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ABSTRACT

Retention processes such as adsorption and diffusion into an immobile
region can effect tracer movement through a fractured reservoir. This study
has conducted experimental work and has developed a two-dimensional model to
characterize retention processes. A method to directly determine some impor-
tant flow parameters, such as the fracture aperture, from the analysis of tracer

tests has been developed as a result of the new two-dimensional model.

The experimental work consisted of batch experiments designed to both
reproduce earlier work and to determine the magnitude of the retention effects.
Negligible retention was observed from which it was concluded that the batch
experiments were not sensitive enough and that more sensitive flowing tests

were needed.

A two-dimensional model that represents a fractured medium by a mobile
region, in which convection, diffusion, and adsorption are allowed, and an immo-
bile region in which only diffusion and adsorption are allowed has been
developed. It was possible to demonstrate how each of the mass-transfer
processes included in the model affect tracer return curves by producing return

curves for any set of the defining variables.

Field data from the New Zealand was numerically fit with the model. The
optimum values of the parameters determined from curve fitting provided a
direct estimate of the fracture width and could be used to estimate other impor-

tant flow parameters if experimentally determinable values were known.
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Section 1: INTRODUCTION

Tracers have long been used by petroleum reservoir engineers to gain in-
formation on reservoir heterogeneities, but have recently gained importance to
geothermal engineers because of the problem of waste water reinjection. In
most geothermal utilizations, only steam is used to drive the turbines and any
produced water as well as a smaller amount of steam condensate must be
disposed of. This waste water is at high temperature and has environmentally
hazardous levels of dissolved materials and is usually reinjected since surface

disposal of these waters is no longer an acceptable procedure in most places.

The reinjection of waste water can serve a second purpose other than dispo-
sal by maintaining reservoir pressure and mass of fluid in place. However these
possible benefits must be related to the potentially damaging effectsthat the
cooler { than reservoir fluids ) injected water will have on the reservoir. If the
injected water travels to the production well so quickly that it does not heat up
to the original reservoir temperature, it will reduce the enthalpy of the pro-
duced water. This results in a smaller steam fraction in the produced fluid, and a
smaller flow rate for a given wellhead pressure since the flow of the wells is
strongly governed by the hydrostatic pressure of the fluid column. Thus less en-
ergy can be produced. Such "short-circuiting™ has been observed in several

geothermal fields. !

It is the task of the reservoir engineer to determine how the waste water
should be reinjected so that the harmful effects of the cooler water is minim-
ized. Tracers have proven useful for this task. By injecting tracers and observ-
ing their returns at production wells, one can get an idea how the injected water
travels through the reservoir. Such tests have shown some unexpected results.

In Japan, tracer tests have recorded mean displacement of tracers at a rate as
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high as 78 m/hr. and as low as 0.5 m/hr. ! Similar flow rates were observed in
New Zealand. ? It has been demonstrated that there is a correspondence
between fast tracer return rates and wells that show enthalpy declines upon
reinjection. !

While tracer testing has proven useful, the analysis of these tests has been
mostly qualitative. In order to predict thermal breakthroughs and enthalpy de-
clines, quantitative data on reservoir flovparameters are needed. Currently
there are no methods to directly determine these parameters from tracer tests
in geothermal reservoirs. There are two main problems that make the analysis

of tracer tests in geothermal reservoirs difficult.

The first problem is that most geothermal reservoirs are highly fractured.
Thus the quantitative analysis of tracer testing in porous media, developed for

the oil and gas industry, does not apply to geothermal reservoirs.

The second problem is modeling all the processes that can occur to a
tracer as it moves through the reservoir. Besides the macroscopic processes of
convection and dispersion, such microscopic processes as diffusion, chemical
reaction, ion exchange, adsorption and decay can occur which effect the
analysis of tracer tests. Quantitative analysis of tracer tests depends on the
ability to describe accurately all processes that occur to the tracer as it travels

through the reservoir.

In this study, experimental work was conducted to examine transport pro-
perties and a two-dimensional model was developed to describe those processes
which can effect the analysis of tracer return curves. A method to directly
determine some important flow parameters from the analysis of tracer test has

been developed as a result of the new two-dimensional model.




Sootion 2 LITERATURE REVIEW

Strom and Johnson (1950) demonstrated the importance of tracer tests to
reservoir engineers by verifying the existence of directional permeability with
the use of brine and fluorescein dyes. 3 Many other uses for tracer test were
soon found. A fairly complete list of information obtainable from tracer tests

has been given by Wagner (1974). *

Early analysis of tracer tests tended to ignore the microscopic processes
such as diffusion, ion exchange, and adsorption. These early studies only con-
sidered convection and dispersion. S The corresponding dispersion-convection
governing differential equations has been solved for several boundary conditions
by Carslaw and Jagger (1959). 8 A summary of the use of such equations and the
empirical correlations used to determine the parameters in those equations is

given by Perkins and Johnson (1963).7

In order to increase correspondence between theoretical and experimental
results, other flow processes were considered. Coats and Smith (1964) included
diffusion into a stagnant pore volume. & A correction to the boundary conditions

used in this study was given by Brigham (1974). ®

The above references do not necessarily assume a porous media but rather
develop general flow models. Most further developments in the petroleum litera-
ture are limited to porous media and as such are of limited value to understand-

ing tracer flow in highly fractured geothermal reservoirs.

Many additional refinements to the basic dispersion-convection model are
found in the ground-water hydrology and soil chemistry literature. The inclusion
of adsorption into the model with stagnant pore volume was shown by van Genu-
chten and Wierenga (1976). !° Cleary and van Genuchten (1979) showed how also

to include decay and chemical reaction in the model. !
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Recent field experience as described by Horne (1982) and Tester, Bivins,
and Potter (1982) demonstrate the need to apply a detailed model to the
analysis of tracer tests. *® An experimental study by Breitenbach (1982) showed
that considerable retention of chemical tracer possibly occurs with geothermal

material (unconsolidated). '3

Horne and Rodriguez (1983) presented a one-dimensional model for flow in a
fracture. ™ This model included convection and diffusion (Taylor Dispersion)
within the fracture. Fossum and Horne (1982) applied this model to field data

from Wairakei with some success. 13

Jensen (1983) extended this model by allowing the fracture to communicate
by diffusion with a porous matrix. ¥ Adsorption was also allowed in both the frac-
ture and the matrix. Jensen applied this model to the same Wairakei data with
greater success. While Jensen's model fitted well with the data it revealed only
partial information about flow characteristics or reservoir parameters because

of the lack of direct measurements of some of the process parameters.




Section 3: EXPERIMENTAL WORK

The goals of the experimental phase of this study were:

(1) To locate the mechanisms of the retention seen in Breitenbach’s

study. 13

(@) To determine the magnitude of the retention processes under

batch conditions.

A B80° axonometrix view of the apparatus used for this experiment is shown
in Figure (). A schematic of the flow paths is shown in Figure (2). This equip-
ment was designed by A. Sageev !7 and was later modified by Breitenbach.” De-
tailed discussions of the apparatus and of the subsequent modifications to the

apparatus used in this study are given in these earlier studies.
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Figure 1-VIEW OF APPARATUS”

An additional modification for this study was the alteration of the core
sleeve. Previous experiments used a viton sleeve to support the unconsolidated

core but because of possible interaction between the viton and the chemical
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Figure 2 - FLOW PATH OF FLUIDS!?

tracer, the viton sleeve was replaced by a stainless steel sleeve. The stainless
steel sleeve also allowed the apparatus to operate at higher temperatures. 1t
was also necessary to modify the endplugs to hold the new sleeve. The new

sleeve and the modified end plugs are shown in Figure (3) through (5).
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Figure 3 - NEW CORE SLEEVE""
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Figure 4 - NEW UPSTREAM CORE END-PLUG”

Figure 5- NEW DOWNSTREAM CORE END-PLUG!®

The core material used was unconsolidated reservoir rock. The first materi-

al used was reservoir rock from Klamath Falls, Oregon and the second was from

Los Azufres, Mexico.

The core material from Klamath Falls was comprised of drill cuttings col-
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lected from the producing zone (600-660 ft) of a well near the location of a
tracer test conducted in May 1983 by the Stanford Geothermal Program®®. This
material was described by the driller as "black lava". A geological report of the
cuttings was done and described the cuttings as fine-grained andesite or basalt
with a minimum of alteration. Before the cuttings were loaded into the core
holder, they were cleaned, dried, and sieved. A review of the sieve analysis is

shown in Table (1).

‘Table 1- SIEVE ANALYSIS BY PWCENT OF TOTAL MASS
MESH SIZE
MATERIAL
<100 100-120 120-140 140-170 170-200 | >200
KLAMATH FALLS | 77.3 6.1 3.9 35 2.6 6.6
LOSAZUFRES 93.6 1.1% 0.3 0.6 4.4

*(100-140 ) mesh

The core material from the Los Azufres field was collected from an outcrop
in the field and is described as a typical andesite of the reservoir. In this case
the material was crushed, cleaned, dried, and sieved before loading into the

core holder. Table (1) also summarizes the sieve analysis for the Los Azufres ma-

terial.

A detailed step-by-step procedure for this experiment with this equipment

is given by Breitenbach.13

The general procedure was to first load the core holder with reservoir ma-
terial. The core holder was then put into the pressure cell and connected with
all the flow lines. A vacuum was then applied to the downstream end of the core
to remove any air. The core was then brought up to the desired pressure and

temperature. After completely flushing the core with distilled water, the core
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was flooded with approximately three pore volumes of tracer. The tracer used
was sodium iodide where the iodide ion was the chemical species traced. The
effluent was collected. The cell was then isolated and allowed to sit for the
desired residence time. The core was then flushed with six pore volumes of dis-

tilled water, and the effluent was again collected.

Determination of the amount of tracer retained in the core was achieved by
mass balance calculation. The concentrations of the input and effluents were
measured by specific ion electrode analysis, using a Fisher "Accument”, Model
750 Selective lon Analyzer. Description of this analyzer and its use is given by

Jackson. 20
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Section 4: RESULTS OF EXPERIMENTAL STUDY

Seven different runs were made. Five runs with the Klamath Falls (KF) core

material and two runs with the Los Azufres (LA) core material.

Tracer concentration for all runs was approximately 20ppm. Temperature
was varied from room temperature to 300 F. Confining pressure was 1500 psi.
Residence times were varied from two hours to 72 hours. Table (2) summarizes

all the runs and gives the calculated percent mass of tracer retained.

Table 2 - EXPERIMENTAL RESULTS

CONC. | TEMP. | RESIDENCE | PERCENT
RUN | MATERIAL
(PPM) | (F) TIME(HR) | RETAINED
1 KF 18.0 194 2 2.23
2 KF 10.1 194 24 6.71
3 KF 15.0 210 60 1.76
4 KF 21.0 300 72 9.09
5 KF 17.2 300 24 -4.65
6 LA 23.2 300 72 -4.76
7 LA 22.6 300 44 4.81
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Section 5: DISCUSSION OF EXPERIMENTAL STUDY

Table (2) shows that the calculated percent tracer retained ranged from 9.1
to -4.8 percent. The negative retention values mean that more tracer was calcu-

lated coming out than was injected.

An error analysis shows an experimental error to be about 5.0% . The values

of percent retained all (but one) fall within 5.0%c0df no retention at all.

The present results are considerably different from those of Breitenbach 13
study. Results are summarized in Table(3), showing values of percent retained

ranging from a low of 17 percent to a high of about 70 percent.

Table 3 - RESULTS FROM BREITENBACH!S
RUN | CONC. T TEMP. | RESIDENCE TIME | WC‘ET\F
(PPM) | (®) (HR) RETAINED
4 10 300 72 30.6
5 20 300 72 68.6
6 50 300 72 67.5
7 100 300 72 69.4
8 500 300 72 61.6
10 10 300 24 25.9
12 10 300 2 16.9

It is possible to explain the fact that the present study sees little if any re-
tention, and it is also possible to postulate some explanations for the different

results between this and Breitenbach’s study.

Since Breitenbach also used outcroppings from the Los Azufres field the
difference between the two studies cannot be explained on the basis of different
core material. However, Breitenbach used a viton sleeve to hold the core materi-
al while the present study used a stainless steel sleeve. The sleeve was changed
because it was supposed that the viton might possibly adsorb the iodide tracer.

This is the most likely explanation for the differences between the two studies.
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Another possible reason for the difference is that the previous study did not use
high temperature valves while the present study did. It is not possible to deter-
mine if the earlier valves did leak but if they did the differences in results could

be explained.

A close examination of the procedure used in these batch experiments sug-
gests some reasons why negligible retention was seen. Using unconsolidated
material as designed, the number of mass transfer processes that could result
in retention of the chemical tracer are limited. In particular the loss of tracer
from a mobile region to an immobile region due to diffusion is not allowed. This

is because the entire core must be considered a mobile region.

Other processes which are allowed are those that can be classified as sur-
face retention processes. An example of a surface retention process is adsorp-
tion. By isolating this one type of retention process these batch experiments

demonstrate that surface retention processes are negligible.

This can be explained by examining the important parameters for surface
processes. The first important parameter is surface area. Obviously the more
surface available the more surface processes will occur. The unconsolidated
material used in this experiment gives more surface area per weight than would
be expected under reservoir conditions if flow were occurring in a fracture. Sur-
face retention processes would therefore be be magnified under these experi-
mental conditions. However another effect needs to be considered and that is
the relative volume of tracer injected. Three pore volumes of tracer were inject-
ed in this experiment while in a field tracer test orders of magnitude less than
three pore volumes of tracer are injected. The result is that in the experimental
case the number of surface sites available for surface retention processes are
overloaded in comparison to that in a realistic case. So even if all surface sites

were active in retention the retention seen, using the adopted procedures, would
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be small.

An obvious solution to this problem would be to inject less tracer. Unfor-
tunately, experimental constraints such as the sensitivity of the analysis tech-
nique and the error in the mass balance calculation will not allow for less tracer

to be injected.

Another method for experimentally analyzing those mass transfer
processes whose net effect is the retention of a tracer is to run flowing experi-
ments. Previous studies have shown that flowing experiments are more sensitive
than batch experiments. ! These earlier studies have been for porous media and
thus the analysis of the tracer return curves from these studies is not directly

applicable to a fractured media.

While there are models that have attempted to fit field data for a fractured
reservoir, these models are not wuseful in examining the retention
processes.!?15.186 Before an experiment could be designed to run flowing studies,
a model was needed in order to examine the magnitudes of various retention
processes, be they surface processes or bulk processes (diffusion from mobile to

an immobile phase).

This study has developed such a model, the derivation of which is now dis-

cussed.
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Section 6: THEORETICAL DEVELOPMENT OF TWO-DIMENSIONAL MODEL

The two dimensional, two control volume model used for this development is

shown in Figure (6). The first control volume represents the mobile region

where convection, diffusion, and adsorption are allowed. The second control

volume represents the immobile region where only diffusion and adsorption are

/ DIFFUSION
ADSORPTION /

CONVECTION —

allowed.

Y

ADSORPTION DIFFUSION

S

Figure 6 - SCHEMATIC OF TWO-DIMENSIONAL MODEL

X

A general mass balance on control volume (1)is

(rate change of mass of species in control volume) =
(net mass rate of species into control volume) t
(productionof species in control volume ) (6.1)

Assuming:
(1) Production of species is negligible
(2) Density of species is constant

allows Equation (6.1) to be simplified. Thus Equation (6.1) becomes

0Ah _ . .
- - —awli) (6.2)
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where

A . = Mass of species per total volume

j I = Total mass flux of species

The mass per volume (A ) can be expressed as

A = Gam + ¢mGCn (6.3)
where

J a.m = Total mass adsorbed per total volume
C o= Concentration of species in mobile phase

¢m = Portion of porosity due to mobile region

The adsorption term in Equation (6.3) can be expressed as

Gom = Po P m (6.4)
where

pp — Bulk density

P = Fraction of total adsorption sites in the mobile region

g = Adsorbed concentration in the mobile region per bulk
volume

Substitution of equations (6.3) and (6.4) into Equation (6.2) gives

04, 8oy PQm + m Cr

= 6.5
at at (68.5)
Substitution of Equation (6.5) into Equation (6.1) gives
8l po P gm + Cm | e
[Py P qm Pm bm 1 _ —div (57) (6.6)
ot
The right hand side of Equation (6.6) can be expanded to
]kT = J.Cp + i (6.7)

where
J . = Convective flux density

j 3 = Diffusive flux
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Substituting Equation (8.7) into Equation (6.8) and differentiating gives

8¢, aJ% ac, oJY 858+ 873V
—div (5] = jz " ¢ Yy m £ k k=,
v (i) = J2 et Cnp gt Ot gt 5 (68)

Assuming

(3) J ¥ =0, convective flow in the x-direction only

z

(4) steady flaw, ale_ 0

oz
gives
aG 8j¢= 053V
. Y . k k
—div( jI') = [J? 6: ot 2y ] (6.9)
Assuming
a-z,d
(5) ';" is negligible
gives
L, ¢, 0jy,
—dw( i) = JF 50+ a;'p (6.10)

Substitution of Equation (6.10) into Equation (6.6) gives

0[po Pam + ¢m Cm] _ [z 2o _ aj¢
at ¢ Bz oy
Because steady fiow has been assumed, the convective term can be ex-

] (6.11)
pressed as

Je = Vim ¢m (6.12)
The diffusion term can be expanded using Fick's Law of diffusion, as

, oG,
= —pm Dl " (6.13)
Yy
where
DY = Diffusion coefficient in the mobile phase in the y-
direction

Substituting Equation (6.13) and Equation (6.12) into Equation (6.11) gives

a[Pb Pam + ¢m Cim] 62Cm 80
= Yy —_ —_—
— oDk 2= = Y Vo 5 (6.14)
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Differentiating gives

8gm 8C,, 82C,, 8C,,
—_— _— ¥ - — .15

Equation (6.15) has two time dependent variables, the flowing concentration
(Cn) and the adsorbed concentration {q,,). To reduce the number of variables
to one, the adsorbed concentration is expressed as a function of the flowing con-
centration. There are many choices for such a relationship, but this study has
used the simple Freundlich linear isotherm. This isotherm assumes equilibrium
and instantaneous adsorption. The adsorbed concentration is related to the flow-

ing concentration by

m = k C, (6.16)
where

k = adsorption constant which is a function of temperature

only
Applying this relationship to Equation (6.15) gives

ac,, . BCn 8C,,

[om + P Pkm]—ﬂ-t—= om DV, a2 Pm Vm S (6.17)

Applying the same mass balance on control volume (2) as was applied on control

volume (1) gives

04
ot
For control volume (2) only diffusion and adsorption are allowed so (A ;) be-

= —div( §7) (6.18)

comes

A = po (1-P) qin + ¢im Cim (6.19)
The flux term becomes
i = U Cm + 5¢ (6.20)
The first term on the right hand side of Equation {6.20) is equal to zero because

no convection is allowed in this control volume. Differentiating Equation (6.20)
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gives
+ ajg'd
ax 0y

As in the mobile region the diffusion in the x-direction is assumed to be

dw(jf) = (6.21)

negligible. The diffusion term is expressed using Fick’s Law to give

9GCim
oy

Substituting equations {6.22),(6.21),and (6.19) into Equation {6.18) gives

#P = ¢ Db (6.22)

9g, ac; 82C,
0, (1-P) —‘;‘t”‘—+ Gy ot py 2 im (6.23)

m gy Pim ;mv
Again using the Freundlich linear isotherm to relate the adsorbed concen-

tration to the fluid concentration gives

acl'-m azcim
[¢im + oo (1-P)k |—7 = Di, Pim gz (6.24)

Equations (6.17) and (6.24) are the governing partial differential equations

for the two-dimensional model. The initial condition used for this model is one of
uniform concentration. This is given by

Cn(z.y.0) = CGulz.y.0) = G (6.25)

Symmetry is invoked at the centerline of the mobile region, so

o0Cn
0y
At the interface of the two control volumes, concentration is forced to be con-

y=0 = O (6.26)

tinuous, thus

Cm]y:w = cl'.m]y:w (6.27)

where
w = half width of the mobile region

The flux across the interface is also continuous , giving

8Cm 8Cimn

¢m Dm a,y y=w = Pim Dim "Tay_

Y w (6.28)
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The outer boundary condition in the y-direction is

8Cyn
=% = 0 -
ay V= (6 29)
The inlet condition in the x-direction is
Cm]z:O = Co (6-30)

In order to simplify the governing differential equations and the associated

boundary conditions a set of ”dimensionless” variables are introduced.

c, = —gﬂ% (6.31)
w = L 6-33)
= = (6-3%)
Pe = ‘fg‘m— (6.35)

ﬂ=-¢—";;}+f;],:—k (6.36)

« = (B (3 -3

It should be noted that all the variables are dimensionless except (R) which
has units of reciprocal time. Using these dimensionless variables the partial

differential equations become

aC'l _ 1 \ 6201 9C,;
and
0Ce _ , o, 92C;
where

1= mobile region

2 = immobile region




- 20 -

The initial and boundary conditions become

Czp.yp.0) = Cyplzp,,0) = 0 (6.41)
ac, _
5yp ot (6.42)
Cilypy=1 = Ca yp=1 (6.43)
ac, _ %
dup o=t 3y o= (6.44)
20C]
e (6.45)
C(0.yp.tp) = 1 (6.46)

The complete solution of the simultaneous partial differential Equations
(6.39) and (6.40) with boundary conditions (6.41)-(6.46) is given in Appendix (A).

