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ABSTRACT

This study consider: %the heat and fluid flow characteristics of an
infinite, naturally frac d;red geothermal reservoir in which forced
convection is the only T 1:§m of heat transfer. For simplicity, it is
assumed that there is o y one injector well and no producer wells in
the system. Further, pri z;ry porosity is neglected and the fracture
porosity is assumed to constant throughout the reservoir.

With these specifications, the governing equations are derived from
an energy balance, and s ljved using dimensionless parameters and the
Laplace transform. Both Qmerical inversion and analytical inversion are
then used, though only the latter appears to give a reliable solution.
The results are plotted s dimensionless temperature versus
dimensionless volume swept (called dimensionless radius), and the

velocity of the thermal front In the rock and water determined.
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1. INTRODUCTION

s nature of many petroleum and geothermal

1es of naturally fractured petroleum reservoirs

in the study of geothermal systems. This effort

ty Warren and Root(1962)1, and a later paper

sent analytical flow models for the analysis
ponse. A somewhat similar flow problem for
resented in this report, in order to examine
old water injection.

dy 1s to determine the location of the thermal
well as examine i1ts form and behaviour. These
the velocity of the thermal front, in both the
o that of the injected fluid. While their

tain simplifying assumptions, the results

should also represent a u%eful step toward solving related problems of

greater complexity.




| 2. ASSUMPTIONS

Single well in infinite reservoir, radial flow.

in an infinite system., Superposition is therefore not

This paper consi%&rs only the case of one injector well
used.

Steady state iof injected fluid.

The solution to this problem will not be valid for short

times during whie¢ transient fluid flow occurs.
i

Only convection eat transfer, conduction not

considered.

Conduction of he q in the reservoir rock is assumed to
be small compare lto forced convection. This assumption

should be good for all but very long time.

system.

Only secondary o fracture porosity

The effects of p Lmary porosity are not considered in
this study. It:
enough to be negldcted or that the model must be

assumed that this porosity is small

adjusted to acco qt for its effect on the transfer of

heat and fluid in the reservoir.

Initial reservoiT temperature the same throughout



6. Reservoir uniformly fractured and fracture width
constant.

This problem does ,notconsider significant variation in
fracture width anywhere in the reservoir. Vertically,
fracture leagth g4 limited by the height of the
producing interval., Orientation of the fracture need not
be specified as it is implicit in the effective
porosity.

7. Effective porosity constant throughout reservoir.

In order that copvection heat transfer occur, the
reservoir rock m st be swept by the injected fluid. the
effective porosity constraint requires that each
fracture be oriented such that it conducts the injected
fluid radially, Cdncentric and other fractures
orthogonal to the [dirsction of flow are not included in
this porosity. Tn¢ fracture porosity used for this model
therefore is les gthat the total fracture porosity of
the system. Figurd 1 presents an element volume of such
a reservoir, in which neither the degree of fracturing
nor the fracture|idth changes.

All of the above congtraints are introduced so as to keep
the reservoir flow medel simple but at the same time still
realistic.
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3 « ENERGY BALANCE

An element volume pf the naturally fractured reservoir is shown is
Fig, 1. An energy balance lon this element yields the following two
equations:

3T T
W _ W
(1) -pwqvaw{ (Tw+ 3t Ar) - Tw} - hcARw(TW_TR) - prWVW 5t
oT
(11) hcARw(Tw-'TR) T pRCVRVR
or

(The symbols used are defined in APPENDIX 1 : Nomenclature and Typical
Values)

Note that while the rock| and water volumes of the element are different,
they share the same surfage area and have identical convection terms.
Their combined volumes give the total element volume. In addition, the
water volume and surfacel grea is equal to the fracture volume and
surface area of the «lement, Finally, note that the storage term in (i)
IS negative.

Temperature in this reservoir iIs a function of the distance from
the injection well and the time since the start of injection. Given any
particular radius and. ti j, the solution of these two equations will
give both the rock and water temperature.




