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ABSTRACT 

This study consider e heat and fluid flow characteristics of an 

infinite, naturally f rac d geothermal reservoir in which forced 

convection is the only f of heat transfer. For simplicity, it is 

assumed that there is on ne injector well and no producer wells in 

the system. Further, pri porosity is neglected and the fracture 

porosity is assumed to b nstant throughout the reservoir. 

With these specifi ns, the governing equations are derived from 

an energy balance, and d using dimensionless parameters and the 

Laplace transform. Both rical inversion and analytical inversion are 

then used, though only atter appears to give a reliable solution. 

The results are plotted imensionless temperature versus 

dimensionless volume s called dimensionless radius), and the 

velocity of the therm t in the rock and water determined. 



Owing to the analog 

reservoir phenomena, stu 

are often of great value 

draws upon one such stud 

by Mavor(1978)*, which p.: 

of pressure-production re 

geothermal reservoirs is 

the heat transfer during 

The focus of this SI: 

front in the reservoir, 2 

results should then yield 

rock and water, relative 

validity is limited by ce! 

should also represent a 

greater complexity. 

ID 

1 e INTRODUCTION 

s nature of many petroleum and geothermal 

es of naturally fractured petroleum reservoirs 

n the study of geothermal systems. This effort 

by Warren and Root(1962) , and a later paper 
sent analytical flow models for the analysis 

ponse. A somewhat similar flow problem for 

resented in this report, in order to examine 

3ld water injection. 

3y is t o  determine the location of the thermal 

well as examine its form and behaviour. These 

the velocity of the thermal front, in both the 

D that of the injected fluid. While their 

tain simplifying assumptions, the results 

eful step toward solving related problems of 

1 
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1 2 .  ASSUMPTIONS 

1. S i n g l e  w e l l  i n  a 1' i n f i n i t e  r e s e r v o i r ,  r a d i a l  f l o w .  

T h i s  p a p e r  c o n s i  e r s  o n l y  t h e  case  of  o n e  i n j e c t o r  we l l  

i n  a n  i n f i n i t e  s d t e m .  S u p e r p o s i t i o n  i s  t h e r e f o r e  n o t  

u s e d .  i 
2 .  S t e a d y  s t a t e  f l o  I i o f  i n j e c t e d  f l u i d .  

The s o l u t i o n  t o  p r o b l e m  w i l l  n o t  be  v a l i d  f o r  s h o r t  

t imes d u r i n g  w h i  f l u i d  f l o w  o c c u r s .  

3 .  Only  c o n v e c t i o n  t r a n s f e r ,  c o n d u c t i o n  n o t  

c o n s i d e r e d .  

C o n d u c t i o n  o f  h e  9 i n  t h e  r e s e r v o i r  r o c k  i s  a s sumed  t o  

b e  smal l  c o m p a r e  / t o  f o r c e d  c o n v e c t i o n .  T h i s  a s s u m p t i o n  

s h o u l d  b e  good f E a l l  b u t  v e r y  l o n g  t ime. 

4. I n i t i a l  r e s e r v o i  t e m p e r a t u r e  t h e  same t h r o u g h o u t  

s y s t e m .  

5 .  Only  s e c o n d a r y  o 1;  ' f r a c t u r e  p o r o s i t y  

The e f f e c t s  o f  

e n o u g h  t o  b e  

t h i s  s t u d y .  I t :  i d  a s sumed  t h a t  t h i s  p o r o s i t y  i s  smal l  

p r 0 m a r y  p o r o s i t y  a r e  n o t  c o n s i d e r e d  i n  

f l .dw i n  t h e  r e s e r v o i r .  h e a t  a n d  f l u i d !  

f o r  i t s  e f f e c t  on t h e  t r a n s f e r  of  a d j u s t e d  t o  ac:cor.qt 

negl .e lc ted  o r  t h a t  t h e  m o d e l  m u s t  b e  

1 1  
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6 .  Reservoir unilfor 

constant. 

This problem doe 

fracture width a 

fracture length 

producing interv 

be specified i3S 

porosity. 

7. Effective porosi 

In order that co 

reservoir rock m 

effective porosi 
fracture be orie 

fluid radially. 

orthogonal to th 

this porosity. T 
therefore is I!es 
the system. Figu 

a reservoir, fn 
nor the fracture 

All of the above con 

the reservoir flow m 

realistic. 

ly fractured and fracture width 

,not consider significant variation in 

lwhere in the reservoir. Vertically, 

1 limited by the height of the 
1. Orientation of the fracture need not 

f is implicit in the effective 

r constant throughout reservoir. 

lection heat transfer occur, the 

It be swept by the injected fluid. the 

1 constraint requires that each 
led such that it conducts the injected 

Incentric and other fractures 
jdirection of flow are not included in 

1 fracture porosity used for this model 
ithat the total fracture porosity of 
4 1 presents an element volume of such 

qich neither the degree of fracturing 
didth changes . 

braints are introduced s o  as to keep 

iel simple but at the same time still 

-5 -  
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s =  
FRACTURE 
WIDTH 

f 

FIG. 1 

CEMENT VOLUME 

f 

r 

TW 
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An element volume 

Fig. 1. An 

equations: 

energy bal.ant 

(The symbols used are dc 
Values) 

Note that while the roc1 
they share the same sur: 

Their combined volumes , 

water volume and surfact 
surface area of the elel 

is negative. 

