Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD UNIVERSITY
Stanford, California
SGP-TR-88

MULTIPHASE, MULTICOMPONENT COMPRESSIBILITY IN PETROLEUM RESERVOIR ENGINEERING

By

Luis Macias-Chapa

March 1985

Financial support was provided through the Stanford Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 and by the Department of Petroleum Engineering, Stanford University.
© Copyright 1985
by
Luis Macias Chapa

ACKNOWLEDGEMENTS

I feel privileged to have had Dr. Henry J. Ramey Jr. as my principal advisor on this research, I have been inspired by his ability to combine professional achievements with a rich personal life. I am deeply indebted to him and his family for their support through these years.

The other members of my committee, each of whom I respect greatly deserve special recognition. Dr. James 0 . Leekie was invaluable as a friend and advisor. I am thankful to Dr. Khalid Aziz. His friendship and idea3 were very helpful in finishing this work. I am grateful to Dr. Frank G. Miller €orhis continuous support and encouragement. I would also like to thank Dr. William E. Brigham for helpful questions he raised throughout this work that led tb a clearer understanding of the problem.

I am also indebted to Dr. Giovanni Da Prat, who introduced me to this research program, and to Dr. Avrami Sageev for his participation in my oral examination.

It has been my fortune to work with a remarkable group of people at Stanford 1 have drawn heavily on them for advice and support. I would like to acknowledge Oswaldo Pedrosa. Gersem Andrade, Fred Wang, Hasan Al-Ypusef, Rich Treinen, Dr. Abbas Firoozabadi, and my friends from Mexico: Drs. Heber Cinco, Jesus Rivera, Fernando Rodriguez, and Fernando Samaniego. I am al\$o thankful to Terri Ramey for her assistance with the illustrations, and all of the staff of the Petroleum Engineering Deptartment, headed by Jean Cook. Research on this project was supported by grants from INTEVEP. and the Stanford Geothermal Program, for which am very thankful.

I am primarily indebted to my wife Martha. Her loving encouragement was indispensable. Finally I thank my parents and sisters for their love and unquestioning support throughout my life.

Abstract

Adiabatic and isothermal compressibility below the bubble point and production compressibility were computed with a thermodynamic model for single and multicomponent systems. The thermodynamic model consists of an energy balance including a rock component, and a mass balance, with appropriate thermodynamic relationships for enthalpy and equilibrium ratios utilizing the virial equation of state. Runs consisted of modeling a flash process, either adiabatically or isothermally and calculating fluid compressibilities below the bubble point for $H_{2} O, H_{2} O-\mathrm{CO}_{2}, n C_{4}-i C_{4}-C_{5}-C_{10} . C_{1}-C_{7}$, and $C_{1}-C_{7}-H_{2} O$ systems. The production compressibility was computed for gas production, and for production according to relative permeability relationships for a one-component system. Results showed a two-phase compressibility higher than gas compressibility for similar conditions, and a production compressibility that could be larger than either the two-phase compressibility or the gas-phase compressibility, under the same conditions.

The two-phase compressibility results tend to corroborate an observation that a two-phase system has the effective density of the liquid phase, but the compressibility of a gas. Production compressibility is large because of a reduction in the amount of liquid in the system because of the effects of vaporization and production enhanced by the effect of heat, available from rock in the system.

Total system compressibility plays an important role in the interpretation of well test analysis, specifically for systems below the bubble point. Accurate
information on the total effective fluid compressibility is necessary for the possible isolation of formation compressibility from interference testing in subsiding systems.

Non-condensible gas content of discharged fluid for a steam-dominated geothermal system was studied with the thermodynamic model. An initial increase in the non-condensible gas concentration was observed, followed by a stabilization period, and finally a decline in the non-condensible gas concentration, behavior that resembles actual field results. Study of the behavior of noncondensible gases in produced geothermal fluids is important for planning turbine design.

Table of Contents

ACKNOWLEDGMENTS iv
ABSTRACT vi
TABLE OF CONTENTS viii
ITST OF FIGURES ix

1. INTRODUCTION 1
2. THEORY AND LTERATURE REVIEW 3
2.1 Theory 3
2.2 Total System Isothermal Compressibility 8
3. METHOD OF SOLUTION 18
3.1 Vapor-liquid equilibrium calculations 20
3.2 Phase equilibrium 21
3.3 Equilibrium Ratios 24
3.4 Flow Diagram For Flash Calculations 28
3.5 Compressibility Calculations 28
3.5.1 Expansion Compressibility 28
3.6 Production Compressibility 32
3.6.1 Gas Production 32
3.6.2 Multiphase Fluid Production 35
4. RESULTS 45
4.1 Fluid Compressibility 46
4.1.1 Single-Component Systems 46
4.1.2 Multicomponent Systems 59
4.2 Production Compressibility 90
4.2.1. Gas Production 97
4.2.2 Multiphase Production 104
5. DISCUSSION 109
5.1 Two-Phase Compressibility from Published Data 111
5.2 Production compressibility 117
5.3 Effect of the Change in Saturation with Pressure on Two-Phase 121
5.4 Summary 122
5.5 Non-condensible monitoring 123
6. CONCLUSIONS 125
7. RECOMMENDATIONS 126
8. REFERENCES 127
9. NOMENCLATURE 131
APPENDIX A: Derivation of Total System Isothermal Compressibility 134
APPENDIX B: Computer Programs 137

LIST OF FIGURES

Pape
2.1 Pressure versus Specific Volume for a pure material 5
2.2 Pressure versus Specific Volume. two-component system 7
2.3 Compressibility of live and dead oil versus pressure. Effect of gas in solution 13
2.4 Approximate isothermal compressibility versus pressure [Standing. (1979)] 16
3.1 Fiow diagram from flash calculations [Prausnitz et α L. (1980)] 29
3.2 Gas production 33
3.3 Multiphase fluid production according to relat.ive permeability-saturation relationships 36
3.4 Flow diagram of flash and compressibility calculations 40
3.5 Flow diagram for expansion compressibility calculations 41
3.6 Flow diagram of gas production compressibility calculations 42
3.7 Flow diagram of rnultiphase fluid production compressibility calculations 43
4.1 Pressure versus volume. water system no. 1. 48
4.2 Compressibility versus pressure. water system no. 1 49
4.3 Log-log graph of compressibility versus pressure. water system no. 1 50
4.4 Quality versus pressure. water system no.1 51
4.5 Pressure versus volume. water system no. 2 52
4.6 Compressibility versus pressure. water system no. 2 53
4.7 Semilog graph of compressibility versus pressure. water systemno. 2 55
4.8 Quality versus Pressure. water System No. 2 56
4.9 Pressure versus Specific Volume. water System No. 3 57
4.10 Compressibility versus Pressure. water System No. 3 58
4.11 Quality versus Pressure. water System No. 3 60
4.12 Pressure versus Specific Volume. $\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2}$ System No. 4. 61
4.13 Compressibility versus Pressure. $\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2}$ System No. 4 62
4.14 Quality versus Pressure. $\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2}$ System No. 4 63
4.15 Compressibility versus pressure a comparison of expansion compressibility and gas(steam) compressibility for water and water-carbon dioxide systems 64
4.16 Pressure versus Specific Volume. $\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2}$ System No. 5. 66
4.17 Compressibility versus Pressure. $\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2}$ System No. 5 67
4.18 Compressibility versus Pressure. $\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2}$ System No. 5 68
4.19 Quality versus Pressure. $\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2}$ System No. 5 69
4.20 Pressure versus Specific Volume. hydrocarbon System No. 6 70
4.21 Compressibility versus Pressure. hydrocarbon System No. 6 71
4.22 Quality versus Pressure. hydrocarbon System No. 6 72
4.23 Pressure versus Specific Volume. hydrocarbon System No. 7. 73
4.24 Compressibility versus Pressure. hydrocarbon System No. 7 74
4.25 Quality versus Pressure. hydrocarbon System No. 7 75
4.26 Pressure versus Specific Volume. hydrocarbon System No. 8 77
4.27 Compressibility versus Pressure. hydrocarbon System No. 8 78
4.28 Qualityversus Pressure. hydrocarbon System No. 8 79
4.29 Pressure versus Specific Volume. hydrocarbon System No. 9 80
4.30 Compressibility versus Pressure. hydrocarbon System No. 9 81
4.31 Qualityversus Pressure. hydrocarbon System No. 9 82
4.32 Pressure versus Specific Volume. hydrocarbon System No. 10 84
4.33 Compressibility versus Pressure. hydrocarbon System No. 10 85
4.34 Quality versus Pressure. hydrocarbon System No. 10 86
4.35 Pressure versus Specific Volume. hydrocarbon System No. 11 87
4.36 Compressibility versus Pressure. hydrocarbon System No. 11 88
4.37 Quality versus Pressure. hydrocarbon System No. 11 89
4.38 Pressure versus Specific Volume. hydrocarbon System No. 12 91
4.39 Compressibility versus Pressure. hydrocarbon System No. 12 92
4.40 Quality versus Pressure. hydrocarbon System No. 12 93
4.41 Pressure versus Specific Volume. hydrocarbon System No. 13 94
4.42 Compressibility versus Pressure. hydrocarbon System No. 13 95
4.43 Qualityversus Pressure. hydrocarbon System No. 13 96
4.44 Gas Production Compressibility versus Pressure. water System No. 14 98
4.45 Gas Production Compressibility versus Pressure, water System No. 15 99
4.46 Gas Production Compressibility versus Pressure. water System No. 16 100
4.47 Gas Production Compressibility versus Pressure water System No. 17 101
4.48 Compressibility versus pressure. a comparison of gas production. expansion compressibility. and gas (steam) compressibility for water systems 102
4.49 Temperature versus Pressure. water System No. 18 104
4.50 Pressure versus Saturation. water System No. 18 105
4.51 Multiphase Production Compressibility versus Pressure. production by relative permeability. System No. 18 106
4.52 Multiphase Production Compressibility versus Pressure. production by relative permeability. System No. 19 107
5.1 Sound Speed in Liquid Gas Mixtures versus mass fraction of steam [Keiffer (1977)] 109
5.2 Compressibility versus Pressure for single-component water systcm and multicomponent water-carbon (dioxidesystems112
5.3 Pressure versus Specific Volume from Sage at al.(1933) data 113
5.4 Compressibility versus Pressure from Sage et. al (1933) data 114
5.5 Pressure versus Cumulative Production from [Martin (1975)] 119
5.6 Pressure versus Fractional oil production from a black oil simulation 120
5.7 CO_{2} discharge mol fraction versus pressure for a simulation of a vapor-dominated geothermal field with gas production 124

1. INTRODUCTION

One of the most important methods for in situ measurement of geological parameters of reservoirs is pressure (and rate) transient analysis. This field of study has been termed the single most important. area of study in reservoir engineering, Dake (1978). All present methods \boldsymbol{f} analysis depend upon solutions of the diffusivity equation.

In the solution of the diffusivity equation, the diffusivity is considered a constant, independent of pressure. Strictly speaking, all terms in the diffusivity (permeability, porosity, fluid viscosity, and cornpressi'bility) usually do depend on pressure and some may depend on space coordinates. If one assumes properties independent of space coordinates, the question of pressure dependency remains. In cases where pressure changes, or changes in pressure-related properties are small, the assumption of a constant diffusivity is reasonable. But, when, fluid and rock properties change considerably over the range of pressures considered, the assumption of constant diffusivity is not justified.

Total isothermal compressibility is defined as the fractional volume change of the Auid content of a porous medium per unit change in pressure, and it is a term that appears in the solution of all problems on isothermal transient flow of fluids in a porous medium. Recently, it has been reported (Grant, 1976) that the total system compressibility for systems where a change of phase and production are involved is usually higher than the compressibility of the gaseous phase at the same conditions. Evaluation of total system effective compressibility for multiphase systems for different production modes is the purpose of this study.

In order to perform this study, the change in volume in a reservoir with respect to pressure was computed with a therniodynamic model for a flash system. The model has the capability of considering different production modes: gas production, and production according to relative permeability-saturation
relationships (multiphase production).
Runs were made to compute the two-phase compressibility for a singlecomponent water system, and multicomponent systems: $\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2}, \mathrm{C}_{1}-\mathrm{C}_{3}$, $n C_{4}-i C_{4}-C_{5}-C_{10}, C_{1}-C_{7}$ and $C_{1}-C_{7}+H_{2} O$. Production runs were made for gas production, and production according to relative permeability- saturation relationships. Resulls can provide information on tolal system effective compressibility essential in the interpretation of well test analysis for many reservoir-fluid systems.

With the development of highly-precise quartz crystal pressure gauges, a sensitivity was obtained that permits interference testing in reservoirs subject to subsiding conditions. Interference testing can be used to measure porositytotal system effective compressibility product for such systems. Accurate knowledge of total effective fluid compressibility should allow the isolation of the formation compressibility. Thus unusually large values of formation compressibility could indicate potential subsidence at an early stage in the life of a reservoir, and indicate reservoir operational conditions under which environmental problems could be minimized.

In the design of turbines for geothermal field electric production, it is necessary to have an estimate of the noncondensible gas content of the produced geothermal steam. A thermodynamic compositional model can give information on the noncondensible gas behavior for a given system of interest. Runs were made with a system simulating a vapor-dominated geothermal field with two components: $\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2}$. Results indicated an increase in the concentration of carbon dioxide in the produced fluid, followed by a stabilization period, and finally an eventual decline in the produced CO_{2} concentration, behavior that resembles field results, Pruess et al. (1985). Theory and pertinent literature on total system compressibility will be considered in the next section.

2. THEORY AND IJTERATURE REVIEW

This section considers both the theory and presents a brief review of pertinent literature concerning total system compressibility.

2.1. Theory

The most common kinds of compressibilities are: (1) isothermal compressibility. (2) adiabatic compressibility, and (3) total system apparent compressibility. A brief description of each follows.

Isothermal Compressibility - - An equation of state is a relation connecting pressure, temperature, volume for any pure homogeneous fluid or mixture of fluids. An equation of state can be solved for any of the two variables in terms of the other, for example (Smith et al., 1975):

$$
V=V(T, p)
$$

then:

$$
d V=\left|\frac{\partial V}{\partial T}\right\rangle_{p} d T+\left|\frac{\partial V}{\partial p}\right|_{T} d p
$$

The partial derivatives in this equation represent measurable physical properties of the fluid :

Volume expansivity:

$$
\kappa=\frac{1}{V}\left[\frac{\partial V}{\partial T}\right]_{p}
$$

The isothermal compressibility:

$$
c=-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{T}
$$

The isothermal compressibility or the volume expansivity can be obtained from graphs of pressure-volume-temperature (pVT) data (Muskat, 1949). The isothermal Compressibility is a point function, and can be calculated from the slope of an isotherm of a pressure versus specific volume curve for each value of pressure.

The partial of volume with respect to pressure is usually a negative number (Amyx et al., 1960), reflecting that an increment in pressure gives a decreased volume. The magnitude of the isothermal compressibility increases with increasing temperature, and diminishes with increasing pressure. Therefore the pressure effects are larger at high temperatures and low pressures.

A $p-V$ diagram for a pure material is illustrated in Fig. 2.1. This figure shows that an isotherm on the left part of the diagram corresponds to the liquid phase. Liquid isotherms are steep and closely spaced. This shows that both $\left(\frac{\partial V}{\partial p}\right)_{T}$ and $\left(\frac{\partial V}{\partial T}\right)_{P}$. and therefore the isothermal compressibility and the volume expansivity, are small. This is a liquid characteristic, as long as the region near the critical point is not considered. It is from this fact that the common idealization in fluid mechanics known as the incompressible Auid arises. For an incompressible fluid, the values of the isothermal compressibility and volume expansivity are considered to be zero.

For real gases, the isuthermal compressibility can be expressed as:

$$
c=\frac{1}{p}-\frac{1}{Z}\left(\frac{\partial Z}{\partial p}\right)_{T}
$$

Fig. 2.1 Presэure versus Snecific Volume for a Pure Materiel

Muskat (1949), showed that as $\left[\frac{\partial Z}{\partial p}\right)_{T}<0$ at low pressures, the isothermal compressibility of a gas phase will be greater than the compressibility for an ideal gas. This will continue for temperatures beyond the critical point to the Boyle point, the pressure at which Z is a minimum. Above the Boyle point, $\left(\frac{\partial Z}{\partial p}\right)_{T}$ will be positive. Therefore the compressibility will fall below that of an ideal gas.

For the coexisting two-phase compressibility (gas and liquid), it can be shown from a p-V diagram, Fig. 2.1 and 2.2. for either a pure component, or a two-component system, that the inverse of the slope of an isotherm for the twophase region, $\int_{\frac{\partial p}{\hat{E} V}, T}{ }^{\prime}$ will be greater than the corresponding slopes of either the gas or liquid region. We now turn to consideration of adiabatic compressibility.

Adiabatic Compressibility - - Measuring the change in temperature and specific volume for a given small pressure change in a reversible adiabatic process provides enough information to calculate the adiabatic compressibility:

$$
c_{m}=-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{H}
$$

Keiffer(1977) in a study of the velocity of sound in liquid-gas mixtures, calculated sonic velocities for water-air and water-steam mixtures that were lower than the sonic velocity of the gas phase. The existence: of gas or vapor bubbles in a liquid reduces the speed of sound in the liquid. This phenomenon was explained by suggesting that a two-phase system has the effective density of the liquid, but the compressibility of a gas. Sonic velocity can be related to adiabatic compressibility by the expression:

$$
v_{s}=\left(c_{s} \rho\right)^{-1 / 2}
$$

Volume, cu ft/lb
u! bs/ql 'o.nnssedd

From this, it is apparent that a low sonic velocity v_{s} corresponds to high compressibility.

Apparent Compressibility - For an oil system below the bubble point, for which the liquid volume increases with an increase in pressure as a consequence \boldsymbol{f} gas dissolving in the liquid, Earlougher (1972) presents the following definition of "Apparent Compressibility ":

$$
c_{o a}=\left(-\frac{1}{B_{0}} \frac{\partial B_{0}}{\partial p}+\frac{B_{g}}{B_{0}} \frac{\partial R_{s}}{\partial p}\right)_{T}
$$

This concept is related to the older concept of total system isothermal compressibility. Literature on this subject is presented in the next section.

2.2. Total System Isothermal Compressibility

Perrine (1956) presented an empirical extension of single-phase pressure buildup methods to multiphase situations. He showed that improper use of single- phase buildup analysis in certain multiphase flow conditions could lead to errors in the estimation of static formation pressure, permeability and well condition.

A theoretical foundation for Perrine's suggestion was established by Martin (1959). It was found that under certain conditions of small saturation and pressure gradients, the equations for multiphase Auid flow .may be combined into an equation for effective single-phase flow.

Cook (1959), concluded that calculations of static reservoir pressure from buildup curves in reservoirs producing at, or below the original bubble point, required the use of two-phase fluid compressibility, otheriwise the calculated static pressure would be in error. This error could grow in proportion to the buildup curve slope, and could also increase for low values of crude oil gravity, reservoir
pressure, and dimensionless shut-in time. It was also shown that in the equation for the two-phase compressibility, there exists the inherent assumption that the solution gas oil ratio (GOR) curve, and the oil formation volume factor curve are completely reversible. This implies that a sufficient surface contact area exists between the free gas and the oil that the same volume of gas will redissolve per unit of pressure increase as had been liberated per unit of pressure decrease. Otherwise, conditions of supersaturation or undersaturation would be generated. Based on a work by Higgins (1954), Cook (1959) concluded that negligible supersaturation or undersaturation should occur for uniform distribution of phases, even under rates of pressure change encountered in pressure build up tests. Higgins (1954), measured saturation rates in porous media. His results showed that because of the rapid diffusion of gas in the small dimensions of pore space no supersaturation exists during the flow of cil to wells, or undersaturation during repressuring in reservoirs sands having some effective permeability to gas.

Dodson, Goodwill and Mayer (1953) found that there is not enough information to prove that thermodynamic equilibrium is attained by the fluids in a reservoir under normal production practices. They mentioned that agitation is the most important factor to achieve thermodynamic equilibrium. They also suggested that in cases of slow flow towards a wellbore, caused either by low permeability or a small pressure differential, there is probably insufficient agitation or turbulence to attain thermodynamic equilibrium, thus producing supersaturation conditions. Unfortunately, the existence of this condition can not be measured by routine laboratory pVT analyses. When gas is injected in a reservoir, it is known that only a small portion of the gas dissolves in the reservoir oil, probably because there is not sufficient contact between gas and oil. Differences in composition between the volatile injected gas and the remaining
heavier oil will possibly not produce a complete thermodynamic equilibrium, causing phase composition computations in gas injection projects to be in error if the assumption of thermodynamic equilibrium is made.

Perrine (1956), Martin (1959), and later Ramey (1964), pointed out that for single-phase and multiphase buildup analyses, the parameter corresponding to isothermal compressibility in the dimensionless time group should refer to the total system compressibility, with terms corresponding to the compressibility of oil, gas, water, reservoir rock, and also changes of solubility of gas in liquid phases. Ramey observed that there is an increase in the effective gas compressibility as a consequence of the solution of gas in water, specially when the magnitude of the water compressibility is important. He divided his work into four categories; rock compressibility, aquifers, gas reservoirs, and oil reservoirs.

Under rock compressibility, it was presented that. the effective rock pore space compressibility is a positive quantity, therefore it is added to the value of the fluid compressibilities. Rock compressibility was obtained from the correlation of rock compressibility as a function of porosity published by Hall (1953), and covered a range in magnitude from the compressibility of oil to the Compressibility of water. Rock compressibility is usuallu lese than the enmpressibility of gas. However, rock compressibility can be a major component in the total compressibility expression, specially in systems with low gas saturation, small porosity, or small liquid compressibilities. Subsidence or compaction was later found to cause even larger effective compressibilities.

With respect to aquifers, Ramey concluded that data on the compressibility of the aquifer water is not usually available. Therefore, water compressibility must be obtained from existing correlations.

Gas compressibilities in gas reservoirs containing gas and water are usually computed from Trube's (1957) reduced compressibilities for natural gas. Ramey
(ibid), reported that, rock and water compressibilities are small compared to gas compressibilities, although, it was recommended that the magnitude of each term in the total system compressibility be checked before neglecting them.

Oil reservoirs were considered to contain two or more fluids: oil, water, and in some cases, gas. When gas is present, it is often necessary to consider the contribution of each Auid phase and the rock to the total system isothermal compressibility:

$$
\begin{align*}
c_{t}= & S_{0}\left(-\frac{1}{B_{0}} \frac{\partial B_{0}}{\partial p}+\frac{B_{g}}{B_{o}} \frac{\partial R_{s}}{\partial p}\right)+ \\
& S_{w}\left(-\begin{array}{rl}
1 & \partial B_{w}+\frac{B_{g}}{B_{p}} \frac{\partial R_{o w}}{B_{w}^{w}} \\
\frac{B_{w}^{w}}{\partial p}
\end{array}\right)+ \\
& S_{g}\left(-\frac{1}{B_{g}} \frac{\partial B_{g}}{\partial p}\right)+\frac{1}{V_{p v}} \frac{\partial V_{r}}{\partial p}
\end{align*}
$$

Derivation of Eq. 2.9,(Ramey, 1975), is presented in Appendix A.
The contribution of water to compressibility consisted of two terms. The first term, $\left(\frac{\partial B_{w}}{\partial p}\right)_{T}$, was obtained from the correlations of Dodson and Standing (1944), or Culberson and McKetta (1951). To compute the pressure differential of the gas in solution, $\left(\frac{\partial R_{s w}}{\partial p}\right)_{T}$, the magnitude of which is usually greater than the compressibility of water, the data of Culberson and McKetta, or Dodson and Standing were differentiated and graphed.

With respect to the oil and gas contributions to the total system compressibility, and in the event of not having experimental data available, the change in formation volume factor and gas in solution with pressure were obtained and graphed from Standing's (1952) correlations for California black oils. All this information combined gave a method to compute total isothermal compressibility for any system containing a gas phase.

With data taken from one of Ramey's (1964) examples, Fig. 2.3 show the effect of gas in solution in oil.

When there is pressure drop caused by production in a two-phase fluid reservoir, the fluids may respond by boiling. Therefore, the withdrawn fluid may be replaced by steam. This causes an apparent compressibility for a two-phase system which may be 100-1000 times larger than the compressibility of liquid water, and 10-100 times larger than the compressibility of superheated steam, according to a study made by Grant(1978).

Moench (1980) presented results of a numerical study showing that the process of vaporization causes a delay in the pressure response. Moench and Atkinson (1978). Grant(1978), and Garg(1980) explained the phenomena combining energy and flow equations in a diffusion-type equation. This equation contained an apparent steam compressibility in the two-phase region that was many times larger than that of superheated steam.

Grant and Sorey (1979) combined the volume change and heat evolved in a phase change process to give an approximation of 'the two-phase apparent compressibility, ignoring the compressibility of each phase and the compressibility of the mixture. An example given by the authors shows a two-phase compressibility that is 30 times larger than the steam compressibility at the same conditions. Their equations are:

Increase in volume ΔV after Δp :

$$
\Delta V=\Delta m\left(\frac{1}{\rho_{s}}-\frac{1}{\rho_{w}}\right)
$$

Thus:

Fig. 2.3 Compressibility of live and NeaN oi versus pressure. Effect of Gas in Solution
(!sd/I) 6ı!!!q!sseadwo3 IDwJeytos I

$$
\beta_{t}=\frac{(1-\Phi)\left(\rho_{f} c_{p}+\Phi S \rho_{w} c_{w}\right)\left(\rho_{w}-\rho_{s}\right)}{\Phi \lambda \frac{d p_{s}}{d T} \rho_{w} \rho_{s}}
$$

Avasthi and Kennedy (1968) developed equations for the prediction of molar volumes of gaseous hydrocarbons and liquid hydrocarbon mixtures. These equations were differentiated independently to give isothermal compressibility and isobaric thermal expansion for each phase independently. Their equations were developed using the residual volume method of Sage and Lacey. They computed the reference molar volumes from equations of state for gases and liquids respectively. and the molal volumes were obtained from correlations of molar volumes ofgaseous hydrocarbon mixtures and liquid hydrocarbon mixtures. Wat ter was not included in their calculations. The authors concluded that their equations expressed molal volumes with greater accuracy than the methods available at that time, and also that their equations were easily programmed on a digital computer.

Atkinson et al.,(1980) presented a lumped-parameter model of a vapordominated geothermal reservoir having a high amount of carbon dioxide. Their model is an extension of the models by Brigham and Morrow (1974), and Grant (1978) combined. The authors used a modified form of Henry's law for carbon dioxide/liquid mole fractions, and the gas phase was assumed to behave ideally for a mixture of two components. The model was used to study the short and long term behavior of carbon dioxide with fluid production for the Bagnore field in Italy. One of their conclusions was that the use of lumped parameter models has proven to be very useful for studying the behavior of geothermal fields.

Esieh and Ramey (1983) studied vapor-pressure lowering phenomena in porous media. For steam, experimental results showed that the amount of water adsorbed on the surface of a consolidated rock can be much higher than the
amount of steam in the pores, and this was believed to be caused by micropores in the porous media. Methane and Ethane adsorption on a Berea sandstone was also studied. It was observed that the amount of gas adsorbed was not high in comparison with the gas in the pore space. Due to experimental difficulties, more precise pressure measurements were needed in order to draw further conclusions. The cores studied had low surface areas compared to usual lowpermeability gas reservoir rocks. Adsorption of water and hydrocarbon gases may also affect thermodynamic equilibrium in a reservoir, by affecting the form of the amount of gas-liquid contact available.

Figure 2.5, presented by Standing (1979), depicts the approximate isothermal compressibility of reservoir fluids and rock. It can be seen that the compressibility of the rock can make an important contribution to the total system compressibility, specially in cases where rock subsidence is important.

Newman (1973), made laboratory measurements of pore volume compressibility for several consolidated and unconsolidated rock samples, and compared his results with published pore volume compressibility"porosity correlations of Hall (1953) and Van der Knaap (1959). Newman's laboratory measurements were not in agreement with published correlations. He recommended laboratory compressibility measurements to obtain rock compressibility for a specific reservoir. It was concluded that pore volume compressiibility varies widely with rock type, and that the data is too scattered to permit reliable correlations. Additional investigation of other stress-sensitive parameters was recommended, because pore volume compressibility is not only porosity dependent.

In the sequential solution method for rnultiphase flow in one dimension, Aziz and Settari (1979) observed that the total compressibility for a block in question is affected by production terms, and these terms can even make the compressibility negative.

Fig. 2.4 Approximate Isothermal Compressibility versus Pressure (Standing, 1979)

From the preceding, it appears that many fluid thermodynamic factors affect multiphase system compressibility. Furthermore no thorough, modern study of the total system compressibility is available. In view of the importance of this factor to pressure transient analysis, the main objective of this study was to develop methods for a thorough investigation of total system effective compressibility. We now consider the method of solution.

3. METHOD OF SOLUTION

The change in volume of fluids in a reservoir caused by production can be expressed as a volume change due to a pressure change, plus the effective volume of the net fluid entering or leaving the reservoir. 'lhis can be expressed as suggested by Watts (1983) as:

$$
V_{T_{2}}-V_{T_{i}}=\left\{\frac{\partial V_{T_{i}}}{\partial p}\right)_{N}\left(p_{2}-p_{i}\right)+\sum_{m}\left(\frac{\partial V_{T_{i}}}{\partial N_{m}}\right)_{p}\left(N_{m_{\mathrm{e}}}-N_{m_{i}}\right)
$$

or:

$$
V_{T_{2}}-V_{T_{i}}=\left(\frac{\partial V_{T_{i}}}{\partial p}\right)_{N}\left(p_{2}-p_{i}\right)+\sum_{m}\left(\bar{v}_{T_{i}}\left(N_{m_{2}}-N_{m_{i}}\right)\right)
$$

The first partial multiplying the pressure difference reflects the fluid compressibility (change in volume with respect to pressure at a constant composition, isothermal or adiabatic). Eq. 3.2 is divided b, y by $\left(p_{2}-p_{i}\right)$, we obtain the change in volume corresponding to a pressure change. This relates to the compressibility of the reservoir fluid. considering the contribution from the fluid compressibility and the contribution due to a change in mass because of production, and can be expressed as follows:

$$
\frac{V_{T_{2}}-V_{T_{i}}}{p_{2}-p_{i}}=V_{T_{i}}\left(\frac{1}{v_{T_{i}}}\left\{\frac{\partial v_{T_{i}}}{\partial p}\right)_{z}\right)+\frac{1}{p_{2}-p_{i} \sum_{m}} \bar{v}_{T_{i}}\left(N_{m_{2}}-N_{m_{i}}\right)
$$

For one component, this reduces to:

$$
\frac{V_{T_{2}}-V_{T_{i}}}{p_{2}-p_{i}}=V_{T_{i}}\left(\left.\frac{1}{v_{T_{i}}}\left\{\frac{\partial v_{T_{i}}}{\partial p}\right\}_{2} \right\rvert\,+\frac{1}{p_{2}-p_{i}} v_{i} \quad\left(N_{2}-N_{i}\right)\right.
$$

The frst term on the right hand side of Eq. 3.4 corresponds to the isothermal or adiabatic compressibility at constant composition, and the second term represents the compressibility effect caused by net fluid leaving the reservoir. The second term on the right in Eq. 3.4 is analogous to the compressibility term used by Grant and Sorey (1979).

