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ABSTRACT 

Depletion models for liquid-dominated geothermal reservoirs are  derived 

and presented. The depletion models are divided into two categories: confined 

and unconflned. For both cases depletion models with no recharge (or influx), 

and depletion models including recharge, are  used to match field data from the 

Svartsengi high temperature geothermal field in Iceland. 

The influx models included with the mass and energy balances are adopted 

from the petroleum engineering literature. The match to production data from 

Svartsengi is improved when influx was included. The Schilthuis steady-state 

influx gives a satisfactory match. The finite aquifer method of Fetkovitch, and 

the unsteady state method of Hurst gave reasonable answers, but not as good. 

The best match is obtained using Hurst simplified solution when 

h = 1 . 3 ~ 1 0 ~  nz-' . From the match the cross-sectional area of the aquifer waa 

calculated as 3.6 km2. 

The drawdown was predicted using the Hurst simplified method, and corn- 

pared with predicted drawdown from a boiling model and an empirical log-log 

model. A large difference between the models was obtained. The predicted draw- 

down using the Hurst simplified method falls between the other two. 

Injection has been considered by defining the net rate as being the produc- 

tion rate minus the injection rate. No thermal or transient effects were taken 

into account. Prediction using three different net rates shows that the pressure 

can be maintained using the Hurst simplified method if there is significant fluid 

reinjection. 

. 
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1. INTRODUCTION 

Depletion models make it possible to predict the future variations of reser- 

voir variables such as pressure, temperature, and chemical composition. In 

petroleum reservoir engineering, depletion models are used to predict the draw- 

down in reswvoirs under a variety of production schedules. Methods developed 

for petroleum reservoirs involving a material balance on the reservoir have been 

adopted in geothermal reservoir engineering, and are the subject of this report. 

In the case of geothermal fluids the heat is being mined, so it becomes im- 

portant to predict the enthalpy changes with time (or production). Therefore, 

thermodynamics and heat transfer from the rock becomes important. Most of 

the heat is stored in the rock, thus a heat balance is often included in the equa- 

tions. The initial state of the reservoir together with the production schedule 

dictates how the pressure and temperature will change upon exploitation. I t  

therefore becomes important to determine the initial conditions of the reservoir 

in order to atdequately describe the future behavior of the reservoir. 

' Depletion models can be made detailed and complex by dividing the reser- 

voir into fine blocks and attempting to describe the variations of all reservoir 

parameters for each block. Parameters of interest are permeability, fluid pro- 

perties, porosity, temperature, and saturation. I t  should be obvious that the 

computational methods become complicated, and that the results are limited to 

the input data, which are not always well known. 

A simpler approach is known as lumped-parameter or zero-dimensional 

simulation. l[n this case average properties are assigned to the reservoir, and the 

changes of t,hese properties are monitored and predicted. I t  becomes an impor- 

tant questialn then how these properties are obtained, and what the effects of 

material leaving and entering the system are. It is clear that these models have 

limitations, since the fluid as well as the rock properties are changing 
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throughout the reservoir. However, it has been shown that reasonable results 

may be obtained from these types of models. Furthermore, important proper- 

ties such as ithe volume of fluid in place, and whether or not there is significant 

recharge, may be obtained. In this study we have investigated these models to 

determine what models appear to be most appropriate. 

Several !depletion models have been reported in the literature 1~2~3~4*5i6*7~a*8~10 

some of which will be considered in this study. We have attempted to make the 

models and computational procedures simple, and yet flexible, to be able to in- 

clude a variety of liquid-dominated fields in terms of both geometry, fluid, and 

reservoir praperties. 

The influx or recharge calculations have been adopted from the petroleum 

literature l 1  12B13~14*15 , and are therefore developed for porous media where 

Darcy’s law is valid. I t  has been shown that in many cases good results may be 

obtained using these equations also for fractured systems. Finally the possibility 

of including an injection term is considered, in order to predict the pressure 

performance under injection. 

The report consists of presentation and discussion of several depletion 

models and influx models. The models were evaluated using production-data 

from the Svartsengi Aeld of Iceland as an example. The Svartsengi reservoir is a 

liquid dominated reservoir which has shown rapid drawdown, and reinjection has 

been considered. Derivations of the equations, presented in Appendix A, and the 

nomenclature are presented at the end of this report. 
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. 
2. THEXMOD7RJAMICS 

The thermodynamics of geothermal reservoirs have been discussed by Whit- 

ing and Ramey * and Martin la . The initial temperature and pressure determine 

the state of the system. Fig.1 is a pressure-temperature diagram for water. The 

solid line represents the saturation line. Gibbs' phase rule states that the 

number of degrees of freedom, is equal to the number of components minus the 

number of phiases. By this, only one intensive property completely determines 

the thermodynamic state of the system at  any point on the saturation line. For 

any other p i n t  on Fig.1. two intensive properties completely determine the 

thermodynamic state of the system. 

The region of interest for this study, is in the liquid region (compressed 

liquid). Systems which fall in this region are liquid-dominated. This represents 

states such i3S C and B on Fig.1, and C and D on Fig.2, which in a pressure- 

temperature diagram for a geothermal reservoir with 25% porosity. Fig.3 shows 

a pressure-enthalpy diagram for pure water. In the following, a more detailed 

discussion oll the responses to production of reservoirs initially at states of 

compressed 'liquid, or saturated liquid-steam in equilibrium, is presented. 

2.1. Liquid Only 

The case of liquid only in the reservoir is represented by point C on Fig.1, 

and points C: and D on Fig.2. When production takes place, the pressure will de- 

crease rapiclly since the compressibility of the system is low. The path of the 

system is essentially isothermal and isoenthalpic (Fig. 1 and Fig.3). The system 

will eventually reach the saturation line, and then follow a path similar to B on 

Fig. 1. 
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2.2. Two-Phase 

A two-phase reservoir corresponds to  a system on the saturation-curve. The 

pressure-enthalpy diagram in Fig.3 shows this state as the heavy arrow at 1000 

psia. The pressure varies little when the system is boiling. This is illustrated for 

reservoirs with porosity of 25% in Fig.4. The pressure-cumulative fluid produc- 

tion diagram, shows that in reservoirs initially at compressed liquid state (C and 

D), the pressure drops very rapidly until the saturation-line is reached. When the 

reservoir follows the saturation-line, the pressure drops very slowly until the 

system has boiled dry, and then the pressure again drops more rapidly. The 

compressibility is indicated by the inverse of the slope of the lines on Fig.4. Fig.5 

shows the temperature vs. cumulative fluid production for geothermal reser- 

voirs containing pure water and porosity of 25%. It shows that the temperature 

drops when there are two-phases in the system. Since the fluid temperature 

wants to decrease, heat may in this case be transferred from the surrounding 

rock where most of the heat is stored'. 

2.3. Saturatioln 

Lumped-parameter models can be developed for the two above cases (liquid 

only and two-phase reservoir) if the variation of saturation with pressure is 

known. Martinle developed such relations. The results for a 25% porosity system 

are given in I'ig.6 that shows the variation of saturation with pressure. The equa- 

tions present,ed include Darcy's law for  each phase, steam and liquid water, and 

thus also relative permeability data. The relative permeability curves used by 

Martin18 are given in Fig.7. Darcy's law was then coupled with the mass and heat 

continuity equations. Eq. 1 shows the final expression for saturation. 
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where: 

@(p) = temperature on boiling curve. 

Eq.l was  numerically integrated to get the pressure vs. steam saturation curves 

given in Fig.6 for reservoirs initially at compressed liquid state. 

Macias-Chapa" developed a lumped-parameter model where the system is 

described by Fig.8. Production may be steam only, or liquid/steam, or only 

liquid. A computer program was written to calculate the adiabatic or the ap- 

parent compressibilities including effects of heat transfer from the rock. In all 

cases the compressibility for a two-phase water system is much greater than 

that of only steam or liquid water. 

The model includes impurities in form of non-condensable gasses and dis- 

solved solids. The system is on the saturation-line, and after the pressure has 

been decreased by a specified amount, the saturation may be determined. An 

output of saturation vs. pressure for a 10% porosity and initial temperature of 

240 OC, is given in Fig.9. The solid line represents a cubic fit trough the output 

values from the program. This relationship may be used in modeling the satura- 

tion variation with pressure. 
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3. MODELS OF LIQUID-DOMINATED GEOTHERMAL RESERVOIRS 

3.1. Liquid Only 

For reservoirs with liquid only, the production path, as described earlier, is 

for all practical purposes isothermal and isoenthalpic. The heat balance is thus 

omitted. The (discussion may be divided into two cases: confined and unconfhed 

systems. In i3 confined system, the production is due to expansion of the 

compressed fluid. The unconfined system is referred to as open. When this sys- 

tem is produced, the water level decreases in the same manner as emptying a 

tank. The reservoir in both cases is treated as one lump with average properties. 

3.1.1. Unconfined System 

In the simplest form the equation for the drawdown is given by: 

(See Appendix A for derivations of the equations). 

If Eq.2 is valid, the drawdown plotted vs. cumulative mass produced should 

give a straight line. However, if the points fall on a straight line, this does not 

guarantee that there is no recharge, or that the system is not confined. If the 

reservoir is produced a t  constant rate, the line could be straight even with 

strong recharge. The slope of the line would be different, but if there is a steady 

state influx, and constant discharge rate, the drawdown would be similar t o  that 

of no influx. Furthermore. if the comressibility is constant, the graph would be 

similar. On the other hand, even if the graph is not a straight line, there could 

be an unconfined system without recharge since App, may change with produc- 

tion. 

If there is recharge to the system, the rate of mass removed from the sys- 

tem becomes important. This question will be discussed in detail later, but one 
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particularly !simple equation for the recharge will be presented here. In this 

equation whic:h is known as the Sch i l thu i~ '~  steady state equation, the influx rate 

is proportional to  the drawdown. 

In this model there are no transients in the reservoir, and the pressure distribu- 

tion in the reservoir is hydrostatic. 

It is pos:sible that 9 or A are functions of depth, in which Eq.2 and Eq.3 are 

no longer valid, and the equations must be modified. By looking at resistivity 

measurements, it sometimes looks like the reservoir is pyramid, OF cone 

shaped. In th,at case the area is a linear function of the height, and the solution 

would be: 

In this case there should see a straight line i f  cumulative production is plotted 

vs. (&2-h2) . Notice that k2-h2 # (Ah)2 , so it becomes important in this case to 

identify h, . Eq.4 could also be coupled with influx models. The procedure is 

analogous to what will be presented later in this study. 

3.1.2. Confined Systems 

This system is a in compressed liquid state, and the production is due to ex- 

pansion of the liquid when the pressure drops. The equations for this system 

have been presented by Whiting and Ramey and applied to the Wairakei geoth- 

ermal field: 

Comparing 13q.3 and Eq.5 shows that if (dp ,  / d p ) ~  is constant, the two equa- 

tions are of the same form. The constants in front of dp/dt are different in the 

two equations. The size of this constant helps identify which model is most rea- 
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sonable for a given reservoir. Eq.5 may be rewritten by introducing the compres- 

sibility of water: 

A variety of influx equations with various geometries and boundary condi- 

tions are possible. The influx models are discussed in a separate chapter. 

When integrating Eq.6 to get the drawdown, it is assumed that c, and p, 

are constant. This is a good approximation for a relatively small pressure 

change, and wiill be a good approximation in the early development when the 

drawdown is not too severe. However, over a long prediction this may not be a 

good assumptio'n. This is especially true when boiling starts  occurring in the 

reservoir. I t  may therefore be necessary to update pu and c, as time goes on by 

discretizing Eq.6, and calculate increments of production and drawdown. 

3.2. Liquid and TwctPhase Zone 

When the pressure in the reservoir falls below the boiling point, a two-phase 

zone will deve'lop. The depth of geothermal reservoirs is sometimes several ki- 

lometers, so the pressure will vary with depth. This makes it difficult to assign 

average properties to the entire reservoir when there is boiling in some parts of 

the reservoir. In some reservoirs the temperature profile follows the boiling 

point with depth curve. In that case boiling will start throughout the reservoir, 

and the models presented here will apply. But many reservoirs are essentially 

isothermal with depth due to  convection. I t  is clear that in this case, the fluids 

closest to the surface will start to boil first. Low in the reservoir (except for local 

low-pressure regions around the wells), boiling will normally not occur due to 

the higher pri, =ssure. 

Martinle discussed how rapid gravity segregation of liberated steam causes 

a zone of two-phases to develop at the top of the reservoir with higher liquid sa- 
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turation deeper in the reservoir. The question of being able to define an average 

liquid saturation for the whole reservoir and the total compressibility of the sys- 

tem becomes very important. For a detailed analysis of the system, it may be 

necessary to  divide the reservoir into several lumps. 

3.2.1. B0-g Throughout the Reservoir 

When saturation pressure and temperature are reached, the system follows 

the saturation curve (Fig.1). Since energy is transferred in the process of eva- 

porization, and heat is transferred between the rock and the fluid, a heat bal- 

ance must be included. The heat and energy balance was written by Whiting and 

Ramey' as: 

w,(h,- EC )+Wr(h,- Ec )+8  = 

This equation was developed for predicting the response of the Wairakei reser- 

voir. When trying to match the data, it was concluded that the system was ini- 

tially in a compressed liquid state, for which Eq.7 reduces to: 

Eq.8 is a vol.umetric balance where the last term is the influx term, and is essen- 

tially the basis for Eq.5. If we define the total density of the system and assume 

that the ma.ss loss can be neglected, the mass balance becomes: 

VQP: = VW:a + w e  - wp (9) 

In this equation the total density is a function of the density of each phase and 

the saturation. If we are able to get a relationship between the saturation and 

the pressure, Eq.9 could be used to calculate the drawdown. The procedure is 

discussed in the chapter on history matching. 
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In order Lo use either Eq.7 or Eq.9, the initial state of the system must be 

known. In the chapter on history matching, methods to determine optimum ini- 

tial parameters are described. Notice that the heat balance is not included in 

Eq.9. The heat balance is included in the relationship to determine the satura- 

tion, and is therefore present in the determination of the total density. The tem- 

perature and enthalpy are fixed, once the pressure has been determined, since 

we have satwated conditions. 

A different equation was presented by M ~ N a b b ~ * ~ * ~ .  The drainage from the 

two-phase zone was assumed not to be instantaneous, and the variation of sa- 

turation above the declining boiling level had to be described. If the relative per- 

meability to liquid water is assumed linear with saturation, and that rapid drain- 

ing fractures are surrounding less permeable porous blocks, the equation fo r  

the pressure is: 

du, *= dt a b i - p ) + b u r + c -  dt 

Eq.10 was also applied to the Wairakei field, giving reasonable answers '. The 

coefficients in Eq.10 can be expressed in terms of Ap, k ,  and Suo8: 

In the above equatia s K is the Schilthuis influx constant used in Eq.3. and r0 is 

a characteristic time of the fractured permeable medium. 
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3.2.2. More Than One Lump 

a 

Castanier e t  a1.I0 divided the reservoir into three lumps as shown in Fig.10. 

The central zone from which the production occurs, is represented by a lumped 

parameter model to predict the production of mass and energy. This zone is 

treated as a homogeneous tank, and the production of mass and enthalpy was 

calculated usiing the following mass and energy balance: 

W,:Ec+V(l-~)P,C;,(Tc- Ti )-W,Ei+Q = Wehe- WP$- WLhi (11) 

Eq.ll is the same as Eq.7 as presented by Whiting and Ramey'. However, there is 

an intermediate zone in which neither production nor injection occurs. 

Nevertheless, there is heat and mass transfer in this zone during depletion. Mass 

transfer occiirs from the outside to the inner production zone. The temperature 

breakthrouglh time of the fluid leaving this zone (entering the inner zone), is 

computed using the fluid breakthrough time multiplied bylo. 

Finally the outer zone has fluid flow only. There is no heat flow in this zone, only 

natural recharge or fluid injection. 

For each depletion step, the production of mass and energy is calculated. In 

order to calculate the time taken by this step of depletion, constraints on pro- 

duction such as constant enthalpy, flow rate, or available energy is taken into 

account. The! pressure distribution in the central zone is then calculated using a 

superposition of pressure distributions of off-centered wells. Finally the water 

and heat infl.ux from the intermediate zone are calculated. The entire process is 

repeated un,til abandonment conditions are reached. 

This model was compared t o  a reservoir simulation study by Morris and 

Cambell I' of the East Mesa reservoir in the Imperial Valley, and good agree- 

ments were obtained. I t  was concluded that although being able to handle fluid 
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flow and heat transfer more realistically compared to a one lump model, this 

method is siinpler and less expensive than a three-dimensional finite difference 

simulation rrtodel. It should also be noted that in the limit of the intermediate 

zone having zero width, this model reduces to a lumped parameter model simi- 

lar to the Whiting and Ramey' model. 

