UNSTEADY-STATE PRESSURE RESPONSE IN A SLOTTED LINER

A REPORT
SUBMITTED TO THE DEPARTMENT OF PETROLEUM ENGINEERINGOF STANFORD UNIVERSITY
I N PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
'MASTER OF SCIENCE
by
David Spivak
October 1981

- Copyright 1981
by

David Spivak

ACKNOWLEDGEMENTS

I wish to express my appreciation to Professor Roland Horneof the Department of Petroleum Engineering for his patience,encouragement and guidance as my research advisor. Also
gratitude goes to the Department of Petroleum Engineering of
Stanford University and to Tenneco Research Fund who have
supported my studies. I am much indebted to my mother, Julia
Spivak, for her continued encouragement, understanding andsupport during this work.

A semi- analytical solution has been obtained for the unsteadystate pressure response in a slotted liner.

The solution was obtained by means of a source function, assuming constant rate of production, penetration ratio of 0.5 (i.e. ratio of total open interval to total thickness) and various slot lengths (no storage or skin effects were considered)

For integration purposes, satisfactory results were obtained using Simpson's rule.

The resultu show that inside and outside the slotted liner, the pseudo-skin factor due to restricted flow to the well is negligible for 6 vertical rows of slots (3 pairs of vertical staggered rows, or 3 slots in one ring of slots), even at early time of production. On the other hand, on the surface of the liner, there is a pseudo-skin factor, unless the number of rows is increased.

There is not much difference in pressure drop in a liner with many and short slots, as compared to a liner with a fewer and longer slots, but with the same number of vertical rows.

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS 17
ABSTRACT マ

1. INTRODUCTION 1
2. UNSTEADY-STATE PRESSURE RESPONSE IN A SLOTTED LINER..... 4
2.1 Mathematical Derivation 4
2.2 Short-Time Behaviour 20
2.3 Long-Time Behaviour 23
3. COMPUTATIONAL PROCEDURE AND NUMERICAL RESULTS 36
3.1 Computer Runs 38
3.2 Results and Calculation of Pseudo-Skin Factors 39
4. NOMENCLATURE 48
5. REFERENCES 50
APPENDIX A: The Computer Program 52
APPENDIX B: Tabulated Results 59
APPENDIX C: Paper SPE 10785 to be Presented at the $\mathbf{1 9 8 2}$California Meeting . (This Paper is based on this workand was Prepared Subsequent to the Completion of thisReport)93

LIST OF FIGURES

Page
Figure

1. Slotted Liner 3
2. Point Source in an Infinite Medium. 6
3. Section of a Liner Boprrsgetgeleqlvertical
Rows of Slots. 9
4. Schematic Diagram of che bqodel 12
5. Dimensionless Pressure Drop Vs. Ratio of
Dimensionless Time thavidmentrinatless Distance
Squared, for Various Arrangements of Slots
for $r_{D}=1$. 40
6. Dimensionless Pressure Drop पs. Dioensionless
Time for various Arrangements of Slots
for $r_{D}=0.5$ 41
7. Dimensionless Pressure Drop Vs. Ratio ofDimensionless Time to Dimensionless Distance
Squared, for Various Arrangements of Slotsfor $r_{D}=2$42

LIST OF TABLES

PageTable
1: $\quad P_{D} \quad 7 s, t_{D}$ for Continuous Surface Cylinder Source.. 43
2: OD 7 . \boldsymbol{E}_{0} for 3 Pairs of Staggered vertical Rowsof Slots, Dimensionless Slot Length of 0.4167 and
$r_{D}=0$.44
3 :4:
5: $\quad P_{D} \quad V s . t_{D}$ for 30 Pairs of Staggered Vertical Rowsof Slots, Dimensionless Slot Length of 0.4167 and
${ }^{r}{ }_{D}=1$.47
3-1; $P_{D} \boldsymbol{\nabla s} \cdot t_{D}$ for 1 Pair of Staggered Vertical Rowsof Slots, Dimensionless Slot Length of 0.2 and$\mathbf{r}_{\mathrm{D}}=1$.60
B-2: P_{D} Vs. t_{D} for 1 Pair of Staggered Vertical Rowsof Slots, Dimensionless Slot Length of 0.4167 and61

LIST OF TABLES(COnt.)

B-3 :	$P_{0} \quad 7 s . t_{0}$ for 1 Pair of Staggered Vertical Rows	
	of Slots, Dimensionless Slot Length of 0.5714 and	
		62
B-4:	P_{D} Vs. $\varepsilon_{\text {d }}$ for 1 Pair of Staggered Vertical Rows	
	of Slots, Dimensionless Slot Length of 1.0000 and	
		63
B-5:	PD Vs. $\epsilon_{\text {D }}$ for 2 Pairs of Staggered Vertical Rows	
	of Slots, Dimensionless Slot Length of 0.2 and	
		64
B-6:	P Vs. G_{0} for 2 Pairs of Staggered Vertical Rows	
	of Slots, Dimensionless Slot Length of 0.4167 and	
		65
B-7 :	${ }^{\text {P }}$ D Vs. $t_{\text {d }}$ for 2 Pairs of Staggered Vertical Rows	
	of Slots, Dimensionless Slot Length of 0.5714 and	
	$\mathrm{r}_{\mathrm{D}}=1$.	66
B-8 :	${ }^{2}$ (Vs. $t_{\text {D }}$ for 2 Pairs of Staggered Vertical Rows	
	of Slots, Dimensionless Slot Length of 1.0000 and	
	$\mathrm{r}_{\mathrm{D}}=1$.	67

Table
B-9: 9_{D} Vs. ε_{0} for 3 Pairs of Staggered Vertical Rowsof Slots, Dimensionless Slot Length of $\mathbf{0 . 2}$ and$r_{0}=1$.68
B-10: P_{0} Vs. to for $\mathbf{3}$ Pairs of Staggered Vertical Rows of Slots, Dimensionless Slot Length of 0.4167 and $r_{D}=1$ 。 69
B-1: $\quad \rho_{0} \quad 4 s, t_{0}$ for 3 Pairs of Staggered Vertical Rowsof Slots, Dimensionless Slot Length of 0.5714 and$r_{D}=1$.70
B-12: $\quad \rho_{D}$ Vs. ϵ_{D} for 3 Pairs of Staggered Vertical Rowsof Slots, Dimensionless Slot Length of 1.0000 and$r_{D}=1$.71
B-13: P_{0} Vs. Go for 4 Pairs of Staggered Vertical Rows of Slots, Dimensionless Slot Length of 0.4167 and
$r_{0}=1$ 72
B-14: P_{D} 7s. ${ }^{t}$ D for 6 Fairs of Staggered Vertical Rowsof Slots, Dimensionless Slot Length of 0.2 and73

LIST OF TABLES(Cont,)

Page

Table

LIST OF TABLES(Cont.

Page

Table

LIST OF TABLES(Cont .)

B-27: P_{D} Vs. t_{D} for 12 Pairs of staggered Vertical Rows of Slots, Dimensionless Slot Length of 0.4167 and $I_{D}=0.5$86

B-28:

B-29:

B-30 :

B-31: P_{D} Vs. t_{D} for 12 Pairs of Staggered Vertical Rows of Slots, Dimensionless Slot Length of 0.4167 and $I_{D}=2$.
P_{D} Vs. t_{D} for 3 Pairs of Staggered Vertical Rows of Slots, Dimensionless Slot Length of 0.4167, Location of calculated Pressure Drop at $1 / 4$ of Circumferencial Distance between two "i" Vertical Rows of Slots and $\Sigma_{D}=1$. xi1i

LIST OF TABLES(Cont.)

Table
B-33 P_{D} Vs. t_{D} for 3 Pairs of Staggered Vertical Rows of Slots, Dimensionless Slot Length of 0,4167, calculated Pressure Drop is at Center of Formation
 92

1. INTRODUCTION

Sand problems have occurred in the oil and gas industry since shortly after the first oil well discovery. These problems rise due to formation movement under stresses resulting from fluid flow to the wellbore and pressure drop in the reservoir. Laboratory studies show formation failure by 3 mechanisms when sand control is inadequate. The first one is grain movement away from formation into the wellbore under low fluid velocities (or low pressure drop). At higher velocities, small masses of sand break away leading to rapid failure. The third mechanism occurs under some conditions; the formation becomes fluidized, resulting in gross flow of sand with produced fluid. Often sand control is achieved at the cost of reduced well production. Sometimes it is economically preferred to allow more sand to be produced in spite of high costs for pump maintenance, sand disposal, et ${ }^{3}$.

The main sand control methods are mechanical and consolidation ones. Mechanical sand'control provides a physical barrier to sand movement. It is either a screen (slotted liner) or a gravelpack between $a \operatorname{screen}$ and the formation ${ }^{3}$. These are wire wrapped and slotted pipe screens. The slotted liner is a preperforated tubing. Usually the slots are milled and machined ic vertical rows, being parallel to the axis of the pipe. They are either straight-sided or have undercut sides (vee-shaped). The milling procedure produces a smooth finish for the slot sides, thus reducing the possibility of turbulance within the slot. On
the other hand, undercut slots, which are narrower at the outside surface of the pipe than at the pipe bore, reduce the chance of clogging, since any grain of sand entering the slot will immediately find additional clearance to pass through it without wedging or bridging ${ }^{4}$.

The most common patterns of arrangements of slots are the staggered vertical rows, multiple staggered vertical and horizontal slots (Fig. 1).

This work investigates the unsteady-state pressure response due to production chrough a liner with staggered vertical rows of slots.

Standard spacing of slots is $6^{\prime \prime}$ (center to center) between the slots in each vertical row. Slot lengths are usually $1 / 2{ }^{\prime \prime}$ to $2^{\prime \prime}$ depending on their widths (which are usually between 0.01^{*} to 0.5"). To determine the number of rows of slots for any given size of pipe, the usual practice is to specify two rows for each nominal pipe diameter. But this oaries, however, for where sand conditions require slots of narrow width, a greater number of slots can be used ${ }^{4}$.

FIGURE I
SLOTTED LINERS
(After Buzardc, et a1 ${ }^{3}$)
2. UNSTEADY-STATE PRESSURE RESPONSE IN A SLOTTED LINER

The following represents the scheme of the problem, the solution and the discussion of results.
2.1 Mathematical Derivation

The transient (unsteady-state) flow of a compressible
fluid in a porous medium is described by the diffusivity equation derived from the continuity equation and Darcy's Law'. In isotropic and homogeneous porous medium, this equation can be expressed in cylindrical coordinates as*:

$$
\begin{equation*}
\frac{\partial^{2} p}{\partial r^{2}}+\frac{1}{r} \frac{\partial p}{\partial r}+\frac{\partial^{2} p}{\partial z^{2}}=\frac{1}{n} \frac{\partial p}{\partial t} \tag{1}
\end{equation*}
$$

where $\pi=\frac{k}{\phi \mu c_{t}}$ is the diffusivity term, when the effect of gravity is neglected and the permeabilities, porosity and fluid viscosity are assumed constant.

In Cartesian coordinates, the differential equation is:

$$
\begin{equation*}
\frac{\partial^{2} p}{\partial x^{2}}+\frac{\partial^{2} p}{\partial y^{2}}+\frac{\partial^{2} p}{\partial z^{2}}=\frac{1}{\eta} \frac{\partial p}{a t} \tag{1a}
\end{equation*}
$$

The solution of a particular' problem is determined by the initial and boundary conditions.

Numerous analytical and numerical method have been developed to solve such flow problems. The first ones were used to solve heat conduction problems and later on were applied to petroleum engineering. Perhaps the most known method is Lord Kelvin's instantaneous point source solu-ion ${ }^{5}$:
*Nomenclature defined at end of text

$$
\begin{equation*}
\Delta p(M, t)=\frac{q}{8 \phi c_{t}(\pi n t)^{3 / 2}} \cdot \exp \left(-\frac{d^{2}}{4 \pi t}\right) \tag{2}
\end{equation*}
$$

\&q, 2 represents the pressure drop created at a certain point M in a reservoir of infinite extent by an instantaneous point P, of strength q at a distance $d(=9 M)$ from point M. The strength \mathbf{q} is the withdrawal rate per volume of source; it is also defined as a withdrawal rate per unit length or area of source, depending on its nature, 1,e, line source or surface cylinder source ${ }^{7}$. The distance d can be expressed in terms of Cartesian or cylindrical coordinates (see Fig. 2). From eq. 2 all other solutions are obtainable by integration. The instantaneous infinite line source case, for example, is obtained by expressing d in terms of $\bar{\delta}, \forall, z$ coordinates and integrating z from $-\Rightarrow$ to $+\infty$. The method was firstly applied in groundwater hydrology by Theis ${ }^{15}$. If there is a continuous withdrawal of fluid of strength q from time 0 to t, the pressure drop created by a continuous point source is given by:

$$
\begin{equation*}
\Delta p(M, t)=\frac{q}{8 \phi c_{t}(\pi \eta)^{3 / 2}} \int_{0}^{t} \frac{1}{\left(t-t^{\prime}\right)^{3 / 2}} \exp \left[-\frac{d^{2}}{4 \pi\left(t-t^{2}\right)}\right] \tag{3}
\end{equation*}
$$

Let us now consider our actual problem. The reservoir of thickness L has an upper and lower impermeable boundaries. Therefore the boundary conditions are:

$$
\begin{align*}
& \frac{\partial p}{\partial z}(x, y, 0, t)=\frac{\partial p}{\partial z}(x, y, L, t)=0 \tag{4}\\
& x \rightarrow \infty \text { or } y^{\rightarrow-\infty}, P(x, y, z, t)=p_{1} \tag{5}
\end{align*}
$$

The initial condition is:

$$
\begin{equation*}
p(x, y, z, 0)=p_{1} \tag{6}
\end{equation*}
$$

In cylindrical coordinates the above conditions are:

FIG. 2 - POINT SOURCE in AN INFINITE MEDIUM

$$
\begin{align*}
\frac{\partial p}{\partial z}(r, 0, t) & =\frac{\partial p}{\partial z}(r, L, t)=0 \tag{Ha}\\
p(\infty, z, t) & =P_{i} \\
p(r, z, 0) & =p_{1}
\end{align*}
$$

Also,siace it is assumed that the rate over the open interval is constant, the boundary condition is:

where h is the slots length, and w is the radius for each slot .

Note that in deriving and solving eq. 1, the following assumptions were made:

1. Constant Thickness and Permeability.
2. Darcy's Law applies, Laminar Flow.
3. Radial symmetry exists, Gravitational effects negligible.
4. Fluid Viscosity is constant.
5. The liquid is of small and constant compressibility, and the pressure gradients are small everywhere, i.e., 2

$$
c\left(\frac{\partial p}{\sim}\right) \quad \text { is negligible. }
$$

6. Isothermal Flow.
7. Flow into the slots is radially symmetrical.

* Eowever, Musket ${ }^{12}$ also showed that a simpler boundary condition can be introduced with a negligible error in., ;

8. The porous Medium inside and outside the well is homogeneous.

A detailed diagram of all variables involved in computing the pressure drop at point \mathbf{M} is shown on Fig. 3, and an analytic solution, based on the imape source method of Nisle ${ }^{13}$ has been obtained as follows:

The pressure drop created at point M (Fig. 2) by a single slot is obtained by integrating a unit impulse point with respect to time and space. Consider eq. 4 for certain vertical slot "i" with a length from $z=0$ to $z=h$ oriented at an angle a with respect to the \mathbf{X} axis (Fig. 3). The distance $d_{\mathbb{1}}$ from any point \mathbf{P} on the slot to any point M in the porous medium will be:

$$
\begin{equation*}
d_{1}^{2}=(z '-z m) 2+\left(x_{m}-r_{q} \cos \alpha\right) 2+\left(y_{m}-r_{W} \sin \alpha\right) 2 \tag{8}
\end{equation*}
$$

where $x_{\|}, 7_{\infty}, z_{\text {而 }}$ are the coordinates of point M in space and ξ_{M} is the slotted liner radius.

Let $\quad r_{1}{ }^{2}=\left(x_{m}-r_{w} \cos \alpha\right) 2+\left(y_{m}-r_{w} \sin \alpha\right) 2$
so eq. 8 is given by:

$$
\begin{equation*}
d_{i}^{2}=\left(z^{\prime}-z_{\pi}\right)+r_{1} 2 \tag{8a}
\end{equation*}
$$

Integrating the position of the s'ource P along a staight line from 0 to h yields the instantaneous pressure drop:

$$
\begin{equation*}
\Delta p_{i}(M, t)=\frac{q_{i}}{8 \phi c_{t}(\pi \eta t)^{3 / 2}} \int_{0}^{h} \exp \left[-d_{i}^{2} / 4 \pi t\right] d z \text {, } \tag{9}
\end{equation*}
$$

and the continuous pressure drop is:

$$
\Delta p_{i}(M, t)=\frac{q_{i}}{8 \phi c_{t}(\pi \eta)^{3 / 2}} \int_{0}^{t} \frac{1}{\left(t-t^{\prime}\right)^{3 / 2}}\left\{\int_{0}^{h} \exp \left[-d_{i}^{2} / 4 \pi\left(t-t^{\prime}\right)\right] d z^{\prime}\right\} d t^{\prime}(10)
$$

or:

Fig. 3-Section of a Liner with Staggered Vertical Rows of Slots

$$
\begin{align*}
\Delta p_{i}(M, t) & =\frac{q}{1} 8 \phi c_{t}(\pi n)^{3 / 2}
\end{align*} \int_{0}^{t} \frac{\exp \left[-r_{1}^{2} / 4 n\left(t-t^{\prime}\right)\right.}{\left(t-t^{\prime}\right)^{3 / 2}} . ~\left(\int_{0}^{t} e x p\left[-\left(z^{\prime}-z_{m}\right)^{2} / 4 n\left(t-t^{\prime}\right)\right]\right\} d t^{\prime} .
$$

Eq. 10a represents the continuous pressure drop created at point M due to production of strength q_{i} through one slot "i";

Let $\tau=t-t$ and $d t=-d \tau$
also,
$u=-\frac{z^{\prime}-z_{m}}{2 \sqrt{\eta \tau}}$ a $\quad d u=\frac{d z^{\prime}}{2 \sqrt{\eta \tau}}$
so, eq. 10a is written as:

$$
\begin{align*}
& \Delta p_{i}(M, t)= \\
& 8 \phi c_{t}(\pi n)^{3 / 2} \int_{0}^{t} \frac{q_{i}}{\tau^{3 / 2}} \tag{11}\\
& \left.\quad \frac{z_{m}-h}{2 \sqrt{n t}} e^{-u^{2}} d-2 \sqrt{2} d u\right\} d \tau \\
& 2 \sqrt{2 \sqrt{n t}}
\end{align*}
$$

The error function is defined as:

$$
e r f(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{\mathrm{x}} e^{-u^{2}} d u
$$

Eq. 11 can therefore be written in terms of the error function as:

$$
\begin{equation*}
\Delta p_{i}(M, t)=\frac{q_{1}}{8 \phi c_{t} \pi n} \int_{0}^{t} \frac{\exp \left[-\tau_{1}^{2} / 4 \eta \tau\right)}{\tau}\left\{\operatorname{erf} \frac{z_{m}}{2 \sqrt{n \tau}}-\operatorname{erf} \frac{z_{m}^{-h}}{2 \sqrt{n \tau}}\right\} d \tau \tag{12}
\end{equation*}
$$

The total continuous pressure drop at point M is obtained by summing the Ap's created by all the slots in the liner (Figs. 3
\& 4). It should be mentioned that the no-flow boundary conditions may be satisfied by adding an infinite series of image slots. Let us now introduce some dimensionless variables:

$$
\begin{align*}
& t_{D}=\frac{k t}{\phi \mu c_{t} r_{w}^{2}}=\frac{\eta \cdot t}{r_{w}^{2}},(t=\tau) \tag{13}\\
& P_{D}=\frac{2 \pi k L}{Q \cdot \mu} \Delta p \tag{14}\\
& r_{D}=r / r_{W} \tag{15}\\
& z_{D}=z / r_{W} \tag{18}\\
& z_{Q D}=z_{W} / r_{W} \tag{16a}\\
& h_{D}=h / r_{W} \tag{17}\\
& L_{D}=L / r_{W} \tag{18}
\end{align*}
$$

Note that in defining the dimensionless pressure drop op_{D}, the total production 0 is considered. The relation between Q and the strength $\mathbf{q}_{\mathbf{1}}$ (rate per unit length) of the one slot is given as follows: if NS is the number of pairs of staggered vertical rows (i.e., each pair contains one row of slots "1" and one row of slots "j", see Figs. $\mathbf{3} \boldsymbol{\&} 4$). NS represents as well the number of slots in one ring of slots and n is the number of slots in one vertical row; also, the total cumulative length of n slots is L/2 (one half of the formation thickness), that is penetration ratio of $\frac{1}{2}$, then the strength of 1 slot is:

$$
\begin{equation*}
q_{1}=\frac{0}{(0.5 \mathrm{~L} / \mathrm{n}) 2 \cdot N S \cdot n}=\frac{0}{L \cdot N S} \tag{19}
\end{equation*}
$$

and the pressure drop created et point M by one slot is:

FIG. 4 - SCHEMATIC DIAGRAM OF THE MODEL

$$
\begin{equation*}
\Delta p_{1}=\frac{p_{D} Q_{\mu}}{2 \pi k L}=p_{D} \cdot \frac{q_{1} \mu L \cdot N S}{2 \pi k L}=p_{D} \cdot \frac{q_{1} y \cdot N S}{2 \pi k} \tag{20}
\end{equation*}
$$

while the dimensionless pressure drop is given by:

$$
\begin{align*}
& P_{D_{i}}(M, t D) \cdot \frac{q_{i} \mu \cdot N S}{2 \pi k}=\frac{q_{1}}{8 \phi c_{t} \pi n} \int_{0}^{t^{\prime} D} \frac{\exp \left[-r_{i D}^{2 / 4 t_{D}}\right]}{t_{D}} . \\
& \quad \cdot\left\{\operatorname{erf} \frac{z_{m D}}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z_{m D}-h_{D}}{\sqrt{4 t_{D}}}\right\} d t_{D} \tag{21}
\end{align*}
$$

or, after arrangement of terms:

$$
\begin{gather*}
p_{D_{i}}\left(M, t_{D}\right)=\frac{1}{4 \cdot N S} \int_{0}^{t_{D}} \frac{\exp \left[-r_{i D}{ }^{2} / 4 t_{D}\right]}{t_{D}} . \\
\quad \cdot\left\{\operatorname{erf} \frac{z_{m D}}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z_{m D^{-h} D}^{\sqrt{4 t_{D}}}}{\sqrt{2}} d t_{D}\right. \tag{2la}
\end{gather*}
$$

this integral can be evaluated numerically using simpson's rule.
One of the last stages of the mathematical derivation is to apply eq. 21 aver all the slots in one row (i,e,, n slots) and then the summation is done 'over all the vertical rows in the liner, yielding the total dimensionless pressure drop created a.t point M by production through a slotted liner, This stage is carried out as follows: considering Fig. 4 which shows 3 vertical rows of slots; the right and the left ones are slots "i", and the staggered central one is a row of slots "j". As can be seen, the cumulative lengths of the slots in one row is $L / 2$, which is one. half of the formation thickness, In addion to the real slots,
there are also image ones in order to satisfy the boundary conditions. In the right row (and of course in all the other vertical rows of slots "i") there are two types of slots: one is adjacent to the upper boundary and the second type is slots which are away from the boundary. The slots " ${ }^{\prime}$ " (staggered rows, $\boldsymbol{F} 1 \mathrm{~g}$. 4) are also either adjacent to the lower boundary or away from it. So, for convenience purpose let us consider separately the contribution of each type of slots to the total pressure drop. We begin with the slot "1" adjacent to the upper boundary:

$$
\begin{align*}
& \Delta P_{D_{1}}^{i}\left(M, t_{D}\right)=\frac{1}{4 \cdot N S} \sum_{i=1}^{N S} \int_{0}^{t_{D} \exp \left[-r_{i D}^{2} / 4 t_{D}\right]} t_{D} . \\
& \text { - } \operatorname{erf} \frac{z_{m D^{+h} D}}{\sqrt{4 t_{D}}}=\operatorname{erf} \frac{z m D^{-h} D}{\sqrt{4 t_{D}}} \\
& +\sum_{n=1}^{\infty}\left[e r f \rightarrow \frac{\left.z D^{+\left(2 n L_{D}\right.}+h_{D}\right)}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z m D+\left(2 n L_{D}-h_{D}\right)}{\sqrt{4 t_{D}}}\right. \\
& +\operatorname{erf} \frac{z_{m D^{-\left(2 \pi L_{D}\right.}}^{\left.-h_{D}\right)}}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{\left.\left.z_{\left.m D^{-\left(2 \pi L_{D}+h_{D}\right.}\right)}^{\sqrt{4 t_{D}}}\right]\right) d t_{D}}{} \tag{22}
\end{align*}
$$

Eq. 22 can be written also in the following way:

$$
\begin{align*}
& \quad \Delta p_{D_{1}}^{1}\left(M, t_{D}\right)=\frac{1}{4 \cdot N S} \sum_{1=1}^{N S} \int_{0}^{t_{D}} \frac{\exp \left[-r_{1 D}^{2} / 4 t_{D}\right]}{t_{D}} . \\
& \cdot\left\{\sum_{n=-\infty}^{+\infty}\left[\operatorname{erf} \frac{z_{m D}+2 n L+h}{\sqrt{4 t_{D}}}+\operatorname{erf\frac {mD}{+2nL_{D}-h_{D})}} \sqrt{\sqrt{4 t_{D}}}\right]\right] d t_{D} \tag{22a}
\end{align*}
$$

Then the pressure drop caused by slots "i" which are away from the upper boundary is given by:

$$
\begin{align*}
& \Delta p_{D_{2}}^{i}\left(M, t_{D}\right)=\frac{1}{4 \cdot N S} \sum_{i=1}^{N S} \int_{0}^{t_{D}} \frac{\exp \left[-r_{i D}^{2} / 4 t_{D}\right]}{t_{D}} \\
& \text { - }\left\{\operatorname{erf} \frac{z_{m D}+3 h_{D}}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z_{m D}+2 h_{D}}{\sqrt{4 t_{D}}}\right. \\
& +\operatorname{erf} \frac{z_{m D^{-2 h} D}^{\sqrt{4 t}}}{\sqrt{D}}-\operatorname{erf} \frac{z_{m D}-3 h_{D}}{\sqrt{4 t_{D}}} \\
& +\sum_{n=1}^{\infty}\left[e r f \frac{z_{m D}+\left(2 \pi L_{D}+3 h_{D}\right)}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{2 \operatorname{mD}^{+\left(2 \pi L_{D}+2 h_{D}\right)}}{\sqrt{4 t_{D}}}\right. \\
& +\operatorname{erf} \frac{z_{m D}+\left(2 \pi L_{D}-2 h_{D}\right)}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z_{m D}+\left(2 \pi 1_{D}-3 h_{D}\right)}{\sqrt{4 t_{D}}} \\
& +\operatorname{erf} \frac{z_{m D}-\left(2 n L_{D}+2 h_{D}\right)}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z_{m D}-\left(2 \pi L_{D}+3 h_{D}\right)}{\sqrt{4 t_{D}}} \\
& \left.\left.+\operatorname{erf} \frac{z_{m D}-\left(2 \pi L_{D}-3 h_{D}\right)}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z_{m D}-\left(2 \pi L_{D}-2 h_{D}\right)}{\sqrt{4 t_{D}}}\right)\right\} d t_{D} \tag{23}
\end{align*}
$$