The general method of solution was to transform the equations with the La-
place transform with respect to time (t) and then again with respect to (x). With
the equations in the transformed space (p-space), the solution could be solved
for directly. Unfortunately, the resulting analytic solution cannot be analytical-
ly inverted. Thus to express the solution in real space required use of the Steh-
fest numerical inversion algorithm.?® The details of this evaluation process will

be discussed later.

The analytical solution for the concentration in the mobile phase in p-space

m
G, YD

s(p +sBR)

zaCo 1 emyp + Q_
s(p +sBR)" (1-a)M(e™—e™) + za{e™ + e™™)
(6.47)

- [

C€=

where
s = Laplace operator for transforming t

p = Laplace operator for transforming x

z= [&!I-E)RS !
a

m = [EXSBR T
Pe




-21_

No mention of a fractured or a matrix is made in the above development,
rather the only distinction is that between a mobile and an immobile region.

Thus the model is general.

""he general nature of this model is best seen by considering the variables
©m)s (¢im ), and (¢, ) where
(¢m) = Portion of total porosity due to the mobile region
(¢im) = Portion of total porosity due to the immobile region

(¢r) = Total porosity
When considering the case of a completely saturated (single phase) porous
medium, essentially the entire volume should be considered as mobile, thus

Pm>>Pim
This is true no matter what fraction of the entire reservoir is considered.

With regard to the fraction of mobile to immobile region, the completely sa-
turated porous media is at one end of the spectrum with essentially everything
being mobile while a fractured media is at the other end. In a fractured medium
all but a small portion of the entire reservoir is immobile, thus over the entire

reservoir

¢im>>¢m

The model is able to consider both porous and fractured media as well as in-
termediate cases. Such intermediate cases would include only partially saturat-
ed single phase reservoirs and could possibly include multi-phase systems if the
loss of the traced material from the sampled fluid depended upon the concen-
tration difference of the traced material between the sampled fluid and the oth-
er fluids. While this model has other applications, this study has concentrated

on applying the model to fractured systems.

When considering fractured systems the nature the testing procedure is im-

portant in the understanding of the different variables. As discussed above, the
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portion of the total porosity due to the mobile phase is given by {g,,). When
tracer testing in a fractured medium, only a finite amount of tracer is injected,
thus not the entire reservoir is examined. In this case (a,) is more accurately
the portion of the encountered porosity due to the mobile phase rather than the
portion of the total porosity due to the mobile phase. This is not necessarily a

handicap to tracer analysis as will be discussed later.
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Section 7: EVALUATION TECHNIQUE

The solution to the two dimensional model is for a step input and is analytic
only in p-space, where p-space is two Laplace transformations away from real
space. Any investigation of how the different parameters that were included in
the physical model effect tracer movement in a reservoir requires expressing
the solution in real space for any value of the dimensionless variables. Further-
more, since most tracer tests are not step inputs, the solution for a step input
of finite duration (afinite-step) and the solution for a spike input (infinitesimally

short duration) are needed.

A computer program GENERATE.STEP was developed to evaluate the solu-
tion for a step input in real space. A listing of GENERATE-STEP is given in Appen-
dix (B).

GENERATE.STEP is made up of five parts; the main program (MAIN), the
function INVERSE1, the subroutine SFUNCTION, the function INVERSER, and the

subroutine PFUNCTION.

The main program (MAIN) reads and writes the values of the dimensionless
variables and the time steps at which the solution is to be evaluated. MAIN then

evaluates the solution by calling the function INVERSE1.

INVERSEL is the Stehfest numerical inversion algorithm used to invert from
(x,y,s)-space to (x,y,t)-space (real space). This algorithm requires an evaluation
of the solution in (x,y,s)-space and gets this by calling the subroutine SFUNC-

TION.

Since the solution is not analytic in (x,y,s)-space, SFUNCTION gives an

evaluation of the solution in (x,y,s)-space by calling the function INVERSEZ.

INVERSE? is again the Stehfest algorithm which is used here to invert from
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(p.y.s)-space to (x,y,s)-space. The expression of the solution in (p,ys)-space

which is needed by INVERSE2? is evaluated by calling PFUNCTION.

PFUNCTION evaluates the value of the solution in {p,y,s)-space from the ana-

lytic expression of the solution.

The program then retums control to MAIN which writes the value of the
solution for all the time steps. Examples of input and output files are also given
in Appendix (B).

The use of the Stehfest algorithm to invert the solution results in "noise" or
error caused by the numerical technique. This error is greatest where the func-
tion to be inverted is not smooth. A consequence of this error in the calculation
procedure is that negative concentrations are sometimes calculated in region
where noise dominates. Since negative concentrations are clearly not allowed,

the program sets all negative values to zero.

The evaluation of the solution for a step input is given by GENERATE.STEP,
but the evaluation for a finite-step and a spike-step input required modifications

to the above procedure.

To evaluate the solution for a finite-step the program GENERATE.FINSTEP
was developed. This program is very similar to GENERATE.STEP and has used the
concept of superpositon in time to generate the results for a finite-step. Using
superpositon, the concentration after the step input has ended is given by

Crs(t.oy) = C(t+At,0;) = Cs(t.oy) (7.1)
where
C ;s = Concentration for finite step t
C ,= Concentration for step input
At = Duration of finite step

t = Time since the end of the step input
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The only part of GENERATE.STEP that needed to be modified was the main
program MAIN. The modified MAIN that was used in GENERATE FINSTEP is given
in Appendix (C). All other programs in GENERATE.FINSTEP are exactly those al-
ready given in GENERATE.STEP. Since MAIN is changed in GENERATE.FINSTEP,
the input file is different than that used in GENERATE.STEP. An example input

file is also given in Appendix (C).

The evaluation of the solution for a spike-input is greatly simplified by the
solution technique used. It can be shown that the response of a spike-input is

merely the time derivative of a step input. Using the Laplace property

8 = 17s F(s)] (7.2)
it is easy to see that all that is needed to do to get the spike-input from the step
input is to multiply the expression for the step input in (x,y,s)-space by (s) be-
fore it is inverted to (x,y,t)-space. This is easily done by modifying SFUNCTION .
Thus the program to calculate the results for a spike-input, GENERATE.SPIKE, is
exactly like GENERATE.STEP except for a slight modification in SFUNCTION. A
listing of the SFUNCTION used in GENERATE.STEP is given in Appendix (D). Since
the main program is not changed in GENERATE.SPIKE it requires the same input

as GENERATE.STEP.
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Section 8: RESULTS OF TWO-DIMENSIONAL MODEL

It was possible to examine how each of the variables in the two-dimensional
model affects tracer movement through a reservoir by examining the return
curves that were generated by the procedure described above. While one could
look at all three type of tests (step, finite-step, spike), only the finite-step and
spike are practically applicable. Since most field tests are more like a spike-
input, this study examines how each of the dimensionless variables effect tracer

return curves for a spike-input of tracer.

The step-input program {GENERATE.STEP) was used to check the analysis
procedure. One would expect that if a system were subjected to a step-input of
unit concentration then the response of this system would have an initial delay
followed by an asymptotic approach to unity. Entering base values of the vari-
ables and evaluating the solution gave a curve similar to what was expected.

Figure (7) shows a response for a typical step-input.

RESPONSE TO STEP-INPUT
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Figure 7 - RESPONSE TO STEP INPUT
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In the generation of any return curve, the value of all six dimensionless
variables need to be entered. A simplifying assumption was made when a value
of (yp) was entered. The concentration profile at a given distance (x,) should be
the area average of the calculated values for all (yp) values, where (yp) ranges
from zero to one. This averaging procedure was not done, instead the value of
the concentration calculated at {y,) = 0.5 was used as the average value. This
assumption was made to simplify an already complicated procedure and to
prevent an already long running (cpu time) computer program from becoming
prohibitively long. The basis for this assumption was a series of calculations of
the concentration profile across a fracture. These profiles showed an essentially
flat profile with little variation in concentration across the fracture. This flat
profile is to be expected because in the solution of the two-dimensional model it

was assumed that the velocity profile was not a function of (y).

The sensitivity of the model to the five dimensionless variables; (xp), (Pe),
(8), (R), and (@)was studied by examining how a typical return curve was
affected by varying each of the variables independently. The base values of the
dimensionless variables used were determined by "eye" fitting the model to real
data. The base values used in the sensitivity studies are shown in Table (4). The

sensitivity study showed large differences in sensitivity among the five vari-

ables.

Table 4 -BASE VALUES USED IN SENSITIVITY STUDY

Pe B R a Zp

0.02 0.50 .002 .10 10000

The dimensionless variable (xp) is the dimensionless distance between

wells. The two-dimensional model was more sensitive to (xp) than any of the
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other variables. In order to be able to graph the results of varying (xg) on a sin-
gle plot the value of (xp) could only be increased and decreased by a factor of

two. The base case (xp; = 10000) and the higher and lower cases are shown in

Figure (8).
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Figure 8 - EFFECT OF X p

As would be expected when the dimensionless distance is decreased the
tracer both breaks through earlier and has a higher peak concentration than
the base case. When (xp) is increased, equivalent to a greater distance between
wells, the breakthrough occurs later and the peak concentration is less. Not
only breakthrough times and peak concentration are changed, but the shape of
the curve is changed as well. In particular the backside of the return curves are
quite different depending on the value of (xp). The backside of the return curves
is where retention effects are visible and as would be expected the greater the
distance between wells the more retention occurs and thus the longer the tailing

effects.

The dimensionless variable (Pe) is given by




and is a modified form of the Peclet number, an important variable in many
mass transport systems. Usually the characteristic length that would have been
used to make this group dimensionless would have been the actual distance
between the wells, but this study has used the fracture half-width (w). The
result is that the values of the Peclet number here are orders of magnitude less

than commonly seen.

Despite its frequent use as a group to define many systems, the two-
dimensional model showed small sensitivity to the Peclet number. Other recent
studies have seen similar effects.?! Figure (9) shows the effect of decreasing the
Peclet number by a factor of ten and increasing the Peclet number by a factor
of five. The most apparent effectof changing the Peclet number is to change the
amount of retention or equivalently the amount of tailing of the return curve.
Figure (9) shows that the larger the Peclet number the more the tailing effect.
Figure (9) also shows that relatively large changes in the Peclet number cause
small changes in the breakthrough times. Another important observation is that
the changes in the Peclet number do not create symmetric changes in the re-

turn curve.

The sensitivity of the model to (a) ,where

Pim \ , Dim
a = (';"n—) ('D—";—)
is shown in Figure (10). Like the Peclet number the relative sensitivity of the
model to (a)is small. A decrease in (a)by a factor of ten results in a higher
peak concentration, less tailing effects and a similar shape when compared to
the base case. An increase by a factor of eight results in much more tailing and

a lower peak concentration. Breakthrough times on all the curves are similar.

The effect of changing the variable (R) where
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is similar to the effect of changing (x,). Doubling the base value of (R) results in

more tailing and a slower breakthrough. Decreasing the base value by a factor

of two gives a profile with a higher peak concentration and a earlier break-
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through. These results can be seen in Figure (11).

EFFECT OF R
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Figure 11- EFFECT OF R

The sensitivity of the two-dimensional model to {8) is intermediate between
the high sensitivity of the model to {xp) and (R) and the low sensitivity o the

model to (Pe) and (@) The variable {8) is defined as

g = ®m + pFPk
@r + pk

and gives the fraction of the total retardation due to the fractured region. By
definition (g) is constrained to lie between zero and one. As can be seen in Fig-
ure (11) decreasing (@)from (0.5) to (0.1) resulted in an increase in the peak
concentration, a decrease in the breakthrough time and a decrease in the

amount of tailing. Anincrease in (8) gave opposite results.

The above sensitivity study shows that the two-dimensional model is
affected differently by the five dimensionless variables that define the model.
Within the five dimensionless variables there are at least eight unknown physical
parameters (W, ¢, ¢, P, K, Vi, Djn. Dyn ), thus there is no unique combination

of physical parameters that can be determined from or can determine the five
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dimensionless variables. This two-dimensional model makes possible the pro-

duction of tracer return curves for any given set of physical parameters and the

associated dimensionless variables.




_33_

Section 9: TRACER TEST ANALYSIS TECHNIQUE; NUMERICAL CURVE FITTING

The initial goal of this study was to model and quantify those processes that
affect the movement of a tracer as it moves through a reservoir. The two-
dimensional model described above allows this by producing tracer return
curves for any given set of dimensional variables that define the system. This
forward type of problem, a problem where the input and system are known and
the output from the system is desired, may be used to study the effects of
different processes on the model but it is not helpful for the inverse problem.
The inverse problem, frequently encountered in reservoir engineering, is where
both the input and the output are known while the system is the unknown. This
is the type of problem that must be dealt with in the interpretation of an actual
field tracer test. In a field case the details of how the tracer was injected are
known (the input), and the tracer return curves are known (the output), what is

desired is an interpretation of the reservoir (the system).

The general procedure to solve the inverse problem is to statistically fit a
model to the real data. From this fit the optimum values of the variables that
define the model may be determined. Hopefully from the values of the defining
variables it may be possible to say something about the reservoir. Since the
two-dimensional model developed in this study is very general and the variables
that define this model give information about the reservoir, it was hoped that
this model could be applied in the interpretation of tracer tests. It should be
noted that previous studies, in particular Jensen's 18 study, have attempted to fit
models to real data with considerable success. Unfortunately the variables that
were determined from the fitting process did not reveal much about the reser-
voir. The advantage of the present model is that the variables involved are more

directly associated with reservoir properties.

Before the two-dimensional model can be applied to a fitting process the
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solution must be put in a form that is open to statistical analysis. The solution
for a step input in terms of the dimensionless variables can be written as
G (i) = G Ft.oy) (9.1)

where

C s(t;;) = Concentration at time t for a step input.
C , = Concentration at inlet
F(t:a;) = Solution for unit-step input at time t

a; = Dimensionless variables {i=1,5)

«, = Pe
az =f
a3 =R
og=a
x5 = Xp

Using superpositon, the solution for a finite-step (Cfs) can be written as

Crs = G[F(t tAt) —F(t)] for ¢t >At (8.2)

The inlet condition (Cg) can be expressed as

- M
G = g (9.3)

where
M = Total mass input
Q = Total volume fiowrate
At = Duration of input

Substituting the expression for the inlet concentration into the Equation (9.2)

gives

b [ E(E+AL) = F(t) (9.4)

C, =
Js Q

Allowing (At) to approach zero is equivalent to having a spike-input. Thus a

spike input is given by
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M. F(t+At) = F(t)
Co = G liml Al 1

_HoF

-2y (9.5)

This solution can be written in a generalized form as

Cp = E ft:i) (9.8)

The term (E) is a normalization factor that normalizes the function to one.
Since there is no detailed knowledge of the inlet conditions at the entrance to
the fracture, a normalization of the solution is needed. This normalization of the

solution has no effect on the shape of return curves it only changes the size of

the curve.

The parameters in Equation (9.6) were optimized by using a non-linear least
squares method of curve fitting. This curve fitting was done by using VARPRO?3,
a computer program developed by the Computer Science Department of Stan-
ford University. VARPRO optimizes both the non-linear and the linear parame-

ters of a given function.

The method of curve fitting used in VARPRO is based on a paper by Golub
and Pereya.?* It is shown that a non-linear model of the form
n(a.p:T) = iﬂj pi(eiT) + @ra(e:T) (9.7)
Where ’
n = Model to be fit
a = Non-linear parameters
B = Linear parameters
T = Independent variable
L = Number of linear parameters
¢ = Nonlinear function
can be fitted by a non-linear least squares method by separately optimizing the

linear parameters and the non-linear parameters.
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In the present case there is only one linear parameter (E) and five non-
linear parameters (@,)-The objective function (0) which is minimized by the
least squares fit is given by

O(F,0q) = [G = C(t:E,0)F (9.8)
where
C; = Observed concentrations
C = Calculated concentrations
This function is minimized by using initial estimates of the non-linear parame-
ters and then iterating to determine the optimum values o the non-linear

parameters. The optimum linear parameter is then determined.

