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Retention processes such as adsorption and diffusion into an immobile 

region can effect tracer movement through a fractured reservoir. This study 

has conducted experimental work and has developed a two-dimensional model to 

characterize retention processes. A method to  directly determine some impor- 

tant flow parameters, such as the fracture aperture, from the analysis of tracer 

tests has been developed as a result of the new two-dimensional model. 

The experimental work consisted of batch experiments designed to both 

reproduce earlier work and to determine the magnitude of the retention effects. 

Negligible retention was observed from which it was concluded that  the batch 

experiments were not sensitive enough and that more sensitive flowing tests 

were needed. 

A two-dimensional model that represents a fractured medium by a mobile 

region, in which convection, diffusion, and adsorption are allowed, and an immo- 

bile region in which only diffusion and adsorption are allowed has been 

developed. I t  was possible to demonstrate how each of the mass-transfer 

processes included in the model affect tracer return curves by producing return 

curves for any set of the defining variables. 

Field data from the New Zealand was numerically fit with the model. The 

optimum values of the parameters determined from curve fitting provided a 

direct estimate of the fracture width and could be used to estimate other impor- 

tant flow parameters if experimentally determinable values were known. 
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Section 1: INTRODUCl'ION 

Tracers have long been used by petroleum reservoir engineers to gain in- 

formation on reservoir heterogeneities, but have recently gained importance to 

geothermal engineers because of the problem of waste water reinjection. In 

most geothermal utilizations, only steam is used to drive the turbines and any 

produced water as well as a smaller amount of steam condensate must be 

disposed of. This waste water is at high temperature and has environmentally 

hazardous levels of dissolved materials and is usually reinjected since surface 

disposal of these waters is no longer an acceptable procedure in most places. 

The reinjection of waste water can serve a second purpose other than dispo- 

sal by maintaining reservoir pressure and mass of fluid in place. However these 

possible benefits must be related to the potentially damaging effects that the 

cooler { than reservoir fluids ) injected water will have on the reservoir. If the 

injected water travels to the production well so quickly that it does not heat up 

to the original reservoir temperature, it will reduce the enthalpy of the pro- 

duced water. This results in a smaller steam fraction in the produced fluid, and a 

smaller flow rate for a given wellhead pressure since the flow of the wells is 

strongly governed by the hydrostatic pressure of the fluid column. Thus less en- 

ergy can be produced. Such "short-circuiting" has been observed in several 

geothermal fields. 

I t  is the task of the reservoir engineer to determine how the waste water 

should be reinjected so that the harmful effects of the cooler water is minim- 

ized. Tracers have proven useful for this task. By injecting tracers and observ- 

ing their returns at production wells, one can get an idea how the injected water 

travels through the reservoir. Such tests have shown some unexpected results. 

In Japan, tracer tests have recorded mean displacement of tracers at  a rate as 

1 
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high as 78 m/hr. and as low as 0.5 m/hr. Similar flow rates were observed in 

New Zealand. I t  has been demonstrated that there is a correspondence 

between fast tracer return rates and wells that show enthalpy declines upon 

reinjection. 

While tracer testing has proven useful, the analysis of these tests has been 

mostly qualitative. In order to predict thermal breakthroughs and enthalpy de- 

clines, quantitative data on reservoir flow parameters are needed. Currently 

there are no methods to directly determine these parameters from tracer tests 

in geothermal reservoirs. There are two main problems that make the analysis 

of tracer tests in geothermal reservoirs difficult. 

The first problem is that most geothermal reservoirs are highly fractured. 

Thus the quantitative analysis of tracer testing in porous media, developed for 

the oil and gas industry, does not apply to geothermal reservoirs. 

The second problem is modeling all the processes that can occur to a 

tracer as it moves through the reservoir. Besides the macroscopic processes of 

convection and dispersion, such microscopic processes as diffusion, chemical 

reaction, ion exchange, adsorption and decay can occur which effect the 

analysis of tracer tests. Quantitative analysis of tracer tests depends on the 

ability to describe accurately all processes that occur to the tracer as it travels 

through the reservoir. 

In this study, experimental work was conducted to examine transport pro- 

perties and a two-dimensional model was developed to describe those processes 

which can effect the analysis of tracer return curves. A method to directly 

determine some important flow parameters from the analysis of tracer test has 

been developed as a result of the new two-dimensional model. 



Strom and Johnson (1950) demonstrated the importance of tracer tests to 

reservoir engineers by verifying the existence of directional permeability with 

the use of brine and fluorescein dyes. Many other uses for tracer test were 

soon found. A fairly complete list of information obtainable from tracer tests 

has been given by Wagner (1974). 

Early analysis of tracer tests tended to ignore the microscopic processes 

such as diffusion, ion exchange, and adsorption. These early studies only con- 

sidered convection and dispersion. s The corresponding dispersion-convection 

governing differential equations has been solved for several boundary conditions 

by Carslaw and Jagger (1959). * A summary of the use of such equations and the 

empirical correlations used t o  determine the parameters in those equations is 

given by Perkins and Johnson (1963). ’ 
In order to increase correspondence between theoretical and experimental 

results, other flow processes were considered. Coats and Smith (1964) included 

diffusion into a stagnant pore volume. a A correction to the boundary conditions 

used in this study was given by Brigham (1974). 

The above references do not necessarily assume a porous media but rather 

develop general flow models. Most further developments in the petroleum litera- 

ture are limited to  porous media and as such are of limited value to  understand- 

ing tracer flow in highly fractured geothermal reservoirs. 

Many additional refinements to the basic dispersion-convection model are 

found in the ground-water hydrology and soil chemistry literature. The inclusion 

of adsorption into the model with stagnant pore volume was shown by van Genu- 

chten and Wierenga (1976). lo Cleary and van Genuchten (1979) showed how also 

to include decay and chemical reaction in the model. 
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Recent field experience as described by Horne (1982) and Tester, Bivins, 

and Potter (1982) demonstrate the need to apply a detailed model to the 

analysis of tracer tests. 1-12 An experimental study by Breitenbach (1982) showed 

that considerable retention of chemical tracer possibly occurs with geothermal 

material (unconsolidated). l3 

Horne and Rodriguez (1983) presented a one-dimensional model for flow in a 

fracture. '* This model included convection and diffusion (Taylor Dispersion) 

within the fracture. Fossum and Horne (1982) applied this model t o  field data 

from Wairakei with some success. l5 

Jensen (1983) extended this model by allowing the fracture to communicate 

by diffusion with a porous matrix. l6 Adsorption was also allowed in both the frac- 

ture and the matrix. Jensen applied this model to the same Wairakei data with 

greater success. While Jensen's model fitted well with the data it revealed only 

partial information about flow characteristics or reservoir parameters because 

of the lack of direct measurements of some of the process parameters. 



Section 3: EXPERIMENTAL WORK 

The goals of the experimental phase of this study were: 

(1) To locate the mechanisms of the retention seen in Breitenbach’s 

study. l3 

(2) To determine the magnitude of the retention processes under 

batch conditions. 