Temperature in th 
the injection well and 

particular radius and. t 

give both the rock and 1 

3 . ENERGY BALANCE 

the naturally fractured reservoir is shown is 

,n this element yields the following two 

a TR 
P C  v - R VR R ar 

led i n  APPENDIX 1 : Nomenclature and Typical 

Id water volumes of the element are different , 
5 area and have identical convection terms. 

3 the total element volume. In addition, the 

rea is equal to the fracture volume and 
t .  Finally, note that the storage term in (i) 

reservoir is a function of the distance from 
time since the start of injection. Given any 

, the solution of these two equations will 
x temperature . 

-7- 



Rewriting the  <sbo 

condi t ions  and boundary 

h A ( T  -'I! ) c R w  w R 

I n t i a l  Condit 

Boundary Con1 

The t o t a l  volume of t:he 

V 
e = 271rA1-2 

a 1nd 

While f o r  assumpt: 

rock element volamer 

v = Q2Ve 
W 

!I equat ions with t h e i r  appropr ia te  i n i t i a l  

.bndi t ions , 

a TR 
: P C  v - R VR R a t  

$s : Tw(r,O) = TR(r,O) = Td 

t i o n  : Tw(rw, t )  = T 
i n j  

~ 

lement is given by : 

as 5, 6 ,  and 7 of s e c t i o n  2 t o  hold,  t he  water 

Blso must be given by : 

-8- 
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VR = (1 - Q )V 2 e  



Alternatively, the total 

v = v  + V R  e W 

And the rock surface are 

2vW 
ARW = 

Where : a)2 : 

6 .  

Using equation (5) 

(1) and ( 2 )  yields, 

D( Tw-%) =: M, 

blume can be expressed as : 

:or heat exchange can be written as : 

'acture porosity 

'acture width 

.nd substituting ( 4 ) ,  and (6) into equations 

aT 

-9- 



Where the new constants 

wqwcvw B =  2ll R 

M = P C  Q 
w w v w 2  

Ite defined as : 

MR = P C ( 1  - Q2) R VR 

- 10-  
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4 .  D' -- 

Before solving €!qui 
convenient to re-state 1 

Dimensionless Time. 

Dimensionless radius, 

Dimensionless tempera.tu1 - 

Tw - I'wi 
TinT Twj 

T =-- 

fNSIONLESS FORM OF EQUATIONS 

tons (7) and ( 8 )  for Tw(r,t) and TR(r,t), it is 
dse equations using dimensionless parameters : 

E 
+ 

d 

l 
1 

2 2  2.rrR(r - rw) hcQ2 
or r =  D OW cvwqw 

- 1  1-  



Note that the radius term is actually dimensionless volume 

and must not the r/rw used in pressure-production 

problems. 

Re-stated in dimension1 sb form, equations (7) and (8) become : 4 

Initial Condi ion : Tw(rD, t 0) = TR(rD,O) = 0 

Boundary Condhtfion : Tw( 0, tD) = 1 

-12- 



5 .  SOLJJFION BY 'IHE LAPLACE TRANSFORM - 

Using the Laplace orm, equations (lo) and (11) are 
transformed in time and simultaneously in Laplace space to 

produce an ordinary dif equation in terms of T (r , S )  where 
S is the Laplace transf This equation is solved using the 

boundary condition and easily determined. "he details 
of this procedure are 

- 
w D  

The solutions are 

The asymptotic forms of (13a) and (13b) are given in Appendix 

3. 

-13- 
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6., I 

It is now possiblt 

arrive at an analytical 

to first determine the I 

boundary condition, the 

Inversion of Equation - fc 

Re-writing equation (13’ 

- 
T (r ,S) = Exp(-rD) Ex R D  

Step dl 

Applying the shifting tl 

TR(rD,tD * = U( 5 )  * 

where, 

* M 
W 

tD - ( tD- MR rD) 
- 

b ! I 

SION OF LAPLACE SOLUTIONS 

invert both equations (13a) and (13b) and 

ution to the problem. While it was necessary 

r temperature solution (13b) using the 

er of inversion makes no difference. 

- 
ock Temperature, TR(rD, SI : 

n a more convenient order for inverting, 

Mw 1 1 r D -S) -- 
MR s s+l EXP( s+1 1 (14) 

em; 

-14- 



and u ( t  ) is the  s t e p  
* 
D 

* 
u(t,) = 0 

an * 
tD < O  

Applicat ion of t he  conv 

Where, 

Step #2 

Equation ( 16) is reduce 

1 F1( S ) = -  S 

F2( S ) = F( S+l) = -- 1 
!S+l 

bnct ion  : 

* 
U(tD) = 1 

* 
tD 2 0  

u t i o n  theorem gives ,  

* 

h r t h e r  using t h e  following r e l a t i o n s  : 
3 

(17.1) 

- 1 5 -  
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Inverting, 

f ' l {  F1( S ) } = f'l{ 

And, 

Where, 

From Abramowitz and Stel 

to be : 

f'l{ Exp( - ) } = IOl A 
S 

and if, 

* 
V = (  tD-T ) , 

then the rock temperatu~ 

) = 1  (17.2) 

(17.3) 

(17.4) 
r 

EXP( s ) } D 

1 , the inverse of equation (17.4) is found 

t J T T  ) 

A = r  D 

solution 1 

(17.5) 

(17.6) 

kecom es : 

* 
tD 



SteD 63 

Although the  irttel 

t a b l e s  of i n t e g r a l s ,  an 

' I n t e g r a l s  of Bessel FUI 

va luab le  re ferences  f o r  

t he  i n t e g r a l  i s  : 

where J ( x , y ) ,  a funct ior  

expanded below. 

