Stanford Geothermal Program
Interdisciplinary Research in
Engineering and Earth Sciences STANFORD UNIVERSITY
Stanford, California

TEMPERATURE TRANSFER IN A CONVECTION-DOMINANT, NATURALLY FRACTURED GEOTHERMAL RESERVOIR

UNDERGOING FLUID INJECTION

[^0]ACKNOWLEDGEMENTS 1
ABSTRACT 2

1. INTRODUCTION 3
2. ASSUMPTIONS 4
ELEMENT VOLUME OF RESERVOIR 6
3. ENERGY BALANCE 7
4. DTMENSIONLESS FORM OF EQUATIONS 11
5. SOLUTION BY THE IAAPLACE TRANSFORM 13
6. INUERSION OF LAPLACE SOLUTION 14
7. NUMERICAL EVALUAIITON OF ANALYTICAL
RESULT 21
PLOTS USING ANALYTICAL SOLUTION 23
8. DISCUSSION OF ANALYTICAL RESULTS 30
9. FORM AND BEHAVIOU'R OF THE THERMAL FRONT 31
10. VELOCITY OF THE THERMAL FRONT 33
11. INTERPRETATION OF VELOCITY EQUATIONS 36
PLOTS USING ANALYTICAL SOLUTION 37
12. CONCLUSIONS 40
APPENDIX 1 :
Nomenclature and Typica1 Values 41
APPENDIX 2 :
Laplace Space Solution 43
APPENDIX 3 :
Checks and Asymptotic Forms 44
APPENDIX 4 :
Complete Derivationof
Analytical Solution49
APPENDIX 5 :
Results Using Stehfest Routine 51
PLOTS USING STEHFEST ROUTINE 52
REFERENCES 57
BIBLIOGRAPHY 58
COMPUTER PROGRAMS 59

This study considers the heat and fluid flow characteristics of an infinite, naturally fractured geothermal reservoir in which forced convection is the only form of heat transfer. For simplicity, it is assumed that there is only one injector well and no producer wells in the system. Further, primary porosity is neglected and the fracture porosity is assumed to be constant throughout the reservoir.

With these specifications, the governing equations are derived from an energy balance, and solved using dimensionless parameters and the Laplace transform. Both numerical inversion and analytical inversion are then used, though only the latter appears to give a reliable solution. The results are plotted as dimensionless temperature versus dimensionless volume swept (called dimensionless radius), and the velocity of the thermal front in the rock and water determined.

1. INTRODUCTION

Owing to the analog|us nature of many petroleum and geothermal reservoir phenomena, stu ies of naturally fractured petroleum reservoirs are often of great value in the study of geothermal systems. This effort draws upon one such stud ly Warren and $\operatorname{Root}(1962)^{1}$, and a later paper by Mavor (1978) ${ }^{2}$, which petsent analytical flow models for the analysis of pressure-production response. A somewhat similar flow problem for geothermal reservoirs is presented in this report, in order to examine the heat transfer during cold water injection.

The focus of this study is to determine the location of the thermal front in the reservoir, s well as examine its form and behaviour. These results should then yleld the velocity of the thermal front, in both the rock and water, relative to that of the injected fluid. While their validity is limited by certain simplifying assumptions, the results should also represent a useful step toward solving related problems of greater complexity.

1. Single well in $^{n} a^{n}$ infinite reservoir, radial flow.

This paper considers only the case of one injector well in an infinite sytem. Superposition is therefore not used.

The solution to this problem will not be valid for short times during whic transient fluid flow occurs.
3. Only convection heat transfer, conduction not considered.

Conduction of heat in the reservoir rock is assumed to be small compared to forced convection. This assumption should be good for all but very long time.
4. Initial reservoir temperature the same throughout system.
5. Only secondary or fracture porosity

The effects of pyimary porosity are not considered in this study. It: is assumed that this porosity is small enough to be riegldcted or that the model must be adjusted to accoumt for its effect on the transfer of heat and fluid fldw in the reservoir.
6. Reservoir unisornly fractured and fracture width constant.

This problem doé, not consider significant variation in fracture width anywhere in the reservoir. Vertically, fracture lenglin limited by the height of the producing interval. Orientation of the fracture need not be specified as is implicit in the effective porosity.
7. Effective porosity constant throughout reservoir.

In order that convection heat transfer occur, the reservoir rock mut be swept by the injected fluid. the effective porosity constraint requires that each fracture be ol:1eqted such that it conducts the injected fluid radially. Concentrlc and other fractures orthogonal to the direction of flow are not included in this porosity. The fracture porosity used for this model therefore is lless that the total fracture porosity of the system. Figure 1 presents an element volume of such a reservoir, $4 n$ 中hich neither the degree of fracturing nor the fracture width changes.

All of the above constraints are introduced so as to keep the reservoir flow model simple but at the same time still realistic.

ECEMENT VOLUME

FIG. 1

3. ENERGY BALANCE

An element volume of the naturally fractured reservoir is shown is Fig, 1. An energy balance on this element yields the following two equations:
(i)
(ii)

(The symbols used are defined in APPENDIX 1 : Nomenclature and Typical Values)

Note that while the rock and water volumes of the element are different, they share the same surface area and have identical convection terms. Their combined volumes give the total element volume. In addition, the water volume and surface area is equal to the fracture volume and surface area of the element. Finally, note that the storage term in (i) is negative.

Temperature in this reservoir is a function of the distance from the injection well and the time since the start of injection. Given any particular radius and. time, the solution of these two equations will give both the rock and water temperature.