The details of how VARPRO works are discussed elsewhere.!®® |t is impor-
tant to note that since a Taylor expansion of the objective function (0) with
respect to the non-linear parameters {(«;) is used, an expression of the deriva-
tive of the two-dimensional solution with respect to the non-linear parameters

was needed.

A summary of the input requirements of VARPRO is
(1) N observed concentrations (C;)
(2) Value of the independent variable (T) at each data point
(3) Estimate of the non-linear parameters
(4) Evaluation of the solution at any given (T) and for any set
of dimensionless variables (o)
(5) Evaluation of the derivative of the solution with respect to

the non-linear parameters at any given (T) for any set of ().

The subroutine that calculated the solution and the derivative of the solu-
tion with respect to the non-linear parameters was called ADA. ADA needed to
include the double Stehfest numerical inversion techniques used in the different

GENERATE programs {see Section 7). Since the analytic solution is available
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only in (p,y.s)-space, the calculation of the derivatives was of necessity in
(p,y.s)-space also. Thus ADA needed to doubly invert both the solution and the

derivatives. The calculation of the derivatives is discussed in Appendix (E).

A main program (MAIN) was also needed to; read in the data and the initial
estimates of the non-dimensional variables, to call VARPRO, and to print the final
results. A listing of CURVE.FIT, which is the program that incorporates VARPRO

and all required subroutines, is given in Appendix (F).

The goal of CURVE.FIT is to determine the optimum values of the five dimen-
sionless variables for a given set of real data. The goal of the entire tracer
analysis is to determine something of the nature of the reservoir. This is done
by relating the dimensionless variables to the reservoir parameters. There can
be no unique determination of all of the different reservoir parameters because
there are more unknown reservoir parameters than dimensionless variables.
However it is possible to uniquely determine some of the physical parameters

from the dimensionless variables.

The most important parameter that can be determined is the fracture
half-width (w), which can be obtained directly. Using the definition of {(xp), the

fracture half-width is given by

w = — (9.7)
where
X = distance between wells
The fracture aperture is important not only to the flow model, as was shown in
the sensitivity study, but also to any subsequent heat-transfer model that would
be used to forecast thermal breakthrough. This ability to solve directly for the

fracture width is a major advantage over preceding methods of curve fitting.

The other reservoir parameters cannot be directly determined but could be
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approximated if some additional information were available. From the definition

of the Peclet number

Pe = — (9.9)
it can be seen that if the value for the velocity in the mobile phase (V) were
known then the diffusion coefficient in the mobile phase could be calculated.
The velocity term can be approximated by using the breakthrough time (t,,) and

the distance between the wells as

v, = = (9.10)
Lye

This approximation ignores retardation effects. Using Equation (9.10). {D,,) can

be approximated by

z w

9.11
ty; Pe ( )

Dy =

Combining the definitions for (g8) and (R), equations (6.36) and (6.37)

respectively, gives (¢, ) as

- PPk 9.12
$m V. Rk . (9.12)
[1- =,

The values of (R), and (8) are determined from the curve fitting procedure, (w)
can be calculated and (V,,) can be approximated as discussed. It may be possi-
ble to determine (k) experimentally and (o) can be estimated. Values for (P)
cannot be determined, but since (P) by definition ranges from zero to one only,

equation (9.12) can give a range for (g, ).

A range for (g4, ) can be determined if a value for (D, ) can be experimen-

tally determined since

D

—) (9.13)

Pim = ¢m(Di

As shown above, the two-dimensional model developed in this study can be

posed in the form necessary to apply a numerical curve fitting procedure. From
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this curve fitting technique it is possible to determine the optimum values of the
dimensionless variables , and from the values of these variables it is possible to
directly calculated the fracture width and to indirectly determine some of the
other physical parameters used to develop the model. The application of this

technique to real data is now discussed.
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Section 10: APPLICATION OF TRACER TEST ANALYSIS TECHNIQUE

The analysis technique discussed in the previous section was tested by ap-
plying it to data from tracer tests in the Wairakei geothermal field in New Zea-
land. This data was collected by the Institute of Nuclear Sciences of the Depart-
ment of Scientific and Industrial Research, New Zealand, and made available to
the Stanford Geothermal Program for this study. No attempt was made to inter-
pret to results on a field wide basis, rather the purpose was only to test the

curve fitting procedure.

The first important result found from attempting to fit the model to real
data was that the initial values of the non-linear variables enter into the curve
fitting process had to be “good guesses”. If the initial values were not good
choices the matching process would fail altogether. Good choices were deter-
mined by first generating return curves with the GENERATE.SPIKE program

given in Section 6 that were similar to the real data.

The second important result was that the curve fitting procedure had very
slow convergence with the five parameter model. The consequence of this was
that more than one combination of initial guesses of the non-linear parameters
and subsequent numerical curve fitting was necessary to produce an acceptable
fit. It was found that it usually took at least three series of guesses and numeri-
cal curve fittings to create a final fit. A flow chart of the procedure is shown in
Figure (13). The most important step in the overall procedure was the inter-
mediate step where the best fit values determined after numerically curve
fitting were changed before re-entering the numerical curve fitting procedure.
This step required a knowledge of how the variables affect the shape of the re-
turn curves. The sensitivity study discussed in Section (7) provided this infor-

mation.
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The third general result found when using this curve fitting procedure with
real data is that the procedure requires a large amount of computing time. An
example case of twenty iterations on a data set of forty points took about 200
minutes of c.p.u. time on a DEC VAX #750. Since any final match required many

such fits the computing time became a constraint.

The result of the curve fitting procedure for wells #24, #103, and #121 are
shown in Figures (14), {15), and (16) respectively. In these figures the data are
shown as crosses and the generated curves using the optimum values for the

variables are shown as solid lines.

GUESS
VALUES
SOLUTION _{ varPRO
--S:A- -S:A- { NUMERICAL — DATA
IN P-SPACE| CURVE FIT

— <

'l:g;usr VALUES [DONE
RETURN

S.A. = STEHFEST INVERSION ALGORITHM

Figure 13- CURVE FITTING PROCEDURE

In order to compare with other models, the results from the Fossum!® and
Jensen!® models for the same wells using a single fracture fit are shown in Fig-
ures (17)-(22). The fits from the present study are better than those from

Fossum's model and are comparable to those from Jensen's model.

The values of the dimensionless variables used to generate the curves
shown in Figures (14)-(16) are given in Table (5). The only reservoir parameter

that can be directly determined from the dimensionless variables is the fracture
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Figure 14 - WELL #24 FIT WITH TWODIMENSIONAL MODEL
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Figure 15- WELL #103 FIT WITH TWO-DIMENSIONAL MODEL

width. The value of the fracture width for each case is given in Table (6). The
fracture widths shown in Table (6) range from a low of 2.7mm to a high of

10.Imm.
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Figure 16 - WELL #121 FIT WITH TWO-DIMENSIONAL MODEL
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Figure 18 - WELL #24 FIT WITH JENSEN’S MODEL
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Figure 19- WELL #103 FIT WITH FOSSUM’S MODEL




CONCENTRATION

_45_

WHEL 1038 JENSEN

30 .

zZ

(@]

— 20 F

a

[1' 4

—

=z

O

Z 10}

o R
U .

0 ! | 1 { .
5 10 15 20 25
TIME (DRYS)
Figure 20 - WELL #103 FIT WITH JENSEN'S MODEL
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Figure 21 - WELL #121 FIT WITH FOSSUM'S MODEL
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Figure 22 - WHLL #121 FIT WITH JENSEN’SMODEL

Table 5 - BEST FIT VALUES

WELL# Ip | e | F | R a
24 1.55305 | 0.201 | 0.502 | 2.01E-06 | 0.0021

103 5.01E04 | 0.200 | 0.450 | 2.00E-05 | 0.110

121 9.71304 | 0.170 | 0.500 | 3.44E-05 { 0.004
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TABLE 6 - CALCULATED FRACTURE. WIDTHS

WELLZ FRACTURE WIDTH (mm)

24 2.7
103 6.6
121 10.1
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Section 11: CONCLUSIONS

(1)

Laboratory batch experiments run with Los Azufres, Mexico and Klamath
Falls, Oregon reservoir rock are not sensitive enough to study the mass

transfer processes active in tracer movement through a reservoir.

(2) A two-dimensional model that represents a fractured medium by a mobile

(3)

(4)
(5)

region, in which convection, diffusion, and adsorption are allowed, and an
immobile region, in which only diffusion and adsorption are allowed, can be

used to represent tracer movement through a geothermal reservoir.

The two-dimensional model that was derived in this study has demonstrated
how each of the various mass-transfer processes included in the two-

dimensional model affect tracer return curves.
It is possible to numerically fit real data to the two-dimensional model.

The optimum values of the parameters determined from the curve fitting
procedure provide a direct estimate of the fracture width and can be used
to estimate other reservoir flow parameters if experimentally determinable

values are known.
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Section 12: SUGGESTIONS FOR FURTHER WORK

An experimental study has been designed that would allow for experimental
verification of the two-dimensional model developed in this study. This proposed
study would use the same equipment as the experimental phase of the present

study with only a few modifications.

The basic idea would be to separate the stainless steel core holder into a
mobile and a immobile region by packing the center portion of core holder with
larger grain material than the outer region. A large permeability difference
between the two regions would effectively cause the center region to be mobile
and the outer region to be immobile. Previous studies ? have shown that the
difference in grain size required to achieve a 40:1 permeability ratio between
center and outer region is not very large. Sand with a (8-12) mesh range,
packed to approximately 35 percent porosity will give about a 1700 Darcy per-
meability while a (40-60) mesh range will only give about a 45 Darcy permeabili-
ty.

Separation of the two sands would be maintained by a wire mesh tubular
holder placed inside of the stainless steel core holder. Other necessary
modifications to the present equipment would include:

(1) Using endplugs with a single port entrance to restrict flow to the
center region.
(2) Rearranging the valves so that a instantaneous switch from water

to tracer can be made.

By conducting flow tests in the apparatus described above it would be possi-
ble to verify that the two-dimensional model is correctly determining the "frac-
ture" size by varying the diameter of the center region. Multiple tests (varying

flow rates) could be used to determine other flow parameters such as the




diffusion coefficients.
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Appendix A: DERIVATION OF SOLUTION TO TWO DIMENSIONAL MODEL

The defining partial differential equations are

ac, 1, 8%C, To
= - Al
and
8C, a . 0°C,
1- R = ) A2
(1-p) R 5= (£ 52 (a.2)
where
1= mobile region
2 = immobile region
The initial and boundary conditions are
Ci(zp.yp.0) = Colzpy,0) = 0 (A.3)
AW (A.4)
0yp |vo=!
Cl yD=1 = Cz VD'_'I (A'5)
C
¢, = o 0Cs (A.8)
8yp [vp=! 8yp |vo=!
0Cs -0 (A.7)
8yp o=~
C,(0.yp.tp) = 1 (A.8)
Transforming equation (A.l) with respect to t (ie. t goes to s)
= _ _ 1 \6251 _ 6C1
BRISC, - G, ) = (357~ 5
— 1 \6251 aC,
= - A9
Transforming equation (A.9) with respect to (xp) (ie. xp goes to p)
_ 1 . 8%C, _
SBRCE = (g oo [pCE - Cif. ]
Transforming boundary condition (A.5)and rearranging gives
1 | 8%C, -G,
Syt = A 10
(B ggp ~ @ +SPRICE = — (A.10)
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Equation (A.I0) can be treated as an ordinary differential equation in (yp),
and can be solved by method of undetermined coefficients. The solution to the
corresponding homogeneous equation is

(C)n = 4™ + Be P
where

|~

1
_, 1.7
m = ()" (p+spR)
The solution of the corresponding particular problem is

Co
(C{,)P = S(.P +SﬂR)

The general solution is given by the sum of the homogeneous and particular

solutions, thus the general solution is

__ %
s{p +sBR)

Transforming equation (A.2) with respect to (t) (ie. t goes to s)

C? = Ae"YP 4+ Be "D 4 (A 11)

8%C,
oy

(1= BR[sC, = Cof, ) = (£

or

8%C _
2 _ s(1-B)RC; = O

0yp

This is an ordinary differential equation whose solution is given by

o
(Pe

Co = Me™+Ne™
where

z=[ Pe(l —;3)1‘?5_]2i
a

Boundary equation (A.4) determines that (M) is equal to zero and boundary

equation (A.2) gives

N = (C vo=o)ez“_yp)

Thus the solution for (Cg) in (x,y,s)-space is
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c, = (G, - ¥p) (A.12)

yp=l)e

Since in equation (A.12) only (C) is a function of {xp) equation (A.12) can be

transformed with respect to (x;) (ie. xp goes to p) as

— z{(1 —vp) (A.13)
C‘g - (q]yp=l)]e
To determine the unknown parameters A and B in equation (A.ll) both
equations (A.ll) and (A.13) must be solved simultaneously. Applying boundary
equation (A.4) gives

A=B
Applying boundary equation (A.6) gives

zal, 11 1
s(p +sBR)" "(1-aQ)M(e™—-e ™)

Using equation (A.14) in equation (A.11) gives the solution of the partial

A= - +za(e™ + e ™)} (A.14)

differential equation (A.l) and (A.2) for (C) as

Co
s(p +sBR)

zal, _ e"¥0 4 o WD
s(p +sBR)" (1-a)M{em™—e™) + za(e™ + ™)

(A.15)

- [

C’?:




Appendix 3: LISTING DOF GENERATE STEP AND S&MPLE INPUT AND QUTPUT
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Vi O

HFAFFH TR IRFI 2R AR HTFFE I ARSI AR IERAF R SR AR B R AN RR

GENERATE. STEP
R e e s F ST TR TR FETEEEE R E L S e A L L Ll

PROGRAM BECINS

HHAHF AR FHAF BN A ARAFTSHBEIF AR S A IR BR A BB AR F S0 RN AR

IMPLICIT REAL®8(4A~-B, D-M. 01}
DIMENSION CTITLE(ZOr, T(AO00 ALF (13, ACRCT, 150

HPERF RSB FFASIAAF L AN B AL IR A A AR HRALA R AR RA AR AL GRS ARG R AFFR RS R RF IR

READ anl WRITE IRITIAL Datsa

WL IS THE KUMBER 0OF NONLIHEAR PAR&AM- TERT

=
EET ML=S FOR SINGLE FRACTURE

KL=3
WRITE(&, 30INL
FORMAT{ 'NUMBER OF NONLINEAR FPARAMETERE = ) I

18}

£ IS THF NUMBER OF LINEAR PARAMETERG

I
WRITE(4&, 32:L _
FORMAT { "NUMBER OF LINEAR PARAMETERE = ', I}

N IS THE NUMSER OF DOBSERVATIONS

READ (5, #) N
WRITE (4,407 N
FORMAT ( ‘NUMBER DF OBSERVATIONG = . 14!

READ AND WRITE ESTIMATES OF NONLIREAR FaAR&NMUTERD
ALF(1=PECLET NUMBEF = PE
&LF(2y=EBETA
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LLF 3k =R
ALF{A)y=4LPHA
ALF{3r=XD

NRITE(A, 42)

FORMAT(//, "INITIAL ESTIMATES OF NON~LINEZAR
DO 50 J=1i.NL

READ (5. %} ALF(J}

WRITE(L, 45)3 ALF ()

COhe: INUE

FORMAT(/. "ALF ', I2, '=",E15 %

REALD anND WRITE DATA

T IS THE INDEPENDENT VARIELE TIME
WRITE(&, 51)

FORMAT(//. ‘TIME STEPS ", /)

L2 32 W=1,H

READ(D, a3 T(W¥}
WRITE (L, 60 YKK, THK)
CONY TRUE
FORMATIOX, IR, 13, FB 3¢

-

TRVeRE

)
-s

FUR STERFLE wiF

CALTULATE MATRIX &

CAHLCULATE THE CONCENTRATION CRLY

K=1

DOO100 J=1.N
TL=T1 45
XD=ALF (5

ACL Ky=XINVRIOTD, N M, XD, ALF )
IFCALG K. LY. . 0) At V=G G
COnT INUE

PRINT SUT RESULTS
WRITE(&, 133)

FORMAT(//, T2C, "RESULTE ", 7, TS, "TIME , T23, "CON

WRITE(L, 185){T¢IY. AL, s, T=1.H:
FORMAT (/7 /. (E1Z2 3. 720 E12 T

£

AR AR NNN SR R ARG F A AT RS T bt A

BHAF SR A AR FFHU SRS ALF IR F SR W4t
FUNCTION INVERSEL

G F TS AR LSRRI A H I RN AR AR AT A BRI

PARAMTERS "}

B 2> TR St I
E B R R N

S i - R I IR

e A I

S R a RERt
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THE GTEHFEST ALGORITH

B R R AFA SRS SRS AF AR SS SRS

THIS IS THE FIRST INVERSION WHICH GOES FROM (X, Y. SI—-SPACE
BACK TO REAL TIME. 1Y NEEDS THF
FUNCTION IH S-SPACE Al TO 2O THIS

AS A FUNCTION

FUNCTION XINVRLI(TD, N M, XD ALF?

THIS FUNTION COMPUTES NUMERICALLY

INVERSE CF F(3:.
IMPLICIT REAL#E (&4-H.0-2}
DIMENSION G(30), V{30, H(25:

MOW IF THE &ARRAY V(I KAS C
GOES DIFECTLY T2 THE END OF
Fig}.

IF (ROEG 1)y OO 7O 17

M=
DLOGTW=0, £53147 1843895

Wi-=hy 2

THE FACTIRIALDS TF 1 TD AR
R EES
ST 1 I=2
GilimE{i-1)%]
CONTINVE

EVALUATION
IT CALLE SFUNCTION

OF THE

THZ LaFLACE TRNSFORHM

OHMPUTED BEFDRE THE PROGRAM
CaALCULATE

THE SUZRUT

TERME WITH ¥ SHLY ARE TALCULATEDR INTQ

H1Y=2 /G {NH~1
DO & I=2, A
Fl=I

IF(I-NH) 4,5, 4
Hi{l)=FIlaaNH®*G(
GO TD &

HUI I =F I aaiH#G 295/ (G(I}aGI~1 01
COR 1 INUE

2RI AIGNH-T 1#G{ LG {I~-1)}

THE TERME (—1)#aNH+1 ARE CALCULATLD.