If we l e t ,  

y = r  
9 

D 9 x = tI: 

the  rock and water tempe 

* 
T (r ,t  ) = u( t D )  { 1 - * 

R D D  

* 
Tw(r t ) = u( tD) Exp D '  D 

41 i n  equat ion (18) i s  not e a s i l y  found i n  many 

t c e l l e n t  d i scuss ion  of it appears i n  Luke, 

thons' . This book a l s o  contains  some 

d r the r  i nves t iga t ion .  Af te r  some rearranging,  

?v = EXP(Y) { 1 - J(X,Y) } (19) 

ief ined i n  terms of t he  above i n t e g r a l ,  is 

(19.1) 
(A4.1) 

i t u re  (from appendix 4)  then become : 

-17- 
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This a n a l y t i c a l  so lu t i l  

as well as the  asymp.to, 

The expansion of the  fl 

Case I 1  

Case #2 

A t  t h i s  point  i n  the  de 

where both the  rock and 

g r e a t e r  d e t a i l .  

s checked f o r  the  i n i t i a l  and boundary va lues ,  

forms i n  Appendix 3 .  

ion  J (x ,y )  has two d i f f e r e n t  

I t ion,  the  reader  is  r e f e r r e d  t o  Appendix 4, 
:er temperature expansions are derived i n  

-18-  



From Appendix 4, the an 

Case ill 

Rock Temperature : 

Water Temperature : 

Case 6 2  

r D - 2 1 
J t; 

frtical results are : 

-l? 

EXP 

i 

-19- 



Rock Temperature : 

Water Temperature : 

In both of the  ab( 

The above expansions arg 

va lues ,  as well as th.e  : 

(25) 

i cases, the  convection term has the  form : 

also checked at  the  i n i t i a l  and boundary 

d i t i ng  forms, i n  Appendix 3.  

-20- 

1 



7. NUMERIC - 

The expansions for 

numerically using the f o  

Bessel functions 7 

For small values of X 

For large values of x 

+ . . . . e .  

or more simply, 

Since the dimensionless 

~- ~~~ 

EVALUATION OF ANALYTICAL RESULT 

0th cases described can be evaluated 

owing approximations for the given modified 

v = o ,  1, 2, . . . 

( 4 ~  - 1)(4v - 9) ( 4 ~  - 1)(4v -9)(4V - 25) 2 2 2 2 2 

2 ! (8x  )2 3! (8x) 
- +  - 

3 

irms for radius and time are large for almost 

-21-  



all times, the approxim, 

solutions. 

If we let, - 
a = 2 J rDtD 

the solutions become : 

Case bl 

Case 82 

* 
Tw(r ,t ) = u(tD) -- * EX~(( 

D D  4- 

ion for large values is used in expanding the 

* 
B = ( rD+ tD) 

-22- 
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8. DII -- 

The analytical res 
condition and boundary c 

also checked. For small 

exponential form of solu 

However, the numerical a 

applies for only large v 

values . Furthermore, the 
is well behaved. The Ste 

however, and it is used 
relatively small dimensi 

dimensionless time, real 

is developing from a sim 

modification process. At 

the general symmetric f o  

until much later. Also, 

and is abandoned at this 
indicate the result usin 

Figures 5 through 9 

for later times. These p 

increases but maintains 

relatively large differe 

dimensionless times . In 
difference is plotted at 

increases. For any given 
at the center of the fro 

rock and water temperatu 

while to the right of ce 

temperature). Equation ( 

derivative of the rock t 
has a maximum value at t 

Further, these figures p 
front, as a rock-to-wate 

front . 

OSSION OF ANALYTICAL ESULTS 

lits described are checked at the initial 
jdition in Appendix 3 .  The asymptotic forms are 

tlmes, equations (A3.2) and (A3.4) indicate an 

ban, and Figures 2 and 3 show this effect. 

jroximation of the modified Bessel function 

Uues of x, and must be changed for smaller 

3 exists a middle range where neither solution 

3st inverter is well behaved in this range, 

1 match the analytical solution for the 

lless time of 15 At this value of 8 

:ime is about 6 minutes and the thermal front 
Ge step function through this exponential 

I dimensionless time of 40 ,as shown in Fig. 5, 

d of the front is apparent and does not change 

le Stehfest routine is shown to no longer match 
goint . In Appendix 5 ,  Figures 11 through 15 

ithe inverter for later times. 

Ire plots of the water and/or rock temperature 
Its show that the front spreads as time 
4s symmetric form. Figure 2 shows the 

le in rock and water temperature at early 

Cgures 9 through 11, this temperature 

llarious times and is seen to decrease as time 

tlime, the maximum temperature difference occurs 

2 as expected. To the left of center, both the 

1s approach one (the injection temperature), 

!er, they approach zero (initial reservoir 

d)  indicates that this plot is also that of the 

dperature with respect to time, and that this 
i center of the front, as one would expect. 

hide a simple measure of the spread of the 
!temperature difference occurs only along the 

i 

-30- 



9. FORM Alq BEHAVIOUR OF THE 'IHERMAL FRONT 

The reason f o r  t he  dymmetry of t he  f r o n t  can be seen from from 

equat ions (22)  through ( 4). The upper por t ion  of t he  curve is generated 

by case #l, which r equ i r  a t h a t  t he  dimensionless r ad ius  t o  shif ted- time 

r a t i o  be less than or eq $1 t o  one. A t  the  cen te r ,  r equals  t and 

t h e  dimensionless temper tjure equals  0.5. The lower po r t ion  of t he  curve 

i s  next  generated by cas ;!I2 as rD increases .  I f  t he  dimensionless 

r ad ius  is divided by t h i  ! r a t i o  and p l o t t e d  with dimensionless 

temperature,  the  cen te r  d t he  f r o n t  is always loca ted  at one, f o r  any 

dimensionless time. Fig 4s 4 and 5 are two examples of t h i s  p l o t  while  

Figure 8 p l o t s  t he  dime qonless  water temperature f o r  var ious  times. 

