Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Science STANFORD UNIVERSITY

CHARACTERIZATION OF RETENTION PROCESSES AND THEIR EFFECT ON THE ANALYSIS OF TRACER TESTS IN FRACTURED RESERVOIRS

By

Gardner William Walkup Jr.

ACKNOWLEDGEMENTS

The United States Department of Energy provided funds for this study under contract number DE-ATO3-80SF-11459. The data used in this work was made available by the Institute of Nuclear Sciences, Department of Industrial and Scientific Research New Zealand. I would like to thank my research advisor Dr. Roland N. Horne for his support and guidance in all phases of this study. And finally I would like to thank Patti Juell Walkup for her support, encouragement, and countless proof readings of this text.

Abstract

Retention processes such as adsorption and diffusion into an immobile region can effect tracer movement through a fractured reservoir. This study has conducted experimental work and has developed a two-dimensional model to characterize retention processes. A method to directly determine some important flow parameters, such as the fracture aperture, from the analysis of tracer tests has been developed as a result of the new two-dimensional model.

The experimental work consisted of batch experiments designed to both reproduce earlier work and to determine the magnitude of the retention effects. Negligible retention was observed from which it was concluded that the batch experiments were not sensitive enough and that more sensitive flowing tests were needed.

A two-dimensional model that represents a fractured medium by a mobile region, in which convection, diffusion, and adsorption are allowed, and an immobile region in which only diffusion and adsorption are allowed has been developed. It was possible to demonstrate how each of the mass-transfer processes included in the model affect tracer return curves by producing return curves for any set of the defining variables.

Field data from the New Zealand was numerically fit with the model. The optimum values of the parameters determined from curve fitting provided a direct estimate of the fracture width and could be used to estimate other important flow parameters if experimentally determinable values were known.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i
ABSTRACT ii
LIST OF FIGURES iv
LIST OF TABLES v
INTRODUCTION 1
LITERATURE REVIEW 3
EXPERIMENTAL WORK 5
RESULTS OF EXPERIMENTAL STUDY 10
DISCUSSION OF EXPERIMENTAL STUDY 11
THEORETICAL DEVELOPMENT OF TWO-DIMENSIONAL MODEL 14
EVALUATION TECHNIQUE 23
RESULTS OF TWO-DIMENSIONAL MODEL 26
TRACER TEST ANALYSIS TECHNIQUE: NUMERICAL CURVE FITTING 33
APPLICATION OF TRACER TEST ANALYSIS TECHNIQUE 40
CONCLUSIONS 48
SUGGESTIONS FOR FURTHER WORK 49
REFERENCES 51
Appendix \boldsymbol{A} DERIVATION OF SOLUTION 53
Appendix B: LISTING OF GENERATE.STEP 56
Appendix C: LISTING OF MAIN OF GENERATE.STEP 65
Appendix D: LISTING OF SFUNCTION FOR GENERATE.SPIKE 68
Appendix E: CALCULATION OF THE DERIVATIVES 69
Appendix F: LISTING OF CURVEFIT 72

LIST OF FIGURES

1. View of Apparatus 5
2. Flow Path of Fluids 6
3. New Core Sleeve 6
4. New Upstream Core End-plug 7
5. New Downstream Core End-plug 7
6. Schematic of Two-dimensional Model 14
7. Response to Step Input 26
8. Effect of x_{D} 28
9. Effect of Pe 30
10. Effect of a 30
11. Effect of R 31
12. Effect of β 32
13. Flow Chart of Curve Fitting Procedure 41
14. Well 24 Fit with Two-dimensional Model 42
15. Well 103 Fit with Two-dimensional Model 42
16. Well 121 Fit with Two-dimensional Model 43
17. Well 24 Fit with Fossum's Model 43
18. Well 24 Fit with Jensen's Model 44
19. Well 103 Fit with Fossum's Model 44
20. Well 103 Fit with Jensen's Model 45
21. Well 121 Fit with Fossums's Model 45
22. Well 121 Fit with Jensens's Model 46

LIST OF TABLES

1. Sieve Analysis of Core Material 8
2. Experimental Results 10
3. Results from Breitenbach Study 11
4. Base Values used in Sensitivity Study 27
5. Best Fit Values of Dimensionless Variables 46
6. Calculated Fracture Widths 47

Section 1: INTRODUCTION

Tracers have long been used by petroleum reservoir engineers to gain information on reservoir heterogeneities, but have recently gained importance to geothermal engineers because of the problem of waste water reinjection. In most geothermal utilizations, only steam is used to drive the turbines and any produced water as well as a smaller amount of steam condensate must be disposed of. This waste water is at high temperature and has environmentally hazardous levels of dissolved materials and is usually reinjected since surface disposal of these waters is no longer an acceptable procedure in most places.

The reinjection of waste water can serve a second purpose other than disposal by maintaining reservoir pressure and mass of fluid in place. However these possible benefits must be related to the potentially damaging effects that the cooler (than reservoir fluids) injected water will have on the reservoir. If the injected water travels to the production well so quickly that it does not heat up to the original reservoir temperature, it will reduce the enthalpy of the produced water. This results in a smaller steam fraction in the produced fluid, and a smaller flow rate for a given wellhead pressure since the flow of the wells is strongly governed by the hydrostatic pressure of the fluid column. Thus less energy can be produced. Such "short-circuiting" has been observed in several geothermal fields. ${ }^{1}$

It is the task of the reservoir engineer to determine how the waste water should be reinjected so that the harmful effects of the cooler water is minimized. Tracers have proven useful for this task. By injecting tracers and observing their returns at production wells, one can get an idea how the injected water travels through the reservoir. Such tests have shown some unexpected results. In Japan, tracer tests have recorded mean displacement of tracers at a rate as
high as $78 \mathrm{~m} / \mathrm{hr}$. and as low as $0.5 \mathrm{~m} / \mathrm{hr}$. ${ }^{1}$ Similar flow rates were observed in New Zealand. ${ }^{2}$ It has been demonstrated that there is a correspondence between fast tracer return rates and wells that show enthalpy declines upon reinjection. ${ }^{1}$

While tracer testing has proven useful, the analysis of these tests has been mostly qualitative. In order to predict thermal breakthroughs and enthalpy declines, quantitative data on reservoir flow parameters are needed. Currently there are no methods to directly determine these parameters from tracer tests in geothermal reservoirs. There are two main problems that make the analysis of tracer tests in geothermal reservoirs difficult.

The first problem is that most geothermal reservoirs are highly fractured. Thus the quantitative analysis of tracer testing in porous media, developed for the oil and gas industry, does not apply to geothermal reservoirs.

The second problem is modeling all the processes that can occur to a tracer as it moves through the reservoir. Besides the macroscopic processes of convection and dispersion, such microscopic processes as diffusion, chemical reaction, ion exchange, adsorption and decay can occur which effect the analysis of tracer tests. Quantitative analysis of tracer tests depends on the ability to describe accurately all processes that occur to the tracer as it travels through the reservoir.

In this study, experimental work was conducted to examine transport properties and a two-dimensional model was developed to describe those processes which can effect the analysis of tracer return curves. A method to directly determine some important flow parameters from the analysis of tracer test has been developed as a result of the new two-dimensional model.

Sootion 2: LTMERATUTRE RPVIFW

Strom and Johnson (1950) demonstrated the importance of tracer tests to reservoir engineers by verifying the existence of directional permeability with the use of brine and fluorescein dyes. ${ }^{3}$ Many other uses for tracer test were soon found. A fairly complete list of information obtainable from tracer tests has been given by Wagner (1974). ${ }^{4}$

Early analysis of tracer tests tended to ignore the microscopic processes such as diffusion, ion exchange, and adsorption. These early studies only considered convection and dispersion. ${ }^{\mathbf{s}}$ The corresponding dispersion-convection governing differential equations has been solved for several boundary conditions by Carslaw and Jagger (1959). ${ }^{8}$ A summary of the use of such equations and the empirical correlations used to determine the parameters in those equations is given by Perkins and Johnson (1963). ${ }^{7}$

In order to increase correspondence between theoretical and experimental results, other flow processes were considered. Coats and Smith (1964) included diffusion into a stagnant pore volume. ${ }^{8}$ A correction to the boundary conditions used in this study was given by Brigham (1974). ${ }^{8}$

The above references do not necessarily assume a porous media but rather develop general flow models. Most further developments in the petroleum literature are limited to porous media and as such are of limited value to understanding tracer flow in highly fractured geothermal reservoirs.

Many additional refinements to the basic dispersion-convection model are found in the ground-water hydrology and soil chemistry literature. The inclusion of adsorption into the model with stagnant pore volume was shown by van Genuchten and Wierenga (1976). ${ }^{10}$ Cleary and van Genuchten (1979) showed how also to include decay and chemical reaction in the model. ${ }^{11}$

Recent field experience as described by Horne (1982) and Tester, Bivins, and Potter (1982) demonstrate the need to apply a detailed model to the analysis of tracer tests. ${ }^{1.12}$ An experimental study by Breitenbach (1982) showed that considerable retention of chemical tracer possibly occurs with geothermal material (unconsolidated). ${ }^{13}$

Horne and Rodriguez (1983) presented a one-dimensional model for flow in a fracture. ${ }^{14}$ This model included convection and diffusion (Taylor Dispersion) within the fracture. Fossum and Horne (1982) applied this model to field data from Wairakei with some success. ${ }^{15}$

Jensen (1983) extended this model by allowing the fracture to communicate by diffusion with a porous matrix. ${ }^{16}$ Adsorption was also allowed in both the fracture and the matrix. Jensen applied this model to the same Wairakei data with greater success. While Jensen's model fitted well with the data it revealed only partial information about flow characteristics or reservoir parameters because of the lack of direct measurements of some of the process parameters.

Section 3: EXPERIMENTAL WORK

The goals of the experimental phase of this study were:
(1) To locate the mechanisms of the retention seen in Breitenbach's study. ${ }^{13}$
(2) To determine the magnitude of the retention processes under batch conditions.

A 60° axonometrix view of the apparatus used for this experiment is shown in Figure (1). A schematic of the flow paths is shown in Figure (2). This equipment was designed by A. Sageev ${ }^{17}$ and was later modified by Breitenbach." Detailed discussions of the apparatus and of the subsequent modifications to the apparatus used in this study are given in these earlier studies.

Figure 1-VIEW OF APPARATUS"

An additional modification for this study was the alteration of the core sleeve. Previous experiments used a viton sleeve to support the unconsolidated core but because of possible interaction between the viton and the chemical

Figure 2 - FLOW PATH OF FLUIDS ${ }^{17}$
tracer, the viton sleeve was replaced by a stainless steel sleeve. The stainless steel sleeve also allowed the apparatus to operate at higher temperatures. It was also necessary to modify the endplugs to hold the new sleeve. The new sleeve and the modified end plugs are shown in Figure (3) through (5).

Figure 3 - NEW CORE SLEEVE ${ }^{\prime \prime}$

Figure 4 - NEW UPSTREAM CORE END-PLUG"

Figure 5 - NEW DOWNSTREAM CORE END-PLUG ${ }^{19}$

The core material used was unconsolidated reservoir rock. The first material used was reservoir rock from Klamath Falls, Oregon and the second was from Los Azufres, Mexico.

The core material from Klamath Falls was comprised of drill cuttings col-
lected from the producing zone $(600-660 \mathrm{ft})$ of a well near the location of a tracer test conducted in May 1983 by the Stanford Geothermal Program '". This material was described by the driller as "black lava". A geological report of the cuttings was done and described the cuttings as fine-grained andesite or basalt with a minimum of alteration. Before the cuttings were loaded into the core holder, they were cleaned, dried, and sieved. A review of the sieve analysis is shown in Table (1).

Table 1-SIEVE ANALYSIS BY PWCENT OF TOTAL MASS						
MATERIAL	MESH SIZE					
	<100	100-120	120-140	140-170	170-200	>200
KLAMATH FALLS	77.3	6.1	3.9	3.5	2.6	6.6
LOSAZUFRES	93.6	...	1.1*	0.3	0.6	4.4

The core material from the Los Azufres field was collected from an outcrop in the field and is described as a typical andesite of the reservoir. In this case the material was crushed, cleaned, dried, and sieved before loading into the core holder. Table (1) also summarizes the sieve analysis for the Los Azufres material.

A detailed step-by-step procedure for this experiment with this equipment is given by Breitenbach. ${ }^{13}$

The general procedure was to first load the core holder with reservoir material. The core holder was then put into the pressure cell and connected with all the flow lines. A vacuum was then applied to the downstream end of the core to remove any air. The core was then brought up to the desired pressure and temperature. After completely flushing the core with distilled water, the core
was flooded with approximately three pore volumes of tracer. The tracer used was sodium iodide where the iodide ion was the chemical species traced. The effluent was collected. The cell was then isolated and allowed to sit for the desired residence time. The core was then flushed with six pore volumes of distilled water, and the effluent was again collected.

Determination of the amount of tracer retained in the core was achieved by mass balance calculation. The concentrations of the input and effluents were measured by specific ion electrode analysis, using a Fisher "Accument", Model 750 Selective Ion Analyzer. Description of this analyzer and its use is given by Jackson. ${ }^{20}$

Section 4: RESULTS OF EXPERIMENTAL STUDY

Seven different runs were made. Five runs with the Klamath Falls (KF) core material and two runs with the Los Azufres (LA) core material.

Tracer concentration for all runs was approximately 20ppm. Temperature was varied from room temperature to 300 F . Confining pressure was 1500 psi. Residence times were varied from two hours to 72 hours. Table (2) summarizes all the runs and gives the calculated percent mass of tracer retained.

Table 2 -EXPERIMENTAL RESULTS

RUN	MATERIAL	CONC. (PPM)	TEMP. (F)	RESIDENCE TIME(HR)	PERCENT RETAINED
$\mathbf{1}$	KF	18.0	194	2	-2.23
2	KF	10.1	194	24	6.71
$\mathbf{3}$	KF	15.0	210	60	1.76
4	KF	21.0	300	72	9.09
5	KF	17.2	300	24	-4.65
$\mathbf{6}$	LA	23.2	300	72	-4.76
7	LA	22.6	300	44	4.81

Section 5: DISCUSSION OF EXPERIMENTAL STUDY

Table (2) shows that the calculated percent tracer retained ranged from 9.1 to $\mathbf{~} 4.8$ percent. The negative retention values mean that more tracer was calculated coming out than was injected.

An error analysis shows an experimental error to be about 5.0\%. The values of percent retained all (but one) fall within 5.0% of no retention at all.

The present results are considerably different from those of Breitenbach ${ }^{18}$ study. Results are summarized in Table(3), showing values of percent retained ranging from a low of 17 percent to a high of about 70 percent.

Table 3-RESULTS FROM BREITENBACH 18				
RUN	CONC. (PPM)	TEMP. (F)	RESIDENCE TIME (HR)	PERCENT RETAINED
4	10	300	72	30.6
5	20	300	72	68.6
6	50	300	72	67.5
7	100	300	72	69.4
8	500	300	72	61.6
10	10	300	24	25.9
12	10	300	2	16.9

It is possible to explain the fact that the present study sees little if any retention, and it is also possible to postulate some explanations for the different results between this and Breitenbach's study.

Since Breitenbach also used outcroppings from the Los Azufres field the difference between the two studies cannot be explained on the basis of different core material. However, Breitenbach used a viton sleeve to hold the core material while the present study used a stainless steel sleeve. The sleeve was changed because it was supposed that the viton might possibly adsorb the iodide tracer. This is the most likely explanation for the differences between the two studies.

Another possible reason for the difference is that the previous study did not use high temperature valves while the present study did. It is not possible to determine if the earlier valves did leak but if they did the differences in results could be explained.

A close examination of the procedure used in these batch experiments suggests some reasons why negligible retention was seen. Using unconsolidated material as designed, the number of mass transfer processes that could result in retention of the chemical tracer are limited. In particular the loss of tracer from a mobile region to an immobile region due to diffusion is not allowed. This is because the entire core must be considered a mobile region.

Other processes which are allowed are those that can be classified as surface retention processes. An example of a surface retention process is adsorption. By isolating this one type of retention process these batch experiments demonstrate that surface retention processes are negligible.

This can be explained by examining the important parameters for surface processes. The first important parameter is surface area. Obviously the more surface available the more surface processes will occur. The unconsolidated material used in this experiment gives more surface area per weight than would be expected under reservoir conditions if flow were occurring in a fracture. Surface retention processes would therefore be be magnified under these experimental conditions. However another effect needs to be considered and that is the relative volume of tracer injected. Three pore volumes of tracer were injected in this experiment while in a field tracer test orders of magnitude less than three pore volumes of tracer are injected. The result is that in the experimental case the number of surface sites available for surface retention processes are overloaded in comparison to that in a realistic case. So even if all surface sites were active in retention the retention seen, using the adopted procedures, would
be small.

An obvious solution to this problem would be to inject less tracer. Unfortunately, experimental constraints such as the sensitivity of the analysis technique and the error in the mass balance calculation will not allow for less tracer to be injected.

Another method for experimentally analyzing those mass transfer processes whose net effect is the retention of a tracer is to run flowing experiments. Previous studies have shown that flowing experiments are more sensitive than batch experiments. ${ }^{21}$ These earlier studies have been for porous media and thus the analysis of the tracer return curves from these studies is not directly applicable to a fractured media.

While there are models that have attempted to fit field data for a fractured reservoir, these models are not useful in examining the retention processes. ${ }^{12.15 .16}$ Before an experiment could be designed to run flowing studies, a model was needed in order to examine the magnitudes of various retention processes, be they surface processes or bulk processes (diffusion from mobile to an immobile phase).

This study has developed such a model, the derivation of which is now discussed.

Section 6: THEORETICAL DEVELOPMENT OF TWO-DIMENSIONAL MODEL

The two dimensional, two control volume model used for this development is shown in Figure (6). The first control volume represents the mobile region where convection, diffusion, and adsorption are allowed. The second control volume represents the immobile region where only diffusion and adsorption are allowed.