Eq. 23 can be written in another form, which is:

$$
\begin{align*}
& \Delta p_{D_{2}}^{i}\left(M, t_{D}\right)=\frac{1}{4 \cdot N S} \sum_{1=1}^{N S} \int_{0}^{t_{D}} \frac{\exp \left(-r_{i D}^{2} / 4 t_{D}\right)}{t_{D}} \\
& \cdot\left[\sum _ { n = - \infty } ^ { + \infty } \left(\operatorname{erf} \frac{2 m D+2 n L_{D}+3 h_{D}}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{2 m D+2 n L_{D}+2 h_{D}}{\sqrt{4 t_{D}}}\right.\right. \\
& \left.+\operatorname{erf} \frac{z_{m D}+2 n L_{D}-2 h_{D}}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{2 m D+2 n L_{D}-3 h_{D}}{\sqrt{4 t_{D}}}\right) \mid d t_{D} \tag{23a}
\end{align*}
$$

and further going down to a third slot, results in:

$$
\begin{align*}
& \Delta p_{D_{3}}^{1}\left(M, t_{D}\right)=\frac{1}{4 \cdot N S} \sum_{i=1}^{N S} \int_{0}^{t_{D} \frac{\exp \left[-r_{i D}^{2} / 4 t_{D}\right]}{t_{D}} .} \\
& \text { - }\left\{\operatorname{erf} \frac{z_{\text {mD }}+5 h_{D}}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z_{M D}+4 h_{D}}{\sqrt{4 t_{D}}}\right. \\
& +\operatorname{erf} \frac{z_{m D-4 h_{D}}}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z_{m D}-5 h_{D}}{\sqrt{4 t_{D}}} \\
& +\sum_{n=1}^{\infty}\left(e r f \frac{z_{m D}+\left(2 a L_{D}+5 h_{D}\right)}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z_{m D}+\left(2 \pi L_{D}+4 h_{D}\right)}{\sqrt{4 t} D}\right. \\
& +\operatorname{erf} \frac{z_{m D}+\left(2 \pi L_{D}-4 h_{D}\right)}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z_{m D}+\left(2 \pi L_{D}-5 h_{D}\right)}{\sqrt{4 t_{D}}} \\
& +\operatorname{erf} \frac{z_{m D}-\left(2 a L_{D}+4 h_{D}\right)}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z_{m D}-\left(2 \pi L_{D}+5 h_{D}\right)}{\sqrt{4 t_{D}}} \\
& \left.\left.+\operatorname{erf} \frac{z_{m D}-\left(2 \pi L_{D}-5 h_{D}\right)}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z_{m D}-\left(2 \pi L_{D}-4 h_{D}\right)}{\sqrt{4 t_{D}}}\right)\right\} d t_{D} \tag{24}
\end{align*}
$$

Again,eq. 24 can be expressed as follows:

$$
\begin{align*}
& \Delta p_{D}^{i}\left(M, t_{D}\right)=\frac{1}{4 \cdot N S} \sum_{i=1}^{N S} \int_{0}^{t_{D}} \frac{\exp \left[-r_{i D}^{2} / 4 t_{D}\right]}{t_{D}} . \\
& \cdot\left\{\sum _ { n = - \infty } ^ { + \infty } \left(e r f \frac{z_{m D}+2 n L_{D}+5 h_{D}}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z_{m D}+2 n L_{D}+4 h_{D}}{\sqrt{4 t_{D}}}\right.\right. \\
& \left.\left.+\operatorname{erf} \frac{z \pi D+2 a L_{D}-4 h_{D}}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z_{m D}+2 n L_{D}-5 h_{D}}{\sqrt{4 t_{D}}}\right)\right\} d t_{D} \tag{24a}
\end{align*}
$$

These equations for Δp_{D}^{1} 's should be written for all real slots which consist one row. Now, considering the staggered rows "j" , one gets the the pressure drop caused by a slot which is the nearest to the upper boundary (Pig. 4) =

$$
\begin{aligned}
& \Delta P_{D_{1}}^{j}\left(M, t_{D}\right)=\frac{1}{4 \cdot N S} \sum_{j=1}^{N S} \int_{0}^{t_{D} \frac{\exp \left[-r_{j D}^{2} / 4 t_{D}\right]}{t_{D}}}
\end{aligned}
$$

$$
\begin{align*}
& +\operatorname{erf} \frac{z_{m D^{-h} D}}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{2 m D-2 h_{D}}{\sqrt{4 t_{D}}} \\
& +\sum_{\mathrm{L}=1} \operatorname{lerf}_{\mathrm{E}=\mathrm{mD}+\left(2 \pi L_{D}+2 h_{D}\right)}^{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{2 m D+\left(2 \pi L_{D}+h_{D}\right)}{\sqrt{4 t_{D}}} \\
& +\operatorname{etf} \frac{z_{m D}+\left(2 \pi L_{D}-h_{D}\right)}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{2 m D+\left(2 \pi L_{D}-2 h_{D}\right)}{\sqrt{4 t} D} \\
& +\operatorname{erf} \frac{z_{m D}-\left(2 \pi L_{D}+h_{D}\right)}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z_{m D}-\left(2 a L_{D}+2 h_{D}\right)}{\sqrt{4 t_{D}}} \\
& \left.\left.+\operatorname{erf} \frac{z_{m D}-\left(2 \pi L_{D}-2 h_{D}\right)}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z_{m D}-\left(2 n L_{D}-h_{D}\right)}{\sqrt{4 t_{D}}}\right]\right\}_{d t} \tag{25}
\end{align*}
$$

Eq. 25 can be written in the following manner:

$$
\begin{align*}
& \Delta p_{D_{1}}^{j}\left(M, t_{D}\right)=\frac{1}{4 \cdot N S} \sum_{j=1}^{N S} \int_{0}^{t_{D}} \frac{\exp \left[-r_{j D}^{2} / 4 t_{D}\right]}{t_{D}} . \\
& \cdot\left\{\sum _ { n = - \infty } ^ { + \infty } \left(e r f \frac{z_{m D}+2 n L_{D}+2 h_{D}}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z m D+2 n L_{D}+h_{D}}{\sqrt{4 t_{D}}}\right.\right. \\
& \left.\left.\quad+\operatorname{erf} \frac{z_{m D}+2 n L_{D}-h_{D}}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z_{m D}+2 n L_{D}-2 h_{D}}{\sqrt{4 t_{D}}}\right)\right\} d t_{D} \tag{25a}
\end{align*}
$$

Moving to a lower slot, just beneath the first one, we obtain:

$$
\Delta P_{D_{2}}^{j}\left(M, t_{D}\right)=\frac{1}{4 \cdot N S} \sum_{j=1}^{N S} \int_{0}^{t_{D} \frac{\exp \left[-r_{j D}^{2} / 4 t_{D}\right]}{t_{D}} .}
$$

$$
\begin{align*}
& \text { - }\left\{\operatorname{erf} \frac{{ }^{2} \frac{m D^{+4 h_{D}}}{\sqrt{4 t_{D}}}}{}-\operatorname{erf} \frac{{ }^{2} \frac{m D^{+3 h_{D}}}{\sqrt{4 t}}}{}\right. \\
& +\operatorname{erf} \frac{z_{m D^{-3 h} D}^{\sqrt{4 t} D}}{\sqrt{2}} \operatorname{erf} \frac{m^{2} D^{-4 h} D}{\sqrt{4 t} D} \\
& +\sum_{n=1}^{\infty}\left(e r f \frac{z^{2} m D+\left(2 a L_{D}+4 h_{D}\right)}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{2 m D+\left(2 n L_{D}+3 h_{D}\right)}{\sqrt{4 t_{D}}}\right. \\
& +\operatorname{erf} \frac{z_{m D}+\left(2 \pi L_{D}-3 h_{D}\right)}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z_{m D}+\left(2 a L_{D}-4 h_{D}\right)}{\sqrt{4 t_{D}}} \\
& +\operatorname{erf} \frac{z_{m D}-\left(2 \pi L_{D}+3 h_{D}\right)}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{{ }^{2}{ }_{m D}-\left(2 \pi L_{D}+4 h_{D}\right)}{\sqrt{4 t_{D}}} \\
& \left.\left.+\operatorname{erf} \frac{z_{m D}-\left(2 n L_{D}-4 h_{D}\right)}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z_{m D}-\left(2 n L_{D}-3 h_{D}\right)}{\sqrt{4 t_{D}}}\right]\right\} d t_{D} \tag{26}
\end{align*}
$$

Eq. 26 can be expressed as:

$$
\begin{align*}
& \Delta p_{D_{2}}^{j}\left(M, t_{D}\right)=\frac{1}{4 \cdot N S} \sum_{n=1}^{N S} \int_{0}^{t_{D} \frac{\exp \left[-r_{j D}^{2} / 4 t_{D}\right]}{t_{D}} .} \\
& \cdot\left\{\sum _ { n = - \infty } ^ { + \infty } \left(e r f \frac{z m D+2 n L_{D}+4 h_{D}}{\sqrt{4 t_{D}}}-e r f \frac{z m D+2 n L_{D}+3 h_{D}}{\sqrt{4 t_{D}}}\right.\right. \\
& \left.\left.+\operatorname{erf} \frac{z_{m D}+2 n L_{D}-3 h_{D}}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z_{m D}+2 n L_{D}-4 h_{D}}{\sqrt{4 t_{D}}}\right)\right\} d t_{D} \tag{26a}
\end{align*}
$$

and so on, going down and writing all expressions for the various slots, until reaching the last one which is adjacent to the lower boundary (Fig. 4) :

$$
\begin{aligned}
& \Delta P_{D_{L a s t}}^{j}\left(M, t_{D}\right)=\frac{1}{4 \cdot N S} \sum_{j=1}^{N S} \int_{0}^{t} \frac{\exp \left[-r_{j D}^{2} / 4 t_{D}\right]}{r_{D}} \\
& \text { - }\left\{\operatorname{erf} \frac{2 \otimes D-\left(L_{D}-h_{D}\right)}{f / t_{D}}-\operatorname{erf} \frac{{ }^{2} \pi D-\left(L_{D}+h_{D}\right)}{\sqrt{4 t_{D}}}\right.
\end{aligned}
$$

$$
\begin{align*}
& +\operatorname{erf} \frac{z_{m D}-\left((2 a+1) L_{D}-h_{D}\right)}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{\left.\left.z_{m D^{-((2 a+1)} L_{D}+h_{D}}\right]\right) d t_{D} .}{\sqrt{4 t_{D}}} \tag{27}
\end{align*}
$$

The above equation can be written in a condensed form as:

$$
\begin{gather*}
\Delta p_{D_{L a s t}}^{j}\left(M, t_{D}\right)=\frac{1}{4 \cdot N S} \sum_{j=1}^{N S} \int_{0}^{t_{D}} \frac{\exp \left[-r_{j D}^{2} / 4 t_{D}\right]}{t_{D}} . \\
\cdot\left\{\sum_{n=-\infty}^{+\infty}\left(e r f \frac{z_{m D}+(2 n-1) L_{D}+h_{D}}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z_{m D}+(2 n-1) L_{D}-h_{D}}{\sqrt{4 t_{D}}}\right)\right\} d t_{D} \tag{27a}
\end{gather*}
$$

Agaia, this sumation of $\Delta P_{D}{ }^{\prime}$ s should be carried on uacil the last real slot "f" is considered.

The total dimensionless pressure drop will be then:

$$
\begin{equation*}
p_{D}\left(M, t_{D}\right)=\Delta p_{D_{1}}^{1}+\Delta p_{D_{2}}^{1}+\Delta p_{D}^{f}+\cdots+\Delta p_{D_{1}}^{j}+\Delta p_{D_{2}}^{1}+\Delta p_{D_{3}}^{j}+\cdots \tag{28}
\end{equation*}
$$

Some important facts should be noticed in eqs. 22-27: the summations of all error functions inside the integrals are constant for all vertical rows "i" and rows "j". Therefore, this summation is done only once. Howeyer, these constants are different for the vertical rows "1" and "j". There is a second way to calculate the total pressure drop. In this way the contribution of all slots in one vertical row is calculated before
considering another row, while in the present method the contribution to the pressure drop of all slots which have the same elevation in the vertical rows "i" and "j"is calculated first. As a matter of fact, the computer program (App. A) was compiled using the second method ; handing first all real and image slots in vertical row and then considering the other rows. The second method was chosen only because of convenience (see also section 2.3, eq. 33). Note also that with a alight modification, the system on Fig. 4 could be reduced to a more basic unit consisting of only one i and one j slots.
2.2 Short-Time Behaviour

In Studying the short-time behaviour of eq. 28 , three cases were considered:

1) $0<z_{m D}<h_{D}$ or $2 h_{D}<z_{m D}<3 h_{D}$ or $4 h_{D}<z_{m D}<5 h_{D}$, etc. This means that the elevation of the considered point is between the lower and upper tips of one of slots "i".
2) $\quad h_{D}<z_{m D}<2 h_{D}$ or $3 h_{D}<z_{m D}<4 h_{D}$ or $5 h_{D}<z_{m D}<6 h_{D}$, etc., 1.e., the elevation of the considered point is between the. lower and upper tips of one of slots "j".

1ii) $z_{m D}=h_{D}$ or $z_{m D}=2 h_{D}$ or $z_{m D}=3 h_{D}$, etc.

Case (i): for $t_{D} \rightarrow 0$ and $0<z_{m D}<h_{D}$

$$
\begin{aligned}
& \text { erf } \frac{z_{m D^{+h_{D}}}}{\sqrt{4 t_{D}}} \rightarrow 1 \\
& \text { erf } \frac{z_{m D^{-h_{D}}}}{\sqrt{4 t_{D}}} \rightarrow-1
\end{aligned}
$$

Then considering eq. 22:
$\Delta p_{D_{1}}^{1}\left(M, t_{D}\right)=\frac{1}{4 \cdot N S} \sum_{i=1}^{N S} \int_{0}^{t_{D} \frac{\exp \left[-r_{i D}^{2} / 4 t_{D}\right]}{t_{D}} \cdot\{1-(-1)+0\} d t_{D}, 0}$

$$
\begin{equation*}
=\frac{1}{2 \cdot N S} \sum_{i=1}^{N S} \int_{0}^{t_{D} \exp \left[-r_{i D}^{2} / 4 t_{D}\right]} t_{D}^{t_{D}} \cdot d t_{D} \tag{29}
\end{equation*}
$$

changing variable:

$$
\begin{align*}
& u=r_{1 D} D^{2} / 4 t_{D}, d u=-\frac{r_{i D}^{2} \cdot d t_{D}}{4 t_{D}^{2}} \\
& \Delta P_{D_{1}}^{1}\left(M, t_{D}\right)=\frac{1}{2 \cdot N S} \sum_{i=1}^{N S} \int_{\infty}^{r_{i D}^{2} / 4 t_{D}-\exp (-u)} \frac{u}{\infty} d u \\
& =-\frac{1}{2 \cdot N S} \sum_{i=1}^{N S} E i\left(-r_{i D}^{\ell} / 4 t_{D}\right) \tag{29a}
\end{align*}
$$

where $-\mathbb{E} 1(-x)$ the Exponential integral (see Nomenclature).
It can easily be demonstrated that all other pressure drops (ina. eq. 23-27) at early times are zero. In this case:

$$
\begin{equation*}
P_{D}\left(M, t_{D}\right)=\Delta P_{D}^{1}\left(M, t_{D}\right)=-\frac{1}{2 \cdot N S} \sum_{i=1}^{N S} E_{i}\left(-r_{i D}^{2} / 4 t_{D}\right) \tag{29b}
\end{equation*}
$$

By the same course of manipulation, if

$$
\begin{aligned}
& 2 h_{D}<z_{m D}<3 h_{D} \text {, one gets for } t_{D}+0 \text { : } \\
& \operatorname{erf} \frac{z D^{-2 h_{D}}}{\sqrt{4 t_{D}}}+1
\end{aligned}
$$

$$
\operatorname{erf} \frac{z_{m D^{-3}} \frac{\sqrt{4}}{\sqrt{4 t}}}{\mathrm{I}_{\mathrm{D}}}+-1
$$

Then, considering eq. 23:

$$
\begin{align*}
& \Delta P_{D_{2}}^{i}\left(M, t_{D}\right)=\frac{1}{4 \cdot N S} \sum_{1=1}^{N S} \int_{0}^{t_{D}} \frac{\exp \left[-r_{1 D}^{2} / 4 t_{D}\right]}{t_{D}} . \\
& \cdot\left\{1-1+1-(-1)+\frac{0}{\}}\right\} t_{D} \tag{30}
\end{align*}
$$

or:

$$
\begin{equation*}
\Delta \mathrm{p}_{D_{2}}^{1}\left(M, t_{D}\right)=-\frac{1}{2 \cdot N S} \sum_{i=1}^{N S} E i\left(-r_{i D}^{2} / 4 t_{D}\right) \tag{30a}
\end{equation*}
$$

All other summations of the error functions in eqs. 22,24-27 become zero, and again eq. 28 is given by:

$$
P_{D}\left(M, t_{D}\right)=\Delta p_{D}^{1}\left(M, t_{D}\right)=-\frac{1}{2 \cdot N S} \sum_{i=1}^{N S} E 1\left(-r_{i D}^{2} / 4 t_{D}\right)(30 b)
$$

Case (ii)

By the same reasoning as in the previous case, it can be easily shown that eq. 28 becomes (for early times) :

$$
\begin{gather*}
P_{D}\left(M, t_{D}\right)=-\frac{1}{2 \cdot N S} \tag{31}\\
\sum_{j=1}^{N S} E f\left(-r_{j D}^{2} / 4 t_{D}\right) \\
\quad \text { Case (iii) }
\end{gather*}
$$

In this case, eq. 28 simply becomes:
$P_{D}\left(M, t_{D}\right)=-\frac{1}{4 \cdot N S} \sum_{i=1}^{N S} E i\left(-r_{i D}^{2} / 4 t_{D}\right)-\frac{1}{4 \cdot N S} \sum_{j=1}^{N S} E i\left(-r_{j D}^{2} / 4 t_{D}\right)$
Since for $\quad z_{m D}=h_{D}, \quad \operatorname{erf} \frac{z_{m D} D_{D}}{\sqrt{4 t_{D}}}=0 \quad$ and $\quad \operatorname{erf} \frac{z_{m D^{-h}}}{\sqrt{4 t_{D}}} \rightarrow-1$

2.3 Long-Time Behaviour

As mentioned at the end of section 2.1 the total pressure drop can also be calculated by handing firstly the effects of all slots in one row and then considering other vertical rows.

Therefore, eq. 28 can be written in the following way:

$$
\begin{aligned}
& P_{D}\left(M, t_{D}\right)=\frac{1}{4 \cdot N S} \sum_{i=1}^{N S} \int_{0}^{t_{D}} \frac{\exp \left[-r_{i D}^{2} / 4 t_{D}\right]}{t_{D}} . \\
& \cdot\left\{\sum_{n=-\infty}^{+\infty}\left(\operatorname{erf} \frac{z_{m D}+2 n L_{D}+h_{D}}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z_{m D}+2 n L_{D}-h_{D}}{\sqrt{4 t_{D}}}\right)\right. \\
& +\sum_{n=-\infty}^{+\infty} \operatorname{lerf} \frac{z m D+2 n L_{D}+3 h_{D}}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{2 m D+2 n L_{D}+2 h_{D}}{\sqrt{4 t_{D}}} \\
& \left.+\operatorname{erf} \frac{z_{m D}+2 n L_{D}-2 h_{D}}{44 t_{D}}-\operatorname{erf} \frac{z_{m D}+2 n L_{D}-3 h_{D}}{\sqrt{4 t_{D}}}\right] \\
& +\sum_{n=-\infty}^{+\infty}\left[e r f \frac{z_{m D}+2 a L_{D}+5 h_{D}}{\sqrt{4 t} D}-\operatorname{erf} \frac{z_{m D}+2 n L_{D}+4 h_{D}}{\sqrt{4 t}}\right. \\
& +\operatorname{erf} \frac{z_{m D}+2 a L_{D}-4 h_{D}}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z_{m D}+2 n L_{D}-5 h_{D}}{\sqrt{4 t_{D}}} l \\
& +\cdots \cdots+\cdots \cdot t_{D} \\
& +\frac{1}{4 \cdot N S} \sum_{j=1}^{N S} \int_{0}^{t_{D}} \frac{\exp \left[-r_{j D}^{2} / 4 t_{D}\right]}{t_{D}} .
\end{aligned}
$$

$$
\begin{align*}
& \cdot\left\{\sum _ { n = - \infty } ^ { + \infty } \left(\operatorname{erf} \frac{z_{m D}+2 n L_{D}+2 h_{D}}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z_{m D}+2 n L_{D}+h_{D}}{\sqrt{4 t_{D}}}\right.\right. \\
& +\operatorname{erf} \frac{z_{m D^{+2 n L_{D}}} h_{D}}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{2 m D+2 n L_{D}-2 h_{D}}{\sqrt{4 t_{D}}} \\
& +\sum_{n=-\infty}^{+\infty}\left(\operatorname{ezf} \frac{z m D+2 n L_{D}+4 h_{D}}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z+2 n L_{D}+3 h_{D}}{\sqrt{4 t_{D}}}\right. \\
& \left.+\operatorname{erf} \frac{z_{m D}+2 n L_{D}-3 h_{D}}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z_{m D^{+2 n L_{D}}}{ }^{-4 h_{D}}}{\sqrt{4 t_{D}}}\right) \\
& \left.+\cdots=+\sum_{n=-\infty}^{+\infty}\left(\operatorname{erf} \frac{z_{m D}+\left((2 n-1) L_{D}+h_{D}\right)}{\sqrt{4 t} D}-\operatorname{erf} \frac{z_{m D}+\left((2 n-1) L_{D}-h_{D}\right)}{\sqrt{T_{1}} D}\right) \right\rvert\, d t_{D} \tag{33}
\end{align*}
$$

Eq. 33 is the second way of calculation of the total dimensionless pressure drop, and the computer program is based on this equation (see App. A).

Let us now examine the first summation of the error function in eq. 33:

$$
\begin{equation*}
\sum_{n=-\infty}^{+\infty}\left(\operatorname{erf} \frac{m^{2} D^{+2 n L}+h}{\sqrt{4 t}} \quad-e=\frac{z-2 n L_{D}^{-h} D}{\sqrt{4 t} D}\right) \tag{34}
\end{equation*}
$$

By changing variable, eq. 34 becomes:

$$
\sum_{n=-\infty}^{+\infty} \operatorname{corf} \frac{z^{2} m D^{+2 \pi L}+h}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z_{m D}+2 \pi L_{D}-h_{D}}{\sqrt{4 t_{D}}}=
$$

$$
\begin{align*}
& =\frac{2}{\sqrt{\pi}} \sum_{n=-\infty}^{+\infty} \frac{\int_{z_{m D}+2 n L_{D}-h_{D}}^{z_{m}+2 n L_{D}+h_{D}}}{\sqrt{4 t_{D}}} e^{-u^{2} d n=} \\
& =\frac{1}{\sqrt{4 t}} \sum_{n=-\infty}^{+\infty} \int_{-h_{D}}^{h_{D}} \exp \left[-\frac{\left(z_{m D} D^{\left.-z_{D}+2 n L_{D}\right)^{2}}\right.}{4 t_{D}}\right] d z_{D} \tag{34a}
\end{align*}
$$

The above change of variable is done by letting

$$
u=\frac{z_{m D^{-z}}+2 \pi L_{D}}{\sqrt{4 E_{D}}}
$$

Eq. 34a can be written in a different way as:

$$
\begin{align*}
& \frac{1}{\sqrt{\pi t}} \sum_{n=-\infty}^{+\infty} \int_{-h}^{h} D \exp \left[-\frac{\left(z_{m D} D^{-z} D^{2}+2 L_{D}\right)^{2}}{4 t}\right] d z_{D}= \\
= & \frac{1}{\sqrt{\pi t}} \int_{-h_{D}}^{h} \sum_{n=-\infty}^{+\infty} \exp \left[-\frac{\left(z_{D}-z_{m D}+2 n L_{D}\right)^{2}}{4 t_{D}}\right] d z_{D} \tag{35}
\end{align*}
$$

From Poisson's summation formula :

$$
\begin{aligned}
& \sum_{n=-\infty}^{+\infty} \exp \left[-\frac{\left(z_{D}-z_{m D}+2 n L_{D}\right)^{2}}{4 t}\right]= \\
= & \frac{\sqrt{\pi t_{D}}}{L_{D}}\left\{1+2 \sum_{n=1}^{\infty} \cos \frac{n \pi\left(z_{D}-z_{m D}\right)}{L_{D}} \cdot \exp \left[-\frac{n^{2} \pi^{2} t_{D}}{L_{D}^{2}}\right]\right\}
\end{aligned}
$$

Therefore:

$$
\begin{align*}
& \sum_{n=-\infty}^{+\infty}\left\langle e r f^{2} \frac{m D^{+2 n L}+h}{\sqrt{4 t_{D}}}-e \pm f^{2} \frac{m^{+2 n D_{D}-h} D}{\sqrt{4 t_{D}}}\right)= \\
& =\frac{1}{L_{D}}\left\{2 h_{D}+2 \sum_{n=1}^{\infty} \exp \left[-\frac{n 2 \pi 2 t_{D}}{L_{D}^{2}}\right] \cdot \int_{-h_{D}}^{h_{D}} \cos \frac{n \pi\left(z_{D}-z_{m D}\right)}{L_{D}} d z_{D}\right\} \tag{36}
\end{align*}
$$

and :

$$
\begin{aligned}
\int_{-h_{D}}^{h_{D}} \cos \frac{n \pi\left(z_{D}-z_{m D}\right)}{L_{D}} d z_{D} & =\frac{L_{D}}{n \pi}\left[\sin \left(n \pi-h_{D} \frac{h_{m D}}{L_{D}}\right)+\sin \left(n \pi-L_{D}+z_{m D}\right)\right] \\
& =\frac{2 L_{D}}{n \pi} \sin \frac{n \pi}{L_{D}} h_{D} \cdot \cos \frac{n \pi}{L_{D}} z_{D}
\end{aligned}
$$

Hence, eq. 36 becomes:

$$
\begin{align*}
& \sum_{n=-\infty}^{+\infty}\left(\operatorname{erf} \frac{m_{m}+2 n L_{D}+h D}{\sqrt{4 t_{D}}}-\operatorname{erf-m}{ }^{2} m+2 n L_{D}^{-h D}\right)= \\
= & \frac{1}{L_{D}}\left\{2 h_{D}+\frac{4 L_{D}}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \exp \left[-\frac{n^{2} \pi^{2} t_{D}}{L_{D}^{2}}\right] \sin \frac{n \pi}{I_{D}} h_{D} \cdot \cos \frac{n \pi}{L_{D}} z_{m D}\right\} \tag{37}
\end{align*}
$$

