Stanford Geothermal Program
 Interdisciplinary Research in
 Engineering and Earth Science STANFORD UNIVERSITY

Velocity and Gravity Effects In Relative Permeability Measurements

By
Barry A. Beal Jr.
Craig S. Nunes

A Report Submitted to The Department of Petroleum
 Engineering of Stanford University in Partial Fulfillment of the Requirements for the Degree of Master of Science

ACKNOWLEGGEMENTS

This study could not have been completed without the help of a number of people.

We would like to thank the Stanford Geothermal Program, Department of Energy contract DE-AT03-80SF11459 for their financial report.

Thanks must also go to our parents, without whose encouragement and support, we never would have gotten this far. And to Cliffy Beal, her patience, love and encouragement was an immeasurable contribution to this work.

Dr. H. J. Ramey Jr., our faculty advisor, provided the direction and inspiration necessary to carry out this study.

And finally, we would like to thank the many friends and collegues for their continual encouragement and assistance: Mark Miller for his patience and cooperation during the early part of this study, Fred Wang for his help in deciphering the computer program, and Jean Cook for all of her work behind the scenes on the stacks of paperwork necessary to conduct this study.

ACKNOWLEGEMENTS

This study could not have been completed without the help of a number of people.

We would like to thank the Stanford Geothermal Program, Department of Energy contract DE-AT03-80SF11459 for their financial report.

Also we would like to thank Stanford University for the use of their facilities and services, without which, this work would never have been accomplished.

Dr. H. J. Ramey Jr., our faculty advisor, provided the direction and inspiration necessary to carry out this study.

And finally, we would like to thank Mark Miller for his patience and cooperation during the early part of this study.

Abstract

There have been several studies on the effects of gravity and flowrate on laboratory relative permeability measurements. Most of these studies have concentrated on the effect of these parameters on the flooding front. Miller's (1983) data showed that the influence of of these and other variables are not understood. The study found that the calculated recovery at breakthrough was different than the observed recovery at breakthrough. The calculated recovery at breakthrough was based on theory derived from Buckley-Leverett piston-like displacement. This study attempted to determine how gravity or core positioning and flowrate of the displacing fluid might be used to achieve a stable flooding front.

A relative permeameter with unsteady-state flow was used for the apparatus. The core material was an unconsolidated silica sand. The core was 2 in. in diameter and 20 in . long. The fluids were refined white mineral oil and salt water. All measurements were done at room temperature.

This study found that gravity had no significant effect on the difference between calculated and observed recovery at breakthrough. It also observed that an increase in flowrate would increase the flooding front instabilities. Therefore as flowrate decreased the calculated and observed breakthrough approach a single value.

TABLE OF CONTENTS

Page
AKNOWLEDGEMENTS i
ABSTRACT ii
TABLE OF CONTENTS $i 11$
LIST OF TABLES vi
LIST OF FIGURES vii

1. INTRODUCTION 1
2. LITERATURE REVIEW 3
3. PROBLEM STATEMENT 10
4. APPARATUS AND MATERIALS 14
4.1 Apparatus 14
4.2 Fluids 16
5. PROCEDURES AND DATA ANALYSIS 17
5.1 Core Material and Preparation 17
5.2 Displacement Runs 17
5.3 Data Analysis 19
6. RESULTS, CONCLUSIONS, AND RECOMMENDATIONS 23
6.1 Results 23
6.2 Conclusions 27
6.3 Recommendations 27
NOMENCLATURE 29
REFERENCES 32
APPENDIXES 34
A. APPARATUS DETAILS 34
A. 1 Main Flow System 34
A. 2 Injection System 36
A. 3 Effluent Measurement System 40
A. 4 Pressure Measurement System 43
A. 5 Confining Pressure System 45
A. 6 Core Holder 45
B. PROCEDURE DETAILS 54
B. 1 Unconsolidated Sand Preparation and Core Packing 54
B. 2 Salt Water Treatment 56
B. 3 Oil Displacement Runs 56
B. 4 Water Displacement Runs 58
B. 5 Separator Calibration 60
C. FLUID PROPERTIES AND CORE DATA 62
C.l Salt Water Density 62
C. 2 Salt Water Viscosity 64
C. 3 Oil Density 65
C. 4 Oil Viscosity 67
C. 5 Core Data 70
D. DATA ANALYSIS DETAILS 71
D. 1 Dead Volume and Temperature Corrections 71
D. 2 Separator Corrections 73
D. 3 Flowrrate Calculations 74
D. 4 Breakthrough Calculations 74
D. 5 Curve Fitting and Relative Permeability Calculations 75
E. DISPLACEMENT DATA AND PLOTS 77
E. 1 Displacement Data, Calculations and Graphs 77
F. COMPUTER PROGRAM (DSPCLC) 127
F. 1 Flow Chart -- DSPCLC 127
F. 2 A Listing of the Computer Program -- DSPCLC 130

LST OF TABLES

Page
6.1 Irreducible Water Saturation Data 23
6.2 Breakthrough Recovery Data 25
A. 1 Thermocouple Locations 36
B. 1 Sieve Analysis of Unconsolidated Sand Packs 54
C. 1 Density of $2 \% \mathrm{NaCl}$ Solution vs. Temperature 62
C. 2 Distilled Water Specific Volume vs. Temperature 64
C. 3 Ratio of $2 \% \mathrm{NaCl}$ Solution to Distilled Water Viscosity vs. Temperature 65
C. 4 Measured Blandol Density vs. Temperature 66
C. 5 API Recommended Thermal Expansion Coefficients for Oils Near 35° API Gravity 67
C. 6 Measured Blandol Viscosity vs. Temperature 68
C. 7 Core Data 70
E. 1 to E. 14 Displacement Experiment Calculations 78

LIST OF FIGURES

Page
2.1 Recovery Data from Peters and Flock (1981) 9
3.1 Oil Permeability at Irreducible Water Saturation vs. Temperature 11
3.2 Recovery and Injectivity x Pore Volumes Injected vs. Pore Volumes Injected 12
6.1 Relative Permeabilities vs. Water Saturation (Overplotted) 24
6.2 Recovery at Breakthrough vs. Displacement Velocity 26
A. 1 Schematic of the Main Flow System 35
A. 2 Schematic of the Injection System -- Horizontal Core 37
A. 3 Schematic of the Injection System -- Vertical Core 38
A. 4 Photograph of the Apparatus -- Horizontal Core 39
A. 5 Photograph of the Apparatus -- Vertical Core 39
A. 6 Schematic of the Effluent Measurement System 41
A. 7 Photograph of the Effluent Measurement System 42
A. 8 Schematic of the Pressure Measurement System 44
A. 9 Schematic of the Confining Pressure System 46
A. 10 Schematic of the Core Holder 47
A. 11 Photograph of the Core Holder 48
A. 12 Dimensions of the Core Holder Inner Sleeve and End Plugs 49
A. 13 Dimensions of the Core Holder Outer Shell and Components 50
A. 14 Core Holder Dimensions for Determining the Length of the Unconsolidated Sand Pack 52
C. 1 Standard Viscosity-Temperature Chart 69
E. 1 to E. 35 Recovery and 1 /Injectivity vs. Pore Volumes Injected, Recovery and Injectivity x Pore Volumes Injected vs. Pore Volumes Injected and 1 /Pore Volumes Injected, Relative Permeabilities and Relative Permeability Ratio vs. Water Saturation79

Section 1: INTRODUCTION

The recovery of crude oil from a reservoir frequently involves more than one phase through the porous media. Since Darcy's Law was formulated for the flow of a single phase through a porous media, a modification must be made for the flow of multiple phases. It is here that the concept of relative or effective permeability is introduced. Relative permeability is the ratio of the permeability of a phase in two phase flow to the permeability of the single-phase flow. If a petroleum engineer understands the concept of relative permeability and the factors which influence its behavior, he could use this knowledge to attain maximum recovery in a reservoir.

In the past, there have been several experiments conducted on relative permeability. However, results derived from such studies often differed. Though research may have been carefully done, experimental procedures accurately and scientifically conducted, and reproducibility very high, there are still several variables (such as gravity effects and velocity effects).

The study that was investigated was that of Miller (1983). Miller explored the effect of temperature on relative permeability and found that relative permeability remained unaffected by temperature. His approach was to use a simple, well-known porous media and fluid system to determine the effect of elevated temperatures on relative permeability. His experiments were conducted using a dynamic displacement relative permeameter. Miller modified the apparatus from the original design and construction by Jeffers (1981). Though his results were reproducible, Miller saw a water breakthrough consistently earlier than that predicted by Buckley-Leverett theory.

It is thought that, due to the size of the core used $\left(2^{\prime \prime}\right.$ in diameter, 24" in length), that gravity may have had an effect on the front such that a BuckleyLeverett displacement through the core was not attained. In this case, the equations used by Miller to predict actual breakthrough would then not apply. To test this hypothesis, an unconsolidated core was first prepared in the same manner in which Miller prepared his. Then a series of runs, both with the core in a horizontal position and in a vertical position, was conducted. Assuming all else constant, any difference in results between the two runs could be attributed to some type of gravity effect on the front in the horizontal core.

The rate of fluid flow through the core was another variable that could potentially have an effect on the displacing front during a flood. A flow rate of higher velocity might have rendered any capillary forces at the front negligible, but might induce an instability in the front (viscous fingering) that would not be in keeping with the Buckley-Leverett model. With the core in the vertical position, the velocity was varied such that some type of relationship could be deduced.

The apparatus used in this study was the same as that used by Miller. The only modification to the apparatus was the construction of a vertical core holder.

The only change in the procedure used by Miller was that this study was conducted at room temperature only. Since early breakthrough was observed at all temperatures, room temperature was selected for ease.

The data observed in this investigation will be analyzed by the software developed by Miller based on the techniques of Welge (1952) and Johnson, Bossler, and Naumann (1959). Details on the apparatus, procedure, and data analysis are given later in the report.

Section 2 : Literature Review

A great deal of analysis has been done in the area of two phase relative permeability. There have been studies on the effects of pore geometry, wettability, viscosity, velocity, interfacial tension, capillary forces, saturation history, and temperature. This section gives a brief synopsis and discussion of the studies relative to this report.

The two most common methods of measuring relative permeability are steady state and unsteady state displacement. The steady state test involves simultaneously flowing two phases (i.e. oil and water) through a homogenous core. The pressure differential is measured and the relative permeability measured. This method only gives a single point on the relative permeability curve once equilibrium of the two fluid saturations has been reached.

The dynamic displacement or unsteady state test involves injecting a fluid into a core with little or no connate saturation of that fluid with the intent to displace the mobile portion of a second fluid. Due to its simplicity and speed, the unsteady state system was chosen for this study. Osoba et. al. (1951), Richardson \& \& (1952), Owens et. al. (1956), and Richardson (1957) studied the differences in relative permeability measured by the two methods. They found little or no discrepancy between the methods.

Welge (1952), using Buckley-Leverett displacement theory, produced the necessary basis to enable one to calculate relative permeability ratios. Assuming that relative permeability is solely a function of saturation, Welge developed the following relationships in order to calculate the relative permeability ratio:

$$
\begin{gather*}
-4- \\
f_{0}=\frac{\bar{S}_{d}-S_{d Z}}{W_{i}} \tag{2.1}
\end{gather*}
$$

and

$$
\begin{equation*}
f \circ=\frac{1}{\frac{k_{r w}}{k_{r o}} \frac{P_{0}}{\mu_{w}}+1} \tag{2.2}
\end{equation*}
$$

where:

$$
\begin{aligned}
& f_{0}=\text { fractional volume of oil flowing from core outlet } \\
& \bar{S}_{d}=\text { average saturation of displacing fluid } \\
& S_{d 2}=\text { saturation of displacing fluid at the core outlet } \\
& W_{i}=\text { cumulative pore volumes of the displacing fluid injected } \\
& k_{r o}, k_{r d}=\text { relative permeabilities of oil and the displacing fluid } \\
& \mu_{0}, \mu_{d}=\text { viscosity of oil and displacing fluid }
\end{aligned}
$$

Johnson, Bossler, and Naumann (1959) expanding, on Welge's work, produced the necessary mathematical equations to determine individual relative permeabilities from unsteady state displacement data. The equation which follows was also based on non-capillary Buckley Leverett frontal displacement theory:

$$
\begin{equation*}
f \circ=k_{r o} \frac{d\left[\frac{1}{W_{i} I_{r}}\right]}{d\left[\frac{1}{W_{i}}\right]} \tag{2.3}
\end{equation*}
$$

where:

$$
\begin{aligned}
& I_{T}=\text { relative injectivity, }(q / \Delta \mathrm{p}) /(q / \Delta p)_{\text {initial }} \\
& q=\text { total volumetric flowrate } \\
& \Delta p=\text { differential pressure across the core }
\end{aligned}
$$

Jones and Roszelle (1978) continued this investigation into the calculation of relative permeability from unsteady state displacement data. Jones and Roszelle presented a graphical technique which makes the relative permeability calculation much more simple and accurate than the previous method. A complete discussion of this method may be found in the U.S. Department of Energy report by Sufi \& (1982).

In 1958, there were two studies relevant to this one. One study was conducted by Sanberg, Gournay, and Sippel. This study used the "dynamic flow technique" to determine the effects of fluid flow rate and viscosity on relative permeability. Radio-tracers were used for the detection of fluid saturation and saturation gradients. Flowrates were varied from 2.5 to $140.6 \mathrm{ml} / \mathrm{hr}$ and oil viscosities from .398 to $\mathbf{1 . 6 8 3} \mathrm{cp}$. The values of relative permeability for both phases were found to increase and asymptotically approach a constant value as the flow rate increased. The change in relative permeability was explained by boundary effects because there was no change in the relative permeability when the rate was high enough to completely saturate the core. The study also concluded that the relative permeability was independent of the non-wetting phase viscosity.

The other report in 1958 was written by Kyte and Rapoport. This study provided a comprehensive picture of waterflood behavior in water-wet media. Included in this paper was an extensive discussion of boundary effects. Kyte and Rapoport found that outlet end effects decrease with an increase in length of the core, fluid flow rate, and fluid viscosities. The report also found
that inlet end effects were more prevalent for short cores, high water injection rates, and high oil-water viscosity ratios. These inlet effects caused localized water injection and therefore a distortion of the linear flood front (fingering). Kyte and Rapoport developed a scaling factor:

$$
\begin{equation*}
\text { scaling factor }=L u \mu_{w} \tag{2.4}
\end{equation*}
$$

where:

$$
\begin{aligned}
& L=\text { length of the core, } \mathrm{cm} \\
& v=\text { velocity }, \mathrm{cm} / \mathrm{min}
\end{aligned}
$$

For this scaling factor there are values suffuciently great to insure stablized flooding conditions.

Abrams (1975) studied the influence of fluid viscosity, interfacial tension, and flow velocity on residual oil saturation ($S_{o r}$). This study found that strongly water-wet cores $(\cos \theta=1)$ could be described in terms of Moore and Slobod dimensionless group expanded to include viscosity effects:

$$
\begin{equation*}
\left[\frac{v \mu_{w}}{\sigma_{0-w}}\right]\left(\frac{\mu_{w}}{\mu_{o}}\right)^{0.4} \tag{2.5}
\end{equation*}
$$

where:

$$
\sigma=\text { oil-water interfacial tension, dynes } / \mathrm{cm}
$$

After studying six different sandstones and one limestone, Abrams concluded that as the dimensionless group increased residual oil saturation decreased.

When a fluid displaces a more viscous immiscible fluid, the displacement
front may become unstable and viscous fingering begins. Peters and Flock (1981) presented a dimensionless group which would predict the onset of viscous instabilities in porous media (for water displacing oil):

$$
\begin{equation*}
I_{\mathrm{sc}}=\frac{(M-1)\left(v-v_{c}\right) \mu_{w} d^{2}}{C^{*} \sigma k_{w o r}} \tag{2.6}
\end{equation*}
$$

where:

$$
\begin{equation*}
\dot{v_{c}}=\frac{k_{w a r}\left(\rho_{w}-\rho_{0}\right) g \cos \alpha}{\mu_{w}(M-1)} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
M=\frac{k_{w o r} \mu_{0}}{k_{\text {oiw }} \mu_{w}} \tag{2.8}
\end{equation*}
$$

where:
$d=$ core diameter, ft
$C^{*}=$ wettability number, dimensionless
$\sigma=$ oil-water interfacial tension, dyne/cm
$k_{w o r}=$ permeability to water at residual oil saturation, darcy
$\mathrm{v}=$ constant superficial velocity, ft / s
$v_{c}=$ characteristic velocity, ft / s
$\rho_{w,} \rho_{o}=$ water and oil density, $\mathrm{g} / \mathrm{cm}^{3}$
$\boldsymbol{g}=$ gravatational aceleration, $\mathrm{ft} / \mathrm{s}^{2}$
$\alpha=$ angle core make to the vertical
$M=$ end point mobility ratio, dimensionless
$k_{\text {oiw }}=$ permeability to oil at connate water saturation, Darcy

Figure 2.1 shows that this dimensionless group has a critical value of 13.56 . Peters and Flock showed that above this critical value, the finger wavelength will be short, resulting in the accornadation of numerous fingers by the core.

Figure 2.1 Recovery Datafrom Peters and Rock (1981)

Section 3 : Problem Statement

As pointed out in the literature review, there have been several studies involving relative permeability. The most recent reports have concentrated on the effect of temperature on relative permeability. The conclusions of these studies were contradictory; some concluded that temperature did effect relative permeability and others concluded that temperature had no effect on relative permeability. The purpose of this study was to determine why these discrepancies exist in the literature and suggest methods for achieving consistent results.

In order to eliminate many inconsistencies in measurement of relative permeabilities, a simple system was needed so that all results could be repeated. Miller (1983) proved that the apparatus was able to repeat measurements accurately.

There were two phenomena in Miller's dissertation which warranted futher investigation. The first, which is presented in Fig. 3.1, was an increase in the oil permeability at irreducible water saturation as flow through the core was stopped and started. The change in the oil permeability became greater as the temperature was increased. The second phenomena, which is presented in Fig. 3.2 , is the difference between calculated or inferred breakthrough and actual breakthrough. Since the inferred breakthrough was calculated using BuckleyLeverett displacement theory, this difference might be attributed to a smearing in the flooding front. Therefore, this study concentrated on the flooding front. A flooding front which approaches piston-like displacement should eliminate such factors as fingering and gravity underride and therefore contribute to repeatable or consistent results. The two factors on which this study focused were gravity and velocity. These two parameters were varied in order to determine

Figure 3.1 Oil Relative Permeabilities at Irreducible ;Water Saturationvs. Temperature (from Miller (1983))

Figure 3.2 Recovery and Injectivity x Pore VolumesInjected vs. Pore Volumes Injected (from Miller (1983))
how they might be used to obtain piston-like displacement found in BuckleyLeverett theory. If one could achieve a consistent flooding front, such factors as recovery at breakthrough would become more stable and the variance in relative permeability could be attributed to other elements (i.e. temperature).

Section 4 : APPARATUS AND MATERIAIS

Experiments were conducted using a relative permeameter with salt water and a mineral oil in an unconsolidated sandstone core. This section briefly describes the apparatus and the materials used to obtain the relevent data. A detailed description of the apparatus and materials are presented in Appendix A and C respectively.

4.1 Apparatus

The original construction of the apparatus was done by Jeffers (1981) for "dynamic displacement experiments on large scale cores at elevated temperatures". Many components which were incorporated into the construction of the apparatus were used by Casse (1979), Counsil (1979), and Sageev (1981) in their experimental work. Miller (1983) also conducted experimental work on the apparatus after making a few modifications. Detailed diagrams and explanations of the apparatus may be found in Appendix A. Also included in Appendix \mathbf{A} is a discussion and diagram of the core in the horizontal and vertical position (the only modification made to the apparatus).

The core holder contains six pieces :
1.inner sleeve
2. outer sleeve
3. traveling end plug
4. fixed end plug
5. 2 caps

The inner sleeve contained an unconsolidated sand, which had been carefully sifted and packed. Screens were attached to both plugs to prevent sand from flowing out the downstream end of the core, and the plugs were grooved to insure that an uniform flow was injected and retrieved throughout the cross- section of the core. The outer sleeve and the caps provided a seal for a 500 psi confining pressure.

The injection system used one pump with an accumulator to dampen the pulsing action of the pump. When injecting oil into the core, the pump flowed oil from a reservoir through a filter, a needle valve, a capillary tube flowmeter, and finally to the core. The needle valve controlled the flow rate. When injecting water into the core, the pump flowed oil through the needle valve, capillary tube flowmeter, and into a water vessel. The oil displaced the water out of the vessel and into the core after it is passed through a filter. By measuring the pressure drop across the flowmeter, the instantenous and average flowrate was measured.