Figure 6-SCHEMATIC OF TWO-DIMENSIONAL MODEL

A general mass balance on control volume (1) is
(rate change of mass of species in control volume) = (net mass rate of species into controlvolume) t (production of species in control volume)

Assuming:
(1) Production of species is negligible
(2) Density of species is constant
allows Equation (6.1) to be simplified. Thus Equation (6.1) becomes

$$
\begin{equation*}
\frac{\partial A_{k}}{\partial t}=-\operatorname{div}\left(j_{k}^{T}\right) \tag{6.2}
\end{equation*}
$$

where
$\mathbf{A}_{\boldsymbol{k}}=$ Mass of species per total volume
$\mathrm{j}_{\boldsymbol{k}}^{T}=$ Total mass flux of species
The mass per volume ($\mathbf{A}_{\boldsymbol{k}}$) can be expressed as

$$
\begin{equation*}
A_{k}=q_{a, m}+\varphi_{m} C_{m} \tag{6.3}
\end{equation*}
$$

where
$q_{\text {a }, \boldsymbol{m}}=$ Total mass adsorbed per total volume
C $\boldsymbol{>}=$ Concentration of species in mobile phase
$\varphi_{m}=$ Portion of porosity due to mobile region
The adsorption term in Equation (6.3) can be expressed as

$$
\begin{equation*}
q_{a, m}=\rho_{b} P q_{m} \tag{6.4}
\end{equation*}
$$

where
$\rho_{\mathrm{b}}=$ Bulk density
$P=$ Fraction of total adsorption sites in the mobile region
$\mathrm{q} \boldsymbol{\sim}=$ Adsorbed concentration in the mobile region per bulk volume

Substitution of equations (6.3) and (6.4) into Equation (6.2) gives

$$
\begin{equation*}
\frac{\partial A_{k}}{a t}=\frac{\partial\left[\rho_{b} P q_{m}+\varphi_{m} C_{m}\right]}{a t} \tag{6.5}
\end{equation*}
$$

Substitution of Equation (6.5) into Equation (6.1) gives

$$
\begin{equation*}
\frac{\partial\left[\rho_{b} P q_{m}+\varphi_{m} C_{m}\right]}{\partial t}=-\operatorname{div}\left(j_{k}^{T}\right) \tag{6.6}
\end{equation*}
$$

The right hand side of Equation (6.6) can be expanded to

$$
\begin{equation*}
j_{k}^{T}=J_{c} C_{m}+j_{k}^{d} \tag{6.7}
\end{equation*}
$$

where
$\mathrm{J}_{\boldsymbol{c}}=$ Convective flux density
$\mathrm{j}_{\boldsymbol{k}}^{\boldsymbol{d}}=$ Diffusive flux

Substituting Equation (6.7) into Equation (6.6) and differentiating gives
$-\operatorname{div}\left(j_{k}^{T}\right)=J_{c}^{x} \frac{\partial C_{m}}{\partial x}+C_{m} \frac{\partial J_{c}^{x}}{\partial x}+\int y \frac{\partial C_{m}}{\partial y}+C_{m} \frac{\partial J_{c}^{y}}{\partial y}+\frac{\partial j_{k}^{d, x}}{\partial x}+\frac{\partial j_{k}^{d, y}}{\partial y}(6.8)$
Assuming
(3) $\mathrm{J} y=0$, convective flow in the x -direction only
(4) steady flow, $\frac{\partial J_{t}^{x}}{\partial x}=0$
gives

$$
\begin{equation*}
-\operatorname{div}\left(j_{k}^{T}\right)=\left[J_{c}^{x} \frac{\partial C_{m}}{\partial x}+\frac{\partial j_{k}^{d} \cdot x}{\partial x}+\frac{\partial j_{k}^{d . y}}{\partial y}\right] \tag{6.9}
\end{equation*}
$$

Assuming

$$
\text { (5) } \frac{\partial j_{k}^{x} \cdot d}{\partial x} \text { is negligible }
$$

gives

$$
\begin{equation*}
-\operatorname{div}\left(j_{k}^{T}\right)=J_{c}^{x} \frac{\partial C_{m}}{\partial x}+\frac{\partial j_{k_{y, D}}}{\partial y} \tag{6.10}
\end{equation*}
$$

Substitution of Equation (6.10) into Equation (6.6) gives

$$
\begin{equation*}
\frac{\partial\left[\rho_{b} P q_{m}+\varphi_{m} C_{m}\right]}{\partial t}=-\left[J_{c}^{x} \frac{\partial C_{m}}{\partial x}-\frac{\partial j_{k}^{y \cdot d}}{\partial y}\right] \tag{6.11}
\end{equation*}
$$

Because steady fiow has been assumed, the convective term can be expressed as

$$
\begin{equation*}
J_{c}^{x}=V_{m} \varphi_{m} \tag{6.12}
\end{equation*}
$$

The diffusion term can be expanded using Fick's Law of diffusion, as

$$
\begin{equation*}
j_{k}^{y, d}=-\varphi_{m} D_{m}^{y} \frac{\partial C_{m}}{\partial y} \tag{6.13}
\end{equation*}
$$

where
$D_{m}^{\forall}=$ Diffusion coefficient in the mobile phase in the y direction

Substituting Equation (6.13) and Equation (6.12) into Equation (6.11) gives

$$
\begin{equation*}
\frac{\partial\left[\rho_{\mathrm{b}} P q_{m}+\varphi_{m} C_{m}\right]}{\partial t}=\varphi_{m} D \frac{\partial^{2} C_{m}}{\partial y^{2}}-\varphi_{m} V_{m} \frac{\partial C_{m}}{\partial x} \tag{6.14}
\end{equation*}
$$

Differentiating gives

$$
\begin{equation*}
\rho_{b} P \frac{\partial q_{m}}{\partial t}+\varphi_{m} \frac{\partial C_{m}}{\partial t}=\varphi_{m} D_{m}^{y} \frac{\partial^{2} C_{m}}{\partial y_{2}}-\varphi_{m} V_{m} \frac{\partial C_{m}}{\partial x} \tag{6.15}
\end{equation*}
$$

Equation (6.15) has two time dependent variables, the flowing concentration $\left\langle C_{m}\right)$ and the adsorbed concentration $\left(\mathrm{q}_{m}\right)$. To reduce the number of variables to one, the adsorbed concentration is expressed as a function of the flowing concentration. There are many choices for such a relationship, but this study has used the simple Freundlich linear isotherm. This isotherm assumes equilibrium and instantaneous adsorption. The adsorbed concentration is related to the flowing concentration by

$$
\begin{equation*}
q_{m}=k C_{m} \tag{6.16}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathbf{k}=\text { adsorption constant which is a function of temperature } \\
& \text { only }
\end{aligned}
$$

Applying this relationship to Equation (6.15) gives

$$
\begin{equation*}
\left[\varphi_{m}+\rho_{b} P k_{m}\right] \frac{\partial C_{m}}{\partial t}=\varphi_{m} D_{m}^{y} \frac{\partial^{\alpha} C_{m}}{A_{2} \alpha^{2}}-\varphi_{m} V_{m} \frac{\partial C_{m}}{\partial r} \tag{6.17}
\end{equation*}
$$

Applying the same mass balance on control volume (2) as was applied on control volume (1) gives

$$
\begin{equation*}
\frac{\partial A_{k}}{\partial t}=-\operatorname{div}\left(j_{k}^{T}\right) \tag{6.18}
\end{equation*}
$$

For control volume (2) only diffusion and adsorption are allowed so (A_{k}) becomes

$$
\begin{equation*}
A_{k}=\rho_{b}(1-P) q_{i m}+\varphi_{i m} C_{i m} \tag{6.19}
\end{equation*}
$$

The flux term becomes

$$
\begin{equation*}
j_{k}^{T}=J_{c} C_{i m}+j_{k}^{d} \tag{6.20}
\end{equation*}
$$

The first term on the right hand side of Equation (6.20) is equal to zero because no convection is allowed in this control volume. Differentiating Equation (6.20)
gives

$$
\begin{equation*}
d w\left(j_{k}^{T}\right)=\frac{}{\mathrm{ax}}+\frac{\partial j_{k}^{y \cdot d}}{\partial y} \tag{6.21}
\end{equation*}
$$

As in the mobile region the diffusion in the x-direction is assumed to be negligible. The diffusion term is expressed using Fick's Law to give

$$
\begin{equation*}
j_{k}^{y \cdot D}=-\varphi_{i m} D_{u m}^{y} \frac{\partial C_{i m}}{\partial y} \tag{6.22}
\end{equation*}
$$

Substituting equations (6.22),(6.21), and (6.19) into Equation (6.18) gives

$$
\begin{equation*}
\rho_{b}(1-P) \frac{\partial q_{i m}}{\partial t}+\varphi_{i m} \frac{\partial C_{i m}}{\partial t}=\varphi_{i m} D D_{i m}^{y} \frac{\partial^{2} C_{i m}}{\partial y^{2}} \tag{6.23}
\end{equation*}
$$

Again using the Freundlich linear isotherm to relate the adsorbed concentration to the fluid concentration gives

$$
\begin{equation*}
\left[\varphi_{i m}+\rho_{b}(1-P) k\right] \frac{\partial C_{i m}}{\partial t}=D_{u m}^{y} \varphi_{i m} \frac{\partial^{2} C_{i m}}{\partial y^{2}} \tag{6.24}
\end{equation*}
$$

Equations (6.17) and (6.24) are the governing partial differential equations for the two-dimensional model. The initial condition used for this model is one of uniform concentration. This is given by

$$
\begin{equation*}
C_{m}(x, y, 0)=C_{i m}(x, y, 0)=C_{i} \tag{6.25}
\end{equation*}
$$

Symmetry is invoked at the centerline of the mobile region, so

$$
\begin{equation*}
\left.\frac{\partial C_{m}}{\partial y}\right]_{y=0}=0 \tag{6.26}
\end{equation*}
$$

At the interface of the two control volumes, concentration is forced to be continuous, thus

$$
\begin{equation*}
\left.\left.C_{m}\right]_{y=w}=C_{i m}\right]_{y=w} \tag{6.27}
\end{equation*}
$$

where
$\mathbf{w}=$ half width of the mobile region
The flux across the interface is also continuous, giving

$$
\begin{equation*}
\left.\varphi_{m} D_{m} \frac{\partial C_{m}}{\partial y}\right]_{y=w}=\left.\varphi_{i m} D_{i m} \frac{\partial C_{i m}}{\partial y}\right|_{y=w} \tag{6.28}
\end{equation*}
$$

The outer boundary condition in the y-direction is

$$
\begin{equation*}
\left.\frac{\partial C_{i m}}{\partial y}\right]_{y=\infty}=0 \tag{6.29}
\end{equation*}
$$

The inlet condition in the x -direction is

$$
\begin{equation*}
\left.C_{m}\right]_{x=0}=C_{0} \tag{6.30}
\end{equation*}
$$

In order to simplify the governing differential equations and the associated boundary conditions a set of "dimensionless" variables are introduced.

$$
\begin{gather*}
C_{1}=\frac{C_{m}-C_{i}}{C_{0}-C_{i}} \tag{6.31}\\
C_{2}=\frac{C_{i m}-C_{i}}{C_{0}-C_{i}} \tag{6.32}\\
y_{D}=\frac{y}{w} \tag{6.33}\\
x_{D}=\frac{x}{w} \tag{6.34}\\
P e=\frac{V_{m} w}{D_{m}} \tag{6.35}\\
\beta=\frac{\varphi_{m}+\rho P k}{\varphi_{T}+\rho k} \tag{6.36}\\
R=\left[\frac{\varphi_{T}+\rho k}{\varphi_{m}} V_{m}\right] w \tag{6.37}\\
\alpha=\left(\frac{\varphi_{i m}}{\varphi_{m}}\right)\left(\frac{D_{i m}}{D_{m}}\right) \tag{6.38}
\end{gather*}
$$

It should be noted that all the variables are dimensionless except (R) which has units of reciprocal time. Using these dimensionless variables the partial differential equations become

$$
\begin{equation*}
\beta R \frac{\partial C_{1}}{\partial t}=\left(\frac{1}{P e}\right) \frac{\partial^{2} C_{1}}{\partial y_{D}^{2}}-\frac{\partial C_{1}}{\partial x_{D}} \tag{6.39}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\beta) R \frac{\partial C_{2}}{\partial t}=\left(\frac{\alpha}{P e}\right) \frac{\partial^{2} C_{2}}{\partial y_{D}^{2}} \tag{6.40}
\end{equation*}
$$

where

$$
\begin{aligned}
& 1=\text { mobile region } \\
& 2=\text { immobile region }
\end{aligned}
$$

The initial and boundary conditions become

$$
\begin{gather*}
C_{1}\left(x_{D}, y_{D}, 0\right)=C_{2}\left(x_{D \cdot y_{D}} 0\right)=0 \tag{6.41}\\
\left.\frac{\partial C_{1}}{\partial y_{D}}\right|_{y_{D}=1}=0 \tag{6.42}\\
\left.\left.C_{1}\right]_{y_{D}=1}=C_{2}\right]_{y_{D}=1} \tag{6.43}\\
\left.\left.\frac{\partial C_{1}}{\partial y_{D}}\right|_{y_{D}=1}=\alpha \frac{\partial C_{2}}{\partial y_{D}}\right]_{y_{D}=1} \tag{6.44}\\
\left.\frac{\partial C_{2}}{\partial y_{D}}\right]_{y_{D}==}=0 \tag{6.45}\\
C_{1}\left(0, y_{D}, t_{D}\right)=1 \tag{6.46}
\end{gather*}
$$

The complete solution of the simultaneous partial differential Equations (6.39) and (6.40) with boundary conditions (6.41)-(6.46) is given in Appendix (A).

The general method of solution was to transform the equations with the La place transform with respect to time (t) and then again with respect to (x). With the equations in the transformed space (p-space), the solution could be solved for directly. Unfortunately, the resulting analytic solution cannot be analytically inverted. Thus to express the solution in real space required use of the Stehfest numerical inversion algorithm. ${ }^{22}$ The details of this evaluation process will be discussed later.

The analytical solution for the concentration in the mobile phase in p-space is

$$
\begin{equation*}
C^{p}=\frac{C_{0}}{s(p+s \beta R)}-\left[\frac{z \alpha C_{0}}{s(p+s \beta R)}\right] \frac{e^{m y_{D}}+e^{-m y_{D}}}{(1-\alpha) M\left(e^{m}-e^{-m}\right)+z \alpha\left(e^{m}+e^{-m}\right)} \tag{6.47}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{s}=\text { Laplace operator for transforming } \mathrm{t} \\
& \mathrm{p}=\text { Laplace operator for transforming } \mathrm{x} \\
& \mathrm{z}=\left[\frac{\operatorname{Pe}(1-\beta) R s}{a}{ }^{1}\right. \\
& \mathrm{m}=\left[\frac{p+s \beta R}{P e}\right]^{\frac{1}{2}}
\end{aligned}
$$

No mention of a fractured or a matrix is made in the above development, rather the only distinction is that between a mobile and an immobile region. Thus the model is general.
"he general nature of this model is best seen by considering the variables $(\mathrm{Om}),\left(\varphi_{i m}\right)$, and $\left(\varphi_{m}\right)$ where
$\left(\varphi_{m}\right)=$ Portion of total porosity due to the mobile region $\left(\varphi_{i m}\right)=$ Portion of total porosity due to the immobile region $\left(\varphi_{T}\right)=$ Total porosity

When considering the case of a completely saturated (single phase) porous medium, essentially the entire volume should be considered as mobile, thus

$$
\varphi_{m} \gg \varphi_{i m}
$$

This is true no matter what fraction of the entire reservoir is considered.
With regard to the fraction of mobile to immobile region, the completely saturated porous media is at one end of the spectrum with essentially everything being mobile while a fractured media is at the other end. In a fractured medium all but a small portion of the entire reservoir is immobile, thus over the entire reservoir

$\varphi_{i m} \gg \varphi_{m}$

The model is able to consider both porous and fractured media as well as intermediate cases. Such intermediate cases would include only partially saturated single phase reservoirs and could possibly include multi-phase systems if the loss of the traced material from the sampled fluid depended upon the concentration difference of the traced material between the sampled fluid and the other fluids. While this model has other applications, this study has concentrated on applying the model to fractured systems.

When considering fractured systems the nature the testing procedure is important in the understanding of the different variables. As discussed above, the
portion of the total porosity due to the mobile phase is given by $\left(\varphi_{m}\right)$. When tracer testing in a fractured medium, only a finite amount of tracer is injected, thus not the entire reservoir is examined. In this case (\mathbf{a},) is more accurately the portion of the encountered porosity due to the mobile phase rather than the portion of the total porosity due to the mobile phase. This is not necessarily a handicap to tracer analysis as will be discussed later.

Section 7:EVALUATION TECHNIQUE

The solution to the two dimensional model is for a step input and is analytic only in p-space, where p-space is two Laplace transformations away from real space. Any investigation of how the different parameters that were included in the physical model effect tracer movement in a reservoir requires expressing the solution in real space for any value of the dimensionless variables. Furthermore, since most tracer tests are not step inputs, the solution for a step input of finite duration (a finite-step) and the solution for a spike input (infinitesimally short duration) are needed.

A computer program GENERATE.STEP was developed to evaluate the solution for a step input in real space. A listing of GENERATESTEP is given in Appendix (B).

GENERATE.STEP is made up of five parts; the main program (MAIN), the function INVERSE1, the subroutine SFUNCTION, the function INVERSER, and the subroutine PFUNCTION.

The main program (MAIN) reads and writes the values of the dimensionless variables and the time steps at which the solution is to be evaluated. MAN then evaluates the solution by calling the function INVERSE1.

INVERSE1 is the Stehfest numerical inversion algorithm used to invert from (x, y, s)-space to (x, y, t)-space (real space). This algorithm requires an evaluation of the solution in (x, y, s)-space and gets this by calling the subroutine SFUNCTION.

Since the solution is not analytic in ($\mathrm{x}, \mathrm{y}, \mathrm{s}$) -space, SFUNCTION gives an evaluation of the solution in (x, y, s)-space by calling the function INVERSE2.

INVERSE2 is again the Stehfest algorithm which is used here to invert from
(p, y, s)-space to (x, y, s)-space. The expression of the solution in (p, y, s)-space which is needed by INVERSE2 is evaluated by calling PFUNCTION.

PFUNCTION evaluates the value of the solution in (p, y, s)-space from the analytic expression of the solution.

The program then returns control to MAIN which writes the value of the solution for all the time steps. Examples of input and output files are also given in Appendix (B).

The use of the Stehfest algorithm to invert the solution results in "noise" or error caused by the numerical technique. This error is greatest where the function to be inverted is not smooth. A consequence of this error in the calculation procedure is that negative concentrations are sometimes calculated in region where noise dominates. Since negative concentrations are clearly not allowed, the program sets all negative values to zero.

The evaluation of the solution for a step input is given by GENERATE.STEP, but the evaluation for a finite-step and a spike-step input required modifications to the above procedure.

To evaluate the solution for a finite-step the program GENERATE.FINSTEP was developed. This program is very similar to GENERATE.STEP and has used the concept of superpositon in time to generate the results for a finite-step. Using superpositon, the concentration after the step input has ended is given by

$$
\begin{equation*}
C_{f s}\left(t, \alpha_{i}\right)=C_{s}\left(t+\Delta t, \alpha_{i}\right)-C_{S}\left(t, \alpha_{i}\right) \tag{7.1}
\end{equation*}
$$

where
$\mathrm{C}_{\boldsymbol{f} \boldsymbol{s}}=$ Concentration for finite step t
C, $=$ Concentration for step input
At $=$ Duration of finite step
$\mathrm{t}=$ Time since the end of the step input

The only part of GENERATE.STEP that needed to be modified was the main program MAIN. The modified MAIN that was used in GENERATE,FINSTEP is given in Appendix (C). All other programs in GENERATE.FINSTEP are exactly those already given in GENERATE,STEP. Since MAIN is changed in GENERATE.FINSTEP, the input file is different than that used in GENERATE.STEP. An example input file is also given in Appendix (C).

The evaluation of the solution for a spike-input is greatly simplified by the solution technique used. It can be shown that the response of a spike-input is merely the time derivative of a step input. Using the Laplace property

$$
\begin{equation*}
\frac{\partial F}{a t}=L^{-1}[s f(s)] \tag{7.2}
\end{equation*}
$$

it is easy to see that all that is needed to do to get the spike-input from the step input is to multiply the expression for the step input in ($\mathrm{x}, \mathrm{y}, \mathrm{s}$) -space by (s) before it is inverted to ($\mathrm{x}, \mathrm{y}, \mathrm{t}$)-space. This is easily done by modifying SFUNCTION . Thus the program to calculate the results for a spike-input, GENERATE.SPIKE, is exactly like GENERATE.STEP except for a slight modification in SFUNCTION. A listing of the SFUNCTION used in GENERATE.STEP is given in Appendix (D). Since the main program is not changed in GENERATE.SPIKE it requires the same input as GENERATE.STEP.

Section 8: RESULTS OF TWO-DIMENSIONAL MODEL

It was possible to examine how each of the variables in the two-dimensional model affects tracer movement through a reservoir by examining the return curves that were generated by the procedure described above. While one could look at all three type of tests (step, finite-step, spike), only the finite-step and spike are practically applicable. Since most field tests are more like a spikeinput, this study examines how each of the dimensionless variables effect tracer return curves for a spike-input of tracer.

The step-input program (GENERATE.STEP) was used to check the analysis procedure. One would expect that if a system were subjected to a step-input of unit concentration then the response of this system would have an initial delay followed by an asymptotic approach to unity. Entering base values of the variables and evaluating the solution gave a curve similar to what was expected. Figure (7) shows a response for a typical step-input.