From the  la t ter  p l o t  it d seen t h a t  the  curve s teepens f o r  l a r g e r  

times, i n d i c a t i n g  t h a t  e v e l o c i t y  of each poin t  on the  f r o n t  

approaches a constant  v e. This means t h a t  t he  rate of spread s t o p s  

inc reas ing  and reaches ons t an t  rate. This spreading change is a l s o  

seen i n  Figs. 9 ,  10 and . For t = 80 , approximately 95 X of the  area D 
is covered over a dimen n l e s s  d i s t ance  of 60, while f o r  t = 800 , t h e  

d i s t ance  is only 100, a f o r  t = 1600 ,it is 200. The former impl ies  

an  increas ing  rate of s ad,  while t he  la t ter  two i n d i c a t e  a constant  

rate of spread. 

* 
D D 

D 
D 

For times s i g n i f i  t l y  l a r g e r  than those discussed above, t he  

f r o n t  does not  behave i e same way. For a dimensionless time of 8000 

and a constant  v e l o c i t  each poin t  on the  f r o n t ,  one would expect a 

spread- distance of 100 e a c t u a l  value of t h i s  spread is about 350, 

much less than a n t i c i p  Although the  v e l o c i t y  of t he  center  of the  

f r o n t  ( o r  average f r o n  o c i t y )  does not  change, t he  v e l o c i t y  of o t h e r  

po in t s  on the  f r o n t  mu decreasing. For times much l a r g e r ,  one might 

expect (given the  r e su  f Appendix 3 ) ,  t he  fol lowing sequence of 

events  : 

-31- 
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( a ) .  A l l  po in t s  on the  

no longer  spreads. 

fkont  approach the  same ve loc i ty  and the  f r o n t  

(b) .  The f r o n t  begins t shr ink  as the  f r o n t a l  v e l o c i t i e s  decrease a t  

d i f f e r e n t  rates. b 
(c)  The f r o n t  as such d /appears and is replaced by the  s t e p  funct ion.  

The average r a d i a l  ve loc  t y  of t he  thermal f r o n t  has now changed. I 



(i) Short and Interntedi - 

From plots such. as 
point on the front since 

front is fixed. Typic.al 

range from 0.5 to 1.5. R 

dimensionless terms, and 

location and velocity of 

The result for the sh.ort 

qwt = I T  ( r - rW) R { - 2 2  

where, 

r D n = -  * 
tD 

r is the radial dista.nct 
flow rate of water in.jec 

reservoir volume of injt 

LOCITY OF THE THERMAL FRONT 

.e Times 

rig.11, one can determine the velocity of any 

:he location of the center of the 

r 
ilues of the plotted ratio D 

barranging this ratio, eliminating 
(ifferentiating with respect to time, gives the 

Iny point on the front for all but long times. 

Lnd intermediate times is : 
I 

t v w  
C 

eo th at poi nt on the fr 

(33 1 

is the 

id into the reservoir, and is the total 

led water. 
\t 

- 3 3 -  
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Re-writing equat ion (32  

qwt = IT ( r - rw) R 5 2 2  

where, 

D i f f e r e n t i a t i n g  ( 3 2 )  g i  

Equation (35) can a l s o  

Wher , e,  V h  is  th  e ra.di 

f r o n t ,  and V i s  thle 

Note t h a t  f o r  rl 
W 

c en te r  of t he  thermal. f 

is a l s o  the  average ve l '  

we have, 

( 3 4  1 

(34 .1 )  

m i t t e n  i n  terms of r a d i a l  v e l o c i t i e s  as : 

(35) 

reloci . t y  of a given poin t  on the  thermal 

trstitial r a d i a l  ve loc i ty  of the  water. 

, equat ion ( 3 2 )  gives the  loca t ion  of the  

1 and equat ion ( 3 4 )  gives i ts v e l o c i t y ,  which 

:y of t he  f r o n t .  

- 3 4 -  
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( ii ) Long Times 

For long times t:he 

the above equations ace 

2 2  
qwt = IT ( r - rw) R a2 

'h - 'w 
- 

Equations (37) and (38) 

(36) for  5 = a 2  . 

ont e x i s t s  as the s t ep  function u ( t  ) and 

dplaced by : 
~ 

* 
D 

ipectively correspond 

- 3 5 -  

( 3 7 )  

to  equations (35) and 



1 1 .  :mTI -- 

When the  dimensior 

o r i g i n a l  energy balance 

a t  t he  f r o n t  becomes the 

f r o n t ,  while  the  %t t 

f l u i d .  Equations (32) ar  

and water swept by t h e  f 

propor t iona l  t o  the  to t ;  

incremental volumes of l 

smaller increments of r e  

increment of real radlius 

must become step- like: wl 

f r o n t  would a l s o  appear 

t h i s  convergence is prop 

examine p l o t s  of dimens1 

t h i s  type of p l o t  is eas 

thermal f r o n t  wi th  respe 

used t o  estimate the  t i n  

In  any case, the  form a1 

i n j e c t e d  f l u i d .  

