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ABSTRACT

Depletion models for liquid-dominated geothermal reservoirs are derived
and presented. The depletion models are divided into two categories: confined
and unconfined. For both cases depletion models with no recharge (or influx),
and depletion models including recharge, are used to match field data from the

Svartsengi high temperature geothermal field in Iceland.

The influx models included with the mass and energy balances are adopted
from the petroleum engineering literature. The match to production data from
Svartsengi is improved when influx was included. The Schilthuis steady-state
influx gives a satisfactory match. The finite aquifer method of Fetkovitch, and
the unsteady state method of Hurst gave reasonable answers, but not as good.
The best match is obtained wusing Hurst simplified solution when
A =1.3x10™* m~! . From the match the cross-sectional area of the aquifer was

calculated as 3.6km?.

The drawdown was predicted using the Hurst simplified method, and corn-
pared with predicted drawdown from a boiling model and an empirical log-log
model. A large difference between the models was obtained. The predicted draw-

down using the Hurst simplified method falls between the other two.

Injection has been considered by defining the net rate as being the produc-
tion rate minus the injection rate. No thermal or transient effects were taken
into account. Prediction using three different net rates shows that the pressure
can be maintained using the Hurst simplified method if there is significant fluid

reinjection.
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1. INTRODUCTION

Depletion models make it possible to predict the future variations of reser-
voir variables such as pressure, temperature, and chemical composition. In
petroleum reservoir engineering, depletion models are used to predict the draw-
down in reservoirs under a variety of production schedules. Methods developed
for petroleum reservoirs involving a material balance on the reservoir have been

adopted in geothermal reservoir engineering, and are the subject of this report.

In the case of geothermal fluids the heat is being mined, so it becomes im-
portant to predict the enthalpy changes with time (or production). Therefore,
thermodynamics and heat transfer from the rock becomes important. Most of
the heat is stored in the rock, thus a heat balance is often included in the equa-
tions. The initial state of the reservoir together with the production schedule
dictates how the pressure and temperature will change upon exploitation. |t
therefore becomes important to determine the initial conditions of the reservoir
in order to adequately describe the future behavior of the reservaoir.

Depletion models can be made detailed and complex by dividing the reser-

voir into fine blocks and attempting to describe the variations of all reservoir
parameters for each block. Parameters of interest are permeability, fluid pro-
perties, porosity, temperature, and saturation. It should be obvious that the
computational methods become complicated, and that the results are limited to

the input data, which are not always well known.

A simpler approach is known as lumped-parameter or zero-dimensional
simulation. In this case average properties are assigned to the reservoir, and the
changes of these properties are monitored and predicted. It becomes an impor-
tant questiocn then how these properties are obtained, and what the effects of
material leaving and entering the system are. It is clear that these models have

limitations, since the fluid as well as the rock properties are changing




throughout the reservoir. However, it has been shown that reasonable results
may be obtained from these types of models. Furthermore, important proper-
ties such as the volume of fluid in place, and whether or not there is significant
recharge, may be obtained. In this study we have investigated these models to

determine what models appear to be most appropriate.

Several depletion models have been reported in the literature !234.56.7.88.10
some of which will be considered in this study. We have attempted to make the
models and computational procedures simple, and yet flexible, to be able to in-
clude a variety of liquid-dominated fields in terms of both geometry, fluid, and

reservoir praperties.

The influx or recharge calculations have been adopted from the petroleum
literature 1112131415 and are therefore developed for porous media where
Darcy’s law is valid. It has been shown that in many cases good results may be
obtained using these equations also for fractured systems. Finally the possibility
of including an injection term is considered, in order to predict the pressure

performance under injection.

The report consists of presentation and discussion of several depletion
models and influx models. The models were evaluated using production-data
from the Svartsengi field of Iceland as an example. The Svartsengi reservoir is a
liquid dominated reservoir which has shown rapid drawdown, and reinjection has
been considered. Derivations of the equations, presented in Appendix A, and the

nomenclature are presented at the end of this report.



2. THERMODYNAMICS

The thermodynamics of geothermal reservoirs have been discussed by Whit-
ing and Ramey * and Martin '® . The initial temperature and pressure determine
the state of the system. Fig.1 is a pressure-temperature diagram for water. The
solid line represents the saturation line. Gibbs' phase rule states that the
number of degrees of freedom, is equal to the number of components minus the
number of phases. By this, only one intensive property completely determines
the thermodynamic state of the system at any point on the saturation line. For
any other point on Fig.1, two intensive properties completely determine the

thermodynamic state of the system.

The region of interest for this study, is in the liquid region (compressed
liquid). Systems which fall in this region are liquid-dominated. This represents
states such as C and B on Fig.1, and C and D on Fig.2, which in a pressure-
temperature diagram for a geothermal reservoir with 25% porosity. Fig.3 shows
a pressure-enthalpy diagram for pure water. In the following, a more detailed
discussion of the responses to production of reservoirs initially at states of

compressed 'liquid, or saturated liquid-steam in equilibrium, is presented.

2.1. Liquid Only

The case of liquid only in the reservoir is represented by point C on Fig.1,
and points C and D on Fig.2. When production takes place, the pressure will de-
crease rapiclly since the compressibility of the system is low. The path of the
system is essentially isothermal and isoenthalpic (Fig.1land Fig.3). The system
will eventually reach the saturation line, and then follow a path similar to B on

Fig. 1.




2.2. Two-Phase

A two-phase reservoir corresponds to a system on the saturation-curve. The
pressure-enthalpy diagram in Fig.3 shows this state as the heavy arrow at 1000
psia. The pressure varies little when the system is boiling. This is illustrated for
reservoirs with porosity of 25% in Fig.4. The pressure-cumulative fluid produc-
tion diagram, shows that in reservoirs initially at compressed liquid state (C and
D), the pressure drops very rapidly until the saturation-line is reached. When the
reservoir follows the saturation-line, the pressure drops very slowly until the
system has boiled dry, and then the pressure again drops more rapidly. The
compressibility is indicated by the inverse of the slope of the lines on Fig.4. Fig.5
shows the teraperature vs. cumulative fluid production for geothermal reser-
Voirs containing pure water and porosity of 25%. It shows that the temperature
drops when there are two-phases in the system. Since the fluid temperature
wants to decrease, heat may in this case be transferred from the surrounding

rock where most of the heat is stored'.

2.3. Saturation

Lumped-parameter models can be developed for the two above cases (liquid
only and two-phase reservoir) if the variation of saturation with pressure is
known. Martin!® developed such relations. The results for a 25% porosity system
are given in I'ig.6 that shows the variation of saturation with pressure. The equa-
tions presented include Darcy's law for each phase, steam and liquid water, and
thus also relative permeability data. The relative permeability curves used by
Martin'® are given in Fig.7. Darcy's law was then coupled with the mass and heat

continuity equations. Eq-1shows the final expression for saturation.
am OH
—L y A (EL

dp ~ 8H \_, (Omy
Af(as,, A"(asw)

(1)
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¥(p) = temperature on boiling curve.

‘w' = ——-’W-Md
dp

Eg.1 was numerically integrated to get the pressure vs. steam saturation curves

given in Fig.6 for reservoirs initially at compressed liquid state.

Macias-Chapal!? developed a lumped-parameter model where the system is
described by Fig.8. Production may be steam only, or liquid/steam, or only
liquid. A computer program was written to calculate the adiabatic or the ap-
parent compressibilities including effects of heat transfer from the rock. In all
cases the compressibility for a two-phase water system is much greater than

that of only steam or liquid water.

The model includes impurities in form of non-condensable gasses and dis-
solved solids. The system is on the saturation-line, and after the pressure has
been decreased by a specified amount, the saturation may be determined. An
output of saturation vs. pressure for a 10%porosity and initial temperature of
240 °C, is given in Fig.9. The solid line represents a cubic fit trough the output
values from the program. This relationship may be used in modeling the satura-

tion variation with pressure.




3. MODELS OF L1QUID-DOMINATED GEOTHERMAL RESERVOIRS
3.1 Liquid Only

For reservoirs with liquid only, the production path, as described earlier, is
for all practical purposes isothermal and isoenthalpic. The heat balance is thus
omitted. The discussion may be divided into two cases: confined and unconfined
systems. In a confined system, the production is due to expansion of the
compressed fluid. The unconfined system is referred to as open. When this sys-
tem is produced, the water level decreases in the same manner as emptying a

tank. The reservoir in both cases is treated as one lump with average properties.

3.1.1. Unconfined System
In the simplest form the equation for the drawdown is given by:

M-_WL. (2)

T Agpy
(See Appendix A for derivations of the equations).

If Eq.2 is valid, the drawdown plotted vs. cumulative mass produced should
give a straight line. However, if the points fall on a straight line, this does not
guarantee that there is no recharge, or that the system is not confined. If the
reservoir is produced at constant rate, the line could be straight even with
strong recharge. The slope of the line would be different, but if there is a steady
state influx, and constant discharge rate, the drawdown would be similar to that
of no influx. Furthermore. if the comressibility is constant, the graph would be
similar. On the other hand, even if the graph is not a straight line, there could
be an unconfined system without recharge since A¢p,, may change with produc-

tion.

If there is recharge to the system, the rate of mass removed from the sys-

tem becomes important. This question will be discussed in detail later, but one




particularly simple equation for the recharge will be presented here. In this
equation which is known as the Schilthuis'® steady state equation, the influx rate

is proportional to the drawdown.

Ag dp _ 0 oy
In this model there are no transients in the reservoir, and the pressure distribu-

tion in the reservoir is hydrostatic.

It is possible that ¢ or A are functions of depth, in which Eq.2 and Eq.3 are
no longer valid, and the equations must be modified. By looking at resistivity
measurements, it sometimes looks like the reservoir is pyramid, oF cone
shaped. In that case the area is a linear function of the height, and the solution

would be:

mz_hz = __’!L (4_)

a¥Pu

In this case there should see a straight line if cumulative production is plotted
vs. (h2-h?) . Notice that A®-h? = (AR)? , so it becomes important in this case to
identify h; . Eq.4 could also be coupled with influx models. The procedure is

analogous to what will be presented later in this study.

3.1.2_ Confined Systems

This system is a in compressed liquid state, and the production is due to ex-
pansion of the liquid when the pressure drops. The equations for this system
have been presented by Whiting and Ramey ! and applied to the Wairakei geoth-

ermal field:

dpwl dp _ AW

8L - = _ 5
V“’[dp ydt . dt " ()
Comparing q.3 and Eq.5 shows that if (dp,, / dp)r is constant, the two equa-

tions are of the same form. The constants in front of dp/dt are different in the

two equations. The size of this constant helps identify which model is most rea-



sonable fora given reservoir. Eq.5 may be rewritten by introducing the compres-

sibility of water:

Vepwew = 5w (6)
A variety of influx equations with various geometries and boundary condi-

tions are possible. The influx models are discussed in a separate chapter.

When integrating Eq.6 to get the drawdown, it is assumed that ¢, and py,
are constant. This is a good approximation for a relatively small pressure
change, and will be a good approximation in the early development when the
drawdown is not too severe. However, over a long prediction this may not be a
good assumptio'n. This is especially true when boiling starts occurring in the
reservoir. It may therefore be necessary to update p,, and c,, as time goes on by

discretizing Eq.8, and calculate increments of production and drawdown.

3.2 Liquid and Two-Phase Zore

When the pressure in the reservoir falls below the boiling point, a two-phase
zone will deve'lop. The depth of geothermal reservoirs is sometimes several ki-
lometers, so the pressure will vary with depth. This makes it difficult to assign
average properties to the entire reservoir when there is boiling in some parts of
the reservoir. In some reservoirs the temperature profile follows the boiling
point with depth curve. In that case boiling will start throughout the reservoir,
and the models presented here will apply. But many reservoirs are essentially
isothermal with depth due to convection. It is clear that in this case, the fluids
closest to the surface will start to boil first. Low in the reservoir (except for local
low-pressure regions around the wells), boiling will normally not occur due to

the higher pressure.

Martin!® discussed how rapid gravity segregation of liberated steam causes

a zone of two-phases to develop at the top of the reservoir with higher liquid sa-




turation deeper in the reservoir. The question of being able to define an average
liquid saturation for the whole reservoir and the total compressibility of the sys-
tem becomes very important. For a detailed analysis of the system, it may be

necessary to divide the reservoir into several lumps.

3.2.1. Boiling Throughout the Reservoir

When saturation pressure and temperature are reached, the system follows
the saturation curve (Fig.1). Since energy is transferred in the process of eva-
porization, and heat is transferred between the rock and the fluid, a heat bal-
ance must be included. The heat and energy balance was written by Whiting and

Ramey' as:

Wp(hp-Ec )+Wl(hl_Ec )+@ =

WelEy — E; + (1—;&) [ziva+{(1-2)vuilpeCoo (Ti— T )| + (7
B
(hc - Ec) v E WD(tD)Apn
we

This equation was developed for predicting the response of the Wairakei reser-
voir. When trying to match the data, it was concluded that the system was ini-

tially in a compressed liquid state, for which Eq.7 reduces to:

(Wp+Wl )Vw = Wi(Vw “Vuwi ) + Bz WD(tD)Ap (8)

Eq.8 is a volumetric balance where the last term is the influx term, and is essen-
tially the basis for Eq.5. If we define the total density of the system and assume

that the mass loss can be neglected, the mass balance becomes:

Veps = Vppu + We = Wy (9)

In this equation the total density is a function of the density of each phase and
the saturation. If we are able to get a relationship between the saturation and
the pressure, Eq.9 could be used to calculate the drawdown. The procedure is

discussed in the chapter on history matching.



In order to use either Eq.7 or Eq.9, the initial state of the system must be
known. In the chapter on history matching, methods to determine optimum ini-
tial parameters are described. Notice that the heat balance is not included in
Eq.9. The heat balance is included in the relationship to determine the satura-
tion, and is therefore present in the determination of the total density. The tem-
perature and enthalpy are fixed, once the pressure has been determined, since

we have saturated conditions.