Figure 7 - RESPONSE TO STEP INPUT

In the generation of any return curve, the value of all six dimensionless variables need to be entered. A simplifying assumption was made when a value of $\left(y_{D}\right)$ was entered. The concentration profile at a given distance $\left(x_{D}\right)$ should be the area average of the calculated values for all $\left(y_{D}\right)$ values, where (y_{D}) ranges from zero to one. This averaging procedure was not done, instead the value of the concentration calculated at $\left\langle y_{D}\right\rangle=0.5$ was used as the average value. This assumption was made to simplify an already complicated procedure and to prevent an already long running (cpu time) computer program from becoming prohibitively long. The basis for this assumption was a series of calculations of the concentration profile across a fracture. These profiles showed an essentially flat profile with little variation in concentration across the fracture. This flat profile is to be expected because in the solution of the two-dimensional model it was assumed that the velocity profile was not a function of (y).

The sensitivity of the model to the five dimensionless variables; $\left(\mathrm{x}_{D}\right)$, (Pe), (β). (R), and (a) was studied by examining how a typical return curve was affected by varying each of the variables independently. The base values of the dimensionless variables used were determined by "eye" fitting the model to real data. The base values used in the sensitivity studies are shown in Table (4). The sensitivity study showed large differences in sensitivity among the five variables.

Table 4 -BASE VALUES USED IN SENSTTIVITY STUDY

Pe	$\boldsymbol{\beta}$	R	a	x_{D}
0.02	0.50	.002	.10	10000

The dimensionless variable (x_{D}) is the dimensionless distance between wells. The two-dimensional model was more sensitive to (x_{D}) than any of the
other variables. In order to be able to graph the results of varying (xg) on a single plot the value of (x_{D}) could only be increased and decreased by a factor of two. The base case ($\mathrm{x}_{D}=10000$) and the higher and lower cases are shown in Figure (8).

Figure 8-EFFECT OF X ${ }_{D}$

As would be expected when the dimensionless distance is decreased the tracer both breaks through earlier and has a higher peak concentration than the base case. When $\left(x_{D}\right)$ is increased, equivalent to a greater distance between wells, the breakthrough occurs later and the peak concentration is less. Not only breakthrough times and peak concentration are changed, but the shape of the curve is changed as well. In particular the backside of the return curves are quite different depending on the value of $\left(\mathrm{x}_{D}\right)$. The backside of the return curves is where retention effects are visible and as would be expected the greater the distance between wells the more retention occurs and thus the longer the tailing effects.

The dimensionless variable (Pe) is given by

$$
P e=\frac{V_{m} w}{D_{m}}
$$

and is a modified form of the Peclet number, an important variable in many mass transport systems. Usually the characteristic length that would have been used to make this group dimensionless would have been the actual distance between the wells, but this study has used the fracture half-width (w). The result is that the values of the Peclet number here are orders of magnitude less than commonly seen.

Despite its frequent use as a group to define many systems, the twodimensional model showed small sensitivity to the Peclet number. Other recent studies have seen similar effects. ${ }^{21}$ Figure (9) shows the effect of decreasing the Peclet number by a factor of ten and increasing the Peclet number by a factor of five. The most apparent effect of changing the Peclet number is to change the amount of retention or equivalently the amount of tailing of the return curve. Figure (9) shows that the larger the Peclet number the more the tailing effect. Figure (9) also shows that relatively large changes in the Peclet number cause small changes in the breakthrough times. Another important observation is that the changes in the Peclet number do not create symmetric changes in the return curve.

The sensitivity of the model to (a), where

$$
\alpha=\left(\frac{\varphi_{i m}}{\varphi_{m}}\right)\left(\frac{D_{i m}}{D_{m}}\right)
$$

is shown in Figure (10). Like the Peclet number the relative sensitivity of the model to (a) is small. A decrease in (a) by a factor of ten results in a higher peak concentration, less tailing effects and a similar shape when compared to the base case. An increase by a factor of eight results in much more tailing and a lower peak concentration. Breakthrough times on all the curves are similar.

The effect of changing the variable (R) where

EFFECT OF Pe

Figure 9 - EFFECT OF Pe

Figure 10-EFFECT OF a

$$
R=\left[\frac{\varphi_{T}+\rho k}{\varphi_{m} V_{m}}\right] w
$$

is similar to the effect of changing $\left(x_{D}\right)$. Doubling the base value of (R) results in more tailing and a slower breakthrough. Decreasing the base value by a factor of two gives a profile with a higher peak concentration and a earlier break-
through. These results can be seen in Figure (11).

Figure 11- EFFECT OF R

The sensitivity of the two-dimensional model to (β) is intermediate between the high sensitivity of the model to $\left(x_{D}\right)$ and (R) and the low sensitivity of the model to (Pe) and (a) The variable $\langle\beta\rangle$ is defined as

$$
\beta=\frac{\varphi_{m}+\rho P k}{\varphi_{T}+\rho k}
$$

and gives the fraction of the total retardation due to the fractured region. By definition (β) is constrained to lie between zero and one. As can be seen in Figure (11) decreasing (@)from (0.5) to (0.1) resulted in an increase in the peak concentration, a decrease in the breakthrough time and a decrease in the amount of tailing. An increase in (β) gave opposite results.

The above sensitivity study shows that the two-dimensional model is affected differently by the five dimensionless variables that define the model. Within the five dimensionless variables there are at least eight unknown physical parameters $\left(\mathbf{w}, \varphi_{m}, \varphi_{T}, \mathrm{P}, \mathbf{k}, \mathrm{V}_{m}, \mathrm{D}_{m}, \mathrm{D}_{i m}\right)$, thus there is no unique combination of physical parameters that can be determined from or can determine the five

- 32 -

Figure 12 - EFFECT OF β
dimensionless variables. This two-dimensional model makes possible the production of tracer return curves for any given set of physical parameters and the associated dimensionless variables.

Section 9: TRACER TEST ANALYSIS TECHNIQUE; NUMERICAL CURVE FTTTING

The initial goal of this study was to model and quantify those processes that affect the movement of a tracer as it moves through a reservoir. The twodimensional model described above allows this by producing tracer return curves for any given set of dimensional variables that define the system. This forward type of problem, a problem where the input and system are known and the output from the system is desired, may be used to study the effects of different processes on the model but it is not helpful for the inverse problem. The inverse problem, frequently encountered in reservoir engineering, is where both the input and the output are known while the system is the unknown. This is the type of problem that must be dealt with in the interpretation of an actual field tracer test. In a field case the details of how the tracer was injected are known (the input), and the tracer return curves are known (the output), what is desired is an interpretation of the reservoir (the system).

The general procedure to solve the inverse problem is to statistically fit a model to the real data. From this fit the optimum values of the variables that define the model may be determined. Hopefully from the values of the defining variables it may be possible to say something about the reservoir. Since the two-dimensional model developed in this study is very general and the variables that define this model give information about the reservoir, it was hoped that this model could be applied in the interpretation of tracer tests. It should be noted that previous studies, in particular Jensen's ${ }^{16}$ study, have attempted to fit models to real data with considerable success. Unfortunately the variables that were determined from the fitting process did not reveal much about the reservoir. The advantage of the present model is that the variables involved are more directly associated with reservoir properties.

Before the two-dimensional model can be applied to a fitting process the
solution must be put in a form that is open to statistical analysis. The solution for a step input in terms of the dimensionless variables can be written as

$$
\begin{equation*}
C_{s}\left(t ; \alpha_{i}\right)=C_{0} F\left(t, \alpha_{i}\right) \tag{9.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{C}_{s}\left(t ; \alpha_{i}\right)=\text { Concentration at time } \mathrm{t} \text { for a step input. } \\
& \mathrm{C},=\text { Concentration at inlet } \\
& \mathrm{F}\left(\mathrm{t} ; \alpha_{i}\right)=\text { Solution for unit-step input at time } \mathrm{t} \\
& \alpha_{i}=\text { Dimensionless variables }(\mathrm{i}=1,5) \\
& \alpha_{1}=\mathrm{Pe} \\
& \alpha_{2}=\beta \\
& \alpha_{3}=\mathrm{R} \\
& \alpha_{4}=a \\
& \alpha_{5}=\mathrm{x}_{D}
\end{aligned}
$$

Using superpositon, the solution for a finite-step $\left(\mathrm{C}_{f s}\right)$ can be written as

$$
\begin{equation*}
C_{f s}=C_{0}[F(t \mathrm{t} A t)-F(t)] \quad \text { for } t>\Delta t \tag{9.2}
\end{equation*}
$$

The inlet condition $\left\langle C_{0}\right\rangle$ can be expressed as

$$
\begin{equation*}
C_{0}=\frac{A 4}{Q \Delta t} \tag{9.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{M}=\text { Total mass input } \\
& \mathrm{Q}=\text { Total volume fiowrate } \\
& \mathbf{A t}=\text { Duration of input }
\end{aligned}
$$

Substituting the expression for the inlet concentration into the Equation (9.2) gives

$$
\begin{equation*}
C_{f s}=\frac{M}{Q}\left[\frac{F(t+\Delta t)-F(t)}{A t} 1\right. \tag{9.4}
\end{equation*}
$$

Allowing ($\boldsymbol{A} \boldsymbol{t}$) to approach zero is equivalent to having a spike-input. Thus a spike input is given by

$$
\begin{align*}
C_{s p} & =\frac{M}{Q} \lim _{\Delta t \rightarrow 0}\left[\frac{F(t+\Delta t)-F(t)}{A t}\right] \\
& =\frac{M}{Q} \frac{\partial F}{\partial t} \tag{9.5}
\end{align*}
$$

This solution can be written in a generalized form as

$$
\begin{equation*}
C_{s p}=E f\left(t ; \alpha_{i}\right\rangle \tag{9.6}
\end{equation*}
$$

The term (E) is a normalization factor that normalizes the function to one. Since there is no detailed knowledge of the inlet conditions at the entrance to the fracture, a normalization of the solution is needed. This normalization of the solution has no effect on the shape of return curves it only changes the size of the curve.

The parameters in Equation (9.6) were optimized by using a non-linear least squares method of curve fitting. This curve fitting was done by using VARPRO ${ }^{23}$, a computer program developed by the Computer Science Department of Stanford University. VARPRO optimizes both the non-linear and the linear parameters of a given function.

The method of curve fitting used in VARPRO is based on a paper by Golub and Pereya. ${ }^{24}$ It is shown that a non-linear model of the form

$$
\begin{equation*}
\eta(\alpha, \beta ; T)=\sum_{j=1}^{L} \beta_{j} \varphi_{j}(\alpha ; T)+\varphi_{L+1}(\alpha ; T) \tag{9.7}
\end{equation*}
$$

Where

$$
\begin{aligned}
& \eta=\text { Model to be fit } \\
& \mathrm{a}=\text { Non-linear parameters } \\
& \beta=\text { Linear parameters } \\
& \mathrm{T}=\text { Independent variable } \\
& \mathrm{L}=\text { Number of linear parameters } \\
& \varphi=\text { Nonlinear function }
\end{aligned}
$$

can be fitted by a non-linear least squares method by separately optimizing the linear parameters and the non-linear parameters.

In the present case there is only one linear parameter (E) and five nonlinear parameters ($a_{,}$). The objective function (0) which is minimized by the least squares fit is given by

$$
\begin{equation*}
O\left(E, \alpha_{i}\right)=\left[C_{i}-C\left(t ; E, \alpha_{i}\right)\right]^{2} \tag{9.8}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{C}_{i}=\text { Observed concentrations } \\
& \mathrm{C}=\text { Calculated concentrations }
\end{aligned}
$$

This function is minimized by using initial estimates of the non-linear parameters and then iterating to determine the optimum values of the non-linear parameters. The optimum linear parameter is then determined.

The details of how VARPRO works are discussed elsewhere. ${ }^{15,23}$ It is important to note that since a Taylor expansion of the objective function (0) with respect to the non-linear parameters $\left(\alpha_{i}\right)$ is used, an expression of the derivative of the two-dimensional solution with respect to the non-linear parameters was needed.

A summary of the input requirements of VARPRO is
(1) N observed concentrations $\left(\mathrm{C}_{i}\right)$
(2) Value of the independent variable (T) at each data point
(3) Estimate of the non-linear parameters
(4) Evaluation of the solution at any given (T) and for any set of dimensionless variables $\left(\alpha_{i}\right)$
(5) Evaluation of the derivative of the solution with respect to the non-linear parameters at any given (T) for any set of $\left(\alpha_{i}\right)$.

The subroutine that calculated the solution and the derivative of the solution with respect to the non-linear parameters was called ADA. ADA needed to include the double Stehfest numerical inversion techniques used in the different GENERATE programs \{see Section 7). Since the analytic solution is available
only in (p,y,s)-space, the calculation of the derivatives was of necessity in (p, y, s)-space also. Thus ADA needed to doubly invert both the solution and the derivatives. The calculation of the derivatives is discussed in Appendix (E).

A main program (MAIN) was also needed to; read in the data and the initial estimates of the non-dimensional variables, to call VARPRO, and to print the final results. A listing of CURVE.FIT, which is the program that incorporates VARPRO and all required subroutines, is given in Appendix (F).

The goal of CURVE.FIT is to determine the optimum values of the five dimensionless variables for a given set of real data. The goal of the entire tracer analysis is to determine something of the nature of the reservoir. This is done by relating the dimensionless variables to the reservoir parameters. There can be no unique determination of all of the different reservoir parameters because there are more unknown reservoir parameters than dimensionless variables. However it is possible to uniquely determine some of the physical parameters from the dimensionless variables.

The most important parameter that can be determined is the fracture half-width (w), which can be obtained directly. Using the definition of (x_{D}), the fracture half-width is given by

$$
\begin{equation*}
w=\frac{x}{x_{D}} \tag{9.7}
\end{equation*}
$$

where

$$
\mathbf{x}=\text { distance between wells }
$$

The fracture aperture is important not only to the flow model, as was shown in the sensitivity study, but also to any subsequent heat-transfer model that would be used to forecast thermal breakthrough. This ability to solve directly for the fracture width is a major advantage over preceding methods of curve fitting.

The other reservoir parameters cannot be directly determined but could be
approximated if some additional information were available. From the definition of the Peclet number

$$
\begin{equation*}
P e=\frac{V_{m} w}{D_{m}} \tag{9.9}
\end{equation*}
$$

it can be seen that if the value for the velocity in the mobile phase (V,) were known then the diffusion coefficient in the mobile phase could be calculated. The velocity term can be approximated by using the breakthrough time $\left(\mathrm{t}_{b t}\right)$ and the distance between the wells as

$$
\begin{equation*}
V_{m}=\frac{x}{t_{b t}} \tag{9.10}
\end{equation*}
$$

This approximation ignores retardation effects. Using Equation (9.10). (D_{m}) can be approximated by

$$
\begin{equation*}
D_{m}=\frac{x w}{t_{b t} P e} \tag{9.11}
\end{equation*}
$$

Combining the definitions for (β) and (R), equations (6.36) and (6.37) respectively, gives $\left(\varphi_{m}\right)$ as

$$
\begin{equation*}
\varphi_{m}=\frac{\rho P k}{\left[1-\frac{V_{m} R k}{w}\right]} \tag{9.12}
\end{equation*}
$$

The values of (R), and (β) are determined from the curve fitting procedure, (w) can be calculated and $\left(\mathrm{V}_{m}\right)$ can be approximated as discussed. It may be possible to determine (k) experimentally and (ρ) can be estimated. Values for (P) cannot be determined, but since (P) by definition ranges from zero to one only, equation (9.12) can give a range for $\left(\varphi_{m}\right)$.

A range for $\left(\varphi_{i m}\right)$ can be determined if a value for $\left(D_{i m}\right)$ can be experimentally determined since

$$
\begin{equation*}
\varphi_{i m}=\varphi_{m}\left(\frac{D_{m}}{D_{i m}}\right) \tag{9.13}
\end{equation*}
$$

As shown above, the two-dimensional model developed in this study can be posed in the form necessary to apply a numerical curve fitting procedure. From

- 39 -
this curve fitting technique it is possible to determine the optimum values of the dimensionless variables, and from the values of these variables it is possible to directly calculated the fracture width and to indirectly determine some of the other physical parameters used to develop the model. The application of this technique to real data is now discussed.

Section 10: APPLICATION OF TRACER TEST ANALYSIS TECHNIQUE

The analysis technique discussed in the previous section was tested by applying it to data from tracer tests in the Wairakei geothermal field in New Zealand. This data was collected by the Institute of Nuclear Sciences of the Department of Scientific and Industrial Research, New Zealand, and made available to the Stanford Geothermal Program for this study. No attempt was made to interpret to results on a field wide basis, rather the purpose was only to test the curve fitting procedure.

The first important result found from attempting to fit the model to real data was that the initial values of the non-linear variables enter into the curve fitting process had to be "good guesses". If the initial values were not good choices the matching process would fail altogether. Good choices were determined by first generating return curves with the GENERATE.SPIKE program given in Section 6 that were similar to the real data.

The second important result was that the curve fitting procedure had very slow convergence with the five parameter model. The consequence of this was that more than one combination of initial guesses of the non-linear parameters and subsequent numerical curve fitting was necessary to produce an acceptable fit. It was found that it usually took at least three series of guesses and numerical curve fittings to create a final fit. A flow chart of the procedure is shown in Figure (13). The most important step in the overall procedure was the intermediate step where the best fit values determined after numerically curve fitting were changed before re-entering the numerical curve fitting procedure. This step required a knowledge of how the variables affect the shape of the return curves. The sensitivity study discussed in Section (7) provided this information.

The third general result found when using this curve fitting procedure with real data is that the procedure requires a large amount of computing time. An example case of twenty iterations on a data set of forty points took about 200 minutes of c.p.u. time on a DEC VAX \#750. Since any final match required many such fits the computing time became a constraint.

The result of the curve fitting procedure for wells \#24, \#103, and \#121 are shown in Figures (14), (15), and (16) respectively. In these figures the data are shown as crosses and the generated curves using the optimum values for the variables are shown as solid lines.

Figure 13-CURVE FITTING PROCEDURE

In order to compare with other models, the results from the Fossum ${ }^{15}$ and Jensen ${ }^{16}$ models for the same wells using a single fracture fit are shown in Figures (17)-(22). The fits from the present study are better than those from Fossum's model and are comparable to those from Jensen's model.

The values of the dimensionless variables used to generate the curves shown in Figures (14)-(16) are given in Table (5). The only reservoir parameter that can be directly determined from the dimensionless variables is the fracture

Figure 14 - WELL \#24 FIT WITH TWODIMENSIONAL MODEL

Figure 15 - WELL \#103 FIT WITH TWO-DIMENSIONAL MODEL
width. The value of the fracture width for each case is given in Table (6). The fracture widths shown in Table (6) range from a low of 2.7 mm to a high of 10.1 mm .