The effluent measurement system consisted of a glass tube separator, a pressure regulator, and a dozen graduated graduated cylinders. The glass tube separator allowed a visual measurement of the displaced fluid. The pressure regulator provided a constant pressure at the downstream end of the core. The graduated cylinders measured the total fluid produced. To insure accuracy in the separator measurements, the seperator was calibrated after each run, and cleaned after several runs.

The pressure measurement system consisted of diaphragm-type pressure transducers which would measure the pressure drop across the core. The transducer was equiped with a three-way valve so that it could be zeroed before each run. A similar transducer system was used for the capillary tube flowmeter. Both pressures were recorded on a strip chart.

4.2 Fluids

Oil and salt water were chosen as the two fluids in this study because this combination allowed a comparison of the results to previous reports. Blandol, a refined white mineral oil, has a viscosity of 30 cp , and a density of $847 \mathrm{~g} / \mathrm{ce}$ a $70^{\circ} \mathrm{F}$. The salt water was distilled water combined with 2% sodium chloride. The salt water solution has a viscosity of 1.03 cp and a density of .853 g / cc at $70^{\circ} \mathrm{F}$. All of the appropiate viscosity and density versus temperature correlations are presented in Appendix C.

Section 5 : PROCEDURES AND DATA ANALYSIS

This section describes a stepwise procedure (previously presented in Miller (1983)) for making a diplacement run. Also included are a discussion of the core preperation and loading, and the method of data analysis. A more thorough presention may be found in Appendix B and D respectively.

5.1 Core Material and Preparation

The core material was composed of an Ottawa silica sand. Before packing the core, the sand was sieved and recombined in predetermined proportions. Then the sand mixture was washed and oven dried. This process not only provided homogeneity within a core, but also from one core to another. With pneumatic vibrators strapped to the inner sleeve, the dry sand was packed.

After assembling the end plugs and the outer sleeve, the entire core holder was mounted in the air bath and confining pressure applied. The core was then evacuated to less than 50μ Torr vacuum and filled with salt water. System connections were made and lines bled of air in preparation for displacement runs.

5.2 Displacement Runs

Before displacing the salt water out of the core with oil, the absolute permeability of the core was determined. To measure the absolute permeability, all pressure transducers were zeroed and water was pumped through the core.

The differential pressure drop across the core was recorded on a strip chart. Flowrate was measured with a graduated cylinder and a stopwatch. This procedure was repeated until the absolute permeability varied only 1.5%.

Having arrived at an absolute permeability, oil was flooded through the core until irreducible water saturation was achieved. When two pore volumes of oil were injected, the water production was undectable therefore the oil flood was halted.

After making all of the necessary preparations for the waterflood, including zeroing the pressure transducers, oil injection was resumed until a steady flowrate and pressure drop were obtained. Then two valve were switched to simultaneously change from a oilflood to a waterflood and to change from measuring water production to oil production in the effluent seperator. Once the waterflood had begun, the cumulative water injected, cumulative oil produced, volumetric flowrate, inlet and oulet temperatures, and differential pressure drop across the core, and flowmeter were measured and recorded. After ten pore volumes of water were injected, oil production was negligible. The seperator was then calibrated order to determine the oil production. This procedure was repeated using the same core for two horizontal floods and six vertical floods (flowing up the core). The vertical floods followed the horizontal floods.

The flowrate for the horizontal floods was approximately $40 \mathrm{cc} / \mathrm{min}$ and the flowrate for the vertical floods ranged from $7.3 \mathrm{cc} / \mathrm{min}$ to $70 \mathrm{cc} / \mathrm{min}$. The flowrates described were the flowrates of the displacing fluid at breakthrough. These flowrates provided a pressure drop across the core which was greater than 5 psi and less than 150 psi . These flowrates also met the criteria of Rapoport and Leas (1953) scaling factor ($L v \mu_{w}$) to achieve a stablized flooding front.

The multiple floods done on the same core at horizontal and vertical positions and at various flowrates, allowed not only establishment of reproducibility, but also an evaluation of the effects of the two parameters.

5.3Data Analysis

In the literature survey, it was discussed that relative permeability vs. saturation could be determined from displacement experiments based on techniques of Welge (1952) and Johnson, Bossler, and Naumann (1959). In summary these techniques are based on the following three equations:

$$
\begin{gather*}
f_{0}=\frac{\bar{S}_{d}-S_{d 2}}{W_{i}} \tag{5.1}\\
f_{0}=\frac{1}{\frac{k_{r w}}{k_{r o}} \frac{\mu_{0}}{\mu_{w}}+1} \tag{5.2}\\
\frac{f_{0}}{k_{r o}}=\frac{d\left[\frac{1}{W_{i} I_{r}}\right]}{d\left[\frac{1}{W_{i}}\right]}
\end{gather*}
$$

where:
$f_{0}=$ fractional volume of oil flowing from core outlet
$\bar{S}_{\boldsymbol{d}}=$ average saturation of displacing fluid
$S_{d z}=$ saturation of displacing fluid at the core outlet
$W_{i}=$ cumulative pore volumes of the displacing fluid injected
$k_{r o}, k_{r d}=$ relative permeabilities of oil and the displacing fluid
$\mu_{0}, \mu_{d}=$ viscosity of oil and displacing fluid
$I,=$ relative injectivity, $(q / \Delta p) /(q / \Delta p)_{\text {initial }}$
$q=$ total volumetric flowrate
$A p=$ differential pressure across the core

Jones and Roszelle (1978) derived a graphical approach which determined f_{0} by drawing tangents to the experimental N_{p} vs. W_{i} curve and finding ($S_{w 2}-S_{w i}$) at the corresponding intercept $W_{i}=0$. They also used the following modified form of Eq. 4.3 to determine $f_{0} / k_{r o}$ as the intercept on an experimental $1 / I_{r}$ vs. W_{i} curve:

$$
\begin{equation*}
\frac{f_{0}}{k_{r o}}=-W_{i} \frac{d\left[\frac{1}{I_{r}}\right]}{d\left[W_{i}\right]}+\frac{1}{I_{r}} \tag{5.4}
\end{equation*}
$$

Since differentiating experimental data graphically is an inaccurate process, Miller (1983) developed the following curve fit equations:

Recovery:

$$
\begin{equation*}
N_{p}=a_{0}+a_{1}\left[\ln \left(W_{i}\right)\right]+a_{2}\left[\ln \left(W_{i}\right)\right]^{2}+a_{3}\left[\ln \left(W_{i}\right)\right]^{3}+ \tag{5.5}
\end{equation*}
$$

Injectivity:

$$
\begin{equation*}
I_{T}=b_{0}+b_{1}\left[\ln \left(W_{i}\right)\right]+b_{2}\left[\ln \left(W_{i}\right)\right]^{2}+b_{3}\left[\ln \left(W_{i}\right)\right]^{3}+ \tag{5.6}
\end{equation*}
$$

And finally:

$$
\begin{equation*}
\ln \left(W_{i} I_{r}\right)=b_{0}+b_{1}\left[\ln \left(W_{i}\right)\right]+b_{2}\left[\ln \left(W_{i}\right)\right]^{2} \tag{5.7}
\end{equation*}
$$

Miller (1983) found that Eq. 5.7 gave excellent matches of the $\left(W_{i} I_{r}\right)$ data at all temperatures, and with the second order N_{p} vs. $\ln \left(W_{i}\right)$ data match, yielded well- behaved relative permeability curves at all temperatures. The usual scatter was removed by curved matching the raw data.

The first recovery and injectivity points immediately after breakthrough were disregarded. Rapid changes in both saturation and flowing volume fractions occur at breakthrough because capillary pressure, gravity effects, and viscous fingering cause the saturation front to be smeared unlike BuckleyLeverett displacement. Therefore the first point after breakthrough was not representative of the trend of the data. Appendix E gives an example of experimental data and the corresponding curve fit for the recovery vs. pore volumes injected and the $\left(W_{i} I_{r}\right)$ vs. pore volumes injected curves.

Jones and Roszelle (1978) recommended using graphs of recovery and injectivity vs. the reciprocal of pore volumes injected at large values of pore volumes injected. This procedure allows more accurate tangents to be drawn, since at large injected volumes, both recovery and injectivity tend to flatten. Again, examples of this can be seen in Appendix E.

Relative permeabilities were calculated in this study using the absolute permeability of the core to water as the base (recommended by Miller (1983)).

Appendix F describes a computer program written to analyze the displacement data. The program was written by Miller (1983) in BASIC for the 9845B desk-top minicomputer. In addition to performing the calculations, the program utilizes the plotting capabilities of the minicomputer to generate graphs of:
a) recovery and injectivity \mathbf{x} pore volumes injected vs. pore volumes injected and the reciprocal of pore volumes injected
b) logarithm of the water-oil permeability ratio vs. water saturation
\boldsymbol{c}) individual water and oil relative permeabilities vs. water saturation

SECTION 6 : RESULTS, CONCLUSIONS, AND RECOMENDATIONS

6.1 Results

Just as was found in Miller's (1983) study using the same apparatus, the results from this experiment have been reproducible. The relative permeability overlay presented in figure 6.1 shows the reproducibility of this study. The graph of recovery versus pore volumes injected were so reproducible that it was difficult to determine which curve was which when overlayed. In Run $1 / 2$ the early time behavior of the recovery curve was higher than subsequent waterfloods. This was attributed to hystersis. Again reproducibility was cornfirrned by the fact that a consistent irreducible water saturation was attained at the end of each flood (Table 6.1).

Run	$S_{w i}$
Horizontal 1/3	.109
Horizontal 1/5	.109
Vertical 1/7	.104
Vertical 1/9	.096
Vertical 1/11	.097

Table 6.1 Irreducible WaterSaturation Data

Having determined that the apparatus yielded consistent results, any difference in the results was attributed to an alteration in a chosen parameter (i.e. core position and velocity of the displacing fluid).

Figure 6.1 Relative Permeabilities us. Water Saturation (Overplotted)

Comparing vertical run $1 / 8$ and horizontal run $1 / 4$, produced the following results: the difference between calculated and actual recovery at breakthrough was slightly less for the vertical run than for the horizontal run. Though run $1 / 8$ was run at a higher velocity, it was later determined that this would increase the difference between actual and calculated recovery, yet the difference was still less than that of run $1 / 4$. Also, a plot of recovery versus pore volumes injected showed that run $1 / 8$ had a more uniform displacement front (i.e. higher recovery throughout the diplacement).

With the core in the vertical position, the displacing fluid flowrate was altered. The changes in the flooding front was then examined for the various displacments. The following table and figure show that as the flowrate at breakthrough decreased the difference between the actual and calculated breakthrough decreased.

Breakthrough Velocity (ce/min)	Actual Recovery at Breakthrough (PV's injected)	Calculated Recovery at Breakthrough (PV's injected)	Differencebetween Actual and Calculated (PV's injected)
7.28	0.382	0.471	0.089
25.72	0.327	0.476	0.149
54.02	0.257	0.459	0.202
63.10	0.248	0.469	0.221
71.05	0.208	0.390	0.190

Table 6.2Breakthrough Recovery Data

This fact indicated that for this system the lower, the flowrate, the closer the flooding front approached Buckley-Leverett piston displacement. A comparis-

figure 6. 2 Recovery at Breakthroughve. Displacement Velocity
on between figure 6.2 and figure 2.1 indicated that the experiment was experiencing viscous fingering (Peters and Flock (1981)). Peters and Flock experienced viscous fingering when $I_{s c}>13.56$. For this experiment the dimensionless instability number $I_{s c}>3000$, confirming that it was above the critical value. Kyte and Rapoport's (1958) critical value for stablized flooding was $L \mu_{w} v$ >6. The scaling factor for this experiment was $L \mu_{w} v>70$.

6.2 Conclusions

1. The apparatus has been constructed so that it can reproduce all results.
2. Gravity had no significant effect on the flooding front in this study
3. For this system velocity must be considered. It had a significant effect on the flooding front.
4. The flooding front was affected by Peters and Flock (1981) instabilities or viscous fingering, not Kyte and Rapoport (1958) instabilities.

6.3 Recommendations

1. Decrease the oil viscosity, core diameter, and flowrate. These are the variables in the Peters and Flock dimensionless instability number which may be changed for this apparatus. A decrease in these variables would produce a decrease in the dimensionless instability number in order that a stable flooding front can be achieved.
2. Miller (1983) checked for outlet effects in the apparatus by inserting a hypodermic neddle two inches into the outlet end of the core. This showed that the pressure drop across the last two inches of the core was normal, given the pressure gradient of the core. This report recommends that the inlet end effects be checked in the same manner. Due to the viscosity differences, the water may not be uniformly injected into the core.
3. Use smaller graduated cylinders prior to breakthrough to obtain more complete data before breakthrough occurs.

NOMENCLATURE

$\mathrm{A}=$ cross-sectional area, cm^{2}
calib $=$ seperator calibration, $\mathrm{cc} / \mathrm{cm}$
$C^{*}=$ wettability number, dimensionless
$\mathrm{cSt}=$ kinematic viscosity, cSt
$\mathrm{dp} / \mathrm{dx}=$ pressure gradient, atm/cm
$\mathrm{d}=$ core diameter, cm
$\mathrm{D}=$ downstream dead volume, cc
$\Sigma \mathrm{Dv}=$ cumulative volume of displacing fluid produced from separator, cc
$\mathrm{k}=$ absolute permeability, darcies
$k_{i}=$ effective permeability to phase i , darcies
$k_{r a}=$ relative permeability to oil, dimensionless
$k_{r w}=$ relative permeability to water, dimensionless
$f_{d}=$ fractional flow of displaced phase, dimensionless
$f_{0}=$ fractional flow of oil, dimensionless
$f_{w}=$ fractional flow of water, dimensionless
$h_{d}=$ initial dynamic separator level, em
$h_{o}=$ level of outlet tube in separator, cm
Ah $=$ difference between initial static and dynamic separator levels, cm
$I_{T}=$ relative injectivity,$\langle q / \Delta p) /\langle q / \Delta p)_{\text {initial }}$
$I_{\mathrm{sc}}=$ viscous instability number, dimensionless
$\mathrm{L}=$ length of core, cm
$L_{m}=$ length of traveling end plug extended from end plug guide, cm
$N_{c}=$ capillary number, dimensionless
$N_{p}=$ cumulative pore volumes of oil recovered, dimensionless
$\mathbf{p}=$ differential pressure across core, psi
$\boldsymbol{p},=$ capillary pressure, dynes $/ \mathrm{cm}$
$P v=$ core pore volume, cc
$\mathbf{q}=$ total volumetric flowrate, $\mathrm{cc} / \mathrm{min}$
$q_{i}=$ volumetric flowrate of phase $i, \mathrm{cc} / \mathrm{sec}$
$\mathrm{r}=$ radius, cm
Sep $=$ cumulative separator (produced) volume, cc
$\bar{S}_{0}=$ average oil saturation, dimensionless
$\bar{S}_{w}=$ average water saturation, dimensionless
$S_{w Z}=$ water saturation at core outlet, dimensionless
$S_{w i}=$ irreducible water saturation, dimensionless
$\bar{S}_{w f}=$ average water saturation after oil displacement, dimensionless
$\mathrm{t}=\mathrm{time}, \min$
$\mathrm{U}=$ upstream dead volume, cc
$\mathrm{v}=$ flux velocity $(\mathrm{q} / \mathrm{A}), \mathrm{cm} / \mathrm{min}$
$v_{b}=$ average seperator bubble velocity, $\mathrm{cm} / \mathrm{min}$
$v_{p}=$ total displaced fluid produced, $\mathrm{cm} / \mathrm{min}$
$\mu_{i}=$ viscosity of phase i, cp
$\mu_{0}=$ oil viscosity, cp
$\mu_{w}=$ water viscosity, $\mathrm{c} p$
$\eta=$ ratio of $2 \% \mathrm{NaCl}$ solution viscosity to distilled water viscosity, dimensionless
$\rho_{w C}=$ water density at core temperature, g / cc
$\rho_{o c}=$ oil density at core temperature, g / cc
$\rho_{w g}=$ water density at effluent temperature, g / cc
$\rho_{O B}=$ oil density at effluent temperature, g / cc
$\sigma=$ interfacial tension, dynes $/ \mathrm{cm}$
$\theta=$ contact angle, degrees

REFERENCES

Abrams,A.: "The Influence of Fluid Viscosity, Interfacial Tension, and Flow Velocity on Residual Oil Saturation Left by Waterflood", Soc. Pet. Eng. J. (October 1975) 437.

Amyx, J. W., Bass, D. M., Jr., and Whiting, R.L.: Petroleum Reservoir Fngineering -Physical Proper-, McGraw-Hill Book Co., New York City (1960).

Buckley, S. E. and Leverett, M. C.: "Mechanism of Fluid Displacement in Sands", Trans. , AIME (1942) 146, 10%

Casse, F. J. and Rarney, H. J., Jr.: "The Effect of Temperature and Confining Pressure on Single-phase Flow in Consolidated Rocks", J. Pet. Tech. (August 1979) 1051.

Chu, P. S. Y. and Cameron, A.: "Compressibility and Thermal Expansion of Oils", J. Inst. Pet. (May 1963) 49, 140.

Counsil, J. R.: "Steam-Water Relative Permeability", PhD dissertation, Stanford U., Stanford, CA (1979).

Craig, F. F., Jr.: The Reservoir Engineering Aspects of Waterflooding, Monograph Series, SPE, Dallas (1971) 3.

Frick, T. C. (ed.): Petroleum Production Handbook, SPE (1962) 1.

Jeffers, M. K., Jr.: "The Design and Construction of a Reservoir Conditioned Relative Permeameter", MS report, Stanford U., Stanford, CA (1981).

Jones, S. C. and Roszelle, W. O.: "Graphical Techniques for Determining Relative Permeability from Displacement Experiments", J. Pet. Tech. (May 1978) 807; Trans. , AIME, 265.

Johnson, E. F., Bossler, D. P., and Naumann, V. O.: "Calculation of Relative Permeability from Displacement Experiments", Trans., AIME (1959) 216 , 370.

Kyte, J. R. and Rapoport, L. A.: "Linear Waterflood Behavior and End Effects in Water-Wet Porous Medium", Trans., AIME (1958) 213 , 423.

Miller, M. A.: "Effect of Temperature on Oil-Water Relative Permeabilities of Unconsolidated and Consolidated Cores", PhD dissertation, Stanford U., Stanford, CA (1983)

Moore, T. F., and Slobod, R. L.: "The Effect of Viscosity and Capillarity on the Displacement of Oil by Water", Prod. Monthly (August 1956) 20-30.

Osaba, J. S., et al : "Laboratory Measurements of Relative Permeability", Trans., AIME (1951) 192, 47.

Owens, W. W. and Archer, D. L.: "The Effect of Rock Wettability on Oil-Water Relative Permeability Relationships", $\underline{\text { J. Pet. Tech. (July 1971) } 873 .}$

Peters, E. J., and Flock, D.L.: "The Onset of Instability During Two-Phase Immiscible Displacement in Porous Media", Soc. Pet. Eng. J. (April-1981) 249; Trans. , AIME, 271.

Poston, S. W., et $\boldsymbol{a} l$: "The Effect of Temperature on Irreducible Water Saturation and Relative Permeability of Unconsolidated Sands", Soc. Pet. J. (June 1970) 171.

Richardson, J. G., et al : "Laboratory Determination of Relative Permeability", Trans., AIME (1952) 195, 187.

Sageev, A.: 'The Design and Construction of an Absolute Permeameter to Measure the Effect of Elevated Temperature on the Absolute Permeability to Distilled Water of Unconsolidated Sand Cores", MS report, Stanford U., Stanford, CA (1980).

Sandberg, C. R., Gournay, L. S., and Sippel, R. F.: 'The Effect of Fluid-Flow Rate and Viscosity on Laboratory Determinations of Oil-Water Relative Permeabilities", Trans. , AIME, 213.

Sufi, A. S., Ramey, H. J., and Brigham, W. E.: "Temperature Effects on Oil-Water Relative Permeabilities for Unconsolidated Sands", U.S. Department of Energy Report DOE/ET/12056-35 (December 1982).

Welge, H. J.: "A Simplified Method for Computing Oil Recovery by Gas or Water Drive", Trans. , AIME (1952) 195, 91.

Appendix A : APPARATUS DETAILS

A. 1 Main Flow System

A schematic of the main flow system is shown in figures A.1. The horizontal core holder was placed in a Napco Model 430 temperature controlled bath, though the oven was not used in this study. The vertical core holder was located between the oven and the control panel. Approximately 40 ft . of $1 / 8 \mathrm{in}$. 316stainless steel tubing was used for the water line and approximately 30 ft . for the oil line.