A different equation was presented by McNabb#%8, The drainage from the
two-phase zone was assumed not to be instantaneous, and the variation of sa-
turation above the declining boiling level had to be described. If the relative per-
meability to liquid water is assumed linear with saturation, and that rapid drain-
ing fractures are surrounding less permeable porous blocks, the equation for

the pressure is:

%&= a(_pi—p)+bw+c%f— (10)
Eq.10 was also applied to the Wairakei field, giving reasonable answers %. The

coefficients in Eq.10 can be expressed in terms of Ap, k, and Sy, %

g .
KMT,

a=
wa—+ (1-Sy, )7t
.L-ro_l
b= Ag (10b)
K:ﬁa—-i- (1-Sy,) T}

(10a)

g
c = A¢

fr (1-Syo) T4

(10c)

In the above equatia s K is the Schilthuis influx constant used in Eq.3, and 7, is

a characteristic time of the fractured permeable medium.

10



3.2.2_More Than One Lump

Castanier et al.!® divided the reservoir into three lumps as shown in Fig.10.
The central zone from which the production occurs, is represented by a lumped
parameter model to predict the production of mass and energy. This zone is
treated as a homogeneous tank, and the production of mass and enthalpy was
calculated using the following mass and energy balance:
We B +V(1=¢)pgCoolTe~ Ty )=WiEy+Q = Wohy = Wohy~ Wihy (11)
Eq.ll is the same as Eq.7 as presented by Whiting and Ramey'. However, there is
an intermediate zone in which neither production nor injection occurs.
Nevertheless, there is heat and mass transfer in this zone during depletion. Mass
transfer occurs from the outside to the inner production zone. The temperature
breakthrouglh time of the fluid leaving this zone (entering the inner zone), is

computed using the fluid breakthrough time multiplied by!®.

PPy Co +{1=9)p,Co
2
?Pw Cw (1 )

Finally the outer zone has fluid flow only. There is no heat flov in this zone, only

natural recharge or fluid injection.

For each depletion step, the production of mass and energy is calculated. In
order to calculate the time taken by this step of depletion, constraints on pro-
duction such as constant enthalpy, flow rate, or available energy is taken into
account. The! pressure distribution in the central zone is then calculated using a
superposition of pressure distributions of off-centered wells. Finally the water
and heat influx from the intermediate zone are calculated. The entire process is

repeated until abandonment conditions are reached.

This model was compared to a reservoir simulation study by Morris and
Cambell '® of the East Mesa reservoir in the Imperial Valley, and good agree-

ments were obtained. It was concluded that although being able to handle fluid

11



flow and heat transfer more realistically compared to a one lump model, this
method is simpler and less expensive than a three-dimensional finite difference
simulation model. It should also be noted that in the limit of the intermediate
zone having zero width, this model reduces to a lumped parameter model simi-

lar to the Whiting and Ramey' model.

12



4. INFLUX YODELS

If the drawdown history of a geothermal reservoir can not be explained by
simple mass removal, there may be water influx or recharge into the reservoir.
Recharge will. maintain pressure in the reservoir, by replacing the produced
fluids by usually colder fluids. A term of influx mass has to be added to the mass

balance equations. Assuming no mass loss, the mass balance becomes Eq.A-2:
W, =W, — W, + ¥, (A-2)

4.1. The Schilthuis Method

In the Schilthuis!® steady-state model, the influx rate is equal to a constant,
times the pressure change. If the outer boundary pressure o the aquifer is as-
sumed to always be at initial pressure, and that there is steady state flow, the

influx rate may be given by Darcy's law as:

kAp A
w, = pAu = 7&3% (13)

in the linear case. For different geometries, Eq.14 has a different constant, but

in all cases:

w, = Kbp (14)

where Ap =p;=p . K is known as the influx constant. To get the cumulative

influx, the rate is given by:

dW,
= 15
Integrating Eq.15 (using Eq. 14) gives:
t t
We = [wedt = K[ (p, - p)dt (16)
0 0

If pressure is known as a function of time, Eq.17 can be integrated. If not, nu-

merical integration yields:

Wew = K (25 — P; )0, (17)
J=1

13




This is the simplest form of an influx equation and expresses the cumulative
mass recharge! in a steady state system. It has been presented in the geother-
mal literature with models applied to the Wairakei reservoir.#58 and the Bangore

reservoir.3?

4.2. The Hurst Modified Method

Sometimes the transient effectsare important in aquifer behavior and the
aquifer may act as infinite in extent. For this case a well known solution to the
diffusivity equation is the line source solution. For large values of tp, the log ap-

proximation can be used for the line source solution (t5>10):

pp = -%—[ln(tp)+0. 80907] (18)
By the definition of tp, it becomes apparent that Eq.18 is valid for large times

and small radii. By introducing the definition of pp for radial geometry, Eq.18

becomes:

-;—'[ln(to)+0.80907] = ZTZ°—ILAP— (19)
]

Multiplying by ¢, and rewriting gives:

2rkh Ap

9 = (20)
= [In(tp) + 0.80907]
Since gg = 1%"— , if constant u is assumed, te mass rate can be expressed as:
= o8 2
We log (bt) (21)
and the influx is given by:
t
W, = f w,dt f (22)
log(bt)
where a and b are constants. Eq.22 is usually numerically integrated:
n At;
Z aAp, (23)
) log (bt;)

14



where £; = (t; + t;_,)/ 2, the average time for the j'th step of depletion.

4.3. General Solutions for Linear and Radial Cases

The type of influx given in Eqg.23, is generally known as the Hurst modified
solution. Van Everdingen and Hurst?® presented solutions to the influx equations
similar to Eq.18 for different boundary conditions in the radial case. Miller"*
presented solutions for the linear case. The work by Miller** was later extended
by Nabor and Barham?!? to include solutions for a constant pressure outer boun-
dary. By changing the definition of £, , they came up with three working equa-

tions for all boundary conditions.

The solutions to these problems are summarized in Table 1. Tables of nu-
merical values for these solutions have been presented in the literature.!32 The
solutions can also be presented in graphical form: Fig.11 is the linear case, and

Fig.1l2aand Fig.12b the radial cases.

Van Eveirdingen and Hurst?® presented how the cumulative water influx is
calculated in terms of gp. The equations assume that the inside pressure is con-
stant. For a constant pressure drop, the cumulative water influx is given as a
function of time by:

W, = B@p(tp)Ap (23)
For varying pressure, the method of superposition, is used as discussed in a

later section.

4.4.Hurst Simplified Solution

The equations presented in Table 1were solved using the Laplace transfor-
mation.?® By coupling the influx equations with the material balance equation on
the reservoir, a particularly interesting solution arises. Hurst!® presented this

solution for a petroleum reservoir. A geothermal reservoir with only liquid, is
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analogous to a petroleum reservoir above the bubble point pressure. In this case
the compressibilities in the reservoir and the aquifer may be treated as con-
stants, and the equations may be solved using the Laplace transformation. Two
solutions are presented here: the infinite linear and infinite radial cases. Howev-
er, the method can be used with any geometry if & is known in Laplace space.
Sometimes an analytical transformation is not possible. In that case, numerical

methods can be used.

4.4.1. Infinite Linear Aquifer

CagP
- agFag L .
By defining A = ———— , Hurst!3 was able to present two limiting solutions.
Cresprns

1. A very large

In this case the aquifer becomes the important factor in the response: the
reservoir is ignored. The compressibility of the reservoir is negligible, so this
corresponds to an unconfined system with infinite linear influx. Note that this
case will also occur when {-»0. The solution then reduces to the aquifer solution

only, and the drawdown is given by:

n
ap = £ aw Py (tp~tps) (24)
kA j=o 7 2

Eq.24 is the superposition sum for varying rate, and F,,; is the solution for an

infinite linear system given by Nabor and Barham.!?
2. Avery small -

In this case the reservoir becomes the dominant factor, and if the compres-
sibility of the reservoir is large but constant, this situation may be occurring.
The aquifer is now completely ignored, and the equation for the drawdown sim-
ply reduces to the tank decompression in Eq.6 without recharge. The system is

Row confined:

1
Ap = ——w—W (25)
P V¢ CresPras ot
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3. Aintermediate

The effects of both the reservoir and the aquifer become important, and the
total expression must be used. This situation lies between the limiting cases of
confined and unconfined. For the infinite linear case, an analytical solution ex-
ists. In cases where such inversions are not possible, there are numerical
methods that transform a solution from Laplace space to real space. One such

method is the Stehfest?' algorithm. The equation for the drawdown becomes:

o] n
Ap = __ﬁﬂ_ﬂ___zijM[)\z(tp—tDj)] (28)
kVpresCres j=0
where
L zxtg?“
2
H(tp) = ;\la— e Perfe(Mf) ~ 1+ =3 (262)
2
m

4.4.2. Infinite Radial Aquifer

The solution is analogous to the linear case. In this case define

A:ES&‘L&E.-

T cﬂspros
1 A, very large
Again the system acts as if the reservoir is not there. The drawdown is given

by the solution for a infinite radial system

R - T .
Ap SmkhD EOAwePD(tD tp;) (27)

For ¢p= 10 we can use Eg.18. Complete solutions are given by Van Everdingen

and Hurst?0 and Chatas!®,
2. Ay very sraall

Again the aquifer is ignored, and tank decompression is the solution. There-

fore the equations reduce to Eq.25 in this case also.
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3. A, intermediate

Now the entire expression must be used. In this case there is no analytical
solution available. Solutions were presented in graphical form by Hurst!3. The

drawdown is given by

... N . )]
4: Ap = 2Tkhpag JEO Awe;[qN<a-tD tp; )] (=8)
‘\/‘ w >
where
Ko(Vs
oW (o.tp) = L (Vs ) ] (28a)

mlu:

oK (Vs) + \/EKc(*/?)]J

8

4.5. Superposition

Since the equations presented in the petroleum literature are limited to the
boundary conditions of either constant rate, or constant pressure at the inner
boundary, it becomes important to be able to modify the equations take into ac-
count varying pressure or rate. This is done by dividing the changes into
discrete steps, and adding the effects of each constant pressure step. The
method for doing this is known as the principle of superposition, and can be ap-

plied in both space and time (see Fig.13).

The idea is that the effects on a point in space is the algebraic sum of the
effects from each contributing change. For example, to determine the effects o
several wells in a reservoir on the. pressure at a certain location in the reservoir.
simply calculate the effect from each well assuming there are no other wells in
the reservoir, and then add the pressure changes from each well to get the total
effect. Similarly the effects of several changes at different points in time on a
point later in time, are additive. The principle of superposition is discussed in
more detail in petroleum engineering textbooks and was discussed by Van Ever-

dingen and Hurst!3



Using the Van Everdingen and Hurst equation (Eq.23), the influx is given by
the superposition theorem as:

n
We =B Y, @(tp—tp;) Ap; (29)
j=o

In this equation ¢p represents current time. The initial pressure drop is effective
from the beginning until present time, and the additional pressure drops are in
effect for successively shorter times. This s illustrated on Fig.13. It should also
be noted that in the limit of infinite steps, Eq.29 may be written in integral form.
This is known as the convolution integral, and can be used directly if the varia-
tion of pressure as a function of time is known. Since the limit of the integration
is from initial to present, and that the initial conditions are generally known for

reservoirs, this integral is suited for solutions by the Laplace transformation.

The integral is given by:

tp

d . .

W,=5 [ —P—df. @o(tp~t5)dts (30)
[+} D

4.6. Fetkovitch

It becomes complicated to always have to use the superposition theorem,
especially if computers are not available, and if the reservoir is closed since
there are no simple analytical solutions to the problem. A different method was
developed by Fetkovitch,?? which is especially useful with closed reservoirs. In
this method the average pressure of the reservoir is assumed to be the inside
pressure of the aquifer. The average pressures of the reservoir and the aquifer
are calculated using material balance. For each time-step (the size of the time-
steps need not be equal), the average pressure in the reservoir is held constant,

while the average pressure in the aquifer is allowed to decrease.

The method is based on defining a resistance function between the aquifer

and the reservoir. Since a finite reservoir which is closed is assumed, pseudo-



steady state is assumed to be reached immediately. This is not true, but the
time to reach pseudo-steady state is usually much smaller than the time for the

prediction. The equations for pseudo-steady state flow for radial geometry are:

We =

2mkh (puu pwf ) (31)
T

g i ] - H )

R T
which if == > 10reduces to
rw

2rkh (pau ~Puy )

w, = 0 y 3 : (31a)
# nrw 4
for linear geometry:
kbh -
w, = (Palt P,) (32)
F3

The method is based on a constant productivity index. For a closed system, the

rate may be expressed as (see Appendix B of Fetkovitch??)

w
= Ju (i —Puy ezpl ——-——“"‘” t (33)

Eq.33 is the most important equation in this method. The procedure for doing

the actual calculations are as follows:

1. Calculate wg; me, (the maximum influx rate using one of the equations for

pseudo-steady state flow with p,, = 0).

2. Calculate A,, for the time step.

Wci l [ Wei, maz ]
= 11 —-exp|- —"2-At (34)
4 Pi Wai "
where
Wei = VaqP?"cthi (34a)

3. Calculate the average pressure in the reservoir after the end of the time

step. This is py; ) in the aquifer. For a constant compressibility decompres-
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sion

—an+w‘n—1+A" Pav(n-1)— Eﬂé}_‘.& +Pi(V¢pns cru)

P, = 35
mre V@0 rae C +ﬁ— (%)

If the reservoir is unconfined, the material balance in the reservoir is given by

Eq.3, and then Eq.35will have Vgprstres replaced by %&

4. Calculate the incremental influx for this time step.

Pusin-) P
AWoﬁ = | Pay(n-1) ~ w[én 2. w,;(n) An (36)

5. Calculate the average pressure in the aquifer at the end of the time step

Pavim) =Pi = 3 (e, _ +57,.) (37)

[ 1

6. Finally we can calculate the cumulative influx at the end of the time step

W, =W,

Sn-1

+aW, (38)
If the pressure can be represented by the hydrostatic column of water in the

observation well, the drawdown over the time step is given by

Ak, = Ah,_, + pﬂ(n;l)—gpwj(n) (39)
TeS

The procedure is then repeated from step 2. This method is especially suited for
solving on a programmable calculator, or a computer. It is possible to update
the compressibility and the density as time goes on. Using data on drawdown
and rate, one can determine the constants that will give the best results. Note

also that for this method, the initial pressure in the system must be identified.
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5. HISTORY MATCHING

After a geothermal reservoir has been produced for a period of time, a de-
pletion model can be matched to the production data. The production history is
used to obtain optimum parameters of a particular model. As more data be-
comes available, more and more becomes known about the reservoir. With time
there are data available which may be used to improve the understanding of the
reservoir. This becomes important in future modeling of other similar reser-
voirs. In all cases data must be collected as the reservoir is produced. The
model is limited to the data used, so all the pressure responses must be includ-

ed.