In the computation of total system fluid compressibility. two terms should be considered: the fluid compressibility (thermodynamic), and the compressibility caused by differences in volumes due to vaporization or a change of phase (condensation may cause negative apparent compressibilities). The compressíbility of a single-phase gas or liquid can be calculated by the methods mentioned before. For a two-phase system, the compressibility of the mixture may be obtained either by computing the volume of the mixture at two different pressures:

$$
\begin{align*}
& v_{\operatorname{mix}}=v_{L}+x\left(v_{g}-v_{l}\right) \\
& c=\frac{1}{v_{\operatorname{mix}}}\left|\frac{\Delta v_{\operatorname{mix}}}{\Delta p}\right|_{\text {TorS }}
\end{align*}
$$

or by differentiating an appropriate equation of state that would represent the two-phase volume. Note x represents mass quality in Eq. 3.5.

The compressibility caused by liquid mass transfer to vapor by boiling can be computed from the change in mass after a small change in pressure at constant total volume, i.e., a constant-volume flash, with the required production of
higher and/or lower enthalpy fluids. The computation of the fluid compressibility and the compressibility effect from vaporization caused by boiling can be obtained from multicomponent vapor/liquid equilibrium in conjunction with energy influx from rocks and the consideration of production of fluid, when appropriate.

3.1. Vapor-Liquid Equilibrium Calculations

The thermodynamic model considered herein consists of a porous medium of fixed rock mass, $\boldsymbol{m}_{\boldsymbol{r}}$, and uniform porosity which contains an initial molar (feed) with m components at a given pressure, composition and enthalpy. The ftuid is flashed after a small drop in pressure into liquid and vapor. This model is a modification of the model presented by Prausnitz et al (1980).

The total molar and component molar balances are expressed by:

$$
\begin{gather*}
F=\bar{V}+L \\
F \omega_{i}=\overline{y_{y}}+L x_{i}
\end{gather*}
$$

and an enthalpy balance:

$$
F h^{F}+Q=\bar{V}^{V}+L h^{L}
$$

where Q is the external heat (enthalpy) addition from the porous medium, and is defined as:

$$
Q=(1-\Phi) V_{t o t a l} \rho_{r} c_{p} \Delta T
$$

Rock heat capacity and density are considered constant throughout the flash processes. Addition of the rock contribution to the enthalpy balance is a modification of the enthalpy expression presented by Prausnitz et al. (1980). Thermodynamic relationships required for the flash calculations follows the description presented by Prausnitz et al. (1980), and are given here for the sake of completeness.

3.2. Phase equilibrium

Gibbs showed that at thermodynamic equi ibriurn the fugacity, pressure and temperature of each component are the same for each of the coexisting phases (Smith et. al., 1975):

$$
f_{i}^{V}=f_{i}^{L}
$$

where:

$$
f_{i}^{V}=\varphi_{i}^{V} y_{i} p
$$

and:

$$
\begin{array}{rl}
f_{i}^{L}=\varphi_{i}^{L} x_{i} p=\gamma_{i} x_{i} f_{i}^{O L} & 3.13 \\
\gamma_{i} & =\frac{f_{i}^{\prime}}{x_{i} f_{i}^{0 L}}
\end{array}
$$

by definition equilibrium ratios are:

$$
K_{i}=\frac{V i}{x_{i}}
$$

or:

$$
K_{i}=\frac{\gamma_{i} f_{i}{ }^{\circ L}}{\varphi_{i} p}
$$

additional restrictions required are:

$$
\begin{align*}
& \sum_{i=1}^{m} x_{i}=1 \\
& \sum_{i=1}^{m} y_{i}=1
\end{align*}
$$

Combining a total mass balance, component mass balances, and the definition of equilibrium ratios in the conventional way for flash calculations, the following expressions are obtained:

$$
x_{i}=\frac{\omega_{i}}{\left(K_{i}-1\right) \alpha+1}
$$

and:

$$
y_{i}=\frac{K_{i} \omega_{i}}{\left(K_{i}-1\right) a+1}
$$

where the fractional vaporization, \bar{F} is represented by a^{\prime}, and ω_{i} represents the initial molar fraction.

Using the Rachford and Rice (1952) procedure, the following expression is obtained:

$$
\left.\sum_{i=1}^{m}\right) \frac{\left(K_{i}-1\right) \omega_{i}}{\left(K_{i}-1\right) \alpha+1}=0
$$

which can be solved for a iteratively, given K_{i} values.
For determination of the separation temperature, an enthalpy balance should be solved simultaneously with Eq. 3.21. Furthermore, vapor-liquid equilibrium problems can be represented by:

Component Mass Balance:

$$
G_{1}(T, x, y, \alpha)=\sum_{i=1}^{(m)} \frac{\left(K_{i}-1\right) \omega_{i}}{\left(K_{i}-1\right) \alpha+1}=0
$$

Enthalpy Balance:

$$
\begin{gather*}
G_{2}(T, x, y, \alpha, Q / F)=1+\frac{Q}{F} h^{F}-\alpha \frac{h^{V}}{h^{F}}-(1-a) \frac{h^{L}}{h^{F}}=0 \\
\frac{Q}{F}=\frac{1-\Phi}{} \rho_{\mathrm{r}} c_{p} \\
\Phi \quad P F
\end{gather*}
$$

Equations 3.22and 3.23may be solved simultaneously for a and T, with the corresponding thermodynamic functions to give equilibrium ratios and enthalpies.

3.3. Equilibrium Ratios

The different components of the equilibrium ratios can be computed as follows. The fugacity coefficient of component i, is related to the fugacity coefficient of the vapor phase of the same component i by the following expression:

$$
\varphi_{i}=\frac{f_{i}^{v}}{y_{i} P}
$$

The connection between the fugacity of a component in a vapor phase and the volumetric characteristics of that phase can be achieved with the help of an equation of state (EOS). An equation of state describes, Martin, J.J.(1967), the equilibrium relationship (without special force fields) between pressure, volume, temperature, and composition of a pure substance or a homogeneous mixture. l'he EOS can be made to be volume explicit, pressure explicit, or temperature explicit. The temperature explicit equations are not practical. and are generally discarded. In looking for an appropriate equation of state, three decisions must be made. The first concerns the amount and kind of clata necessary to obtain the equation parameters. The second concerns the range of density to be covered, and the third concerns the precision with which pVT data can be represented.

Simple, short equations are adequate for a low density range. However long complicated equations are required if a broader range of density must be covered. As an illustration, Martin (ibid), reports that an equation covering data accurately to a fiftieth of the critical density requires only two constants. To get to onc half the critical density, four or five constants are needed. Six or more
constants are required to continue to the critical density, and many more constants are required if the desired density goes beyond the value of the critical density.

For low or moderate density ranges, a suitable equation of state for gases is the virial equation of state, Eq. 3.26. This equation has a theoretical basis.

$$
Z=\frac{p v}{R T}=1+\frac{B p}{R T}+C\left(\frac{p}{R T}\right)^{2}+\ldots
$$

Statistical mechanics methods can be used to derive the virial equation and indicate physical meaning for the virial coefficients. The second virial coefficient, B, considers interactions between molecular pairs. The third virial coefficient, C, represents three-body interactions, and so on. Two-body interactions are more common than three-body interactions, which are more abundant than four-body interactions, etc. The contributions of high-order terms diminish rapidly. Another important advantage of the virial equation of state is that theoretically-valid relationships exist between the virial coefficients of amixture and its components.

The virial equation of state, truncated after the second term, gives a good approximation for densities in the range of about one half of the critical density and below. Although, in principle, the equation may be used for higher densities, this requires additional higher-order virial coefficients that, unfortunately, are not yet available, Prausnitz et al. (1980).

The thermodynamic definition of the fugacity coefficient is (Smith et. al., 1975) :

$$
\ln \varphi_{i}=\int_{0}^{p} \frac{\overline{z_{i}}-1}{p} d p
$$

where:

$$
\overline{\Sigma_{i}}=\frac{p \overline{v_{i}}}{R T}
$$

and:

$$
\begin{align*}
\overline{v_{i}} & =\left(\frac{\partial v}{\partial n_{i}}\right)_{T_{p, n_{j}}} \\
B_{m i x} & =\sum_{i=1}^{m} \sum_{j=1}^{m} y_{i} y_{j} B_{i j}
\end{align*}
$$

When the virial equation of state, truncated after the second term, and the definition of the second virial coefficient, Eq. 3.30 are substituted in the expression for the fugacity coefficient, the following expression is obtained Prausnitz, et al, (1980):

$$
\ln \varphi_{i}=\left[2 \sum_{j}^{m} y_{j} B_{i j}-B\right] \frac{p}{R T}
$$

These equations, suitable for vapor mixtures at low or moderate pressures, are used throughout this work.

For the computation of vapor liquid equilibrium for polar mixtures, an activity coefficient method is advantageous. The ratio of fugacity of the component i, f, and the standard state fugacity, $f{ }^{\circ L}$, is called the activity, a_{1}. The quantity known as "activity coefficient", which is an auxiliary function in the application of thermodynamics to vapor-liquid equilibrium is defined as:

$$
\begin{aligned}
& -27- \\
& \gamma_{i}=\frac{a_{i}}{x_{i}}
\end{aligned} 3.32
$$

or:

$$
Y i=\frac{f_{i}^{L}}{x_{i} f_{i} O L}
$$

Activity coefficients were computed with the UNIQIJAC model, Prausnitz et al. (1980), from which individual activity coefficients were calculated from Gibbs molar excess energy.

With the preceding elements, the equilibrium ratios for each component can be obtained from the expression:

$$
K_{i}=\frac{\gamma_{i} f_{i}^{0 L}}{\varphi_{i} p}
$$

Enthalpies were calculated following the procedure presented by Prausnitz et al. (1980), and were defined as follows:

Vapor enthalpy:

$$
h_{i}^{I}=\int c_{p_{i}}^{0} d T
$$

$$
h^{V}=h^{I}+\Delta h
$$

Liquid enthalpy:

$$
h_{I}=h_{I}+\sum_{i=1}^{m} x_{i} \overline{\Delta h_{i}}
$$

A combination of vapor-liquid equilibria with appropriate thermodynamic relationships to permit solution of material and energy balances is presented in the next section.

3.4. Flow Diagram For Flash Calculations

A flow diagram for solving Eqns. 3.22 and 3.23 simultaneously with a two-dimensional Newton-Raphson method to obtain fractional vaporization, a, and temperature, T. is given in Fig. 3.1. The thermodynamic definitions of equilibrium ratios and enthalpies were taken from the published routines from Prausnitz et al. (1980), and are included in the solution.

Single or multicomponent systems (up to 10 components) with heat interaction from a porous medium is represented by this method. The main limitation is that pressure must be less than about half the critical pressure for a particular system. Therefore, the maximum pressure considered is 100 bars. This procedure supplies the necessary information, molar composition of the vapor and liquid phases, temperature, and fractional vaporization ©or multiphase, multicomponent compressibility calculations, which are described in the next section.

3.5. Compressibility Calculations

Procedures for calculating expansion compressibility and production compressibility for two different modes of production are presented in this section.

3.5.1. Expansion Compressibility

Fig. 3.1 Flow diagram from flash calculations (Prausnitz et al. (1980)).

Coupled with calculations described in the last section, compressibility computations are considered for cither a single-component or multicomponent system with specified initial conditions of temperature, pressure, composition, and fractional vaporization. The volume of the vapor phase, liquid phase, and the volume of the mixture after a decrease in prossure can be computed in the following manner.

The gas specific volume can be computed from the truncated virial equation of state:

$$
Z=\frac{p v_{g}}{R T}=1+\frac{B p}{R T}
$$

in which the second virial coefficient, B, may be calculated at the initial conditions.

Then:

$$
v_{g}=\frac{R T Z}{p}
$$

which corresponds to the gas specific volume, for either single or multicomponent systems.

The liquid specific volume of single component-systems can be computed from published routines, e.g., routines published by Reynolds (1979) for pure water, which are based on correlations of thermodynamic data.

Once the liquid mole fractions are known, the liquid specific volume for a multicomponent system is given by:

$$
v_{l}=x_{i} v_{i}
$$

The specific volumes of the individual components, v_{i}, can be obtained from published data. The specific volume of the mixture, or the two-phase specific volume, liquid and gas. can be approximated by:

$$
v_{\operatorname{mix}}=v_{l}+x\left(v_{g}-v_{l}\right)
$$

Combining a change in mixture volume with a change in pressure, divided by the arithmetic average of the volume of the mixture at the initial and final pressures of the pressure change, gives the fluid compressibility:

$$
c_{2 \varphi}=-\frac{1}{\overline{v_{m i x}}} \frac{v_{2}-v_{1}}{p_{2}-p_{1}}
$$

where v_{1} and v_{2} correspond to the specific volumes of the mixture at pressures $\boldsymbol{p}_{\mathbf{1}}$ and \boldsymbol{p}_{2}, respectively. Equation 3.42 represents the two phase compressibility due to expansion and without production.

A comparison of the two-phase compressibility and the compressibility of the gaseous mixture, Eq. 3.43, can be made. The gas compressibility is:

$$
c_{\eta}=\frac{1}{p}-\frac{1}{Z}\left(\frac{\partial Z}{\partial p}\right)_{T}
$$

where:

$$
\left(\frac{\partial Z}{\partial p}\right)=\frac{B}{R T}
$$

as obtained from the virial equation of state, Eq. 3.313.

Calculation of two-phase compressibility caused by withdrawal of fluids from a reservoir block can be approached in several ways depending on production from the system. This is the subject of the following section.

3.6. Production Compressibility

Production compressibility was computed with two production modes, gas production, and multiphase production. A description of the two production modes is presented in the following sections.

3.6.1. Gas Production

After a pressure drop within a reservoir block, there is a phase change in the system because some of the liquid changes to vapor, causing a volume increase and expulsion of fluids from the reservoir block. Production in this case considers that only gas is produced. A schematic representation of this process is shown in Fig. 3.2.

Production compressibility can be described as follows:

$$
c=\frac{1}{V_{\text {pore }}} \frac{\Delta V_{\text {prod }}}{\Delta p}
$$

where $\Delta V_{\text {prod. }}$ corresponds to the initial fluid volume after the flash in the reservoir minus the fluid volume remaining after production, which gives the volume produced. The $V_{\text {pors }}$ term represents the pore volume.

For the present case of gas production and referring to Fig. 3.2, $\Delta V_{\text {prod. }}$ can be represented as:

Fig. 3.2 Gas production.

$$
\begin{gathered}
-34- \\
\Delta V_{\text {prod. }}=V_{\text {initial }}-V_{\text {rem }}
\end{gathered}
$$

or:

$$
\Delta V_{\text {prod }}=(F-L) v_{g}-(F-L) v_{w}
$$

which represents the moles of feed changing to vapor times the specific molar volume of the gaseous phase less the initial volume of the vaporized feed. The remaining gas volume can be obtained from a volumetric balance as follows:

$$
V_{r u m}=V_{p o r e}-V_{i}
$$

where $V_{\text {pore }}$ is considered a constant, and V_{l} is the liquid volume after the flash, and is given by:

$$
V_{l}=(1-\alpha) F v_{l}
$$

Expressing the change in moles for the system as the initial liquid moles minus the final liquid moles (with no liquid production), or in equation form:

$$
\Delta N=F-L=\bar{V}=\alpha F
$$

Substituting Eq. 3.49in Eq. 3.46 gives:

$$
V_{p}=\Delta N\left(v_{g}-v_{l}\right)
$$

where v_{g} and v_{l} are the specific molar volumes of gas and liquid respectively, and alpha is the fractional vaporization obtained from the flash routine.

The two-phase compressibility caused by production of gas is given by:

$$
c=\frac{1 \quad a F\left(v_{g}-v_{l}\right)}{V_{\text {pore }} \quad \Delta p}
$$

Expansion compressi ility or the individual phases is ignored in this derivation. A comparison between the production compressibility and the gas compressibility can be made. For the next pressure drop, the new fractional vaporization is:

$$
\frac{\bar{V}}{F}=\frac{\frac{V_{g}}{v_{g}}}{\frac{V_{g}}{v_{g}}+\frac{V_{l}}{v_{l}}}
$$

The process may be repeated, taking as initial conditions the conditions at the last pressure drop. Production compressibility for other than one fluid production mode is considered the next section.

3.6.2. Multiphase Fluid Production

In this case, it was considered that after a given pressure drop from a reservoir, fluids will be produced according to a relative permeability-saturation relationship for flow in a porous medium. A diagram for the process is shown in Fig. 3.3. Gas saturations in this cases are given by:

$$
S_{g}=\frac{v_{g}}{v_{l}+x\left(v_{g}-v_{l}\right)}
$$

Production is computed by:

Fig. 3.3 Multiphase fluid production according to relative permeability-saturation re-
lationships.

$$
q_{w}=\frac{k k_{m \omega} A}{\mu_{w} \Delta x} \Delta p
$$

and:

$$
q_{g}=\frac{k k_{r g} A}{\mu_{g} \Delta x} \Delta p
$$

The volume of vapor remaining after production is:

$$
V_{g}=(F \alpha) v_{g}-q_{g} \Delta t
$$

The volume of liquid remaining after production is:

$$
V_{l}=\langle F(1-\alpha)] v_{l}-q_{l} \Delta t
$$

The term At is varied in every pressure drop case to match the fixed pore volume, thus:

$$
V_{\text {pors }}=V_{g}+V_{l}=\text { constant }
$$

The moles of liquid produced, ΔN_{l}, is the initial moles of liquid after the flash less the final moles of liquid in the porous medium or:

$$
\Delta N_{l}=F(1-\alpha)-\begin{gather*}
\nu_{l} \\
\boldsymbol{v}_{l}
\end{gather*}
$$

The moles of gas produced, ΔN_{g}, is the initial moles of gas after the flash
less the final moles of gas in the porous medium or:

$$
\Delta N_{g}=F a-\frac{V_{g}}{v_{g}}
$$

where \boldsymbol{a}, is the fractional vaporization calculated from the flash routine, and v_{g} and v_{l} are the gas and liquid specific volumes, also computed from the flash routine. Then the production compressibility, following Eq. 3.45 may be computed as:

$$
\mathrm{c}=\frac{1}{V_{\text {porg }}} \frac{\Delta N_{l} v_{l}+\Delta N_{g} v_{g}}{\Delta p}
$$

Expansion compressibility for the individual phases is ignored in this derivation. A comparison may be made between the production compressibility and the gas compressibility. For the next pressure drop, the new fractional vaporization is:

$$
\frac{\bar{V}}{F}=\frac{\frac{V_{g}}{v_{g}}}{\frac{V_{g}}{v_{g}}+\frac{V_{l}}{v_{l}}}
$$

The process may be repeated, taking as initial conditions the conditions at the last pressure drop.

Compressibility calculations combined with flash calculations constitutes a model to study multiphase, multicomponent systems under pressure expansion conditions, and several production modes: production of a high enthalpy fluid, and production of multiphase Auid governed by relative permeability-saturation relationships.

Figure 3.4 is a flow diagram of the complete calculation method using the flash calculation procedure and compressibility calculations. In the event of finding no solution from a flash calculation (Fig. 3.1) because of a temperature higher than the bubble point temperature, T_{B}, or lower than the dew point temperature, T_{D}. (single- phase conditions, or no solution possible because of a high pressure drop imposed on the system), then the initial data should be revised and the flash computation started again.

When a solution is found for a system in queslion, dala that will be used for compressibility calculations is obtained. Depending on whether production is considered or not, the appropriate compressibility calculations are chosen followed by checking whether the system pressure has reached the final pressure. If the system pressure is higher than the final pressure, a new pressure drop is taken, and the process is repeated until the Anal pressure is reached.

A flow diagram for fluid expansion compressibility calculations is shown on Fig. 3.5. Gas, liquid, and two-phase specific volumes are computed in order to obtain the two-phase expansion compressibility. The final conditions of pressure, temperature. phase compositions and fractional vaporization become the initial conditions for the next pressure drop.

Gas production calculations are depicted in Fig. 3.6 in which the required gas and liquid specific volumes, and change in moles are computed to obtain the required production compressibility. Since the pore volume is fixed. the gas volume which exceeds the volume of the vaporized liquid is considered to be "produced' from the total pore volume. The remaining moles of liquid and vapor are computed to obtain the new fractional vaporization for the next pressure drop.

Figure 3.7 shows a flow diagram for the computation of low and high enthalpy fluid production compressibility. Gas and liquid specific volumes are calculat-

Fig. 3.4 Flow diagram of flash and compressibility calculations.

Fig. 3.5 Flow diagram for expansion compressibility calculations.

Fig. 3.6 Flow diagram of gas production compressibility calculations.

Fig. 3.7 Flow diagram of multiphase fluid production compressibility calculations.
ed Eollowed by the saturation value corresponding to that pressure and pressure drop. Saturation values after the first pressure drop are the arithmetic average between the last pressure drop saturation value, and the value corresponding to the new pressure drop. Production of liquid and vapor according to the relative-permeability-saturation relationship is obtained, and then the volumes of gas and liquid are calculated, checking that the summation of the two volumes (gastliquid) are the same as the pore volume plus a tolerance. In the event of having a summation of volumes different from the pore volume plus a tolerance, the production time, At, is adjusted and the volumes recalculated. Next the change in moles is calculated followed by production compressibility and the new fractional vaporization for the new pressure drop.

The combination of flash process calculations and compressibility calculations, called the Flash Model, was used to study multiphase, multicomponent compressibility for a number of possible reservoir systems. Description of the systems, observations on these systems, and results are presented in the next section.

4. RESULTS

The Flash Model was used to study system compressibility for a number of possible fluid systems ranging from geothermal fluids to hydrocarbon systems. Table 4.1 lists thirteen systems considered. The systems included pure water, water carbon-dioxide, several simple multicomponent hydrocarbon systems, reservoir oil systems, and oil water systems. For systems studied by simple flash expansion, no porous medium was included in the calculations. The systems containing pure water and water-carbon dioxide were treated as adiabatic. The hydrocarbon and the hydrocarbon-water systems were considered to be isothermal. The results for each are presented in table 4.1.

Table 4.1 Systems studied by simple flash expansion

Single Component Systems		
System No.	Fluid	Initial Pressure (bar)
	$\mathrm{H}_{2} \mathrm{O}$	100
1	$\mathrm{H}_{2} \mathrm{O}$	40
2	$\mathrm{H}_{0} \mathrm{O}$	9.3

Multicomponent		- ${ }^{\text {s }}$
$\mathrm{S} \quad \mathrm{N}$	Fluid	Initial Pressure (bar)
4	$\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2}$	50
5	$\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2}$	70
6	$C_{1}-C_{3}$	54
7	$C_{1}-C_{3}$	50
8	$C_{4}-i C_{4}-n C_{5}-C_{10}$	15
9	C_{1} through $n C_{7}$	50
10	C_{1} through $n C_{7}$	35
11	C_{1} through $n \mathrm{C}_{7}-\mathrm{H}_{2} \mathrm{O}$	35
12	C_{1} through $n \mathrm{C}_{7}-\mathrm{H}_{2} \mathrm{O}$	35
13	C_{1} through $n \mathrm{C}_{7}-\mathrm{H}_{2} \mathrm{O}$	35

The model was also run in two production modes: production of the high enthalpy fluid (steam) from a geothermal system, and production from a geothermal system wherein both water and steam are produced as multiphase-flow relative permeability relationships would dictate. Table 4.2 lists these systems.

Table 4.2 Production-ontrolled compressibility systems

Higher enthalpy fluid production				
System No.	Fluid	Initial Pressure (bar)	Porosity (\%)	
14	$\mathrm{H}_{2} \mathrm{O}$	40.0	10	
15	$\mathrm{H}_{2} \mathrm{O}$	40.0	25	
16	$\mathrm{H}_{2} \mathrm{O}$	9.3	10	
17	$\mathrm{H}_{2} \mathrm{O}$	9.3	25	

Production According to Relative Permeability			
System No.	Fluid	Initial Pressure (bar)	Porosity (\%)
18	$\mathrm{H}_{2} \mathrm{O}$	8.3	25
19	$\mathrm{H}_{2} \mathrm{O}$	40.0	25

Observations and discussion for the Flash Model results are presented for the systems studied. First, the fluid expansion cases are considered, then the production controlled systems.

4.1. FLUID COMPRESSIBILITY

Compressibility calculations were made following the thermodynamic definition for flashing systems allowing an increase in volume with a Axed decrease in pressure. Both single and multicomponent fluids were considered.

4.1.1. Single Component Systems

The systems modeled started at saturation pressure and temperature, allowing the pressure to decrease until the system was depleted. or at any other
selected firal pressure. Calculations of the individual phase volumes were made, and the two volumes were combined. Gas compressibility was calculated from the equation of state. Compressibility of the two phases was computed by taking the differences between the two molar volumes from two different pressures, and divided by the arithmetic average molar volume of the mixture and the pressure difference.

System No. 1 -- One-component system, adiabatic: compressibility of water at an initial pressure of 100 bars. Figure 4.1 presents pressure versus specific volume, and shows a very steep curve which indicates a small change in volume with a large change in pressure. followed by a decrease in slope to give a large change in volume with a small change in pressure. A comparison of the gas compressibility (in this case steam) and the adiabatic compressibility of the two-phase fluid, Fig. 4.2, shows that the compressibility of the two phases is larger than the compressibility of the gas phase at the same conditions, throughout most of the pressure range covered, even at very low qualities. This difference is better seen in a logarithmic graph of the same data, Fig. 4.3. Figure 4.4 presents quality versus pressure for this case.

System No. 2 -- One-component-system, adiabatic compressibility for water at an initial pressure of 40 bars. The pressure versus specific volume graph, Fig. 4.5 for system No. 2, shows a steep curve, followed by at decrease in slope in the lower pressure range, as was the case previously presented. Again, the first part of the curve indicates a small change in volume with a large change in pressure. Figure 4.6 compares the two-phase adiabatic compressibility and the compressibility of the gas at the same conditions. It shows a larger two-phase compressibility than the compressibility of the gaseous phase. T'he two compressibilities approach each other at low pressures. Initially, the compressibility of the two phases decreases, and then increases as pressure decreases and quality in-
-48-

Fig. 4.2 Compressibility versus Pressurc, water Spstem No. 1
(Joq/I) $\mathrm{K}_{\text {! }}$!!!q!ssəudwoう

$$
-52-
$$

Fig. 4.6 Compressibility verョん Pressure, water System No. 2
creases. This can be seen easier in Fig. 4.7. The quality versus pressure curve, Fig. 4.8, is similar to that for the previous case. That i.s, quality increases with pressure decrease. The highest quality for this case is not as large as that for system No. 1 .

An important observation can be made at this point. Systems 1 and 2 are pure water starling expansion at different initial pressures: 100 bar lor system No.1, and 40 bar for system No.2. A comparison of the compressibility results €or the two cases at the same pressure can be made using Figs. 4.3and 4.7. For example, the gas compressibility at 20 bar is clearly the same for both cases. However the two-phase compressibility is significantly greater for the System No.2, 40-bar initial pressure. The difference may be simply a result of different volumes of gas and liquid present. Figures 4.4 and 4.8 present the vapor molar fraction \{quality) for the two cases. At a common pressure of 20 bar, the high pressure case has a much larger quality then the low pressure case. This would lead one to expect the high pressure case to exhibit the highest two-phase compressibility •- which is opposite the actual result. Clearly vaporization and initial pressure have a large impact on the effective system compressibility.

System No. 3 -. One-component system, adiabatic compressibility for water at an initial pressure of 9.3 bars. The pressure versus specific volume curve, Fig. 4.9, follows a less steep behavior for the initial part of the graph than the behavior of the systems at higher pressures (Systems 1 and 2). The initial change in pressure with respect to volume is large, followed by a rapid change in volume with a smaller change in pressure.

A comparison of the two-phase compressibility and the gas compressibility, F'ig. 4.10, shows an interesting pattern. 'l'he compressibility of the two phases is much larger than the compressibility of the gaseous phase. The two compressibilities approach each other as pressure decreases and quality increases. The

Fig. 4.7 Semilog graph of Compressibility versus Pressure, water System No 2

Fig. 4.8
(\ddagger / \wedge) K_{t} ! $10 \cap 0$
-57-

Fig. 4.10 Compressibility versus Pressure, water System No. 3
two- phase compressibility shows a rapid decrease with respect to pressure decrease. The initial compressibility is larger than the compressibilities at lower pressures and larger qualities. This behavior was observed in the other systems (1 and 2), but was not as obvious.

As in the previous cases, the quality increases as pressure decreases, see Fig. 4.11. The highest value of quality is lower than in the two previous systems. See Figs. 4.4, 4.8, and 4.11.

4.1.2. Multicomponent Systems

Calculations of two-phase specific volume, two-phase compressibility, and quality were made for two-component, four-component, seven-component and eight-component systems. Observations of the results for the different systems follow.

System No. 4 -- Two-component system, adiabatic conipressibility for watercarbon dioxide with an initial mole fraction CO_{2} of 0.005 , initial temperature of $550^{\circ} \mathrm{K}$.and initial pressure of 50 bar.

For the pressure range considered, the pressure-specific molar volume curve in Fig. 4.12 shows a moderate increase in volume with pressure reduction. The adiabatic compressibility computed from this p-V data shows a larger compressibility for the two phases. Fig. 4.13, than the compressibility of the gas phase. The quality change with pressure showed a slight increase with pressure reduction, following a quasi-linear behavior, Fig. 4.14.

