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ABSTRACT 

I t  has been postulated t h a t  the cooling of  rock by water c i r -  

culated in a " h o t  d ry  rock" geothermal reservoir will induce t ens i l e  

thermal s t resses  i n  the rock of  suf f ic ien t  magnitude t o  cause large 

cracks t o  form and grow. These cracks may create additional , useful 

heat t ransfer  a n d  flow areas, thereby prolonging the productive l i f e  

of a reservoir.  T h i s  thesis  explores, experimentally, the influence 

o f  thermal s t ress ing  on the strength a n d  porosity o f  granite samples 

representative o f  geothermal rock. I t  i s  f o u n d  t h a t  strength i s  

reduced dramatically and porosity increased substant ial ly  by t ens i l e  

thermal s t ress ing .  Strength reductions and porosity increases may 

favor formation and growth o f  thermal cracks in actual reservoirs by 

reducing local rock fracture toughness and  allowing hydrostatic pore 

pressure t o  counteract tectonic compressive s t r e s s .  
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NOMENCLATURE 

English Letter Symbols 

A = heat t ransfer  surface area 

B = Biot  number 

C = heat capacity r a t e  

Cp = spec i f ic  heat 

E = Young's modulus 

h = heat t ransfer  coeff ic ient  

Ks = thermal conductivity 

L 

p = dimensionless s t r e s s  

P = t ens i l e  strength 

q = surface t ens i l e  s t r e s s  

t = time 

T = temperature 

V = volume of specimen 

W = weight of specimen 

x = distance below surface 

X = dimensionless length,  x/L 

= length o f  the specimen 

Greek Letter Symbols 

~1 = coeff icient  of thermal expansion 

P = density 

v = Poisson's r a t i o  

B = thermal d i f fus iv i ty  

5 = Fourier number 

0 = dimensionless temperature 

-vii- 



0 = s t r e s s  

@ = p o r o s i t y  

u = shear modulus 

S u b s c r i p t s  

o = i n i t i a l  c o n d i t i o n s  

m = f l u i d  c o n d i t i o n s  

S u p e r s c r i p t  

- = average v a l u e  o f  t h e  v a r i a b l e  

-v i i i -  



1. INTRODUCTION 

The increasing energy problem during recent years has resulted in a 

greater awareness of a l te rna te  energy sources, prominent among which are  

the substantial  subterranean reservoirs of geothermal energy. For several 

decades, s igni f icant  quantit ies o f  energy have been extracted from natural 

hydrothermal reservoirs containing e i the r  steam or h o t  water (such as in 

Ladero, I t a l y ;  Wairakei, New Zealand a n d  a t  The Geysers in northern 

Cali fornia)  . 
ex i s t  a t  accessible depths in heated rock formations which e i the r  contain 

l i t t l e  water or have permeabilities so low t h a t  any exis t ing water cannRt 

be extracted a t  useful ra tes .  Such "hot ,  d r y  rock" ( H D R )  geothermal 
4 reservoirs contain roughly 5 x 10 Quads of accessible energy by U.S. 

Geological Survey estimate ( l ) ,  which i s  a b o u t  700 times the to ta l  U.S. 

energy consumption in 1970.  Even i f  efficiences o f  conversion t o  elec-  

However , m u c h  1 arger amounts of untapped geothermal energy 

t r i c a l  energy prove t o  be only a few percent, development of commercially 

feas ib le  means for  "mining" t h a t  energy would s t i l l  provide a s ign i f i can t ,  

environmentally a t t r ac t ive  contribution t o  U.S. energy resources. 

The Los Alamos Scient i f ic  Laboratory ( L A S L )  has been tes t ing  a 

concept for extraction of H D R  energy t h a t  has already demonstrated 

technical f eas ib i l i t y .  Brief ly,  the concept consists o f  d r i l l i n g  a n d  

casing a well t o  a depth where rock temperature i s  suf f ic ien t ly  high 

(ZOO-400°C), then pressurizing the well ,  causing a hydraulic f racture 

t o  form a t  the bottom of the wellbore, as depicted in Figure 1.1. The 

f rac ture  resembles a t h in ,  penny-shaped crack with a width o f  several 

millimeters and  "radius" of roughly 100 meters. A second well i s  direc- 

t iona l ly  d r i l l ed  t o  in te rsec t  the fracture.  By pumping water down one 
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well,  c i rculat ing i t  t h r o u g h  the f rac ture ,  a n d  returning i t  t h r o u g h  the 

other well ,  useful energy can be extracted from th i s  underground boi ler .  

The energy which can be produced from an  H D R  reservoir i s  degraded 

as the rock surrounding the hydraulic f racture i s  cooled. When the rock 

temperature i s  drawn down low enough ( =150°C) , economic production o f  

e l ec t r i ca l  energy may become marginal. 

molten magma kilometers below the fracture takes thousands o f  years. 

Recharge from adjoining rock i s  also a very slow process. T h u s  the 

economic v iab i l i t y  o f  H D R  energy i s  yet t o  be demonstrated i n  terms of  

length o f  production time needed t o  j u s t i fy  the capi tal  investment i n  

d r i l l i n g  wells , b u i l d i n g  a generating p l a n t ,  e tc .  

Thermal energy recharge from the 

Recently i t  has been suggested ( 2 )  t h a t  the cooling o f  the rock 

surrounding the hydraulic fracture will induce thermal s t resses  o f  

su f f i c i en t  magnitude t o  cause cracks t o  form a n d  grow perpendicular t o  

the fracture.  

heat t ransfer  and flow areas ,  then additional energy can be extracted a t  

l i t t l e  additional cost.  Furthermore, as a reservoir i s  drawn down, the 

decline in rock temperature may be o f f se t  by the additional heat t ransfer  

area,  perhaps leading t o  re la t ive ly  s tab le  production temperatures. Thk 

extent t o  which thermal fracturing can increase reservoir o u t p u t  o r  

lengthen useful production time may well have a s igni f icant  bearing on 

the commercial f e a s i b i l i t y  of H D R  goethermal energy. 

I f  these cracks are e f fec t ive  in creating fresh,  useable 

Murphy ( 2 )  has proposed t h a t  cracks will form and  grow with time in 

those regions where the t ens i l e  thermal s t r e s s  exceeds the sum o f  the 

compressive tectonic s t r e s s  acting perpendicular t o  the direction o f  

crack growth plus 

i mpermeabl e rock. 

the rock t ens i l e  strength.  This c r i t e r ion  assumes 

He noted, however, t h a t  i f  the rock has su f f i c i en t  . 
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permeability t o  allow water i n f i l t r a t i o n  such t h a t  the rock pore pressure 

i s  raised t o  hydrostatic leve ls ,  then the effect ive compressive s t r e s s  t o  

be overcome will be greatly reduced, increasing the propensity for a n d  

r a t e  of thermal fracturing. Murphy a lso  estimated t h a t  i f  thermal cracks 

grow t o  the point where the i r  aperture i s  o n  the order of 0 .5  mm, s ign i f i -  

cant flowrates and  heat t ransfer  can be expected. An analytical study by 

Nemat-Nasser e t  a l .  ( 3 ,  4 )  indicates t h a t  thermal cracks  forming perpen- 

dicular  t o  the hydraulic fracture will i n i t i a l l y  have a spacing roughly 

equal t o  t h e i r  depth. With time, some o f  the cracks will  continue t o  

propagate t o  maintain the approximate equality between t h e i r  depth a n d  

spacing, while the others will be arrested. Later, secondary thermal 

cracks may form perpendicular t o  the original thermal cracks , leading t o  

a three-dimensional f racture network. 

The thermal s t resses  induced by cooling water may also change the 

physical properties of the rock, b u t  l i t t l e  i s  k n o w n  about t h i s .  These 

changes may, in turn, influence H D R  thermal cracking behavior. I n  a 

preliminary e f f o r t  t o  see i f  such changes occur and  a re  l ike ly  t o  be 

s igni f icant  , t h i s  thes is  explores experimentally the e f fec t  of thermal 

s t ress ing  on the strength a n d  porosity of granite block typical of  t h a t  

found in H D R  reservoirs.  

4 



2. LI T E R A T U R E  R E V I E W  

The behavior of b r i t t l e  materials subjected t o  thermal s t ress ing  

has been studied by a number o f  researchers. The l i t e r a t u r e  survey i n  

t h i s  section reviews work undertaken t o  investigate material properties 

which influence the thermal s t r e s s  resistance o f  a b r i t t l e  substance. 

Winkelman a n d  Schott ( 5 )  considered a semi- infinite body,  or iginal ly  

a t  zero degree temperature t h r o u g h o u t ,  suddenly cooled t o  a given temper- 

ature along the f ree  surface. The mater ial ' s  thermal shock resis tance,  

defined by the r a t i o  o f  the mater ial ' s  t ens i l e  s t rength,  P, t o  the 

applied surface (maximum) t ens i l e  s t r e s s ,  q, was given b y :  

P / q  = P / { J k S / [ E a ( p c  ) ' / 2 ( A T ) l ( I / B )  

where 

kS = thermal conductivity 

E = Young's Modulus 

(I = coeff ic ien t  of thermal expansion 

P = density 

C = heat capacity ra te  
h L  B = Biot number = - 
kS 

h = heat t ransfer  coeff ic ient  a t  surface 

L = t e s t  specimen thickness 

AT = I n i t i a l  temperature difference between the specimen 

and quenching medium. 