Rewriting the above equations with their appropriate initial conditions and boundary :onditions,

$$
\begin{array}{ll}
-\rho_{w} q_{w} C_{v w}-\frac{\partial T_{w}}{\partial r} & r-h_{c} A_{R w}\left(T_{W}-T_{R}\right)=\rho_{w} C_{v w} V_{w} \frac{\partial T_{w}}{\partial t} \\
h_{c} A_{R W}\left(T_{w}-T_{R}\right) & \rho_{R} C_{v R} V_{R} \frac{\partial T_{R}}{\partial t} \tag{2}
\end{array}
$$

Intial Conditions $=T_{w}(r, 0)=T_{R}(r, 0)=T_{w i}$

Boundary Condition $: T_{W}\left(r_{W}, t\right)=T_{\text {inj }}$

1

The total volume of the lement is given by:

$$
\begin{equation*}
\mathrm{V} e=2 \pi r \Delta r \ell \tag{4}
\end{equation*}
$$

While for assumptions 5,6 , and 7 of section 2 to hold, the water and rock element volume: also must be given by :

$$
\begin{equation*}
\mathrm{V}_{\mathrm{w}}=\Phi_{2} \mathrm{~V}_{\mathrm{e}} \tag{4b}
\end{equation*}
$$

$$
(4 c)
$$

$$
\mathrm{V}_{\mathrm{R}}=\left(1-\Phi_{2}\right) \mathrm{V}_{\mathrm{e}}
$$

Alternatively, the total volume can be expressed as :

$$
\begin{equation*}
v_{e}=v_{w}+v_{R} \tag{5}
\end{equation*}
$$

And the rock surface area for heat exchange can be written as :

$$
A_{R w}=\frac{2 V_{W}}{\delta}
$$

Where :

(6)

Using equation (5), a.nd substituting (4), and (6) into equations (1) and (2) yields,

$$
\begin{align*}
& -\frac{B}{r} \frac{\partial T_{W}}{\partial r}-D\left(T_{W}-T_{R}\right)=M_{W} \frac{\partial T_{W}}{\partial t} \tag{7}\\
& D\left(T_{W}-T_{R}\right)=M_{R} \frac{\partial T_{R}}{\partial t} \tag{8}
\end{align*}
$$

$$
\begin{array}{l|l}
\text { Where the new constants } & \text { re defined as : } \\
B=\frac{\rho_{w} q_{w} C_{V W}}{2 \pi l} & D=\frac{2 h_{c} \Phi_{2}}{\delta} \tag{8b}\\
M_{W}=\rho_{W} C_{V W} \Phi_{2} & M_{R}=\rho_{R} C_{v R}\left(1-\Phi_{2}\right)
\end{array}
$$

4. DIMBNSIONLESS FORM OF EQUATIONS

Before solving equations (7) and (8) for $T_{w}(r, t)$ and $T_{R}(r, t)$, it is convenient to re-state these equations using dimensionless parameters :

Dimensionless Time.

$$
t_{D}=\frac{D t}{M_{R}} \quad \text { or } \quad t_{D}=\frac{2 h_{c} \Phi_{2} t}{\rho_{R} C_{v R}\left(1-\Phi \Phi_{2}\right) \delta}
$$

$$
\begin{aligned}
& r_{D}=\frac{D\left(r^{2}-r_{W}^{2}\right.}{2 B} \text { or } r_{D}=\frac{2 \pi \ell\left(r^{2}-r_{w}^{2}\right) h_{c} \Phi_{2}}{\rho_{W} C_{V W} q_{w}} \\
& \text { Less temperatuie, }
\end{aligned}
$$

$$
\begin{equation*}
T_{w}=\frac{T_{w}-T_{w i}}{T_{i n j}-} \frac{\text { and }}{T_{w i}} \quad T_{R}=\frac{T_{R}-T_{w i}}{T_{i n \bar{j}}} \frac{T_{w i}}{} \tag{9c}
\end{equation*}
$$

Note that the dimensionless radius term is actually dimensionless volume and must not be confused with the $r / r w$ used in pressure-production problems.

Re-stated in dimension1ess form, equations (7) and (8) become :

$$
\begin{equation*}
-\frac{\partial T_{w}}{\partial r_{D}}-\left(n_{w}-T_{R}\right)=\frac{M_{w}}{M_{R}} \frac{\partial T_{w}}{\partial t_{D}} \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\left(T_{W}-T_{R}\right)=\frac{\partial T_{R}}{\partial t_{D}} \tag{11}
\end{equation*}
$$

5. SOLUTION BY THE LAPLACE TRANSFORM

Using the Laplace ttansform, equations (10) and (11) are transformed in time and solved simultaneously in Laplace space to produce an ordinary differential equation in terms of $\bar{T}_{\mathbf{w}}\left(T_{\mathrm{D}}, S\right)$, where S is the Laplace transformed variable. This equation is solved using the boundary condition and $T_{\mathbf{R}}\left(\mathbf{r}_{\mathrm{D}}, \mathbf{S}\right)$ is then easily determined. The details of this procedure are given in Appendix B.

The solutions are found to bo :

$$
\begin{align*}
& \bar{T}_{W}\left(r_{D}, S\right)=\frac{1}{S} \operatorname{Exp}\left\{-r_{D}\left(1+\frac{M_{W}}{M_{R}} s-\frac{1}{S+1}\right)\right\} \tag{13a}\\
& \bar{T}_{R}\left(r_{D}, S\right)=\frac{1}{S(S+1)} \operatorname{Exp}\left\{-r_{D}\left(1+\frac{M_{w}}{M_{R}} s-\frac{1}{S+1}\right)\right\} \tag{13b}
\end{align*}
$$

The asymptotic forms of equations (13a) and (13b) are given in Appendix 3.

It is now possible to invert both equations (13a) and (13b) and arrive at an analytical solution to the problem. While it was necessary to first determine the water temperature solution (13b) using the boundary condition, the order of inversion makes no difference.

Inversion of Equation for Rock Temperature, $\bar{T}_{R}\left(r_{D}, S\right)$:

Re-writing equation (13B) in a more convenient order for inverting,

$$
\begin{equation*}
\bar{T}_{R}\left(r_{D}, S\right)=\operatorname{Exp}\left(-r_{D}\right) \operatorname{Exp}\left(-\mathbf{r}_{D} \frac{M_{W}}{M_{R}} s\right) \frac{1}{S} \frac{1}{S+1} \operatorname{Exp}\left(\frac{r_{D}}{S+1}\right) \tag{14}
\end{equation*}
$$

Step $\{1$

Applying the shifting theorem;

$$
\begin{equation*}
T_{R}\left(r_{D}, t_{D}^{*}\right)=u\left(t_{D}^{*}\right) \operatorname{Exp}\left(-r_{D}\right) £^{-1}\left\{\frac{1}{S} \frac{1}{S+1} \operatorname{Exp}\left(\frac{r_{D}}{S+1}\right)\right\} \tag{15}
\end{equation*}
$$

where,

$$
t_{D}^{*}-\left(t_{D}-\frac{M_{D}}{M_{R}} r_{D}\right)
$$

and $u\left(t_{D}\right)$ is the step unction:

$$
\begin{align*}
& u\left(t_{D}\right)=0 \tag{15b}\\
& * \\
& t_{D}<0
\end{align*}
$$

$$
\begin{aligned}
& * \\
& u\left(t_{D}^{*}\right)=1 \\
& t_{D} \geqslant 0
\end{aligned}
$$