Figure 16-WELL \#121 FIT WITH TWO-DIMENSIONAL MODEL

Figure 17 - WELL \#24 FIT WITH FOSSUM'S MODEL

Figure 18 - WELL \#24 FIT WITH JENSEN'S MODEL

Figure 19- WELL \#103 FIT WITH FOSSUM'S MODEL

Figure 20 - WELL \#103 FIT WITH JENSEN'S MODEL

Figure 21 - WELL \#121 FIT WITH FOSSUM'S MODEL

Figure 22 - WEL \#121 FIT WITH JENSEN'S MODEL

Table 5 - BEST FIT VALUES					
WELL\#	$\boldsymbol{x}_{\boldsymbol{D}}$	Pe	$\boldsymbol{\beta}$	R	\boldsymbol{a}
24	1.55305	0.201	0.502	$2.01 \mathrm{E}-06$	0.0021
103	5.01 E 04	0.200	0.450	$2.00 \mathrm{E}-05$	0.110
121	9.71304	0.170	0.500	$3.44 \mathrm{E}-05$	0.004

TABLE 6 - CALCULATED FRACTURE WIDTHS WELL\# FRACTURE WIDTH (mm)
$24 \quad 2.7$

103
6.6

121
10.1

Section 11: CONCLUSIONS

(1) Laboratory batch experiments run with Los Azufres, Mexico and Klamath Falls, Oregon reservoir rock are not sensitive enough to study the mass transfer processes active in tracer movement through a reservoir.
(2) A two-dimensional model that represents a fractured medium by a mobile region, in which convection, diffusion, and adsorption are allowed, and an immobile region, in which only diffusion and adsorption are allowed, can be used to represent tracer movement through a geothermal reservoir.
(3) The two-dimensional model that was derived in this study has demonstrated how each of the various mass-transfer processes included in the twodimensional model affect tracer return curves.
(4) It is possible to numerically fit real data to the two-dimensional model.
(5) The optimum values of the parameters determined from the curve fitting procedure provide a direct estimate of the fracture width and can be used to estimate other reservoir flow parameters if experimentally determinable values are known.

Section 12: SUGGESTIONS FOR FURTHER WORK

An experimental study has been designed that would allow for experimental verification of the two-dimensional model developed in this study. This proposed study would use the same equipment as the experimental phase of the present study with only a few modifications.

The basic idea would be to separate the stainless steel core holder into a mobile and a immobile region by packing the center portion of core holder with larger grain material than the outer region. A large permeability difference between the two regions would effectively cause the center region to be mobile and the outer region to be immobile. Previous studies ${ }^{25}$ have shown that the difference in grain size required to achieve a $40: 1$ permeability ratio between center and outer region is not very large. Sand with a (8-12) mesh range, packed to approximately 35 percent porosity will give about a 1700 Darcy permeability while a (40-60) mesh range will only give about a 45 Darcy permeability.

Separation of the two sands would be maintained by a wire mesh tubular holder placed inside of the stainless steel core holder. Other necessary modifications to the present equipment would include:
(1) Using endplugs with a single port entrance to restrict flow to the center region.
(2) Rearranging the valves so that a instantaneous switch from water to tracer can be made.

By conducting flow tests in the apparatus described above it would be possible to verify that the two-dimensional model is correctly determining the "fracture" size by varying the diameter of the center region. Multiple tests (varying flow rates) could be used to determine other flow parameters such as the

- 50 -
diffusion coefficients.

Section 13: REFERENCES

1. Horne, R.N., "Geothermal Reinjection Experience in Japan," Journal of Petroleum Technology, March 1982.
2. Fossum, M.P., Horne, R.N., "Interpretation of Tracer Return Profiles at Wairakei Geothermal Field Using Fracture Analysis," Geothermal Resources Council, Transactions, 6.
3. Strom, P.W., Johnson, W.E., "Field Experiments with Chemical Tracers in Flood Waters," Producers Monthly , Vol. 15, No. 2, 1951, 11-18.
4. Wagner, O.R., "The use of Tracers in Diagnosing Interwell Reservoir Heterogeneities - Field Results," Journal of Petroleum Technology , November, 1977.
5. Deans, H.A., "A Mathematical Model for Dispersion in the Direction of Flow in Porous Media," Trans. , AIME (1963), Vol. 228,49.
6. Carslaw, H.S., Jaeger, J.C.. Conduction of Heat in Solids , Clarenden Press, Oxford, 1959.
7. Perkins, R.K., Johnson, O.C., "A Preview of Diffusion and Dispersion in Porous Media," Trans. AIME (1963), Vol. 228,70.
8. Coats, K.H., Smith, B.D., "Dead End Pore Volume and Dispersion in Porous Medial," SPE of AIME Trans. , March 1964, 73-84.
9. Brigham, W.E., "Mixing Equations in Short Laboratory Cores," SPE of AIME Trans. , Feburary, 1974, 91-99
10. van Genuchten, M. Th., Wierenga, P.J.. "Mass Transfer Studies in Sorbing Porous Media; I, Analytical Solutions," Soil Science_of_America_Journal , Vol.40, No.4, August, 1976, 473-480.
11. van Genuchten, M. Th., Cleary, R.W., "Movement of Solutes in Soil; Computer-Simulated and Laboratory Results," Soil Chemistry B. Physico -Chemical Models, Elsevier Scientific Publishing Company, New York, 1982.
12. Tester, J.N., Bivens, R.L. and Potter, R.M., "Interwell Tracer Analysis of a Hydraulically Fractured Granitic Geothermal Reservoir," Society of Petroleum Engineers Journal, vol.22, 537-545, 1982.
13. Breitenbach, K.A., Chemical Tracer Retention in Porous Media , Stanford Geothermal Program, SGP-TR-53, Stanford CA, May 1982.
14. Horne, R.N. and Rodriguez, F., "Dispersion in Tracer Flow in Fractured Geothermal Systems." Geophysical Research Letters , Vol.10. No. 4, 289292, 1983.
15. Fossum, M.P., Tracer Analysis in a Fractured Geothermal Reservoir: Field Results from Wairakei, New Zealand , Stanford Geothermal Program, SGP-TR-56, Stanford CA. June 1982.
16. Jensen, C.L., Matrix Diffusion and its Effect on the Modeling of Tracer

Returns from the Fractured Geothermal Reservoir at Wairakei, New
Zealand , Stanford Geothermal Program, SGP-TR-XX, Stanford CA, December 1983.
17. Sageev, A., Design and Construction of an Absolute Permeameter to Measure the Effect of Elevated Temperature on the Absolute Permeability to Distilled Water of Unconsolidated Sand Cores , Stanford Geothermal Program, SGP-TR-43, Stanford CA, December 1980.
18. Johnson, S.E., Doublet Tracer Testing at Klamath Falls Geothermal Resource: A Model Comparison , Stanford Geothermal Program, SGP-TR-XX, Stanford CA, June 1984.
19. Sufi, A.H., Ramey H.J., Brigham, W.E., Temperature Effects on Oil-Water Relative Permeabilities for Unconsolidated Sands , Stanford University Petroleum Research Institute, Stanford CA, October 1982.
20. Jackson, P.B., Method for the Collection and Analvsis of Sample Fluids During a Tracer Test, Stanford Geothermal Program, SGP-TR-XX, Stanford CA, June 1984.
21. van Genuchten, M.Th., "Non-Equilibrium Transport Parameters from Miscible Displacement Experiments," United States Department of Agriculture Science and Education Adminstration, Report No. 119. U.S. Salinity Laboratory, Riverside CA, February 1981.
22. Stehfest, H., "Algorithm 368 Numerical Inversion of Laplace Transforms," Communications of the ACM , January 1970.
23. VARPRO, Computer Science Department, Stanford University, Stanford CA.
24. Golub, G.H., Pereya, V., "The Differentiation of Pseudo-Inverses and Nonlinear Least Squares Problems Whose Variables Separate," SIAM Journal of Numerical Analysis , Vol. 10, No. 2, 413-431, 1973.
25. van Poollen, H.K., Tinsley, J.M., and Saunders, C.D., "Hydraulic Fracturing Fracture Flow Capacity vs. Well Productivity," Trans. AIME (1958), Vol. 213.91.

Appendix A: DERIVATION OF SOLUTION TO TWO DIMENSIONAL MODEL

The defining partial differential equations are

$$
\begin{equation*}
\beta R \frac{\partial C_{1}}{\partial t}=\left(\frac{1}{P e}\right) \frac{\partial^{2} C_{1}}{\partial y_{D}^{2}}-\frac{\partial C_{1}}{\partial x_{D}} \tag{A.1}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\beta) R \frac{\partial C_{2}}{\partial t}=\left(\frac{\alpha}{P e}\right) \frac{\partial^{2} C_{2}}{\partial y_{D}^{2}} \tag{A.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& 1=\text { mobile region } \\
& 2=\text { immobile region }
\end{aligned}
$$

The initial and boundary conditions are

$$
\begin{gather*}
C_{1}\left(x_{D}, y_{D}, 0\right)=C_{2}\left(x_{D \cdot y_{D}} 0\right)=0 \tag{A.3}\\
\left.\frac{\partial C_{1}}{\partial y_{D}}\right|_{y_{D}=1}=0 \tag{A.4}\\
\left.\left.C_{1}\right]_{y_{D}=1}=C_{2}\right]_{y_{D}=1} \tag{A.5}\\
\left.\frac{\partial C_{1}}{\partial y_{D}}\right|_{y_{D}=1}=\left.\alpha \frac{\partial C_{2}}{\partial y_{D}}\right|_{y_{D}=1} \tag{A.6}\\
\left.\frac{\partial C_{2}}{\partial y_{D}}\right]_{y_{D}=\infty}=0 \tag{A.7}\\
C_{1}\left(0, y_{D}, t_{D}\right)=1 \tag{A.8}
\end{gather*}
$$

Transforming equation (A.I) with respect to t (ie. t goes to s)

$$
\begin{gather*}
\left.\beta R\left[s \bar{C}_{1}-C_{1}\right]_{t=0}\right]=\left(\frac{1}{P e} \frac{\partial^{2} \bar{C}_{1}}{\partial y_{D}^{2}}-\frac{\partial C_{1}}{\partial x_{D}}\right. \\
s \beta R \bar{C}_{1}=\left(\frac{1}{P e}\right) \frac{\partial^{2} \bar{C}_{1}}{\partial y_{D}^{2}}-\frac{\partial C_{1}}{\partial x_{D}} \tag{A.9}
\end{gather*}
$$

Transforming equation (A.9) with respect to $\left(\mathbf{x}_{D}\right)$ (ie. \mathbf{x}_{D} goes to \mathbf{p})

$$
\left.s \beta R C_{1}^{P}=\left(\frac{1}{P e}\right) \frac{\partial^{2} \bar{C}_{1}}{\partial y D_{D}^{2}}-\left[p C_{1}^{p}-\bar{C}_{1}\right]_{x=0}\right]
$$

Transforming boundary condition (A.5) and rearranging gives

$$
\begin{equation*}
\left(\frac{1}{P e}\right) \frac{\partial^{2} \bar{C}_{1}}{\partial y_{D}^{2}}-(p+s \beta R) C_{T}^{p}=\frac{-C_{o}}{s} \tag{A.10}
\end{equation*}
$$

Equation (A.IO) can be treated as an ordinary differential equation in (y_{D}). and can be solved by method of undetermined coefficients. The solution to the corresponding homogeneous equation is

$$
\left(C_{1}^{p}\right)_{H}=A e^{m y_{D}}+B e^{-m y_{D}}
$$

where

$$
\mathrm{m}=\left(\frac{1}{P e}\right)^{\frac{1}{2}}(p+s \beta R)^{\frac{1}{2}}
$$

The solution of the corresponding particular problem is

$$
\left(C_{1}^{p}\right)_{P}=\frac{C_{0}}{s(p+s \beta R)}
$$

The general solution is given by the sum of the homogeneous and particular solutions, thus the general solution is

$$
\begin{equation*}
C_{1}^{p}=A e^{m y_{D}}+B e^{-m y_{D}}+\frac{C_{0}}{s(p+s \beta R)} \tag{A.11}
\end{equation*}
$$

Transforming equation (A.2) with respect to (t) (ie. t goes to s)

$$
\left.(1-\beta) R\left[s \bar{C}_{2}-C_{2}\right]_{t=0}\right]=\left(\frac{\alpha}{P e}\right) \frac{\partial^{2} \bar{C}_{2}}{\partial y D_{D}^{2}}
$$

or

$$
\left(\frac{\alpha}{P e}\right) \frac{\partial^{2} \bar{C}_{2}}{\partial y_{D}^{2}}-s(1-\beta) R \bar{C}_{2}=0
$$

This is an ordinary differential equation whose solution is given by

$$
\bar{C}_{\mathbf{2}}=M \mathbf{e}^{x y_{D}}+N e^{-x y_{D}}
$$

where

$$
z=\left[P e(1-\beta) R s s_{a}^{\frac{1}{2}}\right.
$$

Boundary equation (A.4) determines that (M) is equal to zero and boundary equation (A.2) gives

$$
\left.N=\left(\bar{C}_{1}\right]_{y_{D}=0}\right) e^{z\left(1-y_{D}\right)}
$$

Thus the solution for $\left(C_{2}\right)$ in (x, y, s)-space is

$$
\begin{equation*}
\bar{C}_{Z}=\left(\left.\bar{C}_{1}\right|_{u_{D}=1}\right) e^{\left.-u_{D}\right)} \tag{A.12}
\end{equation*}
$$

Since in equation (A.12) only (C,) is a function of (x_{D}) equation (A.12) can be transformed with respect to (x_{D}) (ie. x_{D} goes to p) as

$$
\begin{equation*}
\left.\left.C \mathcal{B}=\left(C_{1}^{p}\right]_{V_{D}=1}\right)\right] e^{z\left(1-z_{D}\right)} \tag{A.13}
\end{equation*}
$$

To determine the unknown parameters \mathbf{A} and \mathbf{B} in equation (A.II) both equations (A.II) and (A.13) must be solved simultaneously. Applying boundary equation (A.4) gives

$$
A=B
$$

Applying boundary equation (A.6) gives

$$
\begin{equation*}
A=-\left[\frac{z \alpha C_{0}}{s(p+s \beta R)}\right]\left[\frac{1}{(1-\alpha) M\left(e^{m}-e^{-m}\right)}+z \alpha\left(e^{m}+e^{-m}\right)\right] \tag{A.14}
\end{equation*}
$$

Using equation (A.14) in equation (A.11) gives the solution of the partial differential equation (A.1) and (A.2) for (C,) as

$$
\begin{equation*}
C_{1}^{p}=\frac{C_{0}}{s(p+s \beta R)}-\left[\frac{z \alpha C_{0}}{s(p+s \beta R)}\right] \frac{e^{m U_{D}}+e^{-m \psi_{D}}}{(1-\alpha) M\left(e^{m}-e^{-m}\right)+z \alpha\left(e^{m}+e^{-m}\right)} \tag{A.15}
\end{equation*}
$$

Appendix 3: LISTING DF GENERATE STEP ANO SFMPLE INPUT AND DUTPUT

```
C 
    READ AND WRITE ESTIMATES DF WONLINEAR FARAMETERE
    ALF&i:=PECLET NUMEEF=FE
    ALF(2)=EETA
```

```
- ALF:3:=F
- a{F{4}={LPHA
Z A-F S S = XD
C
    WRITE(b,42)
42 FORMAT(//, 'INITIAL ESTIHATES OF NON-LINEAR PARAMTERS')
    DO 50 j=1,NL
    READ (5:*) ALF(J)
    WR[TE(ध, 45)J,ALF(J)
    COF: ITUE
    FOR!MAT(/, 'ALF',IE,'=', E1S S:
C
G REAE AND WRITE DATA
c T IS THE INDEpEMDEIST varIELE TIME
    GRITE(6,51)
51 FORMAT(//.'TIME STEPS',/\
:
    L2 S2 KM=1,M
    READ(5,*)T(Nm)
    &RITE(6, 6O)KK,T(KN)
    CDJ:INUE
    FDRMAT:SX,13:I3X,FE 3:
    EET FAFAHETESS FEQ ETEFWGT IWGFGIG
    M=50
    #=424
    GA-CLLATE MATEIX A
    CH_CULATE THE CONCE|TRATION ETRL
    k=2
Q& DON N=1,N
        TE=T:j;
        XD=ALF(5)
        A(J,M:=XINWFI!TD,NTV,M:XD,ALF)
        IF(ASG,M}.LT.O.O) A(J,V:=O.O
        cortTINUE
C
G PRIGT GUT RESULTS
        WRITE(6,153)
```



```
C
    HRITE(&, 55):T(I),ACI:I;, I=1,N!
EE FORMATH:GE:S STOREDE:
\therefore
    ETdC
C
O
Z
O

\section*{THIS IS THE FIRST INVERSION WHICH GOES FROM (X, Y, Si-SPACE BACK TO REAL TIME. IT NEEDS THF EWALUATION OF THE FUNCTION IN E-SPACE ANE TO DO THIS IT CALLS SFUNCTION AS A FUNCTIC:}

FUNCTIDH XINURI (TD, N, M, XD, ALF)
THIS FUNTIDN GOMPUTES NUMERIEALLI THE LAFLACE TRNSFOR:A INVERSF OF F (S)
IMPLICIT REAL*E (A-H.O-Z)
DIMENSION G(50), V(50), H(25)
THW IF THE ASRAY UGI: WAS COMPUTES BEFDRE THE PROGRAK GOES DIPESTLY TO THE ENG GF THE SUERUTINE TO CALCULATE F:S
IF (NEG (M) ODTO IF
M-N



\(E: E=\mathrm{i}\)
\(201 I=2,4\)
G: \(!=6(I-1) * 5\)
Gontrive
TERME WITH W ORLY ARE GALEULATEE IMTO ARFAY H
\(H(1)=2 / G(N H-1)\)
DO \(\Rightarrow I=2,1+H\)
FI=:
IF (I-NH) \(4,5,6\)
HCI: =FI**NH*
GD TOE
\(H(I)=F I * *(N H * G(2 * I ; / G(I) * G(I-1)\)
CONI INUE
THE TERME ( -1 )**NH+I ARE CALCULATEE
FIRST•THF TERH FOR \(I=1\)
\(5 \mathrm{H}=2 *(\mathrm{H} H-1 \mathrm{H} /\) / \(2 * 2:-1\)
THE REST DF THE EN'S ARECALCULATED IN THE MAIG RUTIGE

THE ARRAY V:I IS GA EULATED
חコ \(7 \mathrm{I}=\mathrm{I}\), N
FIRST SET V:I:=0
\(V(I)=0\)
THE LIMITE FOF \(M\) ARE ESTAELIEHED
THE LOWER LIMIT IS 1 I=INTEG! \(I+1, E\) :
```

 kI=(I+I)/?
 C
THE UPPER LIMIT IS MZ=MIN(I:N/Z)
K2=I
IF (K2-NH) 8,8,9
K2=NH
THE SUMMATIGN TERM IN V(I) IS CAl_CULATED.
DO 10 K=k1,k2
IF (2*K-I) 12,13,12
IF (I-k) 11,14,11
I2 V(I:=V(I)+H(%)MGG(I-K)*G(2*N-I))
GO TO 10
IU V(I)=V(I)+H(K)/G(I-K)
GO TO 10
14 V(I)=V(I)+H(K)/G(Z*K-I)
10 contimue
C
c
\&
E
Et=-EN