In the same way, it is not aifficult to demonstrate that the second summation of the error function in eq. 33 car be expressed as:

$$
\begin{aligned}
& \sum_{n=-\infty}^{+\infty}\left(e r f \frac{{ }^{2} m D^{+2 n L_{D}+3 h_{D}}}{\sqrt{4 t_{D}}}-\operatorname{erf}-m D \frac{z+2 n L_{D}-3 h}{\sqrt{4 t_{D}}}\right)=
\end{aligned}
$$

and :

$$
\begin{gather*}
\sum_{n=-\infty}^{+\prime \prime}\left(\operatorname{erf} \frac{z_{m D}+2 n L_{D}-2 h_{D}}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z_{m D}+2 n L_{D}+2 h_{D}}{\sqrt{4 t_{D}}}=\right. \\
=- \tag{39}\\
-\frac{1}{L_{D}}\left\{4 h_{D}+\frac{4 L_{D}}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \exp \left[-\frac{n^{2} \pi^{2} t_{D}}{L_{D}^{2}}\right] \sin \frac{n \pi}{L_{D}} 2 h_{D} \cdot \cos \frac{n \pi}{L_{D}} z_{m D}\right\}
\end{gather*}
$$

So, combining eqs. $37+38$ we obtain:

$$
\begin{aligned}
& \sum_{n=-\infty}^{+\infty}\left(\operatorname{erf} \frac{z_{m D}+2 n L_{D}+3 h_{D}}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z_{m D}+2 n L_{D}+2 h_{D}}{\sqrt{4 t_{D}}}\right. \\
& \left.+\operatorname{erf} \frac{z_{m D}+2 n L_{D}-2 h_{D}}{f 4 t_{D}}-\operatorname{erf} \frac{2 D^{+2 n L_{D}-3 h}}{\sqrt{4 t_{D}}}\right)=
\end{aligned}
$$

$$
\begin{align*}
& \cdot \cos \frac{n \pi}{L_{D}} z_{m D} \text { \} } \tag{40}
\end{align*}
$$

In a similar way the next summation of error functions in
eq. 33 is expressed as:

$$
\begin{aligned}
& \sum_{n=-\infty}^{+\infty}\left(\operatorname{erf} \frac{z_{m D}+2 n L_{D}+5 h_{D}}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{2 m D+2 n L D+4 h_{D}}{\sqrt{4 t_{D}}}\right. \\
& \left.+\operatorname{erf} \frac{z_{m D}+2 n L_{D}-4 h_{D}}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z_{m D}+2 n L_{D}-5 h_{D}}{\sqrt{4 t_{D}}}\right)= \\
& =\frac{1}{L_{D}}\left[2 h_{D}+\frac{4 L_{D}}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \exp \left(-\frac{n^{2} \pi^{2} t_{D}}{L_{D}^{2}}\right)\left[\sin \frac{n \pi}{L_{D}} 5 h_{D}-\sin \frac{n \pi}{L_{D}} 4 h_{D}\right] \cdot\right.
\end{aligned}
$$

$$
\begin{equation*}
\cdot \cos \frac{n \pi}{L_{D}} z_{m D} \tag{41}
\end{equation*}
$$

Therefore, the pressure drop created at point M by all rows "i" can be written as:

$$
\begin{aligned}
& \Delta_{p_{D}}^{i}\left(M, t_{D}\right)=1 \quad \sum_{1=1}^{N S} \int_{0}^{t} \frac{\exp \left(-E_{i D} / 4 t_{D}\right)}{t_{D}} .
\end{aligned}
$$

$$
\begin{align*}
& \left.+\sin E_{D}^{n-5 h_{D}}+\cdots+\sin E_{D}^{\pi}(2 k-1) h_{D}\right)-\left(\sin -E_{D}^{n}-2 h_{D}+\sin E_{D}^{\pi}-4 h_{D}\right. \\
& \left.\left.\left.\left.\left.+\cdots+\sin \frac{n \pi}{L_{D}}(2 k-1) h_{D}\right)\right\} \cdot \cos \frac{n \pi}{L_{D}} z_{D D}\right]\right)\right\} d t_{D} \tag{42}
\end{align*}
$$

Where \mathbf{k} is the number of slots in one vertical row and $2 \mathrm{~K}^{\circ} \mathrm{h}_{\mathrm{D}}$ equal to L_{D}.

It is well known that:

$$
\begin{aligned}
& \quad \begin{aligned}
& \sin (x)+\sin (3 x)+\sin (5 x)+\ldots \ldots+\sin ((2 \ell-1) x)= \frac{\sin ^{2}(\ell x)}{\sin (x)} \\
& \text { Also: } \sin (0)+\sin (2 x)+\sin (4 x)+\ldots+\sin ((2 \ell-2) x)= \\
&=\frac{\sin (\ell x) \cdot \sin ((\ell-1) x)}{\sin (x)} \\
& \text { and: } \quad \sin (3 x)+\sin (5 x)+\ldots \ldots+\ln ((2 \ell+1) x)= \\
&=\frac{\sin (\ell x) \cdot \sin ((\ell+2) x)}{\sin (x)}
\end{aligned}
\end{aligned}
$$

So, eq. 42 is written in the following form:

$$
\Delta P_{D_{T O t a l}}^{i}\left(M, t_{D}\right)=\frac{1}{4 \cdot N S} \sum_{i=1}^{N S} \int_{0}^{t_{D}} \frac{\exp \left[-r_{i D}^{2} / 4 t_{D}\right]}{t_{D}} .
$$

$\cdot\left\{1+\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \exp \left(-\frac{n^{2} \pi^{2} t_{D}}{L_{D}^{2}}\right)\left[\frac{2 \sin \left(\frac{n \pi}{L_{D}} h_{D} \cdot k\right) \cdot \sin \left(\frac{n \pi}{2 L_{D}} h_{D}\right) \cdot \cos \left(\frac{n \pi}{L_{D}} h_{D} \frac{2 k-1}{2}\right)}{\sin \frac{n \pi}{L_{D}} h_{D}}\right]\right.$

$$
\begin{equation*}
\left.\cdot \cos \frac{n \pi}{L_{D}} z_{m D}\right\} d t_{D} \tag{42a}
\end{equation*}
$$

It can easily be shown that the pressure drop created at point \mathbf{M} by all vertical 5ows "j" is given by:

$$
\begin{align*}
& \Delta P_{D}^{j}\left(M, t_{D}\right)=\frac{1}{4 \cdot N S} \sum_{j=1}^{N S} \int_{0}^{t_{D}} \frac{\exp \left[-r_{j D}^{2} / 4 t_{D}\right]}{L_{D}} . \\
& \cdot\left\{1+\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \exp \left(-\frac{a^{2} \pi{ }^{2} t_{D}}{L_{D}^{2}}\right)\left[\left(\sin \frac{n \pi}{L_{D}} 0 h_{D}+\sin \frac{n \pi}{L_{D}} 2 h D+\sin -L_{D}^{\pi}-4 h+\cdots\right)\right.\right. \\
& \left.\left.\quad-\left(\sin \frac{n \pi}{L_{D}} 3 h_{D}+\sin \frac{n \pi}{L_{D}} 5 h_{D}+\cdots\right)\right] \cdot \cos \frac{n \pi}{L_{D}} z_{m D}\right\} d t_{D} \tag{43}
\end{align*}
$$

or:

$$
\begin{align*}
& \Delta P_{D_{\operatorname{Total}}^{j}}^{j}\left(M, t_{D}\right)=\frac{1}{4 \cdot N S} \sum_{j=1}^{N S} \int_{0}^{t_{D}} \frac{\exp \left[-r_{j D}^{2} / 4 t_{D}\right]}{t_{D}} \cdot \\
& \cdot\left\{1+\frac{4}{\pi} \sum_{n=1}^{\infty} \exp \left(-\frac{n^{2} \pi^{2} t_{D}}{L_{D}^{2}}\right)\left[\frac{\sin \left(\frac{n \pi}{L_{D}} h_{D} \cdot k\right) \cdot \sin \left(\frac{n \pi}{L_{D}} h_{D}(k-1)\right)}{\sin \frac{n \pi}{L_{D}} h_{D}}\right.\right. \\
& \left.\left.-\frac{\sin \left(\frac{n \pi}{L_{D}} h_{D} \cdot k\right) \cdot \sin \left(\frac{n \pi}{L_{D}} h_{D}(k+2)\right)}{\sin \frac{n \pi}{L_{D}} h_{D}}\right] \cdot \cos \frac{n \pi}{L_{D}} z_{m D}\right\} d t_{D} \tag{43a}
\end{align*}
$$

Again, \mathbf{k} is the number of slots in one vertical row.
Eq. 43a can be further simplified to:

$$
\begin{aligned}
& \Delta p_{D_{T o t a 1}}\left(M, t_{D}\right)=\frac{1}{4 \cdot N S} \sum_{j=1}^{N S} \int_{0}^{t_{D}} \frac{\exp \left[-r_{j D}^{2} / 4 t_{D}\right]}{t_{D}} .
\end{aligned}
$$

$$
\begin{align*}
& \left.\cdot \cos \frac{n \pi}{L_{D}} z_{m D}\right\} d t_{D} \tag{43b}
\end{align*}
$$

Adding eq. 43 b to eq. 42 a we obtain the total pressure drop created at point M by all rows of slots in the liner, as was previously written:

$$
\begin{equation*}
\Delta p_{D}(M, t)=\Delta p_{D_{T o t a l}}^{1}\left(M, t_{D}\right)+\Delta p_{D_{T o t a l}^{j}}^{j}\left(M, t_{D}\right) \tag{28a}
\end{equation*}
$$

It will be convenient to define the functions:

$$
\begin{align*}
& R^{1}\left(r_{i D}, t_{D}\right)=\frac{\exp \left[-r_{i D}^{2} / 4 t_{D}\right]}{t_{D}} \tag{44}\\
& R^{j}\left(r_{j D}, t_{D}\right)=\frac{\exp \left[-r_{j D}^{2} / 4 t_{D}\right]}{t_{D}} \tag{45}\\
& z^{i}\left(t_{D} / L_{D}^{2}, z_{m D}, h_{D}, k\right)=1+\frac{4}{\pi} \sum_{D=1}^{\infty} \frac{1}{\bar{n}} \varepsilon x p\left(-\frac{n^{2} n^{2} t_{D}}{L_{D}}\right)
\end{align*}
$$

$$
\begin{aligned}
& z f\left(t_{D} / L_{D}, z_{m D}, h_{D}, k\right)=1+\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{t}{n} \exp \left(-\frac{n^{2} n^{2} t_{D}}{L_{D}^{2}}\right) .
\end{aligned}
$$

Combination of eqs. 28a, 42a, 43b, 44-47 yields:

$$
\begin{align*}
& P_{D}\left(M, t_{D}\right)=\frac{1}{4 \cdot N S}\left[\sum_{i=1}^{N S} \int_{0}^{t_{D}} R^{i}\left(r_{i D}, t_{D}\right) \cdot z^{i}\left(t_{D} / L \xi_{D}, z_{m D}, h_{D}, k\right) d t_{D}\right. \\
& +\sum_{j=1}^{N S} \int_{0}^{t_{D}} R^{j}\left(r_{j D}, t_{D}\right) \cdot z^{j}\left(t_{D} / L_{D}^{2}, z_{m D}, h_{D}, k\right) d t_{D} \tag{48}
\end{align*}
$$

It is well known that the line source solution is expressed by the formula:

$$
\begin{equation*}
P_{D}\left(r_{D}, t_{D}\right)=-\frac{1}{2} E i\left(-r_{D}^{2} / 4 t_{D}\right) \tag{49}
\end{equation*}
$$

Where - $8 i\left(-r_{D}^{2} / 4 t_{D}\right)$ is the Exponential incegral.
For $G_{D} / \tau_{D}^{2}>70$, the line source solution can be approximated within one percent error by ${ }^{14}$:

$$
\begin{equation*}
P_{D}\left(r_{D}, t_{D}\right) \simeq \frac{1}{2}\left(\ell n_{r_{D}}^{t_{D}^{2}}+0.80907\right) \tag{50}
\end{equation*}
$$

By adding and substracting the line source solution on the right hand side of eq. 48 , we obtain:

$$
\begin{align*}
& p_{D}\left(M, t_{D}\right)=\frac{1}{4 \cdot N S}\left[\sum_{n=1}^{N S} \int_{0}^{t_{D}} R^{i}\left(r_{1 D}, t_{D}\right) \cdot z^{i}\left(t_{D} / L_{D}^{2}, z_{m D}, h_{D}, k\right) d t_{D}\right. \\
& \left.+\sum_{j=1}^{N S} \int_{0}^{t_{D}} R_{R}^{j}\left(r_{j D}, t_{D}\right) \cdot z^{j}\left(t_{D} / L_{D}^{2}, z_{m D}, h_{D}, k\right) d t_{D}\right] \\
& \quad+p_{D}\left(r_{D}, t_{D}\right)-p_{D}\left(r_{D}, t_{D}\right) \tag{51}
\end{align*}
$$

Let us define the function:

$$
s\left(r_{i D}, r_{j D}, z_{m D}, t_{D}, h_{D}, L_{D}, k, N S\right)=-p_{D}\left(r_{D}, t_{D}\right)
$$

$$
+\frac{1}{4 \cdot N S}\left[\sum_{i=1}^{N S} \int_{0}^{t_{D}} R^{1}\left(r_{1 D}, t_{D}\right) \cdot z^{i}\left(t_{D} / L_{D}^{2}, z_{m D}, h_{D}, k\right) d t_{D}\right.
$$

$$
\begin{equation*}
\left.+\sum_{j=1}^{N S} \int_{0}^{t_{D}} R^{j}\left(r_{j D}, t_{D}\right) \cdot z^{j}\left(t_{D} / L_{D}^{2}, z_{m D}, h_{D}, k\right) d t_{D}\right] \tag{52}
\end{equation*}
$$

The function \mathbf{s}^{*} is the so-called pseudo-skin factor due to analogy with the skin factor defined by Van Everdingen ${ }^{16}$ and qurse 10. Note that $\mathbf{R}^{\mathbf{1}}, \mathbb{R}^{\mathbf{j}}$ and hence \mathbf{s} are implicitly functions of θ. Eq. 51 can be therefore written as:

$$
\begin{equation*}
P_{D}\left(M, t_{D}\right)=P_{D}\left(r_{D}, t_{D}\right)+s\left(r_{i D}, r_{j D}, z_{m D}, t_{D}, h_{D}, k, N S\right) \tag{53}
\end{equation*}
$$

As shown by eq. 53, the dimensionless pressure drop created at point M due to production through a liner, can be expressed as the sum of two terms, the first one of which is the line source solution and the second is the pseudo-skin function, s. The pseudo-skin function is a function of dimensionless time, but it will be shown that this function can be apprroximated by *
The dimensionless thickness, L_{D}, can be expressed as: $L_{D}=2 \& h_{D}$
a constant for large values of time.
By definition:

$$
\begin{aligned}
& R^{1}\left(r_{i D}, t_{D}\right)=\frac{\exp \left[-r_{1 D} / 4 t_{D}\right]}{t_{D}} \\
& R^{j}\left(r_{j D}, t_{D}\right)=\frac{\exp \left[-r_{j D}^{2} / 4 t_{D}\right]}{t_{D}}
\end{aligned}
$$

Expansion of the exponential function gives:

$$
e^{-x}=1-x+x^{2}+0(x)
$$

so:

$$
\begin{aligned}
& R^{i}\left(r_{i D}, t_{D}\right)=\frac{1}{t_{D}}\left[1-\left(r_{i D}^{2} / 4 t_{D}\right)+\left(r_{1 D}^{4} / 16 t_{D}^{2}\right)+0\left(1 / t_{D}^{3}\right)\right] \\
& R^{j}\left(r_{j D}, t_{D}\right)=\frac{1}{t_{D}}\left[1-\left(r_{j D}^{2} / 4 t_{D}\right)+\left(r_{j D}^{4} / 16 t_{D}^{2}\right)+0\left(1 / t_{D}^{3}\right)\right]
\end{aligned}
$$

We can approximate the \boldsymbol{R} functions by the first term within one percent error if:

$$
\frac{1}{t_{D}} \geqslant \operatorname{Max}\left\{\begin{array}{c}
25 r_{1 D}^{2} / t_{D}^{2} \\
25 r_{j D}^{2} / t_{D}^{2}
\end{array}\right.
$$

or:

$$
t_{D} \geqslant \operatorname{Max}\left\{\begin{array}{r}
25 r_{i D}^{2} \\
25-\frac{j D}{2}
\end{array}\right.
$$

In that case, the \mathbf{R} functions can be approximated by:

$$
\begin{align*}
& R^{i}\left(r_{i D}, t_{D}\right) \cong 1 / t_{D} \tag{54}\\
& R^{j}\left(r_{j D}, t_{D}\right) \cong 1 / t_{D} \tag{55}
\end{align*}
$$

Now, considering the Z functions defined by eq. 46,47 , we nobice that the value of each term of the infinite series decreases rapidly when t_{D} increases, and the Z functions will be different from unity by less than 1% as $300 n$ as:

$$
\tau_{D}>\sum_{\pi}^{5 L_{D}^{2}}, \text { (since for exp }\left[-\frac{{ }^{2} t_{D}}{L_{D}^{2}}\right]<0.01+t_{D}{ }^{4 . \sigma L \cdot L_{D}}
$$

For large values of t_{D}, the pseudo-skin function can be approxmated by using eq. 50,54,55:

$$
s\left(r_{1 D}, r_{j D}, z_{m D}, t_{D}, h_{D}, L_{D}, k, N S\right)=-1 / 2\left(\ell_{n}\left(t_{D} / r_{D}^{2}\right)+0.80907\right)
$$

$$
+\frac{1}{4 \cdot N S}\left[\sum_{i=1}^{N S} \int_{0}^{t_{D 1}} R^{i}\left(r_{1 D}, t_{D}\right) \cdot z^{1}\left(t_{D} / L_{D}^{2}, z_{m D}, h_{D}, k\right) d t_{D}\right.
$$

$$
\left.+\sum_{j=1}^{N S} \int_{0}^{t_{D} 1} R^{j}\left(r_{j D}, t_{D}\right) \cdot z^{j}\left(t_{D} / L_{D}^{2}, z_{m D}, h_{D}, k\right) d t_{D}\right]
$$

$$
+\frac{1}{4 \cdot N S}\left[\sum_{i=1}^{N S} \int_{t_{D 1}}^{t_{D}} R^{i}\left(r_{i D}, t_{D}\right) \cdot z^{i}\left(t_{D} / L_{D}^{2}, z_{m D}, h_{D}, k\right) d t_{D}\right.
$$

$$
\left.+\sum_{j=1}^{N S} \int_{t_{D 1}}^{t_{D}} R_{i d}^{j}\left(r_{1 D}, t_{D}\right) \cdot z^{j}\left(t_{D} / L_{D}^{2}, z_{m D}, h_{D}, k\right) d t_{D}\right]=
$$

$$
=\frac{1}{4 \cdot N S}\left[\sum_{i=1}^{N S} \int_{0}^{t_{D 1}} R^{1}\left(r_{i D}, t_{D}\right) \cdot z^{1}\left(t_{D} / L_{D}^{2}, z_{m D}, h_{D}, k\right) d t_{D}\right.
$$

$$
+\sum_{j=1}^{N S} \oint^{\left.t_{D 1} R^{j}\left(r_{j D}, t_{D}\right) \cdot z^{j}\left(t_{D} / L_{B}, z_{Q D}, h_{D}, k\right) d t_{D}\right)}
$$

$$
\begin{equation*}
+\frac{2 \cdot N S}{4 \cdot N S} \int_{t_{D 1}}^{t D} \frac{1}{t_{-}} d t_{D}-\frac{3}{2}\left(\ell n \cdot t_{p}^{p}+0.80907\right) \tag{56}
\end{equation*}
$$

Eq. 56 can further be simplified to:

$$
\begin{align*}
& \quad s\left(r_{i D}, r_{j D}, z_{m D}, t_{D}, h_{D}, L_{D}, k, N S\right)= \\
& = \\
& \frac{1}{4 \cdot N S}\left[\sum_{i=1}^{N S} \int_{0}^{t_{D 1}} R^{i}\left(r_{i D}, t_{D}\right) \cdot z^{i}\left(t_{D} / L_{D}^{2}\right) d t_{D}\right. \\
& \left.+\sum_{j=1}^{N S} \int_{0}^{t_{D 1}} R_{R}^{j}\left(r_{j D}, t_{D}\right) \cdot Z^{j}\left(t_{D} / L_{D}^{2}, z_{m D}, h_{D}, k\right) d t_{D}\right] \tag{57}\\
& \\
& \quad-\frac{1}{2}\left(2 n \frac{t_{D 1}}{r_{D}^{2}}+0.80907\right)
\end{align*}
$$

where:

$$
t_{D 1>} \operatorname{Max}\left\{\begin{array}{c}
70 r_{D} \\
25 r_{i D}^{2} \\
25 r_{j D}^{2} \\
5 L_{D}^{2} / \pi^{2}
\end{array}\right.
$$

As can be seen from eq. 57, the pseudo-skin function becomes a constant within one percent error at large values of $t_{D}\left(t_{D} \geqslant t_{D_{1}}\right)$. The values of the pseudo-skin factor are printed on Tables $B-1 \div$ B-31.
3. - COMPUTATIONAL PROCEDURE AND NUMERICAL RESULTS

The solution has been evaluated from eq. 33 using Simpson's rule for integration purposes.

The computer program was compiled using the following parameters as entry values (see also App. A) :

Reservoir thickness, slot length, number of pairs of staggered vertical rows of slots (this is also the number of slots in one ring), well radius, dimensionless distance of point for which the pressure drop is calculated, elevation of point M and its orientation (angle $=8$) with respect to the origin of $\mathbf{X}-\mathbf{Y}$ coordinates and a tolerance (for convergence purposes). The dimensionless time should also be specified.

The program considers penetration ratio of $\mathbf{0 . 5}$, i.e., the total cumulative lengths of slots in one vertical row is half of the formation thickness.

For representation of results, the elevation of point M was located at the center of formation and its position is between two vertical rows of "i" slots (for $\mathbf{r}_{\mathrm{D}}=1$, the position is half of the circurisreacial distance).

Buras ${ }^{2}$ also uses "observation height" as halfway between top and bottom of the interval, while Muskat ${ }^{11}$ concluded that the exact steady-state wellbore pressure for a partially penetrating well could be obtained within $1 / 2 \%$ accuracy (assuming a uniform flux distribution at the wellbore) by computing the pressure at a location $3 / 4$ of the distance from the top of the layer to the bottom of the well. The calculations were also made by using 10
intervals of dimensionless time Δt_{D} per log cycle, starting from $\Delta t_{D}=0.001$. Accuracy was checked (with satisfactory results) in the following manner:

1) For $\mathbf{r}_{\mathrm{D}}=0$, the results were compared with the semi-analytical solution given in Table 1, which was derived by Gringarten and Ramey ${ }^{\text {a }}$. This solution is numerically equal to the line source solution. No difference is noticed between the results presented in Table 2 and Table 1. The line source is always obtained for $\boldsymbol{r}_{\mathbf{D}} \mathbf{0}$, no matter what is the number of vertical rows of slots. The limit case is, of course, for infinite number of vertical rows (NS \boldsymbol{N}^{∞}) which is the surface cylinder solution (see also Fig,j, on which the line source solution was plotted for $r_{D}=0$).
2) For $5_{D}=0.5,6$ pairs of staggered vertical rows were sufficient to reproduce to within $;$ digits accuracy the results of the semi-analytical solution for the surface cylinder presented in Table 1 . The reproduced results are shown in Table 3 and on Fig. б.

3) For $\mathbf{r}_{\mathrm{D}}=2$, again for $\mathrm{NS}=\boldsymbol{\sigma}$, there is agreement within 5 digits accuracy of the results given in Table 4 and the solution presented in Table 1 (see also Fig. 7)
4) Eor rol, this case was the last one used to check the validity of the computer program . No complete agreement for this case could be obtained with the surface cylinder solution no matter what was the number of vertical rows of slots, probably since it is a limit case. However, for 30 pairs of vertical rows
(or 30 slots in each ring of slots), for $\varepsilon_{D}=3$ and on, the difference between the surface cylinder solution given in Table 1 and the obtained results which are shown in Table 5, is only -0.0022. This difference is constant and therefore becomes negligible later on (see also Fig. 5, and App. A for more details).

3.1 Computer Runs

After the validity of the computer program was checked, the following cases were run:

1) Firstig, the number of rows had to be specified. All cases were run with 4 different pairs of staggered vertical rows of slots ($=M S$), namely 1 pair, $\mathbf{2}, \mathbf{3}, 6$ and 12 pairs. The 1 pair case was run for the sake of representation; since the usual practice is to specify two rows for each nominal pipe diameter ${ }^{4}$ and the smallest one is of $23 / 8^{\prime \prime}$ which requires note than 1 pair of rows. However, for $\boldsymbol{r}_{\mathbf{D}} \mathbf{= 1}$, additional cases of 4,8 and 10 pairs also considered.
ii) Secondly, the influence of slot length was checked.

Four different cases of dimensionless slots lengths were run, 1.e. 0.2, $0.4167,0.5714$ and 1.0. Because the cumulative lengths of slots in one row should be always (as imposed) one half of the formation thickness, the shorter the slots become, their number in ote row is increased (see Tables 8-1 to B-23).
111)Thirdly, dimensionless pressure drops were obtained for various dimensionless distances which were: ${ }^{\circ} \boldsymbol{D} \boldsymbol{0}$ (representing the line source case), $\boldsymbol{r}_{\mathrm{D}}=0.5$ and $r_{D}=1$ (on the surface) and $\mathbf{r}_{\mathrm{D}}=\mathbf{2}$. iv) Variation of formation thickness was also checked (but
not shown; see section 3.2).

Three facts should be noticed: almost all cases were run by considering an elevation of a point at the center of formation and location was half-way between two vertical rows of slots. Only Tables $B-32$ and $B-33$ show different cases where elevation of the point was at the center of formation $+1 / 2$ of dimensionless slot length and the location of point was $1 / 4$ of the circumferencial distance between two vertical rows of "1" slots; these cases were run for $r_{D}=1$.

3.2 Results and Calculation of Pseudo-Skin Factors

The results of all runs with relevant data are shown in Tables 2-5 and $B-1$ to $B-33$.

It was found that the variation of dimensionless formation has no actual influence on the dimensionless pressure drop.

The variation of dimensionless pressure drop with dimensionless slot length is negligible (see Tables B-1 to B-23)

There is a pseudo-skin factor which becomes a constant after a certain time and decreaseswhen the number of vertical rows is increased. The pseudo-skin factor becomes negligible when the number of pairs of staggered vertical rows is more than 3, in all cases. All values of the pseudo-skin factor are printe in Tables $B-1$ to $B-31$.