Rewriting the abow

conditions and boundary

9T

w
PubeCow T
() r

hcARw( W R)

Intial Conditi

Boundary Cond

Tre total volume of the

Ve = 2rrArg

While for assumpti

and rock element volume:

onditions,

, aT
w
o R (T = R Gy, —
R VR R 3t
oﬁs - Tw(r,O) = TR(r,O) = Twi

Ltlon = T (r ,e) = Ty,

lement is given by

also must be given by

(4c) Ve = (1 ")V,

bns 5, 6, and 7 of section 2 to hold,

e equations with their appropriate initial

(1)

(2)

(3a)

(3b)

(4)

the water

(4b)




Alternatively, the total volume can be expressed as :

Ve = vW + vR (5)

And the rock surface arer for heat exchange can be written as

Apw :__E (6)

Where : ¢, =| fracture porosity

§ = fracture width

Using equation (5), |a.nd substituting (4), and (6) into equations
(1) and (2) yields,

B QTW BTW
B ¥ ey =u X (7
T oar T Tk Voot
aTR
D(Tw-'ER) =M -:;;— (8)




Where the new constants

pqC
B = YW WWw
2n 4
Mw=pwcvw¢2

re defined as

i
©
20
40
P
[y
1
©
N
N

-10-
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4. _DIMENSIONLESS FORM OF EQUATIONS

Before solving equations (7) and (8) for Tw(r,t) and TR(r,t), it iIs
convenient to re-state thése equations using dimensionless parameters :

Dimensionless Time.

Uﬁ
]
5|

Dimensionless radius,

Dimensionless temperature,

T = %" ¥
v Tin:T ij

ar

2h ¢_t
t = <
D pRCVR(l-QZ) 3

or Te =
D pwcquw
TR~ T
and Tyt
inj wi

- 11-

(9a)

(9b)

(9¢)




Note that the dimensionleks radius term is actually dimensionless volume

and must not be confused ﬁith the r/rw used in pressure—production

problems.

Re—stated in dimensionlﬁsé form, equations (7) and (8) become

3Tw MW a’l‘w
—e— = (0 - == — (10)
BrD w R MR atD
BTR
(Tw TR) = 5 (11)
D
Initial Condi|{ion T (r ’O) = TR(rD,O) =0 (12a)
\ w D
Boundary Cond*.tiion Z TW(O’tD) =1 (12b)

-12-
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5. SOLUTION BY THE LAPLACE TRANSFORM

Using the Laplace
transformed iIn time and

t&ansform, equations (10) and (ll) are
sblved simultaneously in Laplace space to

produce an ordinary diffbtential equation in terms of T (r ,S) 5 where
S is the Laplace transforﬁed variable. This equation is solved using the

boundary condition and

R(r ,9) 1is then easily determined. The details

of this procedure are giwen in Appendix B.

Lt& bo

The solutions are found
T 1 ‘ % 1
TW(rD,S) =3 E*P{ -I'D( 1+ ]5—4; S - ey ) } (13a)
L ; Y 1
TR(r »S) = (m Exp{ -rD( 1 +— MR S - -S:i'_l- } (13b)

The asymptotic forms of
3.

b&uations (13a) and (13v) are given in Appendix

-13-
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6. INVERSION OF LAPLACE SOLUTIONS

It is now possible [t invert both equations (13a) and (13b) and
arrive at an analytical solution to the problem. While it was necessary
to first determine the water temperature solution (13b) using the
boundary condition, the order of inversion makes no difference.

T (r

- - S)
Inversion of Equation_for [Rock Temperature, R )

D,

Re-writing equation (13B) [in a more convenient order for inverting,

M
T = - dp Wyl 1 D
TR(0p>8) = Explory) Belar, My )5 S Exp( 57 ) (1)
Step i1
Applying the shifting thegqrem;
Tty y =) e L L g 15
) xp(1r)) 3 i Exp(gp) } (15)
where,
* M
t - (t-2r) (15a)
D _ D M, D

-14-
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and u(tD) is the step
*

u(tD) =0
% an
th <0

Application of the convo

* *
T pstp) = u( t)) Exp

Where,
f * * f * =
ey ) *E (e ) =
Step #2

Equation (16) is reduce

1
Rhis)=3

1

FZ( S ) = F(S+1) = ST‘FT

unction

*
u(tD) =1

*

tD > 0

lutlon theorem gives,

; * N *
(+rp) £, (Ep) * £,(t)

xp( )

S+1

-15-

(15b)

(16)

(16a)

Further using the following relations: 3

(17)