. 
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4. INFLUX YODELS 

If the drlawdown history of a geothermal reservoir can not be explained by 

simple mass removal, there may be water influx or recharge into the reservoir. 

Recharge will. maintain pressure in the reservoir, by replacing the produced 

fluids by usua,lly colder fluids. A term of influx mass has to be added to the mass 

balance equations. Assuming no mass loss, the mass balance becomes Eq.A-2: 

4.1. The Schillthuis Method 

In the Sah i l th~ i s '~  steady-state model, the influx rate is equal to a constant, 

times the pressure change. If the outer boundary pressure of the aquifer is as- 

sumed to always be at initial pressure, and that there is steady state flow, the 

influx rate misy be given by Darcy's law as: 

in the linear case. For different geometries, Eq.14 has a different constant, but 

in all cases: 

'w, = K b p  ( 14) 

where Ap = p i - p  . K is known as the influx constant. To get the cumulative 

influx, the rate is given by: 

Integrating Eq. 15 (using Eq. 14) gives: 

t t 

0 0 
We = J ~ , d t  = Kf (pi - p ) d t  

If pressure is known as a function of time, Eq.17 can be integrated. If not, nu- 

merical integration yields: 
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This is the simplest form of an influx equation and expresses the cumulative 

mass recharge! in a steady state system. I t  has been presented in the geother- 

mal literature with models applied to the Wairakei r e s e r v ~ i r . ~ * ~ * ~  and the Bangore 

reservoir .32 

4.2. The Hurst Modified Method 

Sometimes the transient effects are important in aquifer behavior and the 

aquifer may alct as infinite in extent. For this case a well known solution to the 

diffusivity equation is the line source solution. For large values of t D ,  the log ap- 

proximation c Im be used for the line source solution ( t D > l O ) :  

(18) 
1 
2 

PD = -[In ( t D )  +O. 809071 

By the definition of tD,  it becomes apparent that Eq.18 is valid for large times 

and small radiii. By introducing the definition of p~ for radial geometry, Eq.18 

becomes: 

1 2nkh Ap - [In ( t o )  -t 0.6090 71 = 
2 QO CL 

Multiplying by qo and rewriting gives: 

, if constant p is assumed, te mass rate can be expressed as: Since g, = -- WIB 

P 

and the influx is given by: 

t t 

W, = f w , d t  0 = <&dt 

where a and 1 )  are constants. Eq.22 is usually numerically integrated: 
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where = (ti + t j - l ) / Z ,  the average time for the j'th step of depletion. 

4.3. General Yiolutions for Linear and Radial Cases 

The type of influx given in Eq.23, is generally known as the Hurst modifled 

solution. Van Everdingen and HurstZ0 presented solutions to the influx equations 

similar to Eq.18 for different boundary conditions in the radial case. Miller" 

presented sol.utions for the linear case. The work by Miller" was later extended 

by Nabor and BarhamI2 to include solutions for a constant pressure outer boun- 

dary. By changing the definition of to , they came up with three working equa- 

tions for all boundary conditions. 

The solutions to these problems are summarized in Table 1. Tables of nu- 

merical values for these solutions have been presented in the l i t e r a t ~ r e . ' ~ ~ ~ ~  The 

solutions can also be presented in graphical form: Fig.11 is the linear case, and 

Fig. 12a and Fig. 12b the radial cases. 

Van Eveirdingen and HurstZ0 presented how the cumulative water influx is 

calculated in terms of &. The equations assume that the inside pressure is con- 

stant. For a constant pressure drop, the cumulative water influx is given as a 

function of time by: 

w, = %(to)& (23) 

For varying pressure, the method of superposition, is used as discussed in a 

later section. 

4.4. Hurst Simplified Solution 

The equations presented in Table 1 were solved using the Laplace transfor- 

rnation.20 By coupling the influx equations with the material balance equation on 

the reservoir, a particularly interesting solution arises. Hurstls presented this 

solution for a petroleum reservoir. A geothermal reservoir with only liquid, is 
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analogous to  a petroleum reservoir above the bubble point pressure. In this case 

the compressibilities in the reservoir and the aquifer may be treated as con- 

stants, and the equations may be solved using the Laplace transformation. Two 

solutions are presented here: the infinite linear and infinite radial cases. Howev- 

er, the method can be used with any geometry if is known in Laplace space. 

Sometimes an ianalytical transformation is not possible. In that case, numerical 

methods can be: used. 

4.4.1. Tnfinite linear Aquifer 

cqpq , Hurst13 was able to  present two limiting solutions. By defining A = 
h e ,  Pres 

1. h very large 

In this ca:je the aquifer becomes the important factor in the response: the 

reservoir is ignored. The compressibility of the reservoir is negligible, so this 

corresponds to  an unconfined system with infinite linear influx. Note that  this 

case will also occur when l -0 .  The solution then reduces to the aquifer solution 

only, and the drawdown is given by: 

Eq.24 is the superposition sum for varying rate, and F1,Z is the solution for an 

infinite linear system given by Nabor and Barham.12 

2. A very small - 
In this ca.se the reservoir becomes the dominant factor, and if the compres- 

sibility of the reservoir is large but constant, this situation may be occurring. 

The aquifer is, now completely ignored, and the equation for the drawdown sim- 

ply reduces t o  the tank decompression in Eq.6 without recharge. The system is 

ROW confined: 
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3. A intermediate 

The effects of both the reservoir and the aquifer become important, and the 

total expression must be used. This situation lies between the limiting cases of 

confined and unconfined. For the infinite linear case, an analytical solution ex- 

ists. In caseIi where such inversions are not possible, there are numerical 

methods that transform a solution from Laplace space to real space. One such 

method is the StehfestZ1 algorithm. The equation for the drawdown becomes: 

(26) 

where 

4.4.2. JnCinite Radial Aquifer 

The solution is analogous to the linear case. In this case define 

1. h, very large 

Again the system acts as if the reservoir is not there. The drawdown is given 

by the solution for a infinite radial system 

For ~ D B  10 we can use Eq.18. Complete solutions are given by Van Everdingen 

and HurstZ0 and Chatas". 

2. & very small 

Again t:he aquifer is ignored, and tank decompression is the solution. There- 

fore the equations reduce to Eq.25 in this case also. 
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3. Ar intermediate 

Now the entire expression must be used. In this case there is no analytical 

solution available. Solutions were presented in graphical form by Hurst13. The 

drawdown is given by 

8 .  
- 1  

where 
i 

4.5. Superposition 

Since the equations presented in the petroleum literature are limited to the 

boundary conditions of either constant rate, or constant pressure at  the inner 

boundary, it becomes important to be able t o  modify the equations take into ac- 

count varying pressure or rate. This is done by dividing the changes into 

discrete step!s, and adding the effects of each constant pressure step. The 

method for dciing this is known as the principle of superposition, and can be ap- 

plied in both space and time (see Fig.13). 

The idea is that the effects on a point in space is the algebraic sum of the 

effects from each contributing change. For example, t o  determine the effects of 

several wells in a reservoir on the.pressure at  a certain location in the reservoir. 

simply calculi&e the effect from each well assuming there are no other wells in 

the reservoir, and then add the pressure changes from each well to get the total 

effect. Similarly the effects of several changes at different points in time on a 

point later in time, are additive. The principle of superposition is discussed in 

more detail in petroleum engineering textbooks and was discussed by Van Ever- 

dingen and Hurst13 
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Using the Van Everdingen and Hurst equation (Eq.23), the influx is given by 

the superposition theorem as: 

(29) 
n 

j =O 
we = B C Q D ( ~ D - ~ D ~ )  A P j  

In this equation to represents current time. The initial pressure drop is effective 

from the beginning until present time, and the additional pressure drops are in 

effect for successively shorter times. This is illustrated on Fig.13. I t  should also 

be noted that in the limit of infinite steps, Eq.29 may be written in integral form. 

This is known ZLS the convolution integral, and can be used directly if the varia- 

tion of pressure as a function of time is known. Since the limit of the integration 

is from initial i;o present, and that the initial conditions are generally known for 

reservoirs, this integral is suited for solutions by the Laplace transformation. 

The integral is given by: 

tn 

4.6. Fetkovitch 

It  becomes complicated to always have to use the superposition theorem, 

especially if computers are not available, and if the reservoir is closed since 

there are no simple analytical solutions to the problem. A different method was 

developed by Fetkovitch,22 which is especially useful with closed reservoirs. In 

this method the average pressure of the reservoir is assumed to be the inside 

pressure of t.he aquifer. The average pressures of the reservoir and the aquifer 

are calculated using material balance. For each time-step (the size of the time- 

steps need not be equal), the average pressure in the reservoir is held constant, 

while the average pressure in the aquifer is allowed to decrease. 

The method is based on defining a resistance function between the aquifer 

and the reservoir. Since a finite reservoir which is closed is assumed, pseudo- 
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steady state is assumed to be reached immediately. This is not true, but the 

time to reach pseudo-steady state is usually much smaller than the time for the 

prediction. The equations for pseudo-steady state flow for radial geometry are: 

:r 10 reduces to which if - TI 

Tu, 

for linear geometry: 

(32) 
k b h  (P, -P, ) 

'3 
L 

w, = 

The method is based on a constant productivity index. For a closed system, the 

rate may be expressed as (see Appendix B of FetkovitchZ2) 

(33) 
wei .mw 

Eq.33 is the most important equation in this method. The procedure for doing 

the actual cakulations are as follows: 

1. Calculate U J , ~ , ~ ~  (the maximum influx rate using one of the equations for 

pseudo-steady state flow withp,f = 0 ). 

2.  Calculate A,, for the time step. 

Pi 

where 

(34) 

w e i  = VaqPPCtwPi (344  

3. Calculate the average pressure in the reservoir after the end of the time 

step. This is pUf (,,I in the aquifer. For a constant compressibility decompres- 
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sion 

If the reservoir is unconfined, the material balance in the reservoir is given by 

Eq.3, and then Eq.35 will have Vpp,,c,, replaced by k. 
B 

4. Calculate the incremental influx for this time step. 

5. Calculate the average pressure in the aquifer a t  the end of the time step 

(37) 
Pi 

Pav(n) = P i  - - ( ~ o m - l + A K m )  
Woi 

6. Finally we can calculate the cumulative influx a t  the end of the time step 

(38) - 
won - wen-l+A%n 

If the pressure can be represented by the hydrostatic column of water in the 

observation well, the drawdown over the time step is given by 

The procedure is then repeated from step 2. This method is especially suited for 

solving on a programmable calculator, or a computer. I t  is possible to update 

the compressibility and the density as time goes on. Using data on drawdown 

and rate, one can determine the constants that will give the best results. Note 

also that for this method, the initial pressure in the system must be identified. 
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5. HISI'ORY MATCHING 

After a geothermal reservoir has been produced for a period of time, a de- 

pletion model can be matched to the production data. The production history is 

used to obtain optimum parameters of a particular model. As more data be- 

comes available, more and more becomes known about the reservoir. With time 

there are data available which may be used to  improve the understanding of the 

reservoir. This becomes important in future modeling of other similar reser- 

voirs. In all cases data must be collected as the reservoir is produced. The 

model is limited to the data used, so all the pressure responses must be includ- 

ed. 

In matching production data it is possible to get as many parameters as 

there are data points. If there are three data points it is possible to fit three 

constants. A, more usual situation is that there are more data points than con- 

stants to  fit. In that case, the method of least squares fitting may be used. I t  is 

also possible to use graphical techniques. These concepts are best illustrated by 

examples. 

5.1. Numbeir of Data Points Equal to the Number of Constants to At 

A drawdown of 10 meters is shown after producing 4x10' kg of water. The 

reservoir is filled with liquid of density 870 kg/m3, and from resistivity measure- 

ments the volume was  estimated to be 3.5x1O9m3. The porosity from core sam- 

ples is thought to be 25%. No recharge is thought to be significant. 

There is only one data point available, so only one constant can be deter- 

mined. For 'Liquid only the possibilities of a confined or an unconfined system can 

be tried. The compressibility of liquid water at these conditions is about 

1.2xlO-'Pa-'. If the system is confined, Eq.6 is used in an integrated form 

without reclnarg e: 
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which be com.es: 

Solving for the volume gives: 

Substituting the values gives: 

v =  - 4~ logkg = 1.8~10" m3 

(0.25)(870)2 %( 1 . 2 ~ 1 0 - ~ ) P a - ~ ( ~ . 8 l )  E ( l 0 ) m  
n S2 

which is much higher than the believed 3.5x10gm3. If the system is unconfined, 

Eq.2 is used imd solving for A gives: 

Using the values given: 

A =  4~ 109kg = 1.8xlO%n2 
(0.25)(870) %( 10)m 

rn 

If the volume! is 3.5x1g9m3, this would give a vertical height of: 

This number is more reasonable, indicating that  an unconfined reservoir is more 

likely . 

If an unlzonfined model appears reasonable, what will the drawdown be after 

30 years of production if the rate is constant at 100 kg/s ? 

The total mass produced after 30 years is: 

- 9 . 4 6 ~  10'Okg w, := Ut  = ( ~ ~ ~ ) ~ ( ~ ~ ) ~ ~ ~ T ~ ( ~ ~ . ~ ~ 6 X ~ ~ ' ) ~ ~  sec 
S ye UTS 

Added to the produced fluid when the drawdown was 10 meters, the total mass 

produced in 30 years will be: 
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Wpt = 9 . 4 6 ~ 1 0 ’ ~  kg + 4x1O9 kg = 9 . 8 6 ~ 1 0 ’ ~  kg 

The drawdown is obtained from Eq.2: 

9 . 8 6 ~  1O’O kg = 252 m 
W = z= 

Appw ( 1 . 8 ~  10e)m2( 0.25)(8?0) kg 
m= 

Now assume that when 10~10’~ kg was produced, the drawdown was measured as 

150 m. Therefore, the model is predicting too large a drawdown. This may show 

that there is some pressure maintenance in the system. 

Assume t h a t  a more careful study showed that there is influx from a perme- 

able zone along a fault. Two constants can now be obtained since there are two 

data points. Notice that the temperature and enthalpy are assumed constant so 

the heat balance can be ignored. If a Sch i l th~ i s ’~  type equation is assumed, Eq.3 

can be used. The integrated form of Eq.3 becomes: 

Since the rate has been assumed constant, W, = w t .  Writing this equation for 

the two data points and since p = p g h :  

Solving the f i s t  equation for App, gives: 

KAh it 1- Wp 1 

Ah1 -APP, = 

Substituting in the second equation gives: 

K M 1 t l -  Ah2 = KAh2t2 - Wp2 
Ah2 

Solving for the influx constant gives: 

Ah, 

where t = 4x10’ s, and t ,  = 9 . 4 6 ~ 1 0 ~  s. Substituting the values given, an expres- 
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sion for K is obtained: 

10 (4xlO')kg - (9.86~10'O)kg - 
K =  150 = 0.28 kg 

(10)m (4x 107)s - (10)m ( 9 . 4 6 ~  10a)s m .s 

using this and substituting in the first equation: 

(4xlO')kg - ( 0 . 2 8 ) ~ ( 1 0 ) m ( 4 x 1 0 7 )  s 
= 3 . 9 ~ 1 0 ~  &!- m .s 

10 m m APPw = 

With p = 0.25 and pw = 870 kg/ m3, the area becomes: 

3 . 9 ~  1 Oa &- 

(0.25)(870) kg 
= 1 . 8 ~ 1 0 ~  m2 

m A =  

m3 

This is the same as found in the first example. Now the drawdown after 50 

years can be predicted. After 30 years, the rate is increased to 150 kg/s. After 

30 years Ah = 150m. The next 20 years, the rate is 150 kg/s, so for this period: 

- 9 . 4 6 ~  10'Okg W, = (20) years ( 150) b!- (3 1 . 5 3 6 ~  1 Oe) - - s 
S years 

and the drawdown for  the period is: 

L v l z =  - *% - - 9 . 4 6 ~  10" kg = 167m 
Appw + Kt2 (3.9x108)&+ m ( 0 . 2 8 ) ~ ( 2 0 ) ( 3 l . 5 3 6 x 1 O e )  m .s s 

Therefore the total drawdown after 50 years will be: 

Ah = 150 m + 167 m = 317 m 

5.2. Yore Diatta Points Than Constants to FTt 

Assumt? that the following data are available from the reservoir described in 

the previouis example: 

Time(days) Rate(kg/s) Drawdown(m) 

100 40 0.85 

200 30 1.5 
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400 60 

700 120 

1000 100 

4.0 

11.5 

17.5 

5.2.1. Integratied Form 

Assume that the same model applies as.before. By rewriting Eq.3 in an in- 

tegrated form, the result becomes: 

n 

j = l  
dividing by Ahj Atj  and rearranging gives: 

Ak + K  Wp 
n = A P P W  n 

f = l  f = l  
Ahj A t j  A h j A t j  

Now defining: 

4 
z n  = 

h h j  A t j  
j = 1  

and 

Substituting, the relationship becomes: 

Yn = AQPwzn -I- K 
This equation may be used to identify the constants App, and K. There are 

several ways to do that. One is using a least squares fitting technique. The pur- 

pose is to minimize the distance between the data points and the points calcu- 

lated using em equation of the form given above. The data points can also be 

graphed on ciartesian graph paper. In this case the line should be straight. This 

is always recommended if the equations can be reduced to an equation of a 
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straight line on some form of graph paper. If the points fall on a straight line, 

the model used is likely to apply. The scatter of data points may be due to the 

sensitivity of the method. I t  does make a difference how the equations are writ- 

ten. If dividing by Ah rather than the sum, W,,/Ah, is close to  being constant. 