A 60° axonometrix view of the apparatus used for this experiment is shown 

in Figure (1). A schematic of the flow paths is shown in Figure ( 2 ) .  This equip- 

ment was designed by A. Sageev l7 and was later modified by Breitenbach.” De- 

tailed discussions of the apparatus and of the subsequent modifications to the 

apparatus 

I 

Figure 1 - VIEW OF APPARATUS” 

An additional modification for this study was the alteration of the core 

sleeve. Previous experiments used a viton sleeve to support the unconsolidated 

core but because of possible interaction between the viton and the chemical 
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Figure 2 - FLOW PATH OF FLUIDS17 

tracer, the viton sleeve was replaced by a stainless steel sleeve. The stainless 

steel sleeve also allowed the apparatus to operate a t  higher temperatures. I t  

was also necessary to modify the endplugs to hold the new sleeve. The new 

sleeve and the modified end plugs are shown in Figure (3) through (5). 

Figure 3 - NEW CORE SLEEVE" 
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Figure 4 - NEW UPSTREAM CORE END-PLUG” 

Figure 5 - NEW DOWNSTREAM CORE END-PLUG19 

The core material used was unconsolidated reservoir rock. The first materi- 

al used was reservoir rock from Klamath Falls, Oregon and the second was from 

Los Azufres, Mexico. 

The core material from Klamath Falls was comprised of drill cuttings col- 
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lected from the producing zone (600-660 ft) of a well near the location of a 

tracer test  conducted in May 1983 by the Stanford Geothermal Program". This 

material was described by the driller as "black lava". A geological report of the 

cuttings was done and described the cuttings as fine-grained andesite or basalt 

with a minimum of alteration. Before the cuttings were loaded into the core 

holder, they were cleaned, dried, and sieved. A review of the sieve analysis is 

shown in Table (1). 

~ ~ ~~~~ 

Table 1- SIEVE ANALyslS By PWCENT OF TOTAL MAES 
~~ ~~~ __~ ~~ ~ - 

MESH SIZE 
MATERIAL 

<lo0 >200 170-200 140-170 120-140 100-120 

KLAMATH FALLS 

4.4 0.6 0.3 1.1* ... 93.6 LOSAZUFRES 

6.6 2.6 3.5 3.9 6.1 77.3 

*( 100 -140 ) mesh 

The core material from the Los Azufres field was collected from an outcrop 

in the field and is described as a typical andesite of the reservoir. In this case 

the material was crushed, cleaned, dried, and sieved before loading into the 

core holder. Table (1) also summarizes the sieve analysis for the Los Azufres ma- 

terial. 

A detailed step-by-step procedure for this experiment with this equipment 

is given by Breitenbach. 

The general procedure was  to first load the core holder with reservoir ma- 

terial. The core holder was then put into the pressure cell and connected with 

all the flow lines. A vacuum was then applied to the downstream end of the core 

to remove any air. The core was then brought up to the desired pressure and 

temperature. After completely flushing the core with distilled water, the core 
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was flooded with approximately three pore volumes of tracer. The tracer used 

was sodium iodide where the iodide ion was the chemical species traced. The 

effluent was collected. The cell was then isolated and allowed to sit for the 

desired residence time. The core was then flushed with six pore volumes of dis- 

tilled water, and the effluent was again collected. 

Determination of the amount of tracer retained in the core was achieved by 

mass balance calculation. The concentrations of the input and effluents were 

measured by specific ion electrode analysis, using a Fisher "Accument", Model 

750 Selective Ion Analyzer. Description of this analyzer and its use is given by 

Jackson. 2o 
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Section 4: RESULTS OF MPWIMENTAL STUDY 

Seven different runs were made. Five runs with the Klamath Falls (KF) core 

material and two runs with the Los Azufres (LA) core material. 

Tracer concentration for all runs was approximately 20ppm. Temperature 

was varied from room temperature to  300 F. Confining pressure was 1500 psi. 

Residence times were varied from two hours to 72 hours. Table (2) summarizes 

all the runs and gives the calculated percent mass of tracer retained. 

RUN 

1 

2 

3 

4 

5 

6 

7 

Table 2 - MPERIMENTAL RESULTS 

MATERIAL 

KF 

KF 

KF 

KF 

KF 

LA 

LA 

18.0 

10.1 

15.0 

21.0 

17.2 

23.2 

22.6 

TEMP. 

(F) 

194 

194 

210 

300 

300 

300 

300 

RESIDENCE 

TIME(HR) 

2 

24 

60 

72 

24 

72 

44 

PERCENT 

RETAINED 

-2.23 

6.71 

1.76 

9.09 

-4.65 

-4.76 

4.81 
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Section 5: DISCUSSION OF EXPERIMENTAL SrZTDY 

Table ( 2 )  shows that the calculated percent tracer retained ranged from 9.1 

to -4.8 percent. The negative retention values mean that more tracer was calcu- 

lated coming out than was injected. 

An error analysis shows an experimental error to be about 5.0% . The values 

of percent retained all (but one) fall within 5.0% of no retention a t  all. 

The present results are considerably different from those of Breitenbach l3 

study. Results are summarized in Table(3), showing values of percent retained 

ranging from a low of 17 percent to a high of about 70 percent. 

Table 3 - RESULTS F’ROM BREITENBACH” 
CONC. TEMP. RESIDENCE TIME PERCENT RUN 
( P W  (F) (HR) RETAINED 

4 10 300 72 30.6 
5 20 300 72 68.6 
6 50 300 72 67.5 
7 100 300 72 69.4 
8 500 300 72 61.6 
10 10 300 24 25.9 
12 10 300 2 16.9 

I t  is possible to explain the fact that the present study sees little if any re- 

tention, and it is also possible to postulate some explanations for the different 

results between this and Breitenbach’s study. 

Since Breitenbach also used outcroppings from the Los Azufres field the 

difference between the two studies cannot be explained on the basis of different 

core material. However, Breitenbach used a viton sleeve to  hold the core materi- 

al while the present study used a stainless steel sleeve. The sleeve was changed 

because i t  was supposed that the viton might possibly adsorb the iodide tracer. 

This is the most likely explanation for the differences between the two studies. 
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Another possible reason for the difference is that the previous study did not use 

high temperature valves while the present study did. I t  is not possible to deter- 

mine if the earlier valves did leak but if they did the differences in results could 

be explained. 

A close examination of the procedure used in these batch experiments sug- 

gests some reasons why negligible retention was seen. Using unconsolidated 

material as designed, the number of mass transfer processes that could result 

in retention of the chemical tracer are limited. In particular the loss of tracer 

from a mobile region to an immobile region due to diffusion is not allowed. This 

is because the entire core must be considered a mobile region. 

Other processes which are allowed are those that can be classified as sur- 

face retention processes. An example of a surface retention process is adsorp- 

tion. By isolating this one type of retention process these batch experiments 

demonstrate that surface retention processes are negligible. 

