

Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD UNIVERSITY Stanford, California

SGP-TR-65

PRESSURE TRANSIENT ANALYSIS OF RESERVOIRS WITH LINEAR OR INTERNAL CIRCULAR BOUNDARIES

By

Abraham Sageev

June 1983

Financial support was provided through the Stanford Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 and by the Department of Petroleum Engineering, Stanford University. I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

(Principal Adviser)

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Nenny FRamery

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

William E Englan

Approved for the University Committee on Graduate Studies:

Dean of Graduate Studies & Research

to Michal

ACKNOWLEDGMENT

The author wishes to thank professor Roland N. Horne, principal adviser of this research.

Thanks are extended to professors HJ. Ramey Jr., WE. Brigham,
M.B. Standing and K. Aziz for their insight, participation and support. Financial support was provided by Stanford University and by the
Geothermal & Hydrology Technologies Division of the U.S. Dept. of
Energy, project No.: DE-AT03-80SF11459.

ABSTRACT

In this work, a practical pressure transient analysis method is presented for a drawdown test in a well near an internal circular boundary. Both no-flow and constant pressure boundaries are considered. The problem is mathematically posed and solved using Green's Function theory and the Laplace Transformation. Both the Laplace solutions and the analytical solutions are presented.

Linear boundaries are viewed as circles with infinite radii and act as **a** known limiting case for finite radii internal boundaries. The size of an internal circular boundary and the distance ito it can be estimated using generalized type curves. Using a new method developed here, the distance to a linear boundary can be determined by semilog type curve matching without using the usual double straight line technique.

In developed systems containing compressible subregions, interference testing can provide estimates of the sizes of these subregions. However, detecting no-flow subregions with interference testing is not practical. Also presented are type curves for interference between a well flowing at a constant rate and one at constant pressure. These type curves may be applied to interpretation of pressure interference between oil and gas fields sharing a common aquifer.

The superposition method which can be used for assembling circular subregions intersected by linear faults is discussed as well.

Finally, **a** new generalized semilog type curve is presented that can be used for analyzing pressure transient data for both the linear and circular boundary cases.

-v-

TABLE OF CONTENTS

DEDICATION	iii
ACKNOWLEDGMENT	i v
ABSTRACT	\mathbf{V}
LIST OF FIGURES	viii
LIST OF TABLES	xiv
CHAPTER 1 : <u>INTRODUCTION</u>	1
1.1 APPLICATIONS	1
1.2 PROBLEM DESCRIPTION	3
1.3 BACKGROUND	4
1.4 PROBLEM STATEMENT	8
	0
CHAPTER 2 : LINEAR BOUNDARIES	9
2.1 PROBLEM STATEMENT	9
2.2 SOLUTION	11
2.3 LOG-LOG AND SEMILOG ANALYSIS METHODS	12
2.4 A NEW SEMILOG TYPE CURVE MATCHING METHOD	16
2.5 TYPE CURVE MATCHING EXAMPLE	19
CHAPTER 3 : [ANI PRESSURE INTERNAL CIRCULAR BOUNDARY	26
3.1 EM STATEMENT	26
3.2 API TRANSFORMATION	29
3.3 THE L LACE ANSFORMATION SOLUTION	29
3.4 THE ANALYTICAL SOLUTION	34
3.5 NUMERICAL EXSIO OF THE APLACE TRANSFORM	45
3.6 I CURVE MATCHING FOR THE JCTION WEI	46
3 5 I XUSS	46
2 TYE CURVE MATCHING EXAMPLE • •	54
3.7 INTERFERENCE E URVE] !	57
3.7.1 IE _ DISCUS	57
3.7.2 INTERFERENCE TESTING IN AN UNKNOWN GEOMETRY	69
3.7.3 FERENCE TESTING IN A KNOWN GEOMETRY	69

3.8	INTERFERENCE BETWEEN OIL AND GAS FIELDS	85
3.9	SEMICIRCULAR AND QUARTERCIRCULAR SUBREGIONS	88
CHAPTE	ER 4 : <u>NO-FLOW INTERNAL CIRCULAR BOUNDARY</u>	92
4.1	PROBLEM STATEMENT	92
4.2	LAPLACE TRANSFORMATION	94
4.3	THE LAPLACE TRANSFORMATION SOLUTION	94
4.4	THE ANALYTICAL SOLUTION	98
4.5	NUMERICAL INVERSION OF THE LAPLACE TRANSFORMATION	110
4.6	TYPE CURVE MATCHING FOR THE PRODUCTION WELL	111
4.7	INTERFERENCE 1	114
CHAPTE	ER 5 : A GENERALIZED SEMILOG TYPE CURVE	121
CHAPTE	R 6 : <u>CONCLUSIONS</u>	124
NOMENO	LATURE	128
REFERE	NCES 1	130
APPEND	DICES	133
	- /-	
APPEND	DIX A : CIRCLES OF CONSTANT ¹ 2 ¹ 1 RATIO	133
APPEND	DIX B : DIMENSIONLESS PRESSURE VS • REDUCED DIMENSIONLESS	
	TIME FOR POINTS WITH A CONSTANT 2 ¹ RATIO	135
APPEND	DIX C : SHIFTING OF THE SEMILOG CURVES	141
APPEND	DIX D : DERIVATION OF THE LATE TIME DIMENSIONLESS PRESSURE	
	FOR THE CONSTANT PRESSURE HOLE USING THE	
	DOUBLET MODEL	148
APPEND	DIX E : DIMENSIONLESS DEPARTURE TIME FROM THE LINE SOURCE	150
APPEND	DIX F : ASYMPTOTIC EXPANSIONS FOR MODIFIED BESSEL	
	FUNCTIONS	151
APPEND	DIX G : THE COMPUTER PROGRAM	156

LIST OF FIGURES

2.1	A SCHEMATIC DIAGRAM OF THE CONSTANT PRESSURE LINEAR	
	BOUNDARY SYSTEM	10
2.2	LOG-LOG TYPE CURVES FOR THE LINEAR BOUNDARY CASE.	
	AFTER STALLMAN (1952)	13
2.3	EXAMPLE OF THE DOUBLE STRAIGHT LINE ANALYSIS METHOD.	
	AFTER WITHERSPOON (1970)	15
2.4	A SEMILOG TYPE CURVE FOR THE LINEAR BOUNDARY CASE	17
2.5	A GENERALIZED SEMILOG TYPE CURVE FOR THE LINEAR	
	BOUNDARY CASE	17
2.6	LOG-LOG GRAPH OF THE DRAWDOWN DATA FOR AN INTERFERENCE	
	WELL. AFTER WITHERSPOON (1970)	21
2.7	LOG-LOG MATCH FOR THE DRAWDOWN DATA FOR AN INTERFERENCE	
	WELL. AFTER WITHERSPOON (1970)	21
2.8	SEMILOG GRAPH OF THE DRAWDOWN DATA IN DIMENSIONLESS	
	PRESSURE FORM	23
2.9	LOG-LOG AND SEMILOG GRAPHS FOR THE DRAWDOWN DATA IN	
	DIMENSIONLESS PRESSURE FORM	23
2.10	SEMILOG MATCH OF THE DRAWDOWN DATA TO THE GENERALIZED	
	TYPE CURVE	24
3.1	A SCHEMATIC DIAGRAM OF THE CONSTANT PRESSURE HOLE	
	SYSTEM	28
3.2	THE GEOMETRY FOR TYPE CURVE MATCHING. CONSTANT	
	PRESSURE HOLE	47
3.3	LOG-LOG CURVES FOR 2c=100 AND F FROM 0.1 TO 0.9.	
	CONSTANT PRESSURE HOLE	48
3.4	SEMILOG CURVES FOR 2c=100 AND F ROM 0.1 TO 0.9.	
	CONSTANT PRESSURE HOLE	48
3.5	THE DOUBLET MODEL FOR THE CONSTANT PRESSURE HOLE AT	
	STEADY STATE	49
3.6	SEMILOG CURVES FOR 2c=100,250 AND F=0.1 TO 0.9.	
	CONSTANT PRESSURE LINEAR BOUNDARY AND HOLE	51
3.7	SEMILOG CURVE FOR 2c=500 F=0.5 MATCHED WITH A SHIFTED	

3.8	CURVE FOR 2c=100 F=0.5. CONSTANT PRESSURE HOLE	51
	INTERNAL CIRCULAR BOUNDARY	53
39	ONE PERCENT DIMENSIONLESS DEPARTURE TIME FROM THE LINE	55
5.7	SOURCE AS A FUNCTION OF 20'	53
3.10	TYPE CURVE MATCH EXAMPLE - DATA FOR $2c=20$ AND $F=0.5$.	55
	CONSTANT PRESSURE HOLE	55
3.11	TYPE CURVE MATCH EXAMPLE - LOG-LOG MATCH TO THE LINE	55
	SOURCE AND A PRELIMINARY VALUE OF 2c	55
3.12	TYPE CURVE MATCH EXAMPLE : SEMILOG MATCH FOR THE RELATIVE	
	SIZE OF THE HOLE AND THE DISTANCE TO IT	56
3.13	INTERFERENCE LOG-LOG CURVES FOR $F=0.5$, $E=1.5$ and $\theta=0$,	
	45,90,135,180 DEG. CONSTANT PRESSURE HOLE	58
3.14	THE GEOMETRY OF THE OBSERVATION POINTS IN THE CONSTANT	
	PRESSURE HOLE SYSTEM	58
3.15	INTERFERNCE LOG-LOG CURVES FOR THREE POINTS ON THE LONG	
	TIME CONSTANT PRESSURE CIRCLE	60
3.16	INTERFERENCE LOG-LOG CURVES FOR E=0.9 F=0.1 TO 0.8 AND	
	θ = 45 DEG. CONSTANT PRESSURE HOLE	60
3.17	INTERFRENCE NORMALIZED LOG-LOG CURVES FOR E=0.9 F=0.1	
	TO 0.8 AND θ =45 DEG. CONSTANT PRESSURE HOLE	61
3.18	INTERFERENCE LOG-LOG CURVES FOR F=0.4 E=0.5 TO 1.0 AND	
	θ =45 DEG. CONSTANT PRESSURE HOLE	61
3.19	INTERFERENCE NORMALIZED LOG-LOG CURVES FOR F=0.4 E=0.5	
	TO 1.0 AND θ =45 DEG. CONSTANT PRESSURE HOLE	62
3.20	INTERFERENCE LOG-LOG CURVES FOR F=0.5 E=0.99 AND	
	θ=0,45,90,135,180 DEG. CONSTANT PRESSURE HOLE	62
3.21	INTERFERENCE NORMALIZED LOG-LOG CURVES FOR F=0.5 E=0.99	
	AND 0=0,45,90,135,180 DEG. CONSTANT PRESSURE HOLE	63
3.22	INTERFERENCE NORMALIZED LOG-LOG CURVES FOR θ =45 DEG. AND	
	E-F=0.5. CONSTANT PRESSURE HOLE	64
3.23	INTERFERENCE NORMALIZED LOG-LOG CURVES FOR θ =45 DEG. AND	
	(E-F)/(1-F)=5/6. CONSTANT PRESSURE HOLE	64
3.24	INTERFERENCE LOG-LOG CURVES FOR F-0.4 $\theta=0,45,90,135,180$	
	DEG. AND E=0.5 TO 2.0. CONSTANT PRESSURE HOLE	66
3.25	INTERFERENCE NORMALIZED SEMILOG CURVES FOR F=0.4 8-45,	

-ix-

	90,135,180 DEG. AND E-0.5 TO 2.0. CONSTANT PRESSURE HOLE	66
3.26	INTERFERENCE LOG-LOG TYPE CURVES FOR E=1.4 AND 8-45 DEG.	
	CONSTANT PRESSURE HOLE	68
3.27	INTERFERENCE SEMILOG TYPE CURVES FOR $E=1.4$ and $\theta=45$ DEG.	
	CONSTANT PRESSURE HOLE	68
3.28	INTERFERENCE LOG-LOG TYPE CURVES FOR $F=0.7$ and $e=0$ deg.	
	CONSTANT PRESSURE HOLE	71
3.29	INTERFERENCE SEMILOG TYPE CURVES FOR E=0.7 AND e=0 DEG.	
	CONSTANT PRESSURE HOLE	71
3.30	INTERFERENCE LOG-LOG TYPE CURVES FOR $E=1.4$ AND $e=0$ deg.	
	CONSTANT PRESSURE HOLE	72
3.31	INTERFERENCE SEMILOG TYPE CURVES FOR E=1.4 AND $\theta=0$ DEG.	
	CONSTANT PRESSURE HOLE	72
3.32	INTERFERENCE LOG-LOG TYPE CURVES FOR E=0.7 AND θ =45 DEG.	
	CONSTANT PRESSURE HOLE	73
3.33	INTERFERENCE SEMILOG TYPE CURVES FOR E=0.7 AND θ =45 deg.	
	CONSTANT PRESSURE HOLE	73
3.34	INTERFERENCE LOG-LOG TYPE CURVES FOR $E=1.0$ and $\theta=45$ DEG.	
	CONSTANT PRESSURE HOLE	74
3.35	INTERFERENCE SEMILOG TYPE CURVES FOR $E=1.0$ and $\theta=45$ DEG.	
	CONSTANT PRESSURE HOLE	74
3.36	INTERFERENCE LOG-LOG TYPE CURVES FOR $E=1.4$ AND $\theta=45$ DEG.	
	CONSTANT PRESSURE HOLE	75
3.37	INTERFERENCE SEMILOG TYPE CURVES FOR $E=1.4$ AND $\theta=45$ DEG.	
	CONSTANT PRESSURE HOLE	75
3.38	INTERFERENCE LOG-LOG TYPE CURVES FOR $E=0.7$ AND $\theta=90$ DEG.	
	CONSTANT PRESSURE HOLE	76
3.39	INTERFERENCE SEMILOG TYPE CURVES FOR $E=0.7$ and $\theta=90$ Deg.	
	CONSTANT PRESSURE HOLE	76
3.40	INTERFERENCE LOG-LOG TYPE CURVES FOR $E=1.0$ AND $\theta=90$ deg.	
	CONSTANT PRESSURE HOLE	77
3.41	INTERFERENCE SEMILOG TYPE CURVES FOR $E=1.0$ and $\theta=90$ deg.	
	CONSTANT PRESSURE HOLE	77
3.42	INTERFERENCE LOG-LOG TYPE CURVES FOR $E=1.4$ and $\theta=90$ deg.	
	CONSTANT PRESSURE HOLE	78
3.43	INTERFERENCE SEMILOG TYPE CURVES FOR $E=1.4$ and $\theta=90$ deg.	

-x -

	CONSTANT PRESSURE HOLE
3.44	INTERFERENCE $IQIQG$ type curevs for E=0.7 and θ =135 deg.
	CONSTANT PRESSURE HOLE
3.45	INTERFERENCE SEMILOG TYPE CURVES FOR $E=0.7$ and $\theta=135$ deg.
	CONSTANT PRESSURE HOLE
3.46	INTERFERENCE LOG-LOG TYPE CURVES FOR $E=1.0$ and $\theta=135$ deg.
	CONSTANT PRESSURE HOLE
3.47	INTERFERENCE SEMILOG TYPE CURVES FOR $E=1.0$ and $\theta=135$ DEG.
	CONSTANT PRESSURE HOLE
3.48	INTERFERENCE LOG-LOG TYPE CURVES FOR $E=1.4$ AND $\theta=135$ DEG.
	CONSTANT PRESSURE HOLE
3.49	INTERFERENCE SEMILOG TYPE CURVES FOR $E=1.4$ and $\theta=135$ deg.
	CONSTANT PRESSURE HOLE
3.50	INTERFERENCE LOG-LOG TYPE CURVES FOR $\Xi=0.7$ and $\theta=180$ DEG.
	CONSTANT PRESSURE HOLE
3.51	INTERFERENCE SEMILOG TYPE CURVES FRO $E=0.7$ and $\theta=180$ deg.
	CONSTANT PRESSURE HOLE
3.52	INTERFERENCE LOG-LOG TYPE CURVES FOR $E=1.0$ and $\theta=180$ deg.
	CONSTANT PRESSURE HOLE
3.53	INTERFERENCE SEMILOG TYPE CURVES FOR $E=1.0$ and $\theta=180$ deg.
	CONSTANT PRESSURE HOLE
3.54	INTERFERENCE LOG-LOG TYPE CURVES FOR $E=1.4$ and $\theta=180$ deg.
	CONSTANT PRESSURE HOLE
3.55	INTERFERENCE SEMILOG TYPE CURVES FOR $E=1.4$ and $\theta=180$ DEG.
	CONSTANT PRESSURE HOLE
3.56	A COMPARISON BETWEEN TWO CASES :
	1 : A CONSTANT RATE WELL AND A CONSTANT PRESSURE WELL
	2 : TWO CONSTANT RATE WELLS
3.57	SEMILOG TYPE CURVES FOR THE RATE - PRESSURE MODEL
3 58	SUPERPOSITION FOR A CONSTANT PRESSURE SEMI_CIRCLE AND
5.50	A NO FLOW LINEAD BOINDADY
3 50	A NO-LOW LINEAR DOUNDARI
5.57	DOINDED DV NO ELOW LINEAD DOINDADIES
2 (0	SUDED DOSITION SEMILOC CUDVES FOR A SEMIL CUDCLE $\mathbf{B} = 0$
3.00	SUPERFUSITION SEMILOG CURVES FOR A SEMI-CHRCLE. $F=0.5$
	AND U.I. ANGLE BEIWEEN THE WELL AND THE BOUNDARY 22.5 DEG.
	CONSTANT PRESSURE HOLE

4.1	A SCHEMATIC DIAGRAM OF THE NO-FLOW BOUNDARY HOLE SYSTEM	93
4.2	SEMILOG CURVES FOR F=0.3 TO 0.95 AND 2c=100.	
	NOFLOW BOUNDARY HOLE	112
4.3	SEMILOG CURVES FOR $F=0.3$ TO 0.95 AND $2c=250$.	
	NOFLOW BOUNDARY HOLE	112
4.4	SEMILOG CURVE FOR 2c=500 AND F=0.5 MATCHED WITH A SHIFTED	
	CURVE FOR 2c=100 AND F=0,5, NO-HOW BOUNDARY HOLE	113
4.5	A GENERALIZED SEMILOG TYPE CURVE FOR THE NO-FLOW INTERNAL	
	CIRCULAR BOUNDARY	114
4.6	INTERFERENCE LOG-LOG CURVES FOR E=0.99999, F=0.9 AND	
	θ=0,45,90,135,180 DEG. NO-FLOW BOUNDARY HOLE	115
4.7	INTERFERENCE SEMILOG CURVES FOR E=0.99999, F=0.9 AND	
	θ=0,45,90,135,180 DEG. NO—FLOW BOUNDARY HOLE	115
4.8	LONG TIME LOCATION OF P _{D LS} .	
	NO-FLOW BOUNDARY HOLE	117
4.9	INTERFERENCE LOG-LOG CURVES FOR E=0.7, F=0.1 TO 0.6 AND	
	e=0 deg. No-flow boundary hole	118
4.10	INTERFERENCE LOG-LOG CURVES FOR E=0.7, F=0.1 TO 0.6 AND	
	θ = 45 DEG. NO-FLOW BOUNDARY HOLE	118
4.11	INTERFERENCE LOG-LOG CURVES FOR E=0.7, F=0.1 TO 0.6 AND	
	$\theta = 90$ DEG. NO-FLOW BOUNDARY HOLE	119
4.12	INTERFERENCE LOG-LOG CURVES FOR E=0.7, F=0.1 TO 0.6 AND	
	θ = 135 DEG. NO-FLOW BOUNDARY HOLE	119
4.13	INTERFERENCE LOG-LOG CURVES FOR E=0.7, F=0.1 TO 0.6 AND	
	θ = 180 DEG. NO-FLOW BOUNDARY HOLE	120
5.1	A GENERALIZED SEMILOG TYPE CURVE FOR THE INTERNAL CIRCULAR	
	BOUNDARY CASE INCLUDING LINEAR BOUNDARIES	122
B. 1	THE CHOMEIRY FOR THE POINTS ON THE LATE TIME CONSTANT	
	PRESSURE CIRCLE	136
B.2	CURVES FOR TWO POINTS ON THE LATE TIME CONSTANT PRESSURE	
	CIRCLES. CONSTANT PRESSURE LINEAR BOUNDARY	139

D.1 THE GEOMETRY OF THE DOUBLET MODEL FOR THE CONSTANT

	PRESSURE HOLE AT STEADY STATE	149
F.1	R(m) AND L(m) AS A FUNCTION OF m IN THE ASYMPTOTIC	
	EXPANSION OF $K_{50}(5)$, $K_{50}(10)$ and $K_{50}(20)$	153
F.2	ASYMPTOTIC EXPANSION FOR $K_{50}(5)$ as a function of the	
	NUMBER OF TERMS IN THE EXPANSION. m	155
G.1	A FLOW DIAGRAM FOR THE COMPUTER PROGRAM	158
G.2	A SCHEMATIC FLOW DIAGRAM OF THE NAVIGATION PROGRAM	159

LIST OF TABLES

2.1	DRAWDOWN DATA FOR A LINEAR BOUNDARY CASE LEST	20
3.1	A COMPARISON BETWEEN THE STEADY STATE DIMENSIONLESS	
	PRESSURE FOR TWO MODELS : 1. RATE - RATE	
	2. RATE – PRESSURE	88
c.1	NUMERICAL DATA FOR SHIFTING A SEMILOG CURVE FOR THE	
	CONSTANT PRESSURE LINEAR BOUNDARY CASE	146
C.2	NUMERICAL DATA FOR SHIFTING A SEMILOG CURVE FOR THE	
	CONSTANT PRESSURE HOLE	147
C.3	NUMERICAL DATA FOR SHIFTING A SEMILOG CURVE FOR THE	
	NO-FLOW BOUNDARY HOLE	147
G.1	THE NAVIGATION PROGRAM DECISION TREE	160
H. 1	CONSTANT PRESSURE INTERNAL BOUNDARY	210
H.2	NO-FLOW INTERNAL BOUNDARY	219
H.3	CONSTANT PRESSURE LINEAR BOUNDARY	226
H.4	NO-FLOW LINEAR BOUNDARY	227
Н.5	THE LINE SOURCE	228

CHAPIER 1 : INTRODUCTION

In this chapter, we discuss the need for a pressure transient analysis method for reservoirs with internal circular boundaries and the conditions under which this method is applicable. Then, we present a general discussion of the problem followed by a background review. Finally, we conclude this chapter with a statement of the problem.

1.1 <u>APPLICATIONS</u>

Constant pressure internal subregions occur naturally in oil fields as gas caps and in geothermal fields as steam or noncondensable gas caps. These subregions can also be induced artificially during steam flooding, in-situ combustion, immiscible gas drive, aquifer gas storage and growth of steam or gas bubbles below the bubble point pressure. In any of these cases, testing a well completed in the liquid zone, exterior to the circular discontinuity, can provide estimates of the size of this internal gaseous subregion and the distance to it if a technique can be derived to analyze such tests.

In this research, we are concerned with drawdown testing in a well exterior to a circular boundary such as a gas cap. Ramey (1983) and Standing (1983) were concerned about the effect such a gas cap can have on pressure responses during well tests. Ramey (1983) has observed a high total system compressibility when analyzing interference tests in

-1-

such systems.

The new method presented here for pressure transient analysis is applicable whenever a two composite system resembles an infinite system containing an internal circular boundary.

This method offers a way to detect naturally occuring compressible regions when exploratory wells are completed in the liquid zone. Even a locally small gas cap would have a large impact on pressure transients in nearby wells. Using this method, we can distinguish between the total system compressibility and an effect of a compressible subregion.

We can apply this analysis method to study pressure interference between oil and gas fields sharing the same aquifer. If the oil field is far enough from the gas field and is relatively small, it can be approximated as a line source. The gas field can be relatively large, resembling a constant pressure circle, or small and resembling a constant pressure line source.

In developed systems, the method derived here permits monitoring of the location of fronts without having to shut in the injectors, which in many cases is undesirable.

The analysis assumes a horizontal slab reservoir with the compressible subregion completely penetrating the vertical thickness. However, the analysis is applicable to systems with liquid zones underlying gas bubbles in thin formations. Examples of such cases are naturally occurring gas caps or gas storage in aquifers.

Internal subregions with no-flow boundaries occur when **a** low mobility and compressibility fluid is injected into a reservoir containing a mobile compressible fluid. This condition may occur during reinjection of geothermal water into steam or two phase zones. Some

-2-

enhanced oil recovery processes, such as polymer flooding or water injection during gas fillup, may develop similar conditions. The analysis of pressure transient tests in the mobile region may yield estimates of the size of the affected zone.

It is demonstrated here that useful results from interference testing are limited to the cases of constant pressure boundaries and only in systems where the location of the bubble is known. Interference testing may lead to an estimate of the shape of the affected zone, whether it is circular or not.

The application of pressure transient analysis methods for linear boundary cases is discussed extensively in the water and petroleum literature. A new method which improves the semilog portion of the analysis is developed as a corollary to this work. The use of a single semilog type curve replaces the straight line analysis method for determining the distance to the linear boundary.

1.2 PKOBLEM DESCRIPTION

Composite reservoirs are flow systems composed of two or more different regions. In this work, we consider models of oil, gas or geothermal reservoirs as two region infinite slab systems. One region is continuous and homogeneous and is bounded internally by a circular subregion. A production well and interference wells are exterior to the internal circular region, which may be conveniently described as a "hole" in the exterior region.

-3-

In a fully composite system, each region has its own flow characteristics. We have taken a simplifying approach, where the interface conditions of the internal circular region are specified as boundary conditions to the exterior regions instead of allowing the pressure transients to travel through the internal region. If the mobility and compressibility of the hole are high in comparison to the other region, the hole acts like a constant pressure source. On the other hand, if the mobility and compressibility of the hole are low in comparison to the extended region, the hole acts like a no-flow internal boundary. Hence, we consider both the no-flow and the constant pressure boundary conditions.

A linear boundary is a limiting case of a circular boundary with an infinite radius. If a linear boundary were to **be** wrapped around the well, it would form the known case of a well located within a circular boundary. If a linear boundary were to be wrapped away from the well, it forms an internal circular region that does not include the well.

The thrust of this research is to develop **a** pressure transient analysis method for a drawdown constant rate test for a well near an internal circular boundary. This reservoir limit test may be analyzed to determine the distance to and the size of the circular discontinuity.

1.3 BACKGROUND

Pressure transient tests are performed in order to gain knowledge about reservoir flow properties. The early and intermediate time

-4-

pressure data can provide estimates of the flow characteristics of the local area around the well. The late time pressure data can provide information about the extent or the limits of the reservoir. This research is mainly concerned with the effects of internal reservoir limits on the pressure response of a well, but is nevertheless heavily dependent on the ability to determine the flow characteristics of the area near the well. Hence, both the intermediate and late time pressure responses are needed.

Carslaw and Jaeger (1946) and Van Everdingen and Hurst (1949) presented the solutions for **a** constant flow rate line source well and **for a** finite radius well in an infinite slab system. At intermediate times, many wells follow this behavior, known **as** "infinite **-** acting". Ramey (1970) presented an interpretation method for early time pressure data in the presence of wellbore storage and skin effect. The present study does not consider the effects of storage and skin on reservoir limit testing.

Carslaw and Jaeger (1946) and Bixel, et al. (1963) presented the most general analysis for an infinite reservoir with a linear discontinuity. They considered two regions with different flow properties and continuity of pressure and flow rate at the linear boundary.

Other authors simplified the approach to the composite system by specifying the condition at the linear boundary using the method of images. Stallman (1952) published log-log type curves for both the noflow and the constant pressure linear boundaries. His curves are applicable for the analysis of single well tests and also for interference tests. These curves may be used to find the distance to

-5-

the linear boundary and its orientation. Superposition of line source images was used by Jones (1961), Ferris, et al. (1962), Miller (1963), Miller, et al. (1966), Ramey, et al. (1970), Vela (1977), Tiab and Crichlow (1979) and Tiab and Kumar (1980) to generate the pressure response of a well in the presence of linear boundaries.

Davis and Larkin (1963), Standing (1964), Witherspoon, et al. (1967) and Kruseman and **De** Ridder (1970) extended the log-log method for a single linear boundary. They introduced the semilog method for determining the distance to a linear boundary. This method is based on identifying the intersection of two semilog straight lines representing the superposition of two line source solutions.

Cinco, et al. (1976) presented a solution to the transient pressure behavior of a well near a conductive linear fracture. This is a unique paper since they considered the fracture as an internal finite linear boundary.

Composite systems with circular discontinuities have been studied extensively in the literature. However, very few authors have considered internal circular discontinuities. Carslaw and Jaeger (1946) presented the Green's function for a point source external to an infinite cylinder with specified boundary conditions. Miller (1963) and Witherspoon, et al. (1967) considered testing near gas storage bubbles to be the same as testing near a constant pressure linear boundary. Most of the work using composite systems considered concentric systems with wells in the central region. Mathematically oriented works, describing heat conduction in composite materials were presented by Jaeger (1938 and 1943). Jaeger presented the Green's source function for an instantaneous line source centered and noncentered in a two

-6-

system.

Larkin (1963) and Temeng and Horne (1983) applied Jaeger's work (1938 and 1934) on an eccentric line source to the flow of fluids in reservoirs. Hantush and Jacob (1960) considered an eccentric well within a bounded aquifer with a leaky caprock.

Loucks and Guerrero (1961) and Bixel and Van Poolen (1967) presented type curves for a well centered in a two region radial flow system. Ramey (1970) presented approximate solutions for unsteady liquid flow for a well centered in a radially concentric composite system.

Katz, et al. (1959) and Coats, et al. (1959) studied gas storage in aquifers. Although the gas bubble may ride on top of the aquifer, they treated the aquifer as a radially concentric two region system. This approach is valid when the underlying aquifer is relatively thin. Coats (1962) included vertical flow under the gas bubble in his solution to this aquifer problem.

Hurst (1960) and Mortada (1960) considered interference between oil fields sharing a common aquifer. Their common approach was to treat the oil fields **as** line sources, hence, avoiding the dependence of the pressure on the angle of rotation.

The present work concentrates **on** internal circular boundaries, yet, the same mathematical methods apply also to linear boundary configurations.

-7-

1.4 **PROBLEM** STATEMENT

The objective of this study is to provide a practical method for estimating the size of and the distance to an internal circular discontinuity.

In order to achieve this objective, we pose a mathematical description of the pressure change in a reservoir due to a constant rate line source exterior to a circular boundary with \mathbf{E} specified boundary condition. We consider both no-flow and constant pressure boundaries.

We use the mathematical solutions to generate type curves that can be used in practical type curve matching procedures for analyzing transient pressure drawdown data from well tests.

First, we describe the limiting linear boundary cases, and then we consider constant pressure and no-flow internal circular boundary cases.

CHAPTER 2 : LINEAR BOUNDARIES

In this chapter, we consider a drawdown pressure transient analysis method **for** determining the distance between a well and a nearby constant pressure **or** no-flow linear boundary.

First, we pose and solve the problem using **the** method of images. Then, we describe the current log-log and semilog methods of analysis. Finally, we present a new semilog method followed by a type curve matching example. Some of the techniques developed In this chapter are useful in later chapters considering internal circular boundaries.

2.1 **PROBLEM** STATEMENT

The problem is two dimensional with one axis of symmetry along the line perpendicular to the linear boundary that includes the line source well (see Fig. 2.1).

It is assumed that the system has : an infinite radial extent, constant thickness, viscosity, porosity and compressibility, and constant and isotropic permeability. It is also assumed that the pressure gradients are small. so that the gradient squared terms can be neglected and that the flow is isothermal. Gravity effects are neglected.

The pressure $p(r, \theta, t)$ must satisfy the following equation and boundary conditions :

-9-

FIGURE 2.1 : A SCHEMATIC DIAGRAM OF THE CONSTANT PRESSURE LINEAR BOUNDARY SYSTEM

$$\frac{\partial^2 p}{\partial r^2} + \frac{1}{r} \frac{\partial p}{\partial r} + \frac{1}{r^2} \frac{\partial^2 p}{\partial \theta^2} = \frac{1}{n} \frac{\partial p}{\partial t}$$
(2.1)

$$p(\infty, \theta, t) = 0 \qquad (2.2)$$

$$p$$
 at the boundary = 0 (2.3)

$$\lim_{r \to 0} r \frac{\partial p}{\partial r} = -\frac{q\mu}{2\pi kh}$$
(2.4)

$$p(r,\theta,0) = 0$$
 (2.5)

2.2 SOLUTION

The solution uses the method of images for generating linear boundaries, superposing the line source due to the infinite acting well and an opposing line source or sink due to an image well. A constant pressure linear boundary is generated by a line source well and a line sink image. A no-flow linear boundary is generated by a line source well and a line source image. The use of imaging for generating linear boundaries was discussed by Carslaw and Jaeger (1946), Ferris, et al. (1962) and Ramey, et al. (1973).

The dimensionless pressure drop for a line source near a constant pressure linear boundary takes the **form** :

$$p_{D} = -\frac{1}{2} \left[E_{i}(-X_{1}) - E_{i}(-X_{2}) \right]$$
(2.6)

For a no-flow linear boundary the solution is :

$$p_{D} = -\frac{1}{2} \left[E_{i}(-X_{1}) + E_{i}(-X_{2}) \right]$$
 (2.7)

where :

$$X_{i} = \frac{r_{Di}^{2}}{4t_{D}}$$
(2.8)

 E_i denotes the Exponential Integral. The dimensionless terms are defined in the conventional manner :

$$P_{\rm D} = \frac{2\pi k h(p_{\rm i} - p)}{q B \mu}$$
(2.9)

$$t_{\rm D} = \frac{kt}{\phi \mu c_{\rm t} r_{\rm w}^2}$$
(2.10)

$$r_{Di} = \frac{r_{i}}{r_{w}}$$
(2.11)

2.3 LOG-LOG AND SEMILOG ANALYSIS METHODS

Stallman (1952) presented log-log type curves for a line source well near a linear boundary (see Fig. 2.2). The curves below the line source curve approach steady state values and represent constant pressure linear boundaries. The curves that deviate above the line source curve are for no-flow linear boundaries. The parameter of the various curves is the ratio of the distance between the pressure point and the image well to the distance between the pressure point and the production well:

$$\frac{\mathbf{r}_{D2}}{\mathbf{r}_{D1}} = \frac{\mathbf{v}_{0}}{\mathbf{r}_{1}} = \sqrt{\mathbf{H}} = \text{constant}$$
(2.12)

Stallman's type curve (Fig. 2.2) can be used for analyzing pressure responses from production wells and interference wells.

Brigham (1979) has shown that Eq. 2.12 represents circles that are centered at :

FIGURE 2.2 : LOG-LOG TYPE CURVES FOR THE LINEAR BOUNDARY CASE. AFTER STALLMAN (1952)

$$\begin{bmatrix} c' \frac{1+H}{1-H}, 0 \end{bmatrix}$$
 (2.13)

and have radii of :

$$2c' \frac{\sqrt{H}}{1-H}$$
(2.14)

The distance between the well and the linear boundary is denoted by c' (see Fig. 2.1). The derivation of Eqs. 2.13 and 2.14 is presented in Appendix A.

Also, interference points which lie on the circles having the same r_2/r_1 ratio have the same dimensionless pressure response as a function

of reduced dimensionless time $(p_D^{vs. t} D/r_D^2)$, hence, the use of the parameter r_2/r_1 in Stallman's type curve. This behavior is discussed in Appendix B.

Using Stallman's type curves, we can match the pressure response to one of the curves and determine the ratio r_2/r_1 . However, it is difficult to interpolate between the curves. Addressing this difficulty, Davis and Hawkins (1963) and Witherspoon, et al. (1970) extended Stallman's log-log type curve matching analysis using a double straight line semilog method. They observed that when the pressure time data are graphed in a semilog fashion, two straight lines develop. Figure 2.3 presents an example of these two straight lines taken from Witherspoon, et al. (1970). The first straight line is the infinite acting period of the production well and develops after a dimensionless time of 10. The second straight line has a slope which is double that of the first line and represents the sum of two line sources. This second straight line develops when both the exponential integrals can be represented by the logarithmic approximation :

$$E_{i}(-X) = -\gamma - \ln(X)$$
 (2.15)

where γ is the Euler constant.

Davis and Hawkins (1963) showed that for a production well, the distance to the linear boundary can be determined from the intersection point of the two straight lines :

$$d = [0.561nt_1]^{\frac{1}{2}}$$
(2.16)

FIGURE 2.3 : EXAMPLE OF THE DOUBLE STRAIGHT LINE ANALYSIS METHOD. AFTER WITHERSPOON (1970)

where :

d = distance between the well and the boundary
and :

$$\eta = \frac{k}{\phi \mu c_{t}}$$
(2.17)

and t_1 is the time of the intersection point (see Fig. 2.3).

Witherspoon, et al. (1970) presented a method 'based on two intersection points. The first point is the intersection of the first straight line and the time axis. The second point is the intersection point of the two straight lines. The ratio r_2/r_1 becomes :

$$\frac{r_2}{r_1} = \sqrt{t_1/t_2}$$
(2.18)

Davis and Hawkins (1963) and Witherspoon, et al. (1970) pointed out several limitations of the double straight line method. If either of the straight lines did not fully develop, the method cannot be used. Furthermore, if the first straight line has a small slope, a small error in the location of the straight line will have a large effect on the calculated distance between the well and the image well.

So far, we have discussed the existing log-log and semilog methods for determining the distance between a well and an image well. In the next section, we present a new semilog type curve matching method for determining this distance.

2.4 A NEW SEMILOG TYPE CURVE MATCHING METHOD

In this section, we present a new semilog method for determining the ratio r_2/r_1 based on type curve matching. First, we describe how the type curve was generated. Then, a procedure for using the type curve is presented. Finally, we discuss the advantages of the new semilog method.

Figure 2.4 presents the same pressure – time data of Stallman's type curve (Fig. 2.2) in a semilog scale. The curves branching off horizontally from the line source curve represent constant pressure linear boundaries. The curves branching off above the line source curve represent no-flow linear boundaries.

Except for the early time transition part, prior to a dimensionless time of 10, all these curves can be collapsed to a single curve. We

-16-

FIGURE 2.4 : A SEMILOG TYPE CURVE FOR THE LINEAR BOUNDARY CASE

have chosen arbitrarily to shift all the curves and match them to the curve where $r_2/r_1 = 100$. The shifting method is discussed in Appendix C. As a result of this shifting of all the curves in Fig. 2.4, we generated a generalized semilog type curve presented in Fig. 2.5. The dimensionless pressure and time are modified based on the derivations presented in Appendix C.

The new semilog type curve can be used for both production and interference wells. An early time infinite acting period is needed in order to use this semilog type curve. The early time log-log match to the line source curve enables us to convert pressures to dimensionless pressures. The following procedure describes the use of the generalized semilog type curve (Fig. 2.5) =

-17-

BOUNDARY CASE

- Make a log-log graph of the pressure time response using the same scales as the log-log line source type curve.
- 2) Match the early time part of the data to the line source curve and pick a match point.
- 3) Convert all the pressures to a dimensionless form.
- 4) Make a semilog graph of the dimensionless pressure time response using the same scale as in the generalized semilog type curve.

- 5) Match to one of the curves (constant pressure or no-flow boundary) and pick a match point. The transition and the late time data are the most important portion of the match.
- 6) Using the match point and the modified pressure equation, solve for the ratio r_2/r_1 , which in the case of a production well is approximately twice the distance to the linear boundary.

A type curve matching example is presented in the next section.

There are several advantages in using this semilog type curve matching method in comparison to the double straight line method. The new method can be used under all the conditions when the double straight line method is applicable. The first semilog straight line corresponds to an early time match to the line source curve, hence, pressures can be converted to a dimensionless form. However, there are conditions when the new method can be used and the previous method fails. Such a condition may occur when a test is terminated early, and only the first straight line and the transition between the two lines have developed. Another condition may occur when the first straight line is not defined, but we can still have a log-log match to the line source curve prior to **a** dimensionless time of 10.

In both these conditions, the new method can be used to determine the distance between a production well and the linear boundary or the distance between an interference well and the image well.

Note that the time axis can remain in real time units since the

-19-

time scale remains logarithmic.

2.5 **TYPE** CURVE MATCHING **EXAMPLE**

In this section, a synthetic drawdown test is analyzed using the new generalized semilog type curve. Table 2.1 presents hypothetical drawdown data given by Witherspoon, et al. (1970). The pressures are for an observation well, 325 feet away from the pumping well.

Figure 2.6 is a log-log graph of the data. Figure 2.7 is a log-log match of the data to the line source log-log type curve. The log-log match yields an approximate value for r_2/r_1 and a conversion factor between p and p_{p} .

The match point is :

$$p_{\rm D} = p / 90$$
 (2.19)

Next, we convert the pressures to dimensionless pressures using Eq. 2.19 and make a semilog graph of the dimensionless pressure vs. real time (Fig. 2.8). Note that the time axis need not be ∞ nverted to a dimensionless form. This can simplify the procedure by graphing the semilog data on the same sheet of paper with the log-log graph (see Fig. 2.9).
 Time (min)	Drawdown (feet)	Time (min)	Drawdown (feet)
 20	0.15	1000	74.61
30	0.31	1300	a5.33
40	0.56	1600	87.70
50	1.31	1900	101.41
60	1.50	2200	105.36
70	2.51	2500	111.17
80	3.50	3000	119.60
90	4.56	3500	125.01
100	3.33	4000	135.12
150	11.87	5000	148.81
200	17.42	6000	168.34
250	22.40	7000	170.01
300	28.61	8000	176.12
350	33.04	9000	184.40
400	36.31	10000	191.93
500	44.70	15000	222.41
600	52.13	20000	247•33
700	60.46	25000	267.00
800	65.03	30000	282.13
900	68.50	40000	301•24

DRAWDOWN DATA FOR A LINEAR BOUNDARY CASE TEST

FIGURE 2.6 : LOG-LOG GRAPH OF THE DRAWDOWN DATA FOR AN INTERFERENCE WELL. AFTER WITHERSPOON (1970)

FIGURE 2.7 : LOG-LOG MATCH FOR THE DRAWDOWN DATA FOR AN INTERFERENCE WELL. AFTER WITHERSPOON (1970)

FIGURE 2.9 : LOG-LOG AND SEMILOG GRAPHS FOR THE DRAWDOWN DATA IN

DIMENSIONLESS PRESSURE FORM

Finally, the semilog graph of the data is matched to the generalized semilog type curve in Fig. 2.10. This match concentrates on the late time data and on the transition. The early time data, that do not match to the first straight line, correspond to early time line source behavior prior to a dimensionless time of 10. This early time portion of the data can be matched to the lowermost portion of the type curve. This is **an** example where the first straight line has not fully developed, yet, we have a good log-log match to the line source curve. At the match point :

$$p_{\rm D} = -1$$
 $p_{\rm D} = 1.6$

.....

Next, we solve for 2c' in the equivalent system using the modified pressure equation :

$$\mathbf{p}_{\mathbf{D}}^{\star} = \mathbf{p}_{\mathbf{D}}^{\star} + \ln(100) - \ln(2c')$$
 (2.20)
2c' = 7.427

Since, in this case, the pressure is measured at the production well, $\mathbf{r}_{D2} + \mathbf{r}_{D1} = \mathbf{r}_{D2} + 1 = 2c'$, therefore :

$$\frac{r_2}{r_1} = 6.427$$

hence :

$$r_2 = 6.427 r_1 = 2089 f t$$

CURVE

Using the double straight line method, Witherspoon, et al. (1970) found r_2 to be 2025 ft.

In summary, two type curves are used in this **new** method. The loglog type curve of the line source is used to convert the pressure data to a dimensionless form. The new generalized semilog type curve (Fig. 2.5) is used to determine the distance between the pressure point and the image well. If the pressure point is at the production well, this distance is twice the distance between the well and the linear boundary.

The method of shifting the semilog curves and the semilog type curve matching technique are used in establishing the analysis method for internal circular boundaries presented in the next two chapters.

CHAPTER 3 : CONSTANT PRESSURE INTERNAL CIRCULAR BOUNDARY

This chapter presents the transient pressure analysis for a constant flow rate well near a constant pressure circular boundary. The problem is mathematically stated and solved using the Laplace transformation method. Then, the practical applications of the solution are discussed.

3.1 **PROBLEM** STATEMENT

The problem is *two* dimensional with one axis of symmetry along the line between the well and the center of the hole (see Fig. 3.1). The constant pressure hole cannot be treated as a line source if it is of finite radius, hence, the pressure at a given point is a function of three parameters: distance \mathbf{r} , angle θ and time \mathbf{t} .

It is assumed that the system has: an infinite radial extent, constant thickness, constant and isotropic permeability, constant viscosity, porosity and compressibility. It is also assumed that the pressure gradients are small so that the gradient squared terms can be neglected and that the flow is isothermal. The well produces at a constant flow rate.

The pressure $p(r, \theta, t)$ must satisfy the following equation and boundary conditions :

-26-

$$\frac{\partial^2 p}{\partial r^2} + \frac{1}{r} \frac{\partial p}{\partial r} + \frac{1}{r^2} \frac{\partial^2 p}{\partial \theta^2} = \frac{1}{n} \frac{\partial p}{\partial t}$$
(3.1)

$$p(\infty, \theta, t) = 0 \quad \text{or } p_i \tag{3.2}$$

$$p(a,\theta,t) = 0 \qquad \text{or } p_i \qquad (3.3)$$

$$\lim_{R \to 0} \frac{\partial p}{\partial R} = - \frac{q\mu}{2\pi kh}$$
(3.4)

$$p(r,\theta,0) = 0$$
 or p_1 (3.5)

where :

$$R^{2} = r^{2} + r'^{2} - 2rr'\cos\theta \qquad (3.6)$$

and :

$$\eta = \frac{k}{\phi \mu c_{r}}$$
(3.7)

Equation 3.4 is the condition at the line source well exterior to the constant pressure boundary. The derivation of Eq. 3.4 follows.

The flow around the well is assumed radial :

$$q(R) = - \frac{2\pi R k h}{\mu} \frac{\partial p}{\partial R}$$

Now, as R tends to 0, q(R) tends to q, so that the rate of production out of the system is maintained constant, hence Eq. 3.4 :

$$\lim_{R \to 0} R \frac{\partial p}{\partial R} = -\frac{q\mu}{2\pi kh}$$

3.2 LAPLACE TRANSFORMATION

We transform Eqs. 3.1 through 3.4 into Laplace space using the initial condition of Eq. 3.5. In general :

$$p(r,\theta,t) \rightarrow \overline{p}(r,\theta,s)$$

$$\frac{\partial^2 \bar{p}}{\partial r^2} + \frac{1}{r} \frac{\partial \bar{p}}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \bar{p}}{\partial \theta^2} - \sqrt{s/n} \ \bar{p} = 0$$
(3.8)

$$\overline{\mathbf{p}}(\infty,\theta,\mathbf{s}) = 0 \tag{3.9}$$

$$\overline{\mathbf{p}}(\mathbf{a},\boldsymbol{\theta},\mathbf{s}) = 0 \tag{3.10}$$

$$\lim_{R \to 0} \frac{\partial \bar{p}}{\partial R} = \frac{q\mu}{2\pi skh}$$
(3.11)

3.3 THE LAPLACE TRANSFORMATION SOLUTION

The solution for the homogeneous boundary conditions, Eqs. 3.8, 3.9 and 3.11, in a coordinate system centered at the well is :

$$\overline{p} = \frac{q\mu}{2\pi s kh} K_0 (R\sqrt{s/n}) \qquad (3.12)$$

By the addition theorem for Bessel Functions, Carslaw and Jaeger

(1946, p. 377), we translate Eq. 3.12 to a coordinate system centered at the center of the hole :

$$\overline{p} = \frac{q\mu}{2\pi skh} \sum_{n=-0}^{\infty} \cos(n\theta) I_n (r\sqrt{s/\eta}) K_n (r\sqrt{s/\eta})$$
for $r < r'$
(3.13)

$$\bar{p} = \frac{q\mu}{2\pi s k h} \sum_{n=-\infty}^{\infty} \cos(n\theta) \mathbf{I}_{n} (\mathbf{r}'\sqrt{s/\eta}) \mathbf{K}_{n} (\mathbf{r}\sqrt{s/\eta})$$
for $\mathbf{r} > \mathbf{r}'$
(3.14)

In order to satisfy the condition of constant: pressure at the internal boundary, we assume that $\frac{1}{p}$ takes the following form :

$$\overline{p} = \frac{q\mu}{2\pi skh} \sum_{n=-\infty}^{\infty} \cos(n\theta) \left[I_n(r\sqrt{s/\eta}) K_n(r\sqrt{s/\eta}) + A_nK_n(r\sqrt{s/\eta}) \right]$$
for $r < r'$
(3.15)

$$\overline{p} = \frac{q\mu}{2\pi skh} \sum_{n=-\infty}^{\infty} \cos(n\theta) \left[I_n(r'\sqrt{s/n}) K_n(r\sqrt{s/n}) + A_nK_n(r\sqrt{s/n}) \right]$$
for $r \ge r'$
(3.16)

where the constants A_n are to be set by the boundary condition. The particular solution, $K_{n'}$ is picked in order to satisfy the condition at infinite radii. A similar method for constructing the solution to the problem of an eccentric well within a circular subregion was presented by Carslaw and Jaeger (1946).

Equations 3.15 and 3.16 can be written as :

$$\bar{\mathbf{p}} = \frac{q\mu}{2\pi s k h} \sum_{n=0}^{\infty} \varepsilon_n \cos(n\theta) \left[\mathbf{I}_n(r\sqrt{s/\eta}) \mathbf{K}_n(r\sqrt{s/\eta}) + \mathbf{A}_n \mathbf{K}_n(r\sqrt{s/\eta}) \right]$$

for
$$r < r'$$
 (3.17)

$$\overline{p} = \frac{q\mu}{2\pi skh} \sum_{n=0}^{\infty} \epsilon_n \cos(n\theta) \left[I_n(r\sqrt{s/\eta}) K_n(r\sqrt{s/\eta}) + A_nK_n(r\sqrt{s/\eta}) \right]$$

for
$$r > r'$$
 (3.18)

where :

for
$$n = 0$$
, $E_n = 1$
for $n > 0$, $E_n - 2$

The internal boundary condition determines the coefficients A_n :

$$A_{n} = -\frac{\prod_{n} (a\sqrt{s/n}) K_{n}(r'\sqrt{s/n})}{K_{n}(a\sqrt{s/n})}$$
(3.19)

Substituting Eq. 3.19 into Eqs. 3.17 and 3.18 yields :

$$\bar{p} = \frac{q\mu}{2\pi s k h} \sum_{n=0}^{\infty} \epsilon_n \cos(n\theta) \left[I_n(r\sqrt{s/\eta}) K_n(r\sqrt{s/\eta}) \right]$$

$$-\frac{I_{n}(a\sqrt{s/n})K_{n}(r\sqrt{s/n})}{K_{n}(a\sqrt{s/n})}K_{n}(r\sqrt{s/n})]$$

for r < r' (3.20)

$$\overline{p} = \frac{q\mu}{2\pi s kh} \sum_{n=0}^{\infty} \varepsilon_n \cos(n\theta) \left[I_n(r'\sqrt{s/n}) K_n(r\sqrt{s/n}) - \frac{I_n(a\sqrt{s/n}) K_n(r'\sqrt{s/n})}{K_n(a\sqrt{s/n})} K_n(r\sqrt{s/n}) \right]$$
for $r \ge r'$
(3.21)

Next, we make the problem dimensionless using the standard definitions :

$$p_{\rm D} = \frac{2\pi kh(p_{\rm i} - p)}{qB\mu}$$
(3.22)

$$t_{\rm D} = \frac{kt}{\phi \mu c_{\rm t} r_{\rm w}^2}$$
(3.23)

$$\mathbf{r}_{\mathrm{D}} = \frac{\mathbf{r}}{\mathbf{r}_{\mathrm{W}}} \tag{3.24}$$

$$\mathbf{r}_{\mathbf{D}}^{\prime} = \frac{\tau^{\prime}}{r_{w}}$$
(3.25)

$$\mathbf{a}_{\mathbf{D}} = \frac{\mathbf{a}}{\mathbf{r}_{\mathbf{w}}}$$
(3.26)

$$R_{\rm D} = \frac{R}{r_{\rm w}}$$
(3.27)

Substituting Eqs. 3.22 through 3.27 into Eqs. 3.20 and 3.21 yields :

$$\overline{P}_{D} = \frac{1}{s} \sum_{n=0}^{\infty} \varepsilon_{n} \cos(n\theta) \left[I_{n}(r_{D}\sqrt{s}) K_{n}(r_{D}\sqrt{s}) \right]$$

$$-\frac{I_{n}(a_{D}\sqrt{s})K_{n}(r_{D}^{\prime}\sqrt{s})}{K_{n}(a_{D}^{\prime}\sqrt{s})}K_{n}(r_{D}^{\prime}\sqrt{s})]$$
for $r_{D} < r_{D}^{\prime}$

$$for r_{D} < r_{D}^{\prime}$$

$$for r_{D} < r_{D}^{\prime}$$

$$(3.28)$$

$$-\frac{I_{n}(a_{D}\sqrt{s})K_{n}(r_{D}^{\prime}\sqrt{s})}{K_{n}(a_{D}^{\prime}\sqrt{s})}K_{n}(r_{D}^{\prime}\sqrt{s})]$$

for
$$r_{\rm D} > r_{\rm D}'$$
 (3.29)

Note that Eq. 3.29 is Eq. 3.28 with \mathbf{r}_{D} and \mathbf{r}_{D}' interchanged. The Laplace solution was inverted numerically using an algorithm developed by Stehfest (1970). A description of the algorithm is presented in Section 3.5.

3.4 THE ANALYTICAL SOLUTION

The following presents the analytical inversion of the Laplace solution into the real time solution using the method of residues.

The Laplace solution of Eq. 3.28 can be written as :

$$\overline{p}_{D} = \frac{1}{s} \sum_{n=0}^{\infty} \varepsilon_{n} \cos(n\theta) \frac{1}{K_{n}(a_{D}\sqrt{s})} \left[I_{n}(r_{D}\sqrt{s})K_{n}(r_{D}^{\dagger}\sqrt{s})K_{n}(a_{D}\sqrt{s}) - K_{n}(r_{D}\sqrt{s})I_{n}(a_{D}\sqrt{s})K_{n}(r_{D}^{\dagger}\sqrt{s}) \right]$$

$$- K_{n}(r_{D}\sqrt{s})I_{n}(a_{D}\sqrt{s})K_{n}(r_{D}^{\dagger}\sqrt{s}) \left[1 - K_{n}(r_{D}\sqrt{s})K_{n}(r_{D}^{\dagger}\sqrt{s}) \right]$$

$$(3.30)$$

At s=0 we have a single pole, hence, we can use the small argument approximations for the Modified Bessel Functions :

$$K_0(z) = -(\ln \frac{z}{2} + \gamma)$$
(3.31)

$$K_n(z) = 2^{n-1}(n-1)! z^{-n}$$
 (3.32)

$$I_0(z) = 1$$
 (3.33)

$$I_n(z) = 2^{-n} z^n / n!$$
 (3.34)

As s tends to 0, t tends to ∞ and the residue at s=0 is the steady state pressure drop, p_{Dss} - Substituting Eqs. 3.31 through 3.34 into Eq. 3.30 yields :

$$\overline{\mathbf{p}}_{D1} = \frac{1}{\mathbf{s}} \ln \frac{\mathbf{r}_{D}}{\mathbf{a}_{D}} + \sum_{n=1}^{\infty} \frac{\cos(n\theta)}{n} \left[\left(\frac{\mathbf{r}_{D}}{\mathbf{r}_{D}} \right)^{n} - \left(\frac{\mathbf{a}_{D}^{2}}{\mathbf{r}_{D}\mathbf{r}_{D}} \right)^{n} \right] \qquad (3.35)$$

Using the following relation :

$$\sum_{k=1}^{\infty} \frac{1}{k} p^{k} \cos(k\theta) = \frac{1}{2} \ln(1 - 2p \cos\theta + p^{2})$$
(3.36)

and the Laplace inversion formula :

$$\frac{1}{s}(b) + b \qquad (3.37)$$

Equation 3.35 inverts into the following :

$$p_{Dss} = \ln(\frac{r_{D}}{a_{D}}) + \frac{J}{2} \ln \frac{1 - 2 \frac{a_{D}^{2}}{r_{D}r_{D}^{*}} \cos\theta + (\frac{a_{D}^{2}}{r_{D}})}{1 - 2 \frac{r_{D}}{r_{D}^{*}} \cos\theta + (\frac{r_{D}}{r_{D}})^{2}}$$
for $r_{D} < r_{D}^{*}$ (3.38)

This steady state solution can also **be** derived using superposition of line sources, with an identical result. This derivation is presented in Appendix D.