Writing the equation of a straight line like that would therefore not be a good 

choice. 

- - .  

Returning to  the example, the values of z,, and yn were calculated. The 

results of the calculations are given in Table 2. A graph of the data points is 

given in Fig.l.4. As can be seen from this graph, the points fall on a straight line. 

The solid line represents the least squares At  through the data. The two con- 

stants from l,he fit are the slope and the intercept with the ordinate. The values 

are : 

App, =4.O3x1O8 kg/m 

Y1 

Yn 

K = 0.3 kg/m s 

K becomes inaccurate if the points are scattered, because the value of K is 

small. If the uncertainty in measurements is high, it may be necessary to 

smooth the data using statistical methods.5 

If there are more than two coefficients to  determine, it is not possible to 

mi t e  the equations in the simple straight line form, and a numerical method is 

necessary. The general form of writing equations with constant coefficients is: 

In matrix form this becomes: 

1 z1.1 2 2 . 1  ' . .  
. .  
. .  
1 =1.n =z,n * 

. .  

. .  

If m=n, there are the same number of data points as constants to fit, and the 

matrix equation can be solved. If m>n, there is not a unique solution. If m t n ,  
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there are more data points than constants, and the least squares method must 

be used. 

5.2.2. FInite IYifference Form 

Previously Eq.3 was written in an integrated form, assuming A Q ~ ,  and K 

constant. Eq.:3 could also be written in a finite difference form. There are several 

ways of doing this, many of which are used in numerical simulation. One way 

would be: 

Note that  A h , = & - &  implies 

& - h,,-l = (h, - h,,-l) - (A, - h,,) = A h , - ,  - Ah,,. Dividing by hh, gives: 

W n  &-1 -hh, = K - -  
A'pw &Atn A h  

that 

where Atn = I n  - tn - l .  Rearranging gives: 

Wn 4 -Ah, , -1  
4 -= K + A Q P W  &Atn 

and xn = Ah, - and by defining yn = - a similar straight line relation- Wn 

A h  Ah A tn 

ship results. 

Knowing A Q ~ , , , ,  the drawdown after 2000 days of production, if the rate is 

110 kg/s after 1000 days, can be predicted. 

The equation is: 

n n -1 

j = 1  j = 1  
AQIPw& = Wpn - KC A h j A t j  = W p  - K C  A h j A t j  - K A h n A t ,  

Solving for hlt, gives: 

n-1 
Wpn - K C  A h j A t j  

j = 1  

A V P ~  + K A t n  
A& = 
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From Table 2 the sum is known, and the other terms are known: 

WP - - Wpn-., + A W p  = 7 . 3 4 4 ~ 1 0 ~  kg + (86 .4~10 ' )  s (110) &= 16.85x10gkg 
S 

K = 0.3 -kL 

Aqp,,, = 4 . 0 3 ~ 1 0 ~  k!- 
A t ,  = 8 6 . 4 ~ 1 0 ~  s 

m s  

m 

n-1 
A h j h t j  = 8 4 1 . 1 ~ 1 0 ~  m s 

j = 1  

Substituting these values gives the drawdown after 2000 days: 

1 6 . 8 5 ~ 1 0 ~  kg - (0.3) k ( 8 4 1 . 1 ~ 1 0 ~ )  m s 

( 4 . 0 3 ~ 1 0 ~ )  &+ (0.3) kg(86.4x108) s 

m s  A h  = = 30.7 m 

m m s  

In all the calculations the simplest possible way of numerically integrate 

the influx equation have been used. I t  should be noted that this introduces an er- 

ror in the determination of the influx constant. Using the average drawdown 

between the current and the present level of depletion in calculating the s u m  

would approximate the integral better. However, with the number of time steps, 

and the frequency of values when the drawdown changes mast rapidly, the for- 

mulation used above gives a good approximation. The additional terms added to 

each depleticln step are also nearly constant, so even though the influx constant 

may not be the true Schilthuis constant, the predicted drawdown should be the 

same. 

5.3. Determination of Optimum Constants 

Up t o  this point cases have been considered where the constants could be 

obtained through a least squares fitting technique. Some constants can not be 

obtained in this manner, and other method must be used. Some of the most im- 

portant constants to identify, are the initial values of the parameters. This is im- 

portant when the variations of saturation, temperature, and pressure need to be 
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described with time. Initially, there may be only liquid, but the drawdown may 

not follow this type of model for a very long time. There will eventually be boiling 

in the reservoir, and to be able to predict when the pressure falls on the satura- 

tion curve, the initial pressure in the reservoir must be known. As an example, 

the simplified mass balance given in Eq.9 with Schilthuis influx can be used  

In this case khe initial density needs to be identified, which is a function of the 

initial therm.odynamic properties in the reservoir. The initial temperature is 

usually well known, therefore assume that the only initial parameter to fit is the 

initial pressure. If there are more than one parameter to fit, they can be fitted 

one at a time, and iterating until-convergence. The procedure is as follows: 

1. Assume initial pressure p i .  

2. Calculate the corresponding pti.  (There may be steam present, or the fluid 

is on the !saturation curve, depending on the temperature and the chemical 

compositicm of the fluid.) 

3. Perform. the history match as discussed in the previous section. 

4. Determine the standard deviation from the fit: 

where 

& = yn - 5'1; 
Yn is from. the ds ta  

y; is calculated using the fit, and 

m = the number of data points. 

5. Change the value of p i ,  and repeat from step 2. 

30 



When the procedure has been finished for several values of p i ,  the assumed 

values of pj, vs. the standard deviation can be graphed. If there is a minimum 

s.d., the corresponding initial pressure is assumed to be the correct value. The 

same procedure may be used to identify other constants. 
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6. EARLIER SVARTSE:NGI MOD= 

6.1. Reservoir Description 

The Svartsengi field in Iceland is a liquid dominated reservoir with fluids of 

nearly constetnt temperature at 235 O C. The reservoir is located on Reykjanes 

Peninsula in :southwest Iceland. From resistivity measurements the reservoir is 

believed to cover ail area of 5 km2 at 200m depth, increasing to 7 km2 at 600x11 

below sea level. Thc salinity of the geothermal fluid is about two thirds that of 

sea water. 

The following reservoir and fluid properties were discussed by Regalado." 

Fluid production from the reservoir started in 1976. The production data have 

been provided by l ' h o r h a l l s s ~ n . ~ ~  The total mass rate output from the field is 

shown in Fig.15a. The water level was measured in wells 5 and 6 until 1000 days 

of production. After 1200 days of production, the drawdown was measured in 

well 4. The measured drawdown vs. time is given in Fig.15b. A prsssure- 

temperature diagram for the wells is shown in Fig.16. I t  shows the feed zone 

pressures of the wl?lls and the water saturation temperature corresponding to 

the pressure profll? measured in well 4. Note that  only well 3 is initially a t  sa- 

turated conditions, and that the temperature from 350m to  1650m depth is 

nearly constiint. Most of the wells are completed in the deeper liquid zone. The 

pressure with deptn is linearly increasing, but there was initially a 16 bar pres- 

sure didereme between the inside and the outside of the reservoir a t  lOOOm 

depth. The density was measured as nearly constant at 854 kg/m3. The result of 

enthalpy measurements in wells 7,8,9,10, and 11, show average enthalpy of 1074 

kJ/kg. From well testing the porosity and permeability have been reported as 

0.1 and 1 darcy, rcspectively. This permeability appears rather high compared 

to other liquid dominated geothermal reservoirs. 
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6.2. Convection Model 

The deuterium and chloride concentrations of the reservoir fluid give 

conflicting information about the relative amounts of fresh and seawater at 

Svartsengi. The deuterium indicates 50% meteoric water and 50% seawater while 

the chloride indicates 1/3 meteoric and 2/3 sea water. This problem was ad- 

dressed in the convection model developed by EliassonZ4 and reported by Regala- 

doz3' and Kjaran" where boiling was assumed to explain the high salinity. Also 

since the temperature in the reservoir is almost constant below 350m depth, 

convection was assumed to occur. I t  can be shown that a vertical permeability 

of only about 1 millidarcy is a sufficient condition for convection." A convection 

model was therefore proposed for the Svartsengi reservoir." This natural state 

model is illuistrated in Fig.17. The conservation equations for points A and B can 

be written asi follows: 

Point A: 

Concentration: w,p = WdY + w,y 

Point 8: 

Mass: W, = 1Wc + Wb 

Energy: W,h+, = Wchc + Wbhb 

Concentration: w,@ = w,y + Wb a 

Rearranging these equations we get the expressions for the mass flowrates: 

33 



w, = w, 2 9 -  
Y 

where L is the latent heat of vaporization, and a,/3,7, are the chloride concentra- 

tions at the points given in Fig.1'7. There are  now six equations with twelve unk- 

nowns. To sol.ve them it becomes necessary to make some assumptions. Assum- 

ing that the chloride concentrations are  known, the unknowns are limited to 

seven. The piroblent can be solved, for example, if the mass flowrate up can be 

estimated. This was done by using the following expression:28 

w, = KA(1-&)(P(T,s7)- P(TU1B)) (41) 

where K is the coef'icient of permeability, m/s, A is the area of the up flow zone, 

and E is the fraction of the energy disipation which occurs in the down flow 

(must be smaller than 0.5). 

The natural heat loss was calculated as the difference between the upward 

and the dowinward heat flow. The value arrived a t  by Kjaran e t  al.24 was 300 

MWthomal. This model describes the reservoir in its natural state. 

6.3. Hydrological Model 

The ear1;y production model developed by Kjaran e t  aL2* for the Svartsengi 

field was  a h,ydrological model. I t  was based on a rectangular geometry of the 

Aeld where the wells were assumed to be close to one end of the rectangle. The 

opposite boundary was assumed to be far enough away so the effects of it could 

be ignored. Writing the boundary value equation for fluid flow in a porous medi- 

um lead to the solution: 

where: 
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' 

A = area of t.he rectangle m2 

S = storage coefficient 

T = transmissivity m2/s 

(x.y) = cooridinates of observation well, m 

(6,~) = coorldinates of the producing well, m 

Ah(z,y,t) = the drawdown in the observation well, m 

The matrices are given by: 

4 n #O,m 10 
C,, = [ 2 (n #OAm =O) V ( n  =OAm lo) 

1 n =OAm =O 

m=z cosnny 9, = cos- 
b a 

This solution corresponds t o  the solution for a well located in a rectangle. The 

effects of superimposed wells are added in an infinite array to create the boun- 

daries. 

. For step changes in the rate,  this equation may be written as a superposi- 

tion sum. The resulting equation was used to calculate the drawdown in the ob- 

servation well. The result of the calculated drawdown compared to the measured 

drawdown is given in Fig.18. We see that there is a good agreement during the 

f i s t  1600 days of exploitation. 

6.4. Unit Response Function Model 

The unit response function was defined by Barelli e t  aL2' as the solution to 

the diffusivity equation: 
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with the boundary conditions along a boundary S: 

p(.'.t) = p(i',ii) on S, 

p ( i , O )  = pO(?:) in V 

k 
P 

A ~ - A p ( ? , t ) . 6  = q ( t )  + q ' ( t )  on S, 

k - A p ( ? , t ) 4  := v ( ? , t )  on S, 
1 

In these equations, 77 is the diffusivity (mZs-*), v is the Darcy velocity, and g ' ( t )  

is the flow rate variation on S2. S, is the part  of the boundary on which pressure 

is known, Sz represents the well where the ra te  variation takes place, and the 

rate is known on S3. The solutions to Eq.43 are presented for some boundary 

conditions in Table 1. However, a more general solution may be obtained without 

putting further restrictions on the boundaries than what is stated above. If al- 

lowing the flowrate to change stepwise, the solution becomex2' 

where p ,  (Pfz m-3s) is the special unit response function, which is the solution 

to the boundilry condition of step changes in rate, a n d p d  (Pa) is the pressure 

field difference between disturbed and undisturbed solution.27 

Eq.44 can be rewritten for the step changes in rate using the superposition 

sum: 

Now the problem becomes to determine the unit response function F(t). The 

unit response function has been used to model the Svartsengi field.23 The func- 

tion F(t) was determined using a least squares fitting routine with the drawdown 

history in the reservoir. The calculated drawdown is shown in Fig.19. The unit 
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response function is determined using the measured drawdown and the rate 

variations in the field. The solution is general, and any function which fits the 

data may be used. When F(t) has been determined, conventional well testing 

techniques may be used to  determine permeability, storage, and skin, by log-log 

type curve rniatching. 

6.5. Linear Model 

A linear model developed by Swedish authors was used for the Svartsengi 

reservoir by regal ad^.'^ The model was developed for a long flow channel called 

an esker that forms under glaciers. regal ad^^^ adopted this model because 

geothermal fields are geologically active with many parallel faults. The 

diffusivity equation was written: 

and solved with the boundary conditions: 

In these equations T 

coefficient. 'The initial 

initial pressure is the 

ah 
a 2  2Tb 
- (o , t )  = - _Q 

is the transmissivity (m2/s), and S is the storativity 

condition, and the first boundary condition say that the 

same as the pressure a t  the infinite distance from the 

well. The second boundary condition is Darcy's law written a t  the producing well 

positioned a t  x=O. This well is considered a plane source, and the observation 

well is located a distance x from this source. The model assumes infinite linear 

aquifer, but the reservoir is assumed to be closed at one end. To create this 

boundary, an additional production well, producing at a rate q, was placed at a 

distance 21,-x from the observation well. This well was referred to as the image 

well. The model is illustrated on Fig.20. The solution to this problem becomes: 
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where: 

x2s 
4 Tt - 

(21 -x)% 
4 Tt 202  = 

The first term in Eq.48 is the drawdown due to the production well, and the 

second term is due to the image well. This model is the same as a semi-infinite 

aquifer with the superimposed effect of the image well to create the no flow 

boundary. The model was used to calculate the drawdown for the first 1600 days 

of production using relevant reservoir dimensions, properties, and flowrate data. 

The results are given in Fig.21. The model agrees well with the observed draw- 

down in the field. 

6.6. Boiling Model 

The pressure-temperature diagram in Fig. 16 shows that drawdown in the 

field will result in boiling in the upper parts of the reservoir. As the liquid level 

drops, there will be a boiling zone above the liquid level where the pressure and 

the temperalcure follow the boiling point with depth curve. This has been ob- 

served a t  Svartsengi, where steam is now rising from the ground in the region of 

the shallow wells. A model was developed by Kjaran e t  a1." using the storativity 

given by: 

S I  = d1-%J (52) 

where the subscript 1 referres to  the zone where there is boiling. This quantity is 

assumed constant, The total production rate is given by the sum of the rate 

from the lower liquid zone, and the rate from the two phase zone: 
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where h is the drawdown in meters, and the subscript 2 referres to  the liquid 

zone deeper in the reservoir. These equations are similar to the unconfined sys- 

tem with the1 influx term replaced by wl; the rate from the two phase zone. 

Furthermore,, it was assumed that the rate from the two phase zone was propor- 

tional to the difference in pressure between the two zones: 

w1=  c ( h z  - h,) (55) 

There are now three equations with three unknowns, wl, hl. and hz. The draw- 

down in the deep zone, he, is of interest since this is what is monitored in the ob- 

servation well. The solution to these equations is: 

: 
h z ( t )  = CIWp(t) - C z J ~ p ( ( t - T ) e - T ' X d T  (56) 

0 

where: 

1 c1 = 
PzA2S2 

cz = cc: 

I t  is also possible to calculate the drawdown in the two phase zone: 

where: 

The constantis in Eq.56 were reported as being:" 

Cl= 1 . 4 8 8 ~ 1 0 - ~  m/kg 

C~=8.i'16xlO-" m/kg day 
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K=150 days. 