A Valco Model 3P three-way valve was used to switch between oil and water injection. The valve was constructed to withstand 400 psig at 175 degrees centigrade (350 degrees Fahrenheit). An extension to the handle was constructed such that it might be turned from outside the oven (near the control panel).

Outside the airbath, a 3.5 in . long, 0.10 in . I.D., 0.364 in . O.D. sight glass was used to observe produced fluids. This also made possible a visual determination and confirmation of breakthrough. The glass tube was mounted in $3 / 8 \mathrm{in}$. swagelok fittings with teflon ferrules, and then tested to 400 psig with nitrogen.

A Whitey three-way switching ball valve was inserted downstream to direct produced fluids either to the effluent measurement system, or to a bypass line. If the handle was placed in the central (shut-off) position core pressure was maintained.

Four Type J thermocouples were used to monitor the temperaturee during runs. The thermocouples were connected to a Leeds and Northrop Speedomax W 24-point temperature recorder as follows:

Location	Channel No.
Downstream Flowline	7
Upstream Flowline	8
Core Holder Inner Sleeve	10
Room Temperature	11

Table A. 1 Thermocouple Locations

A. 2 Injection System

A schematic of the injection system is shown in figure A.3. Both water and oil was injected by a Milton Roy Model R-121A controlled volume pump. During an oil flood, oil was injected directly into the core. During a waterflood, however, water was displaced by oil from a one-gallon, teflon-lined, 304-stainless steel pressure vessel into the core. The salt-water was deoxygenated by saturating it with nitrogen prior to injection.

The injection rate was held constant during each run by using an excess flow loop with a 500 psig pressure relief valve. Injection rates were controlled by adjusting pump volume and a needle valve downstream of the pump. Excess flow was kept to a minimum by performing minor adjustments to the pump volume.

The pressure drop across the core always was less than 150 psig , yet the pressure upstream of the needle valve was regulated at 500 psig. Therefore, there is a large pressure drop across the needle valve and at the 100 psig pressure regulator at the effluent measurement system. Subsequently, if the pressure drop across the core changes greatly, the flow rate would change only slightly.

Figure A. 4 Photograph of the Apparatus -- Horizontal Core

Figure A. 5 Photograph of the Apparatus -- Vertical Core

A nitrogen charged Greerolator Model 20-30TMR-S-1/2 WS accumulator was used to dampen pressure pulsations from the pump. The accumulator was charged with a high pressure nitrogen cylinder until it reached the 500 psig relief pressure. Between the accumulator and the large pressure drop across the needle valve, pressure pulsations in the core were eliminated.

A capillary tube flowmeter was used to determine injection rates. The flowmeter consisted of approximately 4 ft . of 0.085 in . I.D., 0.125 in . O.D. 316stainless steel. A Celesco KP-15 pressure transducer with a 5 psi plate was connected across the flowmeter to measure the flowing pressure differential. A three-way valve was also connected so as to zero the transducer. A Celesco Model CD25A transducer indicator was connected to the pressure transducer, and the pressure drop was recorded on a Soltec Model 1243 three-pen stripchart recorder.

A. 3 Effluent Measurement System

A glass tube separator, which allowed visual observation of the oil-water interface level was the major component in the effluent measurement system (shown in figure A.4). The glass tube, 1 in. I.D., 1.25 in . O.D., 32 in . in length, was mounted in machined recesses in two aluminum blocks. Sealing was accomplished by glueing a rubber o-ring to each end of the tube, then tightening the blocks to the tube ends with 4 threaded steel rods. A graduated scale affixed along the side of the tube allows a visual measurement of the change in the oil/water interface level.

All produced fluids enter through a 0.125 in. 316-stainless steel tube inserted approximately 2 cm . above the bottom of the separator. A three-way valve

- - - shut-off valve

申. three-way valve
100
PRESSURE REGULATOR (psi)
ค
PRESSURE GAUGE
figure A. 6 Schematic of the Effluent Measurement System (from Miller (1983))

Figure A. 7 Photograph of the Effluent Measurement System
was connected to the top and bottom of the separator, allowing either oil or water to overflow, thus enabling the system to measure either produced oil or produced water. The system pressure was regulated by a Grove Mity-Mite Model SD-90-W air dome type pressure regulator. The body of the regulator was 316stainless steel, with a Viton diaphram capable of controlling pressures of 25 to 400 psig . The regulator was charged with nitrogen through a Grove loading tee. The total volume of displacing fluid flowing from the separator was collected and measured in graduated cylinders. The separator was calibrated at the end of each run to account for fluids sticking to the sides of the glass. A reservoir of oil and water connected to the separator with Tygon tubing were used to displace fluids for calibration.

A. 4 Pressure Measurement System

A bank of three Celesco KP-15 diaphram-type pressure transducers were used to monitor the pressure drop across the core (see figure A.4). A 25, a 100, and a 500 psi pressure plate was used in each of the three transducers. A Celesco Model CD-25A or CD-10C de nodulator/indicator was connected to the three transducers, and the output was recorded on a Soltec Model 1243 threepen strip-chart recorder. A three-way switching valve was connected to each transducer to enable zeroing.

Pressure guages to monitor internal core pressure were fastened to the upstream and downstream pressure taps. Valves were also attached to bleed the lines of air prior to connecting a fresh core.

(P) PRESSURE GAUGE
(1) PRESSURE TRANSDUCER
ϕ three-way valve
SHUT-OFF VALVE

Figure A. 8 Schematic of the Pressure Measurement System (after Miller (1983))

A 5 Confining Pressure System

A high pressure nitrogen cylinder was used to apply a confining pressure through a 400 cc pressure vessel (figure A.6) to the distilled water confining fluid in the core holder. The confining fluid enveloped the inner sleeve and was maintained at 500 psig. Due to the low compressibility of distilled water, leaks in the confining pressure system were detected and repaired.

A6 Core Holder

The core holder used in this study (figure A.7) was originally constructed by Counsil (1979), and later modified by Jeffers (1981) and Miller (1983). Dimensions of the core holder and inner sleeve are given in figures A. 8 and A.9. The outer sleeve of the core holder was constructed from 304-stainless steel, 3.5 in. O.D., 2.62 in. I.D., and 26 in . in length. The I.D. of each end was machined to 2.65 in . to accept O-ring seals on the end of the end plug assemblies. The body was threaded on each end for brass retaining caps. Brass was used because it reduces thread siezure problems.

The inner sleeve used to contain the unconsolidated sand-pack was made from 316-stainless steel mechanical grade tubing 2 in. I.D., 2.25 O.D., and 23.05 in. in length. Like the outer sleeve, each end of the inner sleeve was machined (2.02 in. I.D.) to accept O-ring seals on the end plugs. The average I.D. of the inner sleeve was accurately measured by filling the empty sleeve with distilled water from the fixed end plug to a small distance from the opposite end. The result was an average I.D. of 5.044 cm . (1.986 in.)

- - SHUT-OFF VALVE
(P) PRESSURE GAUGE
figure A. 9 Schematic of the Confining Pressure System (an Miller (1383))

Figure A. 10 Schematic of the Core Holder (after Miller (1983))

Figure A. 11 Photograph of the Core Holder

Figure A. 12 Dimensions of the Core Holder Inner Sleeve and

Figure A. 13 Dimensions of the Core Holder Outer Shell and Components (from Miller (1983))

A confining force was applied uniaxially along the sand-pack by a freetraveling end plug. A fixed end plug was placed on the opposite end. Both plugs were constructed of 316 -stainless steel. In each plug, one central hole, and six radiating holes were drilled to distribute flow across the core face. To aid in this distribution, concentric circular and radiating linear grooves were milled on the face of each plug. Each plug was then covered with 270 mesh screen to retain the sand.

Pressure taps were inserted at both upstream and downstream locations. A hole was drilled directly through the fixed end plug for the downstream pressure tap. Serving as the upstream pressure tap, a $1 / 16$ in., 316 -stainless steel tube was inserted into the main flow channel in the traveling end plug.

The core holder dimensions were measured to allow an accurate determination of core length and diameter. Miller found the following from the core holder dimensions:

$$
\mathrm{L}=I_{m}+19.90 \text { in. }(50.55 \mathrm{~cm} .)
$$

where:
$\mathrm{L}=$ length of core $L_{m}=$ length of traveling end plug external from the end plug guide.

Dead volumes in the system were also measured and taken into consideration in data analysis. The upstream dead volume (between the three-way valve and the core face) was measured by attaching the traveling plug to the injection system and alternately flowing oil and water through it. The oil and water displaced from the dead volumed was measured several times in a graduated cylinder. The total dead volume was measured by clamping the end plugs together in a rubber sleeve, attaching them to the injection and effluent systems,

Figure A. 14 Core Holder Dimensions for Determining the Length of the Unconsolidated Sand Pack (after Miller (1983))
and alternately flowing oil and water through the system (just as above). The total dead volume was then measured in the glass tube separator. The upstream dead volume was found to be $2.2 c c$, and the downstream dead volume was measured at $3.0 c c$.

Appendix B :PROCEDURE DETAILS

The procedures used in this study were virtually identical to those published by Miller (1983) in his PhD dissertation at Stanford Univerity. For the purpose of completeness, those procedures have been included:

The following sections describe the procedures used for core preparation, salt water treatment, oil and water displacement runs, and separator calibration.

B. 1 Unconsolidated Sand Preparation and Core Packing

Sand for the unconsolidated sand packs was prepared from industrial quality F-140 Ottawa silica sand. The sand was sieved using a W. S. Tyler Ro-Tap Testing Sieve Shaker. A double stack of W. S. Tyler U.S.A. Standard Testing Sieves were used in the following sequence (top down): 80-, 100-, 120-, 140-, 170-, and 200-mesh and pan.

Approximately $50 \mathrm{cc}(70 \mathrm{~g})$ of sand was placed in each stack and sieved for at least 10 minutes (recommended procedure by W. S. Tyler Co.). Sand on the 80 and 100 mesh screens and the pan was discarded. After enough sand was sieved, approximately 2000 g of total sand were recombined according to the following percentages:

U.S.A. Standard Sieve Mesh	Percent
$100-120$	25
$120-140$	35
$140-170$	25
$170-200$	15

Table B. 1 Sieve Analysis of Unconsolidated Sand Packs

The sand was mixed by shaking in a sealed container and then thoroughly washed with tap water. Washing was done by shaking a sand and tap water mixture in a sealed jar and then pouring off the dirty water after the sand had settled. This procedure was repeated several times until the water was clear (usually around 10 or more times). The sand was then placed on an aluminum pan and oven dried for a few hours.

Sand was packed in the inner sleeve dry. The fixed end plug was first inserted into the sleeve and the assembly placed upright on a wood block. A pneumatic vibrator was strapped to the sleeve with a strap clamp. A plastic insert containing several wide mesh screens was placed in the top of the sleeve to distribute sand as it was poured. With the vibrator running, sand was poured into the sleeve in batches of approximately 200 cc \{usually six batches in all). The sand was carefully weighed to determine the porosity (using core dimensions and quartz sand density of $2.65 \mathrm{~g} / \mathrm{cc}$). Sand was poured to approximately 4 cm from the top of the sleeve to allow proper plug travel.

The outer shell was then placed over the inner sleeve and the traveling end plug with guide inserted into the open end of the inner sleeve. The entire assembly was placed in a vise and the retaining caps tightly screwed on with strap wrenches.

The core assembly was placed in the air bath and connected downstream to a shut-off valve and then to a vacuum pump teed to a McLeod vacuum guage. Upstream, the core was connected to a shut-off valve and then to a water reservoir on top of the air bath. Care was taken to remove all air from the line between the water reservoir and the shut-off valve. Pressure taps were sealed with Swagelok caps.

The confining pressure system was then purged of all water and connected to the core holder. The inner sleeve thermocouple was connected to the outer shell and 500 psig nitrogen confining pressure applied. The valve between the core and the confining pressure vessel was closed and the vessel bled to atmospheric pressure. The vessel was filled with distilled water using a vacuum and then repressurized with nitrogen. While slowly bleeding nitrogen from the thermocouple connection (to maintain confining pressure), water was displaced from the pressure vessel to fill the core holder.

With the water valve to the core closed and the vacuum valve open, the core was evacuated to less than 50 microTorr. This usually required several hours, or overnight. The vacuum valve was then closed and the water valve opened to saturate the core with water.

After being certain the injection valve was switched to "waterflood" and filled to the end with water, the injection line was connected to the core. The pressure taps and downstream line were then connected and the pump started. While pumping a few pore volumes of water to ensure complete saturation, the pressure tap lines were bled.

After the injection rate and differential pressure stabilized, the absolute permeability of the pack to water was measured several times using a graduated cylinder and a stopwatch to determine flowrates. Measurements were usually repeatable to within 0.5%.

The core was now ready for oil displacement to establish irreducible water saturation.

B. 2 Salt Water Treatment

Sixteen liters of distilled water were placed in a 5 gal Pyrex bottle. Nitrogen was blown into the water through fish tank air stones to reduce the oxygen concentration in the water and to remove oxygen from the air space in the bottle ...[to minimize corrosion problems]. In 2 liters of heated distilled water, 367 g of $\mathrm{NaCl} . .$. was added and stirred...This solution was poured into the pyrex bottle. Nitrogen bubbling was continued for a short time to mix the solution thoroughly.

Approximately 1 gal of water at a time was loaded into the salt water pressure vessel. The Pyrex bottle was sealed between loadings to prevent oxygen contamination of the air space above the water.

B. 3 Oil Displacement Runs

At the beginning of a set of displacement runs, the effluent separator was usually dismantled and thoroughly cleaned. The separator was then filled with water from the bottom and oil from the top, being certain to remove air bubbles from the end caps and the lines to the three-way switching valve. Prior to starting an oil displacement run, the oil/water level was positioned near the bottom of the separator.

For displacing the core to irreducible water saturation, the following procedure is recommended:

1. Be certain [water] vessel is filled with [salt water]...
2. With both the injection and effluent switching valves set to "waterflood", start the pump briefly to bring the system to 100 psig . This is done by adjusting the nitrogen charge in the pressure regulator (usually to around 125 psig).
3. Measure the separator level.
4. Start the pump, zero the appropriate transducer(s), and begin to record core differential pressure and the flowmeter reading on the strip-chart recorder. A chart speed of $\mathbf{3 0}$ $\mathrm{cm} / \mathrm{hr}$ was used for most runs.
5. Wait for the rate and differential pressure to stabilize.
6. Switch both the injection and effluent switching valves to "oilflood" simultaneously. Immediately begin measuring effluent oil production in a graduated cylinder (usually 100 ml) while simultaneously starting the stopwatch. Record the differential pressure and flowmeter readings just prior to initiation of oil injection (may be done later).
7. When the graduated cylinder is nearly full, do the following simultaneously:
a) Read separator level.
b) Change graduated cylinder.
c) Depress "lap" button on the stopwatch to get an elapsed time reading while letting the internal clock continue to run.

Immediately depress the "mark" button on the strip-chart recorder to indicate the point at which the data was taken.
0. Record:
a) elapsed time (hr, min, sec) - then restart stopwatch by again pressing "lap" button.
b) separator level (cm)
c) volume of oil in graduated cylinder (cc)
d) differential pressure (psi)
e) flowmeter reading at "mark"
f) average flowmeter reading from previous "mark"

Data d), e), and f) may be recorded any time, since they are permanently recorded.
9. Repeat steps 7 and 8 to the end of the run. Large volume graduated cylinders were generally used after breakthrough, reverting to a 100 ml cylinder at the end to determine an accurate end-point flowrate. Approximately 2 pore volumes of oil were injected to establish irreducible water saturation.
10. Zero transducers, then shut off the pump. Isolate the core with the shut-off valve upstream of the flowmeter and with the switching valve just upstream of the separator (by turning the three-way valve to a neutral shut-off position).
11. Record the final separator level with the pump off. Levels taken with oil flowing are slightly in error, due to the volume of oil in bubbles traveling up the water column.
12. Record the flowmeter reading and differential pressure at oil breakthrough.
13. Bleed the pressure regulator nitrogen charge to bring the separator to atmospheric pressure. Turn the effluent switching valve to neutral. Calibrate the separator (see Appendix B.5).
14. Place the water reservoir on top of the air bath and the oil reservoir on the laboratory bench. Displace oil from the separator to the oil reservoir, until the oil-water interface is near the top of the separator. Close the valves to the reservoirs.
15. Turn the effluent switching valve to "oilflood". Repressurize the pressure regulator nitrogen charge to the previous level.
16. Slowly turn the switching valve upstream of the separator to "flood"... If necessary, proceed to Step 17 with the switching valve in neutral (shut-off). Turn the valve quickly to "flood" when the core pressure begins to rise.
17. Open the shut-off valve upstream of the flowmeter and start the pump to bring the system to full pressure. The system is now ready for a water displacement run.

B. 4 Water Displacement Runs

1. With both the injection and effluent switching valves set to "oilflood", start the pump briefly to bring the system to 100 psig. This is done by adjusting the nitrogen charge in the pressure regulator (usually around 125 psig).
2. Measure the static separator level.
3. Start the pump, zero the appropriate transducer(s), and record core differential pressure and the flowmeter reading on the strip-chart recorder. A chart speed of $30 \mathrm{~cm} / \mathrm{hr}$ was used for most runs.
4. Record the dynamic separator level. The difference between this level and the static level is the amount of oil traveling in bubbles up the water column. Corrections for this effect are discussed in Appendix
5. Wait for the rate and differential pressure to stabilize.
6. Switch both the injection and effluent valves to "waterflood" simultaneously. Immediately begin measuring effluent water production in a graduated cylinder (usually 100 ml) while simultaneously starting the stopwatch. Record the differential pressure and flowmeter readings just prior to initiation of water injection (may be done later).
7. When the graduated cylinder is nearly full, do the following simultaneously:
a) Read separator level.
b) Change graduated cylinder.
c) Depress "lap" button on the stopwatch to get an elapsed time reading while letting the internal clock continue to run.

Immediately depress the "mark" button on the strip-chart recorder to indicate the point data was taken.
8. Record:
a) elapsed time (hr, min, sec) - then restart stopwatch by again pressing "lap" button.
b) separator level (cm)
c) volume of water in graduated cylinder (cc)
d) differential pressure $\{\mathrm{psi}$)
e) flowmeter reading at "mark"
f) average flowmeter reading from previous "mark"

Data d), e), and f) may be recorded at any time, since they are permanently recorded.
9. Repeat Steps 7 and 8 to the end of the run. Watch for water breakthrough in the sight glass to help pick the breakthrough point on the strip-chart recorder. Large volume graduated cylinders were generally used when oil fractional flows became small, reverting to a 100 ml cylinder at the end to determine an accurate end-point flowrate. Up to [8] pore volumes were injected...[during each waterflood]...
10. Zero all transducers, then shut off the pump. Isolate the core with the valve upstream of the flowmeter and with the switching valve just upstream of the separator (by turning the three-way valve to a neutral shut-off position).
11. Record the final separator level.
12. Record the flowmeter reading and differential pressure at water breakthrough. Breakthrough is sometimes difficult to establish. Visual observation with the sight glass will give a general idea of breakthrough time.
13. Bleed the pressure regulator nitrogen charge to bring the separator to atmospheric pressure. Turn the effluent switching valve to neutral. Calibrate the separator (see Appendix B.5).
14. Place the oil reservoir on top of the air bath and the water reservoir on the laboratory bench. Displace water from the
separator to the water reservoir until the oil-water interface is near the bottom of the separator. Close the valves to the reservoirs.
15. Turn the effluent switching valve to "waterflood"... Bleed the core pressure by turning the valve upstream of the separator to "flood"...
16. Repressurize the pressure regulator nitrogen charge to its previous level.
17. Slowly turn the switching valve upstream of the separator to "flood"... If necessary, proceed to Step 18 with the switching valve in neutral (shut-off). Turn the valve quickly to "flood" when the core pressure begins to rise.
18. Open the shut-off valve upstream of the flowmeter and start the pump to bring the system to full pressure. The system is now ready... [for an oilflood].