This can be explained by examining the important parameters for surface 

processes. The first important parameter is surface area. Obviously the more 

surface available the more surface processes will occur. The unconsolidated 

material used in this experiment gives more surface area per weight than would 

be expected under reservoir conditions if flow were occurring in a fracture. Sur- 

face retention processes would therefore be be magnified under these experi- 

mental conditions. However another effect needs to be considered and that is 

the relative volume of tracer injected. Three pore volumes of tracer were inject- 

ed in this experiment while in a field tracer test  orders of magnitude less than 

three pore volumes of tracer are injected. The result is that in the experimental 

case the number of surface sites available for surface retention processes are 

overloaded in comparison to that  in a realistic case. So even if all surface sites 

were active in retention the retention seen, using the adopted procedures, would 
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be small. 

An obvious solution to this problem would be to inject less tracer. Unfor- 

tunately, experimental constraints such as the sensitivity of the analysis tech- 

nique and the error in the mass balance calculation will not allow for less tracer 

to be injected. 

Another method for experimentally analyzing those mass transfer 

processes whose net effect is the retention of a tracer is to run flowing experi- 

ments. Previous studies have shown that flowing experiments are more sensitive 

than batch experiments. 21 These earlier studies have been for porous media and 

thus the analysis of the tracer return curves from these studies is not directly 

applicable to a fractured media. 

While there are models that have attempted to fit field data for a fractured 

reservoir, these models are not useful in examining the retention 

p r o c e s ~ e s . ~ ~ * ~ ~ * ~ ~  Before an experiment could be designed to run flowing studies, 

a model was needed in order to examine the magnitudes of various retention 

processes, be they surface processes or bulk processes (diffusion from mobile to 

an immobile phase). 

This study has developed such a model, the derivation of which is now dis- 

cussed. 
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Section 6: THEOHFIlCAL DEYEMIPMmT OF TWD-DIMENSIONAL MODEL 

The two dimensional, two control volume model used for this development is 

shown in Figure (6 ) .  The first control volume represents the mobile region 

where convection, diffusion, and adsorption are allowed. The second control 

volume represents the immobile region where only diffusion and adsorption are 

allowed. 

I 

Y. CONVECTION I 

Figure 6 - SCHEMATIC OF TWO-DIMENSIONAL MODEL 

A general mass balance on control volume (1) is 

( r a t e  change  of mass of s p e c i e s  in contro l  v o l u m e  ) = 
( n e t  mass r a t e  of s p e c i e s  i n t o  contro l  v o l u m e )  t 

( p r o d u c t i o n  of s p e c i e s  in contro l  volume ) 

Assuming: 

(1) Production of species is negligible 

(2) Density of species is constant 

allows Equation (6.1) to be simplified. Thus Equation (6.1) becomes 
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where 

A = Mass of species per total volume 

j = Total mass flux of species 

The mass per volume (A & )  can be expressed as 

where 

q a,m = Total mass adsorbed per total volume 

C , = Concentration of species in mobile phase 

pm = Portion of porosity due to mobile region 

The adsorption term in Equation (6.3) can be expressed as 

P b  = Bulk density 

P = Fraction of total adsorption sites in the mobile region 

q , = Adsorbed concentration in the mobile region per bulk 

volume 

Substitution of equations (6.3) and (6.4) into Equation (6.2) gives 

O [ P ~  P qm + Vrn c m  I - =  
at  at (6 .5)  

Substitution of Equation (6.5) into Equation (6.1) gives 

The right hand side of Equation (6.6) can be expanded to 

j f  = J, C, + jf 
where 

J = Convective flux density 

j f = Diffusive flux 



gives 

gives 

Assuming 

z .d 
(5) -is negligible ax 

Substitution of Equation (6.10) into Equation (6.6) gives 

where 

(6.13) 

Assuming 

(3) J Cy =Om convective flow in the x-direction only 

a J," 
aZ 

(4) steady flow, -= 0 

(6.10) 

(6.11) 

Because steady fiow has been assumed, the convective term can be ex- 

pressed as 

J," = Vrn Qrn (6.12) 

The diffusion term can be expanded using Fick's Law of diffusion, as 

DK = Diffusion coefficient in the mobile phase in the y- 

direction 

Substituting Equation (6.13) and Equation (6.12) into Equation (6.1 1) gives 



Differentiating gives 

Equation (6.15) has two time dependent variables, the flowing concentration 

(C,) and the adsorbed concentration (h). To reduce the number of variables 

to one, the adsorbed concentration is expressed as a function of the flowing con- 

centration. There are many choices for such a relationship, but this study has 

used the simple Freundlich linear isotherm. This isotherm assumes equilibrium 

and instantaneous adsorption. The adsorbed concentration is related to the flow- 

ing concentration by 

Qm = k Cm (6.16) 

where 

k = adsorption constant which is a function of temperature 

only 

Applying this relationship to Equation (6.15) gives 

(6.19) 

no convection is allowed in this control volume. Differentiating Equation (6.20) 
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gives 

a j p d  
d w (  j l )  = - +-  

ax aY (6.21) 

As in the mobile region the diffusion in the x-direction is assumed to  be 

negligible. The diffusion term is expressed using Fick’s Law to give 

(6.22) 

Substituting equations (6.22),(6.2l),and (6.19) into Equation (6.18) gives 

(6.23) 

Again using the Freundlich linear isotherm to relate the adsorbed concen- 

tration to the fluid concentration gives 

(6.24) 

Equations (6.17) and (6.24) are the governing partial differential equations 

for the two-dimensional model. The initial condition used for this model is one of 

uniform concentration. This is given by 

(6.25) 

(6.26) 

A t  the interface of the two control volumes, concentration is forced to be con- 

tinuous, thus 

where 

w = half width of the mobile region 

The flux across the interface is also continuous , giving 

y =W 

(6.27) 

(6.28) 
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The outer boundary condition in the y-direction is 

The inlet condition in the x-direction is 

(6.29) 

C ] . = O  = c, (6.30) 

In order to simplify the governing differential equations and the associated 

boundary conditions a set of ”dimensionless” variables are introduced. 

(6.31) 

(6.32) 

Pe = - Vm 
Dm 

(6.33) 

(6.34) 

(6.35) 

(6.36) 

(6.37) 

(6.38) 

I t  should be noted that all the variables are dimensionless except (R) which 

has units of reciprocal time. Using these dimensionless variables the partial 

differential equations become 

and 

where 

1 = mobile region 

2 = immobile region 

(6.39) 

(6.40) 
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The initial and boundary conditions become 

(6.42) 

(6.43) 

(6.44) 

(6.45) 

Cl(O,YD,tD) = 1 (6.46) 

The complete solution of the simultaneous partial differential Equations 

(6.39) and (6.40) with boundary conditions (6.41)-(6.46) is given in Appendix (A). 

The general method of solution was to transform the equations with the La- 

place transform with respect t o  time (t) and then again with respect to (x). With 

the equations in the transformed space (p-space), the solution could be solved 

for directly. Unfortunately, the resulting analytic solution cannot be analytical- 

ly inverted. Thus to  express the solution in real space required use of the Steh- 

fest numerical inversion algorithm.22 The details of this evaluation process will 

be discussed later. 