On another run, this same system was expanded to a lower pressure, Fig. 4.15. The result was similar to that for System No.2, but the compressibility for the two phases was lower for the two-component system (System No.1), than for a single-component pure water system (System No.2).

Fig. 4.13 Compressibility versus Pressure, $\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2}$ bystem $\mathrm{N} \mathrm{O}_{4}$

Fig. 4.14 Quality versus Pressure, $\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2}$ System No. 4

Fig. 4.15 Compressibility versus pressure a comparison of expansion compressibility and gas(steam) compressibility for water and water-carbon dioxide systems.

System No.5 -- Two-component system, adiabatic compressibility for watercarbon dioxide with an initial mole fraction CO_{2} of 0.05 , initial temperature of $550^{\circ} \mathrm{K}$, and initial pressure of 70 bar.

The initial amount of carbon dioxide for this case was increased from the previous case, and the effect of the increased concentration can be observed in the increased curvature of the pressure-specific molar volume graph, Fig. 4.16. A comparison of Figs. 4.13 and 4.17 reveals a decrease in separation between the lwo-phase compressibility and the compressibility of gas.

This system was also allowed to expand to a lower pressure showing the same type of result as the previous case (System No.4), Fig. 4.18. Quality versus pressure is shown in Fig. 4.19.

System No. 6 -- Two-component methane-propane system, isothermal compressibility for initial liquid molar fraction of methane of $\mathbf{0 . 2}$, initial pressure 54 bar , and $T=329^{\circ} \mathrm{K}$.

For this composition, values of pressure and specific molar volume were compared with experimental results from Sage et al. (1933), for similar conditions, Fig. 4.20. Results from the flash model compared favorably with the experimental values, specially for lower pressures. The initial value from the model and the value reported experimentally were slightly different.

The two-phase compressibility, Fig. 4.21 was larger than the gas compressibility at the same conditions, and showed a slight initial decrease followed by an increase, departing from the gas compressibility as pressure decreased. Figure
4.22 presents quality versus pressure.

System No. 7 -- Two-component rnethane-propane isothermal system, for initial liquid molar fraction of methane of 0.3 , and initial pressure of 51 bar , and $T=329{ }^{\circ} \mathrm{K}$. This case was similar to the last system (System No.6). Results are presented in Figs. 4.23-4.25.
-66-

Fig. 4.17 Compressibility versus Pre ssurg. $\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2}$ System No. 5

Fig. 4.18 Compressibilis versus Pressure, $\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2}$ Syst.pm No. 5

Fig. 4.19 Quality versus Pressure, $\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2}$ System No. 5
(g / N) f t! 1 DOD

-71-

Fig. 4.22 Quality versw Pressure, hydrocarbon System No 6

Fig. 4.23 Pressure versus Specific Volume, hydrocarbon System No. 7

Fig. 4.24 Compressibility versus Pressure, h৮صrocarbon System No. 7

-75-

Fig. 4.25 Quality versus Pressure, hydrocarbon System No. 7
(コ/N) fil! IONo

System No. 8 -- Four-component hydrocarbon isothermal system, initial liquid molar fractions: $n C_{4}=0.25$, and $i C_{4}=0.15, n C_{5}=0.10$, and $C_{10}=0.50$, and $P_{\text {initial }}=15 \mathrm{bar}, T=470^{\circ} \mathrm{K}$. The results for this case are presented in Figs. 4.26-4.28. The pressure versus specific molar volume for this system shows an initial drop in pressure with volume that is fairly steep, followed by a flattening of the curve as pressure decreases. The compressibility of the gas phase is smaller than the compressibility of the two phases for the entire pressure interval.

System No. 9 -- Seven-component hydrocarbon isothermal system, liquid composition mole fractions of:

$$
\begin{aligned}
& C_{1}=0.040, C_{2}=0.043 . C_{3}=0.041, C_{4}=0.028, C_{5}=0.017 \\
& C_{8}=0.229, C_{7}=0.602
\end{aligned}
$$

initial pressure of 50 bar , and $T=377^{\circ} \mathrm{K}$.
The results are presented in Figs. 4.29-4.31. The pressure vs. specific molar volume isotherm for this system shows behavior typical of a multicomponent system (Fig. 4.29). The compressibility of the two phases remains larger than the compressibility of the gaseous phase €or the pressure range considered (Fig. 4.30). As before, the two compressibilities differ more in the high pressure, low quality range than at the low pressure, high quality range. The change in quality with respect to pressure follows an almost linear trend for the pressure interval considered (Fig. 4.31).

System No. 10 - Seven-component hydrocarbon isothermal system, liquid composition mole fractions of

$$
\begin{aligned}
& C_{1}=0.040, C_{2}=0.043, C_{3}=0.041, C_{4}=0.028, C_{5}=0.017 \\
& C_{6}=0.229, C_{7}=0.602
\end{aligned}
$$

initial pressure of 35 bar , and $T=500^{\circ} \mathrm{K}$.

Fig. 4.26 Pressure versu尹 Spe cific Volume, hx \times Hocarbon System No. 8

mig 4.28 Quality versus Pressure, hJ rocarbon Systex No. 8
(($/$) filiono

Fig. 4.29 Pressure versus Specific Volume, hydrocarbon System No 9

Fig. 4.30 Compressibility versus Pressure, hydrocarbon System No 9

Fig. 4.31 Quality versus Pressure, hydrocarbon Syst끄 Ne 9
($(\mathrm{A} / \mathrm{A})$ Ki! ! 10 O 0

The results for this case are presented in Figs. 4.32-4.34. The pressurespecific molar volume isotherm showed a steep initial decline which changes to a flattening of the curve for the lower pressures considered (Fig. 4.32). The twophase compressibility showed an initial high value, followed by a sharp decline and then leveling off, proceeding to a slight increase towards the lower pressure values. The two-phase compressibility was larger than the compressibility of gas, showing a decline in the separation between the two compressibilities (Fig. 4.33). The quality change with pressure was initially flat, followed by rise in value as the pressure declined (Fig. 4.34).

System No. 11 -. Eight-component water-hydrocarbon isothermal system, liquid composition mole fractions of:

$$
\begin{aligned}
& C_{1}=0.340, C_{2}=0.043, C_{3}=0.041, C_{4}=0.028, C_{5}=0.017 \\
& C_{8}=0.029, C_{7}=0.302, H_{2} O=0.200
\end{aligned}
$$

initial pressure of 35 bar , and $\boldsymbol{T}=311^{\circ} \mathrm{K}$.

This system is similar in composition to System No. for seven hydrocarbon components. As before, the pressure-specific molar volume (Fig. 4.35) isotherm behaves similarly to the previous systems. The same can be said for a comparison of the compressibility of the two phases and the gas compressibility. The compressibility of the two-phases is larger than the gas compressibility for the pressure range considered (Fig. 4.36). The quality change with pressure is linear as was the case in System No. 10 (Fig. 4.37) .

System No. 12 -- Eight-component hydrocarbon-water isothermal system, liquid composition mole fractions of:

$$
\begin{array}{ll}
C_{1}=0.340, & C_{2}=0.043, \\
C_{8}=0.029, & C_{7}=0.402, \\
& H_{2} 0=0.1
\end{array}
$$

initial pressure of 35 bar, and $T=311$ "K.

Fig. 4.32 Pressure versus Specific Volvme, hJdrocarbon System No 10
(JDQ) ounssejd

(Joq/I) 6ı!!!q!sseudwos

($コ / \wedge$) fil! $10 n o$

Fig. 4.35 Pressure versus Specific Volume, hJU©Carbon System No 11

Fig. 4.36 Compressibility versus Pressure, hydrocarbon System Ne 11

Fig. 4.37 Quality versus Pressure, hy ${ }^{\text {M }}$ rocョrbon System No. 11
($\sqrt{2} / \mathrm{A}$) fit!ono

The amount of water was decreased, and the quantity of C_{7} was increased by the same amount, to fabricate a system that behaved essentially in the same manner as System No.11, and having also a two-phase compressibility larger than the compressibility of the gas for the pressure and temperature range considered (Figs. 4.38-4.40).

System No. 13 -- Eight-component hydrocarbon-water isolhermal system, liquid composition:

$$
\begin{aligned}
& C_{1}=0.440, C_{2}=0.043, C_{3}=0.041, C_{4}=0.028, C_{\mathrm{s}}=0.017 \\
& C_{6}=0.029 . C_{7}=0.302, H_{2} O=0.1
\end{aligned}
$$

initial pressure of 35 bar , and $T=311{ }^{\circ} \mathrm{K}$.
The quantity of C_{1} was increased by the same amount as the decrease of the C_{7} from the previous system No.12. As before, this system had a behavior similar to the previous cases, the main difference being: in the value of compressibility, which was lower than the previous case. The quality was larger than the quality in the other systems (Figs. 4.41-4.43).

Systems 1-13 have considered only fluid expansion with no heat contribution from porous medium. In the following, we consider the effect of the production mode on the system effective compressibility.

4.2. PRODUCTION COMPRESSIBILITY

In order to consider the effect of production on effective compressibility, excluding the expansion term, two production modes we re considered:
(a) gas (high enthalpy) production, and
(b) production of liquid and gas according to relative permeability relationships.

We will consider rock heat effects for these cases.

0.1
35
Pressure (bar)
Fig. 4.39 Compressibility versus Pressure, hydrocarbon System No. 12
(JDQ/!) $\mathfrak{6}!!1!9!s s e\lrcorner d w o j$

Fig. 4.40 Quality versus Pressure, hydrocarbon S>tem No. 12

(JDQ) Bunssedd
 Pressure

(コ/ヘ) fi!iono

4.2.1. Gas Production

Production for this case is of only gas. After a pressure drop, some of the initial fluid vaporizes. The amount of gas remaining in the system fills the same volume that was occupied by the vaporized fluid. The rest of the gas is produced. Single-component water systems at different initial pressures were studied. These systems include a rock component evident through the enthalpy balance.

System No. 14 -- Saturated water at an initial pressure of 40 bar in a 10% porosity rock.

The compuled compressibility due to production was graphed versus pressure (Fig. 4.44). As lhe system depleted, Lhe system compressibility increased. The value of compressibility at 40 bar was compared with that computed by Grant and Sorey (1978) for similar conditions of porosity and pressurc. From this model, $C_{\text {prod. }}=0.93$ bar $^{-1}$ and Grant and Sorey reported a $C_{\text {prod. }}=0.9$ bar-' $^{\prime}$ This compressibility is thirty times larger than the compressibility of the gaseous phase at 40 bar. To see the effect of rock porosity for this kind of production. the value of porosity was changed to $\Phi=\mathbf{2 5 \%}$. The system No. 15 results for production compressibility against pressure are shown in Fig. 4.45. The results for this case resemble those for System No.14, except the two-phase compressibilities values for this case, System No.15, are lower than those for system No.14. That is, there is a lower mass of rock per unit mass of fluid for the high porosity case, thus less heat available to vaporize water.

For a low pressure, 9.3 bar, System No. 16 (Fig. 4.46). System No. 17 (Fig. 4.47). the same results were seen as for the higher pressure cases. A comparison of the production compressibility against two-phase compressibility and gas compressibility. Fig. 4.48. showed Lhat Lhe values of production compressibility are larger than the other compressibilities. These results emphasize the importance of the heat supplied by rock.

Fig. 4.44 Higher Enthalpy Flwid Production Compressiblits versus Pressure water

Fig. 4.45 Higher Enthalpy Mwid Propuction Compressibilily versus Pressure, water

Fiog 4.47 Higher Enthalpy Fluid Production Cormpressibility versus Pressure water System No. 17

Fig. 4.48 Compressibility versus pressure a comparison between high enthalpy fluid production, expansion compressibility and gas(steam) compressibility for water systems

4.2.2. Multiphase Production (according to relative permeabilities)

For this production mode, liquid and gas were produced in proportion to relative permeabilities as determined from an average saturation between the higher and lower pressures of the pressure drop. As a validation run for this production pattern, the results from the study by Martirl (1975) at a pressure of 9.3 bar were cornpared with the results of the flash routine. The same system properties as those of Martin's example were used. That. is, rock properties and relative permeabilities were taken from Martin's work. However fluid properties such as enthalpies, volume, pressure, and temperature were furnished by the flash routinc. Viscosities wore taken from published data, Keenan et al. (1969). and may be different from the values used by Martin. It is doubtful that fluid viscosity will influence the results to a significant degree.

A temperature versus pressure graph for Martin's case and for an initial pressure of 9.3 bars for the flash routine are shown in Fig. 4.49. Also, the pressure versus saturation is presented in Fig. 4.50 for both systems. An acceptable match was obtained between the two models. In addition to checking results of this study against the Martin's case, the production compressibility was also determined. The compressibility caused by production for the 9.3 bar saturated water System No. 18 shows a large initial value followed by a decrease as shown in Fig. 4.51.

System No. 19 is for the same saturated water system but started at an initial pressure of 40 bar. The results are presented in Fig 4.52. Production compressibility for both Systems 18 and 19 was larger than the gas (steam) compressibility at the same conditions. Discussion of the results for expansion compressibility and production compressibility are presented in the next section.

Fig. 4.50 Pressure versus Saturation, water System No. 18

Fig. 4.51 Production Compressibility versus Pressure, μ ro ρ uction by r \leqslant lative $\rho \leqslant r m e a-$

Fig. 4.52 Production Compressibility vorsus Presswre, production by relative permea-

5. DISCUSSION

The results of compressibility calculations for single-component systems are presented in Figs. 4.2, 4.6, and 4.10. The results for the three singlecomponent water systems simulated (100 bar, 40 bar and 9.3 bar) appear to be in agreement with thermodynamic theory (p-V diagram) and with the calculations made by Kaiffer (1977) on adiabalic compressibility from sound velocity, Eq. 2.6, in liquid-gas mixtures (Fig. 5.1). Recall from Eq. 2.6 that adiabatic compressibility is reciprocally related to the velocity of sound in the medium. From this figure and Eq. 2.6 it can be seen that the lowest velocities (highest compressibilitics) can occur when a system has a low quality (low gas saturation), depending also on the pressure. The effect of quality is more noticeable at low pressures, as was shown in Fig. 4.6 for the 40 bar case, and more dramatically for the 9.3 bar case, Fig. 4.10. According to Keiffer, this behavior is caused by the fact that a two-phase system has nearly liquid density, but the compressibility of a gas. Also, the discontinuity in the speed of sound of a vapor with a small quantity of liquid is not as dramatic as that for a liquid with a small amount of gas.

Calculation of the two-phase compressibility for water can be performed from data given in steam tables, Keenan et al.(1969), if an estimate of the quality can be obtained from a flash calculation by using the quality to obtain the volume of the mixture. For example, see Table 5.1.

(ı-כəs w) pəods punos

Table 5.1.- Specific Volume Calculations

	$v_{l}(c c / g)$ liquid volume	a	$v_{g}(c c / g)$	$v_{\text {miztura }}$
9.0	0,001121	0.0034	0.2174	$\overline{0} . \overline{0} \overline{0} \overline{1} \overline{\mathbf{8} 5} \overline{6}$
8.5	0.001118	0.0080	0.2269	0.00294

Data from table 5.1 can be used to compute a two-phase expansion compressibility similar to those obtained with the flash model for the same condition. For example:
$C_{2 \varphi}=\frac{0.00294-0.001856}{0.5(0.00294+0.001856)(9-8.5)}=0.904 \mathrm{bar}^{-1}$
$c_{2 \varphi}=0.899$ bar $^{-1}$ from flash program

As can be seen, the two-phase Compressibility computed from the steam tables agrees well with that obtained from the flash program. We turn now to consideration of two-component systems.

In order to study a simple two-component system,, carbon dioxide was added to water in the liquid phase in proportion to published geothermal data (Ellis et al., 1977). Contamination of a single-component system causes a reduction in the two-phase compressibility (isothermal and adiabatic). This can be observed from a p-V diagram for a pure substance and for a mixture. The isothermal compressibility diminishes in value with respect to the single-component. two-phase compressibility. The inverse slope of the isotherm for a single component system within the two-phase envelope is a much larger number than that corresponding to the multicomponent system.

For the adiabatic compressibility case, results for single-component water and the two-component case $\left(\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2}\right)$ are presented on Figs. 4.6 and 4.13. Further increments in the amount of CO_{2} (Fig. 4.17) added to water produces two-phase compressibilities that are increasingly lower in value than those for the single-component case. Nevertheless, the compressibility of the two-phase
region remained higher than the gas compressibility at the same conditions for the $\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2}$ systems.

A comparison of one-component, two-phase compressibility and twocomponent, two-phase compressibility with gas compi-essibility, Fig. 5.2, shows that the compressibility of a single-component system. is larger than that for the two-component, Lwo-phase system, and also larger than the gas compressibility for the same conditions.

5.1. Two-Phase Compressibility from Published Data

Sage, Lacey and Schaafsma (1933), presented laboratory pVT measurements for several methane-propane systems. They reported pressure-specific volume measurements for different conditions of temperature, pressure, and composition. They indicated which measurements were made for two-phase conditions. Compressibility for two-phase conditions was calculated from their data. The results were two-phase compressibilities greater than the gas compressibility for all the conditions reported as two-phase conditions, even though the pressure decrements were large. $A p=200 \mathrm{psi}$, specially for the shape of the isotherm as shown in Fig. 5.3.

A graph of compressibility versus Pressure calculated from the data of Sage, et al. for a $C_{1}-C_{3}$ system is given in Fig. 5.4. It. was reported from Sage's data that liquid volumes were measured at 1400 and 1200 psi , measurements for two-phase conditions were reported at 000 and 600 psi , and gas conditions at 400 psi. From fig. 5.4 it is shown that liquid compressibility goes to a larger value in the two-phase region, and within this region there is an increase of two-phase compressibility followed by a decrease towards the gas phase compressibility.

Field data from the Dominguez Field were presented by Sage et al. (1935), in which two-phase formation volume factors were reported versus pressure for

(JDQ/I) K!!!!q!sseudwo

Fig. 5.3 Pressure versus Speciffc Volvme from Sage at al.(1933y Mata
(!sd) ounssa」d

(!sd/I) Ki!!!!!sseudwos
large pressure decrements. Data were curve-fitted with a logarithmic expression and then compressibilities were calculated for small pressure decrements near the bubble point. Compressibilities of the two phases were greater than the gas compressibility, specially near the bubble point. For example, the formation volume factors for a system with a gas-oil ratio of $728.2 \mathrm{scf} / \mathrm{B}$ and temperature of $190^{\circ} \mathrm{F}$ with a bubble point pressure of 2974 psia was examined. The curve-fit obtained was:

$$
B_{t}=18.21-2.16 \ln p
$$

At 2974 psia, the two-phase compressibility was 0.007 psi-', which compares with a gas compressibility at the same conditions of $0.0034 \mathbf{p s i -}{ }^{-}$. This result produces a two-phase compressibility almost twice the compressibility of the gas phase at the same conditions.

Another example for different conditions of temperature $220^{\circ} \mathrm{F}$, a gas-oil ratio of $352.5 \mathrm{scf} / \mathrm{B}$, and a bubble point pressure of 1995 psi was examined. The result was:

$$
B_{t}=11.36-1.35 \ln p
$$

The two-phase compressibility computed at 1900 psi was $0.00061 \mathrm{psi}-\mathrm{C}$. The gas compressibility at the same conditions was $0.00053 \mathrm{psi}^{-1}$. This also shows a two-phase compressibility greater then the compressibility of gas at the same conditions.

From the data of Sage and Lacey (Phase Equilibrium in Hydrocarbon Systems, 1936) on properties of mixtures of natural gas and crude oil, the following exaruples were taken.

For a temperature of $220^{\circ} \mathrm{F}$ and a bubble point pressure of 1995 psia and with a mass \% of gas of 5.611% :

$$
v=0.2-0.024 \ln p
$$

At 1900 psia, the two-phase compressibility was $0.00087 \mathrm{psi}-\mathrm{C}$. The corresponding gas compressibility for these conditions is $0.00053 \mathrm{psi}-\mathrm{C}$. The compressibility of the two phases is greater than the Compressibility of the gaseous phase at the same conditions.

From Sage and Lacey (Formation Volume of Gas Cap Material from Kettleman Hills Field, 1936) other examples may be found to obtain formation volumes of mixtures of gas and oil. For a temperature of $220^{\circ} \mathrm{F}$, and a bubble point pressure of 1986 psia , and a gas oil ratio of $1.992 \mathrm{scf} / \mathrm{B}:$

$$
B_{t}=32.62-4.10 \ln p
$$

At 1900 psia. the two-phase compressibility was $0.0013 \mathrm{psi}{ }^{\text {• }}$, and the c mpressibility of the gas at the same conditions was $0.00053 \mathrm{ps}^{-1}$,

For a temperature of $220^{\circ} \mathrm{F}$, a weight per cent gas $\boldsymbol{C} 11.34 \%$. and with a bubble point pressure of 1966 psia,

$$
v=0.491-0.617 \ln \mathrm{p}
$$

At 1900 psia, the two-phase compressibility was found to be $0.0013 \mathrm{psi}^{-1}$, and for the gas compressibility at the same conditions $0.0005 \mathrm{psi-}$ '.

For another case at $220^{\circ} \mathrm{F}$, a weight per cent gas of 5.29%, and with a bubble point pressure of 1455 psi, the two-phase curve-fit was:

$$
v=0.424-0.055283 \ln \mathrm{p}
$$

At 1400 psi, the two-phase compressibility was $0.00017 \mathrm{psi}-$, and the gas compressibility for the same conditions was 0.0007 psi-'". Again it was observed that the two-phase compressibility was greater than the compressibility of the
gas.
From these calculations and the results from the runs for the multicomponent hydrocarbon systems $\left(C_{1}-C_{7}, C_{1}-C_{7}-H_{2} O\right)$, it may be concluded that the compressibility below the bubble point can be greater than the gas compressibility, not only for systems at low pressures, but also for cases with higher pressures and a larger number of components. We now consider the effect of production mode on total system effective compressibility.

5.2. PRODUCTION COMPRESSIBILITY

The total compressibility for a reservoir (or a reservoir block) can be expressed as:
$C_{\text {TOTAL }}=$ fluid compressibility $($ expansion $)+$ production compressibility

Aziz and Settari (1979) showed the following expression for total compressibility for a block for the sequential solution method:

$$
\begin{align*}
C_{t} & =\left\{\frac{V_{p}}{\Delta t}\left[S_{w}^{n} B_{w}^{n+1} b_{w}^{\prime}+\left(1-S_{w}^{n}\right) B_{n}^{n} b_{n}^{\prime}\right]\right. \\
& +Q_{w p}^{\prime} B w^{n+1}+Q_{n p}^{\prime} B_{n}^{n+1}
\end{align*}
$$

which in a simplified form, becomes for a gas-oil system:

$$
\begin{array}{r}
C_{t}=\frac{V_{s}}{\Delta t}\left(S_{0} C_{0}+S g C g\right)+\text { Change in production of oil } \\
\text { and gas with respect pressure }
\end{array}
$$

This agrees with Eq. (3.4) Aziz et al. (1979) indicated that the production terms can make the C_{t} negative for this isothermal case.

For nonisothermal systems, Grant, Atkinson, and Moench, among others, also found that combining an energy balance with a material balance can pro-
duce total compressibilities that may be larger than the compressibility of the gaseous phase at similar conditions.

Ramey (1981) proposed that compressibility can be computed from data generated from numerical simulations, such as that shown in Fig. 5.5 from J.C. Martin (1975). Figure 5.5 represents numerical simulation results for a water and or stearn filled geothermal system. Total compressibility may be calculated from the inverse of the slope of the pressure vs. cumulative production curve presented in Fig. 5.5. That is:

$$
C=\frac{1}{V_{\text {pore }}} \frac{\Delta V_{\text {produced }}}{\Delta p}
$$

It can be seen from Fig. 5.5 that compressibility from a two-phase region should be greater than the compressibility for a single-phase gaseous region.

Runs made with a black oil simulator, BOSS, for em isothermal system can also be used for the calculation of production Compressibility. The results also show that compressibility below the bubble point is greater than the compressibility of the gas phase at the same conditions. See Fig. 5.6 for example.

From the results shown in Figs. 4.44 to $\mathbf{4 . 5 3}$ for different modes of production. it can be seen that production compressibility depends strongly on the manner in which a reservoir is produced, as suggested by Eqs. 3.51 and 3.61. Gas production compressibility follows a trend governed by Eqs. 3.49 and 3.50, in which the controlling effect is the amount of mass changing from liquid to gas. This depends on pressure drop, and for nonisothermal processes on the amount of energy (heat) scavenged from the porous medium. Therefore, the behavior encountered in Systems No. 14 to No. 17 reflects mass changing to gas as pressure decreases, and also on the effect of increased heat available in the system from the rock.

Fig. 5.5 Pressure versus Cumulative Production from Martin (1975)

(!sd) ounsse〕d

Compressibility caused by rnultiphase production according to relative permeability relations for Systems No. 18 and No. 19 is initially high because there is a large change in mass due to liquid production and liquid changing to gas. Compressibility then decreases because gas saturation increases sufficiently to allow gas to be produced. At this time, ΔN_{l} in Eq. 3.59 is small causing the system to behave as if it were producing gas. Again. the compressibility is dependent on the pressure drop, and for nonisothermal processes, energy effects on the remaining fluid are dominated initially by the withdrawal liquid followed by the dominating effect of production of gas.

5.3. Effect of the Change in Saturation with Presure on Two-Phase Compressibility

From the definition of total density:

$$
P t=P g S_{g}+\rho_{0} S_{0}^{\prime}
$$

and compressibility:

$$
c=\frac{1}{p_{t}} \frac{\partial \rho_{t}}{\partial p}
$$

We obtain:
$c_{2 \varphi}=\frac{1}{\rho_{g} S_{g}+\rho_{0} S_{0}}\left(\rho_{g} \frac{\partial S_{g}}{\partial p}+S_{g} \frac{\partial \rho_{g}}{\partial p}\right)+\frac{1}{\rho_{g} S_{g}+\rho_{0} S_{0}}\left(\rho_{0} \frac{\partial S_{0}}{\partial p}+S_{o} \frac{\partial \rho_{0}}{\partial p}\right)$

After a pressure drop in a two-phase system, there is a change in quality (increase in gas). Even though this change in quality with respect to pressure can be small for the pressure drop considered, the change of saturation with pressure can be greatly affected by $\left(\frac{\partial x}{\partial p}\right)$ as can be shown by the expression for saturation in quality terms given by:

$$
S_{g}=\frac{v_{g}}{v_{g}+\frac{(1-x)}{x} v_{f}}
$$

In Eq. 5.7 a small quality change yields a much larger saturation change. Therefore, a small $(\partial x / \partial p)$ can produce a significant $[0 / 0]$.

It is believed that the inclusion of the change in saturation with respect to pressure in the classic definition of total compressibility should produce representative two-phase compressibilities, specially for conditions near the bubble point. For pressures that are removed from the bubble point, the quality associated with this condition will give gas saturations very close to 100%.because of volumetric effects between gas and liquid. This is a major finding of this study.

5.4. SUMMARY

As stated in Eq. 3.2, the total change in volume in a reservoir consists of two terms, both of which have to be considered when a reservoir is below the bubble point, either for reservoir simulation and/or well test analysis. Production compressibility can be the larger of the two. A thermodynamic model has been utilized for the individual computation of the components of total compressibility, for adiabatic and isothermal cases, using the virial equation of state. For the cases studied, it has been observed that the compressibility of a fluid under t,wo-phase conditions is larger than the Compressibility of the gaseous phase at the same conditions. Other equations of state appropriate for different kinds of fluids and other pVT properties can be used. This model can yield information about expansion compressibility for well test analysis for reservoirs below the bubble point, and for reservoir simulation. Presently is no equation of state that represents the majority of reservoir fluid behavior below the bubble point satis-
factorily. Therefore, no general correlations of pVT properties were generated in the present study to represent a variety of reservoir fluid conditions. Differences in production mode for particular cases also makes production of completely general information difficult. However present results prove that a new view of total compressibility is required for porous systems.

5.5. Non-Condensible Monitoring

The flash model is capable of yielding mole fractions of different components in the liquid and in the vapor phase, as well as the fractional vaporization $\left(\frac{\bar{V}}{F}\right)$. With this information an approximation of the behavior of noncondensible gases in a given reservoir of interest may be computed. This is a significant problem in planning the long-term development of geothermal systems.

Runs were made to approximate the behavior of a vapor-dominaled system with steam production. An initial pressure of 71 bar and a temperature of 513 ${ }^{\circ} \mathrm{K}$ with a porosity of 15% and an initial fractional vaporization $\left(\frac{\vec{V}}{F}\right)$ of 0.65 were considered for a two-component $\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2}$ system. Figure 5.7 presents CO_{2} mole fractions of the discharged fluid versus pressure for three different initial liquid molar fractions of CO_{2} of $0.10,0.075$ and 0.05 ,respectively.

After a pressure drop in the system, there is vaporization of the liquid phase causing the liquid-dissolved carbon dioxide to transfer to the gaseous phase. This causes an increase in the carbon dioxide concentration in the discharged fluid. After most of the CO_{2} in the liquid phase is removed by the boiling process, the CO_{2} concentration of the discharged fluid decreases sharply. This general trend of non-condensible behavior is similar t.o one observed in Larderello (Pruess et. al, 1985). CO_{2} concentrations computed by the flash modol

are lower than the computed values reported by Pruess et al. which in turn were reported to be larger than the actual field data.

6. CONCLUSIONS

Total system compressibility as it is currently used in well test analysis can be underestimated because of oversimplification in its derivation. The major problem is that usual derivations neglect the change in fluid pore volume saturations with pressure. There are two different types of compressibility: one corresponding to the thermodynamic definition, and one due to production. The concept of total compressibility was revised showing that the compressibility of the fluid below the bubble point is greatly affected by a change of quality with respect to pressure, or a change of saturation with respect to pressure.

A thermodynamic model using the virial equation of state was utilized for the computation of the terms of total compressibility, for adiabatic and isothermal cases. For the cases studied, it was observed that the compressibility of a two-phase fluid was often larger than the compressibility of the gaseous phase at the same conditions. In addition, production compressibility could be larger then the compressibility of either the two-phase fluid, or the compressibility of the gascous phase at the same conditions. Production compressibility is greatly affected by the way fluids are removed from a given reservoir.