The authors postulated t h a t  thermal f a i lu re  will  n o t  occur so long as 

( P / q )  >1, and  f o u n d  t h a t  Equation 2 . 1  predicted qui te  reasonably the 

5 



maximum s u r f a c e  tempera ture  drop t h e  m a t e r i a l  c o u l d  w i t h s t a n d  w i t h o u t  

f a i l i n g  i n  t e n s i o n .  Exper iments were done w i t h  1 cm and 2 cm cubes 

made o f  twen ty  d i f f e r e n t  types o f  g lass .  

w i t h s t o o d  g r e a t e r  tempera ture  d i f f e r e n c e s  t h a n  l a r g e r  ones. 

Smal le r  cubes c o n s i s t e n t l y  

Lidman & Bobrowsky ( 6 )  i n v e s t i g a t e d  t h e  mechanism o f  f r a c t u r e  i n  

ceramic  g a s- t u r b i n e  b lades b rough t  about  by thermal  shock due t o  unsteady 

h e a t  f l ows .  Thermal shock r e s i s t a n c e  was expressed as t h e  r a t i o :  

P/q = 2kSP/(aEhAT) 

where a ,  ks ,  E, h, and AT a re  as d e f i n e d  i n  Eq. (2.1)  

I n  terms o f  m a t e r i a l  p r o p e r t i e s ,  t h e  c o e f f i c i e n t  o f  thermal  shock 

r e s i s t a n c e ,  S, can be w r i t t e n  as S = kSP/Ea. 

t h a t  t h e  l a r g e r  t h e  S va lue ,  t h e  g r e a t e r  t h e  s u r f a c e  tempera tu re  

d i f f e r e n c e  t h e  m a t e r i a l  c o u l d  r e s i s t  w i t h o u t  f r a c t u r i n g .  

It was shown e x p e r i m e n t a l l y  

The case o f  a f l a t  c i r c u l a r  p l a t e ,  u n r e s t r a i n e d  a t  i t s  edges and 

r a p i d l y  coo led  o r  heated,  was examined by Cheng ( 7 ) .  

and nonsymmetri c h e a t  t r a n s f e r  cases were cons idered.  

done on 2 i n  d iamete r  x 1 /4  i n  t h i c k  d i s k s  made o f  ceramic and ceramal 

m a t e r i a l s .  

'on b o t h  s ides  i n  a fu rnace  t o  1800°F and subsequent ly  c o o l i n g  them i n  

an a i r  s t ream o f  60°F. The thermal  shock r e s i s t a n c e  was g i v e n  by :  

B o t h  symmetr ic  

Exper iments were 

The exper iments  c o n s i s t e d  o f  u n i f o r m l y  h e a t i n g  t h e  specimen 

P( l - v )  1 1 [-*I P - = P/  [ p * (aEAT) / ( l - v ) ]  = [m-- 
9 P (2.3) 

where 

p* = maximum va lue o f  t h e  d imens ion less  s t r e s s  = a ( 1 - v )  ^ . _  atn I 

I n  Eqs. 2 .1  and 2 . 2 ,  q i s  p e r  u n i t  l e n g t h  as p e r  Ref.  6. 

6 



CT = thermal s t r e s s  a t  any point in the disc  

v = Poisson's r a t io .  

Experiments showed t h a t  no specimen with a ( P / q )  value o f  less  t h a n  unity 

survived a s ingle  complete shock, whereas each with a ( P / q )  in excess of 

unity withstood a t  l ea s t  25 cycles. Cheng also noted t h a t  thermal stock 

resistance i s  n o t  a n  i n t r i n s i c  property of a material b u t  greatly depends 

on the manner i n  which the heat i s  supplied ( i . e . ,  on h )  a n d  on the form 

a n d  dimension o f  the specimen tested.  

More work was done on 2 in diameter x 1 / 4  in disks by Mason & Smith 

They used s t e a l i t e  and  glass specimens and ra ther  t h a n  cooling the ( 8 ) .  

f l a t  la te ra l  faces in the manner of Cheng, they insulated these and  

subjected the discs t o  quenching along the f ree  periphery. The au thor s  

noted t h a t  the thermal shock resistance of most b r i t t l e  materials i s  a 

function of two or more parameters. The re la t ive  importance of each 

parameter depends on the severi ty  of the quench for  a given s i ze  specimen 

o f  a given material. They found t h a t  f o r  materials obeying the maximum 

s t r e s s  theory o f  f a i l u r e ,  the parameter governing thermal shock resistance 

i s  P/(Ea) only for  very severe quenches ( la rge  h )  or very large character- 

i s t i c  dimensions. 

under these conditions, even t h o u g h  i t  becomes important for  r e l a t ive ly  

small values of Biot number where heat t ransfer  r a t e  i s  largely governed 

by the value of thermal conductivity. T h u s  thermal shock resistance 

cannot, in general, be expressed by a s ingle  parameter, such as ksP/Ea, 

as often has been attempted. Instead, two or more parameters must be 

evaluated depending upon the conditions o f  t e s t  geometry a n d  quench 

severi ty .  The authors also examined the i r  experimental resu l t s  in terms 

The thermal conductivity, ks, has l i t t l e  influence 

7 



o f  Weibull's s t a t i s t i c a l  theory of  strength.  

the assumed presence o f  flaws and  s t a t e s  t h a t  the p r o b a b i l i t y  o f  f a i lu re  

o f  a given specimen depends on the volume under s t r e s s  a n d  on  the s t r e s s  

d is t r ibut ion .  

f o r  onset o f  thermal s t r e s s  cracking, for  the c i rcu lar  discs.  Then they 

evaluated the s t r e s s  dis t r ibut ion for instants  when the r isks  o f  rupture 

were a maximum. Comparison with s t r e s s  dis t r ibut ions a t  the time o f  

maximum s t r e s s  showed t h a t  the s t r e s s  dis t r ibut ion based o n  Weibull's 

theory gave a be t te r  estimation o f  f a i lu re  in the c i rcu lar  discs 

considered. 

This theory i s  based on 

They calculated the maximum risk of rupture, a c r i te r ion  

Another t h o r o u g h  analytical study of the thermal shock resistance 

phenomenon was undertaken by Mervoelli, e t .  a1 . ( 9 ) .  They also 

experimented with thin c i rcu lar  disks (measuring 2 1/8 in d i a .  x 1 / 4  i n  

t h i c k ) ,  the l a t e ra l  surfaces o f  which were assumed t o  be perfectly 

insulated so t h a t  heat conduction was constrained t o  the radial  direction 

alone. 

taconi te .  

maximum s t r e s s  theory a n d  one similar t o  Weibull's theory, referred t o  as 

the "average s t r e s s  theory". Cooling experiments showed t h a t  there was 

l i t t l e  difference between the predictions of  f a i lu re  by b o t h  theories when 

the Biot number was small (under mild quenching). Signif icant  differences 

were found  when the B i o t  number was large (under severe quenching), in 

w h i c h  case fa i lures  correlated be t te r  with the average s t r e s s  theory. 

They chose rock specimens, especially basal t ,  quartzi te  a n d  

Two cases of f a i lu re  were considered, one predicted by the 

Hasselman ( 1 0 ,  11) discussed the principal material properties which 

a f fec t  the propagation of cracks under conditions of thermal shock. From 

these material properties,  "thermal shock damage resis tance parameters" 

were derived, which a re  indicative of  the re la t ive  resis tance o f  materials 

8 



t o  damage a f t e r  cracking by thermal shock has been nucleated. The author 

applied G r i f f i t h ' s  c r i te r ion  for crack propagation, and  concluded t h a t  

for a low degree o f  damage there must be small values of strength and 

high values of Young's modulus o f  e l a s t i c i t y  a n d  Poisson's ra t io .  

over the extent of  crack propagation was found t o  be a function of 

spec men volume, numbers of  cracks nucleated, e t c .  The a u t h o r  also 

noted t h a t  microstructural inhomogeneities in the material act  as micro- 

mechanical thermal s t r e s s  concentrators , he1 ping t o  nucleate cracks b u t  

reducing subsequent crack propagation. 

More- 

Crack propagation was fur ther  analyzed by Hasselman ( 1 2 ) .  Thermal 

shock experiments on c i rcu lar  aluminum oxide rods showed t h a t  a n  i n i t i a l l y  

short  crack , unstable a t  a c r i t i c a l  temperature difference , propagates t o  

a new length such t h a t  a f i n i t e  increase in temperature difference i s  

required before the crack will continue t o  propagate. 

analogy between crack propagation under thermal shock a n d  under constant 

deformation ( s t r a i n ) .  

The a u t h o r  drew an 

Further study of the severity of  thermal shock required t o  i n i t i a t e  

cracking a n d  the amount of cracking produced by a shock of fixed severi ty  

was done by Davidge a n d  Tappin ( 1 3 ) .  Experiments u t i l ized  ceramic A1203 

specimens of  b o t h  square a n d  round  cross-sections which were quenched in 

20°C water. The fracture strength was determined by three point bend 

t e s t s  on quenched a n d  unquenched specimens a n d  showed a dras t ic  reduction 

for specimen temperatures of 220°C. 

U/yF. where 

e f fec t ive  surface energy. 

define the l imit  of new crack area produced. 