	0	0.25	0.50	0.75	1	2	3	5	10
1				. 0025	. 0565				
1.5			. 0001	. 0067	. 0692				
2			. 0006	. 0117	. 0799				
3		. 0002	. 0027	. 0228	. 0980				
4	. 0001	. 0007	.0063	. 0341	. 1132				
5	. 0006	. 0020	. 0111	. 0451	. 1267				
6	. 0015	. 0040	,0167	. 0558	. 1389	. 0001			
8	. 0056	. 0103	. 0296	. 0760	. 1607	. 0006			
1. 10^{-1}	. 0125	. 0192	. 0436	. 0949	. 1800	.ooi4			
1.5	. 0392	. 0492	. 0805	. 1379	. 2216	. 0053			
2	. 0732	. 0844	. 1187	. 1766	. 2574	. 0111	. 0001		
3	. 2463	. 1576	. 1911	. 2458	,3194	. 0262	,0007		
4	. 2161	. 2265	,2573	. 3071	,3735	. 0436	. 0023		
5	. 2799	. 2893	. 3172	. 3622	. 4223	. 0621	. 0051		
6	. 3376	. 3462	. 3714	.4123	. 4670	. 0809	. 0089		
8	. 4378	. 4449	. 4660	. 5002	. 5462	. 1187	. 0190	. 0001	
1	. 5221	. 5282	. 5462	,5755	.6131	. 1556	. 0315	. 0005	
1.5	. 6873	,6917	. 7047	. 7262	. 7554	. 2414	. 0690	. 0030	
2	. 8117	. 8152	. 8254	. 8423	. 8654	. 3172	. 1097	. 0085	
3	. 9947	. 9971	1.0042	1.0160	1.0323	. 4439	. 1897	. 0271	
4	1.1285	1.1303	1.1358	1.1448	1.1574	. 5462	. 2629	. 0522	. 0002
5	1.2340	1.2354	1.2399	1.2472	1.2575	. 6316	. 3285	. 0804	. 0008
6	1.3210	1.3223	1.3260	1.3322	1.3408	. 7047	. 3873	. 1097	. 0019
8	1.4598	1. 4607	1.4635	1:4682	1.4748	. 8254	. 4887	. 1678	. 0063
$7 \cdot 10$	1.5683	1.5690	1.5713	1.5751	1.5806	. 9227	. 5736	. 2228	. 0135
15	1.7669	1.7674	1.7689	1.7715	1.77 .50	1.1060	. 7394	. 3431	. 0407
2	1.9086	1.9090	1.9102	2.9121	1.9148	1. 2399	. 8641	. 4424	. 0750
3	2.1093	2.1096	2.1103	2.1116	2.1134	1.4325	1.0472	. 5981	. 1481
4	2.2521	2.2523	2.2529	2.2539	2.2552	1.5713	1.1811	,7174	. 2178
5	2.3631	2.3632	2.2637	2. 3645	2.3655	1.6798	1.2866	. 8139	. 2814
6	2.4538	2.4539	2.4543	2.4550	2.4559	1.7689	1.3737	. 8949	. 3309
8	2.5971	2.5972	2.5975	2.5980	2.5987	1.9102	1.5124	1.0259	. 4390
1.10 ${ }^{2}$	2.7084	2.7085	2.7087	2.7091	2.7096	2.0202	1.6209	1.1296	. 5231
15°	2.9107	2.9108	2.9109	2.9112.	2.9115	'2.22'09	1.8195	1.3218	. 6880
2	3.0543	3.0544	3.0545	3.0547	3.0550	2.3637	1.9613	1.4604	. 8123
3	3.2569	3.2569	3.2570	3.2571	3.2573	2.5654	2.1620	1.6578	. 9950
4	3.4006	3.4006	3.4007	3.4008	3,4009	2.7087	2.3048	1.7989	1.1288
5	3.5121	3.5121	3.5122	3.5122	3.5124	2.8200	2.4157	1.9089	1.2342
6	3.6032	3.6032	3.6033	3.6033	3.6034	2.9109	2.5065	1.9990	1.3212
8	3.7470	3.7470	3.7471	3.7471	3.7472	3.0545	2.6498	2.1415	1.4599

Table 1^{--}Continuous Surface Cylinder Source
(After Gringarten, A, C, et al ${ }^{a}$.)

TABLE 2
UNSTEADY PRĖSUF．E F．ESFJNSE IN A SLJTTEJ LINER
AFF．ANGEMENT OF SLJTS： 6 GTAGGERED VERTICAL ROWS（ 3 PAIFSS
CIHENSIONLESS PRESSURE LROP IS CILCULATED AT JENTER OF FORMATICN
RD $=0.00$
CIIENSIONLESS SLOT LENGIH IS： $4: 67$

T0
Pit
TU
PO
TO
PO

－100E－02	． 57863 －43	． $235 \mathrm{O}+00$	． $73207 E-01$	－200E＋02	． $190065+01$
－2005－02	－ $70756 E-43$	． $300 \mathrm{C}+00$	－14628E＋00	$s 3005+02$	－ $21593 \mathrm{E}+31$
－30JE－U2	． 44348 ± -38	－$+00 E+00$	． $21613 E+00$	－400E＋02	－22521E＋C1
－ $400 E 02$	． $579+2 \bar{c}-29$	－50CE＋ 00	－ $27989 E+00$	－ $500 \mathrm{O}+\mathrm{C2}$	－ $23630 E+01$
－500E－02	．18998E－23	．600E＋00	－ $33762 E+00$	． $6005+02$	－ $24538 E+01$
．600E－32	．94177E－20	． $7 J O E+00$	． $39001 E+00$	． $700 \mathrm{O}+02$	． $25306 E+C 1$
． 700 E－02	．42077E－17	．8JJE＋00	－4378LE＋00	－ $800 \mathrm{O}+02$	． 25971 ＋ 01
． $8005-02$	． $416.785-15$	－ $\mathcal{J} 3 J E+00$	． $401675+00$	－900E＋ 02	－ $26358 E+01$
．900E－02	． $15021 E-13$	－ 2 JCL＋01	． $52214 E+00$	－100E＋03	－ 272 E － $\mathrm{E}+01$
－100E－01	． $25745 E-12$	． $2302+01$	． $81171 E+00$	－ 20 OE＋ 03	－ $30543 E+01$
－200E－U1	－13875	．300E＋01	． $99466 E+00$	－ $3005+63$	． $22569 E+31$
300E－31	．13023こ－04	－40Jこ＋01	－11285E＋01	－ 400 E＋03	－ $34306 E+C 1$
$4005-31$	－13524［－03	－ $50 J E+01$	－12339E＋01	－500E603	－35121E＋J1
500E－01	． 57415 ± -03	－ $60 コ こ+01$	－13210E＋01	． $600 E+03$	－ 36032 C ＋ 11
．600E－01	． $154515-02$	－70CE＋01	－13952E＊01	$.7008+03$	－36EC3E＋01
－70JE－U1	． 31906 E－02	． $530 E+01$	．14598E＋01	－200E＋03	－37＋70E＋01
．800E－01	－ 55685002	－9C0E＋01	－15163E＋01	． $9005+03$	－36J59E＋61
． 900 E－01	．86726E－02	． $100 \mathrm{E}+02$	－15683E＋01	－100E＋04	． $38585 \mathrm{E}+01$
．100E＋00	－12457三－11				

TABLE 3

UNSTEXIY PRESSURE TESFOLE IX SSOTICXEINER

AREANGAMENT OF SLOTS: I2 STAGGERED VERTICAL ROWSI 6 PFIRSI

DIMENSIONLESS SLOT LEIVGTH I5: . 4167

TABLE 4
V

AFRANTEEMENT OF SLOTS: 12 STAGGERED VERTICAL ROHS 6 PAIRSI

DIAENSIONEESS PRESSURE OPOP IS GALCULATEO AT CENTER OF FORMATION OIMENSIONLESS SLOT LGIGTH TR

OIMENSIONLESS SLOT LEIGGH IS: 4467

$\cdots 2$					
-100E-02 .57863E-43 -200E+00					
- 200E-02					01
-600E-02					
800こ-02		-900E+00		. $9005+02$	
$.303 E-32$. $15562 E+00$	-100E+03	
. 500 -01				0	$28200 \mathrm{E}+01$
-300E-01				-0.	-23119E+J
- 7 JJE-01					

TABLE 5
UNSTEACY PREṠURE fESPONSE In A SLOTTED LINER

ARTIANGEMENT OF SLOTS：6C STAGGEE．ED VERTICAL ROWS（ 30 FAISS）
GIAENSIONLESS PFESSURE JROP ZS CiLCULATEO AT CENTER OF FORMÄIJN
$R D=1.00$
GZYENSIONLESS SLOT LENGTH こJ：．4167

TU	PD	：D	PO	TD	PG
．100E－02	．15371E－01	． $2005+00$	－ $25524 E+00$	－200ミ＋02	． 13126 E＋01
．200E－C2	． 23265 E－01	． $3005+00$	－31719E＋00	－ $3005+02$	－ $21112 \mathrm{~L}+\mathrm{Cl}$
－300ミ－J2	． 28795 － 31	$\rightarrow+j 0 c+u 0$	$.37134 E+00$	． $400 \mathrm{E}+02$	－225こ0E＋31
－40JE－U2	． $335415-31$	． $5005+00$	． $42016 E+00$	． $5005+02$	．2353 4 E +01
．500E－02	． 37745 －01	－UOCE＋CO	． $46478 \mathrm{E}+00$	． $600 \mathrm{E}+02$	－24537E＋01
．600E－02	． $415535-01$	$.700 \mathrm{E}+00$	． $50591 E+00$	－700E＋02	． 253 C2E＋01
－ 70 JE－J2	． 45059 C －01	． $800 \mathrm{E}+00$	． $54407 \mathrm{E}+00$	． $800 \mathrm{CO}+02$	－259E5E＋01
． 0 － 0 E－ 22	． 48324 E－ 31	－ 3 JJE＋00	－57963E＋00	$.900 E+02$	． 265 OE＋ 11
． 900 こ－02	．51391E－01	－$\angle 0 C E+01$	． $61293 E+00$	－100E＋03	． $270745+01$
－101E－01	． $54293=-01$	． $2005+01$	$.86322 E+00$	． $2005+03$	－30こ28こ＋91
．200E－01	－ $77750 \mathrm{E}-01$	．200E＋01	－1J301E＋01	． $3005+03$	． $32551 E+31$
－300ミ－01	． 957 97E－31	－ $005 \mathrm{C}+01$	． $11552 E+01$	． $4005+03$	－333ヒ7E＋01
－ $40 C E$ C1	． $11175 \mathrm{E}+0 \mathrm{C}$	－ $5005+01$	$.12553 E+01$	－500E＋C3	． $35122 \mathrm{E}+\mathrm{CL}$
．500E－J1	． 12453 E＋00	－ $6 J$ ここ＋01	．13387E＋01	． $6005+03$	－ $36313 E+$
．6005－01	． $13675 E+00$	． $70 C E+01$	．14101E＋01	． $7002+03$	－ $36783 E+01$
－7コロニーリ1	． $14801 \pm+30$	． $3005+01$	－14726E＋01	－800E＋03	． 3745 OE＋01
． 800 L － 41	$.158536+10$	． $9005+01$	． $15292 E+01$	$.900 E+C 3$	． $36 C 38 E+31$
． 900 － 31	$.16844 E+00$	． $100 E+02$	．15782E＋01	－100E＋04	． $38565 \overline{\text { c }}+31$
． $100 \mathrm{E}+00$	． $17795 \mathrm{E}+00$				

4. NOMENCLATURE*

```
    ct = total compressibility
    di , distance in space
    h : slot length
    h}\mp@subsup{h}{D}{}=\mathrm{ dimensionless slot length
    * * formation permeability
    k : total number of slots in one vertical row
    NS : number of pairs of vertical rows of slots (also number
        of slots in one ring of slots)
    do * pressure drop
    O: initial pressure in the reservoir
    OD = dimensionless pressure drop
        q = fluid withdrawal per unit length or unit area (or vol-
        ume) of a source = strength
    Q : total withdrawal from a well (rate of production)
ri, rj : distances in X-Y plane (to slots)
    r [D : dimensionless distance in X-Y plane (to slots)
    IfD = dimensionless distagce in X-Y plane (to-slots)
    r}\mp@subsup{D}{D}{}= dimensionless radial distanc
    Fy = wellbore radius
        s * pseudo-skin factor
        t : producing time
        t
        x = abscissa of a point
        7 : ordinate of a point
```

 c-g-s units
    ```
    z = elevation of a point
    zm}= elevation of point M in a reservoir
2mD ( dimensionless elevation of a point a in a reservoir
    n m diffusivity
    \mu= viscosity
    \phi = porosity
    0 = angle which the projection of point M on the X-Y plane
        makes with the origin of coordinates
```

Subscripts and Superscripts
D = dimensionless
1 = pertaining to vertical row of slots "i"
j m pertaining to vertical row of slots "j"
u = any point in space
$t=$ total
w = well

SPECIAL FUNCTIONS

Error Function: $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-u^{2}} d u$
Exponential Integral: $\quad-E f(-x)=\int_{x}^{\infty} \frac{e^{U}}{u} d u$

5. REFERENCES

1. Brons, F., Martigg, V. E.: "The Effect of Restricted Fluid Entry on Well Productivity", JPT, Feb. 1961, 172174.
2. Burns, W. A., Jr.: "New Single-Well Test for Determining Vertical Permeability", Trans. AIME (1969), 246, 743-752.
3. Buzarde, L. E., Kastor, R. L., Bell. H. T., and Depriester, C. L: "Production Operation Course I-Well completions", SPE of AIME, 1972, Chap. IV.
4. Composite Catalog, World 011 ed. 1974-5, 2894.
5. Carslaw, \&. S., and Jaeger, J. C.: Conduction of heat in Solids, Oxford at the Clarendon Press (1959), 255-256.
6. Carslaw, H. S., and Jaeger, j. C: Op. cit., 275-276.
7. Gringarten, A. C., and Ramey, H. J., Jr.: "The Use of Source Functions in Solving Unsteady-Flow Problems in Reservolrs", SPEJ,oct. 1973; Trans. AIME (1975), 255, 285-296.
8. Gringarten, A. C., and Ramey, H. J., Jr.: "A Comparison of Different Solutions to the Radial Flow Problems", paper SPE 3817, submitted for publication.
9. Hubbert, M. K.: "Dacci's Law and the Field equations the flow of underground Fluids", Trans. AIME (1956), 207, 222-239.
10. Hurst, W.: "Establishment of the Skin Effect and its Impediment to fius Flow into a Wellbore", Pet. Eng., Oct. 1953, 25, B-6.
11. Muskat, M.: The Flow of Homogeneous Fluids Through Porous Media, T. W. Edwards, Inc., Ann Arbor, Mich. (194.6) 273.
12. Muskat, M.: Physical Principles of Oil Production,

McGraw-Hill Book Co., Inc., New York (1949), 210-220.
13. Nisle, G. R: "The Effect of Partial Penetration on pressure Build-Up in Oil Wells", Trans. AIME (1958), 213, 85-90.
 tion to Porous Media-A Review", Producers Monthly, May 1967, 4.
15. Theis, C. V.: "The Relationship between the Lowering of the Piezometric Surface and the Rate and Duration of Discharge Using Ground-Water Storage", Trans. AGU (1935) (1935), 519-524.
16. Van Everdingen, A. F.: "The Skin Effect and its Influence on the Productive Capacity of a Well", Trans. AIME (1953), 198, 171-176.

APPENDIX A

Computer Program

1....General

The computer program was compiled in order to calculate the
dimensionless pressure drop given by eq. 33 in the text.
It is divided into two parts: The main program and the subroutine. The subroutine computes the infinite summation of all error functions in the integrands in eq. 33, while the main program uses Simpson's rule for integration purposes.

It should be mentioned again that the program firstly computes the pressure drops created by all real and image slots in one vertical row and then considers another row; while in the text the explanations refer to another method where all pressure drops created by slots which have the same elevations are firstly computed and then slots in other elevations are considered (eqs. 22-27)
2....The Main Program

The following parameters are needed for the calculations:

1) Reservoir thickness = (ft.)
2) Slot length $=S L$ (inch)
3) Number of vertical staggered rows of slots (or number of Slots in one ring) $=N S$
4) Well radius $=I_{w}(f t$.
5) Dimensionless distance of point $M=I_{D}$
6) Dimensionless time $=t_{D}$
7) The elevation of point $M=z_{m D}$
8) The angle of point M with respect to the origin of $X-Y$ coordinates (Fig. 3) = Theta
9) The tolerance, which is used for testing the convergence of the infinite summation of the error functions $=10^{-10}$. This tolerance can be changed and is used in the eubroutine.
3. Subroutine Sum
As said above, this subroutine calculates all error func-
tion summations, using a certain tolerance which decreases
when to increase. Three hundred terms are considered at
most, but more terms can be added.

FROGRAM LINET：（こNPUT，OUTPUT，TAPEG＝OUTPUT）
FEAL L，LD
DEMENSION POT（ 200 ），TOT（ 800 ），FIL（360），FJL（360），FIC（360），FJC（360），
AFIR（360），FJR（3G0），RI（360），RJ（360），ALFA（360），LETA（360）
FIL＝VASUE OF FUNCTEON TO BE INTEGRATED AT THE LEFT SIDE OF
TEME INTERVML FOR \ddagger If SLOTS．
FJL＝OITTO，FOT：$\ddagger=$ JLOTS．
$F I C=V A L U E G F$ FUNCTZON TO BE INTEGRATEO AT THE CENTEP OF TIME
INTERVAL FCR \＃I\＃SLOTS．
$F J C=C I T T O, F O R \neq J \neq$ SLOTS．
FIR＝VALUE OF FUNCTEOH TO BE INTEGRATED AT．THE PIGHT SIOE．OF
TIMS INTERVAL FOR $\neq I \neq$ SLOTS．
FJP＝OITOO，FOR $\neq\lrcorner=$ SLOTS．
NJ＝IUMBER OF STACGZQED（P\＆IQS）ROUS OF SLOTS．THERE ARE TWO
KINOS OF SLOTS：ONE IS SLOTS $\neq I \pm$, AND THE SECOND，ONE IS SLOTS 1 前
WHISH ARE ROTATED IN RELATION TO SLOTS 捡 \ddagger ．
RI＝JISTANCE OF THE POINT FOR WHICH THE PRESSURE EP．OP IS TO BE
CALCULATE3 Jue тo PROOUCTION THRU $\neq I \neq$ SLOTS．
F．J＝JITTO， $\mathrm{FOR} \neq \mathrm{J} \ddagger$ SLCTS．
SILC＝SUA Of ERROR FUNCTIONS AT THE CENTER OF TIME INTERVAL FOR
まさま こLOTS．
SJE＝OITTO，FOF．$\neq J \neq$ SLOTS．
SILP：＝SU：I or ERROP FUHCTIONS AT THE LEFT SIDE OF TIME INTERVAL
FOR $=$ Iた S．O．5．
SJLR＝OITTO，FON 土J干 SLOTS．
IMRUT DATA
REJEFVOIR THZCKNEJS L（FT．）
L＝4。
3LO LEMGTH（INCH）
$S L=2$ ．
NO．OF JLGE EN ON二 E．CW IS CALCJLATEO
NうL＝L＊o／J：
HOL RADILE
R：$N=1: / 6$ ．
P．J，Lコ，Hコ＝コニMENSIOHESS OISTANCE，THICKNESS ANE SLOT LENGTH，RESPECTIVELY
RJ＝1．3
$L[=L / R W$
$H D=S L / 12 . /$ RH
Z付 $=\mathrm{L} 0 / 2 .+0.01$
TOL＝1．E－12
TJ＝0．
NS $=12$
$T H E T A=15$ ．
STI＝0．011
OT＝DTI／う。
NCT＝0
$X_{11}=$ RW＊PJ＊COSS（THETA）

WRITE（6，130）
DD $12 I=1$ ，is
ALFA（I）＝300．／1IS＊I
WRITE（6，125）二，ALF：（こ）

12 CONT $2 N U$
Jo $13 \mathrm{~J}=1,15$


```
    MRITE(6,120) J,aETA(J)
    RJ(J)=SQRT((XM-RK* jOJI(BETA(J)))**2+(YM-RFH*SINO(BETA(J)))*+2)/RU
    13 COHIINuE
    PJ=0.
    PJI=0.
    PJJ=0..
    DO }8\mathrm{ I=1,NS
    FIL(I)=0.
    FJL(I)=0.
    HRITE(6,127) I,FI(I),I,RJ(I)
8 COHTINUE
    NC=6
c
    DO 1 K=1;NC
    IF(K-1) 2;2,3
    2 NINT=10
    GO TO.4
3 NINT=9
4 CO 5 J=1,NINT
    LO 6 L1=1,5
    T1=T0+OT/2.
    EF(TD.GC.0.1) TOL=1.E-09
C
    CALL SU:I(T1,NJL,LO,HD,ZMO,TOL,NS;SILC,SJLG)
    T0=T0+0T
    CALL SUASTD,NSL,LO,HO,ZMO,TOL,NS,SILR,SMR)
    CO 7 I=1,NS
    シ=にI(I)*RI(こ)
    F=\Gamma.J(I)*RJ(I)
    ミ1=E/(4.*T1)
    E11=E/(4.0*TD)
    F1=F/(4.*汸)
    F11=F/(4.**1)
    IF(E1.GE.1J0.) E1=100.
    IF(F1.GE.10J.) F1=100.
    IF(E11.GE.10%.) EI1=100.
    IF(F11.GE.100.) Fi1=100.
    FIC(I)=1./T1*EXP(-こ1)*SILC
    FJC(I)=1./T1*EXP (-F11)*SJLC
    FIR(I)=1./T:3*EXP(-E11)*SILR
    FJR(I)=1./TD*EXP(-F1)*SJLR
    PDI=POI+. 25*OT/6.*(FIL(I)+4.*FIC(I)+FIR(II)
    POJ=PDJ+.25*IT/6.* (FJL(I) +4.*FJC(I) +FJP(I)
    FIL(I)=FIR(I)
    Fル(I)=FJた(こ)
7 EJNTINUE
    PD=PD+PDI+\Gamma[JJ
    PJI= J.
    POJ=0.
    PPJ=PD/idS
5 CO!TINU=
    HC i=NC i+1
    7-(nc%)=0
    #ji (HCT)=\mp@code{#N}
5 CDHTENUE
    i:=1j.+3:
1 contanue
```

```
    PEINT 9J,iLET
    wr.ITC(0,1u+j
    N=2*NS
    H:ITE(5,135) N,NS
    HRITË(a,130) PJ,HC
    NNITこ(6,1Ji)
    NCP1=3*:NG+1
    NCP=3+N:
    OO 15 I= 1,NCP
    K=NCF1+I
    N=NCP2+=
    HRITE(G,132) TET(I),PGT(I),TQT(K),PCT(K), OTT(N),PDT(N)
15 CONTINUE
    WRITE(6,133) TOT(NSP1) ,PDT(NCP1)
    99 FOF,HAT(4X,*HCT=*,Iち)
100 FO:MAT (1H1)
125 FOC.1AT (4,X,*ALFA(*, T3,*)=*,F3.2)
126 FリF!んT (4X,*こ三T&(*,二3,*) =*,FB.2)
```



```
132 FOR:1AT (7X,=10.3,2x, 511.5,2(03X,E10.3,2x,三11.51)
133 FONi1AT(J7X,E1.3.3,2X,E11.5)
```



```
i,//)
```



```
135 FO:\IMT(12X,*EESANGEDINESS PRESSUPE OROP IE CALCULATED AT CENTER CF
```



```
3j:*,FG.4,//j
STOP
ENO
```

SUQROUTENE SUHGT,MSL,LO,HO,ZMD,TOL,NE,STL,SJL
fEAL LO
SQT=SQRT (T)
$\mathrm{FAC}=2 .+5 \mathrm{~T}$
C1 $=(2 \mathrm{MD}+\mathrm{H} 52 / / \mathrm{FAC}$
$C 2=(Z M D-H D) / \int A C$
$\mathrm{C}=(2 \mathrm{MD}+\mathrm{HO}-\mathrm{KO}) / \angle \mathrm{FAC}$
$C^{\prime}=(2 M O-H D-L 0) /$ FAC
SEI=ERF(CI)-
SEJ=ERF (CSI-ERF (C \rightarrow)
$K=300$
12=NSL-1
001 I1=1;12

SEJ=SEJ+ERF ($(2 H C+2 * I 1 * H O S / F A C)-E R F((Z M D+(2 * I I-1) * H D) / F A C)$
$A+E R F((2 H 10-(2 * I I-1) * H D) / F A C)-E R F((Z M O-2 * I 1 * H D) / F A C 3$
1 CONTINUE
SI=SEI
SJ=SEJ
DO $2 N=1, k$
F1 $=(2 M D+H 2+2 * N * L D) / F A C$
FZ $=\left(2 M D-H C+2 * H^{*} L D\right.$)/FAC

F4 $=(2 H D-H J-2 * H * L D) / F A C$
$F 5=\left(2 M O+H D+\left(Z^{*} \mathrm{H}-1\right)^{*} L D\right) / F A C$
$F G=(2 M O-H D+(2 \times N-1) *(D) / F A C$
$F T=(2 M D+H D-(2 * H+1) * L D) / F A C$
$F 8=\left(2 M D-H D-\left(2^{*} H+1\right)^{F} L D\right) / F A C$
$\operatorname{SPI}=E R F(F 1)-E R F(F 2)+E R F(F 3)-E R F(F 4)$
$\operatorname{SP} J=E R F(F 5)-E F F(F 6)+E R F(F 7)-E R F(F 8)$
004 I1=1,I2
$A=E R F\left(\left(2 M C+(2 * I 1+1) * H O+2 * N^{*} L D i / F A C\right)\right.$
$3=\equiv R F\left(\left(2 M E+2^{*}=1^{*} H D+2^{*} N^{+} L O\right) / F A C\right)$
C=ERF ((2MD-2*I1*HO+2*N*LD)/FAC)
$0=E R F\left(\left(2 M J-\left(2^{*} \dot{I} 1+1\right) * H O+2^{*} N^{*} L D\right) / F A C\right)$
$E=E R F\left(\left(Z M D-2^{*} I 1^{*} H D-2^{*} N^{*} L D\right) / F A C\right)$.
$F=E R F\left(2 M D-\left(2^{*} I 1+1\right) * H D-2^{*} N * L D\right) / F A C 1$
$G=E R F((2 M D+(2 * 2 i+1) * H D-2 * N * L D) / F A C)$
$H=E R F\left(\left(2 H D+2^{*} \Sigma 1^{*} H D-2^{*} N^{*} L D\right) / F A C\right)$
$S P I=S P I+A-C+C-D+E-F+G-H$
$A 1=\equiv R F\left(\left(Z M D+2 * i 1 * H J+2^{*} N^{*} L D\right) / F A C\right)$.
B1=5RF ($\left.\left(2 M D+\left(2^{*} I 1-1\right) * H C+2^{*} N^{*} L O\right) / F A C\right)$
C1=ERF\{ $\{2 M D-(2 * I 1-12 * H O+2 * N+L D\} / F A C)$
$D_{1}=E R F\left(\left(Z M D-2 * I 1 * H D+2 * N^{+}(D) / F A C\right)\right.$
E1=ERF ($\left(2 \mathrm{ML}-\left(2^{*} I 1-i\right) * H D-2^{*} \mathrm{~N}^{*}(\mathrm{~L}) / F A C\right)$
F1=ERF (($2 H O-2 *=1 * H D-2 * N * L G) / F A C)$

$H 1=\equiv \operatorname{RF}\left(\left(2 M D+(2 * I 1-:)^{*} H C-2 * N+L D / F A C\right)\right.$
$S P J=5 P J+A 1-B 1+C 1-D 1+E 1-F 1+G 1-H 1$
4 CONTINUE.
SI=SItSPI
SJ=3J+SP J
C TEST GF CONVERGEHCE
IF (SJ.LE.1.E-50) SJ=1.E-50
AI=SPI/SI
AJ=3P1/2」