GOm:Imue

 THE RUMERICAL &FFRO:ImTIDIG IE CALClLATED
 I7 XINVR:=0.
A=DLOGTN:TD
LO 15 I=1,N
ARG-A=I
XINVRI=XINVRI+V(I)*SFUNC:ARG:I, XI,ALF:
15 continue
XINVRI=XINNRI*A
iE RETURN
END

```


FUNCTION SFUNGTIOH

FUNCTION SFUNC：S，I XD，ALF：
IMPLICIT REALAB（A－H，O－Z：
THIS FUNCTION EIMFL＇EVAluatee The desifen functidn an S－Space by calling for a second inversion usimg the STEHFAST ALGQFITHi，it Should de noyel thot the varidle THAT IS TRANSFGRMED FRDIA GUING FRDI S－SFACE TO A－EFACE IS XD THUE 5 IS A CONSTAMT FROM THIE POIH：DU
\[
\begin{aligned}
& X D=X D \\
& S=5 \\
& N=10 \\
& M=2424 \\
& S F U N C=X I N V R 2(X D, M, M, S, G L F) \\
& R E T U R N \\
& E N D
\end{aligned}
\]

\section*{THE STEHFEST ALGORITHM}


THIS FUNCTIOA WELL IPVERT FRUM (F,Y S:-SPACE TO (X,Y, S)GPACE WITH XD EEIUG THE VAFIELE OF INVERSIDN. THE FUNCTION NEEDS AM EXPFESSIDN FOR THE FUNCTION IN F-SPACE AND THIS IS DONE B' CALLITG FFUNC (XD, S)

THIS FUNTIOM GOMPUTES NUERICALLY THE LAPLACE TRHSFERM IHVESE TF FIE
DF:ICIT REA, FE \{A-H, \(-a\)
DIMEREIOR G(SG), \&50, H2se
HOW IF THE ARRAY VI: GAS CGMPUTED BEFORE THE FRDGRAM GOES DIRECTLY TO THE EVD EF THE SUERLTINE TO GALCULATE FiE)
IF (N.EQ.M) GQ TDIT
Trotu
DLDGTK=0.653147180559\%
\(\mathrm{NH}=\mathrm{N} / 2\)

THE FACTORIALE DF I TV N ARE CALGUATEE IUTG AFFA'YG. Gi: : =
DE 1 1=2, \(: 4\)
G(I:=G(i-i)*i
COtdINUE
TERME WITHK CELY ARE GALCULATED IITTO ARRAY H
HC: \(=2 / \mathrm{G}(\mathrm{NH}-1\) )
\(D \mathrm{D} \pm \mathrm{I}=2.1 \mathrm{H}\) \(\overline{F I}=I\)
IF:I-NH: \(4,5,6\)
 G\% TO
 GORTINUE

THE TERME (-I)**1HF : ARE CALCULATEE FIRST THE TERII FGR \(i=i\)
SN=こ*(NH-NH/2*2)-1
```

is
C
THE REST OF THE SN'S ARECALCULATED IN THE MAIN RUTINE
THE ARRAY V(I) IS CASCULATED.
0O }7\textrm{I}=1.
FIRST SET V(I)=0
V(I)=0
THE LIMITS FOR K ARE ESTABLISHED
THE LOWEF LIMIT IS MI=INTEG((I+1,Z);
KI=\I+i!'/Z

```

```

 K2=I
 IF (K2-NH) B,E.G
 ME=NH
 THE SUMMATICN TERM IN U(I) IS GAICULATED
 DO :O K=以:,kこ
 IF {各,-I} 12,13,12
 = IF (I-\&) {1,\4,:1

```

```

 GO TO IO
 iz VII:=V(I;+H(N:GG(I-N)
G0 T0 10
24 V!I:=U!I)+H(H:/G(こ*W-I)
20 COH:INUE
THE VOI; ARRAY IE FINAILY CALGULATED EY WEIGHTENG
ACCERDIHG TO ER.

```

```

G THE TERM SN CHANGES ITS SIGN EACH ITERATIOR.
5N=-5N
CONTINUE
THE RUNERICAL APPROXIMNTICR IS CALOULATEE
17 XINVR2=0.0
A= DLOGTW/XD.
DO 15 I=1,N
ARG=AFI
XINVRこ=XINVR2+U\I;*FFUNC(ARG:I,E,ALF:
IS CONTIMUE
XINVRZ = XINVRQ*A
IE PETIRF
EIND

```

\footnotetext{

}

\title{
FUNCTION PFUNC (P,I, S, ALF :
}

IMPLICIT REAL*8(A-H, O-Z)
DITAENSION F(4), ALF (20:
\(Y D=0.5\)
\(c\)
c initially set all values to zero
DO \(1 \quad I=1,4\)
FII) \(=0.0\)
\(:\) conimue
\(F F=0.0\)
C
\(c\)
CALCULATE THE COMPDAENTE OF THE CDNGENTKATION FUNCTIOH


Zh=2/x
\(F(!)=1,(S *(P+(S * A!F(2) * A L F(3):)\)





FFUNC=FF
RETURG
Et:0


test. generate a step
20
0 1.7.72e-05
0.0070047

O 165:1EOt
1
\(E\)
\(=\)
30
\(+0\)
5
7
5
2
12
15
17
: 7
\(\because\)
2
25.

27
27


test: generate a stef
WHMDER OF WOMLINEAR PARAMETERS \(=5\)
NIMEER DF LINEAR PAFAMETERS \(=1\) NUMEER OF OESERVATIONS \(=20\)

IUITIAL Estimates uf nen-l inear faramters
\begin{tabular}{|c|c|}
\hline ALF \(1=\) & 0.20140e:00 \\
\hline AlF \(2-\) & 0.49942e-00 \\
\hline AF 3 = & 0.17972e-05 \\
\hline AFF 4= & 0.70049e-0e \\
\hline A! F \(5=\) & 0. 16531e+06 \\
\hline
\end{tabular}

TPME STEPS
\begin{tabular}{rr}
1 & 0.010 \\
2 & 2.100 \\
2 & 6.000 \\
4 & 2.000 \\
5 & 2.000 \\
6 & 4.000 \\
7 & 5.000 \\
0 & 7.000 \\
9 & 11.000 \\
10 & 13.000 \\
11 & 15000 \\
12 & 17.000 \\
13 & 21000 \\
14 & 23000 \\
15 & 25.000 \\
15 & 27.000 \\
17 & 27.000
\end{tabular}

RESUTE
TIUE
```

:9000e-01
C. 16000e+00
c $50000=+00$
c. 10000e+01
0 20000er01
C. $30000 \mathrm{e}+01$
2 40000 e - Cl

```
\(0 . \quad \mathrm{O}+\mathrm{CO}\)
\(0 . \quad e+\infty\)
0. \(12592 e+00\)
0. \(32652 e+00\)
0. \(51122 e+00\)
0. \(597+7 e+00\)
0. \(64972 e+0\).
\(050000 \mathrm{e}+01\)
© \(70000 \mathrm{e}+01\)
\(070000 \mathrm{e}+01\)
0 11000e＋02
－． \(13000 e+02\)
c． \(15000 \mathrm{e}+02\)
C． \(17000 \mathrm{e}+02\)
0．19000e＋02
0．21000e＋02
\(023000 e+02\)
－25000e＋02
0 27000e＋02
0． \(29000 \mathrm{e}+02\)

0 － 5 E5720＋00
0． \(73350 \mathrm{e}+00\)
\(076453 e+00\)
0． \(76677 e+00\)
0． \(80371 e+00\)
0． \(81716 e+00\)
0．\(E 2 \varepsilon 1 \varepsilon e+00\)
0．\(E 3743 e+00\)
\(0.84533 e+00\)
\(0.85217 e+00\)
0． \(85518 e+00\)
0． \(86.352 e+00\)
0． \(86 \varepsilon 29 e+00\)

Appendix C: LISTING DF MAIN OF GENERATE. FINSTEP AND SAMPLE INPUT
```

C
C
GENERATE. FINETEP
C
C
C
C
C
IMPLICIT REAL*R(A-B,D-H,D-Z)
DIMENSION CTITLE(2O),T(400): ALF(14),A(400,13), 3(400, 13)
C
C
READ AND WRITE INITIAL DATA
FEADSS:IOCTMGE
FEF!AT: 20A4)
WRITE (E.EO) GTITLE
FORMAT :10X, ECA%:
E
G NL IS THE NUMEEF OF NONLINEAF PGRAMETERE
C SET NLLS FGR SINGLE FRACTURE
NL=5
WRITE(6.30)NL
FORMAT('NUMBER OF NONLINEAR PARAN:STERS = 'I2)
C
L IS THE NUHBER GE LINEAR PARATGETERS
L=NL/ラ
WFITE(0.35:L
FORIAAT:'NUMBER OF LINEAR PARAMETERS = I2:
N IS THE NLMBER EF OBSERVATIDNS
READ (5,*) N
INRITE (6,40) N
E
DELT IS THE EURATIDN OF THE ETEP INPUT
FORIAAT:'MUMBEF OF DESERWATIONE = . IG:
REAO (5,*)DELT
WRITE (E,41) DELT
41 FORMAT('DURATIDN DF STEF INPUT =,FE.2:

```

```

 READ AIND WRITE ESTIMATES OF NDNLINEAR PARAMETERS
 ALF (1)=PECLET NUMBER = PE
 ALF(2)=EETA
 ALF (3)=FR
 ALFF(4)=ALPHA
 ALF(5)=XD
 WRITE(6,42)
 42 FORMAT(/F,INITIAL ESTIMATES OF NON-IINEAR PARAITTERS':
DO 50 J=1.NL
REAC (5,*) ALF(J)
WRITE(6,45)J. ALF(J)
SO CONTINUE
45 FORIAAT(%'ALF',I2.'=',E15 5;
C READ ANS WRITE DATA
G READ AND WRITE DATA
WRITE(A,51)
S: FORMAT:A:'TIME ETEFS::
c
DO SEMK=1, 4
FEOEE*:T(N:
WFITE: v.GC)乡, OM,
3\# COUTINOE
EG FDRMAT(GX,IS:ISW,FE Z
SET PARAMETERS FOR ETEHFEE? INVEREIORN
NK=20
M=2424
C
CAICULATE MATRIX A
CALCULATE THE CONCEINTPATIOK DMLY
USE SUPERFESITIDN
k=1
70 DO 100 N=1.N
XD=ALF(5;
TD=T(U)
A(U,W)=XINVRI(TD,NW,M,XD,ALF)
IF(A(J,M)LT.O.O) A{J,K)=0.O
IF(TD LE DELT: GO TO IOO
TD=T(J)-DELT
B(S,M:XINVFI:TD,OAM,M XD:A_F

```

```

 IF(A(JM)LTGO)A(J,K)=O,O
 IGO CONTINUE
C
PGINT OUT RESULTS

```
\[
67-
\]

WRITE (G.153)
FORMAT(/, T20, 'RESULTS', /, TS, 'TIHE'. T25, 'CQNC.')
WRITE(6. 155)(T(I), A(I, 1), \(I=1, W)\)

0
End

 TEST: GENERATE A FINITE-ETEP
27
10
C. \(19972 \mathrm{E}-05\)
0.0070047
- 16531E0
1.

2
3
4.5
\(=\)
6
! 1
\(\therefore:\)
\(\because\)
\(\because\)
i
\(\leftrightarrows\)
\(\vdots\)
18
10
20
es
2
30
:

\section*{FUNCTION SFUNCTION}

FUNCTION SFUNC(S, I, XD, ALF:
IMPLICIT REAL*B(A-H, O-Z)
THIS FUNCTION SIMPLY EVALUATES THE DESIRED FUNCTION IN C S-gface by calling for a second inversion ueing the

THAT IS TRANSFORMED FROM GOING FROM S-SPACE TO P-SPACE IE XD THUE S IS A CONETAUT FROM THIS FOINT ON.

NOTE THE TIME DERIVATIVE NEGESSARY FQR THE SFIWE INPUT is achieved gy mbrtfling tre funcyion Ex 5
\(X D=x E\)
\(5=E\)
\(N=10\)
\(\mathrm{m}=2424\)
SFUNC =S*YIRVRE (XD,N,M, S, ALF
RETURN
END

\section*{Appendix E: CALCULATION OF THE DERIVATIVES OF THE TWO-DIMENSIONAL MODEL}

The calculation of the derivative of the solution equation (6.39) with respect to the five dimensionless variables was done in \((p, y, s)\)-space. These values were then doubly inverted and entered to the curve fitting program as needed. The analytic expression for the solution is
\[
\begin{equation*}
C_{1}^{p}=\frac{C_{0}}{s(p+s \beta R)}-\left[\frac{z \alpha C_{0}}{s(p+s \beta R)}\right] \frac{e^{m y_{D}}+e^{-m y_{D}}}{(1-\alpha) M\left(e^{m}-e^{-m}\right)+z \alpha\left(e^{m}+e^{-m}\right)} \tag{E.1}
\end{equation*}
\]

To simplify the calculation of the derivatives, the solution has been separated into the following functions
\[
\begin{gather*}
f_{1}=\frac{1}{s(p+s \beta R)}  \tag{E.2}\\
f_{2}=\frac{\left(\frac{z}{m}\right) \alpha}{s(p+s \beta R)}  \tag{E.3}\\
f_{3}=\left\{\left[1+\left(\frac{z}{m}\right) \alpha-\alpha\right] e^{m}+\left[\alpha+\left(\frac{z}{m}\right) \alpha-1\right] e^{-m}\right\}  \tag{E.4}\\
f_{4}=\left(e^{m y_{D}}+e^{\left.-m y_{D}\right)}\right. \tag{E.5}
\end{gather*}
\]

The derivative of the solution with respect to any of the dimensionless variables can be calculated from the derivative of the above simplified functions with respect to the variables. The following notation greatly simplifies the generalization of the calculations. Let
\[
\begin{aligned}
& \mathrm{Pe}=\alpha_{i} \\
& \beta=\alpha_{2} \\
& \mathrm{R}=\alpha_{3} \\
& \alpha=\alpha_{4} \\
& \mathrm{x}_{D}=\alpha_{5}
\end{aligned}
\]

In general the derivative of the solution with respect to any dimensionless
variable \(\left(\alpha_{j}\right)\) is given by
\[
\begin{equation*}
\frac{\partial F}{\partial \alpha_{j}}-f_{2} f_{3} f_{4} \frac{\partial f_{1}}{\partial \alpha_{j}}+f_{1} f_{3} f_{4} \frac{\partial f_{2}}{\partial \alpha_{j}}+\mathrm{flf}_{2} f_{4} \frac{\partial f_{3}}{\partial \alpha_{j}}+\mathrm{f}_{1} f_{2} f_{8} \frac{\partial f_{4}}{\partial \alpha_{j}} \tag{E.6}
\end{equation*}
\]

All that is needed to complete equation (E.6) is an evaluation of \(\left(\frac{\partial f_{i}}{\partial \alpha_{j}}\right)\). This par-
tial derivative term is denoted by \(\operatorname{PD}(i, j)\), where
\[
\begin{aligned}
& i=\text { Function number } \\
& j=\text { Variable number }
\end{aligned}
\]

For \(\left(\alpha_{1}\right)\) the partial derivatives have been calculated as
\[
\begin{gathered}
P D(1,1)=0 \\
P D(2,1)=\frac{\alpha_{4} z}{m^{3} \alpha_{1} s} \\
P D(3,1)=\frac{m \alpha_{4}}{2 \alpha_{1}}\left[\left(\frac{2 z}{m^{2}}+1-\frac{\tilde{m}}{m}-\frac{1}{\mathbf{a 4}}\right) e^{m}\left(\frac{2 z}{m^{2}}+1+\frac{z}{m}-\frac{1}{\alpha_{4}}\right) \mathrm{e}^{-m}\right] \\
P D(4,1)=\frac{m y_{D}}{2 \alpha_{1}}\left[e^{-m y_{D}}-e^{m y_{D}}\right]
\end{gathered}
\]

For \(\left(\alpha_{2}\right)\) the partial derivatives are
\[
\begin{gathered}
P D(1,2)=-\frac{\alpha_{3}}{m^{4} \alpha_{1}^{2}} \\
P D(2,2)=-\frac{\alpha_{3}}{2 m^{3}}\left[\frac{1}{z}+\frac{z \sigma_{4}}{\alpha_{1}^{2} m^{2}}\right] \\
P D(3,2)=\frac{s \alpha_{3}}{2 m a_{1}}\left[\left[1+\frac{z \alpha_{4}}{m}-\frac{a_{i}}{m}-\frac{\alpha_{4} z}{m^{2}}-\alpha_{4}\right] e^{m}-\left[\alpha_{4}+\frac{\left.\left.z \alpha_{4-}+\frac{\alpha_{1}^{2}}{2}+\frac{\alpha_{4} z}{m^{2}}-1\right] e^{-m}\right]}{P D(4,2)=\frac{\alpha_{3} s y_{B}}{2 \alpha_{1} m}\left(e^{m y_{D}}-\mathrm{e}^{-m y_{D}}\right)}\right.\right.
\end{gathered}
\]

For \(\left(\alpha_{3}\right)\) the partial derivatives are
\[
\begin{gathered}
P D(1,3)=-\frac{\alpha_{2}}{m^{4} \alpha_{1}^{2}} \\
P D(2,3)=\frac{1}{2 m^{3}} \frac{\left(1-\alpha_{2}\right)}{2}-3 z \alpha_{4} \alpha_{2} \\
P D(3,3)=\frac{s \alpha_{2}}{2 m \alpha_{1}}\left[\left[1+\frac{z \alpha_{4}}{m}-\frac{\left(1-\alpha_{2}\right) \alpha_{1}^{2}}{\alpha_{2} z}-\frac{\alpha_{4} z}{m^{2}}-\alpha_{4}\right] e^{m}-\left[a_{1}+\frac{z \alpha_{4}}{m}+\frac{\left(1-\alpha_{2}\right) \alpha_{1}^{2}}{\alpha_{2} z}+\frac{\alpha_{4} z}{m^{2}}-\sim\right] \mathrm{e}-\cdots\right] \\
P D(4,3)=\frac{\alpha_{2} s y_{D}}{2 \alpha_{1} m}\left(e^{m y_{D}}-e^{-m y_{D}}\right)
\end{gathered}
\]

For \(\left(\alpha_{4}\right)\) the partial derivatives are
\[
\begin{gathered}
P D(1,4)=0 \\
P D(2,4)=\frac{\boldsymbol{z}}{\alpha_{1} m^{3}} \\
P D(3,4)=\left[\frac{1}{2}\left(\frac{z}{m}\right)-1\right] e^{m}+\left[1-\frac{1}{2}\left(\frac{z}{m}\right)\right] e^{-m} \\
P D(4,4)=\mathbf{0}
\end{gathered}
\]

The above shows how the derivative of the solution can be calculated for all the dimensionless variables except \(\left(x_{D}\right)\). This derivative was calculated using the following property of the Laplace transform
\[
\frac{\partial F}{\partial x_{D}}=p\left(L^{-1} f^{p}\right)
\]

Thus the derivative with respect to \(\left(x_{D}\right)\) was calculated by multilpying the solution by \(\mathbf{p}\) before it was numerically inverted from ( \(p, y, s\) )-space to ( \(x, y, s\) )-space.
```

Appendix F: LISTING OF CURVEFIT

```
```

c
IMPLICIT REAL*B(A-B, D-H,D-Z:
DIMENSION CTITLE(20), T(400) Y(400:, ALF(:4), 2ETA(7,W(400),
\#INC(14, E},A(400,13),Ci400:
SET PARAMETERE FGR VARPRD
EvTERNAL- ADA
NTAX=40C
IFRINT=1
c
WRITE (t, 20) CTITLE
20 FORMAT {1OX, 20AG}

```
    SET NL=5 fGR a SINgle fracture
    NL=S
    formati (' number of noni_inEan paratMeterg == .12.
C
C
\(L\) IS THE NUMBER OF LINEAR Parameterg
\(\mathrm{L}=\mathrm{hL} \mathrm{L} / \mathrm{S}\)
WRITE(6.35)L
Foriat ( number of lineaf parameters \(=\). I2)
NL IS THE NUMBER OF NONLINEAR PARAMETERE
SET NL=5 fGR a single fracture
\(\mathrm{NL}=5\)
FORMAT (' NUMREF OF NONi iNEAT PARAMETERE = \(=1 z\)
n is the number of deservatione
\(\operatorname{READ}(5, *) \mathrm{N}\)
WRITE (6, 40) N
40 FORMAT (' NUMBEF OF OBSERVATIDNS \(=\). I4:
\(c\) iv is the numeer of independent varibles
```

c

$$
I U=1
$$

SET CONSTANTS

$$
L P P Z=L+N L+2
$$

$$
L P=L+1
$$

WRITE (6.4i) IV, LPPE, NMAX, LF
FORMAT (T2O, 'CONSTANTS'/(I3))
READ AND WRITE ESTIMATES OF NONLIMEAR PARAMETERS
ALF (1)=PECLET NUMBER $=$ PE
$\operatorname{ALF}(2)=B E T A$
ALF $(3)=R$
ALF(4)=ALPHA
$\operatorname{ALF}(5)=X D$
WRITE(E, 42)
42. FORMAT(TZO, 'INITIAL EETIMATES OF NUNLINEAF FARAMETERS')
DO $50 \quad j=1$, NL
$\operatorname{READ}(5, *) \operatorname{ALF}(J)$
WRITE(E, 45) J, allf(v)
continue
as: FDRMAT:ALF' I2, $=$, EIS E
real ame write datio
TiE ThE indefendert varible time
y is The dependent vafible goncentantigns
WPITE(E. 5I)
FDRMATITE. 'DATA MC , TE3. 'TIME': T40, CDRCENTRATIDN':
DO $52 k n=1, N$
REAE (5, *) T(KK), Y(k)