(17.1)




Inverting,
£ R sy} =Y

And,

:f.'l{F(s+1)}==E:Jp(—t;)£—l{F(S)}

Where,

£'1{ F(s)} =£'1{

From Abramowitz and Steg
to be

and if,

then the rock temperatui

Tl Tpoty) =u () ) ¥

} =1 17.2)
17.3)

.
Exp( —3 ) } 7.4

ué 4 , the inverse of equation (17.4) is found

2/ At ) (17.5)

I, (17.6)

solution becomes :

*
t

D
i(-rp) fo Exp(-V) I,( 2 /_—rD V ) av

(18)
-16~




Step #3

Although the integ
tables of integrals, an
'Integrals of Bessel Fun
valuable references for
the integral is

X
| Exp(-V) I,(2/yV)
0

where J(x,y), a function

expanded below.

If we let,

r4l in equation (18) is not easily found in many
pxcellent discussion of it appears in Luke,
rtions 3 « This book also contains some

firther investigation. After some rearranging,

Vv = Exp(y) { 1 - J(x,y) } (19)

defined in terms of the above integral, is

(19.1)
(A4.1)

the rock and water temperdture (from appendix 4) then become

* *
Telrpety) =uC ) { 1 -

*

Tw(rD,tD

) =u( &) Exp {

*
ICtp,r) | (19.2)

? * /““‘?’ *
- ( rpy+ t) } I,(27/ x) ty )+ Tplrp,tp)

(19.3), (A4.4)

-17=-




This analytical solution

as well as the asymptotic

The expansion of the fune

Case #1

Nl%l
N
ot

J(x,y) =Exp { - (x+y

Case #2

<<
\"
[

J(x,y) =1 - Exp { - (x

At this point in the deriy

is checked for the initial and boundary values,

forms in Appendix 3.

tion J(x,y) has two different forms : 6

© —— K
V11, L nC2vw) (20)
k=0
- ___k .
+y)1l L (27w
k=1
(21)

ation, the reader is referred to Appendix 4,

where both the rock and wat:er temperature expansions are derived in

greater detail.

~-18-




From Appendix 4, the anallytical results are

Case #1

Rock Temperature

* * |
To(r,t) =u (t) (1

© T -
* *
TEp | - () ] ZO = L2, t,))
YD
(22)
Water Temperature :
* * s 5
* D *
T Crps tp) =ule) (1 + Exp | - ( T+ ) }kgl — (27 t))
YD

Case #2

-19-

(23)




Rock Temperature

TR(r , )

= u( t; Y Ex

Water Temperature

In both of the aboved cases,

*
Tw(rD ,tD) - 'I‘R(rD,tD)

xp { = (r+ t;) }

k=0 v t

o *

M

u(t-—
D My

-k

rD) Exp { - ( rD+ t;) }

%
( 27V N tD )

L2V 1, )

(25)

the convection term has the form

I(Z/rDtD

(26)

The above expansions are|@lso checked at the initial and boundary

values, as well as the 1

Miting forms,

-20-
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7. NUMERICAL

EVALUATION OF ANALYTICAL RESULT

The expansions for| both cases described can be evaluated
numerically using the foliowing approximations for the given modified

Bessel functions 7 .

For small values of x

1 v
(Ex)

MO = Temy

For large values of x

E (X) 4\)2'
Iv(x) = 521rx {1 TS

+ a 8 o s ¢

or more simply,

1,00 = B gy 0

Since the dimensionless

V=0, 1, 2, ¢ u u = (27a)

4w D 9) (1) (v %9) (4= 25)
21 (8x )2 31(80)°

(27b)

(28)

jems for radius and time are large for almost

-21-




(30)

(31)

(32)

(33)

(28)

all times, the approximarion for large values is used in expanding the
solutions.
IT we let,
*
a=2"+ rDtD ;(27) 8 =¢( rD+ tD)
the solutions become :
Case #1
i [+-] r -k
T(r,t0) =u(ey) (1 -BREZB 7 D e )
2T o k=0 t
Y D
T (ry,tp) =u(ty) (1= BREZE) 7 D))
w Y 9ma k=1 / t
D
Case 82
= -k
* * Exp(a + B) D
To(r ,t ) = u(t)) = ) _ f(k,x)
R™D*D D e kel t;;
- k
T (rpotp) *u(e) BEEZE 7D e
Y 2xa k=0 / tD
-22=
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8 _DI1ScyssIoN OF ANALYTICAL RESULTS