The amount o f  cracking was related t o  

U i s  the e l a s t i c  energy produced by the shock a n d  y F  i s  the 

The a u t h o r  found t h a t  quantity U/y, seemed t o  

The e f fec t  o f  porosity on thermal s t ress  f racture has been studied by 

various authors (14-18). This e f fec t  can be investigated from the points 

9 



o f  view of  b o t h  nucleation o f  cracking a n d  degree o f  damage. 

Kingerly ( 1 4 )  demonstrated for sintered alumina t h a t  the overall e f f ec t  i s  

t o  lower thermal shock crack nucleation resistance. 

o f  crack  propagation, however, the e f f e c t  o f  porosity on strength and  on 

Young's modulus o f  e l a s t i c i t y  i s  t o  reduce substant ial ly  the e l a s t i c  

energy stored a t  f racture.  Porosity, therefore,  tends t o  reduce the 

degree o f  damage i n  agreement with the observations o f  Parmelee a n d  Westman 

( 1 5 )  , Bartsch ( 1 6 ) ,  Kat0 a n d  Okuda ( 1 7 ) ,  and  Richardson (18) .  Pores are 

often ci ted as acting as crack a r re s to r s ,  a n d  in th i s  manner are  t h o u g h t  

t o  increase thermal shock damage resistance. 

Gupta  (19 )  demonstrated the e f fec t  of  microstructure, especially of 

Coble a n d  

From the p o i n t  o f  view 

grain s i z e ,  o n  the strength degradation charac ter i s t ics  of alumina sub- 

jected t o  thermal shock. High density aluminas with grain s izes  of 10 ,  

28, 34, 40,  a n d  80 pm were subjected t o  thermal shock a n d  then tested for  

strength in four point bending t e s t s .  These experiments showed t h a t  the 

strength degradation was catastrophic for a l l  specimens except those w i t h  

a g r a i n  s i ze  o f  80 pm. The a u t h o r  points o u t  t h a t  above a c r i t i c a l  grailn 

s i z e  the fa i lure  charac ter i s t ic  becomes completely "noncatastrophic". 

Formation o f  microcracks in the highly stressed zone ahead of the major 

propagating crack resu l t s  i n  slow crack growth and hence the "noncata- 

strophic" fa i lure .  A recent study ( 2 0 )  on mica glass-ceramic under thermal 

shock also indicated t h a t  when g r a i n  s i ze  i s  increased from 70 t o  200 unl, 

the f a i lu re  mode changes from catastrophic tol'noncatastrophic'! 

From the above br ief  review, i t  i s  c lear  t h a t  the cracking of b r i t t l e  

material due t o  thermal s t ressing can, i n  general , be a function of 

several variables,  including mechanical properties,  thermal propert ies ,  

specimen s i ze  and  shape, severity of the thermal shock and  microstructura 

10 



charac ter i s t ics  (e .g . ,  grain s i z e ) .  The two most popular fa i lure  theories 

f o r  crack nucleation are  the maximum s t r e s s  theory ( i n  which cracking i s  

postulated when the t ens i l e  strength i s  exceeded a t  the p o i n t  o f  maximum 

s t r e s s )  a n d  the average s t r e s s  theory ( i n  which cracking i s  expected when 

s t r e s s  averaged over a c r i t i c a l  volume o f  material exceeds the t ens i l e  

s t rength) .  

11 



3. E X P E R I M E N T A L  P R O C E D U R E  

3 .1 Apparatus t o  Produce Thermal Stress 

I n  order t o  investigate the influence of thermal s t ress ing  on granite 

strength a n d  porosity, the experimental setup shown schematically in Figure 

3.1 was devised. I t  consists of  a heating oven ( A ) ,  temperature control ler  

(B), temperature recorder ( C ) ,  and  water quenching system ( D ) .  The heating 

system i s  a Kress Kiln ( C - 1 1 - H )  w i t h  inner dimensions of  11" x 11" x 11" 

and a power rat ing of 15 amps a t  110 volts.  Heating elements are ins ta l led  

a round  the f o u r  sides t o  promote uniform heating. A metal sheet i s  p u t  

j u s t  in f r o n t  of the heaters t o  fur ther  increase the uniformity. Temper- 

ature inside the kiln i s  governed by the time proportioning temperature 

control ler  ( B ) .  

nation o f  power regu ators  a n d  the temperature control ler .  

Des red heating rates can be achieved by a proper combi- 

I n i t i a l l y ,  a 5" x 5" x 5" granite block, shown in Figure 3 .2 ,  was 

used for  the f i r s t  few thermal shock experiments. The block was heated 

in the oven a t  a r a t e  of 2OF/min t o  avoid thermal cracking during heating. 

The uniformity o f  temperature dis t r ibut ion inside the rock was checked by 

measuring temperatures a t  ten d i f fe rent  locations shown in Figure 3.2. 

One inch deep holes were dr i l led  a t  these locations and  thermocouples 

ins ta l led  using Saueriesen Low Expansion cement t o  provide good contact 

w i t h  the rock. 

temperature response. 

encountered in attempting t o  d r i l l  them with available equipment. The 

thermocouples used were J-type and were calibrated with boiling water 

before a n d  a f t e r  the experiments. 

a t  locations 4 ,  9 ,  10 were within 2 1 ° F  of  each other,  showing 

uniform heating of the block. 

This cement i s  a very good conductor thus ensuring a gopd 

Deeper holes were n o t  possible due t o  t h e '  d i f f i c u l t i e s  

During heating, temperatures recorded 

Also the temperatures a t  6 ,  7 ,  8 were 
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FIG. 3 . 2  Granite Block with Dimensions 5 'x5"%5"  
and The Thermocouple Arrangement 
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sudden drop a f t e r  e i g h t e e n  minutes .  

m a l f u n c t i o n i n g  when checked a f t e r  t h e  

showed a sudden change i n  tempera ture  

w i t h i n  f 2 O F .  The s p a t i a l  v a r i a t i o n  o f  tempera ture  was about  5°F .  

Temperatures were recorded c o n t i n u o u s l y  w h i l e  quenching t h e  b l o c k  f o r  

app rox ima te l y  an hour.  Dur ing  quenching, t h e  tempera ture  a t  3 showed a 

he thermocouple a t  3 showed no 

exper iment .  Another quenching r u n  

a t  l o c a t i o n  5 though t h e  thermocouple 

showed no ma l func t i on ing .  An e x p l a n a t i o n  f o r  t h e  m a l f u n c t i o n s  was n o t  

apparent  . 
To simp1 i fy c a l c u l a t i o n s  o f  t r a n s i e n t  tempera ture  and thermal  s t r e s s  

b e h a v i o r ,  a l l  subsequent exper iments u t i l i z e d  t h i n  s l a b s  t o  b e t t e r  app rox i-  

mate one-dimensional hea t  f l ow .  The d e t a i l s  o f  t h e  specimen and method o f  

i n s u l a t i o n  a re  shown i n  F igu re  3.3. The g r a n i t e  s l a b s  (2 -1 /4 "  x 10" x 1 / 4 " )  

were c u t  f rom a l a r g e r  b l o c k  w i t h  a 1 /16  i n  t h i c k  diamond saw. Asbestos 

was used f o r  b u i l d i n g  t h e  i n s u l a t i o n  box and was made a i r  t i g h t  w i t h  

Sauer iesen cement. The a i r  gap i n  t h e  box p r o v i d e d  even b e t t e r  i n s u l a t i o n .  

3.2 Temperature D i s t r i b u t i o n  i n  Specimens 

The f i r s t  t a s k  i n  c a l c u l a t i n g  t h e  thermal  s t r e s s  d i s t r i b u t i o n  w i t h i n  

t h e  r o c k  i s  t h e  d e t e r m i n a t i o n  o f  tempera ture  d i s t r i b u t i o n  i n  i t .  

t r a n s f e r  i n  t h e  g r a n i t e  b l o c k  specimens can be ana lyzed approx ima te l y  b y  

c o n s i d e r i n g  a s o l i d  o f  i n f i n i t e  th i ckness  as shown i n  F igu re  3.4. The 

s o l i d  i s  i n i t i a l l y  a t  t h e  tempera ture  To th roughou t ,  and t h e  s u r f a c e  i s  

c o o l e d  c o n v e c t i v e l y  b y  t h e  f l o w i n g  f l u i d  a t  tempera ture  Too. 

assumed t o  be o n l y  i n  t h e  d i r e c t i o n  normal t o  t h e  s l a b ,  denoted by 

coo rd ina te .  I t  i s  a l s o  assumed t h a t  t h e  tempera ture  v a r i a t i o n  

he s l a b  depends o n l y  on t h e  c o n d i t i o n s  imposed a t  t h e  x = 0 s u r f a c e .  

Heat  

A l l  t h e  hea t  

The assumptions made t o  s i m p l i f y  t h e  hea t  t r a n s f e r  a n a l y s i s  a re :  [ i )  

thermal  c o n d u c t i v i t y ,  ks ,  s p e c i f i c  heat ,  Cp, and d e n s i t y ,  p ,  o f  t h e  r o c k  a r e  

f l o w  i s  

t h e  x 

w i t h i n  

1 5  
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assumed constant with respect t o  temperature and  ( i i )  the surface heat 

t ransfer  coef f ic ien t ,  h ,  i s  also assumed t o  be constant. 

