A \Delta w_p \, M[\lambda(t_D-t_{D_j})] \]

(33)

where

\[M[\lambda, t_D] = \frac{1}{\lambda^2} \left[e^{\lambda^2 t_D^2} - \text{erfc}(\lambda t_D/\sigma) - 1 + \frac{2\lambda t_D^2}{\sigma^2} \right] \]

(34)

The data (history) consists of values of \(\Delta h \), \(t \), and \(w_j \). We generally have a value or an estimate of the other reservoir and fluid constants, but not \(h \). Define

\[x(k) = \sum_{j=1}^{k} A \Delta w_j \, M[\lambda(t_D-t_{D_j})] \]

(50)

\[y(k) = \frac{\Delta P}{\rho g} = \Delta h_k \]

(51)

A plot of \(x(n) \) vs \(y(n) \) will be linear for a system which fits the Hurst Model. Using data, a linear least squares regression on these \(x \) and \(y \) yields a slope, \(a_{ln} \), which from Eq. 33 is

\[a_{ln} = \frac{\mu_a}{k_a \rho_a \mu_r g} \lambda \]

(52)

All of these equations depend on \(\lambda \), which is unknown. Thus, \(\lambda \) must first be guessed, the least squares fit done, the Hurst model drawdown calculated, and a standard deviation between the data and the Hurst model found. Another \(\lambda \) is chosen, and the process is repeated. The \(\lambda \) (and its \(a_{ln} \)) that minimizes the
standard deviation is the correct reservoir parameter

In the radial case, the general procedure is nearly identical. However in the radial case, the Hurst function, \(N \), is not given analytically in real space:

\[
N(\sigma, t_P) = L^{-1} \left[\frac{K_0(\sqrt{s})}{s^{3/2} \left[\sigma K_1(\sqrt{s}) + \sqrt{s} K_0(\sqrt{s}) \right]} \right]
\] \((45) \)

Because the history match is being done in the computer, a numerical method such as the Stehfest Algorithm (Stehfest, 1970) can be used to invert the equation.

The history match method for the radial model is identical to the linear case. Recall Eq. 50:

\[
\Delta P = \frac{\mu_a \sigma}{2\pi k h a \rho_a} \sum_{j=1}^{n} \Delta w_j \ N(\sigma, t_P - t_{Pj})
\] \((50) \)

As before, define

\[
x(n) = \sum_{j=1}^{n} \Delta w_j \ \sigma \ N(\sigma, t_P - t_{Pj})
\] \((53) \)

\[
y(n) = \frac{\Delta P}{\rho g} = \Delta h_n
\] \((54) \)

The slope, \(a_{rad} \), from the least squares fit is:

\[
a_{rad} = \frac{\mu_a}{2\pi k h a \rho_a \rho_r g}
\]

As explained previously, values for \(\sigma \) and \(a_{rad} \) will result from the history match. Compressibility can then be determined from \(\sigma \) and the permeability-thickness product can be determined from \(a_{rad} \).

In his paper, Hurst (1958) states that large radial systems can be modeled as linear systems. When looking at only early data, any system appears "large" (its boundaries are not felt), so the linear analysis should work. Thus, if a linear analysis works on the early data only, the system is probably radial.
In some cases, a linear fit could not be obtained; there was no minimum in the graph of standard deviation vs X. In these cases however, a linear fit could be obtained by using only the early data. This phenomenon indicates that the reservoir is of radial geometry.

4.2 Computer Application

The FORTRAN 77 computer codes used in this report are given, with details, in Appendix A. The algorithms are basically as described in Section 4.1. For each of the geometries (radial and linear) there are two programs: one to find the standard deviation and least-squares slope for a given σ or X, and one which prepares the model and actual drawdown graphs for a given σ or X and least-squares slope.

In the radial case, recall that the Hurst function is not given analytically in real space, so must be numerically inverted using the Stehfest Algorithm. Although the Stehfest Algorithm is well behaved in this application, it is slow. In this history match method, $x(k)$ and $y(k)$ are calculated for each k from one to n (the number of data points, often in the hundreds), and each $x(k)$ has a summation from one to k. The Hurst function is inside a doubly nested loop. For a data history of 200 points, the Hurst function is evaluated over twenty thousand times. Thus, to speed execution time, it was investigated whether a simple real-space approximation for the Hurst function could be obtained for the ranges of σ and t_D encountered in geothermal applications.

In the history match, recall that a σ is chosen, then all the data fit to yield a slope and a standard deviation. Thus, the Hurst function N was graphed vs a range of t_D's for a given σ. Specifically, this was done for the maximum and minimum σ expected in geothermal applications. While the functions are not very complex, they are not simple enough that an analytical approximation
would be superior to a table lookup method.

The program used here initially creates a table of \(N(t_d) \) for the given \(\sigma \), then employs a table lookup/interpolation subroutine for the Hurst function evaluations rather than repeatedly performing the Stehfest inversion. On the Broadlands data, a set of 66 points, a sample execution with repeated Stehfest inversions took over 1100 seconds of CPU time, while the table lookup program took only 45 seconds (on a VAX 11/750). Thus, the radial model is usable even on a microcomputer.

4.3 Field Descriptions

This section contains brief descriptions of the five fields studied in this report. The fields studied cover a full spectrum, ranging from the low-temperature Ellidaar in Iceland to the highly two-phase, high-temperature Broadlands field. The drawdown histories for all the fields are given in the Appendix, their sources are noted in each section below.

4.3.1 Ahuachapan

The Ahuachapan field is located in western El Salvador. The reservoir has areal extent of 7400 acres (Kestin, 1980) with many surface manifestations. The reservoir consists of fractured andesitic rock. The reservoir field temperature is reported as 230 °C by Kestin (1980) and 240 °C by Grant et al. (1982). Initially a fully liquid dominated reservoir, a two-phase zone has formed due to exploitation. Reservoir drawdown history from Marcou (1985).