Equations of state other than the virial equation which are appropriate for different kind of fluids and pressure-volume-temperature properties can be coupled with the present model to provide information about fluid (expansion) compressibility that can be used in well test analysis and reservoir simulation. Since there is no equation of state that represents a majority of reservoir fluids behavior, particularly below the bubble point, no general correlations of compressibility versus pressure were generated.

Non-condensible gas $\left(\mathrm{CO}_{z}\right)$ behavior in discharged geothermal fluids Follows a trend of increase in concentration, stabilization, and decline for one geothermal system studied. It appears that use of thermodynamic compositional models for non-condensible gas behavior forecasting may give more reasonable values of the future trend of non-condensibles gases in geothermal systems.

7. RECOMMENDATIONS

The following recommendations are made.

1. Other equations of state should be tested to study typical reservoir fluids and higher pressures.
2. Sonic velocity involvement in compressibility measurements should be studied.
3. The effects of relaxing thermodynamic equilibrium assumptions should be studied.
4. Study liquid compressibility, in particular the cases of adding compressible substances to water.
5. Use more sophisticated thermal-compositional models to study expansion compressibility and production compressibility.
6. Review old experimental data looking for pV measurements close to the bubble point for the computation of expansion compressibility. and laboratory pVT measurements should be carried out with smaller pressure decrements.

8. REFERENCES

Amyx, J.W., D.M. Bass., R.L. Whiting., "Petroleum Reservoir Engineering, Physical Properties." 1960.

Atkinson, P., R. Celati, R. Corsi., F. Kucuk, and H.J. Ramey, Jr., Thermodynamic Behavior of the Bagnore Geothermal rield. Geothermics, Vol. 7.,1978, pp. 185-208.

Avasthi., S.M., H.T. Kennedy., The Prediction of Volumes, Compressibilities and Thermal Expansion Coefficients of Hydrocarbon Mixtures. Soc. Pet. Eng.J, June 1968, 95.

Aziz, K., A. Settari., "Petroleum Reservoir Simulation." Applied Science Publishers Ltd. 1979, 172.

Brigham, W.E., and W.B. Morrow., P/Z Behavior for Geothermal Steam Reservoirs, Soc. Fet.Eng.J., 17,6, 1977, 407-412.

Cook, R.E., Effect of Gas Saturation on Static Pressure Calculations from Two-Phase Pressure Build-Up Curves, Transactions AIME, 216, 49-54, 1959.

Culberson, O.I. and McKetta, J.J., Phase Equilibria in Hydrocarbon-Water Systems, Part II. Transactions AIME, 192, 223, 1951. See also, Transactions AIME 189, 319.

Dake. L.P., "Fundamentals of Reservoir Engineering." Developments in Petroleum Science. 8. Elsevier Scientific Publishing Company. 1978, VlI.

Dodson, C.R.. D. Goodwill, and E.H. Mayer., Application of Laboratory PVT Data to Reservoir Engineering Problems, Transactions AIME, 198, 1953.

Dodson, C.R. and Standing, M.B. Pressure Volume-Temperature and Solubility Relations for Natural Gas-Water Mixtures. Drill. and Prod. Prac., API (1944) 173.

Earlougher, R.C., Jr. "Advances in Well Test Analysis". Monograph Volume 5 S.P.E. of AIME, 1977.

Ellis, A.J. and W.A.J. Mahon. "Chemistry and Geothermal Systems". Academic Press. 1977.

Garg, S.K., Pressure Transient Analysis for Two-Phase (Water/Steam) Geothermal Reservoirs. Soc.Pct.E'ng.J, June. 1980, 206.

Grant, M.A.. Two-Phase Linear Geothermal Pressure Transients: A Comparison with Single Phase Transients, New Zealand Journal Of Science, 21, 355-64, 1978.

Grant, M.A., and M.L. Sorey, The Compressibility and Hydraulic Diffusivity of a Water-Steam Flow, Water Resources Research, 15, 3, 684-86, 1979.

Hall, H.N., Compressibility of Reservoir Rocks, Transactions AIME. 198, 309, 1953.

Higgins, R.V.. Study of Undersaturation during Repressuring and Supersaturation during Flow of Oil to Wells, Transactions AIME. 201, 230-36, 1954.

Hsieh, C.H., and H.J. Ramey Jr., Vapor-Pressure Lowering in Geothermal Systems. Soc.Pet.Eng.J., February, 1983, 157.

Keenan, J.H.. F.G. Keyes., P.G.. Hill., and J.G. Moore. "Steam Tables." John Wiley and Sons Inc. 1969.

Keiffer, S.W., Sound Speed in Liquid-Gas Mixtures:: Water - Air and Water Steam. Journal of Geophysical Hesearch., Vol.82, No 20., July 10, 1977, 2895.

Martin, J.C., Simplified Equations of Flow in Gas Drive Reservoirs and the Theoretical Foundations of Multiphase Pressure Buildup Analysis, Transactions AIME, 216, 309-311, 1959.

Martin, J.C., Analysis of Internal Steam Drive in Geothermal Reservoirs, J.Pet.Tech., 1493-99, December 1975.

Martin, J.J., Equations of State., Industrial and Engineering Chemistry.,Vol.59.,No.12.December, 1967.

Moench, A.F., and P.G. Atkinson, Transient Pressure Analysis in Geothermal Steam Reservoirs with an Immobile Vaporizing Liquid Phase, Geothermics, 7, 253-264, 1978.

Moench, A.F., Radial Steam Flow in Two-Phase Geothermal Reservoirs -Comparison of Analytical and Finite Difference Solutions, Soc.Pet.Eng.J., October, 1980, 359.

Muskat, M., "Physical Principles of Oil Production". McGraw-Hill Book Co. 1949. 38.

Newman, G.H., Pore Volume Compressibility of Consolidated, Friable, and Unconsolidated Reservoir Rocks Under Hydrostatic Loading. J.Pet.Tech., February, 1973, 129.

Perrinc, H.L., Analyses of Pressure Buildup Curves,,Drilling and Production Practice., API, 482, 1956.

Prausnitz, J.M.. T.F. Anderson., E.A. Grens., C.A. Eckert, R Hsieh., and J.P. O'Connell. "Computer Calculations for Multicomponent Vapor-Liquid and Liquid-Liquid Equilibria." Prentice Hall, Inc. (1980)

Pruess, K., R. Celati., C. Calore.. and F. D'Amore. CO_{2} Trends in the Depletion of the Larderello Vapor-Dominated Reservoir. T'enth Workshop Geothermal Reservoir Engineering, Stanford University, Jan. 1985.

Rachford, H.H., Jr., Rice, J.D. J.Pet.Tech., 4, sec 1, p 19, 1952.
Ramey, H.J, Jr., Rapid Methods for Estimating Reservoir Compressibilities, J.Pet.Tech., 447-54, April, 1964.

Ramey, H.J, Jr., A reservoir Engineering Study of The Geysers Geothermal Field (1968). Petitioners vs. Commissioner of Internal Revenue 1969 Tax Court of The United States. 52 T.C. no. 74, 1970. University.

Ramey, H.J, Jr.. Unpublished note on derivation of isothermal compressibility. Stanford University, 1975.

Ramey. H.J, Jr., Personal communication. Satnford University. 1981.
Reynolds, W.C., "Thermodynamic Properties in SI." Department of Mechanical Engineering. Stanford University,,Stanford Ca. 1979.

Sage, B.H.. W.N. Lacey., and J.G. Schaafsma. Behavior of Hydrocarbon Mixtures Illustrated by a Simple Case. Fourteen Anriual Meeting, American Petroleum Institute. Chicago Ill., October 26, 1933. Oil and Gas J., 32 (27),12-14, 1933.

Sage, B.H., and W.N. Lacey. Formation Volume and Viscosity Studies for Dominguez Field. Fifth Mid year Meeting of the American Petroleum Institute., May 15, 1935. Drill.and Prod.Prac.,API, 141-146.

Sage, B.H., and W.N. Lacey., Phase Equilibria in Hydrocarbon Systems. XI.Thermodynamic Properties of Mixtures of a Crude Oil and a Natural Gas. Industrial and Engineering Chemistry, Vol. 28., Feb. 1936.

Sage, B.H., and W.N. Lacey., Formation Volumes and Energy Characteristics of a Gas-Cap Material from Kettleman Hills Field. Paper presented at Seventeenth Annual Meeting, American Petroleum Institute. Chicago III., Nov. 11, 1936. Drill.and Prod.Prac.,API, 158-166.

Smith, J.M. and H.C. Van Ness., "Introduction to Chernical Engineering Thermodynamics", Third Edition, McGraw-Hill Book Co. 1975, 59,61.

Standing, M.B., Petroleum Engineering 170. Elements of Reservoir Engineering Stanford University, Spring 1979.

Standing, M.B. Volumetric and Phase Behavior of Oil Field Hydrocarbon Systems. Reinhold Publishing Corp. New York, 1952 and 1977.

Trube. A.S. Compressibility of Natural Gases. Trans. AIME, 210, 61, 1957.

Van der Knaap, W. Nonlinear Behavior of Elastic Porous Media, Transactions AIME. 216, 179, 1959.

Watts, J.W., A Compositional Formulation of the Pressure and Saturation Equations. Paper No. 12244, Reservoir Simulation Symposium, San Francisco Ca. Nov. 15-18. 1983.

9. NOMENCLATURE

$A=$ flow area, cm^{2}
$a_{i}=$ activity of pure component i
$B=$ second virial coefficient
$B_{g}=$ gas formation volume factor, $\frac{\text { res.vol. }}{\text { std.vol. }}$
$B_{g}^{\prime}=$ gas formation volume factor, $\frac{\text { res.bbl }}{\boldsymbol{s c f}}$
$B_{i j}=$ second virial coefficient of binary mixture ij
$B_{m i x}=$ second virial coefficient of total mixture
$B_{0}=$ oil formation volume factor, $\frac{\text { res.vol. }}{\text { std.vol. }}$
$B_{t}=$ total formation volume factor, $\frac{\text { res.vol. }}{\text { std.vol. }}$
$B_{w}=$ water formation volume factor, res.vol.
$c=$ isothermal compressibility, $1 /$ bar
$c_{0 a}=$ apparent compressibility, $1 / \mathrm{bar}$
$c_{p}=$ heat capacity of rock, $\frac{\text { cal }}{\text { molC }}$
$c_{s}=$ adiabatic compressibility, $1 / \mathrm{bar}$
$c_{2 \mu}=$ two phase compressibility, $1 / \mathrm{bar}$
$C=$ third virial coefficient
$F=$ initial moles of fluid in place
$\mathrm{G}=$ gas content, scf
$f_{i}=$ fugacity of component i
$f_{i}^{o L}=$ standard state fugacity
$h=$ enthalpy, cal/mole
$\boldsymbol{k}=$ absolute permeability, darcies
$k_{\text {rol }}=$ relative permeability
$K_{i}=$ equilibrium ratio
$L=$ moles of liquid after A p
$N=$ Total number of moles present
$N_{0}=$ oil content, STB
$n=$ moles
$\boldsymbol{p}_{\boldsymbol{s}}=$ saturation pressure, bar
$\boldsymbol{p}=$ pressure, bar
$\boldsymbol{Q}=$ External heat (enthalpy) addition from porous medium, cal
$q_{g}=$ gas flow rate, $\frac{\mathbf{c m}^{\mathbf{3}}}{\sec }$
$q_{w}=$ liquid flow rate, $\frac{a m^{3}}{\text { sec }}$
$R_{\mathrm{s}}=$ gas solubility, scf/STB
$R=$ universal gas constant, $\frac{c m \overline{5}}{g-m_{0} l K}$
$S=$ saturation, fraction of pore volume
$T=$ temperature, K
$V_{T}=$ Total Volume, $\mathbf{c m}^{\mathbf{3}}$
$V_{\text {pors }}=$ pore volume. cm^{3}
$V_{p v}=$ pore volume, cm^{3}
$\bar{V}=$ moles of vapor after A p
$V=$ volume, cm^{9}
$V_{C}=$ reservoir gas volume, res.bbl
$V_{0}=$ reservoir oil volume, res. $b b l$
$V_{w}=$ reservoir water volume, res. $b b l$
$\bar{v}=$ partial molar volume, Cm^{3}
$v_{g}=$ gas specific volume, $\frac{\mathbf{c m}^{\mathbf{3}}}{g m}$
$v_{l}=$ liquid specific volume, $\frac{c m^{g}}{g m}$
$\boldsymbol{v}_{m i x}=$ specific volume of mixture, $\frac{c m^{g}}{g m}$
$v=$ specific molar volume, $\overline{c \bar{m}}$ $g m$
$v_{s}=$ speed of sound, \boldsymbol{m}
sec
$F H=$ water content, STB
$\boldsymbol{x}_{i}=$ liquid mol fraction of component \mathbf{i}
$\boldsymbol{z}=$ quality, moles of gas $/$ moles total
$y_{i}=$ gas mol fraction of component i
$z=$ overall composition, mole fraction
$Z=$ compressibility factor, actual volume /ideal gas volume
$\overline{z_{i}}=$ partial molar compressibility factor

Greek symbols

$\mathrm{a}=$ fractional vaporization, $\begin{aligned} & \bar{V}- \\ & F\end{aligned}$
$\boldsymbol{\beta}_{\boldsymbol{t}}=$ two phase compressibility, $1 / \mathrm{bar}$
$\boldsymbol{A N}=$ change in liquid moles
$\Delta m=$ Change in liquid mass
$\eta=$ steam mass fraction
$\gamma_{i}=$ activity coefficient of component i
$\boldsymbol{\kappa}=$ volume expansivity, see Eq. 2.3
$\lambda=$ latent heat of vaporization, cal/mole
$\mu=$ viscocity, cp
$\boldsymbol{\varphi}_{\boldsymbol{i}}=$ fugacity coefficient of component i
$\Phi=$ porosily, fraction of bulk volume
$\rho_{F}=$ Auid density, $\frac{g m}{\mathbf{c m}^{\boldsymbol{s}}}$
$\rho_{f}=$ formation density,$\frac{g m}{c m^{9}}$
$\rho_{r}=$ rock density,$\frac{g m}{c m 3}$
$\rho_{s}=$ steam density, $\frac{g m}{\mathbf{c m}^{\mathbf{3}}}$
$p_{w}=$ water density, $\frac{g m}{c m^{s}}$
$\omega_{i}=$ initial molar fraction

APPENDIX A

Total Isothermal System Compressibility

This follows an unpublished derivation by Ramey (1975), and is presented here in the same form as the original manuscript.

A unit V of bulk reservoir volume (bbl) is considered. The unit has a porosity Φ, and contains rock, oil, water, and gas:

$$
V=V_{0}+V_{w}+V_{G}+V_{r}
$$

A. 1

The term V_{G} refers to free gas, and excludes gas in solution. If the volume originally contains N_{0} stb oil, W surface bbl of water, and G sci of gas:

$$
\begin{equation*}
V=N_{0} B_{0}+W B_{w}+\left(G-N_{0} R_{z}-W R_{s w}\right) \frac{B_{g}}{5.615}+V_{T} \tag{A. 2}
\end{equation*}
$$

We may define the total bulk volume compressibility as:

$$
\begin{equation*}
\Phi c_{t}=-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right\}_{T} \tag{A. 3}
\end{equation*}
$$

Substituting Eq. A. 2 in Eq. A. 3 :

$$
\begin{align*}
& \Phi c_{l}=-\frac{1}{V}\left\{N_{0} \frac{\partial B_{o}}{\partial p}+W \frac{\partial B_{w}}{\partial p}+\frac{G \quad \partial B_{g}}{5.615 \partial p}-\frac{N_{o} R_{s} \partial B_{g}}{5.615} \frac{\partial p}{\partial p}-\right. \\
& \left.\frac{N_{0} B_{g} \partial R_{s}}{5.615 \partial p}-\frac{W R_{s w} \partial E_{g}}{5.615 \partial p}-\frac{N_{0} B_{g} \partial R_{s w}}{5.615} \partial p+\frac{\partial V_{r}}{\partial p}\right) \tag{A. 4}
\end{align*}
$$

$$
\begin{gather*}
\Phi=\frac{V_{p v}}{V} \\
S_{o}=\frac{N_{0} B_{0}}{V_{p v}} \tag{A. 6}
\end{gather*}
$$

$$
\begin{gather*}
S_{w}=\frac{W B_{w}}{V_{p v}} \\
S_{g}=\frac{\left(G-N_{o} R_{s}-W R_{s w}\right) B_{g}}{5.615 V_{p v}} \tag{A. 8}
\end{gather*}
$$

Substitution of Eqs. A. 5 - A. 8 in Eq. A. 4 and insertion of ratios $\frac{B_{-}}{\widehat{B}_{0}} B_{B_{w}}$ and $\frac{B_{g}}{B_{g}}$ in appropriate places yields:

$$
\begin{align*}
\Phi c_{t}= & -\Phi \frac{N_{o} B_{0}}{V_{p v}} \frac{1}{B_{o}} \frac{\partial B_{o}}{\partial p}-\Phi \frac{W B_{w}}{V_{p v}} \frac{1}{B_{w}} \partial B_{w} \\
& -\Phi \frac{G B_{g}}{5.615 V_{p v}} \frac{1 \partial B_{g}}{B_{g} \frac{\partial p}{\partial p}}+\Phi \frac{N_{o} R_{s} B_{g}}{5.615 V_{p v}} \frac{1}{B_{g}} \frac{\partial B_{g}}{\partial p} \\
& +\Phi \frac{N_{o} B_{o}}{5.615 V_{p v}} \frac{B_{g} \partial R_{s}}{B_{0} \frac{\partial p}{\partial p}}+\Phi \frac{W R_{s w} B_{g}}{5.615 V_{p v}} \frac{1}{B_{g}} \frac{\partial B_{g}}{\partial p} \\
& +\Phi \frac{W B_{w}}{5.615 V_{p v}} \frac{B_{g} \partial R_{s w}}{B_{w} \frac{\partial p}{\partial p}}-\Phi \frac{1}{V_{p v}} \frac{\partial V_{r}}{\partial p} \tag{A. 9}
\end{align*}
$$

Or:

$$
\begin{align*}
c_{\ell}= & S_{0}\left(-\frac{1}{B_{0}} \frac{\partial B_{0}}{\partial p}+\frac{1}{5.615} \frac{B_{g}}{B_{0}} \frac{\partial R_{s}}{\partial p}\right)+ \\
& S_{w}\left(-\frac{1}{B_{w}} \frac{\partial B_{w}}{\overline{\partial p}}+\frac{1}{5.615} \frac{B_{g}}{B_{w}} \frac{\partial R_{s w}}{\partial p}\right)+ \\
& S_{q}\left(-\frac{1}{B_{g}} \frac{\partial B_{g}}{\partial p}\right)+\frac{1}{V_{p v}} \frac{\partial V_{r}}{\partial p} \tag{A. 10}
\end{align*}
$$

Assuming no change in bulk volume, $d V_{T}=-\boldsymbol{d} V_{p u}$, thus:

$$
\begin{gathered}
-136- \\
-\frac{1}{V_{p v}} \frac{\partial V_{r}}{\partial p}=\frac{1}{V_{p v}} \frac{\partial V_{p v}}{\partial p}=c_{f}
\end{gathered}
$$

A. 11
the effective pore space compressibility. Thus the total system isothermal compressibility is:

$$
\begin{aligned}
c_{\ell}= & S_{0}\left(-\frac{1}{B o} \frac{\partial B_{0}}{\partial p} \frac{B_{g}^{\prime}}{B o} \frac{\partial R_{s}}{\partial p}\right) \\
& S_{w}\left(-\frac{1}{B_{w}} \frac{\partial B_{w}}{\partial p}+\frac{B_{g}^{\prime}}{B_{w}} \frac{\partial R_{s w}}{\partial p}\right)+ \\
& S_{g}\left(-\frac{1}{B_{g}} \frac{\partial B_{g}}{\partial p}\right)+c_{f}
\end{aligned}
$$

where B^{\prime} has the units res. $\mathrm{bbl} / \mathrm{scf}$. This derivation does not include terms involving $\frac{\partial S}{\partial p}$. That is, it is assumed that saturations do not change with pressure change. Furthermore the production of fluid from the system is not considered. These assumptions are inherent in total system compressibilities in use in well test analysis today.

APPENDIX B

Computer Programs

This appendix contains computer programs to study multiphasemulticomponent compressibility. The main programs included are for compressibiiity calculations due to expansion for a single-component system, and for a multicomponent system, and for production compressibility for gas production and for multiphase production according to relative permeability-saturation relationships.

Input data are in metric units. The vapor-liquid equilibrium calculations were done using published routines by Prausnitz et al. (1980), and are presented here for the sake of completeness. The energy balance in the FLASH routine was modified to allow an energy contribution from a rock component.

Liquid densities for the water cases were calculated with published routines of Reynolds (1979), and for liquid hydrocarbon cases were calculated with Standing's (1977) method.

```
C MAIN PROGRAM FOR COMPRESSIBILITY CALCULATIONS DUE TO EXPANSION COUPLED C WITH DRIVER PROGRAM FOR SUBROUTINES FLASH AND BUDETT FOR SYSTEMS OF UP TO C 10 COMPONENTS WTTH VAPOR AND LIQUID FEED STREAMS (PRAUSNITZ ET AL. (1980)) C
C
REAL \(Z(10), X(10), Y(10), K(10), V(10), B D(2), F(10)\)
INTEGER ID(10), ER
COMMON/PURE/NM1(100),NM2(100),TC(100), PC(100), RD(100), DM(100),
\(1 \mathrm{~A}(100), \mathrm{C}(100), \mathrm{C} 2(100), \mathrm{C3}(100), \mathrm{C} 4(100), \mathrm{C} 5(100), \mathrm{RU}(100), \mathrm{QU}(100)\),
2 QP(100), D1(100), D2(100), D3(100),D4(100)
COMMON/BINARY/ETA(5050), U( 100,100 )
OPEN(UNIT=7,FILE='h20',ACCESS='SEQUENTLAL',STATUS:''OLD')
OPEN(UNIT=8,FILE='c2o',ACCESS='SEQUENTIAL',STATUS='OLD')
OPEN(UNIT \(=9\), FILE \(=\) 'cgo',ACCESS='SEQUENTIAL',STATUS:='OLD')
```



```
\(\mathrm{AKK}=0\).
VP1 \(=0\).
C ONE COMPONENT CASE, WATER
100 CALL PARIN \((1, E R)\)
IF(ER.GT.0) GO TO 900
\(200 \operatorname{READ}(5,01) \mathrm{N}\)
\(\mathrm{NN}=\mathrm{N}\)
READ (5,*)DELP
WRITE( 6,01 )
01 FORMAT(13)
IF(N.EQ.O) STOP
\(\operatorname{READ}(5.02) \mathrm{L}, \mathrm{T}, \mathrm{P},(\mathrm{ID}(\mathrm{I}), \mathrm{F}(\mathrm{I}), \mathrm{I}=1,4)\)
WRITE(6,02) L,T,P,(ID(I),F(I),I=1,4)
\(02 \mathrm{FORMAT}(15, F 10.2, \mathrm{~F} 10.3 .(5(\mathrm{I} 4, \mathrm{~F} 6.3)))\)
\(\operatorname{READ}(5,03)\) TF, \(\mathrm{PF}, \mathrm{VF}, \mathrm{TV},(\mathrm{V}(\mathrm{I}), \mathrm{I}=1,4)\)
\(\operatorname{WRITE}(6,03)\) TF, PF, VF, TV, \((\mathrm{N}(\mathrm{I}), \mathrm{I}=1.4)\)
03 FORMAT(F10.2,F10.3.F10.4,F10.2,(5F8.3))
206 CONTINUE
DO \(207 \mathrm{I}=1,2\)
\(207 \mathrm{BD}(\mathrm{I})=0\).
DO \(209 \mathrm{I}=1, \mathrm{~N}\)
\(\mathrm{Z}(\mathrm{I})=(1 .-\mathrm{VF}) * \mathrm{~F}(\mathrm{I})+\mathrm{VF} * \mathrm{~V}(\mathrm{I})\)
\(X(I)=0\).
\(209 \mathrm{Y}(\mathrm{I})=0\).
210 CALL BUDET ( \(1, \mathrm{~N}, \mathrm{ID}, 1, Z, Y, B D(1), \mathrm{P}, \mathrm{K}, \mathrm{ER})\)
CALL BUDET(2,N,ID,2,X,Z,BD(2),P,K,ER)
220 DO \(221 \mathrm{I}=1, \mathrm{~N}\)
\(X(I)=0\).
\(221 \mathrm{Y}(\mathrm{I})=0\).
\(Q=0.0\)
CALL FLASH(L,N,ID, Z, YF , F, Y, TF, TV, PF, Q, X, Y, T, P, \(K, E R\) )
IF (ER.GT.0) WRITE (6, 15) ER.
15FORMAT(/' ERROR IN FLASH',15/)
IF(ER.GT.0) STOP
\(\mathrm{II}=\mathrm{ID}(1)\)
IF (L.EQ. 1) WRITE(6,11)
IF(L.EQ.2) \(\operatorname{HRITE}(6,12)\)
```

```
    MRITE(6,13)
11 FORMAT (////48X,'FEED',26X,'TB/TD',15X,'ISOTHERMAL FLASH' )
12 FORMAT (////48X,'FEED',26X,'TB/TD',15X,'ADIABATIC FLASH')
13 FORMAT ( 1X,'INDEX',3X,'COMPONENT',10X,'XF',4X,'TF(K) PF(BAR)',
    1 2X,'YFRACT YF',4X,'TV(K)',6X,' (K)',5X,'P(BAR) T(K)',
    2 4X,'V/F',6X,'X',5X,'Y'/)
    WRITE ( 8,16) II,NM 1(II),NMZ(II),F(1) ,TE,PF,VF,V(1),TV,BD (1),P,T,Q,
    1 X(1),Y(1)
    II=ID(2)
16 FORMAT(I2,2A10.F8.3,F8.1,F7.1,F9.3,F7.3,F8.1,F12.2,F9.1,F8.1,
    1 3F8.4)
    WRITE (6,17) II,NM1([I),NM2(II),F(2),Y(2),BD(2),X(2),Y(2)
17FORMAT(I2,2A10,F8.3,24X,F7.3,8X,F12.2,25X,2F8.4)
    WRITE(6,22)Q,TP
22 FORMAT(////,'V/F=',E10.4,2X,'T=',E10.4,2X,'P=',E10.4,//)
    VF=Q
    IF(N.LT.3) GO TO 230
    DO 228[=3,N
    |=ID(1)
    #RITE(8,18) II,NM1(II),NM2(II),F(I),V(I),X(I),Y(I)
18 FORMAT(I2,2A10,F8.3,24X,F7.3,45X,2F8.4)
228 COXTINUE
230 VF=Q
    TF=T
    DO 231 T=1,NN
    F(I)=#(I)
231 Y(I)=Y(I)
    TV=T
    PF=?
    PRT=P/(83.1473*T)
    call vol(prt,t,vy,zz,dz)
    CG=(1/P)\cdot(1/ZZ)}\cdotD
    WRIIE( (8,888)ZZ,YV,T,P,DZ,CG
888FORMAT(2X,'Z=',E10.4,2X,'V=',E10.4,'co/gm',2X,'T=',E10.4'K',2X,
    1'P=',E10.4,' bar',///,2x,'DZ=',E14.5,3x,'CG=',E10.5,' 1/bar'//)
    CALL RHOM(T,RF)
    VV= 18/ RF
    VP2=VVL+Q*(VV-VVL)
    [F(AKK.EQ.0) GO TO 91
    DELV=VP2-VP1
    PPM=(P+(P-DELP))/2.
    VPM=(VP2+VP1)/2.
    CT=(1/YPM)*(DELY/DELP)
    write(8,*)ppm,ct
    write(g,*)ppm,cg
    write( 10,.}ppm,
    #RITE(6,89)VPM,P,CT
89 FORMAT(2X,'VT=',F10.4,'CC/GM',2X,'P=',F10.4,'BAR',/,2X,'CT
    1=,F10.5,1'/BAR')
91 VP1=VP2
    P=F-DELP
    write(7.*) vpm,ppm
    Frite(8,*)p,t
    FF(P.IE.0.5)STOP
```

```
    AKK=1.
    VF=Q
    WRITE(6,*)VF,Q
    GO TO 206
900 WRITE (6,19)
19 FORMAT(/' ERROR IN PARAMETER INPUT DECK'/)
STOP
END
subroutine vol(prt, t,vv,zz,dz)
COMMON/COEFF/BMM
BM=BMM
ZZ= 1+BM*PRT
VV=ZZ/PRT
DZ=BM/(83.1473*T)
return
end
```