The one-dimensional , nonsteady heat t ransfer  for a semi- infinite 

sol id  i s  governed by the conduction equation 

kS 

pcP 
where: B = - a 2 T  - 3T 

ax B2-x (3.1) 

The i n i t i a l  and  boundary conditions for  the rock f luid system are a t  

t = O  : T = T ,  f o r x 2 O  ( 3 . 2 a )  

where: t = time 

x = distance below the surface 

T = temperature of the sol id  a t  time t 

To = i n i t i a l  temperature of the sol id  
a t  t > o : h A I T m - T ( o , t ) ]  = k s A ( z ) x = o  aT  (3.2b) 

where Tm = f lu id  temperature 

b = average surface heat  t ransfer  coeff ic ient  

A = heat t ransfer  surface area 

The solution, obtained by the method of Laplace transforms [ 2 2 1 ,  i s  

gi ven by : 

The term "er f"  in Eq. (3 .3 )  i s  the e r ror  function and  i s  given by: 

18 

( 3 . 4 )  



Values of the e r ro r  function are usually tabulated in standard 

mathematical handbooks. The computer program developed here for 

determining the temperature profi le  uses IBM's s t a n d a r d  mathematical 

e r ro r  function (Appendix ) .  The heat t ransfer  conditions described 

by Equation 3.3 are also realized in a f i n i t e  s lab of thickness L 

which i s  insulated a r o u n d  i t s  periphery (Fig. 3 .5 ) .  The i n i t i a l  a n d  

boundary conditions given by Equat ion 3.2 are also valid for  th i s  s lab.  

As long as  the temperature e f f ec t  has n o t  s igni f icant ly  reached the 

face x = L ,  the semi- infinite solution i s  s t i l l  applicable. 

The solution f o r  the f i n i t e  s lab of length L ,  which more closely 

approximates the s i tua t ion  in the granite block specimen, can be expressed 

in dimensionless form by defining the following parameters: 

X x = -  
L 

B = Biot Number = h L / k S  

2 2  5 = Fourier Number = h B t / k s  

0 = dimensionless temperature = (T-Tm) + (To-T,) 

Using t h e  above parameters, Equation 3.3 becomes 

where D =dL2/4f3t.  

Using representative values of p ,  Cp and ks fo r  granite,  the temper- 
2 ature-time dis t r ibut ions for  h = 5.0 and  h = 300.0 B t u / h r  F. f t  are 

plotted in Figures 3.6 and 3.7. As expected, the e f f ec t  of temperature 

disturbance i s  f e l t  more rapidly a t  the face X = 1.0 for  h = 300.0 t h a n  
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f o r  h = 5.0.  

by the condition: 

appl icabi l i ty  i s  achieved for t 5 1 hrs for the case of h = 300.00 a n d  

I f  appl icabi l i ty  of the in f in i t e  s lab  solution i s  defined 

TX = l.o / T  2 0 . 9 5 ,  then from Figures 3.6 a n d  3 .7 ,  

t 2 hrs for h = 5.0. This provides an estimate of the time duration 

during which a f i n i t e  s lab  of length L can be cooled and  s t i l l  be con- 

sidered an i n f i n i t e  so l id .  

3.3 Thermal Stress Distribution: 

After the temperature-time dis t r ibut ion i s  found, one can proceed t o  

calculate the s t r e s s  dis t r ibut ions inside the sol id .  

the analysis , the following idealizations are made: 

( i )  The h a r d ,  c rys ta l l ine  rock i s  treated as a l inear ly  e l a s t i c ,  

I n  order t o  simplify 

i so t ropic ,  homogeneous, b r i t t l e  continuous medium. 

( i i )  The rock i s  assumed t o  have temperature independent thermal and 

mechanical properties.  

( i i i )  Coupling between thermal a n d  e l a s t i c  behavior, as well as ine r t i a l  

e f f ec t s ,  are  negligible.  

( i v )  Body forces are  considered t o  be negligible as compared t o  thermal 

s t resses .  

The governing thermoelastic equations t o  be s a t i s f i e d  are equations 

of equilibrium, equations of compatibility and  the boundary conditions. 

The equations o f  equi,lifjrium expressed in terms of s t r e s s  components for  

zero body forces are  writ ten in Cartesian coordinates as follows: 

23 



The c o m p a t i b i l i t y  e q u a t i o n s  i n  terms of  s t r e s s  components a r e :  

n n 

where 

H = u  + u  x x  yy + O Z Z  

a2 a2 a2 v2 = - + - + -  
ax2 ay2 az 2 and 

The s e m i - i n f i n i t e  s o l i d  under  c o n s i d e r a t i o n  has a l l  t h e  s u r f a c e s  f r e e  o f  

t r a c t i o n s .  I n  t h i s  case t h e  boundary c o n d i t i o n s  a r e  

= o  uxxnx + Oxyny + axznz 

o n + u  n + u  n = O  
XY x YY Y Y Z  

= o  uxznx + Oyz"y + OzZnz 
( 3 . 8 3  
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where: n x ,  n 

r espec t  i v e l  y . 
nz a re  u n i t  normals i n  t h e  x, y, and z d i r e c t i o n s ,  

Y '  

Now we seek a s t r e s s  d i s t r i b u t i o n  which s a t i s f i e s  Equat ions 3.6, 

3.7, and 3.8. 

be i n  t h e  d i r e c t i o n  o f  x,  t h a t  i s  T = T ( X ) ,  i t  i s  reasonab le  t o  assume 

E211 t h a t  t h e  s t r e s s  components w i l l  be o f  t h e  fo rm 

S ince  t h e  tempera tu re  v a r i a t i o n  i s  o n l y  cons idered  t o  

(J = 0 = f ( x )  
YY ZZ 

0 = o  = o  = ( J  = o  
xx xz y z  XY 

(3.9) 

D i r e c t  s u b s t i t u t i o n  shows t h a t  t h e  e q u i l i b r i u m  equa t i ons  a r e  s a t i s f i e d  

f o r  t h e  s t r e s s  components desc r i bed  by Equat ion  3.9. O f  t h e  s i x  equa t ions  

of c o m p a t i b i l i t y ,  t h e  l a s t  t h r e e  a r e  s a t i s f i e d  and t h e  f i r s t  t h r e e  w i l l  be 

s a t i s f i e d  p rov ided  t h a t  

3 
CtE - dL { f ( x )  + T I  = 0 

dx 2 

The fo rm o f  t h e  non-zero s t r e s s  components i s  t hen :  

0 = 0 = f ( x )  = - - ciE T + C1 + C2X 
YY ZZ I-v 

where t h e  cons tan t s  C1 and C2 a r e  t o  be determined f rom t h e  boundary 

c o n d i t i o n s  o f  ze ro  t r a c t i o n s  on t h e  edges o f  t h e  s o l i d .  From t h e  form 

o f  t h i s  r e s u l t ,  however, t h e  t r a c t i o n s  cannot be made zero  th roughout  

t h e  l e n g t h  o f  t h e  s o l i d .  I t  i s  p o s s i b l e ,  however, t o  choose t h e  cons tan ts  

C1 and C 2  such t h a t  f o r  any temperature T ( X ) ,  t h e  r e s u l t a n t  forces and 

moments ( p e r  u n i t  l e n g t h )  produced by 0 and uzz a r e  zero  over  t h e  edges 
YY 

of  t h e  s o l i d ,  t h a t  i s ,  
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uyy x d x  = 0 (3.11) L Io ayydx = 

and  s imilar ly for u Constants C1 a n d  C 2  evaluated using the above z z ’  
condi t i  ons are  

CtE Txdx]  - 1-v 

CXE Tdx]  . - 
1 - V  

(3.12) 

Thus the solution for  thermal s t r e s s  becomes 

0 = 0 = (“E) [-T + c 2 (2L - 3x) ,fo L Tdx + 3 6 (2L - X )  Io L Txdxl  (3.13) 
L YY z z  1- v 

Substituting the temperature profi le  given by Equation 3.5 into 3.13, 

the s t r e s s  due t o  quenching for the s l ab  under consideration becomes 

(3.14)  1 1 o* = = [-0 + ( 4  - 6X) Io OdX + 6(2X - 1) Io OXdX] clE 

1 

The integrals  in Equation 3.14 were evaluated using Simpson’s rule 

(Appendix ) .  The thermal s t resses  ( i n  dimensionless form) are graphic- 

a l l y  presented in Figures 3.8 t h r o u g h  3.13. Positive s t resses  are t e n s i l e  

and  negative ones compressive. The s t r e s s  i s  plotted for various times. 

Two cases o f  surface heat t ransfer  ra te  are considered, namely h = 5.0 a n d  

h = 300.0 B t u / h r  F. 

and  near the surface being quenched and  become compressive on the in t e r io r .  

Also, the s t resses  are t ens i l e  a t  and  near the end face,  i . e . ,  a t  X = 1.0. 

Maximum s t resses  develop a t  the face X = 0.  Comparison of the two cases 

f tL. As can be seen, thermal s t r e s ses  are t ens i l e  a t  
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shows t h a t  the maximum t ens i l e  s t resses  developed i s  much larger  for 

higher heat t ransfer  rates  because of  the correspondingly higher thermal 

gradients. Maximum compressive s t resses  are n o t  appreciably di f fe rent  

i n  the two cases. One interest ing observation i s  t h a t  the t rans i t ion  

from t ens i l e  t o  compressive s t r e s s  occurs a t  almost equal values of  X 

i n  b o t h  cases,  which implies t h a t  the area under t ens i l e  s t r e s s  remains 

roughly the same regardless of the heat t ransfer  ra te  considered. 