In matching production data it is possible to get as many parameters as
there are data points. If there are three data points it is possible to fit three
constants. A, more usual situation is that there are more data points than con-
stants to fit. In that case, the method of least squares fitting may be used. It is
also possible to use graphical techniques. These concepts are best illustrated by

examples.

5.1. Number of Data Points Equal to the Number of Constantsto At

A drawdown of 10 meters is shown after producing 4x10® kg of water. The
reservoir is filled with liquid of density 870 kg/m?3, and from resistivity measure-
ments the volume was estimated to be 3.5x10°m3. The porosity from core sam-

ples is thought to be 25%. No recharge is thought to be significant.

There is only one data point available, so only one constant can be deter-
mined. For 'Liquid only the possibilities of a confined or an unconfined system can
be tried. The compressibility of liquid water at these conditions is about
1.2x107%Pa~l. If the system is confined, Eq.6 is used in an integrated form

without recharge:
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Vepucy (P _Pi) = - Wp

which becomes:
Vepsicwghh = Wy
Solving for the volume gives:
W

V= —j7""7—
¢P5°w9 AR

Substituting the values gives:

V= o 4¢10%g = 1.8x10!1' m3
(0.25)(870)2 =L~ (1.2x107%) Pa~}(9.81) T (10)m
m Ly

which is much higher than the believed 3.5x10°m?. If the system is unconfined,

Eq.2 is used and solving for A gives:

A = _.W._a_._
¢pwAh
Using the values given:
A= 4x10%¢ =1.8x10%°m?

(0.25)(870) -,’7‘3;‘73—(1o)m
If the volume! is 3.5x19°m3, this would give a vertical height of:

_ ¥V _ 3.5x10°m?

= = ——————=15300m
A 1.8x10%° m?
This number is more reasonable, indicating that an unconfined reservoir is more

likely.

If an unconfined model appears reasonable, what will the drawdown be after
30 years of production if the rate is constant at 100kg/s ?

The total mass produced after 30 years is:

k sec
W, = wt = (100) =L-(30)years (31.536x10¢) —sec—= 9.46x10%%g

S years

Added to the produced fluid when the drawdown was 10 meters, the total mass

produced in 30 years will be:
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Wpe = 9.46x100 kg + 4x10% kg = 9.86x10% kg

The drawdown is obtained from Eq.2:

W 0
- Pt _ 9.86x 101 kg =252 m

ApPu (1.8x108)m2(o.25)(e7o)1°93—
m

Now assume that when 10x10!° kg was produced, the drawdown was measured as
150 m. Therefore, the model is predicting too large a drawdown. This may show

that there is some pressure maintenance in the system.

Assume that a more careful study showed that there is influx from a perme-
able zone along a fault. Two constants can now be obtained since there are two
data points. Notice that the temperature and enthalpy are assumed constant so
the heat balance can be ignored. If a Schilthuis!® type equation is assumed, Eq.3

can be used. The integrated form of Eq.3 becomes:

8- (p-p) = Klpop)t — wt
Since the rate has been assumed constant, W, = wt. Writing this equation for
the two data points and since p =pgh:

—Appy A, = KAh t, = Wy,

—Agpybhy = KAhoty — Wpo
Solving the first equation for A¢p,, gives:

KAhltl_ WEI

Substituting in the second equation gives:

XMltl— w
T“Ahg = Kbhats = Wy

Solving for the influx constant gives:

Wy ~ W, i
K= pl pZMz
Ah,t, — Ahyt,

where t, = 4x107 s, and £, = 9.48x108 s. Substituting the values given, an expres-
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sion for K is obtained:

10

9 - 10 —

_ (4x10%kg — (9.86x10")kg on
(10)m (4x107)s — (10)m (9.46x108)s T m-s

using this and substituting in the first equation:

(4x10%)kg - (0.28)Fn’5?-s—(1o)m(4x107) s
Agpy = 10m

= 3.9x108 XL
m
With ¢ = 0.25 and p,, = 870 kg/ m?, the area becomes:

3.9x 10852

A = mk = 1.8x10°% m?
(0.25)(870) =L~
m

This is the same as found in the first example. Now the drawdown after 50
years can be predicted. After 30 years, the rate is increased to 150 kg/s. After

30 years A1 = 150m. The next 20 years, the rate is 150 kg/s, so for this period:

= kg N —— 10
AW, = (20)years (150) - (31.536x 10 )yearS 9.46x%10'%g
and the drawdown for the period is:
Ahy, = — Al 9.46% 1010 kg =167m

) (3.9x10”)4§-ﬁ—+ (6.£8)g_’f|g§-(20)(31.536x 109) s

Therefore the total drawdown after 50 years will be:

AR =150m T 167m = 317 m

5.2. More Data Points Than Constants to Fit

Assume that the following data are available from the reservoir described in

the previous example:
Time(days) Rate(kg/s) Drawdown(m)
100 40 0.85

200 30 1.5
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700 120 11.5

1000 100 17.5

5.2.1. Integrated Form

Assume that the same model applies as-before. By rewriting Eq.3 in an in-

tegrated form, the result becomes:
n
Appulhy = Won ~ K;__‘,lAhJ—At,-

n
dividing by Y, Ak;At; and rearranging gives:
j=1

W Bhn
= Appu—+ K
f=1 j=1
Now defining:
- _ A
Ty = ———
Y hnjdt;
j=
and
W,
Yn = 5
jz_:lAhJ-Atj

Substituting, the relationship becomes:

Yn = AgpuZn + K
This equation may be used to identify the constants App, and K. There are
several ways to do that. One is using a least squares fitting technique. The pur-
pose is to minimize the distance between the data points and the points calcu-
lated using an equation of the form given above. The data points can also be
graphed on cartesian graph paper. In this case the line should be straight. This

is always recommended if the equations can be reduced to an equation of a
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straight line on some form of graph paper. If the points fall on a straight line,
the model used is likely to apply. The scatter of data points may be due to the
sensitivity of the method. It does make a difference how the equations are writ-
ten. If dividing by Ah rather than the sum, Wp,/ Ahy, is close to being constant.
Writing the equation of a straight line like that would therefore not be a good

choice.

Returning to the example, the values of z, and y, were calculated. The
results of the calculations are given in Table 2. A graph of the data points is
given in Fig.14. As can be seen from this graph, the points fall on a straight line.
The solid line represents the least squares At through the data. The two con-
stants from the fit are the slope and the intercept with the ordinate. The values

are:
Agp,, =4.03x10% kg/m
K=0.3kg/ms

K becomes inaccurate if the points are scattered, because the value of X is
small. if the uncertainty in measurements is high, it may be necessary to

smooth the data using statistical methods.?

If there are more than two coefficients to determine, it is not possible to
write the equations in the simple straight line form, and a numerical method is

necessary. The general form of writing equations with constant coefficients is:

yJ = Qg + alzl'j + agzz_j + ... + U.mme

In matrix form this becomes:

1 Ty T2y -0 Ty a, Y,

1 Zin T2n " ZTmoan Ay, Yn
If m=n, there are the same number of data points as constants to fit, and the

matrix equation can be solved. If m>n, there is not a unique solution. If m<n,
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there are more data points than constants, and the least squares method must

be used.

5.2.2. Finite Difference Form

Previously EQ.3 was written in an integrated form, assuming Agp,, and K
constant. Eq.3 could also be written in a finite difference form. There are several

ways of doing this, many of which are used in numerical simulation. One way

would be:
Appu %= KAhy — wy,
n n-1
Note that Ah, = h; = hy, implies that

by =hn_y = (A —ha-y) = (hy —hy,) = bk, — AN, Dividing by Ak, gives:

AR — A, . Wn,

APPw g at Ahy,
where At, = t, — t,—;. Rearranging gives:

w — AR,

N K+ Agpy, By
&Py Ah, Aty
.. w _ AR, — Ah,_ - . . .

and by defining y, = Ah: and z, = Ahn—At,,l a similar straight line relation-

ship results.

Knowing Agp,,. the drawdown after 2000 days of production, if the rate is

110kg/s after 1000 days, can be predicted.

The equation is:

n-1

n
Agpybhy = Won — K3 ARyAt; = Won — K'Y, Bhybl; — KAR, bt
j=1 j=1

Solving for Ah, gives:

n-1

= 40
Ahn App, + KAL, (40)
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From Table 2 the sum is known, and the other terms are known:

= Wy + AW, = 7.344x10° kg +(86.4x10°) s (110) XL = 16.85x10° kg
S

an
K:0-3—Eﬂ—
m s

Agp,, = 4.03x108 %n-‘l-
At, =86.4x10%s

n-1
Y br;At; =B41.1x10% m s
i=1
Substituting these values gives the drawdown after 2000 days:

16.85x10% kg — (0.3) 2L —(B41.1x108) m s
- m s
AR, = . P = 30.7m
(4.03x108) ?n-‘l—+ (0.3) Fﬂs—(as.um“) s

In all the calculations the simplest possible way of numerically integrate
the influx equation have been used. It should be noted that this introduces an er-
ror in the determination of the influx constant. Using the average drawdown
between the current and the present level of depletion in calculating the sum
would approximate the integral better. However, with the number of time steps,
and the frequency of values when the drawdown changes mast rapidly, the for-
mulation used above gives a good approximation. The additional terms added to
each depletion step are also nearly constant, so even though the influx constant
may not be the true Schilthuis constant, the predicted drawdown should be the

same.

5.3. Determination of Qptamum Constants

Up to this point cases have been considered where the constants could be
obtained through a least squares fitting technique. Some constants can not be
obtained in this manner, and other method must be used. Some of the most im-
portant constants to identify, are the initial values of the parameters. This is im-

portant whern the variations of saturation, temperature, and pressure need to be
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described with time. Initially, there may be only liquid, but the drawdown may
not follow this type of model for a very long time. There will eventually be boiling
in the reservoir, and to be able to predict when the pressure falls on the satura-
tion curve, the initial pressure in the reservoir must be known. AS an example,

the simplified mass balance given in Eq.9 with Schilthuis influx can be used

Volow —pm) = My = K3 00t
In this case the initial density needs to be identified, which is a function of the
initial thermodynamic properties in the reservoir. The initial temperature is
usually well known, therefore assume that the only initial parameter to fit is the
initial pressure. If there are more than one parameter to fit, they can be fitted

one at atime, and iterating until-convergence. The procedure is as follows:
1. Assume initial pressure p;.

2. Calculate the corresponding p;;. (There may be steam present, or the fluid
is on the !saturation curve, depending on the temperature and the chemical

compositicm of the fluid.)
3. Perform. the history match as discussed in the previous section.

4. Determine the standard deviation from the fit;

YA
s. d - \/ —Z_—..
m-1
where

A=Yn ~yn
Y is from.the data

yn is calculated using the fit, and
m = the number of data points.

5. Change the value of p;, and repeat from step 2.



When the procedure has been finished for several values of p;, the assumed
values of p;, vs. the standard deviation can be graphed. If there is a minimum
s.d., the corresponding initial pressure is assumed to be the correct value. The

same procedure may be used to identify other constants.
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6. EARLIER SVARTSENGI MODELS
6.1. Reservoir Description

The Svartsengi field in Iceland is a liquid dominated reservoir with fluids of
nearly constant ternperature at 235 ° C. The reservoir is located on Reykjanes
Peninsula in southwest Iceland. From resistivity measurements the reservoir is
believed to cover an area of 5 km? at 200m depth, increasing to 7 km? at 600m
below sea level. The salinity of the geothermal fluid is about two thirds that of

sea water.

The following reservoir and fluid properties were discussed by Regalado.?®
Fluid production from the reservoir started in 1976. The production data have
been provided by Thorhallsson.3® The total mass rate output from the field is
shown in Fig.15a. The water level was measured in wells 5 and 6 until 1000 days
of production. After 1200 days of production, the drawdown was measured in
well 4. The measured drawdown vs. time is given in Fig.15b. A pressure-
temperature diagram for the wells is shown in Fig.18. It shows the feed zone
pressures of the wezlls and the water saturation temperature corresponding to
the pressure profilz measured in well 4. Note that only well 3 is initially at sa-
turated conditions, and that the temperature from 350m to 1850m depth is
nearly constiint. Most of the wells are completed in the deeper liquid zone. The
pressure with deptn is linearly increasing, but there was initially a 16 bar pres-
sure difference between the inside and the outside of the reservoir at 1000m
depth. The density was measured as nearly constant at 854 kg/m3. The result of
enthalpy measurements in wells 7,8,8,10, and 11, show average enthalpy of 1074
kJ/kg. From well testing the porosity and permeability have been reported as
0.1 and 1darcy, respectively. This permeability appears rather high compared

to other liquid dominated geothermal reservoirs.
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6.2. Convection Model

The deuterium and chloride concentrations of the reservoir fluid give
conflicting information about the relative amounts of fresh and seawater at
Svartsengi. The deuterium indicates 50%meteoric water and 50%seawater while
the chloride indicates 1/3 meteoric and 2/3 sea water. This problem was ad-
dressed in the convection model developed by Eliasson?* and reported by Regala-
do®¥ and Kjaran®® where boiling was assumed to explain the high salinity. Also
since the temperature in the reservoir is almost constant below 350m depth,
convection was assumed to occur. It can be shown that a vertical permeability
of only about 1millidarcy is a sufficient condition for convection.” " A convection
model was therefore proposed for the Svartsengi reservoir.® " This natural state
model is illustrated in Fig.17, The conservation equations for points A and B can

be written as follows:

Point A:

Mass: w, =w; + wyg + wy

Energy: wyhy, = wghy + wahy + weh,
Concentration: w,g = wgy T w,y
Point B:

Mass: wy, = w; + wy

Energy: Wyhy, = w.h, + wyhy
Concentration: w,f8 = w,y +t wpa

Rearranging these equations we get the expressions for the mass flowrates:

T«
wy = w, & 2L=E
Yy 7-«a
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w, —w, 2= £

Y
ho = by L2
h,:hﬁL%

where L is the latent heat of vaporization, and «,8,v, are the chloride concentra-
tions at the points given in Fig.17. There are now six equations with twelve unk-
nowns. To solve them it becomes necessary to make some assumptions. Assum-
ing that the chloride concentrations are known, the unknowns are limited to
seven. The problem can be solved, for example, if the mass flowrate up can be
estimated. This was done by using the following expression:28

wy, = KA(1-e)(p(Te.7)~ p(Ty.6)) (41)
where K is the coefiicient of permeability, m/s, A is the area of the up flow zone,
and e is the fraction of the energy disipation which occurs in the down flow

(must be smaller than 0.5).