IRETATION OF VELOCITY EQUATIONS 

I ss  terms are el iminated as shown above, the  

Clationships become clear. Dimensionless r ad ius  

kotal volume swept by t h a t  p a r t  of the  thermal 

r ep re sen t s  the  t o t a l  volume of i n j e c t e d  

( 3 4 )  a l s o  inc lude  t h e  r e l a t i v e  volumes of rock 

Int ,  as the  weighted sum of these  terms i s  
amount of i n j e c t e d  heat .  For l a r g e  times, 

(ec ted  water advance t h e  thermal f r o n t  by 

1 r ad ius  o r  r a d i a l  d i s tance .  In  t he  limit, t h i s  

Cs i n f i n i t e s i m a l l y  small and the  thermal f r o n t  

1 respec t  t o  the  real rad ius .  Eventually t he  

tep-like with respec t  t o  the  volume swept, as 

r t i ona l  t o  r Ar . While t h i s  r epo r t  does not 

bless temperatures versus real r a d i u s ,  

ly made and c l a r i f i e s  the  behaviour of the  

; t he  the  real r a d i a l  d i s tance .  It can a l s o  be 

1 f o r  using the  ve loc i ty  equat ions given above. 

ve loc i ty  of t he  f r o n t  approaches t h a t  of t h e  

- 3 6-  
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Assuming one ing ec' 

geothermal reservoir ,, tl 

during which convectLon 

flow is steady state., fl 

short times. 

Upon injection of 1 

form discussed quickly 
constant average rate. 

fluid for relatively ea: 

an increasing rate, sprc 

itself. The rock and wai 

dimensionless time of a1 
For times much greater 1 

limited to step-like di! 

no conduction, the rardi; 
the radial velocity of ' 

As a final note, tl 

in a straightforward wa! 

inversion routines are 

appears to be the most 

=P 

12. CONCLUSIONS 

t well in an infinite, naturally fractured 
results of this study apply for those times 

1 the dominant form of heat transfer and fluid 

'period therefore excludes very long and very 

ter into the system, a thermal front of the 

lelops, and moves through the reservoir at a 
1 velocity is less than that of the injected 
1 time. Although at first the front spreads at 

Ling gradually slows and eventually reverses 

t temperature fronts become equal at a 
kt 1000 and move at the same rate thereafter. 

in this, the front moves with the fluid, 
lacement of heat in the reservoir. As there is 

velocity of the thermal front decreases with 
I fluid, and in the limit approaches zero. 

 problem presented in this report can be solved 

wing the Laplace transform. While numerical 

den of great value, analytical inversion 
liable approach to a solution of this problem. 

-40-  
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APPENDIX 1 

Nomenclature 'Qpical  Values 

.228 S p e c i f i c  h e a t ,  )ock, - 
l b  OF 

b tu  
CVR 

S p e c i f i c  hea t ,  dater, - 
l b  OF 

b tu  C 
vw 1 .oo 

p R  170.00 

~ l b  

p W  
60 -00 Density,  water', ' - m ,a 1 f t "  

I 

Convection con $ant ,  water, 1' btu  

h r  f t 3  OF 
50 a 0 0  h 

C 

50 .OO 

M 
W 

12 .o 

MR 31 .O 

Frac tu re  poros qy, dimensionless I' @ 
2 

0.20 

6 0.002 Fracture  wl.dthl f t  

-41- 
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R 

r 
W 

Twi 

T 
i n j  

I: n 

t 
D 

Reservoir heig t ,  f t  1 
Wellbore rrtdiub, f t  

Init ial  reaerv i r  temperature, F 
0 

1 

Temperature! of injection f luid,  F 
0 

Dimensionless 

(actually i t  d i  volume term) 

Dimensionless 

Tg , Tw Dimensionless 4mperature of rock, water I :  
I 

Vh , Vf  Radial velocity heat, f luid, 
f t  

I 

- 4 2 -  
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25 .OO 

0.75 

400 

60 



APPE6 -- 

Transforming equal 

- - -  w - -  W (Tw- TR) = - I 
a MR 

Solving (A 2.2) for 
following ordinary di.f f e 

- 
TR 

aT M 
W W 

(1 +- s  - -  1 -- -  a% MR s+1 

Equation (13a) is deriw 
for the water temperatul 

using the boundary condl 

this result into equatic 

2 : Laplace Space Solution 

I (10) and (11) implies : 

(A 2.1) 

(A 2.2) 

substituting it in (A 2.1) produces the 
:ial equation : 

- 
; = o  
W (A 2.3) 

solving this ordinary differential equation 

td determining the constant of integration 
, Equation (13b) is derived by substituting 

L 2.2). 