B. 5 Separator Calibration

The separator calibration procedure entails displacing the produced oil or water from the separator into graduated cylinders and measuring the corresponding change in separator level . This was found to give accurate and repeatable measurements of produced volumes for material balance purposes:

1. Place the appropriate reservoir on top of the air bath to displace the desired fluid from the separator. Set the effluent switching valve to the neutral shut-off position, and open the valve to the reservoir.
2. To be sure lines are liquid filled, displace a small amount of produced fluid by turning the effluent switching valve briefly to the appropriate setting ("oilflood" to measure oil, "waterflood" for water). Record the separator level.
3. Place a graduated cylinder (usually 100 ml) under the pressure regulator and turn the effluent switching valve to fill the cylinder with produced fluid.
4. Turn the switching valve to neutral and. record the new separator level. Estimate the level if large changes occur in the meniscus shape. A meniscus correction of .17 cm was measured as the difference between a perfectly flat meniscus and the bottom of a fully-developed meniscus when the tube is clean. Record the volume of fluid in the graduated cylinder.
5. Repeat Steps 3 and 4 until the separator level is near that at the beginning of the run.
6. Total produced volume is measured as the total measured in the graduated cylinders plus or minus corrections for differences between the the beginning and ending calibration levels and the beginning and ending run beginning and ending calibration levels and the beginning and ending run levels.

Appendix C : FLUID PROPERTIES AND CORE DATA

This appendix contains information on the density and viscosity of the salt water and the white mineral oil (Btandol), as well as specific properties of the unconsolidated sandstone core used in this study.

C.l Salt Water Density

The density of a $2 \% \mathrm{NaCl}$ aqueous solution over a range of temperatures was obtained from the International Critical Tables (1928), V.3, p. 79 (see table C. 1).

Temperture (degrees, C)	Density (g/cc)
0	1.01509
10	1.01442
20	1.01246
25	1.01112
30	1.00957
40	1.00593
50	0.9967
60	0.9852
100	
10	

Table C. 1 Density of 2\% NaCl Solution us. Temperature

The software designed by Miller (1983) to analyze data obtained from the relative permeameter could accept data from either distilled water runs or 2% NaCl solution runs. He found that the ratio of the density of a $2 \% \mathrm{NaCl}$ solution to the density of distilled water was between 1.0137 to 1.0143 for temperatures from $20^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. Since the density ratio was constant, distilled water data could be used to generate the curve-fit for salt water runs. Though this study uses only salt water, distilled water may have been run with no additional calculating or curve-fitting.

The distilled water data from $70^{\circ} \mathrm{F}$ to $300^{\circ} \mathrm{F}$ was curve-fit with the following equation:

$$
\begin{equation*}
\ln (p,)=a_{0}+a_{1} T+a_{2} T^{2} \tag{C.1}
\end{equation*}
$$

where:

$$
\rho_{w}=\text { distilled water density }, g / \mathrm{cc}
$$

$\mathrm{T}=$ temperature, degrees F
$a_{0}=6.52014 \times 10^{-3}$
$a_{1}=-4.34333 \times 10^{-5}$
$a_{2}=-8.78134 \times 10^{-7}$

Equation C.l matches the distilled water data (shown in table C.2) within a maximum error of $\pm 0.08 \%$.

Temperature (degrees, F)	Specific Volume at 115 psia (cu.ft./lbm)
60	0.01603
70	0.01604
00	0.01607
90	0.01609
100	0.01612
110	0.01616
120	0.01620
130	0.01624
140	0.01629
150	0.01634
160	0.01639
170	0.01645
180	0.01650
190	0.01657
200	0.01663

Table C. 2 Distilled Water Specific Volume vs. Temperature

C. 2 Salt Water Viscosity

Data on the viscosity of a $2 \% \mathrm{NaCl}$ solution over a range of temperatures is given in the International Critical Tables (1928), V.5, p. 15. This data is in the
form of the parameter η, which is the ratio of the NaCl solution viscosity to the viscosity of distilled water. Table C. 3 shows values of η over the given temperature range.

Temperature (degrees, C)	Ratio of 2\%NaCl Solution Viscosity to Distilled Water Viscosity. η
1%	1.028
25	1.032
40	1.037
60	1.042
80	1.043
100	1.045

Table C. 3 Ratio of 2\%NaCl Solution Viscosity to Distilled Water Viscosityvs. Temperature

Since these experiments were conducted at room temperature, a value for η of 1.030 was selected. This value was found to be satisfactory for the range of ambient temperatures encountered during this study.

C. 3 OI Density

Blandol density was calculated by Miller (1983) for a range of temperatures. The measured data is shown in Table C.4.

Temperature (degrees, F)	Blandol Density (g/cc)
84.9	0.8415
101.7	0.8346
124.7	0.8264
149.4	0.0176
174.6	0.8085

Table C. 4 Measured Blandol Density vs. Temperature

Chu and Cameron (1963) analyzed pressure-volume-temperature behavior for a large number of mineral oils and found that all exhibited a constant thermal expansion coefficient for a temperature range of $32^{\circ} \mathrm{F}$ to $400^{\circ} \mathrm{F}$. Also, the American Petroleum Institute's (APT) recommended procedure for correcting oil gravities for temperature [Frick (1962)] is based on constant thermal coefficients. Therefore, since a constant thermal coefficient is assumed for this oil, the following equation was used to curve-fit the data and extrapolate from $84.9^{\circ} \mathrm{F}$ to room temperature:

$$
\begin{equation*}
\ln \left(\rho_{0}\right)=c_{0}+c_{1} T \tag{C.2}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \rho_{0}=\text { oil density }, \mathrm{g} / \mathrm{cc} \\
& \mathrm{~T}=\text { temperature, degrees } \mathrm{F} \\
& c_{0}=-1.3539 \times 10^{-1} \\
& c_{1}=-4.42405 \times 10^{-4}
\end{aligned}
$$

This equation matches the data within a maximum error of $\pm 0.05 \%$. The
thermal expansion coefficient was found to be approximately $4.4 \times 10^{-4} /{ }^{\circ} \mathrm{F}$. This corresponds to the thermal expansion coefficients for oils near $35^{\circ} \mathrm{API}$ gravity given by Frick:

Range of API Gravity (at 60 degrees F)	Thermal Expansion Coefficient. $/{ }^{\circ} \mathrm{F}$
$15.0-34.9$	4.0×10^{-4}
$35.0-50.9$	5.0×10^{-4}

Table C.5API Recommended Thermal Expansion Coefficients for Oils Nedr 35° API Gravity

The gravity of Blandol is $35^{\circ} \mathrm{API}$ at $60^{\circ} \mathrm{F}$. Using the correlation given by Chu and Cameron for thermal expansion coefficients versus oil viscosity, a thermal expansion coefficient of 4.3×10^{-4} was predicted. Again, this indicates that the measured thermal expansion coefficient is reasonable.

C. 4 Oi Viscosity

The viscosity of Blandol vs. temperature was carefully measured by Miller over a range of $100^{\circ} \mathrm{F}$ to $175^{\circ} \mathrm{F}$ (see table C.5). Miller had difficulty obtaining accurate data below this range because of problems in maintaining a uniform and constant temperature at low temperature differentials.

C. 5 Core Data

Type	Length (cm)	Diameter (cm)	Pore Volume (cc)	Porosity (\%)	Permeability (darcies)
Ottawa	51.46	5.044	405.5	$\mathbf{3 8 . 8 8}$	$\mathbf{6 . 4 1 2}$

Table C. 7 Core Data

Temperature (degrees, F)	Viscosity (cp)
100	$\mathbf{1 5 . 3 0}$
125	9.74
150	6.70
175	4.80

Table C. 6 Measured Blandol Vascosity us. Temperature

By graphing kinematic viscosity versus temperature on a Standard Viscosity-Temperature Chart (published by the American Society for Testing Materials), a straight line should result (see figure C.1). The correlating equation [Wright (1969)] for this chart is shown below:

$$
\begin{equation*}
\log \log (c S t+0.6)=A-B \log (T) \tag{C.3}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \mathrm{cSt}=\text { kinematic viscosity, centistokes } \\
& \mathrm{T}=\text { temperature } \\
& \mathrm{A}=9.8863 \\
& \mathrm{~B}=3.5587
\end{aligned}
$$

The equation was accurate to within $\pm 0.6 \%$.
səyоłs！łueつ＇人LISOOSI＾OIL甘WヨNİス

Appendix D : DATA ANALYSIS DETAILS

The data analysis methods used in this study were patterned from Miller (1983). For the purpose of completeness, the following information was taken directly from Miller's PhD dissertation at Stanford, 1983:

The following raw data were measured from the displacement experiments (symbols in parentheses are used in equations in this section):
a) cumulative separator (produced) volume (Sep), co
b) cumulative volume of displacing fluid produced from the separator ($\Sigma \mathrm{Dv}$), cc
c) core differential pressure (Ap), psi
d) flowmeter readings - at data point

- average from previous data point

In addition, the following data are also needed to determine recovery and injectivity vs. pore volumes injected:
$\boldsymbol{e})$ core pore volume (Pv), cc
f) dead volume, cc - downstream (D)

- upstream (U)
g) core and effluent temperatures, degrees F
h) oil and water densities vs. temperature

D. 1 Dead Volume and Temperature Corrections

Corrections for dead volumes and density changes with temperature were made with the following mass balance calculations. The calculations are for a water displacement run. The same calculations were made for oil displacement, with fluids reversed.

Water:

$$
\text { Initial }+I n-O u t=F i n a l
$$

$$
\begin{align*}
& S_{w i} P v \rho_{w c} \\
+ & \left(W_{i} P v+U\right) \rho_{w c} \\
- & (\Sigma D v-S e p) \rho_{w e} \\
& \left.\overline{\left(\bar{S}_{w} P v+U+D\right.} f_{w}\right)_{P w c} \tag{D.1}
\end{align*}
$$

Oil:

$$
\begin{align*}
& \text { Initial }+ \text { In - Out }=\text { Final } \\
& {\left[\left(1-S_{w i}\right) P v+U+D\right] \rho_{o c}} \\
& 0 \\
& -\operatorname{Sep} \rho_{o e} \\
& \overline{\left[\left(1-\bar{S}_{w}\right) P v+D\left(1-f_{w}\right)\right] \rho_{o c}} \tag{D.2}
\end{align*}
$$

where:
$S_{w i}=$ initial core water saturation
$\bar{S}_{w}=$ average core water saturation
$\rho_{w c}, \rho_{o c}=$ water and oil densities at core temperature
$\rho_{w e}, \rho_{o e}=$ water and oil densities at effluent (room) temperature
$W_{i}=$ pore volumes water injected
$\boldsymbol{f}_{\boldsymbol{w}}=$ fractional flow of water at outlet
Equations D. 1 and D. 2 assume that both dead volumes were initially oil-filled and at core temperature (the amount of downstream dead volume at room temperature was small). Also, the relative amounts of oil and water in the downstream dead volume were estimated by the current water fractional flow.

From Eqns. D. 1 and D.2, we can derive:

$$
\begin{align*}
\bar{S}_{w}-S_{w i} & = \\
& W_{i}-\left[(\Sigma D v-S e p)\left(\rho_{w s} / \rho_{w c}\right)-D f_{w}\right] / P v \tag{D.3}
\end{align*}
$$

and,

$$
\begin{equation*}
\bar{S}_{w}-S_{w i}=\left[\operatorname{Sep}\left(\rho_{o g} / \rho_{o c}\right)-U-D f_{w}\right] / P v \tag{D.4}
\end{equation*}
$$

Solving for W_{i},

$$
\begin{equation*}
W_{i}=\left[\operatorname{Sep}\left(\frac{\rho_{o \theta}}{\rho_{o c}}-\right)_{\rho_{w e}}^{\rho_{w c}}-U+\Sigma D v \frac{\rho_{w e}}{\rho_{w c}}\right] / P v \tag{D.5}
\end{equation*}
$$

Since pore volumes of oil recovered, $N_{p}=\bar{S}_{w}-S_{w i}$, Eqns. D. 4 and D. 5 yeild the N_{p} vs. W_{i} relationship. Total volumetric flowrate and core differential pressure were used directly with Eqn. D. 5 to generate the injectivity us.pore volumes injected data.

D. 2 Separator Corrections

Two items were considered to determine accurate data from the separator -- the separator calibration ($\mathrm{cc} / \mathrm{cm}$), and a correction for the volume of produced fluid in the bubbles traveling up the water column to the oil-water interface.

The separator calibration section of the computer program used for data analysis \{Appendix E) applies calibration information between each data point to compute the incremental produced volume. The method assumes that the average calibration between separator calibration levels (see Appendix B.) holds for the entire interval. The calculation uses a weighted-average calibration when two measured data levels straddle a calibration level.

Correction for "bubbles" is made by calculating an effective bubble velocity based on the initial static and dynamic separator Levels:

$$
\begin{equation*}
v_{b}=\frac{q\left(h_{d}-h_{o}\right)}{\Delta h(c a l i b)} \tag{D.6}
\end{equation*}
$$

where:

$$
\begin{aligned}
& v_{b}=\text { average bubble velocity }, \mathrm{cm} / \mathrm{min} \\
& \mathbf{q}=\text { total volumetric flowrate, } \mathrm{cc} / \mathrm{min} \\
& h_{d}=\text { initial dynamic separator level, } \mathrm{cm} \\
& h_{0}=\text { level of outlet tube in separator, } \mathrm{cm} \\
& \mathbf{A}=\text { difference between initial static and dynamic separator } \\
& \text { levels, } \mathrm{cm} \\
& \text { calib }=\text { separator calibration, } \mathrm{cc} / \mathrm{cm}
\end{aligned}
$$

The bubble velocity was assumed to remain constant for any oilwater level in the separator. Thus the following correction was added to the separator volume to consider the amount of oil in the bubbles.

$$
\begin{equation*}
\text { Correction }=q f_{o} \frac{\left(h-h_{o}\right)}{v_{b}} \tag{D.7}
\end{equation*}
$$

where:

$$
\begin{aligned}
& f_{0}=\text { fractional flow of oil (in bubbles) } \\
& \mathrm{h}=\text { separator level, } \mathrm{cm}
\end{aligned}
$$

D. 3 Flowrate Calculations

The average volumetric flowrate between measurement points was calculated as $\mathrm{A} W_{i} / \Delta t$, where $\mathrm{A} W_{i}$ was calculated by the procedure in Appendix D.1. Separator corrections were made using a flowrate calculated from the uncorrected (for bubbles) separator volumes. The fractional flowing volume of displaced phase was also calculated using uncorrected separator data and was estimated by:

$$
\begin{equation*}
f_{d}=1-\frac{N_{p_{i+1}}-N_{p_{i-1}}}{W_{i_{i+1}}-W_{i_{i-1}}} \tag{D.8}
\end{equation*}
$$

where:
$f_{d}=$ flowing fraction of displaced phase

Instantaneous flowrates were determined from the capillary tube flowmeter. The average flowrate between measurement points and the average flowmeter reading were used to calculate a flowmeter calibration. This calibration was applied to the flowmeter reading at the measurement point ("mark" on the strip-chart) to determine the instantaneous flowrate. The flowmeter was thus calibrated continuously throughout a run.

D. 4 Breakthrough Calculations

Breakthrough times were estimated by visual observation of fluids in the sight glass, combined with the strip-chart records. Differential pressures and flowmeter readings at breakthrough were read from the strip-chart. Pore volumes injected at breakthrough were calculated as that of the measurement before breakthrough, plus the average flowrate multiplied by the elapsed time. Recovery at breakthrough was assumed to be equal to pore volumes injected.

Breakthrough flowrate was calculated using the flowmeter calibration between the data points before and after breakthrough.

D. 5 Curve Fitting and Relative Permeability Calculations

Recovery and injectivity data were curve fit by least squares methods using the following equations:

$$
\begin{gather*}
N_{p}=a_{0}+a_{1}\left[\ln \left(W_{i}\right)\right]+a_{2}\left[\ln \left(W_{i}\right)\right]^{2} \tag{D.9}\\
\ln \left(W_{i} I_{r}\right)=b_{0}+b_{1}\left[\ln \left(W_{i}\right)\right]+b_{2}\left[\ln \left(W_{i}\right)\right]^{2} \tag{D.10}
\end{gather*}
$$

The data point immediately after breakthrough was disregarded in both calculations. This point appeared to have considerable error because of rapid saturation and flowing volume changes immediately after breakthrough. Differential pressure data sometimes changed unexplicably near the end of certain runs. When this occurred, the questionable injectivity data was ignored. All recovery data was always used.

Relative permeabilities were calculated from the Welge (1952) and Johnson, Bossler, and Naumann (1959) equations:

$$
\begin{equation*}
f_{0}=\frac{d\left(N_{p}\right)}{d\left(W_{i}\right)}=\left[a_{1}+2 a_{2} \ln \left(W_{i}\right)\right] / W_{i} \tag{D.11}
\end{equation*}
$$

$$
\begin{align*}
S_{w 2} & =S_{w i}+N_{p}-f_{0} W_{i} \\
& =S_{w i}+\left(a_{0}-a_{1}\right)+\left(a_{1}-2 a_{2}\right) \ln \left(W_{i}\right)+a_{2}\left[\ln \left(W_{i}\right)\right]^{2} \tag{D.12}
\end{align*}
$$

$$
\begin{equation*}
k_{r w} / k_{r o}=\left(1 / f_{0}-1\right)\left(\mu_{w} / \mu_{0}\right) \tag{D.13}
\end{equation*}
$$

$$
\begin{align*}
\frac{f_{o}}{k_{r o}} & =\frac{d\left[\frac{1}{I_{r} W_{i}}\right]}{d\left[\frac{1}{W_{i}}\right]} \\
& =\frac{d\left[\ln \left(W_{i} I_{r}\right)\right]}{d\left[W_{i}\right]} \frac{W_{i}}{I_{r}} \\
& =\frac{b_{1}+2 b_{2}\left[\ln \left(W_{i}\right)\right] W_{i}}{\exp \left[b_{0}+b_{1} \ln \left(W_{i}\right)+b_{2}\left[\ln \left(W_{i}\right)\right]^{2}\right]} \tag{D.14}
\end{align*}
$$

Equation D. 14 calculates the relative permeabilities relative to oil permeability at irreducible water saturation (the relative injectivity base is the injectivity just prior to initiation of water injection). Relative permeabilities were normalized to absolute permeability using the calculated effective oil Permeability at irreducible water saturation.

- 77 -

Appendix E: DISPLACEMENT DATA AND PLOTS

This appendix contains the oil and water displacement data and calculations from computer program DSPCLC (see Appendix F). Also included are relative permeability and permeability ratio curves, as well as recovery and injectivity plots, for the waterfloods; and graphs of the recovery and injectivity for the oilfloods.