4.3.2 Broadlands

The Broadlands field is a high temperature geothermal resource located in New Zealand. The reservoir matrix is highly porous but not permeable: flow occurs in fracture zones which exist near faults and formation contacts (Hitchcock
and Bixley, 1975). It is a high-temperature (270 °C) liquid dominated reservoir with an extensive two-phase zone (Grant et al., 1982). Reservoir history provided by P. F. Bixley of the Ministry of Works and Development.

4.3.3 Ellidaar

The Ellidaar field is one of three low-temperature fields in Reykjavik. It is a small, low-temperature reservoir. Cooling of up to 10° C has occurred, probably due to cold water influx (Palmasson et al., 1983). Reservoir data from Vatnaskil (1982).

4.3.4 Svartsengi

The Svartsengi field is one of three geothermal fields on the Reykjanes Peninsula in southwest Iceland. It is a high-temperature liquid dominated reservoir. High permeability exists throughout the production area. (Gudmundsson and Olsen, 1984). Produced fluids are not currently being reinjected, but the possibility is being studied (Gudmundsson, 1983 and Gudmundsson et al., 1984). Svartsengi drawdown from Olsen (1984).

4.3.5 Wairakei

The Wairakei, New Zealand, reservoir is approximately 15 km² in extent. It is believed that the resource is due to a hot plume rising through cold water from an ultimate magmatic source at depth of 10 km. A two-phase zone exists near the top of the reservoir and has increased with production (Fradkin et al., 1981). Drawdown history for Wairakei from Marcou (1985).
5. RESULTS AND DISCUSSION

Hurst method history matches, both linear and radial cases, were performed on the drawdown data of the five fields (Ahuachapan, Broadlands, Ellidaar, Svartsengi, and Wairakei). The input parameters used in the analyses are given in Table 1. The drawdown data (time, production rate, and drawdown) are given in the Appendix. Graphs of the rate histories are shown in Figures 7-11. (Drawdown histories are shown with the model fits.) Sample plots of standard deviation vs σ and A used for determining the best match for each field are shown in figures 12-21.

The σ, X, a_{lv}, a_{rad}, and standard deviations of the matches on each field are given in Table 2. The reservoir compressibilities and permeability-thickness products resulting from the radial fit are given in Table 3. Plots of actual and modeled drawdown for all fields are given in Figures 22-29.

The linear and radial fits are compared in Table 2. Generally, the radial model gave better results (smaller standard deviations). Specifically, the Ahuachapan, Svartsengi, and Wairakei data were best fit by the radial model. For Wairakei, the linear model could not be fit to the entire data history, but could be fit to the early data. Such behavior confirms that it is a strongly radial system (recall discussion, section 4.1). Figures 12, 14, and 16 are the radial fits for those fields, all are reasonable matches that model well the true drawdown behavior of the reservoirs.

In the Broadlands case, the linear model yielded a slightly better fit than did the radial, but from Figs. 24 and 25 it is seen that neither match well. The high compressibility of the Broadlands field explains the poor drawdown predictions of Figures 24 and 25. In those figures, the actual data shows strong variations while the prediction is very stable and insensitive, as if it had a strong pressure support. In a highly compressible fluid, pressure disturbances travel...
slowly. In the Broadlands field, the delay across the field may be of the order of months (Grant, 1977) What this means is that the aquifer does not feel the pressure drops immediately and so cannot provide the support that the Hurst model thinks it will. Thus, the Hurst model assumes pressure support that is not there. It is encouraging that although the match itself may not be satisfactory, the model yields a reasonable compressibility value: one of the order of the compressibility of two-phase mixture.

The Ellidaar case was handled slightly differently. Figures 20 and 21 show no minimum standard deviation, only a flattening at high σ. This behavior indicates that the line source limit of the Hurst Model should be used. As described in Section 3.1.2, the line source’s physical interpretation is that the reservoir is small compared to the aquifer, so that the reservoir response is negligible compared to the aquifer response. Thus in the line source limit, reservoir properties cannot be deduced. However, a model fit can still be done. The fit is shown in Fig. 26.

Table 3 gives the compressibilities and thicknesses calculated from the radial matches. The compressibilities range from 12.0×10^{-6} for the Broadlands field to 2.8×10^{-8} for Wairakei. From the previous discussion of compressibilities, these lie approximately in the range of values of compressibility of water systems in the configurations discussed. This confirms that the Broadlands field is highly two-phase while at the other extreme Wairakei is mainly liquid with little two-phase zone.

It was stated earlier that reservoir compressibility is an important quantity to determine from a history match. (Its wide range of possible values means it can not be easily estimated initially, but once determined, it gives an estimate of the extent of the two-phase zone.) It was also seen that the radial model accomplishes this end most easily, as compressibility is calculated from σ with less
dependence on the geometric term (which is often uncertain). Table 3 shows that the radial model is generally applicable, and yielded reasonable compressibility results. The Hurst radial model is thus applicable to a large range of reservoirs and easy to use with little reservoir information. It yields reasonable values for reservoir parameters, and history matches with predictive capability.
6. CONCLUSIONS

1. Reservoir compressibility is an important parameter to determine for a field for two reasons: compressibility has such a large range of values that it is not readily estimable initially, and its value is useful as a way of estimating the extent or existence of a two-phase zone in a liquid dominated geothermal reservoir.

2. The Hurst Simplified Method history match yields useful reservoir parameters (c and kh) as well as a model useful in prediction.

3. The matches on the various fields showed that the Hurst radial model is useful on a wide range of liquid-dominated geothermal reservoirs.