- 4 3 -  



APPEND4 : Checks and Asymptotic Forms 

I 
~ 

Check of I n i t i a l  and Bouljary Conditions : 

I n i t i a l  Condition : Tw(: D , O )  = TR(rD,O) = 0 1 
Case # 2 app l i e s  f o r  t he  l n i t i a l  condi t ion  above and from 

and (25) it is seen t h a t  

rock and water. A s  i n i t i z A l y  

t.he s t e p  func t ion  ensures  t h i s  f o r  both the  

t h e i r  i n i t i a l  tempera.turte. 

expect t h e  r e se rvo i r  rock and water t o  be at  t h e  r e s e r v o i r ,  one would 

no hea t  (o r  co ld)  has been i n j e c t e d  i n t o  

(12a) 

equat ions (24)  

Boundary Condition : T O , t D )  = 1 11 
Case bl app l i e s  f o r  t he  ove boundary condi t ion ,  and it is e a s l l y  seen 

from equat ion (23) t h a t  i s  condi t ion  is  s a t i s f i e d .  Note, however, t h a t  

the  rock temperature sho d not  s a t i s f y  t h i s  boundary condi t ion ,  as i t  

is dependent on the  wate temperature. This i m p l i c i t  condi t ion i s  a l s o  

s a t i s f i e d .  

- 44- 



Limiting Forms 

Another useful che 

short and long time beha 
limiting forms o'f this E 

analytical solution for 

Short Time Solution - 

Water Temperature : - 

For short time 8 ,  I 

After inverting, 

Therefore one would expg 

temperature to have an c 

for the analytical result is to examine the 

ur of the laplace space equation. The 
tion are then inverted and compared with the 

se times. 

large and equa .tion (13a) approaches the form 

(A3.1) 

(A3.2) 

the short time solution for the water 

mential form of front . 

-45- 



Rock Temperature Solutia - 

For large S ,  equation ( 1 

- 
TR(rD,S) = Exp(-rD) - 1 

S2 

After inverting, this eq 

* .k 
T (r ,t ) = Exp(-rD) tD R D D  

* 
As t D +  0 , t D +  0 

approaches zero or is se 

be the case for all rD 

condition. 

As another check, the as 

examined. The inverse tr 

* 
T (r ,t = u(tD) { 1 - * 
R D D  

and the limiting forms : 

limit J(x,y) = 1 
Y ’ O  

~ 

1) has the form : 

M 
(A3.3) 

/tion becomes : 

sand it is seen that the rock temperature 

ito zero by the step function. The latter would 

;if the time became zero as in the initial 

form of the inverted transform can be 

sform of equation (13a) is equation (19.1). 

(19 .1 )  

limit J(x,y) = Exp(-x) 
x + o  

(A3.5) 

-46- 
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which is equivalent to : 

* 
limit J( tD, rD) =: 1 * 
tD + 0 

Substituting into ( 1 9 . 1 )  

temperature at short tin 

If these limiting forms 

substituted into equaltic 

solution becomes 

4- 

which was obtained prev: 

Long Time Solution 

For long time, bo1 

the same form. For a gi. 

(13a) and (13b) approacl 

- - 
T (r , S )  = T (r , S )  =;  w D  R D  

* * 
limit J( tD, rD) = Exp(-tD) 

rD + 0 
( A 3 . 6 )  

re have the same result for the rock 

1 

the rock temperature for short time are a l s o  

it is seen that as 

and the water temperature 

( A 3 . 2 )  

the rock and water temperature solutions have 

dimensionless radius (ie. volume), equations 

he form : 

- 4 7 -  

(A3.7) 



After inverting, this eq 

Therefore, one would exp 

of the given step functi 

Examining the inverted f 

limit J(x,y) = 1 
y + -  

which is equivalent to, 

limit J(t r ) = 0 
* 
D' D 

tD + - 
Substituting the first 1 
step function (A3.8). Su 
into (19.2) gives the sa 

(A3.8) is the expected F 

both are equal and step 
The same results are a h  

The same procedure 
solution for large and s 

qtion becomes, 

(A3.8) 

a t  the analytical solution to approach the form 

d for relatively long times. 

dm of the solution again at the other limit : 

9 limit J(x,y) = 0 
x + -  

(A3.9) 

! 
i 

* 
, 9 limit J(t ,r ) = 1 

r + m  D D  
D 

~ 

j (A3.10) 

diting form of (A3.10) into (19.1) gives the 

dtituting this result for the rock temperature 

-4 result for the water temperature. Equation 
I 

.der and rock solution form for long time as 

'qnctions . I 

I :easily seen using case W1 of the expansion. 

dan also be used to verify the analytical 

411 rD . 

-48- 
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APPENDIX 4 : Cc - 

Rock Temperature Solntit - 

The rock temperat1 
substituting equations 
required substitution. is 

* 
x = tD 9 y - r  D 

After cancelling some tc 

Water Temperature Solutj - 

T (I: ,s> = 1  EX^ { - rDl w D  

Re-writing equation (13r 

* M 
Tw(rD,tD) = Exp(-r - 

MR 
W 

Inverting equation (A.4 .: 

Tw(rD,tD) * = u( * 

Pete Derivation of Analytical Solution 

solution for each case is found by 

1) or (21) into equation (19). The only other 

allowing : 

(A4.1) 

qs, equations (22) and (24) are derived. 

U + - S - - ) }  MW 1 
% s+1 

,, as the sum of two parts, 

(A4.2) 

yields, 

(A4.3) 

-49- 
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Using t h e  same procedure ou t l ined  i n  equations (17) through (17.5), t h i s  

becomes : 

S u b s t i t u t i n g  i n t o  (A4. .4' 

gives  the  water temparal 

cases, t he  d i f f e r e n c e  bc 

i s  the  same funct ion gi. 