To use this model, the equations must be numerically integrated. The drawdown 

was calculated here using the constants given above and the following equation: 

(60) 
n - t j /  150 Ah,, = 1.488~10-~W~ - 8 . 7 1 6 ~ 1 0 - ~ ~ ~  Wp(tn-tj)e A t j  

j = 1  

This equation is the same as Eq.56 for hz but is now written in numerically in- 

tegrated form. The results of the calculations are given in Fig.22. The fit is not 

very good, alt,hough the shape of the curve is similar to the data. K was changed 

and history matching was performed to get a better match. K was determined 

by trial and error, but C1 and Cz were determined using a least squares method 

similar to  the example presented in the chapter on history matching. The best 

match is given in Fig.23. The constants used were: 

C, = 1.129~10-~ m/kg 

Cz = 4.932x10-” m/kg day 

K = 250 days 

This model is similar to the Schilthuis model, exept in this case the pres- 

sure support is from the two-phase zone rather than from a supporting aquifer. 

From the formulation of the problem, there is no way to distinguish between 

these two cases. The drawdown in the two-phase region could just as well be 

representing drawdown in an aquifer. In the Schilthuis method there is no draw- 

down in the aquifer, the external pressure is always initial pressure. 
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7. DEPLeTIOlN ANALYSIS FDR SVARTSENGI 

A specti-um of depletion models have now been developed or modified. The 

data from !hartsengi were analyzed using these depletion models. In the 

analysis the simplest models are considered first. 

7.1. Liquid Models 

7.1.1. Without Recharge 

The prolduction data for the Svartsengi field are given in Appendix El. After 

producing 3 : ~ l O ' ~  kg of fluids from the reservoir, the drawdown was measured 

about 100 m .  Eq.2 and Eq.6 for for unconfhed and confined, respectively, can be 

used to identify the kind of reservoir. A t  reservoir conditions, the comprcssibili- 

ty of the liquid water is about ~ . Z X ~ O - ~  Pa-'. Using the reported values for poros- 

ity (0.1) and density (850 kg/rn3), the volume of the reservoir can be determined 

from Eq.6 if  the production is due to decompression ; a confined system. In- 

tegrating Eq. 6 with W, =O gives: 

Vpp$gchAh = Wp 

Solving for V gives: 

where ctu, = c, + c ,  . Assume that c ,  = 1.15~1O-~Pa-'. Then 

ctw = 2.35~1~D-~Pu-'. Substituting the volume becomes: 

= 1 8 0 ~ 1 0 ~ m ~  3x 10l0kg 
(0.1) (850) '( kg / rn 3)2( 9.8 1)rn / se c '( 2.35 x 1 O-')Pu -' ( 1OO)rn 

If assunning that the area, as determined from the resistivity measure- 

v =  - 

ments, is about 7 km2, the height of the reservoir should be: 

v 180x10~rn~ = 26 km & = -= 
A 7x1O6rnZ 

This height is impossibly large. I t  can therefore be concluded that unless the 

area is much larger than assumed, the model is unlikely to apply. However, it is 
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possible that the production was supported by a large aquifer outside the reser- 

voir. In that case the reservoir and aquifer must be considered as one unit. 

Next, assume that the reservoir is like a completely open tank; an 

unconfined system. Eq.2 can then be used. Solving for the surface or lateral 

are a: 

= 3.5x108m2 - 3x 10’’ 
cppwAh (0.1)(850)kg/m3(100)m 

- Wp 
A =  

This value of 3.5 km2 is more realistic since it  is about half the measured surface 

area. The value of the porosity is uncertain. With a porosity of 5% the area would 

be calculated. as 7 km2 by Eq.2, which is the value expected from resistivity 

measurements. Therefore, the unconfined model appears to be applicable. Note 

that if there is recharge to the reservoir then Ah will be smaller. So the area cal- 

culated by Eq,2 will be less. The drawdown without recharge would be larger. 

Graphing Wp vs. Ah should give a straight line if there is no water recharge 

or recharge. Fig.24 shows that the drawdown vs. production is not a straight line 

indicating recharge. Also notice the close relationship between the rate and the 

drawdown in Fig. 15a and Fig. 15b. 

The pressure measured in the observation well is not necessarily represen- 

tative of the average pressure in the reservoir. There may be interference from 

the producing wells around the observation well, causing the pressure to appear 

lower. To get the true average pressure, the reservoir should be shut in and al- 

lowing the pressure to stabilize. This is impossible since the reservoir is continu- 

ally producing. To include the effects from each well, a superposition of the 

effects from all the wells would be necessary. However, in all the models present- 

ed in this report, the measured pressure is assumed to be representative for the 

reservoir. 
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7.1.2. W i t h  Recharge 

7.1.2.1. Schil.thuis Method 

This model was presented in the section on history matching. When graph- 

ing: 

A k  
n C hhj htj 

j = 1  

z, = 

vs . 

WP, 
% a =  

hhj A t j  
j = 1  

the points 011 Fig.25 were obtained. The first few points are distinctly larger in 

magnitude than the rest of the points. The solid line in Fig.25 represents the 

least squares fit using all the points. The constants from the fit are: 

a. = 3.04377 kg/m s 

and 

a, = 5.33611:u107 kg/m 

The group of terms in front of dh/dt ,.I Eq.2 and Eq.6 is a constan,. Defme this 

constant to be Sr, the mass storativity coefficient. Thus, for  the unconfined 

case: 

SW = A Q P w  

and for the contined case: 

The equations for the conflned and unconfined models now have the same form. 

For The Schilthuis model SI = a,, and K=ao. Assuming an unconfined system: 

01 = A Q P w  

and 
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For a confined system, however, the volume is given by: 

= 3 . 2 ~ 1 0 ' ~ m ~  5 .33611~10~  kg/ m 
(0.1:1(840)~(kg / m3)2(9.8 l )m/ sec 2(2 .35~  I O - ~ ) P U - ~  

u 1  = 7 V =  

Assuming that, the area is 7 km2. the height of the reservoir is: 

qp$gct, 

V 3.2x101°m3 = 4.6 km 
A 7x1Oem2 

= -= 

The drawdown, was calculated using Eq.40. The result is given in Fig.26. The solid 

line represents the Zalculated values, the circles are  the measured values. This 

plot is the satme for the confined and the unconfined system. The difference 

between the two is in the formulation of Sv. 

The real :system. seems to behave somewhere in between these cases. Notice 

also that  the A t  is 1;ood for the early data, but the infiux is too strong for the 

later part  of the data. If the three first points are excluded from the fit, we get a 

slightly different fit. The fit is given in Fig.27, and the drawdown in Fig.28. We see 

that the influx is not as strong in this case. From the least squares fit, 

K=2.75447. The value for S, is 6.60567~10~. The infiux is however still too strong, 

although this fit is better. 

Consider what information can be obtained from the Schilthuis influx con- 

stant K. From Eq. 14 for the linear case p = pwgh: 

In the radial icase Diircy's law gives: 

2 m p h  - e 
T, 360 

TlU 

K =  
p ln- 

where @is the angle open to flow. In the linear case the length of the aquifer can 

be obtained from the first equation using k-1 darcy: 
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. 

k A P h  - - (lx10-'2)m2(2500)m(1500)m(850)2(kg/ rn3)2(9.81)m/s2 = 80 km 
( 1 1 0 ~  lo-') Pa .S ( 3 )  kg / m * S  PK 

AL = 

In this equation A is the cross-sectional area of the aquifer. This was taken as 

2500 m x 1500 m , since 2500' m2=6.25 km2, and 1500 m is a reasonable height. 

The distance from the reservoir to the ocean, which may perhaps act  as a con- 

stant pressurie outer boundary, is about 20 km. The cross-sectional area of the 

aquifer may be less than what was used and the permeability of the aquifer is 

likely to be much less. The calculated length is therefore of reasonable magni- 

tude. Assuming radial geometry, 8 can be determined from the second equa- 

tion. Assuming r, / r, = 10: 

T U  

Tu, 
360° Kpln - 

21rkhp;g 
e= 

8 =  (360O )( 3)kg / m 'S (1 lox lO-*)Pu 's In 10 = 40 
27~( lx lO- '~ )m~(  1500)m (850 )2 (kg /  m3)2(9.81)m/ s2 

This small angle shows that a linear geometry is more valid than a radial system. 

7.1.2.2. Hursl, Modified Method 

In this method the influx rate is a function of time. The influx rate is given 

by Eq.21. Combining it with Eq.3, the following results: 

&Ilp= a h - d  --zu 
g d t  Zog(bt )  

This is for the unconfined system. Integrating, and substituting the mass stora- 

tivity coefficient: 

Notice that a has different meanings in the two equations. Numerically integrat- 

ing the water influx: 
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Assuming that for each step of depletion, the following holds: 

a - tj + tj-1 
2 

Kj = I t j  = 
l o g ( b 4 )  

it follows that: 

n 
- SwM, = j = 1  KjAhjAtj - Wpn 

Solving for A& give!;: 

If SW is known, K, can be calculated using the above equation. The problem is to 

determine the constants a and b. Rewriting the equation for K,: 

1 1 -  1 -1ogb + - l o g t n  = - 
a a Kn 

Now define: 

- 
zn = logt, 

Yn = - 
A plot of z, 'vs. yn should give a straight line, 

determined from the slope and the  intercept. 

1 
Kn 

nd the const nts b and a may be 

To illustrate this model, Sw = 5 x 1 0 7 k g / m ,  equal to the value for SI found 

in the Schilt,huis method was assumed. The fit for -log b and - is given in 

Fig.29. The solid line is the At, and the circles are the calculated values. Notice 

that there is a lot of scatter. The computational procedure must be wrong, or 

this model does not apply. 

1 1 
a a 

The above inflJx equation was based on the log approximation of the line 

source solution for infinite radial aquifers. If infinite linear aquifer is assumed, 

the material balance equation becomes: 
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Substituting the definitions of B and Fl12: 

c 

By the definition of TD (L=l):  

In the above equations, Ah‘j is the pressure difference between each depletion 

step: 

A h ‘ j  = A h j  - Ahj-1 

Substituting Eq.64 in Eq.63 and dividing by Ah,: 

sw [a]- [ $1’” bhp2g  2 

1 

[ F i ’ ; h p 2 g  2 

Eq.65 can be written in the form: 

Yn = a l z n  + ao 

A plot of this match is given in Fig.30. The points seam to  give a positive value of 

uo which corresponds to a negative value of SI! I t  is therefore concluded that 

Sw is zero, and that the reservoir behaves as infinite linear. With Sw = 0, the 

slope is: 

(66) 

u1 = 1 . 0 5 ~ l O - ~ s ’ ~ ~ m / k g  

With Sv = 0, Eq.63 becomes: 

47 



and to get started: 

The reason for starting the superposition sum at 2 is that  in the input Ale the 

flrst entry is 0, having subscript 1. When dividing by 4, the solution blows up 

for Ah, = 0. 

The ca1c:ulated drawdown is shown in Fig.31. The match is good, but the 

aquifer response is too high. The cross-sectional area of the aquifer can be 

determined from the constant a,: 

1 

[ $]1’2bhp2g 2 
a, = 

1 

which becomes: 

1 
(0.1)( l ~ l O - ’ ~ ) r n ~ ( 2 . 3 5 ~  10-’)P~-~ ] 1’2 ( 1.05~ lo-’) ,--( G m  850)2( kg / m ’)‘( 9.8 1) m / s ‘(2) ( 1 )m 

( 1 1 ox 10-6) Pa ’ s (n) kg 

A = 8.1~10~ m2 = 810 k m 2  

This value is impossibly large. 

7.1.2.3. Hurst Simplified Method 

The case of i n h i t e  linear aquifer will be considered here. The matching pro- 

cedure becomes simple in this case. From Eq.26, a straight line through the ori- 

gin should be obtained by plotting: 

vs . 
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with slope: 

By the definition of A, a becomes: 

a =  Pa9 h 
kAP,P,sg 

where A is now the cross-sectional area of the aquifer A = h - b  . 

The problem then becomes to determine A. Again the method of minimizing 

the standard deviation will be used. The procedure is as follows: 

1. Choose a value for A. 

2. CaLculal;e 2, and y,, . 

3. Find a using least squares fit on: 

yn = a.2, 

4. Calculate s.d. 

5. Change the value of A, and repeat from step 2. 

6. Graph the standard deviation as a function of A. The minimum standard de- 

viation coi~esponds  to the value of h which gives the best fit. 

When the best fit for a and h is obtained, the drawdown is calculated using Eq.26. 

The result from the fitting €or h is given in Fig.32. The s.d. is decreasing to a 

minimum at, X =1 .3~10 '~  m-l. Notice that for small values , the s.d. is large, but 

for large values, the s.d. is low almost constant. When h is large the reservoir is 

not importzint in the response. This occurs when the compressibility of the 

reservoir is low, and points in the direction of an unconhed  system. 

Assuming that  the length of the reservoir is 2500 m: 

h*L = (1.3~10-~)rn-~(2500)m = 0.33 

since h = 
I' CresP,, 
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Because the! reservoir is hotter than the aquifer, the reservoir will have higher 

compressibility. Any two-phase region a t  the top of the reservoir may be respon- 

sible for a hiigher compressibility. The constant from the fit was: 

Solving for ithe cross-sectional area of the aquifer 

kg/m3): 

gives (assuming pap = 1000 

A =  k X  
k PaqPresga 

= 3 . 6 ~ 1 0 ~  mz ( I I O X I O - ~ ) P ~  as ( 1 . 3 ~  1r')m-l 
(1. Ox 10-12)m2( 850) ( 1000)( kg / m 3)2( 9.8 1)m / s '( 4 . 7 5 5 ~  1 O-'O)m .s / kg 

A =  

If h = 1500 RR, the width becomes: 

A 3.6~10~ mz = 2400 
h 1500 m 

b = -= 

This width agrees well with what would be expected. The calculated drawdown is 

given in Fig.33. 

7.1.2.4. Fetkovitch Method 

To history match using this method, trial and error has to be used by 

changing the! parameters in the reservoir and the aquifer. Two cases were inves- 

tigated: linear and radial geometries. The calculated drawdown is shown in 

Fig.34 €or this Linear case, and Fig.35 for the radial case. In the linear case, the 

best A t  was olbtained with: 

Sr = VpproOcms = 6.6 Pa 
Using the same values for p, c,, , and p,, as before: 

6.6 
= 6 . 6 ~ 1 0 ~  m3 6.6 - Pa V =  

(pprwcms (0.05)(850) ~ ( 2 . 3 5 ~ 1 O - ~ ) P a - '  
m3 

Assuming h, := 1500 m: 
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= 4 . 4 ~ 1 0 ~  m2 V 6 . 6 ~  10' m3 A = -= 14 1500 m 

This is much smaller than expected. The value of 3kbh in Eq.32 was found to be 
PU 

. Using b = 2500 m and k = 1 ~ 1 0 - l ~  m2, the length ms 
1% 'S 

2.846~10-~ -- 

aquifer can be calculated: 

L = -  3kbh - - ( ~ ) ( o s x I o - ' * ) ~ ~ ( ~ ~ o o ) ~ (  1500)m - - 
(1 lox 10-e)Pa 'S m3 . 

Pa 'S Pa 'S /I (2.846XlO-') - 2.846~10-' - m3 

of the finite 

18 k h  

This is approximately the distance to the ocean from Svartsengi along the fault 

zone. The model predicts too large a drawdown for late times. This may be due 

to changes in compressibility as a two phase region forms at the top of the 

reservoir. 

The rad.ial fit was not very satisfactory. so the constants from the fit on 

Fig.35 were not determined. 