4. Comparing the standard deviation of the best linear and radial matches tells whether the reservoir geometry is closer to linear or radial.

5. In highly compressible (highly two-phase) systems, the Hurst model yields a reasonable compressibility, but the match itself has difficulty modeling the sharp changes in drawdown well.

6. A flattening of the σ vs standard deviation curve at high σ (rather than a true minimum) indicates that the field is small, and that the line source limit of the Hurst Model should be used. In that case, a match (and predictions) can still be done, but reservoir characteristics cannot be determined.

7. Using a table-lookup formulation of the Hurst radial model, execution time was cut drastically, enough that the radial history match could be carried out on a microcomputer.
NOMENCLATURE

\(A \) \hspace{1cm} \text{Area of the reservoir or cross-sectional area of the aquifer (m}^2\text{)}

\(B \) \hspace{1cm} \text{Van Everdingen and Hurst water influx constant (kg/Pa)}

\(C \) \hspace{1cm} \text{Heat capacity (kJ/kg·K)}

\(c \) \hspace{1cm} \text{Compressibility (Pa}^{-1}\text{)}

\(g \) \hspace{1cm} \text{Acceleration of gravity (9.81 m/s}^2\text{)}

\(h \) \hspace{1cm} \text{Height of reservoir (m)}

\(k \) \hspace{1cm} \text{Permeability (m}^2\text{)}

\(l \) \hspace{1cm} \text{Length of reservoir (m)}

\(L \) \hspace{1cm} \text{Length of aquifer (m)}

\(M, N \) \hspace{1cm} \text{Hurst functions}

\(P \) \hspace{1cm} \text{Pressure (Pa)}

\(Q \) \hspace{1cm} \text{Hurst influx function}

\(r \) \hspace{1cm} \text{Radius (m)}

\(s \) \hspace{1cm} \text{Variable in Laplace space}

\(S \) \hspace{1cm} \text{Saturation}

\(t \) \hspace{1cm} \text{Time (s)}

\(T \) \hspace{1cm} \text{Temperature (K)}

\(V \) \hspace{1cm} \text{Volume (m}^3\text{)}

\(w \) \hspace{1cm} \text{Mass rate (kg/s)}

\(\dot{W} \) \hspace{1cm} \text{Mass (kg)}

\(x, y \) \hspace{1cm} \text{Least squares variable}

\(\mu \) \hspace{1cm} \text{Viscosity (Pa·s)}
\(\phi \) \quad \text{Porosity}

\(\rho \) \quad \text{Density (kg/m}^3\text{)}

\(\lambda, \sigma \) \quad \text{Hurst parameters}

SUBSCRIPTS

\(a \) \quad \text{Aquifer}

\(av \) \quad \text{Average}

\(D \) \quad \text{Dimensionless}

\(e \) \quad \text{Encroached}

\(f \) \quad \text{Formation}

\(i \) \quad \text{Initial}

\(m \) \quad \text{Matrix}

\(p \) \quad \text{Produced}

\(r \) \quad \text{Reservoir}

\(s \) \quad \text{Steam}

\(sat \) \quad \text{Saturated conditions}

\(T \) \quad \text{Total or isothermal}

\(w \) \quad \text{Liquid water}

Barred variables indicate Laplace space form.
REFERENCES

Schilthuis, R. J.: "Active Oil and Reservoir Energy", Trans. AIME (1936), 118-31.

Vatnaski: "Gagnaskra fyrir vinnslugolur" (private report in Icelandic) (1982).

<table>
<thead>
<tr>
<th>PERMEABILITY $k \times 10^{-12} \text{m}^2$</th>
<th>POROSITY φ</th>
<th>AREA $A \times 10^8 \text{m}^2$</th>
<th>TEMPERATURE $T , (^\circ\text{C})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuachapan</td>
<td>.050</td>
<td>.21</td>
<td>15.0</td>
</tr>
<tr>
<td>Broadlands</td>
<td>.829</td>
<td>.15</td>
<td>2.0</td>
</tr>
<tr>
<td>Ellidaar</td>
<td>.099</td>
<td>.05</td>
<td>1.0</td>
</tr>
<tr>
<td>Svartsengi</td>
<td>.500</td>
<td>.05</td>
<td>3.6</td>
</tr>
<tr>
<td>Wairakei</td>
<td>.027</td>
<td>.20</td>
<td>15.0</td>
</tr>
</tbody>
</table>

TABLE-1. Reservoir parameters input to the history matches.
<table>
<thead>
<tr>
<th>Field</th>
<th>$\lambda \times 10^{-5}$</th>
<th>$\sigma_{lin} \times 10^{-10}$</th>
<th>STD. DEV.</th>
<th>$\sigma \times 10^{-4}$</th>
<th>$\sigma_{rad} \times 10^{-4}$</th>
<th>STD. DEV.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuachapan</td>
<td>12.1</td>
<td>15.8</td>
<td>5.82</td>
<td>373</td>
<td>.133</td>
<td>5.69</td>
</tr>
<tr>
<td>Broadlands</td>
<td>0.91</td>
<td>0.13</td>
<td>1.16</td>
<td>1.6</td>
<td>.040</td>
<td>1.19</td>
</tr>
<tr>
<td>Ellidaar</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>Iss</td>
<td>Iss</td>
<td>18.6</td>
</tr>
<tr>
<td>Svartsengi</td>
<td>11.5</td>
<td>4.31</td>
<td>2.05</td>
<td>16.</td>
<td>.087</td>
<td>1.77</td>
</tr>
<tr>
<td>Wairakei</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>720.</td>
<td>.072</td>
<td>6.56</td>
</tr>
</tbody>
</table>