Application of the convolution theorem gives,

$$
\begin{equation*}
T_{R}\left(r_{D}, t_{D}^{*}\right)=u\left(t_{D}^{*}\right) \operatorname{Exp}\left(-r_{D}\right) f_{1}\left(t_{D}^{*}\right) * f_{2}\left(t_{D}^{*}\right) \tag{16}
\end{equation*}
$$

Where,

$$
\begin{equation*}
f_{1}\left(t_{D}^{*}\right) * f_{2}\left(t_{D}^{*}\right)=\int_{0}^{f_{1}}\left(t_{D}^{*}\right) f_{2}\left(t_{D}^{*}-\tau\right) \partial \tau \tag{16a}
\end{equation*}
$$

Step \#2

Equation (16) is reduce
further using the following relations: ${ }^{3}$

$$
\begin{equation*}
F_{1}(s)=\frac{1}{S} \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
F_{2}(S)=F(S+1)=\frac{1}{S+1} \quad \operatorname{xp}\left(\frac{r_{D}}{S+1}\right) \tag{17.1}
\end{equation*}
$$

$v=\left(t_{D}-\tau\right)$,

$$
\begin{equation*}
A=r_{D} \tag{17.6}
\end{equation*}
$$

then the rock temperatur solution becomes :

$$
\begin{equation*}
T_{R}\left(r_{D}, t_{D}\right)=u\left(t_{D}^{*}\right) I d\left(-r_{D}\right) \int_{0}^{t_{D}} \operatorname{Exp}(-v) I_{0}\left(2 \sqrt{r_{D} v}\right) \partial v \tag{18}
\end{equation*}
$$

Sted $\# 3$

Although the integf $\$ 1$ in equation (18) is not easily found in many tables of integrals, an excellent discussion of it appears in Luke, 'Integrals of Bessel Functions' 5 . This book also contains some valuable references for further investigation. After some rearranging, the integral is:

$$
\begin{equation*}
\int_{0}^{x} \operatorname{Exp}(-v) I_{0}(2 \sqrt{y} \bar{V}) d V=\operatorname{Exp}(y)\{1-J(x, y)\} \tag{19}
\end{equation*}
$$

where $J(x, y)$, a function defined in terms of the above integral, is expanded below.

If we let,

$$
\begin{equation*}
\mathrm{y}=\mathrm{r}_{\mathrm{D}} \quad, \quad \mathrm{x}=\mathrm{t}_{\mathrm{p}}^{*} \tag{19.1}
\end{equation*}
$$

(A4.1)
the rock and water temperature (from appendix 4) then become:

$$
\begin{aligned}
& T_{R}\left(r_{D}, t_{D}^{*}\right)=u\left(t_{D}^{*}\right)\left\{1-j\left(t_{D}^{*}, r_{D}\right)\right\} \\
& T_{W}\left(r_{D}, t_{D}\right)=u\left(t_{D}^{*}\right) \operatorname{Exp}\left\{-\left(r_{D}+t_{D}^{*}\right)\right\} I_{0}\left(2 \sqrt{r_{D} t_{D}^{*}}\right)+T_{R}\left(r_{D}, t_{D}^{*}\right)
\end{aligned}
$$

This analytical solution is checked for the initial and boundary values, as well as the asymptotic forms in Appendix 3.

The expansion of the function $J(x, y)$ has two different forms : ${ }^{6}$

Case \#1

Case \#2

$$
\overline{\sqrt{\frac{y}{x}}} \geqslant 1
$$

$$
\begin{equation*}
J(x, y)=1-\operatorname{Exp}\{-(x+y)\} \sum_{k=1}^{\infty} \sqrt{\frac{y}{x}}-k I_{k}(2 \sqrt{x y}) \tag{21}
\end{equation*}
$$

At this point in the deritation, the reader is referred to Appendix 4, where both the rock and wat:er temperature expansions are derived in greater detail.

From Appendix 4, the analytical results are :

Case \#1

$\sqrt{\frac{r_{D}}{t_{D}^{*}}} \leqslant 1:$

Rock Temperature $=$

$$
T_{R}\left(r_{D}, t_{D}^{*}\right)=u\left(t_{D}^{*}\right)\left(1+\operatorname{Exp}\left\{-\left(r_{D}+t_{D}^{*}\right)\right\} \sum_{k=0}^{\infty} \frac{r_{D}}{\frac{t_{D}^{*}}{*}} I_{k}\left(2, \overline{r_{D} t_{D}^{*}}\right)\right)
$$

(22)

Water Temperature :

$$
\begin{equation*}
T_{w}\left(r_{D}, t_{D}^{*}\right)=u\left(t_{D}^{*}\right)\left(1-\operatorname{Exp}\left\{-\left(r_{D}+t_{D}^{*}\right)\right\} \sum_{k=1}^{\infty} \frac{r_{D}}{t_{D}^{*}} I_{k}\left(2 \sqrt{r_{D} t_{D}^{*}}\right)\right) \tag{23}
\end{equation*}
$$

Case 非2
$\sqrt{\frac{r_{D}}{t_{D}^{*}}} \geqslant 1$

Rock Temperature :

$$
T_{R}\left(r_{D}, t_{D}^{*}\right)=u\left(t_{D}^{*}\right) \operatorname{Exp}\left\{-\left(r_{D}+t_{D}^{*}\right)\right\} \sum_{k=1}^{\infty} \frac{r_{D}}{\frac{t_{D}^{*}}{k}} I_{k}\left(2 \sqrt{r_{D} t_{D}^{*}}\right)
$$

(24)

Water Temperature :

(25)

In both of the above cases, the convection term has the form:

$$
\begin{equation*}
T_{W}\left(r_{D}, t_{D}^{*}\right)-T_{R}\left(r_{D}, t_{D}\right)=4\left(t_{D}-\frac{M_{W}}{M_{R}} r_{D}\right) \operatorname{Exp}\left\{-\left(r_{D}+t_{D}^{*}\right)\right\} I_{0}\left(2 \sqrt{r_{D} t_{D}^{*}}\right) \tag{26}
\end{equation*}
$$

The above expansions are also checked at the initial and boundary values, as well as the limiting forms, in Appendix 3.