7.2. Two Zone Model 

Rewriting Eq.10 in a numerically integrated form yields: 

which can be written as: 

Yn = alz1.n + a2z2.n + a3z3.n 

a t ,  a2, and a3 are then determined using a least squares fit. From the fit these 

values were: 

a, = a = 0 .3261~10-~  
b 

P 9  

P 9  

~2 = -= -0 .1192~10-~ 

c 
a3 = -= 70.3537~10-' 

Using these constants, the drawdown was calculated using Eq.10 in a slightly 

different for rn: 
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n -1 
-Ah ,  = al C A h j A t j  + azWpn + a3wn + a l A & A t n  

j = 1  

Solving for Ah,, gives: 

n-1 
a1 A h j A t j  + Wpn + ~ 3 %  

The result is given in Fig.36. The curve has the right trend, but the line is not 

smooth because of noise in the data. A discussion of these problems is given by 

Fradkin e t  #ai.? A difference form of ' this  equation does not work since the 

dderence  tuj - wj-l does not adequately describe dw. Note also that i t  may be 

difficult to  identify a3 since when the production stabilizes, the rate is close to 

being constant. The high fluctuation of w (see Fig.15) may be responsible for the 

noise in the data. Therefore, using the average rate from the beginning to the 

time when the drawdown is calculated was tried. The difference is minor, and the 

result is given in Fig.37. In this case, the fit gave: 

u1 = a = 0.2582~10-' 
b 

P9 
a2 = -= -0.9583~10-~ 

C 
U S  = -= -0.1396 

P9 

Eq.10 can be used to solve for Ap , K , and I, assuming a value for S,, . From 

E q . 1 0 ~  it can be seen that the only way c can be negative, is if I, is negative. 

This makes no physical sense. Thus, even if it is possible to  solve for Ap and K 

using Eq. 10, the match gives erroneous answers. 
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8. DISCUSSION 

In this study several lumped-parameter depletion models have been used to 

model the production history of the Svartsengi field. In most cases it was  possi- 

ble to match the drawdown history adequately. The question becomes: What in- 

formation about the reservoir can be obtained from the results. 

8.1. Liquid Models 

In Fig.24, there must have been recharge in the reservoir if Sw is constant. 

This recharge may be from the edges within the reservoir, or there may actually 

be a channel where water flows into the reservoir. The models are not able to 

determine where the recharge comes from, but a better match was obtained 

when influx was included. First, assuming no transients in the reservoir or the 

aquifer, two models were considered. For a constant pressure outer boundary, 

there is an i~istantaneous steady state, and the Schilthuis method is used. For a 

closed outer boundary, there is an instantaneous pseudo steady state, and the 

Fetkovitch method is used. The steady state influx was too strong (Fig.26) caus- 

ing the calculated drawdown to overreact to rate changes. When only the first 

half of the d i h  is used, a weeker influx is obtained, but the predicted drawdown 

is too large for late times (see Fig.38). Assuming a finite aquifer with instantane- 

ous pseudo steady state (this corresponds to when the value of QD becomes con- 

stant in Fig.11 and Fig.12), the trend of the drawdown plotted vs. cumulative 

mass produced will be straight if Sw is constant. But how good is the  assump- 

tion that  S y  is constant? For a c o n h e d  system, the variable controlling Sw is 

the total cornpressibility of the system. By the tremendous increase in the total 

compressibil.ity when boiling occurs, even local boiling can be very important in 

controlling khe compressibility. (See Appendix A for the equations for total 

compressibil.ity.) This may explain why the calculated drawdown is high for later 

times. In the: case of an unconfined system, this effect may simply be due to an 
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increase of the areal extent of the reservoir with depth. The resistivity meas- 

urements suggest that the reservoir is only "the tip of the iceberg", connected 

to a large underlying system. 

One way to determine if the Schilthuis model applies, is to t ry  the Hurst 

modified method for an infinite radial aquifer. If the influx constant is constant 

with time, the Schilthuis method applies. In this study the Hurst modified 

method did not improve the match. When an infinite linear aquifer model was 

used in the Hurst modified method, the match showed Sv=O. This means that 

the reservoir and the aquifer are the same. The superposition sum of an infinite 

aquifer gave (1 good match with the data, but the variations with rate were too 

high, leading ko the conclusion that  there are some effects from the reservoir as 

well. In order to include these effects, the Hurst simplified method was used. 

This method gave the best match. 

Plotting the log of drawdown vs. the log of cumulative mass produced gives 

a straight line. This plot is shown in Fig.39 with a least squares fit represented by 

the straight line. From the least squares fit, the drawdown becomes: 

Ah. = 2.23~10-' W,0.732 

In the above equation FY, is the cumulative mass in kg, and Ah is the drawdown 

in meters. Using this empirical relationship, the calculated drawdown vs. cumu- 

lative mass piroduced is shown in Fig.40. Considering the straight line in Fig.39, 

using only the first few points will give almost exactly the same straight line. 

This model is therefore able to predict the drawdown. The question arises: Why 

bother going through the complicated depletion models if there is a simple rela- 

tionship like t,his one? There are no physical reasons why there should be a log- 

log relationship between the drawdown and the production. The empirical equa- 

tion is not a function of rate, and will not be able to predict any build up in the 

re servo ir , 
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For comparison of three of the models, the drawdown was predicted using 

the Hurst simplified method, the boiling model using the best fit discussed ear- 

lier, and thlc empirical log-log equation. The result for a rate of 300 kg/s is 

shown in Fig.41. All three models fit the measured data adequately, but the 

predicted drawdown is very different for the three models. The models should 

not only match the data, but be physically realistic. The log-log method does not 

take into account a change in the relative amounts of produced fluid and fluid 

recharge. When the pressure is decreasing, this ratio will change. The empirical 

model is expected to underestimate the recharge, and it estimates larger draw- 

down than the two other models. There is also a signiflcant difference between 

the Hurst siinplifled and the boiling model. The Hurst simplified method assumes 

an infinite linear aquifer maintaining the pressure in the reservoir. The boiling 

model assumes drainage from a two-phase zone without recharge. From the 

large difference in the predictions it can be concluded that the chose of model 

makes a difference in predictions. 

8.2. Effect of Injection 

In order to maintain pressure in a reservoir, reinjection may be considered. 

The injected fluid will be colder and will cool down the reservoir. When the 

volume injected is known, an estimate of the heat depletion in the reservoir can 

be made. Injection at Svartsengi was discussed by G u d m u n d s ~ o n . ~ ~  However, 

some of the injected fluid will break through to wells vie fractures causing pro- 

duction of s80me of the injected fluid. In depletion modeling the injected fluid 

must be inc!iuded in the mass balance: 

Wc = Wi - Wp .- Wl + We + Win 

Assuming that the injection of cold fluid will not change the compressibility 

or total density of the system very much, the injection and production terms 

can be lumped in a net production term: 
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wp,not = v p  - win 

which in differential form becomes: 

up.not  = W p  - W i n  

Using this, the drawdown for a variety of production schedules can be predicted. 

As an example, the drawdown using the Hurst simplified method was prediced. 

The prediction for a constant rate  output of 300 kg/s is shown in Fig.42, as draw- 

down vs. cumulative mass produced, and as drawdown vs. time in Fig.43. When 

reinjection ia considered, the net rate will be less. Fig.44 shows the drawdown vs. 

time for three different rates. The figure shows that  if two thirds of the fluid are 

reinjected, the pressure will be maintained above the current level for a long 

time. 

I t  should be noted that no transient effects in the reservoir and changes in 

temperature,, density and compressibility as a result of injecting cold water have 

been considered. 

The natural mass loss due to natural discharge or evaporation has been as- 

sumed negligible in all the calculations. This may not be a good approximation. 

If the rate of mass loss is constant, this error is most pronounced for early time, 

since that is when the rate was low. 
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9. CONCLUSIONS 

Lumped parameter models although computationally simple, adequately 

match drawdown-production data. 

- Better results were obtained when influx was included. 

- The transient models gave better match than the steady- and pseudo- 

steady state models. 

- "lie best fit was obtained using an infinite linear aquifer model with 

the Hurst simplified method. 

Determination of constants from the models help to identify the most rea- 

sonable model. 

Detection of changes in the mass storativity coefficient may give informa- 

tion ab'out changes in reservoir properties with production. 

1mport.ant information about how the reservoir properties change can be 

obtainled when different parts of the data are matched. 

Determination of recharge is possible. 
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10. RECOMMKNDATIONS 

The effects of local boiling have been discussed in this report. By including 

the total compressibility as a variable in the equations, it is possible to estimate 

the drawdown using the Schilthuis or the Fetkovitch method where the compres- 

sibility changes with depletion. The volume of the two-phase zone can be es- 

timated as being the surface area times the drawdown in the reservoir. If there 

is boiling in this volume, a total compressibility can be calculated using Eq.A-69. 

Effects of local boiling on mass storativity coefficient could be investigated using 

this equation. 

The total density method discussed in this report allows effects of satura- 

tion changes to be included. However, to predict the drawdown using this 

method, iterative methods must be used. When this method is developed, it will 

be possible t.o include effects of a saturation change in the mass balance equa- 

tion. 

For injection studies, including the heat balance will improve the calcula- 

tions. If the breakthrough time for the fluid is known, the breakthrough of the 

temperature can be calculated as discussed by Castanier e t  al.1° The effects of 

injecting cold fluid into the Svartsengi reservoir need to be considered. 

. 
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NOMENCLATURE 

A 

a , b  ,c 

b 

B 

C 

c 

E 

erf c 

F 

B 

h 

h 

4 

hh 

Io 

I1 

J 

k 

K 

KO 

K1 

1 

Area. of the reservoir or cross-sectional area of the aquifer(m) 

Coefricients 

Width of aquifer (m) 

Van Everdingen and Hurst influx constant (kg/Pa) 

Heat capacity (kJ/kg.O K) 

Compressibility (Pa-') 

Internal energy (kJ/kg) 

Com.plimentary error function 

Nablor and Barham dimensionless function 

Acceleration constant (m/s') 

Enthalpy (kJ/kg) 

Height of reservoir (rn) 

Initial height of reservoir (m) 

Drawdown (m) 

Modified Bessel function of the first kind of order 0 

Modified Bessel function of the first kind of order 1 

Prolductivity index (kg/s.Pa) 

Permeability (m2) 

Schilthuis influx constant (kg/m s) 

Modified Bessel function of the third kind of order 0 

Modified Bessel function of the third kind of order 1 

Length of reservoir (m) 

59 



Length of aquifer (m) 

Inverse Laplace transformation 

Pressure (Pa) 

Dimensionless pressure 

Drawdown function in Laplace space 

Dimensionless pressure function in Laplace space 

Volumetric rate (m3/s) 

Cumulative volume ( m3) 

Dimensionless cumulative influx 

Cumulative dimensionless influx function in Laplace space 

Radius (m) 

External radius 

Inside radius 

Dimensionless radius (7, / T ~ )  

Variable in Laplace space 

Standard deviation 

Water saturation (volumetric fraction) 

I rr educ able water saturation 

Mass storativity coefficient (kg/m) 

Time (s) 

Dimensionless time 

Variable of integration 

Temperature (K) 

Darcy velocity (m/s) 
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Y 

U J  

W 

z 

P 

V 

Q 

P 

7 

e 

Volunne (m3) 

Mass rate (kg/s) 

Mass (kg) 

Stearn quality (mass fraction of steam) 

Viscosity (Pa s) 

Specific volume (rn3/kg) 

Porosity 

Densi.ty (kg/m3) 

Variable of integration 

Angle open to flow in a radial geometry 

aq 

av 

C 

c d c  

e 

i 

I 

n 

P 

r 

res 

Aquifer 

Average 

Currcm t 

Calculated 

Influx 

Initial1 

Loss 

Level. of depletion 

Produced 

Relative (in relative permeamility) 

Reservoir 
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Steam 

Total 

Constant volume 

Liquid water 

Well Rowing 

Rock matrix 

Two-phase 
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DEFINITIONS 

Dimensionlciss pressure: 

Radial geometry: Linear geometry: 

Dimensionless time: 

Radial geometry: Linear geometry: 

Dimensionless cuniulative production: 

Radial geomietry: Linear geometry: 

van Everdingen L ~%~rst Infiux Consant (pressure in Pa): 

Radial geometry: Linear geometry: 

B = 2rpcr,31- 360° 8 p [ s] B = pcbhLp [ E ]  (L = 1 if =) 

Schilthuis ~rtflux Constant (pressure in meters of water): 

Radial geometry: Linear geometry: 

66 



I A I  

I +  
9 4 

II e 
4 

m 
n9 

II 

a' 
- u -  

a 
3 
G 

- 

L e 8 2 
E s 

C 
u 

inssaid ?UPJSUC - 



n 
ul 

h s ;  
em: u 

n 

$ 5  2d 
U 

n 2 2  

s n 

Q 
I 
0 
d 
X 
p9 
d 
d 

(0 
I 
0 
d 
X 
E 

$ 

Q 
I 

X 
Lc 
Q, 

E: 

Oi 

rn 
I 

X a 
0 

2 

Oi 

W 

E: 

? 
X * 
IC 

W 

2 
X 

0 
N 
? 

W 
0 

X 

Q, m 

w 

t 

W 
0 

X 
d ; 

W 
0 
rl 
X 
w 
d * m 

W 

4 
0 

X * 
W 
0 

X 

W 

ri 
0 

W W 

2 4  O d  

ID * x I n  0 X N  In d 

2 0  p9 c9 d 2 E 
? * 

0 
0 

0 
O m  d O Z  2 d 



400C 

0 
3000 - 

w 
3 cn 
a 

t2 2000 E 

1000 

0 
I 

LIQUID 

E 
0 

CRITICAL 
3206.2 psra 

POINT 
7054 

0 
0 

O F  

A a 

VAPOR 

I I I 

200 400 600 800 10 
TEMPERATURE, O F  

FIGURE 1. Pressure-temperature for pure water. (Whiting and Ramey, 1969) 



80C I I I I I I I 

1 

9 

4 
500 - I 

1 

------ 
4 

-- 
I 
I 

0 4 ---- -o------- 

- 
I I I I 1 I I 

2000 3000 COOd I000 

PRESSURE (pst-ret 

Pressure-temperature for geothermal reservoirs containing pure Walter and 
porosity of 25%. (Martin, 1975) FIGURE 2. 

a 



ENTHALPY , 8TU / LB 

F1GUR.E 3. Pressure-enthalpy diagram for pure water. (Whiting and Rarney, 1969) 



4000 

C 

I i I I I I k i I I 

A 

\ aESERV3lP 8 \ \ 

FIGURE 4. Pressure vs. cumulative fluid production for geothermal reservoirs containing 
pure water and a porosity of 25%. (Martin, 19'75) 

c 



i I I 

RESERVOIR A 

RESERVOIR C 

RESEPVOIR 8 

RESERVOIR 0 

20 40 60 80 100 0 
CUMULATIVE F LUlO P R O D L ~ C T I O ~  (PERCENT OF INITIA! 

F L U I D  MASS) 

FIGURE 5. Temperature vs. cumulative fluid production for geothermal reservoirs contain- 
ing pure water and porosity of 25%. (Martin, 19’75) 

c 



3000 

I i I 

RESERVOIR C 
I N I T I A L  PRESSURE e = .25 

\ 
t RESERVOIR 0 

0 
0 2 .4 .6 .6 i .o 

STEAM SATURATION 

F'IGURE 6- Pressure vs. steam saturation for geothermal reservoirs initially in compressed 
liquid state and porosity of 25%. (Martin, 1975) 



HOT WATER SATURATION 

FIGURE 7. Steam and hot-water relative permeability curves. (Martin, 19'75) 



FIGURE 8. Lumpe d-parame ter model. (Macias-Chapa) 

r 



0 

0 

FIGURE 9. Prelssure vs. liquid saturation for a geothermal reservoir of initial temperature 
240 O C, and porosity 10%. (Macias-Chapa) 



iNTER 
ZONE 

MEDIAT 

0 INJECTION 
/d PROOUCTION 

FIGUIZE-10. Reservoir model with three lumps. (Castanier, et  al., 1980) 

. 



. .  . . .  .-. . . - . . . . . , ._ .. 

0 
4 

m 

h 

0 

n 

i z 

d 

m 

- 0  
v u  

I n 

I; 

rl 

0 
. 

m 
h 

V 

.D 

n 

N 

rl 
0 

(w b 



cd 
N 





P 

-Ih, 

- - 'I ' 
FIGURE-13. Dividing continuous pressure changes into constant pressure steps 

for superposition. 



40 

30 

c 
>- 

20 

10 

0 
0 

least-squares fit 

5e-08 
Xn 

1 e-07 

FIGlJRE-14. Least squares fit for the example given in history matching. 



300 

@ 200 

0 

0 
Dr: 

t 

100 

0 
0 

The t o t a t  mass r a t e  a t  

500 

S v a r t s e n g i  

1000 1500 

T i m e  (days )  

2000 

FIGURE-15a.Total mass rate produced at Svartsengi vs time. 



100 

c\ 

E 
v 

0 

0 

The drawdown in Svartsengi 

c /’ 

f ‘ 
*** : * 

i 

500 1000 1500 

T i m e  ( days1  

2000 

FIGURE-1Sb.Measured drawdown at Svartsengi vs. time. 



Temperoiqre O C  

200 250 , 300 50 100 150 0 F Depth 

I I I I I I 

a -  

a- 

300 

400 

-- 500 

a- 600 

- -  700 

- -  800 = -  

-. 