E. 1 Displacement Data. Calculations and Graphs

DISPLACEMENT EXPERIMENT CALCULATIONS

PORE	VOLUM		390.8					DATE			3/27/84		
CORE	LENGT		51.46	c角				CORE/RUH			$1 / 1$		
CORE	DIAME	TER	5.044	6 m				DISPLACEMENT			OIL-Salt		
DEAD	VOL'S:	U	2.2	cc				CORE TEMPERATURE				5.0 F	
		D	3.0	$c c$				OUTLET TEMPERATURE				5.0 F	
SEPAR	ARATOR	OUTLET	82.72	cm				WATER VISCOSITY				944 cp	
BUBBI	BLE VEL	OCITY	15.87	cm/sec				OIL VISCOSITY				.38 cp	
ABSOL	OLUTE P	ERM	6.412	darcies				VISCOSITY RATIO				. 96	
INIT	T SAT	- OIL	0.0	\%				WATER DENSITY RATIO			1.0	000	
FINAL	AL SAT	- WATER	10.9	\%				OIL	DENSITY	Y RATIO	1.0	000	
		SEPA	RATOR	D-VOL		FLOWRATE							
	TIME	HEIGHT	CALIB	INJ	D-P		CHART		ce				
	(min)	(em)	(eerem)	\rightarrow (ec)	(psi)	RVE	Qt	CAL	min	PVi		1/Inj	
ST		72.00											
0	0.00	71.90	4.93	0.0	4.75	1.38	1.38	31.5	43.5	0.000	. 000	1.00	
1	2.32	53.00	4.93	94.0	40.20	1.29	1.21	31.5	38.1	. 235	. 237	9.65	
2	4.68	35.50	4.96	88.0	69.80	1.18	1.14	31.5	35.9	. 460	. 46	17.79	
3	7.32	17.00	5.00	91.6	92.60	1.11	1.07	31.3	33.5	. 694	. 699	25.28	
BT	9.45				108.60		1.02	34.7	35.4	. 877	. 877	28.07	
4	9.53	2.50	5.00	73.9	105.40	. 96	. 85	34.7	29.5	. 884	. 877	32.69	
5	12.60	1.90	5.00	94.8	101.40	. 84	. 84	36.8	30.9	1.126	. 879	30.03	
6	15.55	1.40	5.00	97.5	100.40	. 84	. 84	39.3	33.1	1.376	. 885	27.81	
7	18.70	1.30	5.00	91.3	100.00	. 84	. 84	34.5	29.8	1.609	. 886	31.59	
8	21.65	1.30	5.00	93.0	99.20	. 84	. 84	37.5	31.5	1.847	. 886	28.81	
9	24.65	. 90	5.00	228.7	98.80	. 85	. 85	89.7	76.2	2.432	. 891	11.86	

```
Krw - INITIAL =.850
Kro - FINAL =2.003
```

Table E. 1 Oil Displacement Calculations -- Run 1/1

Figure E. 1 Recovery and $1 /$ Injectivity vs. Pore Volumes Injected - Run 1/1

DISPLACEMENT EXPERIMENT CALCULATIONS

FORE VOLUME	390.8	cc	DATE	3/27/84
CORE LENGTH	51.46	Cm	CORE/RUN	1/2
CORE DIAMETER	5.044	cm	DISPLACEMENT	Salt Y-OIL
DEAD VOL'S: U	2.2	cc	CORE TEMPERATURE	75.0 F
D	3.0	cc	OUTLET TEMPERATURE	75.0 F
SEPARATOR OUTLET	82.72	cm	WATER VISCOSITY	. 944 cp
BUBBLE VELOCITY	44.83	cm/sec	OIL VISCOSITY	26.38 cp
ABSOLUTE PERM	6.412	darcies	VISCOSITY RATIO	27.96
INIT SAT - WATER	10.9	5	WATER DENSITY RATIO	1.0000
FINAL SAT - OIL	15.7	\%	OIL DENSITY RATIO	1.0000

		SEPARATOR		D-VOL		FLOWRATE				PYi	Res	Inj
	TIME	HEIGHT	CALIB	INJ	D-		CHAR		CC			
	(min)	¢ Cm_{7} -	<ectem>	(e)t	(psi)	AVG	O_{4}	CAL	$\overline{\mathrm{min}}$			
ST		7.40										
0	0.00	7.20	5.00	0.0	130.00	. 84	. 84	38.7	32.5	0.000	. 000	1.00
1	2.23	25.10	5.00	90.0	75.60	. 95	1.06	38.7	41.0	. 225	. 223	2.17
BT	2.66				62.00		1.08	38.7	41.8	. 271	. 271	2.70
2	4.42	42.50	5.00	93.0	45.80	1.10	1.13	38.7	43.8	. 463	. 442	3.82
3	6.55	49.60	4.93	99.0	29.00	1.16	1.18	40.0	47.2	. 716	. 527	6.51
4	10.53	52.80	4.93	183.0	20.80	1.19	1.19	38.6	45.9	1.184	. 566	8.83
5	12.38	53.90	4.93	95.0	18.80	1.19	1.19	43.2	51.4	1.427	. 580	10.92
6	14.32	55.20	4.93	91.5	17.00	1.19	1.18	39.8	46.9	1.661	. 597	11.03
7	16.40	56.30	4.93	98.0	16.00	1.18	1.18	39.9	47.0	1.912	. 619	11.75
8	18.27	57.20	4.93	90.0	14.80	1.18	1.17	40.9	47.8	2.143	. 622	12.91
9	20.22	58.10	4.93	95.0	14.00	1.18	1.18	41.3	48.7	2.386	. 633	13.91
10	34.25	62.00	4.93	667.0	10.80	1.17	1.16	40.6	47.1	4.092	. 682	17.44
11	50.12	64.20	4.93	790.0	9.40	1.15	1.14	43.3	49.4	6.114	. 710	20.99
12	51.12	64.40	4.93	50.0	8.60	1.14	1.14	43.9	50.0	6.242	. 712	23.24
13	77.50	65.20	4.93	999.0	7.80	1.13	1.13	33.5	37.9	8.798	. 722	19.40
14	104.62	66.10	4.93	999.0	7.00	1.12	1.12	32.9	36.8	11.354	. 734	21.03

CURVE FITS
Recovery
Inj. X Pore Vol. Inj.

$c 0$	$C 1$	$c 2$
$5.5292 E-01$	$9.9545 E-02$	$-9.2229 E-03$
$2.0942 E+00$	$1.7496 E+00$	$-1.4137 E-01$

$\begin{array}{cc}\text { 关 } E-M A X \\ 1.6 & \frac{7 E-R Y G}{.7} \\ 14.2 & 4.6\end{array}$

	+	A19	R-CALC	$\underline{\mathrm{R}-\% \mathrm{E}}$	I*P-ACT	I*P-CALC	$\underline{I * P-\% E ~}$	Sw	Krw	Kro	K $\mathrm{Cl} / \mathrm{Ko}$
								. 109	0.0000	. 649	0.000
BT		. 271	. 473		. 73	2.03					
3	. 715	. 527	. 519	1.6	4.66	4.45	4.4	. 522	. 067	. 324	. 206
4	1.184	. 566	. 570	. 5	10.45	10.87	4.0	. 582	. 115	. 286	. 403
5	1.427	. 580	. 587	1.2	15.58	14.86	4.6	. 603	. 137	. 267	. 513
6	1.661	. 597	. 601	. 8	18.33	19.03	3.8	. 629	.157	. 252	. 622
7	1.912	. 610	. 614	. 5	22.47	23.78	5.8	. 635	.175	. 236	. 744
8	2.143	. 622	. 623	. 3	27.66	28.37	2.6	. 647	. 192	. 224	. 868
9	2.386	. 633	. 633	-1	33.18	33.40	. 7	. 658	.299	. 212	. 985
10	4.092	. 682	. 675	1.0	71.36	72.15	1.1	. 710	. 298	. 153	1.951
11	6.114	. 710	. 793	. 9	128.30	121.32	5.4	. 746	. 368	. 113	3.265
12	6.242	. 712	. 784	1.1	145.04	124.46	14.2	. 748	. 372	. 111	3.354
13	8.798	. 722	.726	. 5	170.70	186.82	9.4	. 775	. 432	. 082	5.250
14	11.354	. 734	. 741	. 9	238.83	247.25	3.5	. 795	.474	. 064	7.371

Table E. 2 Water Displacement Calculations - Run 1/2

Figure E. 2 Recovery and Injectavity x Pore Volumes Injected vs. Pore Volumes Injected -- Run $1 / 2$

Figure E. 3 Recovery and Injectivity \times Pore Volumes Injectedvs. 1/Pore Volumes Injected-Run 1/2

Figure E. 4 Relative Permeabilities vs. Water Saturation - Run $1 / 2$

Figure E. 5 Relative Permeability Ratio vs. Water Saturation - Run 1/2

DISPLACEMENT EXPERIMENT CALCULRTIONS

PORE VOLUME	390.8	cc	DATE	3/28/84	
CORE LENGTH	51.46	c cm	CORE/RUN	1/3	
CORE DIAMETER	5.044	C ${ }^{\text {m }}$	DISPLACEMENT	OIL-Sa	alt W
DERD VOL'S: U	2.2	cc	CORE TEMPERATURE	74.0	F
D	3.0	ce	OUTLET TEMPERATURE	74.0	F
SEPARATOR OUTLET	82.72	cm	WATER VISCOSITY	. 956	cp
BUBBLE VELOCITY	4.56	cmosec	OIL VISCOSITY	27.03	cp
ABSOLUTE PERM	6.412	darcies	VISCOSITY RATIO	28.27	
INIT SAT - OIL	15.7	\%	WATER DENSITY RATIO	1.0000	
FINAL SAT - WATER	10.9	$\%$	OIL DENSITY RATIO	1.0000	

	$\begin{gathered} \text { TIME } \\ \left\langle m_{i}+\boldsymbol{n}\right\rangle \end{gathered}$	SEPARATOR		D-QOL		FLOWRATE				PVi	Rec $1 / \operatorname{Inj}$	
		HEIGHT	CALIB	INJ	D-p		CHART		cc			
		सm>	(ecrem)	女ट,	〈psi>	AQG	0 O	C'AL	min			
ST		79.80										
0	0.00	79.90	4.93	0.0	24.20	1.19	1.19	34.0	40.5	0.000	. 000	1.00
1	2.68	57.00	4.93	112.3	56.50	1.04	. 99	34.0	33.7	. 282	. 290	2.81
2	5.52	38.70	4.94	91.5	84.70	. 95	. 92	34.0	31.3	. 516	. 525	4.53
BT	7.96				102.50		. 87	33.1	28.8	. 698	. 698	5.95
3	8.65	22.50	5.00	91.3	101.00	. 88	. 84	33.1	27.8	. 749	. 723	6.07
4	12.15	22.00	5.00	98.5	100.50	. 85	. 85	33.1	28.1	1.001	. 720	5.97
5	15.42	21.80	5.00	92.0	100.00	. 85	. 85	33.1	28.2	1.237	. 723	5.94
6	19.38	21.30	5.00	111.9	99.60	. 85	. 85	33.2	28.2	1.523	. 729	5.90
7	22.62	21.10	5.00	92.0	99.60	. 85	. 85	33.5	28.5	1.759	. 731	5.85
8	25.87	20.90	5.00	93.1	99.60	. 85	. 86	33.7	29.0	1.997	. 734	5.74
9	29.08	20.90	0.00	93.2	99.60	. 86	. 86	33.7	29.0	2.235	. 734	5.75

Krw - INITIAL=.157
Kro - FINAL $=.773$
Table E. 3 oil Displacement Calculations -- Run 1/3

DISPLACEMENT EXPERIMENT CALCULATIONS

Table E. 4 Water Displacement Calculations-Run 1/4

figure E.7 Recovery and Injectivity x Pare Valumes Injected us.
Pore Volumes Injected -- Run 1/4

Figure E. 8 Recovery and Injectivity \mathbf{x} Pore Volumes Injected us. 1/Pore Volumes Injected - Run 1/4

Figure E. 9 Relative Permeabilities vs. Water Saturation -- Run 1/4

Figure E. 10 Relative Permeability Ratio vs. Water Saturation -- Run 1/4

DISPLRCEMENT EXPERIMENT CALCULATIONS


```
Krw - INITIAL = .454
Kro - FINAL =.789
```

Table E. 5 Oil Displacement Calculations - Run 1/7

figure E. 11 Recovery and 1/Injectivity us.Pore Volumes
Injected -- Run $1 / 7$

DISPLACEMENT EXPERIMENT CALCULATIONS

PORE VOLUME	390.8	ce	DATE	4-2-84
CORE LENGTH	51.46	cm	CORE/RUN	1/8
CORE DIAMETER	5.044	C ${ }^{\text {m }}$	DISPLACEMENT	Salt W-OIL
DEAD VOL'S: U	2.2	ec	CORE TEMPERATURE	71.0 F
D	3.0	ce	OUTLET TEMPERATURE	71.0 F
SEPARATOR OUTLET	82.72	cm	WATER VISCOSITY	.995 cp
BUBBLE VELOCITY	12.95	cm/sec	OIL VISCOSITY	29.08 cp
ABSOLUTE PERM	6.412	darcies	VISCOSITY RATIO	29.23
INIT SAT - WATER	10.4	L	WATER DENSITY RRTIO	1.0000
FINAL SAT - OIL	16.4	\%	OIL DENSITY RATIO	1.0000

	$\begin{gathered} \text { TIME } \\ (\mathrm{min}) \end{gathered}$	SEPARATOR		D-VOL		FLOWRATE				PVi	Rec	Inj
		HEIGHT	CALIB	INJ	D-P		CHART		ce			
		(cm)	(ce/cm)	(cc)	(psi)	AVG	0 Ot	CAL	min			
ST		11.90										
0	0.00	11.20	5.00	0.0	127.00	1.12	1.12	33.8	37.8	0.000	. 000	1.00
1	1.97	29.20	5.00	93.5	109.00	1.40	1.55	33.8	52.3	. 234	. 223	1.61
BT	2.13				99.00		1.60	33.8	54.0	.257	. 257	1.83
2	3.60	44.60	4.99	93.2	70.00	1.69	1.83	33.8	61.6	.472	. 414	2.96
3	5.07	52.80	4.93	96.2	47.00	1.90	1.98	34.5	68.2	. 718	. 512	4.87
4	6.45	55.90	4.93	94.0	39.00	2.00	2.03	34.0	68.8	. 959	. 549	5.92
5	7.78	57.70	4.93	93.0	34.00	2.04	2.05	34.2	70.1	1.197	. 571	6.92
6	9.10	59.10	4.93	92.5	31.00	2.05	2.06	34.3	70.6	1.433	. 589	7.65
7	10.42	60.20	4.93	92.5	28.00	2.06	2.07	34.1	70.6	1.670	. 602	8.47
8	11.73	61.30	4.93	93.4	26.50	2.08	2.08	34.1	70.9	1.909	. 616	8.99
9	13.03	62.20	4.93	92.9	25.00	2.08	2.08	34.4	71.5	2.147	. 627	9.60
10	14.37	63.05	4.93	96.5	23.50	2.08	2.09	34.8	72.7	2.394	. 638	10.39
11	15.70	63.80	4.93	94.3	22.50	2.10	2.10	33.7	70.7	2.635	. 647	10.56
12	16.98	64.40	4.93	92.1	21.50	2.10	2.10	34.2	71.8	2.871	. 655	11.21
13	23.42	66.85	4.93	461.0	18.50	2.10	2.10	34.1	71.7	4.050	. 686	13.01
14	29.58	68.40	4.93	453.0	17.00	2.10	2.10	35.0	73.5	5.210	. 705	14.51
15	35.63	69.50	4.93	444.0	16.00	2.09	2.08	35.1	73.0	6.346	, 719	15.33
16	42.20	70.30	4.93	483.0	14.50	2.06	2.03	35.7	72.3	7.582	. 729	16.75
17	43.53	70.50	4.93	99.4	14.50	2.03	2.03	36.7	74.4	7.836	. 732	17.22
	CURVE	FITS		C0		Cl				LE-MAX	\% $\mathrm{E}-\mathrm{AV}$	
Rec	Very	- Vol.	Inj.	5.5079 E 1.8117 E	$\begin{array}{ll}-01 & 1 . \\ +00 & 1 .\end{array}$	$6950 E$ $6513 E$	-01 +80	1.028	$E-02$ $E-02$	2.3	. 2	

	P4	R - ACT	CALC		*P-ne	P-CAL	I*P-\%E	Sw	Krw	Kro	K $\mathrm{K}_{1} / \mathrm{Ko}$
								. 104	0.000	. 852	0.000
BT		. 257	. 459		. 47	1.62					
3	. 718	. 512	. 513	. 2	3.50	3.51	. 4	. 501	. 070	. 396	. 177
4	. 959	. 549	. 546	. 5	5.68	5.71	. 5	. 540	. 093	. 352	. 263
5	1.197	. 571	. 570	. 2	8.29	8.21	. 9	. 568	. 112	. 318	. 353
6	1.433	. 589	. 589	. 1	10.96	10.98	. 2	. 591	.130	. 291	. 446
7	1.670	. 602	. 604	. 3	14.14	13.99	1.1	. 609	. 146	. 269	. 543
8	1.909	. 616	. 617	. 2	17.16	17.24	. 5	. 625	. 161	. 250	. 645
9	2.147	. 627	. 628	. 2	20.61	20.67	. 3	. 639	.175	. 234	. 749
10	2.394	. 638	. 639	. 1	24.88	24.40	1.9	. 651	. 188	. 219	. 860
11	2.635	. 647	.647	. 0	27.82	28.21	1.4	. 662	. 201	. 206	. 972
12	2.871	. 655	. 655	. 0	32.18	32.06	. 4	.671	. 212	. 195	1.084
13	4.050	. 686	. 684	. 3	52.69	53.05	. 7	. 707	. 260	. 155	1.682
14	5.210	. 705	. 704	. 2	75.60	75.78	. 2	. 732	. 299	. 129	2.325
15	6.346	. 719	. 718	. 1	97.28	99.54	2.3	. 751	. 330	.110	3.002
16	7.582	. 729	. 730	. 2	126.97	126.65	. 3	. 767	. 360	. 095	3.790
17	7.836	. 732	. 733	.1	134.97	132.36	1.9	. 769	. 366	. 092	3.958

Table E. 6 Water Displacement Calculations - Run 1/8

figure E. 12 Recovery and Injectivity \times Pore Volumes Injected us.
Pare Volumes Injected-- Run 1/8

figure E. 13 Recovery and Injectavity x Pore VoLumes Injected us. 1/Pore Volumes Injected-Run 1/8

Figure E. 14 Relative Permeabilities vs. Water Saturation - Run 1/8

Figure E. 15 Relative Permeability Ratio vs. Water Saturation -- Run 1/8

DISPLACEMENT EXPERIMENT CALCULATIONS

Table E. 7 Oil Dispalcement Calculations -- Run 1/9

figureE. 16 Recovery and 1/Injectivity vs. Pore Volumes Injected-Run 1/9

DISPLACEMENT EXPERIMENT CALCULATIONS

PORE VOLUME	390.8	cc	DATE	4-3-84	
CORE LENGTH	51.46	cm	CORE/RUN	1/10	
CORE DIAMETER	5.044	cm	DISPLACEMENT	Srlt	W-OIL
DEAD VOL'S: U	2.2	c	CORE TEMPERATURE	76.0	
D	3.0	c	OUTLET TEMPERATURE	76.0	F
SEPARATOR OUTLET	82.72	cm	WATER VISCOSITY	. 932	
BUBBLE VELOCITY	15.61	cm/sec	OIL VISCOSITY	25.76	cp
ABSOLUTE PERM	6.412	darsies	VISCOSITY RATIO	27.66	
INIT SAT - WATER	9.6	\%	WATER DENSITY RATIO	1.0000	
FINAL SAT - OIL	16.9	\%	OIL DENSITY RATIO	1.0000	

		SEPARATOR		D-VOL		FLOWRATE				PWi	Rec	Inj
	TIME	HEIGHT	CALIB	INJ	-P		CHAR		cc			
	(min)	(5 m)	(cc/cm)	(ec)	(psi)	AVG	Qt	CAL	min			
ST		12.40										
0	0.00	11.80	5.01	0.0	109.00	. 96	. 96	35.5	34.0	0.000	. 000	1.00
1	1.68	29.50	5.01	93.9	108.00	1.35	1.50	35.5	53.2	. 235	. 220	1.58
BT	1.77				106.00		1.78	35.5	63.1	. 248	. 248	1.91
2	3.35	46.60	4.93	96.9	67.00	1.64	1.77	35.5	62.7	. 483	. 430	3.00
3	4.82	54.00	4.97	90.0	34.00	1.70	1.39	36.1	50.2	. 713	. 518	4.73
4	6.93	56.50	4.99	90.6	23.00	1.21	1.12	35.4	39.6	. 945	. 549	5.52
5	9.27	58.30	4.99	95.7	20.00	1.12	1.13	36.6	41.4	1.190	. 571	6.63
6	11.58	59.80	4.99	96.0	18.00	1.13	1.13	36.7	41.4	1.435	. 590	7.37
7	13.90	61.00	4.99	96.1	16.50	1.14	1.13	36.4	41.1	1.681	. 605	7.98
8	16.25	62.10	4.99	97.6	15.00	1.14	1.14	36.4	41.5	1.931	. 619	8.87
9	18.52	63.00	4.98	95.1	14.50	1.14	1.15	36.8	42.3	2.174	. 631	9.35
10	20.80	63.80	4.98	96.2	14.00	1.15	1.15	36.6	42.1	2.420	. 641	9.64
11	23.10	64.50	4.98	97.2	13.00	1.15	1.15	36.7	42.3	2.669	. 650	10.41
12	25.37	65.15	4.98	96.9	12.50	1.15	1.15	37.2	42.7	2.917	. 658	10.95
13	32.87	67.50	4.98	453.0	11.50	1.15	1.16	52.5	60.9	4.076	. 688	16.97
14	46.63	69.20	4.98	474.0	10.00	1.16	1.15	29.7	34.1	5.289	. 710	10.93
15	56.88	70.30	4.98	460.0	9.50	1.16	1.16	38.7	44.9	6.466	. 724	15.13
16	66.83	71.10	4.98	456.0	9.00	1.16	1.15	39.5	45.4	7.633	. 734	16.17
17	68.93	71.20	4.98	94.0	9.00	1.15	1.15	38.9	44.8	7.874	. 735	15.93

CURVE FITS	co	C1	c2	E-40才
Recovery	5.5401E-01	$1.0563 \mathrm{E}-01$	-8.2241E-03	. 3 . 1
Inj. X Pore Vol.	$1.7700 \mathrm{E}+00$	$1.6942 \mathrm{E}+00$	-1.0305E-01	28.24 .5