( A 4 . 4 )  

*he rock temperature s o l u t i o n  f o r  each case 

de s o l u t i o n  f o r  each case. Note t h a t  i n  both 

deen the  rock and water temperature s o l u t i o n s  

i n  equation (26) .  

-50- 



APPENDIX $ Results of Numerical Inversion 

This appendix conta s the results obtained by inverting equations 

( 13a) and (13b) numerica using the Stehfest routine. 

For early dimens: s times up to 40,  a good match of the 

analytical solution is . For times greater than this, however, the 
inverter is not well be d and is not considered reliable. Figures 3 

through 6 are plots of numerical and analytical result for various 
dimensionless times . No hat the match is lost after 40 and worsens 
for later times It alpp that the match is lost when the Stehfest 

routine computes values dimensionless temperature greater than one 

and less than zero. 1:n tion, the thermal front as shown in Figures 

( 12) through (16 )  wonld ead at increasing rates and never converge, a 

phenomenom which is FI lly impossible for this system. The Stehfest 

algorithm does prove however, for those early and mid-ranges of 

time during which the. tical solution is slowly convergent and/or 

the approximating equ (27a) and (27b) are not well behaved. 

-51 -  

I 

I 



I '  

I I  I L I ' T  

0 
0 

m 
4 

_o 
\ 

dW31 >131;3Ll 

f 

I n 

d d d 

I N V  t l3l t lM SS31NlaISN3WIa 

-52- 



rt 

/ 

0 
0 

0 

d 

dW31 >1 

n 
d 

0 
m 
(5 

m 
c\l 
(5 d 

38 CINV t l l l V M  SS31N0ISN3WIa 

-53- 



&l 

0 
0 

0 
0 
0 
c\i 

0 
0 
Ln 
d 

0 
0 
0 
d 

0 
0 
Ln 

fl QNV d3lVM SS37N0ISN3WIa 

-54- 



I 
0 
0 
co 
0 
0 
(n 

0 
0 
a3 
0 
zo 

/ I  
'i 
I- 

t- 

1 
u> 
W 
CL 
CY 
W 
k- 

LJJ 
> 
Z 

m 

d 
m 

m 

m 

I 

H 

I 

io 
0 in 
0 I\ 
4 6 

Ml'ddf31 

0 
Ln 
6 

0 
0 
6 

MlQM SS31N0ISN3WIa 

-55- 



cn 

r 

Ml"d 

4 

5 6 d 

31 t l l 3 l V M  SS31N0ISN3NIa 

-56- 



1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Warren, J.E . , and 
Reservoirs', SPE J 

Mavor, Matthew J., 
Fractured Reservoi 

Engineering, St:anf 

Doetsch, 'Guide to 

Nostrand, London, 

New Jersey (19Cll), 
1 

Abramowitz and Ste 

Publications, New 

Luke, ' Integrals c 

York, Toronto, Lon 

Op Cit , Luke, pg . 

Op Cit, Abramowitz 

Stehfest, H., 'Alc 
Transforms', D-5 ( 

REFERENCES 

@ot, P.J., 'The Behavior of Naturally Fractured 

'Brnal (Sept. 1963) 

!Transient Pressure Behavior of Naturally 

S t ,  Master's Report, Department of Petroleum 

lltd University (1978). 

#he Application of Laplace Transforms', D. Von 

:$gland; Toronto, Can.; New York, N Y ;  Princeton, 
pg.34. 

;tin, 'Handbook of Ma 

lark, NY (19701, pg. 

.thematical Functions', Dover 

1026. 

!73,274. 

and Stegun, pg. 375,377 

Cdrithm 368, Numerical Inversion of Laplace 
mbnunications of the A m  (Jan. 1970) 

-57- 

1 



I t  

B IBL IOGRAPHY 

I '  

The Principia Press of 

>. 
Davis, Harold T., 'The k t  ion of Series ' , 
Trinity University, !:an tonio, Texas (1962 

Doetsch, 'Guide to the lication of Laplace Transforms', D. Von 

Nostrand, London, Toronto, Can.; New York, NY; Princeton, New 
Jersey(l961). 

Hansen, Eldon R., 'A Tab of Series and Products ' , Prentice Hall, Inc. 
( 1975). 

Healy, Martin, 'Tables of 

Kdinburgh and London( 1967). W. and R. Chambers Lt:d., 

Laplace, Heaviside, Fourier, and Z Transforms, 

Kreith and Black, 'Basic 

i York, NY(1980). 

Keat Transfer', Harper and Row Publishers, New 

Kreyszig, Irwin, 'Advanc Engineering Mathematics', John Wiley and Sons 

Inc., New York, London, ronto, Sydney (1972). 

l i  

Weast, Astle, 'CRC Handbbdk of Chemistry and Physics', New York( 1973). 

! 

I 

! 

i 
-58- 



1 .  
2. 
3. 
4. 
5. 
6. 
7 .  
8. 
9. 
io. 
1 1 .  
12. 
13. 
14. 
15. 
16. 
17. 
i s .  
19. 
20. 
21. 
22. 
23. 
24. 
2 5 .  
26. 
27. 
2 8 .  
2 9 .  
30. 
32. 
33. 
34. 
35. 
36. 
37. 
38. 
39. 
41. 
42. 
43. 
44. 
47. 
48. 
49. 
5 0 .  
51. 
52. 
53. 
54. 
5 5 .  
56. 
5 7 .  
58. 
59. 
6 0 .  
6 1 .  
62. 
63. 
64. 