For $\mathbf{r}_{D} > \mathbf{r}'_{D}$ we interchange \mathbf{r}_{D} and \mathbf{r}'_{D} in Eq. 3.38 :

$$\mathbf{p}_{\text{Dss}} = \ln\left(\frac{\mathbf{r}_{\text{D}}^{\prime}}{a_{\text{D}}}\right) + \frac{1}{2}\ln\left(\frac{1-2\frac{a_{\text{D}}^{2}}{r_{\text{D}}\mathbf{r}_{\text{D}}^{\prime}}\cos\theta + \left(\frac{a_{\text{D}}^{2}}{r_{\text{D}}\mathbf{r}_{\text{D}}^{\prime}}\right)}{1-2\frac{\mathbf{r}_{\text{D}}^{\prime}}{r_{\text{D}}}\cos\theta + \left(\frac{1.2}{r_{\text{D}}}\right)}\right)$$

for
$$\mathbf{r}_{\mathrm{D}} > \mathbf{r}_{\mathrm{D}}'$$
 (3.39)

Factoring the term $(r_D'/r_D)^2$ out of the denominator of the last term in Eq. 3.39, and joining it to the first tenm , Eq. 3.39 becomes identical to Eq. 3.38. This is expected from the reciprocity principle.

When $s \neq 0$ we use the residues at the roots of $K_n(a_D \neq s)$. Let $\xi_{n/m}$ denote the m^{th} zero of $K_n(a_D \neq s) = K_n(\xi a_D)$. $K_n(z)$ has n zeroes in the second and third quadrants, Macdonald (1898), Watson (1948) and Abramowitz (1964). Using the method of residues we evaluate the inversion of P_{D2} :

$$\operatorname{RES}(\xi_{n/m}) = \lim_{\substack{s \neq \xi_{n/m}^{2} \\ n/m}} \varepsilon_{n} \cos(n\theta) - \frac{(s - \xi_{n/m}^{2}) e^{st}}{sK_{n}(a_{D}\sqrt{s})}$$

$$= \left[\mathbf{I}_{n}(\mathbf{r}_{D}\sqrt{\mathbf{s}}) \mathbf{K}_{n}(\mathbf{a}_{D}\sqrt{\mathbf{s}}) - \mathbf{K}_{n}(\mathbf{r}_{D}\sqrt{\mathbf{s}}) \mathbf{I}_{n}(\mathbf{a}_{D}\sqrt{\mathbf{s}}) \right]$$
(3.40)

Rearranging Eq. 3.40 :

$$\operatorname{RES}(\xi_{n/m}^2) = \sum_{n=0}^{\infty} \varepsilon_n \cos(n\theta) B_n - \frac{e^{\xi_{n/m}^2 t_D} K_n(r_D^* \sqrt{s})}{\xi_{n/m}^2}$$
(3.41)

where :

$$B_{n} = \lim_{s \to \xi_{n/m}^{2}} \frac{(s - \xi_{n/m}^{2})}{K_{n}(a_{D}\sqrt{s})}$$

$$\cdot \left[I_{n}(r_{D}\sqrt{s})K_{n}(a_{D}\sqrt{s}) - K_{n}(r_{D}\sqrt{s})I_{n}(a_{D}\sqrt{s}) \right] \qquad (3.42)$$

Using L'Hôpital's rule, we evaluate B_n :

$$B_{n} = -\frac{2\xi_{n/m} K_{n}(\xi_{n/m}r_{D}) I_{n}(\xi_{n/m}a_{D})}{a_{D} K_{n}(\xi_{n/m}a_{D})}$$
(3.43)

From Abramowitz (1964, p.361) :

$$K_n(z) = -\frac{n}{z} K_n(z) - K_{n+1}(z)$$
 (3.44)

Using Eq. 3.44 and the fact that $K_n(\xi_{n/m}a_D) = 0$, we find that :

$$B_{n} = \frac{2\xi_{n/m} K_{n}(\xi_{n/m}r_{D}) I_{n}(\xi_{n/m}a_{D})}{a_{D} K_{n+1}(\xi_{n/m}a_{D})}$$
(3.45)

Substituting Eq. 3.45 into Eq. 3.41 yields :

$$\operatorname{RES}(\xi_{n/m}^{2}) = \sum_{n=0}^{\infty} \varepsilon_{n} \cos(n\theta) \frac{e^{\sum_{n/m}^{\infty} t_{D}} K_{n}(\xi_{n/m}r_{D})}{a_{D} \xi_{n/m}^{2}}$$

$$\cdot \frac{2\xi_{n/m} K_{n}(\xi_{n/m}r_{D}) I_{n}(\xi_{n/m}a_{D})}{K_{n+1}(\xi_{n/m}a_{D})}$$
(3.46)

Now, in order to complete the inversion of \overline{P}_{D2} , we use the residues from Eq. 3.46 :

$$p_{D2} = 2 \sum_{n=0}^{\infty} \sum_{m=0}^{n} \varepsilon_n \cos(n\theta) e^{\xi_n^2 / m t_D}$$

$$\cdot \frac{K_{n}(\xi_{n/m}\mathbf{r}_{D})K_{n}(\xi_{n/m}\mathbf{r}_{D})I_{n}(\xi_{n/m}\mathbf{a}_{D})}{\mathbf{a}_{D}\xi_{n/m}K_{n+1}(\xi_{n/m}\mathbf{a}_{D})}$$
(3.47)

We can express P_{D2} in terms of Bessel Functions instead of Modified Bessel Functions. We use the following relations :

$$I_n(z) = i^{-n} J_n(iz)$$
 (3.48)

$$K_{n}(z) = \frac{\pi}{2} i^{n+1} \left[J_{n}(iz) + iY_{n}(iz) \right] = \frac{\pi}{2} i^{n+1} H_{n}^{(1)}(iz)$$
(3.49)

The second and third quadrants for $K_n(z)$ correspond to the third and fourth quadrants for $H_n^{(1)}(z)$ since the argument of the Hankel Function is rotated by $\pi/2$.

Substituting Eqs. 3.48 and 3.49 into Eq. 3.30 yields :

$$\bar{p}_{D2} = \frac{\pi i}{2s} \sum_{n=0}^{\infty} \epsilon_n \cos(n\theta) \frac{H_n^{(1)}(ir_D^{1}\sqrt{s})}{H_n^{(1)}(ia_D^{1}\sqrt{s})} \left[J_n^{(1)}(ir_D^{1}\sqrt{s}) H_n^{(1)}(ia_D^{1}\sqrt{s}) \right]$$

$$- J_{n}(ia_{D}\sqrt{s})H_{n}^{(1)}(ir_{D}\sqrt{s})]$$
(3.50)

$$H_n^{(1)}(ia_D\sqrt{s})$$
 has zeroes at $ia_D\sqrt{s} = \mu_1$, μ_2 , $\dots \mu_m$ and \overline{p}_{D2}

has simple poles at :

$$s = -\left(\frac{2}{m}\right)^{2} = -\alpha_{m}^{2} \qquad (3.51)$$

or :

$$\mathbf{a}_{\mathrm{m}} = \left(\frac{\mathbf{m}}{a_{\mathrm{D}}}\right) = \mathrm{i}\sqrt{\mathrm{s}} \tag{3.52}$$

 $a_{n/m}$ denotes the mth zero of $H_n^{(1)}(ia_D\sqrt{s}) = H_n^{(1)}(\alpha a_D)$. Using the method of residues we evaluate the inversion of \overline{P}_{D2} :

$$\operatorname{RES}(-\alpha_{n/m}^{2}) = \frac{\pi}{2} \lim_{\substack{n \neq m \\ s + -a_{n/m}}} \sum_{n=0}^{\infty} \varepsilon_{n} \cos(n\theta)$$

$$\cdot \frac{i(s + \alpha_{n/m}^{2}) e^{st_{D}} H_{n}^{(1)}(ir_{D}^{1}\sqrt{s})}{sH_{n}^{(1)}(ia_{D}\sqrt{s})}$$

•
$$\left[J_n(ir_D\sqrt{s})H_n^{(1)}(ia_D\sqrt{s}) - J_n(ia_D\sqrt{s})H_n^{(1)}(ir_D\sqrt{s})\right]$$

(3.53)

Rearranging Eq. 3.53 :

$$\operatorname{RES}(-\alpha_{n/m}^{2}) = \frac{\pi}{2} \sum_{n=0}^{\infty} \varepsilon_{n} \cos(n\theta) \operatorname{A}_{n} - \frac{e^{-\alpha_{n/m}^{2} t_{D}}}{\sum_{n=0}^{-\alpha_{n/m}^{2} t_{D}}} \operatorname{H}_{n} - \frac{(1)}{(\alpha_{n/m} r_{D}^{*})} (3.54)$$

where :

$$A = \lim_{\substack{n \\ s \neq -\alpha n/m}} \frac{i(s + a_{n/m}^2)}{Hn^{(1)}(ia_{p}\sqrt{s})}$$

•
$$\left[J_n(ir_D\sqrt{s})H_n^{(1)}(ia_D\sqrt{s}) - J_n(ia_D\sqrt{s})H_n^{(1)}(ir_D\sqrt{s}) \right]$$

(3.55)

Using L'Hôpital's rule, we evaluate A_n :

$$A_{n} = \lim_{s \to -a_{n/m}} \frac{i}{H_{n}'^{(1)}(ia_{p}\sqrt{s})(\frac{ia_{p}}{2\sqrt{s}})}$$

$$\cdot \left\{ \left[J_{n}(ir_{p}\sqrt{s})H_{n}^{(1)}(ia_{p}\sqrt{s}) - J_{n}(ia_{p}\sqrt{s})H_{n}^{(1)}(ir_{p}\sqrt{s}) \right] \right\}$$

$$+ (s + \alpha_{n/m}^{2}) \frac{d}{ds} \left[J_{n}(ir_{p}\sqrt{s})H_{n}^{(1)}(ia_{p}\sqrt{s}) - J_{n}(ia_{p}\sqrt{s}) \right]$$

$$- J_{n}(ia_{p}\sqrt{s})H_{n}^{(1)}(ir_{p}\sqrt{s}) \left] \right\} =$$

$$= \lim_{s \to -\alpha_{n/m}^{2}} - \frac{J_{n}(ia_{D}\sqrt{s})H_{n}^{(1)}(ir_{D}\sqrt{s})}{\frac{a_{D}}{2\sqrt{s}}} H_{n}^{(1)}(ia_{D}\sqrt{s})$$

Substituting $\mathbf{s} = -\frac{2}{\alpha_n/m}$ yields :

$$A_{n} = -\frac{2\sqrt{s} J_{n}(\alpha_{n/m}a_{D})H_{n}^{(1)}(\alpha_{n/m}r_{D})}{a_{D} H_{n}^{(1)}(\alpha_{n/m}a_{D})}$$
(3.56)

From Abramowitz (1964, p. 361) :

$$H_{n}^{(1)}(z) = -H_{n+1}^{(1)}(z) + \frac{n}{z} H_{n}^{(1)}(z)$$
(3.57)

Using Eq. 3.57 and the fact that $H_n^{(1)}(\alpha_n a) = 0$, we find that :

$$A_{n} = \frac{2\alpha n/m}{a_{D} H_{n+1}^{(1)} (\alpha_{n/m} a_{D})} \frac{H_{n}^{(1)} (\alpha_{n/m} r_{D})}{(\alpha_{n/m} a_{D})}$$
(3.58)

Substituting Eq. 3.58 into Eq. 3.54 yields :

RES
$$(-a_{n/m}^{2}) = \frac{\pi}{2} \sum_{n=0}^{\infty} cos(n\theta) = \frac{e^{-a_{n/m}^{2} t_{D}} H_{n}^{(1)}(\alpha_{n/m} r_{D})}{-a_{n/m}^{2}}$$

$$= \frac{2 \alpha n/m J_{n}^{(\alpha_{n/m} a_{D})} H_{n}^{(1)}(\alpha_{n/m} r_{D})}{a_{D} H_{n+1}^{(1)}(\alpha_{n/m} a_{D})}$$
(3.59)

Now, in order to complete the inversion of $\ {\bf \bar{p}}_{D2}$, we use the residues from Eq. 3.59 :

$$P_{D2} = -\pi \sum_{n=0}^{\infty} \sum_{m=0}^{n} \epsilon_{n} \cos(n\theta) e^{-\frac{2}{an/m} tD}$$

$$\cdot \frac{H_{n}^{(1)}(\alpha_{n/m}r_{D})H_{n}^{(1)}(\alpha_{n/m}r_{D})J_{n}(\alpha_{n/m}a_{D})}{a_{D}^{\alpha}n/m} H_{n+1}^{(1)}(\alpha_{n/m}a_{D})} \qquad (3.60)$$

Finally, the complete real time solution is $p_D = p_{D1} + p_{D2}$. In terms of Modified Bessel Functions, the solution is $\frac{1}{2}$.

$$\mathbf{p}_{\mathbf{D}} = \ln(\frac{\mathbf{r}}{\mathbf{a}_{\mathrm{D}}}) + \frac{1}{2}\ln \frac{1 - 2\frac{\mathbf{a}_{\mathrm{D}}^{2}}{\mathbf{r}_{\mathrm{D}}\mathbf{r}_{\mathrm{D}}'} \cos\theta + (\frac{\mathbf{a}_{\mathrm{D}}^{2}}{\mathbf{r}_{\mathrm{D}}\mathbf{r}_{\mathrm{D}}'})^{2}}{1 - 2\frac{\mathbf{r}}{\mathbf{p}_{\mathrm{D}}}\cos\theta + (\frac{\mathbf{r}}{\mathbf{p}_{\mathrm{D}}})^{2}}{\mathbf{r}_{\mathrm{D}}'}$$

+
$$\sum_{n=0}^{\infty} \sum_{m=0}^{n} \epsilon_{n} \cos(n\theta) e^{\frac{2}{\xi^{2}}}$$
, t

$$\frac{K_n(\xi_n/m^r_D)K_n(\xi_n/m^r_D)I_n(\xi_n/m^a_D)}{aD 5n/m K_n+1(\xi_n/m^a_D)}$$

for
$$\mathbf{r}_{\mathrm{D}} < \mathbf{r}_{\mathrm{D}}'$$
 (3.61)

In terms of Bessel Functions the solution is :

$$p_{D} = \ln(\frac{r_{D}}{a_{D}}) + \frac{1}{2} \ln \frac{1 - 2\frac{a_{D}^{2}}{r_{D}r_{D}} \cos\theta + (\frac{a_{D}^{2}}{r_{D}r_{D}})}{1 - 2\frac{r_{D}}{r_{D}} \cos\theta + (\frac{r_{D}}{r_{D}})}$$

$$-\pi \sum_{n=0}^{\infty} \sum_{m=0}^{n} \varepsilon_{n} \cos(n\theta) = \frac{-\alpha_{n/m}^{2} t_{D}}{e}$$

$$\frac{H_n^{(1)}(\alpha_{n/m}\mathbf{r}_{D}^{\prime})H_n^{(1)}(\alpha_{n/m}\mathbf{r}_{D}^{\prime})J_n^{\prime}(\alpha_{n/m}\mathbf{a}_{D}^{\prime})}{a_{D}a_{n/m}H_{n+1}^{(1)}(\alpha_{n/m}\mathbf{a}_{D}^{\prime})}$$

for
$$\mathbf{r}_{\mathrm{D}} < \mathbf{r}_{\mathrm{D}}'$$
 (3.62)

For $\mathbf{r}_{D} > \mathbf{r}_{D}'$, we interchange \mathbf{r}_{D} and \mathbf{r}_{D}' in Eqs. ,61 and ,62.

The transient part of the real time solution was not used in the numerical evaluations due to complexities of computaion. However, the general behavior of the pressure response can be deduced from the real time solution. The steady state part of the solution is a limiting value for the numerically evaluated pressures at late time.

3.5 NUMERICAL INVERSION OF THE LAPLACE TRANSFORM

Due to the complexity of the numerical evaluation of Eq. 3.62, we use the Laplace form of the solution, Eqs. 3.28 and 3.29 and invert the transform numerically. The numerical Laplace transform inverter was presented by Stehfest in 1970.

If $\overline{p}(s)$ is the Laplace transform of p(t), then, the equations used in the algorithm are :

$$\mathbf{p(t)} = \frac{\ln 2}{t} \sum_{i=1}^{N} \mathbf{v_i} \ \mathbf{\overline{p}(\frac{\ln 2}{t} \ i)}$$
(3.63)

where :

$$V_{1} = (-1) \begin{pmatrix} \frac{N}{2} + 1 \end{pmatrix} \min(i, \frac{N}{2}) \frac{k^{\frac{N}{2}}}{(\frac{N}{2} - k)!k!(k-1)!(i-k)!(2k-i)!}$$
(3.64)

N is the number of sampling points where $\bar{p}(s)$ is evaluated for each inversion. Some of the limitations of the Stehfest algorithm are described by Stehfest (1970) and Shinohara (1980). The pressure function should be continuous, moderately varying and not rapidly oscillating. The number of sampling points, N, vas taken as 8. For the 64 bit arithmetic that was used, **a** value of N=16 is the best in terms of accuracy for the type of function presented here. With N=16 it is possible to produce an accuracy of 6 to 7 digits in most ranges. The program was tested at various N's. With N=8 the accuracy is within 4 to

-45-

5 digits which is sufficient for practical purposes and requires significantly less computer time than with N=16.

The Laplace solutions are given by Eqs. 3.28 and 3.29. In the numerical inversion, only Eq. 3.28 was used. Although Eq. 3.28 is written for $r_D < r'_D$, it can be used for $r_D > r'_D$ making use of the reciprocity principle. The pressure drop at r_D due to the well at r'_D is the same as the pressure drop at r'_D due to a well at r_D .

The computer program **for** the Stehfest algorithm is presented in Appendix G.

3.6 **TYPE CURVE MATCHING FOR THE PRODUCTION WELL**

In this section we show how to type curve match for the size of the hole and the distance to it, using the production well pressure data.

3.6.1 GENERAL DISCUSSION

The pressure point representing the production well is one dimensionless radius away from the line source, **at** angle zero and in the direction of the hole. The pressure – time behavior depends **on** two factors:

> a. The ratio F, which is the ratio of the diameter of the hole to the distance between the center of the hole and the line

> > -46-

FIGURE 3.2 : THE GEOMEIRY FOR TYPE CURVE MATCHING.

CONSTANT PRESSURE HOLE

source (see Fig. 3.2).

b. The actual size of the system, c (see .Fig. 3.2).

Figures 3.3 and 3.4 present the pressure – time behavior for a constant c=50 and various ratios of F, from 0.1 to 0.9. Figure 3.3 is in log-log scale and Fig. 3.4 is in semilog scale. Every curve starts off on the line source solution then undergoes a transition to approach a steady state value. The steady state values of p_{D} can be calculated directly using Eq. 3.38 with an angle of zero.

At long time, the system will approach a steady state condition which can be represented simply by a doublet model. This is because at steady state all the equipotential lines are circles (see Appendix A). We can find the location of the image well at steady state (see Fig. 3.5). Using the radius of the constant pressure circle of Eq. 2.13, and denoting the distance between the well and the image as 2c', we find :

-47-

FIGURE 3.4 : SEMILOG CURVES FOR 2c=100 AND F FROM 0.1 TO 0.9.

CONSTANT PRESSURE HOLE

FIGURE 3.5 : THE DOUBLET MODEL FOR THE CONSTANT PRESSURE HOLE AT STEADY STATE

$$a_{D} = 2c' \frac{\sqrt{H}}{1-H}$$
(3.65)

where :

$$\sqrt{H} = \frac{rD2}{r_{D1}} = \frac{2c' - r'_D + a_D}{r'_D - a_D}$$
 (3.66)

Substituting Eq. 3.66 into 3.65 and simplifying :

$$c' = \frac{r_D'^2 - a_D^2}{2r_D'}$$
(3.67)

As the normalized radius of the hole, F, approaches 1, the system response approaches that of a well near a constant pressure linear boundary. This can be seen in Fig. 3.6. This figure is a combination of Fig. 3.4 for the constant pressure hole and Fig. 2.4 tor the constant pressure linear boundary. The fine curves above the curve for 2c=100 are for the constant pressure hole. The curve for F=0.9 is closer to the linear boundary curve, and the curve for F=0.1 is the uppermost one. As F approaches 1, the transient responses become similar to that of the constant pressure linear boundary response as do the long time steady state values. This is discussed in Appendix C.

As F approaches zero, the system becomes a set of two line sources. One source produces at a constant rate, and the other source maintains a constant pressure. Although the long time pressure drop is twice that of the source - sink model, the transient pressure drop is not. This is discussed in Section 3.8.

Another set of curves for the constant pressure hole is presented in Fig. 3.6. These curves are for 2c=250 and F varying from 0.1 to 0.9. The set of curves for 2c=100 (see Fig. 3.6) can be shifted and matched to the set of curves for 2c=250. This shifting and the numerical fit are discussed in Appendix C.

Figure 3.7 presents the pressure points and the curves for two cases :

a) 2c=500 , F=0.5

b) 2c=100, F=0.5 shifted to fit case a.

The fit is closer than $\pm 1\%$ for $t_{D} < 100$. Mathematically, the two curves are not identical since E, the relative distance to the pressure point, is not the same for both cases. For the curve where 2c=500 E=499/500 and for the curve where 2c=100 E=99/100. Yet, the curves are similar due to the fact that E is close to 1.

-50-

FIGURE 3.7 : SEMILOG CURVE FOR 2c=500 W0.5 MATCHED WITH A SHIFTED CURVE FOR 2c=100 F=0.5. CONSTANT PRESSURE HOLE

-51-

We can collapse all sets of curves for various 2c values to one set of curves. This collapsing implies that after reducing the pressure data to dimensionless values, we can type curve match for the value of **F** and hence for the radius of the hole.

Finally, we can determine the value of c, the shortest distance between the well and the boundary. This **is** based upon finding the limiting linear boundary model corresponding to the data we have. The linear boundary model analysis is presented in Chapter **2**.

Figure 3.8 presents generalized semilog type curves for the constant pressure hole case. The pressure and time scales are modified based on the shifting of the semilog curves described in Appendix C. The uppermost straight curve represents the line source. The lowermost curve for F=1.0 represents the limiting constant pressure linear boundary. This curve for the linear boundary is identical to the curves presented in the generalized semilog type curve for constant pressure linear boundaries (see Fig. 2.5). Thus, finding the curve appropriate to a set of measured data also allows estimation of the closest distance to the circular boundary. A synthetic type curve match example is presented in the following section.

In summary, we can type curve match first for the radius of the hole and then for the distance to its center. We should note that theoretically, two more wells are needed to fix the location of the constant pressure hole. Interference testing is discussed in Section 3.7.

From a practical viewpoint, each family of curves **for** the constant pressure hole, along with the limiting curve for the constant pressure linear boundary, depart from the line source at the same time. Taking a

-52-

PRESSURE INTERNAL CIRCULAR BOUNDARY

1%variation from the line source as the point of departure, suggested by Ramey et. al. (1973), we can evaluate the departure times for various values of 2c (see Fig. 3.9). This is discussed in Appendix D.

3.6.2 <u>TYPE CURVE MATCHING EXAMPLE</u>

The following presents the application of the type curves using synthetic data. Figure 3.10 presents the pressure - time points for a system where 2c=20 and F=0,5 on log-log scale. The data are matched on the log-log type curve for the constant pressure linear boundary (see Fig. 3.11). The type curve used for the match of the data **is** the Stallman type curve for constant pressure linear boundaries. From this

-53-

FIGURE 3.9 : ONE PERCENT DIMENSIONLESS DEPARTURE TIME FROM THE LINE SOURCE AS A FUNCTION OF 2c'

FIGURE 3.10 : TYPE CURVE MATCH EXAMPLE : DATA FOR 2c=20 F=0.5.

CONSTANT PRESSURE HOLE

FIGURE 3.11 : TYPE CURVE MATCH EXAMPLE : LOG-LOG MATCH TO THE LINE SOURCE AND A PRELIMINARY VALUE OF 2c

match, we find an approximate value of $2c \approx 25$ and the conversion factor between pressure and dimensionless pressure.

The dimensionless pressure data as a function of time are graphed on the same semilog scale as the generalized semilog type curve presented in Fig. 3.8. Now, we match for the most similar curve and find that F=0.5 (see Fig, 3.12).

The next step is to determine the distance between the well and the hole, c. Using a pressure match point on Fig. 3.12 together with the * modified pressure equation for p_D (derived in Appendix C) we solve for the value of 2c:

$$2c = \exp \left[p_{D} + \ln(100) - p_{D}^{*} \right] = \exp \left[10 + \ln(100) - 2.6 \right] = 20.1$$

It should be noted that the time axis of the semilog graph of the data need not be converted to a dimensionless form. The time axis can remain in real time units since only the pressure match is used to determine the value of 2c.
3.7 INTERFERENCE TYPE CURVE MATCHING

This section presents some theoretical and practical aspects of interference testing in the presence of a constant pressure internal boundary.

3.7.1 GENERAL DISCUSSION

The following discussion of interference testing is closely related to interference applications described in the introduction. We consider two basic cases:

- a) Interference testing without a known geometry.
- b) Interference testing with a known geometry.

Three parameters control the interference behavior: the relative size of the hole, F, the relative distance to the observation point, E and the angle of rotation of the pressure point, θ_{\bullet}

Figure 3.13 presents an example of some log-log interference curves. Five observation points are used, shown in Fig. 3.14. Figure 3.13 presents one of the problems with interference! log-log type curve matching. The curves break off from the line source solution at early times. As the observation point moves away from the production well, the curves break off earlier. Hence, we do not have an early line source behavior to match to the line source type curve.

In order to test systems with unknown geometries (E,F and θ are unknown), we must span the interference domain with a small number of type curves. Our efforts to collapse this domain were unsuccessful.

-57-

FIGURE 3.13 : INTERFERENCE LOG-LOG CURVES FOR F=0.5, E=1.5 AND $\theta=0$, 45,90,135,180 deg. CONSTANT PRESSURE HOLE

FIGURE 3.14 : THE GEOMETRY OF THE OBSERVATION POINTS IN THE CONSTANT PRESSURE HOLE SYSTEM

Stallman (1952) presented a method for spanning the interference domain with one set of curves for the constant pressure linear boundary case. This method is based on the long time steady state circles. The method does not apply to a system with a constant pressure hole. Figure **3.15** presents three log-log curves for three interference points on a long time constant pressure circle. All three curves have the same long time pressure, but the transients are different. For the limiting case of a constant pressure linear boundary, these curves would **be** identical. This is discussed in Appendix **1**.

Figure 3.16 presents an attempt to collapse interference curves for fixed E and θ with a varying F. Figure 3.17 presents the same data of Fig. 3.16 normalized to the steady state dimensionless pressure. In Fig. 3.17, the dimensionless pressure values are devided by the corresponding steady state dimensionless pressure evaluated by Eq. 3.38.

Figure 3.18 presents an attempt to collapse interference curves for fixed F and θ and varying E. Figure 3.19 presents the same data of Fig. 3.18 normalized to the steady state dimensionless pressures.

Figure 3.20 presents an attempt to collapse interference curves for fixed E and F with varying angles. Fig. 3.21 presents the normalized version of Fig 3.20.

The next three efforts correspond to straight .Lines parallel to the axes in an E, F and θ space. In the first case, E and F were kept constant and the angle of rotation was varied. This corresponds to a straight line parallel to the angle axis. In the second case, θ and E were kept constant and the relative size of the hole was varied. In the third case, θ and F were kept constant and the relative distance to the pressure point was varied.

-59-

TIME CONSTANT PRESSURE CIRCLE

FIGURE 3.18 : INTERFERENCE LOG-LOG CURVES FOR F=0.4 E=0.5 to 1.0 and $\theta=45$ DEG. CONSTANT PRESSURE HOLE

FIGURE 3.19 : INTERFERENCE NORMALIZED LOG-LOG CURVES FOR F=0.4

E=0.5 TO 1.0 AND θ =45 DEG. CONSTANT PRESSURE HOLE

FIGURE 3.20 : INTERFERENCE LOG-LOG CURVES FOR F=0.5 E=0.99 AND θ =0,45,90,135,180 DEG. CONSTANT PRESSURE HOLE

FTGHR 3.21 : INTERFERENCE NORMALIZED LOG-LOG CURVES FOR F=0.5 E=0.99 AND 0=0,45,90,135,180 DEG. CONSTANT PRESSURE HOLE

All three efforts did not span the interference domain in a practical manner.

Two additional efforts for interference analysis are presented. The first attempt considers a constant angle and a constant distance between the pressure point and the hole. This corresponds to E-F=constant. Figure 3.22 presents the normalized log-log curves for this unsuccessful effort.

The second attempt considers the ratio E-F/1-F a constant. This is a ratio of the distance between the observation point and the hole to the distance between the well and the hole. Figure 3.23 presents the normalized log-log curves for this unsuccessful effort.

It should be noted that all these attempts to span the interference

-63-

FIGURE 3.22 : INTERFERENCE NORMALIZED LOG-LOG CURVES FOR θ =45 DEG. AND E-F=0.5. CONSTANT PRESSURE HOLE

FIGURE 3.23 : INTERFERENCE NORMALIZED LOG-LOG CURVES FOR 8-45 DEG. AND (E-F)/(1-F)=5/6. CONSTANT PRESSURE HOLE

domain have no theoretical support.

Based on this lack of success, it is suggested that interference testing without any knowledge of the geometry is not practical. Various different configurations of E, F and θ will match the same set of pressure - time data.

Systems where we know one or more of the controlling parameters are defined as systems with a known geometry. In developed systems, such as in a geothermal field or a certain developed pattern (5 spot etc.), E and 8 are known and F will vary with time. In these cases we may have the value of F if the production well data are analyzed. When testing undeveloped systems, such as a gas cap, only the value of F is known. In summary, we can have three different cases under the unknown geometry category:

- a) F known, E and θ unknown.
- b) E and θ known , F unknown.
- c) E, F and 8 known.

The following is a discussion of these three cases.

a) F known, E and θ unknown

This case is very similar to a case where F is not known. Figure 3.24 presents interference log-log curves for a constant F and various values of E and 8 • This figure demonstrates the difficulty in trying to log-log type curve match interference data.

However, when the same data are normalized as semilog curves, they segregate according to the angle for values of E < 2. This segregation can be seen in Fig. 3.25. Even so, this type curve has no practical use. In order to use Fig. 3.25, we need the conversion constant for

-65-

FIGURE 3.24 : INTERFERENCE LOG-LOG CURVES FOR F=0.4 $\theta=0,45,90,135,180$ DEG. AND E - 0.5 TO 2.0. CONSTANT PRESSURE HOLE

FIGURE 3.25 : INTERFERENCE NORMALIZED SEMILOG CURVES FOR F=0.4, 8-45, 90,135,180 DEG. AND E=0.5 to 2.0. CONSTANT PRESSURE HOLE

the dimensionless pressure as well as the steady state pressure which are not available.

b) E and 8 known, F unknown

This case is typical of interference testing where the production well data is not used. Here, the pressure - time data must first be converted into a dimensionless form. This can be done only if we have a portion of the curve matching the line source solution. Figure 3.26 presents interference log-log curves for fixed values of E and 8.

For values of F < 0.5 we can get reasonably close to the line source solution. Then, we take the converted dimensionless pressure – time data and match for F on a semilog interference type curve presented in Fig. 3.27.

c) E, F and 8 known

This case is typical of interference testing in a developed system where the data from the producing well are analyzed. This analysis gives us the conversion coefficient for the dimensionless pressure for both the producing and the interference wells. Then, the interference data are matched for F on a semilog type curve such as Fig. 3.27. In this figure, the interference well is located at an angle of 45 Deg. Three values of the relative distance to the interference well are considered. The relative size of the hole, F, varies between a value of 0.1 and the largest value it can assume. For example, in the case where E- 0.7, F=0.1 to 0.6. Figure 3.27 is used to match for the value of F. This is actually a check for the value of F generated by analyzing the production well data.

-67-

FIGURE 3.26 : INTERFERENCE LOG-LOG TYPE CURVE FOR E=1.4 AND θ =45 deg. Constant pressure hole

FIGURE 3.27 : INTERFERENCE SEMILOG TYPE CURVES FOR E=1.4 AND θ =45 DEG. CONSTANT PRESSURE HOLE

3.7.2 INTERFERENCE TESTING IN AV UNKNOWN GEOMETRY

Interference testing when E and θ are not known is not practical. It is possible to fit several systems to a set of interference data. The difficulties in type curve matching were discussed in Section 3.7.1.

3.7.3 INTERFERENCE TESTING IN A KNOWN GEOMETRY

a) E, F and θ known

The data from the production well are used to determine F and the conversion factor to dimensionless pressure. The interference data are converted to dimensionless values using this factor. F is matched on the corresponding semilog type curve (odd-numbered Figs. **3.29** through 3.55). This analysis is a check for the value of F. This check can give an indication of how circular the constant pressure boundary is. The closer the boundary is to the interference point, the smaller the values of the dimensionless pressure. Hence, if the match is below the F line, the distance between the boundary and the observation well is shorter than the distance predicted by the production well. This indicates that the internal boundary may be elliptical in shape and not circular.

b) E and θ known, F unknown

This condition may arise when aquifers are tested near a gas storage bubble, and the production well is not monitored. It is recommended to have two interference wells, where one is close to the

-69-

production well and the other is closer to the constant pressure boundary. In this case, the first well is used to find the conversion factor to dimensionless pressure, and the second well is used to determine the value of F using the semilog type curves.

If, however, only one interference well is available, the data must first be matched to the corresponding log-log type curve (even-numbered Figs. 3.28 through 3.54). This match yields the conversion factor and an approximate value for F. Then, the semilog type curves are used to get a better value for F.

The log-log match is subject to errors due to the fact that some curves depart from the line source at early time.

FIGURE 3.28 : INTERFERENCE LOG-LOG TYPE CURVES FOR E=0.7 AND @=0 DEG. CONSTANT PRESSURE HOLE

FIGURE 3.29 : INTERFERENCE SEMILOG TYPE CURVES FOR E=0.7 AND θ =0 DEG. CONSTANT PRESSURE HOLE

FIGURE 3.30 : INTERFERENCE LOG-LOG TYPE CURVES FOR E=1.4 and $\theta=0$ deg. CONSTANT PRESSURE HOLE

FIGURE 3.31 : INTERFERENCE SEMILOG TYPE CURVES FOR E=1.4 AND θ =0 DEG. CONSTANT PRESSURE HOLE

FIGURE 3.32 : INTERFERENCE LOG-LOG TYPE CURVES FOR E=0.7 AND 8-45 DEG. CONSTANT PRESSURE HOLE

FIGURE 3.33 : INTERFERENCE SEMILOG TYPE CURVES FOR E=0.7 AND $\theta=45$ Deg. CONSTANT PRESSURE HOLE

FIGURE 3.34 : INTERFERENCE LOG-LOG TYPE CURVES FOR E=1.0 AND θ =45 DEG. CONSTANT PRESSURE HOLE

FIGURE 3.35 : INTERFERENCE SEMILOG TYPE CURVES FOR E=1.0 AND $\theta=45$ DEG. CONSTANT PRESSURE HOLE

FIGURE 3.36 : INTERFERENCE LOG-LOG TYPE CURVES FOR E=1.4 AND $\theta=45$ DEG. CONSTANT PRESSURE HOLE

FIGURE 3.37 : INTERFERENCE SEMILOG TYPE CURVES FOR E=1.4 AND 8-45 DEG. CONSTANT PRESSURE HOLE

FIGURE 3.38 : INTERFERENCE LOG-LOG TYPE CURVES FOR E=0.7 and $\theta=90$ Deg. CONSTANT PRESSURE HOLE

FIGURE 3.39 : INTERFERENCE SEMILOG TYPE CURVES FOR E=0.7 and $\theta=90$ Deg. CONSTANT PRESSURE HOLE

FIGURE 3.40 : INTERFERENCE LOG-LOG TYPE CURVES FOR E=1.0 and $\theta=90$ DEG. CONSTANT PRESSURE HOLE

FIGURE 3.41 : INTERFERENCE SEMILOG TYPE CURVES FOR E-1.0 AND θ =90 deg. Constant pressure hole

FIGURE 3.42 : INTERFERENCE LOG-LOG TYPE CURVES FOR E=1.4 and $\theta=90$ Deg. CONSTANT. PRESSURE HOLE

FIGURE 3.43 : INTERFERENCE SEMILOG TYPE CURVES FOR E=1.4 and $\theta=90$ DEG. CONSTANT PRESSURE HOLE

FIGURE 3.44 : INTERFERENCE LOG-LOG TYPE CURVES FOR E=0.7 and $\theta=135$ DEG. CONSTANT PRESSURE HOLE

FIGURE 3.45 : INTERFERENCE SEMILOG TYPE CURVES FOR E=0.7 and $\theta=135$ DEG. CONSTANT PRESSURE HOLE

FIGURE 3.46 : INTERFERENCE LOG-LOG TYPE CURVES FOR E=1.0 and $\theta=135$ deg. CONSTANT PRESSURE HOLE

FIGURE 3.47 : INTERFEKENCE SEMILOG TYPE CURVES FOR E=1.0 and $\theta=13_5$ deg. Constant pressure hole

FIGURE 3.48 : INTERFERENCE LOG-LOG TYPE CURVES FOR E=1.4 AND θ =135 deg. Constant pressure hole

FIGURE 3.49 : INTERFERENCE SEMILOG TYPE CURVES FOR E=1.4 AND $\theta=135$ DEG. CONSTANT PRESSURE HOLE

FIGURE 3.50 : INTERFERENCE LOG-LOG TYPE CURVES FOR E=0.7 and $\theta=180$ DEG. CONSTANT PRESSURE HOLE

FIGURE 3.52 : INTERFERENCE LOG-LOG TYPE CURVES FOR E=1.0 AND $\theta=180$ DEG. CONSTANT PRESSURE HOLE

FIGURE 3.53 : INTERFERENCE SEMILOG TYPE CURVES FOR E=1.0 AND θ =180 DEG. CONSTANT PRESSURE HOLE

FIGURE 3.54 : INTERFERENCE LOG-LOG TYPE CURVES FOR E=1.4 and $\theta=180$ DEG. CONSTANT PRESSURE HOLE

FIGURE 3.55 : INTERFERENCE SEMILOG **TYPE** CURVES FOR E-1.4 AND $\theta=180$ DEG, CONSTANT PRESSURE HOLE

3.8 INTERFERENCE BETWEEN OIL AND GAS FIELDS

Two or more reservoirs can share a common aquifer. If one of the reservoirs is a gas field and the other is an oil field, the gas field may be considered as a constant pressure source. Then, the analysis presented in the previous sections can be used, the oil field being treated as a production line source.

A special case occurs when the distance between the fields is large. We can approximate both fields as line sources. This is the same as a model where one well produces at a constant rate and another well maintains a constant pressure and may be represented in the present analysis by taking a hole of a small radius.

For a source - sink model with two constant flow rate wells :

$$P_{Dss} = 2 \ln(2c'-1) \approx 2 \ln(2c')$$
 (3.68)
for large c'

For the rate – pressure mdel based on the constant pressure hole model, the steady state pressure drop is given by Eq. 3.38 :

$$p_{Dss} = \ln(\frac{r_{D}}{a_{D}}) + \frac{1}{2} \ln \frac{1 - 2 \frac{a_{D}^{2}}{r_{D}r_{D}^{'}} \cos\theta + (\frac{a_{D}^{2}}{p_{D}r_{D}^{'}})^{2}}{1 - 2 \frac{r_{D}}{r_{D}^{'}} \cos\theta + (\frac{r_{D}}{r_{D}})^{2}}$$
for $r_{D} \leq r_{D}^{'}$
(3.69)

Letting :

$$a_{D} = 1$$

$$\theta = 0$$

$$r_{D} = r'_{D} - 1$$

Equation 3.69 becomes :

$$p_{Dss} = \ln \left[r'_{D} (r'_{D} - 1) \right] \approx 2 \ln(r'_{D})$$
for large r'_{D}
(3.70)

Equation 3.70 is equivalent to Eq. 3.68 for large \mathbf{r}_D^{\prime} since $\mathbf{r}_D^{\prime} \approx 2\mathbf{c}^{\prime}$ for the rate - pressure model. Figure 3.56 presents the transient pressure behavior for a case where $2\mathbf{c}^{\prime} = \mathbf{r}_D^{\prime} = 50$. Curve 1 is for the rate - pressure model and curve 2 is for the constant flow rate source - sink doublet model. Both these Curves have the same limiting steady state pressures. The transient part of curve 1 extends over a long time period due to the fact that the constant pressure source is not injecting any fluid at the start of the test and gradually increases the injection rate. At late time, the injection rate becomes equal to the production rate. Figure 3.57 presents semilog type curves for the rate - pressure model, for various distances between the sources.

Table 3.1 presents a comparison between the steady state pressures of the two models. As the distance between the wells becomes larger, the agreement of the long time pressures is better.

-86-

2 : TWO CONSTANT RATE WELLS

FIGURE 3.57 : SEMILOG TYPE CURVES FOR THE RATE - PRESSURE MODEL

TABLE **3.1**

A COMPARISON BETWEEN THE SIEADY STATE DIMENSIONLESS PRESSURE FOR TWO MODELS : 1. RATE - RATE 2. RATE - PRESSURE

(1)	(2)	(3)	(4)	
r' _D =2c'	PDSS	Pnee	(2)/(3)	
 	CASE 1	CASE 2	%	
10	4.3944	4.4886	97.90	
25	6.3561	6.3953	99.39	
50	7.7836	7.8034	99.75	
100	9.1902	9.2002	99.89	
250	11.035	11.039	99.96	
500	12.425	12.427	99.98	
1000	13.814	13.815	99.99	

3.9 SEMICIRCULAR AND QUARTERCIRCULAR SUBREGIONS

It is possible to have a compressible gas region near one or more sealing faults. Using the method of images, we can assemble these configurations with the circular hole solutions obtained in section 3.3.

Figures 3.58 and 3.59 present two examples of linear boundaries intersecting the constant pressure hole. Two conditions must be satisfied: the boundaries must pass through the center of the hole, and the angle between the boundaries must be an even integral part of the

-88-

FIGURE 3.58 : SUPERPOSITION FOR A CONSTANT PRESSURE SEMI-CIRCLE AND A NO-FLOW LINEAR BOUNDARY

FIGURE **3.59** : SUPERPOSITION FOR A CONSTANT PRESSURE QUARTER CIRCLE BOUNDED BY NO-FLOW LINEAR BOUNDARIES

full circle. In any other case, the superposition gives rise to images on Riemann surfaces. The image wells in Figs. **3.58** and **3.59** are all producers like the production well, generating the no-flow boundaries. Various combinations of injection and production images can be used to generate no-flow or constant pressure boundaries.

Figure 3.58 presents a case where a half circular gas field is bounded by an infinite no-flow linear boundary. Figure 3.60 presents the pressure behavior of well "B" for two hole sizes. For a relatively small hole, the no-flow boundary interferes with the production well and causes the pressure drop to rise above the line source, as if the constant pressure hole did not exist (curve 1). However, as time progresses, the influence of the constant pressure hole dominates the pressure behavior and the pressure approaches steady state (curve 1). The same geometry without the linear boundary is presented for comparison (curve 2).

For a relatively large hole, the effect of the hole starts dominating the pressure at an earlier time (curve 3), making it difficult to detect the no-flow boundary. The same geometry without a linear boundary is presented for comparison (curve 4).

-90-

FIGURE 3.60 : SUPERPOSITION SEMILOG CURVES FOR A SEMI-CIRCLE. F=0.5 and 0.1. Angle between the well and the boundary 22.5 deg. CONSTANT PRESSURE HOLE

CHAPTER 4 : NO-FLOW INTERNAL CIRCULAR BOUNDARY

This chapter presents the transient pressure analysis for a well near an impermeable circular boundary. The problem is mathematically stated and solved using the Laplace transformation method. Then, the practical applications of the solution are discussed.

4.1 PROBLEM STATEMENT

The problem is **two** dimensional with one axis of symmetry along the line between the well and the center of the hole (see Fig. 4.1). We assume that the system has: an infinite radial extent, a constant thickness, viscosity, porosity and permeability, small pressure gradients and single phase laminar isothermal flow.

The pressure at any given point is a function of three parameters: distance r, angle θ and time t, Hence, $p(r, \theta, t)$ must satisfy the following equations :

$$\frac{\partial^2 p}{\partial r^2} + \frac{1}{r} \frac{\partial p}{\partial r} + \frac{1}{r^2} \frac{\partial^2 p}{\partial \theta^2} = \frac{1}{\eta} \frac{\partial p}{\partial t}$$
(4.1)

$$p(\infty, \theta, t) = 0 \qquad \text{or } p_i \qquad (4.2)$$

$$\frac{\partial p(a,\theta,t)}{\partial r} = 0$$
(4.3)

$$\lim_{R \to 0} R \frac{\partial p}{\partial R} = - \frac{q\mu}{2\pi kh}$$
(4.4)
$$p(r,\theta,t) = 0 \qquad \text{or } p_{i} \qquad (4.5)$$

$$R^{2} = r^{2} + r'^{2} - 2rr'\cos(\theta)$$
 (4.6)

$$\eta = \frac{k}{\phi \mu c_t}$$
(4.7)

FIGURE 4.1 : A SCHEMATIC DIAGRAM OF THE NO-FLOW BOUNDARY HOLE SYSTEM

4.2 LAPLACE TRANSFORMATION

We transform Eqs. 4.1 to 4.4 into Laplace space using the initial boundary condition of Eq. 4.5. In general :

 $p(r,\theta,t) \rightarrow \overline{p}(r,\theta,s)$

$$\frac{\partial^2 \overline{p}}{\partial r^2} + \frac{1}{r} \frac{\partial \overline{p}}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \overline{p}}{\partial \theta^2} - \frac{s}{\eta} \overline{p} = 0$$
(4.8)

$$\overline{\mathbf{p}}(\infty,\theta,\mathbf{s}) = 0 \tag{4.9}$$

$$\frac{\partial \overline{p}(a,\theta,s)}{\partial r} = 0$$
 (4.10)

$$\lim_{R \to 0} R \frac{\partial \overline{p}}{\partial R} = -$$
(4.11)

4.3 THE LAPLACE TRANSFORMATION SOLUTION

The solution for the homogeneous boundary conditions, Eqs. 4.8, 4.9 and 4.11, in a coordinate system centered at the well is :

$$\overline{\mathbf{p}} = \frac{\mathbf{q}\mu}{2\pi \mathbf{s}\mathbf{K}\mathbf{h}} \mathbf{K}_{0} (\mathbf{R}\sqrt{\mathbf{s}/\mathbf{n}})$$
(4.12)

By the addition theorem for Bessel Functions, Carslaw and Jaeger (1946, p. 377), we translate Eq. 4.12 to a coordinate system centered at the center of the hole :

$$\overline{p} = \frac{q\mu}{2\pi s k h} \sum_{n=-\infty}^{\infty} \cos(n\theta) \mathbf{I}_{n} (\mathbf{r}\sqrt{s/n}) \mathbf{K}_{n} (\mathbf{r}\sqrt{s/n})$$
for $\mathbf{r} < \mathbf{r}'$

$$for \mathbf{r} < \mathbf{r}'$$

$$p = \frac{q\mu}{2\pi s k h} \sum_{n=-\infty}^{\infty} \cos(n\theta) \mathbf{I}_{n} (\mathbf{r}\sqrt{s/n}) \mathbf{K}_{n} (\mathbf{r}\sqrt{s/n})$$

$$for \mathbf{r} > \mathbf{r}'$$

$$(4.14)$$

In order to satisfy the condition of no-flow at the internal boundary, we assume that $\overline{\mathbf{p}}$ takes the following form :

$$\overline{p} = \frac{q\mu}{2\pi s k h} \sum_{n=-\infty}^{\infty} \cos(n\theta) \left[I_n(r\sqrt{s/n}) K_n(r\sqrt{s/n}) + A_n K_n(r\sqrt{s/n}) \right]$$
for $r < r'$

$$for r < r'$$

$$for r < r'$$

$$for r > r'$$

$$for r > r'$$

$$(4.15)$$

$$(4.16)$$

The constants A_n are set by the boundary condition. The particular solution, K_n , is picked in order to satisfy the condition at infinite radii. Equations 4.15 and 4.16 can be written as :

$$\overline{p} = \frac{q\mu}{2\pi s k h} \sum_{n=0}^{\infty} \varepsilon_n \cos(n\theta) \left[I_n(r\sqrt{s/\eta}) K_n(r\sqrt{s/\eta}) + A_n K_n(r\sqrt{s/\eta}) \right]$$

for
$$r < r'$$
 (4.17)

$$\overline{p} = \frac{q\mu}{2\pi skh} \sum_{n=0}^{\infty} \epsilon_n \cos(n\theta) \left[I_n(r'\sqrt{s/\eta}) K_n(r\sqrt{s/\eta}) + A_n K_n(r\sqrt{s/\eta}) \right]$$

for
$$r > r'$$
 (4.18)

where :

for
$$n = 0$$
, $E_n = 1$
for $n > 1$, $E_n = 2$

The internal boundary condition determines the coeficients $A_n = n^n$

$$A_{n} = - \frac{K_{n}(r'\sqrt{s/\eta})I'(a\sqrt{s/\eta})}{K_{n}'(a\sqrt{s/\eta})}$$
(4.19)

where $K_n'(z)$ and $I_n'(z)$ denote the derivatives of the Modified Bessel Functions.

Substituting Eq. 4.19 into Eqs. 4.17 and 4.18 yields :

$$\overline{p} = \frac{q\mu}{2\pi skh} \sum_{n=0}^{\infty} \varepsilon_n \cos(n\theta) \left[I_n(r\sqrt{s/\eta}) K_n(r\sqrt{s/\eta}) \right]$$

$$-\frac{K_{n}(\mathbf{r}'\sqrt{s/n})I_{n}'(a\sqrt{s/n})}{K_{n}'(a\sqrt{s/n})}K_{n}(\mathbf{r}\sqrt{s/n})]$$
for $\mathbf{r} \leq \mathbf{r}'$
(4.20)

$$\overline{p} = \frac{q\mu}{2\pi s k h} \sum_{n=0}^{\infty} \varepsilon_n \cos(n\theta) \left[I_n(r'\sqrt{s/\eta}) K_n(r\sqrt{s/\eta}) - \frac{K_n(r'\sqrt{s/\eta}) I_n'(a\sqrt{s/\eta})}{K_n'(a\sqrt{s/\eta})} K_n(r\sqrt{s/\eta}) \right]$$
for $r > r'$

$$(4.21)$$

Using Eqs. 3.22 to 3.27 yields :

$$\bar{\mathbf{p}}_{\mathrm{D}} = \frac{1}{\mathrm{s}} \int_{n=0}^{\infty} \varepsilon_{\mathrm{n}} \cos(n\theta) \left[\mathbf{I}_{\mathrm{n}}(\mathbf{r}_{\mathrm{D}}\sqrt{\mathbf{s}}) \mathbf{K}_{\mathrm{n}}(\mathbf{r}_{\mathrm{D}}^{\dagger}\sqrt{\mathbf{s}}) \right] \\ - \frac{\mathbf{K}_{\mathrm{n}}(\mathbf{r}_{\mathrm{D}}^{\dagger}\sqrt{\mathbf{s}}) \mathbf{I}_{\mathrm{n}}^{\dagger}(\mathbf{a}_{\mathrm{D}}\sqrt{\mathbf{s}})}{\mathbf{K}_{\mathrm{n}}^{\dagger}(\mathbf{a}_{\mathrm{D}}\sqrt{\mathbf{s}})} \mathbf{K}_{\mathrm{n}}(\mathbf{r}_{\mathrm{D}}\sqrt{\mathbf{s}}) \right] \\ for \mathbf{r}_{\mathrm{D}} < \mathbf{r}_{\mathrm{D}}^{\dagger} \qquad (4.22)$$
$$\bar{\mathbf{p}}_{\mathrm{D}} = \frac{1}{\mathrm{s}} \int_{n=0}^{\infty} \varepsilon_{\mathrm{n}} \cos(n\theta) \left[\mathbf{I}_{\mathrm{n}}(\mathbf{r}_{\mathrm{D}}^{\dagger}\sqrt{\mathbf{s}}) \mathbf{K}_{\mathrm{n}}(\mathbf{r}_{\mathrm{D}}\sqrt{\mathbf{s}}) - \frac{\mathbf{K}_{\mathrm{n}}(\mathbf{r}_{\mathrm{D}}^{\dagger}\sqrt{\mathbf{s}}) \mathbf{I}_{\mathrm{n}}^{\dagger}(\mathbf{a}_{\mathrm{D}}\sqrt{\mathbf{s}})}{\mathbf{K}_{\mathrm{n}}(\mathbf{a}_{\mathrm{D}}\sqrt{\mathbf{s}})} \mathbf{K}_{\mathrm{n}}(\mathbf{r}_{\mathrm{D}}\sqrt{\mathbf{s}}) \right] \\ for \mathbf{r}_{\mathrm{D}} \geq \mathbf{r}_{\mathrm{D}} \qquad (4.23)$$

Equation 4.22 is identical to Eq. 4.23 with r_{D} and r_{D}^{\dagger} interchanged.

The Laplace solution was inverted numerically using the algorithm developed by Stehfest (1970). A description of the algorithm is

presented in Sections 3.5 and 4.5, and the computer application is discussed in Appendix G.

4.4 THE ANALYTICAL SOLUTION

The following presents the analytical inversion of the Laplace solution into the real time solution using the method of residues.

The Laplace solution of Eq. 4.22 can be written as :

$$\overline{p}_{D} = \frac{1}{s} \sum_{n=0}^{\infty} \varepsilon_{n} \cos(n\theta) \frac{1}{K_{n}'(a_{D}\sqrt{s})} [I_{n}(r_{D}\sqrt{s})K_{n}(r_{D}^{\prime}\sqrt{s})K_{n}^{\prime}(a_{D}\sqrt{s})] - K_{n}(r_{D}\sqrt{s})I_{n}'(a_{D}\sqrt{s})K_{n}(r_{D}^{\prime}\sqrt{s})]$$
for $r_{D} \leq r_{D}^{\prime}$

$$(4.24)$$

At s=0 we have a single pole, hence, we can use the following small argument approximations for the Modified Bessel Functions :

$$K_0(z) = -[\ln(\frac{z}{2}) + \gamma]$$
 (4.25)

$$K_n(z) = 2^{n-1}(n-1)!z^{-n}$$
 (4.26)

$$K_0'(z) = -K_1(z)$$
 (4.27)

$$K_{n}'(z) = -\frac{1}{2} \left[K_{n-1}(z) + K_{n+1}(z) \right]$$
 (4.28)

$$I_0(z) = 1$$
 (4.29)

$$I_n(z) = 2^{-n} z^n / n!$$
 (4.30)

$$I_0'(z) = I_1(z)$$
 (4.31)

$$I_{n}'(z) = \frac{1}{2} \left[I_{n-1}(z) + I_{n+1}(z) \right]$$
(4.32)

Substituting Eqs. 4.25 to 4.32 into Eq. 4.24 yields :

$$\mathbf{p}_{D1} = \frac{\mathbf{J}}{\mathbf{s}} - \ln(\frac{\mathbf{r}_{D}^{\prime}}{2}) - y - \frac{1}{2}\ln(\mathbf{s}) + \sum_{n=1}^{w} \frac{\cos(n\theta)}{n} \left[\left(\frac{\mathbf{r}_{D}}{\mathbf{r}_{D}^{\prime}}\right)^{n} + \left(\frac{a_{D}^{2}}{\mathbf{r}_{D}\mathbf{r}_{D}^{\prime}}\right)^{n} \right]$$

(4.33)

Using the following relations :

$$\sum_{k=1}^{w} \frac{1}{k} p^{k} \cos(k\theta) = \frac{1}{2} \ln(1 - 2p\cos\theta + p^{2})$$
(4.34)

$$\frac{1}{s} \cdot b + b \tag{4.35}$$

$$\frac{\ln(s)}{s} \rightarrow -\gamma - \ln(t_{D})$$
 (4.36)

we find that :

$$P_{D1} = -\ln(\frac{r_{D}!}{2}) - \frac{\gamma}{2} + \frac{1}{2}\ln(t_{D}) - \frac{1}{2}\ln\left\{\left[1 - 2\frac{r_{D}!}{r_{D}!} \cos\theta + (\frac{r_{D}!}{r_{D}!})^{2}\right]\right\}$$

*
$$\left[1 - 2 \frac{a_{D}^{2}}{\mathbf{r}_{D} \mathbf{r}_{D}^{\mathbf{r}_{D}^{\mathbf{r}}}} \cos \theta + \left(\frac{a_{D}^{2}}{\mathbf{r}_{D} \mathbf{r}_{D}^{\mathbf{r}_{D}^{\mathbf{r}}}}\right)^{2}\right]$$

for
$$r_D < rD$$
 (4.37)

$$\mathbf{p}_{D1} = -\ln(\frac{\mathbf{r}_{D}}{2}) - \frac{\gamma}{2} + -\ln(\mathbf{r}_{D}) - \frac{1}{2}\ln\left\{\left[1 - 2\frac{\mathbf{r}_{D}^{\prime}}{\mathbf{r}_{B}}\cos\theta + \left(\frac{\mathbf{r}_{D}^{\prime}}{\mathbf{r}_{D}}\right)^{2}\right\}\right\}$$

$$\cdot \left[1 - 2\frac{a^2}{r_D - b} \cos\theta + \left(\frac{a^2_D}{r_D r_D}\right)^2 \right]$$
for $r_D > rD$

$$(4.38)$$

We can see that by factoring the term $(r_D'/r_D)^2$ out of the last term in Eq. 4.38, the equation becomes identical to Eq. 4.37. This is expected due to the reciprocity principle.