Figures 3.10 and  3.11 i l l u s t r a t e  the time dependence of s t resses  a t  

various distances from the surface fo r  h = 5 .0  and h = 300.0 B t u / h r .  

f t  F. As may be seen, a l l  the s t resses  r i s e  t o  a peak and  then decrease 

slowly t o  zero. 

s t resses  a t  a l l  cross-sections are higher in the case o f  h = 300.0. 

Moreover, the s t resses  a t  the quenching face reach a peak value instant-  

aneously for  h = 300.0, whereas i t  takes a f i n i t e  time t o  reach a maximum 

value for h = 5 .0 .  

2 

Comparing the two cases, one can conclude t h a t  peak 

Since the maximum tens i l e  s t resses  always occur a t  the surface,  the 

time dependence o f  these s t resses  i s  of special i n t e re s t .  Figure 3.12 

shows t h i s  variation for  a range of heat t ransfer  coeff ic ient  values. As 

can be seen from these curves, surface s t resses  f i r s t  peak and  then fade. 

Moreover, curves w i t h  high h values peak f a r  sooner t h a n  those w i t h  low 

h values. The curves for  values of  h greater t h a n  300.0 give identical 

surface s t resses  because the temperature -'time dis t r ibut ion remains the  

same for  those heat t ransfer  coeff ic ients .  These fac ts  are b r o u g h t  o u t  

more c lear ly  in Figure 3.13, which shows the peak s t r e s s  values a t  the 

surface together with the times a t  which these maximum stresses  occur. 

An evaluation o f  the resu l t s  presented in Figures 3.8 - 3.13 shows 

t h a t  in the case of thermally stressed semi- infinite s lab.  the c r i t i c a l  
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stresses  a r i se  e i ther  on the quenched face o r  in a region j u s t  below the 

surface. Since the compressive strength o f  a b r i t t l e  material i s  generally 

larger  t h a n  i t s  t ens i l e  s t rength,  fa i lure  i s  most l ike ly  t o  occur due t o  

t ens i l e  s t resses .  The experimental work discussed in the next chapter 

describes the e f fec ts  of  thermal s t r e s s  on the granite specimen strength.  

3.4 Determination of  Surface Heat Transfer Coefficient ( h )  

The discussion of  various parameters affecting the thermal shock 

behavior of  a b r i t t l e  material showed t h a t  the knowledge of  heat t ransfer  

coeff ic ient  i s  impor tan t  f o r  evaluation o f  quenching t e s t s .  The average 

surface heat t ransfer  coeff ic ient  for  the water j e t  a n d  the rock s u r f a d  

system used here was determined using t ransient  heat flow analysis of a 

plate  with negligible internal resistance and  a lso by comparing the 

cooling curves a t  two locations in a granite specimen with the theoretical 

cooling curves for  a semi- infinite so l id .  

3 .4 .1  Determination o f  h Using the Transient Technique 

The t ransient  temperature response of a heated p la te ,  cooled by the 

impinging water j e t s ,  i s  used as a basis for the evaluation of the averdge 

heat t ransfer  coeff ic ient .  

recorded. The resul t ing "time constant" i s  d i rec t ly  related t o  the 

thermal resistance which varies inversely with h .  

The time history of the temperature i s  

The analysis i s  based 

on the "one-lump capacitance" parameter method since the internal therm41 

resistance o f  the p la te  can be demonstrated to be negligible compared t O  

the external thermal resistance between the surface of the plate and  the 

water j e t s .  Figure 3.14 describes the thermal c i r c u i t  f o r  a f l a t  plate  

model. The ra te  of decrease of internal energy o f  the p la te ,  E, i s  given 

by the following equation: 
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Rtot 

FIG. 3.14 Schematic of Copper Plate and Thermal 
Circuit Representation for Transient 
T e c hniq ue 
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where: p = density of the plate material 

Cp  = speci f ic  heat of the plate material 

V = volume of the plate 

T = temperature o f  the  plate 

t = time 
- 
c = C P V P  

The term may be t h o u g h t  of as the capacitance o f  

of heat ,  q ,  t ransferred o u t  of the body by convect 

equa t i on 

= ( h A ) t o t a l  ( T  - T,) 

T 00 = water j e t  temperature 

A = surface heat t ransfer  area 

h = surface heat t ransfer  coefficient  

An energy balance yields 

- E = q  

or from Equations 3.15 and 3.16 

Substi tut ion of 

yi e l  ds  

The  i n i t i a l  condition i s  

0 = Oo a t t = O  

a n d  the  solution t o  Equation 3.19 i s  
36 

the 

on 

plate.  The ra te  

s given by the 

(3.16) 

(3.17) 

(3.18) 

(3.19) 



(3 .20)  

A p l o t  o f  En (O/Oo) versus t ob ta ined  f rom t h e  t e s t  da ta  shou ld  y i e l d  a 

s t r a i g h t  l i n e  w i t h  t h e  s l ope  g iven  by 

(3 .21)  ( h A ) t o t  - m =  
C 

A copper p l a t e  was used f o r  t h e  t r a n s i e n t  exper iments .  

impor tance  of  t h e  therma l  r e s i s t a n c e  w i t h i n  t h e  p l a t e  can be w r i t t e n  i n  

d imens ion less  form as  5 L/kS, t h e  B i o t  number, where 

u n i t  su r face  conductance, L i s  t h e  s i g n i f i c a n t  l e n g t h  d imension o b t a i n e d  

by d i v i d i n g  t h e  volume o f  t h e  body by i t s  s u r f a c e  area,  and ks i s  t h e  

therma l  c o n d u c t i v i t y  o f  t h e  copper p l a t e .  

i n t r o d u c e d  by t h e  assumption t h a t  t h e  temperature a t  any i n s t a n t  i s  un i-  

fo rm w i l l  be l e s s  t h a n  5 pe rcen t  when t h e  i n t e r n a l  r e s i s t a n c e  i s  l e s s  

t han  10 percen t ,  i .e., when 5 L/ks < 0 . 1  [22]. Using t h i s  c o n d i t i o n  and 

The r e l a t i v e  

i s  t h e  average 

I 

I n  t h e  copper p l a t e ,  t h e  e r r o r  

kS = 216 B t u / h r f t F  and E = 500 B t u / h r f t  2 F ,  t h e  c h a r a c t e r i s t i c  l e n g t h  i s  

l e s s  t han  0.5 i n .  

The copper p l a t e  used had a t h i ckness  o f  0.5 i nch .  

runs  were done f o r  i n i t i a l  temperatures o f  255°F and 370°F. 

t u r e  h i s t o r y  recorded  showed q u i t e  a v a r i a t i o n  s i n c e  b o i l i n g  occu r red  a t  

t h e  sur face .  The most r e p r o d u c i b l e  temperature h i s t o r i e s  a r e  l i s t e d  i n  

Tab le  3.1. 

h = 357.0. 

va lues  i n  t h e  l a t t e r  case were due t o  more severe b o i l i n g  a t  t h e  sur face.  

The va lues o f  h eva lua ted  by t h e  t r a n s i e n t  t echn ique  would be h i g h e r  t h a n  

t h e  a c t u a l  values s i n c e  t h e  a n a l y s i s  does n o t  account  f o r  r a d i a t i o n  and 

n a t u r a l  c o n v e c t i v e  l osses .  

Severa l  quenching 

The tempera- 

The p l o t  i n  F igu re  3.15 g ives  a s l o p e  wh ich  y i e l d s  a va lue  o f  

A s i m i l a r  p l o t  f o r  To = 370°F g i ves  h = 582 B t u / h r f t  F. 2 H ighe r  
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Tab le  3.1 

TEMPERATURE HISTORY I N  COPPER PLATE 

Time (min . )  Temp. ( F )  

0.0 

0.4 

0.8 

1.2 

1.4 

2.0 

2.4 

255.0 

187.5 

110.0 

83.0 

75.0 

72.5 

70.0 

Time (min . )  Temp. (F) 

0.0 370.0 

0.4 260.0 

0.8 135.0 

1.2 95.0 

1.4 85.0 

2.0 82.0 

- kn ( T- T,/ T,- T,) 

185.0 

117.5 

40.0 

13.0 

5.0 

2.5 

0.0 

0.0 

0.45 

1.53 

2.65 

3.61 

4.3 

m 

T-T, ( F )  - Rn ( T- T,/T,- T,) 

368.0 0.0 

178.0 0.72 

53.0 1.94 

13.0 3.34 

3.0 4.80 

0.0 m 
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3.4 .2  Determination of h Comparing Cooling Curves 

Another method of determining average heat t ransfer  coeff ic ient  for 

the quenching system i s  t o  compare the cooling curves a t  locations in the 

granite specimen with the theoretical cooling curves f o r  a r b i t r a r i l y  

assigned heat t ransfer  coeff ic ients .  

a t  locations X = 0.05 a n d  X = 0.1 for  an i n i t i a l  temperature of 440OF. 