The analytical solution for the concentration in the mobile phase in p-space 

is 

(6.47) 

where 

s = Laplace operator for transforming t 

p = Laplace operator for transforming x 

Pe (1 z= [ 
1 

a 
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No mention of a fractured or a matrix is made in the above development, 

rather the only distinction is that between a mobile and an immobile region. 

Thus the model is general. 

"he general nature of this model is best seen by considering the variables 

(Om )*  (Qim ) I  and ( P m )  where 

(p,,,) = Portion of total porosity due to the mobile region 

(pirn) = Portion of total porosity due to the immobile region 

( Q T )  = Total porosity 

When considering the case of a completely saturated (single phase) porous 

medium, essentially the entire volume should be considered as mobile, thus 

Q m > > h n  

This is true no matter what fraction of the entire reservoir is considered. 

With regard to the fraction of mobile to immobile region, the completely sa- 

turated porous media is at one end of the spectrum with essentially everything 

being mobile while a fractured media is a t  the other end. In a fractured medium 

all but a small portion of the entire reservoir is immobile, thus over the entire 

reservoir 

>>Om 

The model is able to consider both porous and fractured media as well as in- 

termediate cases. Such intermediate cases would include only partially saturat- 

ed single phase reservoirs and could possibly include multi-phase systems if the 

loss of the traced material from the sampled Auid depended upon the concen- 

tration difference of the traced material between the sampled fluid and the oth- 

e r  fluids. While this model has other applications, this study has concentrated 

on applying the model to fractured systems. 

When considering fractured systems the nature the testing procedure is im- 

portant in the understanding of the different variables. As discussed above, the 
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portion of the total porosity due to the mobile phase is given by (a,). When 

tracer testing in a fractured medium, only a finite amount of tracer is injected, 

thus not the entire reservoir is examined. In this case (a,) is more accurately 

the portion of the encountered porosity due to the mobile phase rather than the 

portion of the total porosity due to the mobile phase. This is not necessarily a 

handicap to tracer analysis as will be discussed later. 
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Section 7: FYALUATION TECHNIQUE 

The solution to the two dimensional model is for a step input and is analytic 

only in p-space, where p-space is two Laplace transformations away from real 

space. Any investigation of how the different parameters that  were included in 

the physical model effect tracer movement in a reservoir requires expressing 

the solution in real space for any value of the dimensionless variables. Further- 

more, since most tracer tests are not step inputs, the solution for a step input 

of finite duration (a finite-step) and the solution for a spike input (infinitesimally 

short duration) are needed. 

A computer program GENERATE.STEP was developed to evaluate the solu- 

tion for a step input in real space. A listing of GENERATE-STEP is given in Appen- 

dix (B). 

GENERATE.STEP is made up of five parts; the main program (MAIN), the 

function INVERSE1, the subroutine SFUNCTION, the function INVERSE2, and the 

subroutine PFUNCTION. 

The main program (MAIN) reads and writes the values of the dimensionless 

variables and the time steps at which the solution is to  be evaluated. MAIN then 

evaluates the solution by calling the function INVERSEl. 

INVERSE1 is the Stehfest numerical inversion algorithm used to invert from 

(x,y,s)-space to  (x,y,t)-space (real space). This algorithm requires an evaluation 

of the solution in (x,y,s)-space and gets this by calling the subroutine SFUNC- 

"ION. 

Since the solution is not analytic in (x,y,s)-space, SFUNCTION gives an 

evaluation of the solution in (x,y,s)-space by calling the function INVERSEZ. 

INVERSE2 is again the Stehfest algorithm which is used here to  invert from 
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(p,y,s)-space to  (x,y,s)-space. The expression of the solution in (p,y,s)-space 

which is needed by INVERSE2 is evaluated by calling PFUNCTION. 

PFUNCTION evaluates the value of the solution in (p,y,s)-space from the ana- 

lytic expression of the solution. 

The program then returns control to MAIN which writes the value of the 

solution for all the time steps. Examples of input and output files are also given 

in Appendix (B). 

The use of the Stehfest algorithm to invert the solution results in "noise" or 

error caused by the numerical technique. This error is greatest where the func- 

tion to be inverted is not smooth. A consequence of this error in the calculation 

procedure is that negative concentrations are sometimes calculated in region 

where noise dominates. Since negative concentrations are clearly not allowed, 

the program sets all negative values t o  zero. 

The evaluation of the solution for a step input is given by GENERATE.STEP, 

but the evaluation for a finite-step and a spike-step input required modifications 

to the above procedure. 

To evaluate the solution for a finite-step the program GENERATE.FINSTEP 

was developed. Thk program is very similar to GENERATE.STEP and has used the 

concept of superpositon in time to generate the results for a finite-step. Using 

superpositon, the concentration after the step input has ended is given by 

C3,(t,ai) = Cs( t+At ,a i )  - C, ( t , a i )  

where 

C = Concentration for finite step t 

C , = Concentration for step input 

A t  = Duration of finite step 

t = Time since the end of the step input 

(7.1) 
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The only part  of GENERATE.STEP that needed to be modified was the main 

program MAIN. The modified MAIN that was used in GENERATE.FINSTEP is given 

in Appendix (C). All other programs in GENERATE.FINSTEP are exactly those al- 

ready given in GENERATELSTEP. Since MAIN is changed in GENERATE.FINSTEP, 

the input file is different than that used in GENERATE.STEP. An example input 

file is also given in Appendix (C). 

The evaluation of the solution for a spike-input is greatly simplified by the 

solution technique used. I t  can be shown that the response of a spike-input is 

merely the time derivative of a step input. Using the Laplace property 

aF - =  
at L - ’ b  f (. )I (7.2) 

it is easy to  see that all that is needed to do t o  get the spike-input from the step 

input is t o  multiply the expression for the step input in (x,y,s)-space by (s) be- 

fore it is inverted to (x,y,t)-space. This is easily done by modifying SFUNCTION . 

Thus the program to calculate the results for a spike-input, GENERATE.SPIKE, is 

exactly like GENERATE.STEP except for a slight modification in SFUNCTION. A 

listing of the SFUNCTION used in GENERATE.STEP is given in Appendix (D). Since 

the main program is not changed in GENERATE.SPIKE it requires the same input 

as GENERATE. STEP. 
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Section 8: RESULTS OF TWD-DMENSIONAL MODEL 

I t  was possible to examine how each of the variables in the two-dimensional 

model affects tracer movement through a reservoir by examining the return 

curves that were generated by the procedure described above. While one could 

look at all three type of tests (step, finite-step, spike), only the finite-step and 

spike are practically applicable. Since most field tests are more like a spike- 

input, this study examines how each of the dimensionless variables effect tracer 

return curves for a spike-input of tracer. 

The step-input program (GENERATE.STEP) was used to  check the analysis 

procedure. One would expect that if a system were subjected to a step-input of 

unit concentration then the response of this system would have an initial delay 

followed by an asymptotic approach to unity. Entering base values of the vari- 

ables and evaluating the solution gave a curve similar to what was expected. 

Figure ( 7 )  shows a response for a typical step-input. 