- -  

l 

2 t b9;",5ure (kg/crn 

66.4 

74.7 

83.0 

91.3 

99.6 

.- 107.9 

- -  116.2 

- -  124.5 

- =  132,8 

--  141.1 

149.4 

24.9 

33.2 

41.5 

49.8 

58. I 

- -  
.. 
.. 
.. 

900 

1000 

I100 

1200 

a -  1300 

-- 1400 

.- 1500 

= *  1600 

-I 1700 

= -  1800 

"1 x2w 
S G - h f  

SG-10Q x\ 

"\ 
! 
! 
1 
1 

SG-7 SG-5 

SG-I I 
SG-9@ 

SG- 8Q 

SG-4 Q 

SG-6 Q 

X 

\ 
1 X 

\ 
t 
t 

B.P. curve based / f  
On SG-4 pressure log ' 

(77-07-12) 

FIGURE-16. Pressure-temperature with depth a t  Svartsengi. 



Notural discharge 
from the convection 
ce I I  
wd * Y, hd# l d  

Flow downwards 

We ryc hc * 
P ( T c  7 )  

F'IGURE-17. The convection model for Svartsengi. (Kjaran et  al. 1980) 

A'cell, ws, hsc 

\ 

A Flow upwards 
WU 

hU 

13 
Ir P ( T " , P )  

7f  

B 
\ 
6 

A 



* 



( W )  N M O O M W M O  a 
9 m z a 3 4 Y 

a m a m r- (D In 



" 4 -I 4 
21-x X 

FIGURE-20. The esker model (Regalado, 1981) 





- 

L 

0 
Lo 
.-( 

--- 

--A 

T 
0 
0 
d 

‘B 
0 

0 

0 
- 
a 
0 

0 
0 a 

\ 
0 

t 
0 
Lo 

0 

0 

0 

+ 
0 
m 

e 

0 
+ 
0) c u -  

e 

m 
Y 

-0 
0 
L 
Q 

v 

0 

0 

€ 
3 

0 0  
e + 
CD 
e 

0 



0 

E 

. 

0 

(U )  U M O P M D J a  



The cumulative mass at Svartsengi 
100 

C 
3 

U s 
0 
L 
O 

0 50 

0 

0 

Cl 

0 

& O  o a  

0 

0 

0 '  

0 

0 

0 

0 

0 
0 

0 

0 0  

o o  
0 

0 

5 10 15 20 25 
Cumula t ive  mass produced (10Et-9 kg )  

0 

- 

FIGURE-24. Drawdown vs. cumulative mass produced at Svartsengi. 



. 

\ t k 
0 
I 
a, 
03 

k 
0 

I 
a, co 

C 
X 

k 
0 

I 
a, 
d- 

k 
0 

I 
a, cu 

0 * 0 cu 

U A 

0 

r )  



0 
Ln 

0 

0 

.d 2 

i 

3" 
3 
e, a 

e, c 
U 

r 

( U )  UMOPMDJJC] 



E- 

- co 
0 

I a 

03 
0 
I 
a, co 

t 
X 

co 
0 

I 
a, 
d 

03 
0 

I 

4 rn 
(c" 

P) 

9 

w 
3 

LD 

" A 

0 



P 

- c 
0 
4 

I +  

0 
In 

(U)  U M O P M O J O  

0 

c 



0 

ccl Ln 

0 0 

0 

0 4 

0 

0 

0 
a 

4 

0 

0 

8 
0 

0 
0 

Ln 
0 

0 

0 

m 

C 
X 

cL1 

Ln 
0 

4 

4 

a 

a 
0) 
rd 
;Ej 

E 
0 

a 
2 
h n 
W 
M 
0 
d 

3 

a !2 

"A 



0 
N 

0 

a 
0 + 
a, 
N 

a 
0 + 
a 
d 

0 

c 
X 

5: 
'$ 
a 
0 
9 : 
a 

0 
c? 

"A 



I 

0 
0 
4 

0 
Q 
al 

0 c 
L 

c 

a 

0 

U M 0 p M D J Q 



0 

0 

0 

x 



0 

+ 
a, 
m 

4 

0 

+ 
a, cu 

d 

0 
+ 
a, 

.-.I 

4 

0 

. 

\ 

0 

x 
0 
0 
4 

( W ) U M O P M D J a  

0 



II 

0 
0 
4 

0 
Ln 

0 

0 

. 



P 
\ 

0 
8 

0 

0 
v) 

0 

0 

0 

+ 
Q) 
m 

H 

0 

+ 
Q) 
ccl 

.-( 

0 
+ 
a 
d 

d 

0 

h 

0 
Y 

U 
0 
L a 
E 
3 
0 

v 

0 

0 

Ll 
0, 

5 
d 
(d 

Lu 
.rl 

L 
0 

Lu 

( W )  UMOPMDJC] 



CD 
3 
0 
a, c 
U 

C 
U 

(D c 

t 

t 

- -  

t 

0 
C 

a, 
0 
U 
C 

U 
L 
U 

a 
d 
U 
Z 
0 
E 

- -  

OI 

=7--- / 
0 

, \  

e) P 
P) 

5 
E 
b 
0 

( W )  U M O P M D J a  

0 



3 

a, 
U 
U 
L 
a, 
> 
U 

0 a 
U 
Z 
0 x 

a 

I- - 

0 

0 

+ 
a, 
m 

- 

0 

+ 
a, 
C c l -  

CT, 
Y 

U 
0 
c 
Q 

E 
3 

- 
v 

0 

0 

0 0  
H + 
a, 
H 

0 
0 

[ U )  UMOPMDJC]  



\ 

I 

a 

98 
0 

0 

0 
In 

0 

0 

0 

+ 
a, 
m 

- 

0 

+ 
a, 
cL1 

.-.( 

0 
+ 
a, 

.-.( 

4 

0 

a 
W : n 



D 
0 

I 
0 
0 

c 
0 

U 
0 
L 
Q 

E 
3 
0 

- 

- 

0 

0 

0 

a 
> 
c 
3 
0 
U 
3 
U 
L 
0 

rn 
rn 
td 
E 

h 

0 
Y 
0, + 
w 
-0 
0 
i 
Q 

E: 
3 
0 

v 

0 

E 
1 
0 

ly 

0 



0 
0 
& 

0 
In 

0 

0 

M 
0 

0 

e, 

d 

&I3 

9 
d 

& 
0 

L M  

a 
a 
al 

0 
d 

ld 
0 



A- 

I 

0 
0 
0 
w 

0 
0 
0 m 

0 
0 
0 cu 

0 
0 
0 
4 

0 
0 
0 cu 

0 
0 
e 

0 

( W )  U M O P M D J a  



O 
Lo 

B 
0 
0 

t 
0 
Lo 

- 

0 

0 

( W )  U M O P M D J a  



\ t 

0 
In 
H 

0 
0 
H 

0 
In 

0 

0 
0 
0 
w 

0 
0 
0 
m 

0 
0 
0 cu 

0 
0 
0 
H 

0 

. 



I I 

0 
In 

0 
0 

0 

0 
0 
0 
-4- 

0 
0 
0 
m 

0 
0 
0 cu 

0 
0 
0 
& 

0 

( W )  U M O P M D J a  



APPENDIX A: Derivations of Equations. 

. 

* 

A 1. Liquid Models 

The mass balance in the system is given by: 

w, = wi - w, - w, + we (A-1) 

Assuming isckhermal conditions, the heat balance is neglected. If we assume 

that  W, can be neglected, (A-1) reduces to: 

w, = wa - w, + we 
If the density is given by p ,  the mass is given by: 

A l .  1. Unconfined System 

(A-2) 

(A-3a) 

(A-3b) 

In this case we assume that pc = p i l  and therefore the volume must be 

changing: 

(A-4a) 

(A-4b) 

Now if we assume that A is constant with depth, using Eq.A-4 in Eq.A-3 gives: 

wi = 4 P i P  (A-5a) 

w c  = & Q c P  (A-5b) 

If we also a:;sume that  p is constant with depth, substituting Eq.A-5 in Eq.A-2 

gives: 

AhCPP = &PP - wp + w e  

which simplifies to: 

which simplifies to: 

dh dWe dW, App-= -- - 
d t  dt dt 

(A-6) 

(A-7) 

Now dWe/ dt = we, the mass influx rate, and dW,/ dt = wp,  the mass production 

A- 1 



rate. Therefore Eq.A-8 becomes: 

(A-9) 

A t  this point. several influx models are possible, and have been discussed in the 

text. Since we assume p constant, the pressure is given by the hydrostatic 

column of liquid water. The pressure a t  level A in the reservoir is given by: 

P = p g h  

differentiating Eq.A-10 with respect to time gives: 

dh 
d t  pg dt 

Substituting Eq.A-llb in Eq.A-9 gives: 

A1.2. Confirled System 

Here we assume that  

(A- 10) 

( A - l l a )  

(A-1 lb )  

(A-12) 

the volume is constant, and that the fluids expand into . 

the space created by the produced ffuid. Substituting Eq.A-3 in Eq.A-2 gives: 

Y Q P ~  = V V P ~  - wp + we  

Differentiating Eq.A-13 with respect to time gives: 

(A-13) 

VQ *= w, - wp (A-14) 
dt 

If we assume that the change of density with pressure is constant (this is only a 

good approximation for slightly compressible liquids, and for small changes in 

pressure), E:q.A-14 may be written: 

A 1.3. Compressibility of Liquid 

The isothermal compressibility is defined as: 

c = - 1-1 1 av 
v a p  T 

(A-15) 

(A-16) 

* 
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The density is defined as: 

Solving for t'gives: 

W p = -  
V 

W 
P 

v =  - 

Differentiating Eq.A-18 with respect to  pressure, gives: 

dV W d p  -= - 
dP p2 dP 

Substituting Eq.A-18 and Eq.A-19 in Eq.A-16 gives: 

which reducles to: 

CP = [e] T 

(A-17) 

(A-18) 

(A-19) 

(A-20) 

(A-21) 

(A-2 1 a) 

If we assume that the fluid is slightly compressible, and that  the compressibility 

is constant, Eq.A-15 becomes: 

v p p c s =  we - wp (A-22) 

A 1.4. Hurst Simplified Solution 

Integra'ting Eq.A-22 between the limits of initial and h a 1  conditions gives: 

P t t 

pi 0 0 
Vpp,,,,~ f dp = f 'UI, dt - f we dt (A-23) 

If we deflne the volume of water Vw = Vp, and assume constant rate, Eq.A-23 be- 

comes: 

VWPm,C(P - P i )  = w, - ' U I p * t  (A-24) 

DeAne the pressure drop as Ap = pi - p , then Eq.A-24 becomes: 
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- VWpavc hp = We - wP*t 

The cumulative water influx is given by the convolution integral: 

where t D  is defined as: 

(A-25) 

(A-26) 

(A-27) 

L is a characteristic length, which is the length of the aquifer in the case of a 

linear finite system, and unit length in the case of an infinite system. Substitut- 

ing Eq.A-26 a.nd Eq.A-27 in Eq.A-25 gives: 

Taking the L(aplace transform of Eq.A-28 with respect to t D  gives: 

- vwp,C AJJ = BS - QPaq Caq L2 w p  (A-29) 

and B must be used according to the boun- 

are presented in Table 1. The 

k,s2 

Now the correct expressions for 

dary conditilons and geometry. The solutions for 

solution for ithe infinite linear case will now be presented. 

(A-30 a) 

B = A % q P a q  (A-30b) 

Substituting Eq.A-30 in Eq.A-29 gives (L is unit length): 

(A-3 1) 

Here the subscripts have been introduced to distinguish between the aquifer and 

the reservoir. Rearranging Eq.A-31 gives: 

(A-32) 
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Now define r! as the length of the reservoir, then: 

v, = vp = A l p  (A-33) 

where A is the cross-sectional area of the aquifer and I is the length of the 

reservoir. Substituting Eq.A-33 in Eq.A-32 and solving for Ap gives: 

(A-34) 

We see that if  the porosity of the aquifer and the reservoir are the same, it can- 

cels from Ei1.A-34. Rewriting Eq.A-34 gives: 

. Using this in Eq.A-35 gives: C a p  P aq Now define i3 parameter h = 
% S P ,  

(A-35) 

1. h very large: 

We can ignore the te rm without A, and Eq.A-36 becomes: 

Substituting the definition of h in Eq.A-37a gives: 

The inverse transformation of Eq.A-37b is: 

which is the: equation for an i n h i t e  linear aquifer. In the notation given by Nabor 

and Barharri12, this becomes: 

(A-38b) 

(A-36) 

(A-37a) 

(A-37b) 

(A-38a) 
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and for variations in rate, by superposition: 

2. A very small: 

(A-38~) 

Now we ignore the te rm containing A, and Eq.A-36 becomes: 

(A-39) 
’ k a q A 4 e s  Pros 

Ajj = 

The inverse transformation of Eq.A-39 is: 

Ap = Paq Cqawp (A-40a) 
kaq AlcrosPms 

Substituting the definition of tD in Eq.A-40a gives: 

which is the tank decompression of a confined system: 

1 
WP Ap = - 

Vlpc P 

3. A intermediate: 

(A-40b) 

(A-40~) 

In this case the entire expression must be used. The inverse transformation of 

Eq.A-36 is given by: 

By the superposition theorem, for varying rate we get: 

(A-41) 

(A-42) 

(A-42a) 
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A2. Boiling Models 

A2.1. General Mass and Energy Balance 

In this case the energy balance must be included. The energy balance is as 

follows': 

q E i  - mcEc = Qi' - Q,' + h'(% - m,) (A-43) 

where rn is the total mass of the system (fluid and rock). h' is the average 

enthalpy that  accounts for the enthalpy change due to  net mass change in the 

reservoir: 

h ' ( T  - m,) = W p h p  + W t h ~  - weha (A-44) 

The total energy change is given by the energy change in the fluid and the rock: 

%Ei -m,E,  = WiEi - W,E,  + V(l-(p)p,C,(Ti - T,) (A-45) 

and the net, heat change transferred from the surroundings is: 

Q' - 8,' = Q 

Substituting Eq.A-44, Eq.A-45, and Eq.46 in Eq.A-43 gives: 

8 - W e h e  + W p h ,  + W ~ h t  

We now introduce the mass balance: 

Wc = Wi + We - Wp - W, 

and the volumetric balance: 

(A-46) 

(A-47) 

(A-48) 

vp = Wa[z& + (l-z&J (A-49) 

and the water influx is given by the VanEverdingen and Hurst superposition sum: 

(A-50) 

, 

. 
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Substituting Eq.A-48, Eq.A-49, and Eq.A-50 in Eq.A-47 and rearranging gives: 

1 WE, - E c  + 1-(p [Z& + ( l - z a ) v ~ ] p u c u ( T a  - T,) I I(" I 
A2.2. Simplified Approach 

The total volume of the reservoir fluids is: 

&=V,+1/'8 

and the total. mass of the reservoir fluids is: 

w, = ww + w, 
The density of each phase is given by: 

WW 

v, 
w* 
v, 

Pw = - 

P s  = - 
The volume of each phase is given by: 

v, = s,v, 
v, = (l-S,)V, 

Substituting Eq.A-55 in Eq.A-52 gives: 

v, = s,v, + (1-Sw)& 

The total effective density is: 

wt 

v, Pt = - 
From Eq.A-53, Eq.A-54, and Eq.A-55: 

wt = P W S W V ,  + P , ( 1 - S w ) v ,  

Substituting Eq.A-56,and Eq.A-58 in Eq.A-57 gives: 

(A-5 1 )  

(A-52) 

(A-53) 

(A-54a) 

(A-54b) 

(A-55a) 

(A-55b) 

(A-56) 

(A-57) 

(A-58) 

(A-59) 
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which reduces to: 

Pt = PWSW + Ps(l-Sw) (A-60) 

Substituting; Eq.A-60 in Eq.A-48 and assuming WL can be neglected, we get: 

V w t c  = v w t i  + w e  - w p  

which rearranges to: 

VvCotc - P t d  = w s  - wp 

A3. Total Compressibility 

(A-6 1) 

(A-62) 

The two phase compressibility is given by31: 

n Eq.A-63 L is the latent heat of vaporization. Eq.A-63 should be used when liquid 

and steam i3re in equilibrium a t  saturated conditions. If this zone is only a part  

of the reservoir, the effect of the compressibility in this zone on the total system 

may be calc:ulated using the definition of the compressibility: 

where the total fluid volume is: 

v, = vw + vzph 
8 

Differentiating Eq.A-65 with respect t o p  gives: 

By the definition of cw and cZph:  

Substituting Eq.A-67 in Eq.A-66 gives: 

(A-64) 

(A-65) 

(A-66) 

(A-67a) 

(A-6 i'b ) 

(A-68) 
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Substituting Eq.A-65 and Eq.A-68 in Eq.A-64 gives: 
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APPENDIX B: Data Files and Computer Programs. 