C MAIN PROGRAM FOR COMPRESSIBILITY CALCUALTIONS DUE T'O EXPANSION COUPLED C WITH DRIVER PROGRAM FOR SUBROUTINES FLASH AND BUDET FOR SYSTEMS OF UP TO C 10 COMPONENTS WITH VAPOR AND LIQUID FEED STREAMS (PRAUSNITZ ETAL. (1980)). C LIQUID DENSITIES CALCULATED WITH STANDING'S (1977) METHOD>

```
C
***************************************************************************
```



```
C
C
    REAL Z(10),X(10),Y(10),K(10),V(10),BD(2),F(10),PD(2)
    INTEGER ID(10),ER
    COMMON/PURE/NM1(100),NM2(100),TC(100),PC(100),RD(100),DM(100),
    1 A(100),C1(100),C2(100),C3(100),C4(100),C5(100),RU(100),QU(100),
    2 QP(100),D1(100),D2(100),D3(100),D4(100)
    COMMON/BINARY/ETA(5050),U(100,100)
    COMMON/COEF/BMM
    OPEN(UNIT=7,FILE='hc7',ACCESS='SEQUENTIAL',STATUS='OLD')
    open(UNIT=3,FILE='rhhc',ACCESS='SEQUENTIAL',STATUS:='OLD')
    open(UNTT=8,FILE='sthe',ACCESS='SEQUENTLAL',STATUS=''OLD')
    open(UNIT=9,FILE='gasc',ACCESS='SEQUENTIAL',STATUS=='OLD')
    Open(UNIT=10,FILE='volt',ACCESS='SEQUENTLAL',STATUS:='OLD')
    open(UNIT=11,FILE='quth',ACCESS='SEQUENTLAL',STATUS;='OLD')
    open(UNIT= 12,FILE='ct 1h',ACCESS='SEQUENTIAL',STATUSI='OLD')
    open(UNIT=13,FILE='ct2h',ACCESS='SEQUENTIAL',STATUS='OLD')
    rewind 7
    rewind 3
    VP1=0.
    FF=1.
    akk=0.
    READ(7,*)DELP,TOL,TCA
    READ(7,*)N
    NC=N
100 CALL, PARIN(N,ER)
    IF(ER.GT.O) GO TO 900
200 READ(7,01) N
01 FORMAT([3)
    IF(N.EQ.O) STOP
    READ(7,02) L,T,P,(ID(I),F(I),I=1,5)
    READ(7,201)(ID(I),F(I),I=6,NC)
201FORMAT(5(14,F6.3))
    HRITE(6,02) L,T,P,(ID(I),F(I),I= 1,5)
02 FORMAT(I5,F10.2,F 10.3(5(I4,F6.3)))
    HRITE(6,Z01)(ID(I),F(I),I=6,NC)
    READ(7,03) TF,PF,VF,TV,(V(I),I=1,5)
    HRITE(6,03) TF,PF,VF,TV,\Y(I),[=1,5)
03 FORMAT(F10.2,2F 10.3,F 10.2,(5F8.3))
    READ(7,202)(V(I),I=6,NC)
    WRITE(6,202)(V(I),I=6,NC)
202 FORMAT(5F8.3)
2 0 6 \text { CONTINUE}
    DO 207 I= 1,2
    pd(i)=0.
```

```
\(207 \mathrm{BD}(\mathrm{I})=0\).
    DO \(209 \mathrm{I}=1, \mathrm{~N}\)
    \(\mathrm{Z}(\mathrm{I})=(1 .-\mathrm{VF}) * \mathrm{~F}(\mathrm{I})+\mathrm{VF} * \mathrm{~V}(\mathrm{I})\)
    \(X(I)=0\).
\(209 Y(I)=0\).
    call budep( \(1, r\), id \(, 1, z, y, t, p d(1), k, e r)\)
    call budep \((2, n, i d, 2, \mathbf{x}, \mathbf{z}, \mathrm{t}, \mathrm{pd}(2), \mathbf{k}\), er \()\)
210 CALL BUDET ( \(1, N, I D, 1, Z, Y, B D(1), P, K, E R)\)
    CALL BUDET(2,N,ID,2,X,Z,BD(2),P,K,ER)
220 DO \(221 \mathrm{I}=1, \mathrm{~N}\)
    \(\mathrm{X}(\mathrm{I})=0\).
\(221 \mathrm{Y}(\mathrm{I})=0\).
    \(Q=0\).
    CALL FLASH(L,N,ID, Z, VF,F, V, TF, TV, PF, Q, X,Y,T,P,K,ER)
    IF(ER.CT.0) WRITE(6,15) ER
    15FORMAT(/' ERROR IN FLASH',[5/)
        \(\mathrm{II}=\mathrm{ID}(1)\)
        write(6,*)pd(1),pd(2)
        IF(L.EQ.1) WRITE(6,11)
        IF(L.EQ.2) WRITE( 6,12 )
        FRITE( 6,13 )
    11 FORMAT(////48X,'FEED', 26X,'TB/TD',15X,'ISOTHERMAL FLASH')
    12 FORMAT(////48X,' 'FEED',26X,'TB/TD',15X,'ADIABATIC FLASH')
```



```
    1 2X, 'VFRACT YF',4X,'TV(K)',6X,' (K) ',5X,'P(BAR) T(K)',
    2 4X,'V/F',6X,'X',5X,' \(\mathrm{Y}^{\prime} /\) )
```



```
    \(1 \mathrm{X}(1), \mathrm{Y}(1)\)
    \(\mathrm{I}=\mathrm{ID}(2)\)
    16 FORMAT(I2,2A10,F8.3,F8.1,F7.1,F9.3,F7.3,F8.1,F12.2,F9.1,F8.1,
    1 3F8.4)
    WRITE( 6,17\()\) [I, NM 1(II), NM2(II), F(2), V(2), BD(2), X( \(), \mathrm{Y}(2)\)
    17 FORMAT(I2,2A10,F8.3,24X,F7.3,8X,F12.2,25X,2F8.4)
    JF(N.LT.3) GO TO 230
    DO 228 I \(=3, \mathrm{~N}\)
    \(\mathrm{II}=\mathrm{ID}(\mathrm{I})\)
    WRITE( 6,18 ) II,NM 1(II),NM2(II),F(I),V(I),X(I) ,YD
    18FORMAT(I2,2A10,F8.3,24X,F7.3,45X,2F8.4)
228 CONTINUE
    IF(ER.GT.O) STOP
\(230 \mathrm{VF}=\mathrm{Q}\)
    \(\mathrm{TF}=\mathrm{T}\)
    \(T V=T\)
    \(\mathrm{BM}=\mathrm{BMM}\)
    \(\mathrm{PRT}=\mathrm{P} /(83.1473 * T)\)
    ZZ \(=1+B M\) *PRT
    \(\mathrm{VV}=22 / \mathrm{PRT}\)
    \(\mathrm{DZ}=\mathrm{BM} /\left(83.1473^{\circ} \mathrm{T}\right)\)
    \(C G=(1 / P) \cdot(1 / Z Z) * D Z\)
    WRITE(6,888)ZZ,W,T,P,DZ,CG
```



```
    \(1^{\prime} P={ }^{\prime}, E 10.4, '\) bar', //1,2x,'DZ=',E14.5,3x, 'CG=',E10.5,' 1/bar',//)
C LIQUID SPECIFIC MOLAR VOLUME ( \(\mathrm{cc} / \mathrm{gmol}\) )
    rrite (6,*)p,t,vf
```

$P R=P$
$T E=T$
CALL RHOHC ($\left.X_{2}, T, T, N C, R H O M E, P M 1, A P I\right)$
$P=P R$
$\mathrm{T}=\mathrm{TE}$
$\mathrm{VL}=$ RHOME
write(6,")rhome,pm1, api
if(akk.eq.0) $V P P=V /$
if (akk.eq. 0) WVI=VVL
C MOLES OF LIQUID
$V F N=(1-V F) * F F$
C LIQUIDVOLUME (cc)
$\mathrm{VW}=\mathrm{VVL} *$ VFN
C VOLUME OF GAS REMAINING \mathbb{N} BLOCK
VGR=VVI-VW
C TOTAL SPECIFIC MOLAR VOLUME OF MIXTURE VP2 $=$ VVL $+Q^{*}(V V-V V L)$ DELV=VP2-VP1
C AVREAGE SPECIFIC MOLAR VOLUME
$P P M=(P+(P-D E L P)) / 2$.
$\mathrm{VPM}=(\mathrm{VP} 2+\mathrm{VP} 1) / 2$.
C ADIABATIC COMPRESSIBILITY OF MLXTURE (1/BAR)
write $(6, *) p, t, v f, v f n, v{ }^{*}$
if(akk.eq.0) go to 65
if(tca.ne.1) go to 123
$\mathrm{CT}=(1 / \mathrm{VPM}) *(\mathrm{DELV} / \mathrm{DELP})$
CT $1=(1 / \mathrm{VP} 1) *($ DELV $/ D E L P)$
CT2=(1/VP2)*(DELV/DELP)
call comp (delp, vp 1, vp2, vpa,cta,ct1a,ct2a,ppma)
write ($8, *$) ppm,ct,cta
write (12,*) ppm,ct1,ctla
write(13,*) ppm,ct2,ct2a
write ($10,{ }^{\circ}$) $\mathrm{ppm}, \mathrm{ppm}, \mathrm{p}, \mathrm{yp} 1, \mathrm{yp} 2$
write ($8, *$) ppm, cg
write (11, ${ }^{\text {© }}$ ppm,q
write $(6,124)$ ct
124 format (//,2x, 'TWO PHASE CT=',f10.4,' $1 /$ bar')
go to 65
C APPARENT COMPRESSIBILITY (1/BAR)
$123 \mathrm{CAPP}=(1 / \mathrm{VPP}) *(\mathrm{VF} *(\mathrm{VY}-\mathrm{VV}) / \mathrm{DELP})$
C GAS SATURATION REMAINIG IN BLOCK
$S A T=V G R /(V W+V G R)$
IF(SAT.GT.1.00) STOP
C MOLES OF GAS IN BLOCK
NS $=V G R / V V$
C NEW FRACTIONAL VAPORIZATION
$\mathrm{VF}=\mathrm{NS} /(\mathrm{NS}+\mathrm{VFN})$
$\mathrm{FF}=\mathrm{NS}+\mathrm{VFN}$
if(ff.gt. 1.01)stop
VPOR $=V W+V G R$
HRITE $(6,88)$ VW, VGR,VPOR
88 FORMAT ($2 X_{2},{ }^{\prime}$ VH $=$ ', $\left.F 10.6, /, 2 X, ' V G R=', F 10.6 /, 2 X, ' V P O R=', E ' 10.6\right)$
WRITE(6,89)VP2,P,CT,CAPP,SAT
89 FORMAT $\left(2 X,{ }^{\prime} \mathrm{VT}={ }^{\prime}, \mathrm{F}^{\prime} 10.4,{ }^{\prime} \mathrm{CC} / \mathrm{GM}^{\prime}, 2 \mathrm{XX}, \mathrm{P}={ }^{\prime}, \mathrm{F} 10.4, \mathrm{BAR}^{\prime}, 1,2 X^{\prime} \mathrm{CT}\right.$

```
    1=',F 10.5,'1/BAR' 6,2X,'CAPP=',F10.5,/,2X,'SAT=',F6.4)
6 5 \text { CONTINUE}
    write(6,*)p,t,vf,ff
    DO 66 MM=1,8
    F(MM)=X(MM)
66V(MM)=Y(MM)
    VP1=VP2
C DECREASE PRESSURE FOR NEXT CALCULATION
    PF=P
    P=P-DELP
    IF(P.LE.TOL) STOP
    akk=1.
    GO TO 206
    900 WRITE (6,19)
    19 FORMAT(/' ERROR IN PARAMETER INPUT DECK /)
        STOP
        END
    SUBROUTINE PARIN(M,ERIN)
```

C PARIN READS PURE COMPONENT AND BINARY PARAMATERS FROM FORMATED CARDS
C OR OTHER FILES CONTAINING EQUIVALENT RECORDS, INTO COMMON STORAGE
C BLOCKS /PURE/ AND /BINARY/ FOR A LIBRARY OF M (LE.lOO)
C COMPONENTS. INPUT IS TAKEN FROM LOGICAL UNIT 3 PARIN RETURN ERIN=0
C UNLESS A DISCREPANCY IS DETECTED IN THE INPUT FILE, IN WHICH CASE IT
C RETURNS ERIN=5.
INTEGER ERIN
COMMON/PURE/NM1(100),NM2(100),TC(100), PC(100),RD(100),DM(100),
$1 \mathrm{~A}(100), \mathrm{C} 1(100), \mathrm{C}(100), \mathrm{C}(100), \mathrm{C} 4(100), \mathrm{C}(100), \mathrm{RU}(100), \mathrm{QU}(100)$,
2 QP(100), D1(100), D2(100),D3(100),D4(100)
COMMON/BINARY/ETA(5050),U(100,100)
COMMON/INIP/PHI,PM1,RF1,NC
OPEN(UNIT=7,FILE='he7',ACCESS='SEQUENTIAL',STATUS='OLD')
100 ERIN=0
IF (M.GT. 100) GO TO 900
NC=M
C READ PURE COMPONENT PARAMETERS
READ (7,*) PHI
DO $109[=1, \mathrm{M}$
C FIRST CARD FOR PURE COMPONENT PARAMETERS
READ (7,07) J
07 FORMAT(I3)
$\operatorname{READ}(7.01) \mathrm{NM} 1(\mathrm{~J}), \mathrm{NM} 2(\mathrm{~J}), T C(\mathrm{~J}), \mathrm{PC}(\mathrm{J}), A(\mathrm{~J}), \operatorname{RD}(\mathrm{J}), \mathrm{DM}(\mathrm{J}), \operatorname{RU}(\mathrm{J})$,
1 QU(J),QP(J)
WRITE(6.01) NM $1(\mathrm{~J}), \mathrm{NM} 2(\mathrm{~J}), \mathrm{TC}(\mathrm{J}), \mathrm{PC}(\mathrm{J}), \mathrm{A}(\mathrm{J}), \operatorname{RD}(\mathrm{J}), \mathrm{DM}(\mathrm{J}), \mathrm{RU}(\mathrm{J})$
1,QU(J),QP(J)
01 FORMAT(2A10,2F7.2,F6.4,F6.4,4F5.2)
C CHECK CARD SEQUENCE
IF(J.NE.I) GO TO 900
C SECOND CARD FOR PURE COMPONENT
READ (7,02) C1(J), C2(J),C3(5),C4(J),C5(J)
$\operatorname{WRITE}(6,02) \mathrm{C} 1(\mathrm{~J}), \mathrm{C} 2(\mathrm{~J}), \mathrm{C} 3(\mathrm{~J}), \mathrm{C} 4(\mathrm{~J}), \mathrm{C}(\mathrm{J})$
02 FORMAT(1X,5E 14.7)
IF(J.NE.I) GO TO 900
C THIRD CARD FOR PURE COMPONENT
READ(7,03) D 1(J), D2(J), D3(J), D4(J)

```
        WRITE(6,03) D 1(J),D2(J),D3(J),D4(J)
        03 FORMAT(2X,4E 14.7)
    IF(J.NE.I) GO TO 900
    109 CONTINUE
C CHECK REQUIRED BLANK CARD SEPARATOR
    READ(7,07) J
    IF(J.NE.O) GO TO 900
C READ IN BINARY ASSOCIATION PARAMETERS ETA
    110DO 119[=1,M
    I}1=(\textrm{I}-1)*I/2+
    12=(I-1)*[/2+I
    READ(7,04) (ETA(IV),IJ=I1,I2)
    04 FORMAT(7F4.2)
    119 CONTINUE
C CHECK FOR REQUIRED BLANK CARD SEPARATOR
    E=0.
    IF(ABS(E).GT.1.E-19) GO TO 900
    C INITLALLY ZERO UNIQUAC BINARY INTERACTION PARAMETERS
    120DO 121I=1,M
        DO 121 J=1,M
    121U(I,J)=0.
C READ IN UNIQUAC BINARY PARAMETERS
    125 READ(7,05)I,J,UIJ,UJI
    05 FORMAT(2I5,2F 10.2)
        WRITE(06,05)I,J,UIJ,UJI
    C TERMINATE READ IN BLANK FINAL CARD
        IF(I.EQ.0) GO TO 130
        U(I,J)=UIJ
        U(J,I)=UJI
        GO TO 125
    130DO 139[=1,M
    C SETU(I,I) TO IE+20 FOR NONCONDENSABLE I
        IF(A(I).LT.l.E-19) U(I,I)=1.E+20
    139 CONTINUE
        RETURN
    C ERROR RETURN FOR DISCREPANCY IN INPUT DATA FILE
    900 ERIN=5
        RETURN
        END
```

```
C LIQUID HYDROCARBON DENSITY CALCULATIONS< STANDING"S METHOD
    subroutine rhohc ( }x,p,t,n,rhome,pm1,api
    dimension x(10),pm(10),rho(10)
    open(UNIT=3,FILE='rhhe',ACCESS='SEQUENTIAL' ,STATUS:=' OLD')
    rewind 3
    n=?
    read(3,*)(pm(i),rho(i),i=1,n)
    rh3p=0.0
    pm3p=0.0
    do 11=3,n
    rh3p=rh3p+(pm(i)*x(i))/rho(i)
    1pm3p=pm3p+(pm(i)*x(i))
    rho3p=pm3p/rh3p
    den=0.
    do 2i=2,n
    2 den=den+pm(i)*x(i)
    w2=100.*(x(2)*pm(2))/den
    deno=0.
    do 3i=1,n
    3deno=denotpm(i)*x(i)
    pm 1=deno
    wl = 100.*(x(1)*pm(1))/deno
    rho2p=rho3p*(1.0-001386**2-0.000082*(w2**2.)
    1) }+(0.378**2)+0.0042*(*2**2.
    rholp=rho2p*(1-0.012**1-0.000158*(w1**2.))+0.0133*w1
    1+0.00058*(w 1**2.)
c pressure correction
    p=p*14.5
    deltap=(0.167+16.81*(10.**(-0.0425*rho1p)))*(p/1000.)
    1-0.01*(0.299+263.*(10.**(-0.0603*rholp)))*(p/1000.)**2.
c temperature correction
t=t*1.8-460.
deltat=(0.0133+152.4*((rho1p+deltap)**(-2.45)))*(t-60.)
1-((8.1*(10.**-6.))-0.0622*10.**(-0.0764*(rho1p+deltap)))
2'((t-60.)**2.)
rho 1=rho 1p+deltap-deltat
p=p/14.5
t=(t+460)/1.8
call rhow (t,rf1)
rf=rf 1*62.42828
sgo=rho1/rf
c hydrocarbon molar density in si units g mol / cc
    rhome=(rhol/pm1)*0.01604
c addition of water density using mol fraction as the wheighting parameter
rhome=((rf 1/18.)*x(8))+rhome
api=(141.5/sgo)-131.5
return
end
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION G(8)
```

DATA RHOC,G/317.0D0,0.36711257D 1,-0.28512396D2,0.22265240D3, $1-0.88243852 \mathrm{D} 3,0.20002765 \mathrm{D} 4,-0.26122557 \mathrm{D} 4,0.18297674 \mathrm{D} 4$,
2 -0.53350520D3/
DATA TCK/647.286DO/
IF (T.EQ.TCK) GO TO 30
OT=1.ODO/3.ODO
$\mathrm{X}=(1 . \mathrm{DO}-\mathrm{T} / \mathrm{TCK}) * * \mathrm{OT}$
IF (X.LT.1.0D-6) X=0.DO
$\mathrm{CO}=\mathrm{X}$
SUM=1.0DO
DO $20 I=1,8$
SUM $=S U M+G(I) * C O$
$20 \mathrm{CO}=\mathrm{CO} * \mathrm{X}$
RHOF $=$ RHOC $* S U M$
GO TO 40
$30 \mathrm{RHOF}=\mathrm{RHOC}$
GO TO 40
$40 \mathrm{RF}=\mathrm{RHOF} *(1 . E-03)$
RETURN
END
SUBROUTINE RHOW(T,RF)
IMPLICIT REAL*8 ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
EXTERNAL DH20
CALL DH2O(T,RF)
RETURN
END
subroutine comp(delp,vp1,vp2,vpm,ct,ct1,ct2,ppm)
$\mathrm{vpm}=(\mathrm{vp} 1+\mathrm{vp} 2) / 2$.
vpmi $=1, / \mathrm{vpm}$
delv=vp2-vp 1
$\mathrm{ct}=\mathrm{vpmi}{ }^{*} \mathrm{delv} / \mathrm{delp}$
ct $1=(1 . / \mathrm{vp} 1) *($ delv $/$ delp $)$
$\mathrm{ct} 2=(1 . / \mathrm{vp} 2) *(\mathrm{delv} / \mathrm{delp})$
$\mathrm{ppm}=(\mathrm{p}+(\mathrm{p}-\mathrm{delp})) / 2$.
return
end

C

C MAIN PROGRAM FOR COMPRESSIBILITY CALCULATIONS WITH PRODUCTION C OF THE HIGHER ENTHALPY FLUID, GAS PRODUCTION, COUPLED C WITH DRIVER PROGRAM FOR SUBROUTINES FLASH AND BUDETT FOR SYSTEMS OF U P TO C 10 COMPONENTS WITH VAPOR AND LIQUID FEED STREAMS (PRAUSNITZ ET AL. (1980) C

$\operatorname{REAL} Z(10), X(10), Y(10), K(10), Y(10), B D(2), F(10)$
INTEGER ID(10),ER
COMMON/PURE/NM1(100), NMZ(100),TC(100), PC(100), RD(100), DM(100),
$1 \mathrm{~A}(100), \mathrm{C}(100), \mathrm{C} 2(100), \mathrm{C} 3(100), \mathrm{C} 4(100), \mathrm{C} 5(100), \mathrm{RU}(100), \mathrm{QU}(100)$,
2 QP(100), D1(100), D2(100), D3(100), D4(100)
COMMON/BINARY/ETA(5050), U (100,100)
COMMON/COEFF/BMM
oper(UNIT=8,FILE='capd',ACCESS='SEQUENTLAL',STATUS=='OLD')
$\mathrm{VP} 1=0$.
$\mathrm{FF}=1$
akk $=0$.
C ONE COMPONENT CASE $\mathrm{N}=1$, WATER
100 CALL PARIN(1,ER)
IF(ER.GT.O) GO TO 900
$200 \operatorname{READ}(5,01)$ N,DELP
01 FORMAT(13,F6.4)
IF (N.EQ.O) STOP
$\operatorname{READ}(5,02) \mathrm{L}, \mathrm{T}, \mathrm{P},(\operatorname{ID}(\mathrm{I}), \mathrm{F}(\mathrm{I}, \Gamma=1,4)$
HRITE(6,02) L,T,P,(ID(I),F(I),I=1,4)
02 FORMAT(I5,F10.2,F10.3,(5(I4,F6.3)))
$\operatorname{READ}(5.03) \mathrm{TF}, \mathrm{PF}, \mathrm{VF}, \mathrm{TV},(\mathrm{V}(\mathrm{I}), \mathrm{I}=1,4)$
$\operatorname{WRITE}(6,03) T F, P F, V F, T V,(V(I), I=1,4)$
03 FORMAT(F10.2,F10.3,F10.4,F10.2,(5F8.3))
206 CONTINUE
DO $207 \mathrm{I}=1,2$
$207 \mathrm{BD}(\mathrm{I})=0$.
DO $209[=1, \mathrm{~N}$
$\mathrm{Z}(\mathrm{I})=(1 .-\mathrm{VF}) * \mathrm{~F}(\mathrm{I})+\mathrm{VF} * \mathrm{~V}(\mathrm{I})$
$\mathrm{X}(\mathrm{I})=0$.
$209 \mathrm{Y}(\mathrm{I})=0$.
210 CALL BUDET($1, \mathrm{~N}, \mathrm{ID}, 1, Z, Y, B D(1), P, K, E R)$
CALL BUDET(2,N,ID,2,X,Z,BD(2),P,K,ER)
220 DO $221[=1, \mathrm{~N}$
$X(I)=0$.
$221 Y(\mathrm{I})=0$.
$Q=0.0$
CALL FLASH(L,N,ID, Z, VF, F, V, TF, TV, PF, Q, X, Y, T, P, K,ER)
IF(ER.GT.0) WRTTE $(6,15)$ ER
15FORMAT($/$ ' ERROR IN FLASH',I5/)
II $=[\mathrm{D}(1)$
IF (L.EQ.1) WRITE(6,11)
IF(L.EQ.2) WRITE(6,12)
WRITE $(6,13)$
11 FORMAT(////48X,'FEED',26X,'TB/TD',15X,'ISOTHERMAL FLASH')
12FORMAT(////48X,'FEED', 26X,'TB/TD', $15 X$,'ADLABATIC FLASH')
13 FORMAT(1X,'INDEX',3X, 'COMPONENT',10X, 'XF', 4 X, , $\mathrm{TF}(\mathrm{K}) \mathrm{PF}(\mathrm{BAR})$ ',

```
    12X,'VFRACT YF',4X,'TV(K)',6X,' (K)',5X,'P(BAR) T(K)',
    2 4X,'V/F',6X,'X',5X,'Y'/)
    WRITE( 6,18) [I,NM1(II),NM2(II),F(1),TE,PF,VF,V(1),TV,BD(1),F,T,Q,
    1 X(1),Y(1)
    II= [D(2)
16 FORMAT(I2,2A10,F8.3,F8.1,F7.1,F9.3,F7.3,F8.1,F12.2,F9.1,F8.1,
    1 3F8.4)
    WRITE ( }6,17)\mathrm{ II,NM 1(II),NMZ(II),F(2),Y(2),BD(2),X(2),Y(2)
    17FORMAT(I2,2A10,F8.3,24X,F7.3,8X,F12.2,25X,2F8.4)
    HRITE (8,22)Q,T,P
22 FORMAT (////,'V/F=',E10.4,2X,'T=',E10.4,2X,'P=',E10.4,//)
    FF(N.LT.3) GO TO 230
    DO 228 I=3,N
    11= \mathbb{DP}()
    WRITE (6,18) II,NM1(II),NM2(II),F(I),V(0,X(I),Y()
    18FORMAT(I2,2A10,F8.3,24X,F7.3,45X,2F8.4)
228 CONTINUE
230 VF1=Q
    TF=T
    TV=T
    PF=?
C SECONDVIRTAL COEFFICIENT
    BM=BMM
    PRT=P/(83.1473*T)
C GAS DEVIATION FACTOR
    ZZ=1+BM*PRT
C GAS SPECIFICMOLAR VOLUME (cc/gmol)
    VV=ZZ/PRT
    DZ = BM/(83.1473*T)
C GAS COMPRESSIBILITY (EOS)
    CG=(1/P)\cdot(1/ZZ)*DZ
    WRITE(6,888)ZZ,VY,T,P,DZ,CG
    888FORMAT(2X,'Z=',E10.4,2X,'V=',E10.4,'cc/gm',2X,'T=',E10.4,'K',2X,
        1'P=',E10.4,' bar',///,2x,'DZ=',E14.5,3x,'CG=',E10.5,' 1/bar',//)
    PF1=P
```

C LIQUID SPECIFIC MOLAR VOLUME ($\mathrm{cc} / \mathrm{gmol}$)
CALL RHOH(T,RF)
$V=18$. $/ R F$
if(akk.eq.0) $\mathrm{VPP}=\mathrm{VVL}$
if(akk.eq.0) $\mathrm{VV}=\mathrm{VVL}$
C MOLES OF HATER
$V 8 N=(1-V / 1) \cdot \mathrm{FF}$
C WATER VOLUME (cc)
$\mathrm{V}=\mathrm{V}=\mathrm{VL} * V F \mathrm{~N}$
C VOLUME OF GAS REMAINING $\mathbb{I N}$ BLOCK
VGR=VYT-VW
C TOTAL SPECIFIC MOLAR VOLUME OF MIXTURE
VP2 $=$ VVL $+Q *$ (VV-VVL)
DELY=VP2-YP 1
C AVREAGE SPECIFICMOLAR VOLUME
$V P M=(Y P 2+Y P 1) / 2$.
$P P M=(P+(P-D E I P)) / 2$.
IF (DELP.EQ.O.) DELP $=0.50$
C ADIABATIC COMPRESSIBILITY OF MIXTURE (1/BAR)

$$
\mathrm{CT}=(1 / \mathrm{VPM}) *(\mathrm{DELV} / \mathrm{DELP})
$$

C APPARENT COMPRESSIBILITY (1/BAR)
CAPP $=(1 / \mathrm{VPP}) *(\mathrm{YF} 1 *(\mathrm{YV}-\mathrm{VVL}) / D E L P)$
C GAS SATURATION REMAINIG IN BLOCK
sat=yv/(vv+((1-vf1)/vf 1)*vvl)
[F(SAT.GT. 1.00) STOP
if(vw.le.0.000) stop
C MOLES OF GAS IN BLOCK
NS=VGR/NV
C NEW FRACTIONAL VAPORIZATION
$\mathrm{VF}=\mathrm{NS} /(\mathrm{NS}+\mathrm{VFN})$
VPOR $=V W+V G R$
$\mathrm{FF}=\mathrm{NS}+\mathrm{VFN}$
WRITE $(6,88)$ VW, YGR, VPOR

if(akk.eq.0) go to 90
write ($8, \cdot$) ppm, capp
WRITE(6,89)VP2,P, CT, CAPP, SAT
89 FORMAT($2 X,{ }^{\prime} \mathrm{VT}={ }^{\prime}, \mathrm{F} 10.4,{ }^{\prime} \mathrm{CC} / \mathrm{GM} \mathrm{M}^{\prime}, 2 X,{ }^{\prime} \mathrm{P}={ }^{\prime}, \mathrm{F} 10,4,{ }^{\prime} \mathrm{BAR}, 1,2 \mathrm{X},{ }^{\prime} \mathrm{CT}$
$\left.1={ }^{\prime}, F 10.5, ' 1 / B A R ', /, 2 X, ' C A P P=', F 10.5, /, 2 X, ' S A T=', F 6.4\right)$
90 VP1=VP2
$\mathrm{PF}=\mathrm{PF} 1$
C DECREASE PRESSURE FOR NEXT CALCULATION
$\mathrm{P}=\mathrm{PF}-0.5$
ㅍ(P.IE.O.5) STOP
IF(P.GT.100) $\mathrm{P}=\mathrm{PF} 1$
akk=1.
GO TO 206
900 सRITE $(6,19)$
19 FORMAT ($/$ ' ERROR IN PARAMETER INPUT DECK'/) STOP
END

C

C MAIN PROGRAM FOR COMPRESSIBILTY CALCULATIONS WITH PRODUCTION ACCORDING C TO RELATIVE PERMEABILITY-SATURATION HELATIONSHIPS COUPLED WITH C DRIVER PROGRAM FOR SUBROUTINES FLASH AND BUDET FOR SYSTEMS OF U P TO C 10 COMPONENTS WITH VAPOR AND LIQUID FEED STREAMS (PRAUSNITZ ET AL. (1980))