* -- No linear fit

Iss - Line source limiting case

TABLE-2 Hurst parameters, least-squares constants and standard deviations of best linear and radial fits for each field.
<table>
<thead>
<tr>
<th></th>
<th>RESERVOIR COMPRESSIBILITY c_r ($\times 10^{-8} Pa^{-1}$)</th>
<th>PERM.-THICK. PRODUCT $kh (D=m)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuachapan</td>
<td>5.2</td>
<td>17.4</td>
</tr>
<tr>
<td>Broadlands</td>
<td>1200.</td>
<td>6.1</td>
</tr>
<tr>
<td>Svartsengi</td>
<td>118.</td>
<td>26.3</td>
</tr>
<tr>
<td>Wairakei</td>
<td>2.8</td>
<td>33.4</td>
</tr>
</tbody>
</table>

TABLE-3. Compressibilities and permeability-thickness products found from the radial fits.
FIGURE-1. Vapor pressure curve for pure water. (Whiting and Ramey, 1969)
Fig. 2.14. Liquid-dominated reservoir developing a steam cap under exploitation. (After Bolton, 1970, and McNabb, 1975).

FIGURE-4. Pressure versus specific volume for a pure material. (Macias-Chapa, 1985)
FIGURE-5. Pressure versus specific volume for a binary mixture. (Macias-Chapa, 1985)
Compressibility, c

Permeability, k

Porosity, +

Variation, in orders of magnitude

FIGURE-6. Comparison of the variability of model input parameters.
FIGURE 7. Production history of the Ahwach field.
FIGURE 8. Production history of the Broadlands field.
FIGURE 10. Production history of the Svartsengi field.
FIGURE 11. Production history of the Wairakei Wood.
FIGURE-12. Standard deviation vs sigma (radial fit) for Ahuachapan.
FIGURE-13. Standard deviation vs lambda (linear fit) for Ahuachapan.
FIGURE-14. Standard deviation vs \textit{sigma} (radial fit) for Svartsengi
FIGURE-15. Standard deviation λ (linear fit) for Svartsengi.
FIGURE 16. Standard deviation vs sigma (radial fit) for Wairaka
FIGURE-18. Standard deviation vs sigma (radial fit) for Broadlands.
FIGURE 19. Standard deviation vs lambda (linear fit) for Broadlands.
FIGURE 20. Standard deviation vs. sigma (radial fit) for Ellidaar.
FIGURE-21. Standard deviation vs λ (linear fit) for Elidaar.
FIGURE-23. Linear match for Ahuachapán.
FIGURE-24. Radial match for Broadlands.
FIGURE-25. Linear match for Broadlands.
FIGURE-26. Radial (line source) match for Ellidaar.
FIGURE 29. Radial match for Wairakei.
APPENDIX: Data Files and Computer Programs.

A 1. Data Files

The drawdown histories for the five fields are given in this section. They are presented in the format used by the programs: data triples, sets of time (in days), rate (kg/sec), and drawdown (m water). Their use with the programs is described in comment statements in the programs.

A2. The Computer Programs

The major programs used in this report are given here. Programs are written in FORTRAN 77 and were run under the UNIX operating system on the Stanford University Petroleum Engineering Department VAX 11/750 computer. Instructions for the programs are given as comments in the codes.
AHUACHAPAN

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>365.00</td>
<td>126.481</td>
<td>6.37105</td>
<td></td>
</tr>
<tr>
<td>730.00</td>
<td>105.939</td>
<td>19.1131</td>
<td></td>
</tr>
<tr>
<td>1095.00</td>
<td>240.947</td>
<td>35.6779</td>
<td></td>
</tr>
<tr>
<td>1460.00</td>
<td>90.3063</td>
<td>31.8552</td>
<td></td>
</tr>
<tr>
<td>1825.00</td>
<td>117.174</td>
<td>28.0326</td>
<td></td>
</tr>
<tr>
<td>2190.00</td>
<td>195.643</td>
<td>25.4842</td>
<td></td>
</tr>
<tr>
<td>2555.00</td>
<td>407.214</td>
<td>54.7910</td>
<td></td>
</tr>
<tr>
<td>2920.00</td>
<td>592.583</td>
<td>70.0816</td>
<td></td>
</tr>
<tr>
<td>3285.00</td>
<td>575.733</td>
<td>94.2915</td>
<td></td>
</tr>
<tr>
<td>3650.00</td>
<td>575.920</td>
<td>109.582</td>
<td></td>
</tr>
<tr>
<td>4015.00</td>
<td>564.228</td>
<td>121.050</td>
<td></td>
</tr>
<tr>
<td>4380.00</td>
<td>698.947</td>
<td>145.260</td>
<td></td>
</tr>
<tr>
<td>4745.00</td>
<td>550.298</td>
<td>156.728</td>
<td></td>
</tr>
</tbody>
</table>