FIRST -THF TERW FOR =i
EN=2% (NH-NH/222) -1

THE REST 0OF THE EN'S ARECALCULATED I THE MA

THE ARRAY ViI) IS CALCULATE
DT 7 I=i. N

FIRST SET VWil =0

VEI)=0
THE LIMITS FOF W ARE ESTABL
THE LOWER LIMIT IS wi=INTES

D

N TO

ARPAY

=

it
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UTIRE
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Ki=(I+11y/2

THE UPPER LIMIT IS K2=MIN(I.N/2)
Ke=I
IF (K2-NH) 8,8.9
K2=NH

THE SUMMATION TERM IN V(I) IS CALCULATED.
DO 10 K=K1, K2
IF (2®4-1I) 12,13, 12
IF (I-¥} 11.14,11
WD =Vl aH K A IG(I- K aGi2aa-1))

GO 7O 1¢

VII =V (IAHK P /G CI~K)
G¢d 7O 10
VD=V +HK ) /G (2#K~1)
COonT INUE

THE VW(I}: ARR&4Y IS FINALLY CALCULATED BY WEIGHTING
ACCORDIKNG TO sN.
VT =S O

TH

"

TERM St CHANGEE ITE SIGN EACH ITERATIONW

BUIN z"‘:‘:\.

CO g THUE

THE NMUMERICAL APPROZIMATION IS CALCULATED
XItvR1=0.
A=DLOGTNATD
LD 13 I=1/ N
ARG-A*]
XINVRI=XINVRLI+VII)=SFUNCLARG. I, XI: ALF
CONTINUE
XINVRI=XINVRI#A
RETURN
END

RN AFRFRF AR R A RH AT A A LRGSHHBIR XS DRI SR IR IS AR GCH BRI ERD

LT A L e R R EE T PR T T TS EE SR SRR Sy Y
FUNCTION SFuUNCTION

HUAAR AL HEE I EH AR A H I AR AR N AR AR D AR R ISR AR AR A

FUNCTION SFUNC (S, I. 2D, alLF}
IMPLICIT REAL=B{ 4~y O~21

THIS FURCTION SIMPLY EVALUATES THI DESIFED FUnITIion I
S~-SPACE BY CALLING FOR A SECOND INVERSION USING TH

£
STEHFAST ALGURITIW. IT SH3ULD BE WNOVEL THAT THE vARIDLE
THAT 1S TRANSFORMED FROIM GOING FROM S~-SPACE TO A-IPaACE

IS XD THUE £ IS & CONSTANT FRCOM THIZ POINY I
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XD=xD

E=5

N=1G

M=2424

SFUNC =XINVR2(XD, N, 1, S, &iLF}
RETURN

END

aR LR e S AR LR L L IR T TR L R L LT R R R S A e
bbb e e Ll b E e E R R R L e Y e L L r Ry
FUNCTICH INVERSEZ
FHAD SRR RRRRF IR RS DR AR B DR F B H R TP D035 303 36 338 5 H 5 N
THE STERFEST ALGORITHH
HARIFHREFHRARBII R AR EAR R R BRI N

THIS FUNCTION WILL IMVERT FROM (P, V. S3-SPACE TO (X.VY.S)-
EPACE WITH XD BEING THE VARIEBLE OF INVERSION. THE FUNCTION
NEEDS AN EXPRESSION FOR THE FUNCTIDN It P-SPACE AND

THIS IS DONE BY CALLING PFURC(XD, S}

FUNCTION XINVREZ XD N M S ALF)
THIS FURTION CCOMPUTEID NUMERICALLY THI LAPLACE TRNSEORA

INVERSE IF FiI-

L ICIT REAL_2R A=k, -

—nie . R i By i s
DIMENSION G(SC), VeSS0 H(2%:

HOW IF THE AaRRAY VI WAS COMPUTED BEFDRE THE FPROGRAM
GOES DIRECTLY 70O THE EXND OF THE SURRUTINEG T3 CALCULATE
Fogy

IF (N EG )y G2 7O 17

fi=ty

DLOGTW=0 &9314718B055759

NH=MN/2

THE FACTORIALS OF 1 TO N ARE CALCINATEL INTD aARR4AY &
Gii1r=1
GLli=G(I-10%]
COtdy INUE

TERME WITH ¥ OHNLY ARE CALCULATED
(1:=2. /GINH~1}
& I=2,HNH
I

YT

2

ARRAY &

=)
o
LN

'NH: 41 5' ’b

RO SFIaaNHYG 29I (G INH-T 25 IsaC(I~1"
DER W S

HOL ) =F IaaH#G (2% ) /G Liaei—1 )7
CONT INUE

THE TERME (—1)##fkH+: ARE CALCULATED
FIRST THe TERH FOR [=1
EN=24 (MNH-MNH/ 2223 -1
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THE REST OF THE SN'S ARECALCULATED IN THE MAIN RUTINE

THE ARRAY W(I) IS CALCULATED.
PO 7 I=1,N

FIRST SET V(I!=0
V(I¥=0

THE LIMITS FOR K ARE ESTABLISHED
THE LOWER LIMIT IS KI=sINTEG((I+i/2))

Ki=(I+1i:/2

THE UPPER LIMIT IS WR=MIN(I.,wW/2})
2=1
W2 =NH

THE SUMMATICN TERM IN VY(I) IS CALLCULATED.
LT 1C wk=ki, k2
IF t2=#k-1I) 12,13, 12
IF (I-%: 11,14,1

R U R S T BT P RO S
SO TO 1C

VT sV rHOR Y /G I-0)

G0 TO 10

MITa=e DiaHK ) /GIZ2¥K—T )
COtdy INUE

THE V(I ARRAY IS FIRAILY CALCULATED BY WEIGHTING
ACCORDIRNG T S
ViTi=Elad(l}

THE TERM SN CHANGES ITS SIGN EACH ITERATION

N=-SN

ONT INUE

O Ul

THE HNUMERICAL APPROXIMATICH IS CALZWLLATED
XINVRZ=Q. O

A=DLOGTW ./ XD-

Bo 15 I=1.N

ARG=A%]
XINVRZ=XKINVRZ+V I I4PFUNC (ARG [/ &/ ALF}
CONTINUE

XINVRZ = XINVRI2#®A

RETURM
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FUNCT LON PEUNC
R T Y L e T AR IR L S S L L IS L)

3 Oy

FUNCTION PFUNC(P. I.S.ALF}
IMPLICIT REAL#B(A-H, O~Z)
DIMENSION F(4), ALF (20}
YD=C. 35

<
C INITIALLY SET alLL vALUES TG ZERD
B 1t I=1.4
F{I1=0.0
! COMY IRUE
FFR=G. G
C
2 CALCULATE THE COMPOHENTES OF THE CDONCEMTRATION FUNCTION
C

Z=((ALF 1% (1 —ALF 2V 24l F 2281 /4L F{4) 230 5
= (P+SaALF (2}24LF(3) /ALF 1 i%a0C 3
=7 X4
Flii=1/(8#(P+(Sa#al F(2)sAlF (31}
Figi=IMasalF{d /(SR {P+{(SxA F 28 F(Z;
FI3y={] O+ (IMs&i_F{ad}i-aL F {3 y2EXP (XM +
H{ALF (G I+ (Ml Fid}y =1 DyaExXP XM
Figr=Ey@ o XxMevyDi+E P - X9
FRr=fili-iF{daFiq) FiZ:;
RN =FR
RETURNK
enp
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TEST: GENERATE &
NUMBER OF HONUINEAR PARAMET =
NUMEBER OF LINEAR PARAMETERS = 1
NUMZER OF DESERVATIONS = 26

mm
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[HITIAL ESTIMATES GOF NON-LINEAR FARAMTERS
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Appendix C: LISTING OF MAIN OF GENERATE. FINSTEP AND SAMPLE INPUT

***%#*§§********%********************%************************

GENERATE. FINESTEP
HERAER DRI RH AR USRI IR R IR N3 AT B0 305 98 35 5252390553 % 9 3038

PROGRAM BEGINS

ﬂ***%*********&%%****%***%%%%#*ﬂ*%%%%%*%%%*ﬂ%*%%*****%**%%*%**

YOI 00

IMPLICIT REAL#B{4-B, D-H, 0-7
DIMENSION CTITLE(20), T(400): ALF (143, A(A00, 12}, B(400, 13)

(@]

{

**%%ﬁ*%%%#***#%%%%%?*%**%ﬂ%ﬁ%%#@%h4*%#*%*%4&%##%%*§§%#4##%%%%*%§%

[ N

REAL AND WRITE INITIAL DATA

)

REATCD, 10CTITLE

FORMAT: 20A4)

WRITE (&, 20 CTIT
S FORMAT (10X, 2CA2;

NL IS THE NUMBEFR OF NONLINEAS PARAMETERS
SET NL=% FOR SINGLE FRACTURE

[ NS AN

[

M=%
WRITE{(&, 30INL
FORMAT ( ‘“NUMBER OF NONLINEAR PARAMETERS = -/, I2)

[ e
3

O]

L IS THE NUMBER GF LINEAR P&4RAMETERS

L=N_/5
WRITE{(&:, 3570
FORMAT({ ‘“NUMBER OF LINEAR PARANETERS = T

Pl

N IS THE NUMBER GF OBSERVATIONS

T )
o

READ (5, =} N
WRITE (&, 40 N

L]

DELT IS THE DURATION OF THE STEP INFUT

PPN B a1

C FORMAT( 'NUMBER CF QBSERVATIONS P
READ (S, #)DELT
WRITE (6&,41) DELT

41 FORMAT ( "DURATION OF STEP INPUT = ', F& 2
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s

Nt

OO 0O

[}

D

(W)

(@I

7

o

£

("

READ ARND WRITE ESTIMATEES 0OF NONLINEAR PARAMETERS
ALF (1 )y=PECLET NUMBER = PE
ALF (2)=BETA
ALF{3) =R
LF(4:=ALPHA
ALF (5)=XD

WRITE(&, 42)

FORMAT(//, "INITIAL ESTIMATES OF NON~LINZAR PARAMTERS 1
DO 3G J=1,NL

READ (S, %) ALF(J)

WRITE (&, 45)J. 4LF ()

CONT INUE

FORMAT(/, "ALF ', 12, "=/, E13. 5

READ ARND WRITE DATA

T IS THE INDEFENDENT VaRILDLE TIME
WRITE (K. 31

FORMAT (//, ‘TIME STEFES ", ¢

0 52 wMh=1, N

EAT /5w Ty s
WRITE (&, &0 ¥w. T UEK

CONTINJE

FORMAT(9X. I2. i3X, FZ 27

SET PARAMETERS FOR STERFES?! INVEREION

NN=1 0
M=2424

CALCULATE MATRIX A

CALCULATE THE CONCENTRATION ONLY
USE SUPERFGESITION

K=1

DO 100 J=1.N

XD=alFi5;

Th=7T 14}

AC WI=YINVRI (TD, NN M XD &LF
IFacd, kY LT 0 0) AU KI=0 0
IF(TD LE DELT: GO 7D 100
TR=T(.4)~-DELT

Bod, WisXINVRIIOTD, RN M. (D AR
Al Y i=aid, W ~-Bod, ke
IF(ACG K LT 2. 0y Acd W)y=0 0
CONTINUE

PRINT OUT RESULT

L1




WRITE(&. 153)
15832 FORMAT (/7. T2C, ‘RESULTS, /, TS, ‘TIME *, T25, "CONC. 3
C
WRITE(AH, 1SS (T(I), A(L, 1), 1I=1,HK)
1S5 FORMAT(//, (E12. 5, T20,E12. 5)
C
END
4 SAMPLE INPUT FOLLOWS 3333833435538 R UFH R F B F R 1 AR H 3R
63 33 36 3 3 34 H S S 3E 26 3 36 3 36 I 34 3 36 I 36 363 I 363 335 W3 3 I 353 3 3 30 I 036 334 3 I Fb 30 I 3 3 M IR

TEST: GENERATE A FINITE-ETEP
e

G 19%72E-05

& 0270049

. 16331ECSE

RN e O

IR

;
£ o

[CIS

Syt o

i}

T

Ly
o A ) O

frs




Appandix D@ LISTING OF SFUNCTION FOR GENERATE. SPIKE

L d S et M e eIl R R
AR R F R AR R F R R RN FHF RN F A B HF A A RSB H

FUNCTION SFUNCTION
SRR R R RS L D R R L E 2T T R R e

YOO OO

Ley'

FUNCTION SFUNC(S, I, XD, ALF}
IMPLICIY REAL=#B{A—H, 0O-Z;

THIS FUNCTION SIMPLY EVALUATES THE DESIRED FUNCTION IN
S-SFACE BY CALLING FOR A SECONMD INVERSION USING THE
STEHFAST ALGORITHM. IT SHOULD BE NOTED THAT THE VARIBLE
THAT IS TRANSFORMED FROM GOING FROM S~SPACE TO P-SPACE
IS XD THUS S I8 4 CONSTANT FROM THIS FOINT ON

NOTE THE TIME DERIVATIVE NECESBARY FOR THE SPIWE INPUT
I€ ACHIEWVED 8Y MULTIPLING TeE FURNCYION BY 3

TTCY YT O OO YO

(e8]

Y

e
o]

o

L=XD
S
N=13

M=2324

SFUNC =S#XINVR2(XD N, M, G, ALF?
RETURN

END

-~

May 31, 1934
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Appendix E: CALCULATION OF THE DERIVATIVES OF THE TWO-DIMENSIONAL
MODEL

The calculation of the derivative of the solution equation (6.39) with respect
to the five dimensionless variables ‘was done in {p,y,s)-space. These values were
then doubly inverted and entered to the curve fitting program as needed. The

analytic expression for the solution is

-myp

Co
s{p +sBR)

zoC, . e" V0 + g
s(p +sBR)” (1~a)H(e™—e ™) tza(e™ T &™)

(E.1)

ct = - [

To simplify the calculation of the derivatives, the solution has been separat-

ed into the following functions

1

Tv= SEvsEm) (5:2)
(Za
- m
fz = S +sBR) (E.3)
fs = {1+ (-;—a —ole™ + [a+ (—:’L—)cx—l]e‘"‘ (E.4)
fo= (™0 + ™0 ) (E.5)

The derivative of the solution with respect to any of the dimensionless vari-
ables can be calculated from the derivative of the above simplified functions
with respect to the variables. The following notation greatly simplifies the gen-

eralization of the calculations. Let

Pe = aj
B =
R=(X3

o = o0y
Xp = Qs

In general the derivative of the solution with respect to any dimensionless
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variable {(qa;) is given by

AF . afl afz 8r3 0S4
By —f2f8f43 flf8f4a +f|f2f46a +fofef st (E.6)

All that is needed to complete equation (E.6) is an evaluation of ( 07, =13, This par-
Qj

tial derivative term is denoted by PD(i,j), where

Function number

Variable number

j

For («,) the partial derivatives have been calculated as

PD(1,1) =0
PD(21) = —2
m°a,s
PD(3.1) = ’;"‘4 22 1o - -h—) m( 1t - e
PD(4,1) = —[’:gl’ e D - oTVD)
1

For {a,) the partial derivatives are

X3
PD(1,2) = -
(1.2) o
Qg 1 2 g

2,R) = - =+ ]

-PD( ) zms [Z alamzj
_ 3 204 a, x42 zZa af xy2 _
PD(3.2) = zma,{[l m T T g ale™ e A o - e

PD(4 2) - gﬂsyg {emyp _e—"ﬂID)
! 2a1m

For (ag) the partial derivatives are

Q2

mia?

PD(1,3) = -

1 (1-a3) 3Bzayop
PD{2,3) = % _—
(2.3) 2m 2 afm?

(1 —ag)af  aaz _ zay |, (1-ax)af | au2
3.3 Qg 2)&7 mo_ + 2)O1 4 X4Z 1 ewm
PD(3,3) = *{[1 P m? ayle [a, + — oz 2 le

PD(4,3) = f%zsﬂ(emup — ¢ D)

oa,m

]




-71-

For (a,) the partial derivatives are

PD(1,4) = 0
PD(24) = —E—
oym
PD(3,4) = [%(—:ﬁ —1]e™ +[1 - -;—{;—)]e—m
PD(4,4) = 0

The above shows how the derivative of the solution can be calculated for all
the dimensionless variables except (zp). This derivative was calculated using the

following property of the Laplace transform

SF “14p
azD _P(L f)

Thus the derivative with respect to (zp) was calculated by multilpying the solu-

tion by p before it was numerically inverted from (p,y,s)-space to (x,y,s)-space.




Appendix F: LISTING OF CURVEFIT

Yy Yy Y O (Y

7 Cr Co 0 [gg!

[}

[}

]

3

foy
(@

o Y

1

Y Cr 7 2 [

Ty (2
in

-

O R
(o]

B4R 333 34 H 23 3 302 333 I I3 I S SN RN H NN

T R e e L s A s A TR SR PR S T S St ST
PROGRAM BEGINS

HARFF BN ARERRAFF AT AR AR E AR FH TR TH RN T A S HHRE RN
MalN PROGRAM

HHEFRFHRAGF RSB F AR AR ERAF AR SR FER AR FRH I A FAA SRR AR AR A RS R AR ERFHNR
IMPLICIT REAL#B(A-B,DbP-H,0~-Z:

DIMENSION CTITLE(20). T(R0D). Y400, &LF (147, PETALT7, W{4CO},
4INC(14, 8, A(4A00, 13, Ci400"

HHAHBRAFTAFRFTRF AR RHALILTATAAFR AR IARAT AL AT IR I I T HRIRFAIP I BRI HIR
SET PARAMETERS FOR VARPRD

EXTERNAL 4Alb

NI s =400

IPRINT=1

READ ARD WRITE INITIAL DATA

READ (S, 10:CTITLE

FORMAT (2044 )

WRITE (&, 20) CTITLE

FORMAT (10X, 204a%)

WL IS THE NUMBER OF NONLINEAR PARAMETERS

SET NL=S FOR A SINGLE FRACTURE

NL=5

FORMAT (/ NUMBER OF NONLINEAR PARAMETERZ = ', 1&.

L IS THE NUMBER &F LINEAR FPARAGMETERS

L=RL/S

WRITE(&., 35)L

FORMAT { '"NUMBER 0OF LINEAR PARAMETERS = -, 12

NOTS THE RNUMBER DOF DBESERVATIONE

READ 5, #) N

WRITE (4&,40) N

FORMAT (/ NUMBER OF OBSERVATIONS = -, I5:

IV IS THE NUMEBER OF INDEPERNDENT VAR IBLES

Map 24, 1093




bg]

e NeRy!