C

C
REAL $Z(10), X(10), Y(10), K(10), Y(10), B D(2), F(10)$
INTEGER ID(10), ER
dimension $\mathrm{sw}(20), \mathrm{sg}(20), \mathrm{rw}(20), \mathrm{rg}(20), \mathrm{pa}(20), \mathrm{us}(20), \mathrm{uw}(20)$
COMMON/PURE/NM1(100),NM2(100),TC(100), PC(100),RD(100),DM(100),
$1 \mathrm{~A}(100), \mathrm{Cl}(100), \mathrm{C}(100), \mathrm{C}(100), \mathrm{C} 4(100), \mathrm{C}(100), \mathrm{RU}(100), \mathrm{QU}(100)$,
2 QP(100),D1(100),D2(100),D3(100),D4(100)
COMMON/BINARY/ETA(5050), U(100,100$)$
COMMON/COEFF/BMM
open(UNIT=9,FILE='fort.5',ACCESS='SEQUENTIAL',STATUS='OLD')
open(UNIT=7,FILE='sat',ACCESS='SEQUENTIAL',STATUS='OLD')
open(UNIT=8,FILE='cap',ACCESS='SEQUENTIAL',STATUS='OLD')
open(UNIT=10,FILE='gcap',ACCESS='SEQUENTIAL',STATUS='OLD')
rewind 9
C INITIAL MOL NUMBER
$\mathrm{FF}=1$,
sat2 $=0$.
akk $=0$.
C ONE COMPONENT CASE, WATER.
100 CALL PARIN(1,ER)
IF(ER.GT.0) GO TO 900
$200 \operatorname{READ}(9,01) \mathrm{N}$
01 FORMAT(I3)
IF (N.EQ.O) STOP
$\operatorname{READ}(9,02) \mathrm{L}, \mathrm{T}, \mathrm{P},(\mathrm{ID}(\mathrm{I}), \mathrm{F}(\mathrm{I}), \mathrm{I}=1,4)$
WRITE(6, 02$) \mathrm{L}, \mathrm{T}, \mathrm{P},(\operatorname{ID}(\mathrm{I}), \mathrm{F}(\mathrm{I}), \mathrm{I}=1.4)$
02 FORMAT(15,F10.2,F10.3.(5(I4,F6.3)))
$\operatorname{READ}(9,03) \mathrm{TF}, \mathrm{PF}, \mathrm{VF}, \mathrm{TV},(\mathrm{V}(\mathrm{I}), \mathrm{I}=1.4)$
WRITE $(6,03) T \mathrm{TF}, \mathrm{PF}, \mathrm{VF}, \mathrm{TV},(\mathrm{V}(\mathrm{I}), \mathrm{I}=1,4)$
03 FORMAT(F10.2,F10.3,F10.4,F10.2,(5F8.3))
c delta p, time, permeability,viscosities, delx
read $(9, *)$ DELP,TIME,TOLL,AK,DELX
write(6,*)delp,time,toll, ak, delx
c relative permeability data
$\operatorname{read}(9, *)(S W(I), R W(I),[=1,13)$
$\operatorname{read}(9, *)(S G(I), R G(I), I=1,13)$
write(6,*)(SW(I),RW(I),I=1,13)
write $(6, *)(S G(I), R G(I), I=1,13)$
c read viscocities gas (us) and liquid (ug)
$\operatorname{read}(9, *)(\mathrm{pa}(\mathrm{i}), \mathrm{us}(\mathrm{i}), \mathrm{i}=1,8)$
$\operatorname{read}\left(9,{ }^{*}\right)(\mathbf{p a}(\mathbf{i}), \mathbf{u w}(\mathrm{i}), \mathbf{i}=1,8)$
read($9, *$) tol,delt
206 CONTINUE
DO $207 \mathrm{I}=1,2$
$207 \mathrm{BD}(\mathrm{I})=0$.
DO $209 \mathrm{I}=1, \mathrm{~N}$

```
    Z(I)=(1.VF)*F(I)+VF*V(I)
    X(I)=0.
209 Y(L)=0.
210 CALL BUDET(1,N,ID, 1,Z,Y,BD(1),P,K,ER)
    CALL, BUDET(2,N,ID,Z,X,Z,BD(2),P,K,ER)
220 DO 221I=1,N
    X(I)=0.
221 Y(I)=0.
    Q=0.0
    CALL FLASH(L,N,ID,Z,VF,F,V,TF,TV,PF,Q,X,Y,T,P,K,ER)
    IF(ER.GT.0) WRITE(6.15) ER
    15FORMAT(/' ERROR IN FLASH',I5/)
    II=ID(1)
    IF(L.EQ.1) #RITE(6,11)
    IF(L.EQ.2) FRITE(6,12)
    WRITE(6,13)
    11 FORMAT(////48X,'FEED',26X,'TB/TD',15X,'ISOTHERMAL FLASH')
    12 FORMAT(////48X,'FEED',26X,'TB/TD',15X,'ADLABATIC FLASH')
    13FORMAT( 1X,'INDEX,3X,'COMPONENT', 10X,'XF',4X,'TE(K) PF(BAR)',
    12X,'VFRACT YF',4X,'TV(K)',6X,' (K) ',5X,'P(BAR) T(K)',
    2 4X,'V/F',6X,'X',5X,'Y'/)
    WRITE(\delta,16) II,NM1(II),NM2(II),F(1),TF,PF,VF,Y(1),TV,BD(1),P,T,Q,
    1 X(1),Y(1)
    II=ID(2)
    16 FORMAT(I2,2A10,F8.3,F8.1,F7.1,F9.3,F7.3,F8.1,F12.2,F9.1,F8.1,
    1 3F8.4)
    WRITE(6,17) II,NM1(II),NMZ(II),F(2),V(2),BD(2),X(2),Y(2)
    17 FORMAT(I2,2A10,F8.3,24X,F7.3,8X,F12.2,25X,2F8.4)
    HRITE(6,22)Q,T,P
    22 FORMAT(////,'V/F=',E10.4,2X,'T=',E10.4,2X,'P=',E10.4,//)
    IF(N.LT.3) GO TO 230
    DO 228I=3,N
    II=[D(I)
    WRITE(6, 18) II,NM 1(11),NMZ(II),F(I).V(I),X(I),Y(I)
    18FORMAT(I2,2A10,F8.3,24X,F7.3,45X,2F8.4)
228 CONTINUE
230 \F1=Q
    TF=T
    TV=T
    PF=P
C SECOND VIRIAL COEFFICIENT
    BM=BMM
    PRT=P/(83.1473*T)
C GAS DEVIATION FACTOR
    ZZ=1+BM*PRT
C GAS SPECIFIC MOLAR VOLUME (cc/gmol)
    VV=2Z/PRT
    DZ=BM/(83.1473*T)
C GAS ISOTHERMAL COMPRESSIBILITY (EOS)
    CG=(1/P)\cdot(1/ZZ)*DZ
    WRITE(6,888)ZZ,VY,T,P,DZ,CG
888 FORMAT(2X,'Z=',E10.4,2X,'V=',E10.4,'cc/gm',2X,'T=',E10.4,'K',2X,
    1'P=',E10.4,' bar',///,2x,'DZ=',E14.5,3x,'CG=',E10.5,' 1/bar',//)
    PF1=P
```

C LIQUID SPECIFIC MOLAR VOLUME (cc/gmol)
CALL RHOW(T,RF)
VLL $=18 . /$ RF
if(akk.eq.0) VPP=VVL
if(akk.eq.O) VVI=VVL
C MOLES OF WATER (LIQUID)
$\mathrm{VFN}=(1-\mathrm{VF} 1) * \mathrm{FF}$
C WATERVOLUME (cc)
vw1=vvl*vfn
C GAS VOLUME
$\mathrm{vg} 1=\mathrm{vi} 1^{*} \mathrm{vv}$ *f
C GAS SATURATION (AFTER DELTA P)
sat1=vy/(vv+((1-vf1)/vf1)•vyl)
sat $=($ sat1 + sat 2$) / 2$.
if(akk.eq.0)sat =sat 1
C LIQUID SATURATION
satw $=1-\mathrm{sat}$
C GET RELATIVE PERMEABILITIES ACCORDING TO SATURATION
call tabseq(sw,rw,13,satw,rwk)
call tabseq($\mathrm{sg}, \mathrm{rg}, 13, \mathrm{sat}, \mathrm{rgk}$)
C GET VISCOSITIES FOR GAS AND LIQUID ACCORDING TO PRESSURE
call tabseq(pa, us,8,pf1,ug)
call tabseq(pa, uw, $8, \mathrm{pf} 1, \mathrm{ul})$
C AREA TO FLOW
ar=wi
C VOLUME WITHDRAWAL g GAS and w LIQUID
$788 \mathrm{qg}=(\mathrm{ak} * \mathrm{rgk} * \mathrm{ar} /(\mathrm{ug} * \mathrm{delx})$)*delp*time $\mathrm{q} w=(\mathrm{ak} * \mathrm{r} * \mathrm{k} * \mathrm{ar} /(\mathrm{ul} *$ del x$))$ *delp*time
C VOLUME AFTER FLUID WITHDRAWAL
$T W=V W 1-q$
$\nabla g=v g 1-q g$
vpor=vg+vw
if(sat.gt.1.0)stop
C VOLUMETRIC BALANCE OF FLOW RATES WITHE TIME
difn=abs(vpor-yvi)
dif=(vpor-vvi)
if(difn.le.toll) go to 92
if(dif.gt.0) go to 71
time=time-delt
if(time.lt.O) write $(6,70)$
70 format(///,'increase delta P, time.lt. 0^{\prime})
if(time.lt.0) stop
go to 788
71 time $=$ time + delt
go to 788
$92 \mathrm{vf}=(\mathrm{vg} / \mathrm{vv}) /((\mathrm{vg} / \mathrm{vv})+(\mathrm{vw} / \mathrm{vvl}))$
write(6,789) qg, qw
789 format ($\left./, 2 x,{ }^{\prime} Q G=', e 10.3,2 x,{ }^{\prime} Q W=', f 10.6\right)$
write(6,905)difn,vvi,vpor
905 format(2x,'difn=',f7.4,2x,'vvi=',f7.4,2x,'vpor=',f7.4)
write(6,91)time,toll, delp
91 format($/, 2 x$, 'time $=$ ',f6.3,2x,'toll=', $77.4,2 x,{ }^{\prime}$ 'delp=', 77.4)
WRITE $(6,88)$ VW,VG, VPOR
88 FORMAT(2X, 'VW $=$ ',F10.6, /,2X,' 'VG=',F10.6,2x, 'VPOR=',F10.6)

C GAS SATURATION REMAINIG IN BLOCK sat2 $=\mathrm{wv} /(\mathrm{vv}+((1-\mathrm{vf}) / \mathrm{vf}) * \mathrm{vvl})$
C APPARENT COMPRESSIBILITY (1/BAR) AND NEW V/F ctwo $=(1 /$ vpor $) *(q g+q w) / d e l p$ CAPP2 $=(1 / \mathrm{VPP}) *(\mathrm{VFN}-(\mathrm{VW} / \mathrm{VVL})) *(\mathrm{VV}-\mathrm{VVL}) / D E L P$
C MOLES OF GAS IN BLOCK $N S=V G N V$
C MOLES OF LIQUID IN BLOCK VFN $=\mathrm{VW} / \mathrm{VV}$ L
C TOTAL NUMBER OF MOLES PRESENT IN BLOCK (F) $\mathrm{FF}=\mathrm{NS}+\mathrm{VF} \mathrm{N}$ WRITE 6,90)VFN, P,CAPP2,SAT2,VF, FF
 $1 /, 2 X,{ }^{\prime}$ CAPP $2='$, F10 5, /,2X,'SATZ $=', F 6.4,2 x, ' v f=', f 10.6$, 2 2x, ${ }^{\prime}=$ ', $\mathrm{f10} 0$. ${ }^{\prime}$
write $(7,+$ pf,sat 2
write(8,*)pf,ctwo
write(10,*)pf,cg
write(6,901)ctwo

$\mathrm{PF}=\mathrm{PF} 1$
C DECREASE PRESSURE FOR NEXT CALCULATION $\mathrm{P}=\mathrm{PF}$-delp
IF(P.LE.tol) STOP
IF (P.GT. 100) $\mathrm{P}=\mathrm{PF} 1$
if(sat1.gt.1) stop
if(sat2.gt.1) stop
$\mathbf{a k k}=1$.
c
D0 $66 \mathrm{MM}=1$, N
$F(M M)=X(M M)$
$66 \mathrm{~V}(\mathrm{MM})=\mathrm{Y}(\mathrm{MM})$
c
GO TO 206
$900 \operatorname{WRITE}(6,19)$
19 FORMAT ($/$ ERROR IN PARAMETER INPUT DECK /) STOP
END

VAPOR-LIQUID EQUILIBRIUM ROUTINES

(PRAUSNITZ ET AL. 1980)

SUBROUTINE FLASH (TYPE,N,ID, KEY,YF, XF, YF,TL,TV,PF, A, X,Y,T,P,K,ERF) C FLASH CONDUCTS ISOTHERMAL (TYPE=1) OR ADIABATIC (TYPE=2) EQUILIBRIUM © FLASH VAPORIZATION CALCULATIONS AT A GIVEN PRESSURE P (BAR) FOR THE C
C THE SUBROUTINE ACCEPTS BOTH A LIQUID FEED OF COMPOSITION XF AT C TEMPERATURE TL(K) AND A VAPOR FEED OF COMPOSITION YF AT TV(K) AND C PRESSURE PF (BAR), WITH THE VAPOR FRACTION OF THE FEED BEING VF C (MOL BASIS). FOR AN ISOTHERMAL FLASH THE TEMPERATURE T(K) MUST C ALSO BE SUPPLIED. THE SUBROUTINE DETERMINES THE V/F RATIO A, THE C THE LIQUID AND VAPOR PHASE COMPOSITIONS X AND Y .AND. FOR AN ADIABATIC C FLASH, THE TEMPERATURE T(K). THE EQUILIBRIUM RATIOS K ARE ALSO P C VIDED.IT NORMALLY RETURNS ERF=O, BUT IF COMPONENT COMBINATIONS C LACKING DATA ARE INVOLVED IT RETURNS $E R F=1$, AND IF NO SOL C FOUND IT RETURNS $\mathbb{E} R=2$. FOR FLASH T.LT. TB OR T.ET. TD FLASH RETURNS C ERF $=3$ OR 4 RESPECTIVELY', AND FOR BAD INPUT DATA IT RETURNS ERF $=5$,
C IF ESTIMATES ARE AVAILABLE FOR A, X, Y, (AND T) T H N CAN BE ENTERED C IN THESE VARIABLES • OTHERWISE THESE VARIABLES SHOULD BE SETTO C ZERO.
C KEY SHOULD BE 1 ON INITIAL CALL FOR A NEW SYSTEM AND 2 OTHERWISE.
REAL $X F(N), Y F(N), X(N), Y(N), K(N), Z(20), U(20), W(20), K 1$
INTEGER ID(10), TYPE, ERF, ER, EB
DATA EPS/0.001/
$100 \mathrm{ERF}=0$
KEE=KEY
$\mathrm{Kv}=1$
C CHECK IF FEED IS LIQUID ($\mathrm{KV}=1$), AND VAPOR ($\mathrm{KV}=3$), OR BOTH ($\mathrm{KV}=2$).
IF(VF.GT.0.001) $\mathrm{KV}=2$
IF(VF.GT.0.999) KV=3
$5 \mathrm{X}=0$.
$S Y=0$.
SXF $=0$.
SYF $=0$.
C SUM FEED AND PHASE MOLE FRACTIONS
DO $109 \mathrm{I}=1, \mathrm{~N}$
$S X=5 X+X(t)$
$\mathrm{SY}=\mathrm{SY}+\mathrm{Y}(\mathrm{I})$
$\mathrm{SXF}=\mathrm{SXF}+\mathrm{XF}(\mathrm{I})$
109 SYF $=\mathrm{SYF}+\mathrm{YF}(\mathrm{I})$
C CHECK THAT SUM OF FEED MOL FRACMONS IS UNITY
IF(KV.LE.2.AND.ABS(SXF-1.).GT.0.01) GO TO 903
IF(KV.GE.2.AND.ABS(SYF-1).GT.0.01) GO TO 903
C CHECK THAT FLASH PRESSURE IS WITHTIN LIMITS
IF (P.IT.1.E-6.OR.P.GT. $100 . \$ 0 \mathrm{TO} 903$

110 GO TO (112,114,116),KV
C FOR LIQUID FEED USE XF AS ESTIMATE FOR X AND Y IF NOT GIVEN AND SET
C TOTAL FEED Z TO XF.
112 DO 113I=1,N
$\operatorname{IF}(\mathrm{ABS}(\mathrm{SX}-1.) . \mathrm{GT} .0 .01) \mathrm{X}(\mathrm{I})=\mathrm{XF}(\mathrm{I})$
IF (ABS(SY-1.).GT.0.01) Y(I)=XF(I)
$113 Z(\mathrm{I})=\mathrm{XF}(\mathrm{I})$
GOTO 120
C FOR MIXED FEED USE XF AS ESTIMATE FOR X AND YF FOR Y IF NOT GIVEN
C AND FIND TOTALFEED Z
114DO $115[=1, \mathrm{~N}$
IF $(\mathrm{ABS}(\mathrm{SX}-1.) . \mathrm{GT} .0 .01) \mathrm{X}(\mathrm{I})=\mathrm{XF}(\mathrm{I})$
$\operatorname{IF}(\mathrm{ABS}(\mathrm{SY}-1.) . \mathrm{GT} .0 .01) \mathrm{Y}(\mathrm{I})=\mathrm{YF}(\mathrm{I})$
$115 \mathrm{Z}(\mathrm{I})=(1 .-\mathrm{VF}) * \mathrm{XF}(\mathrm{I})+\mathrm{VF} * \mathrm{YF}(\mathrm{I})$
GO TO 120
C FOR VAPOR FEED USE YF AS ESTIMATE FOR X AND Y IF NOT GIVEN AND
C SET TOTAL FEED Z T O W 116 DO $117[=1, \mathrm{~N}$
$\operatorname{IF}(\operatorname{ABS}(S X-1.) . G T .0 .01) \mathrm{X}(\mathrm{I})=\mathrm{YF}(\mathrm{I})$
$\operatorname{IF}(\operatorname{ABS}(S Y-1.) . G T \cdot 0.01) Y(I)=Y F(I)$
$117 \mathrm{Z}(\mathrm{I})=\mathrm{YF}(\mathrm{I})$
C INITIALIZE LIQUID AND VAPOR PRODUCT COMPOSITIONS
$120 \mathrm{DO} 121 \mathrm{I}=\mathrm{I}, \mathrm{N}$
$\mathbf{u}(\mathrm{I})=\mathrm{W}(\mathrm{I})$
$121 \mathrm{~W}(\mathrm{I})=\mathrm{YF}(\mathrm{I})$
C FIND INITIAL ESTIMATE FOR A (IF NOT GГVE) FOR ISOTHERMAL FLASH
$\mathrm{TB}=\mathrm{TL}$
IF(T.GT.200..AND.T.LT.600) TB=T
$\mathrm{TD}=\mathrm{TB}$
CALL BUDET($1, N, I D, K E E, Z, W, T B, P, K, E B)$
IF(EB.GT. 1) GO TO 900
CALL BUDET(2,N,ID,2,U,Z,TD,P,K,ER)
IF(ER.GT. 1)GO TO 900
IF (TYPE.EQ.2) GO TO 125
$\operatorname{IF}(E B . L T .-2) T B=(T-T D * V F) /(1.1-V F)$
IF(T.LT.TB) GO TO 901
IF(T.GT.TD) GO TO 902
IF (A.LT.0.001.OR.A.GT.0.999) $\mathrm{A}=(\mathrm{T}-\mathrm{TB}) /(\mathrm{TD}-\mathrm{TB})$
GO TO 150
C FIND FEED ENTHALPY FOR ADIABATIC FLASH
$125 \mathrm{HLF}=0$
$\mathrm{HVF}=0$.
[F(PF.LT,1.E-6.OR.PF.GT. 100.) GO TO 903
IF(KV.GT.2) GO TO 126
IF (TL.LT.200..OR.TL.GT.600.) GO TO 903
CALL ENTH ($N, I D, 10,0, X E, T L, P F, H L F, E R$)
IF (ER.GT. 1) GO TO 900
126 IF (KV.LT.2) GO TO 127
IF(TV.LT.200..OR.TV.GT.600.) GO TO 903
CALL ENTH ($N, I D, 10,2, Y \mathrm{~F}, \mathrm{TV}, \mathrm{PF}, \mathrm{HVF}, E R$)
IF (ER.GT. 1) GO TO 900
$127 \mathrm{HF}=(1 .-\mathrm{VF}) * \mathrm{HLF}+\mathrm{VF} * \mathrm{HVF}$
C FIND INITIAL ESTIMATES FOR A AND T (IF NOT GIVEN) FOR ADIABATIC FLASH IF (EB.LT.-2) TB=200.

```
    IF(A.GT.0.001.AND.A.LT.0.999) GO TO 128
    CALL ENTH(N,ID, 10,0,2,TB,P,HL,ER)
    IF(ER.GT. 1)GO TO 900
    CALL ENTH(N,ID, 10,2,Z,TD,P,GY,ER)
    IF(ER.GT.1) GO TO 900
    [F(HF.LT.HL) GO TO 901
    IF(HF.GT.HV) GO TO 902
    A=(HF-HL)/(HV-HL)
    128IF(T.GT.TB.AND.T.LT.TD) GO TO 150
    T=TB+A*(TD-TB)
C INITIALIZE ITERATIVE SOLUTION
    150 IT=0
        SL=1.
        KEE=2
        IF(TYPE.EQ.2) KEE=6
        KD=0
        TN=T
        AN=A
        GO TO 250
```

C CONDUCT NEWTON RAPHSON ITERATION (200 STATEMENTS)
$200 \mathrm{~T}=\mathbb{T}+1$
IF(IT, EQ. 1) GO TO 205
IF(TYPE.EQ.2) GO TO 203
IF(ABS(DFA).GE.0. 1) GO TO 203
$\mathrm{EPF}=\mathrm{EPS} * 10 . * \mathrm{ABS}(\mathrm{DFA})$
$\operatorname{IF}(\mathrm{ABS}(\overline{)})$.LE.EPF) GO TO 300
GO TO 204
C CHECK CONVERGENCE OF OBJECTIVE FUNCTION
203 IF (FV.LE.EPS) GO TO 300
C EXIT WITHOUT SOLUTION AFTER 60 ITERATIONS
204 IF(IT.GT.100) GO TO 900
$205 \mathrm{FO}=\mathrm{FV}$
$\mathrm{KD}=0$
IF(TYPE.NE.2) GO TO 280
C DETERMINES KS AND ENTHLPIES AT 0.2 K T INCREASE FOR T DERNATIVES
C (ADIABATIC)
210 CALL VALIK(N,ID, $7, X, Y, T+0,2, P, K, E R)$
IF (ER.GT. 1) GO TO 900
CALL ENTH(N,ID,7,0,X,T+0.2,P,HL,ER)
IF(ER.GT.1)GO TO 900
CALL ENTH ($\mathrm{N}, \mathrm{ID}, 7,2, Y, \mathrm{~T}+0.2, P, \mathrm{HV}, \mathrm{ER})$
IF(ER.GT. 1) GO TO 900
$\mathrm{FP}=0$.
C UPDATE PHASE COMPOSITION
211 DO 214 I $=1, N$
$\mathrm{X}(\mathrm{I})=\mathrm{U}(\mathrm{I}) / \mathrm{SX}$
$\mathrm{Y}(\mathrm{I})=\mathrm{W}(\mathrm{I}) / \mathrm{SY}$
$\mathrm{K} 1=\mathrm{K}(\mathrm{D})-1$.
$214 \mathrm{FP}=\mathrm{FP}+\mathrm{K} 1 * 2(\mathrm{~L}) /(\mathrm{K} 1 * \mathrm{~A}+1$.
DELT $=T \mathrm{~L} \cdot \mathrm{~T}$
$Q E=0.000$
$\mathrm{GP}=(\mathrm{A} *(\mathrm{HY}-\mathrm{HL})+\mathrm{HL}-\mathrm{QF}) / \mathrm{HF}-1$.
C FIND TEMPERATURE DERIVATIVES BY FINITE DIFFERENCES (ADIABATIC)
$D F T=(F P-F) * 5$.

DGT $=(\mathrm{GP}-\mathrm{G}) * 5$.
C SOLVE 2 DIMENSIONAL NEWTON-RAPHSON ITERATION FOR A AN T CORRECTIONS C(ADIABATIC)
220 DET $=$ DFA*DGT-DFT*DGA
$D A=\left(F^{*} D G T-G * D F T\right) / D E T$
$D T=(G * D F A-E * D G A) / D E T$
$230 \mathrm{AN}=\mathrm{A} \cdot \mathrm{SL} * \mathrm{DA}$
C LIMIT A TO RANGE 0-1
IF(AN.LT.O.) AN=0.01
IF (AN.GT. 1.) AN $=0.99$
IF(TYPE.NE.2) GO TO 239
$T N=T-S L * D T$
C LIMIT T TO RANGE TB - TD (ADIABATIC)
IF (TN.LT.TB) GO TO 235
IF (TN.GT.TD) GO TO 237
GO TO 250
C CORRECTY FOR T SET TO TB
235 IF (EB.LT, -2) GO TO 903
CALL BUDET(1,N,ID,2,Z,Y,TB,P,K,EB)
IF (EB.GT. 1) GO TO 900
$T \mathrm{~N}=\mathrm{TB}$
GO TO 251
C CORRECT X FOR T SET TO TD
237 CALL BUDET(2,N,ID,2,X,Z,TD,P,K,ER)
IF (ER.GT. 1) GO TO 900
$T N=T D$
GO TO 251
239 IF(KD.EQ.1) GO TO 251
C GET NEW K VALUES
250 CALL VALIK (N, ID, KEE, X, Y, TN, P, K, ER)
IF (ER.GT. 1) GO TO 900
$251 S X=0$.
$S Y=0$.
$D F A=0$.
C FIND EQUILIBRIUM OBJECTIVE FUNCTION F AND UNNORMALIZE COMPOSITIONS
252 DO $254[=1, \mathrm{~N}$
$\mathrm{K} 1=\mathrm{K}(\mathrm{I})-1$.
$\mathrm{U}(\mathrm{I})=\mathrm{Z}(\mathrm{I}) /\left(\mathrm{K} 1^{*} A N+1.\right)$
$\mathrm{W}(\mathrm{I})=\mathrm{K}(\mathrm{I}) * \mathrm{U}(\mathrm{I})$
$\mathbf{S X}=\mathbf{S X}+\mathrm{U}(\mathrm{I})$
$S Y=S Y+W(I)$
C FIND DERIVATIVE OF F WRT A
DFA=DFA-(W(I)-U(I)) ${ }^{\bullet \bullet} 2 / Z(1)$
254 CONTINUE
$F=S Y \cdot S X$
IF(TYPE.NE.2) GO TO 260
255 CALL ENTH(N,ID,KEE, 0, X, TN, P, HL, ER)
IF (ER.GT. 1) GO TO 900
CALL ENTH (N,ID, KEE, $2, Y, T N, P, H V, E R)$
IF (ER.GT. 1) GO TO 900
DELT=TL-T
$Q F=0.000$
$\mathrm{G}=(\mathrm{AN} *(\mathrm{HV}-\mathrm{HL})+\mathrm{HL}-\mathrm{QF}) / \mathrm{HF}-1$.
C FIND DERIVATIVE OF G WRT A (ADIABATIC)
$D G A=(H V-H L) / H F$
C FIND NORM OF OBJECTIVE FUNCTION AND CHECK FOR DECFIEASE 260 FV $=\mathrm{ABS}(\mathrm{F})$

IF(TYPE.EQ.2) $\overline{E V}=S Q R T\left(\left(F^{*} F+G * G\right) / 2.\right)$
IF(IT.EQ.0) GO TO 200
IF(IT.LE.2) GO TO 270
IF(KD.EQ.2) GO TO 270
IF (FV.LE.FO) GO TO 270
C APPLY STEP LIMITING PROCEDURE TO DECREASE OBJECTIVE FUNCTION

$265 \mathrm{KD}=1$

SL=0.7*SL
C CHECK FOR FAILURE OF STEP LIMITING
IF(SL.LT.0.20) GO TO 268
GO TO 230
C ABANDON STEP-LIMITING AND PROCEED
$268 \mathrm{AN}=\mathrm{A}$
$\mathrm{TN}=\mathrm{T}$
$\mathrm{KD}=2$
GO TO 250
C PROCEED TO NEXT ITERATION
270 A=AN

$$
T=T N
$$

SL=1.
GO TO 200
C FIND NEWTON-RAPHSON CORRECTION TO A (ISOTHERMAL)
280 DA=F/DFA
C UPDATE PHASE COMPSITIONS (ISOTHERMAL)
281 DO 284 I = $1, \mathrm{~N}$ $\mathrm{X}(\mathrm{I})=\mathrm{U}(\mathrm{I}) / \mathrm{SX}$
$284 \mathrm{Y}(\mathrm{I})=\mathrm{W}(\mathrm{I}) / S Y$
GO TO 230
C FOR CONVERGED ITERATION GET FINAL NORMALIZED PHASE COMPOSITIONS
300 DO 304 I $=1, \mathrm{~N}$ $\mathrm{X}(\mathrm{I})=\mathrm{U}(\mathrm{I}) / \mathrm{SX}$
$304 Y(I)=W(\mathrm{I}) / S Y$
$E R F=E R$
RETURN
C ON FAILURE TO CONVERGE ITERATION SET A TO 0 (T TO 0 ADIABATIC AND C ERFTO 2
$900 E R F=2$
GO TO 905
C FOR T LESS THAN TB SETERF TO 3 (A TO 0)
$901 E R F=3$
GO TO 905
C FOR T GREATER THAN TD SETERF TO 4 (A TO 1)
$902 \mathrm{ERF}=4$
$\mathrm{A}=1$.
GO TO 906
C FOR BAD DATA INPUT SETERF TO 5 (A TO 0)
$903 E R F=5$
905 CONTINUE
906 CONTINUE
RETURN
END

SUBROUTINE VALIK (N,ID,KEY,X,Y,T,P,K,ERR)
C VALIK CALCULATES VAPORIZATION EQULIBRIUM COEFICIENTS ,K, FOR ALL N C COMPONENTS (N.LE.20) WHOSE INDICES APPEAR IN VECTOR ID, ISVEN
C TEMPERATURE T(K), PRESSURE P(BAR), AND ESTIMATES OF PHASE COMPOSITION C \mathbf{x} AND Y (USED WITHOUT CORRECTION IN EVALUATION OF ACTIVITIES, ETC). C CALCULATIONS ARE AN IMPLEMANTATION OF THE UNIQUAC MODEL.
C VALIK NORMALLY RETURNS ERR' 0 ,BUT IF COMPONENT COMBINATIONS LACKING C DATA ARE INVOLVED IT RETURNS ERb o AND IF NO SOLUTION IS FOUND C IT RETURNS ERR=2. KEY SHOULD BE 1 ON INITIAL CALL FOR A SYSTEM, 2 ON C SUBSEQUENT CALL WHEN ALL VARIABLES ARE CHANGED, 3 IF ONLY COMPOSITION
C IS CHANGED, AND 4 IF ONLY T (AND P)IS CHANGED. KEY IS 6 OR: 7, C INSTEAD OF 2 OR 4, IF ENTH CALLS ARE TO BE MADE FOR SAME CONDITIONS.