The expansions for both cases described can be evaluated numerically using the following approximations for the given modified Bessel functions ${ }^{7}$.

For small values of x
$I_{\nu}(x)=\frac{\left(\frac{1}{2} x\right)^{\nu}}{\Gamma(v+1)} \quad, \quad \mathbf{v}=0,1,2, \ldots, \ldots$ (27a)

For large values of \mathbf{x}
$I_{v}(x)=\frac{\operatorname{Exp}(x)}{\sqrt{2 \pi x}}\left\{1-\frac{4 v^{2}-}{8 x} \left\lvert\,+\frac{\left(4 v^{2}-1\right)\left(4 v^{2}-9\right)}{2!(8 x)^{2}}-\frac{\left(4 v^{2}-1\right)\left(4 v^{2}-9\right)\left(4 v^{2}-25\right)}{3!(8 x)^{3}}\right.\right.$

+ •
or more simply,

$$
\begin{equation*}
I_{v}(x)=\frac{\operatorname{Exp}(x)}{\sqrt{2 \pi x}} f(v, x) \tag{28}
\end{equation*}
$$

Since the dimensionless \}rms for radius and time are large for almost
all times, the approximation for large values is used in expanding the solutions.

If we let,

$$
\begin{equation*}
a = 2 \longdiv { \overline { r } ^ { D ^ { t } } { } ^ { \star } } \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
B=\left(r_{D}+t_{D}^{*}\right) \tag{28}
\end{equation*}
$$

the solutions become :

Case / 1

$$
\begin{align*}
& T_{R}\left(r_{D}, t_{D}^{*}\right)=u\left(t_{D}^{*}\right)\left(1-\frac{\operatorname{Exp}(\alpha-\beta)}{\sqrt{2 \pi \alpha}} \sum_{k=0}^{\infty} \frac{r_{D}}{t_{D}^{*}} f(k, x)\right) \tag{30}\\
& T_{w}\left(r_{D}, t_{D}^{*}\right)=u\left(t_{D}^{*}\right)\left(1-\frac{\operatorname{Hxp}(\alpha-\beta)}{\sqrt{2 \pi \alpha}} \sum_{k=1}^{\infty} \frac{r_{D}}{t_{D}^{*}} f(k, x)\right) \tag{31}
\end{align*}
$$

Case 82

$$
\begin{align*}
& T_{R}\left(r_{D}, t_{D}^{*}\right)=u\left(t_{D}^{*}\right) \frac{\operatorname{Exp}(\alpha+\beta)}{\sqrt{2 \pi \alpha}} \sum_{k=1}^{\infty} \frac{\overline{r_{D}}}{t_{D}^{*}}-k \tag{32}\\
& f(k, x) \tag{33}\\
& T_{W}\left(r_{D}, t_{D}^{*}\right)=u\left(t_{D}^{*}\right) \frac{E_{\underline{\sim}}\left(\frac{(\alpha-\beta)}{\sqrt{2 \pi \alpha}} \sum_{k=0}^{\infty} \frac{\overline{r_{D}}}{t_{D}^{*}}-k\right.}{} f(k, x) \\
& -22-
\end{align*}
$$

ric. 5

FIG. 8

8- DISCUSSION OF ANALYTICAL RESULTS

The analytical results described are checked at the initial condition and boundary coridition in Appendix 3. The asymptotic forms are also checked. For small times, equations (A3.2) and (A3.4) indicate an exponential form of solution, and Figures 2 and 3 show this effect. However, the numerical approximation of the modified Bessel function applies for only large values of x, and must be changed for smaller values. Furthermore, there exists a middle range where neither solution is well behaved. The Stefest inverter is well behaved in this range, however, and it is used ta match the analytical solution for the relatively small dimensionless time of 15^{8}. At this value of dimensionless time, real time is about 6 minutes and the thermal front is developing from a simple step function through this exponential modification process. At \boldsymbol{a} dimensionless time of 40 , as shown in Fig. 5, the general symmetric form of the front is apparent and does not change until much later. Also, thle Stehfest routine is shown to no longer match and is abandoned at this polnt. In Appendix 5, Figures 11 through 15 indicate the result using the inverter for later times.

Figures 5 through 9 \&Ire plots of the water and/or rock temperature for later times. These plots show that the front spreads as time increases but maintains its symmetric form. Figure 2 shows the relatively large differende in rock and water temperature at early dimensionless times: In FJCgures 9 through 11, this temperature difference is plotted at various times and is seen to decrease as time increases. For any given time, the maximum temperature difference occurs at the center of the front as expected. To the left of center, both the rock and water temperatures approach one (the injection temperature), while to the right of center, they approach zero (initial reservoir temperature). Equation (11) indicates that this plot is also that of the derivative of the rock temperature with respect to time, and that this has a maximum value at the center of the front, as one would expect. Further, these figures provide a simple measure of the spread of the front, as a rock-to-water !temperaturedifference occurs only along the front.

9. FORM AND BEHAVIOUR OF THE THERMAL FRONT

The reason for the symetry of the front can be seen from from equations (22) through (24). The upper portion of the curve is generated by case $\mathbb{1}_{1}$, which requires that the dimensionless radius to shifted-time ratio be less than or equ $\$ \mathbf{1}$ to one. At the center, r_{D} equals t_{D} and the dimensionless temperature equals 0.5 . The lower portion of the curve is next generated by case $\# 2$ as r_{D} increases. If the dimensionless radius is divided by thi iratio and plotted with dimensionless temperature, the center of the front is always located at one, for any dimensionless time. Figuras 4 and 5 are two examples of this plot while Figure 8 plots the dimensionless water temperature for various times. From the latter plot it deen that the curve steepens for larger times, indicating that the velocity of each point on the front approaches a constant value. This means that the rate of spread stops increasing and reaches a constant rate. This spreading change is also seen in Figs. 9, 10 and 11 . For $t_{D}=80$, approximately $95 X$ of the area is covered over a dimensidnless distance of 60 , while for $t_{D}=800$, the distance is only 100 , and for $t_{D}=1600$, it is 200. The former implies an increasing rate of spada, while the latter two indicate a constant rate of spread.