52 CONTINUE
FORMAT (9X, 13, 13x, FG, 3,10X, FQ. 3)
,
set wid the weighting parametere
-

DO $70 \mathrm{I}=1, \mathrm{~N}$
W(I)=1.0
-
c
CALL VARPRO TO DETERMINE THE EEST FIT VhLUES
CALL VARFROCL, TLL, N. MMAX, LPFE, IV, T,Y.W.ADA, A
*IPRINT, ALF, bETA, IERF:

TIME POINTS IN ORIGINAL LATA FLOT BOTH GMLULATEL ARE OBEEPVED
RETURN CURVEE
WRITE ($\epsilon, 80$)
Br. FORMAT:TEO, BEST FIT VALUES':

```
    WRITE (t,85)(I,ALF(I): I=1,\4L)
```



```
            Subroutine ada(lp,id, N, Nmax, LFPz, IV, A, ine t.alF, ise,
            IMPIICIT REAL*B(A-H,O-Z)
            DIMENSION ALF(NL), A(NMAX,LFPZ:,T(TMMAX:, INC(14,6:
            L=LP-1
            NN:=10
            M=2424
C
C
            EKIF UTLESS IEEL IE EGUAL TO I
            IF (ISEL EQ. 2; GO TO 90
            IF (ISEL EQ. 3) GO TO 110
            DO 10 J=1,L
            DO 10 K=1,NL
            INC(K,L)=?
            IF(ik+4)/2.LT.5) INS(k,1)=1
            IF(iK+4)/2.GE 5; IWO(K, 2)=1
G comTiNuE
CAlCUlate Matrix a
CALCULATE COLUNN E: COLUHAN
FIFET CALCGLATE THE CONCENTFATION ONM.
```

```
C
90 DO 100 J=1,N
    DO 99 K=1.L
    TD=T(J)
    ISET=1
    XD=ALF (5*K)
    KK=k
    A(U,K)=XINVRI(TD,NH,M, XD,ALF,ISET,KK)
    IF}(A(J,K).LT,O.O) A(J,K)=0.0,
95 CONTINUE
100 CONTINUE
C SKIF THE CALCULATIDN DF DERIVATIVES IF ISEL=2
C
    IF {ISEL.EQ. 2) GO TO 360
C
C calculation df the derivatives
C FIRST CALCULATE DERIVATIVE WITH RESFECT TG ALF:i; (FE)
c
110 DO 150 J=1,N
    DO 150 %=1.L
    TD=T(J)
    XE={LF(5**)
    ISET=2
    I S=3
```



```
:g continue
    calgulate derivate with hegfegt to alf!e:: ibeta
    DO 200 J=1,N
    DO 200 k=i.L
    TD=Ti.\
    XD=ALF (S*K.)
    ISET = З
    IB=4
    A(d,IE)=XINVRI(TD,:WM,M, XD,AGF,ISET, A:
        IF(A(U,K).LE,O.O) A(U,IE)=0.O
EOO continue
C
C calculate derivative with resfect to alf(z:ir
c
DO 250 j=1, M
DO =50 %=1.L
TD=T(U)
XD=ALF(S*L;
ISET=4
1B=5
A:J.[Q:= XINGFI(TEMN,M,XE ALF,IEET, *
    IF(A(u,H) LEE O.O: AN,IE:=O,0
ESG comtINUE

```

 DO \(300 \quad J=1, N\)
 DO \(300 \mathrm{~K}=1, \mathrm{~L}\)
 \(T D=T\) (3)
 \(X D=4 L F(5 *\). \()\)
 ISET=5
 \(L E=\epsilon\)
 \(A(J, I E)=X I N V F I(T D\), NN, M, XD, ALF, ISET,K)
 IF \((A(J, K)\) LE. 0.0\() A(J, I E)=0.0\)
 CONTINUE
 CALCULATE DERIVATIVE WITH RESPECT TO ALF(5); (XD:
 Da \(250 \quad J=1, N\)
 [0 \(350 \mathrm{~K}=1, \mathrm{~L}\)
 \(T \mathrm{E}=\mathrm{T}(3)\)
 \(X E=A L F(S * A)\)
 ISET=も
 \(I E=7\)
 $A(J, I E)=X I N V R 1(T E, N N, M, X D, A L F, I S E T, K$:
IF (A) $f, x)$ LE 0.0) $A(J, I E:=0.0$
continue
cont inue
RETURN
EHE
THIS IS THE FIRET INVERSION WHICH GOEE FROM (x, y, S;-SPACE back to real time. it weeds the evaluation df the FUNCTION it: S-SPACE ANB TO DO THIS IT CALLE SFUNCTIDN AE A FURETIG:
FUNCTIDIA XIRUFZ (TD, N, M, XD)
THIE FUNTION COMPUTES HUMERICALLY THE LAFLAOE TRNGFOR:A INUERSE OF $F(S)$.
IMPLICIT REAL*E (A-H, D-Z:
DIMENSIDN G(50), U(5O):H(25:
NOW IF the array vig: was computed before the frogram goEs directly to the end ge the subrutine to cal oulate $F(S)$
IF (te EGh) GOTOIT
$\mathrm{m}=\mathrm{F}=$
DLDGTW=0. 593141805599
$\mathrm{NH}=\mathrm{F} / 4 \mathrm{Z}$


``` G:1:=1
```

```
    DO 1 I=2,N
    G(I)=G(I-I)*I
    CONTINUE
    TERMS WITH K ONLY ARE CALCULATED INTO ARRAY H.
    H(i)=2./G(NH-1)
    DO & I=2,NH
    FI=I
    IF(I-NH) 4,5,0
    H(I)=FI**NH*G(2*I)/(G(NH-I)*G(I)*G(I-1))
    GG TO 6
    H(I)=FI**NH*G(2*I)/(G(I)*G(I-1))
    CONTINUE
    THE TERMS (-1)**NH+1 ARE CALCULATES.
    FIRST THE TERM FOR I=1
    SN=O*(NH-NH/O*):-1
    THE REST OF THE EN'S AREGALCULATEN IN THE MAIN RUTINE.
    The array yii: is calbulated
    DO }7\textrm{I}=1,\textrm{N
    FIRET EET \because:I:OO
        VGI;=C
    THE LIMITE FOF K ARE ESTADLISHED
    THE LOWEF LIMIT IS KI=INTEG((I->I/E):
    M1=(I+1)/Z
    THE UPPEF LIMIT IS KE=MEN(I,N, ()
    KE=I
    IF (M,2-NH) B,E,Q
    K2=NH
    THE SUMMATION TERM IN U(I) IS CALCULATED.
    DO 10 k=k, ke
    IF (2*K-I; 12,13,12
    IF (I-K) 11,14:11
IL UF (I-K)IN'(K;/(G:I-K)*G(2*K-I))
    GO TO 10
    V(I)=W(I)+H(H)/G(I-K)
    GOTO iO
I4 V(I)=V(I)+H(K)/G(2*W-I)
10 CONTINUE
    THE VII: AFRFY IS FINALGY CHLCULATED BY WE:GHTIMG
    ACOOFDING TD S!
    V(I)=SN*V(I)
C
C THE TERM SN CHANGES ITS SIGN EACH ITERATIGA
    SN=-SN
    cONTINUE
```

The numerical approximation is calculated.
XINURI=0.
$A=D L O G T H / T D$
DO $15 \mathrm{I}=1, \mathrm{~N}$
$A R G=A * I$
XINVRI =XINVRI+V(I)*SFUNC (ARG, I, XD)
COHTINUE
XINVRI =XINVRI $\# A$
RETURN
END

FUNGTION SFUNETION

FUNCTIDK SFUNE (E, I, XD:
IMPEICIT REAL*B(A-H, O-Z;

S-gface by callifg for a secono inversion ueing the
stehfag algopithe it shang be noter that the rabiale
That : \exists TRANEFORMED FROA GOMG FROI S-EPACE TO F-gPACE
IS XD THUE 5 IS A CONSTAKT FFOM THIE PGIMT DH.
the s function is multiplied ey 5 in order to dalculate the TirE derivative thus froducing a geike infut

```
X[= XD
S=S
N=10
19=2424
SFUNC =S*XINUR2(XD,N,M,S)
RETURN
END
```


FUNCTION INVEREES

THE STEHFEST ALGORITHM

THIS FUNCTION WILL INVERT FRDU F-SFACE TC E-SEARE
WITH XD EEING THE VAFIESE OF IUVEREIOH THE FURTIU

THIS IS DONE BY CALLING FFUNO: (XD, S
FUNCTION XINVRECXD, M, M, S:
THIE FUNTION GOMPUTES WUMERICALLY THE LAF_ACE TRESFDF:A

```
\(i\)
INUERSE OF F(S)
IMPLICIT REAL*8 (A-H, O-Z
DIMENSION G(SO), V(SO), H(2S)
NOW IF THE ARRAY VII WAS COMPUTED BEFORE THE PROGRAM GOES DIRECTLY TO THE END OF THE SUBRUTINE TD CALCULATE F(S)
IF (N.EQ.M) GOTO 17
\(M=N\)
DLOGTW \(=0.6931471805579\)
\(N H=N / 2\)
THE FACTORIALE DF I TG \(N\) ARE CALCULATED INTO ARRAY G. G(1)=1
DG i \(i=2, N\)
\(G(I)=G(I-1) * I\)
COMTINUE
TEFMS WITH K ONLY ARE GALCULATED INTU AFFAY H
\(H(1)=2 . / G(N H-i)\)
DO \(\in I=2\), NH
\(F i=1\)
IF (I --NH: 4, 5, e
```



```
OCTE
```



```
Gontinde
THE TERME - \(-1: * W H+1\) ARE CALCULATEE
FIRST THE TERY FOR I=:
```



```
THE REST OF THE EN: GFEGAZCULATED IM THE TAAN FUTINE
THE ARRAY V(I) IS CALCULATED.
\(D Q \geqslant I=1, N\)
FIRST SETVUI: \(=0\)
V (I) \(=0\)
THE LIMITS FOR \(K\) ARE ESTABLISHED.
THE LOWER LIMIT IS MI=INTEG( \(1+1 / 2!\) )
\(n_{2}=(I+1) / 2\)
THE UPPER LIMIT IE KO=AIN(1, \(1 /=\) )
\(K 2=I\)
IF (KE-NH) BE: ©
\(\mathrm{W}=\mathrm{N}=\mathrm{N}\)
THE SUMMATION TERIM IN ViI) IS GALCULATED
DO \(10 \mathrm{~K}=\mathrm{K} 1 . \mathrm{K} 2\)
IF ( \(2 * K-I) 12,13,12\)
IF (I-k) 11: 4.: i!
```



```
    GO TU 10
13 U(I)=W(I)+H(K)/G(I--N)
    GO TO 10
14 V(I)=V(i)+H(K)/G(2*K-I)
10 CDNTINUE
c
C
`
C
7 COISTINUE
    THE NUHERICHL APPROKIMATEON IG GABCULATED
    XINVRE=O.O
    A=DLOGTN;}\\
    DG 15 I=1,N
    ARE=A%:
    XINVR2=\INURE+V(I)*FFUNC(AFG:I,S)
    contymue
    XINQRE = XINUPE#A
    RETURN
    EL
```


FUNCTION PFUNS

FUNCTION PFUNE(F,I, S, ALF, ISET,K)
IMPLICIT REAL*E (A-H, $口-2$)
EIMENEIDN FDF (4,4), DF (5), Fi4, ALFI 3 :
$\mathrm{YD}=0 \mathrm{E}$
INITIALGy SET ALL vALUEE TE zEFT
DO $1 \quad I=1,4$
DU i $J=1,4$
PDF:I, Ji=0. 0
$D F(I)=0.0$
$F(I)=0.0$
CONTINUE
DF:5)=00

WTE THAT IF ISET=I THIE : ALL TAO: $:=$ NEEES

$2 Y_{1}^{\prime}=2 / X!1$

```
    \(F(1)=1 /(S *(P+(E * A L F(2) * A L F(3)))\)
    F(2)=ZM*ALF(4)/(S*(F+(5*A)F(2)*ALF(3):))
```



```
* (ALF (4) \(+(\) ZM*ALF \((4))-1.0) * E X P(-X M)\)
    \(F(4)=E X P(X M * Y D)+E X P(-X M * Y D)\)
    \(F F=F(1)-(F(2) * F(4) / F(3))\)
    IF (ISET. EQ. 1) GO TO 15
FIRST GALCULATE WITH RESFECT TO ALF:1)
```

$\operatorname{PDF}(1,1)=0.0$

PDFi3, $1 ;=(X M * A L F\{4\} /(2 * A L F(1))\} *(F)+F \supseteq$;

CALCULATE WITH RESFECT TG MLF(Z)

CALCULATE WITH RESPECT TO ALFi3)

: ($2 * A L F(2 ;)$ - Z

CALGULATE WITH RESHECT TO AGF:4;
PDF 11,4) $=0.0$

FDF: $4,4:=0$
NOW GALCULATE THE DERIVATES
$x=F(1) * F(2)$ * $F(3) * F: \because$
D0 $10 \quad I=1,4$

```
    DO 9 J=4,4
    DF(I)=(X/F (J);*PDF(J,I)+DF(I).
G CONTINUE
IO CONTINUE
C
C
C
O
C
15 IF(ISET NE.1) GOTO 2O
    PFUNC=FP
    GOTD 19
i7 PFUHS=0.O
19 GO TO 200
2O IF(ISET.NE. 2) GU TO 30
PFUNC=DF(1)
GO TO 2?
PFUNC=0.Q
GO TO 200
IFIISET NE 3:GO TO 4O
PFUNC=DF(E)
g0 T0 30
PEOM=0 -
GO TL EOS
IF:ISET NE 4/GO TO 50
PFUNC=DF(3)
    GO TO 47
    FFUKC=0.0
50 IFEISET NE 5)GO TO 60
    PFUHC=DF(4)
    GO TO 59
    PFUNSC=0.0
    GO TO 200
    IF:ISET. NE G:GO TO TO
    PFUNC=DF (5)
    GOTO }6
-5 PFJNC=O.O
EF GO TO 200
FC WRITE(6,75)I5ET
FE FORINATI/A,'ERROR ISET OUT OF ROUNLS ISET ='3X IA:
2OG RETURN
END
```



```
                        GUBREUTINE VAFFFG
```

```
                        GUBREUTINE VAFFFG
```



```
SURROUTINE VARPRO (L, NL, N, NIAX, iPPFE, I,:T, Y iN AOA: A
X IPRINT, ALF, EETA. IERF:
```


GIVEN A SET OF N OBSERVATIONS, CONSISTING OF VALUES Y(I). $Y(\mathcal{Z}): \ldots Y(N)$ DF A DEPENDENT VARIABLE Y, WHERE Y(I) CORRESPONDS TD THE IV INDEPENDENT VARIABLE (S) T(I, I), T(I, 2). ..., T(I, IV), VARPRD ATTEMPTS TO COHPUTE A WEIGHTED LEAST SQUARES FIT TO A FUNCTION ETA (THE 'MODEL') WHICH IS A LINEAR COMBINATION

OF NONLINEAR FUNETICNS FH: (J) (E.G. A SUM OF EXPONENTIALS AND. DR GAUSSIANS). THAT IE, DETERMINE THE LINEAR PARAMETERS betacul alto the vector of nonlinear paraneters alf by minimizING

THE (L+1)-ST TERM IS OPTIDNAL, AND IS USED WHEN IT IS DESIRED TO FIX ONE OR MORE GF THE EETA'S (RATHER THAK LET THEM BE DETERMINED: VARPRO REQUIFES FIRST DERIVATIVES DF THE PHI'S.

$$
12+E=
$$

A) THE AEDVE PROBLEI IS ALSO REFERFED TG AE MULTIPLE NOMLINEAR REGRESSION. FGF UEE IN STATISTI~H EST:MATION. VAFPPRO RETURNE THE RESIDUAIE; THE COWARIANCE MATHEX GF THE LINEAR AND NDNLINEAR FARAMETEFE AND THE ESTIMATED VAFIAACE OF THE OBSERVATIDNE.

E: AN ETA DF THE ABOUE FOR:M IS CALLES SEPAERDLE THE CASE DF A NONSEPARABLE ETA CAM BE HANDLED BY SETTING L $=0$ ANC USING PHI (L+I)
G) VARFRD MAY ALSO BE USED TD SDLVE LIMEAR EEACT GGUARES PRORLEMS (IN THAT CASE NO ITERATIDMS ARE FERFDRTEE: SET $N L=0$.
D) THE MAIN ADVANTAGE DF VARFRD DVEF OTHEF LEAST SQUARES FROGRAMS IS THAT NO INITIAL GUESSES ARE NEEDED FOR THE LINEAR PARAMETERS NOT ONLY DOES THIE MAKE IT EASIER TO USE BUT IT DFTET: LEADS TO FASTER CORVERGENCE

DESGRIPTION OF PARAMETERS

路

REAL N EY IV MATRIX OF INDEPENDENT VARIABLES. T(I, J) CONTAINS THE VALUE OF THE I-TH OBSERVATION OF THE J TH INDEPENDENT UARIABLE
N-VECTOR OF OBSERVATIONS, DNE FOR EACH ROW DF T. N-VECTOR OF NONNEGATIVE WEIGHTS. SHOULD BE SET TO 1 'S IF WEIGHTS ARE NUT DESIRED. IF VAFIANCES OF THE INEIUIDUAL OBSERVATIDNE ARE KNOWH: WCI: SHOULD BE SET TO 1. VARIANCE II?
NL $X(L+1)$ INTEGER INCIDENCE MATRIX INC $(K, J)=I I F$ NON-LINEAR PARATAETER ALF $\{K$ Y APPEARS IN THE J-TH
FUNCTION PHI (J). (THE PROGRAM SETE ALL OTHER INC (K, J)
TD ZERO: IF PHI (L+I; IS INCLUDED IN THE MODEL.
THE APPROPRIATE ELEMENTS DF THE $\{L+i$-ET COLUMR EHOULD EE SET TO I'S INC IS :NOT NEEDES WHEN: $=0$ OR NL $=0$. CAUTION: THE DECLARED FUW DIMENSIOIV OF INC (IN ADA) MUST CURRENTLY EE EET TO 12 SEE RESTRICTIOIS BELOW. THE DECLARED ROW EIMENSION OF THE MATRICES A AND T. IT MUST BE AT LEAST MAX (N, 2-1U_ +3)
L+F+2. WHERE F IS THE MUMEER GF ONES IN THE MATRIX INC. THE DECLARED CULUMA DIMENSION DF A MUST EE AT LEAST LPPZ. (IF L = O. SET LPPZ $=N L+E$ IF NL $=0$. SET LPPD L+E;
 IT CONTAINE THE FHEi (U'S AND THEIF DERIVATIVES (SEE

 COVARIAMCE MATFI': AT THE SOLUTICK THE FIRET L ROWS CORRESFOND TS THE LINEAR PARAMETERE THE GAST NL TO THE

 THE (EUCLIDEAR) WOPM OF THE IVEIGHTED RESIDUAK. AND A(E, L+ML +2) WILL CONTAIN AN ESTIMATE DF THE (WEIGHTED) VAFIAFICE OF THE DBEERVATIONS NOFMGFEEIDUALIAE (N - L - NL:
INPUT INTEGER CONTROLLINE PRINTEE OUTFUT IF IFRINT IS POSITIVE, THE NOHLINEAR PARAMETERS, THE JOFH DF THE REEIDUAL, AIND THE MARQUARDT FAFAMETEF WILE BE DUTPUT EVERY IPRINT-TH ITERATICH (AND INITYALLY AND AT THE FINAL ITERATION: THE LINEAF FAFAMETEFS MILL DE PRLUTEE AT THE FINAL ITERATIOH A+G. EFROF MESEASES WILL ALSO EE PRYNTED. (IPRINT $=1$ IS RECOMMENDED AT FIREST. IF IPRINT $=$ O UNLY THE FINAL GUAHTITIES WILL BE PRINTED, AS WE: AS ANY ERROF MESEAGES IF IFRINT = -I. ND PRINTIUG WILL BE DENE. THE UEEE IO THEN: RESPONSIBLE FOR CHECKING THE PARAMETER IERF FIF ERRORS. NL-VECTOR DF ESTIMATES OF NONLINEAF FARAMETERS
 THE NONLINEAR PAFGMETERS
L-VECTDF DF LINEGA PARAPGTERE IDUTFU DU. IRTEOER ERROR FIAG SOUTPUT:
 ITERATICRS TAKEN.