The natural heat loss was calculated as the difference between the upward

and the dowinward heat flow. The value arrived at by Kjaran et al.?* was 300

MWepermar- This model describes the reservoir in its natural state.

6.3. Hydrological Model

The early production model developed by Kjaran et al.?* for the Svartsengi
field was a hydrological model. It was based on a rectangular geometry of the
fleld where the wells were assumed to be close to one end of the rectangle. The
opposite boundary was assumed to be far enough away so the effects of it could
be ignored. Writing the boundary value equation for fluid flow in a porous medi-

um lead to the solution:

™s

¢
Bh(zy.t) = o= Com B (2.9)8am (60) [ 9 (1)e 4T oma 7 (42)

n=0m =0

where:
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A = area of the rectangle m?

S = storage coefficient

T = transmissivity m?/s

(x,y) = coordinates of observation well, m

(¢,m) = coordinates of the producing well, m

A (z,y,t) = the drawdown in the observation well, m

The matrices are given by:

n ¥0,m #0
Com = 2 (r#DAm"O) V(n =0Am 0)
Nn=0Am =0
Ko = e
m n
"2T[:e_+ b?

$,m = COS m;rx cos n;ry

This solution corresponds to the solution for a well located in a rectangle. The

effects of superimposed wells are added in an infinite array to create the boun-

daries.

.For step changes in the rate, this equation may be written as a superposi-

tion sum. The resulting equation was used to calculate the drawdown in the ob-

servation well. The result of the calculated drawdown compared to the measured

drawdown is given in Fig.18. Wk see that there is a good agreement during the

first 1600 days of exploitation.

6.4. Unit Response Function Model

The unit response function was defined by Barelli et al.?” as the solution to

the diffusivity equation:
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poip(r.6) - 2EL) - o “

with the boundary conditions along a boundary S;
p(7.t) =p(#.t) onS,
p(7.0) = pe(?) inV

k 4y
Ag;Ap(r.t)-1z =q(t) +q'(t) onS,
k -5 b g
#—Ap('r.t)-n = v (7,t) on Sg

In these equations, n is the diffusivity (m®?s™!), v is the Darcy velocity, and q'(¢)
is the flow rate variation on S;. S, is the part of the boundary on which pressure
is known, S, represents the well where the rate variation takes place, and the
rate is known on S3. The solutions to Eq.43 are presented for some boundary
conditions in Table 1.However, a more general solution may be obtained without
putting further restrictions on the boundaries than what is stated above. If al-

lowing the flowrate to change stepwise, the solution becomes:*??

t
Pa(f) = 9 (00)p,(7.0) + [pr (7.r) =T ar (44)

where p, {(Pa m=3s) is the special unit response function, which is the solution
to the boundary condition of step changes in rate, and py (Pa) is the pressure

field difference between disturbed and undisturbed solution.??

Eq.44 can be rewritten for the step changes in rate using the superposition

sum:

AR = g(O+)F(t) + 3 Aq; Fltn — t;) (45)
j=t

Now the problem becomes to determine the unit response function F(t). The
unit response function has been used to model the Svartsengi field.?® The func-
tion F(t) was determined using a least squares fitting routine with the drawdown

history in the reservoir. The calculated drawdown is shown in Fig.19. The unit
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response function is determined using the measured drawdown and the rate
variations in the field. The solution is general, and any function which fits the
data may be used. When F(t) has been determined, conventional well testing
techniques may be used to determine permeability, storage, and skin, by log-log

type curve matching.

6.5. Linear Model

A linear model developed by Swedish authors was used for the Svartsengi
reservoir by Regalado.?® The model was developed for a long flow channel called
an esker that forms under glaciers. Regalado®® adopted this model because
geothermal fields are geologically active with many parallel faults. The

diffusivity equation was written:

8%h _ S oh
az2 = T ot (46)
and solved with the boundary conditions:
h(z,0) = h(x=,t) = hy (47a)
8h_ =-_3 47b
2z (1) = 7 71 (470)

In these equations T is the transmissivity (m?/s), and S is the storativity
coefficient. 'The initial condition, and the first boundary condition say that the
initial pressure is the same as the pressure at the infinite distance from the
well. The second boundary condition is Darcy's law written at the producing well
positioned at x=0. This well is considered a plane source, and the observation
well is located a distance x from this source. The model assumes infinite linear
aquifer, but the reservoir is assumed to be closed at one end. To create this
boundary, an additional production well, producing at a rate g, was placed at a
distance 21-x from the observation well. This well was referred to as the image

well. The model is illustrated on Fig.20. The solution to this problem becomes:

- 1 q(z) 1 q(21-zx) 48
bh= o= Ty Dlw) + o= T Dlws) (48)
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where:

_ z%S
YT o7t (49)
—m}2
4Tt
Vo
D(w) = %’_— Vi +2 [ e*dz (51)
[+}

The first term in EQ.48 is the drawdown due to the production well, and the
second term is due to the image well. This model is the same as a semi-infinite
aquifer with the superimposed effect of the image well to create the no flow
boundary. The model was used to calculate the drawdown for the first 1600 days
of production using relevant reservoir dimensions, properties, and flowrate data.
The results are given in Fig.21. The model agrees well with the observed draw-

down in the field.

6.6. Boiling Model

The pressure-temperature diagram in Fig.16 shows that drawdown in the
field will result in boiling in the upper parts of the reservoir. As the liquid level
drops, there will be a boiling zone above the liquid level where the pressure and
the temperalture follow the boiling point with depth curve. This has been ob-
served at Svartsengi, where steam is now rising from the ground in the region of
the shallow wells. A model was developed by Kjaran et al.?® using the storativity
given by:

S1 = ¢(1-5u) (52)
where the subscript 1referres to the zone where there is boiling. This quantity is

assumed constant, The total production rate is given by the sum of the rate

from the lower liquid zone, and the rate from the two phase zone:

dhy
wp = w,; + pa4zS; T (53)
dh,
= S| — 54
wy = pi4, e (54)
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where h is the drawdown in meters, and the subscript 2 referres to the liquid
zone deeper in the reservoir. These equations are similar to the unconfined sys-
tem with the influx term replaced by w,; the rate from the two phase zone.
Furthermore,,it was assumed that the rate from the two phase zone was propor-
tional to the difference in pressure between the two zones:

w, =c(hg —h,) (55)
There are now three equations with three unknowns, w;, h;, and h,. The draw-
down in the deep zone, hp, is of interest since this is what iIs monitored in the ob-

servation well. The solution to these equations is:

¢
ho(t) = C Wy (t) = Cof Wo(t —1)e ™ Kdr (56)
0
where:
c,= —L1— (57a)
JPL.PRP
Cy =cC? (57b)
k=L (014,151)(02425>) (57¢)
c p1A1S) + p2ALS;
It is also possible to calculate the drawdown in the two phase zone:
¢
hi(t) = Caf Wy(t—T)e ™ ¥dr (58)
0
where:
Cg = ¢ (59)

(p14151)(p24252)

The constants in Eq.56 were reported as being:" "
C,=1.488x10"8 m /kg

Co=8.716x10"!! m /kg day
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K=150 days.

To use this model, the equations must be numerically integrated. The drawdown

was calculated here using the constants given above and the following equation:

Ak, =1.488x1078W,, —8.716x10"1Y W, (t, —t,-)e"f”SoAtj (80)

i=1

This equation is the same as Eq.56 for hy but is now written in numerically in-
tegrated form. The results of the calculations are given in Fig.22. The fit is not
very good, although the shape of the curve is similar to the data. K was changed
and history matching was performed to get a better match. K was determined
by trial and error, but C, and C; were determined using a least squares method
similar to the example presented in the chapter on history matching. The best

match is given in Fig.23. The constants used were:
C, =1.129x107® m/kg
C, = 4.932x107!! m/kg day
K = 250 days

This model is similar to the Schilthuis model, exept in this case the pres-
sure support is from the two-phase zone rather than from a supporting aquifer.
From the formulation of the problem, there is no way to distinguish between
these two cases. The drawdown in the two-phase region could just as well be

representing drawdown in an aquifer. In the Schilthuis method there is no draw-

down in the aquifer, the external pressure is always initial pressure.
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7. DEPLETION ANALYSIS FOR SYARTSENGI

A spectrum of depletion models have now been developed or modified. The
data from Svartsengi were analyzed using these depletion models. In the

analysis the simplest models are considered first.
7.1. Liquid Models
7.1.1. Without Recharge

The production data for the Svartsengi field are given in Appendix B. After
producing 3x10' kg of fluids from the reservoir, the drawdown was measured
about 100 m. Eq.2 and Eq.6 for for unconfined and confined, respectively, can be
used to identify the kind of reservoir. At reservoir conditions, the compressibili-
ty of the liquid water is about 1.2x10~® Pa-'. Using the reported values for poros-
ity (0.1) and density (850kg/m3), the volume of the reservoir can be determined
from Eqg.6 if the production is due to decompression ; a confined system. In-
tegrating Eqg.6 with W, =0 gives:

Vepdgcadh = Wy

Solving for V gives:

V - .__;W_E.__._
PPEYCtu AR
where ¢y, = ¢y to, . Assume that ¢, =1.15x107°Pa"!.  Then

Cew = 2.35x107%Pa~!. Substituting the volume becomes:

v — 3x10%g
(0.1)850)*(kg 7 m3)?(9.81)m / sec?(2.35x 107%) Pa~}(100)m

If assunning that the area, as determined from the resistivity measure-

= 180x10%n3

ments, is about 7 km?, the height of the reservoir should be:

V'  180x10%m?®
L= —= T " _92Fk
b = S Tx10°m2 m

This height is impossibly large. It can therefore be concluded that unless the

area is much larger than assumed, the model is unlikely to apply. However, it is
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possible that the production was supported by a large aquifer outside the reser-

voir. In that case the reservoir and aquifer must be considered as one unit.

Next, assume that the reservoir is like a completely open tank; an
unconfined system. Eq.2 can then be used. Solving for the surface or lateral

area:

_ Wy 3x10'°

= = =3.5x10%m?
vpwbh ~ (0.1)(850)kg / m 3(100)m i

This value of 3.5 km? is more realistic since it is about half the measured surface
area. The value of the porosity is uncertain. With a porosity of 5%the area would
be calculated. as 7 km?® by Eq.2, which is the value expected from resistivity
measurements. Therefore, the unconfined model appears to be applicable. Note
that if there is recharge to the reservoir then Ah will be smaller. So the area cal-

culated by Eq.2 will be less. The drawdown without recharge would be larger.

Graphing #, vs. Ah should give a straight line if there is no water recharge
or recharge. Fig.24 shows that the drawdown vs. production is not a straight line
indicating recharge. Also notice the close relationship between the rate and the

drawdown in Fig.15a and Fig.15b.

The pressure measured in the observation well is not necessarily represen-
tative of the average pressure in the reservoir. There may be interference from
the producing wells around the observation well, causing the pressure to appear
lower. To get the true average pressure, the reservoir should be shut in and al-
lowing the pressure to stabilize. This is impossible since the reservoir is continu-
ally producing. To include the effects from each well, a superposition of the
effects from all the wells would be necessary. However, in all the models present-
ed in this report, the measured pressure is assumed to be representative for the

reservoir.
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7.1.2. With Recharge
7.1.2.1. Schilthuis Method

This model was presented in the section on history matching. When graph-

ing:
_ o,
Zyp — n
Y; hhjhtj
=1
vs.
1/
yﬂ = n =
,ElAh,-Atj

the points on Fig.25 were obtained. The first few points are distinctly larger in
magnitude than the rest of the points. The solid line in Fig.25 represents the

least squares fit using all the points. The constants from the fit are:

ag =3.04377kg/m s

and

a, =5.33611x107 kg/m

The group of terms in front of dh/dt in Eq.2 and Eq.6 is a constan,. Define this
constant to be Sy, the mass storativity coefficient. Thus, for the unconfined
case:

Sy = A¢gpw

and for the confined case:

Sy = Vgpdgcew

The equations for the confined and unconfined models now have the same form.

For The Schilthuis model Sy = a, ,and K=aq. Assuming an unconfined system:

a, = Agpy

and
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@, _ 5.33611x107%g/m
#pw _ (0.1)(850)kg / m3

For a confined system, however, the volume is given by:

A= = 0.83x10°m?

V= a, 5.33611x10% kg/ m

= = = 3.2x101%m8
opigcre  (0.11(840)2(kg / m®)%(9.81)m / sec?(2.35x10%) Pa™! m

Assuming that,the areais 7 km?, the height of the reservoir is:

Vv  3.2x10!%m%
oz B2 T -4 8km
Ay A 7%x10%m?

The drawdown,was calculated using Eq.40. The result is given in Fig.28. The solid
line represents the :zalculated values, the circles are the measured values. This
plot is the same for the confined and the unconfined system. The difference

between the two is in the formulation of Sy.

The real system seems to behave somewhere in between these cases. Notice
also that the At is good for the early data, but the infiux is too strong for the
later part of the data. If the three first points are excluded from the fit, we get a
slightly different fit. The fitis given in Fig.27, and the drawdown in Fig.28. Wk see
that the influx is not as strong in this case. From the least squares fit,
K=2.75447. The value for Sy is 6.60567x107. The infiux is however still too strong,

although this fit is better.