For times significantly larger than those discussed above, the front does not behave in the same way. For a dimensionless time of 8000 and a constant velocity of each point on the front, one would expect a spread-distance of 1000 . The actual value of this spread is about 350 , much less than anticipated. Although the velocity of the center of the front (or average front velocity) does not change, the velocity of other points on the front must be decreasing. For times much larger, one might expect (given the results of Appendix 3), the following sequence of events :
(a). All points on the ftont approach the same velocity and the front no longer spreads.
(b). The front begins to shrink as the frontal velocities decrease at different rates.
(c) The front as such d appears and is replaced by the step function. The average radial veloc y of the thermal front has now changed.

(i) Short and Interuediate Times

From plots such. as fig.11, one can determine the velocity of any point on the front since \mathbf{t} :he location of the center of the
front is fixed. Typlcal walues of the ploted ratio $\frac{r_{D}}{t_{D}-\frac{M_{W}}{M_{R}}} \mathbf{r}_{D}$
range from 0.5 to 1.5 . Retarranging this ratio, eliminating dimensionless terms, and differentiating with respect to time, gives the location and velocity of any point on the front for all but long times. The result for the short and intermediate times is:

$$
\begin{equation*}
q_{W} t=\pi\left(r^{2}-r_{W}^{2}\right) \ell\left\{-\frac{\rho_{R} C_{v R}}{\rho_{w} C_{v w}} \frac{\left(1-\Phi_{2}\right)}{n}+\Phi_{2}\right\} \tag{32}
\end{equation*}
$$

where,

$$
\begin{equation*}
\eta=\frac{r_{D}}{t_{D}} \tag{33}
\end{equation*}
$$

r is the radial distance 100 that point on the front, $\mathbf{q}_{\mathbf{w}}$ is the flow rate of water injecteid into the reservoir, and ${\underset{w}{w}} \mathbf{t}$ is the total reservoir volume of injtetted water.

Re-writing equation (32), have,

$$
q_{W} t=\pi\left(r^{2}-r_{W}^{2}\right) \ell \zeta
$$

where,

$$
\begin{equation*}
\zeta=\left\{\frac{\rho_{\mathrm{R}} \mathrm{C}_{\mathrm{vR}}}{\rho_{\mathrm{w}} \mathrm{C}_{\mathrm{vw}}} \frac{\left(1-\Phi_{2}\right)}{\eta}+\Phi_{2}\right. \tag{34.1}
\end{equation*}
$$

Differentiating (32) gives

$$
\frac{\mathrm{q}_{\mathrm{w}}}{2 \pi \mathrm{rl} \mathrm{\Phi}}=\frac{\zeta}{\Phi_{2}} \frac{\partial \mathrm{r}}{\partial \mathrm{t}}
$$

Equation (35) can also be mitten in terms of radial velocities as:

$$
\begin{equation*}
\mathrm{v}_{\mathrm{h}}=\frac{\Phi_{2}}{\zeta} \quad \mathrm{v}_{\mathrm{w}} \tag{36}
\end{equation*}
$$

Where, V_{h} is the radial velocity of a given point on the thermal front, and V_{w} is the interstitial radial velocity of the water.

Note that for $n=1$, equation (32) gives the location of the center of the thermal. front and equation (34) gives its velocity, which is also the average veloctty of the front.

For long times the front exists as the step function $u\left(t_{D}\right)$ and the above equations are replaced by :

$$
\begin{equation*}
\mathbf{q}_{w} t=\pi\left(\mathbf{r}^{2}-{\underset{w}{2}}_{2}^{r}\right) \ell \Phi_{2} \tag{37}
\end{equation*}
$$

$\frac{\partial r}{\partial t}=\frac{q_{w}}{2 \pi r \ell \Phi_{2}}$
or,

$$
\begin{equation*}
v_{h}=v_{w} \tag{38}
\end{equation*}
$$

Equations (37) and (38) respectively correspond to equations (35) and (36) for $\zeta=\Phi_{2}$.

11. TnTERPRETATION OF VELOCITY EQUATIONS

When the dimensionless terms are eliminated as shown above, the original energy balance ralationships become clear. Dimensionless radius at the front becomes the total volume swept by that part of the thermal front, while the $q_{w} t$ tetm represents the total volume of injected fluid. Equations (32) and (34) also include the relative volumes of rock and water swept by the front, as the weighted sum of these terms is proportional to the total amount of injected heat. For large times, incremental volumes of infected water advance the thermal front by smaller increments of real radius or radial distance. In the limit, this increment of real radius is infinitesimally small and the thermal front must become step-like: with respect to the real radius. Eventually the front would also appear step-1ike with respect to the volume swept, as this convergence is proportional to \mathbf{r} A. While this report does not examine plots of dimensionless temperatures versus real radius, this type of plot is easily made and clarifies the behaviour of the thermal front with respect the the real radial distance. It can also be used to estimate the times for using the velocity equations given above. In any case, the form and velocity of the front approaches that of the injected fluid.
JOB 5199 XJMJEI9

fic. 9

（（ 1－ML）ヨコNヨ $\exists \exists コ \exists I O ~ d W \exists \perp$ SSヨาNØISNヨWIO

12. CONCLUSIONS

Assuming one injectbt well in an infinite, naturally fractured geothermal reservoir , the results of this study apply for those times during which convection i the dominant form of heat transfer and fluid flow is steady state., The 'periodtherefore excludes very long and very short times.

Upon injection of watter into the system, a thermal front of the form discussed quickly develoos, and moves through the reservoir at a constant average rate. It velocity is less than that of the injected fluid for relatively early time. Although at first the front spreads at an increasing rate, spreading gradually slows and eventually reverses itself. The rock and water temperature fronts become equal at a dimensionless time of about 1000 and move at the same rate thereafter. For times much greater than this, the front moves with the fluid, limited to step-like displacement of heat in the reservoir. As there is no conduction, the radial velocity of the thermal front decreases with the radial velocity of the fluid, and in the limit approaches zero.

As a final note, the problem presented in this report can be solved in a straightforward vay using the Laplace transform. While numerical inversion routines are of ${ }^{\text {den }}$ of great value, analytical inversion appears to be the most reliable approach to a solution of this problem.