Temperature h is tor ies  were recorded 

A 

comparison of theoretical and experimental ly-observed cool i n g  curves a t  

X = 0.05 i s  shown in Figure 3.16. I t  can be seen t h a t  the heat t ransfer  

coeff ic ient  i s  approximately 200 Btu/hrft O F .  

cooling curve below the theoretical one during very ear ly periods i s  a t t r i -  

buted t o  boiling a t  the quenched face. 

experimental curve follows the theoretical ones more closely.  

2 Dipping of the experimental 

Once the boiling i s  over, the 

Comparison of cooling curves a t  X = 0.1 i s  shown in Figure 3.17. 
2 Again the heat t ransfer  coeff ic ient  i s  a b o u t  200 Btu/hrft O F .  The boiling 

ef fec t  is  n o t  observed since the location i s  fur ther  away from the quenched 

face. Since granite i s  a l o w  conductive material ,  the boiling e f fec t  dies 

away in terms of i t s  influence in the in te r ior .  

Once the heat t ransfer  coeff ic ient  was determined approximately, 

another r u n  was made for a half hour o f  quenching. 

tory was recorded a t  X = 0 .1  t o  check how well the condition of  a semi- 

i n f i n i t e  so l id  i s  met experimentally. 

shown i n  Figure 3.18 along with the experimental temperatures. There 

i s  an excellent agreement between the two cases t h u s  ensuring t h a t  insula- 

t ion of the specimen i s  very sat isfactory.  

The temperature his- 

The temperature-time plot i s  

From the experiments with the copper plate and the granite block, i t  

appears tha t  h for the water spray system will be on the order of 200 t o  

500 Btu/hrft*"F. 

more precise knowledge of h was n o t  deemed necessary a t  t h i s  stage. 

Due t o  the exploratory nature of the quenching experiments , 

40 



1.0 

Btu/'hr f t 2  F 

I I 1 
1. 2, 

TIME ( min. ) 
3- 

FIG. 3.16 Comparison o f  C o o l i n g  Curves a t  X = 0.05 
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3.5 

Stressing 

Procedure t o  Determine Strength and  Porosity Changes Due t o  Thermal 

The experimental procedure used t o  investigate the post-thermal s t r e s s  

behavior o f  granite blocks is discussed in th i s  section. Mechanical 

strength of  thermally stressed specimens was evaluated u s i n g  three point 

bending t e s t s .  The t e s t s  were carried o u t  o n  a Universal Testing machine. 

Specimens f o r  these t e s t s  were cut width-wise along the length o f  quenched 

a n d  non-quenched blocks using a 1/32 in.  diamond saw. The de ta i l s  o f  a 

typical bending t e s t  specimen are  shown in Figure 3.19. 

Porosity of the specimens was measured using two d i f fe rent  methods, 

namely, the saturat ion method and Boyle's Law Porisimeter. An accurate 

determination of bulk volume of the specimen i s  impor t an t  for  porosity 

measurements. A Bulk Volume Meter, as described below, was used f o r  

these measurements. 

The Bulk Volume Meter i s  based on displacement o f  a l iquid by the 

specimen where the amount of displacement i s  measured in an inclined, 

cal ibrated tube w i t h  a sui table  scale  (Figure 3.20).  The core sample i s  

submerged under mercury in a n  adjacent connected chamber. The liquid 

displaced by the core i s  mercury b u t  the l iquid measured in the inclined 

tube i s  a hydrocarbon with low vapor  pressure. The instrument i s  Cali- 

brated by using cylinders of s ta in less  s teel  instead of the core. The 

dimensions of the sol ids  are measured with vernier cal ipers  and a plot 

of volume versus scale  reading i s  prepared. Only dry samples are used 

a n d  submerged i n  the mercury with care being taken t o  prevent trapping 

a i r  around the sample. 

The apparatus used for  porosity determination by saturat ion i s  

diagrammed in Figure 3.21. The specimen i s  f i r s t  cleaned a n d  dried in 

an  oven. After weighing, the clean, dry sample i s  placed in a vacuum 
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C O R E  

FIG. 3.20  Bulk Volume Meter 
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FIG. 3.21 A p p a r a t u s  f o r  saturating c o n s o l i d a t e d  c o r e s  
under vacuum 
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flask a n d  a l l  a i r  evacuated. The saturation f luid ( toluene)  i s  admitted 

t h r o u g h  a separatory funnel. When the saturation i s  complete, the sample 

i s  weighed. The porosity, +, i s  determined from the re la t ion:  

'wet - 'dry 
"b 

c b =  ( 3.22) 

and W a re  the weights in a i r  of the wet and d ry  samples, where Wwet 

P i s  the density of the saturat ing f lu id ,  a n d  V b  i s  the bulk volume of 

the core sample. 

dry  

Boyle's Law Porisimeter, a lso used t o  determine porosity,  measures 

the volume occupied by the grains and  t h i s  subtracted from to ta l  or bulk 

volume gives pore volume. The grain volume i s  determined by applying 

Boyle's Law. 

Bureau o f  Mines. 

bel ow. 

I 

The method a n d  the instrument used here are  due t o  the U.$ .  

The basic principles underlying the method are  described 

I 
Consider an i n i t i a l  volume of gas, V1, and  a n  i n i t i a l  pressure, P1. 

I f  t h i s  gas i s  allowed t o  expand isothermally so t h a t  there i s  a n  incre se  

of volume, V 2 ,  a t  a second pressure, P 2 ,  then: 
P 

P I V l  = P 2 ( v 2  + v l )  
o r  

( 3 . 2 3 )  

Now i f  we inse r t  into the container,  which or iginal ly  held the i n i t i a l  

volume of gas ,  a sol id  body o f  given volume and  then repeat the gas expbn- 

sion from the same i n i t i a l  pressure, P1, t o  the same f inal  pressure, P2 ,  

we can again obtain the i n i t i a l  volume. 

gas volume, V1 , a ,  d i f fe rs  from the f i r s t  by the volume of the sol id  bodly 

or by the volume of the grains, V a ,  t h a t  i s :  

I 

However, t h i s  second i n i t i a l  
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or 

(3 .24 )  

where V 

when the core i s  i n  the container. 

i s  the second final volume, t h a t '  i s ,  the volume a f t e r  expansion 2 ,a 
Porosity i s  calculated by the equation: 

'b - 'a 
"b 

( b =  (3 .25)  

where vb i s  the bulk volume o f  the sample. 

merely a change of  volume rather  t h a n  a n  absolute volume i s  necessary i f  

the same i n i t i a l  and f i n a l  pressures a re  used f o r  b o t h  measurements. 

As seen from Equa t ion  3 . 2 4 ,  

The instrument used for the determination o f  these volumes i s  shown 

schematically i n  Figure 3.22. 

arrangement and  sealed w i t h  an O- r i n g .  

burette have jackets ( n o t  shown) t h r o u g h  which constant temperature water  

i s  c i rculated.  The mercury leveling bulb is used i n  conjunction w i t h  tbe 

gas buret te  t o  measure the f i n a l  gas volume. 

as a sens i t ive  detector for  the adjustment o f  the leveling bulb. The 

three-way stopcock connects the l e f t  or volume regulating p a r t  o f  the 

system. 

connected t o  an adequate vacuum l ine .  The vacuum gage i s  merely a mer- 

cury column supported by the difference i n  pressure between t h a t  i n  the 

system and the barometric pressure. I 

The core holder i s  closed by a screw 
I 

Both the core holder and  gas 

I 
The water manometer serve? 

I 

1 
I 

The vacuum regulator maintains a constant absolute pressure w h e n  

The system i s  made isothermal by using a water thermostat and flowjng 

water around the core holder and the gas burette for  an  hour .  W i t h  core 

holder i n  place, the toggle valve i s  opened momentarily t o  ensure the core 
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F ig .  3 .22  Apparatus f o r  Boyle's Law P o r o s i t y  
Measurements 
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holder i s  a t  atmospheric pressure. Then b o t h  toggle valves are  closed 

t o  i so l a t e  the core holder. Vacuum i s  applied t o  the gas  burette through 

the stopcock. When the desired vacuum is  achieved, pressure and  volume 

readings are  taken, which are  the two i n i t i a l  values for pressure and 

volume. The toggle valve connecting the core holder and gas burette i s  

now opened slowly. 

balancing the two levels o f  the water manometer. 

Volume, V 2 ,  and  pressure, P2, are measured a f t e r  

The above procedure , 

i s  repeated with the sample in the core holder t o  f i n d  volume, V 2 , a ,  

and pressure, P2. The grain volume of  the sample can be calculated by 

u s i n g  Equa t ion  (3 .24)  and  porosity can be determined by k n o w i n g  the 

bulk volume, V b ,  of the sample. 
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4. TEST RESULTS 

I n  order t o  explore the influence of  thermal s t ress ing ,  the strength 

a n d  porosity of virgin samples were compared t o  values i n  samples removed 

from slabs which had  been subjected t o  s ingle  and  multiple quenches. The 

i n i t i a l  s lab  temperature was 45OoF, which i s  typical or H D R  rock tempera- 

tures .  The temperature of t a p  water used for quenching was approximately 

70°F. 

heat t ransfer  coef f ic ien t ,  h ,  were determined as described previously in 

section 3.4. I n  predicting temperature-time and  thermal s t r e s s  behavior 

a value of h = 300 Btu/hrft O F  was assumed, which i s  representative of 

The quenching severity was t h a t  for  which the values o f  surface 

2 

the range o f  values determined experimentally and typical of values fourid 

in H D R  reservoirs.  I 

Specimen slabs were taken from larger blocks of S ier ra  White graniOe 

which i s  f ine  grained, grayish white, muscovite-biotite obtained from Rqy- 

mond Quarry (Raymond, Cal i fornia)  . The pertinent 

a re  l i s t ed  below. 