REAL $X(\mathrm{~N}), \mathrm{Y}(\mathrm{N}) . \mathrm{K}(\mathrm{N}), \mathrm{PHI}(20), \mathrm{GAM}(20), \mathrm{XF}(20), \mathrm{YF}(20)$
INTEGER ID (10) , ERR,ER,ERG, IDF(20)
COMMON/VAL/FIP(20)
$100 \operatorname{ERP}=0$
$T 1=T$
C CONVERT VECTORS TO DIMENSION 20 TO MATCH LOWER LEVEL SUBROUTINES
101 DO $102 \Gamma=1, \mathrm{~N}$
$\mathrm{XF}(\mathrm{I})=\mathrm{X}(\mathrm{I})$
$\mathrm{YF}(\mathrm{I})=\mathrm{Y}(\mathrm{I})$
$102 \operatorname{DF}(\mathrm{I})=\mathrm{ID}(\mathrm{I})$
C GET VAPOR PHASE FUGACITY COEvce8rq'TS, PHI 110 CALL PHIS(N,IDF, KEY, YF,T, P,PHI,ER)

IF(ER.GT.I) GO TO 900
GO TO ($120,120,130,120,120,120,120,120,120,120$), KEY
C GET PURE COMPONENT LIQUID FUGACITIES, FIP 120 CALL PURF(N,IDF, T,P,FIP)
C GET LIQUID PHASE ACTIVTTY COEFFICIENTS, GAM 130 CALL GAMMA(N,IDF,KEY,XF,T,GAM,ERG)
C CALCULATE VAPORIZATION EQUILIBRIUM RATIOS 140 DO 149 I $=1, \mathrm{~N}$
$\mathrm{K}(\mathrm{I})=\mathrm{GAM}(\mathrm{I}) * \mathrm{FIP}(\mathrm{I}) /(\mathrm{PHI}(\mathrm{I}) * \mathrm{P})$
IF(K(I) LE.O.OR.K(I).GT.1.E19) GO TO 900
149 CONTINUE
$E R R=E R G$
RETURN
C ON FAILURE TO FIND PHI SET K TO ZERO, ERR TO 2
900 ERR=ER
905 DO $906 \mathrm{I}=1, \mathrm{~N}$
$906 \mathrm{~K}(\mathrm{I})=0$.
RETURN
END

SUBROUTINE ENTH(N,ID,KEY,LEV, ZF,T,P,H,ERE)
C ENTH CALCULATES VAPOR OR LIQUID ENTHALPIES (REF IDEAL GAS AT 300 K) H C IN JOULES/GMOL FOR MIXTURES OF N COMPONENTS (N.LE.20) WHOSE INDICES C APPEAR IN VECTOR ID, GIVEN TEMPERATURE, PRESSURE P, AND LIQUID OR C VAPOR COMPOSITION Z. ENTH RETURNS ERE $=0$ UNLESS BINARY DAT ARE C MISSING FOR THE SYSTEM, IN WHICH CASE IT RETURNS ERE:=1, OR NO C SOLUTION IS FOUND IN PHIS, WHEN IT RETURNS ERE $=2$, FOR LEV $=0$ C THE LIQUID ENTHALPY IS CALCULATED WITH EXCESS ENTHALPY OF MEX́ING C TAKEN AS 0 , FOR LEV $=1$ EXCESS ENTHALPY IS CALCULATED FROM THE C TEMPERATURE DEPENDENCE OF ACTMTY COEFFICIENTS, AND FOR LEV=Z C VAPOR ENTHALPY IS CALCULATED. IF VALIK HAS BEEN CALLED FOR THE SAME C CONDITIONS, KEY SHOULD BE AS IN VALIK. IF VALIK HAS NOT' BEING C CALLED , KEY MUST BE 9.FOR A NEW SYSTEM, 10 OTHERWISE.

REAL Z(20), PHI (20), ZF(N)
INTEGER ID (10), ERE, ERB
COMMON/PURE/NMI(100),NM2(100),TC(100), $\operatorname{PC}(100), \operatorname{RD}(100), \operatorname{DM}(100)$,
$1 \mathrm{~A}(100), \mathrm{C} 1(100), \mathrm{C}(100), \mathrm{C3}(100), \mathrm{C} 4(100), \mathrm{C}(100), \mathrm{RU}(100), \mathrm{QU}(100)$,
2 QP(100), D1(100), D2(100), D3(100), D4(100)
COMMON/BINARY/ETA(5050),U(100,100)
COMMON/GS/TER,RL(20),TH(20),TP(20), $\mathrm{GCL}(20), T A U(20,20)$
COMMON /VIRIAL/KV,B(210), BD(210), DB(210),DBD(210), BM
COMMON/PS/PHL(20),ZI(20),C(210), YNT,TL,PL
DATA R,CJ/8.31439,0.098808/,TR,TR2,TRF/300,90000., 1411./
$\mathrm{ERE}=0$
C LACKING T DEPENDENT UNIQUAC INTERACTION PARAMETER SET THEIR T C DERTVATIVE TERM TO,O
$\mathrm{BU}=0$.
100 DO $104 \mathrm{I}=1, \mathrm{~N}$
C CONVERT COMPOSITION VECTOR TO DIMENSIONS 20 TO MATCH LOWER LEVEL
C SUBROUTINES
$104 \mathrm{Z}(\mathrm{I})=2 \mathrm{~F}(\mathrm{I})$
C SKIP FUGACITY CALCULATIONS IF VALIK CALLED AT SAME CONDITIONS
IF(I)EY.LT.9) GO TO 120
C SKIP VAPOR CALCULATIONS FOR LIQUID
IF(LEV.LT.2) GO TO 110
C GET VTRIAL COEFFICIENTS IF NOT PREVIOUSLY CALCUALE'(EED
CALL BIJS(N, [D, KEY,T,ERB)
IF(ERB.GT. 1) GO TO 900
IF (KV, EQ.0) GOTO 110
C GET TRUE COMPOSITION FROM ASSOCIATING VAPORS
CALL PHIS(N,ID, 8,Z,T,P,PHI,ERR)
IF (ERR.GT. 1) GO TO 900
GO TO 120
110 LF (LEV.EQ.0) GO TO 120
C GET UNIQUAC INTERACTION TERMS IF EXCESS ENTHALPY IS CALCULATED FOR
C LIQUID
CALL TAUS(N,ID,T,TAU,IER)
C SET ERE $=1$ FOR BINARY DATA MISSING
$\operatorname{IF}(\mathrm{LABS}(I E R) . E Q .1) \mathrm{ERE}=1$
ST=0.
STP $=0$,
C CALCULATION OF TERMS FOR EXCESS ENTHALPY EVALUATION
111 DO $115 \mathrm{I}=1, \mathrm{~N}$
$\mathrm{II}=\mathrm{ID}(\mathrm{I})$

```
        TH(I)=Z(I)*QU(II)
        TP(I)=Z(I)*QP(11)
        STP=STP+TP(I)
    115ST=ST+TH(I)
    116DO 119[=1,N
        TH(I)=TH(I)/ST
    119TP(I)=TP(I)/STP
C CALCULATION OF IDEAL GAS ENTHALPY
    120 TM1=T-TR
        TM2=ALOG(T/TR)
        TM3=(T\bullet*2.-TR2)/2.
        TLT=T*ALOG(T)-T-TRF
        HIG=0.
    125 DO 129I=1,N
        II=ID(I)
    129 HIG = HIG +Z(I)*(D1(II)*TM1+D2(II)*TM2+D3(II)*TM3+D4(II)*TLT)
        IF(LEV.LT.2) GO TO 150
C CALCULATION OF ENTHALPY FOR NONASSOCATING VAPOR
    130IF(KV.EQ. 1) GO TO 140
        HV=0.
    131 DO 135I=1,N
        LI=(I-1)
        DO 135 J=1,[
        CMT=2.
        IF(J.EQ.I) CMT=1.
    135HV=HV+CMT*Z(I)*Z(J)*(B(LI+J)-DB(LI+J))
    139HV=HIG+CJ*P*HV
        H=HV
        RETURN
C CALCULATION OF ENTHALPY FOR ASSOCIATING VAPOR
    140 SD=0.
        SO=0.
        S1=0.
    141DO 145I=1,N
        LI=(I-1)*I/2
        SO}=\textrm{SO}+\textrm{ZI}(\textrm{I})*(\textrm{B}(\textrm{LI}+\textrm{I})-\textrm{DB}(\textrm{LI}+\textrm{I})
        DO 143 J=1,[
        ZIJ=ZI(I)*ZI(J)*C(LI+J)
        SD=SD+ZIJ*(1.-DBD(LI+J)/BD(LI+J))
    143S 1=S1+Z[J*(B(LI+J)-DB(LI+J))
    145 CONTINUE
        HV=HIG+VNT*(CJ*P*(SO+S1)-R*T*SD)
        H=HV
        RETURN
    C CALCULATION OF LIQUID ENTHALPY
    150 TMR=T**2
        TMS=2.*T*TMR
        HL=0.
    151 DO 155I=1,N
        II=ID(I)
    155 HL=HL+Z(I)*(-C2(II)+C3(II)*TMR +C4(II)*T+C5(II)*TMS)
        H=HIG-R*HL
    C FOR LEV = O SKIP EXCESS ENTHALPY CALCULATION
        160 IF(LEV.EQ.0) RETURN
```

C CALCULATION OF EXCESS ENTHALPY CONTRIBUTION FOR LIQUID
$\mathrm{HE}=0$.
$\mathrm{HC}=0$.
161 DO $169 \mathrm{I}=1, \mathrm{~N}$
$11=\mathrm{ID}(\mathrm{I})$
TM1 $=0$.
TM2 $=0$.
IF (U(II,II).GT.1.E+19) GO TO 166
DO $165 \mathrm{~J}=1, \mathrm{~N}$
$\mathrm{JJ}=\mathrm{ID}(\mathrm{J})$
$T M 3=T P(\mathrm{~J}) * T A U(\mathrm{~J}, \mathrm{I})$
$T M 1=T M 1+T M 3$
$165 \mathrm{TM} 2=\mathrm{TM} 2+\mathrm{TM} 3^{*}(\mathrm{U}(\mathrm{JJ}, \mathrm{II})-2 . * \mathrm{BU} / \mathrm{T})$
$\mathrm{HE}=\mathrm{HE}+\mathrm{QP}(\mathrm{II}) * \mathrm{Z}(\mathrm{I}) * \mathrm{TM} 2 / \mathrm{TM} 1$
GO TO 169
$166 \mathrm{DO} 168 \mathrm{~J}=1, \mathrm{~N}$ $\mathrm{JJ}=[\mathrm{D}(\mathrm{J})$
$168 \mathrm{TM} 1=\mathrm{TM} 1+\mathrm{TH}(\mathrm{J}) * \mathrm{U}(\mathrm{JJ}, \mathrm{II})$ $\mathrm{HC}=\mathrm{HC}+\mathrm{Z}(\mathrm{I}) * T M 1$
169 CONTINUE
$\mathrm{H}=\mathrm{H}+\mathrm{R} *(\mathrm{HE}+\mathrm{HC})$
RETURN
C FOR FAILURE TO FIND SOLUTION IN PHIS SET ERE $=2 .(\mathrm{H}=0)$
900 ERE=2
$\mathrm{H}=0$.
RETURN
END

SUBROUTINE PHIS(N,ID,KEY,Y,T,P,PHI,ERR)
C PHIS CALCULATES VAPOR PHASE FUGACITY COEFFICIENTS, PHI,FOR ALL N C COMPONENTS (N.LE.20) WHOSE INDICES APPEAR IN VECTOR ID, GIVEN
C TEMPERATURE T(K), PRESSURE P(BAR), AND VAPOR PHASE COMPOSITION Y.PHIS C RETURNS ERR=O UNLESS NO SOLUTIONS ARE FOUND IN WHICH CASE IT RETURNS C ERR=2. KEY SHOULD BE 1 FOR A NEW SYSTEM, 2 FOR ALL CONDITIONS CHANGED C SINCE LAST CALL FOR SAME SYSTEM, 3 IF TEMPERATURE IS UNCHANGED FROM C LAST CALL FOR SAME SYSTEM, 4 (7)IF ONLY TEMPERATURE HAS CHANGED, AND C 8 IF BIJS HAS ALREADY BEING CALLED AT SAME CONDITIONS.

REAL Y(20), SI(20), ZO(20), PHI(20),SS(20)
INTEGER ID (10), ERR, ERB
COMMON /VIRIAL/KY, $B(\mathbf{2 1 0}), \mathrm{BD}(\mathbf{2 1 0}), \mathrm{DB}(210), \mathrm{DBD}(210), \mathrm{BM}$
COMMON/PS /PHL(20),ZI(20),C(210),VNT,TL,PL
COMMON/COEFF/BMM
DATA R /83.1473/
$100 \mathrm{ERR}=0$
$P R T=P /(R * T)$
GO TO(110,101,120,101,101,101,101,120,110,101), KEY
C CHECK FOR SIGNIFICANT CHANGE IN T OR P SINCE LAST CALL FOR SYSTEM 101 [E(ABS(T-TL).LT.0.02) GO TO 103

GO TO 110
103 IF (ABS(P-PL).LT.O.01) GO TO 105 GO TO 110
C RETURN IF NO CHANGE IN T, P, OR Y SINCE LAST CALL 105 [ह (KEY.EQ.4.OR. KEY.EQ.7) RETURN GO TO 120
C GET SECOND VIRIAL COEFFICIENT IN /VIRIAL/ 110 CALL BIJS(N,ID, KEY,T, ERB) IF(ERB.GT.1) GO TO 900
C GO TO SPECIAL CALCULATION FOR ASSOCIATING GAS MIXTURES 120 IF (KV.EQ.1) GO TO 200
C CALCULATE SECOND VIRIAL COEFFICIENT FOR GAS MIXTURE
$\mathrm{BM}=0$.
130 DO 139I=1, N
C CALCULATE EFF SECOND VIRLAL COEFFICIENT FOR COMP I IN MIXTURE, SS(C)
$\mathrm{SS}(\mathrm{I})=0$.
$\mathrm{LI}=(\mathrm{I}-1)^{*} \mathrm{I} / 2$
DO $133 \mathrm{~J}=1$, I
$133 \mathrm{SS}(\mathrm{I})=\mathrm{SS}(\mathrm{I})+\mathrm{Y}(\mathrm{J}) * \mathrm{~B}(\mathrm{LI}+\mathrm{J})$
$I 1=1+1$
IF(I1.GT.N) GO TO 136
DO $135 \mathrm{~J}=\mathrm{I} 1, \mathrm{~N}$
$[\mathrm{J}=(\mathrm{J}-1) * \mathrm{~J} / 2$
$135 \operatorname{SS}(\mathrm{I})=\mathrm{SS}(\mathrm{I})+\mathrm{Y}(\mathrm{J}) * \mathrm{~B}(\mathrm{~L}+\mathrm{l})$
$136 \mathrm{BM}=\mathrm{BM}+\mathrm{Y}(\mathrm{I}) * \mathrm{SS}(\mathrm{I})$
$B M M=B M$
139 CONTINUE
C CALCUALTE VAPOR PHASE FUGACITY COEFFICIENTS, PHI(I)
140 DO $149[=1, N$
$\mathrm{PHI}(\mathrm{I})=\operatorname{EXP}(\mathrm{PRT} *(2 . \operatorname{SS}(\mathrm{I})-\mathrm{BM}))$
C SAVE FUGACITY COEFFICIENTS FOR USE AT SIMILAR CONDITIONS
$\mathrm{PHL}(\mathrm{I})=\mathrm{PHI}(\mathrm{I})$
149 CONTINUE
C SAVE CONDITIONS AT WHICH PHIS CALCULATED
$T L=T$
$P L=P$
RETURN
C SPECIAL CALCULATION FOR ASSOCIATING GAS MIXTURES
$200 \mathrm{KO}=0$
GO TO(203,201,201,201,201,201,201,203,203,201), KEY
C IF PREVIOUS PHI VALUES AVAILABLE USE TO GET FIRST ESTIMATE OF ACTUAL
C VAPOR COMPOSITION
201 DO 202 I= $1, \mathrm{~N}$
$\mathrm{LI}=(\mathrm{I} \cdot 1) * \mathrm{I} / 2$
$202 \mathrm{ZI}(\mathrm{I})=\mathrm{PHL}(\mathrm{I}) * \mathrm{Y}(\mathrm{I}) * \operatorname{EXP}(-\mathrm{PRT} * \mathrm{~B}(\mathrm{~L}[+\mathrm{I}))$
IF(KEY.EQ.3) GO TO 208
$K O=1$
C FOR NO PREVIOUS PHI VALUES AVAILABLE (KO=0) MAKE FIRST ESTIMATES OF C ACTUAL VAPOR COMPOSITION
C FOR ALL CASES (EXCEPT KEY=3)FIND VALUES OF ASSOCAITING EQUILIBRIUM C CONSTANTS C.
203 DO $207 \mathrm{I}=1, \mathrm{~N}$
$\mathbb{F}($ KO.EQ.0) $\mathrm{ZI}(\mathrm{I})=\mathrm{Y}(\mathrm{I})$
$\mathrm{LJ}=(\mathrm{I}-1) * 1 / 2$
DO $206 \mathrm{~J}=1$, I
$\mathrm{LJ}=(\mathrm{J}-1) * \mathrm{~J} / 2$
$C(L I+J)=-2 . * P R T * B D(L I+J) * E X P(P R T *(B(L I+[)+B(L J+J)-B(L I+J)))$
IF (C(LI+J).LT.O.) GO TO 900
IF(J.EQ.I) GO TO 205
IF(KO.EQ.1) GO TO 206
C INITIAL ESTIMATES OF ZI(I)
IF (C $(\mathrm{LI}+\mathrm{J})$.LE. 0.5) GO TO 206
$\operatorname{IF}(Y(J) . L T . Y(I))$ GO TO 204
$Z \mathrm{~T}=\mathrm{Y}(\mathrm{I}) /(\mathrm{C}(\mathrm{LI}+\mathrm{J}) * Y(\mathrm{~J})+1$.
$Z J=Y(J) /(C(L[+J) * Z T+1)$.
[F(ZT.LT.Z.I(I)) 2I((L)=ZT
IF (ZJ.LT.ZI(J)) ZI(J)=2J
GO TO 206
$204 \mathrm{ZJ}=\mathrm{Y}(\mathrm{J}) /(\mathrm{C}(\mathrm{LI}+\mathrm{J}) * \mathrm{Y}(\mathrm{I})+1$.
$\mathrm{ZT}=\mathrm{Y}(\mathrm{I}) /(\mathrm{C}(\mathrm{LI}+\mathrm{J}) \cdot \mathrm{ZJ}+1$.
$\mathrm{IF}(\mathrm{ZT} . \mathrm{LT} . \mathrm{ZI}(\mathrm{I})) \mathrm{ZI}(\mathrm{I})=\mathrm{ZT}$
$\operatorname{IF}(Z \mathrm{ZJ} . \mathrm{LT} . \mathrm{ZI}(\mathrm{J})) \mathrm{ZI}(\mathrm{J})=\mathrm{ZJ}$
GO TO 206
$205 \mathrm{C}(\mathrm{LI}+\mathrm{J})=\mathrm{C}(\mathrm{L}[+\mathrm{J}) / 2$.
IF (KO.EQ.1) GO TO 206
IF (C(LI +J$)$.LE. 0.5) GO TO 206
$\mathrm{ZT}=\left(\operatorname{SQRT}\left(1 .+8 .{ }^{\bullet} \mathrm{C}(\mathrm{LI}+\mathrm{J}) * \mathrm{Y}^{*}(\mathrm{I})\right)-1.\right) /(4 . * \mathrm{C}(\mathrm{LI}+\mathrm{J}))$
IF(ZT.LT.ZI(I)) $2 \mathrm{I}(\mathrm{I})=2 \mathrm{~T}$
206 CONTINUE
207 CONTINUE
C START ITERATIVE CALCULATION OF ACTUAL VAPOR COMPOSI'CION, ZI(I)
C STORE FIRST ITERATION VALUES
208 DO $209 \mathrm{I}=1, \mathrm{~N}$
$209 \mathrm{ZO}(\mathrm{I})=\mathrm{ZI}(\mathrm{I})$
$I T=0$
$210 I T=I T+1$
IF(IT.GT.20) GO TO 900
$R M=1$.

```
220 DO \(229 \mathrm{I}=1, \mathrm{~N}\)
    \(\mathrm{SI}(\mathrm{I})=0\)
C DAMP ITERATION \(20 \%\)
    \(\mathrm{ZI}(\mathrm{I})=.2 * \mathrm{ZO}(\mathrm{I})+.8^{*} \mathrm{ZI}(\mathrm{I})\)
    \(\mathrm{ZO}(\mathrm{I})=\mathrm{ZI}(\mathrm{I})\)
    \(\mathrm{LI}=(\mathrm{I}-1) \cdot \mathrm{I} / 2\)
    DO \(221 \mathrm{~J}=1\), I
\(221 \mathrm{SI}(\mathrm{I})=\mathrm{SI}(\mathrm{I})+\mathrm{C}(\mathrm{LI}+\mathrm{J}) * Z \mathrm{I}(\mathrm{J})\)
    DO \(223 \mathrm{~J}=\mathrm{I}, \mathrm{N}\)
    \(\mathrm{LJ}=(\mathrm{J}-1) * \mathrm{~J} / 2\)
\(223 \mathrm{SI}(\mathrm{I})=\mathrm{SI}(\mathrm{I})+\mathrm{C}(\mathrm{LJ}+\mathrm{I}) * 2 \mathrm{I}(\mathrm{J})\)
    \(R M=R M+Z I(L) * S L(L) / 2\).
229 CONTINUE
230 DO 235 [ \(=1\), N
\(235 \mathrm{ZI}(\mathrm{I})=\mathrm{RM} * \mathrm{Y}(\mathrm{I}) /(1 .+\mathrm{SI}(\mathrm{I}))\)
DO 239 I=1, N
IF(Y(I).LT. 1.E-O9) GO TO 239
C CHECK CONVERGENCE FOR EACH ZI(L)
    IF(ABS((ZI(I)-ZO(I))/Y(I)).GT.0.005) GO TO 210
239 CONTINUE
C CALCULATE VAPOR PHASE FUGACITY COEFFICIENTS FOR ACTUAL COMPOSITION OF
C ASSOCIATING VAPOR
    240 DO \(249[=1, \mathrm{~N}\)
        \(\mathrm{LI}=\left\{[-1)^{*} \mathrm{I} / 2\right.\)
        \(\operatorname{PHI}(\mathrm{I})=\mathrm{RM} * \operatorname{EXP}(\mathrm{PRT} * \mathrm{~B}(\mathrm{LI}+\mathrm{I})) /(1 .+\mathrm{SI}(\mathrm{I}))\)
        IF (KEY.EQ.8) GO TO 249
© SAVE FUGACITY COEFFICIENTS FOR USE AT SIMILAR CONDITIONS
        \(\mathrm{PHL}(\mathrm{I})=\mathrm{PHI}(\mathrm{I})\)
    249 CONTINUE
C CALCULATE TOTAL MOLS OF ASSOCIATING VAPOR PER MOL STOICHIOMETRIC VAOR
    \(250 \mathrm{VNT}=1 . / \mathrm{RM}\)
        TL=T
        \(\mathrm{PL}=\) ?
        RETURN
C ERROR RETURN FOR FAILURE OF ITERATION FOR ZI(I) TO CONVERGE
    900 ERR=2
        DO \(901 \mathrm{I}=1, \mathrm{~N}\)
        \(\mathrm{PHL}(\mathrm{I})=1\).
    \(901 \mathrm{PHI}(\mathrm{I})=1\).
        RETURN
        END
```

[^0]$$
S(\mathrm{~L})=S(\mathrm{~L}) *(1+\mathrm{T} 2 * Z(\mathrm{~L}))
$$

C MODIFIED ENERGY PARAMETER

$$
\mathrm{TS}(\mathrm{~L})=\operatorname{TS}(\mathrm{L}) \bullet\left(1 .-\mathrm{T} 1^{*} Z(\mathrm{~L})+\mathrm{T} 1^{\bullet}(\mathrm{T} 1+1 .)^{*} Z(\mathrm{~L}) \bullet * Z / 2 .\right)
$$

C REDUCE DIPOLE MOMENT
$117 \mathrm{G}(\mathrm{L})=\mathrm{B} 2 * \mathrm{DM}(\mathrm{II}) * * 2 /(\mathrm{TS}(\mathrm{L}) * \mathrm{~S}(\mathrm{~L}))$
119 CONTINUE

$$
\text { IF(N.EQ.1) GO TO } 130
$$

C CALCULATE TEMPERATURE -INDEPENDENT PARAMETERS FOR COMPONENT PAIRS

$$
120 \mathrm{DO} 129[=2, \mathrm{~N}
$$

$$
\mathrm{II}=\mathrm{ID}(\mathrm{I})
$$

$$
\mathrm{L} \mathrm{I}=(\mathrm{I}+1) * \mathrm{I} / 2
$$

$$
I 1=[-1
$$

$$
\text { DO } 129 \mathrm{~J}=1,11
$$

$$
\mathrm{JJ}=\mathrm{ID}(\mathrm{~J})
$$

$$
\mathrm{IJ}=(\mathrm{J}+1) * J / 2
$$

$$
\mathrm{L}=(\mathrm{I}-1)^{*} \mathrm{I} / 2+\mathrm{J}
$$

CCROSSNONPOLARACENTRICPARAMETER

$$
\mathrm{W}(\mathrm{~L})=(\mathrm{W}(\mathrm{LI})+\mathrm{W}(\mathrm{LJ})) / 2 .
$$

C CROSS MOLECULAR SIZE PARAMETER

$$
\mathrm{S}(\mathrm{~L})=S Q R T(\mathrm{~S}(\mathrm{LI}) * S(\mathrm{LJ}))
$$

C CROSS ENERGY PARAMETER
$\mathrm{TS}(\mathrm{L})=\mathrm{CK} 1 * \operatorname{SQRT}(\mathrm{TS}(\mathrm{LI}) * \mathrm{TS}(\mathrm{LJ}))+\mathrm{CK} 2 /(1 . / \mathrm{TS}(\mathrm{LI})+1 . / \mathrm{TS}(\mathrm{LJ}))$ IF(DM(II).LT.1.E-19) GO TO 123
IF(DM(JJ).GT.1.E-19) GO TO 124
IF (DM(IT).LT.2.5) GO TO 124
$\mathrm{Z}(\mathrm{L})=\mathrm{DM}(\mathrm{II}) * * 2 *(\mathrm{TS}(\mathrm{LJ}) * * 2 * \mathrm{~S}(\mathrm{LJ})) * * \mathrm{E} 3 /(\mathrm{TS}(\mathrm{L}) * \mathrm{~S}(\mathrm{LI}))$

GO TO 125

123IF(DM(JJ).LT.2.5) GO TO 124
C MODIFICATION OF PARAMETERS IN POLAR-NONPOLAR PAIRS

$$
\mathrm{Z}(\mathrm{~L})=\mathrm{DM}(\mathrm{JJ}) \bullet * 2 *(\mathrm{TS}(\mathrm{LI}) * * 2 * \mathrm{~S}(\mathrm{LL})) \bullet * \mathrm{E} 3 /(\mathrm{TS}(\mathrm{~L}) * \mathrm{~S}(\mathrm{LJ}))
$$

$$
\text { GO TO } 125
$$

$1242(\mathrm{~L})=0$.