Consider what information can be obtained from the Schilthuis influx con-

stant K. From Eq. 14 for the linear case p = py,gh:

_ kaplg
T ubL

Inthe radial case Darcy's law gives:

K= 2rkhplg _AQ
- r, 360

w

L ln

where 8is the angle open to flow. In the linear case the length of the aquifer can

be obtained from the first equation using k~1 darcy:
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_ kApa9 . (1x10~'¥)m?(2500)m (1500)m (850)%(kg/ m®)*(9.81)m /s? _ 80 km.
uK (110x1078)Pa-s (3kg/ m s
In this equation A is the cross-sectional area of the aquifer. This was taken as

AL

2500 m x 1500 m , since 25002 m?=8.25 km?, and 1500 m is a reasonable height.
The distance from the reservoir to the ocean, which may perhaps act as a con-
stant pressure outer boundary, is about 20 kxm. The cross-sectional area of the
aquifer may be less than what was used and the permeability of the aquifer is
likely to be much less. The calculated length is therefore of reasonable magni-
tude. Assuming radial geometry, & can be determined from the second equa-
tion. Assuming 7,/ 7y =10:

r
360° Kuln ==

= w
Bnkhpﬁg
(360°)(3)kg/ m s (110x10°%) Pa-s 10
" 2m(1x107®)m3(1500)m (850)%(kg / m3)3(9.81)m / s*

This small angle shows that a linear geometry is more valid than a radial system.

= 49

7.1.2.2. Hurst. Modified Method

In this method the influx rate is a function of time. The influx rate is given

by Eqg.21. Combining it with Eq.3, the following results:

a{p; —p)--
4 g - 2B R
This is for the unconfined system. Integrating, and substituting the mass stora-

tivity coefficient:

t
adh
S | Tog (01 dt ~w

Notice that a has different meanings in the two equations. Numerically integrat-

ing the water influx:

7 .
- SyAh, = E—i?f—- Won
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Assuming that for zach step of depletion, the following holds:

a T = tj+tJ_1

Ki= —— .t
i log (bt;) I 2

it folloas that:

n
= Sybhn = K;Ah; Aty = Wy
Solving for &, give!;:
n-1
Won — Sybhn — ), K;ARjbL;
i=1

AR, AL,

If Sy is known, X, can be calculated using the above equation. The problem is to

K, =

determine the constants a and b. Rewriting the equation for &;:

L 1ogb + tlogr, =
3 logb 3 gi, K,
Now define:
z, =logt,
_ 1
yﬂ - Kn

A plot of z, vs. y, should give a straight line, nd the const nts b and a may be

determined from the slope and the intercept.
To illustrate this model, Sy = 5x10%kg /m, equal to the value for Sy found

in the Schilthuis method was assumed. The fit for -;—L-log b and ;— isgiven in

Fig.29. The solid lirie is the At, and the circles are the calculated values. Notice
that there is a lot of scatter. The computational procedure must be wrong, or

this model does not apply.

The above influx equation was based on the log approximation of the line
source solution for infinite radial aquifers. If infinite linear aquifer is assumed,

the material balance equation becomes:

n
~ Sybh = Bpg ¥, FyAtpn — tpj)AR'; = Wpn (61)
j=2
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Substituting the definitions of B and F,;:

1/2
n t —tn;
— SyAh = gcbhLp®gy), Z[M— Ahj — Won (62)
j=2
By the definition of Tp (L=1):
n
— Sybh = ¢‘3th292[ oucm Ez(tn = t;)!Bh’; = Wpn (63)
J=

In the above equations, Ak'; is the pressure difference between each depletion

step:
ARy = Aanj — dhy -, (84)
Substituting Eq.64 in Eq.63 and dividing by Ah,:

n
E (Ahj - Ah'j'-l)(tn - tj—l)l,g
i=2

Ah,
1 Sy
k 172 an ck 12 (65)
£2E ) bhpg2 | DA, | | EES| bhp?g2
[ an ] P°g hn o p°g
Eq.65 can be written in the form:
Yn = A1y + Qo (66)

A plot of this match is given in Fig.30. The points seam to give a positive value of
a, which corresponds to a negative value of Sy! It is therefore concluded that
Sy is zero, and that the reservoir behaves as infinite linear. With Sy = 0, the

slope is:

a, =1.05x1077 s1?m / kg
With Sy =0, Eq.63 becomes:

on = o 5 (ta—t; ) 2Bk - Bhy_,) + (bhy — B )t = ta_)) 2| (67)
j=2

Solving for Ah,:

n-1
alwpn - jz (Ahj - Mj-l)(tn - j—l)u2
=2

(tn - tn—l)ue

Ah, = Ay + (88)
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and to get started:

‘llez

Vi

The reason for starting the superposition sum at 2 is that in the input Ale the

Ah1=0 ’ Ah-2=

first entry is 0, having subscript 1. When dividing by Ah,, the solution blows up
for Ah, = O.

The calculated drawdown is shown in Fig.31. The match is good, but the
aquifer response is too high. The cross-sectional area of the aquifer can be

determined from the constantay:

1

a, = e 172
[f? bhp?g 2
1
bh = . 172
[+
2| a2

which becomes:

= _ ‘12 1
4= (0.1)(1x10713)m.?(2.35%10"%) Pa. ! J (1.05%1077) ¥F#-(850)%(kg / m 8)3(9.8L)m / s3(2)(1)m
(11ox1078)Pa-s(n) kg

A = 8.1x102 m? = 810 km?

This value is impossibly large.

7.1.2.3. Hurst Simplified Method

The case of infinite linear aquifer will be considered here. The matching pro-
cedure becomes simple in this case. From Eq.28, a straight line through the ori-

gin should be obtained by plotting:

n
z, = jz_}ko,-M[xz(tD—tDj)]

VS.

Yn = Ohy
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with slope:

a = HMag Cag
kVpNS Crcsprvsg
By the definition of A, a becomes:
Hag

a=—————A
kAPaqpnsg

where A is now the cross-sectional area of the aquifer A = h'b,

The problem then becomes to determine A. Again the method of minimizing

the standard deviation will be used. The procedure is as follows:
1. Choose a value for A.
2. Calculale z,, and y, .
3. Find a using least squares fit on:
Yn = Q'Zp
4. Calculate s.d.
5. Change the value of A, and repeat from step 2.

6. Graph the standard deviation as a function of A. The minimum standard de-

viation corresponds to the value of A which gives the best fit.
When the best fit for a and A is obtained, the drawdown is calculated using Eq.26.

The result from the fitting €orh is given in Fig.32. The s.d. is decreasing to a
minimum at A =1.3x10"* m "1, Notice that for small values , the s.d. is large, but
for large values, the s.d. is low almost constant. When A is large the reservoir is
not important in the response. This occurs when the compressibility of the

reservoir is low, and points in the direction of an unconfined system.

Assuming that the length of the reservoir is 2500 m:

Al = (1.3x10™*)m ~}(2500)m = 0.33

. c
since A= &

L CresPres
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A

Because the! reservoir is hotter than the aquifer, the reservoir will have higher
compressibility. Any two-phase region at the top of the reservoir may be respon-

sible for a hiigher compressibility. The constant from the fit was:

10 m-S
kg

a = 4.755x10"

Solving for the cross-sectional area of the aquifer gives (assuming pq, = 1000

kg/m3):

A= __ M}
kpagPresga
_ (110x10°%) Pa s (1.3x10™4)m !
© (1.0x10712)m?(850)(1000){kg / M3)3(9.81)m / s3(4.755x 10" 1%)m s / kg

If h = 15007, the width becomes:

=83.86x108 m?

_ A _ 3.8x108m? _
b = S T isoom =2400m
This width agrees well with what would be expected. The calculated drawdown is

given in Fig.33.

7.1.2.4, Fetkovitch Method

To history match using this method, trial and error has to be used by
changing the parameters in the reservoir and the aquifer. Two cases were inves-
tigated: linear and radial geometries. The calculated drawdown is shown in
Fig.34 €or this Linear case, and Fig.35 for the radial case. In the linear case, the

best At was obtained with:

_ k
Sy = VgPresCres = 6.6 ?P%.-

Using the sarmne values for ¢, ¢, and ps as before:

6.6 kg

y= —06 Pa = 6.8x107 m3

PPres Cres (0.05)(850)—kgs—(2.35x10‘9)Pa‘1
m

Assuming A; = 1500 m:
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V _ 8.6x10"m?3

— - = 4.2
A= = 1500 T 4.4x10*m
- 3kbh .
This is much smaller than expected. The value of il in Eq.32 was found to be

3
2.846x107¢ P!:—s Using b = 2500 m and k = 1x1072 m?2, the length of the finite

aquifer can be calculated:

-12 2
L= — 3kbh ~ (3)(0.5%x10"®¥)ym?(2500)m (1500)m _ 18 km

3 3
2.846x1078 PZZTM (2.846x1076) P’;s “(110x107%) Pa. s

This is approximately the distance to the ocean from Svartsengi along the fault

zone. The model predicts too large a drawdown for late times. This may be due
to changes in compressibility as a two phase region forms at the top of the

reservoir.

The radial fit was not very satisfactory. so the constants from the fit on

Fig.35 were not determined.

7.2. Two Zone Model

Rewriting Eq.10 in a numerically integrated form yields:

LC b c
~Ah, = a) DR AL + 2W, + Ly
,§1 I T pg TP T pg

which can be written as:

Yn = Q25 +A2T35 + Q3T3n

a,.a; and a4 are then determined using a least squares fit. From the fit these
values were:

a, = a =0.3261x1077

b

a, = = -0.1192x1077

a3 = —= —0.3537x10"
P9
Using these constants, the drawdown was calculated using Eq.10 in a slightly

different form:
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n-=1
—Ah, = a; 2 AhJAtJ + aawp,, + Q3wWn, + alAh,,At,.
iz

Solving for Ah,, gives:

n-1
@, 25 AhjAtj t azWen taguw,
= ji=1
Bhy, = -1 —a,At,

The result is given in Fig.36. The curve has the right trend, but the line is not
smooth because of noise in the data. A discussion of these problems is given by
Fradkin et al.5. A difference form of this equation does not work since the
difference w; ~wj;_, does not adequately describe dw. Note also that it may be
difficult to identify ag since when the production stabilizes, the rate is close to
being constant. The high fluctuation of w (see Fig.15) may be responsible for the
noise in the data. Therefore, using the average rate from the beginning to the
time when the drawdown is calculated was tried. The difference is minor, and the
result is given in Fig.37. In this case, the fit gave:
a, = a = 0.2582x1077
2, = 2= —0.9583x10-
P9
ag= ~—= —0.1396
P9
Eq.10 can be used to solve for Ap , K , and 7, assuming a value for S, . From
Eq.10c it can be seen that the only way ¢ can be negative, is if 1, is negative.

This makes no physical sense. Thus, even if it is possible to solve for Ap and X

using Eqg.10, the match gives erroneous answers.
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8. DISCUSSION

In this study several lumped-parameter depletion models have been used to
model the production history of the Svartsengi field. In most cases it was possi-
ble to match the drawdown history adequately. The question becomes: What in-

formation about the reservoir can be obtained from the results.

8.1. Liquid Models

In Fig.24, there must have been recharge in the reservoir if Sy is constant.
This recharge may be from the edges within the reservoir, or there may actually
be a channel where water flows into the reservoir. The models are not able to
determine where the recharge comes from, but a better match was obtained
when influx was included. First, assuming no transients in the reservoir or the
aquifer, two models were considered. For a constant pressure outer boundary,
there is an instantaneous steady state, and the Schilthuis method is used. For a
closed outer boundary, there is an instantaneous pseudo steady state, and the
Fetkovitch method is used. The steady state influx was too strong (Fig.26) caus-
ing the calculated drawdown to overreact to rate changes. When only the first
half of the data is used, a weeker influx is obtained, but the predicted drawdown
is too large for late times (see Fig.38). Assuming a finite aquifer with instantane-
ous pseudo steady state (this corresponds to when the value of @, becomes con-
stant in Fig.11 and Fig.12), the trend of the drawdown plotted vs. cumulative
mass produced will be straight if Sy is constant. But how good is the assump-
tion that Sy is constant? For a confined system, the variable controlling Sy is
the total cornpressibility of the system. By the tremendous increase in the total
compressibility when boiling occurs, even local boiling can be very important in
controlling the compressibility. (See Appendix A for the equations for total
compressibility.) This may explain why the calculated drawdown is high for later

times. In the: case of an unconfined system, this effect may simply be due to an
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increase of the areal extent of the reservoir with depth. The resistivity meas-
urements suggest that the reservoir is only "the tip of the iceberg", connected

to a large underlying system.

One way to determine if the Schilthuis model applies, is to try the Hurst
modified method for an infinite radial aquifer. If the influx constant is constant
with time, the Schilthuis method applies. In this study the Hurst modified
method did not improve the match. When an infinite linear aquifer model was
used in the Hurst modified method, the match showed Sy=0. This means that
the reservoir and the aquifer are the same. The superposition sum of an infinite
aquifer gave a good match with the data, but the variations with rate were too
high, leading to the conclusion that there are some effects from the reservoir as
well. In order to include these effects, the Hurst simplified method was used.

This method gave the best match.

Plotting the log of drawdown vs. the log of cumulative mass produced gives
a straight line. This plot is shown in Fig.39 with a least squares fit represented by

the straight line. From the least squares fit, the drawdown becomes:

Ah. = 2.23x1078 #2732

In the above equation #, is the cumulative mass in kg, and Ah is the drawdown
in meters. Using this empirical relationship, the calculated drawdown vs. cumu-
lative mass piroduced is shown in Fig.40. Considering the straight line in Fig.39,
using only the first few points will give almost exactly the same straight line.
This model is therefore able to predict the drawdown. The question arises: Why
bother going through the complicated depletion models if there is a simple rela-
tionship like this one? There are no physical reasons why there should be a log-
log relationship between the drawdown and the production. The empirical equa-
tion is not a function of rate, and will not be able to predict any build up in the

reservoir,
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For comparison of three of the models, the drawdown was predicted using
the Hurst simplified method, the boiling model using the best fit discussed ear-
lier, and the empirical log-log equation. The result for a rate of 300 kg/s is
shown in Fig.41. All three models fit the measured data adequately, but the
predicted drawdown is very different for the three models. The models should
not only match the data, but be physically realistic. The log-log method does not
take into account a change in the relative amounts of produced fluid and fluid
recharge. When the pressure is decreasing, this ratio will change. The empirical
model is expected to underestimate the recharge, and it estimates larger draw-
down than the two other models. There is also a significant difference between
the Hurst simplified and the boiling model. The Hurst simplified method assumes
an infinite linear aquifer maintaining the pressure in the reservoir. The boiling
model assumes drainage from a two-phase zone without recharge. From the
large difference in the predictions it can be concluded that the chose of model

makes a difference in predictions.