```
    D=AlifX1 (AI,AJ)
    IF(J-TCL) 3,3,2
    2 CONTINUE
        HRITE(6,100)
100 FORPMT://,1%,*HO CONVEPGENCE FOR 30D TER:A5*;)
    SI!=SI
    IF(SJ.EQ.1.E-50) SJ=C.
    SJL=SJ
    RETUPN
    EHO
```


APPENDIX B

Tabulated Results

The numerical results of all computer runs with calculated pseudo-skinfactors are printed in the following pages.

TABLE B－1
UNSTEAOY PRESJURE RESPONSE IN A SLOTTEO LINER

AFF．ANGEMENT OF SLOTS： 2 STAGGERED VERTICAL ROWS： 1 PAIR ）
DIMENSIONLESS PRESJURE JR．OP IS CALCULATED AT CENTER OF FORMATEON
$R D=1.00$
L二HEHSIONLESS SLOT LEMGTH こS：．2000

| TO | PO | TJ | PO | T0 | $P D$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ．10JE－ 32 | ． $480205+90$ | ． 20 0［＋00 | ．17509E＋01 | － $200 \underline{0}+02$ | ． $35188 \mathrm{E}+11$ |
| ．200こ－02 | ． 527 ¢0こ＋30 | ． 30 Et00 | ．18540三＋01 | － $300 \mathrm{E}+02$ | － $37175 \mathrm{E}+11$ |
| | ． $71795 \equiv+90$ | －43コE＋00 | $.19300 E+01$ | e $400 E+02$ | ． 38593 E＋01 |
| ． 40 日E－32 | ． 78357 ＋ 00 | －503こ＋03 | －19919E＋01 | －500E＋02 | ． 39696 ＋01 |
| －530E－02 | ．83577ミ＋30 | ．600こ＋00 | － $27448 \mathrm{E}+01$ | e $500 \mathrm{E}+02$ | ． $405995+$ i1 |
| －600E－02 | ． $879005+00$ | － $700 \mathrm{O}+00$ | ． $20915 E+01$ | ． $700 E+02$ | ． $413645+01$ |
| ． $700 \mathrm{E}-02$ | ． $91599 E+30$ | ． $20.7 E+00$ | ． $21337 \mathrm{E}+01$ | $.800 E+02$ | ． 42 227E＋61 |
| ． 800 E－02 | ． 94832 E＋ 00 | ． $9095+00$ | ．21722E＋01 | － $7005+02$ | － $42613 \mathrm{E}+01$ |
| ．9JJE－02 | ．97704 | ． $1035+01$ | ．22077E＋01 | $.100 \pm+03$ | ． 43137 ＋ 61 |
| －100E－ 31 | ． $10029 \mathrm{C}+31$ | ． $20020+01$ | ． $24661 E+01$ | － 200 E＋03 | ． $48590 \mathrm{E}+11$ |
| ． 200 － 31 | ． $11749 \mathrm{E}+01$ | ． $3002+01$ | ． $26348 \mathrm{E}+01$ | $.3005+93$ | ． $48513 E+01$ |
| －30JE－01 | ．12752三＋01 | ．400E＋01 | ． 276 柯 01 | ． 40 OE＋03 | ． $50350 \leq+C 1$ |
| －4JJE－J1 | ．13492ミ＋J1 | － 3 J0E＋01 | $.28609 E+01$ | ． $505 \mathrm{O}+03$ | ． $51164 E+[1$ |
| ． 500 － 31 | ．14039E＋31 | －003E＋01 | ． $29445 E+01$ | ． $600 \mathrm{O}+03$ | ． $52375 E+01$ |
| － $100=-01$ | ． $14495 E+01$ | ． $700 \mathrm{E}+01$ | ． $30150 E+01$ | ． $700 \mathrm{E}+03$ | ． $52845 E+01$ |
| ． 700 －01 | ．14881こ＋31 | ． $3002+01$ | － $30786 E+01$ | $.900 E+03$ | ． $53512 E+01$ |
| ．800E－01 | ． $15214 \mathrm{E}+01$ | －300E＋01 | － $313425+01$ | －900E＋ 03 | ． $541015+31$ |
| －900E－01 | ． $15509 \mathrm{E}+31$ | －103E＋02 | ． $31843 \mathrm{E}+01$ | －1005＋04 | ． $54627 E+C 1$ |
| －13］E＋J0 | ． $157725+11$ | | | | |

PSEUDO－SKIN FACTOR＝1．6042

PJ
$T 2$
$P D$
70
－ 0

| こUUE－j2 | －40－2UE＋6． |
| :---: | :---: |
| 2uいEーい2 | －5275？ |
| $3 \mathrm{CLEO-2}$ | ． 77735 E |
| WGiEか」 | ． $7323.5 \mathrm{E}+\mathrm{CJ}$ |
| 50uE－J2 | ． $33347 \mathrm{E}+\mathrm{C}$ |
| GCLE－：2 | ． 87556 E |
| 7u゙c゙u2 | ． 91143 c |
| | －9－265E＋i． |
| 90uE－U | － 77 J $32 \mathrm{E}+2 \mathrm{~J}$ |
| 10しE－く1 | － $315165+\mathrm{J}$ |
| 20以E－G1 | －1261JE゙い1 |
| 3しいEール1 | －：26ロリE＋ 1 |
| | －i33．9E＋i |
| 50LE－ご | ．13063E＋ |
| EこっE－こ： | －1ヶ317E＋レ1 |
| 7 OUE－CI | ．14731E＋」1 |
| 3）${ }^{\text {3 E－}} 2$ | －15 ¢ 34 E＋－ 1 |
| Эu才 | ． 15329 E |
| | |

2 2
－3にとEーご ・プ735E＋」う
－いいとールて
－
－7u゙とーu2

－GCUEーU
－10しEーじ －20しEーに1
－3uvEール1

5ULE－LI
－ 7 した
－3うこEー01
－100E＋ 0
－40：2UE＋に6
－2おうごいし 3 3 －4uy tu
 －60 $62+51$ ． $7 \downarrow j=+i i$ －か6おさ」 －そu $こ+0 i$ －iしうこtul －こんいこれは －3いいこtu2 －4いことい －ラいうetil 23429 ＋ 12 06 2＋j1 •29264F＋C1

| －2．．E＋2\％ | －35：37テ＋： |
| :---: | :---: |
| －Jucctuz | ． 369 ＋ $5+$－ |
| ．$E+$ Le | － 3 3612E＋ 1 |
| 5ucE＋u2 | － $30515-2$ |
| －6．．E＋ここ | － 4 ¢419E＋ 1 |
| － 7 －UE＋U゙ | ． $41183=+61$ |
| －ひいいE＋ごく | － $41947 E+.1$ |
| －Э．－E＋いこ | － $422325+61$ |
| －A－Eth3 | ． 42956 E＋．1 |
| －2．- ＋uJ | ． $454.4 .9 E+$－ 1 |
| －36レミ＋03 | ． $484335+11$ |
| －TレLE＋63 | － 49869 E＋ 11 |
| | ． $509035+1$ |
| －6．LE＋bう | ． 51 R $94 E+\because 1$ |
| －76しE＋Uう | －52もあージ＋C1 |
| うとこと＋いろ | － 53332 ＋+1 |
| 3：－ $5+0$ | － $53920=+$－ 1 |
| Lucet56 | －54447E＋ |

TABLE B－3
UNSTEADY PRESJURE RESPJNSE IN A SLOTTED LINEP？

| ARF．ANGEMENT OF | F SLOTS： | 2 | STAGGETED VERTI | cal | ROWS | 1 | PAIR ） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DIIENSIONLESS | PPSSSUP： | CFAP | P IS Smlculated | | CENTEF | OF | FOPMATION |
| $\mathrm{RD}=$ | 1.00 | | | | | | |
| OI：AENSIONLESS | SLOT LEING | GTH | －5：．5714 | | | | |

| TD | Pi | －0 | PC | TD | PC |
| :---: | :---: | :---: | :---: | :---: | :---: |
| －100E－32 | ． $480205+00$ | ．2002＋00 | ． $172925+01$ | － $2005+02$ | ． $349625+31$ |
| －2ひJミ－32 | －E2752E＋00 | － 3 JJE＋00 | ．18315E＋01 | ． $303 \mathrm{E}+02$ | ． $36349 \pm+11$ |
| －30コミ－32 | ． 71735 E＋ 30 | － 4 JJE＋00 | －19075E＋01 | － $4005+02$ | － 3 e $367 \pm+[1$ |
| －40JE－02 | ． $78238 \mathrm{E}+30$ | －500こ＋00 | $.19692 E+01$ | ． $500 E+02$ | ． $33470 \mathrm{E}+01$ |
| －5 OJE－J2 | ． $83347 \mathrm{CH0}$ | ．603こ＋00 | －20222E＋01 | ． $500 \mathrm{E}+02$ | ． $40373 E+$［1 |
| ．600E－02 | ． $87558 \mathrm{E}+00$ | ． $\mathrm{T}^{3} \mathrm{JJT}+00$ | － $20690 E+01$ | $.700 E+02$ | ． 41138 E ＋31 |
| ． 700 － 32 | ．91142E＋10 | ． $303 \pm+00$ | ． $21111 E+01$ | $.9005+02$ | ． $41801 E+$ C1 |
| ． $800 \mathrm{E}-32$ | ． $942635+00$ | －9ココE＋00 | － $21496 E+01$ | $.900 \mathrm{E}+02$ | ． $42387 E+31$ |
| ． 900 E－02 | ． 97027 E＋0」 | －13Jミ＋01 | ． $21852 \mathrm{E}+01$ | ． $1005+03$ | e 42311 ＋${ }^{\text {c }} 1$ |
| ．100E－01 | ．99509E＋00 | $.200 \mathrm{E}+01$ | ． $24435 E+01$ | ． $200 E+03$ | ． $46364 \bar{E}+31$ |
| ．230E－31 | ．11602E＋01 | －ココJご＋01 | ． $261225+01$ | － $3005+03$ | ． 48397 E＋C1 |
| －300E－01 | －12592E＋01 | －ヶココこ＋01 | ． $27380 \mathrm{E}+01$ | $.4005+03$ | ． $49824 \mathrm{E}+\mathrm{S1}$ |
| －400こ－01 | ．13293E＋01 | ． $500 \mathrm{E}+01$ | ． $28333 \mathrm{E}+01$ | ． $500 \pm+03$ | ． $50938 \mathrm{E}+11$ |
| ． 500 －01 | ． $138315+31$ | ． $6005+01$ | ． $29219 E+01$ | ． $6005+03$ | ． 51349 ＋ 51 |
| ． 600 － 31 | ． $14281 E+01$ | ．アコJE＋01 | ． $29934 E+01$ | ． $7005+03$ | ． 52619 E＋01 |
| ． 700 E－01 | ． $14662 \mathrm{E}+01$ | －3コ3E＋01 | － 33560 E＋01 | ． $90 C E+23$ | ． $53266 E+31$ |
| ． 8005 － 11 | ． $14994 \vec{E}+01$ | ． 2 J0［＋01 | $.31116 E+01$ | ． $9005+03$ | ． 53875 E＋31 |
| －900三－31 | －15297E＋01 | ．130こ＋02 | －31617E＋01 | －1095＋04 | ． $54401 \pm$＋ 01 |
| ．100E＋00 | ．15549だ01 | | | | |

PSEUDO－SKIN FACTOR＝1．5816

TABLE B－4
unsteacy pfeselire response in a slotted liner

AFPPAHGEMENT OF SLOTS： 2 STLGGERED VERTICAL ROWS（ 1 FAIR）
OIHENSIONLESS．PRESSURE OROP ES．CALCULATED AT CENTEP OF FCPMATION

$R D=1.00$
DIMEISIONLESS SLOT LENGTH IS：1．OGOO

| TD | PD | TD | PO | TD | PO＇ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| e $000 \mathrm{E}-02$ | ． $49020 E+00$ | － 20.0 ＋${ }^{\text {c }}$ | ． 17235 E＋01 | －200E＋02 | ． 34720 E＋01． |
| ．200E－02 | ．62752E＋00 | ． $300 \mathrm{E}+00$ | ． $18264 \mathrm{E}+01$ | －300E＋ 02 | －36397E＋01． |
| －300E－02 | ． $71735 E+00$ | $\because \angle 00 E+00$ | ． $19023 E+01$ | ． $400 \mathrm{E}+02$ | － $38315 E+01$ |
| ． 400 E－02 | － 7823 9E＋30 | －500こ＋00 | －19641E＋01 | －500E＋C2 | ． $39418 \mathrm{E}+$［1 |
| － 510 三－02 | － 2334 フミ＋ 00 | －630E＋00 | － $20170 E+01$ | － $5005+02$ | $\because 40321 E+[1$ |
| ． 6015 －02 | ． $37558 \mathrm{E}+30$ | $.700 E+00$ | － $20538 \mathrm{E}+01$ | － $700 \mathrm{E}+02$ | ．41］ 46 E＋［1 |
| －700E－02 | ． 91142 E＋00 | ． $2005+00$ | ． $210595+01$ | ． $800 \mathrm{E}+02$ | ． $41750 \mathrm{E}+61$ |
| －200こ－02 | ． $9426.35+.10$ | ．90CE＋00 | － $21445 E+01$ | ． $9005+C 2$ | －42335E＋01 |
| －9003－02 | ．97027三＋ 90 | ．130こ＋01 | －21800E＋01 | －10㫙＋03 | －42359E＋31 |
| －100こ－01 | ． 995 の9こ＋ 73 | －233E＋81 | ． $24384 \mathrm{E}+01$ | －200E＋03 | －45312E＋01 |
| e $200 \mathrm{E}-31$ | ． $11501 E+71$ | ． $300 \equiv+01$ | ． $26070 \mathrm{E}+01$ | －300E＋03 | ． $48336 E+01$ |
| ． $300 \mathrm{E}-01$ | －12578E＋ 31 | ． 4 CCE＋C1 | ． $27328 \mathrm{E}+01$ | $.400 E+03$ | $\because 47772$ E＋ 31 |
| ． $4005-01$ | ． $13276 \mathrm{E}+\mathrm{J} 1$ | －503E＋01 | － $28332 \mathrm{~F}+01$ | －500E＋03 | － 5086 EE＋${ }^{\text {c }}$ |
| －500E－C1 | －1391］ 5171 | －EOCL＋C1 | ． $25167 E+01$ | ．500E＋03 | －51797E＋31 |
| ． 600 － 01 | ． $142645+01$ | $\because 00 E+01$ | e $29883 \mathrm{E}+01$ | ． $7005+03$ | ． $52567 \mathrm{E}+01$ |
| ． $700 \mathrm{E}-01$ | －14641E＋01 | ． $800 \mathrm{E}+01$ | ． $305085+01$ | －8005＋03 | － $53234 E+[1$ |
| －E 10E－01 | －14968E＋01 | － $903 \mathrm{E}+01$ | － $31065 E+01$ | －900E＋03 | ． $532235+[1$ |
| ．900E－01 | $.15258 E+01$ | $.100[+02$ | －31565E＋ 11 | －100E＋04 | － $54350 E+01$ |
| －1JコE＋00 | ． 15517 ＋${ }^{\text {a }}$ | | | | |

UNSTEADY＇PRESSURE RESPONSE IN A SLOTTED LINER

APRANGEHENF OF SLOTS： 4 STAGGERED VERTICAL ROHSI 2 PAIRS
DIMENSIONEESS PRESSURE JROP IS CALCULATEQ AT CENTER OF FORMATION：

TO
PD $\quad \because \boldsymbol{T D}$
PO
T0

\qquad
－100E－02
－200E－02 －300E－02
－400E－02 －5015－92 ．600E－02
－7015－32
－ 8 JOE－ 32
－900ミー 22 －100E－U1 －200E－31
－300E－31 －400E－31 －5JロE゙－31 －60コE－31 －700E－01 $.800 \vec{E}-01$ ． 900 E－01 －100E＋00
$.24010 E+00$ $.31380 E+00$ － $35893 \mathrm{E}+00$ － $39184 E+00$ －41789E＋00
$.43950 E+00$
．4579ヲこ＋ 10
－47416E＋10
$.48852 E+10$
． $50144 E+00$
$.58746 E+30$
－63812E＋00
$.67408 E+30$
$.70197 E+00$
$.72477 E+00$
$.74405 E+10$
$.76079 E+00$
$.77559 E+00$
． $78890 \mathrm{E}+00$

$$
\begin{aligned}
& .200 \mathrm{E}+00 \cdot 88163 E+90 \\
& .309 E+00 \\
& -4002+00 \\
& -500 E+00 \\
& .600 E+00 \\
& \text { - } 7 \text { JOE }+00 \\
& \text {-3015+00 } \\
& \text {-93JE+00 } \\
& .105 E+01 \\
& -200 E+01 \\
& \text {-3015+01 } \\
& -4 C C E+61 \\
& .500 E+01 \\
& .600 E+01 \\
& .700 E+01 \\
& .800 E+01 \\
& .900 E+01 \\
& .100 \text { E + } 0 \text { こ } \\
& .88163 E+90 \\
& .94650 E+00 \\
& .10016 E+01 \\
& .10508 \mathrm{E}+01 \\
& .10955 E+01 \\
& \text {-11367E+01 } \\
& .11749 E+01 \\
& \text {-12105E+01 } \\
& .124385+01 \\
& .14941 E+01 \\
& .16610 E+01 \\
& \text {-17361E+01 } \\
& .188625+01 \\
& \text {. } 19696 E+01 \\
& \text { - } 2041 \text { OE+ } 01 \\
& \text { - } 21035 E+01 \\
& \text {. } 21591 E+01 \\
& .22091 E+01
\end{aligned}
$$

$.200 E+02.25435 E+01$ $.300 E+02 \quad .27422 E+61$ $.400 E+02 \quad .28839 E+01$ $.500 E+02 \quad .29943 E+01$ $.600 E+02 \quad .30 E 46 E+[1$ $.700 E+02 \quad .31611 E+31$ $.800 E+92 \quad .32274$ C＋01 － $900 E+02 \quad .32859 E+01$ $.100 E+03 \quad .33384 E+[1$ －200E＋03－ $36837 E+01$

$$
.200 E+03 \quad .38360 E+01
$$

$$
.400 E+03 \quad .40236 E+[1
$$

$$
.500 \vec{c}+03 \quad .41411 E+61
$$

$$
\cdot 600 E+03 \quad .42322 E+01
$$

$$
.700 \mathrm{E}+03 \quad .43092 \mathrm{E}+01
$$

$$
.900 E+03 \quad .43759 E+01
$$

$$
.900 E+C 3 \quad .44347 E+01
$$

$$
.100 E+04 \quad .44374 E+01
$$

PSEUDO－SKIN FACTOR $=0.6289$

TABLE B－6

UNSTEADY PRESSUEE RESPONSE IN A SLOTTÖ LINER

ARRANGEMENI OF GLOTS：－STAGEERED VEFTICAL ROWS（ 2 PLIRS）
dimensionless pfesjuri jr̃op is calculatej at cemter of fofmation
$R O=1.03$
oImensionless slot lengTh is：． $1: 257$

TD
PO
T）
P3
TO
ワ

| 12 | －24J1コE＋． | | － $8726^{\circ} \mathrm{j}$＋」 | －2．いEくしこ | ． 253 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| －2しここーu | －3：376これに | －3ひお何う | －9375アミ4u | －JuひE＋ひこ | －27331：＋ 21 |
| －3uUE－」 2 | ． $35367 \mathrm{E}+\ldots$ | －4iditur | ． $99259 \pm+j u$ | －\rightarrow－LE＋ご | － $297475+51$ |
| －4CuE－i 2 | －33119E＋こう | －5ujetij | －10417E＋i1 | －5いいE＋もて | － $29852 \mathrm{E}+1$ |
| －50uE－j2 | | －6． $0 \cdot 0+0$ | －1：865：＋i1 | －6u－E＋02 | － 3 ¢ $7565+i 1$ |
| －6uiE－iz | ．43779E＋u0 | | －1：277ミ＋i1 | ．7．UE＋Lこ | －31521E＋01 |
| －7いごー」 | －4557らご＋い | －8～j | －1：559ミ＋61 | － 0 － $5+0$ a | － 32284 \＃＋ 61 |
| 90¢E－i2 | ． $47133 E+$－ | －9．2ミ＋iu | －12915ミ＋01 | －？l letic | － 32769 E＋C1 |
| －ヨuらEーら2 | ． $48516 E+$ U ${ }^{\text {d }}$ | －2こうこの1 | －123－8ミ＋01 | －1uvE＋03 | － $332935+61$ |
| －1うここーい1 | ． $417750 \mathrm{E}+\mathrm{O} 7$ | － $20 \sim 4$ | －14951E＋C1 | －2． $6 E+L E$ | － 36747 ＋+1 |
| －26゙Eー31 | | | －1も526ミ＋リ1 | －J－UE＋ころ | －38770E＋01 |
| － 30 JE－i1 | － $62998 \mathrm{E}+\mathrm{J}$ | －40うこt51 | － $17771 \equiv+$－ 1 | －4－－E4．3 | －47236E＋C1 |
| ． 4 CCE－U1 | －60545Etじ | －5uditu | ． 19772 E＋01 | －5ぃしE＋63 | ． $413200^{\circ}+$ C 1 |
| －50je | ． $63313 \mathrm{E}+2$. | | －19655E＋51 | －6：65＋63 | ． $42231 E+$＋1 |
| 5こった－」1 | ．7：583E＋いう | －7レこごい | －2：32： | －7じE＋C3 | －43541E＋61 |
| 7じごい1 | ． 735 ，7Etu | － $80 \sim$ ごせ | －2：945こ＋โ1 | | ． $43669 \mathrm{E}+51$ |
| －PJりE－ら1 | ． 75 －76E＋uう | －ゴゴされ1 | ． $21501 \pm+61$ | －3しこE＋にう | $44257 E+$ C1 |
| 96LE－U： | ． 70 二50E＋ 7 | －こうご | －220こ1ミ＋01 | －こうい $\mathrm{E}+\mathrm{C}$ | －44784E＋こ1 |
| OEE 00 | ． $77988 \mathrm{C}+00$ | | | | |

PSEUDO－SKIN FACTOR＝0．6199

TABLE B－7
UNSTEACY PRESJURE RESPJNSE IN A SLOTTED LINER．

ARRANGEMENT OF SLOTS：\rightarrow STAGGERED VERTICAL ROWS（ 2 PAIRS）
DI：AENSIONLESS PRESSURE SROF IS EALCULATED AT CENTER CF FCRMATION
$R D=1.00$
OIMENSIONLESS SLOT LENG：H $=己$ ． 5 ：114

| TD | PD | 70 | PD | T0 | PC |
| :---: | :---: | :---: | :---: | :---: | :---: |
| －100 -02 | －24019E＋00 | ．20］5＋00 | ． $87036 E+00$ | $.200 E+32$ | ． $25322 \mathrm{E}+01$ |
| 0200E－02 | ． 31376 ＋00 | ． $3005+00$ | ． $93532 \mathrm{E}+00$ | ．300E＋02 | ． $27309 E+31$ |
| － $300 \mathrm{E}-02$ | －35867こ＋00 | ． $4902+00$ | ． $99034 \mathrm{E}+00$ | $.400 \underline{+02}$ | －28727E＋01 |
| －400E－02 | ． $39119 E+30$ | －5コここ＋00 | ． $10395 E+01$ | ． 50 OE＋02 | ． 29830 － 01 |
| ． $500 \mathrm{E}-02$ | ． 41673 E＋ 00 | $.603 E+00$ | ． $10842 E+01$ | $.600 E+02$ | $.30-33 E+[1$ |
| ．600E－02 | ． $43779 \mathrm{E}+00$ | ． $703 \mathrm{E}+00$ | ． $11254 \mathrm{E}+01$ | $.700 E+02$ | － $31498 \mathrm{E}+31$ |
| ． 730 －02 | ． $45571 E+00$ | － $303 \mathrm{O}+00$ | $.116365+01$ | ． $800 \mathrm{E}+02$ | ． $32161 \mathrm{E}+61$ |
| －0 3JE－02 | ． $471312+00$ | － $3095+00$ | －11992E＋01 | － $0905+02$ | ． $32747 \mathrm{E}+11$ |
| －900E－02 | ． $48514 \pm+03$ | － $100 \mathrm{E}+01$ | $.123255+01$ | $.100 ミ+03$ | ． $33271 \pm+11$ |
| ．100三－01 | ． 49754 E＋00 | ．200ミ＋01 | ． $14828 \mathrm{E}+01$ | $.2005+03$ | ． $36>24 \mathrm{E}+11$ |
| － 200 －31 | ． $53019 E+30$ | ． $3305+01$ | e $16497 \mathrm{E}+01$ | $.3005+23$ | ．387475＋01 |
| ．300E－01 | ． $52998 E+70$ | －＋ $3 j E+01$ | －17748E＋01 | ． $4005+53$ | ． $40184 \mathrm{~L}+61$ |
| －40コE－01 | ． $66416 E+00$ | $.5005+01$ | ．18749E＋01 | ．500E＋C3 | ． $412985+01$ |
| －509E－01 | －69155 ${ }^{\text {－}}$＋00 | ．633E＋01 | $.19583 E+01$ | ． $5005+03$ | ． $422098+61$ |
| ． $600 \mathrm{E}-01$ | ． $714045+00$ | ． $7005+01$ | ． $20297 E+01$ | ． $700 \mathrm{E}+03$ | ． $42979 E+01$ |
| ．730ミ－01 | ． 73314 E＋00 | ． 330 C 31 | ．20922E＋01 | ． $8005+03$ | ． 43546 E +1 |
| － $300 \mathrm{E}-01$ | ． $74975 \mathrm{E}+00$ | ． 9 J0c＋01 | ． $214795+01$ | ． 90 DE＋ 03 | ． $44235 \mathrm{E}+31$ |
| － 300 － 01 | ． $76448 \mathrm{E}+00$ | －100こ＋02 | ． $21978 \mathrm{E}+01$ | ．190E＋j＋ | ． $44 \cdot 61 E+31$ |
| ．100 $5+00$ | ． $77773 \mathrm{C}+00$ | | | | |

ARPAMGEMENT OF SLOTS： 4 STAGGERED VERTIGAL ROWSI $?$ PAIES

［EIENSIONLESS PEESSURE MOF IS CALCULATEE AT GENTER OF FORMATION
$R O=1.00$
DEHシMSIONLESS SLOT LEIGTH IE：1．0000

| TD | PD | T0 | PD | 10 | PO |
| :---: | :---: | :---: | :---: | :---: | :---: |
| －109E－02 | ． $240105+00$ | ． $2005+00$ | － $36895 E+00$ | －200E＋02 | －25298E＋01 |
| －200E－02 | ． 31376 E＋00 | ． $300 \mathrm{E}+00$ | ． $93288 \mathrm{E}+00$ | － $300 \pm+02$ | ． $27284 \mathrm{E}+01$ |
| －30ロE－02 | －35867E＋90 | | －98787E＋02 | $.4005+02$ | ． $28702 \mathrm{E}+11$ |
| ． $400 E-52$ | ． 39119 E＋J0 | － $2305+00$ | －10370E＋01 | －500E＋02 | － $29805 \mathrm{E}+01$ |
| ． 5 J0E－32 | ．41573E＋00 | －6ら2E＋C0 | －10218 $2+01$ | ． $6005+02$ | －30708E＋61 |
| －60cE－こ2 | ． 43775 E +00 | ．$\because 35=00$ | ． $112305+01$ | ． $700 \pm+02$ | －31473E＋01 |
| －709E－02 | ． 45571 E＋00 | － $35 \pm+00$ | －11612E＋01 | $.800 \Sigma+02$ | －32136E＋［1 |
| －800こ－0？ | ．47131才＋00 | ． $305+00$ | ．11967E＋41 | ． $9905+02$ | －32722E＋31 |
| －3）ゴー ¢？ | ． $48514 \equiv+30$ | － $3 J こ+51$ | －123C0E＋01 | ． $1005+03$ | －3324EE＋${ }^{\text {C }}$ |
| －100ミ－31 | ． $49754=+20$ | －2こうご＋31 | －14394F＋91 | － $2005+03$ | ． $36699 E+91$ |
| －2005－3： | ． $530065+00$ | －3ucE＋01 | －1E472E＋01 | －300E＋03 | － $38722 \mathrm{E}+11$ |
| －3J0¢－31 | ． $5 \geq 891 \div+00$ | －$\rightarrow 305+01$ | ．17724E＋01 | $.400 E+03$ | ． $40159 E+01$ |
| －JjE－J1 | － $55378 \pm+90$ | －5ココご・1 | －18724E＋01． | ． $5005+03$ | ． $412735+51$ |
| －う Jリーコ1 | －69074三＋90 | －¢ $3{ }^{\text {c }}+31$ | ．19559 2101 | ． $6005+03$ | ． $42184 \pm+01$ |
| － 503 E －6： | ． $71320 \div+30$ | ． 720 － 01 | － 20273 ＋ 01 | ． $7005+03$ | ． $42954 E+31$ |
| ．7リJE－J1 | － $73298 \pm+30$ | －330E＋31 | ． $208985+01$ | ． $800 \pm+03$ | ． $435215+01$ |
| － $800 \mathrm{E}-0.0$ | ． $74849 \pm+00$ | －9．31E＋01 | －21453E＋01 | －900E＋03 | －44210E＋01 |
| － 10005050 | － $763040+00$ | －103E＋02 | ． $219535+91$ | $.100 E+04$ | －44ア36E＋01 |

PSEUDO－SKIN FACTOR $=0.6151$

TABLE B－9
Unsteady pressure response in a slotted Liner

hRpangement of slots： 6 staggered vertical rohse 3 Pairs？

difiensianless PRESSURE arop is CALCULATEO AT centef of FORMATION
$R D=1.00$
DEMENSIONLESS SLOT LEIIGTH IS：． 2000

TO
PD
TD
$\because \mathbf{p D}_{\mathbf{D}}$
Ti
PD
－100E－02 ．16007E +00
－203E－02－20920E＋00
．300ミ－02－23928ご＋00
－403ミ－12－26122E＋00
－500E－32 ．27859E＋00
－500E－32 ．29300ミ＋00
－703ミ－32－30533ミ＋00