=

YT OO DN

Yy

(20N'y

[

Y Ct

a
b

IV = 1

SET CONSTANTS

LPPIZ=L+NL+2

LP=L+1
WRITE(&, 41)IV, LPP2. NMAX, LP
FORMAT(T20, ‘CONSTANTS /(I3

REAL AND WRITE ESTIMATES OF NONLINEAR PARAMETERS
ALF(1)=PECLET NUMBER = PE

ALF (2)=BETA

ALF {3’ =R

ALF (4 :=ALPHA

ALF (51=XD

WRITE (&, 42)

FORMAT(T2C, “INITIAL ESTIMATES OF NONLINEAR PARAMETERS’
DO SO J=1. NL

READ (5 #) ALF(J)

WRITE (&, 85)J, ALF (U

CONT INUE

FORMAT( -ALF ' 12, ‘=, £15 &

REAL Hhh WRITE D&aTw
T IT ThE INDEFENDENT VARIDLE TIME
¥ LS Th: DEPENDENT VARIBLE ITONCENTRATION

WRITE(&, 51

FORMAT (TS, 'DATA KNG 7, T22. "TIME . T4L, 'CONCENTRATION
DO 352 KK=1,N

READ (S, #) TLkKI, Yk

WRITE(SH, &OYKIA, T{HK ), Y L{RKE !

CONTINUE

FORMAT(9X, I3, 13X, F8. 3. 10X, F7 23}

SET Wil THE WEIGHTING PARAMETERGS
RO 7¢ I=1.N

W(Iy=1 G

CONT INUE

CALL WVARPRO TO DRETERMINE Tr: BEST

Ti
(2]
-4

Wi L}E 5

Calt WVARPRO(L, NL, N NMAX, LPFZ IV, T, Y. W. alhA, &
+IPRINY, ALF, BETA, IERR

PRIT FInNAL Pcdu_T; ARD CACTULATE BEST
TIME POINTS IN SRIGINAL DaTe FLOT 20T
RETURN CURVES

S

WRITE (&, 807
FORMAT(T20, "BEST FI17T VALUES

Mayg 31, 198«
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WRITE (&, 89)(I,ALF(IY, 1=1,HL)
FORMAT(7ALF ', I2, '= “,E15 &
WRITE(H, R0) (I, BETA(I), I=1,L10
FORMAT( "BETA ', I2, '= ", E15. 5}

CALCULATE CONCENTRATION BY CALLING ADA

ISEL =1

LP=L+1

WRITE (&, 130)

FORMAT (1HO, "CALCULATED CONCENTRATIONS . £, 7S, "TIME ",

#T15, "CONCENTRATION, //

CALL ADACLP, NL, N, MMAX, LPP2, IV A IRC, T, ALF. ISEL
DO 14C I=1.N

ClI'=RBETA(1)=A(], 1

WRITE(&, 135 T(I). (I

CONT INUE

FORMAT (11X, 2F10C 4)

STOF

END

363 A I T W T A TN S S22 5P 3 32 R3S E N3 O 3 S S 3 3 50 3E 3 3E R 36t

FRFDETHIATRFF AR AR TR AR F AR F TR A AR TR R TR R R RN F RN

SUBROUTING ADA

AR FRF A IRE R T2 AR AT SR H A TAFH PRI BHTRRRIH A FR SRR IR FR USRI R T T A RN

11

SUBROUTINE ADA(LP, L6 N NMAK LPPZ, IV, A, THC T ALF. I

IMPLICIT REAL®B(A-H, 0O~}

DIMENSION ALFONL Y, ACNMAX, LPPZ:, THNMAX Y, IRNC(
L=tP~-1

Np=1C

M=2424

-
Cin !

L

0

s

a,

SEYT INCIDENCE MATRIX: INC (¥, J) = 1 IF ALPHAIK: AFPEARS [N PHI(J)

SkiIF UNLEES ISEL IS EGUAL TO 1

IF (ISEL EGQ. 2! GO TO 20

IF (ISEL EG.3) GO TO 11¢C
DO 10 J=1l.L

DD 10 K=1.,NL

INC K, L)y=2

IFCIR+4y /72 LT. S5 INC(K, 1)=1
IFCIK+43 /2 GE 3% INIUK, 2i=1
CON Y INUE

CALCULATE MATRIX A

CALCULATE COLUMN By COLuUMi
FIRST CalCULATE THE CONCERTR&ATION OHLY

May 31, 1984




100

[ @]

- 7MY

-

")

&
LA )

[ R I

g’}

et

[ ] l‘.

[

DD 160 J=1,N
DO 99 K=1.L
TD=T(J
ISET=1
XD=ALF (5%¥ )
KK =K

(U, KI=XTINVRI(TD, NN M, XD ALF, T
IF(A(U KDY LT. 0. C) AU KI=0. O
CONT INUE
CONTINUE
SKIP THE CALCULATION OF DERI

SET. KK}

VATIVES 1IF ISEL=2

IF (IBEL EGQ 2) GD TO 3&0

CALCULATION CGF THZ DERIVATIVES

FIRST CALCULATE DERIVATIVE WITH RESPECT TGO ALF(i;
DD 150 J=1.N
OO 15C “=1.L
TR=T(J?
KL= ALF(Sxk)
ISET=2
IB—?
CTE L =xINVEDOTD e KD ALF D TSET
IFeadd, w LE 2.0y &0 I8 el D

UD“TI“UF |

CaLTULATE DERIVATE WITH RESFEIT TO ALF 2 (IBETA

=

DR 207 U=,
DO 200 K=

I

-t

’

XD=ALF (5#¥)

ISEYT = &

IB3=4

AL u>~XINVR‘(TD,mm M, XD. &LF, ISET. v}
IFald, WY LE. C Gy A(J, IB=C. O

CORTINUE

CALCULATE DERIVATIVE WITH RESFPECT TO &ALF (3, (R
DO 2°
DC} zu‘
TD= T(d)

XD= ALF‘S*L)

nkﬂ
s I ]

=1, N
=1, L

]

i,

et
<) e |
[¥]

i
=

[Tk T == §

(FE)




VY Y W

W}

€3
tad

n

e TeATY € Y T e e

SN

Y

DO 300 J=1.,N
DO 300 ¥=1,L
Th=T(J}
XD=4LF (5#¥)
ISET=S
IB= &
IFCACU, KY LE. C.0) AGJ, IBI=0 0
CONT INUE

CALCULATE DERIVATIVE WITH RESPECT TO ALF(3); (XD:

DO 285 J=1, M

DO 350 #=1.L

Th=T(J)

AD=aALF (Sl )

ISET=

IE=7

AU IBr= XINVRI(TD, NN, M, XD, ALF, ISET, K
IFiats, ). LE. O.0) ALY IBI=C. G

CONT INUE

CONT INUE

RETURN

END

R R R TR IR R T EST R L R B VLI U S B T R i s g gl RIS SO g 0 e R LR AR LU R IR S s s L e
SR B IR S R S 2% b R S G 3 R 3 R A SR S S O R T T A R R SRt 3 R
FUNCTION INVERSE:
E P R R R L Ll LR B AR R R B g il e R R e R B R L R R R B PR B R R L ]
THE STEHFEZT &KL.GDEITHM
HERHTFEFER S FHAFFAAI A H XTI RIS

THIS IS THE FIRST INVERSION WHICH GOES FROM (1. Y. 53~2PACE
BACK TD REAL TIME. IT NEEDE THE EVALUATIONR OF THE
FUNCTION N S-SPACE ARD TO DO THIS IT CALLS SFUNCTION

HE A FUNCTION

FUNCTION XINVRIA(TD, N M. XD}
THIE FUNTION COMPUTES NWUMERICALLY THI (aF acE TRESFORNM
INVERSE OF F(E5).

IMPLICIT REAL®BE (A-H.0-I}

DIMENSION G(SC), VISC)H. HZ2S:

NOW IF THE ARRAY V(I WAE COMPUTED BEFORE YHE PROGRAM
GDES DIRECTLY TO THE ERD OF THE SUBRUTINE 7O CALCULATE

F{g).
IF xR ESG MY GO TO 17
Pg==t
DLOGTIW=0 . &9214718G5E39
NH=r/Z

THE FACTORIALE OF 1 TS N ARE CALCULATEL 1NTD AaRFay I




et

I

DO

[a N RN N

Y )

w oo

DD 1 I=21N
GIIY=G(I-1)%#]
CONT INUE

TERMS WITH K ONLY ARE CALCULATED INTO ARRAY H.
H{1)=2. /G(NH-1?
DO & I=2,NH
FI=I
IF(I-NH) 4151@
HOI ) =FI4aNH#G(2# I/ (GINH-II*G(IIRCG(I-1})}
GO TO 6
HOI)=FI#aNH#G(2#I)/(G(I)x#G(I~1))
CONT INUE

THE TERMS (—1ixxpNH+1 ARE CALCULATELD.
FIRST THE TERM FOR I=1
SN=23 { NH-=hil /D82 5 — 1

THE REST OF THE SN'S ARECALCULATELDR IN THE MAIN RUTINE.

THE ARRAY W1} 1S CALCULATED.

DG 7 I=1, N
FIRST SE7 w(I:=2
Vili=C.
THE LIMITS FOR W ARE ESTABLISHEID

T
THE LOWER LIMIT IS KI=INTEG{(I+1/3::
i=(I+11/2

THE UPPER LIMIT IS K2=MINCI, W 2}
o=
IF (K2-NH) B. 2.9
K2=NH

THE SUMMaATION TERM IN V(1) IS CALCULATED
DG 10 =K1, K2
IF (2¥K-1; 12, 13,12
IF (I-Ky 11,14.11
VI sV i+HK: /A (G{I-KIsG(2#4-1))
GO TO 10
VOV =TI +H(K /G (I-K)
G0 7O 1C
VIIY=V (L +HK /G (28K -1
CONT INUE

THE V(I ARR&AY IS FIRALLY CALCULATED BY WZIGHTING
ACCORDING T3 &SI
VIIi=8NxV (I}

THE TERM SN CHANGES I[TE SIGN EACH ITERATION
Sh=-EN
CONT INUE
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13
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[l

OOy

TPy o

L A ]

Ty

[ B

(W]

s

fe]

(@1

2T Y Y T Ty Y

Y O

[l

THE MNUMERICAL APPROXIMATION IS CALCULATED.
XINVR1I=C.
A=DLOGTW/TD
bg 15 I=1t.N
ARG=A%#]
XINVRI=XINVRI+V{I}*SFUNC (ARG, I, XD}
CONTINUE
XINVRI=XINVRi*A
RETURHN
END

HAZARRAFRAER IR SR RA T AR SR G AT RS R H AR E XD R F R FF RS GH R RN HHH

HARD AR A AT AR B R R AR SRR ARALR DA BRALFREHA AR A TR AR R R RARFRAABEF RS R
FUNCTION SFUNCTIOH

HEARFEAARNER AR TR H A ARR AR IR A D FF A AR TR HRAASFRT AR A FHAHHFHRAS

FUNCTION SFUNC(E, I, XD:

IMPLICIT REAL®#8(A-H, 0-Z;

THIZ FUNCTION SIMPLY EVALUATES THE DESIRED FUNCYION IN
S-SRPACE BY CALLING FOR A SECOND INVERSION UZING TH"
EVEFAZT ALGDRITHF  IT BE NOYED TH&T THI YARIZLE
ThR&T 15 TRANSFORMEDS FROM GO FRON S-28478 7O :--D’"E
IS XD THUE 8§ IS5 A CONSTANT FROM THIZ POINT O

-
I
m

THE £ FUNCTI”N IS MULTIPLIED EY S IN ORDER TO IJALCULATE
TitZ DERIVATIVE THUS PRODUCING A SFIKE INPUT

11=2424

SFUNC =Sx*XINVRZ(XD, N, M. S
RETURMN

END

FRETRARATARE R F R FRIUR A ARG T F o R R F RN A B R R YRR RS RN
HRAHFHEFF AR SRR IR LA XN AL LR A AR AR RS HA SR A F AT IR AL AHEFH TSR
FUNCYION INVERSERZ
RAXFERTAF BB ANFR RS R AR AR LA RJ RGBSR AN DSt RS F GG TSR
THE STEHFEST ALGORITHM
ARG R ARSI RATT ISR RS

THIS FUNCTION WILL INVERT FROV P-SFAC
WITH XD BEING THE vARIELE OF INVERZINL
=

L8

NEEDE AN EXPRESSICK FOR THE FUNCT
THIS IS DONE BY CALLING PFUNCIXD,

FUNCTION XINVRZ (XD, k. 1, )
THIS FUNTION COMPUTES NUMERICALLY THZ LAP_&CH TRLSEIRNM

May 31, 19824
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INVERSE DF F (&},
IMPLICIT REAL#B (a-H,0O~7)
DIMENSION G(3G), V(S0), H(25¢

NOW IF THE ARRAY V(I) WAS COMPUTED BEFORE THE PROGRAM
GOES DIRECTLY TO THE END OF THE SUBRUTINE TO CALCULATE

F{g).
IF (N EG. M) GO TD 17
M=N
DLOGTW=C. 4931471805392
NH=N/2

THE F&GCTORIALS OF 1 TU N ARE CALCULATEDR INTO ARRAY G.
Gilry=1
LG 1 I=2, W
Geli=G{(I-1)#I]
CONTINUE

TERMS WITH K CNLY ARE CALCULATED INTO ARBEAY H.
H11=2. /G(NH-11
DO & 1=2, NH

Fi=i

IF(I-HRY 4.5, &

Hi L =F I#aNH#G 22Ty 7 (G(NH~-T #3146 I-1
S TD &

BTSSP Dl s 2910/ G D16 o100

CONT INUE

THE TERMS (—1:a#NH+1 ARE CALCULATED
FIRST THE TERM FOR l=1
GR=2% (NH=-FH/2421-1

THE REST OF THE SN'S ARECALCULATED IN THE MAIN RUTIRE

THE ARRAY V(I) IS CALCULATED.

RpO7 I=1,N

FIRSY SET -V({I:=0

ViI=0.

THE LIMITS FOR K ARE ESTABLISHED.
THE LOWER LIMIT IS KI=INTEG((I+1/2::
Wi=(I+1)/2

THE UPPER LIMIT IZ WZ=MmIN(], R/DD

THE SUMMATION TERM 1h ViI) IS CALCULATED
DG 1C k=K1, K2
IF (2#K-1I) 12,13
IF €1-K) 11:18.1

12

’
i
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VD =V TR 7 (G{I-K#G i Zwu~11)
GG Tg 10

VDSV L i+HR ) /G (I—-n)

GO 7O 16

VL =V(11+H(K)} /G(2%K=-1)

CORTINUE

THE V(I) ARRAY IS FINALLY CALCULATEDR BY WEIGHTING
ACCORDING TO SN,
VII)=BN#V{T)

THE TERM SN CHANGEES ITS SIGN EACH ITERATION

Eri=-SH
CONTI

THE NUMERICAL APPRUOXIMATION T8 CALCULATEDR
XINVRZ=0. 0
A=DLOGTW /XD
DO 15 I=1i.N
ARG=AT]

X INVR2=% INVRZ+V (T} +PFUNC (ARG, 1, &/

CONTINUE

XINVRE = XINVE2#a

RETURN

BN
%9*%%&%%%#&%&%%%%§%%#&%&}ﬂ@ﬁﬂﬁﬁﬁéhﬁﬂiwéﬁ%%%ﬂ%%?ﬂ@%1%@?#*@%%#%%*§*§
%%%ﬂ%%%%ﬂ***@ﬁ%%*%%#ﬁh%#%ﬂ?wkﬂﬁh%%%w%ﬁ%%*%ﬁ%QQQﬂﬂ%%hﬂ%%%%zé%%%*i**

FUNCTION PFUNC
PR R BAGRG AR ID R A LTARAARS RS2 A F A ARG TR RR T DR 2R AR FEARAR

FUNCTION PFUNI(P., I, S/ ALF, I8ET, K}
IMPLICIT REAL=#BIA~-H, 0-7)

DIMENSION PDT /4.4, DF(S), Fodt. ALF (20
YD=0. 5

I

- -

LY SET all vaLUES To

L4k )
s

PDF¢I, U
o

FLI)=0. 0O
CONT INUE
DF (3= ©

CALCULATE THE COMFONENTEZ 07 THE
- ,
[ b

NOTE THAT IF ISET=1 THIS 1o &~

=0 CALF (1% (1 ~ALF (21 1#ALF (2 a8 AL F i i el S
=l (PHSRALF (T #AlF i3 74 F 1 saal b

IM=1/%M

il
vy
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GO G0

47y

o

(o}

Y 80

Fili=1/(S#(P+(SxALF{2)#ALF (3231}
F2i=ImsalF(4)/ (SH(FP+(SH*ALFE(21#ALF(3) 133
F(3)=(1. O+ (ZMaALF (41 )-ALF (4 )I#EXP (XM} +

#(ALF () + (IM*ALF (4)~1. O} =EXP (~XM)

FOdi=EXP (XM®YD)+EXP (~XMaYD}
FP=F(1)}—(F(2)2F{&}/F(3}}
IFCISET EQ. 1}GO TO 15

CALCULATE THE PARTIAL DERIVATIVES aND STOGRE IN PDF
FIRST CALCULATE WITH RESFECT TO ALF{(1:

POF(1,13=0.C

POF (2, 13=(ALF {4 #Z/{ (XMa323 1% (ALF{1:%%2 )1 1#{1 /8)
Pl=((2 2T/(XM##2 }1+1 —~ZM—(1 7ALF{4:) r#EXP (XM

Pa=02 #2/(XMa%2 1341 +7M~(]1 JALF LAY ) #EXF (—xM;
POFi(3, 1 1=(XM*ALF{4) /{2 #aLF (1)1 3#(P1+F 2

POF (4, 1=(XM2vD/ (2 *ALF (1)) )% (EXP{—XMaYDi—EXP(xMeYD))

CALCULATE WITH RESPECT TG alF(2:

SI==ALF G0 iMeed e lALF v AT
CRALF (423 CUAMBALF (L) vl )
SrE—ALF G SE ROXMesE R (1 ST R 10
+IMHALF Q= i F O e

o I A F g X Mm-n 3 s aEZYP x4,
FO3=rALF (G s+t ALF (3 {ALF {7 132 )
Zrv+IMsALF (4 /M~ ysEYX®-xM

PLFE 3, 20={(ALF(31#3)1 /(2 AL F{1 ) # XM 12 (P

Pi=¢:

{ [SIE O g

et

i

<k

=
FOF (G 2i=(aLF 31 883YD/ (2 24 F(134#XM r2 (EXF aMa D ~Exo,

CALCULATE WITH RESPECT TO &LFi3:

PDF {1, 31=—ALF{2) /(i xMaad 1 %iALF(1}4%2 1

P1={(3 #Z#ALF(21#ALF{3)/ t{XM*ALF (1) )%%2 )
PRDF(2,31=01. /(2 #(XMa#2 Y118 ( (1 ~ALF{2;/7:~P1:
PE=1. +IM#ALF (4 )+ ({ALF (1 #32 18 (]-&LF (T~

(ZaALE (233 )-IH#ALF (& 7 XM~alF (4)

EEALF (R IMRALF (A~ (LALF (1 3a%2 ) {1-aLF (L7
(Z2ALFA(20 Iy +IMealF (3 /XM~ 1.