The analytical resalts described are checked at the initial
condition and boundary c
also checked. For small
exponential form of sol

fdition In Appendix 3. The asymptotic forms are
imes, equations (A3.2) and (A34) indicate an
fon, and Figures 2 and 3 show this effect.
However, the numerical approximation of the modified Bessel function
applies for only large valiues of x, and must be changed for smaller
values . Furthermore, there exists a middle range where neither solution
is well behaved. The Stefest inverter is well behaved iIn this range,
however, and it is used ta match the analytical solution for the
relatively small dimensiorilsss time of 15 8. At this value of
dimensionless time, real time is about 6 minutes and the thermal front
is developing from a smple step function through this exponential
modification process. At a dimensionless time of 40 ,as shown in Fig. 5,
the general symmetric forr of the front is apparent and does not change
until much later. Also, tile Stehfest routine is shown to no longer match
and is abandoned at this| goint .« In Appendix 5, Figures 11 through 15

indicate the result using the iInverter for later times.

Figures 5 through 9;:re plots of the water and/or rock temperature
for later times. These plats show that the front spreads as time
increases but maintains its symmetric form. Figure 2 shows the
relatively large differende in rock and water temperature at early
dimensionless times. In FCgures 9 through 11, this temperature
difference is plotted at|various times and iIs seen to decrease as time
increases. For any given time, the maximum temperature difference occurs
at the center of the fromt as expected. To the left of center, both the
rock and water temperatures approach one (the injection temperature),
while to the right of -=uﬂer, they approach zero (initial reservoir
temperature).  Equation (11)) indicates that this plot is also that of the
derivative of the rock terperature with respect to time, and that this
has a maximum value at the center of the front, as one would expect.
Further, these figures pxdvide a simple measure of the spread of the
front, as a rock-to-water !temperaturedifference occurs only along the
front.

-3 -




9. FORM BEHAVIOUR COF THE THERMAL FRONT

The reason for the éymmetry of the front can be seen from from
equations (22) through (24). The upper portion of the curve is generated
by case #1, which requirea that the dimensionless radius to shifged-time
ratio be less than or equ$l to one. At the center, D equals tp and
the dimensionless temperature equals 0.5. The lower portion of the curve
is next generated by cas 5#2 as rp increases. If the dimensionless
radius is divided by thi iratio and plotted with dimensionless
temperature, the center ﬂ the front is always located at one, for any
dimensionless time. Figurgs 4 and 5 are two examples of this plot while
Figure 8 plots the dimensfonless water temperature for various times.
From the latter plot it 14 seen that the curve steepens for larger
times, indicating that the velocity of each point on the front
approaches a constant va de. This means that the rate of spread stops
increasing and reaches a|gonstant rate. This spreading change is also
seen in Figs. 9, 10 and ls- For tD: 80 , approximately 95 X of the area
is covered over a dimens qnless distance of 60, while for t = 800 , the

‘ D
distance is only 100, an for t.= 1600 ,it is 200. The former implies

an increasing rate of sp eﬁad, wr?ile the latter two indicate a constant
rate of spread. '

For times signific ritly larger than those discussed above, the
front does not behave in d!he same way. For a dimensionless time of 8000
and a constant velocity ﬁ each point on the front, one would expect a
spread—distance of 1000. The actual value of this spread is about 350,
much less than anticipat d. Although the velocity of the center of the
front (or average front vélocity) does not change, the velocity of other
points on the front must l;e decreasing. For times much larger, one might
expect (given the results iof Appendix 3), the following sequence of
events

-3]~




(a). AIll points on the £tont approach the same velocity and the front

no longer spreads.

(b). The front begins to.shrink as the frontal velocities decrease at

different rates.

(c) The front as such d fappears and is replaced by the step function.

The average radial veloc By of the thermal front has now changed.