－ 300 E－ 32 ． $31611 \equiv+10$
－ $327 E-32 \quad .32563 E+10$
－190ミ－．31－33429E＋10
－20Jミ－31 ． 39164 E +00
－300E－81 ． 42542 E＋00
－＋1JE－01 e44943E＋00
－50クミー－ 31 45817ジ＋00
．60JE－31 ．48369E＋00
． 700 E － 01 ． $49708 \mathrm{E}+00$
．30JE－01 ． 50900 2E＋00
－3 3 Je－01－51986こ＋00
－100E＋20 ．52991E＋30
$.200 E+00$ $.300 E+00$ $.400 E+00$ $.503 E+00$ $.6305+00$.700 E＋00 $.890 \mathrm{E}+00$ －9ココこの 00 － $1 \mathrm{JCE}+01$ $.201 ミ+01$ －30コこ＋01 $\rightarrow \rightarrow 50 E+01$ ．500E＋31 ． 6 JDE 01 ． $700 \bar{c}+01$ ． $800 \mathrm{E}+01$ ． 900 E +01 －1JOE＋02
－60886E＊00 ． 6709 2E＋00 $872509 \mathrm{E}+00$ －77390E＋00 ．S1853E＋00 $.85966 \mathrm{E}+00$ － $89732 \mathrm{E}+00$ $.9333 \mathrm{AE}+00$ － $36569 E+00$ $-12170 \mathrm{E}+01$ － $13839 \mathrm{E}+01$ ． $15090 \mathrm{E}+01$ －16090E＋01 －16924E＋01 $.17539 \mathrm{E}+01$.18264 E＋ 01 ． $18819 \mathrm{E}+01$ －19319E＋01
． $200 \mathrm{E}+02$
－ $300 \mathrm{E}+12$
$.400 E+02$
－ $500 \mathrm{E}+02$
－600E＋C2
－700E＋02
－ $300 E+02$
－900E＋02
$-100 E+03$
$.200 E+03$
－300E＋03
－ $400 \mathrm{E}+03$
$.500 E+03$
$-600 E+03$
$.700 E+03$
$-300 E+83 \quad .40987 E+01$
$.900 E+03 \quad .41576 E+C 1$
－100E＋04－42102E＋01

TABLE B－10
UNSTEAGY PRESJURE RESPOVSE IN \＆SLOTTE）LINER

OIMENSIONLISS PPESSUEZ JFOP iS CALCULATEJ AT CEATER OF FCFMATION
$P \cdot J=1.50$
DIMENSIUNLESS SLOT LFAGTH IS：．4167
$\begin{array}{llllll}T 0 & \text { PD } & \text { PO } & \text { TO }\end{array}$

| こう， | －16．j」 7 E＋5 | －2JJEtor | －5．2F5ミ +66 | | －22E．4E＋j1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| －29．Eーシ2 | －2．917t＋ju | －30－0＋ 3 | －5fueg +40 | －3uiE＋0こ | － $24590 \pm+31$ |
| －ЗUJE－ 2 | ． $239 \pm 2 E+u \sim$ | ． 4 ujさ＋ju | ．719こをE＋ら」 | －ヒ＋しら | ． $266100+61$ |
| －Lijeruz | ． 26 U $79 E+$ U | －5u0＋u | －7E700E＋C5 | －5こ．E＋じこ | ． 27111 E＋ 1 |
| －53ここー02 | －27782E＋u0 | － 0 こここ＋くて | －51252こ＋い | － 0 －E E＋－${ }_{\text {c }}$ | － $28.14 \mathrm{E}+11$ |
| －ELEE－u2 | ． $29186 \mathrm{E}+$－ | －7」うこせu | ． 85365 E＋6 | ． 7 いとく＋Cz | －26779ミ＋01 |
| －7しいご」2 | －3u381E＋せ0 | －duoutur | －89：815＋30 | －3－LE＋く2 | － $204425+1$ |
| ． 8 CEE－J2 | －31－22E＋」3 | －${ }^{\text {U J J＋J }}$ | ． 92737 E000 | －ヨue | |
| －90lE－jく | － $32344 \mathrm{E}+\boldsymbol{\text { j }}$ | －1uJE＋u1 | | | －365525＋21 |
| －1ヶUE－さ1 | －33さ72E＋j0 | －260＋1 | － 22112 L ＋51 | －2L－E＋JJ | －3LE．EE＋．1 |
| －20uE－d1 | | －3uy $3+4$ | －13778三＋ن1 | －3．UE＋CJ | ． $36628 \mathrm{E}+1.1$ |
| －3らとこーせ1 | | | －15こ36これ 2 | | － 37465 E＋31 |
| －6ijE－61 | | －5ucutar | －1Eう36ざ1 | －S．uE＋03 | －33579そ＋－1 |
| －50UEーら2 | －40228こ＋」 | －6．30＋41 | | －6．ueti3 | －39490ごい |
| －60）E－j1 | －$+7774 \mathrm{E}+2 \mathrm{~J}$ | －76こと | －17578ご61 | ． 7 UGE＋0ミ | ． 4 こ266E＋11 |
| －7ご年－j1 | ．49210E＋jj | －Oujctoz | ．19264E＋61 | －Eu－E＋uJ | ．4i927F＋i1 |
| －「うuE－01 | －5くろuiE＋jう | －コuごかし | － 10759 ＋ 12 | －9．4Et＋3 | －4i5：EE＋ 1 |
| －9ujE－01 | － $513 \mathrm{~d} 5 \mathrm{E}+\mathrm{j}$ | | ．132505＋i1 | －i．6E＋i4 | ． 42 C42E＋ 1 |
| | | | | | |

PSEUDO－SKIN FACTOR＝0．3457

TABLE B－11
UNSTEADY PRESSURE R．ESPONSE IN A SLOTTEC LINER．

AFRANGEMENT OF SLOTS：G STAGGETED VEPTICAL ROWSE 3 FAIES）
OIMENSIONLESS PRESSURE JFOP IS CALCULATED AT CENTER OF FCRHATION
$R D=1.00$
OIMENSIONLESS SLOT LENG：H IS：．5714

| TD | PD | －0 | P0 | TO | PC |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ． 100 E－02 | ． $160075+37$ | ．230 $3+00$ | ． $60139 E+00$ | ．2005＋02 | － $225095+: 1$ |
| －200E－02 | － 20917 ＋ 30 | ． $32 \mathrm{Jc}+00$ | ． 66345 E＋00 | ． $3005+02$ | ． $245755+01$ |
| ． 300 E －02 | － $239125+00$ | － － $305+00^{0}$ | ．717625＋00 | $.400 こ+32$ | ． $259935+$ d |
| ． 400 E－02 | a 26079 － 00 | $.5005+00$ | ． $76643 \mathrm{E}+00$ | $.5005+02$ | $.27096 E+31$ |
| －5J0ミ－02 | －27782E＋00 | ．630玉＋00 | ． $81105 \mathrm{E}+00$ | ． 600 ご02 | ． 28 900E＋ 61 |
| ．600E－02 | － $29196 \mathrm{E}+00$ | ． $730 \mathrm{C}+00$ | ． $85219 \mathrm{E}+00$ | ． $7005+02$ | e $287655+01$ |
| ．700E－02 | ． $30381 E+00$ | ． $300 \mathrm{E}+00$ | ． $89034 E+00$ | $.8005+02$ | － $29428=+01$ |
| －800E－02 | ． $31421 E+00$ | －9 $20 \pm+00$ | ． $92591 E+00$ | ． $9005+02$ | $.30013 E+01$ |
| ．900E－32 | －32342E＋00 | －10DE＋01 | ． $95921 E+00$ | －1005＋03 | ．305ゴE＋01 |
| －130ミ－01 | ． $331705+30$ | ． $203 \mathrm{O}+01$ | ． $12095 E+01$ | － $2000+03$ | ． $339918+\mathbf{T}$ |
| －200E－E1 | ． $386735+C 0$ | ． $200 \equiv+01$ | $.137645+01$ | －300E＋03 | － $36014 E+01$ |
| ． 3 30ミ－01 | ． $41939 E+00$ | －+0 － $0+01$ | ． 15015 E＊01 | $.400 E+03$ | ． $374505+11$ |
| ． $4005-01$ | ．44292E＋00 | $.500 \pm+01$ | ．16016E＋01 | ． $500 \mathrm{E}+63$ | ． $39504 \mathrm{E}+31$ |
| ．5］日E－01 | ．46123E＋03 | － $303 \mathrm{~F}+01$ | ． $16849 \mathrm{E}+01$ | －6005＋03 | ． $39475 E+31$ |
| ． $600 \mathrm{E}-01$ | ． $47655 E+00$ | ． $7005+01$ | ． $175648+01$ | ． $700 \mathrm{O}+03$ | － $4 t 245$＋ 01 |
| ．700E－01 | ．489825＋00 | ． $3005+01$ | －18189E＋01 | ．800ミ＋03 | ． $40913 E+61$ |
| ． 800 E－01 | ． $501665+00$ | ．905E＋01 | ．18745E＋01 | ． $9005+03$ | ． $41501 E+01$ |
| － 300 －01 | ． $51247 \mathrm{E}+10$ | －10JE＋02 | ． $19245 \mathrm{E}+01$ | － $100 E+34$ | ． $42328 \pm+01$ |
| ． $110 \pm+00$ | ． $52249 E+0 J$ | | | | |

PSEUDO－SKII FACTOR＝0．3443

TABLE B－12
UYSTEADY PRESELRE RESPONSE IN A SLOTTED LINER

AP？MilGEMENT OF تLOTS：G STAGGE．SED VERTICAL ROWSP 3 PAIRS）
DE：AEHSIONLESS PRESSURE DROP IS CALCULATED AT CENTEP OF FGRHATION
$R D=1.00$
OE．TENSIONLESS SLOT LENGFH E3：1．0．00

| T0 | PD | TO | PO | TD | PG |
| :---: | :---: | :---: | :---: | :---: | :---: |
| －100E－02 | ． $15007 \mathrm{E}+00$ | ．200E＋00 | ．60003E＋0\％ | － $200 \equiv+02$ | e 22575 E －01 |
| － 200 －02 | ． $20917 E+31$ | ． 3 ЭJE＋ 30 | ． $66204 \mathrm{E}+00$ | ． $300 \pm+02$ | ． $24561 \mathrm{C}+\mathrm{Cl}$ |
| －309E－02 | －239125＋30 | － $035+00$ | ． $71620 E+00$ | －400E＋02 | － $25975 \mathrm{E}+01$ |
| －$\rightarrow 305-02$ | ． 26079 ＋+10 | ． $539 E+00$ | ． $76502 \mathrm{E}+00$ | － $500 \mathrm{E}+02$ | ． $270825+$［1 |
| ． 500 ± -02 | ． $27782 E+00$ | ． $6005+00$ | ． $809545+0$ 年 | －600E＋02 | －27986E＋31 |
| ． $600 \div-0 ?$ | ． 29185 E＋ 30 | ．TUCE＋00 | － $35078 \mathrm{E}+0.0$ | $.7005+02$ | －28750E＋J1 |
| －701E－J？ | ． $30391 \pm+70$ | －639E＋00 | －36993E＋60 | － $2005+02$ | －23414E＋01 |
| －3こうごこ2 | － $314215+33$ | ．JJccteo | ． $92450 \mathrm{E}+00$ | －900E＋02 | ． 29399 ＋ 31 |
| － $903 \%-02$ | ． $323425+013$ | －133E＋31 | ． 95775 E＋00 | －100ミ＋13 | － 30523 －${ }^{\text {c }} 1$ |
| －106E－01 | ． $331705+00$ | －2005＋01 | ． $12081 E+01$ | － $2000+13$ | － 33776 E ＋31 |
| －2JGE－v： | ． $38671 \pm+00$ | ． $332 \mathrm{E}+31$ | ．13750E＋01 | － $370 \mathrm{n}+03$ | －36000E＋31 |
| －3025－5i | ． $41928 \mathrm{sE}+00$ | | ． $150015+01$ | ． 400 E＋1］3 | －37＋36E＋ 51 |
| －4JEご1 | ． $4425 ?$＋ 00 | －530 +01 | ．16031E＋01 | ． $5005+03$ | 03855 0三゙＋01 |
| ． 5 3Jこー 01 | ．45082三＋30 | ． $6050+01$ | ． 16835 E＋01 | ． $600 \mathrm{E}+03$ | －39461E＋C1 |
| －¢ J 三 -11 | ． 47595 ＋ 00 | －730 +01 | ． $17550 \leq+01$ | ． $7005+03$ | － 40231 － 61 |
| ． $713 \mathrm{JE-21}$ | ． $48912 \Xi+30$ | ． $0035+01$ | －18175E＋01 | － $800 \mathrm{E}+33$ | － $46899 \mathrm{C}+1$ |
| ．000三－01 | ． $53094 \equiv+30$ | ． $3005+01$ | ． $18731 \overline{\text { a }}$＋1 | －900E＋C3 | 41487E＋01 |
| ．900E－01 | ． $51155 \equiv+30$ | －100E＋02 | ． $19231 E+01$ | －100ミ＋04 | $42014 E+01$ |

PSEUDO－SKIN FACTOR＝0．3429

TABLE B-13
UASTEADY PRESTURE:PESPOASE IN F SUOTTEDEENEA

ARPANGEILENT OF SLOTS: 3 STAGGEPED VERTICAL ROWS: 4 PAIRS)

P $j=-1$
DIMENSIONLESS SLOT LENGTH IS: .4167

F-
10

TABLE B－14
UNSTEAJY PRİコJURE RESPUNSE IN A SLOTTED LINEP．

ARANAGEMENT OF LLOTS：12 JTAGGEF．EC VERTICAL ROWSI 6 PAIRS：
OI：IEHSIONLESS PRESSURE JROR IS CALCULATED AT CENTED OF FGRMATION
$R D=1.30$
DI：IENSIONLESS SLOT LEHGTH ここ：．2こ00

| 70 | PJ | TJ | PD | TO | PO |
| :---: | :---: | :---: | :---: | :---: | :---: |
| －10CE－こ2 | －80033E－01 | ．20CE 00 | ． $37544 E+00$ | － $200 \overline{0}+02$ | ． $203285+01$ |
| －200E－02 | $.104605+10$ | $.3005+00$ | ． $43739 E+00$ | － $300 \pm+02$ | －22315E＋［1 |
| －30JE－32 | ． $11964 \bar{c}+70$ | ．400E＋00 | ． $49155 \overline{\text { E }}+00$ | ． $400 \mathrm{E}+02$ | ． $23732 \mathrm{E}+$ C1 |
| －4口JEーJ2 | －1．3061E＋3J | －503E＋00 | ． $54036 \mathrm{E}+00$ | ． $5000+02$ | ． $24836 E+01$ |
| －50JE－02 | ．13930E＋10 | $.600 E+30$ | － $58498 E+0 \square$ | ． $600 \mathrm{O}+02$ | ． 25739 E［1 |
| －603こ－J2 | ．1465 5 E +31 | $.7005+00$ | － $626125+00$ | ． 700 E＋C2 | ． 255 C4E＋01 |
| ． $7005-02$ | －1525E $5+1 \mathrm{~J}$ | ．801こ＋00 | ． $554275+00$ | $.8005+C 2$ | ．27167E＋01 |
| － $300=-$－ 2 | －15855こ＋．j0 | ． $9005+00$ | ． $69984 E+00$ | $.9005+02$ | －27592E＋01 |
| － 31$]$－ 32 | ．16255 5 ＋ 711 | －10nE＋01 | －73313E＋00 | －100E＋02 | － 28277 ¢ + － 1 |
| －10くごご | ． $16716=+39$ | －200E＋Ci | ． 9 ¢343E＋00 | ． $200 \mathrm{C}+\mathrm{C} 3$ | －31730ミ＋31 |
| －200E－01 | －19652こ＋13 | －3 3 こ＋ 01 | ． $1150 \mathrm{E} \mathrm{E}+01$ | －300E＋03 | － $33753 \mathrm{C}+01$ |
| －305E－01 | － 21553 － 200 | － $40 C E+01$ | ． $12754 \mathrm{E}+01$ | $.4005+03$ | － $35159 E+31$ |
| －＋ 3 2 $=-11$ | ． $23117 \pm+73$ | ． $5035+31$ | －1J755E＋n1 | ． $5005+03$ | － $36304 \bar{c}+C 1$ |
| －3u゙u－il | －． $244715+35$ | ．r．3う＋01 | －14599E＋01 | ． $6005+03$ | － $372155+01$ |
| －60JE－31 | ． $25694 \mathrm{E}+10$ | $.7005+01$ | ． $15303 E+01$ | $.7005+03$ | － $37985 E+$［1 |
| －70コミー31 | ． 26821 －+10 | －803こ＋01 | ． $159295+01$ | $.900 E+03$ | ． $38552 \mathrm{E}+[1$ |
| －8お号－j1 | ． $27874 \pm+10$ | － $9005+01$ | －16434E＋01 | －900E＋5J | －3j240ミ＋โ1 |
| －900三－31 | ． $23865 \pm+30$ | ．13JE＋12 | －16584E＋01 | －100こ＋04 | ． $39767 \mathrm{E}+$ C1 |
| －13．j̇＋ 3 | $.29805=+30$ | | | | |

PSEUDO－SKIN FACTOR＝0．1182

TABLE B－15
JHSTEADY PR゙くSJUKE ？RESPONSE IN a SLOTTED LINER

ARRANGEIIENT OF SLOTS： 12 STAGGERED VEFTICAL RO：NJ 0 PIIRSI
OIMENSEONLESS PRESSUPL JZOP IS CALCULITEJ AT CEINTE？OF FORMATION：
RD＝1．：
DIMENJIO：NLESS SLOT LEIITTH IS：．4157
$\begin{array}{cccccc}T O & \text { PD } & \text { TO } & \text { PD }\end{array}$
－1CLE－C2 －206E－U2 －3cuE－j2 －TUE－j2 －Sule－ig
－6E JEーら2
－T0CEー」2
－9LOE－こ2
－90」E－Cく
－1ごに－j1 －2uしまーu1 －3：EE－ 1 －4うuE－01
 －6しいEール1 －TおしEーU1 －ร0LE－C1 ．90jF－01 －2iにE＋ju
－ $8 j$ j33E－U1
－1u＋59 $\mathrm{c}+\mathrm{Ju}$
－1：95ń E＋uj
$-: 3$ i 4 G $F+0$
－13391E＋uj
－14593E＋しえ
－15：91E＋u J
－ $5571 i E+j 0$
－ic 173E＋」j
－10538E＋uj
－1才423E＋uj －2：3：4E＋J －220 － $2419: E+j 3$ ． $25413 E+J J$ $.205+J E+j u$ － $27592 E+10$
.235 d3F＋1．
－ $2+523 \dot{5}+し$

| －2． 5 ¢＋6i | － 37252 こ＋ 6 |
| :---: | :---: |
| 3ぃいこ＋uu | ． $43458=+100$ |
| ＋uv | －4Eら？ |
| | －三3754E＋CJ |
| 6.5 此 | －5月216E＋64 |
| | ． 52330 ＋＋ 0 |
| がうごら」 | －66145三＋心6 |
| －ujotui | －637C2E＋io |
| $1)^{5}+1$ | ． 73 U31＋＋j |
| いご +1 | －93061E＋j！ |
| －？uvitui | －1147E＋＋1 |
| 4うゴくさ2 | －12726E＋01 |
| 5.0 ＋ 1 | －13727ミ＋C1 |
| －6．3 $20+6$ | ． 1456 C （＋ 41 |
| | －15275E＋01 |
| $3 こ こ せ$ | －1590しミャレ |
| | －16456三＋i1 |
| 10ここ＋ひ2 | ．16956ミ＋Ј1 |

| 2．0E＋iこ | －2．3：65＋ 1 |
| :---: | :---: |
| －3．－E402 | ． 2228 8́E＋ 6.1 |
| UとE＋Cこ | ． 237 U 4 E゙＋U1 |
| $u E+0$ c | － 24857 ＋ 31 |
| －6といE＋UE | ． $25711 E+1$ |
| －7．VE＋02 | ． $25475 E+1$ |
| | － 27139 E＋： |
| － $36: 5+C 2$ | ． $27724 \mathrm{E}+\mathrm{j1}$ |
| －1．6E＋L3 | ． $282485+11$ |
| 26E＋らこ | －31732F＋i1 |
| －36UE＋ら3 | ． 33725 ＋ 11 |
| いこE＋CJ | － $35161 E+$ C1 |
| －5．u5＋uj | ． $36276 E+i 1$ |
| －Oこ E E U | －371E6E＋\％ 1 |
| －7WE＋0こ | ． 37957 －+11 |
| －ع．ᄂE＋しろ | ． $35524 E+11$ |
| －96とE＋しろ | －392i2E＋ご |
| 1j．$-5+E 4$ | ． $377395+$－1 |

PSEUDO－SKIN FACTOR＝0．1154

TABLE B－16
Presjure respunse ina slotted

argangement of slo：s： 12 SThGgetigo vertical rows 6 fairs）
 OITENSIONLESS PRESEURZ－IS JALCULATEO AT CENTEQ OF FORMATEON

$R D=1.30$
UEMENSIONLESS SLOT LENGTH ここ：．5714

| TD | PO | T0 | PO | T0 | 90 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| －13If－02 | ． 80033 E －31 | －203こ＋00 | ． 3 ？ $2145+00$ | － $2000+32$ | － $202355+01$ |
| －2J0E－02 | －10453E＋70 | － $209 E+00$ | $.434095+00$ | ． 300 E＋02 | ． $222815+01$ |
| －300－02 | ． 11956 E＋ 20 | $\rightarrow 005+00$ | －48824E＋00 | － $4005+02$ | ． $235395+41$ |
| ． $400 \mathrm{E}-02$ | $.13040 E+00$ | ． $500 E+00$ | ． $53706 E+00$ | －500E＋02 | － $24303 E+31$ |
| －500E－02 | ． 13891 E＋ 90 | ． $6005+00$ | ． $58168 \mathrm{E}+00$ | ． $6005+02$ | ．257J6E＋01 |
| －600E－02 | ． $14593 E+00$ | ． 703000 | － $62291 E+00$ | $.700 E+02$ | ． $26471 E+01$ |
| ．700E－02 | ． $151905+00$ | ． $0005+00$ | e $660978+00$ | $.800 E+02$ | ． $27134 E+11$ |
| ．800E－02 | ． $15711 E+00$ | ． $9005+00$ | ． $69653 E+00$ | ． $900 \mathrm{E}+32$ | ． $27719 \mathrm{E}+1$ |
| －90コEーJ2 | －16172E＋30 | －1コJE＋J1 | ． 7298 マE＋00 | ． $100 \varepsilon+03$ | ． $282435+1.1$ |
| －100E－01 | －16596ミ＋03 | ．203E＋01 | － $980128+00$ | e $2005+0.3$ | － 31697 ＋${ }^{\text {a }}$（ |
| －200E－01 | | ． $3000+01$ | ． $11470 \mathrm{E}+01$ | － $300 E+03$ | ． 33720 ¢＋ 31 |
| ．300E－01 | ． 21277 ＋00 | －400E＋01 | －12721E＋01 | －40nE＋03 | ． 3515 EE＋01 |
| －400E－01 | ． $228058+00$ | ． $5002+01$ | －137228＋01 | ． $5005+03$ | ． $36271 E+11$ |
| ，500 01 | ． 24149 － 00 | $.6035+01$ | －14555E＋01 | －600ミ＋03 | ． $37132 \mathrm{E}+\mathrm{C1}$ |
| －6002－01 | ． $25368 \mathrm{~L}+00$ | ． $703 \mathrm{c}+01$ | ． $152705+01$ | e $700 \mathrm{E}+03$ | ． 37 E52E＋01 |
| ．TO0E－01 | ． $26493 \mathrm{E}+00$ | ．800こ＋01 | ． $15895 E+01$ | $.800 E+03$ | ． 38619 Ct （1 |
| ．800E－01 | ． $27544 E+00$ | $.900 E+01$ | $.16451 E+01$ | $.9005+03$ | －3ヨ237E＋ 11 |
| ． 900 －01 | － 28535 E＋30 | －1J3E゙ 02 | ． $16951 E+01$ | ． $100 E+04$ | ． $39734 \mathrm{E}+11$ |
| ．101ミ＋00 | － $29475 \mathrm{E}+00$ | | | | |

TABLE B-17

UNSTEADY PRESSURE KESPJNSE IN A SLOTTED LINER

AFRFMGEMENT OF SLOTS: 12 STAGGEFED VEPTICAL ROWS (6 PAIRS)
UIMENSIONLESS PPESSUPE DROP IS GALCULATEO AT CENTEF OF FORIATI ON

$$
R O=1.01
$$

UE:1EHSIONLESS SLOT LEHGTH IS:1.3300

TABLE B-18

UMSTEAEY QRESIURE NESPOASE IH ISEOTVI UNER

DIMENSIONLËSS SLOT LENGTH IS: . 4167

PSEUDO-SKIN FACTOR=0.0689

TABLE B－19

UHSTEADY PRESIURE RESFONSE IAN I S ATIET EANEF

ARRANGEIENT OF SLOTS： $2 i$ STAGGERED VERTICAL ROWSP IU PIIRSI

OIMENSIOTLESS SLOT LEIAGTH IS：． 4167
T0

| 1u¢E－ 2 | －40う2ひEーも1 | ． $220 j 5+0 i$ | ． $35154 \equiv+00$ | 2．$-6 E+02$ | $\begin{aligned} & .19589 E+C 1 \\ & .21576 E+01 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| －20 i E－j 2 | ． $62752 \mathrm{E}-\mathrm{L} 1$ | － $30 \cdot \mathrm{C}$－ 0 | ． 35350 E＋00 | －JいUE＋CZ | E＋ 01 |
| －E－t2 | 71736e－ | | | | －24097＝1 |
| $\text { - } 4+E E-52$ | $72565=1$ | | | $\frac{250}{6+42}$ | -25egoter |
| 边すこーぜ | $\underline{+03485-15}$ | O－0 | － $55222=+40$ | ． $706 E+C 2$ | ． $25765 \mathrm{~F}+01$ |
| － 6 UUE－ 22 | －87744E－1 | | －55222：＋60 $.59037 \equiv+00$ | －8GGE＋02 | － $264285+01$ |
| －7C－E－02 | － $91519 \mathrm{E}-1$ | － $8000+00$ | ． $692594 \mathrm{E}+50$ | －9LEE＋ 2 | －27013E＋01 |
| 9¢こEーu2 | －94913E－L1 | －96uことu | －6592－3 | －aterext | －27038 |
| | | 20utar | － $9 \times 953-11$ | \cdots | 3－999ETI1 |
| こちご或き | －さですぎもちちま | －3 $3+5$ | －1 76×8 | \rightarrow－We＋ | －34－5501 |
| － 3 ¢ C －¢ 1 | －14212E＋J | －CJJ | －12015 +61 | －4UこE＋C3 | －34450上＋21 |
| 4こ：E－U1 | ． $15736 \mathrm{E}+5 \mathrm{C}$ | －5～うこ＋に1 | －13心16三＋こ1 | － $5 \cup 4 E+03$ | －35565＝＋ $36476 E+61$ |
| － 50 CE－U1 | － 17 う 23E＋J0 | － $6002+61$ | －13850ミ＋01 | －6uJE＋03 | － 37245 |
| 8才゙Eがた | | | －154 | | $379135+41$ |
| 7EこEーG1 | 仿3432E＊ | T－4， | | $\text { Y } 7$ | $\text { 余 } 85$ |
| | $\frac{20484 t+0}{}$ | | －16245＝＋41 | | －390285＋01 |
| 9CE－C1 | $.22415 E+00$ | | | | |

PSEUDO－SKIN FACTOR＝0．0443

UNSTEADY PRESSUFE RESPONSE IN A SLOTTED LTNER

ARRANGEMENT OF SLOTS：24 STAGGERED VERTIGAE ROHS（ 12 PAIRS）
CIMEISIONLESSSPRESSURE OROP IS CALCULATED AT CENTER OF EORMATIJY
ROZ． 1.00
DIMENSIONLESS SLOT LEAGTH IS： 2300

| TO | PO | 70 | PO | 70 | PD |
| :---: | :---: | :---: | :---: | :---: | :---: |
| －100E－02 | ． 40016 E－01 | －200E＋00 | ． $28770 \mathrm{E}+00$ | － $200 E+02$ | －19451E＋ 11 |
| －200E－02 | ． $52301 \mathrm{E}-01$ | －300E＋00 | － $34966 E+00$ | －300E＋02 | －21437E＋01 |
| －300E－02 | ． 59845 E－01 | ．400E＋00 | ． $40381 E+00$ | －400E＋ 02 | －22855E＋01 |
| ． 400 E－02 | －65431E－01 | $.500 E+00$ | ． $45262 E+00$ | －5a0E＋02 | －23958E＋01 |
| －500E－02 | ． $69997 E-01$ | $.600 E+00$ | ． $4.9725 E+00$ | $-600 E+32$ | －24862E＋61 |
| ． $500 \mathrm{C}-02$ | 73959E－01 | $.703 \mathrm{E}+00$ | ． $538385+00$ | ． $7005+02$ | －25626E＋11 |
| ．7005－32 | ． 77525 E－01 | － $83 J E+00$ | $.57654 \mathrm{E}+00$ | －800E＋G2 | － $26290 \mathrm{E}+01$ |
| － $300 \mathrm{E}-02$ | －80810E－01 | .900 ＋ 00 | $061210 E+00$ | ． $9008+02$ | － 26875 E＋ 11 |
| ．900こ－32 | ． 338 11E－01 | $.100 E+01$ | a $64540 E+00$ | －100E＋03 | ． $27399 \mathrm{E}+31$ |
| －100E－01 | －86781E－01 | ． $2005+01$ | ． $89569 \mathrm{E}+00$ | － 20 DE＋ 03 | －30352E＋01 |
| ．200E－01 | －11022E＋00 | ． $300 E+01$ | $.10626 E+01$ | － $300 \mathrm{E}+03$ | － $32876 \mathrm{E}+31$ |
| －300E－31 | －12826E＋00 | $\rightarrow 33 \mathrm{C}+01$ | ． $11877 \mathrm{E}+01$ | － 400 E＋03 | －34312E．E1 |
| －+00 － 01 | e $14352 \mathrm{E}+20$ | －5］ $505+01$ | －12877E＋01 | －500E＋03 | － $35426 E+01$ |
| ．500E－01 | ． 15700 E゙＋00 | ．630 +01 | ．13711E＋01 | －600E＋03 | － 3633 7E＋01 |
| ．600E－01 | ． $16921 E+00$ | $.700 E+01$ | ．14426E＋01 | －700E＋03 | －37107E＋C1 |
| ． 700 こ－01 | a $18048 \mathrm{E}+00$ | －839E＋01 | ． $150515+01$ | －800E＋03 | ． $37775 \mathrm{E}+$［1 |