RESPONSE TO STEP- INPUT 

10 20 30 40  50 60 
TIME 

Figure 7 - RESPONSE TO STEP INPUT 
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In the generation of any return curve, the value of all six dimensionless 

variables need to be entered. A simplifying assumption was made when a value 

of (yD) was entered. The concentration profile at a given distance (xD) should be 

the area average of the calculated values for all (yo) values, where (yo) ranges 

from zero to one. This averaging procedure was not done, instead the value of 

the concentration calculated at (yD) = 0.5 was used as the average value. This 

assumption was made to  simplify an already complicated procedure and to  

prevent an already long running (cpu time) computer program from becoming 

prohibitively long. The basis for this assumption was a series of calculations of 

the concentration profile across a fracture. These profiles showed an essentially 

flat profile with little variation in concentration across the fracture. This flat 

profile is to be expected because in the solution of the two-dimensional model it 

was assumed that the velocity profile was not a function of (y). 

The sensitivity of the model t o  the five dimensionless variables; (xD), (Pe), 

( p ) ,  (R), and (a) was studied by examining how a typical return curve was 

affected by varying each of the variables independently. The base values of the 

dimensionless variables used were determined by "eye" fitting the model to real 

data. The base values used in the sensitivity studies are shown in Table (4). The 

sensitivity study showed large differences in sensitivity among the five vari- 

ables. 

Table 4 -BASE VALUES U S D  IN SENSITIVITY Sl'UDY 

Pe ZD a R 19 

The dimensionless variable (XD) is the dimensionless distance between 

wells. The two-dimensional model was more sensitive to ( x D )  than any of the 
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other variables. In order to  be able to graph the results of varying (xg) on a sin- 

gle plot the value of (xg) could only be increased and decreased by a factor of 

two. The base case (xg = 10000) and the higher and lower cases are shown in 

Figure ( 8 ) .  

EFFECT OF XD 

0*2 

0.1 

0 
5 10 15 20 25 30 

TIME 

Figure 8 - EFFECT OF X D 

As would be expected when the dimensionless distance is decreased the 

tracer both breaks through earlier and has a higher peak concentration than 

the base case. When (xD) is increased, equivalent to a greater distance between 

wells, the breakthrough occurs later and the peak concentration is less. Not 

only breakthrough times and peak concentration are changed, but the shape of 

the curve is changed as well. In particular the backside of the return curves are 

quite different depending on the value of (xg). The backside of the return curves 

is where retention effects are visible and as would be expected the greater the 

distance between wells the more retention occurs and thus the longer the tailing 

effects. 

The dimensionless variable (Pe) is given by 
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Vm w 
Dm 

Pe = - 
and is a modified form of the Peclet number, an important variable in many 

mass transport systems. Usually the characteristic length that would have been 

used to  make this group dimensionless would have been the actual distance 

between the wells, but this study has used the fracture half-width (w). The 

result is that the values of the Peclet number here are orders of magnitude less 

than commonly seen. 

Despite its frequent use as a group to define many systems, the two- 

dimensional model showed small sensitivity to the Peclet number. Other recent 

studies have seen similar effects.21 Figure (9) shows the effect of decreasing the 

Peclet number by a factor of ten  and increasing the Peclet number by a factor 

of five. The most apparent effect of changing the Peclet number is to change the 

amount of retention or equivalently the amount of tailing of the return curve. 

Figure (9) shows that the larger the Peclet number the more the tailing effect. 

Figure (9) also shows that relatively large changes in the Peclet number cause 

small changes in the breakthrough times. Another important observation is that 

the changes in the Peclet number do not create symmetric changes in the re- 

turn curve. 

The sensitivity of the model to (a ) ,  where 

is shown in Figure (10). Like the Peclet number the relative sensitivity of the 

model to ( a )  is small. A decrease in ( a )  by a factor of ten results in a higher 

peak concentration, less tailing effects and a similar shape when compared to 

the base case. An increase by a factor of eight results in much more tailing and 

a lower peak concentration. Breakthrough times on all the curves are similar. 

The effect of changing the variable (R) where 
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EFFECT OF Pe 
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Figure 9 - EFFECT OF Pe 

EFFECT OF FlLPHFl 
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Figure 10 - EFFECT OF a 

is similar to  the effect of changing (xg). Doubling the base value of (R) results in 

more tailing and a slower breakthrough. Decreasing the base value by a factor 

of two gives a profile with a higher peak concentration and a earlier break- 
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through. These results can be seen in Figure (1 1). 

062 

0.1 

0 

EFFECT OF R 

5 10 15 20 25 30 

TlME 

Figure 11 - EFFECT OF R 

The sensitivity of the two-dimensional model to (a) is intermediate between 

the high sensitivity of the model t o  (xg) and (R) and the low sensitivity of the 

model to (Pe) and (a). The variable (a )  is defined as 

and gives the fraction of the total retardation due to the fractured region. By 

definition (a)  is constrained to lie between zero and one. As  can be seen in Fig- 

ure (11) decreasing (@) from (0.5) to (0.1) resulted in an increase in the peak 

concentration, a decrease in the breakthrough time and a decrease in the 

amount of tailing. An increase in ( p )  gave opposite results. 

The above sensitivity study shows that the two-dimensional model is 

affected differently by the five dimensionless variables that define the model. 

Within the five dimensionless variables there are at  least eight unknown physical 

parameters (w, p m ,  p ~ ,  P, k, V,, Dm, D i m ) ,  thus there is no unique combination 

of physical parameters that can be determined from or can determine the five 
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EFFECT OF BETQ 
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Figure 12 - EFFECT OF @ 

dimensionless variables. This two-dimensional model makes possible the pro- 

duction of tracer return curves for any given set of physical parameters and the 

associated dimensionless variables. 
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Section 9: TRACER TEm ANALYSIS TECHNIQUE; NUMWICAL CURVE FTll'ING 

The initial goal of this study was to model and quantify those processes that 

affect the movement of a tracer as it moves through a reservoir. The two- 

dimensional model described above allows this by producing tracer return 

curves for any given set  of dimensional variables that define the system. This 

forward type of problem, a problem where the input and system are known and 

the output from the system is desired, may be used to study the effects of 

different processes on the model but it is not helpful for the inverse problem. 

The inverse problem, frequently encountered in reservoir engineering, is where 

both the input and the output are known while the system is the unknown. This 

is the type of problem that must be dealt with in the interpretation of an actual 

field tracer test. In a field case the details of how the tracer was injected are 

known (the input), and the tracer return curves are known (the output), what is 

desired is an interpretation of the reservoir (the system). 

The general procedure to solve the inverse problem is to statistically fit a 

model to the real data. From this fit the optimum values of the variables that 

define the model may be determined. Hopefully from the values of the defining 

variables it may be possible to  say something about the reservoir. Since the 

two-dimensional model developed in this study is very general and the variables 

that define this model give information about the reservoir, it was hoped that 

this model could be applied in the interpretation of tracer tests. I t  should be 

noted that previous studies, in particular Jensen's study, have attempted to fit 

models to real data with considerable success. Unfortunately the variables that 

were determined from the fitting process did not reveal much about the reser- 

voir. The advantage of the present model is that the variables involved are more 

directly associated with reservoir properties. 