\& Reservoir height, ft 25.00
\mathbf{r}_{w} Wellbore radius, ft 0.75
$T_{w i}$ Initial reservoir temperature, ${ }^{\circ}{ }_{F}$ 400
$T_{i n j}$ Temperature! of injection fluid, ${ }^{o}$ F 60
${ }^{r}$ n Dimensionless radius(actually a dimensionless volume term)
${ }^{\mathbf{t}}{ }_{D}$ Dimensionless time
T_{R}, T_{w} Dimensionless temperature of rock, water(
$\mathrm{V}_{\mathrm{h}}, \mathrm{V}_{\mathrm{f}}$ Radial velocity of heat, fluid, f \mathbf{t}
$\left.-\frac{\partial \bar{T}_{W}}{\partial}-\left(\bar{T}_{W}-\bar{T}_{R}\right)=\frac{M_{W}}{M_{R}} \mathbb{S} \right\rvert\, \bar{T}_{W}$

Solving (A 2.2) for \bar{T}_{R} and substituting it in (A 2.1) produces the following ordinary differential equation :
$-\frac{\partial \bar{T}_{W T}}{\partial_{0}}-\left(1+\frac{M_{W}}{M_{R}} \quad \& \frac{1}{S+!}\right) \frac{\bar{n}_{W}}{{ }_{W}}=0$

Equation (13a) is derived by solving this ordinary differential equation for the water temperature and determining the constant of integration using the boundary condtion, Equation (13b) is derived by substituting this result into equation (A 2.2).

```
Check of Initial and Boundary Conditions :
\(\underline{\text { Initial Condition }}=T_{W}\left(r_{D}, 0\right)=T_{R}\left(r_{D}, 0\right)=0\)
Case \#2 applies for the initial condition above and from equations (24) and (25) it is seen that the step function ensures this for both the rock and water. As initi申 \(11 y\) no heat (or cold) has been injected into the reservoir, one would expect the reservoir rock and water to be at their initial temperature.
\(\underline{\text { Boundary Condition }}: \mathrm{T}_{\mathbf{w}}\left(0, \mathrm{t}_{\mathrm{D}}\right)=1\)
Case \(\# 1\) applies for the \&ove boundary condition, and it is easily seen from equation (23) that this condition is satisfied. Note, however, that the rock temperature should not satisfy this boundary condition, as it is dependent on the water temperature. This implicit condition is also satisfied.
```

Another useful che short and long time behaviour of the laplace space equation. The limiting forms of this mauation are then inverted and compared with the analytical solution for se times.

Short Time Solution

Water Temperature :

for the analytical result is to examine the
:
$\bar{T}_{W}\left(r_{D}, s\right)=\operatorname{Exp}\left(-r_{D}\right) \frac{1}{S} 1$
$\left.:-r_{D} \frac{M_{W}}{M_{R}} s\right)$

After inverting,

$$
\begin{equation*}
T_{w}\left(r_{D}, t_{D}^{*}\right)=\operatorname{Exp}\left(-r_{D}\right) u t \tag{A3,2}
\end{equation*}
$$

$$
1
$$

Therefore one would exp; temperature to have an \&

For short time $_{\mathbf{s}}, \mathbf{q}$ is large and equation (13a) approaches the form

For large S, equation ($\mathbf{1 3} \mathbf{b}$) has the form :

$$
\begin{equation*}
\bar{T}_{R}\left(r_{D}, s\right)=\operatorname{Exp}\left(-r_{D}\right) \frac{1}{S^{2}} \operatorname{Exp}\left(-r_{D} \frac{M_{w}}{M_{R}} s\right) \tag{A3.3}
\end{equation*}
$$

After inverting, this eq ition becomes :

$$
\begin{equation*}
T_{R}\left(r_{D}, t_{D}^{*}\right)=\operatorname{Exp}\left(-r_{D}\right) t_{D}^{*} L\left(t_{D}^{*}\right) \tag{A3.4}
\end{equation*}
$$

As $t_{D} \rightarrow 0, \quad t_{D} \rightarrow 0$ and it is seen that the rock temperature approaches zero or is se be the case for all Σ_{D} to zero by the step function. The latter would condition.

As another check, the asyuptotic form of the inverted transform can be examined. The inverse transform of equation (13a) is equation (19.1).

$$
\begin{equation*}
T_{R}\left(r_{D}, t_{D}^{*}\right)=u\left(t_{D}^{*}\right)\left\{1 \cdot\left\{\left(t_{D}^{*}, r_{D}\right)\right\}\right. \tag{19.1}
\end{equation*}
$$

and the limiting forms are :

$$
\begin{array}{ll|l}
\operatorname{limit}_{y \rightarrow 0} & J(x, y)=1 & \quad, \quad \begin{array}{l}
\text { limit } \\
x+0
\end{array} \\
& J(x, y)=\operatorname{Exp}(-x) \tag{A3,5}
\end{array}
$$

which is equivalent t:o

Substituting into (19.1)!, we have the same result for the rock temperature at short tines.

If these limiting forms of the rock temperature for short time are also substituted into equation (A4.4), it is seen that as

$$
\mathrm{t}_{\mathrm{D}}^{*} \rightarrow 0, \mathrm{I}_{0}\left(2 \sqrt{\mathbf{r}_{\mathrm{D}} \mathbf{t}_{\mathrm{D}}^{*}}\right) \rightarrow 1, \quad \text { and the water temperature }
$$

$$
\begin{equation*}
T_{w}\left(r_{D}, t_{D}^{*}\right)=u\left(t_{D}^{*}\right) \operatorname{Exp}\left(-F_{D}\right) \tag{A3.2}
\end{equation*}
$$

which was obtained previdusly.

Long Time Solution

For long time, both the rock and water temperature solutions have the same form. For a given dimensionless radius (ie. volume), equations (13a) and (13b) approach the form:
$\bar{T}_{W}\left(r_{D}, S\right)=\bar{T}_{R}\left(r_{D}, S\right)=\frac{1}{S} \operatorname{Exp}\left(-r_{D} \frac{M_{W}}{M_{R}} S\right)$

After inverting, this equation becomes,

$$
\begin{equation*}
T_{W}\left(r_{D}, t_{D}^{*}\right)=T_{R}\left(r_{D}, t_{D}^{*}\right)=u\left(t_{D}^{*}\right) \tag{A3.8}
\end{equation*}
$$

Therefore, one would expeat the analytical solution to approach the form of the given step function for relatively long times.