| －370E－01 | ． $19100 E+03$ | －900E＋01 | ． $15607 E+01$ | －900E＋03． | － 38363 E ＋E1 |
| $.900 E-01$ | ． $20091 \pm+30$ | $.1005+02$ | ．16107E＋01 | －100三404 | －38890E＋OL |
| ．100E＋00 | a $21032 \mathrm{E}+00$ | | | | |

PSEUDO－SKIN FACTOR＝0．0305

TABLE B－21
UNSTEADY PRESEURE RESPONSE IN A SLOTTEO LINER

AFFIANGEMENT OF SLOTS： 24 STAGGERED VERTICAL ROWS（ 12 PAIFS）
C匚IENSIONLESS PRESSURE DROF IS CALCULATED AT CENTER OF FORMATION
$R D=1.00$
OIMENSIONLESS SLOT LENGTH IS：． 4167
$\begin{array}{lllll}T 0 & \text { PD P PD PD }\end{array}$
－1JOE－32
－200E 02
－30́E－02
$.400 E-02$
．500E－02
$.600 E-32$
$.700 E-02$
．800E－02
$.900 E-02$
－100E－01
．200E－31
－300E－01
． 400 E－01
．50UE－U1
．600E－01
.700 E－01 ．800E－01 .900 E－01 $.1005+00$
． 40016 E－ 31
－ 522 3 + E－01
． $59803 \mathrm{E}-01$
． 65325 E－01
．69810E－01
．73687E－01
．77173E－01
． 8038 4Eー01
$.83391 E-J 1$
.86236 －01
$.10945 E+00$
－12747E＋00
$.14272 E+00$
$.15620 E+00$
． $16842 \mathrm{E}+0 \mathrm{C}$
$.17968 E+00$
$.19020 E+00$
． $20011 E+00$
． 20952 ご 30

| $.23 J E+00$ | $.28691 E+00$ |
| :--- | :--- |
| $.300 E+00$ | $34886 E+00$ |
| $.400 E+00$ | $.40301 E+00$ |
| $.500 E+00$ | $.45183 E+00$ |
| $.6 J 0 E+00$ | $.49645 E+00$ |
| $.700 E+00$ | $.53758 E+00$ |
| $.800 E+00$ | $a 57574 E+00$ |
| $.93 J E+00$ | $.61130 E+00$ |
| $.10 J E+01$ | $.64460 E+00$ |
| $.2 J 0 E+01$ | $.89489 E+00$ |
| $.300 E+01$ | $.10618 E+01$ |
| $.400 E+01$ | $.11869 E+01$ |
| $.5 J 0 E+01$ | $.12869 E+01$ |
| $. E 3 J E+01$ | $.13703 E+01$ |
| $.7 J 0 E+01$ | $.14418 E+01$ |
| $.800 E+01$ | $.15043 E+01$ |
| $.900 E+01$ | $.15599 E+01$ |
| $.1 J 0 E+02$ | $.16099 E+01$ |

$.28691 E+00$ $.40301 E+00$ $.45183 \mathrm{E}+00$ － $49645 E+00$ － $53758 \mathrm{E}+00$ a $57574 \mathrm{E}+00$ －61130 E＋00 － $64460 E+00$ $.89489 E+00$ $.10618 E+01$ －11869E＋01 $.12869 E+01$ 01 $.15043 E+01$ 1 －16099E＋01
－ $200=+02$
$.3005+02$
$.400 E+02$ $.500 E+02$ $.600 E+02$ － $700 \mathrm{E}+02$ $.800 E+02$ － 900 E＋02 － $1005+03$ － $200 \mathrm{E}+03$ － $300 E+03$ －400E＋03 － $500 \approx+03$ $.600 E+03$ $.700 E+C 3$ $.800 E+03$ －900E＋03 － $100 E+04$
－ 1944 3E + に1
－ 2142 9ㄷ＋01
$.22847 E+01$
$.23950 E+01$
． 24854 E 01
． $25618 E+01$
$.262825+01$
－ $26: 67 E+01$
－ $27391 E+J 1$
－ $36844 E+01$
． 32 \＆ $68 \mathrm{E}+01$
$.3+304 E+C 1$
$.35+16 E+11$
． $36329 E+[1$
－ 37 〕 $99 E+01$
$.37767 E+01$
$.39355 E+01$
． $388825+01$

TABLE B-22
UNSTEADY PRESSURE SESPOASE IAE SIQTIET EI FER

ARRANGEMLNT OF SLOTS: $2+$ STAGGEPED VERTICAL ROWS(I2 PLIRSI
DIMENSIONLESS PPESSURE DFOP IS CALCULATED AT GENTEF OF FORMATION
$R \bar{O}=-5$
OIMENSIONLESS SLOT LENGTH IS: .571*

PSEUDO-SKIN FACTOR=0.0296

\qquad

TABLE B－23
unsteaby pressure response in a slotted liker．

ARJANGEMENT OF SLOTS： 24 STAGGERED VERTICAL ROWSI 12 PAIRSS
DIIENSIONLESS PRESSURE DROP is CALCULATED AT CENTER OF FGRMATION

$$
R D=1.00
$$

DIMENSIONLESS SLOT LENGTH IS：81．0300

| T0 | PO | Tu | PD | J0 | Po |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ．100E－02 | ． $40016 \mathrm{C}-01$ | ．200 $3+00$ | ． $28686 \mathrm{E}+\mathrm{OU}$ | － $200 \mathrm{E}+02$ | －19442E＋C1 |
| －200E－02 | －52294E－01 | ． $3235+00$ | ． $34831 \mathrm{E}+00$ | －300E＋02 | － $2142 \mathrm{gE}+\mathrm{C1}$ |
| ． 300 E－02 | ．59803E－01 | ． $406 E+00$ | ．40297E＋00 | －400E＋02 | － $22846 \mathrm{E}+01$ |
| ．400E－02 | －65325E－31 | ． $500 \mathrm{E}+00$ | ． $45178 \mathrm{E}+00$ | －590E＋02 | －23950E＋01 |
| ．500E－32 | ． 6981 3E－01 | －530E＋00 | －49640E＋00 | ． $600 \mathrm{E}+02$ | －24853E＋01 |
| －503E－02 | ． 73687 E －01 | ． 700 ē＋00 | － $53754 \mathrm{E}+00$ | ． $700 \mathrm{E}+02$ | ． $25518 \mathrm{E}+01$ |
| ． 700 E－02 | ．77172E－01 | ．830ご00 | ． $57569 \mathrm{E}+00$ | －800E＋02 | －25281E＋01 |
| －8JJE－02 | ．80383E－01 | $.900 \vec{c}+00$ | ．61125E＋00 | －900E＋02 | －26867E＋01 |
| ．901E－02 | ．83398E－01 | ．190E＋01 | －64455E＋0． | －100E＋03 | ． $27391 E+01$ |
| －13Jミ－31 | ． 86231 ミ－31 | ． 205 E01 | ． $89484 E+00$ | －200E＋03 | ． $33844 E+01$ |
| －2005－31 | ． 10942 E＋J0 | $03 \mathrm{JDE}+01$ | ． $10617 E+01$ | －300E＋03 | ． $32867 \mathrm{E}+01$ |
| －3コロご31 | ． $12743 \mathrm{E}+00$ | － 0 OE＋01 | ． $11868 \mathrm{E}+01$ | －400E＋03 | ． 343 J3E＋［1 |
| －400こ－01 | ．14263E＋00 | $.500 \mathrm{E}+01$ | ． $12369 \mathrm{E}+01$ | －500E＋03 | ． $35418 \mathrm{E}+01$ |
| －5．j0E－01 | ．15615ミ＋30 | ． $630 \mathrm{E}+01$ | ． $13703 \mathrm{E}+01$ | －600E＋03 | ． $3632 \mathrm{gE}+01$ |
| －693E－01 | ． $16837 \mathrm{E}+30$ | ． $700 \mathrm{E}+01$ | ． $14417 \mathrm{E}+01$ | －700E＋03 | ． 37 199E＋t i |
| ． 700 －01 | ． 17954 ＋ 00 | ．80．je＋01 | ．15042E＋01 | ．800E＋03 | －37766E＋C1 |
| ．890E－01 | ． $19015 \mathrm{E}+00$ | ． $300 \mathrm{E}+01$ | ． $15598 \mathrm{E}+01$ | －900E＋03 | －38 355E－C1 |
| －903E－31 | ． 20007 ＋00 | －13．35＋02 | ． $160985+01$ | －1005＋C4 | ． 3888 lE＋t1 |
| ．1JJE＋00 | ． 20947 ＋00 | | | | |

PSEUDOSSKIN FACTOR＝0．0296

DIMENSIONLESS SLOT LENGTH IS：． 4167

| $\begin{aligned} & -10 j E-\dot{2} \\ & \cdot 20 u=-42 \end{aligned}$ | $\begin{aligned} & .495\lrcorner 9 E-29 \\ & .16541 E-25 \end{aligned}$ | $\cdot 2 L j E+C i$ $.300=+00$ | $\begin{aligned} & .22236 \equiv+50 \\ & .31120 \equiv+00 \end{aligned}$ | $\begin{aligned} & 20 C E+C Z \\ & 3: C E+O Z \end{aligned}$ | －2C533E＋［1
 － $22535 \mathrm{E}+51$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| － | $\underline{7}$ | － | $\underline{3}$ | － | －23960 |
| | －2E441E－\％ | 5ix＋be | － $2+4985$ | 2－0Etra | －250685 61 |
| $\Longrightarrow \square 505$ | －6362dET | | －5－788－50 | 0．6．E $5+2$ | 25975E＋4 |
| －OUVE－J2 | ． $6 \cup 98 \mathrm{CE}=6$ | | － $55796 \div+00$ | ． $7 \mathrm{~J} \mathrm{JE}+02$ | － $26742 E+C 1$ |
| －TUVE－02 | － 31295 E －へ5 | －8らうこtuc | ． $654415+30$ | －BiUE＋02 | － $274 \dot{7} 7 E+$ C1 |
| ．80，E－02 | － 1 二838E－： 4 | － 9 －jE＋DC | －54694E＋ 00 | －960E＋02 | －27993E＋ 21 |
| －905E－12 | 29732\＃E＝5 | －16さ＋31 | －68515 5100 | Sivexu | －2951854 |
| $2-15=1$ | | 2t－x | 595758 प 9 | $\underline{-2} 5+3$ | －35975 5 |
| ＋${ }^{-65}$ | 26776－42 | | Ctaticy | cucayes | $\rightarrow 340 \mid$ |
| －3íe－j1 | －146i8E－41 | | －12787 +42 | － $4 . C E+03$ | ． $354385+01$ |
| － 4 UE－ら1 | ． $22349 \mathrm{E}-\mathrm{i} 1$ | －5CJE＋コ1 | －13829E＋01 | －5iちE＋03 | ． $36553 \mathrm{E}+01$ |
| －5iCE－ 11 | －36i52E－i1 | －6i $\cos ^{\text {E }}+\mathrm{y} 1$ | ． $14691 \equiv+01$ | －5：UE＋03 | ． $37464 \mathrm{E}+01$ |
| － | －5，5SEEI | TEx | －154265411 | －7 | C38z35Ex |
| 三－TITE OS | － 55239 EST | 200uter | －1506 T1 | －20 | －3893－20＋II |
| － 40 | －796－98E9早 | | 10634：81 | | －39795－91 |
| CJE－01 | ． $93322 E-41$ | －103E＋62 | －17144E＋C1 | －16UE＋UL | ． $40017 \mathrm{E}+81$ |

PSEUDO－SKIN FACTOR＝0． 1432

83

OIMENSIONLESS SLOT LENGTH IS: a4167

PSEUDO-SKIN FACTOR $=0.0159$

TABLE B-26

ARFANGCIENT OF SLOTS: 6 STAGGERED VERTICAL ROWS (3 PGIRS)
and

PSEUDO-SKIN FACTOR $=0.0025$

PSEUDO-SKIN FACTOR=0.00 α

F1
An

TABLE B-28

DI:TINSIONLESS PRESSURE DROP IS CALCULATED AT CENTER OF FORMATION

Abstract

RAT $=290$

DIUENSIONLESS SLOT LENGTH IS: . 4167

TABLI B-29

DIMENSIONEESS SLOT LEIVGTH IS: 4167

PSEUDO-SKIN FACTOR=0.0163

TABLE B-30

DI:IENSIONLESS PRESSURE OROP IS CALCULATED AT CENTER OF FORMATION
RAE天2071
DIMENSIONLESS:SLOT LENGIH IS: . 4167

PSEUDO-SKIN FACTOR=0.0028

TABLE B－31
UNSTEADY PRESEURZ FESPUNSE IN A SLOTTED LINER

AF．F．ANGEMENT OF SLOTS： 24 STAGGETED VERTICAL ROWS 12 PAIFS
［IMENSIONLESS PRESSURE UROP IS CALCULATED $4 T$ EENTER OF FCRMATION
$K D=2.00$
OIMENSIONLESS SLOT LEINGTH IS：．4167

| TL | Pu | －0 | PD | TO | PC |
| :---: | :---: | :---: | :---: | :---: | :---: |
| － $5005-12$ | ． $57863 \mathrm{E}-43$ | ．209こ＋00 | ．11087E－01 | －200E＋02 | ． $12339 \mathrm{E}+31$ |
| －200E C2 | －7Jフミビ－43 | － $3006+00$ | ．26196E－01 | ． $300 \pm+02$ | ． 14325 E＋ 31 |
| －300E－U2 | ．16582E－39 | － $400 \mathrm{C}+0$ | ． 43622 E －01 | ． $400 \mathrm{E}+02$ | ．15713E＋01 |
| －400E－02 | ．21987＝－30 | ． $500 \mathrm{O}+00$ | ．62059E－01 | ． $500 \mathrm{E}+02$ | －16798E＋01 |
| －500E－02 | ． 72961 E－25 | ． $600 \mathrm{E}+00$ | ． $80908 \mathrm{E}-01$ | ． $500 E+02$ | ． 176 ¢ $9 E+$［1 |
| ． 600 － 52 | ．36611E－21 | $.700 E+00$ | －99846E－01 | － $7005+02$ | －18445E＋01 |
| ． 700 － 32 | ． $16594 \vec{c}-18$ | $.800 E+00$ | ． $11868 \mathrm{E}+00$ | － $800 \mathrm{E}+02$ | ．13102E＋01 |
| ．800E－02 | ．15676i－16 | － $000 \mathrm{E}+00$ | ．13729E＋00 | －900E＋02 | ． $19682 \mathrm{E}+01$ |
| ．900E－02 | ． $61514 \mathrm{E}-15$ | ． $100 E+01$ | $.15560 E+00$ | e $100 E+43$ | － $20232 \mathrm{~L}+01$ |
| ． 10 UE－01 | ． 11207 －13 | －200こ＋01 | ． $31721 \mathrm{E}+00$ | － $2005+C 3$ | ． $23637 \mathrm{E}+\mathrm{C1}$ |
| －200E－01 | ． 75272 －18 | ． $300 \vec{C}+01$ | ． $44389 \mathrm{E}+00$ | － $300 \mathrm{E}+03$ | － $25654 \mathrm{E}+01$ |
| －300E゙－01 | ．85487E－06 | － $400 E+01$ | ． $54620 E+00$ | － $400 \mathrm{E}+03$ | ． $27037 \mathrm{E}+01$ |
| ．400E－01 | ．10175E－04 | $.500 E+01$ | ． $63159 \mathrm{E}+00$ | ． $500 E+03$ | － $28199 \mathrm{E}+\mathrm{J1}$ |
| ．500E－11 | ．4784UE－34 | －630E＋01 | － $71474 E+00$ | ． $600 \mathrm{E}+03$ | ． $29109 \mathrm{E}+\mathrm{C1}$ |
| －EOCE－C1 | ．13373E－03 | ． $700 \mathrm{CE}+01$ | ． $76867 \mathrm{E}+00$ | ．700E＋03 | ． $29878 E+31$ |
| ． 700 C －01 | ． $308945-03$ | ． $600 \mathrm{C}+01$ | ． $82541 E+00$ | $.800 E+03$ | ． $30545 \mathrm{E}+01$ |
| ． $800 E-01$ | ．57170こ－03 | ． $500 E+01$ | ． $87641 E+00$ | ． $900 E+03$ | ． $31133 \mathrm{E}+01$ |
| － $300 \mathrm{E}-31$ | ．93715E－33 | ．100č 02 | －92271E＋00 | －100E＋04 | ． 316 29E＋C1 |
| ．100E＋00 | ．14087ご．32 | | | | |

PSEUDO－SKIN FACTOR＝0．0000

TABLE $\mathbf{8} \mathbf{- 3 2}$
unsteady pressure response in a slotted liner-
arrangement of slots: \& staggered vertical rous(3 pairs)
location of calculated pressure drop is $1 / 4$ of circumferencial distance between two "i" vertical rows of slots
dimensionless pressure drop is calculated at center of formation
$r d=1.00$
dimensionless slot length(hd) is: . 4167
td pd id pd pd
0. 100E-02

45045E-31
. $14136 E-16$
. 14380E-11
. 50231E-09
.17660E-07
. 19527E-06
. 11095E-05
, 41460E-05
. 11675E-04
,27056E-04
. 14008E-02
592EBE-02
. 12905E-01
21235E-01
3018.SE-01
. $393.37 E-01$
48457E-01
. $57426 E-01$
. 66184E-01 $14201 E+00$
2038SE+00 25800E+00
0. $500 \mathrm{E}+00$
$30681 E+00$
$.35143 E+00$
$0.600 E+00$
$0.700 E+00$
$0.800 E+00$
$0.900 E+00$
0. $100 \mathrm{E}+01$
0. $200 E+01$
0. $300 \mathrm{E}+01$
0. $400 E+01$

3925Sㅌ+00
. 43072E+00
. $46629 E+00$
$.49958 E+00$
$.74987 E+00$
$.91675 E+00$
. 10419E+01
$.11419 E+01$
$.12253 E+01$

- 1296 읕+01
. $13593 E+01$
$.14148 E+01$
$.14648 E+01$
17993E+01
$.19979 E+01$
.21397E+01
. $22500 \mathrm{E}+01$
23403E+01
.24168E+01
$0.800 \mathrm{E}+02$
24831E+01
$0.900 \mathrm{E}=02$
25417E+01
$.25941 E+01$
. 29394E+01

0. 300E-0. $31417 E+01$
$.32954 E+01$
. 33968E+01
. 34979E+01
. $35.549 E+01$
$.36316 E+01$
$.36905 E+01$
. 37431E+01
$.40896 E+01$
$0.300 E+04 \quad .42923 E+01$
$0.400 E+04 \quad .44361 E+01$
$0.500 E+04 \quad .45477 E+01$
. 46398 E+01
$0.700 E+04 \quad .47159 E+01$
$0.800 E+04$. 478こ7E+01
$0.900 E+01$ - 48415E+01
$0.100 E+05.48942 E+01$

TABLE B-33
unsteady pressure response in a slotted liner.
arrangement of slots: 6 staggered vertical rows (3 pajrs)
location of calculated pressure dropis $1 / 2$ of circumfercurial distance between two " i " vertical rows of slots
dimensionless pressure drop is calculated at centertho/é of formation

$$
r d=1.00
$$

dimensionless slot length(hd) is: . 4167
td pd ofd pd od

| 0.100E-0E | $45192 \mathrm{E}-07$ | 0.500E+00 | 40025E+00 | 0.800Eroz | $25766 E+01$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.200E-02 | 24614E-04 | $0.600 E+00$ | 444E7E+00 | 0.900eror | $26351 E+01$ |
| $0.300 E-02$ | 24756E-03 | $0.700 \mathrm{E}+00$ | . $48600 E+00$ | 0.100E:03 | 26875E+01 |
| 0. $400 \mathrm{E}-02$ | 95706E-03 | $0.800 E+00$ | $52416 \mathrm{E}+00$ | 0. 200erus | 30329E+01 |
| 0. 500E-02 | 1895еE-02 | $0.900 E+00$ | $55972 \mathrm{E}+00$ | 0.300 ENS | 32352E+01 |
| 0.600E-02 | $33151 \mathrm{E}-02$ | $0.100 E+01$ | . $59302 E+00$ | | $33788 E+01$ |
| 0.700E-02 | 50483E-02 | $0.200 E+01$ | . $84331 E+00$ | 0. 500 E | $34903 E+01$ |
| 0. 300E-02 | . 7022eE-02 | $0.300 E+01$ | . $10102 \mathrm{E}+01$ | 0.600 E 0.01 | $35813 \mathrm{E}+01$ |
| 0.900E-02 | . 91785E-02 | $0.400 E+01$ | . $11353 \mathrm{E}+01$ | 0.700E 0 , | $36584 E+01$ |
| $0.100 \mathrm{E}-01$ | . $11470 \mathrm{E}-01$ | $0.500 \mathrm{E}+01$ | . $12354 \mathrm{E}+01$ | 0. 800 E -03 | $37251 E+01$ |
| 0. 2 COE-01 | . 3545EE-01 | $0.600 E+01$ | $13187 E+01$ | 0.900E:03 | 37839E+01 |
| $0.300 \mathrm{E}-01$ | . 59517E-01 | $0.700 E+01$ | $.13902 E+01$ | 0. 100eroa | $38366 E+01$ |
| 0. 400E-01 | . 79 ¢51E-01 | $0.800 E+01$ | $14527 E+01$ | 0. 200Er0A | 41930E+01 |
| $0.500 E-01$ | . 9612日E-01 | $0.900 E+01$ | . $15083 \mathrm{E}+01$ | 0.300E | 43857E+01 |
| 0. OWE-01 | $11080 \mathrm{E}+00$ | $0.100 E+02$ | 155日3E+01 | $0.400 \mathrm{E}-04$ | 45296E+01 |
| $0.700 E-01$ | 12379E+00 | $0.200 E+02$ | 19927E+01 | 0. 500E -0, $/ \mathrm{M}$ | . 46411 E+01 |
| $0.800 E-01$ | 13553E+00 | $0.300 E+02$ | . $20913 E+01$ | $0.600 E \cdot 0.4$ | 47323E+01 |
| $0.900 \mathrm{E}-01$ | $14629 E+00$ | $0.400 E+02$ | . $22331 E+01$ | 0.700E:04 | . $48093 E+01$ |
| $0.100 E+00$ | . $15529 E+00$ | 0. 500E+02 | . $23435 E+01$ | 0.900 raf | 48761E+01 |
| $0.200 E+00$ | 23520E+00 | $0.600 E+02$ | . 2433EE+01 | 0.900E)(14 | . $49350 \mathrm{E}+01$ |
| O. $300 \mathrm{E}+00$ | . 29723E+00 | 0.700E+02 | . 25103E+01 | 0. 100 E - \% | 49877E+01 |

APPENDIX_C

Paper SPE 10785-by D. 'Spivak and R. N. Horne

UNSTEADY-STATE PRESSURE RESPONSE DUE TO PRODUCTION WITH A SLOTTED LINER COMPLETION

ASSTRACT

The transient behavoiur of production from a well With a slotted liner has been solved analytically by the source function method. The unsteady-state pressure response was examined as a function of slot freequency, slot length and penetration ratio of 0.5. The results indicate that due to limited entry into the tell, skin effects appear. However, the effects become negligible when the number of slots distributed around the circumference of the liner is six or more. For more than six slots, the well behaves effectively like a continuous surface cylindrical source (or a line source well, depending on time and location).

This work concludes that there is likely to be little reduction in flow efficiency in an ideal slotted liner completion, unless some slots are clogged.

INTRODUCTION

A well is completed with a slotted liner when sand problems occur, mainly in unconsolidated formations, The slotted inner is a pre-perforated tubing. Usually. the slots are milled and machined in vertical rows, parallel to the axis of the pipe. The most comon patterns of arrangements of slots are the staggered vertical rows, multiple staggered vertical and horizontal slots, as shown on Pig. 1. Standard spacing of slots is 6° between the slots in each vertical row, while their length is usually $1 \frac{1}{2}$ n to 2^{n} depending on their width. The comon practice is to speçify two rows for each inch of nominal pipe diameter ${ }^{2}$.

This work arrived at an analical solution to the problem of transient pressure response due to production through a liner with staggered vertical rows of Slots. The techniqu used was as suggested by Gringarten and Ramey 4 . It applies the use of a line source of finite length which in return represents the system of slots. The solution technique was verified by comparison with the continuous surface cylinder solution in the case of a large number of vertical rows of slots. No storage or damaged zone effects were considered.

FROBLW DESCRIPTION

Consider an infinite. homogeneous and isotropic porous medium. The transient (unsteady-state) flow of a slightly compressible fluid is governed by the diffusivity equation:

$$
\begin{equation*}
\frac{\partial^{2} p}{\partial r^{2}}+\frac{1}{r} \frac{\partial p}{\partial r}+\frac{\partial^{2} p}{\partial z^{2}}=\frac{1}{n} \frac{\partial p}{\partial t} \tag{1}
\end{equation*}
$$

where $\eta=\frac{k}{\phi \mu c_{t}}$ is the diffusivity term. The soluI:ion to a particular problem is determined by the fritial and boundary conditions. One of the most wellknown solutions is Lord Kelvin's instantaneous point source function, which is:

$$
\begin{equation*}
\Delta p(M, t)=\frac{q}{8 \phi c_{t}(\pi n t)^{3 / 2}} \exp \left(-\frac{d^{2}}{4 n t}\right) \tag{2}
\end{equation*}
$$

Eq. 2 represents the pressure drop created at point M in a reservoir of infinite extent by an instantaneous point source of strength q at point P, distanced from point M (Fig. 2). The strength q is the withdrawal rate per unit volume of source; it is also defined as e withdrawal rate per unit length or area of source, depending on itg nature, i.e., line source or surface cylinder source ${ }^{3}$. From Eq. 2 solutions to many other problems are obtainable by integration . The instantameous infinite line source case, for example, is sbtained by expressing d in Eq. 2 in terms of x, y, z coordinates and integrating z from $-\infty$ to $+\infty$,