Before the two-dimensional model can be applied to a fitting process the 
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solution must be put in a form that is open to statistical analysis. The solution 

for a step input in terms of the dimensionless variables can be written as 

where 

C = ( t ; a i )  = Concentration at time t for a step input. 

C , = Concentration at inlet 

F(t;ui) = Solution for unit-step input at time t 

ai = Dimensionless variables (i=1,5) 

a1 = Pe 

a2 = B 

US = R 

a4 = a 

a5 = XD 

Using superpositon, the solution for a finite-step (C,,) can be written as 

Cf, = C, [ F ( t  t A t )  - F ( t ) ]  for t>At  (9.2) 

The inlet condition (C,) can be expressed as 

A4 c, = - 
Q A t  (9-3) 

where 

M = Total mass input 

Q = Total volume fiowrate 

At = Duration of input 

Substituting the expression for the inlet concentration into the Equation (9.2) 

gives 

A4 F ( t + A t )  - F ( t )  = Q[ At 1 (9.4) 

Allowing ( A t )  to approach zero is equivalent to having a spike-input. Thus a 

spike input is given by 
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M F ( t + A t )  - F ( t )  C, = -lim[ Q A t +  A t  1 
u a F  
8 a t  

- -- - 

This solution can be written in a generalized form as 

(9.5) 

Cop = E f ( t ; q $  (9.6) 

The term (E) is a normalization factor that normalizes the function to one. 

Since there is no detailed knowledge of the inlet conditions at the entrance to 

the fracture, a normalization of the solution is needed. This normalization of the 

solution has no effect on the shape of return curves it only changes the size of 

the curve. 

The parameters in Equation (9.6) were optimized by using a non-linear least 

squares method of curve fitting. This curve fitting was done by using VARPROZ9, 

a computer program developed by the Computer Science Department of Stan- 

ford University. VARPRO optimizes both the non-linear and the linear parame- 

ters of a given function. 

The method of curve fitting used in VARPRO is based on a paper by Golub 

and P e r e ~ a . ~ ~  I t  is shown that a non-linear model of the form 

j = 1  

Where 

q = Model to be fit 

a = Non-linear parameters 

= Linear parameters 

T = Independent variable 

L = Number of linear parameters 

Q = Nonlinear function 

can be fitted by a non-linear least squares method by separately optimizing the 

linear parameters and the non-linear parameters. 
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In the present case there is only one linear parameter (E) and five non- 

linear parameters (a,). The objective function (0) which is minimized by the 

least squares fit is given by 

O(E,ai) = [c - ~(t;~",a,)]~ 

Ci = Observed concentrations 

C = Calculated concentrations 

This function is minimized by using initial estimates of the non-linear parame- 

ters and then iterating to  determine the optimum values of the non-linear 

parameters. The optimum linear parameter is then determined. 

The details of how VARPRO works are discussed e l ~ e w h e r e . ' ~ , ~ ~  I t  is impor- 

tant to  note that since a Taylor expansion of the objective function (0) with 

respect to the non-linear parameters (ai) is used, an expression of the deriva- 

tive of the two-dimensional solution with respect to the non-linear parameters 

was needed. 

A summary of the input requirements of VARPRO is 

(1) N observed concentrations (Ci) 

(2) Value of the independent variable (T) at each data point 

(3) Estimate of the non-linear parameters 

(4) Evaluation of the solution a t  any given (T) and for any set 

of dimensionless variables (a i )  

(5) Evaluation of the derivative of the solution with respect t o  

the non-linear parameters at  any given (T) for any set of (ai).  

The subroutine that calculated the solution and the derivative of the solu- 

tion with respect to the non-linear parameters was called ADA. ADA needed to 

include the double Stehfest numerical inversion techniques used in the different 

GENERATE programs {see Section 7 ) .  Since the analytic solution is available 
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only in (p,y,s)-space, the calculation of the derivatives was of necessity in 

(p,y,s)-space also. Thus ADA needed to doubly invert both the solution and the 

derivatives. The calculation of the derivatives is discussed in Appendix (E). 

A main program (MAIN) was also needed to; read in the data and the initial 

estimates of the non-dimensional variables, to call VARPRO, and to print the final 

results. A listing of CURVE.FIT, which is the program that incorporates VARPRO 

and all required subroutines, is given in Appendix (F). 

The goal of CURVE.FIT is to determine the optimum values of the five dimen- 

sionless variables for a given set of real data. The goal of the entire tracer 

analysis is to determine something of the nature of the reservoir. This is done 

by relating the dimensionless variables to the reservoir parameters. There can 

be no unique determination of all of the different reservoir parameters because 

there are more unknown reservoir parameters than dimensionless variables. 

However it is possible to uniquely determine some of the physical parameters 

from the dimensionless variables. 

The most important parameter that can be determined is the fracture 

half-width (w), which can be obtained directly. Using the definition of (xg), the 

fracture half-width is given by 

(9 .7 )  

where 

x = distance between wells 

The fracture aperture is important not only to the flow model, as was shown in 

the sensitivity study, but also to any subsequent heat-transfer model that would 

be used to forecast thermal breakthrough. This ability to solve directly for the 

fracture width is a major advantage over preceding methods of curve fitting. 

The other reservoir parameters cannot be directly determined but could be 
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approximated if some additional information were available. From the definition 

of the Peclet number 

v?n w 

Dm 
Pe = - (9.9) 

it can be seen that if the value for the velocity in the mobile phase (V,) were 

known then the diffusion coefficient in the mobile phase could be calculated. 

The velocity term can be approximated by using the breakthrough time ( t b t  ) and 

the distance between the wells as 

v, = - z 
tbt  

(9.10) 

This approximation ignores retardation effects. Using Equation (9.10). (Dm) can 

be approximated by 

Dm = - z w  

tbt pe 
(9.11) 

Combining the definitions for (a)  and (R),  equations (6.36) and (6.37) 

respectively, gives (pm)  as 

(9.12) 
L 1  - - J w 

The values of (R), and (a) are determined from the curve fitting procedure, (w) 

can be calculated and (V,) can be approximated as discussed. I t  may be possi- 

ble to determine (k) experimentally and (p) can be estimated. Values for (P) 

cannot be determined, but since (P) by definition ranges from zero to one only, 

equation (9.12) can give a range for (pm).  

A range for (ph) can be determined if a value for (Dim) can be experimen- 

tally determined since 

Dm 
Dim 

= am(-) (9.13) 

As shown above, the two-dimensional model developed in this study can be 

posed in the form necessary to apply a numerical curve fitting procedure. From 



- 39 - 

this curve fitting technique i t  is possible to determine the optimum values of the 

dimensionless variables , and from the values of these variables it is possible to 

directly calculated the fracture width and to indirectly determine some of the 

other physical parameters used to  develop the model. The application of this 

technique to real data is now discussed. 