8.2. Effect of Injection

In order to maintain pressure in a reservoir, reinjection may be considered.
The injected fluid will be colder and will cool down the reservoir. When the
volume injected is known, an estimate of the heat depletion in the reservoir can
be made. Injection at Svartsengi was discussed by Gudmundsson.®® However,
some of the injected fluid will break through to wells vie fractures causing pro-
duction of some of the injected fluid. In depletion modeling the injected fluid
must be included in the mass balance:

We=Wy—Wp =W t W, tWan

Assuming that the injection of cold fluid will not change the compressibility

or total density of the system very much, the injection and production terms

can be lumped in a net production term:
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Wp .net Wp - Win

which in differential form becomes:
Wp net = Wp = Wip

Using this, the drawdown for a variety of production schedules can be predicted.
As an example, the drawdown using the Hurst simplified method was prediced.
The prediction for a constant rate output of 300 kg/s is shown in Fig.42, as draw-
down vs. cumulative mass produced, and as drawdown vs. time in Fig.43. When
reinjection is considered, the net rate will be less. Fig.44 shows the drawdown vs.
time for three different rates. The figure shows that if two thirds of the fluid are
reinjected, the pressure will be maintained above the current level for a long

time.

It should be noted that no transient effects in the reservoir and changes in
temperature,,density and compressibility as a result of injecting cold water have

been considered.

The natural mass loss due to natural discharge or evaporation has been as-
sumed negligible in all the calculations. This may not be a good approximation.
If the rate of mass loss is constant, this error is most pronounced for early time,

since that is when the rate was low.
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9. CONCLUSIONS

* Lumped parameter models although computationally simple, adequately

match drawdown-production data.

—— Better results were obtained when influx was included.

= The transient models gave better match than the steady- and pseudo-

steady state models.

— The best fit was obtained using an infinite linear aquifer model with

the Hurst simplified method.

*  Determination of constants from the models help to identify the most rea-

sonable model.

*  Detection of changes in the mass storativity coefficient may give informa-

tion about changes in reservoir properties with production.

* Important information about how the reservoir properties change can be

obtained when different parts of the data are matched.

*  Determination of recharge is possible.
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10. RECOMMENDATIONS

The effects of local boiling have been discussed in this report. By including
the total compressibility as a variable in the equations, it is possible to estimate
the drawdown using the Schilthuis or the Fetkovitch method where the compres-
sibility changes with depletion. The volume of the two-phase zone can be es-
timated as being the surface area times the drawdown in the reservoir. If there
is boiling in this volume, a total compressibility can be calculated using Egq.A-89.
Effects of local boiling on mass storativity coefficient could be investigated using

this equation.

The total density method discussed in this report allows effects of satura-
tion changes to be included. However, to predict the drawdown using this
method, iterative methods must be used. When this method is developed, it will
be possible to include effects of a saturation change in the mass balance equa-

tion.

For injection studies, including the heat balance will improve the calcula-
tions. If the breakthrough time for the fluid is known, the breakthrough of the
temperature can be calculated as discussed by Castanier et al.!® The effects of

injecting cold fluid into the Svartsengi reservoir need to be considered.
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NOMENCLATURE

A Area. of the reservoir or cross-sectional area of the aquifer(m)

a.b.c Coeflicients

b Width of aquifer (m)

B Van Everdingen and Hurst influx constant (kg /Pa)
c Heat capacity (kJ/kg-°K)

c Compressibility (Pa-")

E Internal energy (ki/kg)

erfc Complimentary error function

F Nabor and Barham dimensionless function

Acceleration constant {m/s?)

h Enthalpy (kJ/kg)

h Height of reservoir (rn)

h Initial height of reservoir (m)

Ah Drawdown (m)

I, Modified Bessel function of the first kind of order 0

I Modified Bessel function of the first kind of order 1

J Productivity index (kg/sPa)

k Permeability {m?)

K Schilthuis influx constant (kg/m s)

K, Modified Bessel function of the third kind of order 0
K, Modified Bessel function of the third kind of order 1
l Length of reservoir (m)
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Tw

Tp

Length of aquifer (m)

Inverse Laplace transformation
Pressure (Pa)

Dimensionless pressure

Drawdown function in Laplace space
Dimensionless pressure function in Laplace space
Volumetric rate (m3/s)

Cumulative volume (m®)
Dimensionless cumulative influx
Cumulative dimensionless influx function in Laplace space
Radius (m)

External radius

Insicle radius

Dimensionless radius (7 / 7y )
Variable in Laplace space

Standard deviation

Water saturation (volumetric fraction)
Irreducable water saturation

Mass storativity coefficient (kg/m)
Time (s)

Dimensionless time

Variable of integration

Temperature (K)

Darcy velocity {(m/s)
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14 Volume (m3)

w Mass rate (kg/s)

W Mass (kg)

T Steara quality (mass fraction of steam)

" Viscosity (Pas)

v Specific volume (m?/kg)

Q Porosity

p Density {(kg/m?®)

T Variable of integration

6 Angle open to flov in a radial geometry
SUBSCRIPTS

ag Aquifer

av Average

c Current

calc Calculated

e Influx

i Initial

l Loss

n Level. of depletion

P Produced

T Relative (in relative permeamility)

res Reservoir
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2ph

Steam

Total

Constant volume
Liquid water
Well Rowing
Rock matrix

Two-phase
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DEFINITIONS

Dimensionless pressure:

Radial geometry: Linear geometry:
2rnkhAp _ kbhAp
= —— =
Pp qu Pp qﬂ:L

Dimensionless time:

Radial geometry: Linear geometry:

kt kt .
tp = itp = ===, (L =1ifw
2" pucr? p= puet® )

Dimensionless cuniulative production:

Radial geometry: Linear geometry:
= -——g - __Q.___
% 2rhpcriip % = trr pcAp

Van Everdingen & Jurst Influx Consant (pressure in Pa):

Radial geometry: Linear geometry:

AAAA

FPa

k .
B = 2mgcr2h 3dBe-o [%ﬂ—] B = pcbhlp __9_] (L = 1 ife)

Schilthuis Influx Constant (pressure N meters of water):

Radial geometry: Linear geometry:

2nkhplyg @ kg kbhpdg [ kg
K= - K=
re 360" m:'s ML m:s
M In—-

Tw
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FIGURE-16. Pressure-temperature with depth at Svartsengi.
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FIGURE-17. The convection model for Svartsengi. (Kjaran et al. 1980)
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FIGURE-20. The esker model (Regalado, 1981)
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APPENDIXA: Derivations of Equations.
A1l. Liquid Models

The mass balance in the system is given by:

We =W, =W, =W, t¥W, (A-1)
Assuming iscthermal conditions, the heat balance is neglected. If we assume

that #, can be neglected, (A-1) reduces to:

W, =W, - W, + ¥, (A-2)

If the density is given by p, the mass is given by:

1]
-~

L PP (A-3a)

£
W, = V. ppe (A-3b)

1
o~

Al.1. Unconfined System

In this case we assume that p; = p;, and therefore the volume must be

changing:

Vi = Ak (A-4a)
Ve = Ache (A-4b)

Now if we assume that A is constant with depth, using Eq.A-4 in Eq.A-3 gives:
W; = Ahypip (A-5a)
We = Ahopop (A-5b)
If we also assume that ¢ is constant with depth, substituting Eq.A-5 in Eq.A-2

gives:

Ahcop = Ahypp = Wy + W, (A-6)

which simplifies to:

Agplh, — k) = —Wp + W, (A-7)
which simplifies to:
dh _ dW, _ dWp
AP = at dt

Now d %,/ dt = w,, the mass influx rate, and dWy/ dt = w,, the mass production

(a-8)




rate. Therefore Eq.A-8 becomes:

App Bz w, - w, (A-9)
At this point. several influx models are possible, and have been discussed in the
text. Since we assume p constant, the pressure is given by the hydrostatic
column of liquid water. The pressure at level A in the reservoir is given by:

P =pgh (A-10)

differentiating Eq.A-10 with respect to time gives:

dh
it = P9ar (A-lla)
dh 1 &
Substituting Eq.A-11b in Eq A-9 gives:
d
Agg- E;L= W, — Wy (A-12)

Al_2_Confined System
Here we assume that the volume is constant, and that the fluids expand into
the space created by the produced ffuid.Substituting Eq.A-3 in Eq.A-2 gives:

Vop: = Vepi — Wp + W, (A-13)
Differentiating Eq.A-13 with respect to time gives:

Ve %f—: w, ~ wp (A-14)
If we assume that the change of density with pressure is constant (this is only a
good approximation for slightly compressible liquids, and for small changes in
pressure), Eq.A-14 may be written:
dp| dp
= - A-15
Vv[dp r dt Yo % ( :

A 1 3.Compressibility of Liquid

The isothermal compressibility is defined as:

el

A2



The density is defined as:

W
= — A-17
P=y (A-17)
Solving for ¥V gives:
y= i (A-18)
P

Differentiating Eq.A-18 with respect to pressure, gives:

av _ _ W dp (A-19)
dp p? dp

Substituting Eq.A-18 and Eq.A-19 in Eq.A-186 gives:

1 (_#wdp
=1 |_r A-20
c W | o7 dp ] (A-20)
p
which reduces to:
= _1_[_5!’_ (A-21)
P |9 |7
i) (A-21a)

If we assume that the fluid is slightly compressible, and that the compressibility

is constant, Eq.A-15 becomes:

d
Vepc -a% =w, T Wy (A-22)

A 1.4. Hurst Simplified Solution

Integrating Eq.A-22 between the limits of initial and final conditions gives:

P t t
Vepave [dp = [wadt = [wsdt (A-23)
4 0

If we deflne the volume of water ¥, = Vg, and assume constant rate, Eq.A-23 be-

comes:

VwpavC (P —Pi) = Wo —wp-t (A-24)

Define the pressure drop as Ap = p; —p ,then Eq.A-24 becomes:




~ VapauClp = Wy —wp-t (A-25)

The cumulative water influx is given by the convolution integral:

o

[ 4 o\ 4s®
W, = Bfaf’—qp(tp — t3)dt} (A-26)
o dip
where tp is deflned as:
kt

tp = A-27
D ¢H-CL2 ( )

L is a characteristic length, which is the length of the aquifer in the case of a
linear finite system, and unit length in the case of an infinite system. Substitut-

ing Eq.A-28 and Eq.A-27 in Eq.A-R5 gives:

tp 2
dA o\ g0 PHagCagLotpw
- Vupactp = Bf ZE-Qp(tp - tp)at - == 1—=—F (A-28)
o dip aq
Taking the Laplace transform of Eq.A-28 with respect to ¢p gives:
= 5 — PhagCagL? wp
= VuPouC AP = BsADY; (A-29)

kggs?
Now the correct expressions for & and B must be used according to the boun-
dary conditions and geometry. The solutions for @; are presented in Table 1. The

solution for the infinite linear case will now be presented.

-3
=5 * (A-30a)
B = AgCagPaq (A-30b)
Substituting Eq.A-30 in Eq.A-29 gives (L is unit length):
- %' ~ _ $PHagCag¥p
A¢CaqPags APS + ViPresCres &P = Tk s2 (A-31)
ag

Here the subscripts have been introduced to distinguish between the aquifer and

the reservoir. Rearranging Eq.A-31 gives:

- MagCaq W,
AP(ArpCaanqS 12 4 ViyCresPres) = ‘p_'%a' (A-32)
o




Now define ! as the length of the reservoir, then:

Vw =Ve = Alg (A-33)
where A is the cross-sectional area of the aquifer and | is the length of the

reservoir. Substituting Eq.A-33 in Eq.A-32 and solving for Ag gives:

AP = $HaqCagWp
kaqsa(A¢caqpaqS_ 2+ Al ¢cnspru)

(A-34)

We see that if the porosity of the aquifer and the reservoir are the same, it can-

cels from Eq.A-34. Rewriting Eq.A-34 gives:

AP = 5 HagCag Wp
: [ME__.;. ]

(A-35)

kg, s % Alc
* res Pros {CresPres

c
Now define a parameter A = —"’M—. Using this in Eq.A-35 gives:

{CrysPres

HaqCaqWp 1
kgg AlCres P 3
ag ACresPres SZ(n + 1)

AP = (A-36)

1 A very large:

We can ighore the term without A, and Eq.A-38 becomes:

— Hag caq Wy 1
AD =
P = g AleresPres

3 (A-37a)
As 2
Substituting the definition of A in Eq.A-37a gives:

_ Haqg Wp 1
AD =
P = KoqAPag T

(A-37b)

The inverse transformation of Eq.A-37b is:

t 172
2l

Ap = HagWp 2

= (A-38a)
kagApgg

which is the equation for an infinite linear aquifer. In the notation given by Nabor

and Barham!?, this becomes:

m
Ap = "E::_A‘Ic F,. (A-38b)

A-5




and for variations in rate, by superposition:

b3
Ap = kp'aq Y, 8qiF e (tp — tpj)
og j=0

2. A very small:

Now we ignore the term containing A, and Eq.A-38 becomes:

AB = HaqCaq Wp 1
- KgqAlCresPras

s

The inverse transformation of Eq.A-39 is:

_ tp
» zaq"uCrespru
Substituting the definition of {5 in Eq.A-40a gives:

wyt

Ap = ———
p Al¢cﬂsp7'll
which is the tank decompression of a confined system:

1
= W,
Ap VSOCP P

3. A intermediate:

(A-38c)

(A-39)

(A-40a)

(A-40b)

(A-40c)

In this case the entire expression must be used. The inverse transformation of

Eq.A-38 is given by:

Ap = HMagCagWp

A%ty
= e” Perfc(Atf?®) -1+
kgqAlpresCres A?