WAIRAKEI

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>365.00</td>
<td>1184.00</td>
<td>37.0000</td>
</tr>
<tr>
<td>730.00</td>
<td>1517.00</td>
<td>89.2000</td>
</tr>
<tr>
<td>1095.00</td>
<td>1340.00</td>
<td>110.9000</td>
</tr>
<tr>
<td>1460.00</td>
<td>1643.00</td>
<td>142.7000</td>
</tr>
<tr>
<td>1825.00</td>
<td>2327.00</td>
<td>186.0000</td>
</tr>
<tr>
<td>2190.00</td>
<td>2246.00</td>
<td>221.7000</td>
</tr>
<tr>
<td>2555.00</td>
<td>2087.00</td>
<td>238.3000</td>
</tr>
<tr>
<td>2929.00</td>
<td>2039.00</td>
<td>247.2000</td>
</tr>
<tr>
<td>3285.00</td>
<td>1890.00</td>
<td>256.1000</td>
</tr>
<tr>
<td>3650.00</td>
<td>1513.00</td>
<td>265.0000</td>
</tr>
<tr>
<td>4015.00</td>
<td>1769.00</td>
<td>275.2000</td>
</tr>
<tr>
<td>4380.00</td>
<td>1776.00</td>
<td>286.7000</td>
</tr>
<tr>
<td>4745.00</td>
<td>1722.00</td>
<td>293.1000</td>
</tr>
<tr>
<td>5110.00</td>
<td>1665.00</td>
<td>298.2000</td>
</tr>
<tr>
<td>5475.00</td>
<td>1528.00</td>
<td>302.0000</td>
</tr>
<tr>
<td>5815.00</td>
<td>1490.00</td>
<td>303.3000</td>
</tr>
<tr>
<td>6205.00</td>
<td>1462.00</td>
<td>305.8000</td>
</tr>
<tr>
<td>6570.00</td>
<td>1509.00</td>
<td>307.1000</td>
</tr>
<tr>
<td>6935.00</td>
<td>1475.00</td>
<td>309.6000</td>
</tr>
<tr>
<td>7300.00</td>
<td>1532.00</td>
<td>310.9000</td>
</tr>
<tr>
<td>7665.00</td>
<td>1454.00</td>
<td>312.2000</td>
</tr>
<tr>
<td>8030.00</td>
<td>1512.00</td>
<td>309.6000</td>
</tr>
<tr>
<td>8395.00</td>
<td>1490.00</td>
<td>305.8000</td>
</tr>
<tr>
<td>8760.00</td>
<td>1487.00</td>
<td>305.8000</td>
</tr>
<tr>
<td>ELLIDAAR</td>
<td>1641.00</td>
<td>107.320</td>
</tr>
<tr>
<td>1072.00</td>
<td>107.900</td>
<td>80.1200</td>
</tr>
<tr>
<td>1703.00</td>
<td>83.2940</td>
<td>97.8600</td>
</tr>
<tr>
<td>1733.00</td>
<td>152.260</td>
<td>108.600</td>
</tr>
<tr>
<td>1794.00</td>
<td>147.080</td>
<td>106.200</td>
</tr>
<tr>
<td>1794.00</td>
<td>147.080</td>
<td>106.200</td>
</tr>
<tr>
<td>1825.00</td>
<td>142.620</td>
<td>110.200</td>
</tr>
<tr>
<td>1859.00</td>
<td>143.100</td>
<td>110.700</td>
</tr>
<tr>
<td>1884.00</td>
<td>142.050</td>
<td>111.100</td>
</tr>
<tr>
<td>1913.00</td>
<td>141.690</td>
<td>111.700</td>
</tr>
<tr>
<td>1945.00</td>
<td>142.050</td>
<td>112.100</td>
</tr>
<tr>
<td>1976.00</td>
<td>122.490</td>
<td>112.700</td>
</tr>
<tr>
<td>2006.00</td>
<td>69.7660</td>
<td>113.200</td>
</tr>
<tr>
<td>2037.00</td>
<td>70.9490</td>
<td>113.700</td>
</tr>
<tr>
<td>2068.00</td>
<td>50.5240</td>
<td>114.200</td>
</tr>
<tr>
<td>2098.00</td>
<td>74.0110</td>
<td>114.700</td>
</tr>
<tr>
<td>2129.00</td>
<td>126.660</td>
<td>115.200</td>
</tr>
<tr>
<td>2159.00</td>
<td>146.440</td>
<td>116.500</td>
</tr>
<tr>
<td>2149.00</td>
<td>143.460</td>
<td>116.700</td>
</tr>
<tr>
<td>2221.00</td>
<td>142.340</td>
<td>116.700</td>
</tr>
<tr>
<td>2249.00</td>
<td>141.100</td>
<td>117.200</td>
</tr>
<tr>
<td>2280.00</td>
<td>141.670</td>
<td>113.800</td>
</tr>
<tr>
<td>2310.00</td>
<td>126.880</td>
<td>103.800</td>
</tr>
<tr>
<td>2341.00</td>
<td>114.480</td>
<td>89.600</td>
</tr>
<tr>
<td>2371.00</td>
<td>94.6560</td>
<td>75.6700</td>
</tr>
<tr>
<td>2402.00</td>
<td>74.5260</td>
<td>74.3800</td>
</tr>
<tr>
<td>2433.00</td>
<td>84.8110</td>
<td>83.0600</td>
</tr>
<tr>
<td>2463.00</td>
<td>111.810</td>
<td>91.4600</td>
</tr>
<tr>
<td>2494.00</td>
<td>115.060</td>
<td>90.3600</td>
</tr>
<tr>
<td>2524.00</td>
<td>138.430</td>
<td>99.1400</td>
</tr>
<tr>
<td>2555.00</td>
<td>141.670</td>
<td>108.200</td>
</tr>
<tr>
<td>2586.00</td>
<td>142.340</td>
<td>116.700</td>
</tr>
<tr>
<td>2614.00</td>
<td>126.400</td>
<td>116.000</td>
</tr>
<tr>
<td>2645.00</td>
<td>123.770</td>
<td>115.300</td>
</tr>
<tr>
<td>2675.00</td>
<td>126.210</td>
<td>114.600</td>
</tr>
<tr>
<td>2706.00</td>
<td>126.660</td>
<td>113.900</td>
</tr>
<tr>
<td>2736.00</td>
<td>143.480</td>
<td>113.200</td>
</tr>
<tr>
<td>2767.00</td>
<td>106.280</td>
<td>112.500</td>
</tr>
<tr>
<td>2798.00</td>
<td>122.450</td>
<td>111.800</td>
</tr>
<tr>
<td>2828.00</td>
<td>130.130</td>
<td>111.100</td>
</tr>
<tr>
<td>2859.00</td>
<td>123.830</td>
<td>110.300</td>
</tr>
<tr>
<td>2889.00</td>
<td>131.940</td>
<td>109.700</td>
</tr>
<tr>
<td>2920.00</td>
<td>131.080</td>
<td>107.700</td>
</tr>
<tr>
<td>2951.00</td>
<td>126.880</td>
<td>105.000</td>
</tr>
<tr>
<td>2979.00</td>
<td>127.550</td>
<td>102.600</td>
</tr>
<tr>
<td>3010.00</td>
<td>121.630</td>
<td>99.9200</td>
</tr>
<tr>
<td>3040.00</td>
<td>132.890</td>
<td>97.3400</td>
</tr>
<tr>
<td>3071.00</td>
<td>118.300</td>
<td>94.6600</td>
</tr>
<tr>
<td>3101.00</td>
<td>112.900</td>
<td>92.0800</td>
</tr>
<tr>
<td>3132.00</td>
<td>107.990</td>
<td>89.4100</td>
</tr>
<tr>
<td>3163.00</td>
<td>110.950</td>
<td>86.7400</td>
</tr>
<tr>
<td>3193.00</td>
<td>105.510</td>
<td>85.9300</td>
</tr>
<tr>
<td>3224.00</td>
<td>126.120</td>
<td>105.500</td>
</tr>
<tr>
<td>3254.00</td>
<td>131.850</td>
<td>109.900</td>
</tr>
</tbody>
</table>