- 40 - 

Section 10: APPLICATION OF TRACER TEST ANALYSIS TECHNIQUE 

The analysis technique discussed in the previous section was tested by ap- 

plying it to data from tracer tests in the Wairakei geothermal field in New Zea- 

land. This data was collected by the Institute of Nuclear Sciences of the Depart- 

ment of Scientific and Industrial Research, New Zealand, and made available to 

the Stanford Geothermal Program for this study. No attempt was made to inter- 

pret to results on a field wide basis, rather the purpose was only to test  the 

curve fitting procedure. 

The first important result found from attempting to fit the model to real 

data was that  the initial values of the non-linear variables enter into the curve 

fitting process had to be “good guesses”. If the initial values were not good 

choices the matching process wou1.d fail altogether. Good choices were deter- 

mined by first generating return curves with the GENERATE.SPIKE program 

given in Section 6 that were similar to the real data. 

The second important result was that the curve fitting procedure had very 

slow convergence with the five parameter model. The consequence of this was 

that more than one combination of initial guesses of the non-linear parameters 

and subsequent numerical curve fitting was necessary to produce an acceptable 

fit. I t  was found that i t  usually took at least three series of guesses and numeri- 

cal curve fittings to  create a final fit. A flow chart of the procedure is shown in 

Figure (13). The most important step in the overall procedure was the inter- 

mediate step where the best fit values determined after numerically curve 

fitting were changed before re-entering the numerical curve fitting procedure. 

This step required a knowledge of how the variables affect the shape of the re- 

turn curves. The sensitivity study discussed in Section ( 7 )  provided this infor- 

mation. 
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The third general result found when using this curve fitting procedure with 

real data is that the procedure requires a large amount of computing time. An 

example case of twenty iterations on a data set  of forty points took about 200 

minutes of C.P.U. time on a DEC VAX #750. Since any final match required many 

such fits the computing time became a constraint. 

The result of the curve fitting procedure for wells #24. #103, and #121 are 

shown in Figures (14), (15), and (16) respectively. In these figures the data are 

shown as crosses and the generated curves using the optimum values for the 

variables are shown as solid lines. 

1 NO CONVERGE 

I ANDREruRN 1 ADJusr VALUES [DONE 1 

S . k  = STEHFESI' INVERSION ALGORITHM 

1 

Figure 13 - CURVE FITTING PROCEDURE 

In order to  compare with other models, the results from the F o s ~ u m ' ~  and 

Jensen'O models for the same wells using a single fracture fit are shown in Fig- 

ures (17)-(22). The fits from the present study are better than those from 

Fossum's model and are comparable to  those from Jensen's model. 

The values of the dimensionless variables used to generate the curves 

shown in Figures (14)-(16) are given in Table (5). The only reservoir parameter 

that can be directly determined from the dimensionless variables is the fracture 
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Figure 14 - WELL #24 FIT WITH TWO-DIMENSIONAL MODEL 
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Figure 15 - WELL #lo3 FIT WITH TWO-DIMENSIONAL MODEL 

width. The value of the fracture width for each case is given in Table (6). The 

fracture widths shown in Table (6) range from a low of 2.7mm to  a high of 

10. lmm. 
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Figure 16 - WELL #l2l FIT WITH TWO-DIMENSIONAL MODEL 
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Figure 17 - WELL #24 FIT WITH FOSSUM’S MODEL 
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Figure 18 - WELL #24 FIT WITH JENSEN’S MODEL 
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Figure 19 - WELL # lo3  FIT WITH FOSSUM’S MODEL 
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Figure 20 - WELL #lo3 FIT WITH JENSEN'S MODEL 
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F i g u r e  21 - WELL #121 FIT WITH FOSSUM'S MODEL 
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Figure 22 - WELL #121 FIT WITH JENSEN’S MODEL 

25 

Table 5 - BEST FIT VALUES 
WELL# 1 ZD I P e I  B I R a 

24 1.55305 0.201 0.502 2.01E-06 0.0021 
103 5.01E04 0.200 0.450 2.00E-05 0.110 
121 9.71304 0.170 0.500 3.443-05 0.004 
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TABLE 6 - CALCULATED FRACTURE lclDTHS 
WELL# I FRACTURE WIDTH (man\ lr 
121 10.1 
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Section 11: CONCLUSIONS 

Laboratory batch experiments run with Los Azufres, Mexico and Klamath 

Falls, Oregon reservoir rock are not sensitive enough to study the mass 

transfer processes active in tracer movement through a reservoir. 

A two-dimensional model that represents a fractured medium by a mobile 

region, in which convection, diffusion, and adsorption are allowed, and an 

immobile region, in which only diffusion and adsorption are allowed, can be 

used to represent tracer movement through a geothermal reservoir. 

The two-dimensional model that  was derived in this study has demonstrated 

how each of the various mass-transfer processes included in the two- 

dimensional model affect trace:r return curves. 

I t  is possible to numerically fit real data to the two-dimensional model. 

The optimum values of the pa:rameters determined from the curve fitting 

procedure provide a direct estimate of the fracture width and can be used 

to estimate other reservoir flow parameters if experimentally determinable 

values are known. 
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Section 12: SUGGESTIONS FOR FURTHER WORK 

An experimental study has been designed that would allow for experimental 

verification of the two-dimensional model developed in this study. This proposed 

study would use the same equipment as the experimental phase of the present 

study with only a few modifications. 

The basic idea would be to separate the stainless steel core holder into a 

mobile and a immobile region by packing the center portion of core holder with 

larger grain material than the outer region. A large permeability difference 

between the two regions would effectively cause the center region to be mobile 

and the outer region to  be immobile. Previous studies 25 have shown that the 

difference in grain size required to achieve a 40:l permeability ratio between 

center and outer region is not very large. Sand with a (8-12) mesh range, 

packed to approximately 35 percent porosity will give about a 1700 Darcy per- 

meability while a (40-60) mesh range will only give about a 45 Darcy permeabili- 

ty. 

Separation of the two sands would be maintained by a wire mesh tubular 

holder placed inside of the stainless steel core holder. Other necessary 

modifications to the present equipment would include: 

(1) Using endplugs with a single port entrance to restrict flow to the 

center region. 

(2) Rearranging the valves so that a instantaneous switch from water 

to  tracer can be made. 

By conducting flow tests in the apparatus described above it  would be possi- 

ble to  verify that the two-dimensional model is correctly determining the "frac- 

ture" size by varying the diameter of the center region. Multiple tests (varying 

flow rates) could be used to determine other flow parameters such as the 
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diffusion coefficients. 
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Appendix A: DEHIYATION OF SOLUTION TO TWO DIMENSIONAL MODEL 

The defining partial differential equations are 

and 

where 

1 = mobile region 

2 = immobile region 

The initial and boundary conditions are 

= O 

C1(OSyD,tD) = 1 

Transforming equation ( A . l )  with respect to  t (ie. t goes to s) 

Transforming equation (A.9) with respect to (xD) (ie. XD goes to p) 

Transforming boundary condition (A.5) and rearranging gives 

(A. 10) 
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Equation (A.lO) c a n  be treated as  an ordinary differential equation in (yo). 

and can be solved by method of undetermined coefficients. The solution to the 

corresponding homogeneous equation is 

( G)H = AemyD + Be-mYD 
where 

The solution of the corresponding particular problem is 

The general solution is given by the sum of the homogeneous and particular 

solutions, thus the general solution is 

(A. 11) 