By the superposition theorem, for varying rate we get:

c n
Ap = —Loa%9 Y\ A MIN¥(tp — tp)]

kcq VresPresCres j=o0

where:

1

X eXerfc(Ag?) -1 +

M(Katp) =

2Nt 472

ﬂ’l /2

(A-41)

(A-42)

(A-42a)



A2 _ Boiling Models
A2_1. General Mass and Energy Balance

In this case the energy balance must be included. The energy balance is as

follows':
miE, —meE. = Q' — Q' th'(my —m,) (A-43)
where m is the total mass of the system (fluid and rock). h' is the average

enthalpy that accounts for the enthalpy change due to net mass change in the

reservoir:

R'(my =m,) = Wohy + Wihy = Wbk, (A-44)

The total energy change is given by the energy change in the fluid and the rock:

MiE - mE, = WE =W E, t V(1-9)p,Co(Ti = Te) (A-45)

and the net, heat change transferred from the surroundings is:

@ ~e'=0Q (A-46)
Substituting Eq.A-44, Eq.A-45, and Eq.46 in Eq.A-43 gives:
WiEi — W E. + V(1—¢)p¢C,(T,; - Tc) =
@ — Wehe + Wohy + Wihy (A-47)

W& now introduce the mass balance:

We=W, Tt W, =Wy, — W, (A-48)

and the volumetric balance:

Ve = Wilzive T (1-z)vy:] (A-49)

and the water influx is given by the VanEverdingen and Hurst superposition sum:

We = BZOQD(tD - tp;)Ap; (A-50)
J=




Substituting Eq.A-48, Eq.A-49, and Eq.A-50 in Eq.A-47 and rearranging gives:

Wp(h-p —Ec) + Wt(hl _Ec) +@=

WE, - E, +

I_;L][xivsi + (l-z,;)vwi]p,C‘,(T.; - Tr:) (A'51)

+ (hg — Ec)'BiOQD(tD — tp;)p;
J:

A 2.2. Simplified Approach

The total volume of the reservoir fluids is:

Vi=Vy + Vs (A-52)

and the total. mass of the reservoir fluids is:

Wt = Ww + Ws (A'53)

The density of each phase is given by:

W,
Pw = % (A-54a)
s
— 2 A-54b
ps - V, ( )
The volume of each phase is given by:
Vi =S,V (A-55a)
Ve =(1-5,)V; (A-55D)
Substituting Eq.A-55 in Eq.A-52 gives:
V =Su ¥ T (1-5,)¥ (A-56)
The total effective density is:
W,
= = A-57
PL= 7 (A-57)
From Eq.A-53, Eq.A-54, and Eq.A-55;
We =pwSu Ve +ps(1-Su)V, (A-58)
Substituting Eq.A-56,and Eq.A-58 in Eq.A-57 gives:
pr = prth +Ps(1—sw)vt (A-59)

Swvt + (1_Sw)Vt



which reduces to:

Pt =PuwSw +ps(1-Sy) (A-60)
Substituting;Eq.A-80 in Eq.A-48 and assuming ¥, can be neglected, we get:

Vopse = Vepu + W — W (A-61)

which rearranges to:

Veloee —pu) =Wy - W, (A-62)
A3. Total Compressibility

The two phase compressibility is given by3%:

o oot AV _ [(1=9)0eCo + ¢Supu Cullow = ps) (A-63)
T eV ip ¢L{dps/ AT)pyps

n Eq.A-83 L is the latent heat of vaporization. Eq.A-83 should be used when liquid

and steam are in equilibrium at saturated conditions. If this zone is only a part
of the reservoir, the effect of the compressibility in this zone on the total system

may be calculated using the definition of the compressibility:

_ 1 |9k
ce = — 7 | p (A-64)
where the total fluid volume is:
Ve =V T Vo (A-65)
Differentiating Eq.A-85 with respect top gives:
dV, dV,  dVepm
= + A-66
dp dp dp (A-66)
By the definition of c,, and ¢ gpn:
1 {8V,
= - — -87
Cuw v [ op ] (A-87a)
1 aV2ph. .
Copn = — T a— A-6i'b
2ph V2ph ap ( )
Substituting Eq.A-87 in Eq.A-88 gives:
dv,
EpL= = Cw Vo = Capn Vapn (A-68)

A9




Substituting Eq.A-85 and Eq.A-68 in Eq.A-84 gives:

1

m(cw Vo + Coph Vapn) (A-69)

Ce =

A- 10




APPENDIX B: Data Files and Computer Programs.
B.1. Data Files

Thorhallsson3 provided the drawdown and mass flow-rate history for the
first 2319 days of production at Svartsengi. The first data file "drawdwn", shows
the number of days after production started in the first column and the meas-
ured drawdown in the second column. The first number is the number of data

points.

The second data file "prodr", shows the number of days after production
started in the first column and the total mass flow-rate in kg/s from the reser-
voir in the second column. Each entry of rate in the file is effective from the
time of the previous entry until the time corresponding to that entry. For exam-

ple, between 388 and 419 days of production, the rate was 51 kg/s.

The third data file "input", shows the number of days after production start-
ed in the first column, the rate in kg/s in the second column, and the measured
drawdown in meters in the third column. Note that the drawdown was not always
measured on the days when the rate was changed. For those cases a linear inter-
polation between the values in the file "drawdwn" gave the value for the draw-
down in the file "input". The file "input" was used as the input file for all the pro-

grams. The cumulative mass produced was calculated using:

60s 60min 24hr
min hr days

k
Wy, = Wp,_, + Wn [_sg—] (th — th-y) days-

B.2. The Computer Programs

All the computer programs are written in fortran 77, and were run on the
Stanford University Petroleum Engineering VAX 11/750 computer facility. The
file "input"is used for input of time, rate, and measured drawdown. The following

variable names are consistently used in the programs:




x=vector of length 124 =time in days.
y=vector of length 124 =rate in kg/s.
dh=vector of length 124 =measured drawdown in meters.

dhi=calculated drawdown from the model in meters (a vector in some pro-

grams).

cum=vector of length 124 =cumulative production in kg.

For least squares fltting the subroutines "iflsq" and "llsqf" have been used.
These subroutines are in the "imsl" library of subroutines. "iflsq" fits a user sup-
plied function to a set of data using the least squares method. The program will

determine the constants giving the best fit in an equation of the form:

vizafin+8 2+ +0,fin

where the function J is a function of z; and n, and (z,y); are the data points.

"llsgf" solves the set of equations shown in the section on history matching
by minimizing the difference between the points which are given and the fitted

points.



drawdwn

226

10 .86
20 1.g8
30 1.40
40 1.70
50 2.02
60 2.14
70 2.38
80 2.58
90 2.76
100 3.00
110 3.18
120 3.32
130 3.44
140 3.94
150 4.00
160 4.64
170 4.54
180 4.62
190 4.76
200 5.00
210 6.80
220 4.64
230 7.00
240 7.00
250 7.50
260 7.40
270 7.30
280 7.30
290 7.50
300 7.70
310 7.80
320 8.00
330 8.10
340 8.30
350 8.38
360 8.46
370 8.54
380 8.62
390 8.70
400 9.28
410 9.86
420 10.44
430 11.02
440 11.60
450 11.90
460 12.10
470 12.40
480 12.70
490 12.90
500 13.10
510 13.30
520 13.60
530 13.80
540 13.90
550 13.70
560 13.50
570 13.50
576 13.50
580 13.80
590 14.20
600 14.50
610 14.70
620 15.00

731
763
792
793
803
813
826
836
846
856
866
876
886
896
906
913
923
933
940
952

962 26.49

972
1283
1290
1300
1310
1317
1319
1325
1330
1337
1344
1351
1358
1362
1365
1372
1379
1387
1389
1395
1402
1411
1419
1431
1439
1449
1458
1467
1474
1486
1495
1555
1560
1570
1584
1590
1600
1610
1613
1620
1630
1640
1650
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2188
2189
2190
2191
2192
2193
2194
2196
2198
2199
2200
2201

2202
2203
2204
2210
2220
2227
2234
2241

2248
2261

2270
2280
2288

2290
2296

2382

2319

2319

79,




prodr

124

12 48

14 30

15 5

133 30
146 45
154 30
162 58
241 30
317 31
388 30
419 51
424 30
510 57
520 48
534 45
547 45
576 30
580 30
600 56
641 52
702 48
764 53
771 71
781 50
792 55
804 85
890 90
927 155
945 95
948 65
1012 95
1086 130
1099 115
1104 50
1130 115
1138 121
1223 115
1234 137
1235 131
1237 138
1248 161
1250 147
1251 134

1252 115
1258 125
1260 60
1274 110
1288 116
1292 131
1297 161
1302 151
1305 168
1309 188
1319 211
1339 116
1343 140
1345 150
1348 171
1353 186
1358 205
1368 226
1415 116

1435
1437
1438
1442
1443
1451
1452
1453
1472
1473
1487
1491
1504
1817
1521
1523
1524
1571
1590
1595
1618
1660
1669
1676
1681
1688
1702
1761
1762
1764
1768
1769
1787
1789
1790
1808
1839
1862
1864
1869
1872
1991
1932
1937
1940
1947
1956
2025
2075
2111
2122
2129
2133
2143
2146
2150
2157
2171
2265
2319
2331

120
164
163
175
183
186
192
209
129
164
172
202
129
129
135
339
279
326
344
294
347
342
336
274
280
218
222
149
152
214
149
152
296
212
272
360
341
322
273
269
249
301
299
245
299
275
281
284
224
219
269
230
280
271
311
315
263
313
308
283
328




input

CONONOROWR N I O~ & 00O |

©w ©OF
WoOFPUINNOOONRWOOOWUIODDWWODR D

0. g. 0. 1437.00 164.00 38
12.00 48 .00 0.90 1438.00 163.00 38
14.00 3¢.99 0.95 1442.00 175.00 39
15.00 e.00 0.97 1443.00 183.00 39
133.00 3%7.00 3.59 1451.00 186.00 40
146.00 4% .09 3.98 1452.00 192.00 40
154.00 34.28 4.26 1453.00 209.00 40
162.00 50.00 4.62 1472.00 129.00 40.
241 .00 3#.00 7.05 1473.00 164.00 40
317.00 31.94 7.94 1487 .00 172.00 41.
388 .00 34.00 8.68 1491 .00 202.00 41.
419.00 51..00 10.38 1504.00 129.00 43.
424 .00 3d.99 10.67 1517.00 129.00 45
510.00 57 .00 13.30 1521.00 135.00 46.
520.00 48.00 13.60 1523.00 339.00 46.
534 .00 4% .00 13.84 1524.00 279.00 46
547 .00 4% .00 13.76 1571.00 326.00 54,
576.00 30.08 13.50 1590.00 344 .00 59.
580.00 311.00 13.80 1595.00 294.00 59
600.00 56.00 14.50 1618.00 347 .00 63.
641.00 52.00 15.19 1660.00 342.00 68.
702.00 40.00 15.72 1669.00 336 .00 69.
764 .00 53.882 17.54 1676.00 274 .00 69.
771.00 71.00 17.95 1681.00 280.00 69
781.00 54,00 18.54 1688.00 218.00 69.
792.00 5% .00 19.18 1702.00 222.00 70
804.00 85.00 19.61 1761 .00 149.00 68.
890.00 91.00 23.07 1762.00 152.00 68
927.00 186.09 23.99 1764.00 214.00 68.
945.00 95 .00 25.33 1768.00 149.00 68.
948 .00 6%5.00 25.85 1769.00 152.00 68.
1012.00 95,99 27.61 1787.00 206.00 69
1086 .00 1316.00 29.44 1789.00 212.00 69
1099.00 115.28 29.76 1790.00 272.00 69
1104.00 516.00 29.88 1808.00 360.00 73.
1130.00 115 .00 30.52 1839.00 341.00 77.
1138.00 121.00 30.72 1862.00 322.00 79
1223.00 115 .00 32.82 1864.00 273.00 79
1234.00 13'7.00 33.09 1869.00 269.00 79.
1235.00 131.00 33.11 1872.00 249.00 79.
1237 .00 1313.00 33.16 1901.00 301.00 82
1248.00 161.00 33.44 1932.00 299.00 84
1250.00 147.00 33.49 1937.00 245.00 84
1251 .00 134.00 33.51 1940.00 299.00 85
1252.00 115.00 33.53 1947.00 275.00 85
1258.00 125.88 33.68 1956.00 281 .00 85
1260.00 60.22 33.73 2025.00 284.00 88.
1274.89 112.92 34.28 2075 .00 224.00 90
1288.00 116.00 34.40 2111.00 219.00 91
1292.00 131.00 34.58 2122.00 269.00 91.
1297.00 161.00 34.92 2129.00 230.00 91.
1302.00 151.828 35.40 2133.00 280.00 92
1305.00 168.00 35.82 2143.00 271 .00 92.
1309.00 188.00 36.36 2146.00 311.00 93.
1319.00 211.00 37.55 2150.00 315.00 93.
1339.00 116.00 36.71 2157.00 263.00 94.
1343.00 140.00 37.01 2171 .00 313.00 41
1345.00 150.00 37.21 2265 .00 308.00 98
1348 .00 171.00 37.58 2319.00 283.00 103
1353.00 186.00 38.11 2331.00 328.00 103.
1358.00 205.00 38.54

1368.00 226.00 38.64

1415.00 116.00 30.03

1435.00 120.00 38.57
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The boiling model for Svartsengi

This program determines the constants €1 and C2
using the least squares method. )
The subroutine llsqf must be supplied by the user.