184	15.3120	6.14800
31.8228	43.3780	11.7000
59.0000	46.7630	46.9800
90.0000	70.0140	50.8100
120.000	60.3120	40.8000
151.000	36.7860	34.4000
181.8888	3.45160	31.0500
212.000	88.6360	56.1000
243.000	110.190	84.4300
273.000	95.8848	68.5700
304.000	135.560	105.300
334.000	137.970	118.500
365.000	94.9800	85.3200
396.000	88.3200	66.0380
424.000	104.750	70.8900
455.000	137.190	110.500
485.000	135.180	107.500
1003.00	69.9660	34.3730
1034.00	95.1040	93.8400
1064.00	137.280	105.800
1095.00	137.190	110.600
1126.00	135.180	107.500
1154.00	136.610	108.100
1185.00	129.930	100.400
1215.00	51.5830	45.0500
1246.00	34.3730	35.5000
1276.00	83.3990	57.3780
1307.00	121.060	90.7700
1338.00	126.120	101.888
1368.00	141.380	111.800
1399.00	137.090	112.900
1429.00	145.390	113.500
1460.00	150.160	113.900
1491.00	144.858	114.000
1522.00	135.660	99.5100
1550.00	126.020	86.2700
SVARTSENGI

<table>
<thead>
<tr>
<th>O</th>
<th>O</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>14</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>15</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>133</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>146</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>154</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>162</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>241</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>317</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>388</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>419</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>424</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>510</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>520</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>534</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>547</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>576</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>600</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>641</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>702</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>764</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>771</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>781</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>792</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>841</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>890</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>927</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>945</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>948</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1022</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1086</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1099</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1104</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1130</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1138</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1223</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1234</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1235</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1237</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1248</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1250</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1251</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1252</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1258</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1260</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1274</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1288</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1292</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1302</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1305</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

1309	188.00	36.36
1319	211.00	37.55
1339	115.00	36.71
1343	140.00	37.01
1345	150.00	37.21
1348	171.00	37.58
1353	186.00	38.11
1358	205.00	38.54
1368	226.00	38.64
1415	177.00	38.03
1435	120.00	38.57
1437	124.00	38.71
1438	163.00	38.79
1442	175.00	39.29
1443	183.00	39.43
1451	186.00	40.24
1452	192.00	40.22
1453	209.00	40.19
1472	129.00	40.11
1473	164.00	40.14
1487	172.00	41.04
1491	202.00	41.28
1504	129.00	43.15
1517	129.00	45.51
1521	135.00	46.23
1523	133.00	46.60
1524	279.00	46.78
1571	336.00	54.95
1590	344.00	59.07
1595	294.00	59.76
1618	347.00	63.02
1660	342.00	68.44
1669	336.00	69.24
1676	274.00	69.65
1681	280.00	69.83
1688	214.00	68.33
1702	222.00	70.11
1761	149.00	68.20
1762	152.00	68.25
1764	214.00	68.33
1768	149.00	68.50
1769	152.00	68.55
1787	206.00	69.37
1789	212.00	69.42
1790	272.00	69.44
1808	360.00	73.44
1839	341.00	77.21
1862	322.00	79.40
1864	273.00	79.46
1869	259.00	79.61
1872	249.00	79.86
1901	301.00	82.49
1932	299.00	84.73
1937	245.00	84.96

1949	299.00	85.10
1947	275.00	85.25
1956	281.00	85.63
2025	284.00	88.16
2075	224.00	90.30
2111	219.00	91.03
2122	269.00	91.44
2129	230.00	91.82
2133	280.00	92.25
2143	271.00	92.90
2146	311.00	93.28
2150	315.00	93.62
2157	263.00	94.02
2265	308.00	98.91
2319	283.00	103.30
2331	328.00	103.83
Revised form of program *hursimplin* (Olsen, 1985)

This program is used to find the standard deviation and "slope" term in the Hurst simplified linear analysis, for a given value of the Hurst parameter lambda.

USING THE PROGRAM:
The object is to find the lambda which minimizes the standard deviation. The method used here was to automate the following steps:

(On the UNIX system, a c-shell program did the following)
- Create an input file of lambdas, in increasing order
- Run *hsl*
- Find lambda corresponding to minimum std. deviation
- Make new file of lambdas ranging above and below the above sigma
- Repeat to desired accuracy.