Equation 4.38 can be written as follows :

$$\mathbf{p}_{\text{D1}} = -\ln(\frac{\mathbf{r}_{\text{D}}}{2}) - \frac{\mathbf{Y}}{2} + \ln(\mathbf{r}_{\text{D}}) - \frac{\mathbf{T}}{2}\ln\left[1 - 2\frac{\mathbf{r}_{\text{D}}^{2}}{\mathbf{r}_{\text{D}}^{\text{D}}}\cos\theta + (\frac{\mathbf{r}_{\text{D}}^{2}}{\mathbf{r}_{\text{D}}})\right]^{2}$$

$$-\frac{1}{2} \ln \left[1 - 2 \frac{a^2}{r_{-} \frac{r_{-}}{r_{-}}} \cos \theta + \left(\frac{a^2}{r_{D} \frac{p_{-}}{D}}\right)^2\right]$$
(4.39)

Using the definition of R_{D} in Eq. 4.6 yields :

$$p_{D1} = \frac{1}{2} \left[\ln(\frac{t_{D}}{R_{D}^{2}}) + 0.80907 \right] - \frac{1}{2} \ln\left[1 - 2 \frac{a_{D}^{2}}{\frac{t_{D}}{D} - D} \cos\theta + (\frac{a_{D}^{2}}{\frac{t_{D}}{D} - D})^{2} \right]$$
(4.40)

The first term in Eq. 4.40 is the long time approximation for the line source exponential integral solution. Hence, the long time behavior of p_D has a line source term and a deviation term.

When $s \neq 0$, we use the residues at the roots of $K_n'(a_D \sqrt{s})$. Letting $\xi_{n/m}$ denote the mth zero of $K_n'(a_D \sqrt{s}) = K_n'(\xi a_D)$ and using the method of residues, we evaluate the inversion of p_{D2} :

$$\operatorname{RES}(\xi_{n/m}^{2}) = \lim_{\substack{s \neq \xi_{n/m}}} \sum_{n=0}^{\infty} \varepsilon_{n} \cos(n\theta)$$

$$\frac{(s-\xi_{n/m}^2)e^{SL_D}K_n(r_D\sqrt{s})}{sK_n'(a_D\sqrt{s})}$$

•
$$\left[I_n(r_p \sqrt{s}) K_n'(a_p \sqrt{s}) - K_n(r_p \sqrt{s}) I_n'(a_p \sqrt{s}) \right]$$

(4.41)

Rearranging Eq. 4.41 yields :

$$\operatorname{RES}(\xi_{n/m}^{2}) = \sum_{n=0}^{w} \varepsilon_{n} \cos(n\theta) \quad B_{n} \frac{e^{\xi_{n/m}^{2} t_{D}} K_{n}(\xi_{n/m} r_{D}^{*})}{\xi_{n/m}^{2}}$$
(4.42)

where :

$$B_{n} = \frac{1}{s + \xi_{n/m}} \frac{(s + \xi_{n/m}^{2})}{Kn'(a_{D}\sqrt{s})}$$

•
$$[I_n(r_p\sqrt{s})K_n'(a_p\sqrt{s}) - K_n(r_p\sqrt{s})I_n'(a_p\sqrt{s})$$
 (4.43)

Using L'Hôpital's rule, we evaluate B_n :

$$B_{n} = - \frac{2\xi_{n/m}K_{n}(\xi_{n/m}r_{D})I_{n}'(\xi_{n/m}a_{D})}{a_{D}K_{n}''(\xi_{n/m}a_{D})}$$
(4.44)

where $K_n''(z)$ denotes the second derivative of K. From Bickley (1957) we find that :

$$K_{n}''(z) = \frac{1}{4} \left[K_{n-2}(z) + 2K_{n}(z) + K_{n+2}(z) \right]$$
(4.45)

$$K_{n-1}(z) = -\frac{2n}{z} K_n(z) + K_{n+1}(z)$$
 (4.46)

$$K_{n}'(z) = -K_{n+1}(z) + \frac{2n}{z} K_{n}(z)$$
 (4.47)

Using Eqs. 4.46 and 4.47 and the fact that $\mathop{\rm K}_n{}^\prime(z)=0$, Eq. 4.45 reduces to the following :

$$K_n''(z) = (1 + \frac{n^2}{z^2}) K_n(z)$$
 (4.48)

In Bickley (1957), we find that :

$$I_{n}'(z) = I_{n-1}(z) - \frac{n}{z} I_{n}(z)$$
 (4.49)

Substituting Eqs. 4.48 and 4.49 into Eq. 4.44 yields :

$$B_{n} = -\frac{2\xi_{n/m}K_{n}(\xi_{n/m}r_{D})\left[I_{n-1}(\xi_{n/m}a_{D}) - \frac{\xi^{n}}{\beta_{n/m}a_{D}}I_{n}(\xi_{n/m}a_{D}) -$$

substituting Eq. 4.50 into Eq. 4.42 yields :

$$\operatorname{RES}(\xi_{n/m}^{2}) = \sum_{n=0}^{\infty} \varepsilon_{n} \cos(n\theta) \frac{e^{\xi_{n/m}^{2} t_{D}} K_{n}(\xi_{n/m} r_{D}^{*})}{a_{D} \xi_{n/m}^{2}}}{a_{D} \xi_{n/m}^{2}}$$

$$\cdot \frac{2\xi_{n/m} K_{n}(\xi_{n/m} r_{D}) [\frac{n}{\xi_{n/m}^{a} D} I_{n}(\xi_{n/m} a_{D}) - I_{n-1}(\xi_{n/m} a_{D})]}{(1 + \frac{2}{\xi_{n/m}^{2} A_{D}^{2}}) K_{n}(\xi_{n/m} a_{D})}$$

(4.51)

Now, in order to complete the inversion of $\ \overline{p}_{D2}$, we use the residues from Eq. 4.51 :

$$p_{D2} = 2 \sum_{n=0}^{w} \sum_{m \text{ roots}} \epsilon_n \cos(n\theta) e^{\xi_{n/m}^2 t_D}$$

$$\cdot \frac{K_n(\xi_{n/m} r_D) K_n(\xi_{n/m} r_D) [\frac{n}{\xi_{n/m} a_D} I_n(\xi_{n/m} a_D) - I_{n-1}(\xi_{n/m} a_D)]}{(1 + \frac{n^2}{\xi_{n/m}^2 a_D^2}) K_n(\xi_{n/m} a_D)}$$

We can express ${\rm p}^{}_{\rm D2}$ in terms of Bessel Functions instead of Modified Bessel Functions using the following relations :

$$I_n(z) = i^{-n}J_n(iz)$$
 (4.53)

(4.52)

$$K_{n}(z) = \frac{\pi}{2} \mathbf{i}^{n+1} \left[J_{n}(\mathbf{i}z) + Y_{n}(\mathbf{i}z) \right] = \frac{\pi}{2} \mathbf{i}^{n+1} H_{n}^{(1)}(z)$$
(4.54)

$$I_{n}'(z) = i^{-n+1} J_{n}'(iz)$$
(4.55)

$$K_{n}'(z) = \frac{\pi}{2} i^{n+2} \left[J_{n}'(iz) + iY_{n}'(iz) \right] = \frac{\pi}{2} i^{n+2} H^{n'(1)}(z)$$
(4.56)

Substituting Eqs. 4.53 to 4.56 into 4.24 yields :

$$\overline{p}_{D2} = \frac{\pi}{2is} \sum_{n=0}^{\infty} \varepsilon_n \cos(n\theta) \frac{H_n^{(1)}(ir_D^{i}\sqrt{s})}{H_n^{i}(1)(ia_D^{i}\sqrt{s})} \left[H_n^{i}(1)(ia_D^{i}\sqrt{s}) J_n^{i}(ir_D^{i}\sqrt{s}) \right]$$

$$-\operatorname{Hn}^{(1)}(\operatorname{ir}_{D}\sqrt{s})J_{n}'(\operatorname{ia}_{D}\sqrt{s})] \qquad (4.57)$$

 $H_n^{(1)}(ia_{D}\sqrt{s})$ has zeroes at $ia_{D}\sqrt{s} = \mu_1, \mu_2, \dots, \mu_m$ and μ_{D2} has simple poles at :

$$s = -(\frac{m}{a_{D}})^{2} = -a_{m}^{2}$$
 (4.58)

$$a_{\rm m} = \left(\frac{{}^{\prime\rm m}}{a_{\rm D}}\right) = i\sqrt{s} \qquad (4.59)$$

where $a_{n/m}$ denotes the mth zero of $H_n'^{(1)}(ia_{D}\sqrt{s})$. Using the method of residues, we evaluate the inversion of \overline{P}_{D2} :

$$RES(-a_{n/m}^{2}) = \frac{\pi}{2} \lim_{s \neq \alpha_{n/m}} \sum_{n=0}^{w} \varepsilon_{n} \cos(n\theta)$$

$$\cdot \frac{(s + \alpha_{n/m}^2) e^{St_D} H_n^{(1)}(ir_D^{\prime}\sqrt{s})}{is H_n^{\prime}(1)(ia_D^{\prime}\sqrt{s})}$$

•
$$\left[H_{n}^{(1)}(ia_{p}\sqrt{s}) J_{n}^{(ir_{p}\sqrt{s})} - H_{n}^{(1)}(ir_{p}\sqrt{s}) J_{n}^{'(ia_{p}\sqrt{s})} \right]$$

(4.60)

Rearranging Eq. 4.60 :

$$\operatorname{RES}(-\alpha_{n/m}^{2}) = \frac{\pi}{2} \sum_{n=0}^{\infty} \epsilon_{n} \cos(n\theta)_{n} A - \frac{e^{-\alpha n/m} t_{D}}{e^{-\alpha n/m} - a_{n/m}^{2}}$$
(4.61)

where :

$$A_{n} = \lim_{s \neq \alpha^{2}_{n/m}} \frac{(s + \alpha^{2}_{n/m})}{iH_{n}^{(1)}(ia_{D}\sqrt{s})}$$

•
$$\left[H_{n'}^{(1)}(ia_{D}\sqrt{s})J_{n}(ir_{D}\sqrt{s}) - H_{n}^{(1)}(ir_{D}\sqrt{s})J_{n'}^{(ia_{D}\sqrt{s})} \right]$$
(4.62)

Using L'Hôpital's rule, we evaluate A_n :

$$A_{n} = \lim_{s \neq \alpha^{2}} \frac{1}{\frac{H_{n} \cdot (1)(ia_{D} \sqrt{s})}{2\sqrt{s}}}$$

$$\cdot \left\{ \left[H_{n}'^{(1)}(ia_{D}\sqrt{s})J_{n}(ir_{D}\sqrt{s}) - H_{n}^{(1)}(ir_{D}\sqrt{s})J_{n}'(ia_{D}\sqrt{s}) \right] + (s + \alpha_{n/m}^{2}) \frac{d}{ds} \left[H_{n}'^{(1)}(ia_{D}\sqrt{s})J_{n}(ir_{D}\sqrt{s}) - H_{n}^{(1)}(ir_{D}\sqrt{s})J_{n}(ir_{D}\sqrt{s}) \right] \right\}$$

$$= \lim_{\substack{s+\alpha_{n/m}}} - \frac{2\sqrt{s} J_n'(ia_p\sqrt{s})H_n^{(1)}(ir_p\sqrt{s})}{a_p H_n''^{(1)}(ia_p\sqrt{s})}$$

Substituting $s = -a_{n/m}^2$ yields :

$$A_{n} = -\frac{21\alpha_{n/m}J_{n}'(ia_{D}\sqrt{s})H_{n}^{(1)}(ir_{D}\sqrt{s})}{a_{D}H_{n}''(1)(ia_{D}\sqrt{s})}$$
(4.63)

From Bickley (1957, p. xxxiii), we find that :

$$H_{n}''(z) = \frac{1}{4} \left[H_{n-2}(z) - 2 H_{n}(z) + H_{n+2}(z) \right]$$
(4.64)

$$H_{n-1}(z) = -H_{n+1}(z) + \frac{2n}{z} H_n(z)$$
 (4.65)

$$H_{n}'(z) = -H_{n-1}(z) + \frac{n}{z} H_{n}(z)$$
 (4.66)

Using Eqs. 4.65 and 4.66 and the fact that $\operatorname{H}_n^{\,\,\prime}(z)=0$, Eq. 4.64 becomes :

$$H_{n}^{(1)}(\alpha_{n/m}a_{D}) = H_{n}^{(1)}(\alpha_{n/m}a_{D}) \left(\frac{n^{2}}{\alpha_{n/m}^{2}a_{D}^{2}} - 1\right)$$
(4.67)

Equation 4.49 holds for $J_n(z)$, hence :

$$J_{n}'(\alpha_{n/m}a_{D}) = J_{n-1}(\alpha_{n/m}a_{D}) - (\frac{n}{\alpha_{n/m}a_{D}}) J_{n}(\alpha_{n/m}a_{D})$$
(4.68)

Substituting Eqs. 4.67 and 4.68 into 4.63 yields :

$$A_{n} = \frac{2i (J_{n-1}(\alpha_{n/m}a_{D}) - \frac{n}{\alpha_{n/m}a_{D}} J_{n}(\alpha_{n/m}a_{D})H_{n}^{(1)}(\alpha_{n/m}r_{D})}{a_{D}(1 - \frac{n^{2}}{\alpha_{n/m}^{2}a_{D}^{2}}) H_{n}^{(1)}(\alpha_{n/m}a_{D})}$$
(4.69)

Substituting Eq. 4.69 into Eq. 4.61 yields :

$$\operatorname{RES} \left(-a_{n/m}^{2}\right) = \frac{\pi}{2} \sum_{n=0}^{\infty} \varepsilon_{n} \cos(n\theta) \frac{2i e^{-\alpha_{n/m}^{2} t_{D}} H_{n}^{(1)}(\alpha_{n/m} r_{D}^{*})}{-\alpha_{n/m}^{2} a_{D}} \cdot \frac{\left[J_{n-1}^{(\alpha_{n/m}a_{D})} - \frac{n}{a_{n/m}^{2} a_{D}} J_{n}^{(\alpha_{n/m}a_{D})}\right] H_{n}^{(1)}(\alpha_{n/m} r_{D})}{(1 - \frac{n^{2}}{a_{2}^{2} a_{2}^{2}}) H_{n}^{(1)}(\alpha_{n/m} a_{D})}$$

$$(4.70)$$

Now, in order to complete the inversion of $\mathbf{\bar{p}}_{D2}$, we use the residues of Eq. 4.70 :

$$P_{D2} = -\pi \sum_{n=0}^{\infty} \sum_{m \text{ roots}} \varepsilon_n \cos(n\theta) e^{-\alpha_{n/m}^2 t_D} \frac{H_n^{(1)}(\alpha_{n/m} t_D)}{\sum_{n=0}^{2} \alpha_{n/m}^2 a_D}$$

$$\frac{\left[J_{n-1}(\alpha_{n/m}a_{D}) - \frac{n}{a} J_{n}(\alpha_{n/m}a_{D}) \right] H_{n}^{(1)}(\alpha_{n/m}r_{D})}{(1 - \frac{n^{2}}{a_{n/m}^{2} a_{D}^{2}}) H_{n}^{(1)}(\alpha_{n/m}a_{D})}$$
(4.71)

Finally, the complete real time solution is $p_D = p_{D1} + p_{D2}$. In terms of Modified Bessel Functions, the solution is :

$$P_{D} = \frac{1}{2} \left[\frac{\ln(\frac{t}{p}) + 0.80907}{R_{D}} \right] - \frac{1}{2} \ln[1 - 2 \frac{a^{2}}{r_{D}r_{D}} \cos\theta + (\frac{a_{d}^{2}}{r_{D}r_{D}})^{2} \right] + 2 \sum_{n=0}^{\infty} \sum_{m \ roots} \epsilon_{n} \cos(n\theta) e^{\xi_{n/m}^{2}t_{D}}$$

$$\cdot \frac{K_{n}(\xi_{n/m}r_{D})K_{n}(\xi_{n/m}r_{D})[\frac{n}{\xi_{n/m}a_{D}} I_{n}(\xi_{n/m}a_{D}) - I_{n-1}(\xi_{n/m}a_{D})]}{(1 + \frac{n^{2}}{\xi_{n/m}a_{D}^{2}})K_{n}(\xi_{n/m}a_{D})}$$
for $r_{D} \leq r_{D}^{\prime}$

$$(4.72)$$

In terms of Bessel Functions, the solution is :

$$\mathbf{p}_{\mathrm{D}} = \frac{1}{2} \left[\frac{\ln(\frac{t_{\mathrm{D}}}{R_{\mathrm{D}}^{2}}) + 0.80907}{R_{\mathrm{D}}^{2}} \right] = \frac{1}{2} \ln\left[1 - 2 \frac{a^{2}}{r_{\mathrm{D}}r_{\mathrm{D}}} \cos\theta + \left(\frac{a^{2}}{r_{\mathrm{D}}r_{\mathrm{D}}^{2}}\right)^{2} \right]$$

$$-\pi \sum_{n=0}^{\infty} \sum_{m \text{ roots}} \epsilon_n \cos(n\theta) e^{-a_{n/m}^2 t_D} \frac{\mathbf{i} H_n^{(1)}(\alpha_{n/m} r_D)}{a_{n/m}^2 a_D}$$

$$\frac{\left[J_{n-1}(\alpha_{n/m}a_{D}) - \frac{n}{\alpha_{n/m}a_{D}} J_{n}(\alpha_{n/m}a_{D}) \right] H_{n}^{(1)}(\alpha_{n/m}r_{D})}{\left(1 - \frac{n^{2}}{\alpha_{n/m}^{2}a_{D}^{2}}\right) H_{n}^{(1)}(\alpha_{n/m}a_{D})}$$

for $\mathbf{r}_{D} < \mathbf{r}_{D}'$ (4.73)

For $r_D > r'_D$, we interchange r_D and r'_D in Eqs. 4.72 and 4.73.

The terms in Eq. 4.72 corresponding to s=0 (the first and second terms in square brackets) contain the long time pressure response of the system. The first term is the long time approximation of the line source, and the second term is a constant fixed by the geometry of the system. The transient part of the real time solution, the last double summation term, was not used in the numerical evaluations due to computation complexities. However, the general behavior of the pressure response can be deduced from the real time solution and will be discussed in Section 4.6.

4.5 NUMERICAL INVERSION OF THE LAPLACE TRANSFORMATION

The Stehfest algorithm presented in section 35 is used to invert Eqs. 4.22 and 4.23. The numerical evaluation of $\tilde{p}(s)$ for the no-flow boundary case is more complex than for the constant pressure case, for two reasons : 1) In the no-flow boundary case the derivatives of the Modified Bessel Functions are needed. 2) Larger values of the relative size of the hole, F, are used, approaching slow convergence conditions.

The second complication arises from the fact that a system with a constant pressure source approaches a steady state condition while a system with a no-flow boundary will keep dropping in pressure. Hence, small no-flow boundary holes have little effect on the pressure transients at the production well. Therefore, large values of F are needed to see any effect. The Laplace solutions are given by Eqs. 4.22

and 4.23. In the numerical inversion, only Eq. 4.22 was used. Although Eq. 4.22 is written for $\mathbf{r}_D < \mathbf{r}_D^*$, it can be used for cases where $\mathbf{r}_D > \mathbf{r}_D^*$, due to the reciprocity principle. The computer program for the Stehfest algorithm is presented in Appendix G.

4.6 TYPE CURVE MATCHING FOR THE PRODUCTION WELL

The use of the type curves for the no-flow boundary case is similar to that of the constant pressure boundary case, presented in Chapter 3.

Figure 4.2 presents a family of curves for a geometrical configuration with 2c=100. As the relative diameter of the hole, F, becomes small, the curves approach the line source response. For values of F < 0.3, the effect of the hole is insignificant. As F increases, the curves approach the limiting no-flow linear boundary response. For a finite radius case, all the curves eventually form a straight line parallel to the line source curve. This is expected, since at long time, the area around the well and the hole produces very little by expansion. The straight line stresses the fact that the expansion is taking place beyond the area of the well and the hole. The response shows no pseudo – steady state behavior.

Figure 4.3 presents a family of curves for a geometrical configuration with 2c=250. Figure 4.3 can \approx shifted to match the curves of Fig. 4.2. The shifting is done in the same way as for the linear boundary case, presented in Appendix C.

NO-FLOW BOUNDARY HOLE

Figure 4.4 presents the curve for F=0.5 and 2c=100 shifted over the curve for F=0.5 and 2c=500. The numerical data are presented in Appendix C.

Figure 4.5 is a generalized semilog type curve with modified scales for the no-flow boundary case. A match on this curve yields the values of F and 2c. The use of this type curve is similar to the use of the type curve for constant pressure holes presented in Chapter 3 and is discussed further in Chapter 5.

FIGURE 4.4 : SEMILOG CURVE FOR 2c=100 AND F=0.5 MATCHED WITH A SHIFTED CURVE FOR 2c=500 AND F=0.5. NO-FLOW BOUNDARY HOLE

-113-

FIGURE 4.5 : A GENERALIZED SEMILOG TYPE CURVE FOR THE NOHOW INTERNAL CIRCULAR BOUNDARY

4.7 INTERFERENCE

Interference testing is not practical in the case of a no-flow boundary hole even when the geometry is known.

Figures 4.6 and 4.7 present log-log and semilog curves, respectively, for a case where E=0.9999, F=0.9 and $\theta =0,45,90,135$ and 180 Deg. These two figures point out several problems in interference testing. Even for a relatively large hole (F=0.9), the log-log curves are not markedly different than the line source curve and get closer to each other as time progresses. For the constant pressure hole the curves behave in the opposite manner. At long time, all the curves

FIGURE 4.7 : INTERFERENCE SEMILOG CURVES FOR E=0.99999, F=0.9 AND 8=0,45,90,135,180 DEG. NOFLOW BOUNDARY HOLE

follow semilog straight line curves (see Fig. 4.7). The curves are parallel to each other and are displaced vertically by a constant. This "skin-like" behavior **is** expressed in **Eq. 4.72.** The constant pressure displacement **is** a function of the geometry of the system. The parallel semilog curves make semilog type curve matching ambiguous and difficult.

The presence of a no-flow circular boundary divides the reservoir into two parts, having pressure drops greater or smaller than the line source. At times when the semilog curves are parallel (the exponential term in Eq. 4.72 vanishes), the partition line is a straight line perpendicular to the axis of symmetry. The x coordinate is: $x_D = F^2/2$ and is derived by setting the second term of Eq. 4.72 equal to zero. Figure 4.8 presents the location of partition lines for various hole sizes. Observation wells located at angles of 45 to 90 Deg. produce pressure - time behaviors similar to that of the line source, hence, reducing the practical use of interference testing.

Figures 49 to 4.13 present log-log interference curves for a fixed value of E=0.7. The curves for θ =90 Deg. are almost identical to the line source curve (see Fig. 4.11). We can also observe that the curves for θ =0 and 45 Deg. are below the line source curve, and the curves for θ =135 and 180 Deg. are above the line source curve. At angles of about 90 Deg. (see Fig 4.11), interference testing in the normal way can be validly used to estimate the parameters of the system, but there is no indication of the existence of a no-flow boundary close to the interference well.

The ineffectiveness of interference testing in a system with a noflow internal boundary stems from the nature of the source of the flow in the system. Production comes from fluid expansion and the

-116-

discontinuity can be treated as a skin, once most of this expansion takes place beyond the discontinuity.

FIGURE 4.8 : LONG TIME LOCATION OF PDL.S NO-FLOW BOUNDARY HOLE

FIGURE 4.9 : INTERFERENCE LOG-LOG CURVES FOR E=0.7, F=0.1 TO 0.6 AND

θ =0 **Deg.** NO-FLOW BOUNDARY HOLE

FIGURE 4.10 : INTERFERENCE LOG-LOG CURVES FOR E=0.7 , F=0.1 to 0.6 AND θ =45 DEG. NO-FLOW BOUNDARY HOLE

FIGURE 4.11 : INTERFERENCE LOG-LOG CURVES FOR E=0.7, F=0.1 TO 0.6 AND θ =90 Deg. NOFLOW BOUNDARY HOLE

FIGURE 4.12 : INTERFERENCE LOG-LOG CURVES FOR E=0.7, F=0.1 TO 0.6 AND $\theta=135$ DEG. NOFLOW BOUNDARY HOLE

FIGURE 4.13 : INTERFERENCE LOG-LOG CURVES FOR E=0.7, F=0.1 TO 0.6 AND $\theta=180$ DEG. NO-FLOWBOUNDARY HOLE

CHAPTER 5 : A GENERALIZED SEMILOG TYPE CURVE

The solutions for the internal circular boundairy include the linear boundary solutions as particular cases where the radii of the holes are infinite. **So** far, we presented three separate generalized semilog type curves. The first type curve was for linear boundaries, Chapter 2 Fig. 2.5. The second type curve was for constant pressure holes, Chapter 3 Fig. 3.8, and the third type curve was for no-flow boundary holes, Chapter 4 Fig. 4.5. Now, we combine the three generalized semilog curves into one generalized type curve (Fig. 5.1). This type curve can be used for analyzing limit tests in reservoirs with linear or internal circular boundaries. In the linear boundary cases, we can analyze interference tests **as** well as production well tests. In the internal circular boundary cases, only production well tests can be analyzed using the generalized type curve.

There are two families of curves in Fig. 5.1. The lower family of curves represents constant pressure boundaries. The lowermost curve is for a constant pressure linear boundary, denoted with F=1.0. The uppermost curve in this group of curves is for a relatively small hole denoted with F=0.1. All the constant pressure curves have limiting steady state values that can be calculated using Eq. 3.38. Constant pressure holes with F>0.9 cannot be distinguished from a constant pressure linear boundary.

The second family of curves in Fig. 5.1 is for no-flow boundaries. The uppermost curve is for a no-flow linear boundary, denoted with F=1.0. As the relative size of the hole becomes smaller, its effect on the pressure response becomes smaller, and the curves

-121-

FIGURE 5.1 : A GENERALIZED SEMILOG TYPE CURVE FOR THE INTERNAL CIRCULAR BOUNDARY CASE INCLUDING LINEAR BOUNDARIES

approach the line source curve. No-flow boundary holes with $F\leq 0.3$ have no effect on the pressure response of the production well.

All the curves in Fig. 5.1 depart from the line source curve at the same time. This is discussed in Chapter 2 and in Appendix D.

In Chapter 2, we presented an example of the use of the new semilog type curve matching method for a no-flow linear boundary, and in Chapter 3, we presented an example for a constant pressure hole. The following procedure describes the use of this new generalized semilog type curve (Fig. 5.1) :

- Make a log-log graph of the pressure time response on the same log-log scale as that of the line source type curve.
- Match the early time data to the line source curve and pick a match point.
- 3) Convert the pressures to a dimensionless form.
- 4) Graph the dimensionless pressure time response on the same semilog scale as that of the generalized semilog type curve.
- 5) Match to one of the curves on the generalized semilog type curve and pick a match point.
- 6) Determine the value of F by noting which curve matches best and evaluate the value of 2c using the pressure match point.

CHAPIER 6 : CONCLUSIONS

In this study, we consider a drawdown pressure transient analysis for a well produced at constant rate near an internal circular boundary. Linear boundaries are also treated since they are a special case of circular boundaries with infinite radii. The objective of this reservoir limit pressure transient analysis method is to estimate the distance to the discontinuity and its size.

The following conclusions are drawn :

Linear Boundaries

- The distance between a production well and a linear boundary can be estimated by a new semilog type curve matching method derived here. The same generalized semilog type curve can be used to estimate the distance between an interference well and an image well.
- 2. An infinite acting period is required in order to use the generalized semilog type curve. An early time line source match must be achieved in order to determine the mapping between actual and dimensionless pressure drops.
- 3. The use of the semilog generalized type curve supercedes the double straight line analysis. The type curve can be used with data that extend through an early time line source period and a transition period. In this case, neither of the two semilog straight lines would exist. A match to the line source curve can be achieved prior to a dimensionless time of 10, which is the

-124-

approximate start of the semilog straight line.

Internal Circular Boundaries

- 4. The size of and the distance to an internal circular boundary can be estimated using semilog type curve matching of production well data.
- A no-flow boundary hole with a relative size of 0.3 or less
 (F<0.3) cannot be detected.
- 6. The drawdown pressure response of a well near a no-flow boundary hole exhibits an infinite acting period, a transition period and a second infinite acting period. The two semilog straight lines have the same slope but are displaced by a constant pressure drop. The system shows a "skin-like" behavior at late time, when fluid expansion takes place away from the well and the hole.
- A constant pressure hole with a relative size of 0.9 or more
 (F>0.9) cannot be distinguished from a constant pressure linear boundary.
- 8. Interference testing in the presence of a no-flow boundary hole is not useful in diagnosing the presence of this impermeable boundary. However, if &heinterference well is located at an angle of 90 Deg., a log-log match can be validly analyzed in the conventional manner, since the pressure response is similar to the line source response.

-125-

- 9. In the case of a well producing near a no-flow boundary hole, two different pressure regions are developed, which are separated by a line perpendicular to the **axis** of symmetry. One region that contains the production well has a pressure drop higher than the line source, and the other region has a pressure drop lower than the line source.
- 10. Interference testing in the presence of a constant pressure hole in a developed system, where the geometry is known, can yield the relative size of the hole.
- **11.** Interference testing in the presence of a constant pressure hole in a system with an unknown geometry, can yield qualitative information about the existence of a pressure source in the system.
- 12. Interference between oil and gas fields can be analyzed using the rate-pressure model type curves. The same type curves can also be applied to interference between constant rate and constant pressure wells.
- 13. The superposition method can be used to generate type curves for a semicircular boundary bounded by an infinite linear boundary and also for a quadrant bounded by two perpendicular semi-infinite linear boundaries.

General

14. A single generalized semilog type curve is presented. This type curve can be used to analyze pressure responses of production wells

-126-

near an internal circular boundary and of both production and interference wells near a linear boundary. Both the distance to the boundary and the size of it can be determined. In order to use this type curve, only the pressure data need be converted to a dimensionless form.

NOMENCLATURE

В	FORMATION VOLUME FACTOR
C _t	TOTAL SYSTEM COMPRESSIBILITY
Е	NORMALIZED DISTANCE TO THE PRESSURE POINT
E ₁ (X)	EXPONENTIAL INTEGRAL OF ARGUMENT X
F	NORMALIZED RADIUS OF THE HOLE
Н	RADII RATIO (CONSTANT)
$H_{n}^{(1)}(z)$	BESSEL FUNCTION OF THE THIRD KIND OF ORDER n
	OF THE FIRST TYPE
$H_{n}^{(2)}(z)$	BESSEL FUNCTION OF THE THIRD KIND OF ORDER n
	OF THE SECOND TYPE
I_(z)	MODIFIED BESSEL FUNCTION OF THE FIRST KIND OF ORDER n
J_(z)	BESSEL FUNCTION OF THE FIRST KIND OF ORDER n
K (z)	MODIFIED BESSEL FUNCTION OF THE SECOND KIND OF ORDER n
$Y_{z}^{n}(z)$	BESSEL FUNCTION OF THE SECOND KIND OF ORDER n
R	DISTANCE BETWEEN THE WELL AND THE PRESSURE POINT
R _D	DIMENSIONLESS DISTANCE BETWEEN THE WELL AND THE
b	PRESSURE POINT
а	RADIUS OF THE INTERNAL CIRCULAR BOUNDARY
aa _n	RADIUS OF THE INTERNAL CIRCULAR BOUNDARY DIMENSIONLESS RADIUS OF THE HOLE
aa a _D c	RADIUS OF THE INTERNAL CIRCULAR BOUNDARY DIMENSIONLESS RADIUS OF THE HOLE SHORTEST DIMENSIONLESS DISTANCE BEIWEEN THE WELL AND
aa _D c	RADIUS OF THE INTERNAL CIRCULAR BOUNDARY DIMENSIONLESS RADIUS OF THE HOLE SHORTEST DIMENSIONLESS DISTANCE BETWEEN THE WELL AND THE CIRCULAR BOUNDARY
a a _D c c'	RADIUS OF THE INTERNAL CIRCULAR BOUNDARY DIMENSIONLESS RADIUS OF THE HOLE SHORTEST DIMENSIONLESS DISTANCE BETWEEN THE WELL AND THE CIRCULAR BOUNDARY SHORTEST DIMENSIONLESS DISTANCE BETWEEN THE WELL AND
aa _D c c'	RADIUS OF THE INTERNAL CIRCULAR BOUNDARY DIMENSIONLESS RADIUS OF THE HOLE SHORTEST DIMENSIONLESS DISTANCE BETWEEN THE WELL AND THE CIRCULAR BOUNDARY SHORTEST DIMENSIONLESS DISTANCE BETWEEN THE WELL AND THE LINEAR BOUNDARY
aa _D c c' d	RADIUS OF THE INTERNAL CIRCULAR BOUNDARY DIMENSIONLESS RADIUS OF THE HOLE SHORTEST DIMENSIONLESS DISTANCE BETWEEN THE WELL AND THE CIRCULAR BOUNDARY SHORTEST DIMENSIONLESS DISTANCE BETWEEN THE WELL AND THE LINEAR BOUNDARY DISTANCE BETWEEN 'ME WELL AND THE LINEAR BOUNDARY
a a _D c c' d h	RADIUS OF THE INTERNAL CIRCULAR BOUNDARY DIMENSIONLESS RADIUS OF THE HOLE SHORTEST DIMENSIONLESS DISTANCE BEIWEEN THE WELL AND THE CIRCULAR BOUNDARY SHORTEST DIMENSIONLESS DISTANCE BEIWEEN THE WELL AND THE LINEAR BOUNDARY DISTANCE BEIWEEN 'ME WELL AND THE LINEAR BOUNDARY THICKNESS OF THE FORMATION
aa _D c c' d h	RADIUS OF THE INTERNAL CIRCULAR BOUNDARY DIMENSIONLESS RADIUS OF THE HOLE SHORTEST DIMENSIONLESS DISTANCE BEIWEEN THE WELL AND THE CIRCULAR BOUNDARY SHORTEST DIMENSIONLESS DISTANCE BEIWEEN THE WELL AND THE LINEAR BOUNDARY DISTANCE BEIWEEN 'ME WELL AND THE LINEAR BOUNDARY THICKNESS OF THE FORMATION PERMEABILITY
aa _D c c d h k p	RADIUS OF THE INTERNAL CIRCULAR BOUNDARY DIMENSIONLESS RADIUS OF THE HOLE SHORTEST DIMENSIONLESS DISTANCE BETWEEN THE WELL AND THE CIRCULAR BOUNDARY SHORTEST DIMENSIONLESS DISTANCE BETWEEN THE WELL AND THE LINEAR BOUNDARY DISTANCE BETWEEN 'ME WELL AND THE LINEAR BOUNDARY THICKNESS OF THE FORMATION PERMEABILITY PRESSURE
aa _D c	RADIUS OF THE INTERNAL CIRCULAR BOUNDARY DIMENSIONLESS RADIUS OF THE HOLE SHORTEST DIMENSIONLESS DISTANCE BETWEEN THE WELL AND THE CIRCULAR BOUNDARY SHORTEST DIMENSIONLESS DISTANCE BETWEEN THE WELL AND THE LINEAR BOUNDARY DISTANCE BETWEEN 'ME WELL AND THE LINEAR BOUNDARY THICKNESS OF THE FORMATION PERMEABILITY <i>PRESSURE</i> DIMENSIONLESS PRESSURE DROP
aa _D c	RADIUS OF THE INTERNAL CIRCULAR BOUNDARY DIMENSIONLESS RADIUS OF THE HOLE SHORTEST DIMENSIONLESS DISTANCE BETWEEN THE WELL AND THE CIRCULAR BOUNDARY SHORTEST DIMENSIONLESS DISTANCE BETWEEN THE WELL AND THE LINEAR BOUNDARY DISTANCE BETWEEN 'ME WELL AND THE LINEAR BOUNDARY THICKNESS OF THE FORMATION PERMEABILITY PRESSURE DIMENSIONLESS PRESSURE DROP INITIAL PRESSURE
a a _D c c d d h k p p p p p p p p p p p p	RADIUS OF THE INTERNAL CIRCULAR BOUNDARY DIMENSIONLESS RADIUS OF THE HOLE SHORTEST DIMENSIONLESS DISTANCE BETWEEN THE WELL AND THE CIRCULAR BOUNDARY SHORTEST DIMENSIONLESS DISTANCE BETWEEN THE WELL AND THE LINEAR BOUNDARY DISTANCE BETWEEN 'ME WELL AND THE LINEAR BOUNDARY THICKNESS OF THE FORMATION PERMEABILITY PRESSURE DIMENSIONLESS PRESSURE DROP INITIAL PRESSURE DIMENSIONLESS STEADY STATE PRESSURE
aa _D c c d d h p	RADIUS OF THE INTERNAL CIRCULAR BOUNDARY DIMENSIONLESS RADIUS OF THE HOLE SHORTEST DIMENSIONLESS DISTANCE BETWEEN THE WELL AND THE CIRCULAR BOUNDARY SHORTEST DIMENSIONLESS DISTANCE BETWEEN THE WELL AND THE LINEAR BOUNDARY DISTANCE BETWEEN 'ME WELL AND THE LINEAR BOUNDARY THICKNESS OF THE FORMATION PERMEABILITY PRESSURE DIMENSIONLESS PRESSURE DROP INITIAL PRESSURE DIMENSIONLESS STEADY STATE PRESSURE DIMENSIONLESS STEADY STATE PRESSURE
a a _D c c c d h k p p p p p p p p p p p p p	RADIUS OF THE INTERNAL CIRCULAR BOUNDARY DIMENSIONLESS RADIUS OF THE HOLE SHORTEST DIMENSIONLESS DISTANCE BEIWEEN THE WELL AND THE CIRCULAR BOUNDARY SHORTEST DIMENSIONLESS DISTANCE BEIWEEN THE WELL AND THE LINEAR BOUNDARY DISTANCE BEIWEEN 'ME WELL AND THE LINEAR BOUNDARY THICKNESS OF THE FORMATION PERMEABILITY PRESSURE DIMENSIONLESS PRESSURE DROP INITIAL PRESSURE DIMENSIONLESS STEADY STATE PRESSURE DIMENSIONLESS LINE SOURCE PRESSURE
a a _D c c d h k p p p p p p p bss p D L.S. q t	RADIUS OF THE INTERNAL CIRCULAR BOUNDARY DIMENSIONLESS RADIUS OF THE HOLE SHORTEST DIMENSIONLESS DISTANCE BETWEEN THE WELL AND THE CIRCULAR BOUNDARY SHORTEST DIMENSIONLESS DISTANCE BETWEEN THE WELL AND THE LINEAR BOUNDARY DISTANCE BETWEEN 'ME WELL AND THE LINEAR BOUNDARY THICKNESS OF THE FORMATION PERMEABILITY PRESSURE DIMENSIONLESS PRESSURE DROP INITIAL PRESSURE DIMENSIONLESS STEADY STATE PRESSURE DIMENSIONLESS STEADY STATE PRESSURE DIMENSIONLESS LINE SOURCE PRESSURE WELL FLOW RATE
t _D	 DIMENSIONLESS TIME
------------------	--
t _{D.d}	 DIMENSIONLESS DEPARTURE TIME
r	 DISTANCE TO THE PRESSURE POINT
r'	 DISTANCE BETWEEN THE WELL AND THE CENTER OF THE HOLE
	 RADIUS OF THE WELL
r	 DIMENSIONLESS DISTANCE TO THE PRESSURE POINT
r	 DIMENSIONLESS DISTANCE ETWEEN THE WELL AND THE
D	CENTER OF THE HOLE
z	 ARGUMENT OF BESSEL FUNCTIONS
е	 ANGLE OF ROTATION TO THE PRESSURE POINT
η	 DIFFUSIVITY CONSTANT
φ	 POROSITY
μ	 VISCOSITY
γ	 EULER CONSTANT

REFERENCES

- Abramowitz, M., and Stegun, I.A.: "Handbook of Mathematical Functions, National Bureau of Standards, Washington D.C. (1964).
- Bickley, W.G.: <u>Bessel Functions and Formulae</u>, University Press, Cambridge (1957).
- Bixel, H.C., Larkin, B.K., and Van Poollen, H.K.: "Effect of Linear Discontinuities on Pressure Build-Up and Drawdown Behavior,"
 J. Pet. Tech. (Aug. 1963), 885-895.
- Bixel, H.C., and Van Pollen, H.K.: "Pressure Drawdown and Buildup in the Presence of Radial Discontinuities," <u>SPE J.</u> (Sep. 1967), 301.
- Brigham, W.E.: Advanced Reservoir Engineering Class, 270A, Stanford University, Stanford, California (1979).
- Carslaw, H.S., and Jaeger, J.C.: "Conduction of Heat in Solids, Oxford at the Clarendon press (1959).
- Cinco, H., Samaniego, F.V., and Dominguez, N.A. : "Unsteady-state Flow Behavior for a Well Near a Natural Fracture," Paper SPE 6019 Presented at the 51 st Annual Fall Technical Conference and Exhibition of the Society of Petroleum Engineers of AIME, New Orleans (Oct 1976).
- Coats, K.H.: "A Mathematical Model Water Movement about a Bottom-Water-Drive Reservoirs," SPE J. (March 1962), 44-52.
- Coats, K.H., Tek, M.R., and Katz, D.L.: "Method for Predicting the Behavior of Mutually Interfering Gas Reservoirs Adjacent to a Cormon Aquifer," Trans., AIME (1959), <u>216</u>, 247-251.
- Davis, G.E., and Hawkins, MF: "Linear Fluid-Barrier Detection by Well Pressure Measurements," J. Pet. Tech. (Oct. 1963), 1077-1079.
- Ferris, J.G., Knowles, D.B., Brown, R.H., and Stallman, R.W.: "Theory of Aquifer Tests," <u>U.S. Geol. Surv.</u>, Water Supply Paper 1536 E (1962).
- Hantush, M.S., and Jacob, C.E.: "Flow to an Eccentric Well in a Leaky Circular Aquifer," J. Geoph. Res. (Oct. 1966), Vol. 65, No. 10, 3425-3431.
- Hurst, W. : "Interference Between Oil Fields," <u>Trans.</u>, AIME (1960), <u>219</u>, 175-192.
- Jaeger, J.C.: "Heat Conduction in Composite Circular Cylinders," Phil. Mag. (1941) Vol. 7, 324-335.

- Jaeger, J.C.: "Some Problems Involving Line Sources in Conduction of Heat," Phil. Mag. (1944) Vol. 35, 169-179.
- Jones, P.: "Reservoir Limit Test on Gas Wells," J. Pet. Tech. (June 1962), 613-619.
- Katz, D.L., Tek, M.R., and Coats, K.H.: "Effect of Unsteady-State Aquifer Motion on the Size of an Adjacent Gas Storage Reservoir," <u>Trans.</u>, AIME (1959), 216, 18-22.
- Kruseman, G.P., and De Ridder, N.A.: "Analysis and Evaluation of Pumping Test Data," International Institute for Land Reclamation and Improvement, Wageningen, The Netherlands (1970).
- Larkin, **BK.:** "Solutions to the Diffusion Equation for a Region Bounded By a Circular Discontinuity," <u>SPE J.</u> (June 1963), 113-115.
- Loucks, T.L., and Guerrero, E.T.: "Pressure Drop in a Composite Reservoir," <u>SPE J.</u> (Sep. 1961), 170-176.
- Macdonald, HM. : "Zeroes of the Bessel Functions," <u>Proceedings of the</u> London Mathematical Society, Vol. XXX (Nov. 1898 - March 1899), 165-179.
- Miller, M.C.: "Relationship Between Unsteady State Well Performance and Insitu Reservoir Characteristics," Ph.D. Thesis, The University of Michigan, Ann Arbor, Michigan (1963).
- Miller, M.C, Tek, R.M., and Katz, D.L.: "Effect of Adjacent Expansible Fluids and Caprock Leakage on Build-Up and Drawdown Behavior of Wells in an Aquifer," SPE J. (Sep. 1966), 239-246.
- Mortada, M.: "Oilfield Interference in Aquifers of Non-Uniform Properties," Trans., AIME (1960), <u>219</u>, 412-414.
- Ramey, H.J., Jr.: "Short-Time Well Test Data Interpretation in the Presence of Skin Effect and Wellbore Storage," J. Pet. Tech. (Jan. 1970), 97-104.
- Ramey, H.J., Jr.: "Approximate Solutions for Unsteady Liquid Flow in Composite Reservoirs," <u>J. Can. Pet. Tech.</u> (Jan.-March 1970), 32-37.
- Ramey, HJ., Jr., Kumar, A., and Gulati, MS.: "Gas Well Test Analysis Under Water Drive Conditions, American Gas Association, Arlington, Virginia (1973).

Ramey, H.J., Jr.: Personal Communication (Feb. 1983).

Shinohara, K.: "A Study of Inertial Effect in the Wellbore in Pressure Transient Well Testing," Ph.D. Thesis, Stanford University, Stanford, California (1980).

- Stallman, RW. : "Nonequilibrium Type Curves Modified for Two-Well Systems," U.S. Geol. Surv., Groundwater Note 3 (1952).
- Standing, MB.: "Linear Fluid-Barrier Detection by Well Pressure Measurements," - Discussion, J. Pet. Tech. (March 1964), 259-260.

Standing, M.B.: Personal Communication (Feb. 1983).

- Stehfest, H.: "Algorithm 368, Numerical Inversion of Laplace Transforms," D-5 Communications of the ACM (Jan. 1970), <u>13</u>, No. 1, 47-49.
- Temeng, K.O., and Horne, R.N. : "Pressure Distributions in Eccentric Circular Systems," Paper SPE 11223, Presented at the 1982 SPE Annual Technical Conference, New Orleans, Sept. 26-29, 1982, to appear in J. Pet. Tech. (1983).
- Tiab, D., and Crichlow, H.B. : "Pressure Analysis of Multiple-Sealing-Fault Systems and Bounded Reservoirs by Type-Curve Matching," SPE J. (Dec. 1979), 379-392.
- Tiab, D., and Kumar, A.: "Detection and Location of Two Parallel Sealing Faults Around a Well," J. Pet. Tech. (Oct. 1980), 1701-1708.
- Van Everdingen, A.F., and Hurst, W.: "The Application of the Laplace Transformation to Flow Problems in Reservoirs," <u>Trans.</u>, AIME (Dec. 1949), 186, 305-324.
- Vela, S: "Effect of a Linear Boundary on Interference and Pulse Tests-The Elliptical Inference Area," J. Pet. Tech. (Aug. 1977), 947-950.
- Watson, G.N.: <u>A Treatise on the Theory of Bessel Functions</u>, (2nd Ed.), Cambridge University Press (1944).
- Witherspoon, P.A., Javandel, I., Neuman, S.P., and Freeze, R.A.: <u>Interpretation of Aquifer Gas Storage Conditions From Water</u> <u>Pumping Tests</u>, Monograph on Project NS-38, American Gas <u>Association</u>, Inc., New York (1967).

APPENDIX A : <u>CIRCLES WITH A CONSTANT</u> ^r2^{/r}1_RATIO

Brigham (1979) observed that points with a constant r_2/r_1 ratio formed circles.

Let :

$$\left(\frac{r_{D2}}{r_{D1}}\right)^2 = H \tag{A.1}$$

where :

$$\frac{2}{rDl} = (c' - x)^2 + y^2$$
 (A.2)

$$\mathbf{r}_{D2}^2 = (c' + x)^2 + y^2$$
 (A.3)

and c' is the distance between the well and the linear boundary (see Fig. 2.1).

Substituting Eqs. A.2 and A.3 into Eq. A.1 yields =

$$\left[x - c'(\frac{1+H}{1-H}) \right]^2 + y^2 = \left[\frac{2c'\sqrt{H}}{1-H} \right]^2$$
 (A.4)

Equation A.4 represents a circle, centered at :

$$\left[c'\left(\frac{1+H}{1-H}\right), 0 \right]$$
 (A.5)

with a radius of :

$$2c' \frac{\sqrt{H}}{1-H}$$
(A.6)

Brigham (1979) showed that in the case of a constant pressure linear boundary, these circles are late time isopressure lines. At late time, when $t_D/r_D^2 > 10$, the exponential integral is approximated by the following equation :

$$E_{i}(-X) = Y + ln(X)$$
 (A.7)

The dimensionless pressure drop for this case is given by Eq. 2.6 :

$$p_{D} = -\frac{1}{2} \left[E_{i}(-X_{1}) - E_{i}(-X_{2}) \right]$$
 (A.8)

where :

$$\mathbf{x}_{i} \stackrel{\mathbf{r}_{Di}}{=} \frac{\mathbf{r}_{Di}^{2}}{4\mathbf{t}_{D}}$$
(A.9)

Substituting Eq. A.7 into Eq. A.8 yields :

$$p_{Dss} = \ln(\frac{r_{D2}}{r_{D1}})$$
 (A. 10)

Hence, points with the same $\mathbf{r}_2/\mathbf{r}_1$ ratio form constant pressue circles at late time.

APPENDIX B : DIMENSIONLESS PRESSURE VS. REDUCED DIMENSIONLESS TIME FOR POINTS WITH A CONSTANT r_2/r_1 ratio

In this Appendix we show that pressure points with the same r_2/r_1 have the same dimensionless pressure response as a function of reduced dimensionless time ($p_D vs. t_D/r_D^2$).

In Appendix A, we showed that the constant pressure linear boundary case at late time, the isopressure lines are circles. Using superposition, the pressure drops at two points A and B on one of these late time constant pressure circles (see Fig. B.1) are given by :

$$p_{D,A} = \frac{1}{2} \left[E_{i} \left(-\frac{r_{D2,A}^{2}}{4t_{D,A}} \right) - E_{i} \left(-\frac{r_{D1,A}^{2}}{4t_{D,A}} \right) \right]$$
(B.1)

$$P_{D,B} = \frac{1}{2} \left[E_{i} \left(-\frac{r_{D2,B}^{2}}{4t_{D,B}} \right) - E_{i} \left(-\frac{r_{D1,B}^{2}}{4t_{D,B}} \right) \right]$$
(B.2)

From Abramowitz (1964, p. 229), the series expansion for the exponential integral is :

$$-E_{i}(-X) = -\gamma - \ln (X) - \sum_{n=1}^{\infty} \frac{(-1)^{n}(X)^{n}}{n n!}$$
(B.3)

Substituting Eq. B.3 into Eqs. B.1 and B.2 yields :

FIGURE **BL** : THE GEOMETRY **FOR** THE POINTS ON THE LATE TIME CONSTANT PRESSURE CIRCLE.

$$p_{D,A} = \frac{1}{2} \left[\gamma + \ln(\frac{-\frac{DE}{4t}}{4t}) + \sum_{n=1}^{\infty} \frac{(-1)^n (\frac{-\frac{D}{4t}}{4t})}{n n!} \right]$$

$$\mathbf{r}_{D1,A}^{2} \qquad \qquad (-1)^{-1} \left(\frac{\mathbf{r}_{D1,A}^{2}}{4t_{D,A}} \right)^{n} \qquad \qquad (B.4)$$

$$-\gamma -\ln\left(\frac{\pi L}{4t_{D,A}}\right) = \sum_{n=1}^{\infty} \qquad \qquad n n!$$

$$p_{D,B} = \frac{1}{2} \left[\gamma + \ln(\frac{r_{D2,B}^2}{4\tau_{D,B}}) + \sum_{n=1}^{\infty} \frac{(-1)^n (\frac{r_{D2,B}^2}{7})}{n n!} \right]$$

$$-\gamma - \ln(\frac{r_{D1,B}^2}{4t_{D,B}}) - \sum_{n=0}^{\infty} \frac{(-1)^n (\frac{\bar{r}_{D1,B}^2}{4t_{D,B}})^n}{n n!}$$
(B.5)

or :

$$P_{D,A} = \frac{4}{2} \left\{ 2\ln(\frac{r_{D2,A}}{D1,A}) + \sum_{n=1}^{\infty} \frac{(-1)^n}{n n! 4^n} \left[\left(\frac{r_{D2,A}^2}{t_{D,A}}\right)^n - \left(\frac{r_{D1,A}^2}{t_{D,A}}\right)^n \right] \right\}$$
(B.6)

$$\mathbf{P}_{\mathbf{D},\mathbf{B}} = \frac{1}{2} \left\{ 2\ln(\frac{\mathbf{r}_{D2,\mathbf{B}}}{\mathbf{r}_{D1,\mathbf{B}}}) + \sum_{n=1}^{\infty} (\frac{(-1)^n}{n! 4}) \left[(\frac{\mathbf{r}_{D2,\mathbf{B}}^2}{\mathbf{t}_{\mathbf{D},\mathbf{B}}}^n - (\frac{\mathbf{r}_{D1,\mathbf{B}}^2}{\mathbf{t}_{\mathbf{D},\mathbf{B}}})^n \right] \right\}$$
(B.7)

Points A and B are on the long time isopressure circles, hence :

$$\frac{\mathbf{r}_{D2,A}}{\mathbf{r}_{D1,A}} = \frac{\mathbf{r}_{D2,B}}{\mathbf{r}_{D1,B}} = \sqrt{-H}$$
(B.8)

Now, suppose that we pick two different times, $t_{D,A}$ and $t_{D,B}$ such that :

$$\frac{t_{D,A}}{rD1,A} = \frac{t_{D,B}}{rD1,B}$$
(B.9)

Using Eq. B.8, we can show that :

$$-\frac{\mathbf{t}_{\mathbf{D},\mathbf{A}}}{r_{\mathbf{D}2,\mathbf{A}}} = \frac{\mathbf{t}_{\mathbf{D},\mathbf{B}}}{r_{\mathbf{D}2,\mathbf{B}}}$$
(B.10)

Subtracting Eq. B7 from Eq. B6 yields :

$$p_{D,A} = p_{D,B} = \frac{1}{2} \left\{ 2\ln(\frac{r_{D2,A}}{r_{D1,A}}) - 2\ln(\frac{r_{D2,B}}{r_{D1,B}}I + \sum_{n=1}^{\infty} \frac{(-1)^n}{n n! 4^n} \right\}$$

•
$$\left[\left(\frac{r_{D2,A}^2}{t_{D,A}}\right)^n - \left(\frac{r_{D1,A}^2}{t_{D,A}}\right)^n - \left(\frac{r_{D2,B}^2}{t_{D,B}}\right)^n + \left(\frac{r_{D1,B}^2}{t_{D,B}}\right)^n\right] \right\}$$
 (B.11)

Applying Eqs. B.8, B.9 and B.10 to Eq. B.11 yields :

$$\mathbf{p}_{\mathbf{D},\mathbf{A}} - \mathbf{p}_{\mathbf{D},\mathbf{B}} \tag{B.12}$$

This implies that the pressure drop at points A and B which lie on the late time constant pressure circles are identical functions of t_D/r_D^2 . Figure B2 presents identical curves for two points on the late time isopressure circles.