The drawdown 1is then calculated using the fitted constants.

implicit real*4{a-h,0-2)
dimension x(124),y{(124),dh{124),cum{124),sum(124)
real mat(123,2),a(2),h{(2),b(123),%t01
integer tfa,m,n,kbasis,fp(2),ier
write(s,*) 123
do 1 i=1.,123
read(S,*)x{§),y{i),dh{i)
cum{ N=cum{i=1)+{x{i)=x{i=1))*y{{}*60.*60.%24.
do 5 j=1,i
wp=gd.
k=1
xlex{({1)-x{j)
10 ifixl.ge.x{k)) then
wpEwp+{x{k)=x{k~-1))*y(k)*6@.*60.*24.
k=k+1
go to 10
else
wpEwp+{xl=-x{k=-1))*y(k)*67.%6L.%*24.
end I
sum{ {)=sum({)+wp*exp(-x(J)/280. ) *(x{J)=-x(j=-1))
5 continue
write(6,*)cum{i),dh{i)
mat{i,1)=cum(i{)
mat{i,2)=sum{i) 4
bliYadh( i)
1 continue
fa=123
m=123
n=2
tol=g.9
kbasiz=2
call 11sqf(mat.fa.m.,n.dh,.tol,kbasis,.a.h,ip,ier)
write(6,*)al(l),al(2)
write(B,%)123
do 2 t=1,123
dhl=a{l)*cum({i)+a(2)*sum( i)
write(6,*)cum(i),dhl
2 continue
stop
end




c

c THIS PROGRAM EVALUIATES THE X AND Y S IN A SHILTHUIS TYPE
c INFLUX MODEL WITH A LUMPED-PARAMETER MODEL.
c
c

IMPLICIT REAL*4(A-H,0-2)
DIMENSION X(125),Y(125),0H{125)
WRITE(6,13) 124
13  FORMAT(1X,13)
DO 10 1=1,124
READ(S,*)X{1),Y{I),DH{I)
IF(I.EQ.1) GO TO 10
DO 11 J=1,1
DUM=DUM+DH{J) *{X(J)=X(J~1))"60.*60.%24.
11  CONTINUE
D=DH(1)/DUM
CUM=CUM+ (X(I)=X{I-1))*Y(I)*60.%60.%24,
Z=CUM/DUM
WRITE(6,12) D.Z
12 FORMAT( 1X,2E 11.4)
oUM=2.
18 CONTINUE
STOP
END

c
c
(o This program calculates the drawdown in meters for
c a steady-state SCHILTHUIS model, and the reservoir
c model is LUMPED-PARAMETER with CONSTANT SW
c output for plotting
c
c

IMPLICIT REAL*4(A-H,0-2)
DIMENSION X(125),cum{125).Y{125),D(125),DH{125)
Al=2,75447
Af=6.60567e7
write(6,13)124
13 format(lx.i3)
00 10 I=1,124
READ{(S5.*)X(I),Y{1),DH{I)
IF{(1.EQ.1) GO TO 20
SUM=SUM+D(I-1)*(X{1-1)-X{I-2))*60.*60, %24,
CUM{ ) =CUMUI=1)+{(X{T)=X{TI=-1))*Y{I)*BQ.*60.%24.
dif)={cum{i)-al*sum)/(af+al*(x{(f)=x{{-1))*6Q.*60.%*24.)
20 WRITE(E.*) cum(i),D(I)
10 CONTINUE
writel{6,13)124
do 30 1=1,124
write(6,*) cum(1),dh{1)
30 continue
STOP
END
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C

THIS PROGRAM MATCHES THE DRAWDOWN WITH PROD. RATE AND TIME
AND CALCULATES Kn for matching Hurst modified infux
Radial log approximation form)
THE RES. MODEL ASSUMES A LUMPED-PARAMETER CONSTANT STORATIVITY

IMPLICIT REAL*4(A-H,0-2)

integer i.k

DIMENSION wk(1gg),X{125),Y{125),DH{125),Y1{125).,X1(125).a(2)
external

k=123

SM=5 _e7

write{(6,*)k

DO 10 1=1.124

READ(S,*)X{I1),¥YUI),DH(])

IF(1.EQ.1) GO TO 10

CUM=CUM+{X(I)=-X(I-1))*Y{I)*6Qg.*6F. %24,
sum=sum+y1{i=-2)*dh{{-1)*{x{i-1)~x{{=-2))*EQ.*60.*24.
Yi{I-1)=1./{{cum-sm*dh{(i)=-sum)/{dh{i)*{x{i)=x{i~1))*6T.*50.%24.))
T=(X{I)+X(1=-1))/2.

X1{I-1)=ALOGLO(T)

writelB,.*)x1{(i-1),yl1{i-1)

CONTINUE

call iflsqif,xl,yl.k,a.2.wk,ier)
writel(b6,*)al{l).a(2)
write(6,*)k

do 3 i=1.,k
t=al{ll)+a(2)*x1(1)
write(6,*)x1{(i).t

continue

STOP

END

sq
*)
*)

function used in the fitting routine

real fcnction fik,p)
integer

real p

F=p**(k-1)

return

end
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13

48

11

15

23

19

58

THIS PROGRAM EVALUIATES DRAWDOWN IN AN INFINITE LINEAR
INFLUX MODEL WITH THE ALUMPED-PARAMETER MODEL (HURST MODIFIED)

IMPLICIT REAL*4(A~-H,0-2)

DIMENSION X(125),¥(12%5),D0125),CUM{125),DH{(125}
CON=9.52e86

write(6.13) 124

format{lx,13)

DO 48 1=1.,124

READ(S5,*)X(I),Y{I),DHII)

CONTINUE
DO 10 1=1,124
IF{l.eq.1) GO TO 20

IF(1.EQ.2) GO TO 15

DO 11 J=2,1-1
dum=dum+{DUJ)=-D{J-1)1*Ix{1)=x{j=-1))**.5
CONTINUE
CUMITII=CUMIT=1)+(X{I)=X{I-1))*Y{I)*6Q.*67.%24,
dli)=d{i-1)+{cuml{l})/con=dum)/{x{f}=x({=~1))** .5
GO TO 28
CUM{I)=CUM{I=1)+{X({I)=X{I-1))*Y(I)*60.%60.%24.
D Iy=CuMe ) 7{COH*X (1) ** 5)

WRITE(B,.*) CUMII),d{i)

DUM=0,

CONTINUE

write(6.13 1124

DO 50 I=1,124

WRITE{6.*) CUM(I),DHII)

CONTINUE

STOP

END
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Bo ~

20

This program calculates drawdown for the _
Hurst simplified model with linear water influx

implicit real*4(a-h,o0-2)
real k,mu
dimension x{125),y{125),cum(125),sum{125),dh{125)

initiallize

con=4,755e-19

k=,5e-12

fi=, g8

mu-110.e-6

c=!.e-9
tc=6@.*68. %24 .*k/{(fi*mu*c)
d=1.3e-4

format{(2ell.4)

do 10 {=1,124

read{(5,*) x(i1),y(i),dh{{)
if(i.eq.1) go to 9

do 11 j=2.i
xx=te*{x{{)=-x{j-1))

sum{ f)=sum{ )+ {y(J)-y(J=-1))*fld,xx)
continue
cum{{)=cum{t-1)+{x(t1)=-x{{=1))*y{{)*EQ.*60.*24.
write(6,1) cum{i),dh{{)
continue

do 20 i=1,124
dh{{)scon*sum( i)
write{6,1)cum(i).dh{i)
continue

stop

end

this function calculates the Hurst linear solution for
input of d=lamda, and td=dim.time

this routine uses a routine to calculate erfcix)

the user must supply this routine

function f(d,td)
f={exp(d**2.*td)*erfc{d*td**.5)-1.+4(2.*d*td**,5)/1.7724523851)/d**2.
return

end
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[eXeNe]

FINITE LINEAR AQUIFER
Fetkoviteh method
Confined System

User must supplx input file "fetin® containing:
1-length of aquifer
b=with of the aquifer
w=xlength of the reservoir
ho=depth of the reservoir and the aquifer

t
]
!
]
]
]
]
1
]
1
]
]
]
i
]
1
1
]
1
]
]
]
]
]
]
]
L}
]
1
1
(]
[}
t
'
]
]
]
[]
]
[]
]
]
]
1
]
1
]
]
]
]
]
[}
]
[]
[}
]
]
t
[]
)
]
]
1

implicit real*4{a-h,o-2)

real 1.k.mu

dimension x(124),y{(124),dh{124),cum(124)
open{unit=4 . file="fetin')
read{4,*)1,b,w.ho.k.mu,rho,por,ctw,cres
g=9.81

po=rho*g*ho

gqmax={k*b*ho*po*3)/{mu*1)
weizl*ho*b*por*ctw*po

pav-po

pwf=po

write(6,%*)124

write(g,*) £..0.

loop point

do 10 1=1.124
read{(5,*)x{1),y{§).dh{{)
if(i.eq.1) go to 10
an={wei/po)*({l.-expl-gmax*{x{{)=-x{{1=-1))*62.*60.%24./wel))
cum{iltscum{i=1)+yl{1)*(x{§)=-x{1-1))*6Q.%6Q.*24.
pwFl={~cum{ i)+wen+rho*{an*{pav-(pwf/2.))+po*w*b*ho*por*rho*cres))
*/{rho*{w*b*ho*por*rho*cres+an/2.))
dwen=(pav-pwf/2.-pwfl/2.)*an*rho
wenzwent+dwen
pav=po~-{(po/{wei*rho) ) *wen
dhli={(po-pwfl)/{rho*g)
pwf=zpwf |
write(6,12) cumli).dhl
12 format(2el2.4)
19 continue

end loop

write(6,%)]124

do 20 t=1,124

write(6,12) cumi{i),dh{{)
20 continue

closelunit=4)

stop

end
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(e}

noo

12
19

20

]
'
1
]
]
1
]
]
]
[}
]
)
]
]
)
]
'
t
]
]
[}
)
]
t
]
]
]
1
]
[}
]
]
[}
]
'
|
]
]
|
]
]
]
'
]
1
]
]
[]
]
]
1
]
'
t
]
]
[}
1
]
]
[}
]
]
1
[}
)
]
]
[]
]
]

Fetkovitch method
radial geometry

The input file 'fetin' must contain:
rw=inside radius{of the aquifer)(m)
re-outer adius{of the aquifer){m)
hozheight of the reservoir{m)
k=permeab 1ity{m**2)
mu-viscos ty{Pa s)
rho=fluid density in the reservofr{kg/cm)
por=poros ty
ctw=total water compressibility in the aquifer(1i/Pa)
cres=Tota compressibility in the reservoir{(i/Pa)

'
L]
i
]
1
]
[
]
]
]
t
i
[]
[]
]
]
1
]
]
]
]
]
1
]
]
1
]
[]
]
1}
]
]
]
'
]
]
]
1
]
[}
]
]
]
[}
1
]
L}
]
]
]
[}
]
'
)
]
]
t
[}
]
]
]
]
]
[]
]
+
]
'
1
]

implicit real*4{a~-h,0-2)

real k,mu

dimension x{(124),y{(124),dh{124),cum{124)
open{unit=4 ,file="fetin')
read{(4,.*)rw,re,ho,k,mu,rho.por,ctw,cres
pi=3.1415%927

g=9.81

po=rho*g*ho
gmax={(2.*pi*k*ho*po)/(mu*re**4. /{(re**2 ~rw**2, )**2 )*{alogl{re/rw)
*- 75+ {rw/re)**2 - ,25*%(rw/re)**4.))
weizpi*{re**2.-rw**2,)*ho*por*ctw*po
pav=po

pwf=po

write(6,%)1124

writel6,*) 2.,0.

loop point

do 10 i=]1,124

read{(5,*)x{1),y(1),dh(1{)

ff(1i.eq.1) go to 10
an={wei/pol*({l.-exp{~gmax*{x{{)=x{{=-1))*EQ.*6Q."24./wei))
cum{§)mscum{i-1)+y{{)*{x{{)-x(i-1))*6Q."60.*24.
pwfl={-cum{{)+wen+rho*{an*{pav-(pwf/2.))+po*pi*rw**2 *ho*por
**cres))/(rho*{pi*rw**2 . *ho*por*cres+an/2.))
dwen={pav-pwf/2.-pwfl/2.)*an*rho

wen=vwen+dwen

pavspo-{po/{wei*rho))*wen

dhl={po-pwfl)/{rho*g)

pwf=zpwf 1

write{6,12) cum(i),dhl

format(Z2el2.4)

continue

end loop

write(6,%)124

do 20 1=1,124
writel(6,12) cum{{),dh{1)}
continue

closel{unit=4)

stop

end
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}

THIS PROGRAM EVALUIATES THE a,b AND c CONTSTANTS IN AN SCHILTHUIS
TYPE INFLUX MODEL IF THE DRANAGE FROM THE TWO-PHASE ZONE IS NOT
INSTANTANIOUS: FROM McNABB,

AND USES THE OBTAINED VALUES TO CALCULATE THE DRAWDOWN

The subroutine 11sql is used for the least squares fit,
ans must be supplied by the user.

OO0O000O0OOOO0D

integer fa,m,n.kbasis,ip(4),ler

real a(123,3),b(123),t01.x1(3),h{3)
DIMENSION X{125),Y{125),DH{125),dh1(125?
writel6,*) 124

DO 49 1=1,124
READ(S,*)X{I),Y(1),DHII)
CUM=CUM+{(X{1)=-X{I-1))*Y({1)*6Q.*62.*24.
write{6,*)cum,dh{{)
tfli.eq.1)go to AL
do 41 j=1.,i-1
ali=-1.1)=ali=-1,1)+dh{ )™ (x{3)1-x{j-1))"6L.*60.%24.2
ali=1.2)=ali-1,2)+{x{J)=-x{3-1))*y{J)r*6L.*6D."24.
41 continue
ali=-1,3)=y(1)
pli=-1)=-dh{i)
Lo CONTINUE
ja=123
m=123
n=d

call
writel
1 format({'x
dh1(1)=dh
cum=x{1)*yl1)*EQ . *6Z.%24.
write(6.%)124
write{(6,*)cum,dhl(l)
do 42 1=2,124
sumlissuml+dhl {1=-1)*{x{1)=x{§~1))*6L.*60.%24.
cum=cum+ {x{{)=x{i=-1))*y({)*6Q.*60.%24.
dh1{§)={x1{1)*suml+x1 {2 *cum+x1{3)*y 1)}/ (-1, =x1T1)*{x{1)-x(1=-1))
"o ,.*6L.%24.)
writel(6.*)cum,dhl{{)
42 continue
STOP
EnD

B
kbasis=3
11s kbasis,xl.h,ip,fer)
£, )
)
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