INPUT:
- "*t.q.dh*" contains the field data of time, production, and drawdown. The first line is the number of data points, subsequent lines contain time(days), production rate(kg/sec), and drawdown(meters of water).
- "*k.fi*" contains the following parameters: permeability(sq. meters), porosity(unitless), and area of field(sq. meters)

Input from the standard input is the value for lambda. This value is NOT prompted, as usually the program reads these lambdas from a file of many lambda values. The program contains a loop such that if a file of lambdas is redirected into the standard input, lambdas will be read until the file is finished. Note: after the last lambda is read, the program will attempt to read the end of file, resulting in possible error statements. As this caused no problems with the operating system used, extra code for stopping the data input was not used.

OUTPUT:
Output is made to standard output. For each lambda input, the output is lambda, standard deviation, and "slope".

```fortran
program hsl
implicit real(a-h,o-z)
real k,mu,lam
dimension x(350),t(350),w(350),d(350),dc(350),cum(350)
open(unit=1,file='t.q.dh',status='old')
open(unit=7,file='k.fi',status='old')
rewind(unit=1)
read(1,*) npts
read(1,*) t(i),w(i),d(i),i=1,npts
```

read(7,*) k,fi
mu=1.0e-6
c=1.0e-9
tc=3600.*24.*k/(fi*mu*c)

continue
cum(1)=0.
read(5,*) lam
do 200 n=2,npts
xx=0.
do 100 j=2,n

time=(t(n)-t(j-1))*tc
xx=xx+(w(j)-w(j-1))*f(lam, time)
continue
x(n)=xx
cum(n)=cum(n-1)*w(n)*(t(n)-t(n-1))*24.*3600.
continue
x(1)=0.
call lsq(npts, x, d, slope)
tot=0.
do 300 i=1,npts
dc(i)=x(i)*slope
tot=tot+(dc(i)-d(i)**2.
continue
sd=sqrt(tot/float(npts-1))
write(6,1)
format(3(g12.5,5x))
go to 400
stop
end

function f(d,td)
f=(exp(d**2.*td)*erfc(d*td**.5)-1.+(2.*d*td**.5)/1.772454)/d**2.
return
end
Revised form of program 'hursradflt' (Marcou, 1985)

The major revision is that a table lookup program is used for evaluation of the Hurst function, greatly increasing execution speed.

This program is used to find the standard deviation and 'slope' term in the Hurst simplified radial analysis, for a given value of the Hurst parameter sigma.

USING THE PROGRAM:
The object is to find the sigma which minimizes the standard deviation. The method used here was to automate the following steps: Create an input file of sigmas, in increasing order. Run hsr. Find sigma corresponding to minimum std. deviation. Make new file or sigmas ranging above and below the above sigma. Repeat to desired accuracy.

INPUT:
"t.q.dh" contains the field data of time, production, and drawdown. The first line is the number of data points, subsequent lines contain time(days), production rate(kg/sec), and drawdown(meters of water).

"k.fl" contains the following parameters: permeability(sq. meters), porosity(unitless), and area of field(sq. meters)

Input from the standard input is the value for sigma. This value is NOT prompted, as usually the program reads these sigmas from a file of many sigma values. The program contains a loop such that if a file of sigmas is redirected into the standard input, sigmas will be read until the file is finished. Note: after the last sigma is read, the program will attempt to read the end of file, resulting in possible error statements. As this caused no problems with the operating system used, extra code for stopping the data input was not used.

OUTPUT:
Output is made to standard output. For each sigma input, the output is sigma, standard deviation, and 'slope'.

program hsr
implict real*8(a-h,o-z)
real*8 k,mu
dimension x(350),t(350),w(350),d(350),dc(350),cum(350)
tab(50),ftab(50)
open(unit=1,file='t.q.dh',status='old')
open(unit=7,file='k.fl',status='old')
rewind(unit=1)
read(1,*) npts
read(1,*) (t(i),w(i),d(i),i=1,npts)
read(7,*) k,f1,area
r=(area/3.14159)**.5
mu=110.d-6
c=1.d-9
tc=3600.*24.*k/(f1*mu*c*(r**2.))
continue
ngood=npts
cum(i)=0.
read(5,*) sig

The subroutine maktab creates a table of time vs. Hurst function for the given sigma.

call maktab(tc,t(npts),sig,ttab,ftab)

Perform Hurst analysis

do 200 n=2,npts
xx=0.
do 100 j=2,n
time=(t(n)-t(j-1))*tc
call lookup(ttab,ftab,50,time,hf)
xx=xx+(w(j)-w(j-1))*hf
continue
x(n)=xx*sig
cum(n)=cum(n-1)+w(n)*(t(n)-t(n-1))*24.*3600.
continue
x(1)=0.

The subroutine lsq performs a least squares fit (constrained through the origin).
call lsq2(npts,x,d,slope)

Calculate drawdown and std. deviation

tot=0.
do 300 i=1,npts
dc(i)=x(i)*slope
if(d(i).lt.-1.) then
 ngood=ngood-1
 go to 300
else
 tot=tot+(d(i)-d(i))**2.
end if
continue
sd=sqrt(tot/float(ngood-1))

Output sigma, std. dev., and slope.
write(6,500) sig,sd,slope
500 format(3(2x,g14.6))
C return for new sigma
C go to 400
stop
end
This program is used to generate the Hurst prediction, given sigma and "slope". The correct sigma and "slope" are found using program hsrtab.