For no-flow linear boundary cases, points with the same r_2/r_1 ratio have identical p_D vs. t_D/r_D^2 responses. This is proved in the same manner as for the constant pressure linear boundary case. Hence :

FIGURE B.2 : CURVES FOR TWO POINTS ON THE LATE TIME CONSTANT PRESSURE CIRCLES. CONSTANT PRESSURE LINEAR BOUNDARY.

$$p_{D,A} - p_{D,B} = \frac{1}{2} \left[\gamma + \ln(\frac{r_{D2,A}^2}{4t_{D,A}}) + \sum_{n=1}^{\infty} \frac{(-1)^n (\frac{r_{D2,A}^2}{4t_{D,A}})}{n n!} \right]$$

+
$$\gamma$$
 + $\ln(\frac{r_{D1,A}^2}{4t_{D,A}})$ + $\sum_{n=1}^{\infty} \frac{(-1)(\frac{r_{D1,A}^2}{4t_{D,A}})^n}{n n!}$]

$$-\frac{1}{2} \left[\gamma + \ln(\frac{r_{D2,B}^2}{4t_{D,B}}) + \sum_{n=1}^{\infty} \frac{(-1)^{n}(\frac{r_{D2,B}^2}{4t_{D,B}})}{n n!} \right]$$

$$+ \gamma + \ln(\frac{r_{D1,B}^{2}}{4t_{D,B}}) + \sum_{n=1}^{\infty} \frac{(-1)^{n} (\frac{r_{D1,B}^{2}}{4t_{D,B}})}{n n!} \qquad (B.12)$$

or :

$$P_{D,A} + P_{D,B} = \ln \left(\begin{array}{c} t_{D,B} r_{D2,A} r_{D1,A} \\ t_{D,A} r_{D2,B} r_{D2,A} \end{array} \right) + \frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n n! 4^n}$$

•
$$\left[\left(\frac{r_{D2,A}^{2}}{t_{D,A}}\right)^{n} + \left(\frac{r_{D1,A}^{2}}{t_{D,A}}\right)^{n} + \left(\frac{r_{D2,B}^{2}}{t_{D,B}}\right)^{n} + \left(\frac{r_{D1,B}^{2}}{t_{D,B}}\right)^{n}\right]$$
 (B.13)

Using Eqs. B.8 and B.9, the summation term in Eq. B.13 becomes zero. Using Eqs. B.7 and B.8, the first term in Eq. B.13 becomes :

$$\ln \left(\begin{array}{c} {}^{t}\mathbf{D}, \mathbf{A} {}^{r}\mathbf{D}2, \mathbf{A} {}^{r}\mathbf{D}1, \mathbf{A} \\ {}^{t}\mathbf{D}, \mathbf{B} {}^{r}\mathbf{D}2, \mathbf{B} {}^{r}\mathbf{D}1, \mathbf{B} \end{array} \right) = \ln (1) = 0 \quad (B.14)$$

hence :

$$\mathbf{p}_{\mathbf{D},A} = \mathbf{p}_{\mathbf{D},B} \tag{B.15}$$

Equations B.11 and B.15 imply that we can type curve match pressure responses and determine the ratio r_2 / r_1 . Stallman (1952) presented log-log type curves (see Fig. 2.2) for linear boundary cases as a function of this ratio.

APPENDIX C : SHIFTING OF THE SEMILOG CURVES

In this appendix we show how one semilog curve denoted **as** curve B, can **be** shifted to match another curve denoted **as** curve A. We consider linear and internal circular boundaries.

Constant Pressure Linear Boundary

Equation A-10 can be written for $r_{D1} = 1$ in the direction of the image well. Hence, $r_{D2} = 2c' - 1$ and :

$$P_{Dss} = \ln(2c' - 1)$$
 (C.1)

For the two cases, A and B :

$$p_{\text{Dss},A} = \ln(2c_A' - 1)$$
 (C.2)

$$p_{Dss,B} = \ln(2c_B' - 1)$$
 (C.3)

The shift in $\ensuremath{\,{\rm p}}_D$, denoted as $\ensuremath{\,{\rm Dp}}_D$ is :

$$Dp_{D} = \ln\left(\frac{2c_{A}^{*} - 1}{2c_{B}^{*} - 1}\right)$$
 (C.4)

The shift in time is determined by the early time line source behavior of the curves :

$$P_{D,A} = \frac{1}{2} \left[\ln(t_{D,A}) + 0.80907 \right]$$
 (C.5)

$$P_{D,B} = \frac{1}{2} \left[ln(t_{D,B}) + 0.80907 \right]$$
(C.6)

Subtracting Eq. C6 from Eq. C.5 and equating to Eq. C.4 yields :

$$\frac{1}{2} \ln(\frac{t_{D,A}}{t_{D,A}}) = \ln(\frac{2c_{A}^{\prime} - 1}{2c_{c}^{\prime} - 1})$$
(C,7)

In summary, curve B is shifted according to the following :

$$p_{D,B,shifted} = p_{D,B} + ln(c_B' - 1)$$
 (C.8)

$$t_{D,B,shifted} = t_{D,B} \left(\frac{2c_A' - 1}{2c_B' - 1} \right)^2$$
 (C.9)

Equations C.8 and C.9 were used to shift curves with 2c' values of 25, 50, 100, 250, 500, 1000 and 2500 on to a base case of 2c' = 5000. Table Cl presents the numerical values of the shift. For $t_D > 100$ the fits are within one percent accuracy. Note that for large values of c', the shifting equations simplify to the following :

$$p_{D,B, shifted} = p_{D,B} + \ln(c_A)$$
 (C.10)

$$t_{D,B,\text{shifted}} = t_{D,B} \left(\frac{c_A^{\prime}}{B}\right)^2 \qquad (C.11)$$

Constant Pressure Hole

Letting $\theta=0$ and $\mathbf{r}_{D}' - \mathbf{r}_{D} = 1$ in Eq. 3.38 yields :

$$p_{Dss} = \ln \left(\frac{r_D r_D}{a_D} - a_D \right)$$
 (C.12)

Since $F = \mathbf{a}_D / \mathbf{r}_D'$ and $c = \mathbf{r}_D' - \mathbf{a}_D$, Eq. c.12 becomes :

$$p_{Dss} = ln \left(\frac{c-1}{F} + c \right)$$
 (C.13)

As F approaches 1, the hole is infinitely large and acts like a constant pressure linear boundary. When F = 1:

$$p_{Dss} = \ln(2c - 1)$$
 (C.14)

Which is identical to Eq. C.1 for the doublet model.

The shifting of the semilog curves is done in the same manner as for the linear boundary case. Hence :

$$p_{D,B,shifted} - p_{D,B} + ln \left[\frac{c_A(1+F) - 1}{c_B(1+F) - 1} \right]$$
 (C.15)

^tD,B,shifted = tD,B
$$\left[\frac{c_A(1 + F) - 1}{c_B(1 + F) - 1} \right]^2$$
 (C.16)

Note, that for large values of c, the shifting equations simplify to :

$$p_{D,B,shifted} = p_{D,B} + \ln(\frac{c_A}{c_B})$$
 (C.17)

$$t_{D,B}$$
, shifted = $t_{D,B} \left(\frac{c_{\star}}{c_{B}}\right)^{2}$ (C.18)

These equations are identical to those for the linear boundary case. Hence, at large values of c, both sets of curves can be shifted together.

Figure 3.7 presents an example of collapsing two curves for the constant pressure hole. The numerical values for this example are presented in Table C.2.

No-flow linear boundary

The curves for the no-flow linear boundary cases are shifted in the same manner as the constant pressure curves. Based on Eq. C.9, the time shift must satisfy :

$$\frac{t_{DA}}{t_{DB}} = \left(\frac{2c_{A}' - 1}{2c; -1}\right)^{2}$$
(C.19)

Equation C.19 is derived based on the line source portion of the curves. For the no-flow linear boundary case, the dimensionless pressure drops at the well for cases A and B are :

$$\mathbf{p}_{\mathbf{D},\mathbf{A}} = \ln(\mathbf{t}_{\mathbf{D}\mathbf{A}}) - \ln(2\mathbf{c}_{\mathbf{A}}^{\dagger} - 1) + 0.80907$$
 (C.20)

$$P_{D,B} = \ln(t_{DB}) - \ln(2c_B' - 1) + 0.80907$$
 (C.21)

Subtracting C.21 from C.20 yields :

$$P_{D,A} - p_{D,B} = \ln\left(\frac{2c_B^* - 1}{2c_A^* - 1}\right) + \ln\left(\frac{t_{DA}}{t_{DB}}\right)$$
 (C.22)

Substituting Eq. C.19 into C.22 yields :

$$P_{D,A} - P_{D,B} = \ln\left(\frac{2c_A' - 1}{2c_B' - 1}\right)$$
 (C.23)

which is identical to the dimensionless pressure shift for the constant pressure linear boundary case.

No-flow internal circular boundary

The shifting for the no-flow internal circular boundary is done in the **same** manner as for the constant pressure hole. Figure 4.4 presents an example of collapsing two curves for the no-flow boundary hole. The numerical values for this example are presented in Table C.3.

TABLE C.I :

NUMERICAL DATA FOR SHIFTING A SEMILOG CURVE FOR THE CONSTANT PRESSURE LINEAR BOUNDARY CASE

BASE CASE A : 2C=5000 Shifted case b : 2C=1000

TDA		PDA		TDB		PDB		TDB, SHIF		PDB,SHIF	F	ZERROR
0.1000000160	02	0.1568254280	01	0.3993601940	00	0.2156976730	00	0.1000000160	02	0.1825936070 (01	-0.164311226D 00
0.200000330	02	0.1908636090	01	0.7987203870	00	0.4372255230	00	0.200000330	02	0.2047463920 (01	-0.727366670D-01
0.300000490	02	0.2109296120	01	0.1198080580	01	0.5940333620	00	0.3000000490	02	0.2204271750 (01	-0.4502716860-01
0.4000000660	02	0.2252099280	01	0.1597440770	01	0.7140328090	00	0.400000066D	02	0.2524271200 (01	-0.3204650960-01
0.500000820	02	0.2363047810	01	0.199680097D	01	0.8110065420	00	0.5000000820	02	0.2421244930 (01	-0.2462799250-01
0.600000980	02	0.2453792880	01	0.2396161160	01	0.8923103480	00	0.600000980	02	0.2502548740 (01	-0.1986959260-01
0.6999999280	02	0.2530571040	01	0.279552061D	01	0.9622827660	00	0.6999999280	02	0.2572521160	01	-0.1657733310-01
0.7999998330	02	0.2597113840	01	0.3194880360	01	0.102368699D	01	0.7999998330	02	0.2633925390 (01	-0.1417402060-01
0.8999997380	02	0.2655831960	01	0.3594240110	01	0.1078387990	01	0.8999997380	02	0.2688626380	01	-0,123480769D-01
0.100000016D	03	0.2708373740	01	0.3993601940	01	0.1127703080	01	0.100000016D	03	0.2737941480	01	-0.1091715430-01
0.200000330	03	0.3054322920	01	0.7987203870	01	0.1458988140	01	0.200000330	03	0.3069226530	01	-0.487951448D-02
0.3000000490	03	0.3256847250	01	0.1198080580	02	0.1656571450	01	0.3000000490	03	0.3266809850	01	-0.3058970340-02
0000	03	0.3400584150	01	0.1597440770	02	0.1797827820	01	0.4000000660	03	0.340806621D (DI	-0.2200226640-02
000(03	0.3512093450	01	0.1996800970	02	0.1907845560	01	0.5000000820	03	0.3518083950	01	-0.1705679210-02
0 600000980	03	0.3603212570	01	0.2396161160	02	0.1997968970	01	0.600000980	03	0.3608207360	01	-0.1386204790-02
0 0999999280	03	0.3680258020	01	0.2795520610	02	0.2074302530	01	0.6999999280	03	0.3684540930	10	-0.1163751690-02
0./777777	03	0.3/4/001350	01	0.3194880360	02	0.2140511580	01	0.7999998330	03	0.3750749960	10	-0.10004349/0-02
L 199999	03	0.38056/5460	01	0.3594240110	02	0.2198969940	01	0.8999997380	03	0.3809208330	01	-0.8/5/168130-03
20	04	0.3030342000	01	0.3993601940	02	0.2251303790	01	0.100000160	04	0.3861542180	01	-0.7775275260-03
20	04	0.4203033100	01	0.1901203010	02	0.2390310030	01	0.2000000330	04	0.4200554440	01	-0.3570184230-03
40	04	0.4407704000	01	0.1198080380	03	0.2/9032/010	01	0.3000000490	04	0.4400700010		-0.22/12//420-03
0 5000000820	04	0.4551555500	01	0.1397440770	03	0.2942100030	01	0.40000000000	04	0.4552540450	01	-0.1047092370-03
0.5000000000	04	0.4003101030	01	0.2306161160	03	0.3033323440	01	0.5000000820	04	0.4003/01030	01	-0.1053165030-03
0.0000000300	04	0.4734317040	01	0.2795520610	03	0.3744575540	01	0.00000000300	04	0.4/34010340	01	-0.8883302350-04
0.7999998330	04	0.4898153280	01	0.3194880360	03	0.3288290440	01	0.7999998330	04	0.4898528830	01	-0.7667166170+04
0.8999997380	04	0 4957043020	01	0 3594240110	03	0 3347138460	01	0.8999997380	04	0.4957376850	01	-0 6734446210-04
0.100000160	05	0.5009722120	01	0.3993601940	03	0.3599784170	01	0.1000000160	05	0.5010022570	01	+0.5997373610-04
0.2000000330	05	0.5356289460	01	0.7987203870	03	0.3746201300	01	0.2000000330	05	0.5356439690	01	-0.2804891 360-04
0.3000000490	05	0.5559019930	01	0.1198080580	04	0.3948881700	01	0.3000000490	05	0.5559120090	01	-0.1801782530-04
0.4000000660	05	0.5702859920	01	0.1597440770	04	0.4092696650	01	0.4000000660	05	0.5702935040	01	-0.131727076D-04
0.50000082D	05	0.5814451070	01	0.1996800970	04	0.4204252780	01	0.500000820	05	0.5814491170	01	-0.1033603690-04
000000980	05	0.5905591430	01	0.2396161160	04	0.4295403120	01	0.600000980	05	0.5905641520	01	-0.8480451790-05
79999928D	05	0.5982666340	01	0.2795520610	04	0.4372470880	01	0.6999999280	05	0.5982709270	01	-0.717534213D-05
0.7999999330	05	0.6049431760	01	0.319488036D	04	0.443923093D	01	0.799999833D	05	0.6049469320	01	-0.6209150340-05
0.8999997380	05	0.6108323071)	01	0.359424011D	04	0.449811806D	01	0.8999997380	05	0.6108356450	01	-0.5466045650-05
0.1000000160	86	0.6161003410	01	0.3993601940	04	0.4550795070	01	0.1000000160	06	0.6161033460	01	-0.487738345D-05
) 30	06	0.6507576380	01	0.7987203870	04	0.4897353010	01	0.200000330	06	0.6507591400	01	-0.2308833500-05
) 90	06	0.6710308720	01	0.119808058D	05	0.5100080350	01	0.3000000490	06	0.6710318740	01	-0.1492723280-05
4000000660	06	0.6854149650	01	0.1597440770	05	0.5243918770	01	0.4000000660	06	0.6854157160	01	-0.1096049270-05
0.5000000820	06	0.6965721230	01	0.1996800970	05	0.5355488850	01	0.50000082D	06	0.696572724D	01	-0.862795577D-06
0.600000980	06	0.7056880780	01	0.2396161160	05	0.5446647400	01	0.6000000980	06	0.7056885790	01	-0.709708831D-06
0.6999999280	06	0.7133950520	01	0.2795520610	05	0.552371642D	01	0.6999999280	06	0.7133954820	01	-0.601 7504050-06
0.7999990330	06	0.7200699610	01	0.3194880360	05	0.5590464980	01	0.7999998330	06	0.7200703370	01	-0.5216509650-06
0.8999997380	06	0.7259552690	01	0.3594240110	05	0.5649517640	01	0.8999997380	06	0.7259556030	01	-0.4599307630-06
0.1000000160	07	0.7312159210	01	0.3993601940	05	0.5701923820	01	0.1000000160	07	0.7312162210	01	-0.4109595460-08
0.200000000000	07	0.7653291040	01	0.7987203870	05	0.6043054150	01	0.2000000330	07	0.7653292540	01	-0.1963210370-06
0.3000000490	07	0.7839778830	01	0.1198080580	06	0.0229539440	01	0.3000000490	07	0.7839///830	01 04	-0.12//0/4500-06
0.400000000000	07	0.1939000020	01	0.109/440//0	00	0.0349300380	01	0.400000000000	07	0.1757000//0	01	
0.0000000000000000000000000000000000000	07	1 8105767690	01	0.1330000370	00	0.0405520520	01	0.5000000320	07	0.8105767020	01	-0.4178739890-07
0.6999999280	07	0.8153450190	01	0.2795520610	00	0.6543212220	01	0.6000000980	07	0.8155450610	01	-0 5265092090-07
0.7999998330	07	0.8191246750	01	0.3194880360	06	0.6581008730	01	0,7999998330	07	0.8191247130	01	-0.4585698490-07
	•••								•••			

TABLE C.2 :

NUMERICAL DATA FOR SHIFTING A SEMILOG CURVE FOR THE CONSTANT

PRESSURE HOLE

BASE CASE A :F=0.5 2C=500 Shifted Case B :F=0.5 2C=100

TDA		PDA		PDB,SHIF		ZERROR
0.3999999900	01 0	.1128346130	01	9.1661071780	01 -	0.4721296290 00
0.5999999850	01 0	.1320939180	01	0.1716718370	01 -	0.2996195460 00
0.7999999800	01 0	1459669810	01	0.177410143D	01 -	0.215412838D 00
0.9999999750	01 0	1.156816201D	01	0.1828806110	01 -	0.166209936D 00
0.199999995D	02 0	.1908545780	01	0.204863777D	01 •	0.7340247560-01
0.3999999900	02 0	.2252008930	01	0.2324507990	01 -	0.3219306190-01
0.5999999850	02 0	.245370237D	01	0.250247112D	01 -	0.198755762D-01
0.799999980D	02 C	.2597023420	01	0.263368843D	01 •	0.1411808750-01
0.999999975D	02 C	.270828308D	01	0.2737606830	01 -	0.108274322D-01
0.1999999950	03 0).305423214D	01	0.3068689050	01 -	0.473340022D-02
0.3999999900	03 6).340049334D	01	0.3407420900	01 -	0.203722486D-02
0.5999999850	03 (0.3603121740	01	0.3607524790	01 -	0.1222011030-02
0.7999999800	03 (0.3746910720	01	0.3750046730	01 -	0.8374907980-03
0.9999999750	03 6	3858451350	01	0.3860829430	01 -	0.6163302800-03
0.1999999950	04 (0.4204964650	01	0.4205820910	01 -	0.2036295570-03
0.3999999900	04 0	.455148392D	01	0.4551570260	01 -	0.2072624810-04
0.5999999850	04	3.475417234D	01	0.4754012540	01	0.3361330730-04
0.7999999800	04 (0.4898024410	01	0.4897737580	01	0.5855934190-04
0.9999999750	04 (.500958674D	01	0.5009223650	01	0.7247854990-04
0.1999999950	05 (0.5352158960	01	0.535163660D	01	0.9759855820-04
0.3999999900	05 (0.5667590220	01	0.5666945120	01	0.1138233740-03
0.5999999850	05	0.5825835910	01	0.5025105630	01	0.125351224D-03
0.7999999800	05 0	0.592334057D	01	0.5922540180	01	0.1351247720-03
0.9999999750	05 (0.5990327980	01	0.5989468220	01	0.1435253340-03
01 999999950	06 1	8.6154094670	01	0.6153013720	91	0.17239771 70-03
0.3999999900	06 (0.6264036500	01	0.6262772390	01	0.2018040850-03
0.5999999850	06 0	J.631043262D	01	0.6309057090	01	0.2179774710-03
0.7999999800	06 (0.6337372530	01	0.6335922480	01	0.228809/150-03
0.99999999750	06	0.6355470830	01	0.6353965650	01	0.236831 9000-03
0.1999999950	07	0.639965020D	01	0.6397987940	01	0.259/4234/0-03
0.3999999900	07 0	0.6430918470	01	0.6429118140	01	0.2/99503220-03
0.5999999850	07 0	0.6445170810	01	0.044329/390	01	0.2900/08/80-01
0.7999999800	07	0.6453938560	01	0.6452016420	0 1	0.29/02435/0-03
0.9999999750	07 0	0.0460101120	U1	U.0458142890	UL	0.303126/130-03
0.19999999513	08	0.6476406290	01	0.6474344780	U 1	0.3103106220-03

TABLE C.3 :

NUMERICAL DATA FOR SHIFTING A SEMILOG CURVE FOR THE NO-FLOW BOUNDARY HOLE

2ASE CASE A +F∓0.5 2C=500 Shifted case 0 +F=0.5 2C=100

TDA	PDA	PDB, SHIF	ZERROR
0.399999990D+01	0.1 128346130+01	0.1659602010+01	-0.470827049D+00
0.599999985D+01	0.132093918D+01	0.171562896D+01	-0.298794817D+00
0.799999980D+01	0.145966981D+01	0.177329356D+01	-0.214859379D+00
0.9999999750+01	0.1568162010+01	9.182820744D+01	-0.165828171D+00
0.199999995D+02	0.1908545780+01	0.2048573700+01	-0.733689054D-01
0.3999999900+02	0.2252008920+01	0.2324781800+01	-0.323146494D-01
0.5999999850+02	0.2453702370+01	0.2502869630+01	-0.2003799160-01
0.7999999800+02	0.2597023420+01	0.2634151720+01	-0.1429648120-01
0.9999999750*02	0.2708283080+01	0.2738109790+01	-0.110131443D-01
0.1999999950+03	0.305423214D+01	0.3069273230+01	-0.492467004D-02
0.3999999900'03	0.3400493330+01	0.340804669D+01	-0.2221252440-02
0.599999985D+03	0.3603121730+01	0.3608164590101	-0.1399581250-02
0.7999999300'03	0.374691067D+01	0.3750695520+01	-0.1010125550-02
0.9999999750+03	Q.385845111D+01	0.3861480270+01	-0.785071217D-03
0.1999999950+04	0.4204960530+01	0.4206476330*01	-0.360480930D-03
0.3999999900+04	0.4551523530+01	0.4552282190+01	-0.1666821570-03
0.599999985D+04	0.4754266490+01	0.475477207D+01	-0.106342455D-03
0.7999999800'04	0.4898077230+01	0.4898455890+01	-0.773089757D-04
0.9999999750+04	0.5009649360+01	0.5009954430+01	-0.6089726450-04
0.1999999950+05	0.5359563640+01	0.5359800070+01	-0.441143853D-04
0.3999999900+05	0.5728782570+01	0.5729255600+01	-0.825714963D-04
0.5999999850+05	0.5959791730+01	0.5960519720+01	-0.122150063D-03
0.7999999300'05	0.612990536D+01	0.613084156D+01	-0.152644908D-03
0.9999999750+05	0.626434304D+01	0.626544671D+D1	-D.176183301D-03
0.1999999950+06	0.6685196800+01	0.668682515D+01	-0.243574549D-05
0.3999999900106	0.709206427D+01	0.70941 71180+01	-0.2970798470-03
0.5999999850+06	0.7318399810+01	0.732073246D+01	-0.318738781D-03
0.7999999800+06	0.7473871700+01	0.7476330490+01	-0.3289855920-03
0.9999999750+06	0.7591974120+01	0.7594510450+01	-0.334080478D-03
0.1999999950'07	0.7948945770+01	0.795162524D+01	-0.3370848570-03
0.3999999900+07	0.829778303D+01	0.8300509260+01	-0.328548784D-03
0.5999999850+07	0.850036850D+01	0.850310090D+01	-0.321445095D-03
0.799999980D+07	Q.864385986D+Q1	0.8646592310+01	-0.316114810D-03
0.9999999750+07	0.8755102740+01	0.8757833900+01	-0.311950456D-03
0.1999999950+08	9.910063785D+01	0.910336218D+01	-0.299355654D-03

APPENDIX D : <u>DERIVATION OF THE LATE TIME DIMENSIONLESS PRESSURE</u> FOR THE CONSTANT PRESSURE HOLE USING THE DOUBLET <u>MODEL</u>

In this appendix , we derive Eq. 3.38 using the doublet model presented in Chapter 2. Using Eq. 2.9 and referring to Fig. D.1, we can write the dimensionless steady state pressure as follows :

$$p_{Dss}(r_D, \theta) = p_{Dss}(4-3) = p_{Dss}(4-5) - p_{Dss}(3-5) =$$

$$-\ln(\frac{1-3}{2-4}) + \ln(\frac{1-3}{2-3}) = -\ln(\frac{R}{D}) + \ln(\frac{r_{D}' - a_{D}}{2c' - r_{D}' + a_{D}}) =$$

$$\frac{r_{D2}(r_{D}' - a_{D})}{\ln\left[\frac{r_{D2}(r_{D}' - a_{D})}{R_{D}(2c' - r_{D}' + a_{D})}\right]$$
(D.1)

Using the radius of the hole from Eq. 2.13, we solve for the value of c':

$$c' = \frac{\frac{r_{\perp}^{2}}{D} - \frac{a_{\perp}^{2}}{D}}{2r_{D}^{2}}$$
(D.2)

Now, we evaluate r_{D2} and R_{D} :

$$r_{D2}^{2} = r_{D}^{2} \begin{bmatrix} 1 - 2 \frac{a_{D}^{2}}{r_{D}r_{D}} \cos \theta + (\frac{a_{D}^{2}}{r_{D}})^{2} \end{bmatrix}$$
 (D.3)

$$R_{\rm D}^2 = r_{\rm D}^{\,\prime} \,^2 \, \left[1 - 2 \, \frac{r_{\rm D}}{r_{\rm D}^{\,\prime}} \, \cos\theta + \left(\frac{r_{\rm D}}{r_{\rm D}^{\,\prime}}\right)^2 \, \right] \tag{D.4}$$

FIGURE D.1 : THE GEOMETRY OF THE DOUBLET MODEL FOR THE CONSTANT PRESSURE HOLE AT STEADY STATE

Substituting Eqs. D.2, D.3 and D.4 into Eq. D.1 yields :

$$p_{Dss} = \ln(\frac{r_{D}}{a_{D}}) + \frac{1}{2} \ln \frac{1 - 2\frac{a_{D}^{2}}{r_{D}r_{D}} \cos\theta + (\frac{a_{D}^{2}}{r_{D}r_{D}})^{2}}{1 - 2\frac{r_{D}}{r_{D}} \cos\theta + (\frac{r_{D}}{r_{D}})^{2}}$$
(D.5)

Equation D.5 is identical to Eq. 3.38.

APPENDIX E : DIMENSIONLESS DEPARTURE TIME FROM THE LINE SOURCE

The dimensionless departure time is defined **as** the dimensionless time at which the deviation from the line source is one percent. This definition was suggested by Ramey, et al. (1973). Stallman (1952) showed that the constant pressure and no-flow linear boundaries have the same departure time. This observation is **based** on the superposition of two exponential integrals.

For practical purposes, a system containing a circular boundary has the sam departure time as the limiting linear boundary system. This can be observed in Fig. 3.8.

Using the following two equations and the Newton - Raphson iterative method, we generated the departure times shown in Fig. 3.9 :

$$f(2c,t_D) = E_i(-X_1) - 0.01 E_i(-X_2) = 0$$
 (E.1)

The Newton - Raphson method uses the derivatives of the function to find the next **guess** of the zero of the function. Hence :

$$\frac{df(2c,t_{D})}{dt_{D}} = -\frac{1}{t_{D}} \left(e^{-X_{1}} - e^{-X_{2}} \right)$$
(E.2)

where :

$$X_1 = \frac{(2c-1)^2}{4t_D}$$
 (E.3)

$$X_2 = \frac{1}{4t_D}$$
 (E.4)

APPENDIX F : ASYMPTOTIC EXPANSIONS FOR MODIFIED BESSEL FUNCTIONS

In this appendix, we point out to some computational problems in evaluating Modified Bessel Functions using asymptotic expansions.

The asymptotic expansions for $I_n(z)$ and $K_n(z)$ are :

$$I_{n}(z) = \frac{1}{\sqrt{2\pi z}} e^{2} \left[1 - \frac{v-1}{82} + \frac{(v-1)(v-9)}{2!(8z)^{2}} - \frac{(v-1)(v-9)(v-25)}{3!(8z)^{3}} + 1 \right]$$
(F.1)

$$K_{n}(z) = \sqrt{\pi/27} e^{-z} \left[1 + \frac{v-1}{82} + \frac{(v-1)(v-9)}{2! (8z)^{2}} + \frac{(v-1)(v-9)(v-25)}{3! (8z)^{3}} + \right]$$

where : $v = 4n^2$

or :

$$I_n(z) = \frac{1}{\sqrt{2\pi z}} e^z F_n(z)$$
 (F.3)

$$K_n(z) = \sqrt{\pi/2z} e^{-z} G_n(z)$$
 (F.4)

where :

$$F_{n}(z) = 1 + \sum_{m=1}^{\infty} (-1)^{m} \frac{\int_{j=1}^{m} [v - (2j - 1)^{2}]}{\int_{m!}^{J} (8z)^{m}}$$
(F.5)

$$G_{n}(z) = 1 + \sum_{m=1}^{\infty} \frac{\prod_{j=1}^{m} [v - (2j - 1)^{2}]}{m! (8z)^{m}}$$
(F.6)

The terms $F_n(z)$ and $G_n(z)$ differ by the alternating sign. Let us examine the convergence of $G_n(z)$. Let R_n^m be the convergence ratio :

$$R_{n,m} = \left\| \frac{G_{n,m}(z)}{G_{n,m}(z)} \right\|$$
(F.7)

where $G_{n,m}(z)$ denotes the mth term in $G_n(z)$. Substituting Eq. D.6 into Eq. F.7 yields :

$$R_{n,m} = \left\| \frac{4n^2 - (2m - 1)^2}{8mz} \right\|$$
(F.8)

For G to converge, $R_{n,m}$ must be less than 1 :

$$\| m - m^2 + n^2 - 1/4 \| < 2mz$$
 (F.9)

For a fixed z and n, we can find the range of m that satisfies the convergence criterion. Let :

$$L(m) = \|m - m^2 + n^2 + 1/4\|$$
 (F.10)

$$R(m) = 2mz \qquad (F.11)$$

Figure F.1 presents L(m) and R(m) as a function of m for n = 50 and z = 5,10 and 20. The ranges of m where R(m) is "above" L(m) satisfy the convergence condition.

F.1 : R(m) and L(m) AS A FUNCTION OF m IN THE ASYMPTOTIC EXPANSION OF $K_{50}(5)$, $K_{50}(10)$ and $K_{50}(20)$

Let m_{\min} and m_{\max} be the ends of these ranges. Then : $m_{\min} = \frac{1}{2} \{ 1 - 2z + [(2z - 1)2 + 4n^2 - 1)]^{\frac{1}{2}} \}$ (F.12)

$$\mathbf{m}_{\max} = \frac{1}{2} \left\{ 1 + 2\mathbf{z} + \left[(1 + 2\mathbf{z})^2 + 4n^2 - 1 \right]^{\frac{1}{2}} \right\}$$
(F.13)

As m increases from 1, $R_{n,m} > 1$. Then, $R_{n,m}$ enters the convergence range, and finally, $R_{n,m} > 1$ for all $m > m_{max}$. This explains why we use asymptotic expansions for large arguments. As z increases, the range between m_{min} and m_{max} increases, and we have more terms in the series that satisfy the covergence criterion. Eqs. F.12 and F.13 offer a simple way to limit the number of terms used when evaluating Modified Bessel Functions using asymptotic expansions.

Figure F.2 presents the estimate of $K_{50}(5)$ as a function of the number of terms in the expansion, m. $K_{50}(5)$ levels off at a value close to its actual value. The accuracy in this case is 4 digits. The expansion starts to diverge in the 56th term, and! by the 70th term the expansion *is* off the scale. In Fig. F.2 the absolute value of the estimate of $K_{50}(5)$ is graphed. At large values of m, the function alternates signs and diverges.

In the asymptotic expansion for $I_n(z)$, the terms in the series alternate signs up to a certain value of m, therefore **all** the terms take on either a positive or a negative sign. The sign depends upon the m at which $[v - (2m - 1)^2]$ becomes negative.

The use of asymptotic expansions for evaluating $I_n(z)$ and $K_n(z)$ has a limited accuracy, not always satisfying our needs. In these cases, other methods should be used. Using m_{min} and m_{max} , we can set the limit on the number of terms used in the expansion, hence, simplifying the calculations.

FIGURE F.2 : ASYMPTOTIC EXPANSION FOR $\kappa_{50}(5)$ AS A FUNCTION OF THE NUMBER OF TERMS IN THE EXPANSION, m

APPENDIX G : THE COMPUTER PROGRAM

In this appendix, we presents the general approach taken in the numerical evaluation of the solutions. A detailed description of the various equations used in evaluating F(s) is presented. A listing of the program is presented at the end.

The numerical evaluation uses the Stehfest (1970) for the numerical inversion of the Laplace solutions. The Laplace solutions are :

For a constant pressure boundary :

$$p_{D} = \frac{1}{s} \left[K_{0}(SRRD) - \frac{K_{0}(SRWD)I_{0}(SAAD)K_{0}(SRRD)}{K_{0}(SAAD)} \right]$$

$$-2 \sum_{n=1}^{\infty} \cos\theta \frac{K_n(SRWD)I_n(SAAD)K_n(SRRD)}{K_n(SAAD)}$$
(G.1)

For a no-flow boundary :

$$P_{D} = \frac{1}{s} \left\{ K_{0}(SRRD) + \frac{K_{0}(SRWD)I_{1}(SAAD)K_{0}(SRRD)}{K_{1}(SAAD)} + 2 \sum_{n=1}^{\infty} \cos\theta \frac{K_{n}(SRWD)[I_{n-1}(SAAD) + I_{n+1}(SAAD)]K_{n}(SRRD)}{[K_{n-1}(SAAD) + K_{n+1}(SAAD)]} \right]$$

$$(G.2)$$

where :

s = The Laplace variable

SRRRD = $\sqrt{s} R_{D}$ SAAD = $\sqrt{s} a_{D}$ SRWD = $\sqrt{s} r_{D}'$ SRRD = $\sqrt{s} r_{D}$

The solutions consist of the line source term (the first term) and an infinite series. This series is separated into two parts. The first part contains terms with Modified Bessel Functions of order zero. The second part contains terms with Modified Bessel Functions of order greater than zero.

Figure G.1 presents a flow diagram for the computer program. Since we are interested in interference testing, the program takes advantage of the nature of the solutions. The infinite series terms contain two types of geometrical variables, radii and angles, which are separated. Hence, for a fixed set of radii (AAD,RRD,RWD) we evaluate p_D for various angles. The radii dependent terms are evaluated once for various angles. Therefore, the angle loop **is** within the time loop. This approach requires more active storage but reduces the **CPU** time needed to evaluate p_D for a second angle by an order of magnitude **or** more.

The "navigation" section of the program chooses the method for evaluating the terms in the series of F(s). The complexity in evaluating F(s) stems from the infinite series on the order of the Modified Bessel Functions. Figure G.2 and Tab. G.1 describe the navigation decision tree program.

The following terms are used :

-157-

EKAAD =
$$\| \log K_n(SAAD) \|$$

EKRWD =
$$\| \log K_n(SRWD) \|$$

$$EKRRD = \| \log \kappa_{n}(SRRD) \|$$

FIGURE G.1 : A FLOW DIAGRAM FOR THE COMPUTER PROGRAM

FIGURE G.2 : A SCHEMATIC FLOW DIAGRAM OF THE NAVIGATION PROGRAM

COORDINAT	TES	IF CONDIT	ION
1 1 1 1 1	1 2 7 22 37	SAAD>100 SRWD>100 SRWD>100 SRWD<100 SRWD<100 SRWIK 100	SRRD>100 SRRD< 100 SRRD>100 SRRD>100 SRRD< 100
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 4 5 7 10 16 22 25 31 37 54 60 66 70 74 77 81 85	SAAD>20 SAAD>2 SAAD<1 SAAD>20 SAAD>20 SAAD<20 SAAD<20 SAAD<20 SAAD<20 SAAD<20 SRWD>20 SRWD>20 SRWD>20 SRWD>20 SRWD>20 SRWD>20 SRWD>2 SRWD>2 SRWD>2 SRWD>2 SRWD>2 SRWD>2 SRWD>2 SRWD<2 SRWD<2	SRRD 220 SRRD>20 SRRD>20 SRWD>20 SRWD 220 SRWIK 20 SRRD>20 SRRD>20 SRRD>20 SRRD>20 SRRD>20 SRRD>20 SRRD>22 SRRD>2
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 3 5 6 7 8 9 10 12 16 17 19 22 23 24 25 27 31	EKAAD≥65 EKAAD<65 EKAAD<65 EKAAD<65 EKAAD<65 EKAAD<65 EKAAD<65 SAAD>2 SAAD>2 SAAD>2 SAAD<2 SRRD<2 EKAAD<65 EKAAD<65 EKAAD<65 EKAAD<65 SAAD>2 SAAD>2 SAAD>2 SAAD>2 SAAD>2 SAAD>2	EKRRD≥65 EKRRD≥65 EKRRD≥2 SRRD≥2 EKRWD>65 EKRWD>65 EKRWD<65 EKRWD<65

TABLE G-1 : THE NAVIGATION PROGRAM DECISION TREE

COORDINA	TES	IF CONDITIO	N
2	24	CDUD/0	
3	34 27	SKWDS 2	
3	37	SAAD#ZU	
3	42	SAAD#Z	
3	46	SAADS2	
3	54	SAADZ2	
3	50	SAADY 2	
3	60	SAAD/2	
3	62		
3	60 69	ERRED #0.)	
3	00 70	EXARD 05	
3	70	ERRWD/0J	
3	14	ERRADOJ	
3	74	SAAD/2	
J 2	/5 77	SAAD 2	FV & & D > 6 5
3	70		ERAAD /0J
3	/0 70	EKRRD#0J	
3	/9	EKKKU/UJ	
3	0U 01	EKKKUNUS EVDUDS65	ERAAD 05
3	01 10	ERRWD × 0J	ERAAD >05
3	04	EKKWD#0J EVDUD/65	ERAAD 0J
2	03	EKKWD(U)	ERAD/05
3	04	EKKWD(0) FKAAD/65	EKAAD
3	00 96	ERAND VOJ	FVDDD >65
3	00 97	EKRWD>05	FYDDD/65
3	07	FUDUD/65	EKRDING
3	80	REPUTZES	FKBBDC 65
5	09	EKKWD/0J	
4	10	EKRRD≥65	
- 4	11	EKRRD(65	
4	12	FKRRD>65	FK22D265
4	13	EKRRD>65	EKAAD 65
4	13	FKRRD/65	FKAAD >65
4	15	EKRRD(65	EKAADC65
4	17	EKAAD>65	
4	18	EKAADC65	
1	19	EKRRD>65	EKAAD≥65
4	20	EKRRD(65	
4	20	EKRRD(65	FKAADC65
4	25	EKRWD>65	
4	25	EXRWD/65	
4	20	EKAAD>65	EKRWD>65
4	28	EKAADC65	
4	29	EKAAD>65	EKRWD<65
4	30	EKAAD< 65	EKRWD<65
4	32	EKAAD>65	
4	33	EKAAD<65	
4	34	EKAAD>65	EKRWD>65

 COORDINA	TES	IF	CONDITIC	DN
4	35	EKAAD>	65	EKRWD<65
4	36	EKAAD	65	EKRWD<65
4	37	EKAAD>	6 5	
4	38	EKRWD>	•65	EKAAD>65
4	39	EKRWD>	•65	EKAAD<65
4	40	EKRWD	65	EKAAD>65
4	41	EKRWD	65	EKAAD< 65
4	42	EKRWD>	•65	EKRRD>65
4	43	EKRWD>	≥65	EKRRD<65
4	44	EKRWD<	(65	EKRRD>65
4	45	EKRWD	65	EKRRD<65
4	46	EKAAD<	(65	
4	50	EKAAD?	≥ 65	
4	54	EKRWD>	≥65	
4	55	EKRWD<	(65	
4	56	EKRWD	≥6 5	EKAAD>65
4	57	EKRWD	≥6 5	EKAAD<65
4	58	EKRWD	(65	EKAAD >65
4	59	EKRWD<	(65	EKAAD<65
4	60	EKRRD	>65	
4	61	EKRRD<	(65	
4	62	EKRRD	>6 5	EKAAD>65
4	63	EKRRD	>65	EKAAD<65
4	64	EKRRD<	(65	EKAAD>65
4	65	EKRRD<	(65	IKAAX 65
4	66	EKRWD	>65	
4	67	EKRWD<	(65	
4	68	EKAAD;	>65	
4	69	EKAAD<	<65	
4	70	EKAAD	>65	
4	71	EKAAD<	<65	
4	72	EKAAD;	>65	
4	73	EKAAD<	(65	
4	75	EKAAD;	> 65	
4	76	EKAAD<	<65	
_				
5	46	EKKWU	200 201	
5	47	EKKWD	2 00	EKKKUCOO
5	48	EKKWD		
5	49	EKKWD		EKKUSO) Evolid Sec
5	50	EKKWD	20J	ERKWJ#00 Friddales
5	51 52	EKKWD	≠0) /(5	
5	52	EKKWD		EKKKU/0J
5	53	LKKWD	607	EVVER 02

The next section presents the various methods used **as** perscribed by the navigation decision tree (Fig. 6.2) to evaluate the terms in the infinite series of F(s). The asymptotic expansions are presented in appendix D. The ascending series for Modified Bessel Functions are :

$$I_{n}(z) = (z/2)^{n} \sum_{k=0}^{\infty} \frac{(\frac{z^{2}}{4})^{k}}{k! (n+k)!}$$
(G.3)

$$K_n(z) = \frac{1}{2} (z/2)^{-n} \sum_{k=0}^{\infty} \frac{(n-k-1)!}{k!} (-\frac{z^2}{4})^k$$

+
$$(-1)^{n+1} \ln(z/2) I_n(z) + (-1) \frac{1}{2}(z/2)^n$$

•
$$\sum_{k=0}^{\infty} \frac{(\frac{z^2}{4})^k}{k! (n+k)!} [\psi(k+1) + \psi(n+k+1)]$$
 (G.4)

where :

 $\psi(1) = -\gamma$

$$\psi(n) = -\gamma + \sum_{k=1}^{n-1} k^{-1} \qquad (n \ge 2)$$

y = 0.5772156649 (Euler constant)

For the small argument approximation used in chapters **5** and 6, only the first term in the series is taken. However, for the approximations used in the numerical evaluation, the following is used : For $I_n(z)$:

$$I_{n}(z) = \frac{(z/2)^{n}}{n!} \left[1 + \sum_{k=1}^{\infty} \frac{z^{2} k}{k! (n+1)(n+2)\cdots(n+k)} \right]$$
(G.5)

For $K_n(z)$, only the first series is taken, assuming that $I_n(z)$ is negligible along with the third term which contains positive powers of the argument z, hence :

$$K_{n}(z) = 2^{n-1} z^{-n} (n-1)! \left[1 + \sum_{k=1}^{n-1} \frac{(\frac{z^{2}}{4})^{k}}{k! (n-1)(n-2)\cdots(n-k)} \right]$$
(G.6)

For the ascending series we use the following notations :

$$I_{n}(z) = \frac{(z/2)^{n}}{n!} FISMA_{n}(z)$$
(G.7)

$$K_n(z) = 2^{n-1} z^{-n} (n-1)! FKSMA_n(z)$$
 (G.8)

while, for the asymptotic expansions, we use :

$$I_n(z) = \frac{1}{\sqrt{2\pi z}} e^z F_n(z)$$
 (G.9)

$$K_n(z) = \sqrt{\pi/2z} e^{-z} G_n(z)$$
 (G.10)

F and G are defined in appendix F.
EQUATIONS FOR THE CONSTANT PRESSURE CIRCULAR BOUNDARY

OPTION A : Complete asymptotic expansi

$$\mathbf{A}_{\mathbf{n}} = \frac{1}{2\sqrt{(SRRD)(SRWD)}} e^{2(SAAD) - SRRD - SRWD}$$

$$- \frac{G_n(SRWD)F_n(SAAD)G_n(SRRD)}{G_n(SAAD)}$$
(G.11)

OPTION B : Partial asymptotic expansion (RWD, RRD)

$$\log A_n = \log I_n(SAAD) - (SRWD - SRRD) \log - \log K_n(SAAD)$$

+ log
$$\left[\frac{\pi}{2\sqrt{(SRWD)(SRRD)}} G_n(SRRD)G_n(SRWD) \right]$$
 (G.12)

$$\log A_n = \log \left[n\pi G_n(SRWD) G_n(SRRD) - \frac{1}{\sqrt{(SRRD)(SRWD)}} \right] + 2n \log(SAAD)$$

$$+ \log \left[\frac{FISMA_{n}(SAAD)}{FKSMA_{n}(SAAD)} \right]$$
(G.13)

OPTION D : Partial asymptotic expansion (RWD)

$$\log A_n = \log K_n(SRRD) + \log I_n(SAAD) - \log K_n(SAAD)$$

$$\log \left[\frac{\sqrt{\pi}}{\sqrt{2(SRWD)}} G_n(SRWD) \right] = SRWD \log e \qquad (G.14)$$

$$\log A_{n} = \log \left[\frac{\sqrt{\pi}}{\sqrt{2(SRWD)}} K_{n}(SRRD) \right] + \log \left[2n G_{n}(SRWD) \right] - SRWD \log e^{-2} \log(n!) - 2n \log(2 + 2n \log(SAAD) + \log \left[\frac{FISMA_{n}(SAAD)}{FKSMA_{n}(SAAD)} \right]$$

(G.15)

$$\log A_{n} = \log \left[\frac{\sqrt{\tau}}{\sqrt{2(SRWD)}} \right] + 2n \log(SAAD) - n \log(SRRD) - (SRWD) \log t$$

$$-n \log 2 - \log(n!) + \log \left[\frac{FISMa_n(SAAD)FKSMa_n(SRRD)}{FKSMa_n(SAAD)}\right] \quad (G.16)$$

OPTION I : Partial asymptotic expansion (RRD)

$$\log A_n = \log K_n(SRWD) + \log I_n(SAAD) - \log K_n(SAAD) - (SRRD) \log I$$

+ log
$$\left[\frac{\sqrt{\pi}}{\sqrt{2(SRRD)}}\right]$$
 (G.17)

$$\log A_{n} = \log \left[\frac{\sqrt{\pi}}{\sqrt{2(SRRD)}} K_{n}(SRWD) \right] + \log \left[2nG_{n}(SRRD) \right] - (SRRD) \log e^{-2\log(n!)} - 2n\log(2 + 2n\log(SAAD) + \log \left[\frac{FISMA_{n}(SAAD)}{FKSMA_{n}(SAAD)} \right]$$

OPTION K : <u>Partial asymptotic expansion (RRD)</u> <u>Small argument approximation (AAD)</u>

$$\log A_{n} = \log \left[\frac{\sqrt{\pi}}{\sqrt{2(SRD)}} G_{n}(SRD) \right] + 2n \log(SAAD) - n \log(SRWD)$$

- (SRRD)loge - nlog2 - log(n!) + log $\left[\frac{FISMA_{n}(SAAD)FKSMA_{n}(SRWD)}{FKSMA_{n}(SAAD)} \right]$

(G.19)

OPTION L : <u>Small argument approximation (AAD)</u>

$$\log A_n = \log K_n(SRWD) + \log K_n(SRRD) - 2n \log(SAAD) - \log 2n - 2n \log 2$$

-
$$2\log(n!) + \log \left[\frac{\text{FISMA}_n(\text{SAAD})}{\text{FKSMA}_n(\text{SAAD})}\right]$$
 (G.20)

OPTION M = <u>Small argument approximation (AAD.RRD)</u>

 $\log A_n = \log K_n(SRWD) + 2n\log(SAAD) - n\log(SRRD) - n\log 2 - \log(n!)$

+
$$\log \left[\frac{FISMA_n(SAAD)FKSMA_n(SRRD)}{FKSMA_n(SAAD)} \right]$$
 (G.21)

OPTION N : <u>Small argument approximation (RRD)</u>

 $\log A_n = \log K_n (SRWD) + \log I_n (SAAD) - \log K_n (SAAD) + n \log 2 + \log (n!)$

- nlog(SRRD) - log2n + log [FKSMA_n(SRRD)] (G.22)

OPTION 0 : Small argument approximation (AAD,RWD)

$$\log A_{n} = \log K_{n}(SRRD) + 2n\log(SAAD) - n\log(SRWD) - n\log 2 - \log(n!)$$

+
$$\log \left[\frac{FISMA_n(SAAD)FKSMA_n(SRWD)}{FKSMA_n(SAAD)} \right]$$
 (G.23)

OPTION P : <u>Small argument approximation (RWD)</u>

$$\log A_n = \log K_n(SRRD) + \log I_n(SAAD) - \log K_n(SAAD) + n\log 2 + \log(n!)$$

$$- \operatorname{nlog}(SRWD) - \operatorname{log}(n + \log [FKSMA_n(SRWD)]$$
(G.24)

OPTION Q : <u>Small argument approximation (AAD.RRD.RWD)</u>

$$\log A_n = 2n\log(SAAD) - n\log [(SRWD)(SRRD)] - \log 2n$$

+
$$\log \left[\frac{FKSMA_n(SRRD)FISMA_n(SAAD)FKSMA_n(SRWD)}{FKSMA_n(SAAD)} \right]$$
 (G.25)

OPTION Z : <u>Simple program</u>

$$\mathbf{A_n} = \frac{K_n(SRWD) \mathbf{I}_n(SAAD) K_n(SRRD)}{K_n(SAAD)}$$
(G.26)

 $K_n(z)$ is evaluated using the "step up" method, where :

$$K_{n+1}(z) = K_{n-1}(z) + \frac{2n}{z} K_n(z)$$
 (G.27)

For $I_n(z)$ the formula :

$$I_{n+1}(z) = I_{n-1}(z) - \frac{2n}{z} I_n(z)$$
 (G.28)

cannot be used due to the minus sign. For n > 10 the errors increase rapidly. $I_n(z)$ is evaluated using the ascending series.

EQUATIONS FOR THE NOHLOW CIRCULAR BOUNDARY

OPTION A : Complete asymptotic expansion

$$A_{n} = \frac{1}{2\sqrt{(SRRD)(SRWD)}} e^{2(SAAD) - (SRRD) - (SRWD)}$$

$$\frac{G_n(SRWD)G_n(SRRD) \left[F_{n-1}(SAAD) + F_{n+1}(SAAD)\right]}{\left[G_{n-1}(SAAD) + G_{n+1}(SAAD)\right]}$$
(G.29)

OPTION B : Partial asymptotic expansion (RWD,RRD)

$$\log A_{n} = \log \left[I_{n-1}(SAAD) + I_{n+1}(SAAD) \right] - \left[(SRRD) + SRWD \right] \log e$$

$$- \log \left[K_{n-1}(SAAD) + K_{n+1}(SAAD) \right] + \log \left[\frac{\pi}{2\sqrt{(SRRD)(SRWD)}} \right]$$

$$+ \log \left[G_{n}(SRRD)G_{n}(SRWD) \right]$$
(G.30)

$$\log A_{n} = \log \left[\frac{n\pi}{\sqrt{(SRRD)(SRWD)}} G_{n}(SRWD)G_{n}(SRRD) \right] + 2n\log(SAAD)$$

+
$$\log \left[\frac{2n}{(SAAD)} FISMA_{n-1}(SAAD) + \frac{(SAAD)}{2(n+1)} FISMA_{n+1}(SAAD)\right]$$

$$-\log \left[\frac{(SAAD)}{2(n-1)} FKSMA_{n-1}(SAAD) + \frac{2n}{(SAAD)} FKSMA_{n+1}(SAAD)\right] \quad (G.31)$$

OPTION D : Partial asymptotic expansion (RWD)

$$\log A_{n} = \log K_{n}(SRRD) + \log \left[I_{n-1}(SAAD) + I_{n+1}(SAAD) \right] - (SRWD) \log e$$

$$- \log \left[K_{n-1}(SAAD) + K_{n+1}(SAAD) \right] + \log \left[\frac{\sqrt{\pi}}{2\sqrt{(SRWD)}} G_{n}(SRWD) \right]$$
(G.32)

 $\log A_{n} = \log \left[\frac{\sqrt{\pi}}{2\sqrt{(SRWD)}} K_{n}(SRRD) \right] + \log \left[2nG_{n}(SRWD) \right] - (SRWD)\log e$

$$-2\log(n!) - 2n\log(2 + 2n\log(SAAD))$$

+
$$\log \left[\frac{2n}{(SAAD)} FISMA_{n-1}(SAAD) + \frac{(SAAD)}{2(n+1)} FISMA_{n+1}(SAAD)\right]$$

$$-\log \left[\frac{(SAAD)}{2(n-1)} FKSMA_{n-1}(SAAD) + \frac{2n}{(SAAD)} FKSMA_{n+1}(SAAD)\right] \quad (G.33)$$

OPHON G : <u>Partial</u> asymptotic expansion (RWD)

Small arnument approximation (AAD,RRD)

$$\log A = \log \left[\frac{\sqrt{\pi}}{2\sqrt{(SRWD)}} G_n(SRWD) \right] = 2n\log(SAAD) - (SRWD)\loge$$

-
$$nlog(SRRD)$$
 - $nlog2$ - $log(n!)$ + $log [FKSMA_n(SRRD)]$

+ log
$$\left[\frac{2n}{(SADD)}$$
 FISMA_{n-1}(SAAD) + $\frac{(SAAD)}{2(n+1)}$ FISMA_{n+1}(SAAD) $\right]$

$$-\log \left[\frac{(SAAD)}{2(n-1)} FKSMA_{n-1}(SAAD) + \frac{2n}{(SAAD)} FKSMA_{n+1}(SAAD)\right] \quad (G.34)$$

OPDON I : <u>Partial asymptotic expansion (RRD)</u>

$$\log A_{n} = \log K_{n} (SRWD) + \log \left[I_{n-1} (SAAD) + I_{n+1} (SAAD) \right] - (SRRD) \log e^{-1}$$

$$-\log \left[K_{n-1}(SAAD) + K_{n+1}(SAAD) \right] + \log \left[\frac{\sqrt{\pi}}{\sqrt{2(SRRD)}} G_n(SRRD) \right]$$

OPTION J : Partial asymptotic expansion (RRD)

Small argument approximation (AAD)

$$\log A_{n} = \log \left[\frac{\sqrt{p}}{\sqrt{-2(SRRD)}} K_{n}(SRWD) \right] + \log \left[2nG_{n}(SRRD) \right] - (SRRD)\log e^{-2(SRRD)}$$

+ log
$$\left[\frac{2n}{(SAAD)}$$
 FISMA_{n-1}(SAAD) + $\frac{(SAAD)}{2(n+1)}$ FISMA_{n+1}(SAAD) $\right]$

$$-\log\left[\frac{(SAAD)}{2(n-1)}FKSMA_{n-1}(SAAD) + \frac{2n}{(SAAD)}FKSMA_{n+1}(SAAD)\right] \quad (G.36)$$

$$\log A_n = \log \left[\frac{\sqrt{\pi}}{\sqrt{2(SRRD)}} G_n(SRRD) \right] + 2n\log(SAAD) - n\log(SRWD)$$

- (SRRD)loge - $nlog2 - log(n!) + log [FKSMA_n(SRWD)]$

+ log
$$\left[\frac{2n}{(SAAD)}$$
 FISMA_{n-1}(SAAD) + $\frac{(SAAD)}{2(n+1)}$ FISMA_{n+1}(SAAD) $\right]$

$$-\log \left[\frac{(SAAD)}{2(n-1)} FKSMA_{n-1}(SAAD) + \frac{2n}{(SAAD)} FKSMA_{n+1}(SAAD)\right] \quad (G.37)$$

OPTION L : <u>Small argument approximation (AAD)</u>

$$\log A_n = \log K_n (SRWD) + \log K_n (SRRD) + 2n \log (SAAD)$$

$$+ \log_{2n} - 2n\log_{2} - 2\log(n!)$$

+
$$\log \left[\frac{2n}{(SAAD)} FISMA_{n-1}(SAAD) + \frac{(SAAD)}{2(n+1)} FISMA_{n+1}(SAAD)\right]$$

$$-\log \left[\frac{(SAAD)}{2(n-1)} FKSMA_{n-1}(SAAD) + \frac{2n}{(SAAD)} FKSMA_{n+1}(SAAD)\right] \quad (G.38)$$

OPTION M : <u>Small argument approximation (AAD,RRD)</u>

$$\log A_n = \log K_n (SRWD) + 2n \log(SAAD) - n \log(SRRD) - n \log 2$$

$$-\log(n!) + \log[FKSMA_n(SRRD)]$$

+
$$\log \left[\frac{2n}{(SAAD)} FISMA_{n-1}(SAAD) + \frac{(SAAD)}{2(n+1)} FISMA_{n+1}(SAAD)\right]$$

$$-\log \left[\frac{(SAAD)}{2(n-1)} FKSMA_{n-1}(SAAD) + \frac{2n}{(SAAD)} FKSMA_{n+1}(SAAD)\right] \quad (G.39)$$

OPTION N : Small argument approximation (RRD)

$$\log A_{n} = \log K_{n}(SRWD) + n\log 2 + \log(n!) - n\log(SRRD) - \log 2n$$

$$+ \log [FKSMA_{n}(SRRD)] + \log [I_{n-1}(SAAD) + I_{n+1}(SAAD)]$$

$$- \log [K_{n-1}(SAAD) + K_{n+1}(SAAD)] \qquad (G.40)$$

OPTION 0 : <u>Small argument approximation (AAD,RWD)</u>

 $logA_n = logK_n(SRRD) + 2nlog(SAAD) - nlog(SRWD) - nlog2$

$$- \log(n!) + \log \left[FKSMA_{n}(SRWD) \right]$$

$$+ \log \left[\frac{2n}{(SAAD)} FISMA_{n-1}(SAAD) + \frac{(SAAD)}{2(n+1)} FISMA_{n+1}(SAAD) \right]$$

$$-\log \left[\frac{(SAAD)}{2(n-1)} FKSMA_{n-1}(SAAD) + \frac{2n}{(SAAD)} FKSMA_{n+1}(SAAD)\right] \quad (G.41)$$

OPTION P : Small argument approximation (RWD)

$$\log A_{n} = \log K_{n}(SRRD) + \log \left[I_{-1}(SAAD) + I_{n+1}(SAAD) \right] + n\log 2$$

$$- \log \left[K_{n-1}(SAAD) + K_{n+1}(SAAD) \right] + \log(n!) - n\log(SRWD)$$

$$- \log 2n + \log \left[FKSMA_{n}(SRWD) \right]$$
(G.42)

OPTION Q : Small argument approximation (AAD, RRD, RWD)

 $\log A_n = 2n \log(SAAD) - n \log [(SRRD)(SRWD)] - \log 2n$

+
$$\log \left[FKSMA_n(SRRD) FKSMA_n(SRWD) \right]$$

+ log
$$\left[\frac{2n}{(SAAD)}$$
 FISMA_{n-1}(SAAD) + $\frac{(SAAD)}{2(n+1)}$ FISMA_{n+1}(SAAD) $\right]$

$$-\log\left[\frac{(SAAD)}{2(n-1)}FKSMA_{n-1}(SAAD) + \frac{2n}{(SAAD)}FKSMA_{n+1}(SAAD)\right] \quad (G.43)$$

OPTION Z : Simple program

$$A_{n} = \frac{K_{n}(SRRD) \left[I_{n-1}(SAAD) + I_{n+1}(SAAD) \right] K_{n}(SRWD)}{\left[K_{n-1}(SAAD) + K_{n+1}(SAAD) \right]}$$
(6.44)

THIS PROGRAM EVALUATES PD(TD) FOR A CONSTANT RATE C LINE SOURCE WELL EXTERIOR TO A CIRCULAR BOUNDARY С C IN AN INFINITE SLAB SYSTEM. C TWO CASES ARE CONSIDERED: C ICASE=1 CONSTANT PRESSURE HOLE C ICASE=2 CLOSED BOUNDARY HOLE C C VARIABLE DEFINITIONS C C ************************ C **IOPT=OPTION** FLAG FOR THE BESSEL FUNCTIONS ON IMSL C C IER=ERROR FLAG FOR THE BESSEL FUNCTION ON IMSL N=NUMBER OF TERMS IN THE STEHFEST ALGORITHM C C M=V(I) CALCULATION FLAG C ICASE=TYPE OF HOLE FLAG С RRD=DIMENSIONLESS DISTANCE RWD=DIMENSIONLESS DISTANCE TO THE HOLE C AAD=DIMENSIONLESS RADIUS OF THE HOLE C RRRD(I)=DISTANCE BETWEEN THE WELL AND THE PRESSURE POINT C SRRD=BESSEL FUNCTION ARGUMENT C C SRWD=BESSEL FUNCTION ARGUMENT SAAD=BESSEL FUNCTION ARGUMENT C SRRRD=BESSEL FUNCTION ARGUMENT C C F=NORMALIZED RADIUS OF THE HOLE C E=NORMALIZED RADIUS TO THE PRESSURE POINT EPSI=CONVERGENCE CRITERION FOR F(S) C EPSI1=CONVERGENCE CRITERION FOR THE BESSEL FUNCTIONS C C DELTA=NTH TERM/SUMMATION TO N DELTAA=N-1 TERN/SUMMATION TO N-1 C C DELT=CONVERGENCE RATIO TTPI=THE CONSTANT PI C C FACNU=FACTORIALS PDSS(I)=STEADY STATE PD C C PD=DIMENSIONLESS PRESSURE DROP C PDN=NORMALIZED PRESSURE DROP PDLS=LINE SOURCE DIMENSIONLESS PRESSURE DROP С C THETA(1)=0 DEG C THETA(2)=45 DEG C THETA(3)=90 DEG C THETA(4) = 135 DEG THETA(5)=180 DEG C C ALFA=N*THETA IN F(S) TD(II)=DIMENSIONLESS TIME C TD=DIMENSIONESS TIME C C TDR=TD/RD**2, NORMALIZED DIMENSIONLESS TIME SUM(NU,IJ)=TERMS IN THE INFINITE SUMMATION OF F(S) C C NU=ORDER OF THE BESSEL FUNCTIONS ICASE=BOUNDARY FLAG C C IFLAG1=ANGLE FLAG FOR A GIVEN TD.