Density , 1 b / f t3  

Poisson's Ra t io  

Tensile s t rength,  ps 

Shear modulus, 10 psi 

Specific hea t ,  Btu/lb"F 

Coefficient of thermal expansion, 10-6/oF 

Thermal conductivity, Btu/hrft°F 

6 

An approximate chemical analysis 

'2 percent iron oxides, 3 percent 

percent combined water. 

properties of the rocld 

P 164 

V 0.30 

1100 

lJ 2.44 

0 .22  c P  I , 

4.12 

1.57 

s 74 percent s i l i c a ,  15 percent alumida, 

ime, 5 percent soda a n d  p o t a s h ,  a n d  0.3 
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4.1 Bending S t reng th  Tests  

T e n s i l e  s t r e n g t h  o f  t h e  quenched and non-quenched specimens were 

measured by l o a d i n g  t o  f r a c t u r e  i n  t h r e e  p o i n t  bending. 

t h e  bending s t r e n g t h  o f  e i g h t  specimen c u t  from a v i r g i n  rock .  

bending s t r e n g t h  was 1,835 p s i  w i t h  a 1 5  pe rcen t  c o e f f i c i e n t  o f  v a r i a t i o n .  

The u n i a x i a l  t e n s i l e  s t r e n g t h  was quoted as 1,100 p s i .  H ighe r  va lues o f  

t e n s i l e  s t r e n g t h  measured i n  bending t e s t s  a re  p robab l y  due t o  t h e  s m a l l e r  

volume o f  r o c k  be ing  s u b j e c t e d  t o  maximum t e n s i o n  and thus  a reduced 

chance o f  f l a w s  b e i n g  sub jec ted  t o  t h e  h i g h e r  s t resses .  

Table 4.1 shows 

The mean 

The bending s t r e n g t h  o f  specimens taken  f rom v a r i o u s  p o s i t i o n s  a lor lg  

t h e  l e n g t h  o f  t h e  quenched rock  a re  l i s t e d  i n  Table 4.2 th rough Table 4.5. 

Tables 4.2 and 4.3 a r e  f o r  one c y c l e  o f  quenching, w h i l e  t h e  o t h e r  two 

a r e  f o r  f i v e  c y c l e s  o f  quenching. These r e s u l t s  a r e  p l o t t e d  i n  F i g u r e  

4. l a  a l ong  w i t h  t h e  t h e o r e t i c a l  s t r e s s  d i s t r i b u t i o n  ( F i g u r e  4 . l b ) .  As 

can be seen, t h e r e  i s  a s i g n i f i c a n t  deg rada t i on  i n  s t r e n g t h  i n  t h e  spec% 

mens taken  f rom near  t h e  quenched face,  where t e n s i l e  thermal  s t r e s s  wag 

h i g h e r  than  t h e  f r a c t u r e  t e n s i l e  s t r e n g t h .  

no l o s s  of  s t r e n g t h  i n  specimens taken  from r e g i o n s  o f  compressive s t r e s s  

(see F igu re  4 . l b ) .  

c y c l e  o f  quenching and t w o - t h i r d s  f o r  f i v e  c y c l e s  o f  quenching. 

exposure of t h e  specimens t o  e l e v a t e d  temperature a lone  does n o t  appear 

t o  cause l o s s  o f  post-quench s t r e n g t h .  

On t h e  o t h e r  hand, t h e r e  i s  

The r e d u c t i o n  o f  s t r e n g t h  i s  about  one- hal f  f o r  one 

Also,  
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T a b l e  4 . 1  

Specimen No. 

BENDING STRENGTH OF VIRGIN GRANITE SPECIMENS 

1 

2 

3 

4 

5 

6 

7 

8 

Loca t i on 
(x/L) b ( i n )  h ( i n )  

F r a c t u r e  
Load (R) l b s  

0.18 

0.31 

0.43 

0.51 

0.59 

0.77 

0.90 

1.0 

2.05 

1.45 

1.475 

0.85 

1.00 

1.97 

1.48 

1.20 

0.3 

0.25 

0.275 

0.30 

0.30 

0.25 

0.25 

0.25 
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7 1  

80 

80 

60 

90 

90 

48 

1878 

1762 

1613 

2353 

1600 

1640 

2189 

1640 

T a b l e  4.2 

BENDING STRENGTH OF SPECIMENS AFTER O N E  Q U E N C H  

Loca t i on 
Spec imen No. ( x / L )  b ( i n )  

1 0.15 1.5 

2 0.31 1.5 

3 0.46 1.5 

4 0.62 1.5 

5 0.77 1.5 

6 0.85 0.7 

7 1.0 1.5 

h ( i n )  
F r a c t u r e  

Load (R)  lbs 

0.27 

0.27 

0.26 

0.26 

0.25 

0.25 

0.25 

45 

100 

90 

95 

90 

40 

70 

926 

2057 

1997 

2108 

2160 

1396 

1680 
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T a b l e  4.3 

BENDING STRENGTH OF SPECIMENS AFTER O N E  Q U E N C H  

Locat i o n  
Spec imen  No. ( x / L )  

1 0.18 

2 0.37 

3 0.55 

4 0.73 

5 0.92 

6 1.00 

F r a c t u r e  
b ( i n )  h ( i n )  Load ( R )  l b s  

1.5 0.27 45 

1.5 0.27 100 

1.5 0.26 90 

1.5 0.26 95 

1 .5  0.25 90 

0.69 0.25 70  

926 

2057 

1997 

2108 

2160 

1680 

T a b l e  4.4 

B E N D I N G  STRENGTH OF SPECIMENS AFTER FIVE QUENCHES 

~ L o c a t i o n  F r a c t u r e  F r a c t u r e  , 
S p e c i m e n  No. ( x / L )  b ( i n )  h ( i n )  Load ( R )  lbs 0 ( p s i )  ~ 

1 0.14 1.47 0.27 30 6 30 

2 0.29 1.46 0.27 100 2113 

3 0.43 1.46 0.28 110 2162 
I 

4 0.57 1.48 0.29 100 1808 

5 0.72 1.47 0.25 100 2449 

6 0.86 1.44 0.27 130 27 29 

7 1.00 1.46 0.33 110 1556 
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T a b l e  4.5 

BENDING STRENGTH OF SPECIMENS AFTER FIVE QUENCHES 

S p e c i m e n  No. 
L o c a t i o n  

( X / L )  

0.16 

0.31 

0.46 

0.61 

0.76 

0.84 

1.0 

b ( i n )  h ( i n )  
F r a c t u r e  

Load  ( R )  l b s  

1.5 

1.44 

1.44 

1.44 

1.44 

0.94 

1.375 

0.30 

0.30 

0.30 

0.30 

0.30 

0.28 

0.60 

50 

110 

95 

1001 

95 

55 

60 

8 30 

1833 

1652 

1760 

1896 

1683 

1570 
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4 . 2  Porosity Evaluation 

Porosity was measured using b o t h  the saturation method and  Boyle's 

Law Porisimeter ( B L P ) .  

s ince the resu l t s  were n o t  reproducible and  there was a large variation 

even f o r  virgin rock. 

a t o r y  was n o t  enough t o  give correct  estimates for low porosity rock. 

Porosity measurements done by the saturation method are  given in Table 

4.6. 

1.4 t o  2 0. Porosity increases t o  3.5 - 4.0 a f t e r  one cycle o f  quenching 

and  t o  4 .5  - 5.0 a f t e r  five cycles of quenching. 

4 .3  Dye Penetrant Method 

The measurements by BLP are  n o t  mentioned here 

The accuracy of the se t  u p  available in the labor- 

As can be seen, the porosity of  a n  unquenched rock l i e s  between 

Direct observation of cracks was attempted by applying dye penetrant 

t o  one face of quenched a n d  non-quenched specimens and a developer used 

t o  look a t  the micro cracks. I t  was seen t h a t  the quantity of  dye fixed 

t o  the quenched specimens was much more t h a n  t h a t  for  virgin rock. No 

macro cracks were observed. I t  showed t h a t  there might be micro cracks 

although i t  did n o t  provide any quant i ta t ive evaluation o f  them. 

dye was applied t o  one face o f  quenched specimens, i t  seeped t h r o u g h  t o  

the other s ide much fa s t e r  t h a n  i n  ones which were heated a n d  cooled 

slowly in the a i r .  

l o n g  time t o  seep in a virgin rock. 

t ive ly  t h a t  quenching increased the porosity of the rock, perhap due t o  

micro crack formation. 

When 

Also, dye e i the r  did n o t  seep t h r o u g h  or t o o k  a very 

These observations showed qualita-  
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Tab le  4.6 

P O R O S I T Y  MEASUREMENT BY SATURATION METHOD 

V i r q i n  Rock 

Sample No. 