$$
\text { GO TO } 126
$$

$125 \mathrm{H}(\mathrm{L})=16 .+400 \cdot * \mathrm{~W}(\mathrm{~L})$

$$
\mathrm{T} 1=\mathrm{H}(\mathrm{~L}) /(\mathrm{H}(\mathrm{~L})-6 .)
$$

T2 $=3 . /(\mathrm{H}(\mathrm{L})-6$.
C MODIFY CROSS MOLECULAR SIZE, PARAMETER $\mathrm{S}(\mathrm{L})=\mathrm{S}(\mathrm{L}) *(1 . \mathrm{T} Z * Z(\mathrm{~L}))$
C MODIFIED CROSS ENERGY PARAMETER $T S(L)=T S(L) *(1+T 1 * Z(L))$
C CROSS REDUCED DIPOLE MOMENT
$126 \mathrm{G}(\mathrm{L})=\mathrm{B} 2 * \mathrm{DM}(\mathrm{II}) * \mathrm{DM}(\mathrm{JJ}) /(\mathrm{TS}(\mathrm{L}) * \mathrm{~S}(\mathrm{~L}))$
C DETERMINE EFFECTIVE ASSOCIATION/SOLVATION PARAMETER
$\mathrm{IJ}=(\mathrm{II}-1)^{\bullet} \mathrm{IL} / 2+\mathrm{JJ}$
IF(JJ.GT.II) IJ $=(\mathrm{JJ}-1) \cdot \mathrm{JJ} / 2+\mathrm{II}$
$\operatorname{IF}(\operatorname{ABS}(E T A(\mathrm{IJ})) . L T .1 . \mathrm{E}-19)$ GO TO 127
$\operatorname{ET}(\mathrm{L})=\mathrm{ETA}(\mathrm{IJ})$
IF (ET(L).GE.4.4998) KV $=1$
GO TO 129
$127 E T(L)=0$.
$\operatorname{TF}(\mathrm{ABS}(\mathrm{ET}(\mathrm{LI}) \cdot \operatorname{ET}(\mathrm{LJ})) \cdot \mathrm{LT} \cdot 1 \cdot \mathrm{E}-19) \quad 8 T(\mathrm{~L})=\mathrm{ET}(\mathrm{L}, \mathrm{I})$
129 CONTINUE
C CALCULATE TEMPERATURE INDEPENDENT TERMS IN VIRIAL COEFFICIENTS FOR
C PURE COMPONENTS AND PAIRS
$130 \mathrm{DO} 139 \mathrm{I}=1, \mathrm{~N}$
DO $139 \mathrm{~J}=1$ I
$\mathrm{L}=(\mathrm{I}-1) * \mathrm{I} / 2+\mathrm{J}$
$S(L)=81 * S(L)$
$\mathrm{H}(\mathrm{L})=\mathrm{CH} 1+\mathrm{CH} 2 * \mathrm{G}(\mathrm{L}) * * 2$
$Z(\mathrm{~L})=\mathrm{CA} 1+\mathrm{CA} 2^{*} \mathrm{G}(\mathrm{L})$
C DETERMINE MODIFIED REDUCED DIPOLE PARAMETER
IF(G(L).LT.0.04) GO TO 135
IF (G(L), GE, 0.25) GO TO 134
$G(L)=0$.
GO TO 135
$134 \mathrm{G}(\mathrm{L})=\mathrm{G}(\mathrm{L})-0.25$
135 IF (ET(L).GE.4.5) GO TO 137
IF(ET(L).LT.l.E-19) GO TO 139
C ENERGY TERM FOR NONASSOCIATING TERM
$\mathrm{E}(\mathrm{L})=\mathrm{CE} 1 /(\mathrm{TS}(\mathrm{L})+\mathrm{CE} 2) \cdot \mathrm{CE} 3$
GO TO 139
C ENERGY TERM FOR ASSOCIATING TERM $137 \mathrm{E}(\mathrm{L})=\mathrm{CE} 4 /(\mathrm{TS}(\mathrm{L})+\mathrm{CE} 5)-\mathrm{CE} 3$ 139 CONTINUE
C CALCULATE TEMPERATURE DEPENDENT TERMS AND VIRIAL COEFFICIENTS
200 DO 209 I= $1, \mathrm{~N}$
DO $209 \mathrm{~J}=1$, I
$\mathrm{L}=(\mathrm{I}-1) * \mathrm{I} / 2+\mathrm{J}$
$\mathrm{TA}=\mathrm{T} / \mathrm{TS}(\mathrm{L})$
$\mathrm{T} 1=1 . /\left(1 . / \mathrm{TA}-1.6^{*} \mathrm{~W}(\mathrm{~L})\right)$
$\mathrm{T} 2=\mathrm{T} 1 * \mathrm{Ti}$
$\mathrm{T} 3=\mathrm{T} 2 * \mathrm{~T} 1$
C NONPOLAR FREE CONTRIBUTION
$\mathrm{BN}=\mathrm{CN} 1+\mathrm{CN} 2 / \mathrm{T} 1+\mathrm{CN} 3 / \mathrm{T} 2+\mathrm{CN} 4 / \mathrm{T} 3$
IF (G(L).GT.1.E-19) GO TO 201
$B P=0$.
GO TO 202
C POLAR FREE CONTRIBUTION
$201 \mathrm{BP}=(\mathrm{CP} 1+\mathrm{CP} 2 / \mathrm{T} 1+\mathrm{CP} 3 / \mathrm{T} 2+\mathrm{CP} 4 / \mathrm{T} 3) * \mathrm{G}(\mathrm{L})$
C TOTAL FREE CONTRIBUTION TO VIRIL COEFFICIENT $202 \mathrm{~B}(\mathrm{~L})=\mathrm{S}(\mathrm{L}) *(\mathrm{BN}+\mathrm{BP})$
C METASTABLE PLUS BOUND CONTRIBUTIONS
$B N=Z(\mathrm{~L}) * \operatorname{EXP}(\mathrm{H}(\mathrm{L}) / T A)$
IF (ET(L).LT.l.E-19) GO TO 204
C CHEMICAL CONTRIBUTION
$B P=\operatorname{EXP}(E T(L) * E(L)) \cdot E X P(E T(L) *(1500 . / T+E(L)))$
GO TO 205
$204 B P=0$.
C METASTABLE, BOUND, AND CHEMICAL CONTRIBUTIONS TO VIRIAL COEFFICIENT $20580(L)=S(L) *(B N+8 P)$

IF (KEY.GT.1.AND.KEY.LE.5) GO TO 208
C CALCULATION OF T DERTVATIVESOF VIRIAL COEFFICIENTS (ALL MULTIPLIED
C BY T)
DBN $=-\mathrm{CN} 2-2 . * \mathrm{CN} 3 / \mathrm{T} 1-3 . * \mathrm{CN} 4 / \mathrm{T} 2$
$\mathrm{DBP}=(-\mathrm{CP} 2-2 . * \mathrm{CP} 3 / \mathrm{T} 1-3 . * \mathrm{CP} 4 / \mathrm{T} 2) * \mathrm{G}(\mathrm{L})$
C DERIVATIVE OF THE TOTAL FREE CONTRIBUTION TO VIRIAL COEFFICIENT
$D B(L)=S(L) *(D B N+D B P) / T A$
$D B N=-H(L) * B N / T A$

```
    IF(ET(L).LT.1.E-19) GO TO 206
    DBP=1500.*ET(L)*EXP(ET(L)*(1500./T+E(L)))/T
    GO TO 207
    206 DBP=0.
C DERIVATIVE OF METASTABLE, BOUND, AND CHEMICAL CONTRIBUTIONS TO VIRIAL
C COEFFICIENT
    207 DBD(L)=S(L)*(DBN+DBP)
C CALCULATION OF TOTAL VIRIAL COEFFICIENT FOR CASES WITHOUT ASSOCIATING
C VAPORS
    IF(KY.EQ.0) DB(L)=DB(L) +DBD(L)
    208 IF(KV.EQ.0) B(L) =B(L) +BD(L)
    2C9 CONTINUE
    RETURN
C ERROR FOR FAILURE TO FIND VALID VIRIAL COEFFICIENTS.
    900 ERB=2
    NL=(N+1)*N/2
    DO 902 L=1,NL
    B(L)=0.
    902BD(L)=0.
    RETURN
    END
```

SUBROUTINE PURF (N,ID, T, P, FIP)
C PURF CALCULATES PURE COMPONENT LIQUID FUGACITIES, FIP, AT SYSTEM
C TEMPERATURE T(K) AND PRESSURE P(BAR) FOR ALL N COMPONENTS (N.LE.20)
C WHOSE INDICES APPEAR IN VECTOR ID. FUGACITIES OF HYPO־HETICAL LIQUID C PHASES ARE CALCULATED FOR NONCONDENSABLE COMPONENTS.

REAL FIP (20),FO(20), VIP (20)
INTEGER ID(10)
COMMON/PURE/NM1 (100), NMZ(100),TC(100), PC(100),RD(100), DM(100),
$1 \mathrm{~A}(100), \mathrm{C} 1(100), \mathrm{C}(100), \mathrm{C} 3(100), \mathrm{C} 4(100), \mathrm{C}(100), \mathrm{RU}(100), \mathrm{QU}(100)$,
2 QP (100), D1(100), D2(100), D3(100), D4(100)
DATA R,CA,CB,CC,E/83.1473,1.60,0.655,0.006930,0.285714/
$100 \mathrm{RT}=\mathrm{R} * \mathrm{~T}$
$A T=A L O G(T)$
$T Z=T$
101 DO $109 \mathrm{I}=1, \mathrm{~N}$
C IDENTIFY COMPONENT
II $=\mathrm{ID}$ (I)
C GET PURE COMPONENT 0-PRESSURE $\mathcal{E} U G A C I T I E S, F O$.
$\mathrm{FO}(\mathrm{I})=\operatorname{EXP}(\mathrm{C} 1(\mathrm{II})+\mathrm{C} 2(\mathrm{II}) / \mathrm{T}+\mathrm{C} 3(\mathrm{II}) * \mathrm{~T}+\mathrm{C} 4(\mathrm{II}) * \mathrm{AT}+\mathrm{CS}(\mathrm{II}) * \mathrm{~T} 2)$
C GET PURE COMPONENT LIQUID MOLAR VOLUMES, VIP
$\mathrm{TR}=\mathrm{T} / \mathrm{TC}(\mathrm{II})$
IF(TR.GT.0.75) GO TO 105
TAU $=1 .+(1 .-T R) * * E$
GO TO 107
$105 \mathrm{TAU}=\mathrm{CA}+\mathrm{CC} /(\mathrm{TR}-\mathrm{CB})$
$107 \mathrm{VIP}(\mathrm{I})=\mathrm{R} * \mathrm{TC}(11) * \mathrm{~A}(\mathrm{II}) * * \mathrm{TAU} / \mathrm{PC}(\mathrm{II})$
109 CONTINUE
C CALCULATE PURE COMPONENT LIQUID FUGACITIES AT P
110DO 119[=1,N
$\mathrm{FIP}(\mathrm{I})=\mathrm{FO}(\mathrm{I}) * \operatorname{EXP}(\mathrm{VIP}(\mathrm{I}) * \mathrm{P} / \mathrm{RT})$
119 CONTINUE
RETURN
END

SUBROUTINE GAMMA(N,ID, KEY,X,T,GAM,ERG)
C GAMMA CALCULATES LIQUID PHASE ACTMTY COEFFICIENTS, GAM, FOR ALL N C COMPONENTS (N.LE.20) WHOSE INDICES APPEAR IN VECTOR ID, GVVEN C TEMPERATURE T(K) AND LIQUID COMPOSITION X, USING THE UNIQUAC MODEL. C FOR NONCONDENSABLE COMPONENTS (U (L,I) SET TO 1.E+20) AND UNSYMMETRIC C CONVENTION IS USED TO DERIVE EFFECTIVE ACTIVITY COEFFICIENTS. GAMMA C RETURNS ERG=O UNLESS BINARY DATA ARE MISSING FOR THE SYSTEM, IN WHICH C CASE IT RETURNS ERG=1. KEY SHOULD BE 1 FOR A NEW SYSTEM, 3 FOR T
C UNCHANGED, AND 4 OR 5 FOR X UNCHANGED.
REAL X(20),GAM(20),PT(20),PTS(20)
INTEGER ID (10), ERG
COMMON/PURE/NM1(100),NMZ(100), TC(100), $\operatorname{PC}(100), \operatorname{RD}(100), \operatorname{DM}(100)$,
$1 \mathrm{~A}(100), \mathrm{C} 1(100), \mathrm{CZ}(100), \mathrm{C}(100), \mathrm{C} 4(100), \mathrm{C}(100), \mathrm{RU}(100), \mathrm{QU}(100)$.
2 QP(100),D1(100),D2(100),D3(100),D4(100)
COMMON/BINARY/ETA(5050), U(100,100)
COMMON/GS /IER,RL(20),TH(20),TP(20),GCL(20),TAU(20,20)
DATA Z/10./
C SKIP SYSTEM INITIALIZATION ON SUBSEQUENT CALCULATIONS 100 GO TO ($110,120,120,130,130,120,130,120,110,120$), KEY
110 ERG $=0$
C CALCULATE COMPOSITION INDEPENDENT TERMS
111 DO $119[=1, \mathrm{~N}$
$\mathrm{II}=\mathrm{ID}(\mathrm{I})$
$118 \mathrm{RL}(\mathrm{I})=\mathrm{Z} *(\mathrm{RU}(\mathrm{II})-\mathrm{QU}(\mathrm{II})) / 2 \cdot-\mathrm{RU}(\mathrm{II})+1$.
C CALCULATE SEGMENT AND AREA FRACTIONS FOR COMPONETS IN MIXTURE
$120 \mathrm{SP}=1 . \mathrm{E}-30$
$\mathrm{ST}=1 . \mathrm{E}-30$
$S T P=1 . E-30$
$\mathrm{SS}=0$.

$\mathrm{SL}=0$.

121 DO $125 \mathrm{I}=1, \mathrm{~N}$
$11=\mathrm{ID}(\mathrm{I})$
$\mathrm{TH}(\mathrm{I})=\mathrm{X}(\mathrm{I}) * Q U(\mathrm{II})$
$\operatorname{TP}(\mathrm{I})=\mathrm{X}(\mathrm{I}) * Q P(\mathrm{II})$
$\mathrm{SP}=\mathrm{SP}+\mathrm{X}(\mathrm{I}) * \mathrm{RU}(\mathrm{IL})$
$\mathrm{ST}=\mathrm{ST}+\mathrm{TH}(\mathrm{C})$
$S T P=S T P+T P(1)$
C SKIP FOR NONCONDENSABLE COMPONENTS
$\operatorname{IF}(\mathrm{U}(\mathrm{II}, \mathrm{II}) . \mathrm{GT} .1 . \mathrm{E}+19)$ GO TO 125
$\mathrm{SS}=\mathrm{SS}+\mathrm{X}(\mathrm{I})$
SL=SL+X(I)*RL(I)
125 CONTINUE
126DO $129[=1, \mathrm{~N}$
$\mathrm{II}=\mathrm{ID}(\mathrm{I})$
$\mathrm{TH}(\mathrm{I})=\mathrm{TH}(\mathrm{I}) / \mathrm{ST}$
$\operatorname{TP}(\mathrm{I})=\mathrm{TP}(\mathrm{I}) / \mathrm{STP}$
IF(U(II,II).GT. 1.E+19) GO TO 128
C CALCULATE COMBINATORIAL CONTRIBUTION TO EXCESS FREE ENERGY
$127 \mathrm{GCL}(\mathrm{I})=\mathrm{RL}(\mathrm{I})-\mathrm{RU}(\mathrm{II}) * \mathrm{SL} / \mathrm{SP}+\mathrm{ALOG}(\mathrm{RU}(\mathrm{II}) * \mathrm{SS} / \mathrm{SP})+\mathrm{Z} * \mathrm{QU}(\mathrm{II}) * \operatorname{ALOG}(\mathrm{QU}(\mathrm{II})$
$1 * S P /(R U(I I) * S T)) / 2$.
GO TO 129
$128 \operatorname{GCL}(\mathrm{I})=0$.
129 CONTINUE
IF(KEY.EQ.3) GO TO 140

```
C GET UNIQUAC BINARY INTERACTION PARAMETER TERMS
    130 CALL TAUS(N,ID,T,TAU,IER)
C CALCULATE RESIDUAL CONTRIBUTION TO EXCESS FREE ENERGY
    140 DO 141I=1,N
    141 PTS(I)=0.
    142 DO 149I=1,N
        PT (T)=1.E-30
        DO 143J=1,N
    143PT(I)=PT(I)+TP(J)*TAU(J,I)
        DO 145J=1,N
    145PTS(J)=PTS(J)+TP(I) *TAU(J,I)/PT(I)
    1 4 9 \text { CONTINUE}
    150DO 159I=1,N
        II=ID(I)
        IF(U(II,II).GT.1.E+19) GO TO 155
C RESIDUAL FREE ENERGY FOR CONDENSABLE COMPONENTS
        GRL=QP(11)*(1.-ALOG(PT(I))-PTS(I))
        GO TO 158
    155GRL=0.
        DO 156J=1,N
        JJ=[D(J)
C RESIDUAL FREE ENERGY FOR NONCONDENSABLE COMPONENTS
    156GRL=GRL+TH(J)*(U(II,JJ)+U(JJ,II)/T)
C CALCULATE ACTTVITY COEFFICIENT
158GAM(I)=EXP(GCL(I)+GRL)
159 CONTINUE
    IF(LABS(IER),EQ 1) ERG=1
    RETURN
    END
```

SUBROUTINE TAUS(N,ID,T,TAU,IER)
C TAUS CALCULATES TEMPERATURE DEPENDENT INTERACTION COEFFICIENTS TAU FORC USE IN SUBROUTINE GAMMA. IF SYSTEM DATA ARE MISSING (SOME REQUIREDC ENTRY IN MATRIX U IN COMMON/BINARY IS ZERO) CORRESPONDING TAU ISC SET TO 1 AND IER IS RETURNED AS +/-1. FOR NONCONDENSABLES PRESENTC IER IS -2 OR -1 (OTHERWISE 0).
REAL TAU $(20,20)$
INTEGER ID(10)
COMMON/BINARY /ETA(5050), U(100.100)
100 IER=0
110 DO $119[=1, \mathrm{~N}$
II=ID(I)
C CHECK IF ANY COMPONENT IS A NONCONDENSABLE AND FLAG IER
$\operatorname{IF}(\mathrm{U}(\mathrm{II}, \mathrm{II}), \mathrm{GT} .1, \mathrm{E}+19) \mathrm{IER}=[\mathrm{SIGN}(\mathrm{IER} * * 2 \cdot 2,-1)$
DO $119 \mathrm{~J}=1, \mathrm{~N}$
[F(J.EQ.I) GO TO 115
$\mathrm{JJ}=[\mathrm{D}(\mathrm{J})$
C CHECK IF BINARY PAIR ARE BOTH NONCONDENSABLES.
$I F(U(I I, I I) \cdot G T \cdot 1 \cdot E+19 . A N D \cdot U(J J, J J) \cdot G T .1 . E+19)$ GO TO 115
C CHECK IF BINARY DATA ARE MISSING
$\operatorname{IF}(\mathrm{ABS}(\mathrm{U}(\mathrm{II}, \mathrm{JJ})) . \mathrm{LT} .1 . \mathrm{E}-18)$ GO TO 112
C CHECK IF EITHER COMPONENT IN BINARY PAIR IS A NONCONDENSABLEIF ((U(U,II) +U(JJ,JJ)).GT.1.E+19) GO TO 115
C CALCULATE INTERACTION TERM
$\operatorname{TAU}(\mathrm{I}, \mathrm{J})=\operatorname{EXP}(-\mathrm{U}(\mathrm{II}, \mathrm{JJ}) / \mathrm{T})$
GO TO 119
112 [ER=[SIGN(I,IER)
C SET INTERACTION TERM EQUAL TO UNITY FOR PAIR WITH MISSING DATA

 \(115 \mathrm{TAU}(\mathrm{I}, \mathrm{J})=1\).
 119 CONTINUE
 RETURN
 END
 SUBROUTINE BUDET(TYPE,N,ID, KEY, X,Y,T,P, K, ERR)
C BUDET CALCULATES BUBBLE (TYPE=1) OR DEW (TYPE=2) POINT TEMPERATURE C T(K) FOR GIVEN PRESSURE P (BAR) AND FEED COMPOSITION X (OR Y) FOR THE C SYSTEM UF' N COMPONENTS (N.LE.20) WHOSE INDICES APPEAR IN ID.
C IT RETURNS T AND INCIPIENT PHASE COMPOSITION Y (OR X), UTILIZING AN C INITIAL ESTIMATE OF T AND Y (OR X) IF SUPPLIED (NE.0). THE EQUILIBRIUM C RATIOS K ARE ALSO PROVIDED BY THE SUBROUTINE. THE PROGRAM NORMALLY C RETURNS ERR=O, BUT IF COMPONENT COMBINATIONS LACKING DATA ARE INVOLVED C IT RETURNS ERR=1, AND IF NO SOLUTION IS FOUND IT RETURNS ERR=2.
C FOR BAD OR OUT OF RANGE INPUT DATA THE PROGRAM RETURNS ERR=5, AND FOR C SYSTEMS WITH B P BELOW 200 K (WITH NONCONDENSABLES) IERR=-5. KEY
C SHOULD BE 1 ON INITIAL CALL FOR A NEW SYSTEM AND 2 OTHERWISE.
REAL X(N),Y(N),K(N),CN(20)
INTEGER ID(10),TYPE,ERR,ER
DATA EPS / 0.001/
100 ERR $=0$
C CHECK FOR VALID PRESSURE
IF (P.LT.1.E-6.OR.P.GT.100. FO TO 903
KEE=KEY
$\mathrm{S}=0$.
$\mathbf{S S}=0$.
C CHECK FOR VALID FEED COMPOSITIONS AND FOR ESTIMATE OF INCIPIENT PHASE C COMPOSITION

101 DO $109[=1, \mathrm{~N}$
$\mathbf{S}=\mathbf{S}+\mathrm{X}(\mathrm{I})$
$109 \mathrm{SS}=\mathrm{SS}+\mathrm{Y}(\mathrm{C})$
IF(TYPE.EQ. 1.AND.ABS(S-1.).GT.0.01) GO TO 903
IF(TYPE.EQ.2.AND.ABS(SS-1.).GT.0.01) GO TO 903
110 IF(TYPE.EQ.1.AND.ABS(SS-1.).GT.0.01) GO TO 114
IF(TYPE.EQ.2.AND.ABS(S-1.).GT.0.01) GO TO 118
GO TO 120
C FOR NO ESTIMATE OF INCIPIENT VAPOR COMPOSITION SET EQUAL TO FEED 114 DO $115 \mathrm{I}=1, \mathrm{~N}$
$115 \mathrm{Y}(\mathrm{I})=\mathrm{X}(\mathrm{I})$
GO TO 120
C FOR NO ESTIMATE OF INCIPIENT LIQUID COMPOSITION SET EQUAL TO FEED
118 DO 119I=1,N
$119 \mathrm{X}(\mathrm{I})=\mathrm{Y}(\mathrm{I})$
120 IT=0
C FOR NO ESTIMATE OF TEMPERATURE SET TO 400 K
200 IF(T.LT.200..OR.T.GT.600.) T=400.
C CONDUCT ITERATION STEP
$210 \Gamma T=\Gamma T+1$
LF(IT.GT.10) GO TO 900
C GET KVALUES
220 CALL VALIK (N,ID,KEE,X,Y,T,P,K,ER)
IF (ER,GT. 1) GO TO 900

$\mathrm{S}=0$.

C CALCULATE SUM OF KX (BP) OR Y/X (DP)
221 DO 229 I $=1, \mathrm{~N}$
IF(1 •E.EQ.2) GO TO 225
$\mathrm{CN}(\mathrm{I})=\mathrm{K}(\mathrm{I}) * \mathrm{X}(\mathrm{I})$
GO TO 229
$225 \mathrm{CN}(\mathrm{I})=\mathrm{Y}(\mathrm{I}) / \mathrm{K}(\mathrm{I})$

$$
229 S=S+C N(I)
$$

$$
230 F O=A L O G(S)
$$

C CHECK CONVERGENCE
I (ABS(FO).LE.EPS) GO TO 290
C GET K VALUES AT T+1 FOR FINITE DIFFERENCE DERIVATIVE
CALL VALIK(N,ID,4,X,Y,T+1,P,K,ER)
IF(ER.GT.l) GO TO 900
SS=0.
IF(TYPE.EQ.2) GO TO 235
C CALCULATE NEW VAPOR COMPOSITION FOR B P
231 DO $234[=1, N$
$\mathrm{Y}(\mathrm{I})=\mathrm{CN}(\mathrm{I}) / \mathrm{S}$
$234 \mathrm{SS}=\mathrm{SSiK}(\mathrm{I}) * X(\mathrm{I})$
GO TO 240
C CALCULATE NEW LIQUID COMPOSITION FOR DP
235 DO $239 \mathrm{I}=1, \mathrm{~N}$

$$
\mathrm{X}(\mathrm{I})=\mathrm{CN}(\mathrm{I}) / \mathrm{S}
$$

$239 \mathrm{SS}=\mathrm{SS}+\mathrm{Y}(\mathrm{I}) / \mathrm{K}(\mathrm{I})$
240 F1=ALOG(SS)
C DETERMINE NEW NEWTON-RAPHSON TEMPERATURE ITERATE $\mathrm{T}=(\mathrm{F} 1-\mathrm{FO}) * \mathrm{~T} /(\mathrm{F} 1-\mathrm{T} * \mathrm{FO} /(\mathrm{T}+1)$.
C CHECK FOR T Iii RANGE FOR POSSIBLE CONVERGENCE
IF(T.GT.700) GO TO 900
IF(T.GT.100) GO TO 245
[F(ER.LT.O) GO TO 901
GO TO 900
$245 \mathrm{KEE}=2$
EF(TYPE.EQ. 1)KEE=5
GO TO 210
C GET NORMALIZED INCIPIENT PHASE COMPOSITION
290 DO 299 [=1, N
IF(TYPE.EQ.2) GO TO 295
$\mathrm{Y}(\mathrm{I})=\mathrm{CN}(\mathrm{I}) / \mathrm{S}$
GO TO 299
$295 \mathrm{X}(\mathrm{I})=\mathrm{CN}(\mathrm{I}) / \mathrm{S}$
299 CONTINUE
C CHECK FOR T IN RANGE FOR THERMO SUBROUTINES
IF(T.GT.600.) GO TO 903
IF(T.GT.200.) GO TO 199
IF(ER.LT.0) GO TO 901
GO TO 903
C SET ERR RETURN FOR MISSING BINARY DATA
$199 \operatorname{IF}(\operatorname{LABS}(E R) . E Q .1) E R R=1$
RETURN
C ON FAILURE TO CONVERGE SET T TO 0 AND ERR TO 2
900 ERR $=2$
GO TO 905
C ON TB LESS THAN 200 K SET TO 0 AND ERR TO -5
901 ERR $=-5$
GO TO 905
C FOR BAD INPUT DATA (OR TB/TD OUT OF RANGE) SET T TO 0 AND ERR TO 5 903 ERR=5
$905 \mathrm{~T}=0$,
RETURN

[^0]: SUBROUTINE BIJS(N,ID,KEY,T,ERB)
 C BIJS CALCULATES SECOND VTRIAL COEFFICIENTS, BIJ, FOR ALL PAIRS OF N C COMPONENTS (N.LE.20) WHOSE INDICES APPEAR IN VECTOR ID, FOR C TEMPERATURE T(K). COEFFICIENTS ARE RETURNED IN COMMON STORAGEM R IA C WITH $\mathrm{B}(\mathrm{I}, \mathrm{J})=\mathrm{B}(\mathrm{L}), \mathrm{L}=(\mathrm{I}-1) * \mathrm{I} / 2+\mathrm{J}$. IF CARBOXILIC ACIDS ARE PEESSENT C KV (IN COMMON/VIRIAL) IS SET TO 1 (OTHERWISE 0), AND BO IS RETURNED C IN B, BT IN BD. IF ANY ANOMALIES ARE DETECTED IN CALCULATION ERB IS C SET TO 2 (OTHERWISE 0). TEMPERATURE INDEPENDENT PARAMETERS ARE C EVALUATED ONLY IF KEY $=1$ OR 9, TEMPERATURE DERIVATIVES OF C COEFFICIENTS (MULTIPLIED BY TEMPERATURE) ARE FOUND AND RETURNED IN C DB(L) (AND DBD(L)) IN COMMON/VIRLAL IF KEY IS 6 OR LARGER.

 INTEGER ID (10), ERB
 COMMON/PURE/NM1(100),NM2(100), TC(100), PC(100), RD(100), DM(100), $1 \mathrm{~A}(100), \mathrm{C} 1(100), \mathrm{C}(100), \mathrm{C}(100), \mathrm{C}(100), \mathrm{C} 5(100), \mathrm{RU}(100), \mathrm{QU}(100)$,
 2 QP(100), D1(100), D2(100),D3(100),D4(100)
 COMMON/BINARY/ETA(5050),U(100,100)
 COMMON/VIRIAL/KV,B(210),BD(210),DB(210),DBD(210),BM
 COMMON/BS/G(210),TS(210),S(210),Z(210),H(210),E(210),W(210), 1 ET(210)
 DATA B1,B2,B3/1.2618,7243.8,1.7941E07/,CN1,CN2,CN3,CN4/0.94,-1.47, 1-.085,1.015/,СР1,CP2,CP3,CP4/-0.75,3.,-2.1,-2.1/,CA1,CA2,CH1,CH2/ $2-0.3,-0.05,1.99,0.2 /$, CW1,CW2,CW3/0.006026,0.02096,-.001366/, 3 CS 1,CK1,CK2,CE1,CE2,CE3,CE4,CE5/2.4507,0.7,0.6,650,300.,4.27, 4 42800.,22400./.CO1,CO2.CO3/0.748,0.91,0.4/,E3/0.33333/ 100 ERB=0
 C CALCULATE TEMPERATURE-INDEPENDENT PARAMETERS ONLY FOR NEW SYSTEM GO TO (109,200,200,200,200,200,200,200,109,200), KEY
 C RESET ASSOCIATING VAPOR FLAG
 $109 \mathrm{KV}=0$
 C CALCULATE TEMPERATURE-INDEPENDENT PARAMETERS FOR PURE COMPONENTS 110DO 119[=1, N
 C IDENTIFY COMPONENT
 $\mathrm{II}=\mathrm{ID}(\mathrm{I})$
 $\mathrm{L}=(\mathrm{I}+1) * \mathrm{I} / 2$
 C NONPOLAR ACENTRIC PARAMETER
 $W(L)=C W 1 * R D(I I)+C W 2 * R D(I T) * * 2+C W 3 * R D(I I) * * 3$
 C MOLECULAR SIZE PARAMETER (CUBED)
 $\mathrm{S}(\mathrm{L})=(\mathrm{CS} 1-\mathrm{W}(\mathrm{L})) * * 3 * \mathrm{TC}(\mathrm{IL}) / \mathrm{PC}(\mathrm{II})$
 IF(S(L).LT.O.) GO TO 900
 $\mathrm{II}=(\mathrm{II}+1) * \mathrm{II} / 2$
 $\mathrm{ET}(\mathrm{L})=\mathrm{ETA}(\mathrm{III})$
 IF(ET(L).GE.4.4999) KV=1
 CENERGYPARAMETER
 $\mathrm{TS}(\mathrm{L})=\mathrm{TC}(\mathrm{II}) *\left(\mathrm{CO1}+\mathrm{CO} 2^{* W}(\mathrm{~L})-\mathrm{CO} * * \mathrm{ET}(\mathrm{L}) /(2 .+20 . * W(\mathrm{~L}))\right)$
 IF(TS(L).LT.O.) GO TO 900
 IF(DM(II).LT. 1.45) GO TO 117
 C MODIFICATION OF PARAMETERS FOR LARGE DIPOLE MOMENTS
 $\mathrm{H}(\mathrm{L})=16 .+400 . * W(\mathrm{~L})$
 $\mathrm{T} 1=\mathrm{H}(\mathrm{L}) /(\mathrm{H}(\mathrm{L}) \cdot 6$.
 $\mathrm{T} 2=3 . /(\mathrm{H}(\mathrm{L})-6$.
 $T K=2.882 \cdot(1.882 * W(L) /(0.03+W(L)))$
 $\mathrm{Z}(\mathrm{L})=\mathrm{B} 3 * \mathrm{DM}(11) \bullet * /(\mathrm{TS}(\mathrm{L}) * \mathrm{~S}(\mathrm{~L}) \bullet * 2 * \mathrm{TC}(\mathrm{II}) * \mathrm{TK})$
 IF(Z(L).LT.-1.) GO TO 900
 C MODIFIED MOLECULAR SIZE PARAMETER (CUBED)