- : TERIINATES FOF TOQ MGIS ITEMATIGN
-2 TERIINATED FOR ILL-GONRITIOHING MAEDGARD

PARAMETER TOD LARGE: ALSO SEE IERR $=-8$ EELDW -4 INPUT ERROF IN FAFAIAETER N, L. NL, LPPZ, DR NMAX. -5 INC MATRIX IMFFOPERLY SPECIFIED, OR P DISAGREES WITH LPPZ.
-G A WEIGHT WAS NEGATIVE
-7 'COISTANT' COLUMN WAS GOMFUTED MDRE THAN ONCE.

- 8 CATAETROPHIC FAILURE - A COLUMN OF THE A MATRIX HAS BECOIME ZERD. SEE 'CONVERGENCE FAILURES' BELOW.
(IF IERR LE - 4 THE LINEAR PARAMETERS, COVARIANCE MATRIX, ETG ARE NOT RETURINED:

SUBROUTINES REQUIRED

NINE SUBRDUTINES, DFA, ORFAC1, ORFACE, BACSUB, FQSTPR, COV, XNORIA, IHIT, AND VARERF ARE PRRUVIDED. IN ADEITION. THE USER MUST PRROVIDE A SUBROUTINE (CORFESPDNOING TO THE ARGUMENT ADA: WHICH. GIVEN ALF, WILL EVALUATE THE FUNGTIONS PHI(J) AND THEIR FARTIAL DERIVATIUES D PHI(J)/D ALF(M), AT THE SAMFLE FOINTS TII: THIE ROUTINE MUET BE DEGLARED 'EXTERIAL IN THE CALLING PROGRAM. ITS CALLING SEQUENCE IS

SUBRQUTINE ADA (L+1, NL, N. NMAX, LPPZ, iv, A, ING, T, ALF, IEEL:
 ELSEINERE, FOR HES GOU FuRCTIDRE

THE VECTOR SAMPLED FUHCTIONE FHIGU EHOMLD BE ETCRED IN THE FIPST N RONS AND FIRST L+I COLUPNS GF THE MATRIX $-\operatorname{I} E$, A(I. J) SHOULD CONTATM PHITJ, ALF, T:T, i!, T:I, Z:
 COLUIAN EF A CONTAINE PHI (L+I) IF PHIU+1) IS IN THE MODEL OTHERWISE IT IS RESERVED FOR WORYSFACE. THE CONSTANT FUHCTIDIS (THESE ARE FUNCTIONS PHI S \circlearrowleft WHICH DO NOT DEPETND UFON ANY NONLINEAR PARAMETERS ALF, E.G., T(I)**V) (IF ANY; MUST AFPEAR FIRST, STARTING IN COLUHN 1. THE COLUMN N-VECTORS OF NOMZERO PARTIAL DERIVATIVES D PHI (G) I E ALF(K; SHOULD BE ETORED SEGUENTIALLY IN THE MATRIX A IN COLUYRE L+E THROUGH L+F+I THE GRDER IS

D PHI (1.)	D PHI (2)	D PHI:L: O PHI A C +	DPHE:I:
D ALF (1)	O ALFis:		E AmF:
D PHI (2)	D PHI:L+1:	D FHI: ${ }^{\text {P }}$	S PHI:L+1:
D ALF (2)	[ALF $\mathrm{S}_{\text {\% }}$	E ALFML	I ALFIM,

 PHI (L+1) CGLUMNS IF PHI (L+I) IE NDT IS THE MDDE: INTE HGG THE LINEAR PARATMETERS RETA ARE NUT UEEI IN THE MATFIX A COLUMN L+P+2 IS RESERVED FOR WDRWEPACE
the coding of ada should be arradged go that

$$
\begin{aligned}
& \text { ISEL = } \begin{array}{l}
\text { (WHICH OCCURS THE FIRST TIME AUA IS CALLED) MEANS } \\
\text { A. FILL IN THE INCIDENCE MATRIX INC } \\
\text { B. STORE ANY CONSTANT PHI'S IN A. } \\
\text { C. COMPUTE NONCONSTANT FHI'E AND FARTIAL DERIVA- } \\
\\
\\
\\
\end{array} \text { TIVES. }
\end{aligned}
$$

$=2$ IIEANS COMPUTE ONLY THE NONCDNETANT FUNCTICNS PHI
$=3$ means compute only the derivatives
(WHEN THE PROBLEM IS LINEAR (ML $=0$) GNL: ISEL $=1$ IS USED, ANO dEFIVATIVES ARE NOT NEEDED :

RESTRICTIONS

THE SUBROUTIWES DPA, INIT (ANG ADA: CONTAIN THE LOCALLY DIMENSIONED MATRIX INC, WHOSE DIMENSIDNS ARE CURRENTLY SET FDR MAXIMA GF L+1 = E, NL $=12$ THEY MUET BE GHANGED FOR LARGER PRORLEMS. DATA PLACEL IN ARRAY A IS OVERWF:TTEIN ('DESTROYED'. DATA FLACEL IN ARRAYE T. Y A:ND ING IE LEFT IMTAC? THE PROGRAM RUNS IN INATFIN EXCEPT WHEN $L=O$ OR N $=0$

IT is assumed that the matrix phisy alf. Tit: has full COLUM\% RANK THIS MEATE THAT THE FEAST L CDUMmE GF THE MATRIX

DFTICNAL NOTE AE WHi- DE NOTED FROM THE SAMFE SUEPROGRAM
 CDAFUTED INDEFERDENTL DF THE FUNCTIONE FHI \because IER = $=$
 WITH ISEL $=2$ THIE IS OONE TO MINIMIDE STGAAGE AT THE POSgIELE EXPENSE OF SOME RESOMPUTATIOX EEINE FEE FUKCTIONE ANE DERIUATIVES FREOUENTLY HOVE SOME COMOV EUEGFFESE:ONE: TO REDUCE THE AMOUNT OF COMPGTATION AT THE EXFERSE DF SUME storage, create a matrix b of dimension nmax ey lai ili ada, and AFTER THE COMPUTATION DF THE PHI'S (ISE = 三: COF' THE VALUES INTO 8 . THESE VGLUEE GAN THEN BE USET TO GA. GUATE THE DEFIVATIVES (ISEL = 3\%. (TME MAKES USE DF THE FAGT THAT WHEM A CALL TO ALA WITH IEEL $=$ = FOLLOWE A GELU WIM IEE = E THE ALFE ARE THE SAMT:

TO CONvERT TO OTHER GACHINEG, CHAWGE YHE DUTFUT UNIT IN THE LATA STATEMENTS IN VARFRO DPA: PGETFR AND GAFERF THE PROGRAM HAE bEE: CHECKED FOR PORTABILIT E Y The EEL- laES FFORT VERIFIER. FOR MACHINES WITHOUT DGUBLE FRECIEION HARDWAFE, IT may be desirable to conevert to single frecieion this can be DONE BY CHANGING (A) THE DECLARATIONE DDUEEE FREZ:SIOT: TO REA:', (B: THE FATTERI E' TD E' IN THE EATA ETATEMENT IH

WOTE ON INTERFRETATIDN OF GGUARIANCE MRTRI:

REGRESSION: VARPRO RETURISE THE COVARIANCE MATRIX OF THE LINEAR
AND NOTVLINEAR PARAMETERS. THIS MATRIX WILL BE USEFUL ONLY IF
THE USUAL STATISTICAL ASEUMPTIONS HOLD. AFTER WEIGHTING: THE
ERRORS IN THE OESERVATIONS ARE INDEPENDENT AND NORMALLY DISTRI-
BUTED, WITH MEAN ZERD AND THE SAIEE VARIANCE IF THE ERRORS DG
NOT HAVE MEAN ZERO (OF ARE UNKNOWN), THE PRDGRAM WILL ISSUE A
WARNING MESSAGE (UNLESS IPRINT.LT. O) AVE THE COVARIANCE
MATRIX WILL NOT BE VALID. IN THAT CAEE. THE MDDEL SHOULD BE
ALTERED TO INCLUDE A CONETANT TERM (SET PHI(i) = 1.)
NOTE ALSO THAT, IN ORDER FOR THE USUAL ASSUMPTIONS TO HOLD.
THE OBSERVATIDNS MUST ALL BE OF APFROXIMATELY THE SAME
IAAGNITUDE (IN THE ABSENCE OF INFORIMATION ABOUT THE ERRDR OF
EACH OESERVATION:, OTHERWISE THE VARTANCES WILL NDT BE THE
SAME. IF THE OBSERVATIUKS ARE TUUT THE SAME SIZE: THIS CAN BE
GURED RY WEIGHTING
IF THE USUAL ASSUMPTIONS HOLD, THE SGUARE ROOTS OF THE
DIAGONALS OF THE COVARIARCE MATRIX A GIVE THE STANDARD ERRDR
EII: DF EACH PARAMETER DIVIDING A(I, U) EYE(I;*S:J) YIELDE
THE CORRELATION MATRIX OF THE PAFAMETERS. FFINCIFAL AXES ANE
COMFIDENCE ELLIPSOIDS EAU SE DBTAINEE EY PEGFDFMEMO AM EIGEN.
WALUEIEIGENVECTGF ANALYSIS OK A ONE EHDULE CALS THE EISFACK
FROGRAM TREDE, FOLLOWEE EV TOLE (UR USE THE EISFAG CONTROL
FRGGFAM:
GOVEFGENEE FAILUREE
IF CONVERGENCE FAILURES DCOUR, FIRST CHEO FOF INGORFECT
COLING GF THE SUEFOUTIJE ADA. CHECK ESPESIALLY THE ACTION GF
ISEL AND THE CRIAPUTATIUN DF THE PARTIAL DEFEVATIVES IF THESE.
ARE CORRECT, TRY SEVERAL STARTING GUESSES FDF ALF IF ADA
IS CODED CORRECTLY, AND IF ERROR RETURTS IERF = - E OR - -
PEFSISTENTLY OCCUR: THIS IS A EIGN OF IGL-CONDITEDNING, WHICH
HAY BE CAUSED BY SEVEFAL THINGS ONE IS PDOF SCALING GF THE
PARAMETERS: ANOTHER IS AN UNFORTUNATE INITIAL GUESS FOR THE
PAFAMETERS, STILL ANOTHEF IS A PDOR CHOICE DE THE TDDE

ALGORITHH
THE RESIDUAL F IS MDDIFIED TO INCDRPORATE FOF ANY FIXEL ALF. THE DPTIMAL LINEAR FARAMETERS FOR THAT ALF IT IE THETV POSSIBLE TO MINIMIZE ONL GN THE NOTHIMEAR FAFATAETERE AFTEF THE DPTIMAL VALUES GF THE NORLIHEAR PAFAMETERS HAVG EEEN DETERMINED. THE LINEAR PARAMETERS CATH BE REGOVERED EY LINEAF LEAET gQUARES TECHMIQUES (SEE REF 1:

THE MINIMEZATION IS EY A MOLIFICATIOA OF GSLORNEG GEE E: MOEIFICATIDR OF THE LEVEMEERGMARQUAFL ALGORITHM INETEAE GT SOLVING THE NORIMAL EGUATIOTS HITH MATE:S

STABLE ORTHOGONAL (HOUSEHOLDER) REFLECTIONS ARE USED ON A modification of the matrix

WHERE D IS A DIACONAL MATRIX CONSISTING OF THE LENGTHS OF THE COLUMNS OF \ddots. THIS MARQUARDT STABILIZATION ALLOWS THE ROUTINE TO RECOVER FROM SOME RANK DEFICIENEIES IN THE JACOBIAN. OSEORNE'S EMPIRICAL STRATEGY FOR CHDOSING THE MARQUARDT PARAMETER HAS PRDVEN REASONABLY SUCCESSFUL IN PRACTICE (GAUSShewton with step control can de obtained by making the change indicated eefore the instruction labeled 5; a descriptidn can BE FOUND IU REF. (3), AND A FLON CHART IN (Z., F 22.

FOR REFEREMCE, SEE

1. GENE H GOLUE AND V FEREVRA. THE DIFFERENTIATION OF FSEUDO-IdVERSES GNO WOMLINEAG LEAST SQUARES FROBLEMS WHOSE VARIAELES SEPARATE, EIAF A NUMEF. ANAL. 10. 413-432 (1973).

3 DSRORNE, MICHAEL R., SOME ASPECTS OF NON-LINEAR LEAET gquares calculatione, in looteia, ed. numerical tiethods

* MROGH FREE EFF:CIENT implementation de - variaEle frojection algufithm fur nonlimeaf leagt gquares froeleme.'

5 KAUFMAR, LINEA, A variable provection methot fori solving SEPARAELE NOTLINEAF LEAST gQuAFES PRGBLETS' B I T is, 49-57 (1975)
e. DRAPER, N, aNL SHITH. H., APPLIEE REGREESIGN ANALUSIS: WILEY. N Y, 1960 ffof Statistical INFOFMATION ONEY?

7. G. LANEON AND R. HANSON, SOLVING LEAST EQUARES FROBLEMS. PRENTICE-HALL, ENGLEWOOD CLIFFS. N. U., 1974

JUGN BOLSTAE
computer solence dept., serra houge
STANFGRD UNIVEREITY
JARUARY: 1977

DOURLE FRECISION A(NMAX, LPFZ: BETA(L), ALF(NL, T:WAX: IV).
$2 W(N), Y(N), A C U T, ~ E P S 1, ~ G N S T E F, N U, F R J R E S, F$ RNEW, XHOFIM INTEGER E1, GUTPUT
LOGICAL EKIP
EXTERNAL ADA
DATA EFEI / I L-EA, ITMAX iSO: DUTPUT It:
THE FOLLOWING TWO FAFAMETEFS ARE USES IN THE OGRUERGENCE TEST: EPG1 IS AN ABSOLUTE ANE RELATIVE TOLERANCE FOE THE NORM OF THE PRQJECTION OF THE RESIDUAL UNTO THE RAYGE OF THE JACOBIAN OF THE VARIABIE PROJECTION FUNCTIDUGK

```
C
C
C
C

``` x IPRITT: A, BETA, AII, LFI: R)
 GUER=10
 ITEFIN=0
 IF {ITEF GT O: GO TO 10
 IF {NL.EG O: OQ TO FO
 IF (IERR INE 1) GOTD 5%
 IF {IPRIN: LE O} gO TQ IQ
 WFITE (EUTPUT, 2OT: ITEFIN, R
 GRITE (EUTPUT, 2OO: NU
 BEGIN TWO-STAGE ORTHOGOMAL FACTGRIZATIGK
 10 CALL ORFACI(NLFI, N|AX, N, L, IPRINT, A(I, DIN, PFJRES, IERF)
 IF IIERP LT O) GO TO GY
 IERF= =
 IF INU.EQ. O.) GOTO 30
BEGIN INNEF ITERATION LEOP FDR GEINERATING NEG A_F ANE TESTING IT FOR ACCEPTANCE
こS GALL DRFACEINLP1, NMAX, IU, ACI, BI:
SOLVE A NL X NL UPPER TRIANGULAR SYSTEM FQF DELTA-ALF THE TRAKSFORMED REEIDUAL (IN COL LNLZ OF i: IG DVERWRITTEN BY THE RESULT DELTA-ALF
```




```
\(A(M, B I)=A L F(H)+A(A, L N L E)\)
NEW ALF:K) \(=\) ALF \((K)+\) DELTA ALF: \(H\)
```




RETRIEVE UPFER TF:ATSULAR FORM ANO REGIEUA DF FIFST GTAGE
上5 DO $70 \mathrm{~K}=1: \mathrm{NL}$ $K S U B=L F i+k$

$\angle S U B=L P 1+J$
ISUE $=$ NLPI $+J$
7\% A(F JSUE = AIICUE KSUQ:
GOTO 25
END OF INNEF ITERATION LOOF
ACCEPT THE ETEP UUET TAKEI:
$\because E F=R T E L$
DTE $\mathrm{B}=1, \mathrm{HE}$
EG ALF(W) = ABM. EL:

IF ITERIN IG GREATEF THAN i A ETEF WRG REYRACTED DMEMG

```
 - P1 -
C
C
C
 THXS OUTER ITERATID:S
 IF (ITERIN EQ I) NU = O 5ANU
 IF (SKIP) GO TO 85
 WRITE (DUTPUT, 2OO) NU
 WRITE (DUTPUT, 2OB) ACUH
 Z IERR = 3
 IF (PRJRES.GT. EPSI*(R + 1 DO)) GO TO 5
 END OF DUTER ITERATION LODP
 CALCULATE FITALL QUANTITIES -- LITEEAR FARAMETERS, RESIDUALS.
 CGVARIANCE MATRIX, ETC
 GO IERF = ITER
 F5 IF iNL GT, G; CALL DPACL, NL, N, NTMAX, LPFE, IV, T, Y, W, GLF,
 X ADA, 4, IFRINT, A, BETA, A\I, LPI!, R?
 CALL POSTPR(L, TH, H: NMAX, LNLZ; EPSI; R: IPRINT, ALF, W, A,
 X A(1, LDI), EETA, IERR)
 99 RETURN
G
200 FORMAT (9H NU =, E15 7.
ZOZ FORMAT IIEHO ITERATION. IH: ב4H NOMSINEAF FARAMETERS:
2OE FORMAT {ESH STEF RETRACTEL, NU = E15.7)
2O? FORMAT iIHO IS, 2OH NOFM OF REEIDUAL =, EIS T
```