1 23.8930 0.1372 

2 25.0170 0.1592 

3 23.2983 0.1121 

4 28.4071 0.1313 

5 26.3138 0.1626 

6 30.5044 0.1446 

7 22.6118 0.1022 

Quenched Rock 

1 21.0310 0.2962 

one 2 26.3065 0.3285 
c y c l e  

3 15.5385 0.2287 

V , W  

9.42 

9.83 

9.13 

11.07 

10.39 

11.86 

8.96 

8.92 

11.1 

6.6 

4 25.3804 

f i v e  5 25.8080 
c y c l  es 

6 18.6540 

CpW 

- 
1.8 

2.0 

1.5 

1.5 

1.9 

1.5 

1.4 

4.1 

3.7 

4.3 

0.8943 10.69 4.4 

0.4065 10.9 4.7 

0.3619 7.9 5.7 
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5. DISCUSSION 

This exploratory study has i n d  

granite can be considerably reduced 

Moreover, a substantial  increase i n  

regions . 
According t o  Murphy's analysis 

continued cooling will occur i n  H D R  

set-up shown in Figure 5.1 

Since only a small p o r t i o n  

the block would remain a t  

long periods o f  time. The 

cated t h a t  the strength o f  quenched 

i n  regions of  t e n s i l e  thermal s t r e s s .  

porosity was also observed i n  those 

[ZI, crack formation a n d  growth  w i t h  

reservoirs when t ens i l e  thermal s t r e s s  

exceeds the compressive tectonic s t r e s s ,  assuming t h a t  the t ens i l e  strength 

of the rock i s  negligible. The increase i n  p o r o s i t y  due t o  t ens i l e  thermal 

s t ress ing  should promote the opportunities for  rock t o  sa tura te  and  increase 

i t s  pore pressure t o  hydrostatic levels .  

should counteract the tectonic s t r e s s ,  thereby reducing the "effect ive" 

s t r e s s  t o  be overcome by t ens i l e  thermal s t r e s s .  T h i s  e f f e c t ,  along w i t h  

the reduction i n  rock t ens i l e  s t rength,  should increase the propensity 

f o r  and r a t e  o f  thermal crack p r o p a g a t i o n .  

I n  t u r n ,  the hydrostatic s t r e s s  

Absence o f  large cracking i n  these experiments was p r o b a b l y  due t o  

the small s i z e  of the specimens and t o  t he i r  lack of  constraint  by sur- 

r o u n d i n g  rock such as would be present i n  HDR reservoirs.  The quenching 

could provide a simulation o f  constraint.  

o f  the block would  be quenched, the r e s t  o f  

t s  i n i t i a l  elevated temperature for  re la t ive ly  

s t r e s s  developed i n  the quenched region should 
I 

be a be t te r  approximation of the constrained case. 

the set-up is  t h a t  the analysis o f  t ransient  temperature and  thermal 

s t r e s s  behavior would be more complicated t h a n  i n  the case tested here. 

Ideally,  the block should also be subjected t o  externally applied com- 

pressive s t r e s s  on i t s  faces (except for the quenched face and the opposite 

one), b u t  t h i s  wou ld  require a much more elaborate and cost ly  experimental 

The disadvantage of 

set-up. 
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The absence o f  macro cracking i n  the specimens used i n  these pre- 

l iminary  t e s t s  may also have been due t o  t he i r  re la t ive ly  h i g h  i n i t i a l  

porosity ( =  2 percent).  

specimens may ac t  t o  a r r e s t  p r o p a g a t i o n  of  micro cracks which h a d  been 

nucleated by t e n s i l e  thermal s t r e s s .  On the other h a n d ,  as noted 

previously, porosity may enhance growth o f  larger thermal cracks t h r o u g h  

introduction o f  hydrostatic pore pressure i n  actual reservoirs.  

As discussed i n  Chapter 2 ,  porosity i n  small 

Future experiments on the influence o f  thermal s t ress ing  on rock 

behavior could also u t i l i z e  the exis t ing Stanford Geothermal Program 

reservoir model. By stacking large blocks of  regular geometry i n  the 

pressure vessel,  s igni f icant  thermal s t resses  should be generated i n  

blocks near the bot tom o f  the vessel d u r i n g  "cold sweep" heat t ransfer  

experiments. 

Other experiments could u t i l i z e  blocks w i t h  flaws which have been 

cut into the surface t o  determine i f  the flaws would grow under thermal 

s t ressing.  Such "pre-existing" flaws would provide a simulation o f  

natural flaws which are  l ike ly  t o  e x i s t  i n  H D R  rock. 

Future experiments should also check the influence o f  thermal 

s t ress ing  on the thermal conductivity o f  rock. 

regions which experience s igni f icant  t ens i l e  thermal s t r e s s  may also 

experience a s igni f icant  change i n  conductivity, thereby affect ing the 

heat t ransfer  t o  the cooling water. 

conductivity i s  l i ke ly  t o  increase or  decrease or how s igni f icant  the 

e f f ec t  m i g h t  be. T h i s  cer tainly seems worth investigating. I f  s i g n i -  

f icant ,  changes i n  conductivity w i t h  thermal s t ressing could be incor- 

porated i n t o  a n  analyt ic  model for  reservoir heat t ransfer .  

I t  i s  conceivable t h a t  

I t  i s  n o t  apparent whether the 
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6. CONCLUS I O N S  

(1) Tensile thermal s t r e s s  produced by cooling conditions repre- 

sentat ive o f  H D R  reservoirs caused a s ignif icant  reduction i n  granite 

strength and a substantial  increase in porosity. 

( 2 )  Strength reductions and porosity increases may f a v o r  fo rmat ion  

a n d  growth o f  larger  thermal cracks i n  actual reservoirs by reducing 

local rock fracture toughness and allowing hydrostatic pore pressure t o  

counteract tectonic compressive s t r e s s .  
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APPENDIX: Computer Program to Evaluate 
Transient Thermal Stresses 

CCCCCC 
C THE PROGRAM CALCULATES TENPERATURE PROFILE FOR A 
C SEMI-INFINITE SOLID USING SIMPSON'S RULE OF 
C INTEGRATION. THERMAL STRESSES ARE ALSO EVALUATED 
C USING SINPSON'S RULE OF IKTEGRATION. 
CCCCCC 
C TENPERATURE OF A SEHI-INFINITE SOLID SUBJECTED TO 
C THERMAL SHOCK 
CCCCCC 

IMPLICIT REAL*8 (A-H,O-Z) 
DINENSION THETA(201 IxT(201 lrSTRESS(201 )rTHETA1(1011 

x=o.o 
DELX=O. 0 1 
M1=201 
N1=101 

S,Xl(lOl ),SUn1(201 ),SuN2(201) 

N2=Nl-2 
1 00 FORMAT( F10.5 1 

CCCCCCC 
C AL = THERMAL DIFFUSIVITY 
C KS = THERMAL CONDUCTIVIYT OF THE GRANITE 
C PL = LENGTH OF THE GRANITE BLOCK 
ccccccc 

AL=O .042 
KS=1 .57 
PL= 1 0. /I 2. 
DO 18 1=1 ,Nl 
X1( I 1 =O - 0  1 *DF LOAT( I- 1 1 

K=O 

K=Kt1 
BIOTN=H*P WKS 
TAUl =AL*H*H/( KS*KS 1 

18 CONTINUE 

9 READ(5,lOO) H 

DO 15 J=2,Ml 
T( J ) =O . 0 1 *DF LOAT( J- 1 
DD=PL*PL/( 4.O*AL*T( J 1 )  
TAU=DSQRTI TAUl *T( J 1 )  
D=DSQRT( DD 1 
TAUZ=TAU*TAU 

DX=D*Xl(I) 
Y =OX t TAU 
IF(Y.GT.12.1GO TO 24 
THETA1 ( I )=DERF(DX It(DEXP(X1 (I )*BIOTN+TAUZ 1 )*( 1 .-DE 
GO TO 25 

24 THETA1 ( I )=DERF(DX) 
25 CONTINUE 

DO 25 I=l,Nl 

SUnl ( J )=O . 0 
SUN2( J )=O .O 

SUnl~J~=SUHl~J~tTHETA1(I1+4.*THETAl~I+1 )tTHETA1(1+2) 
SUn2( J)=SUN2(J)tX1(I)*THETAl~I~t4.*Xl(Itl )*THETAl(Itl 

DO 26 I=lrNZ,2 

B+Xl(It2)*THETAl(It2) 
26 CONTINUE 

DX=D*X 
YzDXtTAU 
IF(Y.GT.12.) GO TO 4 
THETA( J)=DERF(DX)t(DEXP(X*BIORJ+TAU2) I*( 1 .-DERF(Y)I 
GO TO 35 
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4 THETA1 J )=DERF(DXl 
CCCCCC 
C EVALUATION OF THERflAL STRESSES 
CCCCCCC 

35 

1 5  CONTINUE 

STRESS1 J 1 =-I THETA( J I - 14.0-6.0*X )*SUM1 ( J )*DEU(/3.0- 
$6.0*( Z . * X - 1 . 0  )*SUM21 J l*DEW3.O 1 

DO IO I = Z , f l I  
hL?ITEIlOslOl 1 T[I)sSTRESSlI) 

10 CONTINUE 

200 FORflAT( 'JOIN' 1 
h'RITE( 10 ,200  1 

1 0 1  FORMATl2X~F10~8~2X,FlZ.8) 
IF (K.NE.6) GO TO 9 
STOP 
END 

$DATA 
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