	-1	R-AGT	-GAL	R-\%E I*P-ACT		I*P-CRLC I*P-\%E		Sw	Krw	Kro	Kw/Ko
								$\overline{.096}$	0.000	.791	0.000
BT		. 248	. 469		. 47	1.54					
3	. 713	. 518	. 517	. 2	3.37	3.27	2.9	. 502	. 063	. 321	. 196
4	. 945	. 549	. 548	. 1	5.21	5.33	2.3	. 537	. 884	. 295	. 284
5	1.190	. 571	. 572	. 2	7.88	7.85	. 4	. 565	.104	. 272	. 382
6	1.435	. 590	. 591	. 2	10.58	10.68	1.0	. 587	. 122	. 253	. 484
7	1.681	. 605	. 607	. 2	13.42	13.77	2.6	.606	. 139	. 236	. 590
8	1.931	. 619	. 620	. 1	17.12	17.12	. 8	. 621	. 155	. 221	. 700
9	2.174	. 631	. 631	. 1	20.33	20.57	1.2	. 634	.169	. 208	. 811
10	2.420	. 641	. 641	.0	23.33	24.22	3.8	. 646	. 182	. 197	. 925
11	2.669	. 650	. 650	- 0	27.79	28.05	. 9	. 656	. 195	.187	1.042
12	2.917	. 658	. 658	. 1	31.95	32.00	. 1	. 656	.207	.178	1.162
13	4.076	. 688	. 686	. 3	69.16	51.78	25.1	. 700	. 254	. 145	1.750
14	5.289	. 710	. 707	. 3	57.82	74.14	28.2	. 725	. 293	. 121	2.408
15	6.466	. 724	. 723	. 1	97.83	96.86	1.0	. 744	. 324	. 105	3.084
16	7.633	. 734	. 735	. 1	123.41	120.02	2.8	. 759	. 349	. 092	3.787
17	7.874	. 735	. 737	. 3	125.42	124.85	. 5	.761	. 354	.090	3.935

Table E, 8 Water Dispalcement Calculations - Run 1/10

Figure E. 17 Recovery and Injectivity x Pore Volumes Injected vs. Pore Volumes Injected - Run 1/10

figureE. 18 Recovery and Injectivity x Pare Volumes Injected vs. $1 /$ Pore Valumes Injected - Run $1 / 10$

Figure E. 19 Relative Permeabilities vs. Water Saturation -- Run 1/10

Figure E. 20 Relative Permeability Ratio vs. Water Saturation - Run $1 / 10$

DISPLACEMENT EXPERIMENT CRLCULRTIONS

Krw - INITIAL $=.436$
Kro FINAL $=.737$
Table E,9 Oil Dispalcement Calculations - Run I/I 1

Figure E. 21 Recovery and 1/Injectivity vs. Pore Volumes Injected - Run 1/11

DISPLACEMENT EXPERIMENT CALCULATIONS

PORE VOLUME	390.8		DATE	4-9-84
CORE LEHGTH	51.46	cm	CORE/RUN	1/12
CORE DIAMETER	5.044	cm	DISPLACEMENT	Salt W-OIL
DEAD VOL'S: U	2.2	c	CORE TEMPERATURE	72.0 F
D	3.8	c	OUTLET TEMPERATURE	72.0
SEPARATOR OUTLET	82.72	cm	WATER VISCOSITY	. 981 cp
BUBBLE VELOCITY	12.83	$\mathrm{cm} / \mathrm{sec}$	OIL VISCOSITY	28.37 cp
ABSOLUTE PERM	6.412	darcies	VISCOSITY RATIO	28.91
INIT SAT - WATER	9.7	\%	WATER DENSITY RATIO	1.0000
FINAL SAT - OIL	18.5	\%	OIL DENSITY RATIO	1.0000

		SEPARATOR		D-VOLINJ		FLOWRATE				PVi	Rec	Inj
	TIME	HEIGHT	CALIB				CHART		cc			
	(mint	(Em)	(ecrem)	सec)	(psi)	AVG	Q t	CAL	min			
ST		9.?日										
0	0.00	8.80	4.97	0.0	127.50	1.53	1.53	29.6	45.3	0.000	. 200	1.00
BT	1.30				127.30		2.40	29.6	71.0	. 288	. 288	1.57
1	1.48	27.90	4.97	94.8	127.30	2.10	2.45	29.6	72.5	. 237	. 236	1.60
2	2.63	42.90	4.96	94.3	105.00	2.77	3.10	29.6	91.8	. 478	. 419	2.46
3	3.60	49.50	4.97	96.0	76.00	3.27	3.38	30.4	102.7	. 724	. 497	3.80
4	4.52	52.90	5.00	96.0	61.50	3.46	3.54	30.3	107.1	. 970	. 539	4.90
5	5.40	54.90	5.00	95.9	54.00	3.56	3.59	30.5	109.5	1.215	. 563	5.71
6	6.40	56.80	5.00	110.7	48.00	3.61	3.63	30.7	111.3	1.498	. 587	6.53
7	7.27	57.90	4.98	95.8	44.50	3.64	3.66	30.4	111.1	1.743	. 601	7.03
8	8.12	58.90	4.95	95.5	41.00	3.67	3.67	30.6	112.4	1.988	. 613	. 7.71
9	8.93	59.70	4.95	92.1	39.00	3.68	3.68	30.6	112.8	2.223	. 623	8.14
10	9.77	60.50	4.95	93.5	37.30	3.69	3.69	30.4	112.2	2.463	. 633	8.47
11	10.60	61.10	4.95	95.2	35.50	3.70	3.70	30.9	114.2	2.706	. 641	9.06
12	11.43	61.70	4.95	95.2	34.60	3.71	3.71	30.8	114.2	2.950	. 649	9.29
13	12.27	62.20	4.95	94.0	33.00	3.71	3.71	30.4	112.8	3.190	. 655	9.62
14	16.17	64.00	4.95	447.0	29.80	3.72	3.72	30.8	114.6	4.334	. 677	10.83
15	20.35	65.40	4.95	484.0	27.20	3.73	3.75	31.0	116.3	5.573	. 695	12.04
16	24.37	66.40	4.95	473.0	26.00	3.75	3.74	31.4	117.4	6.783	. 708	12.72
17	28.25	67.00	4.95	459.0	25.50	3.74	3.73	31.6	117.9	7.958	. 715	13.01
18	29.08	67.20	4.95	99.1	25.00	3.73	3.73	31.9	118.9	8.211	. 718	13.39

CURVE FITS	co	C1	c2	E-M
Recovery	5.3536E-01	$1.2983 \mathrm{E}-01$	2.1145E-82	2.1
nj. X Pore Vol. Inj.	1.5779E+00	$1.7659 \mathrm{E}+0$	1.3888E-01	3.81 .4

	PYi	R-ACT	R-CALC	R-\%E I*P-ACT		I*P-CALC I*P-\%E		Sw	Krw	Kro	$\mathrm{KW} / \mathrm{KO}$
								. 097	0.000	. 991	0.808
BT		. 208	. 398		. 33	. 84					
2	. 478	. 419	. 428	2.1	1.18	1.22	3.8	. 364	- 029	. 432	, 068
3	. 724	. 497	. 491	1.2	2.75	2.70	1.9	. 445	. 055	. 395	. 140
4	. 970	. 539	. 531	1.3	4.76	4.59	3.5	. 497	.879	. 358	, 221
5	1.215	. 563	. 560	. 6	6.93	6.80	2.0	. 535	. 101	. 324	. 311
6	1.498	. 587	. 584	. 5	9.78	9.67	1.1	. 569	. 124	. 291	. 425
7	1.743	. 601	. 681	. 0	12.26	12.39	1.0	. 592	. 142	. 267	. 533
8	1.988	. 613	. 615	. 2	15.33	15.26	.5	. 611	. 159	. 245	. 648
9	2.223	. 623	. 625	. 3	18.10	18.18	. 4	. 627	. 174	. 227	. 765
10	2.463	. 633	. 635	. 3	20.85	21.25	1.9	. 640	. 188	.210	. 894
11	2.706	. 641	. 644	. 4	24.52	24.49	. 1	. 653	. 202	. 195	1.833
12	2.950	. 649	. 651	. 4	27.42	27.82	1.5	. 654	. 214	. 182	1.179
13	3.190	. 655	. 658	. 4	30.70	31.18	1.6	. 674	. 225	. 170	1.332
14	4.334	. 677	. 688	. 4	46.93	47.89	2.1	. 709	. 275	, 126	2.177
15	5.573	. 695	. 696	. 1	67.08	66.80	. 4	. 736	. 316	. 895	3.337
16	6.783	. 788	. 705	. 2	86.25	85.59	. 8	. 755	. 348	. 073	4.768
17	7.958	. 715	.714	. 2	103.55	103.87	. 3	. 769	. 374	. 058	6.503
18	8.211	. 718	. 715	. 4	109.95	107.80	2.0	. 771	. 379	. 055	6.931

Table E, 10 Water Displacement Calculations - Run I/12

figureE 22 Recovery and Injectivityx Pare Volumes Injected vs. Pare Volumes Injected-Run 1/12

figure E. 23 Recovery and Injectivity \mathbf{x} Pore Volumes Injected vs, 1/Pore Volumes Injected -- Run 1/12

figure E. 24 Relative Permeabilities vs. Water Saturation - Run $1 / 12$

Figure E. 25 Relative Permeability Ratio vs. Water Saturation - Run 1/12

DISPLACEMENT EXPERIMENT CALCULATIONS

Table E. 11 Oil Displacement Calculations -- Run 1/13

PORE VOLUMES INJECTED
figure E. 26 Recovery and 1/Injectivity vs. Pore Volumes Injected - Run $1 / 13$

DISPLACEMENT EXPERIMENT CALCULATIONS

Table E. 12 WaterDisplacement Calculations-Run 1/14

Figure E.27 Recovery and Injectivity x Pore Volumes Injected us.
Pare Volumes Injected-- Run 1/14

figure E. 28 Recovery and Injectavity x Pore Volumes Injected vs. 1/Pore Volumes Injected-Run 1/14

Figure E. 29 Relative Permeabilities vs. Water Saturation -- Run 1/14

figure E. 30 Relative Permeability Ratio vs. Water Saturation - Run 1/14

DISPLACEMENT EXPERIMENT CALCULATIONS

Table E. 13 Oil Displacement Calculations - Run 1/15

figure E. 31 Recovery and $1 /$ Injectivity vs. Pore Volumes Injected-Run $1 / 15$

DISPLACEMENT EXPERIMENT CALCULATIONS

PORE VOLUME	390.8	$c c$	DATE	4/15/84
CORE LENGTH	51.46	cm	CORE/RUN	1/16
CORE DIAMETER	5.044	cm	DISPLACEMENT	Salt w-OIL
DEAD VOL'S: U	2.2	ce	CORE TEMPERATURE	74.0 F
D	3.0	cc	OUTLET TEMPERATURE	74.0 F
SEPARATOR OUTLET	82.72	cm	WATER VISCOSITY	. 956 cp
BUBBLE VELOCITY	10.69	cm/sec	OIL VISCOSITY	27.03 сp
ABSOLUTE PERM	6.412	darcies	VISCOSITY RATIO	28.27
INIT SAT - WATER	6.5	\%	WATER DENSITY RATIO	1.0000
FINAL SAT - OIL	19.8	\%	OIL DENSITY RATIO	1.0000

		SEPARATOR		D-VOL		FLOWRATE				PVi	Rec	In. ${ }^{\text {d }}$
	TIME	HEIGHT	CALIB	INJ	D-P		CHART		ce			
	(mint	(en)	(cescm)	-	(psi)	AYG	$0{ }^{\text {Ot }}$	CAL	min			
ST		13.00										
0	0.00	12.50	4.96	0.0	65.00	. 60	. 60	38.4	23.0	0.000	.000	1.00
1	3.58	30.40	4.96	87.9	50.00	. 65	. 66	38.4	25.3	. 219	. 219	1.43
BT	5.18				38.50		. 67	38.4	25.7	.327	. 327	1.89
2	7.33	47.10	4.98	98.6	28.00	. 69	. 70	38.4	26.9	.472	. 427	2.71
3	10.82	55.00	4.97	97.6	17.00	. 71	. 72	39.5	28.4	. 721	. 524	4.72
4	14.23	57.70	4.96	96.9	14.00	. 73	. 73	38.9	28.4	. 969	. 556	5.72
5	17.63	59.60	4.96	97.9	12.50	. 74	. 74	38.9	28.8	1.220	. 580	6.50
6	21.03	61.00	4.96	99.2	11.50	. 74	. 75	39.4	29.6	1.474	. 598	7.26
7	24.37	62.20	4.96	97.9	10.50	. 75	. 75	39.2	29.4	1.724	. 613	7.89
8	27.68	63.20	4.97	97.0	9.50	. 75	. 75	39.0	29.2	1.972	. 626	8.69
9	31.45	64.15	4.98	110.8	9.00	. 75	. 75	39.2	29.4	2.256	. 638	9.22
10	34.68	64.90	4.98	96.4	9.00	. 75	. 75	39.8	29.8	2.503	. 647	9.35
11	37.87	65.60	4.98	95.4	8.50	. 75	. 75	40.0	30.0	2.747	. 656	9.95
12	41.15	66.20	4.98	99.0	8.00	. 75	. 75	40.2	30.2	3.000	. 664	10.64
13	56.90	68.40	4.98	478.0	7.50	. 75	. 75	40.5	30.3	4.223	. 692	11.42
14	72.32	70.00	4.98	478.0	6.50	. 75	. 75	41.3	31.0	5.446	. 712	13.46
15	87.32	71.10	4.98	463.0	6.00	. 75	. 75	41.2	30.9	6.631	. 726	14.52
16	102.18	71.90	4.98	473.0	6.00	. 75	.75	42.4	31.8	7.841	. 736	14.97
17	105.13	72.00	4.98	94.5	6.00	. 75	. 75	42.7	32.0	8.083	. 737	15.07
CURVE FITS				C0		C1		C2		\% E-MAM \% \%-Ave		
RecoveryInj. X Pore Vol. Inj.				$\begin{aligned} & 5.5907 E-01 \\ & 1.7598 E+00 \end{aligned}$		$1.0471 \mathrm{E}-01-9.0309 \mathrm{E}-03$				$\begin{array}{r} .2 \\ 5.3 \end{array}$	$\begin{array}{r} .1 \\ 1.3 \end{array}$	
				$1.6074 \mathrm{E}+00$	-7.1213E-02							

	-	R-ACT	-CALC	$\underline{\mathrm{R}-\% \mathrm{E}}$	I*P-ACT	1*P-CALC	I*P-\%E	Sw	Krw	Kro	Kw/Ko
								,065	0.800	. 942	0.000
BT		. 327	. 476		. 62	1.70					
3	. 721	. 524	. 524	. 0	3.40	3.41	. 3	. 478	. 081	. 413	. 195
4	. 969	. 556	,556	. 1	5.54	5.53	. 3	. 516	.105	,362	. 290
5	1.220	. 580	. 580	. 1	7.93	7.98	. 6	. 543	.127	. 323	. 391
6	1.474	. 598	. 598	. 1	10.69	10.72	. 3	, 566	.146	. 293	. 498
7	1.724	. 613	. 613	. 1	13.61	13.66	. 3	. 584	. 163	. 268	. 608
8	1.972	. 626	. 626	. 1	17.14	16.76	2.2	. 599	.179	. 248	. 719
9	2.256	. 638	. 638	. 1	20.81	20.50	1.5	. 613	. 195	. 229	. 851
10	2.503	. 647	. 648	. 1	23.40	23.91	2.2	. 624	. 208	. 215	,969
11	2.747	. 656	. 656	. 0	27.33	27.42	. 3	. 634	. 220	.202	1.088
12	3.000	. 664	. 663	. 0	31.91	31.18	2.3	. 643	. 232	. 191	1.215
13	4.223	. 692	. 691	. 0	48.23	50.79	5.3	. 677	. 280	. 151	1.863
14	5.446	. 712	. 711	. 2	73.32	72.22	1.5	. 701	. 319	. 124	2.565
15	6.631	. 726	. 725	. 1	96.28	94.24	2.1	. 719	. 350	. 106	3.290
16	7.841	. 736	. 736	. 1	117.35	117.70	. 3	. 734	. 377	. 093	4.073
17	8.083	. 737	. 738	. 2	121.80	122.49	.6	. 736	. 382	.890	4.235

Table E. 14 Water Displacement Calculations - Run 1/16

figureE. 32 Recovery and Injectivity x Pore Volumes Injected vs. Pore Volumes Injected -- Run .1/16

Figure E. 33 Recovery and Injectivity x Pore Volumes Injectedvs 1/Pore Volumes Injected-Run 1/16

figure E. 34 Relative Permeabilities vs. WaterSaturation-Run 1/16

Figure E. 35 Relative Permeability Ratio vs. Water Saturation - Run 1/16

Appendix F: COMPUTER PROGRAM (DSPCLC)

DSPCLC is a program written in BASIC by Miller (1983). A few labelling changes were made to better suit this study. The program was run on a Hewlett-Packard 9845B mini-computer. From the raw displacement data, recovery and relative injectivity versus pore volumes injected are calculated. The program also will generate a curve fit for the recovery and injectivity data, and calculate relative permeability relationships. Hard copy graphs can then be generated on a Hewlett-Packard 9872B plotter.

F. 1 Flow Chart

"DATA: MANUAL ENTRY (M) OR FROM TAPE (T) ?"

* "DATE ?"
"DISPLACING FLUID (O/W) ?"
"CORE TEMP (DEF) ?"
"OUTLET TEMP (D-F) ?"
"PORE VOLUME (cc) ?"
"CORE LENGTH (cm) ?"
"CORE DIAMETER (cm) ?"
"ABSOLUTE PERMEABILITY (darcies) ?"
"DEAD VOLUMES (cc): U,D ?"
"SEPARATOR OUTLET HEIGHT (cm) ?"
"INITIAL SATURATION (X) ?"
"INITIAL STATIC SEPARATOR HEIGHT (cm) ?"
"INITIAL DYNAMIC SEPARATOR HEIGHT (cm) ?"
"INITIAL D-PRESSURE (psi) ?"
'*INITIAL FLOWMETER READING ?"
"BREAKTHROUGH TIME (Note: ENTER IN
FRACTIONAL MINUTES) ?"
"BREAKTHROUGH D-PRESSURE (psi) ?"
"BREAKTHROUGH FLOWMEIER READING ?"