PDF (3, 21=(S#ALF (2} /(2 #ALF (1 12XM} )3 P24EXP L AM ) ~F 32EXF ¢
FDF (4, 3)=(S#ALF (2)aYD/(Z #AF (1 #XM )% (EXP ( xthayD ) —gEx8.

CALCULATE WITH RESFECT TO ALF (4,

PDFi1.4)=C O
POF (2, 4)=7/(RF 1% xMasd 1
i

POF 3, =0 (M2 ~1 1REAF AN + (1 =120 =B XP -
FOF &, =0 G

NOW CALCULATE THE DEZRIVATES

K=F (1 #F (2)#F <3y aF 4
DO 10 I=1.4

May 31, 1934
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DO 2 J=1.4

DFECI y=(K/F(J)#PDF (2, I)+DF {1,
CONT INUE

CONT INUE

CALCULATE THE PARTIAL DERIVATIVE WIHH REGFPECT TO XD
DF(S)=(P#FP)~(1./S)
CALCULATE THE NEEDED FUNCTIONE AS CALLED RBY THE CALLING PROGRAM

IF(ISET. NE. 1) GO TO 20¢
PFUNC=FP

GO 70 1%

PFURC=C. O

GO T4 202
IFCISET. NE. 23 GO TQ 30
PFUNC=DF (1)

G0 TO 29

PFUNC=0. O

GO TO 200

IFCISEY NE 2:G0 TO 40
PEUNC=DF (2}

GO 7O 3%

PECR T =00 O

y it
+ -

e
s

]

[E200¢ &

IFIISET KE 46D TO
PEONC=DF {3}

GO 7O 4%

FRURNC=0 &

GO TO 200
IF(ISET NE. SIGO TC &0

PFUNC=DF (4)

GO T3 59

PFUNC=0. O

GO 7O 200

IFLIGET NE. &G0 TO 70

PFUNC=DF (3}

G0 70 &9

PEJRNC=0. O

GO TQ 200

WRITE(&, 75)I5ET

FORMAT (//, "ERROR ISET QUT GF BOUNDS ISET =7, 3% i4:
RETURN

Enp

o
[

HHAFAR R RN TR RN ARSI R ARRHR L FR AR FAI L0220 TRIE AR RE

HRAFFRAUAFHGU T AR AR RA R d GG ER AT BRI R Ty e by F R et
SUBRGUTINE VARFRD

R R LR kR D e e . B B B R R N e R R R & - -y

SUBROUTINE VARPRO (L, NL, K, NHMAX, LPFPZ., 1. T Y. N AD& &
X IPRINT. alF., BET4. IERF:

tMay 31, 1983
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GIVEN A SET 0OF N DBSERVATIONS, CONSISTING OF VALUES Y1},
Y2y, ..., Y(N)} OF A DEPENDENT VARIABLE Y. WHERE Y (I}
CORRESPONDS TO THE IV INDEPENDENT VARIABLE(S: T(I. 1), T(I.2).

.o TUI INVY, VARPRO ATTEMPTS TO COMPUTE ‘A WEIGHTED LEAST
SQUARES FIT TO A FUNCTION ETA (THE ‘HODEL ‘') WHICH IS A LINEAR
COMBINATION

L
ETA(ALF, BETA: T) = 8SUM BETA = PHI (ALF; T) + PHI (aLF; T
J=1 J J L+l

OF NONLINEAR FURCTIONS PHI(J) (E.G. ., & SUM OF EXPONENTIALS AND:
OR GAUSSIANG). THAT 18, DETERMINE THE LINEAR PARAMETERS
BETA{J: ANG THE VECTOR OF NONLINEAR PARAMETERS ALF BY MINIMIZ-
ING

2

NORM(RESIDUAL)Y = S
I

2
MmoW ® Y - ETACALF, BETA, T 33
1 I I I

| 4

THE (L+1)-ST TERM IS COPTIONAL, AND IS USED WHEN IT IS DESIRED
TO FIX ONE OR MORE CF THE BETA'E (RATHER THaN LET THEM BE
DETERMINED . VARPRD REQUIRES FIRET DERIVATIVES OF THE PHI‘E.

NITES

Al THE ABGVE PROBLEM 1% &LG0 REFERRELD

ROMLINEAR REGRESTION . FOR USE IN STATISTICAL ESTIMATION,
VARPRO RETURNES THE RESIDUALS, THE COVARIANCE MaTRIi OF THE
LINEAR AND NONLINEAR FARAMETERE. anND THE ESTIMATED VARIARNCE OF
THZ OBSERVATIGCNE.

Lo To A "MULTIPLE

S alN ETA OF THE ABOVE FORM IS CALLED ‘SEPARADLE- THE
CASE OF A NOMSEPARABLE ETA Cal BE HANDLED BY SETTING L = C
AND USING PHI(L+1}

C VARPRO MAY ALSO BE USED TO SOLVE LINEAR LEAST SGUARES
PROBLEMS (IN THAT CABE N3O ITERATIGONS ARE PERFORMELD . SET
R = O

Dy THE MAIN ADVANTAGE OF VARPRO OVEFR OTHER LEAST SGUARES
FROGRAMS 1S THAT WO INTTIAL GUESSESE ARE NEEDED FOR THE LINEAE
PARAMETERS NOT ONLY DOEES THIE HAKE IT EASIER 7O USE, BUT IT
OFTENR LEALCE TO FASTER CORVERGENCE.

DESCRIPTION OF PARAMETERS

- NUMBER OF LINEAF FARAMETERS BETA (MUCT 25 GE OO
R NUMBER OF NONLIDEAR PARAMETERS ALF gautzT o &8 o0

M NUMBER OF DBSERVATIONS N MUSET BE GREATER THAN L+ N
(I.E. , THE NUMBER 0OF ORSERVATIONE MUST Z:JEED THE
NUMBER OF PARAMETERS).

IS MUMBER F INDEFENDENT VARIABLES 7

May 31, 1984
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INC

IPRINT

ALF

BETA
IERR

REAL N BY IV MATRIX OF INDEPENDENT VARIABLES. T(I, B
CONTAINS THE VALUE OF THE I-TH OBSERVATION OF THE J-TH
INDEPENDENT VARIABLE.

N-VECTOR 0OF OBSERVATICNS, ONE FOR EaACH ROW OF T.
N-VECTOR OF NONNEGATIVE WEIGHTS. SHOULD BE SET 7O 1S
IF WEIGHTS ARE WOT DESIRED. IF VARIANCES OF THE
INDIVIDUAL OBSERVATIONE ARE KNOWR, W(I@ SHOULD BE SET
TC 1. /VARIANCE(I}.

NL X (L+1) INTEGER INCIDENCE MATRIX INC(K, J} = 1 IF
NON-LINEAR PARAMETER aALF (K} APPEARS IN THE J-TH
FUNCTION PHI(J). (THE PROGRAM SETE ALl OTHER INC(K, J)
T3 ZERO. ) IF PHI(L+1} IS IRNCLUDED IN THE MODEL.

THE APPROPRIATE ELEMENTS OF THEZ (L+1:-857 COLUMN BHOULD
BE SET TQ 1°E INC IS NOT NEEDED wWettd & = O OR NL = 0.
CAUTION: THE DRECLARED ROW DIMENSION OF INC (IN ADA}
MUST CURRENTLY BE SET 1O 12 SEE "RESTRICTIONS Y BELOW.
THE DECLARED ROW DIMENSION OF THE MATRICES A AND T.

IT MUST BE AT LEAST MAX (N, 2+NL_+3)

L+P+2, WHERE F 1S THE KNUMBER GF ONEsS IR THE MATRIX INC.
THE DRECLARED COuUMN DIMENSION OF & 1MUST Z2 AT LEAST
LPPZ2. (IF L = O BET LPP2 = NL+2 IF NL = 0. SEY LPPR2
L+

REAL MATRIX OF SIIE MAX (M, 2tNL+2: N INPUT
17T CONTAINS THZ PHIGUY 'S AND THEIR ‘S (SEE
e COLUMNS OF

BELOW:! Or QUTeeT THE FIPTT [t

A Wl COMNTALG & ARPROXINMGT IO YO THEZ
COVARIANCE MATRIY AT THE SOLUTICK (THE FIRZY L ROKWS
CORRESPORD 1T TrET LINEAR PAR&SMETERS  THE LAST KL TO THE
NOMLINEAR ONEZ o, COLUMN LARL~+1 WILL TONTAIL THE
WEIGHTED RESIDUALE (Y ~ ETAY. Ali, LML+ WILL CONTAIN
THE (EUCLLIDEAN! NORPM OF THZ WEIGHTED RESIDUAL . &ND
AT, L+NL+2) WILL CONTAIN AN ESTIMATE OF THE (WEIGHTED?
VaRIANCE OF THE ORSERVATIONS. NORMIRESID
(W — L — NLY
INPUT INTEGER CONTROLLING PRINTELD OUTRUT IF IPRINT IS
POSITIVE, THE NORNLINEAR PARAMETERS, THE NORM OF THE
RESIDUAL, AND THE MARGUARDT PARAMETIF Wil BE DUTRPUT
EVERY IPRINT-TH ITERATION (AND INITIALLY. aND AT THE
FINAL ITERATION: THE LINEAR FAEAMETERZ WILL. BE
PRINTED AT THE Flida I[TERATION ARy ERRDA MESZAZED
HILL ALSDO BE PRINTED. (IPRINT = 1 IS RECOMMENDED AT
FIRST. ¢+ IF IPRINT = O, ONLY THZ FINAL QU&NTITIES WILL
BE PRINTED. &5 WELL AS ANY ERROR MESSAGER IF IPRINT =
-1, RO PRINTING WILL BE DONE. THE USER IS THEN
RESPONSIBLE FOR CHECKING THE PARAMETER IERR FIOR ERRORS.
NL-VECTOR OF ESTIMATES OF NONLINEAFR PARAMETERS
CINPUT ¥ ON QUTRUT 17 WILL CONTalIn DPRTIMAL VAL UES OF
THE HRONLINEAR PARAMETERS
L-VECTOR OF LINESS PARAMTTERS vJUTFUT DN v
GER ERRIR FLAG (OUTRUT!
.GT. 0O~ SUCCESSFUL CONVERGENLE. IERE
ITERATIONTS TAKEN.
1 TERMINATED FIFR TOO MaRY ITERATIOND
2 TERMINATED FOR TLL-CONDITIGHING - MARGUSRDT

WALy eR

HELWMBER OF

{11
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PARAMETER TOO LARGE. ¥ 4LS0O SEE IERR = -8 BELOW

=4 INPUT ERROR IN PARAMETER N, L. KNL, LPP2, OR KMAX.

-5 INC MATRIX IMPROPERLY SPECIFIED, OR P DISAGREES
WITH LPP2.

-4 A WEIGHT WAS NEGATIVE.

=7 CONSTANT " COLUMN WAS COMPUTED MORE THAN ONCE.

-8 CATAETROPHIC FAILURE — A COLUMN OF THE A MATRIX HAS
BECOME ZEROD. SEE "CONVERGENCE FAILURES’ BELOW.

(IF IERR . LE. -4 THE LINEAR PARAMETERS, COVARIANCE
MATRIX, ETC. ARE NOT RETURNED.

SUBROUTINES REQUIRED

NINE SUBROUTINEE, DP&, ORFACL, ORFACZ. BACSUB. POSTPR. COV,
XNORIM, INIT. AND VARERR ARE PROVIDED. IN ADDITION, THE USER
MUST PROVIDE a SUBROUTIKE (CORRESPONDING TO THE ARGUMENT ADA:
WHICH. GIVEN ALF, WILL EVALUATE THEZ FUNCTIOWS PHI(J) AND THEIR
FARTIAL DERIVATIVES D PHI() /D ALFtR1, AT THE SAMFLE FOINTS
TeIs, THIE ROUTINE MUEST BE DECLARED "EXTERNaAL " IN THE CALLING
PROGRAM. ITS CALLING SEQUENCE IS5

SUBRQUTINE ADA (LL+1, KL, N. NMAX, LPFZ, IV, A INC., T, &LF,
ISEL:

THE USSR SHDULD MIDIFY THE EXAMELE SUEIRTUTINE ADA (GIVEN
ELSEWHERE Y FOR WIS OWN FUnITIONS

THE VECTOR SAMPLED FUNCYIONS PRI SHAQULD BE
FIRPSY N ROWS AND FIRST L+1i COLUMNG 5F THE MATRIX
arl, JY SHOULD CONTAIN PHI{Y, alLF, YT(I1,13, T:1,27 S
TOILIVYY, I =1, ..., W J =1, ..., L (OR +1:. THE (L+13}-5T
COLUMN GF A CONTAINE PHIL+1) IF PHI(L+1) IS IN THE MODEL.
ODTHERWISE [T IS RESERVED FOR WORKSFACE. - THE 'CONSTANT® FUNC-
TIONS (THESE ARE FUNCTIONS PHI(Jr WHICH DO WNOT DEPEND UPDON ANY
NONL INEAR PARAMETERS ALF, E. G, T(I)##J) (IF ANY) MUST AFPEAR
FIRSYT., STARTING IN COLUMN 1. THE COLUMN N-VECTORS OF MNONZIERO
PARTIAL DERIVATIVES D PHIG)Y / D ALF{K) SHOULD BE ETORED
SEGUENTIALLY IN THE MATRIX A IN COLUMNTS L+2 THROUGH [+F+1.

THE ORDER [E

>IN THE

]

TORE
I

m

o

D PHIC(1) D PHI(2) D PHI(LY © PHI¢L+1* [ PHICL:
D ALF(1) D ALF(13 D ALF(1/ D ALF1: T AcFiot
D PHI(2: D PHI(L+1) D PHICLY O PHI‘L+1!
baFze Db aF@ 0 ALea A

OMITTING COLUMNS OF DERIVATIVES WHICH
PHI(L+1) COLUMNS IF PH1(L+1) IS NOT IN
THE LINEAR PARAMETERS RETA ARE NKIOT USED
COLUMN L+P+2 IS RESERVED FUOR WORKGPATE

-

THE ™MIDEL NOTE Trin”
IN TRE MATELX fH

T T R ier T Y Yty
Al IS0 Al Oy lina
{

May 31, 1934
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THE CODING OF ADA SHOUL. D BE ARRANGED SO THAT:

ISEL = 1 (WHICH OCCURS THE FIRST TIME ADA IS CALLED) MEANS.
A FILL IN THE INCIDENCE MATRIX INC
B. STORE ANY CONSTANT PHI'S IN A
C. COMPUTE NONCONSTANT FHI 'S AND PARTIAL DERIVA-
TIVES.
2 MEANES COMPUTE ONLY THE NONCONETANT FUNCTIONS PHI
= 3 WMEANS COMPUTE ONLY THE DERIVATIVES

#
!

(WHEN THE PROBLEM IS LINEAR (hNL = 0) ONuY ISEL = 1 IS5 USED, AND
DERIVATIVES ARE RNOT WEEDED )

RESTRICTIONS

THE SUBROUTINES DPA, TNIT (ARND ADA COWNTLIN THE LOCALLY
DIMENSIONED MATRIX INC, WHOSE DIMENZTONS ARL CURRENTLY SET FOR
MA?IMA OGF L+1 = 8B, N. = 12 THEY MUST BE CHANGED FOR LARGER
FPROBLEMS. DATA PLACED IN ARRAY & IS OVERWRITTEN ( 'DESTROYED ;.
DATA PLACED IN &ARRAYES T, v AND INC IE LEFT InNTATT THE PROGRAM
RUNS IN WATFIV., EXCEPT WHEN L = O OR NL

I
[w}

IT IS ASSUMED THA THIE MATRIX PHI(J ALF., Til:: HAS FULL
CSOLUIN RANS TH MEANSZ THAT THE FIRST L CIULUMNE ZF THE MATRIX
ACMUET BE L IREARD Y [NDEF

e g
ST
SRSUATR (I

OFTICOHN&L WOTE AS Wlia. BE NIOVED FROM TS SUBFPROGRAM
ADA. THE DERIVATIVES [ T 000D ALF(¥: I9E g%
COMPUTED INDEPENDENTLY DOF THE FUNCTIONS FHI o = &

SINIE THE FURNCTION ValJfi ARE OVERWRITTEN - 7oF ~ 1% ZALLED
WITH ISEL = 2 THIS IS DORE TO MINIMITE STIFAGE. &7 Tke POS-
IBLE EXPENSGSE OF SOME REIOMPUTATION (SINIE THE FLNHITISRIE AND
CERIVATIVES FREQUENTLY HAVE SOME COmMOly SUBRLAFPIZOI IONS: TO
REDUCE THE AMOUNT OF COMPUTATION AT THD EXFZHSE 0F SOME
STORAGE, CREATE A MATRIX B OF DIMENSION WMar EY L-+1 IN AD4, AND
AFTER THE COMPUTATION 0OF THE PHI'S (ISEL = Z.. COPY THE VALUES

INTO B, THESE VALUES CAN THEN BE USED TO C4.0ULATE THE DERIV-
ATIVES (ISEL = 3. (VHIE MAKES USE OF THE FalT TOWHEN A
CALL TO ADA WITH ISEL = 2 FOLLOWE A Cell WIT= ISEL = 2. THE
ALFS ARE THE Sattr .

fs} !'.ll‘

TO CONVERT TO OTHER MACHINES, CHARGED THE TUTPUT UNIT IN THE
DATA STATEMENTE IN WARFRD. DPA, PUSTPR. AND VARERR THE
PROGRAM HAS BEEN CHECKED FOR PORTABILIT: By DBl LABE PFORY
VERIFIER. FOR MACHIKNES WITHIUT DCOUBLE PREC O HARDWARE, 1T
MAY BE DESIRABLE TO CONVERT TD SINGLE PRECIS THIZS CAr BE
LONE BY CHARNGING (A&7 THE DECLARATIONS 'DOURBLY FREZISICHS TQ

REAL Y, (B. THZ PATTERK ~ 07 70O B’ I T
VARFED, (C: DSIGN. DSART alD DaARE TO SI5, LT a4l Atg
ESPECTIVELY, ARND (DY LEXF TO Esv 1 1

NOTE Ci INTERFRETATION OF CUVARIANCE MaYRI

FOR USE IN STATISTICAL ESTIMATION (v TIe & R INZLS

L
it

May . 1984
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REGRESCSION: VARPRO RETURNS THE COVARIANCE MATRIX OF THE LINEAR
AND NONL INEAR PARAMETERS. THIS MATRIX WILL BE USEFUL ONLY IF
THE USUAL STATISTICAL ASSUMPTIONS HOLD. AFTER WEIGHTING, THE
ERRORE INM THE OBSERVATIONS ARE INDEPENDENT AND NORMALLY DISTRI-
BUTED, WITH MEAN ZERD AND THE SAMKE VARIANCE. IF THE ERRORS DO
NOT HAVE MEAN ZERO (OR ARE UNKNOWN), THE PROGRAM WILL IBSUE A
WARNING MESSAGE (UNLESS IPRINT . LT. 0O) AHD THE COVARIANCE
MATRIX WILL HOT BE VALID. IN THAY CASE, THE MODEL SHOULD BE
ALTERED TO INCLUDE A CONSTANT TERM (SET PHI(i) = 1. ).