B. 1. Data FUes 

ThorhaU.ssonso provided the drawdown and mass flow-rate history for the 

flrst 2319 days of production a t  Svartsengi. The first data file "drawdwn", shows 

the number of days after production started in the first column and the meas- 

ured drawdown in the second column. The first number is the number of data 

points. 

The second data file "prodr", shows the number of days after production 

started in the first column and the total mass flow-rate in kg/s from the reser- 

voir in the second column. Each entry of rate in the file is effective from the 

time of the previous entry until the time corresponding to that entry. For exam- 

ple, between 388 and 419 days of production, the rate was 51 kg/s. 

The third data file "input", shows the number of days after production start- 

ed in the first column, the rate in kg/s in the second column, and the measured 

drawdown in meters in the third column. Note that the drawdown was not always 

measured on the days when the rate was changed. For those cases a linear inter- 

polation between the values in the file "drawdwn" gave the value for the draw- 

down in the iile "input". The file "input" was used as the input file for all the pro- 

grams. The cumulative mass produced was calculated using: 

B.2. The Computer Programs 

All the computer programs are written in fortran 77, and were run  on the 

Stanford University Petroleum Engineering VAX 11/750 computer facility. The 

f i e  "input" is: used for input of time, rate, and measured drawdown. The following 

variable names are consistently used in the programs: 
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x=vecto:r of length 124 =time in days. 

y=vector of length 124 =rate in kg/s. 

dh=vector of length 124 =measured drawdown in meters. 

dhl=calculated drawdown from the model in meters (a vector in some pro- 

grams). 

cum=vector of length 124 =cumulative production in kg. 

For least squares fltting the subroutines "iflsq" and "llsqf" have been used. 

These subroutines are in the "imsl" library of subroutines. "iflsq" fits a user sup- 

plied function to a set of data using the least squares method. The program will 

determine the constants giving the best fit in an equation of the form: 

Yi = a1ft.1 + a ~ f  1.2 + * * * + % f i n  

where the function j' is a function of xi and n, and ( x , I J ) ~  are the data points. 

"llsqf" scllves the set of equations shown in the section on history matching 

by minimizin,g the difference between the points which are given and the fitted 

points. 

B- 2 
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draw dwn 

. 

226 
10 .86 
20 1.08 
30 1.40 
40 1.70 
50 2.02 
60 2.14 
70 2.38 
80 2.58 
90 2.76 
100 3.00 
110 3.18 
120 3.32 
130 3.44 
140 3.94 
150 4.00 
160 4.64 
170 4.54 
180 4.62 
190 4.76 
200 5.00 
210 6.80 
220 4.64 
230 7.00 
240 7.00 
250 7.50 
260 7.40 
270 7.30 
280 7.30 
290 7.50 
300 7.70 
310 7.80 
320 8.00 
330 8.10 
340 8.30 
350 8.38 
360 8.46 
370 8.54 
380 8.62 
390 8.70 
400 9.28 
410 9.86 
420 10.44 
430 11.02 
440 11.60 
450 11.90 
460 12.10 
470 12.40 
480 12.70 
490 12.90 
500 13.10 
510 13.30 
520 13.60 
530 13.80 
540 13.90 
550 13.70 
560 13.50 
570 13.50 
576 13.50 
580 13.80 
590 14.20 
600 14.50 
610 14.70 
620 15.00 

731 15.98 
763 17.48 
792 19.18 
793 19.18 
803 19.58 
813 19.88 
826 20.26 
836 20.34 
846 20.51 
856 21.54 
866 22.09 
876 22.29 
886 22.92 
896 23.29 
906 23.58 
913 23.91 
923 23.65 
933 24.51 
940 24.46 
952 26.54 
962 26.49 
972 26.62 
1283 34.3 
1290 34.44 
1300 35.13 
1310 36.50 
1317 37.46 
1319 37.55 
1325 36.81 
1330 36.59 
1337 36.56 
1344 37.09 
1351 37.94 
1358 38.54 
1362 39.15 
1365 38.64 
1372 38.63 
1379 38.i4 
1387 38.09 
1389 38.14 
1395 38.00 
1402 38.09 
1411 37.92 
1419 38.15 
1431 38.27 
1439 38.86 
1449 40.29 
1458 40.07 
1467 39.99 
1474 40.16 
1486 40.98 
1495 41.52 
1555 52.40 
1560 53.29 
1570 54.68 
1584 58.40 
1590 59.07 
1600 60.46 
1610 61.95 
1613 62.39 
1620 63.27 
1630 64.55 
1640 65.85 
1650 67.42 

1660 68.44 
1670 69.33 
1680 69.87 
1690 69.43 
1700 70.29 
1710 69.40 
1720 68.98 
1730 68.69 
1740 68.49 
1750 68.27 
1760 68.16 
1770 68.59 
1780 69.20 
1790 69.44 
1800 72.10 
1810 73.77 
1820 75.08 
1840 77.32 
1850 78.34 
1860 79.34 
1870 79.64 
1880 80.73 
1890 81.60 
1900 82.41 
1910 83.17 
1920 83.90 
1930 84.64 
1940 85.10 
1950 85.32 
1960 85.83 
1974 86.60 
1978 86.66 
1983 86.76 
1989 86.72 
1991 86.79 
1995 86.94 
2000 87.14 
2008 87.27 
2053 89.63 
2056 89.70 
2061 89.86 
2066 90.01 
2071 90.i8 
2076 90.33 
2081 90.42 
2086 90.44 
2091 90.56 
2096 90.67 
2101 90.66 
2106 90.91 
2111 91.03 
2115 91.07 
2130 91.87 
2132 92.13 
2137 92.48 
2143 92.90 
2148 93.54 
2153 93.75 
2158 94.09 
2164 93.88 
2178 -11.58 
2183 37.01 
2185 45.71 
2186 51.05 

2188 64i20 
2189 67.96 
2190 71.67 
2191 75.01 
2192 781.60 
2193 82.09 
2194 85.27 
2196 89.45 
2198 90.86 
2199 91.89 
2200 92.99 
2201 93.95 
2202 95.13 
2203 96.31 
2204 96.35 
2210 93.14 
2220 94.60 
2227 95.27 
2234 96.00 
2241 96.67 
2248 97.36 
2261 98.58 
2270 99.32 
2280 108.38 
2288 101.59 
2290 108.76 
2296 10e.12 
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prodr 

124 
0 0  
12 48 
14 30 
15 5 
133 30 
146 45 
154 30 
162 58 
241 30 
317 31 
388 30 
419 51 
424 30 
510 57 
520 48 
534 45 
547 45 
576 30 
580 30 
600 56 
641 52 
702 48 
764 53 
771 71 
781 50 
792 55 
804 85 
890 90 
927 155 
945 95 
948 65 
1012 95 
1086 130 
1099 115 
1104 50 
1130 115 
1138 121 
1223 115 
1234 137 
1235 131 
1237 138 
1248 161 
1250 147 
1251 134 
1252 115 
1258 125 
1260 6 0  
1274 110 
1288 116 
1292 131 
1297 161 
1302 151 
1305 168 
1309 188 
i3i9 211 
1339 116 
1343 140 
1345 150 
1348 171 
1353 186 
1358 205 
1368 226 
1415 116 

1435 120 
1437 164 
1438 163 
1442 175 
1443 183 
1451 186 
1452 192 
1453 209 
1472 129 
1473 164 
1487 172 
1491 202 
1504 129 
1517 i z i  
1521 135 
1523 339 
1524 279 
1571 326 
1590 344 
1595 294 
1618 347 
1660 342 
1669 336 
1676 274 
1681 280 
1688 218 
1702 222 
1761 149 
1762 152 
1764 214 
1768 149 

1789 212 
1790 272 
1808 360 
1839 341 
1862 322 
1864 273 
1869 269 
1872 249 
1901 301 
1932 299 
1937 245 
1940 299 
1947 275 
1956 281 
2025 284 
2075 224 
2111 Zis 
2122 269 
2129 230 
2133 280 
2143 271 
2146 311 
2150 315 
2157 263 
2171 313 
2265 308 
2319 283 
2331 328 
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input 

c 

0. 
1 2 . 0 0  
1 4 . 0 0  
1 5 . 0 0  

1 3 3 . 0 0  
1 4 6 . 0 0  
1 5 4 . 0 0  
1 6 2 . 0 0  
241 .OO 

, 3 1 7 . 0 0  
388  .OO 
4 1 9 . 0 0  
424  .OO 
5 1 0 . 0 0  
5 2 0 . 0 0  
534  . O O  
547  .OO 
5 7 6 . 0 0  
5 8 0 . 0 0  
6 0 0 . 0 0  
641 .OO 
7 0 2 . 0 0  
764  .OO 
7 7 1 . 0 0  
781 .OO 
792  .OO 
8 0 4 . 0 0  
8 9 0 . 0 0  
927 .OO 
945  .OO 
948  .OO 

1 0 1 2 . 0 0  
1086 .OO 
1099 .OO 
1104 .OO 
1 1 3 0 . 0 0  
1 1 3 8 . 0 0  
1 2 2 3 . 0 0  
1 2 3 4 . 0 0  
1235 .OO 
1237 .OO 
1 2 4 8 . 0 0  
1 2 5 0 . 0 0  
1251 .OO 
1 2 5 2 . 0 0  
1 2 5 8 . 0 0  
1 2 6 0 . 0 0  
i i 7 4 . 0 0  
1 2 8 8 . 0 0  
1 2 9 2 . 0 0  
1 2 9 7 . 0 0  
1 3 0 2 . 0 0  
1 3 0 5 . 0 0  
1 3 0 9 . 0 0  
1 3 1 9 . 0 0  
1 3 3 9 . 0 0  
1 3 4 3 . 0 0  
1 3 4 5 . 0 0  
1348 .OO 
1 3 5 3 . 0 0  
1 3 5 8 . 0 0  
1368 .OO 
1 4 1 5 . 0 0  
1 4 3 5 . 0 0  

at. 
48  .OO 
3 1 - 0 0  

El .OO 
3ar. 00 
451.00  
3 1 . 0 0  
5 0 . 0 0  
3PI. 00 
3 1 . 0 0  
3PI. 00 
51. .OO 
311.00 
57 .OO 
4 8 . 0 0  
45 .OO 
4 5  .OO 
317.00 
311.00 
5 6 . 0 0  
52  .OO 
4 0 . 0 0  
5 3 . 0 0  
71  .OO 
5B. 00 
5!j .OO 
E!; .OO 
9 1 . 0 0  

15!5.00 
9!5 .OO 
6 5  .OO 
9!5.00 

1316.00 
1 l ! 5 . 00  

516.00 
1 l ! j  .OO 
1 2 1 . 0 0  
1 I!; .OO 
13'7 .00  
131 .OO 
1313.00 
161 .OO 
1 4 7 . 0 0  
1 3 4 . 0 0  
11l5 .OO 
12l5.00 

610 .00  
11 .0 .00  
1 1 6 . 0 0  
131 .OO 
161 .OO 
151 -00 
1 6 8 . 0 0  
1 8 8 . 0 0  
21 1 .OO 
1 1 6 . 0 0  
1 4 0 . 0 0  
1 5 0 . 0 0  
171 .OO 
1 8 6 . 0 0  
2 0 5 . 0 0  
226  .OO 
1 1 6 . 0 0  
1 2 0 . 0 0  

0. 
0 . 9 0  
0 . 9 5  
0 . 9 7  
3 . 5 9  
3 . 9 8  
4 . 2 6  
4 . 6 2  
7 . 0 5  
7 . 9 4  
8 . 6 8  

1 0 . 3 8  
1 0 . 6 7  
1 3 . 3 0  
1 3 . 6 0  
1 3 . 8 4  
1 3 . 7 6  
1 3 . 5 0  
1 3 . 8 0  
1 4 . 5 0  
1 5 . 1 9  
1 5 . 7 2  
1 7 . 5 4  
1 7 . 9 5  
1 8 . 5 4  
1 9 . 1 8  
1 9 . 6 1  
2 3 . 0 7  
2 3 . 9 9  
2 5 . 3 3  
2 5 . 8 5  
2 7 . 6 1  
2 9 . 4 4  
2 9 . 7 6  
2 9 . 8 8  
3 0 . 5 2  
3 0 . 7 2  
3 2 . 8 2  
3 3 . 0 9  
3 3 . 1 1  
3 3 . 1 6  
3 3 . 4 4  
3 3 . 4 9  
3 3 . 5 1  
3 3 . 5 3  
3 3 . 6 8  
3 3 . 7 3  
34 .OO 
3 4 . 4 0  
3 4 . 5 8  
3 4 . 9 2  
3 5 . 4 0  
3 5 . 8 2  
3 6 . 3 6  
3 7 . 5 5  
3 6 . 7 1  
3 7 . 0 1  
3 7 . 2 1  
3 7 . 5 8  
3 8 . 1 1  
3 8 . 5 4  
3 8 . 6 4  
3 0 . 0 3  
3 8 . 5 7  

1 4 3 7 . 0 0  
1 4 3 8 . 0 0  
1 4 4 2 . 0 0  
1 4 4 3 . 0 0  
1 4 5 1 . 0 0  
1 4 5 2 . 0 0  
1 4 5 3 . 0 0  
1 4 7 2 . 0 0  
1 4 7 3 . 0 0  
1487 .OO 
1491 .OO 
1 5 0 4 . 0 0  
1 5 1 7 . 0 0  
1521 .OO 
1 5 2 3 . 0 0  
1 5 2 4 . 0 0  
1571 .OO 
1 5 9 0 . 0 0  
1 5 9 5 . 0 0  
1 6 1 8 . 0 0  
1 6 6 0 . 0 0  
1 6 6 9 . 0 0  
1 6 7 6 . 0 0  
1681 .OO 
1 6 8 8 . 0 0  
1 7 0 2 . 0 0  
1761 .OO 
1 7 6 2 . 0 0  
1 7 6 4 . 0 0  
1 7 6 8 . 0 0  
1 7 6 9 . 0 0  
1 7 8 7 . 0 0  
1 7 8 9 . 0 0  
1 7 9 0 . 0 0  
1 8 0 8 . 0 0  
1 8 3 9 . 0 0  
1 8 6 2 . 0 0  
1864 .OO 
1 8 6 9 . 0 0  
1 8 7 2 . 0 0  
1 9 0 1 . 0 0  
1 9 3 2 . 0 0  
1 9 3 7 . 0 0  
1 9 4 0 . 0 0  
1947 .OO 
1 9 5 6 . 0 0  
202  5 . 0 0  
2075 .OO 
2 1 1  1 .OO 
2 1 2 2 . 0 0  
2 1 2 9 . 0 0  
2 1 3 3 . 0 0  
2 1 4 3 . 0 0  
2 1 4 6 . 0 0  
2 150  .OO 
2 1 5 7 . 0 0  
2171 .OO 
2265  .OO 
2 3  1 9 . 0 0  
2331 .OO 

1 6 4 . 0 0  
1 6 3 . 0 0  
1 7 5 . 0 0  
1 8 3 . 0 0  
1 8 6 . 0 0  
1 9 2 . 0 0  
2 0 9 . 0 0  
1 2 9 . 0 0  
1 6 4 . 0 0  
1 7 2 . 0 0  
2 0 2 . 0 0  
1 2 9 . 0 0  
1 2 9 . 0 0  
1 3 5 . 0 0  
339 .OO 
2 7 9 . 0 0  
326  .OO 
344  .OO 
2 9 4 . 0 0  
347 .OO 
3 4 2 . 0 0  
336 .OO 
274  .OO 
2 8 0 . 0 0  
2 1 8 . 0 0  
2 2 2 . 0 0  
1 4 9 . 0 0  
1 5 2 . 0 0  
2 1 4 . 0 0  
149 .OO 
1 5 2 . 0 0  
2 0 6 . 0 0  
2 1 2 . 0 0  
2 7 2 . 0 0  
3 6 0 . 0 0  
341 .OO 
3 2 2 . 0 0  
2 7 3 . 0 0  
269  .OO 
249  .OO 
301 . O O  
299  .OO 
2 4 5 . 0 0  
299  .OO 
275  .OO 
281 .OO 
2 8 4 . 0 0  
2 2 4 . 0 0  
2 1 9 . 0 0  
269  .OO 
2 3 0 . 0 0  
2 8 0 . 0 0  
271 .OO 
31 1 .OO 
3 1 5 . 0 0  
2 6 3 . 0 0  
3 1 3 . 0 0  
3 0 8 . 0 0  
283  .OO 
3 2 8 . 0 0  

38 
38  
39  
39  
4 0  
4 0  
4 0  

71  
7 9  
29  
43  
24 
2 2  
19 

4 0 . 1 1  
4 0 . 1 4  
4 1 . 0 4  
4 1 . 2 8  
4 3 . 1 5  
4 5 . 5 1  
4 6 . 2 3  
4 6 . 6 0  
4 6 . 7 8  
5 4 . 9 5  
5 9 . 0 7  
5 9 . 7 6  
6 3 . 0 2  * 
6 8 . 4 4  
6 9 . 2 4  
6 9 . 6 5  
6 9 . 8 3  
6 9 . 5 2  
7 0 . 1 1  
6 8 . 2 0  
6 8 . 2 5  
6 8 . 3 3  
6 8 . 5 0  
6 8 . 5 5  
6 9 . 3 7  
6 9 . 4 2  
6 9 . 4 4  
7 3 . 4 4  
7 7 . 2 1  
7 9 . 4 0  
7 9 . 4 6  
7 9 . 6 1  
7 9 . 8 6  
8 2 . 4 9  
8 4 . 7 3  
8 4 . 9 6  
8 5 . 1 0  
8 5 . 2 5  
8 5 . 6 3  
8 8 . 1 6  
9 0 . 3 0  
9 1 . 0 3  
9 1 . 4 4  
91 . 8 2  
9 2 . 2 0  
9 2 . 9 0  
9 3 . 2 8  
9 3 . 6 2  
9 4 . 0 2  
4 1 . 1 5  
9 8 . 9 1  

1 0 3 . 3 0  
1 0 3 . 8 3  
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c The boiling model for Svartsengi 

C This program determines the constants C 1  and C 2  
C using the least squares method. 
C The subroutine llsqf must be supplied by the user. 

c The drawdown is then calculated using the fitted constants. 