-32~




10. VELOCITY OF THE THERMAL FRONT

i
(1) Short and Intermediate Times

From plots such.as ¥ig.ll, one can determine the velocity of any
point on the front since t:he location of the center of the

front is fixed. Typical values of the plotted ratio N

range from 05 to 15 RL&warranging this ratio, eliminating
dimensionless terms, ad differentiating with respect to time, gives the
location and velocity of any point on the front for all but long times.

The result for the short a{nd intermediate times is :

‘bKCVR (1 —‘I’z )

R G R ) (32)
W VW
where,
.
n -—R (33)
p

r is the radial distance|te that point on the front, q, is the
flow rate of water injectedd Into the reservoir, and : is the total
reservoir volume of injtetiad water.

-33-




Re-writing equation (32

B 2_ 2
qwt =1 (r rw) Lz
where,
. PrO%r (179)) ‘e
p C n 2
w VW

Equation (35) can also be

V. =

h \Y

%2
C w

Where, Vh is the radia

front, and VW is the 11

Note that for

n

center of the thermal.

is also the average veloe

)s | V@ have,

(34)

(34.1)

(35)

smitten in terms of radial velocities as

(36)

liveloci.ty of a given point on the thermal
nterstitial radial velocity of the water.

, equation (32) gives the location of the

ty of the front.

frojt and equation (34) gives its velocity, which

-3~




(i1) Long Times

For long times the fr

ont exists as the step function u(t

the above equations are replaced by

or - qw
ot 21Tr2<1>2
or,
Vh = Vw

*

D)

(37)

(38)

(38)

and

Equations (37) and (38) rjspectively correspond to equations (35) and
i

(36) for ¢ :<I>2 .

=35~




].l.._'[N.’].'.E_QRETATION OF VELOCITY EQUATIONS

When the dimensionfléss terms are eliminated as shown above, the

original energy balance

pelationships become clear. Dimensionless radius

at the front becomes the

front, while the
fluid.

and water swept by the f

qwt: t

Equations (32} an

proportional to the tota
incremental volumes of 1
smaller increments of re
increment of real radius
must become step-like: wi
front would also appear
this convergence is prop
examine plots of dimensi
this type of plot is eas
thermal front with respe
used to estimate the tinm
In any case, the form an
injected fluid.

total volume swept by that part of the thermal
h represents the total volume of injected

(34) also include the relative volumes of rock
ent, as the weighted sum of these terms is
amount of injected heat. For large times,
Jected water advance the thermal front by
1 radius or radial distance. In the limit, this
is infinitesimally small and the thermal front
k respect to the real radius. Eventually the
tep-like with respect to the volume swept, as
rtional to r A .« While this report does not
nless temperatures versus real radius,

Jy made and clarifies the behaviour of the
t the the real radial distance. It can also be
4 for using the velocity equations given above.

velocity of the front approaches that of the

-36-
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Assuming one inject
geothermal reservoir, th
during which convection
flow iIs steady state., Th
short times.

Upon injection of w

12, CONCLUSIONS

pit well in an infinite, naturally fractured

e results of this study apply for those times
iis the dominant form of heat transfer and fluid
e "periodtherefore excludes very long and very

tter into the system, a thermal front of the

form discussed quickly develops, and moves through the reservoir at a
constant average rate. Its velocity is less than that of the injected
fluid for relatively earlly time. Although at first the front spreads at

an increasing rate, spre
itself. The rock and wat
dimensionless time of ab
For times much greater t]
limited to step-like dis;j
no conduction, the radial

ding gradually slows and eventually reverses
er temperature fronts become equal at a

put 1000 and move at the same rate thereafter.
hin this, the front moves with the fluid,
placement OF heat iIn the reservoir. As there is
1 velocity of the thermal front decreases with

the radial velocity «f the fluid, and in the limit approaches zero.

As a final note, the
in a straightforward way
inversion routines are o
appears to be the most ry

e problem presented in this report can be solved
ysiag the Laplace transform. While numerical
fiden of great value, analytical inversion
e:-l1able approach to a solution of this problem.