Examining the inverted fodm of the solution again at the other limit :

$$
\operatorname{limit} \quad J(x, y)=1
$$

,

$$
\begin{equation*}
\operatorname{limit}_{\mathbf{x}+-} J(x, y)=0 \tag{A3.9}
\end{equation*}
$$

which is equivalent to,
limit $\left.J t_{D}, r_{D}\right)=0$ $t_{D}>\infty$

1
1 Substituting the first limiting form of (A3.10) into (19.1) gives the step function (A3.8). Substituting this result for the rock temperature into (19.2) gives the sawe result for the water temperature. Equation (A3.8) is the expected water and rock solution form for long time as both are equal and step functions.
The same results are also leasily seen using case $\$ 1$ of the expansion.

The same procedure oan also be used to verify the analytical solution for large and small r_{D}

Rock Temperature Solution

The rock temperature solution for each case is found by substituting equations (20) or (21) into equation (19). The only other required substitution. is :allowing :

$$
\begin{equation*}
x=t_{D}^{*} \quad, \quad y=r_{D} \tag{A4.1}
\end{equation*}
$$

After cancelling some terms, equations (22) and (24) are derived.

Water Temperature Solution:

$T_{W}\left(r_{D}, S\right)=\frac{4}{S} \operatorname{Exp}\left\{-r_{D}\left(1+\frac{M_{W} S-\frac{4}{M_{R}^{I}}}{{\underset{M}{R}}^{S+1}}\right)\right\}$

Re-writing equation (13a), as the sum of two parts,

$$
T_{W}\left(r_{D}, t_{D}^{*}\right)=\operatorname{Exp}\left(-r_{D} \frac{M_{W}}{M_{R}} S\right) \operatorname{Exp}\left(-r_{D}\right)\left(\frac{1}{S+1} \operatorname{Exp}\left(\frac{r_{D}}{S+1}\right)+\frac{1}{S(S+1)} \operatorname{Exp}\left(\frac{r_{D}}{S+1}\right)\right)
$$

Inverting equation (A.4.2) yields,

$$
T_{\psi}\left(r_{D}, t_{D}^{*}\right)=u\binom{*}{t_{D}} \operatorname{Exp}\left(-r_{D}\right) £^{-1}\left\{\frac{1}{S+1} \operatorname{Exp}\left(\frac{r_{D}}{S+1}\right)\right\}+T_{R}\left(r_{D}, t_{D}^{*}\right)
$$

Using the same procedure outlined in equations (17) through (17.5), this becomes :
$T_{w}\left(r_{D}, t_{D}^{*}\right)=u\left(t_{D}^{*}\right) \operatorname{Exp}\left\{-\left(r_{D}+t_{D}^{*}\right)\right\} I_{0}\left(2 \sqrt{r_{D} t_{D}^{*}}\right)+T_{R}\left(r_{D}, t_{D}^{*}\right)$
(A4.4)

Substituting into (A4.4) the rock temperature solution for each case gives the water temperature solution for each case. Note that in both cases, the difference between the rock and water temperature solutions is the same function given in equation (26).

APPENDIX \$: Results of Numerical Inversion

This appendix contains the results obtained by inverting equations (13a) and (13b) numerically using the Stehfest routine.

For early dimensionless times up to 40, a good match of the analytical solution is made. For times greater than this, however, the inverter is not well behaved and is not considered reliable. Figures 3 through 6 are plots of the numerical and analytical result for various dimensionless times. Note that the match is lost after 40 and worsens for later times. It appears that the match is lost when the Stehfest routine computes values of dimensionless temperature greater than one and less than zero. In addition, the thermal front as shown in Figures (12) through (16) wovld spread at increasing rates and never converge, a phenomenom which is physidally impossible for this system. The Stehfest algorithm does prove useful however, for those early and mid-ranges of time during which the. analytical solution is slowly convergent and/or the approximating equations (27a) and (27b) are not well behaved.

STEHFEST INVERTER RESULT FDR TD=800

[^1]

FIG. 15

FIG. 16

REFERENCES

1. Warren, J.E ., and Rфot, P.J., 'The Behavior of Naturally Fractured Reservoirs', SPE Journal (Sept. 1963)
2. Mavor, Matthew J., |Translent Pressure Behavior of Naturally Fractured Reservoirs', Master's Report, Department of Petroleum Engineering, Stianford University (1978).
3. Doetsch, 'Guide to the Application of Laplace Transforms', D. Von Nostrand, London, E古gland; Toronto, Can.; New York, NY; Princeton, New Jersey (1961), pg. 34 .)
4. Abramowitz and Stegun, 'Handbook of Mthematical Functions', Dover Publications, New York, NY (1970), pg. 1026.
5. Luke, 'Integrals of Bessel Functions', McGraw-Hill Book Co., New York, Toronto, London (1962), pgs. 271-283.
6. Op Cit, Luke, fig = 273,274.
7. Op Cit, Abramowitz and Stegun, pg. 375, 377
8. Stehfest, H., ${ }^{\text {A Aloqorithm 368, Numerical Inversion of Laplace }}$ Transforms', D-5 Codmunlcations of the ACM (Jan. 1970)
```
Davis, Harold T., 'The Summation of Series', The Principia Press of
Trinity University, San Antomio, Texas (1962).
Doetsch, 'Guide to the Application of Laplace Transforms', D. Von
Nostrand, London, England; Toronto, Can.; New York, NY; Princeton, New
Jersey(1961).
Hansen, Eldon R., 'A Table of Series and Products', Prentice Hall, Inc.
(1975).
Healy, Martin, 'Tables of Laplace, Heaviside, Fourier, and z Transforms,
W. and R. Chambers Ltd., &dinburgh and London( 1967).
Kreith and Black, 'Basic #eat Transfer', Harper and Row Publishers, New
York, NY(1980).
Kreyszig, Irwin, 'Advanced Engineering Mathematics', John Wiley and Sons Inc., New York, London, Toronto, Sydney (1972).
Weast, Astle, 'CRC Handbook of Chemistry and Physics', New York(1973).
```