C 

C 

C 
c""""'-----------"-'---'--"""--'------------------------------------ 

10 

5 

1 

2 

implicit real*4(a-h.o-z) 
dimension x ( 1 2 4 ) , y ( 1 2 4 ) . d h ( 1 2 4 ) , c u m ( 1 2 4 ) , s u m ( 1 2 4 )  
real mat(123,2),a(2),h(2),b(l23),tol 
integer ia.m.n.kbasis.~p(2),ier 
wr ite( 6. * )  123 
do 1 i=1.123 
read(S,*)x(i).y(i),dh(i) 
cu m (  I )=cum(i-l)+(x(i)-x(i-l))*y(i)*6lY.*6fl.*24. 
do 5 j-1, i 
wp=0. 
k = 1  
xl=x(O-x(j) 
if(xl.gc.x(k)) then 

~p~~p+(x(k)-x(k-l))*y(k)*60.*60.*24. 
k = k + l  
go to 10 

wp=wp+(xl-x(k-l))*y(k)*6~.*6.F.*24. 
else 

end If 
sum(i)=sum(i)+wp*exp(-x(j)/250.)*(x(j)-x(j-l)) 
continue 
write(6.*)cum(i).dh(i) 
mat(i.l)=cum(i) 
mat(i,Z)=sum(i) 
b(i)=dh(i) 
continue 
ia=123 
m=123 
n=2 
tOll0.0 
kbasis=2 
call llsqf(mat.fa.m,n,dh,tol,kbasis~a,h,ip,fer) 
write(6,*)a(l),a(2) 
write(6.*)123 
do 2 ip1.123 
dhl=a(l)*cum(i)+a(2)*sum(i) 
write(6,*)cum(i),dhl 
cont i nue 
stop 
end 
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1 3  

11 

1 2  

l R  

I M P L I C I T  REAL*a (A-H .O-Z )  
DIMENSION X ( 1 2 5 ) . Y ( 1 2 5 ) , D H ( 1 2 5 )  
W R I T E ( 6 . 1 3 )  1 2 4  
F O R M A T ( l X . 1 3 )  
DO 10 I = 1 . 1 2 4  
READ(S.*)X(I).Y(I).DH(I) 
I F ( I . E Q . 1 )  GO TO 10 
DO 11 J s 1 . I  
D U M = D U M + D H ( J ) * ( X ( J ) - X ( J - 1 ) ) * 6 8 . * 6 0 . * 2 4 .  
CONTINUE 
D = D H ( I ) / D U M  
CUK=CUM+(X(I)-X(I-I))CY(I)*60.*60.a24. 
Z = C  ?IM/DUM 
W R I T E ( 6 . 1 2 )  D.Z 
F 0P.XAT ( 1 X ,2E 1 1 . 4  ) 
DUlI=0. 
CONTINUE 
STOP 
END 

13 

20  
10 

3 0  

I M P L I C I T  REAL*4 (A-H ,O-Z  1 
DIMENSION X ~ 1 2 5 ~ , c u m ~ 1 2 5 ~ . Y ~ 1 2 5 ~ , D ~ 1 2 5 ~ , D H ~ 1 2 5 ~  
Alr2.75AA7 - 
A i = 6 . 6 f l 5 6 7 e 7  
w r  i t c (  6 , 1 3  ) 1 2 4  
f o r m a t ( l x . i 3 )  
D O  10 I = 1 . 1 2 4  
R E A D ( S . ' ) ~ ( I ) , Y ( I ) , D H ( I )  
I F ( I . E Q . 1 )  GO TO 2 0  
S U M = S U M + D ( I - l ) * ( X ( I - l ) - X ( I - 2 ) ) * 6 8 . * 6 B . * 6 0 . * 2 4 .  
CUM(i)=CUM(i-l)+(X(I)-XfX-l))*Y(I)*60.*6B.*24. 
d(i)=(cum(i)-al*sum)/(a~+ala(x(i)-%(i-l))*60.*6~.*24.) 
W R I T E ( 6 . * )  c u m ( i ) . D ( I )  
CONTINUE 
w r l t e ( 6 . 1 3 ) 1 2 4  
do 3 0  i r l . 1 2 4  
w r i t c ( 6 . * )  c u m ( i ) . d h ( i )  
c o n t i n u e  
STOP 
END 
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C 
C THIS PROGRAM MATCHES THE DRAWDOWN WITH PROD. RATE AN D  TIME 
C A N D  CALCULATES Kn for matching Hurst modified infux 
C (Radial log approximation form) 
C THE RES. MODEL ASSUMES A LUMPED- PARAMETER CONSTANT STORATIVITY 
C 
c---------------------------------------------------------------------------  

IMPLICIT REAL*4(A-H.O-Z) 
integer i.k 
DIMENSION w k ~ l B 0 ~ , X ~ 1 2 5 ~ , Y ~ 1 2 5 ~ , D H ~ l 2 S ~ , Y l ~ l 2 S ~ , X l ~ l 2 S ~ . a ~ 2 ~  
external f 
k=123 
SM=5 .e7 
write(6,*)k 
DO 10 Ir1.124 
READ(S.*)X(I).Y(I).DH(I) 
IF(I.EQ.1) GO TO 10 
CUM=CUM+(X(I)-X(I-l))*Y(I)*60.*Gi?.*24. 

write(6.*)xl(i-l).yl(i-l) 
10 CONTINUE 

call iflsq(f,xl.yl.k,a.2.wk,ier) 
write(6.*)a(l).a(2) 
write(G.*)k 
do 3 i=l.k 
t=a(l)+a(Z)*xl(i) 
wrfte(6.*)xl(i).t 

3 continue 
STOP 
E N D  

C 

C 
c function used in the fitting routin5 

re21 fcnction f(k,p) 
i ntec;sr k 
real p 
f=p**(k-l) 
return 
end 
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c 

13 

48 

1 1  

15 

2a 

10 

58 

IMPLICIT REAL*4(A-H.O-Z) 
DIMENSION X(125),Y(125),D(125),CUM(lZ5),DH(l25) 
CON~9.5226 
wr i te( 6.13 ) 124 
format(lx,i3) 
DO 48 131.124 
R E A D ~ S I * ) X ~ I ) . Y ~ I ) . D H ( I )  
CONTINUE 
DO 10 111,124 
IF(I.eq.1) GO TO 20 
IF(I.EO.2) GO TO IS 

d(l)=d(l-l)+(cu~(I)/con-dum)/(x(i)-x(f-l))**.5 
GO TO 28 
C U M ~ I ) = C U M ( I - l ) + ( X ( I ) - X ( I - 1 ) ) * Y ( I ) * 6 ~ . * 6 0 . ” 2 4 .  
D( I )=CL‘i*l( I )/(CO:I*X( I )**.5) 
WRITEI6.*) CUM(I).d(i) 
DUM= 0 .  
CONTINUE 
wr I t a (  6.13 I124 
DO 50 111.124 
WRITE(6.’) CUM(I).DH(I) 
CONTINUE 
STOP 
E N D 

. 
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c---~----------------------------------------------------------- 
C 
c This program calculates drawdown for the 
c Hurst simplified model with linear water influx 
C 
c-----------------------------------------------------------*---  

implicit real*4(a-h,o-z) 
real k,mu 
dimension x ~ 1 2 5 ~ . y ~ 1 2 5 ~ , c u m ~ 1 2 5 ~ , s u m ~ 1 2 5 ) . d h ~ 1 2 5 ~  

C 

C 
c initial1 ize 

con=4.755e-10 
k =  .5e- 12 
fi=.05 
mu-ll0.e-6 
c=l .e- 9 
tc=60.*60.*24.*k/(fi*mu*c) 
d=l.3e-4 

do 10 is1.124 
read(5,*) x(i),y(i),dh(i) 
if(i.eq.1) go to 9 
do 1 1  js2.i 
xx=tc*(x(i)-x(j-l)) 
sum(i)~sum(i)+(y(j)-y(j-l))*f(d,xx) 

cum(i)=cum(l-l)+~x(i)-x(i-l))*y(i)*60.*60.*24. 

do 20 i=1,124 
dh(i)=con*sum(i) 
write(6,l)cum(i).dh(i) 

20 continue 
stop 
end 

1 format(Zell.4) 

1 1  continue 

9 wrlte(6.1) cum( i),dh( i) 
10 continue 

C 
c this function calculates the Hurst linear solution for 
c input of d=lamda. and td=dim.time 
c this routine uses a routine to calculate erfc(x) 
c the user must supply this routine 
C 

function f(d,td) 
f=(exp~d**2.*td)*erfc(d*td**.5~-1.+~2.*d*td**.5~/1.772~5~35l~/d**2. 
return 
end 
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c--------------------------------------------------------------- 
C FINITE LINEAR AQUIFER 
C Fetkovftch method 
C Confined System 

C User must supply input file 'fetin' containing: 
C 1-length of aqutfer 
C bswith of the aquifer 
C w-length of the reservoir 
C hozdepth of the reservoir and the aquifer 

C 

C 
c---------------------------------------------------------------  

impltcit real*4(a-h,o-r) 
real 1.k.mu 
dimension ~ ( 1 2 4 )  (124),dh(l24),cum(124) 
open ( u n  it=4 ,f t 1e:'fett n * ) 
r e a d ( 4 . * ) l . b . w . h o . k , m u , r h o , p o r , c t w , c r e s  
9 0 9 . 8 1  
po-rho*g*ho 
qmax=~k*b*ho*po*3)/(rnual) 
wei=l*ho*b*por*ctw*po 
pav-po 
pwf =po 
write(6.*)124 
write(6,') 0..0. 

C 

C 
C loop point 

do 10 1=1.124 
read(5.*)x(i),y(i).dh(i) 
if(i.eq.1) go to 10 
an-(wei/po~*~l.-cxp~-qmax*~x~i~-x~i-l~~*60.*60.*24./wel~~ 
cum(i)=cum(i-l)+y(i)*(x(t)-x(i-l))*60.*60.*24. 
pwf I = (  -cum( I )+wen+r ho*(an*(pav-(pwf 12.1 )+po*w*b*ho*por*r.ho*cres) ) 

* / ( r h o * ( w * b * h o * p o r * r h o * c r e s + a n / Z . ) )  
dwen=(pav-pwf/2.-pwfI/Z.)*an*rho 
wen=wen+dwen 
psv=po-(po/(wei*rho))*wen 
dhl-(po-pwfl)/(rho*g) 
pwf =pwf 1 
wrlte(6.12) curn(i).dhl 

12 format(2e12.4) 
10 continue 

C end loop 
C 

C 
write(6.*)124 
do 2 0  1~1.124 
write(6,lZ) cum(i),dh(l) 

20 conttnue 
close(unit=4) 
stop 
end 

c 
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C 
C F e t k o v i t c h  method 
c r a d i a l  geometry  

C The i n p u t  f i l e  ' f e t i n '  must c o n t a i n :  
C 

r a d i u s ( o f  t h e  a a u i f e r ) ( m )  C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

rw= i n s  i d e  
r e - o u t e r  
ho rhe  i g h t  
k lperrneab 
mu-v i s c o s  
r h o = f  l u  i d  
por  =poros  
c t w r t o t a  1 
c res=To ta  

a d i u s ( o f  t h e  a q u i f c r ) ( m )  
o f  t h e  r e s e r v o i r ( m )  
l i t y ( m * * 2 )  
t y ( P a  s) 
d e n s i t y  i n  t h e  r e s e r v o t r ( k g / c m )  
t Y  
wa te r  c o r n p r c s s i b i l t t y  i n  t h e  a q u f f e r ( l / P a )  

c o m p r e s s i b i l i t y  i n  t h e  r e s e r v o i r ( l / P a )  

c'"""""---------------------------------------------------------------- 
i m p l i c i t  r e a l * 4 ( a - h . o - z )  
r e a l  k,mu 
d imens ion  ~ ( 1 2 4 )  ( 124 ) , dh ( l 24 ) . cum(124 )  
o p t n ( u n  t t r 4 . f  f l e i '  f e t  1 n '  ) 
r e a d ( 4 . * ) r w , r e , h o . k , r n u . r h o . p o r . c t w . c r c s  
pi=3.1415927 
g=9.81 
po=rho*g*ho 
q m a x = ( 2 . * p i * k * h o * p o ) / ( m u * r e * * 4 . / ( ( r e * ' Z . - r w * * 2 . ~ * * 2 . ~ * ~ a l o g ~ r e / r u ~  

wei=pi*(re**2.-rw**2.)*ho*pornctw*po 
pav=po 
pwf 'PO 
w r  t t e (  6 ,  * 1124 
w r i t e ( 6 , * )  0..0. 

* - . 7 5 + ( r w / r e ) * * 2 . - . 2 5 * 0 * ' 4 . ) )  

C 

C 
C l o o p  p o i n t  

do 10 i11.124 
read(S,*)x(t),y(t),dh(i) 
i f ( f . e q . 1 )  go t o  10 
an=(wei/po)*(l.-exp(-q~ax*(x(l-l))*60.*60.*24./wei)) 
c u m ( i ) = c u m ( i - l ) + y ( i ) * ~ x ( t ~ - x ~ i - l ~ ~ * 6 0 , * 6 ~ . * 2 4 .  
p w f l ~ ~ - c u m ~ t ~ + w e n + r h o * ~ a n * ~ p a v - ~ p w f / 2 . ~ ~ + p o * p ~ * r w * * 2 . * h o * p o r  

dwen=(pa~-pwf/2.-pwf1/2.)*an*rho 
wen=wen+dwen 
p a v = p o - ( p o / ( w e i * r h o )  )*wen 
d h l = ( p o - p w f l ) / ( r h o * g )  
pwf =pwf 1 
w r f t e ( 6 . 1 2 )  c u m ( i ) . d h l  

12 f o r m a t ( Z e l Z . 4 )  
1s  c o n t i n u e  

C end loop 

**cres))/(rho*(pi*rw**2~*ho*por*cres+art/2.~~ 

C 

c 
w r i t e ( 6 , * ) 1 2 4  
do 20 l r1 .124  
w r i t e ( 6 . 1 2 )  c u m ( i ) , d h ( i )  

20 c o n t i n u e  
c l o s c ( u n i t ~ 4 )  
s t o p  
end 
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.. 

kbasisr3 
call llsaf(a.ia.rn,n.b,tol.kbasis,xl.h,ip,ier) 
~~rito(6.l)xl(l),xl(Z),xl(3) 

1 fornat('x=(',3el2.4,')',//) 
d h l ( l ) = d h ( l )  
cum=x(l)*y(1)*60.*60.*24. 
write(6.*)124 
write(6,*)cum,dhl(l) 

L 

*'60.*6C.*24.) 
write(6.*)cum,dhl(i) 

42 continne 
STOP 
E D 
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