-40-




Nomenclature

vR

Specific heat,

Specific heat,

Density, rock,

Density, water

Convection con

Flow rate, wat

tock,

dater,

APPENDIX 1

Ib F

btu
Ib F

Typical Values

btu

btu

Fracture poros y' dimensionless

Fracture width

, ft

-4]-

30

hr ft F

$228

1.00

170.00

60.00

50.00

50.00

12.0

31.0

0.20

0.002




Vh , Vf Radial velocity

|
?f heat, fluid,

i

-4~

2 Reservoir heig}-t, ft 25 .00
r, Wellbore radiup, ft 0.75
Twi Initial reservpir temperature, °F 400
Tinj Temperature! of| injection fluid, OF 60
3N Dimensionless ;dius

(actually a di e;msionless volume term)
ty Dimensionless :(Eme

T, ,T Dimensionless }:émperature of rock, water

ft




APPENDIX 2 : Laplace Space Solution

Transforming equaklions (10) and (11) implies :

T, _ oM
-5 - (T = I‘K 5 T (A 21)
(T-T)=sT, A 22)

Solving (A 22) for '?k ajd substituting it in (A 2.1) produces the

following ordinary differential equation :

T VR
_a% '(1+M—R sg)q‘w=o A 2.3

Equation (13a) 1is derived |by solving this ordinary differential equation
for the water temperature |and determining the constant of integration

using the boundary condtign. Equation (13b) is derived by substituting
this result into squatiom (4 2.2).
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[_7._

APPENDIX

3 : Checks and Asymptotic Forms

Check of Initial and Bous

dary Conditions

Initial Condition

Case # 2 applies for the
and (25) it is seen that
rock and water. As initi
the reservoir, one would

their initial temperatur

Boundary Condition T

Twp

D,O) = TR(rD,O) = 0 (12a)

i
t

nitial condition above and from equations (24)

he step function ensures this for both the

allly no heat (or cold) has been injected into
expect the reservoir rock and water to be at
£ o

(12b)

Case #1 applies for the
from equation (23) that

l#ove boundary condition, and it is easily seen

his condition is satisfied. Note, however, that

the rock temperature showld not satisfy this boundary condition, as it

is dependent on the wate

satisfied.

temperature. This implicit condition is also

—44-




Limiting Forms

Another useful che
short and long time behar
limiting forms of this e

analytical solution for

Short Time Solution

Water Temperature :

For short timeg, s

1

Tw(rD,S) = Exp(—rD §']

After inverting,
T *
w(rD,tD) = Exp(-rD) ul

Therefore one would exp¢
temperature to have an «

for the analytical result is to examine the
four of the laplace space equation. The

wation are then inverted and compared with the
se times.

1s large and equation (13a) approaches the form

M
: W
.-r —

D M 5)

®3.D

) (A3,2)

the short time solution for the water
mentlial form of front.

—45-




Rock Temperature Solution%:

For large s, equation (13H) has the form :

Tk(rD,S) = Exp(-rD) l—'E%P( -

SZ

After inverting, this &

* *
TR(rD,tD) = Exp(-rD) tp

*

As ty o , ty ? 0

approaches zero or 1is se
be the case for all Th
condition.

As another check, the
examined. The inverse tr

* *
To(tpitp) = u(ty) {1-

and the limiting forms areg :

W
r— S)
D MR

ltion becomes :

Lk
Kep,r) |

imit J(x,v)
+ 0

-46n

#3-3

(A3.4)

iand It IS seen that the rock temperature
ito zero by the step function. The latter would
i1f the time became zero as in the initial

4ptot1c form of the inverted transform can be
Asform of equation (13a) 1is equation (19.1),

(19.1)

= Bxp(=-x)

(A3,5)




which is equivalent to

Substituting into (19.1)
temperature at short tine

IT these limiting forms o

* *
J( o rD) = Exp(-tD)
0

limit
iy >

D (A3.6)

|
iwe have the same result for the rock

..

f the rock temperature for short time are also

substituted into equation | (A4.4), it is seen that as
i
* %
ty > 0, IO( 27 Tty Y+ 1, and the water temperature
solution becomes :
T * *\ Bxp(eb) A3.2
w(rD,tD) = u(tD) Exp(-rﬂ) (A3.2)

which was obtained previe

Long Time Solution

For long time, bot
the same form. For a giv
(13a) and (13b) approach

T (¢

W

=

5S) :TR(rD,S)

id dimensionless radius (ie. wolune),

ithe rock and water temperature solutions have

equations
the form -
% M
ﬁxp( T S) *3.7)
R

-ty 7 -




After inverting, this &ustion becomes,

* *
Ta(tpoty) = Tplrp,ty) =

"
u(ty) (43.8)

Therefore, one would expeat the analytical solution to approach the form
of the given step functior for relatively long times.