(a)

F. 2 A Listing of the Computer Program - DSPCLC


```
O_END] ?",Hs(I),Dus(I)
630 IF Hs(I)<0 THEN 690
640 PRINT USING "D,2X,3D.2D,2X,3D.D";I,Hs(I),Dus(I)
650 NEXT I
660 PRINT "MAX NUMBER (6) OF CALIBRATION DATA REACHED"
670 BEEP
60 I=6
690 Nsc=I-1
700 RETURN
710 PRINT *
    PRINT " Time Seph Delv Dp Fmaug Fmt"
    PRINT USING "4X,4D.2D,2X,2D.2D,8X,3D.3D,9X,D.3D";Time(0),Seph(0),Dp(0),Fmt
    H=0
    FOR I=1 TO 100
    INPUT "TIME(HR,MIN.SEC),SEP-H(cm),D-VOL INJ(cc),D-PRESS(pSi),FLWMTR AVG,FL
R Q t,?",Time(I),Seph(I),Delu(I), Dp(I),Fmaug(I),Fmt(I)
    IF Time(I)<0 THEN 840
    N=N+1
    PRINT USING 790;I,Time(I),Seph(I),Delu(I),Dp(I),Fmaug(I),Fmt(I)
    IMAGE 2D,2X,4D.2D,2X,2D.2D,2X,3D.D,X,3D.3D,2X,D.3D,2X,D.3D
    BEEP
    NEXT I
    PRINT "MORE THAN 100 DATA POINTS"
    BEEP
    RETURN
    ! ********************** CHANGES *****************************************
    Chg: INPUT "CHANGES: HERDING DATA (H), LINE ITEMS <L), OR END (E) ?",Id$
    IF Id$="E" THEN 1250
    IF Id$="L" THEN 910
    GOSUB 380
    GOTO 860
    INPUT "LINE ITEM: CHANGE (C), ADD (A), DELETE (D), OR END (E) ?",Id$
    IF Id$="E" THEN 860
    FId$="C" THEN 960
    F Id$="A" THEN 1000
    IF 1d$="D" THEN 1140
    INPUT "LINE I) ?",I
    INPUT "TIME,SEP-H,D-YOL,D-PRESS,FLOWMTR-RYG,FLOWMTRCt",TimE(I),SEph(I),DEI
    Dp(I),Fmavg(I),Fmt(I)
    PRINT USING 790;I,Time(I),Seph(I),Delu(I),Dp(I),Fmavg(I),Fmt(I)
    GOTO }91
    INPUT "ADD AFTER LINE # ?",Iadd
    N=N+1
    FOR I=N TO Iadd+2 STEP -1
    Time(I)=Time(I-1)
    Seph(I)=Seph(I-1)
    De|u(I)=De|u(I-I)
    Dp}(I)=Dp(I-1
    Fmavg(I)=Fmaug(I-1)
    Fmt<I)=Fmt<I-I\rangle
    NEXT I
    I=\add+!
    INPUT "TIME,SEP-H, D-VOL,D-PRESS,FLOWMTR-AVG,FLOWMTROt",Time(I),Seph(I), DEl
1110 INPUT "TIME,SEP-H,D-V
1120 PRINT USING 790; I,Time(l),Seph(I),Delu(I),Dp(I),Fmavg(I),Fmq(I)
1130 GOTO 910
1140 INPUT "DELETE LINE # ?", Idel
1150 FOR I=ldel TO N-1
1160 Time(I)=Time(I+1)
1170 Seph(I)=Seph(I+1)
1180 Delv(I)=Delv(I+I)
1190 Dp(I)=Dp(I+1)
1200 Fmaug\langleI)=Fmaug(I+1)
1210 Fmt(I)=Fmt\langleI+I\rangle
1220 NEXT I
1 2 3 0 ~ N = N - 1
```

```
1240 EOTO 910
1260
1270 ! ************************ STORE DATA ON TAPE ******************************
1280 Str: ON ERROR GOTO EI
1290 INPUT "LOAD TAPE IN T14, TYPE IN FILE NAME",If1%
1300 CREATE If1:&":T14",6+N,56
1310 GOSUB Rstr
1320 OFF ERROR
1 3 3 0 ~ R E T U R N ~
1340 EI: BEEP
1350 DISP "NAME UNACCEPTABLE ----- r;
1 3 6 0 \text { GOTO 1290}
1370 Rstr: ASSIGN #1 TO If1*&":T14"
1380 PRINT #1;Date*,Cores, If $,N,Nsc, Dpbt
1390 PRINT #1;Tc,Te,Pu,Le,Dc,Tbt,Fmbt
1400 PRINT #1;Ho,Kabs,U,D;Seps,Sati,Iwtyp$
1410 PRINT #1;Hs(*)
1420 PRINT #1;Dus(*)
1430 FOR I=0 TO N
1440 PRINT #1;Time(I),Seph(I),Delu(I),Dp(I),Fmaug(I),Fml(I)
1450 NEXT I
    PRINT #1;END
    ASSIGN *1 TO *
    RETURN
    !****************** RERD DATA PROM TAPE ************************
Tape: INPUT "LOAD TAPE IN T14. TYPE IN FILE NAME", Ifl$
    ASSIGN #1 TO Ifl$&":T14"
    READ #1;Date$,Coret,If$,N,Nse,Dpbt
    READ #1;Tc,Te,PU,Le,Dc,Tbt,Fmb:
    READ #1;HO,Kabs,U,D,Seps,Sati,lwtyp:
    READ #1;Hs(*)
    READ *1;Dus(*)
    FOR I=0 TO N
    READ #1;Time(I),Seph(I),Delu(I),Dp(I),Fmavg(I),Fmt(I)
    NEXT I
    RETURN
    | *************************** CALCULRTIONS ****************************
Calc:CK=4*Lc/(PI*DC*DC*4.0827)
    Iwt=1
    Wat$="Dist W"
    IF Iutyp$="D" THEN 1680
    |Nt=2
    Wat%="Salt W"
    CALL Watp (Te, Rhow, Muw, Iwt)
    CALL Oilp(Te,Rhoo,Muo)
    CALL Watp(Te,Rhowe,M,Iwt)
    CALL Dilp{Te,Rhooe,M\
    Inw=Rhowe/Rhow
    Dro=Rhooe/Rhoo
    Mur=Muo/Muw
    IF If$="O" THEN 1810
    F1ठ$="WATER"
```



```
    Drd= Drw
    Dre=Dro
    COTO 1858
    Fluid$=HOIL-"&Wat$
    Fld#="01L"
    Ird=Dro
    Dre=Drw
    Time(0)=0
    Fmavg(0)=Fmt(0)
    Delu(0)=0
    Tim(0)=0
    Cop(0)=0
```

```
1900 Wi(0)=0
1910 Rec(0)=0
1920 Inj(0)=1
1930
1940 Op(0)=0
1950 FOR I=1 TO N
1960 Op(I)=RBS(Seph(1)-Seps)
1970 NEXT I
1980 IF Hs(Nsc)-Seps>20 THEN 2100
1990 Sign=1
2000 IF Seps>Hs(1) THEN Sign=-1
2010 FOR I=0 TO Nsc-1
2020 Hsc(Nse-I)=Sign*(Hs(I)-Seps)
2030 Tbsc(Nsc-I)=Dus(I+1)/ABS(Hs(I)-Hs(I+1))
2040 NEXT I
2050 IF Nsc>1 THEN 2080
2060 Hsc(1)=Sign*(Hs(0)-Seps)
2070 Tbsc(1)=Dus(1)/ABS(Hs(0)-Hs(1))
2080 Hsc(0)=Sign*(Hs(Nsc)-Seps)
2 0 9 0 ~ G O T O ~ 2 1 5 0
2100 FOR I=i TO Hsc
2110 Hsc(I)=Hs(I)-Seps
2120 Tbsc(I)=Dus(I)/ABS(Hs(I)-Hs(I-1))
2130 NEXT I
2140 Hsc(0)=Hs(0)-Seps
2150 Tbsc(0)=tbsc(1)
2160 FOR I=1 TO Nrc
2170 IF Hsc(I)>0 THEN 2190
2180 NEXT I
2190 Is=I-1
2200 IF Nsc=1 THEN I s=0
2210 Hsc(Is)=0
2220 FOR ImNsc-1 TO O STEP -1
2230 IF Hsc(I)<Op(N) THEN 2250
2240 NEXT I
2250 If=I+1
2260 Hsc(If)=0p(N)
2270 J=1
2280 FOR I= Is+1 TO If
2290 IF Op(J)>Hsc(I) THEN 2340
2300 Tbcal(J)=Tbsc(I)
2310 JmJ+1
2320 IF J<=N THEN 2290
2330 J=N
2340 Dop=(Hsc(I)-Op(J-1) )*Tbsc(I)
2350 FOR K=I+1 TO If
2360 IF Hsc(K)>Op(J) THEN 2400
2370 Dop=Dop+(Hse(K)-Hse(K-1))**Gsc(K)
2380 NEXT K
2390 GOTO 2410
2400 Dop=Dop+(Op(J)-Hsc(K-1))*Tbsc(K)
2410 IF Op(J)=0p(J-1) THEN Op(J-1)=0p(J)-.00001
2420 Tbcal(J)=Dop/(Op(J)-Op(J-1))
2430 I=K-1
2440 J=j+1
2450 NEXT I
2460 Tbcal(0)=Tbcal(1)
2470 ! BUBBLE CORRECTION
2480 Qo=Fmt(0)*Delu(1)/FNTcon(Time(1))/Fmavg(1)
2490 Vbi=1/(Qo*RBS(Seph(0)-H0))*ABS(Seph(0)-Seps)*Tbcal(0)
2500 !
2510 Sdv=0
2520 Ni=N
2530 FOR I=1 TO N
2540 Tim(I)=FNTcon<Time(I) )
2550 Dt=Tim〈1\rangle-Tim(I-1)
```

```
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2780 NEXT I
2810 NEXT I
2820 Isabt＝I
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3130
3140
3160
```

$2750|F|<N \operatorname{THEN} \operatorname{Qdqt}=1-(\operatorname{Cop}(I+1)-\operatorname{Cop}(I-1)) * \operatorname{Dre} /(W i(I+1)-W i(I-1)) / P u$
$2760 \operatorname{Cop}(I)=\operatorname{Cop}(I)+(1-Q d q t) * Q(I) * A B S(S e p h(I)-H o) * Y b i$
$2770 \operatorname{Rec}(I)=(\operatorname{Cop}(I) * D r e-U-D * Q d q t) / P u$
2790 FOR I＝1 TO N
2800 IF Tim（I）＞Tbt THEN 2820
2830 IsceIsabt +1
2840 Fmcbt＝Fmeく《
2850 Qbt $=$ Fmbt＊Fmcbt

```
sdu=Sdu+Delu(I)
```

sdu=Sdu+Delu(I)
Cop(I)=Cop(I-1)+(Op(I)-Op(I-1))*Tbcal(I)
Cop(I)=Cop(I-1)+(Op(I)-Op(I-1))*Tbcal(I)
Wi(I)=(COp(I)*(Dre-Drd)-U+Sdv*Drd)/Pu
Wi(I)=(COp(I)*(Dre-Drd)-U+Sdv*Drd)/Pu
Qavg=(Wi(I)-Wi(I-I))*Pu/Dt
Qavg=(Wi(I)-Wi(I-I))*Pu/Dt
Fmc(I)=Qaug/Fmavg(I)
Fmc(I)=Qaug/Fmavg(I)
Q(I)=Fmt(I)*Fmc(I)
Q(I)=Fmt(I)*Fmc(I)
NEXT I
NEXT I
Fmc(1)=Fmc(2)
Fmc(1)=Fmc(2)
Q(1)=FmC(1)*Fmt(1)
Q(1)=FmC(1)*Fmt(1)
Fmc(0)=Fmc(1)
Fmc(0)=Fmc(1)
Q(0)=Fmc(0)*Fmt(0)
Q(0)=Fmc(0)*Fmt(0)
Inji=Q(0)/Dp(0)
Inji=Q(0)/Dp(0)
OR I=! TO N
OR I=! TO N
IF Dp(I)>0 THEN 2730
IF Dp(I)>0 THEN 2730
Dp(I)=-.0001
Dp(I)=-.0001
Inj(1)=-.0001
Inj(1)=-.0001
E0TO 2740
E0TO 2740
nj<1)=Q(I)/Dp(I)/Inj
nj<1)=Q(I)/Dp(I)/Inj
Wibt=|i(I-1)+(W
Wibt=|i(I-1)+(W
Recbt=Wibt
Recbt=Wibt
Injbt=Qbt/Dpbt/Inji
Injbt=Qbt/Dpbt/Inji
Satf=(1-Rec(N))*100-Sati
Satf=(1-Rec(N))*100-Sati
IF If$="O" THEN 3490
IF If$="O" THEN 3490
MAT Cr=2ER
MAT Cr=2ER
MAT Cp=2ER
MAT Cp=2ER
MAT Bre2ER
MAT Bre2ER
MAT Bp=2ER
MAT Bp=2ER
MAT Ar=2ER
MAT Ar=2ER
MRT Ap=2ER
MRT Ap=2ER
FOR I=!sc TO N
FOR I=!sc TO N
FOR K=0 TO Nu
FOR K=0 TO Nu
\#rr(K)=LOG(Wi(I))^K
\#rr(K)=LOG(Wi(I))^K
Drp(K)=LOG(Wi<!))`^K Drp(K)=LOG(Wi<!))`^K
Br(K)=Br(K)+Rec(I)*Drr(K)
Br(K)=Br(K)+Rec(I)*Drr(K)
IF Inj(I)>0 THEN Bp(K)=Ep(K)+LOG(Wi(I)*Inj(I))*Drp(K)
IF Inj(I)>0 THEN Bp(K)=Ep(K)+LOG(Wi(I)*Inj(I))*Drp(K)
NEXT K
NEXT K
FOR K=0 TO Nu
FOR K=0 TO Nu
FOR L=K TO Nu
FOR L=K TO Nu
Ar(K,L)=Ar(K,L)+Drr(K)*Drr(L)
Ar(K,L)=Ar(K,L)+Drr(K)*Drr(L)
IF Inj(I)>日 THEN Ap(K,L)=Ap(K,L)+Drp(K)*Drp(L)
IF Inj(I)>日 THEN Ap(K,L)=Ap(K,L)+Drp(K)*Drp(L)
NEXT L
NEXT L
NEXT K
NEXT K
NEXT I
NEXT I
FOR K=O TO Nu
FOR K=O TO Nu
FOR L=K+1 TO Nu
FOR L=K+1 TO Nu
Ar(L,K)=Ar (K,L)
Ar(L,K)=Ar (K,L)
Ap(L,K)=Ap<K,L)
Ap(L,K)=Ap<K,L)
NEXT L
NEXT L
NEXT K
NEXT K
HAT Ai=INY\Ar>
HAT Ai=INY\Ar>
MAT Cr=Ai*Br
MAT Cr=Ai*Br
MAT Ai=INY(A0)
MAT Ai=INY(A0)
MAT Cp-Ai*Bp

```
    MAT Cp-Ai*Bp
```

```
3220 Pctmr=0
3230 Pctmp-0
3240 Spctr=0
3250 spctp=0
3260 FOR I=Isc TO N
3270 RGEFNFr(Wi(1),1)
3280 Pctr(I)=RBS(RC-Rec(I))*100/Rec(I)
3290 Spetr=Spstr+Pctr(I)
3300 IF Fctr(I)<PGtur THEN 3340
3310 Pctmr=Pctr(I)
3320 Imr=1
3330 Rm=RC
3340 IF Inj(I)<0 THEN 3450
3350 Ni=1
3360 Injc=Wi(l)*FNFi(Wi(I),1)
3370 Winjc=|i<I)*Inj(I)
3380 Pctp(I)=RBS(Injc-Winjc)*100/Winje
3390 Spctp=Spctp+PGtp(I)
3400 IF Pctp(I)<PCtmp THEN }346
3410 FctmpaFctp(I)
3420 Imp=I
3430 Injm=Inje
3440 tOTO 3460
3450 Petp(I)=-.001
3460 NEXT I
3470 Petar=Spctr/(N-Isabt+1)
3480 Pctap=Spctp/(Ni-Isabt+1)
3490 IF If$="0" THEN 3530
3500 Ko=Ck*Q(0)*Muo/Dp(0)
3510 Kw=Ck*Q(Ni)*MUW/Dp(Ni)
3520 GOTO 3550
3530 Kw=CK*Q(0)*Muw/Dp(0)
3540 Ko=CK*Q(Ni)*Muo/Dp(Ni)
3550 Kroswi=1
3560 IF Ibs=0 THEN Kroswi=KorKabs
3570 IF If$="g" THEN 3800
3580 FOR I=Isc TO N I REL PERM CALCS
3590 W=Wi\1)
3600 R=FNFr(W,1)
3610 Fo=FNFr(W,2)
3620 IF FO>0 THEN 3680
3630 Kwko(1)=9999.999
3640 S(I)=-.999
3650 Kro(I)=0
3660 Krw(I)=1
3670 toto 3790
3680 Kwko(I)=(1/Fo-1)/Mur
3690 S(I)=Sati/100+R-Fo*W
3700 IF Inj(I)>0 THEN 3740
3710 Kro(I)=-.0001
3720 Krw(1)=-.0001
3730 cOTO 3780
3740 Ir=FNFi(W,1)
3750 Dirdw=FNFi(W, 2)
3760 Kro(I)=FO/Dirow*Kroswi
3770 Krw(I)=Kwko(I)*Kro(I)
3780 IF Kwko(1)>=10000 THEN Kwko(I)=9999.999
3790 NEXT I
3800 Wbt=Wibt
3810 IF If$="0" THEN 3900
3820 Wbtl=.5
3830 FOR I=1 TO 20
3840 Wbt=FNFr(Wbt1,1)
3850 IF ABS(Wbt-Wbti)<.0801 THEN 3880
3860 Wbt l=Wbt
3870 NEXT I
```



```
4500 IMAGE 2D,X,3D,2D,2X,2D,2D,3X,D,2D,2X,3D.D,X,3D.2D,X,D.2D,X,D.2D,X,2D.D,2X,
2D.D,X,"|", X, 2D.3D, X,.3D, X, 2D. 2D, X,"|"
```



```
4 5 2 0 ~ I n = I n j o t
4530 IF If $="0" THEN In=1/In
4540 PRINT USING 4550;Tbt ,Dpbt ,Fmbt,Fmcbt,Qbt,Wibt,Recbt, In
4550 IMAGE "BT",X,3D,2D,22X,3D,2D, 6X,D.2D,X,2D,D,2X,2D.D,X,"|",X,2D.3D, X,.3D,X,
2D.2D,X,"|"
4560 FOR J=Isabt TO N
4570 In=Inj(J)
4580 IF If$="0" THEN In=1/In
4590 PRINT USING 4500;J,Tim(J),Seph(J),Tbcal(J),Delu(J),Dp(J),Fmaug(J),Fmt(J),F
me(J),Q(J),Wi(J),R\inC(J),In
4 6 0 0 ~ N E X T ~ J ~
    IF If$="0" THEN 4830
4610 IF If$="g" THEN 48
```



```
4640 PRINT USING 4650; "Recovery",Cr(*), Pctmr,Petar
4650 IMAGE 21A,2X,3(MD.4DE,X),3X,2D.D,2X,2D.D
4660 PRINT USING 4650;"Inj. X Pore Nol. Inj.", Cp(*),Pctmp,feqap
4670 PRINT USING 4680
4680 IMAGE / 3X," PYI R-ACT R-CALC R-%E I*P-ACT I*P-CALC I*P-%E"
, 4X, " Sw", 2X, " Krw",2X,"Kro", 4X, "Kw/Ko"
4 6 9 0 ~ P R I N T ~ U S I N G ~ 4 7 0 0 ; S a t i / 1 0 0 , 0 , K r o r w i , 0 ~ 0
4700 IMAGE 55X,. 3D,1X,D.3D,X,D.3D,4X, D, 3D
4710 PRINT USING 4720;Wibt,Wbt,Wibt*Injbt,Wbt*Inbt
4720 IMAGE "BT",7X,D. 3D, 2X,D. 3D,7X,3D.2D, 2X,3D.2D
4 7 3 0 ~ F O R ~ I E I S C ~ T O ~ N ~
4740 Re=FNFr(Wi<I),1)
4750 Injc=Wi(I)*FNFi(Wi(I),1)
4760 IF Inj(I)<0 THEN Injc=-.0001
4770 In=Wi(I)*Inj(I)
4780 IF In<Q THEN In=-.0001
4790 PRINT USING 4800;I,Wi<I),Rec(I),Rc,Pctr(I),In,Injc,Pctp(I),ABS(S\I)>,Krw<I
),Kro(I),Kwko(I)
4800 IMAGE 2D,K,2D.3D,X,.3D,3X,.3D,X,2D.D,2X,3D.2D,2X,3D.2D,4X,2D.D, 5X,.3D, X,D
.3D,K,D.3D,X,4D.3D
4 8 1 0 ~ N E X T ~ I ~
4 8 2 0 ~ R E T U R N
4 8 3 0 ~ P R I N T ~ U S I N G ~ 4 8 4 0 ; K w / K a b s , K o / K a b s ~
4846 IMAGE /"Krw - INITIAL = ",D.3D/"Kro - FINAL =",D.3D
4 8 5 0 ~ R E T U R N
4860 ! *********************** PLOTS *********************************************
4870 Plot: IF Flag=0 THEN GOSUB Calc
4880 INPUT "PLOT-ON CRT <C> OR PLOTTER <P〉 ?",IC$
4890 Ia*="N"
4900 Pen=1
4910 IF IC $%"P" THEN 4970
4920 PLOTTER IS 13,"GRAPHICS"
4 9 3 0 ~ L I M I T ~ 0 , 1 8 4 . 4 7 , 0 , 1 4 9 . 8 ' 8 )
4940 Loct=97
4950 LOCATE 11, RATIO*100-3,11,97
4 9 6 0 ~ G O T O ~ 5 1 7 0 ~
BIOTTER TS "9872ロ"
IF If$="W" THEN 5020
4990 Ia\="N"
5000 Id$="R"
5010 GOTO 5140
5020 INPUT "OVERPLOT: NONE <N`, FIRST (F), REPEAT 〈R〉 ?",Ia$
5030 Pen=1
5040 Ltype=1
5050 Szl=1
5060 Rep=1
5070 IF Ia$<>"R" THEN 5140
5080 INPUT "REPEAT # ?",Rep
```

```
5 0 9 0
5100
5 1 1 0
5 1 2 0
5 1 3 0
5 1 4 0
5 1 5 0
5 1 6 0
5 1 7 0
5 1 8 0
5 1 9 0
5 2 0 0
5210
5 2 2 0
5 2 3 0
5 2 4 0
3. OR
5250 IFId&="E"
5310 GOTO 5240
5 3 2 0 ~ G C L E A R ~
5 3 3 0 ~ E X I T ~ G R A P H I C S ~
5 3 4 0 ~ R E T U R N
5370 Hp*&.5
5380 Vp=11
5390 Lm=1.5
5400 Rm=1
5410 Tm=1
5420 Bm-2
5440 Hp=11
5450 vp=12.4
5460 Lm=2.3
5470 Rm=1.2
5480 Tm=1.2
5490 Bm=1.05
5 5 0 0 ~ G O S U B ~ L i m ~
5510 LOCt=100/RATIO-3
5 5 3 0 ~ R E T U R N
5540 GRAPHICS
5550 Loct=97
5 5 7 0 ~ R E T U R N
Add
5 6 0 0 ~ R E T U R N
5620 Logscl: LDIR 0
5 6 3 0 ~ L O R G ~ 8 ~
5640 CSIZE 3
5660 MDVE Xs,Yex
5670 LABEL 10^Y *
5700 SETGU
5 7 1 0 ~ R P L O T ~ . 5 , 0 , - 1
5720
```

```
IF Id*="E" THEN 5320
```