I

-	
C	IFLAG2=FLAG FOR CALCULATING PD(TD/RD**2=0.1)
C	EEE=NATURAL CONSTANT
C	DEE=LOG BASE 10 OF EEE
С	BIAAD=I(N,Z), THE ARGUMENT OF AAD
С	BKAAD=K(N,Z), THE ARGUMENT OF AAD
c	RKRUDEK(N.Z). THE ARCHMENT OF RWD
	$\mathbf{P} \mathbf{P} \mathbf{P} \mathbf{D} = \mathbf{K} (\mathbf{N}, \mathbf{Z}) \text{THE ARGOMENT OF RUD}$
C 7	BKRD - K(R) Z THE ARGUMENT OF RED
C	EK = = = LOG BASE IO OF K(R, Z)
C	
C	
C	
С	LIST OF FUNCTIONS AND SUBROUTINES
C	****
C	
C C	FUNCTION PUDETHE STEHEFST ALCORTTHM
	FUNCTION PUDI-F(S) FOR BOTH POUNDARY CACEC
	FUNCTION FWDL-F(S) FOR BOTH BOUNDARY CASES
C	FUNCTION SUMIN=GENERALDS THE TERMS IN THE INFINITE SERIES
C	FUNCTION BESI=MODIFIED BESSEL FUNCTION I(NU,Z), ASC. SER.
C	FUNCTION BESIA=MODIFIED BESSEL FUNCTION I(NU,Z),ASY.EXP.
C	FUNCTION BESKA=MODIFIED BESSEL FUNCTION K(NU,Z),ASY.EXP.
C	FUNCTION BAAD=MODIFIED BESSEL FUNCTION K(N,Z), STEP
С	FUNCTION BRRD=MODIFIED BESSEL FUNCTION K(N,Z),STEP
c	FUNCTION BRWD=MODIFIED BESSEL FUNCTION K(N.Z).STEP
C C	FUNCTION FREMARSMALL ADC ADDY FOR K(N.7). N DEDENDENT TERM
	FUNCTION FROMA-SHALD ARG. AFFA. FOR K(N)2/)W DEFENDENT TERM
C	FUNCTION FISHA-SHALL ARG. APPA. FUR I(N,27) A DEPENDENT TERM
C	SUBROUTINE FACT=GENERATES THE FACTORIALS TO 50
C	
C	
С	
C	MAIN PROGRAM
C	***********
	TMPLTCTT REAL*8 (A-H.O-Z)
	PEAL*8 PPD, PWD, AAD, EPST, TPT, TTPT
	NERG O KRUJKKUJEKUJEKUJEKU
	KERLAD LEEJDEE
	INTEGER TOPT, TER, N, N, TCASE
	DIMENSION PDSS(5), TD(100), PD(5, 100)
	COMMON /FRAC3/FACHU(51)
	COMMON /FRAC1/THETA(5)
	COMMON /FRAC2/RRRD(5),RWD,RRD,AAD,EPSI,EPSI1,TTD,JJ
	COMMON /FRAC4/DEE,TTPI,ICASE
	COMMON /FRAC5/IOPT, IER
	COMMON /FRACE/IFLAGI
C	COMMON / A ARO/// A ARO//
C a	
C	VARIABLE INPUT DATA
	ICASE=2
	N = 8
	RRD=14.0D0
	RWD=20.0D0
	AAD=8.00D0
	EPSI=1.0D-13

I

```
EPSI1=1.0D-15
С
С
C
            CONSTANT DATA
      M=77777
      IOPT=1
      TTPI=3.141592654
      EEE=DEXP(1,0D0)
      DEE=DLOG10(EEE)
      IEND99=0
C
            GENERATING THE FACTORIALS
      CALL FACT
C
            GENERATING RRRD(I)
      DO 1 I=1,5
      TPI = TTPI / 4.0
      THETA(I) = TPI * (I - 1)
      RRRD(I)=(RRD**2+RWD**2-2*RRD*RWD*DCOS(THETA(I)))**0.5
1
      CONTINUE
C
C
            PRESETTING PD(JJ, II) TO ZERO
C
      DO 2 I=1,5
      DO 3 J=1,100
      PD(I, J) = 0.0DQ
3
      CONTINUE
2
       CONTINUE
C
С
С
            DECIDING WHAT PROGRAM TO FOLLOW
       IF (ICASE.EQ.1) GO TO 1000
       IF (ICASE.EQ.2) GO TO 2000
      WRITE (6,3001)
3001
      FORMAT (5X, '***ICASE WAS NOT SPECIFIED***')
      GO TO 1050
C
C
C
              CONSTANT PRESSURE HOLE
С
           **************************
C
C
C
C
            LONG TIME APPROXIMATON-DOUBLET MODEL
1000
      W1=(AAD**2)/(RWD*RRD)
      W2 = RRD / RWD
       DO 1001 I=1,5
       WCOS=DCOS(THETA(I))
      WW = 1 - 2 * W 1 * WCOS + (W1 * * 2)
      WWW = 1 - 2 * W2 * WCOS + (W2 * * 2)
      WW=WW/WWW
       PDSS(I)=DLOG(RRD/AAD)+0.5*DLOG(WW)
1001
      CONTINUE
C
```

I

ı

```
C
      DO 1042 I=1,100
      TD(I) = 1.0
     CONTINUE
1042
C
           THE TINE LOOP. WE CONSIDER SIX LOG CYCLES FOR
C
           TD/RD**2 STARTING AT 0.1.
С
      II = 0
      DO 1002 KKK=1,20
      DO 1003 KK=1,5
      IF (IEND99.EQ.1) GO TO 1041
      AB=KK
      ABB = KKK
      II = II + 1
      TD(II)=AB*0.0002*(10.0**ABB)
C
C
C
           NOW WE CONVERT TO TD/RD**2 FOR ANGLE=0
      TD(II)=TD(II)*(RRRD(1)**2)
1020
      TTD=TD(II)
      WRITE (6,1059) TTD
С
C1059 FORMAT (15X, D20, 9)
C
C
      IFLAG1=0
           THE ANGLE LOOP. THE ORDER OF CALCULATION IS
C
            0,180,45,135,90 DEG. THE ANGLES ARE REARRANGED:
C
      DO 1021 JJJ=1,5
      IF (JJJ.EQ.1) JJ=1
      IF (JJJ.EQ.2) JJ=5
      IF (JJJ.EQ.3) JJ=4
      IF (JJJ.EQ.4) JJ=2
      IF (JJJ.EQ.5) JJ=3
      IF (IEND99.EQ.1) GO TO 1041
C
       IF (JJ.GT.1) GO TO 1021
С
            NOW THE ANGLES ARE THETA(JJ) AND THE RADII ARE
C
            RRRD(JJ). WE NOW CHECK THE VALUE OF TD/RD**2:
С
      TDR=TD(II)/(RRRD(JJ)**2)
      IF (TDR.GE.0.0999.AND.TDR.LE.1.001D8) GO TO 1022
      PD(JJ,II)=0.0
      GO TO 1021
C
С
C
            TD/RD**2 IS GREATER THAN 0,1 AND WE CONTINUE
C
           WITH THE PD CALCULATION.
     PD(JJ,II) = PWD(TTD,N,M)
1022
1021
      CONTINUE
       GO TO 1041
С
1003
      CONTINUE
1002
      CONTINUE
С
```

١

```
C
C
           THE RESULTS
      WRITE (6,1030)
1041
1030 FORMAT (///,20X,'THE RESULTS',/,20X,'*************/,//)
      WRITE (6,1035) ICASE
1035 FORMAT (10X, 'ICASE=', I5,/)
      F=AAD/RWD
      E = RRD / RWD
      WRITE (6,1031) AAD, RWD, RRD
      WRITE (6,1032) F,E
      FORMAT (10X, 'AAD=', E12.5, /, 10X, 'RWD=', E12.5, /, 10X, 'RRD=', E12.5, /)
1031
1032 FORMAT (10X, 'F=', E12.5,/, 10X, 'E=', E12.5,//)
      WRITE (6,1025)
1025 FORMAT (10X, 'THE STEADY STATE PRESSURES',/)
      DO 1026 I=1,5
      THET=THETA(I)*180.0/TTPI
      WRITE (6,1027) THET, PDSS(I)
      FORMAT (10X, 'THETA=', E12.5, 10X, 'PDSS=', D20.9)
1027
1026
      CONTINUE
      WRITE (6,1028)
      FORMAT (//)
1028
C
C
      DO 1004 JJ=1,5
      THET=THETA(JJ)*180.0/TTPI
      WRITE (6,1033) THET
1033
      FORMAT (//,5X,'THETA=',E12.5,/)
      WRITE (6,1034)
1034 FORMAT (14X, 'TD', 17X, 'TD:RD**2', 16X, 'PD', 19X, 'PDN', /)
C
      DO 1005 II=1,100
      IF (PD(JJ,II).EQ.0.0) GO TO 1005
      PDN=PD(JJ,II)/PDSS(JJ)
      TTD=TD(II)
      TDR=TTD/(RRRD(JJ)**2)
      WRITE (6,1010) TTD, TDR, PD(JJ, II), PDN
      FORMAT (5X,4(D20.9))
1010
1005
      CONTINUE
1004
      CONTINUE
C
C
C
C
            END OF THE CONST ANT PRESSURE CALCULATIONS
      GO TO 1050
C
C
С
C
C
               CLOSED BOUNDARY HOLE
C
             **********************
2000
      DO 2042 I = 1, 100
      TD(I) = 1.0
```

I

```
2042 CONTINUE
C
C
           THE TIME LOOP. WE CONSIDER SIX LOG CYCLES FOR
           TD/RD**2 STARTING AT 0.1.
C
      II = 0
      DO 2002 KKK=1,20
      DO 2003 KK=1,5
      IF (IEND99.EQ.1) GO TO 2041
      AB = KK
      A B B = K K K
      II = II + 1
      TD(II)=AB*0.0002*(10.0**ABB)
C
C
           NOW WE CONVERT TO TD/RD**2 FOR ANGLE=0
C
2020
      TD(II) = TD(II) * (RRRD(1) * *2)
      TTD=TD(II)
      WRITE (6,2059) TTD
C
C2059
      FORMAT (15X,D20.9)
С
С
      IFLAG1=0
           THE ANGLE LOOP. THE ORDER OF CALCULATION IS
C
C
           0,180,45,135,90 DEG. THE ANGLES ARE REARRANGED:
      DO 2021 JJJ=1,5
      IF (JJJ.EQ.1) JJ=1
      IF (JJJ.EQ.2) JJ=5
      IF (JJJ.EQ.3) JJ=4
      IF (JJJ.EQ.4) JJ=2
      IF (JJJ.EQ.5) JJ=3
      IF (IEND99.EQ.1) GO TO 2041
C
       IF (JJ.GT.1) GO TO 2021
С
           NOW THE ANGLES ARE THETA(JJ) AND THE RADII ARE
C
           RRRD(JJ), WE NOW CHECK THE VALUE OF TD/RD**2:
C
      TDR=TD(II)/(RRRD(JJ)**2)
      IF (TDR.GE.0.0999.AND.TDR.LE.1.001D8) GO TO 2022
      PD(JJ,II)=0.0
      GO TO 2021
С
C
C
           TD/RD**2 IS GREATER THAN 0.1 AND WE CONTINUE
           WITH THE PD CALCULATION.
C
      PD(JJ,II) = PWD(TTD,N,M)
2022
2021
      CONTINUE
       GO TO 2041
С
2003 CONTINUE
2002 CONTINUE
C
C
C
           THE RESULTS
2041 WRITE (6,2030)
```

ł

```
2030
      FORMAT (///,20X,'THE RESULTS',/,20X,'*************/.//)
      WRITE (6,2035) ICASE
2035
     FORMAT (10X, 'ICASE=', I5,/)
      F = A A D / RWD
      E = RRD / RWD
      WRITE (6,2031) AAD, RWD, RRD
      WRITE (6,2032) F,E
2031
      FORMAT (10X, 'AAD=', E12.5,/, 10X, 'RWD=', E12.5,/, 10X, 'RRD=', E12.5,/)
2032 FORMAT (10X, 'F=', E12.5,/,10X, 'E=', E12.5,//)
      DO 2004 JJ=1,5
      THET=THETA(JJ)*180.0/TTPI
      WRITE (6,2033) THET
      FORMAT (//,5X,'THETA=',E12.5,/)
2033
      WRITE (6,2034)
2034 FORMAT (14X, 'TD', 17X, 'TD: RD**2', 16X, 'PD',/)
      DO 2005 II=1,100
      IF (PD(JJ,II).EQ.0.0) GO TO 2005
      TTD=TD(II)
      TDR=TTD/(RRRD(JJ)**2)
      WRITE (6,2010) TTD, TDR, PD(JJ, II)
2010
      FORMAT (5X,3(D20.9))
2005
     CONTINUE
2004
     CONTINUE
C
1050
      STOP
      END
C
С
С
                   THE STEHFEST ALGORITHM
С
                ************************
C
      FUNCTION PWD(TD, N, M)
C
            THIS FUNTION COMPUTES NUMERICALLY THE LAPLACE TRNSFORM
C
            INVERSE OF F(S).
      IMPLICIT REAL*8 (A-H,O-Z)
      DIMENSION G(50), V(50), H(25)
      COMMON /FRAC6/IFLAG1
      COMMON /FRAC99/IEND99
C
С
           NOW IF THE ARRAY V(I) WAS COMPUTED BEFORE THE PROGRAM
C
           GOES DIRECTLY TO THE END OF THE SUBROUTINE TO CALCULATE
C
           F(S).
      IF (N.EQ.M) GO TO 17
      M = N
      DLOGTW=0.6931471805599
      NH = N/2
С
C
           THE FACTORIALS OF 1 TO N ARE CALCULATED INTO ARRAY G.
      G(1) = 1
      DO 1 I=2,N
      G(I) = G(I-1) * I
1
      CONTINUE
```

```
С
С
            TERMS WITH K ONLY ARE CALCULATED INTO ARRAY H.
      H(1) = 2.7G(NH-1)
      DO 6 I=2,NH
      FI=I
      IF(I-NH) 4,5,6
4
      H(I) = FI * * NH * G(2 * I) / (G(NH - I) * G(I) * G(I - 1))
      GO TO 6
5
      H(I) = FI * * NH * G(2 * I) / (G(I) * G(I - 1))
6
      CONTINUE
С
            THE TERMS (-1) \times \times \times + 1 ARE CALCULATED.
С
            FIRST THE TERM FOR I=1
С
      SN=2*(NH-NH/2*2)-1
C
С
            THE REST OF THE SH'S ARE CALCULATED IN THE MAIN ROUTINE.
С
С
С
            THE ARRAY V(I) IS CALCULATED.
       DO 7 I=1,N
C
            FIRST SET V(I)=0
C
      V(I)=0.
С
            THE LIMITS FOR K ARE ESTABLISHED.
С
            THE LOWER LIMIT IS K1=INTEG((I+1/2))
С
       K_{1} = (I + 1)/2
С
С
            THE UPPER LIMIT IS K2=MIN(I,N/2)
       X2=I
       IF (K2-NH) 8,8,9
9
       К2=ХН
С
С
            THE SUMMATION TERM IN V(I) IS CALCULATED.
8
       DO 10 K=K1,K2
       IF (2*K-I) 12,13,12
       IF (I-K) 11,14911
12
       V(I) = V(I) + H(K) / (G(I-K) + G(2 + K - I))
11
       GO TO 10
       V(I) = V(I) + H(K) / G(I - K)
13
       GO TO 10
14
       V(I) = V(I) + H(K) / G(2 + K - I)
10
       CONTINUE
С
С
            THE Y(I) ARRAY IS FINALLY CALCULATED BY WEIGHTING
С
            ACCORDING TO SN.
       V(I) = S \times V(I)
        WRITE (6,21) I,V(I)
С
        FORMAT (5X, 'I=', I5, 5X, 'V(I)=', D20.9)
c21
С
С
            THE TERM SN CHANGES ITS SIGN EACH ITERATION.
       SX=-SH
```

```
7
      CONTINUE
С
           THE NUMERICAL APPROXIMATION IS CALCULATED.
С
17
      PWD=Q,
      A=DLOGTW/TD
      DO 15 I=1,N
      IF (IEHD99, EQ. 1) GO TO 18
       WRITE (6,20) I
С
c20
       FORMAT (5X, 15)
      ARG=A×I
      PWD=PWD+V(I)*PWDL(ARG,I)
      CONTINUE
15
      PMD=PMD*A
      IFLAG1=1
18
      RETURN
      END
С
С
С
С
С
С
                  FUNCTION PWDL(ARG, IJ)
               ********
С
С
С
            THIS FUNCTION EVALUATES F(S) OF THE CONSTANT PRESSURE
С
            BOUNDARY CASE FOR THE STEHFEST ALGORITHM. THE ARGUMENT
С
            (S) IS FIXED BY THE ALGORITHM.
      FUNCTION PWDL(ARG, IJ)
      IMPLICIT REAL*8 (A-H,O-Z)
      REAL*8 SRRD, SRWD, SAAD, SRRRD, PWDL1, ALFA
      COMMON /FRAC12/SUM(50,16)
      COMMON /FRAC11/BIAAD(100), BKAAD(100), BKRWD(100), BKRRD(100)
      COMMON /FRAC1/THETA(5)
      COMMON /FRAC2/RRRD(5), RWD, RRD, AAD, EPSI, EPSI1, TTD, JJ
      COMMON /FRAC3/FACNU(51)
      COMMON /FRAC5/IOPT, IER
      COMMON /FRAC6/IFLAG1
      COMMON /FRAC99/IEND99
      DOUBLE PRECISION MM8SI0, MM8SI1, MM8SK0, MM8SK1
      0 E L T A A ≃ 1, 0
С
С
С
             FIRST WE CALCULATE THE LINE SOURCE TERM
      SRRRD=DSQRT(ARG)*RRRD(JJ)
      PWDL1=MMBSK0(IOPT, SRRRD, IER)
С
С
С
            NOW WE CHECK IF THE MATRIX SUM(XU, IJ) IS COMPLETE
       IF (IFLAGI, EQ. 1) GO TO 7
С
С
            SETTING THE VECTOR SUM(KK, IJ) TO ZERO
      DO 1 KK=1,50
```

1

1 C	SUM(KK,IJ)=0.0D0 CONTINUE
C C	EVALUATING THE ARGUMENTS FOR THE BESSEL FUNCTIONS SRWD=DSQRT(ARG)*RWD SRRD=DSQRT(ARG)*RRD SAAD=DSQRT(ARG)*AAD
с с с с с с с с с	NOW WE START CONSIDRING THE TERMS IN THE SUMMATION. NOTE THAT THE BESSEL FUNCTIONS ARE STORED IN AN ARRAY OF WHICH THE INDEX IS SHIFTED UPWARDS BY 1 TO BE ABLE TO HANDLE K(0,Z). K(0,SAAD) IS NOTED AS BKAAD(1). SUM(1,IJ)=SUMIN (SRRD,SRWD,SAAD,1,0) IF (IEND99,EQ.1) GO TO 6
1	PWDL=-SUM(1,IJ)+PWDL1 DO 2 I=2,50 NU=I NUU=NU-1 IF (IFLAG1,EQ.1) GO TO 8 SUM(NU,IJ)=SUMIN (SRRD,SRWD,SAAD,NU,NUU) IF (IEND99,EQ.1) GO TO 6
C 8	<pre>IF (SUM(XU,IJ).EQ.0.0) GO TO 3 ACE=SUM(NU,IJ) ACE=DABS(ACE) IF (ACE.LT.1.0D-45) GO TO 4 ALFA=(I-1)*THETA(JJ) PWDL3=DCOS(ALFA)*SUM(NU,IJ)*2 PWDL4=PWDL-PWDL3</pre>
C C C	NOW WE CHECK THE CONVERGENCE OF F(S) IF (PWDL3.EQ.0.0) GO TO 4 DELTA=PWDL3/PWDL4 DELTA=DABS(DELTA) DELT=DELTA/DELTAA DELTAA=DELTA IF (EPSI-DELTA) 3,4,4
3 2 C C	PWDL=PWDL4 CONTINUE
C 4 C c5 6	THE SERIES CONVERGED, WE EVALUATE PWDL. PWDL=PWDL/ARG WRITE (6,5) NU, PWDL, DELTA, DELT, SRWD, SRRD, SAAD FORMAT (15, 1X, 6(D20.9)) RETURN END
C C C	

ł

```
С
С
               SUBROUTINE FACT
С
             ******
С
C
          THIS SUBROUTINE EVALUATES FACTORIALS UP TO 50.
      SUBROUTINE FACT
      IMPLICIT REAL*8 (A-H,O-Z)
      COMMON /FRAC3/FACNU(51)
      FACNU(1) = 1
      FACNU(2) = 1,000
      DO 1 I=2,50
      FACNU(I+1)=FACNU(I)*I
1
      CONTINUE
      RETURN
      END
C
С
С
С
               FUNCTION BESKA (N,Z)
С
            *****
С
          THIS FUNCTION EVALUATES THE N DEPENDENT SERIES FOR THE
С
          ASYMPTOTIC EXPANSION OF K(N,Z)
С
      FUNCTION BESKA(N,Z)
      IMPLICIT REAL*8 (A-H,O-Z)
      REAL*8 AZ
      EPSI=1.0D-15
      FNU=(N**2)*4.0
      BESKA=1.0D0
      ZZ = Z * 8.0
      AZ = 1.0D0
      DO 1 I = 1, 100
      AZ=AZ*(FNU-((2*I-1)**2))/(ZZ*I)
      BESKA=BESKA+AZ
      DELTA=AZ/BESKA
      IF (DABS(DELTA).LT.EPSI) GO TO 2
1
      CONTINUE
2
      RETURN
      END
С
С
С
                  FUNCTION BESIA (N,Z)
С
               *********
С
С
           THIS FUNCTION EVALUATES THE N DEPENDENT SERIES FOR THE
С
           ASYMPTOTIC EXPANSION OF I(N,Z)
      FUNCTION BESIA(N,Z)
      IMPLICIT REAL*8 (A-H,O-Z)
      REAL*8 AZ, FNU, ZZ, DELTA
      EPSI=1.0D-15
      FNU=(N**2)*4,0
      BESIA=1.0DQ
```

1

ı.

```
ZZ=Z*8.0
      AZ=1.0D0
      DO 1 I=1,100
      AZ=AZ*(-1)*(FNU-((2*I-1)**2))/(ZZ*I)
      BESIA=BESIA+AZ
      DELTA=AZ/BESIA
      IF (DABS(DELTA).LT.EPSI) GO TO 2
1
      CONTINUE
2
      RETURN
      END
С
C
С
С
               FUNCTION SUMIN (SRRD, SRWD, SAAD, NU, NUU)
            С
С
С
           THIS FUNCTION EVALUATES THE TERMS IN THE INFINITE
C
           SERIES IN F(S).
      FUNCTION SUMIN (SRRD, SRWD, SAAD, NU, NUU)
      IMPLICIT REAL*8 (A-H,O-Z)
      COMMON /FRAC12/SUM(50,16)
      COMMON /FRAC11/BIAAD(100), BKAAD(100), BKRWD(100), BKRRD(100)
      COMMON /FRAC4/DEE,TTPI,ICASE
      COMMON /FRAC3/FACNU(51)
      COMMON /FRAC99/IEND99
      DOUBLE PRECISION MMBSK0, MMBSK1, MMBSI0, MMBSI1
      IOPT = 1
      NUU=NU-1
      NUUU=NUU
      IF (ICASE.EQ.2.AND.NU.EQ.1) NUUU=NUU+2
      NNU = NUUU + 1
C
C
           THIS PART IS THE SCREENING SECTION THAT PICKS THE
C
           METHOD FOR EVALUATING THE F(S) TERNS.
C
      IF (SAAD.GE.100) GO TO 251
      IF (SRWD.GE.100.AND.SRRD.GE.100) GO TO 252
      IF (SRWD.GE.100.AND.SRRD.LT.100) GO TO 253
      IF (SRWD.LT.100.AND.SRRD.GE.100) GO TO 254
      IF (SRWD.LT. 100.AND.SRRD.LT. 100) GO TO 255
C
252
      IF (SAAD.GE, 20) GO TO 256
      IF (SAAD.GE.2.0) GO TO 257
      IF (SAAD.LT.2.0) GO TO 258
C
      EKAAD=SAAD*DEE
256
      IF (EKAAD.GE.65) GO TO 251
      GO TO 257
C
      EKAAD = (-NU) * DLOG 10 (SAAD) + DLOG 10 (FACNU(NU)) + (NU-1) * DLOG 10 (2.0D0)
258
      IF (EKAAD.GE.65) GO TO 259
      GO TO 257
```

C		
253	IF (SAAD,GE,20,AHD,SRRD,GE,20) GO TO 260	
	IF (SAAD.LT.20.AND.SRRD.GE.20) GO TO 261	
	IF (SAAD, LT, 20, AND, SRRD, LT, 20) GO TO 262	
C		
260	FKAAD=SAAD*DFF	
200		
	$T = \left\{ F V \right\} B = C F = \left\{ V \right\} B = F V B B = C F = C = C = C = C = C = C = C = C =$	
	IF (DNAAD.GE.05.AND.EKKRD.GE.05) GO TO 251	
	IF (EKAAD.LT.65.AND.EKRRD.GE.65) GO TO 257	
	IF (EKAAD.LT.65.AND.EKRRD.LT.65) GO TO 263	
C		
26 1	IF (SAAD.GE.2.0) GO TO 264	
	IF (SAAD.LT.2.0) GO TO 265	
С		
264	EKRRD=SRRD*DEE	
	IF (EKRRD.GE.65) GO TO 257	
	TF (EKRRD.LT.65) GO TO 263	
C		
265	FYDDD=SDDD+DFF	
205	FRAAD=SEED-DEE FRAAD=(~NU)*DEE	
	$\sum_{i=1}^{n} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum$	
	LF (EKKRD.GE.65.AND.EKAAD.GE.65) GO TO 259	
	IF (EKRRD.GE.65.AND.EKAAD.LT.65) GO TO 257	
	IF (EKRRD.LT.65.AND.EKAAD.GE.65) GO TO 266	
	IF (EKRRD.LT.65.AND.EKAAD.LT.65) GO TO 263	
С		
262	IF (SAAD.GE.2.0.AND.SRRD.GE.2.0) GO TO 263	
	IF (SAAD.LT.2.0.AND.SRRD.GE.2.0) GO TO 267	
	IF (SRRD, LT, 2, 0) GO TO 268	
С		
267	EKAAD = (-NU) * DLOG 10 (SAAD) + DLOG 10 (FACNU(NU)) + (NU-1) * DLOG 10 (2, 0D0)	1
20,	TE (EKAAD GE 65) GO TO 266	
	$\frac{11}{10} (EKARD: GE:05) GO 10 200$	
a	11 (ERARD.11.05) GO 10 205	
208	$EKKRD = (-KU) \wedge DLOG 0 (SKRD) + DLOG 0 (FACKU(NU)) + (NU - 1) \wedge DLOG 0 (2, 0D0)$	
	E KAAD = (-RUJ * DLOGIU(SAAD) + DLOGIU(FACNU(RUJ) + (RU-1) * DLOGIU(2.0DU)	1
	IF (EKRRD.GE.65.AND.EKAAD.GE.65) GO TO 269	
	IF (EKRRD.LT.65.AND.EKAAD.GE.65) GO TO 266	
	IF (EKRRD.LT.65.AND.EKAAD.LT.65) GO TO 263	
С		
254	IF (SAAD,GE,20,AND,SRWD,GE,20) GO TO 270	
	IF (SAAD,LT,20,AND,SRWD,GE,20) GO TO 271	
	IF (SAAD, UT, 20, AND, SRWD, UT, 20) GO TO 272	
С		
270	EKAAD=SAAD*DEE	
- / •	EKRWD=SRWD*DEF	
	TE (FRAAD GE 65 AND FRAND GE 65) CO TO 251	
	II ISANADIULIUJIANDIULIUNUULUUJI UU IU 201 II (RVAAD IT 65 AND RVDND 05 65) 00 TO 201	
	IF (EKAAD.LI.05.AND.EKRWD.GE.05) GO TO 257	
~	IF (ERARD.LI.03.AND.EKKWD.LT.03) GO TO 273	
C		
271	IF (SAAD.GE.2.0) GO TO 274	
	IF (SAAD.LT.2.0) GO TO 275	
С		

Ι

274	EKRWD=SRWD*DEE
	IF (EKRWD.GE.65) GO TO 257
	IF (EKRWD.LT.65) GO TO 273
С	
275	EKRWD=SRWD*DEE
	EKAAD = (-NU) * DLOG 10 (SAAD) + DLOG 10 (FACNU(NU)) + (NU-1) * DLOG 10 (2,0D0)
	IF (EKRWD.GE.65.AND.EKAAD.GE.65) GO TO 259
	IF (EKRWD.GE.65.AND.EKAAD.LT.65) GO TO 257
	IF (EKRWD.LT.65.AND.EKAAD.GE.65) GO TO 276
	IF (EKRWD.LT.65.AND.EKAAD.LT.65) GO TO 273
C	
272	IF (SAAD.GE.2.0.AND.SRWD.GE.2.0) GO TO 273
	IF (SAAD.LT.2.0.AND.SRWD.GE.2.0) GO TO 277
	IF (SAAD.LT.2.0.AND.SRWD.LT.2.0) GO TO 278
C	
277	EKAAD = (-NU) * DLOG 10 (SAAD) + DLOG 10 (FACNU(NU)) + (NU-1) * DLOG 10 (2,0D0)
	IF (EKAAD.GE.65) GO TO 276
	IF (EKAAD.LT.65) GO TO 273
C	
278	EKAAD = (-NU) * DLOG 10 (SAAD) + DLOG 10 (FACNU(NU)) + (NU-1) * DLOG 10 (2,0D0)
	EKRWD = (-NU) * DLOG 10(SRWD) + DLOG 10(FACNU(NU)) + (NU-1) * DLOG 10(2,0D0)
	IF (EKAAD.GE.65.AND.EKRWD.GE.65) GO TO 279
	IF (EKAAD.LT.65.AND,EKRWD,GE.65) GO TO 276
-	IF (EKAAD.LT.65.AND.EKRWD.LT.65) GO TO 273
C	
255	IF (SRWD.GE.20, AND.SRRD.GE.20) GO TO 280
	IF (SRWD.GE.20.AND.SRRD.GE.2.0) GO TO 281
	IF (SRWD.GE.2.0, AND, SRRD.GE.20) GO TO 282
	IF (SRWD.GE.20.AND.SRRD.LT.2.0) GO TO 304
	IF (SRWD.51, 2.0, AND, SRRD.66, 20) GO TO 305
	IF (SRWD.GE.2.0.AND.SRRD.GE.2.0) GO IO 205 TE (SRWD.GE 2.0 AND SDDD (T 2.0) GO TO 284
	Tr (SRWD, GE, 2, 0, AND, SRRD, SRCD, SC, 0) GO TO 204
	TE (SRWD.LT 2 0 AND SPRD LT 2 0) GO TO 286
C	IF (SKWD.DI.2.0, KKD.DKKD.DI.2.07 GO IO 200
280	TE (SAAD.GE.20) CO TO 287
200	TF (SAAD, GE, 20) GO TO 288
	TF (SAAD, LT, 2, 0) = GO = TO = 200
C	11 (bimb.b1.2.0) 60 10 209
287	EKAAD=SAAD*DEE
	EKRWD=SRWD*DEE
	EKRRD=SRRD*DEE
	IF (EKAAD.GE.65) GO TO 251
	IF (EKRWD.GE.65.AND.EKRRD.GE.65) GO TO 257
	IF (EKRWD.GE.65.AND.EKRRD.LT.65) GO TO 263
	IF (EKRWD.LT.65.AND.EKRRD.GE.65) GO TO 273
	IF (EKRWD.LT.65.AND.EKRRD.LT.65) GO TO 290
C	
288	EK RW D=SRWD*DEE
	EKRRD=SRRD*DEE
	IF (EKRWD.GE.65.AND.EKRRD.GE.65) GO TO 257
	IF (EKRWD.GE.65.AND.EKRRD.LT.65) GO TO 263

Ι

IF (EKRWD.LT.65.AND.EKRRD.GE.65) GO TO 273 IF (EKRWD.LT.65.AND.EKRRD.LT.65) GO TO 290 C EKAAD=(-NU)*DLOG10(SAAD)+DLOG10(FACNU(NU))+(NU-1)*DLOG10(2.0D0) 289 IF (EKAAD.LT.65) GO TO 291 IF (EKAAD.GE.65) GO TO 292 C **29**1 EKRWD=SRWD*DEE EKRRD=SRRD*DEE IF (EKRWD.GE.65.AND.EKRRD,GE.65) GO TO 257 IF (EKRWD.GE.65.AND.EKRRD.LT.65) GO TO 263 IF (EKRWD.LT.65.AND.EKRRD.GE.65) GO TO 273 IF (EKRWD.LT.65.AND.EKRRD.LT.65) GO TO 290 C 292 EKRWD = SREID * DEEEKRRD=SRRD*DEE IF (EKRWD.GE.65.AND.EKRRD.GE.65) GO TO 259 IF (EKRWD.GE.65.AND.EKRRD.LT.65) GO TO 266 IF (EKRWD.LT.65.AND.EKRRD.GE.65) GO TO 276 IF (EKRWD.LT.65.AND.EKRRD.LT.65) GO TO 293 C IF (SAAD.GE.2.0) GO TO 294 281 IF (SAAD.LT.2.0) GO TO 295 C 294 EKRWD = SRWD * DEEIF (EKRWD.GE.65) GO TO 263 IF (EKRWD.LT.65) GO TO 290 C 295 EKAAD = (-NU) * DLOG 10 (SAAD) + DLOG 10 (FACNU(NU)) + (NU-1) * DLOG 10 (2.0DC)EKRWD=SRWD*DEE IF (EKRWD.GE.65.AND.EKAAD.GE,65) GO TO 266 IF (EKRWD.GE.65.AND.EKAAD.LT.65) GO TO 263 IF (EKRWD.LT.65.AND.EKAAD.GE.65) GO TO 293 IF (EKRWD.LT.65.AND.EKAAD.LT.65) GO TO 290 C 282 IF (SAAD.GE.2.0) GO TO 296 IF (SAAD.LT.2.0) GO TO 297 С EKRRD=SRRD*DEE 296 IF (EKRRD.GE.65) GO TO 273 IF (EKRRD.LT.65) GO TO 290 C 297 EKRRD=SRRD*DEE EKAAD = (-NU) * DLOG 10 (SAAD) + DLOG 10 (FACNU(NU)) + (NU-1) * DLOG 10 (2.0D0)IF (EKRRD.GE.65.AND.EKAAD.GE.65) GO TO 276 IF (EKRRD.GE.65.AND.EKAAD.LT.65) GO TO 273 IF (EKRRD.LT.65.AND.EKAAD.GE.65) GO TO 293 IF (EKRRD.LT.65.AND.EKAAD.LT.65) GO TO 290 C 283 IF (SAAD.GE.2.0) GO TO 290 IF (SAAD.LT.2.0) GO TO 298 С

298	EKAAD=(-NU)*DLOG10(SAAD)+DLOG10(FACNU(NU))+(NU-1)*DLOG10(2.0D0) IF (EKAAD.GE.65) GO TO 293 IF (EKAAD.LT.65) GO TO 290
C 284	EKAAD=(-NU)*DLOG10(SAAD)+DLOG10(FACNU(NU))+(NU-1)*DLOG10(2.0D0) EKRRD=(-NU)*DLOG10(SRRD)+DLOG10(FACNU(NU))+(NU-1)*DLOG10(2.0D0) IF (EKRRD.GE.65.AND.EKAAD.GE.65) GO TO 299 IF (EKRRD.GE.65.AND.EKAAD.LT.65) GO TO 300 IF (EKRRD.LT.65.AND.EKAAD.GE.65) GO TO 293 IF (EKRRD.LT.65.AND.EKAAD.LT.65) GO TO 290
285	EKAAD=(-NU)*DLOG10(SAAD)+DLOG10(FACNU(NU))+(NU-1)*DLOG10(2.0D0) EKRWD=(-NU)*DLOG10(SRWD)+DLOG10(FACNU(NU))+(NU-1)*DLOG10(2.0D0) IF (EKRWD.GE.65.AND.EKAAD.GE.65) GO TO 301 IF (EKRWD.GE.65.AND.EKAAD.LT.65) GO TO 302 IF (EKRWD.LT.65.AND.EKAAD.GE.65) GO TO 293 IF (EKRWD.LT.65.AND.EKAAD.LT.65) GO TO 290
C 286	EKAAD=(-NU)*DLOG10(SAAD)+DLOG10(FACNU(NU))+(NU-1)*DLOG10(2.0D0) IF (EKAAD.LT.65) GO TO 290 EKRRD=(-NU)*DLOG10(SRRD)+DLOG10(FACNU(NU))+(NU-1)*DLOG10(2.0D0) EKRWD=(-NU)*DLOG10(SRWD)+DLOG10(FACNU(NU))+(NU-1)*DLOG10(2.0D0) IF (EKRWD.GE.65.AND.EKRRD.GE.65) GO TO 303 IF (EKRWD.GE.65.AND.EKRRD.LT.65) GO TO 301 IF (EKRWD.LT.65.AND.EKRRD.GE.65) GO TO 299 IF (EKRWD.LT.65.AND.EKRRD.LT.65) GO TO 293
C 304	EKRRD=(-NU)*DLOG10(SRRD)+DLOG10(FACNU(NU))+(NU-1)*DLOG10(2.0D0) IF (EKRRD.GE.65) GO TO 306 IF (EKRRD.LT.65) GO TO 307
C 306	EKRWD=SRWD*DEE IF (EKRWD.GE.65) GO TO 269 IF (EKRWD.LT.65) GO TO 299
C 307	EKAAD=(-NU)*DLOG10(SAAD)+DLOG10(FACNU(NU))+(NU-1)*DLOG10(2.0D0) IF (EKAAD.GE.65) GO TO 293 IF (EKAAD.LT.65) GO TO 290
305	EKRWD=(-NU)*DLOG10(SRWD)+DLOG10(FACNU(NU))+(NU-1)*DLOG10(2.0D0) IF (EKRWD.GE.65) GO TO 308 IF (EKRWD.LT.65) GO TO 309
C 308	EKRRD=SRRD*DEE IF (EKRRD.GE.65) GO TO 279 IF (EKRRD.LT.65) GO TO 301
C 309 C	EKAAD=(-NU)*DLOG10(SAAD)+DLOG10(FACNU(NU))+(NU-1)*DLOG10(2.0D0) IF (EKAAD.GE.65) GO TO 293 IF (EKAAD.LT.65) GO TO 290
c	

Т

L

С С С	THIS SE	CTION EVALUATES	THE TERMS SUM(NU,IJ)
C C	COMPLET	'E ASYMPTOTIC EX	PANSTON (AAD. RWD. RRD) A
25 1	IF (ICASE.EQ	.2) GO TO 351	
	AR1=2*SAAD-S	RRD-SRWD	
	AR2=DSQRT(SR	RD*SRWD)	
	IF (DABS(AR)).GE.160) GO TO	499
	GNRWD=BESKA(NUU, SRWD)	
	GNRRD=BESKA(NUU, SRRD)	
	GNAAD=BESKA(NUU, SAAD)	
	FNAAD=BESIAU	NUU, SAAD)	******
	SUMIN-DEXPLA	KIJ*GNRWD*GNRRD	*FRAAD/(Z*AKZ*GRAAD)
C	GO TO 500		
C C	<u>, , , , , , , , , , , , , , , , , , , </u>	BOUNDARY CASE	
351		RWD-SRRD	
	AR2=DSQRT(SR	RD*SRWD)	
	IF (DABS(AR1).GE.160) GO TO	499
	GNRWD=BESKA(NUU, SRWD)	
	GNRRD=BESKA(NUU, SRRD)	
	GNAAD1=BESKA	(NUUU-1,SAAD)	
	GNAAD2=BESKA	(NUU+1,SAAD)	
	FNAAD1=BESIA	(NUUU-1, SAAD)	
	FNAAD2=BESIA	(NUU+1,SAAD)	
	SUMIN=DEXPLA	LRTJ*GNRWD*GNRRD	*(FNAAD1+FNAAD2)/(2*AR2)
		I/ (GNAAD I+GNAADZ)
c	GO TO 500		
C C			
C			
C	PARTIAI	ASYMPTOTIC EXP	ANSION (RWD, RRD) B
257	IF (ICASE.EC	Q.2) GO TO 352	
	AR1=-SRWD-SP	RRD	
	AR2=DSQRT(SF	(WD*SRRD)	
	GNRWD=BESKA (NUU, SRWD)	
	GNRRD=BESKA(NUU, SRRD)	
	BIAAD(NU) = BE	SI(NUU, SAAD)	
	BKAAD(NU) = BA	AD(NUU,SAAD)	
	DLAN=DLOGIOU	BIAAD(NUJJ+AR1*	DEE+DLOG1U(TTP1*GNRWD*GNRRD/(2*AR2)
	TE (DIAN IT	-60 0D0) CO TO	100
	SUMIN=10**DI	AN	199
	GO TO 500		
С			
С	CLOSED	BOUNDARY HOLE	
352	AR1=-SRWD-SP	RD	
	AR2=DSQRT(SF	(WD*SRRD)	
	GNRWD=BESKA	(NUU,SRWD)	
	GNRRD=BESKA	NUU, SRRD)	
	BIAAD(NNU-1)	=BESI(NUUU-1,SA	AD)
	BIAAD(NU+1)=	=BESI(NUU+1,SAAD	1)

Ι

٢

```
BKAAD(NNU-1) = BAAD(NUUU-1, SAAD)
      BKAAD(NU+1) = BAAD(NUU+1, SAAD)
      DLAN=DLOG10(BIAAD(NNU-1)+BIAAD(NU+1))+AR1*DEE+DLOG10(TTPI*GNRWD)
      DLAN=DLAN+DLOG10(GNRRD/(2*AR2))
      DLAN=DLAN-DLOG10(BKAAD(NNU-1)+BKAAD(NU+1))
      IF (DLAN.LT.-60.0D0) GO TO 499
      SUMIN=-(10**DLAN)
      GO TO 500
C
C
C
C
           PARTIAL ASYMPTOTIC EXPANSION (RWD, RRD)
                                                       С
C
           SMALL ARGUMENT APPROXIMATION (AAD)
259
      IF (ICASE.EQ.2) GO TO 353
      GNRWD=BESKA(NUU, SRWD)
      FIAAD=FISMA(NUU, SAAD)
      FKAAD=FKSMA(NUU,SAAD)
      GNRRD=BESKA(NUU, SRRD)
      AR1=DSQRT(SRWD*SRRD)
      DLAN=DLOG10(TTPI*NUU*GNRWD*GNRRD/AR1)+2*NUU*DLOG10(SAAD)
      DLAN=DLAN-(SRWD+SRRD)*DEE-2*NUU*DLOG10(2.0D0)-2*DLOG10(FACNU(NU))
      DLAN = DLAN + DLOG 10 (FIAAD/FKAAD)
      IF (DLAN.LT.-60.0D0) GO TO 499
      SUMIN=10**DLAN
      GO TO 500
C
           CLOSED BOUNDARY HOLE
С
353
      GNRWD=BESKA(NUU, SRWD)
      FIAAD1=FISMA(NUUU-1,SAAD)
      FIAAD2=FISMA(NUU+1, SAAD)
      FKAAD1=FKSMA(NUUU-1, SAAD)
      FKAAD2 = FKSMA(NUU+1, SAAD)
      GNRRD=BESKA(NUU, SRRD)
      AR1=DSQRT(SRWD*SRRD)
      DLAN=DLOG10(TTPI*NUU*GNRWD*GNRRD/AR1)+2*NUU*DLOG10(SAAD)
      DLAN=DLAN-(SRWD+SRRD)*DEE-2*NUU*DLOG10(2.0D0)-2*DLOG10(FACNU(NU))
      DLAN=DLAN+DLOG10((2*NUU*FIAAD1/SAAD)+SAAD*FIAAD2/(2*(NUU+1)))
      DLAN=DLAN-DLOG10((SAAD*FKAAD1/(2*(NUUU-1)))+2*NUU*FKAAD2/SAAD)
      IF (DLAN.LT.-60.0D0) GO TO 499
      SUMIN = -(10 * * DLAN)
      GO TO 500
С
C
C
С
           PARTIAL ASYMPTOTIC EXPANSION (RWD)
                                                   D
263
      IF (ICASE.EQ.2) GO TO 354
      BIAAD(NU)=BESI(NUU, SAAD)
      BKRRD(NU)=BRRD(NUU, SRRD)
      BKAAD(NU) = BAAD(NUU, SAAD)
      BKRWD(NU) = BRWD(NUU, SRWD)
      GNRWD=BESKA(NUU.SRWD)
      DLAN=DLOG10(BIAAD(NU))+DLOG10(BKRRD(NU))-DLOG10(BKAAD(NU))
```

н

	DLAN=DLAN+DLOG10(DSQRT(TTPI/(2*SRWD))*GNRWD)-SRWD*DEE
	IF (DLAN.LT60.0D0) GO TO 499
	SUMIN=10**DLAN
	GO TO 500
C	
C	CLOSED BOUNDARY HOLE
354	BIAAD(NNU-1) = BESI(NUUU-1, SAAD)
	BIAAD(NUU+1)=BESI(NUU+1,SAAD)
	BKRRD(NU)=BRRD(NUU, SRRD)
	BKAAD(NNU-1) = BAAD(NUUU-1, SAAD)
	BKAAD(NU+1) = BAAD(NUU+1, SAAD)
C	BKRWD(NU)=BRWD(NUU,SRWD)
	GNRWD=BESKA(NUU, SRWD)
	DLAN=DLOG10(BKRRD(NU))-DLOG10(BKAAD(NNU-1)+BKAAD(NU+1))
	DLAN=DLAN+DLOG10(BIAAD(NNU-1)+BIAAD(NU+1))
	DLAN=DLAN+DLOG10(DSQRT(TTPI/(2*SRWD))*GNRWD)-SRWD*DEE
	IF (DLAN.LT60.0D0) GO TO 499
	SUMIN=-(10**DLAN)
	GO TO 500
C	
С	
С	
C	PARTIAL ASYMPTOTIC EXPANSION (RWD) F
С	SMALL ARGUMENT APPROXIMATION (AAD)
266	IF (ICASE.EQ.2) GO TO 356
	GNRWD=BESKA(NUU,SRWD)
	FIAAD=FISMA(NUU,SAAD)
	FKAAD=FKSMA(NUU,SAAD)
	BKRRD(NU)=BRRD(NUU, SRRD)
	AR1=DSQRT(TTPI/(2*SRWD))
	DLAN=DLOG10(BKRRD(NU)*AR1)+DLOG10(2*NUU*GNRWD)-SRWD*DEE
	DLAN=DLAN-2*DLOG10(FACNU(NU))-2*NUU*DLOG10(2.0D0)
	DLAN=DLAN+2*NUU*DLOG10(SAAD)
	DLAN=DLAN+DLOG10(FIAAD/FKAAD)
	IF (DLAN.LT60.0D0) GO TO 499
	SUMIN=10**DLAN
	GO TO 500
C	
C	CLOSED BOUNDARY HOLE
356	GNRWD=BESKA(NUU,SRWD)
	FIAAD1=FISMA(NUUU-1,SAAD)
	FIAAD2=FISMA(NUU+1,SAAD)
	FKAAD1=FKSMA(NUUU-1,SAAD)
	FKAAD2=FKSMA(NUU+1,SAAD)
	BKRRD(NU)=BRRD(NUU,SRRD)
	AR1=DSQRT(TTPI/(2*SRWD))
	DLAN=DLOG10(BKRRD(NU)*AR1)+DLOG10(2*NUU*GNRWD)-SRWD*DEE
	DLAN=DLAN-2*DLOG10(FACNU(NU))-2*NUU*DLOG10(2.0D0)
	DLAN=DLAN+2*NUU*DLOG10(SAAD)
	DLAN=DLAN+DLOG10((2*NUU*FIAAD1/SAAD)+SAAD*FIAAD2/(2*(NUU+1)))
	DLAN=DLAN-DLOG10((SAAD*FKAAD1/(2*(NUUU-1)))+2*NUU*FKAAD2/SAAD)
	IF (DLAN.LT60.0D0) GO TO 499

ł

	SUMIN=-(10**DLAN)
	GO TO 500
C	
C	
C	
C	PARTIAL ASYMPTOTIC EXPANSION (RWD) G
C	SMALL ARGUMENT APPROXIMATION (AAD, RRD)
269	IF (ICASE.EQ.2) GO TO 357
	FKRRD=FKSMA(NUU, SRRD)
	FIAAD=FISMA(NUU,SAAD)
	FKAAD=FKSMA(NUU, SAAD)
	GNRWD=BESKA(NUU, SRWD)
	AR1=GNRWD*DSQRT(TTPI/(2*SRWD))
	DLAN=DLOG10(AR1)+2*NUU*DLOG10(SAAD)-NUU*DLOG10(SRRD)
	DLAN=DLAN-SRWD*DEE-NUU*DLOG10(2.0D0)-DLOG10(FACNU(NU))
	DLAN=DLAN+DLOG10(FKRRD*FIAAD/FKAAD)
	IF (DLAN.LT60.0D0) GO TO 499
	SUMIN=10**DLAN
	GO TO 500
С	
С	CLOSED BOUNDARY HOLE
357	GNRWD=BESKA(NUU, SRWD)
	FKRRD=FKSMA(NUU, SRRD)
	FIAAD1=FISMA(NUUU-1,SAAD)
	FIAAD2=FISMA(NUU+1,SAAD)
	FKAAD1=FKSMA(NUUU-1,SAAD)
	FKAAD2=FKSMA(NUU+1,SAAD)
	AR1=GNRWD*DSQRT(TTPI/(2*SRWD))
	DLAN=DLOG10(AR1)+2*NUU*DLOG10(SAAD)-NUU*DLOG10(SRRD)
	DLAN=DLAN-SRWD*DEE-NUU*DLOG10(2.0D0)-DLOG10(FACNU(NU))
	DLAN=DLAN+DLOG10(FKRRD)
	DLAN=DLAN+DLOG10((2*NUU*FIAAD1/SAAD)+SAAD*FIAAD2/(2*(NUU+1)))
	DLAN=DLAN-DLOG10((SAAD*FKAAD1/(2*(NUUU-1)))+2*NUU*FKAAD2/SAAD)
	IF (DLAN.LT60.0D0) GO TO 499
	SUMIN=-(10**DLAN)
	GO TO 500
С	
С	
С	
C	PARTIAL ASYMPTOTIC EXPANSION (RRD) I
273	IF (ICASE.EO.2) GO TO 359
	BKRWD(NU)=BRWD(NUU, SRWD)
	GNRRD=BESKA(NUU, SRRD)
	BKAAD(NU)=BAAD(NUU, SAAD)
	BIAAD(NU)=BESI(NUU,SAAD)
	AR1=GNRRD*DSQRT(TTPI/(2*SRRD))
	DLAN=DLOG10(BKRWD(NU))+DLOG10(BIAAD(NU))-DLOG10(BKAAD(NU))
	DLAN=DLAN+DLOG10(AR1)-SRRD*DEE
	IF (DLAN.LT60.0D0) GO TO 499
	SUMIN=10**DLAN
	GO TO 500
a	