Examining the inverted fodm of the solution again at the other limit :

limit  J(x,y) =1
y » @

which is equivalent to,

*
limit ItD,rD) =0

£y @

D

!
I

b
]
1
i

s limit J(x,y) =0

X+ =

(A3.9)

*
s limit \KtD,I'D) =1
To*> @

D

(A3.10)

Substituting the first ligicing form of (A3,10) into (19.1) gives the
step function (#3.3). Sulbs!tituting this result for the rock temperature

into (19.2) gives the sa

 result for the water temperature. Equation

(A3.8) is the expected wader and rock solution form for long time as
both are equal and step q‘nctions .

Tre same results are als

The same procedure

'easily seen using case #1 of the expansion.

dan also be used to verify the analytical
solution for large and smill Ty o

-4 8-




APPENDIX 4 : Co

Rgete Derivation of Analytical Solution

Rock Temperature Solution::

The rock temperatu
substituting equations (
required substitution.is

allowing :

re solution for each case is found by
20) or (21) into equation (@9). The only other

®4.D

After cancelling some terms, equations (22) and (24) are derived.

Water Temperature Solutig

b1}

..

T (r,8) =F Exp | 7 orp(

Re—writing equation (13a

* M

Tw(rD’tD) = Exp(-rD ﬁ£'$ ) Exp(—rD)(

U+ s - =) )
My S+l

), as the sum of two parts,

)

1
s ExeCgy )

Inverting equation (a4.2) yields,

*

*
Tw(rD’tD) = u(

t)) Exp(ra) €

D

S+1

1

s+1 Exp(

-49-

(13a)

1 )
+ sy ExP( g1 ))

(GL8)

*
b+ TR(rD,tD)

®4.3




Using the same procedure outlined in equations (17) through (17.5), this
becomes

* * * % *
Tw(rD,tD) = u(tD) Exp | = ( rD+ tD) } IO( 2 ) t ) + TR(rD,tD)

(A4.4)

Substituting into (A4.4"| the rock temperature solution for each case
gives the water temperatinde solution for each case. Note that in both
cases, the difference be w:een the rock and water temperature solutions
is the same function given in equation (26).
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APPENDIX $ : Results of Numerical Inversion

This appendix contaiss the results obtained by inverting equations
(13a) and (13b) numerically using the Stehfest routine.

For early dimensionlléss times up to 40, a good match of the
analytical solution is made . For times greater than this, however, the
inverter is not well beh @ed and is not considered reliable. Figures 3
through 6 are plots of t é numerical and analytical result for various
dimensionless times. Not éthat the match is lost after 40 and worsens
for later times. It appe ﬁs that the match is lost when the Stehfest
routine computes values of dimensionless temperature greater than one
and less than zero. In a iition, the thermal front as shown in Figures
(12) through (16) would pread at increasing rates and never converge, a
phenomenom whiich is phys ¢ally impossible for this system. The Stehfest
algorithm does prove use 41 however, for those early and mid-ranges of
time during which the.an iytical solution is slowly convergent and/or
the approximating equatiens (27a) and (27b) are not well behaved.
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PROGRAM FOR ANALYTICAL SOLUTION

JOB
EXEC WATs1v

IMPL |CIT REAL*8 (A-H,0-2)

ceMM N TINJ, TWE,RW

bous |E PRECISION TD,RD,TUR, TUK

QF=5|.0

DENW |60.0

CVlW=.00

HT=21].00

DENR | 170.00

CVR=|,22890

DELT |0.004

HC=5 .00

PHI?2:/0.20

RW=0 |750

TWI=!30.00

TINJ:|50.00

ASSIGN (| INSTANTS

B=DE! J¥QF*¥CVW/ (2., 0%3, 1415927 %HT)
D=2, I|¢¥HC*PHI2/DELT
SIGM:HENR*¥CYR*(¢ 1.0-PHI21
SIGW:)ENW*CVIW*PHT 2

250 FORM/|T(5X,3(3X,E18.11))

USE bIMtisrtonteEss PARAMETERS

TD=8(|}0
PRINT| ! !
PRINT| ! !