NOTE ALSO THAY., IN DRDER FOR THE USUAL ASSUMPTIONS TO HOLD,
THE OBSERVATIONS MUST ALL BE OF APPROXIMATELY THE SAME
MAGNITUDE (IN THE ABSENCE OF IMNFORMATION ABOUT THE ERROR OF
EACH OBESERVATION), OTHERWISE THE VARIANCES WILL NOT BE THE
SAME. IF THE OBSERVATIONS ARE NOT THE SaME SIZE. THIS CAN BE
CURELD BY WEIGHTING

IF THE USUAL ASSUMPTIONS HOLD, THE ZSQUARE RDOTS OF THE
DIAGUNALS OF THE COVARIANCE MATRIX A& GIVE THE STANDARD ERROR
E(1l OF E&CH PARAMETER. DIVIDING ALI. 4 By S(Iyx80J) YIELDS
THE CORRELATION MATRIX OF THE PARAMETERS. PRINCIPAL AXES AND
CONFIDENCE ELLIPSQIDS CAN ZE OBTAINED ZY PERFORMING AN EIGEN-
VALUE/EIGENVECTOR ANaALYSIS ON A ONE SHOULLD CALL TRE EISPACK
FROGRAM TREDZ., FOLLOWED BY TGLZ (UOR USE THE EISPAC CONTROL

FROGR A

CONVERGENIE FATLURES

IF CONVERGENCE FALLURES OCCUR, FIR3T CHECY FOR INCORRECT
CODING OF THE SUBROUTINE ADA. CHECHK ESPECTALLY THE ACTION OF
ISEL, AND THE COMPUTATION OF THE PARTIAL DERIVATIVES IF THESE
ARE CORRECT., TRY SEVERAL STARTING GUESSES FRR aALF 1F ADA
IS CODED CORRECTLY. aARD IF ERROR RETURNMNS IERF = -2 OR -8
PERSISTENTLY OCCUR. THIS IS & SIGN OF ILL-CONDITIONING, WHICH
1AY BE CAUSBED BY SEVERAL THINGS. ONE IS POOR SCALING OF THE
PARAMETERS: ANDTHER IS At UNFORTUNATE INITIAL GUESS FOR THE
PARAMETERS. STILL ANOTHEF IS & POOR CHIICE OF TRE mODEL

L=

ALGORI THM

THE RESIDUAL R IS MODIFIED TO INCORPORATE. FOR
ALF. THE DPTIMAL LINEAR FARAMETERDS FOR THAT ALF

! J R
POSSIBLE TO MINIMIZE ORLY ON THE NONUINEAR FARAMETERS AFTER
THE OPTIMAL VALUES CGF THE NOMNLINEAR FARAMETHEHRD HAvE BEEN DETER-
MINED. THE LINEAR PARAMETERS CaNN BE RECOVERED EY LIKNEAF LEAST

CQUAREES TECHNIQUES (SEE REF. 13

THE MINIMIZATION IS BY & MODIFICATION OF ISpORNE 'S (R
MOCDIFICATICON OF THE LEVENDBERG-MARQUARD™ ALGIRITH
SOLVING THE NORIMAL EGQUATIONS WITHE MATRI:

(J G+ MU = O WNHERE o o= DiETAL D SR

May 21, 1987
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STABLE ORTHOGONAL (HOUSEHOLDER) REFLECTIONS ARE USED ON A
MODIFICATION OF THE MATRIX

{ V) }
( ““““““ ) ]
{ NusD

WHERE D IE A DIACONAL MATRIX CONSISTING OF THE LENGTHS OF THE
COLUMNSE OF . THIS MARQUARDT STABRILIZATION ALLOWS THE ROUTINE
70 RECOVER FROM SOME RANK DEFICIENCIES IN THE JACOBIAN.
OSBORNE 'S EMPIRICAL STRATEGY FOR CHOOSING THE MARGUARDT PARAM-
ETER HAS PROVEN REASONABLY SUCCESSFUL IN PRACTICE. (GAUSS-
RNEWTON WITH STEP CONTROL CAN BE OBTAINED BY MAKING THE CHANGE
INDICATED BEFORE THE INSTRUCTION LABELED 59 A DESCRIPTIDN CANM
BE FOUND I REF. (3}, ARD A FLOW CHART IN (I:'. P 22

FOR REFERENCE, SEE

1 GEME H GOLUB AND V. PEREYRA., ‘THE DIFFERENTIATION OF
PSEURO- INVERSES &ND MONLINEAR LEAST SQUARES PROBLEMES WHOSE
VARTAZLES SEPARATE., © TlaM O NUMER. AN&L. 10, 413-432
(1973,

2. T . SaME TITLE, STANFORD C. & REPORT 72-241. FER 1972,

3 OSEORNE. MICHAEL R. . 'SOME ASPECTS OF NON-LINEAR LEAST
SQUARES CALCULATIONS, © IN LOOTEMA, ED . "NUMERICAL METHODS
FOR NON-LINESR FF*IMIléTlﬁﬁt' (oI ﬁur“IC P;EEE‘ LUNDON. 1972,
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42-57 {1975y,

&. DRAPER, M., &ND SHMITH, H., APPLIED REGRZITSICN ANALVYIIS.

WILEY., N VY , 1946 (FOR STATIESTICAL INFDRHATIOJ Gy s,

C. LAKSON AND R, HANSON, SOLVING LEAST SGUARES PROBLEMS.

PRENTICE-HALL, ENGLEWKOOD CLIFFE, N, J . 1974

i

.y

JOHN BOLETAL

COMPUTER SCIENCE DEPT. . SERRA HDUSE
STANFORD UNIVERSITY

JANUARY., 1977

ELE PRECISION A(NMAX, LPFI2:, BETA), ALFINL: . TuinNMAX. 1I¥)

2 Wi, YWy, ACUM, EPS1, GRETEPRP, WU, PRJRES. K. RNEW. XNORI
INTEGER B1, GUTPUT

LOGICAL SWKIP

EXTERNAL ADA

DaTa EFS1 /1 D-4&7, ITMAX 7300 DUTPUT &

THE FOLLOWING TWO PARAMETERS ARE USED IN THE CONVERGENCE
TEST: EPS1 IS AN ARSOLUTE AND RELATIVE TOLERANTE FQF THE
NORM OF THE PROJVECTION OF TRHE RESIDUAL UNTO THEL RANGE OF Tki
JACOBIAN OF THE VARIABLE PROJECTION FUNCTION&L
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ITMAX IS THE MAXIMUM NUMBER OF FUNCTION AND DERIVATIVE
EVALUATIONS ALLOWED. CAUTION: EPS1 MUST NDOT BE
SET SMALLER THAN 10 TIMES THE UNIT ROUND-OFF OF THE MACHINE.

IERR = 1
ITER = O
LP1 = L + 1
Bi
LNL2
NePT = N + 1

SKIP = | FALSE.

MODIT = IPRINT

IF (IPRINY _LE. O} MODIT = ITHAX + 2
NU = G

i
wr

IF GAUSS-NEZWTCN IS DESIRED REMOVE THE NEXT STATEMENT.
pu o= 1.

REGIN DUTER ITERATION LCOP TO UPDATE ALF.

CALCULATE THE NORM OF THZ RESIDUAL AND THE DERIVATIVE OF
THE MODIFIED RESIDUAL THe FIRST TIME., 3UT OnLY THE
DERIVATIVE IN SUBSEQUENT ITERATIONS

CaLl DRa (L, tL, N WNMAX, LPPZ. IV, T, Y. W. A&LF. ADA. IERR;
IPRINT., &, BETA. A71. LF1Yy. R)

GHETTR = 1 0
ITERIN = O
IF CITER 6T O GO TO 10
IF (Ne (ES G 80 TO 90
{F (IERR WKE. 1) GO TD %
IF C(IPRINY LE ©! 6D T2 10
WRITE (GUTPUT, 207! ITERIN, R
NRITE (GUTFUT, 200 NU
BEGIN TWO-STAGE ORTHOGOMNAL FACTORIZATION
10 CALL ORFAC1(NLPi, NWMAX, N, L, IPRINT, a(1, B1y, PRJRES, IERR)

IF {IERR LT. O} GO TO 99
IERE = &

IF «nNU EG. O GO TO 3G

BEGIN INNER ITERATION LCOP FOR GERERATING MNok ALF AlD
TESTING IT FOR ACCEFPTANCE.

Cal.L ORFACZ2INLPT. MNMAX, MU AL, Bil:
SOLVE & Ni X NL UPPER TRIANGULAR SYSTEM FOR DELTa—ALF

THE TRANSFUORMED RESIDUAL (IN COL  LNL2 COF A I QVER-
WRITTER RBY THE RESULT DELTA-ALF

Cale BACSUR (RMA., N & i, Sl Al iy
DO ZT A = 1. No

Alk., Bl = ALF(K) + ALK, LNLZ?Y
NEW ALF <K = ALF (A + DELTA ALF (¥

STEP T THE NEW POINT NEW ALF.  Atdl COmeE™E Tl il

May 31, 194




t 4

Y O ()

4

[

T

4
L

g}

%)

NORM OF RESIDUAL NEW ALF IS STORED IM COLUMN B1 OF A.

CalLl DPA (L. NL. N, NMaX. LPP2. IV, T, ¥Y. W A(1. Bl}, ADA,
IERR. IPRINT. A, BETA, a(i, LP1), RNEW?
IF (IERR HE. 2) GO TO 9%
ITER = ITER + 1
ITERIN = ITERIN + 1
SKIP = MODCITER, MODIT:  NE.
IF (SKIP) GO TO 45
WRITE (OUTPUT, 203 ITER
WRITE (QUTPUT, 21&) (AlK. Bl), K = 1, NLJ
WRITE (QUTPUT., 207 ITERIN, RNEW

O

IF (ITER . LT. ITHMAX) GO 7O 5%

IERR = -1
Calll VARERR (IPRINY, IERR. 1}
G TO 9%

IF (RNEW - R LT EPSIs(R «+ 1 DO} GO TO 795

RETRACT ThiE STER JUsT TaKEN

v

IF Ny RKE. O ) GO TS &0

GAUSS-HEWTON OPTION ONLY
GNSTEP = O S*GNSTEP
; -

[FOIGNSTIF LT EPGT . g TDowE
o

ENCLARGE THE MARQUARDT FARAMETER

KU = 1 Saiu
IF (. MOT SKUIF: WRITE (QUTPLT, 20e) KU
IF (MY LE 100 ) 80 TO &9
IERR = -2
CaLL VARERF (IPRINT, IERR. 1
GO TC 95
RETRIEVE UPFER TRIANGULAR FORM
AND RESIDUAL OF FIFST STAGE.
DO 70 K = 1. NU
KSUB = (P11 + W
DO 70 2 = K, NWLPQ
JSUS = LPL + J
ISUE = NLP1 + J
A(K. JSUBY = A(ISUE. KSUR:
GD TG 25

END OF INNER ITERATION LOOF
ACCEPT THE ETER JUST TakiEnR

= 1., fi
Y= A(;A 51 £
LALT. NORMIDZLTA &L

ACUM = GNSTEP=XNORIM(NL, &t LNLZ Y IXNIRMING,  ALF.

T
b
)
&3
I
I
-y

IF ITERIN IS CREATER THAN 1. & SVER WAZ RETRATTED DURING
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THXS OUTER ITERATIDN

IF (ITERIN EGQG 1) HU = O SanNu
IF (SKIP)Y GO 7O BS

WRITE (QUTPUT, 200) NU
WRITE (QUTPUT, 2083 ACUM

IERR = 3
IF (PRJURES .GT. EPSi#{(R + 1 D)) GO 10O 5

END OF QUTER ITERATION LOOP

CALCULATE FINAL QUANTITIES —— LIKEAR FARAMETERS, RESIDUALS.
COVARIANCE MATRIX, ETC

IERE = ITER

IF IRL O GT. C) CablL DPACL., ML, N KNMAX, LPPZ, IV, T, Y., W, ALF,
X ADA, 4, IPRINT, A, BETA. &{(1. LF1}¥. R:

CALL POSTPR(L, NL, L, nNHMaX., LNLZ2, EPS1. R: IPRINT, aLF, W, 4,
¥ A(1. LPL1), BETA, TERR} ’

RETURN

FORMAT (9H Ny =, EIS 7

FORMAT (12H0 ITVERATION, 1. Z4H NOMNL INEAR FPARAMETERS:
FORIMAT (2SH STEP RETRACTED, KU =, EI195. 7}

FORMAT (1HQ. 1S, 20 NKNORM OF RESIDUA, =, E1S 70

FORMAT  { TaM MRORMIDEL Ta--A0 F Y 7 HORMIALE Y = E1Z 23
FORFAT CIHG, TS 7

e

SUBROUTINE ORFACILNLPL, NMax., K, ., IPRINT. B, FRJIFEZS, lERR:

STAGE 1: HOUSEHOLDER REDUSTION OF
¢ _ ) i DR ORZT v
( DR . R2 3 YO (=———. == },
( , } ¢ 0 R& Y N-L-NL
WL, 1 N1

WHERE DR = -D(Qz)#Y IS THE DERIVATIVE 0OF THE MODIFIED RESIDUA
PRODUCED BY DFA, R2 IS THE TRANSFORMED RESIDUAL FROM DP&A ARD
DR IS IN UPPER TRIANGULAR FOR#M (AS IMN REF (2, F. 18}

Lo}

DR IS STORED It ROWS L+1 TO N AND COLUMNE L+2 TO Lo+ WL + 1 0r
THE MATRIY A (I E. ., COLUMNS 1 TO KL 0OF THE MATRIX B Rz 1%
STORED IN COLUNMN L + Wi + 2 OF THE MATRIX & (COLUMN WL o+ 1 OF
B FOR # = 1, 2, ... . N. FING REFLECTION I — U # i/ BETA
WHICH ZEROES EB(I., K1), 1 = L+K+1 T

DOUBLE FPRECISION ACUM., ALPH&, Bllfdas, WNLFL .. BETA. DEIEN, FPRIORDE,

X U, XNORM

NL = NLFPL — 1
WNLE2T = G2l + 3

May 31, 1994
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LP1 =L + 1

DO 30 W = 1, NL
LPK = L+ K
ALPHA =
o= BILPK, K
B(LPK, K} = U
BETA = ALPHA #

IF (ALPHA . NE. 0. 0:

+ ALPHA

[ERR = -8B
CAlLL VARERR
GO 10 99

(IPRINT, IERR.

OF B AND 7O REEI

AFPPLY
13 ¥E1 = Ko+ 1
DO 2% U = KPL, NLP1

acur = GO
D3 20 1 = LPw». W
20 ACUIM = ACUM + Tl Wi
ACUIM = ACUM BETA
Do 25 1 = Py, N

29 B(I. GPo= BT Jro= BA
Cix BLLFPK. Kl = —ALPHA
Co e T SROEMONL L lLFLL sl

SAVE UPPER TRIANGUL

IN CASE & STEF

IF (TERE EQ 47 GO TO oW
DO 30 K = 1, hL

LP¥, = L + ¥

0O 4C 4 = », WifP1l

HNLPT + J
B(LPV\I o

JEUE =
Bi¥, J)y =

a0 B{JSUR. %3 = E(LPk. .0
50 BOMLES, K5 = XNORMUK, EiLFI.
3% RETURL

END

SUBRTGUTINE ORFACZ(NLPL. hMaX, KU, B

ML L DR-

{ o mem

Pae i a
( [
NL (NU=D
rit
May 31, 1984

DSIGN ( XNORM(N+1-LPK,

GO 7O 13

B (LPK,

REFLECTION

n

R3

LP1 + R}

K

Vol

R

-
L

_—t

K,

SPECIAL HUOUSEMOLDER REDUCTION

B{LFPK,

COLUMN WAS ZERD

13
DUA

4 ACLUY

0OF

(R

T2 REMAINING COLUMNS

Ki)

VECTOR.

REZTDUAL. FOR USE
COLUMN LERGTHS
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WHERE DR’. R3Z, AND R4 ARE AS IN ORFAC1. NU IS THE MARQUARDT
PARAMETER, D IS A DIAGONAL MATRIX CONSISTING OF THE LENGTHS OF
THE COLUMNS OF DR‘, AND DR’ IS IN UPPER TRIANGULAR FORM.
DETAILE IN (1), PP. 423-424. NOTE THAT THE (N-L-NLY BAND OF
ZERDES, AND R4, ARE OMITTED IN STORAGE. -

DOUBLE PRECISION ACUM, ALPHA, B(NMAX, NLP1)}, BETA, DSIGN. KNU. U
X XNORM

L = NLPL - 1
NLLZ = 2%NL
NL22 = NLE + 3
DO 3C K = 1, nL
KP1 = K + 1
NLPK = NL + K
HLPXML = NLPK - 1
BONLPK, K = NJ #+ BNLZ23, K
PiNL. ¥y = BGA, k) »
ALPHA = DSIGN(XNORM(K¥+1. BINL, Ki). BGA, K):
U= B{K, K1 + ALPHA
EETA = ALPHA » U
Bk, KY = —-ALPHA
THE Y-TH REFLELTION MOLIFIEz SNLY ROWT ¥
il Hlra few®i,  AND ZTZOWGRE W TS ekl
DO 3¢ J = PPL, hlPl
RIpLPK, Ji = O
ACUM = U # B+, 2}
DO 20 I = NLP1, NLF®WIMI
20 ACUM = ACLM + B(I. ¥} = B(I.J}
ATUM = ACUM v BETA
Bk, JY = B(K, U} - U » ACUM
DO 30 I = NLPL, NLPK
B(I. ) = B(I.J) — B(L.K) % ACUM

£

RETURNM
END

SUSROUTINE DP& (L. NL, N, Weax, LPP2, IV, T. Y. W, ALF, ADA. IGBEL.
X IPRINT, A, U, K. RNORM:

COMPUTE THE NORM OF THE RESIDUAL (IF ISEL = 1 2R Zi, DR THE
(ML} X NL DERIVATIVE OF THE MODIFIED RESIDUAL li-ilp VECTOR
G2y (IF ISEL = 1 OR 37 HERE G =+ PHI = &, 1 E .