C

Т

C	CLOSED BOUNDARY HOLE
359	BKRWD(NU)=BRWD(NUU,SRWD)
	UNRRU-BESKA(NUU,SKRU) BRAAD(NNU_1)-BAAD(NUUU_1 CAAD)
	DKARD(NUIII) = DRAD(NUUIII) = CRAD)
	$\mathbf{P} \mathbf{T} \mathbf{A} \mathbf{D} (\mathbf{N} \mathbf{U} \mathbf{U} + \mathbf{I}) = \mathbf{P} \mathbf{F} \mathbf{S} \mathbf{T} (\mathbf{N} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} + \mathbf{I}) \mathbf{S} \mathbf{A} \mathbf{D} \mathbf{D}$
	RTAAD(NII+1) = REST(NIII+1, SAAD)
	AR1=GNRRD*DSQRT(TTPI/(2*SRRD))
	DLAN = DLOG 10 (BKRWD(NU)) + DLOG 10 (BIAAD(NNU-1) + BIAAD(NU+1))
	DLAN = DLAN - DLOG 10 (BKAAD(NNU - 1) + BKAAD(NU + 1))
	DLAN=DLAN+DLOG10(AR1)-SRRD*DEE
	IF (DLAN.LT60.0D0) GO TO 499
	SUMIN=-(10**DLAN)
	GO TO 500
C	
С	
C	
C	PARTIAL ASYMPTOTIC EXPANSION (RRD) J
C	SMALL ARGUMENT APPROXIMATION (AAD)
276	IF (ICASE.EQ.2) GO TO 360
	FIAAD=FISMA(NUU, SAAD)
	FKAAD=FKSMA(NUU,SAAD) PKDUD(NU)-PDUD(NUU SDUD)
	CNDDD-PECKI(NUU CDDD)
	$\Delta p 1 = R P D D (N H) + D C O P T (T T P T / (2 + C P P D))$
	DLAN=DLOG10(AP1)+DLOG10(GNPPD*2*NUU)-SPPD*DFF
	DLAN = DLAN - 2*DLOG10(FACNH(NH)) - 2*NHH*DLOG10(2,0D0)
	DLAN=DLAN+2*NUU*DLOG10(SAAD)
	DLAN=DLAN+DLOG10(FIAAD/FKAAD)
	IF (DLAN.LT60.0D0) GO TO 499
	SUMIN=10**DLAN
	GO TO 500
С	
С	CLOSED BOUNDARY HOLE
360	BKRWD(NU)=BRWD(NUU,SRWD)
	FIAAD1=FISMA(NUUU-1,SAAD)
	FIAAD2=FISMA(NUU+1,SAAD)
	FKAADI=FKSMA(NUUU-1, SAAD)
	CNDDD-PFCVA(NUU CDDD)
	ΑΡΙΞΡΥΡΠΟΙΝΟΥΣΚΚΟΙ ΑΡΙΞΡΥΡΠΟΙΝΟΥΣΚΚΟΙ
	DLAN=DLOG10(AR1)+DLOG10(GNRRD*2*NUU)-SPRD*DFF
	DLAN = DLAN - 2*DLOG10(FACNU(NU)) - 2*NUU*DLOG10(2.000)
	DLAN=DLAN+2*NUU*DLOG10(SAAD)
	DLAN=DLAN+DLOG10((2*NUU*FIAAD1/SAAD)+SAAD*FIAAD2/(2*(NUU+1)))
	DLAN=DLAN-DLOG10((SAAD*FKAAD1/(2*(NUUU-1)))+2*NUU*FKAAD2/SAAD)
	IF (DLAN.LT60.0D0) GO TO 499
	SUMIN=-(10**DLAN)
	GO TO 500
C	
C	

C

Ι

Ι

C 279	PARTIAL ASYMPTOTIC EXPANSION (RRD) K SMALL ARGUMENT APPROXIMATION (AAD,RWD) IF (ICASE.EQ.2) GO TO 361 FIAAD=FISMA(NUU,SAAD) FKAAD=FKSMA(NUU,SAAD) FKRWD=FKSMA(NUU,SRWD) GNRRD=BESKA(NUU,SRWD) AR1=GNRRD*DSQRT(TTPI/(2*SRRD)) DLAN=DLOG10(AR1)+2*NUU*DLOG10(SAAD)-NUU*DLOG10(SRWD) DLAN=DLAN-SRRD*DEE-NUU*DLOG10(2.0D0)-DLOG10(FACNU(NU)) DLAN=DLAN+DLOG10(FKRWD*FIAAD/FKAAD) SUMIN=10**DLAN
C C 361	CLOED BOUNDARY HOLE GNRRD=BESKA(NUU, SRRD) FIAAD1=FISMA(NUU-1, SAAD) FIAAD2=FISMA(NUU-1, SAAD) FKAAD1=FKSMA(NUU-1, SAAD) FKAAD2=FKSMA(NUU-1, SAAD) FKRWD=FKSMA(NUU, SRWD) AR1=GNRRD*DSQRT(TTPI/(2*SRRD)) DLAN=DLOG10(AR1)+2*NUU*DLOG10(SAAD)-NUU*DLOG10(SRWD) DLAN=DLAN-SRWD*DEE-NUU*DLOG10(2.0D0)-DLOG10(FACNU(NU)) DLAN=DLAN+DLOG10(FKRWD) DLAN=DLAN+DLOG10((2*NUU*FIAAD1/SAAD)+SAAD*FIAAD2/(2*(NUU+1))) DLAN=DLAN-DLOG10((SAAD*FKAAD1/(2*(NUU-1)))+2*NUU*FKAAD2/SAAD) SUMIN=-(10**DLAN) GO TO 500
C C C C 293	GO TO 500 SMALL ARGUMENT APPROXIMATION (AAD) L IF (ICASE.EQ.2) GO TO 362 FIAAD=FISMA(NUU,SAAD) FKAAD=FKSMA(NUU,SAAD) BKRWD(NU)=BRWD(NUU,SRWD) BKRRD(NU)=BRRD(NUU,SRWD) DLAN=DLOG10(BKRWD(NU))+DLOG10(BKRRD(NU))+2*NUU*DLOG10(SAAD) DLAN=DLAN+DLOG10(2.0D0*NUU)-2*NUU*DLOG10(2.0D0) DLAN=DLAN-2*DLOG10(FACNU(NU)) DLAN=DLAN-2*DLOG10(FIAAD/FKAAD) SUMIN=10**DLAN GO TO 500
C C 3 6 2	CLOSED BOUNDARY HOLE BKRWD(NU)=BRWD(NUU,SRWD) FIAAD1=FISMA(NUUU-1,SAAD) FIAAD2=FISMA(NUU+1,SAAD) FKAAD1=FKSMA(NUUU-1,SAAD) FKAAD2=FKSMA(NUU+1,SAAD)

I

	BKRRD(NU)=BRRD(NUU, SRRD) DLAN=DLOG10(BKRWD(NU))+DLOG10(BKRRD(NU))+2*NUU*DLOG10(SAAD) DLAN=DLAN+DLOG10(2.0D0*NUU)-2*NUU*DLOG10(2.0D0) DLAN=DLAN-2*DLOG10(FACNU(NU)) DLAN=DLAN+DLOG10((2*NUU*FIAAD1/SAAD)+SAAD*FIAAD2/(2*(NUU+1)))
	DLAN=DLAN-DLOG10((SAAD*FKAAD1/(2*(NUUU-1)))+2*NUU*FKAAD2/SAAD)
	SUMIN = -(10 * * DLAN)
с	
C	
С	
C	SHALL ARGUMENT APPROXIMATION (AAD, RRD) M
299	FTAD=FTSMA(NHII,SAAD)
	FKAAD=FKSMA(NUU, SAAD)
	FKRRD=FKSMA(NUU, SRRD)
	BKRWD(NU)=BRWD(NUU, SRWD)
	DLAN = DLOG 10(BKRWD(NU)) + 2*NUU*DLOG 10(SAAD) - NUU*DLOG 10(SRRD)
	DLAN = DLAN = NUU * DLOG IU(2. UDU) = DLOG IU(FACNU(NU))
	SUMIN=10**DLAN
	GO TO 500
C	
C	CLOSED BOUNDARY HOLE
363	BKRWD(NU) = BRWD(NUU, SRWD) $ETAAD1 = ETSMA(NUUU, 1, SRWD)$
	FIAAD2=FISMA(NUU+1,SAAD)
	FKAAD1=FKSMA(NUUU-1,SAAD)
	FKAAD2=FKSMA(NUU+1,SAAD)
	FKRRD=FKSMA(NUU,SRRD)
	DLAN = DLOGIU(BKRWD(NU)) + 2*NUU*DLOGIU(SAAD) - NUU*DLOGIU(SRRD)
	DLAN=DLAN+DLOG10(FKRRD)
	DLAN=DLAN+DLOG10((2*NUU*FIAAD1/SAAD)+SAAD*FIAAD2/(2*(NUU+1)))
	DLAN=DLAN-DLOG10((SAAD*FKAAD1/(2*(NUUU-1)))+2*NUU*FKAAD2/SAAD)
	SUMIN=-(10**DLAN)
a	GO TO 500
C	
C	
C	SMALL ARGUMENT APPROXIMATION (RRD) N
300	IF (ICASE.EQ.2) GO TO 364
	FKRRD=FKSMA(NUU, SRRD)
	BKRWD(NU)=BRWD(NUU,SRWD) BKAAD(NH)=BAAD(NHH,SAAD)
	BIAAD(NU)=BESI(NUU,SAAD)
	DLAN=DLOG10(BKRWD(NU))+DLOG10(BIAAD(NU))-DLOG10(BKAAD(NU))
	DLAN=DLAN+NUU*DLOG10(2.0D0)+DLOG 0(FACNU(NU))-NUU*DLOG10(SRRD)
	DLAN=DLAN-DLOG10(2.0D0*NUU)+DLOG 0(FKRRD)
	GO TO 500

С

I
DLAN=DLGG10(BKRMD(NU))+DLGG10(BIAAD(NNU-1)+BIAAD(NU+1)) DLAN=DLAN-DLOG10(BKAAD(NNU-1)+BKAAD(NU+1)) DLAN=DLAN-DLOG10(2.0D0)+DLOG10(FKRND) SUMIN=-(10**DLAN) GO TO 500 C C C C SMALL ARGUMENT APPROXIMATION (RWD) P 302 IF (ICASE.EQ.2) GO TO 365 FKRWD=FKSMA(NUU,SRWD) BKRAD(NU)=BRRD(NUU,SRD) BKRAD(NU)=BRRD(NUU,SAAD) DLAN=DLOG10(BKRRD(NU))+DLOG10(BIAAD(NU))-DLOG10(BKAAD(NU)) DLAN=DLGG10(BKRRD(NU))+DLOG10(BIAAD(NU))-NUU*DLOG10(SRWD) DLAN=DLGG10(BKRRD(NU))+DLOG10(FKRWD) SUMIN=10**DLAN GO TO 500 C C C C C C C C C C C C C	C 364	CLOSED BOUNDARY HOLE BKRWD(NU)=BRWD(NUU, SRWD) FKRRD=FKSMA(NUU, SRRD) BKAAD(NNU-1)=BAAD(NUUU-1, SAAD) BKAAD(NU+1)=BAAD(NUU+1, SAAD) BIAAD(NNU-1)=BESI(NUUU-1, SAAD) BIAAD(NU+1)=BESI(NUU+1, SAAD)
GO TO 500 GO TO 500 C C C C C C SMALL ARGUMENT APPROXIMATION (RWD) P 302 IF (ICASE.EQ.2) GO TO 365 FKRWD=FKSMA(NUU,SRWD) BKRD(NU)=BKD(NUU,SRRD) BKAAD(NU)=BAAD(NUU,SRRD) DLAN=DLOG10(BKRRD(NU))+DLOG10(BIAAD(NU))-DLOG10(BKAAD(NU)) DLAN=DLAN+DLOG10(2.0D0)+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD) DLAN=DLAN+DLOG10(2.0D0*NUU)+DLOG10(FKRWD) SUMIN=10**DLAN GO TO 500 C C C C C C C C C C C C C		DLAN = DLOG 10(BKRWD(NU)) + DLOG 10(BIAAD(NU-1) + BIAAD(NU+1)) DLAN = DLAN - DLOG 10(BKAAD(NNU-1) + BKAAD(NU+1)) DLAN = DLAN + NUU * DLOG 10(2.0D0) + DLOG 10(FACNU(NU)) - NUU * DLOG 10(SRRD) DLAN = DLAN - DLOG 10(2.0D0 * NUU) + DLOG 10(FKRRD) SUMIN = -(10 * * DLAN)
C C C C C SMALL ARGUMENT APPROXIMATION (RWD) P 302 IF (ICASE.EQ.2) GO TO 365 FKRWD=FKSMA(NUU,SRMD) BKRAD(NU)=BRRD(NUU,SRAD) BKAAD(NU)=BBRD(NUU,SAAD) DLAN=DLG10(BKRRD(NU))+DLOG10(BIAAD(NU))-DLOG10(BKAAD(NU)) DLAN=DLG10(BKRRD(NU))+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD) DLAN=DLAN-DLOG10(2.0D0*NUU)+DLOG10(FKRWD) SUMIN=10**DLAN GO TO 500 C C C C C C C C C C C C C C C C C C		GO TO 500
C C C SMALL ARGUMENT APPROXIMATION (RWD) P 302 IF (ICASE.EQ.2) GO TO 365 FKRMD=FKSMA(NUU,SRWD) BKRAD(NU)=BRRD(NUU,SRWD) BKAAD(NU)=BAAD(NUU,SAAD) DLAN=DLG10(BKRRD(NU))+DLOG10(BIAAD(NU))-DLOG10(BKAAD(NU)) DLAN=DLAN+DLOG10(2.0D0+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD) DLAN=DLAN-DLOG10(2.0D0*NUU)+DLOG10(FKRWD) SUMIN=10**DLAN GO TO 500 C C C C C CLOSED BOUNDARY HOLE 365 BKRRD(NU-1)=BRAD(NUU-1,SAAD) BKAAD(NNU-1)=BESI(NUU-1,SAAD) BKAAD(NNU-1)=BESI(NUU-1,SAAD) BIAAD(NU+1)=BESI(NUU-1,SAAD) BIAAD(NNU-1)=BESI(NUU-1,SAAD) DLAN=DLAN-DLOG10(BKAAD(NNU-1)+BKAAD(NNU-1)+BIAAD(NU+1)) DLAN=DLAN-DLOG10(BKAAD(NNU-1)+BKAAD(NU+1)) DLAN=DLAN-DLOG10(BKAAD(NNU-1)+BKAAD(NU+1)) DLAN=DLAN-DLOG10(2.0D0+DLOG10(FKRWD) SUMIN=-(10**DLAN) GO TO 500 C C C	С	
C SMALL ARGUMENT APPROXIMATION (RWD) P 302 IF (ICASE.EQ.2) GO TO 365 FKRWD=FKSMA(NUU,SRWD) BKRAD(NU)=BRRD(NUU,SRAD) BKAAD(NU)=BAAD(NUU,SAAD) DLAN=DLOG10(BKRRD(NU))+DLOG10(BIAAD(NU))-DLOG10(BKAAD(NU)) DLAN=DLAN+NUU*DLOG10(2.0D0)+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD) DLAN=DLAN-DLOG10(2.0D0*NUU)+DLOG10(FKRWD) SUMIN=10**DLAN GO TO 500 C C C CLOSED BOUNDARY HOLE 365 BKRRD(NU)=BRRD(NUU,SRWD) BKAAD(NNU-1)=BAAD(NUU+1,SAAD) BKAAD(NNU-1)=BAAD(NUU+1,SAAD) BKAAD(NNU-1)=BESI(NUUU-1,SAAD) BIAAD(NNU-1)=BESI(NUU+1,SAAD) DLAN=DLOG10(BKRRD(NU)+1)+BIAAD(NU+1)) DLAN=DLAN-DLOG10(2.0D0)+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD) DLAN=DLAN-DLOG10(2.0D0)+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD) DLAN=DLAN-DLOG10(2.0D0)+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD) DLAN=DLAN-DLOG10(2.0D0)+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD) DLAN=LAN-DLOG10(2.0D0)+DLOG10(FKRWD) SUMIN=-(10**DLAN) GO TO 500 C	C	
<pre>302 IF (ICASE.EQ.2) GO TO 365 FKRWD=FKSMA(NUU,SRWD) BKRAD(NU)=BRRD(NUU,SRWD) BKAAD(NU)=BRAD(NUU,SRAD) DLAN=DLOG10(BKRRD(NU))+DLOG10(BIAAD(NU))-DLOG10(BKAAD(NU)) DLAN=DLAN+NUU*DLOG10(2.0D0)+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD) DLAN=DLAN-DLOG10(2.0D0*NUU)+DLOG10(FKRWD) SUMIN=10**DLAN GO TO 500 C C C CLOSED BOUNDARY HOLE 365 BKRRD(NU)=BRRD(NUU,SRRD) FKRWD=FKSMA(NUU,SRWD) BKAAD(NNU-1)=BAAD(NUU+1,SAAD) BKAAD(NNU-1)=BAAD(NUU+1,SAAD) BIAAD(NNU-1)=BESI(NUU+1,SAAD) DLAN=DLOG10(BKRRD(NU)+1,SAAD) DLAN=DLOG10(BKRRD(NU)+1)+BIAAD(NU+1)) DLAN=DLAN-DLOG10(2.0D0)+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD) DLAN=DLAN-DLOG10(2.0D0)+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD) DLAN=DLAN-DLOG10(2.0D0*NUU)+DLOG10(FKRWD) SUMIN=(10**DLAN) GO TO 500 C C C C C C C C C C C C C C C C C C</pre>	C C	ς ΜΑΤ.Τ. ΑΡΩΙΙΜΈΝΤ ΑΡΟΡΟΥΤΜΑΤΤΟΝ (ΡΙΙΟ) Ρ
<pre>FKRWD=FKSMA(NUU,SRWD) BKRRD(NU)=BRRD(NUU,SRWD) BKRRD(NU)=BRRD(NUU,SRRD) BKAAD(NU)=BAAD(NUU,SAAD) DLAN=DLGG10(BKRRD(NU))+DLOG10(BIAAD(NU))-DLOG10(BKAAD(NU)) DLAN=DLAN+NUU*DLOG10(2.0D0)+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD) DLAN=DLAN-DLOG10(2.0D0*NUU)+DLOG10(FKRWD) SUMIN=10**DLAN GO TO 500 C C C C C C C C C C C C C C C C C C</pre>	302	IF (ICASE.EQ.2) GO TO 365
BKRRD(NU)=BRRD(NUU,SRRD) BKAAD(NU)=BRAD(NUU,SAAD) BIAAD(NU)=BESI(NUU,SAAD) DLAN=DLG10(BKRRD(NU))+DLOG10(BIAAD(NU))-DLOG10(BKAAD(NU)) DLAN=DLAN+NUU*DLOG10(2.0D0)+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD) DLAN=DLAN-DLOG10(2.0D0*NUU)+DLOG10(FKRWD) SUMIN=10**DLAN GO TO 500 C C C C CLOSED BOUNDARY HOLE 365 BKRRD(NU)=BRRD(NUU,SRRD) FKRWD=FKSMA(NUU,SRWD) BKAAD(NU-1)=BAAD(NUU-1,SAAD) BKAAD(NU-1)=BESI(NUU-1,SAAD) BIAAD(NU+1)=BESI(NUU-1,SAAD) BIAAD(NU+1)=BESI(NUU+1,SAAD) DLAN=DLOG10(BKRRD(NU)+DLOG10(BIAAD(NNU-1)+BIAAD(NU+1)) DLAN=DLAN-DLOG10(BKAAD(NNU-1)+BKAAD(NU+1)) DLAN=DLAN-DLOG10(BKAAD(NNU-1)+BKAAD(NU+1)) DLAN=DLAN-DLOG10(2.0D0)+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD) DLAN=DLAN-DLOG10(2.0D0*NUU)+DLOG10(FKRWD) SUMIN=-(10**DLAN) GO TO 500 C C C		FKRWD=FKSMA(NUU, SRWD)
BKAAD(NU)=BAAD(NUU,SAAD) BIAAD(NU)=BESI(NUU,SAAD) DLAN=DLOG10(BKRRD(NU))+DLOG10(BIAAD(NU))-DLOG10(BKAAD(NU)) DLAN=DLAN+NUU*DLOG10(2.0D0)+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD) DLAN=DLAN-DLOG10(2.0D0*NUU)+DLOG10(FKRWD) SUMIN=10**DLAN GO TO 500 C C C C C C C C C C C C C		BKRRD(NU)=BRRD(NUU, SRRD)
DLAN=DLOG10(BKRRD(NU))+DLOG10(BIAAD(NU))-DLOG10(BKAAD(NU)) DLAN=DLOG10(BKRRD(NU))+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD) DLAN=DLAN-DLOG10(2.0D0*NUU)+DLOG10(FKRWD) SUMIN=10**DLAN GO TO 500 C C C C CLOSED BOUNDARY HOLE 365 BKRRD(NU)=BRRD(NUU,SRRD) FKRWD=FKSMA(NUU,SRWD) BKAAD(NU-1)=BAAD(NUUU-1,SAAD) BKAAD(NU-1)=BAAD(NUUU-1,SAAD) BIAAD(NU-1)=BESI(NUUU-1,SAAD) BIAAD(NU-1)=BESI(NUUU-1,SAAD) DLAN=DLOG10(BKRRD(NU)+DLOG10(BIAAD(NUU-1)+BIAAD(NU+1))) DLAN=DLOG10(BKRRD(NU)+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD)) DLAN=DLAN-DLOG10(2.0D0)+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD)) DLAN=DLAN-DLOG10(2.0D0*NUU)+DLOG10(FKRWD) SUMIN=-(10**DLAN) GO TO 500 C C C		BKAAD(NU) = BAAD(NUU, SAAD) BTAAD(NU) = BEST(NUU, SAAD)
DLAN=DLAN+NUU*DLOG10(2.0D0)+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD) DLAN=DLAN-DLOG10(2.0D0*NUU)+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD) SUMIN=10**DLAN GO TO 500 C C C CLOSED BOUNDARY HOLE 365 BKRRD(NU)=BRRD(NUU,SRRD) FKRWD=FKSMA(NUU,SRWD) BKAAD(NU-1)=BAAD(NUU-1,SAAD) BKAAD(NU-1)=BESI(NUU+1,SAAD) BIAAD(NU-1)=BESI(NUU+1,SAAD) DLAN=DLOG10(BKRRD(NU))+DLOG10(BIAAD(NNU-1)+BIAAD(NU+1)) DLAN=DLOG10(BKRRD(NU))+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD) DLAN=DLAN-NUU*DLOG10(2.0D0*NUU)+DLOG10(FKRWD) SUMIN=-(10**DLAN) GO TO 500 C C C		DLAN=DLOG10(RKRRD(NU))+DLOG10(RTAAD(NU))-DLOG10(RKAAD(NU))
DLAN=DLAN-DLOG10(2.0D0*NUU)+DLOG10(FKRWD) SUMIN=10**DLAN GO TO 500 C C CLOSED BOUNDARY HOLE 365 BKRRD(NU)=BRRD(NUU,SRRD) FKRWD=FKSMA(NUU,SRWD) BKAAD(NNU-1)=BAAD(NUU-1,SAAD) BKAAD(NNU-1)=BESI(NUU-1,SAAD) BIAAD(NU-1)=BESI(NUU-1,SAAD) BIAAD(NU-1)=BESI(NUU+1,SAAD) DLAN=DLOG10(BKRRD(NU)+DLOG10(BIAAD(NNU-1)+BIAAD(NU+1)) DLAN=DLOG10(BKRRD(NU)+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD) DLAN=DLAN-DLOG10(2.0D0)+DLOG10(FKRWD) SUMIN=-(10**DLAN) GO TO 500 C C		DLAN=DLAN+NUU*DLOG10(2.0D0)+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD)
SUMIN=10**DLAN GO TO 500 C C CLOSED BOUNDARY HOLE 365 BKRRD(NU)=BRRD(NUU, SRRD) FKRWD=FKSMA(NUU, SRWD) BKAAD(NNU-1)=BAAD(NUUU-1, SAAD) BKAAD(NU-1)=BAAD(NUU+1, SAAD) BIAAD(NU-1)=BESI(NUUU-1, SAAD) BIAAD(NU+1)=BESI(NUU+1, SAAD) DLAN=DLOG10(BKRRD(NU))+DLOG10(BIAAD(NNU-1)+BIAAD(NU+1)) DLAN=DLAN-DLOG10(BKAAD(NNU-1)+BKAAD(NU+1)) DLAN=DLAN+NUU*DLOG10(2.0D0)+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD) DLAN=DLAN-DLOG10(2.0D0*NUU)+DLOG10(FKRWD) SUMIN=-(10**DLAN) GO TO 500 C C		DLAN=DLAN-DLOG10(2.0D0*NUU)+DLOG10(FKRWD)
GO TO 500 C C C C C CLOSED BOUNDARY HOLE 365 BKRRD(NU)=BRRD(NUU,SRRD) FKRWD=FKSMA(NUU,SRWD) BKAAD(NNU-1)=BAAD(NUUU-1,SAAD) BIAAD(NU-1)=BESI(NUUU-1,SAAD) BIAAD(NU-1)=BESI(NUUU-1,SAAD) DLAN=DLOG10(BKRRD(NU))+DLOG10(BIAAD(NNU-1)+BIAAD(NU+1)) DLAN=DLG10(BKRRD(NU))+DLOG10(BIAAD(NU+1)) DLAN=DLAN-DLOG10(BKAAD(NNU-1)+BKAAD(NU+1)) DLAN=DLAN+NUU*DLOG10(2.0D0)+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD) DLAN=DLAN-DLOG10(2.0D0*NUU)+DLOG10(FKRWD) SUMIN=-(10**DLAN) GO TO 500 C C		SUMIN=10**DLAN
C C CLOSED BOUNDARY HOLE 365 BKRRD(NU)=BRRD(NUU,SRRD) FKRWD=FKSMA(NUU,SRWD) BKAAD(NNU-1)=BAAD(NUUU-1,SAAD) BKAAD(NU+1)=BAAD(NUU+1,SAAD) BIAAD(NU-1)=BESI(NUUU-1,SAAD) BIAAD(NU+1)=BESI(NUU+1,SAAD) DLAN=DLOG10(BKRRD(NU))+DLOG10(BIAAD(NNU-1)+BIAAD(NU+1)) DLAN=DLAN-DLOG10(BKAAD(NNU-1)+BKAAD(NU+1)) DLAN=DLAN-DLOG10(BKAAD(NNU-1)+BKAAD(NU+1)) DLAN=DLAN+NUU*DLOG10(2.0D0)+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD) DLAN=DLAN-DLOG10(2.0D0*NUU)+DLOG10(FKRWD) SUMIN=-(10**DLAN) GO TO 500 C	-	GO TO 500
365 BKRRD(NU)=BRRD(NUU, SRRD) FKRWD=FKSMA(NUU, SRWD) BKAAD(NNU-1)=BAAD(NUUU-1, SAAD) BKAAD(NU+1)=BAAD(NUU+1, SAAD) BIAAD(NNU-1)=BESI(NUUU-1, SAAD) BIAAD(NU+1)=BESI(NUU+1, SAAD) DLAN=DLOG10(BKRRD(NU))+DLOG10(BIAAD(NNU-1)+BIAAD(NU+1)) DLAN=DLAN-DLOG10(BKAAD(NNU-1)+BKAAD(NU+1)) DLAN=DLAN-DLOG10(BKAAD(NNU-1)+BKAAD(NU+1)) DLAN=DLAN+NUU*DLOG10(2.0D0)+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD) DLAN=DLAN-DLOG10(2.0D0*NUU)+DLOG10(FKRWD) SUMIN=-(10**DLAN) GO TO 500 C C	C	GIOGED DOUNDARY HOLE
<pre>FKRWD=FKSMA(NUU, SRWD) FKRWD=FKSMA(NUU, SRWD) BKAAD(NNU-1)=BAAD(NUUU-1, SAAD) BKAAD(NU+1)=BAAD(NUU+1, SAAD) BIAAD(NU-1)=BESI(NUUU-1, SAAD) DLAN=DLOG10(BKRRD(NU))+DLOG10(BIAAD(NNU-1)+BIAAD(NU+1)) DLAN=DLOG10(BKRRD(NU-1)+BKAAD(NU+1)) DLAN=DLAN-DLOG10(2.0D0)+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD) DLAN=DLAN-DLOG10(2.0D0*NUU)+DLOG10(FKRWD) SUMIN=-(10**DLAN) GO TO 500 C C C C C C C C C C C C C C C C C C</pre>	365	RKRRD(NU)=RRRD(NUU, SRRD)
BKAAD(NNU-1)=BAAD(NUUU-1,SAAD) BKAAD(NU+1)=BAAD(NUU+1,SAAD) BIAAD(NNU-1)=BESI(NUUU-1,SAAD) BIAAD(NU+1)=BESI(NUU+1,SAAD) DLAN=DLOG10(BKRRD(NU))+DLOG10(BIAAD(NNU-1)+BIAAD(NU+1)) DLAN=DLAN-DLOG10(BKAAD(NNU-1)+BKAAD(NU+1)) DLAN=DLAN+NUU*DLOG10(2.0D0)+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD) DLAN=DLAN-DLOG10(2.0D0*NUU)+DLOG10(FKRWD) SUMIN=-(10**DLAN) GO TO 500 C	505	FKRWD=FKSMA(NUU,SRWD)
BKAAD(NU+1)=BAAD(NUU+1,SAAD) BIAAD(NU-1)=BESI(NUUU-1,SAAD) BIAAD(NU+1)=BESI(NUU+1,SAAD) DLAN=DLOG10(BKRRD(NU))+DLOG10(BIAAD(NNU-1)+BIAAD(NU+1)) DLAN=DLAN-DLOG10(BKAAD(NNU-1)+BKAAD(NU+1)) DLAN=DLAN+NUU*DLOG10(2.0D0)+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD) DLAN=DLAN-DLOG10(2.0D0*NUU)+DLOG10(FKRWD) SUMIN=-(10**DLAN) GO TO 500 C		BKAAD(NNU-1) = BAAD(NUUU-1, SAAD)
BIAAD(NNU-1)=BESI(NUUU-1,SAAD) BIAAD(NU+1)=BESI(NUU+1,SAAD) DLAN=DLOG10(BKRRD(NU))+DLOG10(BIAAD(NNU-1)+BIAAD(NU+1)) DLAN=DLAN-DLOG10(BKAAD(NNU-1)+BKAAD(NU+1)) DLAN=DLAN+NUU*DLOG10(2.0D0)+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD) DLAN=DLAN-DLOG10(2.0D0*NUU)+DLOG10(FKRWD) SUMIN=-(10**DLAN) GO TO 500 C		BKAAD(NU+1)=BAAD(NUU+1,SAAD)
BIAAD(NU+1)=BESI(NUU+1,SAAD) DLAN=DLOG10(BKRRD(NU))+DLOG10(BIAAD(NNU-1)+BIAAD(NU+1)) DLAN=DLAN-DLOG10(BKAAD(NNU-1)+BKAAD(NU+1)) DLAN=DLAN+NUU*DLOG10(2.0D0)+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD) DLAN=DLAN-DLOG10(2.0D0*NUU)+DLOG10(FKRWD) SUMIN=-(10**DLAN) GO TO 500 C		BIAAD(NNU-1) = BESI(NUUU-1, SAAD)
DLAN=DLOGIU(BKRRD(NU))+DLOGIU(BIAAD(NNU-I)+BIAAD(NU+I)) DLAN=DLAN-DLOGIU(BKAAD(NNU-I)+BKAAD(NU+I)) DLAN=DLAN+NUU*DLOGIU(2.0D0)+DLOGIU(FACNU(NU))-NUU*DLOGIU(SRWD) DLAN=DLAN-DLOGIU(2.0D0*NUU)+DLOGIU(FKRWD) SUMIN=-(10**DLAN) GO TO 500 C		BIAAD(NU+1)=BESI(NUU+1,SAAD)
DLAN=DLAN+NUU*DLOG10(2.0D0)+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD) DLAN=DLAN-DLOG10(2.0D0*NUU)+DLOG10(FKRWD) SUMIN=-(10**DLAN) GO TO 500 C		DLAN = DLOGIU(BKKRD(NU)) + DLOGIU(BIAAD(NU-I) + BIAAD(NU+I))
DLAN=DLAN-DLOG10(2.0D0*NUU)+DLOG10(FKRWD) SUMIN=-(10**DLAN) GO TO 500 C		DLAN=DLAN+NUU*DLOG10(2,000)+DLOG10(FACNU(NU))-NUU*DLOG10(SRWD)
SUMIN=-(10**DLAN) GO TO 500 C		DLAN = DLAN - DLOG 10(2.0D0*NUU) + DLOG 10(FKRWD)
GO TO 500 C C		SUMIN=-(10**DLAN)
		GO TO 500
C	C	
	C	
C SMBLL ARGUMENT APPROXIMATION (ABD, RWD) O	C C	SMALL ARGUMENT APPROXIMATION (AAD, RUD)
301 IF (ICASE.EO.2) GO TO 366	301	IF (ICASE.EO.2) GO TO 366
FIAAD=FISMA(NUU, SAAD)		FIAAD=FISMA(NUU, SAAD)
FKAAD=FKSMA(NUU,SAAD)		FKAAD=FKSMA(NUU,SAAD)
FKRWD=FKSMA(NUU, SRWD)		FKRWD=FKSMA(NUU, SRWD)
DLAN=DLAN-NUU*DLOG10(2,0D0)-DLOG10(FACNU(NU))		

Ι

	DLAN=DLAN+DLOG10(FKRWD*FIAAD/FKAAD) SUMIN=10**DLAN
C	GO 10 500
C C	CLOSED BOUNDARY HOLE
366	RKRRD(NU)=RRPD(NUU, SPDD)
500	FTAAD1=FTSMA(NUUUU-1, SAAD)
	FTABD2=FTSMA(NUU+1,SABD)
	FKAAD1 = FKSMA(NUUU-1, SAAD)
	FKAAD2 = FKSMA(NUU+1, SAAD)
	FKRWD=FKSMA(NUU.SRWD)
	DLAN=DLOG10(BKRRD(NU))+2*NUU*DLOG10(SAAD)-NUU*DLOG10(SRWD)
	DLAN=DLAN-NUU*DLOG10(2.0D0)-DLOG10(FACNU(NU))
	DLAN=DLAN+DLOG10(FKRWD)
	DLAN=DLAN+DLOG10((2*NUU*FIAAD1/SAAD)+SAAD*FIAAD2/(2*(NUU+1)))
	DLAN=DLAN-DLOG10((SAAD*FKAAD1/(2*(NUUU-1)))+2*NUU*FKAAD2/SAAD)
	SUMIN=-(10**DLAN)
	GO TO 500
С	
C	
C	
C	SMALL ARGUMENT APPROXIMATION (AAD, RRD, RWD) Q
303	IF(ICASE.EQ.2) GO TO 367
	FIAAD=FISMA(NUU, SAAD)
	FKAAD=FKSMA(NUU,SAAD)
	FKRWD=FKSMA(NUU,SKWD)
	FKRKU=FKSMA(NUU,SKRU) DIAN-2*NUU*DIOC19(SAAD)-NUU*DIOC19(SDUD*SDDD)-DIOC19(2, 0D0*NUU)
	DIAN-DIAN+DIOCIO(SARD)-RUUADLOGIU(SARD)-DLOGIU(Z.UUUANUU)
	CUMTN-1044DIAN
C	
C	CLOSED BOUNDARY HOLE
367	FIAAD1=FISMA(NUUU-1, SAAD)
•••	FIAAD2=FISMA(NUU+1, SAAD)
	FKAAD1=FKSMA(NUUU-1, SAAD)
	FKAAD2=FKSMA(NUU+1, SAAD)
	FKRWD=FKSMA(NUU, SRWD)
	FKRRD=FKSMA(NUU, SRRD)
	DLAN=2*NUU*DLOG10(SAAD)-NUU*DLOG10(SRWD*SRRD)-DLOG10(2.0D0*NUU)
	DLAN=DLAN+DLOG10(FKRWD*FKRRD)
	DLAN=DLAN+DLOG10((2*NUU*FIAAD1/SAAD)+SAAD*FIAAD2/(2*(NUU+1)))
	DLAN=DLAN-DLOG10((SAAD*FKAAD1/(2*(NUUU-1)))+2*NUU*FKAAD2/SAAD)
	SUMIN=-(10**DLAN)
	GO TO 500
С	
C	
C	
C	SIMPLE PROGRAM Z
290	IF LICASE.EQ.2J GO TO 368 PRDUD(NU)-PDUD(NUU CDUD)
	BRDDU(NII)-BRMD(NUU,SKWD) DVRMD(UO)-BRMD(NUU,SKWD)
	DARACHO)-DRKD(HUU)SKKD)

Ι

Ŧ

C	BKAAD(NU)=BAAD(NUU,SAAD) BIAAD(NU)=BESI(NUU,SAAD) SUMIN=(BKRWD(NU)*BIAAD(NU)/BKAAD(NU))*BKRRD(NU) GO TO 500
C 368	CLOSED BOUNDARY HOLE BKRWD(NU) = BRWD(NUU, SRWD) BKRRD(NU) = BRRD(NUU, SRRD) BKAAD(NNU-1) = BAAD(NUUU-1, SAAD) BKAAD(NU+1) = BAAD(NUU+1, SAAD) BIAAD(NNU-1) = BESI(NUU-1, SAAD) BIAAD(NU+1) = BESI(NUU+1, SAAD) SUMIN = BKRWD(NU) *(BIAAD(NNU-1) + BIAAD(NU+1)) SUMIN = -(SUMIN/(BKAAD(NNU-1) + BKAAD(NU+1))) * BKRRD(NU) GO TO 500
C C C C	
499 500	SUMIN=0.0D0 RETURN END
с с с с с с с с с с	
C	FUNCTION BESI (NU, ARG)
C C	**************************************
C	FUNCTION I(NU, ARG).
C	THE ORDER IS LIMITED TO NU<51
	FUNCTION BESI(NU,ARG) TMPLTCTT REAL*8 (A-H.O-7)
	REAL*8 A, AA, AAA, FNZ, B, BB, DELTA, EPSI, AEXP, C, CC
	COMMON /FRAC3/FACNU(51)
С	WRITE (6,17) NU.ARG
C17 C	FORMAT (15X, 15, 5X, E12.5)
C	CONVERGENCE CRITERION (FRACTION)
	EPSI=1.0D-15
C	
C C	THE ASYMPTOTIC EXPANSION OPTION IS BYPASSED IN MOST CALCULATIONS. GO TO 5
С	

I

С NOW THE METHOD OF EVALUATING I IS CHOSEN C FOR ARG>=20 ASYMPTOTIC EXPANSION C FOR ARG<20 ASCENDING SERIES С IF (ARG.GE.20.0) GO TO 4 C IF (ARG.LT.20.0) GO TO 5 С C С C ASYMPTOTIC EXPANSION C ***************** с4 A=(NU**2)*4 AA = ARG * 8AAA=2*ARG*3.141592654 AAA=DSQRT(AAA) IFLAG3=0FNZ = 1.0D0BB=1.0D0DDD=1.0D0DO 6 I = 1,200 $D = (A - (2 \times I - 1) \times 2) / (AA \times I)$ DD = DABS(D)IF (IFLAG3.EQ.1) GO TO 14 IF (DD.LT.DDD) IFLAG3=1 GO TO 15 II=I/2*2 14 IF (DD.GT.DDD.AND.II.EQ.I) GO TO 7 15 DDD = DDBB=BB*(-1)*DFNZ = FNZ + BBWRITE (6,16) FNZ C FORMAT (10X, E12.5) C16 DELTA=BB/FNZ DELTA=DABS(DELTA) IF (EPSI-DELTA) 6,7,7 6 CONTINUE C C C CHECK FOR EXPONENT MAG 7 E = DEXP(1.0D0)AEXP=ARG*DLOG10(E)-DLOG10(AAA)+DLOG10(FNZ) IF (DABS(AEXP).GT.70.0) GO TO 8 BESI=DEXP(ARG)*FNZ/AAA GO TO 9 C C C EXPONENT MAG OVERFLOW WRITE (6,101) AEXP 8 FORMAT (5X, 'EXPONENT OF I', D20.9, I5, D20.9) 101 BESI=10**AEXP GO TO 9

Т

С

	ASCENDING SERIES ********
	FIRST CHECK FOR EXPONENT MAG C=NU*DLOG10(ARG/2)-DLOG10(FACNU(NU+1)) CC=DABS(C) IF (CC.GT.70.0) GO TO 10 B=1.0D0
	BB=B AA=(ARG/2)**2
	AAA = 1/FACNU(NU+1) DO 11 I=1,200 BB-BB#AA((I#(I+NU)))
	B = B + B B $DELTA = B B / B$
11	IF (EPSI-DELTA) 11,12,12 CONTINUE
C C	
C	SECOND CHECK FOR EXPONENT HAG
12	B = B * A A A
	CCC=NU*(DLOG10(ARG/2.))
	IF (CCC.GT.69.) GO TO 27
	C = DLOG10(B) + CCC
	CC=DABS (C)
	IF (CC.GT.69.) GO TO 10
	BESI=B*((ARG/2.)**NU)
	GO TO 9
27	C = DLOG10(B) + CCC
	CC=DABS(C)
	IF (CC.GT.69.) GO TO 10
	BESI=10.**C
	GO TO 9
C	
C	
C	EXPONENT HAG OVERFLOW
10	WRITE (6,101) CC,NU,ARG IEND99=1
	BESI=1, $OD-70$
С	
C	
9	RETURN
2	END
С	
c	
c	
Ċ	FUNCTION BAAD (N.Z)
<u> </u>	I UNCITON DAAD (172)

С	****
C	THIS FUNCTION EVALUATES $K(N,Z)$ USING THE "STEP-UP
C	METHOD". WE USE K(0,Z) AND K(1,Z) TO EVALUATE THE
C	HIGHER ORDERS.
	FUNCTION BAAD(N,Z)
	IMPLICIT REAL*8 (A-H,O-Z)
	COMMON /FRAC11/BIAAD(100), BKAAD(100), BKRWD(100), BKRRD(100)
	COMMON / FRAC12/SUM(50, 16)
	COMMON /FRAC5/IOPT, IER
	DOUBLE PRECISION MMBSKU, MMBSKU
	TE (N EQ.0) GO TO T
	$F(\mathbf{A}, \mathbf{E}_{\mathbf{Q}}, \mathbf{F}) = D[OC(1)(\mathbf{E}_{\mathbf{A}}, \mathbf{E}_{\mathbf{Q}}))$
	TF (EKAAD.GE.70) IEND99=1
	BAAD = BKAAD(N-1) + (BKAAD(N)/Z) * 2*(N-1)
	GO TO 3
1	BAAD=MMBSK0(IOPT,Z,IER)
	GO TO 3
2	BAAD=MMBSK1(IOPT,Z,IER)
3	RETURN
~	END
C	
с с	
C	FUNCTION ROWD (N.7)
C	****
c	THIS FUNCTION EVALUATES $K(N,Z)$ USING THE "STEP-UP
C	METHOD". WE USE $K(0,Z)$ and $K(1,Z)$ to evaluate the
C	HIGHER ORDERS.
	FUNCTION BRWD(N,Z)
	IMPLICIT REAL*8 (A-H,O-Z)
	COMMON /FRAC11/BIAAD(100), BKAAD(100), BKRWD(100), BKRRD(100)
	COMMON /FRAC12/SUM(50,16)
	COMMON /FRAC5/IOPT, IER
	COMMON /FRAC99/IEND99
	$\frac{1}{10000000000000000000000000000000000$
	$TF(\mathbf{N}, \mathbf{EQ}, \mathbf{U}) = \mathbf{GO} = \mathbf{IO} + IO$
	EKRWD=DLOG10(RKRWD(N))
	EKRWD=DABS(EKRWD)
	IF (EKRWD.GE.70) IEND99=1
	BRWD=BKRWD(N-1)+(BKRWD(N)/Z)*2*(N-1)
	GO TO 3
1	BRWD=MMBSK0(IOPT,Z,IER)
	GO TO 3
2	BRWD=MMBSK1(IOPT,Z,IER)
3	KETUKN END
C	ΓN Λ
c	
C	

1

I.

С	FUNCTION BRRD (N,Z)
С	***********
C	THIS FUNCTION EVALUATES K(N,Z) USING THE "STEP-UP
С	METHOD". WE USE K(0,Z) AND K(1,Z) TO EVALUATE THE
С	HIGHER ORDERS.
	FUNCTION BRRD(N,Z)
	IMPLICIT REAL*8 (A-H,O-Z)
	COMMON /FRAC11/BIAAD(100), BKAAD(100), BKRWD(100), BKRRD(100)
	COMMON /FRAC12/SUM(50,16)
	COMMON /FRAC5/IOPT, IER
	COMMON /FRAC99/IEND99
	DOUBLE PRECISION MMBSKU, MMBSK1
	IF (N.EQ.U) GO TO I
	IF (N.EQ.)) GO TO 2 FRARD-DIOGIO(DRADDA(N))
	EKRKD=DLOGIU(BKRKD(N))
	TE (EVDDD EQ 70) IENDOO-1
	IF (ERRED.EQ./O) IERD77-1 RDDD-PVDDD(N-1)+(PVDDD(N)/7)*2*(N 1)
	$\frac{1}{2} \frac{1}{2} \frac{1}$
1	BRRD=MMRSKO(IOPT.7.IFP)
•	
2	BRRD=MMBSK1(IOPT.Z.TER)
3	RETURN
-	END
С	
С	
С	
С	
	FUNCTION FISMA(NU, ARG)
C	THIS FUNCTION EVALUATES THE NON-EXPONENTIAL
C	TERMS IN THE ASCENDING SERIES FOR I(NU,ARG).
C	NU FACTORIAL IS FACTORED OUT WITH THE EXPONENTIAL
	IMPLICIT REAL*8 (A-H,O-Z)
	EPS11=1.0D-15
	A=(ARG**2)/4.U
	B=1.0D0
	BB = 1.000
	DO I I=+,200 DD=DD#A/(I#(NULI))
	B=B+BB
	DELTA=RRZR
	TE (DELTA LT EPSI1) GO TO 2
1	CONTINUE
2	FISMA=B
	RETURN
	END
С	
С	
C	
	FUNCTION FKSMA(NU, ARG)
C	THIS FUNCTION EVALUATES THE NON-EXPONENTIAL
C	TERMS IN THE ASCENDING SERIES FOR K(NU, ARG).

I

Ι

С NU FACTORIAL IS FACTORED OUT WITH THE EXPONENTIAL IMPLICIT REAL*8 (A-H,O-Z) EPSI1=1.0D-15 B = 1.0D0BB=1 ODD A = (ARG * * 2) / 4.0**KK=NU-**1 DO 1 I=1,KK BB=BB*A/(I*(NU-I)) B = B + B BDELTA = BB / BIF (DELTA.LT.EPSI1) GO TO 2 1 CONTINUE 2 FKSMA=B RETURN END

Ι

APPENDIX H : TABLES FOR PRESSURE TIME TYPE CURVES

In this appendix, we use the following notations :

$$a_{D} = AAD$$

$$r_{D} = RWD$$

$$r_{D} = RRD$$

$$\theta = THETA$$

$$P_{Dss} = PDSS$$

$$t_{D} = TD$$

$$t_{D} / r_{D}^{2} = TD:RD**2$$

$$P_{DN} = PD$$

$$P_{DN} = PDN = normalized pressure drop$$

$$r_{1} = R1$$

$$r_{2} = R2$$

TABLE H1 :

CONSTANT PRESSURE INTERNAL BOUNDARY

 $\begin{array}{rrrr} A A D = & 0 \,, \, 2 \, 0 \, 0 \, 0 \, 0 \, D + 0 \, 1 \\ R W D = & 0 \,, \, 2 \, 0 \, 0 \, 0 \, 0 \, D + 0 \, 2 \\ R R D = & 0 \,, \, 1 \, 9 \, 6 \, 4 \, 0 \, D + 0 \, 2 \\ \end{array}$ $\begin{array}{rrrr} \mathcal{F} = & 0 \,, \, 1 \, 0 \, 0 \, 0 \, 0 \, D + 0 \, 0 \\ E = & 0 \,, \, 9 \, 8 \, 2 \, 0 \, 0 \, D + 0 \, 0 \end{array}$

THE STEADY STATE PRESSURES

THETA=	0.0	PDS5 =	0.6291569140+01
THETA=	0.45000D+02	PDSS=	0.2553421040+01
THETA=	0.90000D+02	PDSS =	0.194689881D+01
THETA=	0.13500D+03	POSS=	0.168668159D+01
THETA=	0.18000D+03	2 D S S =	0.161044649D+01

TD	TD:RD**2	PD	PDN	
0.129599997D-01	0.999999975D-01	0.124198 D-01	0.197405	D-02
0.2591999930-01	0.199999995D+00	0.736016 D-01	0.116984	D-01
0.518399987D-01	0.399999990D+00	0.216265 D+00	0.343738	D-01
0.7775999800-01	0.599999985D+00	0.337574 0+00	0.536551	D-01
0.103679997D+00	0.799999980D+00	0.437690 D+00	0.695677	D-01
D.129599997D+00	0.999999975D+00	0.521993 D+00	0.829670	D-01
0.259199993D+00	0.199999995D+01	0.811571 D+00	0.128993	D+00
0.518399987D+00	0.399999990D+01	0.112834 D+01	0.179342	D+00
0.777599980D+00	0.599999985D+01	0.132093 D+01	0.209953	D+00
0.103679997D+01	0.799999980D+01	0.145966 D+01	0.232004	D+00
0.129599997D+01	0.999999975D+01	0.156816 D+01	0.249248	D+00
0.259199993D+01	0.199999995D+02	0.190854 D+01	0.303349	D+08
0.518399987D+01	0.399999990D+02	0.225200 D+01	0.357940	D+00
0.777599980D+01	0.599999985D+02	0.245370 D+01	0.389998	D+00
0.103679997D+02	0.799999980D+02	0.259702 D+01	0.412778	D+00
0.1295999970+02	0.999999975D+02	0.270828 D+01	0.430462	D+00
0.259199993D+02	0.199999995D+03	0.305420 D+01	0.485444	D+00
0.518399987D+02	0.399999990D+03	0.340045 D+01	0.540478	D+00
0.777599980D+02	0.599999985D+03	0.360254 D+01	0.572598	D+00
0.103679997D+03	0.799999980D+03	0.374447 D+O1	0.595157	D+00
0.129599997D+03	0.999999975D+03	0.38527 1 D+0 1	0.612360	D+00
0.259199993D+03	0.199999995D+04	0.416866 D+01	0,662578	D+00
0.518399987D+03	0.399999990D+04	0.443765 D+01	0.705333	D+00
0.777599980D+03	0.599999985D+04	0.457000 D+01	0.726370	D+00
0,103679997D+04	0.799999980D+04	0.465336 D+0 1	0.739619	D+00
0.129599997D+04	0.999999975D+04	0.471252 D+01	0.749022	D+00
0.259199993D+04	0.19999995D+05	0.487015 D+01	0.774077	D+00
0.518399987D+04	0.399999990D+05	0.499660 D+01	0.794174	D+00
0.777599980D+04	0.599999985D+05	0.505966 D+01	0.804198	D+00
0.103679997D+05	0.799999980D+05	0.510047 D+0 {	0.810683	D+00
0.129599997D+05	0.999999975D+05	0.513014 D+01	0.815400	D+00
0.259199993D+05	0.19999995D+06	0.521300 D+01	0.828569	D+00
0.518399987D+05	0.399999990D+06	0.528430 0+01	0.839902	D+00
0.777599980D+05	0.599999985D+06	0.532167 D+01	0.845842	D+00
0.103679997D+06	0.799999980D+06	0.534651 0+01	0.849790	D+00
0.129599997D+06	0.999999975D+06	0.536491 D+01	0.852714	D+00

AAD= 0.40000D+01 RWD= 0.20000D+02 RRD= 0.19680D+02

F= 0.20000D+00 E= 0.98400D+00

THE STEADY STATE PRESSURES

0.0	PDSS=	0.568697536D+01
0.45000D+02	PDSS=	0.183982346D+01
0.90000D+02	PDSS=	0.125556007D+01
0.13500D+03	PDSS=	0.101609050D+01
0.18000D+03	PDSS=	0.948039430D+00
	0.0 0.45000D+02 0.90000D+02 0.13500D+03 0.18000D+03	0.0 PDSS= 0.45000D+02 PDSS= 0.90000D+02 PDSS= 0.13500D+03 PDSS= 0.18000D+03 PDSS=

TD	TD:RD**2	PD	PDN
0.102399997D-01	0.9999999750-01	0.124198 D-01	0.218391 D-02
0.2047999950-01	0.1999999950+00	0.736016 D-D1	0.129421 D-01
0.4095999900 - 01	0.3999999900+00	0.216265 0+00	0.380282 0-01
0.6143999840-01	0.5999999850+00	0.337574 D+00	0.593593 D-01
0.819199979D-01	0,7999999800+00	0.037690 D+00	0.769636 D-01
0.1023999970+00	0.9999999750+00	0.521993 D+00	0.917874 D-01
0.2047999950+00	0.199999995D+01	0.811571 D+00	0.142707 D+00
0.4095999900+00	0.3999999900+01	0.112834 D+01	0.198408 D+DD
0.614399984D+00	0.599999985D+01	0.132093 D+01	0.232274 D+00
0.819199979D+00	0.799999980D+01	0.145966 D+01	0.256668 D+00
0.102399997D+01	0.9999999750+01	0.156816 D+01	0.275746 D+00
0.204799995D+01	0.1999999950+02	0.190854 D+01	0.335599 D+00
0.4095999900+01	0.399999990D+02	0.225200 D+01	0.395994 D+00
0.614399984D+01	0.599999985D+02	0.245370 D+01	0.431460 D+00
0.819199979D+01	0.799999980D+02	0.259702 D+01	0.456661 D+00
0.102399997D+02	0.999999975D+02	0.270828 D+01	0.476225 D+00
0.204799995D+02	0.199999995D+03	0.305420 D+01	0.537051 D+00
0.409599990D+02	0.399999990D+03	0.340045 D+01	0.597937 D+00
0.614399984D+02	0.599999985D+03	0.360238 D+01	0.633444 D+00
0.819199979D+02	0.799999980D+03	0.374385 D+01	0.658321 D+00
0.102399997D+03	0.999999975D+03	0.385134 D+01	0.677222 D+00
0.204799995D+03	0.199999995D+04	0.416126 D+01	0.731719 D+00
0.409599990D+03	0.399999990D+04	0.441705 D+01	0.776697 D+00
0.614399984D+03	0.599999985D+04	0.453852 D+01	D.798056 D+00
0.819199979D+03	0.799999980D+04	0.461304 D+01	0.811159 D+00
0.102399997D+04	0.999999975D+04	0.466484 D+01	0.820268 D+00
0.204799995D+04	0.199999995D+05	0.479781 D+01	0.843649 D+00
0.409599990D+04	0.399999990D+05	0.489851 D+01	0.861356 D+00
0.614399984D+04	0.599999985D+05	0.494663 D+01	0.869818 D+00
D.819199979D+04	0.799999980D+05	0.497703 D+01	0.875163 D+00
0.102399997D+05	0.999999975D+05	0.499878 D+01	0.878988 D+00
0.204799995D+05	D.199999995D+06	0.505798 D+01	0.889398 D+00
0.409599990D+05	0.399999990D+06	0.510724 D+01	0.898060 D+00
0.614399984D+05	Q.599999985D+06	0.513249 D+01	0.902500 D+00
0.819199979D+05	0.799999980D+06	0.514907 D+01	0.905415 D+00
0.102399997D+06	0.999999975D+06	0.516124 D+01	0.907556 D+00

AAD= 0.60000D+01 RWD= 0.20000D+02 RRD= 0.19720D+02

F= 0.30000D+00 E= 0.98600D+00

THE STEADY STATE PRESSURES

THETA =	0.0	PDSS=	0.536285589D+01
THETA =	0.45000D+02	PDSS=	0.139980788D+01
THETA=	0.90000D+02	PDSS=	0.854448560D+00
THETA=	0.135000+03	PDSS=	0.647301034D+00
THETA=	0.18000D+03	PDSS=	0.591100700D+00

TD	TD:RD**2	P D	PDN
0.783999980D-02	0.999999975D-01	0.124198 D-01	0.231590 D-02
0.1567999960-01	0.1999999950+00	0.736016 D-01	0.137243 D-01
0.3135999920-01	0.3999999900+00	0.216265 D+00	0.403265 D-01
0.4703999880-01	0.599999850+00	0.337574 D+00	0.629468 D-01
0.627199984D-01	0.799999980D+00	0.437690 D+00	0.816151 D-01
0.783999980D-01	0.999999975D+00	0.521993 D+00	0.973349 D-01
0.156799996D+00	0.199999995D+01	0.811571 D+00	0.151331 D+00
0.313599992D+00	0.3999999900+01	0.112834 D+01	0.210400 D+00
0.470399988D+00	0.599999985D+01	0.132093 D+01	0.246312 D+00
0.627199984D+00	0.7999999800+01	0.145966 D+01	0.272181 D+00
0.783999980D+00	0.999999975D+01	0.156816 D+01	0.292411 D+00
0.1567999960+01	0.19999995D+02	0.190854 D+01	0.355882 D+00
0.313599992D+01	0.399999990D+02	0.225200 D+01	0.419927 D+00
0.470399988 D+01	0.59999985D+02	0.245370 D+01	0.457536 D+00
0.627199984D+01	0.79999980D+02	0.259702 D+01	0.484261 D+00
0.783999980D+01	0.999999975D+02	0.270828 D+01	0.505007 D+00
0.156799996 D+ 02	0.199999995D+03	0.305419 D+01	0.569509 D+00
0.313599992D+02	0.399999990D+03	0.340044 D+01	0.634074 D+00
0.470399988D+02	0.599999985D+03	0.360226 D+01	0.671705 D+00
0.627199984D+02	0.799999980D+03	0.374337 D+01	0.698018 D+00
0.783999980D+02	D.999999975D+03	0.385026 D+01	0.717951 D+00
0.156799996D+03	0.19999995D+04	0.415556 D+01	0.774879 D+00
0.313599992D+03	0.399999990D+04	0.440177 D+01	0.820789 D+00
0.470399988D+03	0.599999985D+04	0.451575 D+01	0.842043 D+00
0.627199984D+03	0.799999980D+04	0.456438 D+01	0.854839 D+00
0.783999980D+03	0.999999975D+04	0.463137 D+01	0.863602 D+00
0.156799996D+04	0.199999995D+05	0.474865 D+01	0.885470 D+00
0.313599992D+04	0.399999990D+05	0.483338 D+01	0.901270 D+00
0.470399988D+04	0.599999985D+05	0.487236 D+01	0.908540 D+DD
0.627199984D+04	0.799999980D+05	0.489644 D+01	0.913029 D+00
0.783999980D+04	0.999999975D+05	0.491341 D+01	0.916193 D+00
0.156799996D+05	0.199999995D+06	0.495846 D+01	0.924593 D+00
D.313599992D+05	0.399999990D+06	0.499473 D+01	0.931357 D+00
0.470399988D+05	0.599999985D+06	0.501292 D+D1	0.934749 D+00
0.627199984D+05	0.799999980D+06	0.502473 D+01	0.936950 D+00
0.783999980D+05	0.999999975D+06	0.503333 D+01	0.938554 D+00