```
 EHE
 GURFOUTINE ORFACIGGFI, NMAK, N, L, IPRINT E, FFURES, IEFR:
 STAGE :: HDUSEHDLDEF REDUMTION DF
```



```
 N_ I tML :
 WHERE DR = -D(QE)*Y IE THE DEFIVATIVE DF THE MODIFIES RESIDUA:
 PRODUCED EY DFA, FQ IS THE TRANEFDR:IES RESIEUAL FROM DPA, AML
 DR. IE IN UPPER TRIANGULAR FORM {AS IN REF {2`, F, 1E;
 DF IS STORED IN ROWS L+1 TO N AND COLUNNS LO2 TOL L NL + I GF
 THE MATRIX A II E., COLUMMS I TO IAL DF THE MATRIG B) RE IS
 STOREL IN COLUTN& L + NL i 2 OF THE MATFix A (COLUMAN NL. - i OF
 E) FOR k=1, 2, ... NL, FIND REFLECTIDI: I - U * & BETA
 WHICH ZEROES E(I, K), ! = L+K+1. . , ,
```


$\times$ U. XINORM
6
$N L=N L F I-1$
NLE3 = ExNL +3

0
IF IERP EQ 4 GOTD TF
$D O S O K=1,4 L$
$L P=L+W$
DO $40 \therefore=$ h N Kipi
JSUS $=$ NLPP1 $+J$
$B(K, J)=E(L P K, J)$
BCSUB, K) $=E(1 P P L$

9 RETURE:
END
subrgutine grfacenkfi，manx，tw，B：
STAGE 2：SPECIAL hUUSEHDLDER REDUSTION DF

the 1
U

WHERE DR：R 3 ，AND R4 ARE AS IN ORFAC1，NU IS THE MARGUARDT PARAMETER，D IS A DIAGONAL MATRIX CONSISTING OF THE LENGTHS OF THE COLUMNS DF DR＇，AND DR＇＂IS IN UPPER TRIANGULAR FORM． DETAILS IN（1），PP 423－424．NOTE THAT THE（N－L－NL）BAND DF ZEROES，AND R4，ARE OMITTED IN STORAGE．

DOURLE PRECISION ACUM，ALPHA，B（NMAX，NLPI；，BETA，DSIGN，NU，U， $\times$ XNORM

NL＝NLPI－ 1
NLE＝ 2 NINL
NL23 $=$ NLE +3
DO $30 K=1, N L$ $K P 1=k+1$
$N L P K=N L+K$
NLPMMA $=$ NLPK -1
E（NLPK，$K$ ）$=N$ N $B(N L 23, k)$
$E(N L . K)=B(N, h)$
$A L P H A=D S I G N(X N O R M(K+1, E(N i=k ;): B(N, k):$
$U=B\left(K . W_{3}\right)+A L P H A$
EETA $=$ ALPHA $* U$
E（H．X）＝－ALPHA
THE H-TH REFLEGTION MOQEFIEE DR Y FONG H
［日 $30 J=\mathrm{HPI}, \mathrm{NLPI}$ $B(M+P K, \quad J=O$ $A C U M=U E(x, J)$ DO $20 I=$ NLPI，NLPWMI $A C U M=A C U M+B(I: K) * E(I, J)$ $A C U M=A C U M, E E T A$ $B(\mu, J)=B(\mu, J\}-U * A C U M$ DU $30 I=$ NLPI，NLPK
30 $B(I, J)=B(I, J)-B(I, F) * A C U M$

RETURN：
END
 $x$ IPFINT，$A, U, F$, RNORM）

COMPUTE THE NORM OF THE FESIDUAL（IF IEEL $=1$ DR $コ$ ？，DF THE （N－L：$x$ NL DERIVATIVE OF THE KUDIFIED REEIDUAL U－K VECTOF Q2＊Y（IF ISEL＝ 1 OR 3）HERE O FHI $=$ O．I E．




## ACCORDING TO REF. (5), IS

DOURLE PRECISION A(NHAX, LFFE), ALF(RL: TINMAX, IV), W(N), Y(N), $X$ ACUM, ALPHA, BETA, RNDRM, DSIGN, DSGRT, SAVE, R(N: UCLI, XNORM INTEGER FIRSTC, FIRSTR, INC(14, B) LOGICAL NOWATE, PHILPI EXTERNAL ADA

If (ISEE NE 1) GO TO 3
LFI $=L+1$
LNLE $=L+2+N L$
LPE = L + E
LPF1 = LPPE - 1
FIRETC $=1$
LASTC = LPPI
FIRETR = LPI
CALL INITG, NL, $N$, NHAX, LPPPE, IV, T, W, AGF: ADE ISEL,

IF ©ISEL NE 1) GO TO GY
001030

IF IEEL EQ 2; GO TO =
FIESTE = LPE
LAETC = LPPA
FIRSTR $=14$ - ISEL:AL + i
GOTO 50
$\epsilon$ FIRSTC $=$ NCONPI
LASTC $=$ LP1
IF (NCOH EQ O) GO TO 30
If (ACI, NCON: EG SAVE: GO TO 30
ISE $=-7$
call vareff eipfint, Isel, ncot:
GO TO 97
30 IF (PHILPA).G] TO 40
DO $35 \mathrm{I}=1, \mathrm{~N}$
$R(I)=Y(I)$
G0 1050
40 DO $45 I=1, \mathrm{H}$
45 R(I) $=Y(I)-R(I)$
50 If (NOWATE) GO TO EA
D0 $55 \mathrm{I}=1.11$
ACUH $=W(I$ )
DO $55 \mathrm{~J}=$ FIRSTC, LAETC
$55 \quad A(I, J)=A(I, J) * A C u r:$
58 IF (L.EQ. O) GOTO 75
DO $70 K=1, L$
$K P 1=k+i$
IF (ISEL GE 3 . OR. (ISEL.EQ. 2.AND. K. LT. NCONFI): GO TO 66
ALFHA $=$ DEIGH (XISORM (K+1-K, $A(K, K)), A(K, K):$
$U(K)=A(K, H)+A L P H A$
$A(k, K)=-A L P H A$
FIRSTC $=K F I$
if (alpha ne o. O) 0 is ob
$I S E L=-B$
GALL VAREPF (IPRINT, IGEE. K:
GU TO 99

EQ TO $\because=$ FIFSTC, LASTC
$A C U H=U K H A B K$
DO $68 \mathrm{I}=\mathrm{KPi}, N$

$A C U T=A C U H: B E T A$
$A(K, J)=A(x, j)-U(K ; A C U m$
DO $70 \mathrm{I}=\mathrm{KFi}, \mathrm{H}$
$A(I, J)=A(I, J)-4(I, Y) \neq A C U M$
70
0
75 IF (ISEL. GE 3) GO TO 85
RNORM $=X$ NORHI $(N-L: \quad$ R(LIP1);
IF \&ISEL EQ 2 ) GD TO 97
IF (NCON GT O) SAVE = A!i, NCOR:
FE IS NOW CONTAINED IN RONS $L+1$ TO N AND COLUNRE $L+$ TO
L+P+I OF THE MATRIX A. NOW SOLUE THE $L X$ L UPFER TRIANGULAFE
SYSTEM S*BETA = RI FOR THE LINEAR FAFAMETERE BETA BETA
QUEFWRITES RI
AFFLY REFLECTIDNE TD COLUMRS
FIfETG TG LAETE
COMFUTE ORTHOGONAL FACTORYZATIONS BY HCUSEHOCQER
REFLECTIONS. IF ISEL $=1$ OR 2 , REDUCE PHi (STORED NTHE
FIRST L COLUMNS OF THE MATRIX A) TO UPPER TRIANGULAR FORM,
$(Q * P H I=5)$, AND TRANSFORM $Y$ (STOREE IN COLUMN L+l), GETTING
Q*Y $=$ R. IF ISEL $=1, ~ A L S O$ TRANSFORM $J=D$ PHI (STORED $N$
COLUMNS L+2 THROUGH L+P+1 OF THE MATRIX A). GETTING G*J = F.
IF ISEL $=3$ OR 4: PHI HAS ALREADY BEET: REDUCED: TRANSFORM
OINLY $J . S, R$, AND $F$ OVERWRITE PHI, $Y$ AKD $J, ~ R E S P E C T I V E L Y$,
AND A FACTORED FORM OF $Q$ IS SAVED IN U AND THE LOWER
TP IANGLE OF PHI
ES IF (L GT. O) CALL BACSUE (MMAX, L. A. F?


PARAMETERE

and stone the result in columns l+2 to l+NL+i. If isel not = 4, THE FIRST L ROWS ARE OMITTED. THIS IS -D(Q2)*Y. IF ISEL NOT $=4$ THE RESIDUAL R2 $=$ QL*Y (IN COL. L+1) IS COPIED TO COLUMN L+NL+2. OTHERWISE ALL OF COLUMN L+1 is COPIED.

DU 95 I = FIRETR, N
IF (L.EQ. NCON) GO TO 95
$M=L P 1$
DO $90 \mathrm{~K}=1 . \mathrm{NL}$
ACUM $=0$.
DO $88 \quad i=N C O N P 1, L$
IF (INC(K, J) EQ G) GOTO EE
$M=M+1$
ACUM $=A C L M M+A(I)$ In: $* R(J)$
CONTINUE
$K$ SUB $=L P I+M$
IF (INC: LK, LPI) EQ. O) GO TO 90
$M=M+1$
$A C U_{i 1}=A C U M-A C I, M:$
90
$A(I, K S U B)=A C U I A$
95 AlI, LNLE = R(I;
99 RETURN

> Etic



ChECK VALIDITY GF INPUT FAFAMETERS, ANO DETEFMTAE WMEER OF CONETART FUNCTIOAS
douele precision a(nmax, lppz), alf(NL: tinmax. iv), win).
$\times$ dsart
IMTEGER OUTPUT, $F$, INC:I4. E:
LOGICAL NOWATE, PHILF:
bata output ie.
$L P I=L+1$
LNLE $=L+2 .+N L$
CHECK FOR VALID IKFU:


$x$ IV GT O. AND. NOT (NL EG O AND L EG O: GO TO i $I S E L=-4$ call varefr ifprinti isel, i:
GOTO 09
I If LL EQ O DR NL EG O. GOTO 3
EO $2 J=1$, LP1
DO $2 K=1, N L$
2 $\operatorname{INC}(k, J:=0$
$C$

IF (IPRINT GE O) WRITE (OUTFUT, 2LO) FCOK
IF (L+P+2.EQ LPPE: GO TO 20
15 ISEL $=-5$
CALL VARERR (IPRIINT, ISEL, 1)
GO TO 99
$c$
$20 \mathrm{DO} 25 \mathrm{~K}=1,14$
25 IF (INC(K. LPI).EQ. 1) FHILPI =. TRUE
6
97 RETURN
210 FORIAAT (33HO NUMBEF OF CONSTANT FUNCTIONS = I 4 :
END
SUBROUTINE BACSUB (NMAX, N. A. X)

6
BACKSOLVE THE $N X$ UPPER TRIANGULAR SYSTEM $\rightarrow * x=E$. THE SOLUTION $X$ OVERINRITES THE FIGHT SIDE B

DOURLE PRECISIGN A NMAX, W). XCN:, ACL:-
$X(N)=X(N) ; A(N, 1,1)$
IF (N EQ. 1) GO TO 30
$N P 1=N+1$
DO 20 IBACK $=2, \mathrm{~N}$
$I=N P:-I B A C K$

ERROR IN WEIGHTS

ISEL $=-6$
CALL VARERR (IPRINT, ISEL I)
GO TO 99
W(I) = DSQRT(WCI:)
$\mathrm{NCOH}=\mathrm{L}$
NCOTPP1 $=$ LP1
PHILPI $=$ L.EQ. 0
If (PHILPI GR. NL EG. O) GO TO 99
CHECK INC MATEIX FOR VALID IFPOUT AND DETERMINE NUMBER OF CONSTAIST FCNS
$\mathrm{F}=\mathrm{O}$
DO $11 J=1$, LPI
IF ( $P$. EQ. O) NCONPI $=j$
CO $11 K=1, \mathrm{Ni}$ INCKJ $=\operatorname{IHC}(k, \quad j)$
IF (INCX NE $O$ AND INCKg NE $1: G O T E$
IF (INC力U EG i) $F=\bar{F}+$ i
continue
NOWATE $=$ TRUE
DO 9 I = 1, N
NOWATE = NOWATE. AND. (WCI). EQ. 1.O:
IF (W(I). GE. O.) GO TO 9

```
NCOH \(=\) NGONPI -1
```

20 DO $25 K=1, \mathrm{KL}$
IF (INC(K. LPI) EQ i) FHILPI = TRUE
END
$I=N P I-I B A C K$
c

10
20 c

30

## RETURN

END
SUBROUTINE POSTPRCL，NL，N，NMAX，LNLE，EPS，RNORM，IPRINT，ALF， $X$ W，A，$R, U$, IERR）
calculate residuals，sample variance，and covariance matrix． ON INPUT，U CONTAINS INFORMATION ABOUT HOUSEHOLDER REFLECTIONS from dpa．on output，it contains the linear parameters．

DOUBLE PRECISION A（NMAX，LNLZ），ALF（ML），R（N），U（L），W（N），ACUM，
x EPS，PRJRES，RNORIM，SAVE，DAES
integer output
DATA DUTPUT IE：
C
$L P 1=L+1$
LPNL $=$ LNL2 -2
LNLI＝LPPM +1
DO io I＝it ！
10（J）＝W（I）＊＊
UNHIND HOUSEHOLDER TRAKSFDRMATIONS TO GET REEIDUALE． AND MOVE THE LIMEAF FARAMETERE FROM $F$ TO U

IF（L EQ．O）GO TO 30
DO $25 \mathrm{KBACK}=1, \mathrm{~L}$
$X=L F 1-K B A C K$
$K P 1=k+1$
ACUM $=0$ ．
DO $20 \mathrm{I}=\mathrm{KP1}, \mathrm{~N}$
$A C U M=A C U M+A(I, K) * R(I)$
SAVE $=$ R（K）
$F(K)=A C U M / A(K, k)$
$A C U H=-A C U M /(U(K) * A(K, K) ;$
U（K）＝SAVE
DO $25 \mathrm{I}=. \mathrm{KP1} 1$ 相

30 ACUM $=0$ ．
DO $35 \mathrm{I}=1 . \mathrm{N}$
35
$A C U M=A C U M+R(I)$
SAVE＝ACUM／W

COMPUTE MEAN ERROR

THE FIRST l COLUMGE OF THE MATfl：HAVE EEEA GEDUCEE TJ UPPEF TRIANGULAR FORM IN DPA．FIWISH EY REDUCING ROWE $L+1$ TO $N$ AND COLUMNS L＋E THROUGH L＋NL＋1 TO TRIANGULAF FORM．THEN SHIFT COLUMNS OF DERIVATIVE MATF：X DVER OUE TO THE LEFT TO BE ADUACENT TO THE FIRET L COLUMNE
©

$$
40 \quad A(I, K)=A(I, K+1)
$$

$45 \mathrm{~A}(1$, LNL2) $=$ RNORM
$A C U M=$ RNORM*RNORM/(N $-L-N L)$
$A(2, L N L 2)=A C U M$
CALL COV(NMAX, LPNL, ACUM, A)

2OT FORMAT (1HO, 5O(1H):)
21G FORMAT $2 O H O$ LINEAR PARAIAETERS;/ (7E:5.7;)
E: FFORMAT USHO NONLITEAR PARAMETERE : YEIS 7:
 XERUATIONS $=$, EIS 7 FSH ESTIMATED VARIANCE DF DESERVATIONS $=$, X EIS.7;
225 FORMAT ( $95 H$ WARNING - EXPECTED ERFER OF DESERVATIDNE IS NOT ZERO x. COVARIANCE MATRIX MAY EE MEANINQLESS.;

ENL
SUBROUTINE CGU(NMAX, N, SIGMAE, A)

DOUSLE PRECISIDN A (NMAX, N), SUM, SIGMAE
IF (NL. EQ. O) GO TO 45
CALL ORFACI (NL+1, NMAX, N, L, IPRINT, A(1, L+2), PRURES, 4)
DO $40 \mathrm{I}=1 . \mathrm{N}$
$A(I, L N L E)=R(I)$
DO $40 K=$ LPI, LNLI

IF \{IPRINT.LT. O\} GO TO 97
WRITE (DUTPUT, 207)
IF (L.GT. O) WRITE (OUTPUT, 210) (U⿴\zh11, $)=1, L$ )
IF (NL. GT. O) WRITE (OUTPUT, 211) (ALF(K), $K=1$, NL)
WRITE (OUTPUT, 214) RNORM, SAVE, ACUM
IF (DABS(SAVE) GT. EPS) WRITE (OUTPUT, 215)
WRITE (DUTPUT, zOF)
99 RETURN

COMPUTE THE SCALEG COVARIANCE MATRIX OF THE L + K PARAMETERS. THIS INVOLVES COMPUTING

$$
\operatorname{sigmA} * T^{-1} * T^{-T}
$$

WHERE THE (L+NL) X (L+RL) UPPER TRIARGULAR IMTRIX T IS DESCRIBED IN SUBROUTINE POSTPR. THE RESULT OVERWRITES THE FIRST L+NL ROWS AND COLUMNS OF THE MATRIX A THE RESULTING MATRIX IS SYMMETRIC, SEE REF. 7, PP. 67-70. 2E1.
$\operatorname{DO} 10-1, \quad!$
$10 \quad A(J, J)=1 . / A(J, J)$
INVERT T UPON ITGELF

IF (N.EG. 1) GOTD 70
$N M 1=N-1$
DO EO I $=1$, NMI $I P_{1}=I+1$ $0060 \mathrm{~J}=\mathrm{IPI}, \mathrm{N}$ $J M 1=J-1$
SUM $=0$.
DO $50 \mathrm{M}=\mathrm{I}, \mathrm{JM1}$
50
SUM $=\operatorname{SUM}+A(I,!1) * A(M, J)$
60
now form the matrix product
70 DO $90 \mathrm{I}=1, \mathrm{H}$
DO $90 \mathrm{~J}=\mathrm{I}, \mathrm{N}$
$\operatorname{SUM}=0$
DO BOM=J,N
SUM $=$ SUM $+A(I, M: * A(U$, 11:
SUM = SUM * SIGMA2
$A(I, J)=$ SUM
90
A(J) I) $=$ SUM

1 WRITE (OUTPUT, 101)
GO TO 99
2 WRITE (OUTPUT, 102)
GO TO 95
4 WRITE SOUTPUT, 104:
GO TO 79
5 WRITE (DUTPUT, 105) GO TO 99
6 WRITE (OUTPUT, 106) K GU T0 99
7 WRITE (QUTPUT. 107) K GO TO 99
E WRITE (OUTPUT, 108: K
99 RETURM
101 FORMAT (4EHO PROELEM TERMIAATEL FOR EXGESEIVE ITERA-IONS :
102 FORIMAT (49HO PROBLEM TERMIMATED BECAUSE OF ILI-CONLITIONING /:
104 FORMAT (/ SOH INPUT ERROR IH PARAMETER L, NL, N, LPPE OR WHAX i)
105 FORMAT (GBHO ERROR -- INC MATRIX IMPROPERLY GPECIFIED DF DISAGRE XES WITH LPPD. /)

```
 206 FORMAT (19HO ERROR -- WEIGHT!, I4, 14H) IS NEGATIVE. /)
 1O7 FORMAT (28HO ERROR -- CONSTANT COLUNN, I3, 37H MUST BE COMPUTED
 XONLY WHEN ISEL = 1. /)
 10E FORMAT (33HO CATASTROPHIC FAILURE -- COLUMN, I4, 28H IS ZERD, SE
 XE DOCUMENTATION.
 END
 DOUBLE PRECISION FUNCTIDN XNURM(N, X)
C
C COMPUTE THE L2 (EUCLIDEAN) NORM OF A VECTOR, WAKING SURE TO
C
C
C
C
C
 AVOID UNNECESSARY UNDERFLOWS. ND ATTEMPT IS MADE TO SUPPRESS
 OVERFLOWS.
 DOUBLE PRECISION X(N), RMAX, SUM, TERM, DABS, DSQRT
```

```
 FIND LARGEST (IN abSOLUTE valuE) ELEmENT
 RMAX = 0.
 DO 10I = 1, |
 IF (DABS(X(I)) GT. RMAX: RMAX = DABS(X(I);
 10 CONTINUE
6
 BUM = O.
 IF (RMAX EQ. O.) GO TO 3O
 DO \geqO I = 1, !!
 TERM = 0.
```



```
 # EUM= SUM + TEBMATERM
 3O XNORM = FMAX+DGORT (GUM:
 %G RETURT
 ETS
```