L € Gi )« . ) ¢ B £1 F1oo
(m—==3 C FHI ¥  DIiPHI. ) = i-== == ===
Nl 0Dt ; - Rz FI
H L 1 P L i £
WHERE G IS N X N ORTHOGONAL., AND € I8 L x L UPFEF TRIANZU_AP
THE NORM DF THE RESIDUAL = NORMIRZ:. AND THE DESIFED DERTVAS

May 31, 1984
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ACCORDING TO REF. (5), IS

D(G2 # ¥) = ~Q2 # D(PHI)* 8 % Gis ¥

DDUELE PRECISION A(NMAX. LPFZ), ALFNL ., TI{NMAYX, Vio WN:, YN,
X ACUM, A4LPHA, BETA. RNDRM. DSIGN. DEGERT. SAVE. RN, UL), YXNORM
INTEGER FIRSTC, FIRSTR., INC{14. B}

LOGICAL NOWATE, PHILP1

EXTERNAL ADA

IF (ISEL. .NE. 1) GO TO Z

LPiL = L + 1

LWNL2 = L + 2 + NL

LP2 = L+ 2

LPFP1 = LPP2 - 1

FIRGTC = 1

LASTC = LPP1L

FIRSTR = LP1

CALL INITL, NL, N, WNMAX, {PP2, IV, 1. W, ALF. AD& ISEL,
X IPRINT, A, INC, NCOW., NCOWFI., PHILPL., KNIWATE

IF (ISEL NE 1) G0 TD 9%

GOOTD 30

Chl #DA LPI L N MMAK, LFFZ IV A INC, T alT Ml SR T
IF (ISEd EG Z: GO TO &

Iz, = 2 ORr &
FIRSTL = LP2
LAaSTC = LPP1
FIRSTR = ¢4 ~ ISEL 4L + 1
GO TO S

Igey = 2

FIRSTC = NCONF]

LASTC = LP1

IF (NCOt!  EQ ©) GO TO 30

IE (Aadl, NCDONY EG SavE! GO T3 34
I8 = -7
Call VARERE (IPRINT, ISEL. RCOH
GO TG o9

¥

IF (PHILPI).GD TO
DO 3% I = 1, N
R{I} = ¥(I}

£
&

GO 7O S0
DO 4% I = 1, N
R{IY = ¥(I} ~ R{I:

WETGAT APFRICFTATE TOLUMNG

ENGWATZ Y G2 TO
ACLI4 WCI:
DO 2% J = FIRSTD, LASTC

al{l, 4y = A{l, J) # ACuUnM

o
w

o+
£y m

34

May 21, 1984
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o8 IF

Do 70 K = 1,

(L

CoMFUTE ORTHOGONAL FACTORIZATIONS BY HCUSEHOCQER
REFLECTIONS. IF ISEi = 1 GR 2, REDUCE PHI (STORED IN THE
FIRST L coOLUMNS OF THE MATRIX A) TO UPPER TRIANGULAR FORM.
(@*PHI = S), AND TRANSFORM Y (STORED IN COLUMN L+I1), GETTING
G=Y = R. IF ISEL = 1. ALSO TRANSFORM J = D #HI (STORED N
COLUMNS L+2 THROUGH L+P+1 OF THE MATRIX A}, GETTING GQ#J = F.
IF ISEL = 3 OrR 4. PHI HAS ALREADY BEEN REDUCED. TRANSFORM
ONLY J. S, R, AND F OVERWRITE PHI, Y. ANMD J, RESPECTIVELY,
AND A FACTORED FORM OF Q IS SAVED IN U AND THE LOWER
TPIANGLE OF PHI

.EQ. O) GO TO 75

WPl = K + 1
IF (ISEL . GE. 3 .OR. (ISEL _EQ. 2 .aND. K LT NCONPI1)} GO TO &6

ALPHA = DOIGMNIXNORMIN+I-®, ALK, ¥, Ak, K1
UK = A(K, K} + ALPHA

ALK, K)Y = -ALPHA

FIRETC = WPl

IF (ALPHA NE. C. O G0 70 =4
ISEL = -8
CALL VARERR (IPRINT, IS88L, K:
G3 TG 99
APFLY REFLESTIONS 70O COLUMNME
FIRSTC T LAETD
se BETA = —hie, WA UiE
0O 7O J = FIRSTC, LASTE
ACUR = LR T*ATK,  J)
DO &8 I = KP1, N
&5 ACUM = ACUM + A‘l. ¥ishl, i
ACUIM = a4l / BETA
ALk, U = AR, U — UK »ACUM
DO 70 I = WRi, N
70 ACT, 0y = AL, Uy =~ all, FisaCuM
75 IF (ISEL GE 3) GO TC 8%
RNORM = XNORMIN-L. R(LP1):
IF (ISEL _EQ 2) GD TO 99
IF (NCON . GT. O) SaVE = All, NCON:
F2 IS NOW COWNTAINED IN ROWS L+1 TO M AND COLUMRT (+2 70
L+P+1 OF THE MATRIX A  NOW SOLVE THE L x L UPPER TRIANGULAR
SYSTEM S#BETA = R1 FOR THE LINEAR PARAMETERS BETA. BETA
OVERWRITES R1.
£S5 IF (L GT. O) CALL BACSUE (HMAX, L., A, F)
MAJOR FART OF WMAUFMAN £ SIMPLIFICATION D07 IUFT =ERE TOMRCYE
THE DERIVATIVE OF ETaA WITH FESPEIT TO TR nlie (LA
PARAMETERS
T D ETA T L U OPHIGS D oPHItirl”
G # —————m = G # (SUM BETA(J} —m—momms 4 mmeee oo = EIabE
D ALF(¥) ENES Y ALF (v 0oaLf v

May 31, 1952
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AND STORE THE RESULT IN COLUMNS L+2 TO L+NL+1.
= 4, THE FIRST L ROWS ARE OMITTYED.

IF ISEL NOT
THIS IS -D(G2)I%Y. iF

OOy Oy Ty

[

[N O B I ]

(SR

ISEL NOT = 4 THE RESIDUAL R2 = @G2x*Y (IN COL. L+1)

TO COLUMN L+NL+2.

DG 95 I = FIRETR, N

IF (L . EG. HCON)

M = LP1

BO 20 K = 1, hi
ACUM = C.

DO 88 J = NCONP1L,

IF (INC{K, J3
M=M+ 1

ACUM = ACUM + A(I, M}

gg CONTINUE
KSUB = LP1 + K
IF (INC(K, LP1)
M=M=+ 1

ACUM = ACUM -~ AL,
USUB) = aACUM
¢

S0 ACT,

$3 A, LHL2Y = Rl

7

INITOL, R
IWC.

3
o
O IPRINT, & NCON,

CHECK VAL IDITY OF
ONETANT FUNCTIDNS.

DOUBLE PRECISION A(NMAX,

X DBGRT

INTEGER JUTPUT, P,
LOGICAL NOWATE.
DATa OUTPUT /&

PHILP

LP1 =L + 1
LNLEZ = L + 2-+ NL

IF (L .GE. O .AND Nl . GE
X LPP2 . AND. 2=NL + 3 _LE.
(e, EG C©

X Iv . GT. O . AND.
ISEL = -4
CALL VARERR

eo T3 99

CNOT.

{ IPRINT,

1 1F (o (EG O OR. NL EGQ

o2 J =1, LP1
G 2 K = 1, ht
P INCOK, J) = C

May 31, 1984
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INPUT FARAMETERS. AND

LPFZ2,

IS COPIED
OTHERMWISE ALL OF COLUMN L+1 1S5 COPIED.

GO TO 92

GO TG 88

# RoJ?

WAt PP, 1v. T W ALF. ADA ISEL,
F1LOPHILPL, NORATE:

DETERMINE WNOMBEZR OF

ALFIRLY. TiWMax., IV, WiN}.

INCcid4, =0

CHECK FOR vALID INUT
G AaND LD LT KN AND LHNLE LE.
NMAaX . ANE N O LE KMAax | &NL

&N L EG Sy G3 TO 32

ISkl 17

G GO T =




]

[ey]

=87 -

3 CALL ADA (LP1. NL, f, NMAX. LPP2, IV. A, INC, T. ALF, ISEL}
NOWATE = . TRUE.
DC 9 I =1, N
NOWATE = NOWATE . AND. (W(I} .EQ. 1.0}
IF (W(I) .GE. 0. 6O TO ¢
ERROR IN WEIGHTS
ISEL = -6
CALL VARERR (IPRINT, ISEL. I}
GO TO 99
e W(I) = DSGRT(W(I}}
NCON = L
NCOHPL = LP1
PHILPL = L .EG O _
IF (PHILPL .GR NL .E@ Oy 60 TO 99
CHECK INC MATRIX FOR VALID INPUT AND
DETERMINE NUMBER OF CONSTANT FCNS.
P =0
DO 11 J = 1, (Pt
IF (P _EQ 0) NCONPL = J
DO 11 K = 1, Ni
INCKY = INC(K, J)
IF (INGYd NE  © AND  IRCKe NE 10 GO TT 1E
IF (INCkd EG 1) F = F o+ ]
11 CONTINUE
NCON = NCONPL - 1
IF CIPRINTY (. GE. 07 WRITE (QUTPUT, 210 HNCOKN
IF (L+P+2 _EG LPP2) GO TO 20
INPUT ERROR IN INC MATRIX
15 ISEL = -5
CALL VARERR (IPRINT, ISEL, 1)
GO TO 99
DETERMINE IF PHI(L+1) IS IN THE MODEL.
20 DO 25 K = 1, N
25 IF (INC(K. LP1) .EG. 1) PHILP1 = . TRUE
95 RETURN
210 FORMAT (33HO NUMBER OF CONSTANT FUNCTIONS =, 14 /)
END .

SUBROUTINE BACSUB (NMAX, N, A X}

SACKSOLVE THE N X N UPPER TRIANGULAR SBYSTEM itwx =
THE SOLUTION X OVERWRITES THE RIGHT SIDE B.

]

DODUBLE PRECISIGN ACMMAX, N}, XN}, ACWI

Xy = X{N)} 7 AN, i)
IF (N EG. 1 GO 70 30
NPL = N + 1
DO 20 IBACK = 2, N

I = NP1 - IBACK

May 31, 1984
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I = N-1:, N=2: .., 2, 1
IP1 =1 + 1
ACUM = X(I)
DO 10 J = IPL, N

10 ACUM = ACUM - A(I, Jy#X{(H -
20 X{(I) = 4CUM / ACL, I}
30 RETURN

END

SUBROUTINE POSTPR(L, NL., N, NMAX, LNL2, EPS, RNORM. IPRINT, ALF,
X W, A& R, U, IERR)

CALCULATE RESIDUALS, SAMFLE VARIANCE, AND COVARIANCE MATRIX.
OnN INPUT, U CONTAINS INFORMATION ABOUT HOUSEHDLDER REFLECTIONS
FROM DPA. ON QUTPUT. IT CONTAINS THE LINEAR PARAMETERS.

DOUBLE PRECISION A(NMAX, LNLZ2), ALF(NLI, R(N), UiL), W(N), ACUM,
X EPS., PRJRES, RNORM, SAVE, DAES

INTEGER CUTPUT

DaTa DUTRUT /&7

LP1 =L + 1

LPNL = LNL2 - 2
LNLL = LPHL + 1
BT 10 D o= 1, N

10 WII) = W(Iias2

UNWIND HOUSEHDLDER TRANSFORMATIONS
AND MOVE THE LINcAR FARAMETERS FROM

IF (L EQ Gy GO TO 3¢
DO 25 UBACK = 1, L

v = LP1 - KBACK

wP1 = #® + 1§

aCuM = 0.
DO 20 I = KPL, N
20 ACUM = ACUM + AUI, KR} # R(I)
SEAVE = R(K)
RUK)Y = ACUM / AlK., ®)
ACUM = —ACUM / (UK # ACK, K1)
UK)Y = SAVE
O 25 I =.KP1, N
29 R(I} = R(I} — ACI, #HirzAlUM

COMPUTE MESN ERROR
30 ACUM = C.
DGO 35 1 1, N
3% ACUM ACUM + R(I}
SAVE = ACUM 7/ KN

.}

THE FIRST L COLUMKE OF THE MaTRI: HAVE DBECH SEDUCED T3
UPPER TRIANGULAR FORM IN DPRA4. FINISH BY REDUCING RDWS
L+1 TO N AND COLUMNE L+2 THROUGH L+NL+1 YO TRIANGULAR
FORM. THEN SHIFT COLUMNE OF DERIVATIVE MATRIX OVER ONE
TO THE LEFT TO BE ADJUACENT TO THEZ FIRST L. COLUMNS

May 31, 1584
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IF (NL _EQ. 0) GO TC 45
CALL ORFACI(NL+1, NMAX. N. L, IPRINT. A(1, L+2), PRJURES, 4)
DD 40 I =1, N
A(I, LNL2) = R(I}
DO 40 K = LP1, LNL1
40 AL Ky = A(L, K+1)
COMPUTE COVARIANCE MATRIX
45 A(1, LNL2) = RNORM
ACUM = RNORM#RNORM/ (N — L - NL)
A(2, LNL2} = ACUM
CALL COV(NMAX, LPNL, ACUM, A}

IF (IPRINY .L7. 0O} 6D TQ 2%

WRITE (QUTPUT, 207

IF (L .GT. O} WRITE (QUTPUT., 210 (U(J)s, J = 1, L}

IF (WL . @T. 0) WRITE (QUTPUT. 211) (ALF(K), K = 1, NL)
WRITE (QUTPUT, 214) RNORM, ESAVE, ACUM

IF (DABS(SAVE) .GT. EPS) WRITE (GUTPUT, 2195}

WRITE (QUTPUT. 209

22 RETURN

2C% FCRMAT (1HO., SC(1H" )

210 FORMAT (20HO LINEAR PARAMETERS // (7E1S 735

=11 FORMAT (23HC NORLINEAR PARAMETERE 7/ YELIS 71!

214 FORMAT (21HO NORM OF RESIDUAL =, E15. 7, 23MH ExFECTED ERROR 0OF 0OBS
XERVATIONE =, E15. 7. / 324 ESTIMATED VARIAKNCE OF ORSERVATIONS =,
R E1S. 7

213 FORMAT (95H KARNING -~ EXPECTED ERROR OF OBSERVATIONE IS WOT ZEROD
X COVARIANCE MATRIX MAY BE MEANINGLEES, )
ENEG

SUBROUTINE COV{NMAX, N, SIGMAZ, A}

COMPUTE THE SCALEG COVARIANCE MATRIX OF THE L + Ni
PARAMETERS. THIS [INVOLVES COMPUTING

2 -1 ~T
SieMa # T % T
WHERE THE (L+NL) X (L+NL} UPPER TRIANGULAR MaTRIX T IS
DESCRIBED IN SUBROUTINE POSTPR. THE RESULT OVERWRITES THE

FIRST L+NL ROWS AND COLUMNS OF THE M4TRIX A THE RESULTING
MATRIX 1€ symmeTRIC, SEE REF. 7. PP. &7-70. 281

.....................................

DOUBLE PRECISION A(hMAX, N}, EBUM, SIGiA

[{8]

DO 1§ =1, K
10 ACd, ) = 1 /4040 )

INVERT T UPON ITSELF

IF «N EG. 1) GO TO 7C
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YO

4

N

L]

S0
&0

70

-}
[w]

=

0

9
i01
102
104
109

NML = N - 1
DG &0 I = 1, HMI
IP =1 + 1
B0 6C J = IP1, N
JM1 = J - 1
SuM = 0.
DO 50 M = I, JMt
SuM = SUM + A(I, M} % AMM. I
all, J) = -8UM # A(J, )
NOW FORM THE MATRIX PRODUCT
DO R0 I =1, N
B0 90 Jd = I, N
guM =
GO B8O M = J, N
SUM = SUM + A(IL, M} # A(J, M)
BUM = SUM # SIGMAZ2
ALL, JY = 5UM
Avd, Ii = 5UM
RETURN
END
SUBRCUTINE VARERR (IPRINY. IERR, #1
PRINT ERROR MEESAGES
INTEGER ERRNDI. DUTRUT
DATA QUTRUT &/
IF CIPRINT . LT. O} &GO TO <9
FRRMNO = IABS{IERR)
GO YO (1, 2, 29, &4, B, & 7, B), ERRKRD
WRITE (OUTPUT., 101)
G0 10 929
WRITE (BDUTPUT, 102)
G0 7O %%
WRITE {DUTPUT, 104}
GO TQ =9
WRITE (DUTPUT, 10S)
GO TO 99 .
WRITE (OUTPUT. 10&) K
GO TO 9%
WRITE (QUTPUT., 107) K
GO TO 99
WRITE (OUTPUT. 108) K
RETURN
FORMAT (44HO PROBLEM TERMINATED FOR EYXTERSIVE
FORMAT (49H0 PROBLEM TERMINATED BECAUSE OF
FORMAT (s SOH INPUT ERROR IN PARAMETER L, Ni.
FORMAT (6BHO ERROR —— INC MATRIX IMPROPERLY
XES WITH LPP2. /)

May 31,
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ITERATIONS .
ILL~-CONDITIONING
LPPZ. OR NHAX
SPECIFIEDR, DOF DISAGRE

c s
N 7}




YOy s NeoNeNe N e

L]

- 101 -

106 FORMAT (19H0 ERROR -—- WEIGHT!, I4. t14H) IS NEGATIVE. /)

107 FORMAT (28H0 ERROR —-- CONSTANT COLUMN . I3, 37H must BE COMPUTED
XONLY WHEN ISEL = 1. 7

108 FORMAT (33HO CATASTROPHIC FAILURE -- cotumnt , 14, 28H IS ZERO. SE
XE DOCUMENTATION. / e
END
DOUBLE PRECISION FUNCTION XNORM(N, X)

COMPUTE THE L2 (EUCLIDEAN) NORM OF A VECTOR, WAKING SURE TO
AVOID UNNECESSARY UNDERFLOWS. NO ATTEMPT IS MADE TO SUPPRESS
DVERFLOWS.

DOUBLE PRECISION X({N}, RMAX, SUM, TERM, DABS: DEQRT

FIND LARGEST (IMN ABSOLUTE VALUE» ELEMENT
RMax = Q.
DO 10 I = 1, M
IF (DABS(Xt(I}) GT. RMAX) RMAY = DABE(X(I}}
10 CONTINUE

SUM = O
IF (RMAX .EQ. ©.}) GJ TO 3¢
DD 20 I = 1, N
TERM = O.
IF URMAX - DABS/x(I::  wI RMAX: TERM = K110 RMAY
20 Ul = BUM -+ TERM2 TERHM

20 XNGRM = FMAX=LSAQRT ISUMI
3 RETURN

e
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