AAD= 0.80000D+01 RWD= 0,20000D+02 RRD= 0.19760D+02 F= 0.40000D+00

E= 0.98800D+00

THE STEADY STATE PRESSURES

THETA= 0.0	PD55=	0.515039724D+01
THETA= 0.45000D+02	PDSS=	0.106420713D+01
THETA= 0.90000D+02	PDSS=	0.576588181D+00
THETA= 0.13500D+03	PDS5=	0.409926093D+00
THETA= 0.18000D+03	PDSS=	0.367182922D+00

TD	TD:RD**2	PD	PDN
0 5759999850-02	0.000000750-01	0 124100 D 01	
0.0759999000-02 0.1151999970-01	0.3333333750-01	0.124198 D = 01	0.241143 D-02
0,1191999970-01	0.19999999900+00	0.736016 D=01	0.142904 D-01
0.200000000000	0 5000000055+00	0.216265 $0+00$	0.419900 D-01
0,3455999990-01	0.3999999850+00	0.337574 D+00	0.655434 D-01
0.5759999850-01	0.7999999000+00	0.437690 $0+00$	0.849818 0-0}
0 1151000070+00	0.9999999750+00	0.521993 D+00	0.101350 0+00
0 2303000000+00		0.811571 0+00	0,15/5/4 0+00
0.2303999994 0 400	0.3999999900+01	0.112834 0401	0.219079 0+00
0 4607000880+00	0.3999999850+01	0.132093 D+01	0.256473 0+00
0.5750000850+00	0.7999999800+01	0.145966 0+01	0.283409 D+00
0 11519999030400	0.9999999750+01	0.156816 $0+01$	0.3044/3 0+00
0 2303999999999	0.19999999900+02	0.190854 0+01	0.370562 $0+00$
0 3455999919401	0.5000000000000000000000000000000000000	0.225200 D+01	0.437249 $0+00$
0 46070000000000	0.3999999850+02	0.245370 U+U1	0.4/6410 D+00
0 5750000855+01	0.7999999800+02	0.259702 0+01	0.504237 D+00
1 115199999050401	0.100000000000000	0.270828 0+01	0.525839 $0+00$
0.31313133337770402	0.19999999950+03	0.305419 0+01	0.593001 D+00
0,230377774D702 8 3455999919+02	0.3999999900+03	0.340044 U+01	0.660229 0+00
0.0400000000000000000000000000000000000	0.3999999050+03	0.360215 0+01	0.699393 D+00
0.5759999850+02	0.7999999800+03		0.726731 D+00
0.37379999039402 0.1151999975+03	0.10000000000000	0,304934 0407	0.747387 0400
	0.3000000000000	0.413007 0 0 0	0.803893 $0+00$
0.3455999910+03	0 5000000855404	0.438878 0.449660 0.401	0.852120 D+00
0 4607999880+03	0 70000000000000	0.449000 0+01	0.873039 $0+00$
0.5759999855403	0.000000755404	0.450049 $0+01$	0.885404 0799
B 1151999970±88	0.1000000000000	0.400370 $0+01$	
0 230300000000		0.470900 0.4703	0.914311 $0+00$
0 3455000010+00		0.478218 D+01	0.928307 0+00
0 4607000880+04	0.3999999050+05		0.934812 $0+00$
0 5750000850+04	0.7999999800+05	0,48342/ D+01	0.938622 0700
0 1151000070+04	0.9999999750+05	0.484788 0.707	0.941204 D+0(*
	0.19999999950+06	0.488310 0+01	0.948101 0 0.948101
0,200077774D700 A 34559999915+A5	0 E0000008ED+06	0.491045 0+01	0.933412 UTVV 0.05601'1 0+00
0.460799988D±05	0.33333333050406	0.492383 0+01	0.93001 1 9799
	0.7999999800+06	0.493240 $0+01$	$0.93/0/3$ $U^+ V^-$
0,0/07777001405	0.3333333.20+00	0.493860 D+Q1	0.9588// 0400

AAD= 0.10000D+02 RWD= 0.20000D+02 RRD= 0.19800D+02

E = 0.50000D+00 E = 0.99000D+00

THE STEADY STATE PRESSURES

THETA=	0.0	PDSS =	D.499721227D+01
THETA =	0.45000D+02	PDSS=	0.781821844D+00
THETA=	0.90000D+02	PDSS=	0.372432260D+00
THETA=	0.13500D+03	PDSS=	0.249776611D+00
THETA=	0.18000D+03	PDSS=	0.220 1239210+00

TD	TD:RD**2	PD	P D N
0 2000000000000	0 000000755-01	0 12/108 5-01	0 248526 D 02
	0.393333373750-01	0.124196 0-03	0.248330 D = 02
0,79999999000-02	0.1999999999990+00	0.730010 D-01	0.147283 D -01
R = 230099999900-01	0.39999999900+00	0.210203 0+00 0.227574 0+00	0.432772 D-01
0 31999999955	0.39999999000+00	0.337574 0+00	0.0753200-01
0.300000000000	0.000000755+00		
	0.9999999750+00	0.321993 D+00	0.162404 0+00
0 1599999960+00	0.199999999900+01	0.112824 D +00	0.225705 D+00
0 23999999940+00	0.5000000850+01	0.112834 0707 0.132093 D+01	0.223793 0400
0 3199999997	0.700000800+01	0.145066 b 01	
0.300000000000000		0.156816 0.01	0.212807 0+00
0.399999999900+00	0.9999999750+01	$0.130810 \text{ D} \neq 0$	0.313807 0.91022 0.000
0.150000060+00	0.19999999950+02	0.190834 D+01	0.381922 0+00
0.2300999999999999	0.59999999900+02	0.223200 D+01	
0 31000000000001	0.700000800+02	0.243370 D+01 0.250702 D+01	0.491014 D+00
0.30000000000000	0.79999999000+02		
0.79999999900+01	0.39999999750402	0.270828 DF01 0.305418 D+01	0.541959 0+00
0 1599999960+02	0.19999999999999		0.680468 0+00
0.7399999940+02	0.59999999999900+03	0.340044 0401	0.720813 0+00
0.23999999920+02	0 799999999000+03	0.300200 Droi	0.748934 0+00
0 3999999900+02	0.9999999999999999		0.748934 0+00
0 7999999800+02	0.19999999755+04	0.384831 0401	0.829721 0+00
	0.30000000000000	0.437719 D +01	0.875026 0+00
0 23999999940	0 5999999850+04	0.47955 0+01	0.896410 D+00
0.3199999920+03	0 7999999800+04	0.453930 0+01	0 908367 0+00
0.39999999900+03	0.9999999750+04	0.457924 D+01	0 916359 D+00
0.7999999800+03	0.1999999950+05	0.467457 D+01	0.935436 0+00
0.1599999960+04	0.3999999900+05	0.473836 0+01	0.348201 D+00
0.2399999940+04	0.5999999850+05	0.476579 0+0	0.953690 D+00
0.3199999920+04	0.7999999800+05	0.47820 1 D+01	0.956936 D+00
0,3999999900+04	0,9999999750+05	0.479308 D+01	0.959152 D+00
0.7999999800+04	0,1999999950+06	0.482095 $p+01$	0.964729 D+00
0.1599999960+05	0.3999999900+06	0.484174 D+O1	0.968889 D+00
0.2399999940+05	0.5999999850+06	0.485162 D+01	0.970867 D+00
0.319999992D+05	0.7999999800+06	0,485786 D+0 1	0.972114 0+00
0.399999990D+05	0.999999975D+06	0.486231 D+01	0.973005 D+00

AAD= 0.12000D+02 RWD= 0.20000D+02 RRD= 0.19840D+02 F= 0.60000D+00 E= 0.99200D+00

THE STEADY STATE PRESSURES

THETA=	0.0	PDSS=	0.488027348D+01
THETA=	0.45000D+02	PDSS=	0.5339060320+00
THETA=	0.900000+02	PDSS=	0.222079701D+00
THETA=	0.13500D+03	PDSS =	0.141672794D+00
THETA=	0.18000D+03	PDSS=	0.123271442D+00

TD	TD:RD**2	PD	PDN
0.255999994D-02	0.9999999750-01	0.124198 D-01	0.254491 D-02
0.511999987D-02	0.199999995D+00	0.736016 D-01	0.150814 D-01
0.1023999970-01	0.3999999900+00	0.216265 D+00	0.443142 0-01
0.1535999960-01	0.599999985D+00	0.337574 D+00	0 691713 0-01
0.2047999950-01	0.7999999800+00	0.437690 D+00	0 896855 0-01
0.2559999940-01	0,9999999750+00	0 521993 5+00	0 106959 0+00
0.511999987D-01	0.199999995D+01	0.811571 D+00	0 166296 0+00
0.1023999970+00	0.3999999900+01	0 112834 0+01	0 231205 0+00
0.1535999960+00	0.5999999850+01	0.132093 D+01	0 270669 0+00
0.2047999950+00	0.7999999800+01	0 145966 0+01	0 299095 0+00
0.2559999940+00	0,9999999750+01	0 156816 0+01	0 321326 0+00
0.5119999870+00	0.1999999950+02	0.190854 b+0.1	0.391073 0+00
0.1023999970+01	0.3999999900+02	0.225200 $b+01$	0.461451 D+00
D.153599996D+01	0.5999999850+02	0.245370 0+01	0.502779 0+00
0.2047999950+01	0.7999999800+02	0.259702 0+01	0 532147 0+00
0.2559999940+01	0 9999999750+02	0 270828 0+01	0 554945 0+00
0.5119999870+81	0 19999999555+03	0.270020 p 0 1 0.305418 $b + 01$	0 625822 0+00
D.102399997D+02	0.3999999900+03	0.340044 D+D1	0.696772 D+00
0.1535999960+02	0.599999850+03	0 360197 0+01	0.738068 D+DD
0.2047999950+02	0.7999999800+03	0.374224 D+01	0.766809 D+DD
0.255999994D+02	0.999999975D+03	0.384775 D+01	0.788431 D+00
0.511999987D+02	0.199999995D+04	0.414227 D+D1	0.848779 D+00
0.1023999970+03	0.399999990D+04	0.436656 D+D1	0.894737 D+00
0.153599996D+03	0.599999985D+04	0.446394 D+01	0,914692 D+00
0.2047999950+03	0.799999980D+04	0.451993 D+01	0.926163 D+00
0.255999994D+03	0.999999975D+04	0.455690 D+01	0.933739 D+00
0.511999987D+03	0.199999995D+05	0.464328 D+01	0.951439 D+00
0.102399997D+04	0.399999990D+05	0.469903 D+01	0.962862 D+00
0.153599996D+04	0,599999985D+05	0.472226 D+01	0.967623 D+00
0.204799995D+04	0.799999980D+05	0.473572 D+01	0.970380 D+00
0.255999994D+04	0,999999975D+05	0.474476 D+O1	0.972232 D+00
0.511999987D+04	0,1999999950+06	0.476687 D+01	0.976764 D+00
0.102399997D+05	0.3999999900+06	0.478264 D+01	0.979995 D+00
0.153599996D+05	0,599999985D+06	0.478988 D+D1	0.981478 D+00
0.204799995D+05	0,7999999800+06	0.479435 D+01	0.982395 D+00
0.255999994D+05	0.999999975D+06	0.479750 D+0 1	0.983041 D+00

A A D =	0.14000D+02
RWD =	0.20000D+02
RRD =	0.19880D+02
F= 0.	70000D+00
E = 0.	994000+00

THE STEADY STATE PRESSURES

THETA=	0.0	PDSS=	0.478749174D+01
THETA=	0.45000D+02	PDSS=	0.318338399D+00
THETA=	0.90000D+02	PDSS=	0.115850105D+00
THETA=	0.13500D+03	PDSS=	0.710709086D-01
THETA=	0.18000D+03	PDSS=	0.6 12734171D-01

TD	TD:RD**2	PD	PDN
0.1439999960-02	0.9999999750-01	0.124198 D-01	0.259423 D-02
0.287999993D-02	0.199999995D+00	0.736016 D-01	0.153737 D-01
0.5759999850-02	0.3999999900+00	0.216265 0+00	0.451730 D-01
0.863999978D-02	0.5999999850+00	0.337574 D+00	0.705118 D-01
0.115199997D-01	0.7999999800+00	0.437690 D+DD	0.914236 D-01
0.143999996D-01	0.9999999750+00	0.521993 D+00	0.109032 D+00
0.287999993D-01	0.199999950+01	0.811571 D+00	0.169519 D+00
0.575999985D-01	0.3999999900+01	0.112834 D+01	0.235686 D+00
0.863999978D-01	0.5999999850+01	0.132093 D+01	0.275914 D+00
0.115199997D+00	0.7999999800+01	0.145966 D+01	0.304892 D+00
0.143999996D+00	0.9999999750+01	0.156816 D+01	0.327553 D+00
0.287999993D+00	0.1999999950+02	0.190854 D+01	0.398652 D+00
0.575999985D+00	0.3999999900+02	0.225200 D+01	0.470394 D+00
0.863999978D+00	0.5999999850+02	0.245370 D+01	0.512523 D+00
0.115199997D+01	0.799999980D+02	0.259702 D+01	0.542460 D+00
0.143999996D+01	0.999999975D+02	0.270828 D+01	0.565700 D+00
0.287999993D+01	0.19999995D+03	0.305418 D+01	0.637950 D+00
0.575999985D+01	0.3999999900+03	0.340043 D+01	0.710275 D+00
0.863999978D+01	0.599999985D+03	0.360189 D+01	0.752355 D+00
0.115199997D+02	0.799999980D+03	0.374192 D+01	0.781604 D+00
0.143999996D+02	0.99999975D+03	0.384705 D+01	0.803563 D+00
0.287999993D+02	0.199999995D+04	0.413853 D+01	0.864447 D+00
0.575999985D+02	0.399999990D+04	0.435665 D+O1	0.910007 D+00
0.863999978D+02	0.59999985D+04	0.444940 D+01	0.929381 D+00
0.115199997D+03	0.79999980D+04	0.450189 D+01	0.940344 D+00
0.143999996D+03	0.999999975D+04	0.453612 D+01	0.947494 D+00
0.287999993D+03	0.199999995D+05	0.461425 D+01	0.963814 D+00
0.575999985D+03	0.3999999900+05	0.466273 D+01	0.973940 D+00
0.863999978D+03	0.59999985D+05	0.468226 D+01	0.978020 D+00
0.115199997D+04	0.799999980D+05	0.469333 D+01	0.980332 D+00
0.143999996D+D4	0.999999975D+05	0.470065 D+01	0.981860 D+00
0.287999993D+04	0.199999995D+06	0.471803 D+01	0.985492 D+00
0.575999985D+04	0.3999999900+06	0.472983 D+01	0.987956 D+00
0.863999978D+04	0.59999985D+06	0.473502 D+01	0.989041 D+00
0.115199997D+05	0.799999980D+06	0.473815 D+01	0.989694 D+00
0.143999996D+05	0.999999975D+06	0.474032 D+01	0.990147 D+00

AAD= 0.16000D+02 RWD= 0.20000D+02 RRD= 0.19920D+02

F = 0.80000D+00 E = 0.99600D+00

THE STEADY STATE PRESSURES

THETA=	0.0	PDSS =	0.471177992D+01
THETA=	0.45000D+02	PDSS=	0.1460999210+00
THETA=	0.90000D+02	PDSS=	0.473828766D-01
THETA=	0.13500D+03	PDSS=	0.282979656D-01
THETA=	0.18000D+03	PDSS=	0.242526116D-01

TD	TD:RD**2	PD	PDN
0.639999984D-03	0.9999999975D-01	0.124198 D-D1	0.263591 D-02
0.1279999970-02	0.199999995D+00	0.736016 D-01	0.156207 D-01
0.255999994D-02	0.3999999900+00	0.216265 D+00	0.458989 D=01
0.383999990D-02	0.5999999850+00	0.337574 D+00	0.716448 D-01
0.511999987D-02	0.799999980D+00	0.437690 D+00	0.928927 D-01
0.639999984D-02	0.999999975D+00	0.521993 D+00	0.110784 0+00
0.127999997D-01	0.1999999950+01	0.811571 D+00	0 172243 0+00
0.2559999940-01	0.3999999900+01	0.112834 D+D1	0 239473 0+00
0.383999990D-01	0.5999999850+01	0.132093 0+01	0 280348 0+00
0.5119999870-01	0.7999999800+01	0.145966 D+01	0.309791 D+00
0.6399999840-01	0,9999999750+01	0.156816 D+01	0.332817 D+D1
0.1279999970+00	0.199999995D+02	0.190854 D+01	0.405058 D+00
0.255999994D+00	0.399999990D+02	0.225200 D+D1	0.477952 D+00
0.383999990D+00	0.599999985D+02	0.245370 D+01	0.520759 D+00
0.511999987D+00	0.799999980D+02	0.259702 D+01	0.551177 D+00
0.639999984D+00	0.999999975D+02	0.270828 D+01	0.574790 D+00
0.127999997D+01	0.199999995D+03	0.305417 D+01	0.648200 D+00
0.255999994D+01	0.399999990D+03	0.340043 D+01	0.721688 D+00
0.383999990D+01	0.59999985D+03	0.360181 D+01	0.764428 D+00
0.511999987D+01	0.799999980D+03	0.374162 D+01	0.794100 D+00
D.639999984D+01	0.999999975D+03	0.384639 D+01	0.816335 D+00
0.127999997D+02	0.199999995D+04	0.413500 D+01	0.877589 D+00
0.255999994D+02	0.399999990D+04	0.434730 D+01	0.922645 D+00
0.383999990D+02	0.59999985D+04	0.443567 D+01	0.941402 D+00
0.511999987D+02	0.799999980D+04	0.448486 D+01	0.951840 D+00
0.639999984D+02	0.999999975D+04	0.451650 D+01	0.958556 D+00
0.127999997D+03	0.199999995D+05	0.458691 D+01	0.973499 D+00
0.255999994D+03	0.399999990D+05	0.462864 D+01	0.982356 D+00
0.383999990D+03	0.599999985D+05	0.464478 D+01	0.985782 D+00
0.511999987D+03	0.799999980D+05	0.465370 D+01	0.987674 D+00
0.639999984D+03	0.999999975D+05	0.465948 D+01	0.988900 D+00
0.127999997D+04	0.199999995D+06	0.467275 D+01	0.991718 D+00
0.255999994D+04	D.399999990D+06	0.468127 0+01	0.993526 D+00
0.383999990D+04	0.599999985D+06	0.468484 D+01	0.994284 D+00
0.511999987D+04	0.79999980D+06	0.468693 D+01	0.994727 D+00
0.639999984D+04	0.999999975D+06	0.468834 D+01	0.995026 D+00

AAD= 0.18000D 02 RWD= 0.20000D 02 RRD= 0.19960D 02 F= 0.90000D 00 E= 0.99800D 00

THE STEADY STATE PRESSURES

THETA= (D.00000D	00	PDSS=	0	•	4	6	48	36	55	55	; 3	0	0)	0	1
THETA= (D.45000D	02	PDSS=	0	•	3 !	5 9	98	38	3 5	7	5	i 8	3 D) (0	1
THETA= (0.90000D	02	PDSS=	0	•	11	08	3 '	1	17	3	88	3	3 D) –	0	1
THETA= (0.13500D	03	PDSS=	0	. 1	6:	3 (5 '	17	7 0	12	4	8	3 D) -	0	2
THETA= ().18000D	03	PDSS=	Û	•	51	4	3 5	5 () 9	7	4	0	D) -	0	2

THETA= 0.00000D 0D

TD	TD:RD**2	PD		PDI	N
0.1599999960-03	0.999999975D-	01 0.120198	D-01	0.267 171	D-02
D.319999992D-03	0.199999995D	00 0.736016	D-01	0.158328	D-01
0.639999984D-03	0.399999990D	00 0.216265	D 00	0.465221	D-01
0.959999976D-03	0.599999985D	00 0.337574	D 00	0.726177	D-01
0.127999997D-02	0.799999980D	00 0.437690	D 00	0.941541	D-01
0.159999996D-02	D.999999975D	0.521993	D 00	0.112289	D 00
0.319999992D-02	0.199999995D	01 0.811571	D 00	0.174582	D 00
0.639999984D-02	D.399999990D	01 0.112834	D 01	0.242725	D 00
0.959999976D-02	0.599999985D	01 0.132093	D 01	0.284155	D 00
0.1279999970-01	0.799999980D	01 0.145966	D 01	0.313998	D 00
0.159999996D-01	0.999999975D	01 0.156816	D 01	0.337336	D 00
0.319999992D-01	0.199999995D	02 0.190854	D 01	0.410558	D 00
0.639999984D-01	0.399999990D	02 0.225200	D 01	0.484443	D 00
0.959999976D-D1	0.599999985D	02 0.245370	D 01	0.527830	D 00
0.127999997D 00	0.799999980D	02 0.259702	D 01	0.558661	D 00
0.159999996D 00	0.999999975D	02 0.270828	D 01	0.582595	D 00
0.319999992D 00	0.199999995D	03 0.305417	D 01	0.657001	D 00
0.639999984D 00	0.399999990D	03 0.340043	D 01	0.731487	D 00
0.959999976D 00	0.599999985D	03 0.360174	D 01	0.774793	D 00
0.127999997D 01	0.799999980D	03 0.374134	D 01	0.804823	D 00
0.159999996D 01	0.999999975D	03 0.384576	D 01	0.827286	D 00
0.319999992D 01	0.199999995D	04 0.413165	D 01	0.888785	D 00
0.639999984D 01	0.399999990D	04 0.433839	D 01	0.933257	D 00
0.9599999763) 01	0.599999985D	04 0.442259	D 01	0.951370	D 00
0.127999997D 02	0.799999980D	04 0.446862	D 01	0.961273	D 00
0.159999996D 02	0.999999975D	04 0.449780	D 01	0.967549	D 00
0.319999992D 02	0.199999995D	05 0.456085	D 01	0.981112	D 00
0.639999984D 02	0.399999990D	05 0.459621	D 01	0.988719	D 00
0.959999976D 02	0.599999985D	05 0.460918	D 01	0.991509	D 00
0.127999997D 03	0.799999980D	05 0.461609	D 01	0.992996	D 00
0.159999996D 03	0.999999975D	05 0.462046	D 01	0.993934	D 00
0.319999992D 03	0.199999995D	06 0.463004	D 01	0.995996	D 00
0.639999984D 03	0.399999990D	06 0.463567	D 01	0.997208	D 00
0.959999976D 03	0.599999985D	06 0.463790	D 01	0.997688	D 00
0.1279999971) 04	0.799999980D	06 0.063901	D 01	0.997926	D 00
0.159999996D 04	0.999999975D	06 0.463993	D 01	0,998125	D 00

TABLE H.2 :

NO-FLOW INTERNAL BOUNDARY

AAD= 0.60000D+01 RWD= 0.20000D+02 RRD= 0.19720D+02 F= 0.30000D+00 E= 0.98600D+00

TD	TD:RD**2	PD
TD 0.783999980D-02 0.156799996D-01 0.313599992D-01 0.470399988D-01 0.627199984D-01 0.783999980D-01 0.313599992D+00 0.313599992D+00 0.627199984D+00 0.627199984D+00 0.783999980D+00 0.156799996D+01 0.313599992D+01 0.470399988D+01 0.567999980D+01 0.567999980D+01 0.567999980D+01 0.567999980D+01 0.567999980D+01 0.567999980D+01 0.567999980D+02 0.313599992D+02	TD: RD **2 0.999999975D-01 0.199999995D+00 0.3999999985D+00 0.599999980D+00 0.799999980D+00 0.999999975D+00 0.199999995D+01 0.399999995D+01 0.599999980D+01 0.999999980D+01 0.199999995D+02 0.399999995D+02 0.399999995D+02 0.399999980D+02 0.599999980D+02 0.99999995D+02 0.199999995D+02 0.199999995D+02 0.199999995D+02 0.199999995D+03 0.399999990D+03	PD 0.124198 D-01 0.736016 D-01 0.216265 D+00 0.337574 D+00 0.437690 D+00 0.521993 D+00 0.811571 D+00 0.112834 D+01 0.132093 D+01 0.145966 D+01 0.156816 D+01 0.190854 D+01 0.225200 D+01 0.245370 D+01 0.259702 D+01 0.270828 D+01 0.305925 D+01 0.340050 D+01
0.470399988D+02 0.627199984D+02 0.783999980D+02 0.156799996D+03 0.313599992D+03 0.470399988D+03 0.627199984D+03 0.78399988D+03	0.599999985D+03 D.799999980D+03 O.999999975D+03 O.199999995D+04 O.399999990D+04 O.599999985D+04 D.799999980D+04 D.99999980D+04	0.360374 D+01 0.374930 D+01 0.386359 D+01 0.422890 D+01 0.460452 D+01 0.482299 D+01 0.497583 D+01
0.156799996D+04 0.313599992D+04 0.470399988D+04 0.627199984D+04 0.783999980D+04 0.156799996D+05 0.313599992D+05 0.470399988D+05	0.1999999995D+05 0.399999990D+05 0.599999985D+05 0.799999980D+05 0.999999980D+05 0.1999999975D+05 0.1999999995D+06 0.3999999990D+06 0.599999985D+06	0.509296 D+01 0.579974 D+01 0.600296 D+01 0.614684 D+01 0.625835 D+01 0.660450 D+01 0.695063 D+01 0.715316 D+01
0.6 27199984D+05 D.783999980D+05 0.156799996D+06 0.313599992D+06 0.470399988D+06 0.627199984D+06 0.783999980D+06 0.156799996D+07 0.313599992D+07 0.470399988D+07 0.627199984D+07	0.799999980D+06 0.999999975D+06 0.1999999995D+07 0.3999999990D+07 0.599999985D+07 0.799999985D+07 0.999999975D+07 0.199999995D+08 0.399999990D+08 0.599999985D+08 0.799999980D+08	0.729688 D+01 0.740837 D+01 0.775476 D+01 0.810122 D+01 0.830391 D+01 0.844772 D+01 0.855928 D+01 0.890582 D+01 0.925238 D+01 0.945510 D+01 0.959894 D+01

A A D	=	0.1000	00D+02
RWD		0.2000	00D+02
R R D		0.1980	00D+02
F =	0.	50000I	0+00
E =	0.	99000I	0+80

TD	TD: RD **2	PD)
0.3999999900-02	0.9999999750-01	0.124198	D-01
0.799999980D-02	0.19999995D+00	0.736016	D-01
0.159999996D-01	0.399999990D+00	0.216265	D+00
0.239999994D-01	0.59999985D+00	0.337574	D+00
0.319999992D-01	0.7999999800+00	0.437690	D+00
0.399999990D-01	D.999999975D+0 0	0.521993	D+00
0.799999980D-01	0.199999995D+01	0.811571	D+00
0.159999996D+00	0.399999990D+01	0.112834	D+01
0.239999994D+00	0.599999985D+01	0.132093	D+01
0.319999992D+00	0.799999980D+01	0.145966	D+01
0.399999990D+00	0.999999975D+01	0.156816	D+01
0.799999980D+00	0.199999950+02	0.190854	D+01
0.159999996D+01	0.399999990D+02	0.225200	D + 0.1
0.239999994D+01	0,5999999850+02	0.245370	D + 0.1
0.3199999920+01	0.7999999800+02	0 259702	D + 0.1
0.3999999900+01	0.999999750+02	0 270828	D+01
0.7999999800+01	0 1999999950+03	0.305426	D+01
0.159999996D+02	0.3999999900+03	0 340051	5+01
D 2399999994D+02	0 5999999850+03	0.340031	D+01 D+01
0.3199999920+02	0.7999999800+03	0.300403	D+01
0 3999999900+02	D QQQQQQQ75n+n3	0.375051	D+01
0.7999999800+02	0 1999999555+04	0.300043	D+01
h 15999999605102	0.19999999999999	0.424045	D+01
0 23999999900103	0.59999999900.04	0.405/15	D+01
0.3199999920+03	0.700000000000	0.490410	D+01
0.0000000000000000000000000000000000000	0 000000755+00	0.507848	D+01
0,399999999900403	0 100000000000	0.521197	D+01
0.150000060+03	0.1777777777700+05	0.501113	D+01
0.13777777700704	0.3999999900+03	0.598534	D+01
	0.39999999030703	0.619556	
0.3199999920704	0.7999999800+05	0.634226	D+U1
0.3999999900+04	0.9999999750+05	0.645510	0+01
0.150000000000	0.1999999950+06	0.680263	D+01
0.1599999900+05	0.3999999900+06	0.714837	D+U1
0.2399999940+05	U.599999985D+06	0.735048	D+01
0.3199999920+05	0.79999980D+06	0.749390	D+01
0.399999900+05	0.999999975D+06	0.760518	D+01
U.799999980D+05	0.199999995D+07	0.795102	D+01
0.1599999960+06	0.3999999900+07	0.829711	D+01
0.2399999940+06	D.599999985D+07	0.849965	D+01
u.319999992D+06	0.799999980D+07	0.864338	D+01
U.399999990D+06	0.999999975D+07	0.875489	D+01
U.799999980D+06	0.199999995D+08	0.910131	D+01
U.159999996D+07	0.3999999900+08	0.944780	D+01
D.239999994D+07	0.599999985D+08	0.965050	D+01
D.319999992D+07	0.799999980D+08	0.979433	D+01
0.3999999900+07	D.999999975D+08	0.990589	D + 01

Å Å D	=	0.	12	00	0D+02
RWD	=	0.	20	00	0D+02
R R D	=	0.	19	84	0D+02
F =	0.	60	0020	0 D	+00
E =	0.	99		0 D	+00

.

THETA= 0.0

TD	TD:RD**2	PD
0.255999994D-02	0.9999999750-01	0.124198 D-01
0.5119999870-02	0.1999999950+00	0.736016 D-01
U.102399997D-01	0.3999999900+00	0.216265 D+00
0.1535999960-01	0.5999999850+00	0.337574 D+00
0.2047999950-01	0.799999980D+00	0.437690 D+00
0.2559999940-01	0.9999999750+00	0.521993 D+00
0.5119999870-01	0.199999995D+01	0.811571 D+00
0.1023999970+00	U.399999990D+U1	0.112834 D+01
0.1535999960+00	0.5999999850+01	0.132093 0+01
0.204/999950+00	0.7999999800+01	0.145966 D+01
0.2339999940400	0.9999999750+01	0.156816 0+01
0.5119999070+00	0.1999999950+02	0.190854 0+01
0.1023999970+01	0.3999999900+02	0.225200 0+01
0.1535999960401	0.5999999850+02	0.245370 D+01
0.2047999950+01	0.7999999800+02	0.259/02 0+01
0.23333333340403	0.9999999750+02	0.2/0828 D+01
0.3119999070701	0.1999999950+03	
0.1023999970+02	0.3999999900+03	0.340052 0701
0.15555555555555	0.5999999850+03	0.360415 0+01
0.204/9999900+02	0.7999999800+03	0.3/5102 0+01
0.5110000970+02	0.9999999750403	0.386764 0+01
0.102300070402	0.1999999990+04	
0.1023999970+03	0.33333333300+04	0.400100 0+01
0.2047999950403	0.33333333830+04 0.700000800+04	0.494412 0+01
0 2559999940+03	0.79999999800+04	0.515151 D+01
0 5119999870+03	0 19999999750+05	0.52/00/ 0.01
0 1023999970+04	0.1999999999999	0 611723 D+01
0 1535999960+04	0.5999999850+05	0 634013 0+01
0.2047999950+04	0.7999999800+05	0.649314 D+01
0 25599999940+04	0.9999999750+05	0.660955 D+01
0.511999987D+04	0.1999999950+06	0.696286 D+01
0.1023999970+05	0.3999999900+06	0.730999 D+01
0.1535999960+05	0.5999999850+06	0.751210 D+01
0.2047999950+05	0.7999999800+06	0.765538 D+01
0.255999994D+05	0.9999999750+06	0.776651 D+01
0.511999987D+05	0.1999999950+07	0.811187 D+01
0.1023999970+06	0.3999999900+07	0.845757 0+01
0.153599996D+06	0.5999999850+07	0.865999 D+01
0.204799995D+06	0.7999999800+07	0.880357 D+01
0.255999994D+D6	0.9999999750+07	0.891501 D+01
0.511999987D+06	0.199999995D+08	0.926129 D+01
0.102399997D+07	0.399999990D+08	0.960769 D+01
0.153599996D+07	0.599999985D+08	0.981036 D+01
0.204799995D+07	0.799999980D+08	0.995417 D+01
0.255999994D+07	0.9999999750+08	0.100657 D+02

· 👡

AAI) =	0.14000D+02
RWI) =	0.20000D+02
RRI) =	0.19880D+02
F =	0.	70000D+00
E =	0.	99400D+00

THETA= 0.0

TD	TD:RD**2	PD
TD 0.143999996D-02 0.287999993D-02 0.575999985D-02 0.86399978D-02 0.115199997D-01 0.143999996D-01 0.287999993D-01 0.575999985D-01 0.115199997D+00 0.143999996D+00 0.287999993D+00 0.287999985D+00 0.86399978D+00 0.575999985D+00 0.86399978D+01 0.143999996D+01 0.143999996D+01 0.143999996D+01 0.143999996D+01 0.575999985D+01 0.575999985D+01 0.575999985D+01	TD: RD * * 2 0.9999999950+00 0.3999999950+00 0.599999850+00 0.599999850+00 0.7999999850+00 0.999999950+00 0.1999999950+01 0.3999999950+01 0.5999999800+01 0.9999999550+01 0.9999999550+02 0.3999999950+02 0.5999999850+02 0.5999999850+02 0.7999999850+02 0.999999950+02 0.999999950+03 0.3999999950+03 0.3999999900+03	PD 0.124198 D-01 0.736016 D-01 0.216265 D+00 0.337574 D+00 0.437690 D+00 0.521993 D+00 0.811571 D+00 0.112834 D+01 0.132093 D+01 0.195966 D+01 0.190854 D+01 0.252200 D+01 0.255702 D+01 0.259702 D+01 0.259702 D+01 0.270828 D+01 0.305427 D+01 0.340053 D+01
D.863999978D+01 O.115199997D+02 D.143999996D+02 D.287999993D+02 D.575999985D+02 D.863999978D+02 D.115199997D+03 D.143999996D+03 D.287999993D+03 D.575999985D+03 D.863999978D+03 D.863999978D+03 D.863999978D+04 D.143999996D+04 D.143999996D+04	0.599999985D+03 0.7999999980D+03 0.999999995D+04 0.399999995D+04 0.599999995D+04 0.799999985D+04 0.799999985D+04 0.199999995D+05 0.3999999995D+05 0.5999999985D+05 0.599999985D+05 0.799999985D+05 0.999999975D+05	0.360426 D+01 0.375149 D+01 0.375149 D+01 0.426159 D+01 0.426159 D+01 0.470568 D+01 0.498340 D+01 0.518429 D+01 0.534064 D+01 0.627029 D+01 0.6251754 D+01 0.68518 D+01 0.681109 D+01
D. 575999985D+04 D. 863999978D+04 D. 863999978D+04 D. 115199997D+05 D. 143999996D+05 D. 287999993D+05 D. 575999985D+05 D. 863999978D+05 D. 115199997D+06 D. 28799993D+06 D. 575999985D+06 D. 863999978D+06 D. 863999978D+06 D. 863999978D+06 D. 115199997D+07 D. 143999996D+07	0.3999999900+06 0.5999999850+06 0.7999999800+06 0.9999999950+07 0.39999999950+07 0.59999999850+07 0.7999999850+07 0.7999999800+07 0.1999999950+08 0.3999999950+08 0.3999999850+08 0.5999999850+08 0.5999999850+08	0.753849 D+01 0.753849 D+01 0.774215 D+01 0.788585 D+01 0.799708 D+01 0.834211 D+01 0.868723 D+01 0.868723 D+01 0.903275 D+01 0.914407 D+01 0.949006 D+01 0.983627 D+01 0.100388 D+02 0.101826 D+02 0.102941 D+02

.

AAD) =	0.16000D+0	2
RWD) =	0.20000D+0	2
RRD	=	0.19920D+0	2
F=	n	800000+00	
E =	ο.	99600D+00	

TD	TD :RD**2	PD
0.639999984D-D3	0.999999975D-01	0.124198 D-01
0.1279999970-02	0.199999995D+00	0.736016 D-01
D.255999994D-02	0.399999990D+00	0.216265 D+00
0.383999990D-02	0.599999985D+00	0.337574 D+00
0.5119999870-02	0.799999980D+00	0.437690 D+00
0.639999984D-02	0.999999975D+00	0.521993 D+00
0.1279999970-01	0.199999995D+01	0.811571 D+00
0.255999994D-01	0.3999999900+01	0.112834 D+01
0.383999990D-01	0.599999985D+01	0.132093 D+01
0.5119999870-01	0.7999999800+01	0.145966 D+01
0.6399999840-01	0.9999999750+01	0.156816 D+01
0.1279999970+00	0.1999999950+02	0.190854 D+01
0.2559999940+00	0.3999999900+02	0.225200 D+01
0.3839999900+00	0.5999999850+02	0.245370 D+01
0 5119999870+00	0.7999999800+02	0 259702 0+01
0 6399999840+00	0.9999999750+02	0 270828 0+01
0 1279999970+01	0 1999999950+03	0 305428 0+01
0 255099994040401	0 3000000000000	0.303428 0.01
0.38300000000001	0 5000000000000000000000000000000000000	0.340033 0.01
0.5059999900+01	0.333333333030+03	0.300437 0401
0.5119999070401	0.19999999000+03	0.3/5193 0+01
	0.9999999750403	0.386981 D+01
0.12/99999/0402	0.1999999999900+04	0.420055 0+01
0.20099999940402	0.3999999900+04	
0.3039999900702	0.3999999850404	
0.5119999070702	0.7999999000+04	
0.0399999040402	0.9999999750+04	0.540590 0+01
0.12/999999/0403	0.199999999900+05	0.593120 D+01
0.2007777740403	0.3999999900+03	
0.5059999900+03	0.3999999850405	0.672340 0+01
0.511999907070703	0.7999999800+03	0.691664 0+01
0.0399999040703	0.9999999750+05	0.706172 D+01
0.12/99999/0404	0.1999999950+06	0.748507 D+01
0.25599999940404	0.3999999900+06	0.787149 0+01
0.3839999900+04	0.5999999850+06	0.808517 0+01
0.5119999870+04	0.799999980D+06	0.823320 D+U1
0.6399999840+04	0.9999999975D+06	0.834661 D+01
0.1279999970+05	U.199999995D+07	0.669441 D+01
0.2559999940+05	0.399999990D+07	0.903954 D+01
0.3839999900+05	0.599999985D+07	0.924122 D+01
0.511999987D+05	0.799999980D+07	0.938437 D+01
D.63999984D+05	0.99999975D+07	0.949545 D+01
0.1279999970+06	0.19999995D+08	0.984082 D+01
0.255999994D+06	0.39999990D+08	0.101866 D+02
0.383999990D+06	0.59999985D+08	0.103890 D+02
0.511999987D+06	0.79999980D+08	0.105326 D+02
0.639999984D+06	0.999999975D+08	0.106441 D+02

A A D RWD RRD	= =	0. 0. 0.	18 20 19	00 00 96	0 D + 0 2 0 D + 0 2 0 D + 0 2
F≈	0.	90	00	0 D	+00
E=	0.	99		0 D	+00

TD	TD:RD**2	PD
TD 0.159999996D-03 0.319999992D-03 0.639999984D-03 0.959999976D-03 0.1279999997D-02 0.159999996D-02 0.319999992D-02 0.959999976D-02 0.95999997D-01 0.159999997D-01 0.319999997D-01 0.319999992D-01 0.639999984D-01 0.959999976D-01 0.159999997D-01 0.159999997D-01 0.319999997D-01 0.319999997D-01 0.319999997D-01 0.319999997D-01 0.319999997D-01 0.319999997D-01 0.319999997D-01 0.319999997D-01 0.319999997D-00 0.319999997D-00 0.319999997D-00 0.319999997D-00 0.319999997D-00 0.3199999997D-00 0.3199999992D-00 0.3199999984D-00 0.3199999984D-00 0.3199999984D-00 0.3199999984D-00 0.31999999984D-00 0.31999999999900 0.319999999900 0.31999999900 0.31999999900 0.31999999900 0.3199999900 0.3199999900 0.319999900 0.3199999900 0.319999900 0.319999900 0.319999900 0.319999900 0.319999900 0.31999900 0.319999900 0.31990000000000000000000000000000000000	TD: RD ** 2 0.9999999975D-01 0.1999999995D+00 0.3999999985D+00 0.599999985D+00 0.799999985D+00 0.999999975D+00 0.199999995D+01 0.399999985D+01 0.599999985D+01 0.799999985D+01 0.999999975D+02 0.3999999995D+02 0.5999999980D+02 0.5999999980D+02 0.5999999985D+02 0.999999995D+02 0.99999995D+02 0.999999995D+02 0.999999995D+03 0.3999999990D+03	PD 0.124198 D-01 0.736016 D-01 0.216265 D+00 0.337574 D+00 0.437690 D+00 0.521993 D+00 0.811571 D+00 0.112834 D+01 0.132093 D+01 0.156816 D+01 0.259702 D+01 0.259702 D+01 0.270828 D+01 0.305428 D+01 0.340054 D+01
0.959999976D+00	0.599999985D+03	0.360446 D+01
0.127999997D+01	0.799999980D+03	0.375234 D+01
0.159999996D+01	0.999999975D+03	0.387079 D+01
D.319999992D+D1	0.1999999995D+04	0.427514 D+01
D.639999984D+01	0.399999990D+04	0.475123 D+01
D.959999976D+01	0.599999985D+04	0.506043 D+01
D.127999997D+D2	0.799999986D+04	0.528992 D+01
0.139999990D+02	0.999999975D+04	0.547209 D+01
0.319999992D+02	0.1999999995D+05	0.605013 D+01
0.639999984D+02	0.3999999990+05	0.662829 D+01
0.959999976D+02	0.59999985D+05	0.695926 D+01
0.127999997D+03	D.799999880D+05	0.718896 D+01
0.159999996D+03	0.999999975D+05	0.736362 D+01
0.319999992D+03	0.199999995D+06	0.788325 D+01
0.639999984D+03	0.399999990D+06	0.836334 D+01
0.959999976D+03	0.599999985D+06	0.862420 D+01
0.127999997D+04	0.799999980D+06	0.880046 D+01
0.159999996D+04	0.999999975D+06	0.893209 D+01
0.319999992D+04	0.199999995D+07	0.931802 D+01
0.639999984D+04	0.3999999990D+07	0.967942 D+01
0.9399999700+04 0.12799999970+05 0.1599999960+05 0.3199999920+05 0.6399999840+05 0.9599999760+05 0.2799999760+05	0.599999985D+07 0.799999980D+07 0.999999975D+07 0.1999999995D+08 0.3999999990D+08 0.599999985D+08	0.988431 D+01 0.100282 D+02 0.101400 D+02 0.104846 D+02 0.108298 D+02 0.110316 D+02
0.159999996D+06	0.999999975D+08	0.112859 D+02

A A D	=	0.	19	00	0 D +	02
RWD		0.	20	00	0 D +	02
R R D		0.	19	98	0 D +	02
F = E=	0. 0.	95 99	00	0 D 0 D	+00 +00	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.799999900-04 $0.799999900+00$ 0.736016 $D-01$ $0.1599999960-03$ $0.399999900+00$ 0.216265 $D+00$ $0.2399999900-03$ $0.5999999800+00$ 0.437690 $D+00$ $0.319999900-03$ $0.7999999800+00$ 0.437690 $D+00$ $0.399999900-03$ $0.7999999800+00$ 0.521993 $D+00$ $0.7999999800-03$ $0.199999900+01$ 0.811571 $D+00$ $0.1599999900-03$ $0.1999999900+01$ 0.112834 $D+01$ $0.23999999900-02$ $0.5999999800+01$ 0.132093 $D+01$ $0.31999999900-02$ $0.5999999800+01$ 0.145966 $D+01$ $0.3999999900-02$ $0.999999900+02$ $0.199999900+02$ 0.225200 $0.15999999900-02$ $0.1999999900+02$ 0.225200 $D+01$ $0.23999999900-02$ $0.1999999900+02$ 0.2259702 $D+01$ $0.39999999900-01$ $0.3999999900+02$ 0.2259702 $D+01$ $0.39999999900-01$ $0.7999999800+02$ 0.270828 $D+01$ $0.3999999900-01$ $0.1999999900+03$ 0.305429 $D+01$ $0.3999999900-01$ $0.399999900+03$ 0.360431 $D+01$ $0.3999999900-01$ $0.7999998800+03$ 0.360431 $D+01$ $0.3999999900-00$ $0.7999999800+03$ 0.375211 $D+01$ $0.3999999900+00$ $0.9999999900+03$ 0.387063 $D+01$ $0.79999999900+00$ $0.999999900+03$ 0.387063 $D+01$ $0.3999999900+00$ $0.999999900+03$ 0.387063 $D+01$ $0.3999999900+00$ <td< td=""></td<>
0.1599999900-030.399999900+000.216265 0+000.2399999940-030.5999999800+000.437690 0+000.399999900-030.999999750+000.521993 0+000.7999999800-030.199999950+010.811571 0+000.1599999960-020.399999900+010.112834 0+010.2399999900-020.5999999800+010.1128034 0+010.3999999900-020.5999999800+010.145966 0+010.3999999900-020.7999999800+010.145966 0+010.3999999900-020.99999900+020.225200 0+010.1599999960-010.399999900+020.225200 0+010.23999999900-010.5999999800+020.2259702 0+010.3999999900-010.5999999800+020.2259702 0+010.3999999900-010.7999999800+020.2259702 0+010.3999999900-010.7999999800+020.270828 0+010.399999900-010.399999900+030.305429 0+010.399999900-010.399999900+030.360431 0+010.3199999900-010.799999800+030.360431 0+010.3199999900-010.799999800+030.375211 0+010.399999900-000.799999800+030.37603 0+010.399999900+000.99999900+030.387063 0+010.3999999900+000.999999900+030.387063 0+010.3999999900+000.999999900+030.387063 0+010.7999999800+000.199999900+040.427728 0+01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.319999992D-03 $0.7999999980D+00$ 0.437690 $D+00$ $0.399999990D-03$ $0.99999995D+01$ 0.521993 $D+00$ $0.159999996D-03$ $0.19999999D+01$ 0.811571 $D+00$ $0.159999996D-02$ $0.39999990D+01$ 0.112834 $D+01$ $0.2399999992D-02$ $0.59999998D+01$ 0.132093 $D+01$ $0.3199999992D-02$ $0.79999998D+01$ 0.132093 $D+01$ $0.399999990D-02$ $0.79999998D+01$ 0.156816 $D+01$ $0.3999999990D-02$ $0.99999995D+02$ 0.190854 $D+01$ $0.159999996D-01$ $0.399999990D+02$ 0.225200 $D+01$ $0.3199999992D-01$ $0.799999980D+02$ 0.2259702 $D+01$ $0.399999990D-01$ $0.799999980D+02$ 0.2259702 $D+01$ $0.399999990D-01$ $0.99999995D+03$ 0.305429 $D+01$ $0.159999996D+00$ $0.39999990D+03$ 0.340053 $D+01$ $0.3199999990D+00$ $0.59999985D+03$ 0.360431 $D+01$ $0.319999992D+00$ $0.79999985D+03$ 0.375211 $D+01$ $0.3999999990D+00$ $0.99999995D+03$ 0.387063 $D+01$ $0.399999990D+00$ $0.99999995D+03$ 0.387063 $D+01$ $0.799999990D+00$ $0.99999995D+03$ 0.387063 $D+01$ $0.799999990D+00$ $0.99999995D+03$ 0.387063 $D+01$ $0.7999999990D+00$ $0.99999995D+03$ 0.387063 $D+01$ $0.7999999990D+00$ $0.99999995D+03$ 0.387063 $D+01$ $0.799999999990D+00$ 0.99999995
0.399999900-03 $0.9999999750+00$ $0.5219930+00$ $0.7999999800-03$ $0.1999999950+01$ $0.8115710+00$ $0.1599999960-02$ $0.399999900+01$ $0.1128340+01$ $0.2399999940-02$ $0.599999850+01$ $0.1320930+01$ $0.3199999920-02$ $0.799999800+01$ $0.1459660+01$ $0.3999999900-02$ $0.999999750+01$ $0.1568160+01$ $0.7999999800-02$ $0.199999950+02$ $0.22520000+01$ $0.15999999900-02$ $0.399999900+02$ $0.225200000+01$ $0.31999999900-01$ $0.5999999800+02$ $0.245370000+01$ $0.31999999900-01$ $0.7999999800+02$ $0.2259702000000000000000000000000000000000$
0.799999900-03 $0.799999900+03$ 0.811571 0.811571 0.811571 $0.15999999900+02$ $0.399999900+01$ 0.112834 $0+01$ $0.2399999920-02$ $0.5999999800+01$ 0.132093 $0+01$ $0.3999999900-02$ $0.7999999800+01$ 0.145966 $0+01$ $0.3999999900-02$ $0.999999950+02$ 0.190854 $0+01$ $0.15999999900-02$ $0.199999900+02$ 0.225200 $0+01$ $0.15999999900-01$ $0.599999900+02$ 0.225200 $0+01$ $0.39999999900-01$ $0.5999999800+02$ 0.245370 $0+01$ $0.3999999900-01$ $0.7999999800+02$ 0.259702 $0+01$ $0.3999999900-01$ $0.7999999900+02$ 0.270828 $0+01$ $0.3999999900-01$ $0.1999999900+02$ 0.270828 $0+01$ $0.1599999900-01$ $0.1999999900+03$ 0.305429 $0+01$ $0.15999999900-01$ $0.599999900+03$ 0.360431 $0+01$ $0.2399999940+00$ $0.7999999800+03$ 0.375211 $0+01$ $0.3999999900+00$ $0.9999999750+03$ 0.387063 $0+01$ $0.7999999800+00$ $0.999999950+03$ 0.387063 $0+01$ $0.79999999900+00$ $0.999999950+03$ 0.387063 $0+01$ $0.79999999900+00$ $0.1999999950+03$ 0.387063 $0+01$
0.159999990 D = 02 $0.399999990 D + 01$ $0.112834 D + 01$ $0.2399999994 D = 02$ $0.599999985 D + 01$ $0.132093 D + 01$ $0.319999992 D = 02$ $0.799999980 D + 01$ $0.145966 D + 01$ $0.399999990 D = 02$ $0.99999995 D + 02$ $0.156816 D + 01$ $0.7999999980 D = 02$ $0.99999995 D + 02$ $0.190854 D + 01$ $0.1599999996 D = 01$ $0.39999990 D + 02$ $0.225200 D + 01$ $0.3999999990 D = 01$ $0.599999985 D + 02$ $0.245370 D + 01$ $0.3999999992 D = 01$ $0.799999980 D + 02$ $0.259702 D + 01$ $0.3999999990 D = 01$ $0.99999995 D + 02$ $0.270828 D + 01$ $0.7999999990 D = 01$ $0.199999995 D + 03$ $0.305429 D + 01$ $0.1599999996 D + 00$ $0.39999999 D + 03$ $0.340053 D + 01$ $0.239999994 D + 00$ $0.599999985 D + 03$ $0.360431 D + 01$ $0.3199999992 D + 00$ $0.79999998 D + 03$ $0.375211 D + 01$ $0.3999999999990 D + 00$ $0.999999975 D + 03$ $0.387063 D + 01$ $0.799999998 D + 00$ $0.99999995 D + 03$ $0.375211 D + 01$ $0.7999999999990 D + 00$ $0.99999995 D + 03$ $0.387063 D + 01$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.319999990D-02 $0.79999990D+01$ 0.156816 $D+01$ $0.799999990D-02$ $0.99999975D+01$ 0.156816 $D+01$ $0.799999990D-02$ $0.199999995D+02$ 0.225200 $D+01$ $0.1599999990D-01$ $0.399999990D+02$ 0.225200 $D+01$ $0.3199999992D-01$ $0.799999980D+02$ 0.245370 $D+01$ $0.3999999992D-01$ $0.799999980D+02$ 0.259702 $D+01$ $0.399999990D-01$ $0.99999995D+02$ 0.270828 $D+01$ $0.7999999990D-01$ $0.199999995D+03$ 0.305429 $D+01$ $0.1599999996D+00$ $0.39999990D+03$ 0.340053 $D+01$ $0.239999994D+00$ $0.79999985D+03$ 0.360431 $D+01$ $0.319999992D+00$ $0.799999980D+03$ 0.375211 $D+01$ $0.399999990D+00$ $0.99999975D+03$ 0.387063 $D+01$ $0.799999980D+00$ $0.99999995D+03$ 0.387063 $D+01$ $0.799999990D+00$ $0.99999995D+03$ 0.387063 $D+01$
0.799999980D-02 0.19999995D+02 0.190854 D+01 0.159999996D-01 0.39999990D+02 0.225200 D+01 0.239999990D-01 0.599999985D+02 0.245370 D+01 0.399999992D-01 0.799999980D+02 0.2259702 D+01 0.399999990D-01 0.799999980D+02 0.2259702 D+01 0.399999990D-01 0.799999995D+02 0.270828 D+01 0.7999999980D-01 0.199999995D+03 0.305429 D+01 0.1599999996D+00 0.399999990D+03 0.340053 D+01 0.23999999990D+00 0.599999985D+03 0.360431 D+01 0.3199999992D+00 0.799999980D+03 0.375211 D+01 0.399999990D+00 0.999999975D+03 0.387063 D+01 0.7999999980D+00 0.19999995D+04 0.427728 D+01
0.159999996D-01 0.39999990D+02 0.225200 D+01 0.239999992D-01 0.599999985D+02 0.245370 D+01 0.399999992D-01 0.799999980D+02 0.245370 D+01 0.3999999990D-01 0.799999980D+02 0.270828 D+01 0.7999999990D-01 0.99999995D+03 0.305429 D+01 0.1599999996D+00 0.39999990D+03 0.340053 D+01 0.23999999990D+00 0.599999985D+03 0.360431 D+01 0.3199999992D+00 0.799999980D+03 0.375211 D+01 0.399999990D+00 0.999999975D+03 0.387063 D+01 0.799999980D+00 0.19999995D+04 0.427728 D+01
0.239999994D-01 0.599999985D+02 0.245370 D+01 0.319999992D-01 0.799999980D+02 0.245370 D+01 0.399999990D-01 0.799999980D+02 0.259702 D+01 0.399999990D-01 0.99999995D+02 0.270828 D+01 0.7999999980D-01 0.199999995D+03 0.305429 D+01 0.1599999996D+00 0.39999990D+03 0.340053 D+01 0.2399999994D+00 0.599999985D+03 0.360431 D+01 0.319999992D+00 0.799999980D+03 0.375211 D+01 0.399999990D+00 0.999999975D+03 0.387063 D+01 0.7999999980D+00 0.19999995D+04 0.427728 D+01
0.319999992D-01 0.799999980D+02 0.259702 D+01 0.399999990D-01 0.999999975D+02 0.270828 D+01 0.7999999980D-01 0.199999995D+03 0.305429 D+01 0.1599999996D+00 0.39999990D+03 0.340053 D+01 0.2399999994D+00 0.599999985D+03 0.360431 D+01 0.3199999992D+00 0.799999980D+03 0.375211 D+01 0.399999990D+00 0.999999975D+03 0.387063 D+01 0.7999999980D+00 0.19999995D+04 0.427728 D+01
0.39999990D-01 0.99999975D+02 0.270828 D+01 0.799999980D-01 0.199999995D+03 0.305429 D+01 0.159999996D+00 0.39999990D+03 0.340053 D+01 0.2399999994D+00 0.599999985D+03 0.360431 D+01 0.319999992D+00 0.799999980D+03 0.375211 D+01 0.399999990D+00 0.999999975D+03 0.387063 D+01 0.7999999980D+00 0.19999995D+04 0.427728 D+01
0.799999980D-010.199999995D+030.305429D+010.1599999996D+000.399999990D+030.340053D+010.2399999994D+000.599999985D+030.360431D+010.319999992D+000.799999980D+030.375211D+010.399999990D+000.99999975D+030.387063D+010.7999999980D+000.19999995D+040.427728D+01
0.159999996D+00 0.39999990D+03 0.340053 D+01 0.2399999994D+00 0.599999985D+03 0.360431 D+01 0.319999992D+00 0.799999980D+03 0.375211 D+01 0.399999990D+00 0.999999975D+03 0.387063 D+01 0.7999999980D+00 0.19999995D+04 0.427728 D+01
0.239999994D+00 0.599999985D+03 0.360431 D+01 0.319999992D+00 0.799999980D+03 0.375211 D+01 0.399999990D+00 0.999999975D+03 0.387063 D+01 0.7999999980D+00 0.19999995D+04 0.427728 D+01
0.319999992D+00 0.799999980D+03 0.375211 D+01 0.399999990D+00 0.999999975D+03 0.387063 D+01 0.7999999980D+00 0.199999995D+04 0.427728 D+01
D.39999990D+0D D.999999975D+03 O.387063 D+01 0.799999980D+00 0.199999995D+04 0.427728 D+01
0.799999980D+00 0.199999995D+04 0.427728 D+01
0.159999996D+01 0.399999990D+04 0.476114 D+01
0.239999994D+01 0.599999985D+04 0.507835 D+01
0.319999992D+01 0.799999980D+04 0.531536 D+01
0.399999990D+01 0.999999975D+04 0.550450 D+01
0.799999980D+01 0.199999995D+05 0.611123 D+01
0.159999996D+02 0.39999990D+05 0.672989 D+01
0.239999994D+02 0.59999985D+05 0.709050 D+01
0.319999992D+02 0.799999980D+05 0.734399 D+01
0.3999999900+02 0.9999999750+05 0.753870 D+01
0.79999999800+02 0.1999999950+06 0.812921 D+01
0.15999999900403 0.399999900406 0.869161 D+01
0.239999999940+03 $0.5999999950+05$ 0.900634 $0+01$
0.7999999000000000000000000000000000000
0.1050505000000000000000000000000000000
D.399999990D+04 D.999999975D+07 0.107928 D+02
0.799999980D+04 0.19999995D+08 0.111605 D+02
0,159999996D+05 0,39999990D+08 0,115099 D+02
0.239999994D+05 0.59999985D+08 0.116970 D+02
0.319999992D+05 0.79999980D+08 0.118422 D+02
0.399999990D+05 0.99999975D+08 0.119569 D+02