Transforming equation (A.2) with respect to  (t) (ie. t goes to s )  

or 

This is an ordinary differential equation whose solution is given by 

Cz  = M ewD + N e-wD 

where 

1 
z = [  Pe (1 - @)Rs 

a 

Boundary equation (A.4) determines tha t  (M) is equal t o  zero and boundary 

equation (A.2)  gives 

E ( 1  - U D )  

Thus the solution for (C2) in (x,y,s)-space is 
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- V D )  (A. 12)  

Since in equation (A.12) only (C,) is a function of (XD) equation (A.12) can be 

transformed with respect to (xD) (ie. x, goes to  p) as 

x (1 - YD) (A. 13) 

To determine the unknown parameters A and B in equation ( A . l l )  both 

equations ( A . l l )  and (A.13) must be solved simultaneously. Applying boundary 

equation (A.4) gives 

A = B  

Applying boundary equation (A.6) gives 

Using equation (A.14) in equation (A. 11)  gives the solution of the partial 

differential equation ( A . l )  and (A.2) for (C,) as 

(A. 15)  
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BACK TO REAL TIME. XT NEEDS THF ELJALUkTIOt4 OF THE 
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Appendix E: CALCULATION OF THCE DERIVATIVES OF THE TWO-DIMENSIONAL 

MODEL 

The calculation of the derivative of the solution equation (6.39) with respect 

to the five dimensionless variables -was done in (p,y,s)-space. These values were 

then doubly inverted and entered to the 

analytic expression for the solution is 

curve fitting program as needed. The 

em'D + e-m'D 

( l - a ) M ( e m - e - m )  + z a ( e m  + e - m )  

(E. 1 )  

To simplify the calculation of the derivatives, the solution has been separat- 

ed into the following functions 

f r  = ( em'D + e-m'D ) (E. 5) 

The derivative of the solution with respect to any of the dimensionless vari- 

ables can be calculated from the derivative of the above simplified functions 

with respect to the variables. The following notation greatly simplifies the gen- 

eralization of the calculations. Let 

Pe = ai 

In general the derivative of the solution with respect t o  any dimensionless 



variable ( a j )  is given by 

- -  aF a f  1 af 2 af 3 af 4 

aaj - f 2f3f 4 q +  f I f  sf  4 a a , +  f lf 2 f  4 a a , +  f I f  z f  3- aaj (E. 6) 

All that is needed to complete equation (E.6) is an evaluation of (-). This par- O f  i 
aaj 

tial derivative term is denoted by PD(i,j), where 

i = Function number 

j = Variable number 

For (a,) the partial derivatives have been calculated as 

PD(1,l) = 0 

PD(2,l) = a42 

mSal s  

PD(3.1) = FIX+ 1 - -- z -)em(=+ 1 1 + -- z 1 
m2 m a4 m2 m a4 

-) e -m 

PD(4,l) = -[e-m'/" - e"""] 
myD 
2a 1 

For (a2) the partial derivatives are 

PD(1.2)  = - - 
m'af 

a3 

PD(2,2) = -- a3 1 2 a4 
2m3 z a,m [-+ =I 

PD(3,2) = za4 a; a4z af a4z 
2m a, m m2 m 2 m2 

PD(4,2) = L(e "'" - e -m'/D) 

a4]en - [a,  + - za4 + - + -- 11. -m 

a YD 
2alm 

For (as) the partial derivatives are 

PD(1.3) = -- a2 
m'af 

1 (1-a2) 32 a4a2 PD(2,3) = -[ - 
2m3 2 a f m  

PD(3,3) = =[,1+ -- za4  ( I  - a2)a f  a4z z a 4  (1-az)aF a4z 
m a22 m2 m a22 m2 2m a ,  

- -- aq]em - [a, + - + + -- ~]e-"' 
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For (a4) the partial derivatives are 

PD(1,4) = 0 

PD(2,4) = - z 
alms 

PD(4,4) = 0 

The above shows how the derivative of the solution can be calculated for all 

the dimensionless variables except (zg). This derivative was calculated using the 

following property of the Laplace transform 

Thus the derivative with respect to  (xD) was calculated by multilpying the solu- 

tion by p before it was numerically inverted from (p,y,s)-space to (x,y,s)-space. 
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LPl = i + t 
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COMFUTE ORTHOGONAL FACTOR!ZATIONS B Y  HCUSEHOCQER 
REFLECTIONS. IF ISEi = 1 03 2, REDUCE PHI ISTORED IN THE 
FIRST L COLUNQS OF THE M A T R I X  14) Ti3 UPPER TRIANGULAR FORI41 
!Q*PHI = S )  t AND TRAtdSFORM Y (STOREE I N  COLUMN L+l ) I  G E T T I N G  
Q*Y = f i .  I F  ISEL = 11 ALSO TRANSFORM J = I) PHI  (STORED IN 
COLUMNS L+2 THROUGH L+P+l  OF THE M A T R I X  A ) ,  G E T T I N G  WJ = F. 
IF ISEL = 3 OR 4, P H I  HAS ALREADY BEEt! REDUCECrj TRANSFORM 
OtJLY J. S ,  R, AND F OVERWRITE PHI, Y ,  Ar!D 3 ,  R E S P E C T I V E L Y ,  
AND A FACTO'IED FORM OF Q IS SAVED IN V A N 9  THE LOWER 
TP IkNGiE OF PHI 

c: 
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It4 IP<C MATRIX 
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CFJWPUTE THE SCALEG C O V A R I A N C E  PkTR I X  OF W E  L + fii- 

PARAMETERS. THIS INVOLVES COKPUTING 

WHERE THE CL+hiL h X (L+NLl  'JPPER THIitPiZiiLFtR t 1kTRI  t Y IS 
DESCRIBED I N  SUBROUTXNE POSTPR. THE RESULT OVERWRITES THE 
F I R S T  L+NL ROWS AND COLLWNS OF THE " I ~ i T R I X  k THE RESULTING 
M A T R I X  If; SYMt'!!ETP IC, SEE REF. 7 ,  PP. 67-70, 261. 

. . . . . . . . .  . . . .  , .  I . .  

IF !N . EQ. 1 )  GO TLl 70 
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106 FORMAT (19HO ERROR -- WEIGHT!, 14; 14H) IS NEGATIVE.  / )  

107 FORMAT C28HO ERROR -- COhiSTANT COLUKN j I 3 t  37H KUST BE COMPUTED 
X0hiL.Y WHEN ISEL = 1. / )  

XE DOCUMENTATION. / 
lcle FORMAT (33HO CATASTROPHIC FAILURE -- COLUMN 8 141 28H IS ZERO, SE 

END 
DOUBLE PRECISION FWillCTION XNORM(N1 X )  

COMPUTE THE L2 (EUCLIDEAN) NORM OF A VECTOR, WAKING SURE TO 
A V O I D  UNNECESSARY UNDERFLQMS. t&l ATTEMPT I5 MADE TO SUPPRESS 
OVER FLOkiS. 