/ /  J O B  
/ /  EXEC WA 

C 
C 
C 

C 
C 
C 

C 

C 

C 

C 
C 
C 

C 

IrIpL 
CGtlM 
DCIUB 
Q F = 5  
D E: N Id 
CVW= 
HT=2 
D E N R  
CV R =  
DELT 
H C = 5  
Pii 12. 
R W = O  
TtiI=i 
TINJ: 

ASSIGN ( 

!3=DEI 
D=2. I 
s I C-M: 

SIGW: 
250 FORPIl 

USE DIM1 

TD=5( 
PRINl 
PRINl 

D O  9( 

RD=5L 
STEP 1 
IF(SI 
CALL 

25 IF(ST 
IF(ST 
PRINT 
WRITE 
PRI N T  

9 0  COVTI 
ST13P 
E N D  
SUSRO 
IM3LI 
c 3 I'IM 0 
DOIJBL 

THIS S U B  

A D 1) = 0 
z=:!. . 0 
VX:: ( R 

DO SO 
K = I E K -  

'ROGRAM FOR ANALYTICAL SOLUTION 

FIV 
CIT REAL*8 (A-H,O-Z) 
N T I N J  9 TWI 9 R W  
E PRECISION TD,RD,TUR,TUW 
- 0  
60.0 
. @ O  
. o o  
170. 0 0  
.22so 
0 . 0 0 4  
. o o  
0 . 2 0  
7 5 0  
3 0 . 0 0  
5 0 . 0 0  

INSTANTS 

J*QF*CVW/(2.0%3. 1415927*HT) 
*HCxPHIZ/DELT 
)EKR*CVR*( 1.0-PHI21 
)ENW*CVW*PHI 2 
:(5X,3(3X,E18.11)) 

{SIONLESS PARAMETERS 

10 
I t  

I t  

LM=l,24 

I D  + 75*(LM-1) 
'TD-SIGW*RD/SIGM 
:PI.LT.O.O)GO TO 2 5  

:Pl.LT.O.O)TRl=0.0 
:Pl.LT.O.O)TW1=0.0 

DES (STEP 1 ,  R D ,  1 ,  TN 1 )  

* t  

6,25O)RD,TWl 
* t  

:UE 

TINE IBES(TD,RD,I8,TE) 
IT REAL*8 (A-H,O-Z) 
TINJ,TWI , RW 
PRECISION TE 

OUTINE COMPUTES SUM OF BESSEL FNS I(Z) 

0 
(ilD*TD)**.5 
/TD)*S.S 

K K =  1 , 235 
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6 5 .  
6 6 .  
67. 
6 8 .  
6 9 .  
7 0 .  
7 1 .  
7 2 .  
7 3 .  
7 4 .  
7 5 .  
7 7 .  
7 8 .  
7 9 .  

8 1 .  
8 2 .  
5 3 .  
8 4 .  
8 5 .  
86. 
57. 
88 .  
39. 
9 0 .  
9 1 .  
9 2 .  
9 3 .  
9 4 .  
9 5 .  

a o .  

I F ( I B . E Q . l . A N D . V X . L T . l . O ) K = K K  
I F ( I 8 . E Q . 2 . A N D . V X . G T . l . O ) K = K K  
Lt=4. o*K**2 

U P T =  1 .  0 
F A C ,  = 1 
S .UXT= 1 . 0 
C O  401 J = 1 , 1 0  
FAC:=iFACJ*J  
U P R = U ~ - ( 2 . O ~ J - l . O ) ~ r 2 . 0  
U P T = - ; U P R * U P T  
TRM=U~FT/(FACJ*(8.0*Z)**J) 

C 

C 

S U M T = ~ S U M T + T R M  
40 C O N T I ~ N U E  

KS=K 
I F ( V X i . G E .  I)KS=-K 
vy=\ ,I) ;sxxS.  
BEi=V/Y*SUUMT 
A D D = A i D D + B E I  

8 0  CONTIINUE 
C 

C A N = Z - ( T D + R D )  
I F ( C A i N . L T . - 1 2 0 . 0 ) G O  T O  8 2  
TE=(lj.0/(2.*3.1415927xZ))**.5*DEXP 

I F ( V X . L T . 1 . O ) T E = I . O - T E  
R E T U R H  
END 

8 2  ZF(CA~N.LT.-12O.O)TE=O.O 

$DATA 
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STEBFE~T ROUTINE 
I 

/ /  J O B  1 .  
2 .  
3 .  
4 .  
5 .  
6 .  
7 .  
8 .  
9 .  

1 0 .  
1 1 .  
1 2 .  
1 3 .  
1 4 .  
1 5 .  
1 6 .  
1 7 .  
IS. 
1 9 .  
2 0 .  
2 1 .  
2 2 .  
2 3 .  
2 4 .  
2 5 .  
2 6 .  
2 7 .  
2 8 .  
2 9 .  
3 0 .  
3 1 .  
3 2 .  
3 3 .  
3 4 .  
3 5 .  
3 6 .  
3 7 .  
3 5 .  
3 9 .  
4 0 .  
4 1 .  
4 2 .  
4 3 .  
4 4 .  
4 5 .  
46. 
4 7 .  
4 8 .  
4 9 .  
5 0 .  
5 1 .  
5 2 .  
5 3 .  
5 4 .  
5 5 .  
5 6 .  
5 7 .  
5 8 .  
5 9 .  
S O .  
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