TABLE H.3 :

CONSTANT PRESSURE LINEAR BOUNDARY

20'*100 R1: 1.0 R2= 99.0

0.100000016D 0.124574657D-01 0.10000015D 0.447973396D 01 0.200000033D 00 0.732067097D-01 0.20000033D 05 0.44559610D 01 0.46600068D 00 0.14677220D 00 0.350600068D 05 0.445507001 0.4551057520 01 0.60000078D 00 0.2778866470 00 0.50000078D 05 0.457071601 0.457071601 0.60000078D 00 0.376268720 00 0.70000115D 05 0.45747771801 0.45777771801 0.700000145D 00 0.390014748D 00 0.70000148D 05 0.457497222D 0.145792222D 0.145792222D 0.145792222D 0.145792222D 0.1045792322D 0.100000148D 06 0.4582944497 01 0.452244497 01 0.452244497 01 0.452244497 01 0.452244497 01 0.452244497 01 0.45226232D 01 0.4522623D 01 0.4522623D 01 0.4522672853D 01 0.4522672853D 01 0.4522672853D 01	TD	PD	TD	PD
0.100000016D 0.0.1245746570-01 0.10000016D 0.445773360 0.445773360 0.200000033D 0.0 0.132000049D 0.3300055 0.445358600 0.1 0.40000066D 0.0 0.146277220D 0.0 0.35000049D 0.45545600 0.1 0.40000066D 0.0 0.216125825D 0.0 0.40000068D 0.5 0.45746971680D 0.1 0.500000082D 0.0 0.37626829D 0.0 0.60000082D 0.5 0.4577611680D 0.1 0.700000115D 0.0 0.390014748D 0.0 0.700000115D 0.5 0.45777130D 0.1 0.700000115D 0.5 0.4457972382D 0.0 0.80000114D 0.522141381D 0.0 0.100000148D 0.5 0.4459294282944997 0.1 0.2000000333D 0.0 0.48166671D 0.0 0.100000148D 0.5 0.44592944997 0.1 0.200000033D 0.0 0.48166671D 0.0 0.100000148D 0.4459294497 0.1 0.300000048D 0.1 0.491494001				
0.200000033D 00 0.7320670970-01 0.20000033D 05 0.4453596400 01 0.446200066D 00 0.216125920 00 0.43500495D 05 0.44554057D 01 0.500000082D 00 0.216125920 00 0.450000020 05 0.44554050D 01 0.500000082D 00 0.337620829D 00 0.500000082D 05 0.4457490977D 01 0.700000115D 00 0.390014748D 00 0.700000115D 05 0.457777183D 01 0.80000018D 00 0.43751020 00 0.90000145D 05 0.4457490977D 01 0.70000015D 00 0.43751020 00 0.90000145D 05 0.4457490977D 01 0.70000016D 01 0.427141021D 00 0.90000148D 05 0.45576220D 01 0.9000016D 01 0.522141381D 00 0.90000148D 05 0.44578294449; 01 0.200000033D 1 0.81171283D 00 0.20000044BD 06 0.4458294449; 01 0.200000033D 1 0.81171283D 00 0.20000044BD 06 0.4458294449; 01 0.200000082D 01 0.122394932D 01 0.50000098D 06 0.445926223D 01 0.40000068D 01 0.112845503D 01 0.40000098D 06 0.4459267283 01 0.40000068D 01 0.132519348D 01 0.40000098D 06 0.4459267283 01 0.40000082D 01 0.132519348D 01 0.40000098D 06 0.4592672853 01 0.700000115D 01 0.135519348D 01 0.70000018D 06 0.45932672D 01 0.30000078D 01 0.135519348D 01 0.90000148D 06 0.45932672D 01 0.90000048D 01 0.15549475D 01 0.90000148D 06 0.459337138D 01 0.90000018D 01 0.15549475D 01 0.9000018D 07 0.459437567D 01 0.90000018D 02 0.15652428D 01 0.20000018D 07 0.4594375567D 01 0.90000018D 02 0.15652428D 01 0.300000049D 07 0.4594507542 01 0.20000003D 02 0.156524528 01 0.100000165D 07 0.459457542 01 0.200000018D 02 0.23503717D 01 0.500000180 07 0.4594507542 01 0.20000018D 02 0.255037119D 01 0.50000080 07 0.4594674525D 01 0.20000018D 02 0.255037119D 01 0.50000038D 07 0.4594674520 01 0.20000018D 02 0.255037119D 01 0.500000080 07 0.459457420 01 0.200000049D 03 0.277837786D 01 0.200000180 07 0.4594674820 01 0.4594674320 01 0.559583219D 01 0.200000180 07 0.4594674820 01 0.4594674320 01 0.559583219D 01 0.200000180 07 0.4594674820 01 0.50000049D 03 0.3266831620 01 0.30000080 07 0.4594507542 01 0.500000080D 03 0.326583219D 01 0.200000180 07 0.459457520 01 0.4595195700 01 0.2059714020 01 0.200000180 07 0.45945957320 01 0.459595320 01 0.245997330 01 0.4595195700 01 0.45959195700	0,1000000160 00	0.1245746570-0	} 0,100000180	05 0.4479733960 01
0.130000000490 0.146277220b D0 0.3500000450 0.04550005 0.455105470b 0.1 0.45000000450 0.0 0.2798868470 0.0 0.4500000450 0.5 0.45777771830 0.1 0.5000000450 0.0 0.3376208290 0.0 0.6000000450 0.5 0.457797771830 0.1 0.700000113D 0.0 0.4378110210 0.0 0.7000001480 0.5 0.457797771830 0.1 0.700000148D 0.0 0.4378110210 0.0 0.7000001480 0.6 0.458294449; 0.1 0.2000000333 0.8 0.112845030 0.1 0.2200000330 0.6 0.458294449; 0.1 0.4000006600 0.12310374713 0.1 0.4000000680 0.4582030 0.1 0.4592062030 0.1 0.4592072853 0.1 0.500000015D 0.1 0.13210374713 0.1 0.500000282D 0.6 0.4592371380 0.1 0.50000015D 0.1 0.13510374713 0.1 0.500000180 0.6 0.459358770 0.1 <td>0,2000000330 00</td> <td>0.7320670970-0</td> <td>1 0.200000330</td> <td>05 0.4535596100 01</td>	0,2000000330 00	0.7320670970-0	1 0.200000330	05 0.4535596100 01
0. 45600006820 00 0. 2161259250 00 0. 4000000820 05 0. 4574975850 01 0. 500000820 00 0. 279868470 00 0. 500000820 05 0. 4574976800 01 0. 7000001150 00 0. 3900147480 00 0. 7000001150 05 0. 4574771830 01 0. 8000001310 00 0. 437410210 00 0. 8000001310 05 0. 45577771830 01 0. 7000001150 00 0. 481668671D 00 0. 9000001150 05 0. 4557771830 01 0. 2000001330 00 0. 481668671D 00 0. 9000001310 05 0. 45551600533 01 0. 200000180 01 0. 5221413810 00 0. 200000180 06 0. 4589164890 01 0. 3000000860 01 0. 12338493D 00 0. 2000002820 06 0. 4589103860 01 0. 3000000860 01 0. 112845030 01 0. 4000002860 06 0. 45892672853 01 0. 4000000860 01 0. 112845030 01 0. 400000880 06 0. 4592672853 01 0. 5000000820 01 0. 112845030 01 0. 500000780 06 0. 4592672853 01 0. 5000000820 01 0. 112845030 01 0. 500000780 06 0. 4592672853 01 0. 5000000820 01 0. 112845030 01 0. 500000780 06 0. 4592377853 01 0. 7000001150 01 0. 112845030 01 0. 500000780 06 0. 4592377853 01 0. 7000001150 01 0. 112845030 01 0. 500000180 06 0. 45933771380 01 0. 9000001480 01 0. 1156944750 01 0. 9000001150 06 0. 4593358770 01 0. 9000001480 01 0. 1156944750 01 0. 9000001480 06 0. 4593358770 01 0. 20000001480 01 0. 1156944750 01 0. 20000001480 06 0. 45933587570 01 0. 2000000180 02 0. 200000000 01 0. 000000000 07 0. 4594813650 01 0. 2000000180 02 0. 2000000000 01 0. 000000000 07 0. 4594813650 01 0. 4000000680 02 0. 2000000000 01 0. 000000000 07 0. 45949413650 01 0. 50000000980 02 0. 20000011 0. 000000000 07 0. 45949413650 01 0. 50000000980 02 0. 20000011 0. 0000000000 07 0. 45949413650 01 0. 50000000980 03 0. 3000000001 00 00 07 0. 45949413650 01 0. 50000000980 03 0. 3000000001 00 07 0. 45949405730 01 0. 500000000000 02 0. 2000000001 00 00 07 0. 45949405730 01 0. 500000000000 02 0. 2000000001 00 00 07 0. 45949405730 01 0. 500000000000 00 00 00 00 00 00 00 00 00	0.3000000490 00	0.146277220D D	0 0.350000049D	05 0.4555105470 01
0.5000000820 00 0.2798868470 00 0.500000820 05 0.4579916800 01 0.6000000980 00 0.3376208290 00 0.600000980 05 0.4579923820 c1 0.8000001130 00 0.4378110210 00 0.8000001310 05 0.4579923820 c1 0.8000001480 01 0.5221413810 00 0.1000001480 05 0.45579923820 c1 0.2000000333 01 0.8117128930 00 0.200001480 06 0.458294449; 01 0.2000000333 01 0.8117128930 00 0.20000230 06 0.458294449; 01 0.3000001480 01 0.95221413810 00 0.3000001480 06 0.458294449; 01 0.2000000333 01 0.8117128930 00 0.3000002820 06 0.4592044800 01 0.5000000820 01 0.1128455030 01 0.4500002820 06 0.4592042800 01 0.5000000820 01 0.1128455030 01 0.4500002820 06 0.459204280 01 0.5000000820 01 0.1321374713 01 0.65000002820 06 0.4593272853 01 0.5000000180 01 0.1325193460 01 0.7000001150 06 0.4593371380 c1 0.800000180 01 0.1459753970 01 0.8000001810 06 0.4593371380 c1 0.8000001310 01 0.1459753970 01 0.8000001480 06 0.4593371380 c1 0.8000001310 01 0.1459753970 01 0.8000001480 06 0.4593371380 c1 0.300000180 02 0.1558244280 01 0.7000001150 06 0.4593371380 c1 0.2000000330 02 0.1568244280 01 0.3000000490 07 0.45945975670 01 0.200000330 02 0.158244280 01 0.300000490 07 0.4594597542 01 0.300000180 02 0.2109286120 01 0.300000490 07 0.4594597542 01 0.3000000880 02 0.2109286120 01 0.3000000490 07 0.45949745283 01 0.459496743 01 0.5000000880 02 0.225099280 01 0.400000660 07 0.459496743 01 0.5000000880 02 0.225099280 01 0.4000000860 07 0.459496743 01 0.5000000880 02 0.2559711400 01 0.5000000820 07 0.459496743 01 0.5000000880 03 0.2256331820 01 0.3000000490 07 0.459496743 01 0.5000000880 03 0.2256331820 01 0.5000000820 08 0.4595089230 01 0.5000000180 03 0.2256331820 01 0.5000000820 08 0.4595949300 01 0.5000000180 03 0.2256331820 01 0.5000000820 08 0.4595949300 01 0.5000000180 03 0.3546374620 01 0.2000000180 08 0.4595949300 01 0.5000000820 03 0.3546374620 01 0.5000000820 08 0.459595350 01 0.45959792020 01 0.5000000180 03 0.356631820 01 0.5000000820 08 0.459595350 01 0.5000000820 03 0.356631820 01 0.5000000820 08 0.459595350 01 0.4595913230 01 0.5000000180 03 0.356631820 01 0.5	0,400000660 00	0.2161259250 0	0,4000006650	05 0,4564957580 01
0.6000000980 0.3378208290 0.0 0.60000000150 0.457490977001 0.7000001150 0.0 0.4300147460 0.70000001150 0.4579923820 0.1 0.8000001310 0.0 0.4378110210 0.0 0.80000011310 0.5 0.4579923820 0.1 0.10000001480 0.0 0.4816686710 0.0 0.8000001130 0.5 0.4551600533 0.1 0.1000000180 0.5221413810 0.0 0.20000000060 0.4582944891 0.1 0.30000004920 0.0 0.8117128330 0.0 0.2000000280 0.6 0.4592062030 0.1 0.4000000660 0.1 0.1128455030 0.1 0.4000000780 0.6 0.4592062030 0.1 0.4000000920 0.1 0.1233949320 0.1 0.5000000820 0.4592367270 0.1 0.7000001150 0.1 0.1395193460 0.1 0.7000001180 0.6 0.459358770 0.1 0.7000001130 0.1 0.14951637300 0.1 0.459358770 0.1 0.4592358770	0,5000000820 00	0.2798868470 0	0 0.500000820	05 0.4570916800 01
0.700000115D 0.457777183D 01 0.8000000131D 00 0.437811021D 00 0.800000131D 05 0.457777183D 01 0.900000148D 00 0.437811021D 00 0.900000148D 05 0.4551600533 01 0.1000000333 01 0.522141381D 00 0.100000013D 06 0.458294449; 01 0.2000000333 01 0.522141381D 00 0.10000000000 0.458203D 01 0.45820449; 01 0.40000066D 01 0.123354932D 01 0.400000092D 06 0.4592672853 01 0.500000092D 01 0.13230374713 01 0.6000000115D 06 0.4593371380 01 0.700000115D 01 0.1359193460 01 0.700000115D 06 0.4593371380 01 0.700000115D 01 0.145976397D 01 0.800000131D 07 0.4594507542 01 0.400000666D 02 0.21926612D 01 0.300000082D 07 0.4594507542 01 0.400000666D 02 0.22597928D	0.600000980 00	0,3376208290 0	0,60000098D	05 0.4574909770 01
0.8000001310 0.4378110210 00 0.8000001310 05 0.4579923820 01 0.900001480 00 0.481668671D 00 0.900001450 05 0.4551600533 01 0.1000001333 01 0.522141381D 00 0.1000001450 06 0.4582944497 01 0.3000000480 01 0.522141383D 00 0.2200000282D 06 0.45829104480 01 0.400000660 01 0.112845503D 01 0.400000082D 06 0.4592672853 01 0.60000092D 01 0.139519346D 01 0.70000182D 06 0.4593071280 01 0.700000148D 01 0.14597637D 01 0.80000131D 07 45937567D 01 0.900000148D 01 0.159475D 01 0.700000148D 07 45937567D 01 0.900000148D 02 0.210929612D 01 0.30000049D 07 0.4594507542 01 0.300000049D 02 0.210929612D 01	0.7000001150 00	0.390014748D 0	0 0.7000001150	05 0.4577771830 01
0.9000001480 00 0.481668671D 00 0.9000001480 06 0.4551600533 01 0.10000001333 01 0.522141381D 00 0.100000033D 06 0.458294449; 01 0.200000333 01 0.511712845503D 01 0.20000003D 06 0.459206203D 01 0.4000000660 01 0.123294920 01 0.450206203D 01 0.459206203D 01 0.4593373D 01 0.60000098D 06 0.4593373B 01 0.4593373D 01 0.4593375D 01 0.4593375D 01 0.4594507542 01	0,8000001310 00	0.4378110210 0	0 0.800000131D	05 0.457992382D 01
0.100000160 01 0.5221413810 00 0.100000160 06 0.45890449; 01 0.200000333 01 0.811712893D 00 0.20000033D 0.451712893D 00 0.3000000660 01 0.11284503D 01 0.400000082D 06 0.45900232D 01 0.400000082D 01 0.13210374713 01 0.60000098D 06 0.459267283 01 0.60000098D 01 0.13210374713 01 0.60000098D 06 0.459308027D 01 0.80000013D 01 0.13210374713 01 0.60000098D 06 0.45933877D 01 0.80000013D 01 0.13210374713 01 0.60000098D 06 0.45933877D 01 0.8000013D 01 0.151894475D 01 0.700000148D 06 0.45933877D 01 0.20000033D 02 0.19883609D 01 0.100000148D 06 0.459437542 01 01 0.400000066D 02 0.252096928D 01 0.4000000490 07 0.45948175620 01 0.45948175620 01 0.459486743 01 0.459486743 01 0.459486743 01 0.459486743 01 0.459486743 01 0.4594966743 01 0.4594966743 01 <td>0,9000001430 00</td> <td>0.481668671D D</td> <td>0 0,900000148D</td> <td>05 0.4551600533 01</td>	0,9000001430 00	0.481668671D D	0 0,900000148D	05 0.4551600533 01
0.2000000333 01 0.811712893D 00 0.22000003D 06 0.4599013560 01 0.300000049D 01 0.112845503D 01 0.40000065D 06 0.4592672853 01 0.500000082D 01 0.123394932D 01 0.500000082D 06 0.4592672853 01 0.600000115D 01 0.13210374713 01 0.60000018D 06 0.4592672853 01 0.700000115D 01 0.139518346D 01 0.700000115D 06 0.459358977D 01 0.800000131D 01 0.145976397D 01 0.800000148D 06 0.459358977D 01 0.800000148D 01 0.156825428D 01 0.700000148D 06 0.459358977D 01 0.800000148D 02 0.156825428D 01 0.10000049D 07 0.4594507542 01 0.300000049D 02 0.225209282B 01 0.300000490 07 0.4594507542 01 0.400000666D 02 0.225209282B 01 0.400000665D 07 0.4594575482D 01 0.400000066D 02 0.225209282B 01 0.400000065D 07 0.4594575482D 01 0.400000066D 02 0.2252097280 01 0.400000065D 07 0.459457482D 01 0.400000066D 02 0.2252097280 01 0.4594967482D 01 0.4594967482D 01 0.700000115D 02 0.25635317170 01	0,1000000160 01	0.522141381D 0	0 0,1000000160	06 0.458294449; 01
0.30000000049D 0.994660006D 00 0.300000049D 06 0.4591044840 01 0.400000066D 01 0.112845503D 01 0.400000082D 06 0.459206203D 01 0.500000082D 01 0.123394932D 01 0.50000082D 06 0.4592672853 01 0.700000115D 01 0.13210374713 01 0.60000082D 06 0.459368277D 01 0.80000013D 01 0.145976397D 01 0.800000148D 06 0.459375967D 01 0.900000148D 01 0.156825428D 01 0.200000148D 06 0.459375967D 01 0.20000013D 02 0.156825428D 01 0.200000148D 07 0.4594507542 01 0.300000049D 02 0.210928612D 01 0.30000049D 07 0.4594517542 01 0.40000066D 02 0.25208928D 01 0.40000018D 07 0.459491160D 01 0.40000008ED 02 0.253057117D 01 0.700000115D 07 0.4594966743C 01 0.40000	0.200000333 01	0.8117128930 0	0 D.20000033D	06 0.4589013560 01
0.4000000660 0.11233949320 01 0.440000006200 0.4592062030 01 0.500000082D 01 0.1233949320 01 0.500000282D 06 0.4592672853 01 0.600000015D 01 0.13210374713 01 0.60000115D 06 0.459368270 01 0.700000115D 01 0.1459763970 01 0.70000115D 06 0.4593589770 01 0.900000148D 02 0.15689475D 01 0.70000148D 06 0.4593589767D 01 0.100000148D 02 0.15689475D 01 0.20000033D 07 0.459385667D 01 0.300000049D 02 0.25269928D 01 0.4000000490 07 0.459481365D 01 0.60000098D 02 0.25269928D 01 0.600000980 07 0.45949481365D 01 0.60000098D 02 0.25597140 01 0.700000115D 07 0.459494773C 01 0.60000098D 02 0.2559714920 01	0.3000000490 01	0,9946600060 0	0.30000049D	06 0,4591044840 01
0.5000000820 01 0.1233949320 01 0.500000282D 06 0.4592672853 01 0.60000098D 01 0.13210374713 01 0.60000098D 06 0.4593371380 01 0.700000115D 01 0.139519346D 01 0.700000115D 06 0.4593371380 01 0.800000148D 01 0.145976397D 01 0.800000148D 06 0.45937567D 01 0.100000148D 01 0.156825428D 01 0.10000016D 07 0.45938956CD 01 0.20000033D 02 0.190863609D 01 0.200000049D 07 0.4594507542 01 0.400000066D 02 0.210928612D 01 0.300000049D 07 0.4594507542 01 0.40000066D 02 0.2250928D 01 0.400000080D 07 0.459447160D 01 0.500000088D 02 0.2453792820D 01 0.400000080D 07 0.459496743 01 0.50000018D 02 0.245305717D 01 0.700000113D 07 0.459496743 01	0.4000000660 01	0.1128455030 0	1 0.400000056D	06 0.459206203D 01
0.6600000820 0.1 0.13210374713 01 0.600000820 06 0.4993080270 01 0.700000115D 01 0.139519346D 01 0.700000115D 06 0.499358977D 01 0.900000148D 01 0.151694475D 01 0.90000148D 06 0.459358977D 01 0.200000148D 02 0.151694475D 01 0.90000148D 06 0.459358977D 01 0.200000148D 02 0.151694475D 01 0.90000148D 06 0.459358977D 01 0.2000003D 02 0.190863609D 01 0.200000148D 07 0.4594507542 01 0.30000098D 02 0.216929612D 01 0.300000098D 07 0.459487485D 01 0.500000128D 02 0.245379282D 01 0.60000098D 07 0.4594966743 01 0.500000131D 02 0.259711403D 01 0.700000115D 07 0.4594966743 01 0.5000000333 08 0.259714	0.5000000820 01	0.1233949320 0	1 0.50000982D	0.4592672853 01
0.700000115D 0.139519346D 01 0.70000115D 06 0.459337138D C1 0.800C00131D 01 0.445976397D 01 0.800C00131D 06 0.459338977D 01 0.900000148D 02 0.151694475D 01 0.90000148D 06 0.459358977D 01 0.100000148D 02 0.156825428D 01 0.10000016D 0.459358977D 01 0.20000033D 02 0.190863699D 01 0.200C0033D 07 0.45947116CD 01 0.400000066D 02 0.216929612D 01 0.40000066D 07 0.45949116CD 01 0.400000098D 02 0.245379286D 01 0.60000098D 07 0.459494157D 01 0.700000115D 02 0.259711403D 01 C.800000118D 07 0.4594949473D 01 0.700000148D 02 0.2657374001 0.700000148D 07 0.45949436732D 01 0.700000148D 02 0.26573714001 0.700000148D 07 <td>0.600000980 01</td> <td>0.13210374713 0</td> <td>1 0.6000000980</td> <td>06 0.4593080270 01</td>	0.600000980 01	0.13210374713 0	1 0.6000000980	06 0.4593080270 01
0.800000131D 0.145976397D 01 0.800000148D 0.459358977D 01 0.900000148D 01 0.151694475D 01 0.9000016D 0.45935850CD 01 0.20000033D 02 0.150825428D 01 0.20000049D 07 0.45938956CD 01 0.30000049D 02 0.219929612D 01 0.30000049D 07 0.45947742 01 0.40000066D 02 0.225209928D 01 0.40000066D 07 0.4594716D 01 0.50000062D 02 0.23530717D 01 0.40000066D 07 0.459491365D 01 0.50000062D 02 0.23530717D 01 0.50000062D 07 0.459494748D 01 0.500000098D 02 0.245379288D 01 0.60000098C 07 0.459494748D 01 0.60000098D 02 0.245379288D 01 0.700000115D 07 0.4594946743C 01 0.500000131D 02 0.259711403D 01 0.700000148D 07 0.45949475D 01 0.900000148D 03 0.270837374D<	0.7000001150 01	0.139519346D O	1 9.700000115D	06 0.4593371380 01
0.900000148D 01 0.151694475D 01 0.90000148D 06 0.459375967D 01 0.100000016D 02 0.156825428D 01 0.10000016D 07 0.459387560D 01 0.200000033D 02 0.19086309D 01 0.200000049D 07 0.4594375742 01 0.300000066D 02 0.210929612D 01 0.300000049D 07 0.459481365D 01 0.500000098D 02 0.236304781D 01 0.500000098C 07 0.459487482D 01 0.60000098D 02 0.253057117D 01 0.700000131D 07 0.4594966743 01 0.700000114D 02 0.25771420D 01 0.700000131D 07 0.4594966743 01 0.900000148D 02 0.25771420D 01 0.700000131D 07 0.4594966743 01 0.900000148D 03 0.270837374D 01 0.459406743 01 0.4594966743 01 0.900000148D 03 0.305432274D 01 0.300000333D 08 0.45950880D 01	0,8000001310 01	0.1459763970 0	1 0.80000131D	06 0.4593589770 01
0.100000016D 02 0.156825428D 01 0.10000016D 07 0.45938956CD 01 0.30000003D 02 0.190853609D 01 0.2000003D 07 0.4594507542 01 0.300000066D 02 0.205209928D 01 0.300000049D 07 0.459471160D 01 0.40000066D 02 0.23509928D 01 0.40000066D 07 0.459481365D 01 0.500000098D 02 0.235304781D 01 0.50000098C 07 0.459481365D 01 0.700000115D 02 0.2353057117D 01 0.700000118D 07 0.459494375D 01 0.8000014ED 02 0.255711403D 01 0.700000118D 07 0.459498375D 01 0.80000014ED 03 0.270837374D 01 0.2050000333 08 0.45950860D 01 0.100000049D 03 0.30543274D 01 0.2050000333 08 0.4595086823D 01 0.400000065D 03 0.3514482D 01 0.300000049D 08 0.4595086823D 01	0,9000001480 01	0.1516944750 0	1 0.900001480	06 D.459375967D 01
0.20000033D 02 0.190863609D 01 0.20000033D 07 0.4594507542 01 0.300000049D 02 0.210926612D 01 0.30000049D 07 0.459471160D 01 0.40000066D 02 0.22520928D 01 0.40000066D 07 0.459481365D 01 0.500000098D 02 0.236304781D 01 0.50000098C 07 0.459487482D 01 0.600000098D 02 0.24537928ED 01 0.60000098C 07 0.4594874827D 01 0.700000115D 02 0.259711403D 01 C.50000131D 07 0.459494873C 01 0.900000148D 02 0.26583219D 01 0.2050000333 08 0.459498736D 01 0.1000000148D 03 0.270837374D 01 0.2050000333 08 0.459505860D 01 0.20000032D 03 0.305432274D 01 0.2050000333 08 0.459505860D 01 0.400000066D 03 0.325683162D 01 0.400000062D 08 0.45950835D 01	0,1000000160 02	0.1568254280 0	1 0.100C00016D	07 D.45938956CD C1
0.300000049D 02 0.210929612D 01 0.300000049D 07 0.45947116CD 01 0.400000066D 02 0.225209928D 01 0.40000066D 07 0.459481365D 01 0.5000022D 02 0.236304781D 01 0.5000022D 07 0.459487485D 01 0.60000098D 02 0.245379288D 01 0.60000098C 07 0.459494487485D 01 0.700000115D 02 0.259711403D 01 0.700000131D 07 0.459494948375D 01 0.800000148D 02 0.26583219D 01 0.70000148D 07 0.459498375D 01 0.1000000148D 03 0.305432274D 01 0.2050000333 08 0.459508923D 01 0.200000049D 03 0.325683162D 01 0.300000049D 08 0.459508923D 01 0.400000066D 03 0.325683162D 01 0.40000066D 08 0.459508923D 01 0.400000064D 03 0.35144909D 01 0.50000082D 08 0.45950935D 01	0,200000330 02	0.1908636090 0	1 0.20000033D	07 0.4594507542 01
0.400000666 0.2 0.2252099280 01 0.40000666 07 0.4594813650 01 0.5000082D 0.2 0.2363047810 01 0.5000082D 07 0.4594874850 01 0.6000098D 0.2 0.2453792860 01 0.60000980 07 0.459494674850 01 0.700000115D 02 0.2530571170 01 0.700000115D 07 0.4594946743 01 0.800000148D 02 0.2655832190 01 0.90000148D 07 0.4594946743 01 0.900000148D 03 0.2708373740 01 0.2050000333 08 0.45950860D 01 0.200000039D 03 0.3054322740 01 0.2050000333 08 0.459508620 01 0.400000049D 03 0.3240042825D 01 0.400000086D 08 0.459508923D 01 0.400000066D 03 0.351144809D 01 0.60000082D 08 0.459509843D 01 0.700000115D 03 0.3677462D 01 0.70000015D 08 0.4595102350 01 <	0,3000000495 02	0.2109296120 0	1 0.3000000490	07 0.4594711600 01
0.500000000000000000000000000000000000	0,4000000660 02	0.2252099280 0	1 0.400000066D	07 0.4594813650 01
0.60000098D 0.2 0.24537928ED 01 0.60000098D 07 0.4594949470 01 0.700000115D 0.2 0.253057117D 01 0.700000115D 07 0.45949494673 01 0.80000013D 0.2 0.253057117D 01 0.700000113D 07 0.4594946743 01 0.9000014ED 02 0.2583219D 01 0.90000148D 07 0.459499736D D1 0.20000014ED 03 0.270837374D 01 0.2050000333 08 0.459505860D D1 0.300000049D 03 0.305432274D 01 0.300000049D 08 0.459508232D 01 0.400000066D 03 0.325683162D 01 0.300000049D 08 0.459508232D 01 0.400000066D 03 0.351144809D 01 0.500000082D 08 0.459508923D 01 0.700000115D 03 0.360150495D 01 0.700000115D 08 0.459510235D 01 0.400000066D 03 0.379656050D 01 0.700000115D 08 0.459510235D 01 0.45951	0.500000820 02	0.2363047810 0	1 0.50000082D	07 0.4594874850 01
0.700000115D 02 0.253057117D 01 0.700000115D 07 0.45949444272 01 0.800000148D 02 0.259711403D 01 C.80000131D 07 0.45949466743 C1 0.90000148D 02 0.265583219D 01 0.90000148D 07 0.4594946743 C1 0.100000148D 02 0.265583219D 01 0.90000148D 07 0.4594949375D 01 0.200000033D 03 0.2708373740 01 0.2050000333 08 0.459505860D 01 0.300000049D 03 0.325683162D 01 0.300000049D 08 0.4595079029 01 0.400000066D 03 0.351144809D 01 0.500000082D 08 0.45950823D 01 0.400000068D 03 0.366150495D 01 0.60000098D 08 0.45950923D 01 0.400000068D 03 0.367677462D 01 0.700000115D 08 0.459510235O 01 0.700000115D 03 0.374097735D 01 0.800000131D 08 0.459510624D 01	0.600000980 02	0.2453792880 0	1 0,600000980	07 0.459491570D 01
0.800000131D 02 0.259711403D 01 C.800000131D 07 0.4594966743 C1 0.900000148D 02 0.265583219D 01 0.900000148D 07 0.4594986743 C1 0.10000016D 03 0.2708373740 01 0.205000016D 08 0.4594987350 01 0.200000033D 03 0.305432274D 01 0.205000033 08 0.45950860D 01 0.300000049D 03 0.325683162D 01 0.300000049D 08 0.459508923D 01 0.400000066D 08 0.459508923D 01 0.400000068D 08 0.459508923D 01 0.400000068D 03 0.360150495D 01 0.500000082D 08 0.459508943D 01 0.400000018D 03 0.367677462D 01 0.700000115D 08 0.459510235O 01 0.400000014D 03 0.379656050D 01 0.800000115D 08 0.459510624D 01 0.400000016D 04 0.384	0.7000001150 02	0.2530571170 0	1 0.700000115D	07 0.4594944870 01
0.900000148D 02 0.265583219D 01 0.90000148D 07 0.459498375D 01 0.100000016D 03 0.270837374D 01 0.16000016D 08 0.459505860D 01 0.200000049D 03 0.305432274D 01 0.2050000333 08 0.459505860D 01 0.400000049D 03 0.325683162D 01 0.300000049D 08 0.459505860D 01 0.400000066D 03 0.340042825D 01 0.400000066D 08 0.459508923D 01 0.50000062D 03 0.360150495D 01 0.400000066D 08 0.459508943D 01 0.60000098D 03 0.366150495D 01 0.60000098D 08 0.4595102350 01 0.700000115D 03 0.367677462D 01 0.70000115D 08 0.4595102350 01 0.900000131D 03 0.374097735D 01 0.90000016D 09 0.459510225D 01 0.100000016D 04 0.384523868D 01 0.100000016D 09 0.459510225D 01	0.80000131D 02	0.2597114030 0	1 C.800000131D	07 0.4594966743 C
0.1000000160 03 0.2708373740 01 0.100000160 08 0.4594997360 01 0.2000000490 03 0.3054322740 01 0.2050000333 08 0.4595058600 01 0.3000000490 03 0.3256831620 01 0.3000000490 08 0.4595079029 01 0.4000000660 08 0.4595079029 01 0.400000660 08 0.4595089230 01 0.4000000660 08 0.3511448090 01 0.500000820 08 0.45950993350 01 0.600000980 03 0.3601504950 01 0.600000980 08 0.4595099430 01 0.7000001150 03 0.367774620 01 0.7000001150 08 0.4595102350 01 0.7000001150 03 0.3796560500 01 0.7000001150 08 0.4595104240 01 0.7000001480 03 0.3796560500 01 0.1000000160 09 0.4595106240 01 0.3000000490 04 0.3845238680 01 0.1000000160 09 0.4595116770 01	0.9000001480 02	0.2655832190 0	1 0.900001480	07 0,4594983750 01
0.200000033D 0.305432274D 01 0.2050000333 08 0.459505860D 01 0.300000049D 03 0.325683162D 01 0.30000049D 08 0.4595079029 01 0.400000066D 03 0.325683162D 01 0.300000049D 08 0.4595079029 01 0.400000066D 03 0.340042825D 01 0.40000066D 08 0.459508923D 01 0.500000082D 03 0.351144809D 01 0.500000082D 08 0.45950933D 01 0.600000098D 03 0.360150495D 01 0.600000098D 08 0.45950235D 01 0.700000115D 03 0.367677462D 01 0.700000115D 08 0.459510235O 01 0.800000131D 03 0.374097735D 01 0.800000148D 08 0.459510624D 01 0.100000014D 04 0.384523868D 01 0.1000000148D 08 0.459510624D 01 0.200000033D 04 0.412893074D 01 0.200000133D 09 0.459511373D 01 0.3000	0.100000016D 03	0.2708373740 0	1 C.IG0C00016D	08 0.4594997360 D1
0.300000049D 03 0.325683162D 01 0.300000049D 08 0.4595079029 01 0.400000066D 03 0.340042825D 01 0.40000066D 08 0.459508923D 01 0.500000082D 03 0.351144809D 01 0.500000082D 08 0.459509535D 01 0.60000098D 03 0.360150495D 01 0.60000098D 08 0.45950943D 01 0.700000115D 03 0.367677462D 01 0.700000115D 08 0.459510235D 01 0.800000131D 03 0.374097735D 01 0.800000148D 08 0.459510235D 01 0.900000148D 03 0.379656050D 01 0.900000148D 08 0.459510624D 01 0.100000016D 04 0.384523868D 01 0.100000013D 09 0.459510624D 01 0.300000013D 04 0.412893074D 01 0.300000033D 09 0.459511373D 01 0.400000066D 04 0.423708326D 01 0.300000033D 09 0.459511374D 01	0.200000033D 03	0.3054322740 0	1 0.2050000333	08 0.4595058600 01
0.400000066D 03 0.340042825D 01 0.400000066D 08 0.459508923D 01 0.500000082D 03 0.351144809D 01 0.500000082D 08 0.459509535D 01 0.60000098D 03 0.360150495D 01 0.60000098D 08 0.459509943D 01 0.700000115D 03 0.367677462D 01 0.700000115D 08 0.4595102350 01 0.800000131D 03 0.374097735D 01 0.700000148D 08 0.4595102350 01 0.900000148D 03 0.374097735D 01 0.900000148D 08 0.4595102350 01 0.100000016D 04 0.384523868D 01 0.100000016D 09 0.459510624D 01 0.300000033D 04 0.412893074D 01 0.300000033D 09 0.459511577D 01 0.400000066D 04 0.4330056310 01 0.300000049D 09 0.459511577D 01 0.400000066D 04 0.437714781D 01 0.500000062D 09 0.459511810 01 <tr< td=""><td>0,3000000490 03</td><td>0.3256831620 0</td><td>1 0,300000049D</td><td>08 0.4595079029 01</td></tr<>	0,3000000490 03	0.3256831620 0	1 0,300000049D	08 0.4595079029 01
0.5000000820 03 0.3511448090 01 0.500000820 08 0.4595095350 01 0.600000980 03 0.3601504950 01 0.600000980 08 0.4595099430 01 0.7000001150 03 0.3676774620 01 0.7000001150 08 0.4595102350 01 0.8000001310 03 0.3740977350 01 0.8000001310 08 0.4595102350 01 0.9000001480 03 0.3796560500 01 0.9000001480 08 0.4595106240 01 0.1000000160 04 0.3845238680 01 0.1000000130 09 0.4595106240 01 0.3000000330 04 0.4128930740 01 0.3000000330 09 0.4595115770 01 0.30000000320 04 0.4257083260 01 0.3000000490 09 0.4595115770 01 0.4000000660 04 0.4330056310 01 0.5000000660 09 0.4595116790 01 0.5000000820 04 0.44	0.40000066D 03	0.3400428250 0	1 0,40000066D	08 0,4595089230 01
0.600000098D 03 0.360150495D 01 0.60000098D 08 0.459509943D 01 0.700000115D 03 0.367677462D 01 0.700000115D 08 0.4595102350 01 0.800000131D 03 0.374097735D 01 0.800000115D 08 0.4595102350 01 0.900000148D 03 0.379656050D 01 0.90000016D 09 0.459510624D 01 0.100000016D 04 0.384523868D 01 0.100000016D 09 0.459510624D 01 0.200000033D 04 0.412893074D 01 0.200000033D 09 0.459511577D 01 0.4000000666D 04 0.425708326D 01 0.300000049D 09 0.459511577D 01 0.4000000666D 04 0.4330056310 01 0.400000666D 09 0.459511679D 01 0.500000082D 04 0.437714781D 01 0.500000082D 09 0.459511740D 01 0.700000115D 04 0.44430431818D 01 0.70000015D 09 0.459511810D 01	0.50000082D 03	0.3511448090 0	1 0.500000820	08 0.4595095350 01
0.7000000115D 03 0.367677462D 01 0.700000115D 08 0.4595102350 01 0.800000131D 03 0.374097735D 01 0.800000131D 08 0.4595102350 01 0.900000148D 03 0.379656050D 01 0.90000016D 09 0.459510624D 01 0.100000016D 04 0.384523868D 01 0.100000033D 09 0.459510624D 01 0.200000033D 04 0.412893074D 01 0.300000033D 09 0.459511577D 01 0.300000049D 04 0.425708326D 01 0.300000049D 09 0.459511577D 01 0.400000066D 04 0.4330056310 01 0.40000066D 09 0.459511679D 01 0.500000082D 04 0.437714781D 01 0.50000082D 09 0.459511840D 01 0.70000013D 04 0.443431818D 01 0.70000098D 09 0.45951184D 01 0.50000098D 04 0.443431818D 01 0.700000131D 09 0.459511832D 01	0,6000000980 03	0.3601504950 0	1 0,60000098D	08 0.4595099430 01
0.8000001310 0.3740977350 01 0.8000001310 08 0.4595104540 01 0.9000001480 03 0.3796560500 01 0.900000160 09 0.4595106240 01 0.1000000160 04 0.3845238680 01 0.100000160 09 0.4595106240 01 0.2000000330 04 0.4128930740 01 0.2000000330 09 0.4595115770 01 0.3000000490 04 0.4257083260 01 0.3000000490 09 0.4595115770 01 0.4000000660 04 0.4330056310 01 0.4000006660 09 0.4595115770 01 0.5000000820 04 0.4377147810 01 0.500000820 09 0.4595116790 01 0.4000000820 04 0.4410043580 01 0.5000000820 09 0.4595117400 01 0.7000001310 04 0.443043380 01 0.500000980 09 0.4595118100 01 0.7000001310 04 0.4433318180 01 0.7000001310 09 0.4595118320 01 0.800000	0.7000001150 03	0.3676774620 0	1 0.7000001150	08 0.4595102350 01
0.900000148D 03 0.379656050D 01 0.900000148D 08 0.459510624D 01 0.100000016D 04 0.384523868D 01 0.10000016D 09 0.459510524D 01 0.200000033D 04 0.412893074D 01 0.200000033D 09 0.459511577D 01 0.300000049D 04 0.425708326D 01 0.300000049D 09 0.459511577D 01 0.400000066D 04 0.4330056310 01 0.400000062D 09 0.459511577D 01 0.500000082D 04 0.437714781D 01 0.500000082D 09 0.459511740D 01 0.60000098D 04 0.441004358D 01 0.60000098D 09 0.459511740D 01 0.700000131D 04 0.443431818D 01 0.700000115D 09 0.459511810 01 0.800000131D 04 0.445296647D 01 0.800000131D 09 0.459511842D 01 0.900000148D 04 0.446774065D 01 0.900000131D 09 0.459511842D 01 <td>0.8000001310 03</td> <td>0,3740977350 0</td> <td>1 0.20000131D</td> <td>08 0,4595104540 01</td>	0.8000001310 03	0,3740977350 0	1 0.20000131D	08 0,4595104540 01
0.100000016D 04 0.384523868D 01 0.10000016D 09 0.459510760D 01 0.200000033D 04 0.412893074D 01 0.20000033D 09 0.459511373D 01 0.300000049D 04 0.425708326D 01 0.300000049D 09 0.459511577D 01 0.400000066D 04 0.4330056310 01 0.400000665D 09 0.459511679D 01 0.500000082D 04 0.437714781D 01 0.500000082D 09 0.459511740D 01 0.60000098D 04 0.443004358D 01 0.60000098D 09 0.459511781D 01 0.700000115D 04 0.443431818D 01 0.700000115D 09 0.459511810D 01 0.800000131D 04 0.445296647D 01 0.800000131D 09 0.459511832D 01 0.900000148D 04 0.446774065D 01 0.900000131D 09 0.459511840D 01	0,900000148D 03	0,3796560500 0	0.9000001480	08 0.4595106240 01
0.200000033D 04 0.412893074D 01 0.20000033D 09 0.459511373D 01 0.300000049D 04 0.425708326D 01 0.300000049D 09 0.459511577D 01 0.400000066D 04 0.4330056310 01 0.400000066D 09 0.459511679D 01 0.500000082D 04 0.437714781D 01 0.500000082D 09 0.459511740D 01 0.60000098D 04 0.441004358D 01 0.600000098D 09 0.459511781D 01 0.700000115D 04 0.443431818D 01 0.700000115D 09 0.459511810D 01 0.800000131D 04 0.445296647D 01 0.800000131D 09 0.459511832D 01 0.900000148D 04 0.446774065D 01 0.900000131D 09 0.459511840D 01	0.100000016D 04	0,3845238680 0	1 0.1000000160	09 0,4595107600 01
0.300000049D 04 0.425708326D 01 0.300000049D 09 0.459511577D 01 0.4000000066D 04 0.4330056310 01 0.400000066D 09 0.459511679D 01 0.500000082D 04 0.437714781D 01 0.500000082D 09 0.459511740D 01 0.60000098D 04 0.441004358D 01 0.60000098D 09 0.459511781D 01 0.700000115D 04 0.443431818D 01 0.700000115D 09 0.459511810D 01 0.800000131D 04 0.445296647D 01 0.800000131D 09 0.459511832D 01 0.900000148D 04 0.446774065D 01 0.900000131D 09 0.459511849D 01	0,2000000330 04	0.4128930740 0	1 0.20000033D	09 0.4595113730 01
0.400000066D 04 0.4330056310 01 0.40000066D 09 0.459511679D 01 0.500000082D 04 0.437714781D 01 0.500000082D 09 0.459511740D 01 0.60000098D 04 0.441004358D 01 0.60000098D 09 0.459511740D 01 0.700000115D 04 0.443431818D 01 0.700000115D 09 0.459511810D 01 0.800000131D 04 0.445296647D 01 0.800000131D 09 0.459511832D 01 0.900000148D 04 0.446774065D 01 0.900000131D 09 0.459511849D 01	0,3000000490 04	0,4257083260 0	1 0.3000000490	09 0,4595115770 01
0.500000082D 04 0.437714781D 01 0.500000082D 09 0.459511740D 01 0.60000098D 04 0.441004358D 01 0.60000098D 09 0.459511781D 01 0.700000115D 04 0.443431818D 01 0.700000115D 09 0.459511810D 01 0.800000131D 04 0.445296647D 01 0.800000131D 09 0.459511832D 01 0.900000148D 04 0.446774065D 01 0.9000000148D 09 0.459511849D 01	0.400000066D 04	0.4330056310 0	1 0.400000065D	09 0.4595116790 01
0.600000980 04 0.4410043580 01 0.600000980 09 0.4595117810 01 0.7000001150 04 0.4434318180 01 0.7000001150 09 0.4595118100 01 0.8000001310 04 0.4452966470 01 0.8000001310 09 0.4595118320 01 0.900001480 04 0.4467740650 01 0.90000001480 09 0.4595118490 01	0.5000000820 04	0.4377147810 0:	1 0.50000082D	09 0.4595117400 01
0.700000115D 04 0.443431818D 01 0.700000115D 09 0.455511810D 01 0.800000131D 04 0.445296647D 01 0.800000131D 09 0.455511832D 01 0.90000148D 04 0.446774065D 01 0.9000000148D 09 0.455511849D 01	0.600000980 04	0.4410043580 0:	1 0.60000093D	09 0.4595117810 01
0.800000131D 04 0.445296647D 01 0.800000131D 09 0.459511832D 01 0.900000148D 04 0.446774065D 01 0.900000148D 09 0.459511849D 01	0,7000001150 04	0.4434318180 01	L 0.70000115D	09 0,4595118100 01
0,900000148D 04 0,446774065D 01 0.900000148D 09 0,459511849D 01	0.8000001310 04	0.4452966470 01	<u>1</u> 0,8000001310	09 0,4595118320 01
	0,900001480 04	0,4467740650 0:	1 0.9000CC148D	09 0,4595118490 01

TABLE H.4 :

NO-FLOW LINEAR BOUNDARY

2C'=100 R1= 1.0 R2= 99.0

TD		PD		TD		PD	
0.100000016D	0 0 0).124574657D-	01	0.100000160	05	0.5539710270	01
0.20000033D	00 C).732067097D-	01	0.2000000330	05	D.617688282D	01
0.3000000490	00 0	146277220D	0 0	0.3000000490	05	D.656293439D	01
0.400000066D	00 0	0.216125925D	0 0	0.400CC0056D	05	0.6840762260	01
D.50000082D	00 0	0.279886847D	0 0	D.50000082D	05	D.705794534D	01
0.6090300985	00	0.337620829D	0 0	0.6000000965	05	0.723627310D	01
0.7000001150		1.390014/480	00		05	0.7307501130	01
0.0000001310		1.43/0/10210 1.481668671n	00	0.0000001310	05	0.7910740000	01
0 1000000160	01 0) 522141381n	0.0	0.10000001400	05	0.7739062333	01
0.2000000330	01	3.811712893D	0.0	0 2000000335	06	0 8426139195	01
0.3000000490	01 0),99466DDD6D	0 0	0.3000000490	06	0.8829572610	01
0.400000066D	01 0	.112845503D	01	D.4C00C0066D	06	0.9116237262	01
0.500000820	01 0	123394932D	01	0.500000820	06	0.9338769890	01
D.500000098D	01 (0.132103747D	01	D.6CC0D0098D	06	0.9520683940	01
0.7000011ED	01 0).139519346D	01	0.700000115D	06	0.9674543453	01
0.80000131D	01 0).145976397D	01	0.80000131D	06	0.0807856415	01/
0.90000148D	01 (0.151694475D	01	0.900001480	06	0.9925469523	01
0.1000001ED	02 0	0.156825428D	01	0.10000016D	07	0.1003069410	Q:
0.200000033D	02 0	0.190263609D	01	0.200000330	07	0.1072322920	02
0.3000000490		J.2109296120 	01	0.3000000490	07	0.111284902D	02
0.40000000000).223209920D	01	0.400000000000	07	0.1141007020	02
B 6000000020	02 0	1 24537578285		0 5000000320	07	0.1103919200	02
0.00000000.00	n2 r) 2538571178	01	0.0000000000000	07	0.119755540	02
0.8000001310	02 0	259711403D	01	0.800001310	07	0.1210506433	C2
0.900000148D	02 0	0.265583219D	01	D,900000148D	07	0.122268303D	02
0.1000000160	03 0	0.270837374D	01	0.100000016D	0.8	0.1233217720	0 2
0.20000033D	03 0	.305432310D	01	0.200000033D	08	0.130252631D	02
0.300000049D	03 0	.325686283D	01	C.300000049D	08	0.134307078D	02
0.4030000660	03 0).340074006D	01	0.400000066D	05	0.1371837970	02
0.500000820	03 0	0.351273881D	01	0.5000000220	08	0.1394151710	02
0.600000920	03 -0	0.360492019D	01	0.600000985	08	0.141238346D	02
0.70000115D	03	J.368374169D	01	0.700000115D	08	0.1427798230	02
	03 1	3.375302571D	01	0.8000001310	08	0.1441151150	02
0.9000001480	0.3 [).3013190660 1 3971955555	01	0.9500001450	08	0.1452929290	02
0.1000000120	04 1	1.307104343D 1.4281175576	01		09	0.1403405200	02
0.3000000490	04 0	1.4558446500	01	0.200000033D	09	0.1552775510	02
D.400000066D	04 1	1.477313469D	01	0.4000000490	09	0.1602093720	02
0.500000082D	04 1	1,494917424D	01	0.5000000820	09	0.1624408010	02
0.600000098D	04	D.509859169D	01	0.60000098D	09	0.1642640133	02
0.700000115D	04 0	0.522846183D	01	0.700000115D	09	0.1658055170	0 2
0.800000131D	04 0).534334046D	01	0.800000131D	09	0.167140828D	02
0.90000148D	04).544634585D	D 1	0.9000001480	09	0.168318657D	02

TABLE H.5 :

THE LINE SOURCE

LINE SOURCE

TD		PD				TD		PD
		• • • • • • • • • • • • • • • • • • • •		n	1000		0 5	
0.1000000160	00	0.124574657D	-01	ບ. ກ	2001	עםו טטטע תרבחהה (05	U.500972212D 01
0.2000000330	00	0.7320670970	- 01	0. n	2000	10000330 1000495	05	0.5356289460 01
0.3000000490	00	0.1462/72200	00	ů.	4000	0000490 000665	05	0.5559019930 01
0.40000000000	00	0.2161259250	00	ů.	5000	00000000	05	0.5/02659920 01
	0.0	0.2/988684/0	00	D.	6000	0000020	n 5	
0.000000000000	0.0	0.33/0200290	00	D.	7000	001150	05	0 5982664485 01
0 2000001310	0.0	0.4276110210	00	D.	8000	001310	05	0 6049431953 01
0.9000001480	0.0	0.4370170210	0 0 0 0	٥.	9000	001480	05	0.6108323290 01
0.1000000160	01	0.5221413810	0.0	D,	1000	00016D	06	0.6161003410 01
0.2000000330	01	0.8117128930	0.0	Ο.	2000	000330	06	0.6507576383 01
0.3000000490	01	D.9946600060	0.0	Ο.	3000	00049D	06	0.6710306123 01
0.4000000660	01	0.1158455030	01	D.	4000	00066D	D 6	0.6854149663 01
0.50000082D	01	0.1233949320	01	Ο.	5000	000820	06	0.696572137D D1
D.60000098D	01	0.1321037470	01	Ο.	6000	00098D	06	0.705688211D 01
0.7000001150	01	0.1395193460	01	Ο.	7000	00115D	06	0.7133957420 01
0.8000001310	01	0.1459763970	01	٥.	8000	001310	06	0.720072309D 01
0.900000148D	01	0.151694475D	01	Ο.	9000	00148D	06	0.725961459D 01
0.1000000163	02	D.156825428D	01	Ο.	1000	00016D	07	0.7312294833 01
D.20000033D	02	0.190863609D	01	Ο.	2000	000330	07	0.7658868360 01
0.300000049D	02	0.2109296120	01	С.	3000	000490	07	0.785160090D 01
0.400000660	02	0.2252099280	01	0.	4000	00066D	07	0.800544192D 01
D.500000082D	02	0.236304781D	01	σ.	5000	000820	07	0.8117013690 01
0.60000098D	02	D.245379288D	01	0.	6000	00098D	07	D.820817446D D1
0.700000115D	02	0.253057117D	01	υ.	7000	001150	07	D.828524980D D1
0.800000131D	02	0.259711403D	01	υ.	8000	001310	07	0.835201550D 01
D.900000148D	02	D.265583219D	01	υ.	9000	001480	07	0.841090701D 01
0.100000016D	03	D.270837374D	01	υ.	1000	000150	00	0.8463587270 01
0.20000033D	03	0.305432292D	01	υ.	2000	000330	00	U.881016085D 01
0.3000000490	03	0.3256847250	01	U.	3000	000490	00	
0.40000000000	03	0.3400584150	01	U.	5000	000000	00	
0 4000000020	03	0.3512093450	01	0. n	6000	000020	0.0	
0.70000000980	03	0.3003212570	01	U. N	7000	801150	08	0 Ph24Eh222D 01
0 8000001310	03	0.3000238130	5.5	0.	BCOD	001310	08	0.5435542330 UI
0.0000001010	03	0.3747001330	01	с. В	9000	001485	08	0.9563109553 01
0 1000000160	04	0.3858542060	01	D.	1000	000160	09	0.9302199333 01 0 9614879800 01
0.2000000330	04	n 420505316p	01	Ď.	2000	000330	09	0 9961453390 01
0.3000000490	04	0.4407764880	01	D.	3000	000490	09	0 1016418590 02
0.400000066D	04	0,4551595500	01	0.	4000	000660	09	0.1030802700 02
0.500000820	04	D.466316103D	01	0.	5000	000820	09	0.1041959880 02
0.60000098D	04	0.475431764D	01	D.	6000	00098D	09	0.1051075950 02
0.700000115D	04	0.483139000D	01	Ο.	7000	00115D	09	0.1058783490 02
0.800000131D	04	0.489815347D	01	Ο.	8000	00131D	09	0.106546006D 02
0.90000148D	04	0.495704325D	01	٥.	9000	00148D	09	0.107134921D 02