INPUT:
- "t,q,dh": time, production rate, and drawdown, as described in program hsrtab
- "k,fi": permeability, porosity, and reservoir area, as described in program hsrtab

OUTPUT:
- "hsrpred.out" is the graph-routine-ready output of drawdown vs time.

main program

```c
implicit real*8(a-h,o-z)
real*8 k,mu
dimension t(225),q(225),dh(225),sum(225),dhd(225),cum(225)
open (unit=3, file='t.q.dh', status='old')
rewind (unit=3)
open (unit=2, file='hsrpred.out')
rewind (unit=2)
open (unit=1, file='k.fi')

************** Input data ******************
read (3,*) t,i
read (3,*) (t(i),q(i),dh(i),i=1,1)
read (3,*) k,fi,area
r2=area/3.14159
mu=110.e-6
c=1.e-9
tc=86400.*k/(fi*mu*c*r2)
write (6,*),
write (6,*), 'what is the value of sigma?'
read (5,*) sig
write (6,*), 'what is the slope?'
read (5,*) slope
```

************** initialize and Laplace solution **************
do 200 i=1,1
 if (i.eq.1) then
 n=10
 m=150
 sum(l)=0,0
 dhc(l)=0,0
 cum(l)=0,0
 else
 do 100 j=2,1
 dtd(tc(l)-t(j-1))
 sum(l)=sum(l)+(q(j)-q(j-1))*sig*sigman(dtd,n,m,sig)
 cum(l)=cum(l-1) + (q(l)*(t(l)-t(l-1))*50.*50.*24., end if
 100 continue
 dhc(l)=slope*sum(l)
 200 continue

********** calculate drawdown **********

do 300 i=1,1
 dhc(i)=slope*sum(l)
 300 continue

********** write to file "graph.dhc" **********

****** first write the calculated drawdown *****

write (2,*): t(1),dhc(1)
 400 continue

******* now write the actual drawdown **********

write (2,*): t(1),dhc(1)
 500 continue
stop
end
This program is used to generate the Hurst prediction, given lambda and "slope". The correct lambda and "slope" are found using program hsl.

INPUT:
"t.q.dh": time, production rate, and drawdown, as described in program hsrtable
"k.fi": permeability, porosity, and reservoir area, as described in program hsrteb
lambda and "slope" are prompted inputs on the standard input.

OUTPUT:
"hsrpred.out" is the graph-routine-ready output
The first series of points is actual data,
the second series is the calculated drawdown.

```c
hsrpred, revised from Olsen(1985)
This program is used to generate the Hurst prediction, given lambda and "slope". The correct lambda and "slope" are found using program hsl.

INPUT:
"t.q.dh": time, production rate, and drawdown, as described in program hsrtable
"k.fi": permeability, porosity, and reservoir area, as described in program hsrteb
lambda and "slope" are prompted inputs on the standard input.

OUTPUT:
"hsrpred.out" is the graph-routine-ready output
The first series of points is actual data,
the second series is the calculated drawdown.
```

```c
program hsrpred
implicit real(a-h,o-z)
real k,mu,lam
dimension x(350),t(350),w(350),d(350),dc(350),cum(350)
open(unit=1,file='t.q.dh',status='old')
rewind(unit=1)
open(unit=7,file='hsrpred.out')
rewind(unit=7)
open(unit=8,file='k.fi',status='old')
rewind(unit=8)

read(8,*) k,f!
write(6,*)'Enter lambda'
read(5,*) lam
write(6,*)'Enter slope'
read(5,*) slope
read(1,*) npts
read(1,*) (t(i),w(i),d(i),i=1,npts)
mu=1.0.e-6
c=1.e-9
tc=3600.*24.*k/(f!*mu*c)
cum(n)=0.
do 200 n=2,npts
  xx=x.
do 100 j=2,n
    time=(t(n)-t(j-1))*tc
    xx=x+(w(j)-w(j-1))*f(lam,time)
  continue
  x(n)=xx
  cum(n)=cum(n-1)+w(n)*f(t(n)-t(n-1))*24.*3600.
continue
  x(1)=0.
do 300 !=1,npts
```

dc(i) = x(i) * slope
continue
write(7, *) npts
write(7, 10) (cum(i), d(i), i=1, npts)
write(7, *) npts
write(7, 10) (cum(i), dc(i), i=1, npts)
format(2(3x, g12.5))
stop
end

C C C

function f(d, td)
f = (exp(d**2.*td)*erfc(d*td**.5)-1.+(2.*d*td**.5)/1.772454)/d**2.
return
end
Program hsrcsls: Line source solution history match
See program hsrc for general description, here there is no input sigma.

Program hsrcsls
implicit real*8(a-h,o-z)
real*8 k,mu
dimension x(350),t(350),w(350),d(350),dc(350),cum(350)
onopen(unit=1, file='t.q.dh', status='old')
onopen(unit=2, file='hsrcpred.out')
onopen(unit=7, file='k.f1', status='old')
rewind(unit=1)
read(1, *) npts
ngood=npts
read(1, *) (t(i),w(i),d(i),i=1,npts)
read(7, *) k,f1,area
r=(area/3.14159)**.5
mu=1.0.d-6
c=1.0.d-9
tc=3600.*24.*k/(f1*mu*c*r**2.)
cum(1)=0.
do 200 n=2,npts
xx=0.
time=(t(n)-t(n-1))*tc
xx=xx+(w(j)-w(j-1))*pdiss(time)
100 continue
xx=xx
cum(n)=cum(n-1)+w(n)*(t(n)-t(n-1))*24.*3600.
do 200 n=1,npts
cum(n)=cum(n)+w(n)*(t(n)-t(n-1))*24.*3600.
dc(n)=x(n)*slope
if(d(n).lt.0.) then
ngood=ngood-1
else
tot=tot+(dc(n)-d(n)*2.
endif
200 continue
sd=sqrt(tot/float(ngood-1))
write(6,*) 'SD SLOPE'
write(6,2) sd,slope
write(2,2)(cum(i),dc(i),i=1,npts)
write(2,2)(cum(i),d(i),i=1,npts)
format(2(g12.5,5x))