DO 9¢C| LM=1,24

RD=5L[ID + 75%(LM=-1)

STEP! :TD-SIGU*RD/SIGHM

IF(STPY,LT.0.0)G0 TO 25

CALL | BES (STEP1,RD, 1, TH 1)
25 IF(ST'P1.LT.0.0)TRI=0.0

IF(ST'PY.LT,.0,0)TW1=0,0

PRINT| +

WRITE| 6,250)RD, TW1

PRINT| * !

90 CONTI|!UE
STOP
END
SU3R0| TINE IBES(TD,RD,I8,TE)
IMPLI| IT REAL*8 (A-H,0-2)
C3MMO; TINJ,TWI ,RW
pousL| PRECISION TE

THIS SUB| OUTINE COMPUTES SUM OF gesstt FNS 1(2)

D=0]0
.0/ (RD*¥TD) **,5
R

:(R| /TD)*% 5§

AV IR

> o

A
z
v

DO SO|Kk=1,235
K=KK-
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65.
66.
67.
68.
69.

-

-
/

71.
72.
74,
75.
77.
78.
79.
do.
81.
32.
83.
84.
85.
86.
87.
88.
89.
9g.
at.
92.
93.
94.
95.

C
C
40
80
C
82
SDATA

IF(18.EQ.
Usi | Q*¥K¥*2

UPT31.0
FACI=

1
SUM 1.0

o

co J=1,10

FACJISFACJU *J
UPRIU~(2.0%J~1.0)%%2.0
UPTS—UPR¥UPT
TRMSUPT/(FACJI*(8.0%Z)*%J)
SUMT=ISUMT+TRM

CONTINUE

KS=K
IF(VX.GE. 1)KS=-K
VY=Y X*%KS
BEISVIY*SUMT
ADD=ADD+BEI
CONTINUE

CAN=[Z~(TD+RD)
IF(CAN.LT.-120.0)G0 TO 82

TE=(1L0/(2.*3.1“15927*2))**.S*DEXP(CAN)*ADD

IF(CAN.LT.~-120.0)TE=0C.0
IF(VX.LT.1.0)TE=1.0-TE
RETUIRN

END

-60-
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oo ~NoOoO O WN -

s7 JOB

STEHFEJT ROUTINE

/77 EXEC WATFIV

Q

IMPLICIT REAL¥8 (A-H,0-2)
EXTERNAL P

COMMAON G(50),V(50),H(25),G6Z(1)
COMMON TINJ,TWI,D,RW,RD,B,SIGM,SIGH
DOUBLE PRECISION P

M=1

N=1

Qr=50.0

DENW=60.0

CVW=z1.00

HT=285.00

DENR=170.00

CVR=20.2280

DELT=0.004

HC=50.00

PHIZ=0.20

FW=0.750

TNI=400.00

TINJ=60.00

ASSIGN |CONSTANTS

250

E=DENWXQFXCVW/(2.0%3 . 1415927 %HT)
D=2 0¥HC*¥PHI2/DELT
SIGHN=DENR¥CVR¥*(1.0-PHI2)
SIGY=DENWXCVWH*PHIZ

FORMAT(5X,3(3X,E19.10))

START LAPLACE INVERSION

20

90

TD=15.0

PRINT,* '
PRINT,' D= ', TD
PRINT, '

Do 20 LM=1,60
ED=00.0+.50%(LM-1)

PRINT,"'

CALL LINV(P,TD,1,N,M,TAUT)

CALL LINV(P,TD,2,N,M,TAU2)
WRITE(6,250)RD, TAU1

CONTINUE

STO

END

FUNCGTION P(S,I7)

IMPLICIT REAL¥8 (A-H,0-2)
COMMON G(50),V(50),H(25),GZ(1)
COMMON TINJ,TWI,D,RW,RD,B,SIGM,SIGW
YY=1.0+SIGUW*S/SIGM-1.0/(S+1.0)
XY¥=8+1.0

IF(RD*YY.GT.100.0)G0 TO 91
IF(17.EQ.2)G0 TO 90
F=DEXP(-RD*YY)/rS

GO To 92

F=DEXP(-RD¥YY)/ (S¥*XY)

GO TO 92
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