The method was first applied in pressure transient analysis by Theis ${ }^{4}$.

If there is a continuous withdrawal of fluid, of strength q from time 0 to t, the pressure drop created by this continuous point source is given by integration over time :

$$
\begin{aligned}
& \Delta p(M, t)=\frac{q}{8 \phi c_{t}(\pi n)^{3 / 2}} \int_{0}^{t} \frac{1}{\left(t-t^{\prime}\right)^{3 / 2}} \\
& \cdot \exp \left(^{-} \frac{4^{2}}{4 n\left(\frac{t^{2}}{\eta}-t^{\top}\right)}\right) d t,
\end{aligned}
$$

References and illustrations at end of paper

Row consider the actual problem at hand. Fig. 3 shows the coordinate sketch of one slot. The pressure drop created at point M by a single slot is obtained by' :Lutegrating an instantaneous point source with respect Ito time and the z coordinate, in a manner similar to that used by Nisle ${ }^{5}$. Appendix A gives details of the derivation of the solution. Briefly stated, the continuous pressure drop created at point M by a single wlot extending from $z=0$ to $z=2$ is expressed by the following equation:

$$
\begin{align*}
& \Delta p_{1}(M, t)=\frac{q_{1}}{8 \phi c_{t}\left(\pi r_{1}\right)^{3 / 2}} \int_{0}^{t} \frac{\exp \left[-r_{1}^{2} / 4 \pi\left(t-t^{\prime}\right)\right]}{\left(t-t^{\prime}\right)^{3 / 2}} \\
& \cdot\left\{\int_{0}^{\ell} \exp \left(-\left(z^{\prime}-z_{m}\right) 2 / 4 \pi\left(t-t^{\prime}\right) d z^{\prime}\right\} d t^{\prime}\right. \tag{4}
\end{align*}
$$

Note that there are two sets of vertical rows of slots; one set being staggered from the other. The base eet of slots is referred to as the " 1 " slots and the stagRered set as the "f" slots. Eq. 4 therefore refers to me of the 1 slots.

Eq. 4 can be expressed in terms of the error function (after making a change of variables) as

$$
\begin{align*}
& \Delta p_{1}(M, t)=\frac{q_{1}}{8 \phi c_{t} \pi n} \int_{0}^{t} \frac{\exp \left(-r_{1}^{2} / 4 n \tau\right)}{\tau} \\
& \cdot\left\{\operatorname{erf} \frac{z_{m}}{\sqrt{4 n \tau}}-e e^{z} \frac{z_{m}^{-2}}{\sqrt{4 n \tau}}\right\} d \tau \tag{5}
\end{align*}
$$

Introducing some dimensionless variables (described in Appendix A) and considering a penetration ratio of $1 / 2$ result in the following dimensionless pressure drop caused by One slot ${ }^{\text {B }}$:

$$
\begin{align*}
& P_{D_{i}}\left(M, t_{D}\right)=\frac{1}{4 \cdot N S} \int_{0}^{t_{D}} \frac{\exp \left[-r_{1 D}^{2} / 4 t_{D}\right\}}{r_{D}} \\
& \cdot\left\{\operatorname{erf} \frac{z_{m D}}{\sqrt{4 t_{D}}}=\operatorname{erf} \frac{z_{m D}^{-\ell}}{\sqrt{4 t_{D}}}\right\} d t_{D} \tag{6}
\end{align*}
$$

where $N S$ is the number of slots in each ring of slots. The integral in Eq. 6 can be evaluated numerically using Simpson's rule.

One of the last stages of the mathematical derivation is to sum Eq. 6 over all the slots in the liner.

In this work a reservoir of thickness h vith upper and lower impermeable boundaries was considered as shown on Pig. 4. Therefore, the boundary conditions are:

$$
\frac{\partial p_{D}}{\partial z_{D}}\left(r_{D}, 0, t_{D}\right)=\frac{\partial p_{D}}{\partial z_{D}}\left(r_{D}, h_{D}, t_{D}\right)=0
$$

and

$$
\begin{equation*}
\text { 11m } \operatorname{p}_{\mathrm{r}_{\mathrm{D}}}\left(r_{\mathrm{D}}, z_{D}, \tau_{D}\right)=0 \tag{8}
\end{equation*}
$$

The upper and lower impermeable reservoir boundaries can be represented by considering inge slots and adding their effects to those caused by the real ones.

There will therefore be an infinite sumation over all real and image slots. Assuming that the formation is penetrated by an integral number of staggered pairs, with half length slots at top and bottom, the general model shown on Fig .4 can be reduced to a basic unit as illustrated on Pip. 5. It should be noted that both on Pips. 4 and 5 the total cumulative length of the slots In one vertical fow (either an 1 row or a staggered f row) is one half of the formation thickness, that is the penetration ratio is $1 / 2$.

Finally, the total dimensionless pressure drop eregated at point M by all real and fmaze slots is given by ${ }^{6}$:

$+\frac{1}{4 \cdot N S} \sum_{j=1}^{N S} \int_{0}^{t_{D} \exp \left[-r_{j D}^{2} / 4 t_{D}\right]} t_{D}$
$\cdot\left[\sum_{n \rightarrow \infty}^{+\infty}\left(\operatorname{erf}^{2} \frac{{ }_{m D}+(2 n-1) h_{D}+\ell D}{\sqrt{4 t_{D}}}\right.\right.$
$-\operatorname{ert} \frac{z_{a D}+(2 \pi-1) h_{D}-\sum_{D_{j}}}{\sqrt{4 t}} d_{D}$
Although this configuration of the line source segments represents the arrangement of slots, the resulting pressure distribution will not correctly represent the impermeable liner between the slots. Since the system modelled has "reservoir" both inside and outside the rings of slots, flow into the inner face of the ring of line source segments must pass between the slots from the outside. In the steadystate case, this difficulty is easily avoided by placing line source at the axis $r=0$ of $\frac{1}{2}$ the total strenth of the NS line source segments around the circumference, and opposite in sign (1.e., a source as opposed to a sink). This configuration results in a circular no-flow boundary passing through each of the slots (provided they are regularly arranged around the ring), with the "inside" production into the slots being provided by the line source at the centerline. For unsteady state the situation is a little more complex, since the pressure and stream function are no longer harmonic; however, for $t_{p} / \tau_{D}{ }^{2} \gg 0$, the pressure function is approximately logarlthaic and is therefore harmonic in s region close to the well and becomes harmonic over a wider radius as time progresses. For small radii (close to the well), the pressure and stream function are harmonic for very small times, and the circular line joining the slots is a very good approximation to a no-flow boundary. This is demonstrated on Pig. 6 which shows the isopotential lines and the directions of their normals for an arrangement of four slots (only one quadrant is shown).

Thus to obtain the correct representation of the slotted liner, it is necessary to multiply the pressure drop given by Eq. 9 by two (to double the flow rate) and subtract the line source (exponential integral) pressure function:

$$
\begin{equation*}
p_{D}\left(M, t_{D}\right)=2 \cdot p_{D}^{*}\left(M, t_{D}\right)-\left[-1 / 2 E_{1}\left(-r_{D}^{2} / 4 t_{D}\right)\right] \tag{10}
\end{equation*}
$$

In this way the sum of the flow rates into a ring of slots will be 29 , made up of a flow rate q from the reservotr to the exterior of the slots, and a flow rate from the centerline line source to the interior of t:he slots.

SHORT-TME BERAVIOUR

In studying the ahort time behaviour of Eq. 10 , three cases were considered (see Fig.4):

1) $0<z_{m D}<\ell_{D}$
2) $h_{D}-\ell_{D}<z_{m D}<h_{D}$
3) $z_{m D}=\ell_{D}$

$$
\begin{aligned}
\text { Case (1) } & =\text { for } t_{D} \rightarrow 0 \text { and } \\
& 0<z_{m D}<t_{D}, \\
& e=\frac{z^{2}+e^{2} D}{\sqrt{4 t_{D}}}+1 \\
& =t^{2} \frac{m^{-t} D}{\sqrt{4 t}} \rightarrow-1
\end{aligned}
$$

and Eq. 10 reduces to the following expression ${ }^{6}$:

$$
\begin{align*}
& r_{\nu}\left(M, t_{D}\right)=-\frac{1}{N S} \int_{1=1}^{N S} \operatorname{Ni}_{1}\left(-r_{1 v}^{2} / 4 t_{v}\right) \\
& +1 / 2 E_{1}\left(-r_{D}^{2} / 4 t_{D}\right) \tag{11}
\end{align*}
$$

Case (2) : by the same reasoning as in case (1), it can easily be shown that Eq. 10 becomes ${ }^{6}$:
6. Case (3) : in this rese. Fr. In aimply reduces

$$
r_{D}\left(M \cdot+_{D}\right)=-\frac{1}{2 \cdot N S} \sum_{1=1}^{N S} E 1\left(-r_{1 D}^{\left.L / 4 t_{D}\right)}\right.
$$

$$
-\frac{1}{2 \cdot N S} \sum_{i=1}^{N 6} E 1\left(-r_{j D}^{7} / 4 t_{D}\right)
$$

$$
+1 / 2 E 1\left(-r_{D}^{2} / 4 t_{D}\right)
$$

(13)

LONG-TIME BEHAVIOUR

For sufficent long time, Eq. 10 becomes:

$$
\begin{align*}
& P_{D}\left(M, r_{D}\right)=-1 / 2 E 1\left(-r_{D}^{2} / 4 t_{D}\right) \\
& +s\left(r_{i D}, r_{j D}, z_{m D}, \theta, t_{D}, h_{D}, h_{D}, r_{B}, N S\right) \tag{14}
\end{align*}
$$

where the first term is the line source solution and $\&$

$$
\begin{align*}
& r_{D}\left(N,+_{D}\right)=-\frac{1}{N B} \sum_{i=1}^{N S} P_{1}\left(-r_{j D}^{2} / L+{ }_{D}\right) \\
& +1 / 2 E 1\left(-r_{D}^{2} / \mathrm{Gt}_{\mathrm{D}}\right) \tag{12}
\end{align*}
$$

is the pseudo-skin factor which is dependent on time, but can be approximated by a constant (to any degree of accuracy) for large values of time. For accuracy of 1. percent secomes a constant for a cutoff time given by:

$$
t_{D} 2 \operatorname{Max}\left\{\begin{array}{l}
70 r_{D}^{2} \\
25 r_{1 D}^{2} \\
25 r_{j D}^{2} \\
5 n_{D}^{2} / \pi^{2}
\end{array}\right.
$$

Full details of this derivation are given by Spivak ${ }^{6}$.

RESULTS

The integral in Eq. 9 was calculated using
Simpson's rule with 100 time divisions per log cycle. Figs. $2^{7,8}$ show the semi-log behaviour of P_{D} vs. τ_{D} and t_{D} / I_{D}^{2} considering different number of vertical rows o: slots, $z_{D}=h_{D} / 2$ (1.e., center of formation), differen radii $\left(r_{D}\right)$ and a penetration ratio of $1 / 2$.

The slot length was found to have an overall negligible effect.

The position of the pressure measurement ($z_{m D}$) does influence the pressure drop significantly, especially when P_{D} is calculated at I_{D}. (on the surface of the liner). Away from the liner ($r_{D}>1$), the faportance of $\boldsymbol{z}_{\mathrm{m}}$ decreases as I_{D} increases. It was found that the maximum value of the pseudo-skin factor s for a liner which has only two staggered vertical rows (ont slot per ring, or $N S=1$) is $\mathbf{s} \equiv \mathbf{3}$ (on the surface). This parameter depends on the location of the pressure measurement, and takes smaller values further from the slot tip. When the number of vertical rows is increased to six (NS 3), the pseudo-skin factor rapidi, decreases to $s \equiv 0.9$. For more than six vertical rows, the well behaves effectively like a continuous surface cylindrical source (or a line source well, depending or time and location) for which values of P_{D} vs. ${ }^{5}$ for ${ }^{8}$, different r_{D} were calculated by Gringarten and Rames ${ }^{8}$. Also, in interference tests the well would behave essentially as a line source even for less than six vertical rows of slots, depending on the observation radius unless some slots are clogged.

CONCLUSIONS

In this study, the effect of a slotted liner completion on pressure translent analysis was determined using a simple analytical model. It was concluded that:
(1) For penetration ratio of 0.5 , the slotted liner adds negligible skin effect provided there are 3 (or more) alots around a circumference of the liner. This means that actually in most cases there is no flow restriction due to the slotted liner provided all the slots remain open (or at least 3 remain unclogged).
This is in direct agreement with the rule of thumb that recommends 2 slots for each inch of nominal pipe dimeter.
(2) The length of the slots is not significant row a flow point of view.

IOMENCLATURE

ε_{c} : total compressibility
d . distance in space
(s slot length
$\$_{D}$. dimensionless slot length
h. formation thickness
$\mathbf{h}_{\mathbf{D}}$ * dimensionless Eorescion thickness
k : formation permeability
a. number of slots in one vertical row

NS : number of pairs of staggered vertical rows of slots (also number of slots in one ring)

Ap : pressure drop
PD " dimensionless pressure drop
q - strength : fluid withdrawal per unit length, area or volume of a source

0 : total withdrawal from a well (rate of production)
? distance in $x-y$ plane
τ_{10} : dimensionless distance (to slots) in $x-7$ plan
$\mathbf{r}_{10}=$ dimensionless distance (to slots) in $x-9$ plant
$\mathbf{r}_{\mathbf{D}}=$ dimensionless distance
$\boldsymbol{r}_{\text {, }}$: wellbore radius
$s=$ pseudo-skin factor
$t=$ producing 61π
t_{0} : dimensionless producing time
x : abscissa of a point
7. ordinate of a point
$z=$ elevation of a point

* * elevation of point M in a reservoir
η • diffusivity
\downarrow : viscosity
ϕ : porosity
θ. angle wich the projection of point K on the : y plane makes with the origin of $x-y-2$ coordis ates.

Subseripts

O : dimensionless
1 : pertaining to slot i
j : pertaining to slot 3
m * any point in space

- vell

Seecis Functions

Error function: eff(x)$\cdot \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-1 u^{2}} d u$
Exponential integral: $-\varepsilon 1(-x)=\int_{x}^{\infty} \frac{e^{-u}}{u} d u$

ACRNOWLEDGEMENT

Portions of this study were done in partial fulfillaenc of graduate degree requirements at stanfors Iniversicy. Funding was provided through a contract vith the U.S. Department of \&nesig, under contrace DE-

AT03-80SF11459.

REFERENCES

1. Buzarde, L. E., Jr., Kastor, R. L., Bell , \&. T., and Defrlsser, C. L: Production Operation Course I-Well Completions, SPE of AIME, 1972, Chap. iv.
2. Composite Catalog, World Oil ed., 1974-5, 2843.
3. Gringarten, A. C., and Ramey, H. J., Jr.: ${ }^{\text {nithe }}$ use of source and Greens Functions in solving Unsteady* Flow Problems in Reservoles", SPEJ (Oet, 1973), Trans. AIME(1973), 255, 285-296.
4. Theis, C. v.: "The relationship Between the Lowering of the Piezometric Surface and the Rate and Duration of Discharge Using Ground-Water Storage", Trans. AGU (1935), 519.
5. Nisle, G. R :The Effect of Partial Penetration o: Pressure Build-Up in Oil Wells", Trans. AIME (1958: 213, 85-90.
6. Spivak, D.: "Unsteady-State Pressure Response in a Slotted Liner", HS thesis, Stanford 0. (1981)
7. Carslaw, Я. S., and Jaeger, J. C: Conduction of Heat In Solids, Oxford at the Clarendon Press (1959), 275-276.
8. Grinparten, A C., and Ramey, 日. J., Jr.: "A Comparison of Different Solutions to the Radiad Flow Problem", Paper SPE 3817, submitted for: publication.

APPENDIX A: Derivation of Solution
The solution to Eq. 1 in an infinite aedium may \mathbf{b}^{2} derived using the source function hosd described os Gringarten and Ramey ${ }^{3}$. The pressure drop st ($\mathbf{r}, \mathbf{z}, \mathbf{r}$) due to an instantaneous point source at $z=z^{i}, t \geqslant 0$ is given by:

$$
\begin{equation*}
\Delta p\left(r, z, z^{\prime}, t\right)=\frac{q}{8 \phi c_{t}(\pi n t)^{3 / 2}} \cdot \exp \left[-\frac{r^{2}+\left(z-z^{\prime}\right)^{2}}{4 \pi t}\right] \tag{A-1}
\end{equation*}
$$

zere q is the strength of the source. The pressure rop due to an instantaneous line source of finite
zngth \& (e.g., one slot) may be obtained by superposing sint sources along a line of z^{\prime} from $z^{\prime}=0$ to $z^{\prime}=2$, Tus:

7 changing variables, i.e., $u=\left(\mathbf{z - 2} \mathbf{z}^{\prime}\right) / / 4 n t$, the bove integral may be represented $i n$ terms of the error unction as:
$\Delta_{p}(r, z, t)=\frac{q}{8 \phi c_{t} \pi n t}\left[\operatorname{erf} \frac{z}{\sqrt{4 n t}}-\operatorname{erf} \frac{z-l}{\sqrt{4 \pi t}}\right]$

- obtain the continuous pressure drop created by a intte line source of length ℓ, we use again superposiion. now in time:

$$
\begin{aligned}
\Delta p(r, z, \tau) & =\frac{q}{8 \phi c_{t}^{\pi \eta}} \int_{0}^{t} \frac{\exp \left(-r^{2} / 4 \pi \tau\right)}{\tau}\left[e r f \frac{z}{\sqrt{4 \pi \tau}}\right. \\
& \left.=\operatorname{erf} \frac{z-l}{\sqrt{4 n \tau}}\right] d \tau
\end{aligned}
$$

ith $\tau=t-t^{r}$ and $d T=-d t$
q. A4 represents the continuous pressure drop due to single slot (finite line source).

The strength of one slot, for a penetration ratio $\mathrm{f} \frac{1}{2}$, is given by:

$$
q=\frac{0}{\left(0.5 h / n_{s}\right) 2 \cdot N S \cdot n_{s}} \times \frac{0}{h \cdot N S}
$$

here n_{s} is the number of slots in one vertical row ans is the total withdrawal rate. By introducing the ollowing dimensionless variables:

$$
\begin{array}{ll}
h_{D}=h / r_{w} & (A-6) \\
\ell_{D}=\ell / r_{w} & (A-7) \\
r_{D}=r / r_{w} & (A-8) \\
r_{D}=\frac{k t}{\phi L C_{t} r_{w}^{2}} \\
z_{D}=z / r_{w} & (A-10) \\
\rho_{D}=\frac{2 n k h \Delta p}{0 u} & (A-11)
\end{array}
$$

. A-4 can be written in the nondmensional fort as:

$$
\begin{align*}
& p_{D}\left(r_{D}, z_{D}, t_{D}\right)=\frac{1}{4 \cdot N S} \int_{0}^{t_{D}} \frac{\exp \left[-r_{D}^{2} / 4 t_{D}\right]}{t_{D}} \\
& \cdot\left\{\operatorname{stf} \frac{\text { 'D }}{\sqrt{4 t_{D}}}-\operatorname{erf} \frac{z_{D} \ell_{D}}{\sqrt{4 t_{D}}}\right\}_{D} d t
\end{align*}
$$

In our actual problem it is necessary to superpose the sressure drops due to the real snd (infinite) image 3lots. When this is done, Eq. A-12 becowe Eq. 9 in :he text.

Fig. 1-Slotted Liners (After Buzarde et al. ${ }^{1}$)

Fig. 2- Point Source in an Infinite Medium

Fig. 3- Coordinate Sketch of one Slot

SLOTS "i"

Fig. 4- Schematic "unwrapped" Diagram of the Model

Fig. 5- Basic Unit of the Model

Fig. 6- Isopotential Contours for an Arrangement of Four Slots (One quadrant only is shown). Circular No-Flow Boundary is achieved by the Subtraction of the Line Source at the centerline (The origin in this diagram)