IF Id*="E" THEN 5320
IF ld$="R" THEN GOSUB Rpc
IF ld$="R" THEN GOSUB Rpc
5270 |F If$="O" THEN 5240
5270 |F If$="O" THEN 5240
5280 IF I \$="w| THEN GOSUB Recwi
5280 IF I $="w| THEN GOSUB Recwi
5290 |F Id$="F" THEN GOSUB Rel
5290 |F Id$="F" THEN GOSUB Rel
5306 IF Id$="K" THEN GOSUB Kwko
5306 IF Id$="K" THEN GOSUB Kwko
 5350 & *********************** SET PLOT LIMITS *************************
 5350 & *********************** SET PLOT LIMITS *************************
5360 V: IF IC$="C" THEN 5540
5360 V: IF IC\$="C" THEN 5540
5430 IF Faper=! THEN 5500
5430 IF Faper=! THEN 5500
5528 LOCATE 11,97,11,Loct
5528 LOCATE 11,97,11,Loct
5560 LOCATE 11,97,11,97
5560 LOCATE 11,97,11,97
5580 Lim: Add=MIN(< Hp-Lm-Rm)*25.4,(Yp-Tm-Bm)*25.4)/100
5580 Lim: Add=MIN(< Hp-Lm-Rm)*25.4,(Yp-Tm-Bm)*25.4)/100
5590 LIMIT Lm*25.4-12-Add,(Hp-Rm)*25.4-12+3*Add,Bm*25.4-6-Add,(Yp-Tm)*25.4-6+3*
5590 LIMIT Lm*25.4-12-Add,(Hp-Rm)*25.4-12+3*Add,Bm*25.4-6-Add,(Yp-Tm)*25.4-6+3*
5610 ! ************************** LOG SCRLE ************************************
5610 ! ************************** LOG SCRLE ************************************
5650 FOR Yex=k: TO Kf-1
5650 FOR Yex=k: TO Kf-1
5680 FOR Inc=2 TO 9
5680 FOR Inc=2 TO 9
5690 MOVE Xs,LGT(Inc*10^Yex)
5690 MOVE Xs,LGT(Inc*10^Yex)

```
INPUT "PEN # ?",Pen
```

INPUT "PEN \# ?",Pen
INPUT "LINE TYPE ?",Ltype
INPUT "LINE TYPE ?",Ltype
IF Ltype=6 THEN \$zl=4
IF Ltype=6 THEN $zl=4
IF Ltype=3 THEN szi=,5
IF Ltype=3 THEN szi=,5
IF Ltype=5 THEN Szl=2
IF Ltype=5 THEN Szl=2
PRINTER IS 7,5
PRINTER IS 7,5
PRINT "乡S "&YAL$(Spd)
PRINT "乡S "\&YAL$(Spd)
PRINTER IS 16
PRINTER IS 16
Wf=INT(Wi(N))+1
Wf=INT(Wi(N))+1
Wfi=INT\Wi\langleNi\rangle>+1
Wfi=INT\Wi\langleNi\rangle>+1
IF If$="g" THEN Wf=INT(Wi(N)*2+1)/2
IF If$="g" THEN Wf=INT(Wi(N)*2+1)/2
Rf=INT<Rec(N)*5+1)/5
Rf=INT<Rec(N)*5+1)/5
Injm=MAK(INT<LGT(Inj(Ni)*Wi(Ni))+1),2)
Injm=MAK(INT<LGT(Inj(Ni)*Wi(Ni))+1),2)
IF If$="0" THEN Injm=INT(1/Injbt/10+1)*10
IF If$="0" THEN Injm=INT(1/Injbt/10+1)*10
IF If$="0" THEN GOSUB Rec
IF If$="0" THEN GOSUB Rec
INPUT "PLOT: REC AND INJ(R), REC AND INJ VS. 1/Wi(W), REL PERM\langleP), Kw/Ko(K
INPUT "PLOT: REC AND INJ(R), REC AND INJ VS. 1/Wi(W), REL PERM\langleP), Kw/Ko(K
END(E)",Id$
END(E)",Id\$
RETURN
RETURN
SETUU

```
    SETUU
```

```
5730
5740
```



```
5770 Lblrt: LORG 3
5780
5 7 9 0
5800
5810
5820
5830
5840
5850 Lbllt:
5 8 6 0 ~ S E T G U ~
5870 RPLOT 5,-5,-2
5 8 8 0 ~ S E T U U
5890 CSIZE 
5900 LABEL "HORIZONTAL RUN "&Core$
5 9 1 0 ~ G O S U B ~ L b l u ~
5 9 2 0 ~ R E T U R N
5930 LbIrb: LORG 
5940 SETGU
5950 CSIZE 3
5960 LABEL "HORIZONTAL RUN "&Cor.$
5 9 7 0 ~ G O S U B ~ L b l u ~
5 9 7 1 ~ S E T G U ~
5980 |F If$="W" THEN }601
5990 IPLOT 0,-2,-2
6000 LABEL "OIL DISPLACEMENT"
6010 IPLOT De1/2,-2,-2
6020 CALL Plsym(De1,2)
6 0 3 0 ~ S E T G U ~
6040 RPLOT 3,0,-2
6050 LORG 2
6060 CSIZE 2.5
6070 Bthru$="TRUE BREAKTHROUGH"
6080 IF If$="g" THEN Bthru$="BREAKTHROUGH"
6090 LABEL Bthru$
6100 lF If$="0" THEN 6160
6110 IPLOT -3,-2,-2
6120 CALL Plsym(Del,3)
6130 SETGU
6140 RPLOT 3,0,-2
6150 LABEL "INFERRED BREAKTHROUGH"
6160 SETUU
6170 RETURN
6180 Lblv: SETGU
6190 IPLOT 0,-2,-2
6 2 0 0 ~ S E T U U
6 2 0 1 ~ F I X E D ~ 2 ~
6210 LABEL "VELOCITY = "&VAL$(Qbt)&"cc/min"
6 2 1 1 ~ S T A N D A R D ~
6212 SETUU
6220 RETURN
```



```
6240 Rcc: GOSUB V
6250 PEN 1
6260 PEN Pb
6270 FRAME
6280 PEN I
6290 LOCATE 11,97,(Loct+11)/2,Loct
6300 SCALE 0,Wf,0,Rf
6310 IF If$="W" THEN }634
6320 AXES .5,.1,0,0,2,2,3
6330 GOTO 6350
6340 AXES 1,.1,0,0,1,2,3
```

```
6350
6 3 6 0 ~ M O V E ~ 0 , 0
6370 IF !&$="w" THEN 6400
6 3 8 0 ~ D R A W ~ V N M , ~ R e c b t
6 3 9 0 ~ G O T O ~ 6 4 9 0 ~
6 4 0 0 ~ D R A W ~ W b t , W b t
6410 CALL PIsym<De1,3
6420 IF If$$"0" THEN 6480
6430 FOR W=Wbt TO W f STEP .1
6440
6450
6460
6470
6480
6490
6 5 0 0
6518
6520
6530
6540 MOVE Wf/2,Rf/2
6550 GOSUB Lblrb
6560
6570
650
6590
600
6610
6}62
6630
6640
6 6 5 0
6660
6670
6680
6690
6 7 0 0
6710
6720
6 7 3 0
6740
6750
6 7 6 0
6770
6780
6 7 9 0
6800
6810
6820 CALL Label<0,Wf,1,-1,Injm,-99,"PORE VOLUMES INJECTED","INJECTIYITY X PORE
Yol. INJ.")
6830 FOR W=, 82 TO Wbt STEP .l
6840 Injp=1>(1+W*(1/Inbt-1)/Wbt)
6850 IF WE.02 THEN MOVE W,LGT{\njp*W}
6 8 6 0 ~ D R A W ~ W , L G T ( I n j o * W ) ~
6870 NEXT W
680 DRAW Wbt,LGT(Inbt*Wbt)
6890 CALL P1sym(De1,3)
6960 FOR W=Wbt TO MESTEP . I
6910 Ir=FNFi\langleW,1\rangle**
6 9 2 0 ~ D R A W ~ W , L E T ( I N ) ~
6 9 3 0 ~ N E X T ~ W ~
6940 DRAW Wfi,LGT\FNFi\Wf'{,1\rangle*Wf'j)
6 9 5 0 ~ M O V E ~ W i b t , L G T \ I n j b t * W i b t ) \ ~
6960 CALL Plsym<Del,2)
6970 FOR i=1 TO Ni
6980 Ir=inj(I)*W\{I)
6990 MOVE W\\!\,LET<Ir`
```

```
7 0 0 0
7 0 1 0
7 0 2 0
7 0 3 0
7 0 4 0
7 0 5 0
7 0 6 0
7 0 7 0
7080 ! #********************* RECOVERY AND INJECTIVITY VS. 1/Wi ****************
7090 Recwi: GOSUB V
7100 PEN Pb
7110 Rsp=INT(FNFr(1,1)*10)/10
7120 FRAME
7130 PEN 1
7140 LOCATE 11,97,(Lact+11)/2,Loct
7150 SCALE 0,1,Rsp,Rf
7160 AXES -1,.05,0,Rsp,2,2,3
7170 CALL Label(0,1,-999,Rsp,Rf,.1,"","RECOUERY")
7180 MOVE 1/Wf,FNFr(Wf,1)
7190 FOR Winv=1/Wf TO 1 STEP . 02
7 2 0 0 ~ D R A W ~ W i n u , F N F r ( 1 / W i n u , 1 ) ~
7 2 1 0 ~ N E X T ~ W i n v ~
7 2 2 0 ~ D R A W ~ 1 , F N F r ( 1 , 1 )
7230 FOR I=1 TO N
7240 IF Wi(I)<1 THEN 7270
7250 MOVE 1/Wi(I),REc(I)
7260 CALL Plsym<DEl,1)
7270 NEXT I
7280 MOVE . 5,Rf
7290 GOSUB Lblrt
7 3 0 0
7 3 0 0
7 3 1 0
7 3 2 0
7 3 3 0
7340
7 3 5 0
7 3 6 0
7370
B Logscl
7 3 8 0
E VOL.
7390 MOVE 1/Wfi,LGT(FNFi<Wfi,1)*Wfi)
7400 FOR Winv=1/Wfi TO 1 STEP . }0
7410 Ir=LGT(FNFi(1/Winv,1)/Winv)
7 4 2 0 ~ D R A W ~ W i n v , I r ~
7 4 3 0 ~ N E X T ~ W i n u ~
7440 DRAW 1,LGT(FNFi(1,1))
7450 FOR I=1 TO Ni
7460 IF Wi<I)<1 THEN 7490
7470 MOVE 1/Wi(I),LGT(Inj(I)*Wi(I))
7480 CALL Plsym(Del,1)
7490 NEXT I
7500 MOVE .5,Injm
7510 GOSUB Lblrt
7520 PEN 0
7530 PAUSE
7540 GCLEAR
7550 RETURN
7560 ! *************************** REL PERMS *************************
7570 Rel: IF Ic$="C" THEN 7730
7580 Hp=8.5
7 5 9 0 ~ V p = 1 1
7600 Lm-1.5
7610 Rm=1
7620 Tm=2
7630 Bm=3
7640 IF Paper=1 THEN }771
```

```
7650 Hp=11
7660 \psip=12.5
7670 Lm=2,3
7680 Rm=1.2
7690 Tm=1.95
7700 Bm=3.05
7 7 1 0 ~ G O S U B ~ L i m ~
7 7 2 0 ~ G O T O ~ 7 7 4 0 ~
7 7 3 0 ~ G R A P H I C S ~
7740 Loct=9?
7750 LOCATE 11,97,11,Loct
7 7 6 0 ~ S C A L E ~ 0 , 1 , 0 , 1
7770 IF Ia$="R" THEN 7870
7 7 8 0 ~ P E N ~ P b ~
7 7 9 0
7 8 0 0
7810
7 8 2 0
7 8 3 0
7 8 4 0
7 8 5 0
7 8 6 0
7 8 7 0
7 8 8 0
7 8 9 0
7 9 0 0
7910
7 9 2 0
7 9 3 0
7 9 4 0
7 9 5 0
7 9 6 0
7 9 7 0
7 9 8 0
7 9 9 0
8000
8010
8020
8030
8040
8050
8060
8070
8080
8090
8100
8 1 1 0
8120
8130 FOR := !ss+! TO Ni
8140 IF S(I)<0 THEN }816
8150 DRAW S<I),Kro\I\rangle
8 1 6 0 ~ N E X T ~ \| ~
8170 MOVE $(Iss),Krw(Iss)
8180 FOR I=!ss+! TO Ni
8190 IF S(I)<0 THEN }821
8200 DRAW S(I),Kmw〔I)
8 2 1 0 ~ N E X T ~ ! ~
8 2 2 0 ~ L I N E ~ T Y P E ~ 1 ~
8230 IF Ia$くゝ"N" THEN }828
8240 LORG 1
8250 RPLOT , B2,8,-2
8260 LABEL "Water"
8270 GOTO 8320
8280 IF Ibs=1 THEN 8320
8290 MOVE Satis100+.02,MIN{Kroswi,1)
8300 LORG 2
```

```
8310 LABEL COME$
8320 PEN O
8330 PAUSE
8 3 4 0 ~ G C L E A R ~
8350 RETURN
8360 ! **************************** Kw/KO PLOT ***************************
8370 Kwko: GOSUB V
8380 Ks=-1
8390 Kf=2
8400 Xs=0
8410 PEN Pen
8420 SCALE Xs,1,Ks,Kf
8430 IF Ia$="R" THEN }856
8440 PEN Pb
8450 FRAME
8460 PEN 1
8 4 7 0 ~ A X E S ~ . ~ 1 , ~ 1 , ~ X s , K s , ~ 2 , 1 , 3
8 4 8 0 ~ G O S U B ~ L o g r c l ~
8490 MOVE Xs,Kf
8500 LABEL 10^Kf
8510 CALL Label(Xs,1,.2,Ks,Kf,-999,"WRTER SATURATION";"WATER/OIL PERMEABILITY R
ATIO")
8520 IF Ia$="F" THEN 8560
8530 MOVE B,Kf
8 5 4 0 ~ G O S U B ~ L b l l t ~
8550 GOTO 8680
8560 LORG 2
8570 MOVE O,Kf
8 5 8 0 ~ S E T C U ~
8590 IPLOT 5,-5*Rep,-2
8600 PEN Pen
8610 LINE TYPE Ltype,Szl
8620 IPLOT B,0,-1
8630 IPLOT 2,0,-2
8640 CSIZE 3
8650 LINE TYPE 1
8660 LABEL "RUN "&COME$&" ("&URL$(TC)&" DEG-F)"
8670 SETUU
8680 LINE TYPE Ltype,Szl
8690 MOVE S(Isc).LGT(KwkO(Isc))
8700 FOR I=Ise TO N
8 7 1 0 ~ I F ~ S ( I ) < 0 ~ T H E N ~ 8 7 3 0 ~
8720 DRAW S(I), LGT(KwkO(I))
8 7 3 0 ~ N E X T ~ I ~
8 7 4 0 \text { LINE TYPE 1}
8750 PEN O
8 7 6 0 ~ P A U S E ~
8770 GCLEAR
8780 RETURN
890 ! *************************** SUBROUTINES *********************************
8800 !
8810 ! ************************ WATER PROPERTIES ******************************
8800 SUB Watp(T, Rhow, Muw, I)
8 8 3 0 ~ R h o w = E X P ( 6 . 5 2 0 1 4 E - 3 - 4 . 3 4 3 3 3 E - 5 * T - 8 . 7 8 1 3 4 E - 7 * T * T ) ~ ( \% )
8840 MuW=EXP(EXP(1.3926+3.0841E-1*LOG(T)-5.7139E-2*LOG(T)*LOG(T)))/208.9
8850 IF I=1 THEN }890
8 8 6 0 ~ R h o w = R h o w * 1 . 0 1 3 7 ~
8870 M=1.03
8880 IF T>150 THEN M=1.045
8890 Muw=Muw*M
8900 SUBEND
8910 1 ************************** OIL PROPERTIES ***************************
8920 SUB Oilp\T,Rhoo,Muo)
8930 Rhoo=EXP(-.13539-4.42405E-4*T)
8940 Tr=T+460
8950 Nu=18^(10^(9.8863-3.5587*LGT(Tr)))-.6
```

```
8 9 6 0 ~ M u o = N u * R h o o ~
8 9 7 0 ~ S U B E N D ~
8980 ! ************************ TIME CONVERSION ***************************
8 9 9 0 ~ D E F ~ F N T c o n ( T i m e ) ~
9000 Ti=Time/180
9010 Hr=INT<Ti)
9020 Min=INT(FRACT(Ti)*100)
9030 Sec=FRACT<Time)
9040 RETURN Hr*60+Min+SEc/.6
9050 FNEND
9060 END
9070 ! **********************PLOT SYMBOLS *************************************
9080 SUB Plsym(Del,Sym)
9090 DEG
9100 SETGU
9110 D=Del/2
9 1 2 0 ~ R P L O T ~ 0 , 0 , - 1
9130 ON Sym GOTO 9170,9140,9250
9140 Nsds=20
9150 D=D/1.2
9160 GOTO 9180
9170 Nsds=4
9180 PDIR -135
9190 RPLOT D,0,-2
9200 FOR Dir=-135 TO 225 STEP 360/Nsds
9210 PDIR Dir
9220 RPLOT D, 0,-1
9230 NEXT Dir
9 2 4 0 ~ G O T O ~ 9 3 1 0
9250 PDIR -30
9260 RPLOT D, 0,-2
9270 FOR Dir=-30 TO 330 STEP 120
9280 PDIR Dir
9290 RPLOT D, Q,-1
9300 NEXT Dir
9310 RPLOT 0,0,-2
9320 PDIR O
9330 SETUU
9340 SUBEND
9350 ! ******************************* RECOVERY FUNCTION ***********************
9360 DEF FNFr(X,I)
9370 COM Cr(2),Cp(2)
9380 X1=LOG(X)
9390 ON I GOTO 9400,9420
9400 F=Cr(0)+Cr(1)*X1+Cr(2)*X1^2 ! FUNCTION
9410 RETURN F
9420
9430
9440
9450
9460
9470 COM Cr(2),Cp(2)
9480 X1=LOG(X)
9490 Ex=EXP(Cp(0)+Cp(1)*X1+Cp(2)*X1^2)
9500 ON I GOTO 9510,9530
9510 F=EX,X
9520 RETURN F
9530 Fp=X*(Cp(1)+2*Cp(2)*X1)/EX ! DERIVITIVE
9540 RETURN Fp
9550 FNEND
9560 ! ****************************** LABELLING SUBROUTINE ************************
9570 SUB Label(XS,Xf,Xstep,Ys,Yf,Ystep,Xlbl$,Ylbl$)
9 5 8 0 ~ D E G
9 5 9 0 ~ S T A N D A R D ~
9600 LDIR 0
9610 CSIZE 3
```

```
9620 IF Xstep<0 THEN 9720
9630 LORG 6
9640 FOR X=Xs TO Xf STEP Xstep
9650 MOVE \(X, Y_{5}\)
9660 SETGU
9670 RPLOT 0,-1,-2
9680 SETUU
9690 LABEL X
9700 NEXT X
9710
9720
9730
9740 | \(F\) Ystep
9750 Dy=Ystep
```



```
9770 LORG 8
9780 FOR Y=Ys TO Yf+Dy STEP Ystep
9790 MOVE Xs, Y
9800 LABEL Y
9810 NEXT \(Y\)
9820 CSIZE 3 ! LABELS
9830 |F XIbl\$="" THEN 9900
9840 LORG 4
9850 MOVE ( \(\left.X_{s}+X_{f}\right) / 2, Y_{s}\)
9860 SETGU
9870 RPLOT 0,-10,-2
9880 SETUU
9890 LABEL X1b1\$
9900 LDIR 90
9910 LORG 6
9920 MOVE Xs,(Ys+Yf)/2
9930 SETGU
9940 RPLOT -10, 0,-2
9950 SETUU
9960 LABEL Ylbl
9970 LDIR 0
9980 SUBEND
```