PROGRAM FOR ANALYTICAL SOLUTION

```
    1. // JOB
    2. // EXEC WATEIV
    3.
    4.
    5.
    6.
    7.
    8.
    9.
    i0.
    11.
12.
13.
14.
15.
16.
17.
is.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
<9.
30.
32.
33.
34.
35.
36.
37.
38.
39.
41.
42.
43.
44.
4.
4.
49.
50.
51.
52.
53.
54.
55.
56.
57.
5.
59.
60.
61.
62.
63.
64.
                IMPL CIT REAL*8 (A-H,O-Z)
IMPL
                OIIUB E PRECISION TD,RD,TUR,TUW
                QF=5.0
                DENN 60.0
            CVM= .00
            HT=2.00
            DENR 170.00
            CVR= .2230
            DELT 0.004
            HC=5 .00
            PHI2:0.20
            RW=0 750
            TWI=1 30.00
            TINJ: 50.00
        C
                            C
B=DE|
                                    N*QF*CVN/(2.0*3.1415927*4T)
            B=DE! N*QF*CVN/(2.0
            SIGM:)ENR*CYR*(1.0-PHI21
            SIGW:)EMN*CVH*PHI2
            250 FORM|:(5X,3(3X,E18.11))
    C
            C USE DIME ISIONLESS PARAMETERS
            USE DIMI ISIONLESS PARAMETERS
C
C
C
DO gi
            RD=54ID + 75*(LM-1)
            RD=52 ID + 75*(LM-1)
STEP1:TD-SIGW*RD/SIGM
IF\SliPl,LT.0.0)GO TO 25
CALL BES(STEP1,RD,1,TM1)
    25 IE(STMP1,LT,0,0)TRI=0,0
    25 IE(STMP1,LT,0,0)TRI=0,0
PRINT * ,
            WRITE 6,250)RD,TW1
            C
            PRIMT
            90
            COYTI
            STOP
            END
            SU3RO TINE IBES(TD,RD,I8,TE)
            IMSLI IT REAL*8 (A-H,O-Z)
            C3MMO TINS,TWI,RW
            DO158L
            C
        C
            C
            ADII=0 0
                            :UE
            TINJ,TWI,RW
            OUTINE COMPUTES SUM OF SESSEL FNS I(Z)
            THIS SUB
                            LM=1,24
            TD=3(10
            &RIN1 , t
            PRINY, t
            6,250)RD,TW1
```


3.

$$
4 .
$$

$$
5
$$

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.

is.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
32.
33.

34 .
$35 . \quad$ C
36 .
37.
38.
39.
41.
42.
43.
44.

47 .
48.
9.
1.
2.
54.
5.
56.
57.
9.
0.
61.
62.

64 .

```
                        O
C ASSIGN
                            INSTANTS
            O-D
            O-DO 
            TD=8!
            t
                                    =1,24
                    OOVI
            UE
                    Z=2.0 (RD*TD)**.5
O
                            VX:=(R
                                    (RD*TD)**.5
            ITD)**.5
                    c
            IMPLI
            DO SO
                    KK=1,235
                        K=KK-
                -59-
```

65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.

a.

81 .
32.
83.
84.
85.
86.
87.
88.
39.
90.
91.
92.
93.
94.
95.
$I F(\# 8 . E Q .1 . A N D . V X . L T \cdot 1.0) K=K K$
$I F(I 8 . E Q .2 . \Lambda N D . V X . G T .1 .0) K=K K$
C
$\mathrm{U}=4.0 * K * * 2$
$U P T=1.0$
$F A C J=1$
$S U M T=1.0$
C
CO $40 \quad J=1,10$
FACU=FACJ $\because J$
$U P R=U-(2.0 * J-1.0) * * 2.0$
UPT=-UPR*UPT
TRM=UPT/(FACJ* (8.0*Z)**J)
SUMT $=S U M T+T R M$
40 CONTINUE
$\mathrm{KS}=\mathrm{K}$
IF (VX . GE. 1) KS $=-\mathrm{K}$
$V Y=V X * * S$
$B E I=V Y * S U M T$
$A D D=A D D+B E I$
80 CONTINUE
C
$C A M=Z-(T D+R D)$
IF (CAN.LT.-120.0)GO TO 82
$\mathrm{TE}=(1.0 /(2 . * 3.1415927 * Z)) * * .5 * D E X P(C A N) * A D D$
82
IF (CAN.LT.-120.0)TE=0.0
IF (VX.LT.1.0) TE=1.0-TE
RETURN
END
\$DATA
STEHFEST ROUTINE
// JOB

```
// EXEC: WATFIV
        JMPLICIT REAL*8 (A-H,O-Z)
        EXTERNAL P
        COMMON G(50),V(50),H(25),GZ(1)
        `OMMON TINJ,TWI,D,RW,RD,B,SIGM,SIGW
        [OUBLE PRECISION P
        M=1
        N=16
        GlF=50.0
        DENW=60.0
        CVW=1.00
        HT=25.00
        IENR=170.00
        CVR=0.2280
        I)ELT=0.004
        HC=50.00
        FHI2=0.20
        FW=0.750
        T'NI=400.00
        TINJ=60.00
    C
    C ASSIGN CONSTANTS
    C
        E=DENW*QF*CVW/(2.0*3.1415927*HT)
        [=2,0*HC*PHI2/DELT
        SIGM=DENR*CVR*(1.0-PHI2)
        SIGW=DENW*CVW*PHI2
    C
        250 FORMAT(5X,3(3X,E19.10))
    C
    C STAFT LAPLACE INVERSION
    C
    C
        FRINT,' '
        FRINT,' TD= ',TD
        FRINT,'
    C
    [0 20 LM=1,60
    F.D=00.0+.50*(LM-1)
    FRINT,' '
    CALL LINV(P,TD,1,N,M,TAU1)
    CALL LINV(P,TD,2,N,M,TAU2)
    WRITE(6,250)RD,TAU1
    20 CONTINUE
        STOP
        END
        FUNCTION P(S,I7)
        IMPLICIT REAL*8 (A-H,O-Z)
        COMMON G(50),V(50),H(25),GZ(1)
        COMMON TINJ,TWI,D,RW,RD,B,SIGM,SIGW
        YY=1.0+SIGW*S/SIGM-1.0/(S+1.0)
        XY=S+1.0
        IF(RD*YY.GT.100.0)GO TO 91
        IF(I7.EQ.2)GO TO 90
        F=DEXP(-RD*YY)/S
        GO TO 92
        90 F=DEXP(-RD*YY)/(S*XY)
            GO TO }9
```


[^0]: John Duncan Gage Moody

 $$
 \text { June } 1982
 $$

 Financial support was provided through the Stanford Geothermal Program under Department of Energy Contract No. DE-AT03-80SF1 1459 and by the Department-of Petroleum Engineering, Stanford University.

[^1]:

