UNSTEADY-STATE PRESSURE RESPONSE

IN A SLOTTED LINER

A REPORT

SUBMITTED TO THE DEPARTMENT OF PETROLEUM ENGINEERING OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

'MASTER OF SCIENCE

Ъy

David Spivak

October 1981

, . . .

Copyright 1981

Ъу

David Spivak

ii

ACKNOWLEDGEMENTS

I wish to express my appreciation to Professor Roland Horne of the Department of Petroleum Engineering for his patience, encouragement and guidance **as** my research advisor. Also gratitude goes to the Department of Petroleum Engineering of Stanford University and to Tenneco Research Fund who have supported my studies. I am much indebted to my mother, Julia Spivak, for her continued encouragement, understanding and support during this work.

ABSTRACT

A semi-analytical solution has been obtained for the unsteadystate pressure response in a slotted liner.

The solution was obtained by means of **a** source function, assuming constant rate of production, penetration ratio of 0.5 (**i.e.** ratio of total open interval to total thickness) and various slot lengths (no storage or skin effects were considered)

For integration purposes, satisfactory results were obtained using Simpson's rule.

The resultu show that inside and outside the slotted liner, the pseudo-skin factor due to restricted flow to the well is negligible for 6 vertical rows of slots (3 pairs of vertical staggered rows, or 3 slots in one ring of slots), even at early time of production. On the other hand, on the surface of the liner, there is a pseudo-skin factor, unless the number of rows is increased.

There **is** not much difference in pressure drop in a liner with many and short slots, **as** compared to a liner with a fewer and longer slots, but with the same number of vertical rows.

V

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS	ίv
ABSTRACT	Ϋ
1. INTRODUCTION	1
2. UNSTEADY-STATE PRESSURE RESPONSE IN A SLOTTED LINER,	4
2.1 Mathematical Derivation	4
2.2 Short-Time Behaviour	20
2.3 Long-Time Behaviour	23
3. COMPUTATIONAL PROCEDURE AND NUMERICAL RESULTS	36
3.1 Computer Runs	38
3.2 Results and Calculation of Pseudo-Skin Factors	39
4 NOMENCLATURE	48
5 . REFERENCES	50
APPENDIX A: The Computer Program	52
APPENDIX B: Tabulated Results,,	59
APPENDIX C: Paper SPE 10785 to be Presented at the 1982	
California Meeting ${\scriptstyle ullet}$ (This Paper ${\it is}$ based ${\it on}$ this ${\it work}$	
and was Prepared Subsequent to the Completion ${f of}$ this	
Report)	93

LIST OF FIGURES

Page

Figure		
1.	Slotted Liner	3
2.	Point Source in an Infinite Medium	6
3.	Section of a Lingr GDDWr\$Saggel@&lVertical	
	Rows of Slots	9
4.	Schematic Diagram of the B odel,,,,,,,,,,,,,,,,,,,,,,,,,	12
5.	Dimensionless Pressure Drop Vs. Ratio of	
	Dimensionless Time De VDicherBiverkless Distance	
	Squared, for Various Arrangements of Slots	
	for r _D =1.	40
6.	Dimensionless Pressure Drop Vs. Dimensionless	
	Time for various Arrangements of Slots	
	for $r_{D}=0.5$	41
7.	Dimensionless Pressure Drop Vs. Ratio of	
	Dimensionless Time to Dimensionless Distance	
	Squared, for $Various$ Arrangements of Slots	
	for r _D =2,	4 <i>2</i>

LIST OF TABLES

Page

Table		
1:	P_D $\forall s$, t_D for Continuous Surface Cylinder Source	43
2:	p_D Vs, t_D for 3 Pairs of Staggered vertical Rows	
	of Slots, Dimensionless Slot Length ${\sf of}$ 0.4167 and	
	r _D =0.	44
3:	\mathfrak{p}_{D} Vs, \mathfrak{e}_{D} for 6 Pairs of Staggered Vertical Rows	
	of Slots, Dimensionless Slot Length of 0.4167 and	
	r _D =0.5	45
4:	p_{D} $\forall s$, t_{D} for 6 Pairs of Staggered Vertical Rows	
	of Slots, Dimensionless Slot Length ${f of}$ 0.4167 and	
	$r_{\rm D}^{=2}$.	46
5 :	P_{D} Vs. t_{D} for 30 Pairs of Staggered Vertical Rows	
	of Slots, Dimensionless Slot Length of 0.4167 and	
	$r_{\rm D}$ =1.	47
8-1;	<pre>PD Vs.tD for 1 Pair of Staggered Vertical Rows</pre>	
	of Slots, Dimensionless Slot Length of 0.2 and	
	r _D =1.	60
B – 2 :	P_{D} Vs. t_{D} for 1 Pair of Staggered Vertical Rows	
	of Slots, Dimensionless Slot Length ${f of}$ 0.4167 and	
	τ _D =1,	61

·

Table

Page

B – 3:	p_{D} $\forall s$, t_{D} for 1 Pair of Staggered Vertical Rows	
	of Slots, Dimensionless Slot Length of 0.5714 and	
	r _D =1.	62
B-4 :	٥ _D Vs. t_D for 1 Pair of Staggered Vertical Rows	
	of Slots, Dimensionless Slot Length of 1.0000 and	
	r _D =1.	63
B-5 :	\mathfrak{P}_{D} Vs. \mathfrak{e}_{D} for 2 Pairs of Staggered Vertical Rows	
	of Slots, Dimensionless Slot Length of 0.2 and	
	r _D =1.	64
B-6 :	p_D Vs. c_D for 2 Pairs of Staggered Vertical Rows	
	of Slots, Dimensionless Slot Length of 0.4167 and	
	r _D =1.	65
B-7:	P_D Vs. t_D for 2 Pairs of Staggered Vertical Rows	
	of Slots, Dimensionless Slot Length of 0.5714 and	
	r _D =1.	66
в-8:	\mathfrak{P}_{D} Vs, \mathfrak{c}_{D} for 2 Pairs of Staggered Vertical Rows	
	of Slots, Dimensionless Slot Length of 1.0000 and	
	r _D =1	67

ix

Page

Table

B-9:	\mathfrak{p}_{D} vs. \mathfrak{c}_{D} for 3 Pairs of Staggered Vertical Rows	
	of Slots, Dimensionless Slot Length of 0.2 and	
	τ _D =1,	68
B-10:	\mathfrak{p}_{D} Vs. \mathfrak{t}_{D} for 3 Pairs of Staggered Vertical Rows	
	of Slots, Dimensionless Slot Length of 0.4167 and	
	r _D ≡l.	69
8-11:	\mathfrak{P}_{D} Vs, \mathfrak{c}_{D} for 3 Pairs of Staggered Vertical $Rows$	
	of Slots, Dimensionless Slot Length of 0.5714 and	
	r _D =1.	70
B-12:	p_D Vs. t_D for 3 Pairs of Staggered Vertical Rows	
	of Slots, Dimensionless Slot Length of 1.0000 and	
	r _D =1.	71
B-13:	۹ _D Vs. t_D for 4 Pairs of Staggered Vertical Rows	
	of Slots, Dimensionless Slot Length of 0.4167 and	
	r _D =1	72
B-14:	p_D $\forall s$, t_D for 6 Fairs of Staggered Vertical Rows	
	of Slots, Dimensionless Slot Length of 0.2 and	
	r _D =1.	73

х

Table

Page

B-15: PD Vs. tD for 6 Pairs of Staggered Vertical Rows of Slots, Dimensionless Slot Length of 0.4167 and 74 r_D=1. pp Vs. tp for 6 Pairs of Staggered Vertical Rows B-16: of Slots, Dimensionless Slot Length of 0.5714 and $r_{D}^{=1}$. 75 PD Vs. tD for 6 Pairs of Staggered Vertical Rows B-17: of Slots, Dimensionless Slot Length of 1.0000 and r_D=1. 76 8-18: p_D Vs, t_D for 8 Pairs of Staggered Vertical Rows of Slots, Dimensionless Slot Length of 0.4167 and 77 B-19: PD Vs. tn for 10 Pairs of Staggered Vertical Rows of Slots, Dimensionless Slot Length of 0.4167 and $r_n = 1$. 78 pp Vs. tp for 12 Pairs of Staggered Vertical Rows B-20: of SLots, Dimensionless SLot Length of $0.2\,$ and r_D=1. 7 **9**

Page

Table		
B-21:	\mathfrak{P}_{D} Vs. \mathfrak{c}_{D} for 12 Pairs of Staggered Vertical Rows	
	of Slots, Dimensionless SLot Length ${f o f}$ 0.4167 and	
	r _D =1.	80
B-22:	\mathfrak{p}_{D} $\forall \mathfrak{s}, \mathfrak{t}_{D}$ for 12 Pairs of Staggered Vertical Rows	
	of Slots, Dimensionless Slot Length of 0.5714 and	
	r _D *1,	81
B-23:	p_{D} Vs. t_{D} for 12 Pairs of Staggered Vertical Rows	
	of Slots, Dimensionless Slot Length of 1.0000 and	
	r _D =1	8 2
B-24:	p_{D} Vs. t_{D} for 1 Pair of Staggered Vertical Rows	
	of Slots, Dimensionless Slot Length ${f of}$ 0.4167 and	
	r _D =0.5	83
B-25:	۶ _D Vs. t _D for 2 Pairs of Staggered Vertical Rows	
	of Slots, Dimensionless Slot Length ${f of}$ 0.4167 and	
	r _D ≖0,5	84
B-26:	\mathfrak{P}_{D} $\forall \mathfrak{s}$, \mathfrak{t}_{D} for 3 Pairs of Staggered Vertical Rows	
	of Slots, Dimensionless Slot Length of 0.4167 and	
	r _D =0.5	85

Table

Page

of Slots, Dimensionless Slot Length of 0.4167 and	
r _D =0.5	86
B-28: p_D Vs. t_D for 1 Pair of Staggered Vertical Rows	
of Slots, Dimensionless Slot Length of 0.4167 and	
$r_{D}^{=2}$.	87
B-29: PD Vs. tD for 2 Pairs of Staggered Vertical Rows	
of Slots, Dimensionless Slot Length of 0.4167 and	
$r_{\rm D}=2$.	88
B-30: p_D Vs. t_D for 3 Pairs of Staggered Vertical Rows	
of Slots, Dimensionless Slot Length of 0.4167 and	
$r_{D}^{=2}$.	89
B-31: p_D Vs. t_D for 12 Pairs of Staggered Vertical Row	5
of Slots, Dimensionless Slot Length of 0.4167 and	
$r_{D}=2$.	90
B-32 p _D Vs. t _D for 3 Pairs of Staggered Vertical Rows	
of Slots, Dimensionless Slot Length of $0.4167,$	
Location of calculated Pressure $Drop$ at $^{1}/_{4}$ of	
Circumferencial Distance between two "i" Vertical	
Rows of Slots and $r_{D}^{=1}$.	91

Pane

Table

B-33	p _D Vs. t _D for 3 Pairs of Staggered Vertical Rows	
	of Slots, Dimensionless Slot Length of 0,4167,	
	calculated Pressure Drop is at Center of Formation	
	+ ¹ / ₂ of slot Length, and r _D =1	92

x i v

1. INTRODUCTION

Sand problems have occurred in the oil and gas industry since shortly after the first oil well discovery. These problems rise due to formation movement under stresses resulting from fluid flow to the wellbore and pressure drop in the reservoir. Laboratory studies show formation failure by 3 mechanisms when sand control is inadequate. The first one is grain movement away from formation into the wellbore under low fluid velocities (or low pressure drop). At higher velocities, small masses of sand break away leading to rapid failure. The third mechanism occurs under some conditions; the formation becomes fluidized, resulting in gross flow of sand with produced fluid. Often sand control is achieved at the cost of reduced well production. Sometimes it is economically preferred to allow more sand to be produced in spite of high costs for pump maintenance, sand disposal, etc³,

The main sand control methods are mechanical and consolidation ones. Mechanical sand control provides a physical barrier to sand movement. It is either a screen (slotted liner) or a gravelpack between a screen and the formation³. These are wire wrapped and slotted pipe screens. The slotted liner is a preperforated tubing. Usually the slots are milled and machined in vertical rows, being parallel to the axis of the pipe. They are either straight-sided **or** have undercut sides (vee-shaped). The milling procedure produces **a** smooth finish for the slot sides, thus reducing the possibility of turbulance within the slot. On

1

the other hand, undercut slots, which are narrower at the outside surface of the pipe than at the pipe bore, reduce the chance of clogging, since any grain of sand entering the slot will immediately find additional clearance to pass through it without wedging or bridging⁴.

The most common patterns **of** arrangements **of** slots are the staggered vertical rows, multiple staggered vertical and horizon-tal slots (Fig. 1).

This work investigates the unsteady-state pressure response due to production through a liner with staggered vertical rows of slots.

Standard spacing of slots is 6" (center to center) between the slots in each vertical row. Slot lengths are usually $i^{l}/2$ " to 2" depending on their widths (which are usually between 0.01" to 0.5"). To determine the number of rows of slots for any given size of pipe, the usual practice is to specify two rows for each nominal pipe diameter. But this oaries, however, for where sand conditions require slots of narrow width, a greater number of slots can be used⁴.

2

STAGGERED VERTICAL SLOTTED-PIPE

MULTIPLE VERTICAL SLOTTED-PIPE

HORIZONTAL SLOTTED-PIPE

FIGURE I SLOTTED LINERS (After Buzardc, *et* al³)

2. UNSTEADY-STATE PRESSURE RESPONSE IN A SLOTTED LINER

The following represents the scheme of the problem, the solution and the discussion of results.

2.1 Mathematical Derivation

The transient (unsteady-state) flow of a compressible fluid in a porous medium **is** described **by** the diffusivity equation derived from the continuity equation and $Darcy's Law^9$. In **i**sotropic and homogeneous porous medium, this equation can be expressed in cylindrical coordinates as*:

$$\frac{\partial^2 p}{\partial r^2} + \frac{1}{r} \frac{\partial p}{\partial r} + \frac{\partial^2 p}{\partial z^2} = \frac{1}{n} \frac{\partial p}{\partial t}$$
(1)

where $\eta \cdot \frac{\mathbf{k}}{\phi \mu \mathbf{c}_t}$ is the diffusivity term, when the effect of gravity is neglected and the permeabilities, porosity and fluid viscosity are assumed constant.

In Cartesian coordinates, the differential equation is:

$$\frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 p}{\partial y^2} + \frac{\partial^2 p}{\partial z^2} = \frac{1}{\eta} \frac{\partial p}{\partial t}$$
(1a)

The solution of a particular' problem is determined **by** the initial and boundary conditions.

Numerous analytical and numerical method have been developed to solve such flow problems. The first ones were used to solve heat conduction problems and later on were applied to petroleum engineering. Perhaps the most known method is Lord Kelvin's instantaneous point source **solu_ion⁵**:

*Nomenclature defined at end of text

4

 $\Delta p(M,t) = \frac{q}{8\phi c_{+}(\pi nt)^{3/2}} \cdot exp(-\frac{d^{2}}{4nt})$

Eq. 2 represents the préssure drop created at a certain point M in a reservoir of infinite extent by an instantaneous point P, of strength q at a distance d (•?M) from point M. The strength q is the withdrawal rate per volume of source; it is also defined as a withdrawal rate per unit length or area of source, depending on its nature, i.e., line source or surface cylinder source⁷. The distance d can be expressed in terms of Cartesian or cylindrical coordinates (see Fig. 2). From eq. 2 all other solutions are obtainable by integration. The instantaneous infinite line source case, for example, *is* obtained by expressing d in terms of x,y,z coordinates and integrating z from $\cdot=$ to +=. The method was firstly applied in groundwater hydrology by Theis¹⁵. If there is a continuous withdrawal of fluid of strength q from time 0 to t, the pressure drop created by a continuous point source is given by:

$$\Delta p(M,t) = \frac{q}{8\phi c_t(\pi \eta)^{3/2}} \int_0^t \frac{1}{(t-t')^{3/2}} \exp\left[-\frac{d^2}{4\eta(t-t')}\right]$$
(3)

Let us now consider our actual problem. The reservoir of thickness **L** has an upper and lower impermeable boundaries. Therefore the boundary conditions are:

$$\frac{\partial p}{\partial z}(x,y,0,t) = \frac{\partial p}{\partial z}(x,y,L,t) = 0$$
⁽⁴⁾

$$\mathbf{x} \neq \mathbf{\omega}$$
 or $\mathcal{I} \neq \mathcal{P}$, $\mathbf{P}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{t}) = \mathbf{p}_{\mathbf{i}}$ (5)

The initial condition is:

$$\mathbf{p}(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{0}) = \mathbf{p}_{\mathbf{i}} \tag{6}$$

In cylindrical coordinates the above conditions are:

(2)

FIG. 2 - POINT SOURCE IN AN INFINITE MEDIUM

$$\frac{\partial \mathbf{p}}{\partial \mathbf{z}}(\mathbf{r},0,t) = \frac{\partial \mathbf{p}}{\partial \mathbf{z}}(\mathbf{r},L,t) = 0$$
(4a)

p(∞,z,t) * Pi (5a)

$$\mathbf{p}(\mathbf{r},\mathbf{z},\mathbf{0}) = \mathbf{p}_{\mathbf{f}} \tag{6a}$$

Also, since it is assumed that the rate over the open interval is constant, the boundary condition is:

$$\sum_{\substack{s \text{ lots } h \\ \text{"i"}}} \int 2\pi \cdot \mathbf{w}_{i} \frac{\partial p}{\partial \mathbf{w}_{i}} dz \mathbf{i}_{\mathbf{w}_{i}} + 0 + \sum_{\substack{s \text{ lots } h \\ \text{ "j"}}} \int 2\pi \cdot \mathbf{w}_{j} \frac{\partial p}{\partial \mathbf{w}_{j}} dz \mathbf{i}_{\mathbf{w}_{j}} + 0 = \frac{q \cdot \mu}{k}$$
(7)

Note that **in** deriving and solving eq. 1, the following assumptions were made:

- 1. Constant Thickness and Permeability.
- 2. Darcy's Law applies, Laminar Flow.
- 3. Radial symmetry exists, Gravitational effects negligible.
- 4. Fluid Viscosity is constant.
- The liquid is of small and constant compressibility, and the pressure gradients are small everywhere, i.e.,

6. Isothermal Flow.

7. Flow into the slots is radially symmetrical.

* Eowever, Muskat¹² also showed that a simpler boundary condition can be introduced with a negligible error i.e.,:

$$\sum_{\substack{\substack{1 \\ \text{slots}}\\ \text{slots}}} 2\pi \cdot \mathbf{w}_{\mathbf{i}} h \frac{3p}{3\mathbf{w}_{\mathbf{i}}} \mathbf{w}_{\mathbf{i}} + 0 + \sum_{\substack{\substack{1 \\ \text{slots}}\\ \text{slots}}} 2\pi \cdot \mathbf{w}_{\mathbf{i}} h \frac{3p}{3\mathbf{w}_{\mathbf{j}}} \mathbf{w}_{\mathbf{j}} + 0 = \frac{q \cdot \mu}{k}$$

8. The porous Medium inside and outside the well $i\,s$ homogeneous.

A detailed diagram of all variables involved in computing the pressure drop at point M is shown on Fig. 3, and an analytic solution, based on the imape source method of Nisle¹³ has been obtained as follows:

The pressure drop created at point M (Fig. 2) by a single slot is obtained by integrating a unit impulse point with respect to time and space. Consider eq. 4 for certain vertical slot "1" with a length from z=0 to z=h oriented at an angle a with respect to the X axis (Fig. 3). The distance d_1 from any point P on the slot to any point M in the porous medium will be:

$$d_{i}^{2} = (z'-zm)^{2} + (x_{m} - r_{w} \cos \alpha)^{2} + (y_{m} - r_{w} \sin \alpha)^{2}$$
(8)

where x_{m} , y_{m} , z_{m} are the coordinates of point M in space and r_{w} is the slotted liner radius.

Let $r_1^2 = (x_m - r_w \cos \alpha) 2 + (y_m - r_w \sin \alpha) 2$ so eq. 8 is given by:

$$d_i^2 = (z' - z_m) + r_i^2$$
 (8a)

Integrating the position of the s'ource P along a staight line from 0 to h yields the instantaneous pressure drop:

$$\Delta p_{i}(M,t) = \frac{q_{i}}{8\phi c_{t}(\pi nt)^{3/2}} \int_{0}^{h} \exp[-d_{i}^{2}/4nt] dz' \qquad (9)$$

and the continuous pressure drop is:

$$\Delta p_{i}(M,t) = \frac{q_{i}}{8\phi c_{t}(\pi \eta)^{3/2}} \int_{0}^{t} \frac{1}{(t-t')^{3/2}} \{\int_{0}^{h} \exp[-d_{i}^{2}/4\eta(t-t')]dz'\}dt'(10)$$

or:

$$\Delta p_{i}(M,t) = \frac{q_{i}}{8\phi c_{t}(\pi n)^{3/2}} \int_{0}^{t} \frac{exp[-r_{i}^{2}/4n(t-t')]}{(t-t')^{3/2}} \cdot \frac{t}{9} \frac{exp[-(z'-z_{m})^{2}/4n(t-t')]}{(t-t')^{3/2}} \cdot \frac{t}{9} \frac{exp[-(z'-z_{m})^{2}/4n(t-t')]}{(t-t')^{3/2}} \cdot \frac{t}{9} \frac{exp[-(z'-z_{m})^{2}/4n(t-t')]}{(t-t')^{3/2}} \cdot \frac{exp[-(z'$$

Eq. 10a represents the continuous pressure drop created at point M due to production of strength q_i through one slot "i";

Let $\tau = t - t'$ and $dt = -d\tau$

also,

$$u = -\frac{z'-z_m}{2\sqrt{\eta\tau}} \quad du = -\frac{dz'}{2\sqrt{\eta\tau}}$$

so, eq. 10a is written as:

$$\Delta p_{i}(M,t) = \frac{q_{i}}{8\phi c_{t}(\pi n)^{3/2}} \int_{0}^{t} \frac{\exp[-r_{i}^{2}/4n\tau]}{\tau^{3/2}}$$

$$\cdot \left\{ -2\sqrt{n\tau} \int_{\frac{z_{m}}{2\sqrt{nt}}}^{\frac{z_{m}-h}{2\sqrt{nt}}} \bar{e}^{u^{2}} du \right\} d\tau \qquad (11)$$

The error function is defined as:

$$erf(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-u^{2}} du$$

Eq. 11 can therefore be written in terms of the error function as:

$$\Delta p_{i}(M,t) = \frac{q_{i}}{8\phi c_{t}\pi\eta} \int_{0}^{t} \frac{\exp[-r_{i}^{2}/4\eta\tau)}{\tau} \{ erf \frac{z_{m}}{2\sqrt{\eta\tau}} - erf \frac{z_{m}-h}{2\sqrt{\eta\tau}} \} d\tau \qquad (12)$$

The total continuous pressure drop at point M is obtained by summing the Ap's created by all the slots in the liner(Figs. 3

& 4). It should be mentioned that the no-flow boundary conditions may be satisfied by adding an infinite series of image slots. Let us now introduce some dimensionless variables:

$$t_{\rm D} = \frac{kt}{\phi \mu c_{\rm t} r_{\rm w}^2} = \frac{\eta \cdot t}{r_{\rm w}^2}, \quad (t=\tau)$$
(13)

$$P_{D} = \frac{2\pi kL}{O \cdot \mu} \Delta p \tag{14}$$

 $\mathbf{r}_{\mathbf{D}} = \mathbf{r}/\mathbf{r}_{\mathbf{W}} \tag{15}$

$$z_{\rm D} = z/r_{\rm W} \tag{16}$$

$$z_{\rm mD} = z_{\rm m}/r_{\rm W} \tag{16a}$$

$$h_{\rm D} = h/r_{\rm W} \tag{17}$$

$$L_{\rm D} = L/r_{\rm w} \tag{18}$$

Note that in defining the dimensionless pressure drop p_D , the total production 0 is considered. The relation between 0 and the strength q_i (rate per unit length) of the one slot is given as follows: if NS is the number of pairs of staggered vertical rows (i.e., each pair contains one row of slots "i" and one row of slots "j", see Figs. 3 & 4). NS represents as well the number of slots in one ring of slots and n is the number of slots in one vertical row; also, the total cumulative length of n slots is L/2 (one half of the formation thickness), that is penetration ratio of l_2 , then the strength of 1 slot is:

$$q_1 = \frac{Q}{(0.5L/n)2 \cdot NS \cdot n} = \frac{Q}{L \cdot NS}$$
(19)

and the pressure drop created et point M by one slot is:

$$\Delta \mathbf{p_{i}} = \frac{\mathbf{p_{D}}Q\mu}{2\pi kL} = \mathbf{p_{D}} \cdot \frac{\mathbf{q_{i}}\mu L \cdot NS}{2\pi kL} = \mathbf{p_{D}} \cdot \frac{\mathbf{q_{i}}\nu \cdot NS}{2\pi k}$$
(20)

while the dimensionless pressure drop is given by:

$$p_{D_{i}}(M,tD) \cdot \frac{q_{i}\mu \cdot NS}{2\pi k} = \frac{q_{i}}{8\phi c_{t}\pi \eta} \int_{0}^{t} \frac{\exp\left[-r_{iD}^{2}/4t_{D}\right]}{t_{D}} \cdot \left\{ \operatorname{erf} \frac{z_{mD}}{\sqrt{4t_{D}}} - \operatorname{erf} \frac{z_{mD}^{-h}D}{\sqrt{4t_{D}}} \right\} dt_{D}$$

$$(21)$$

or, after arrangement of terms:

$$p_{D_{i}}(M,t_{D}) = \frac{1}{4 \cdot NS} \int_{0}^{t_{D}} \frac{\exp\left[-r_{iD}^{2}/4t_{D}\right]}{t_{D}} \cdot \left\{ \operatorname{erf} \frac{z_{mD}}{\sqrt{4t_{D}}} - \operatorname{erf} \frac{z_{mD}^{-h}}{\sqrt{4t_{D}}} \right\} dt_{D}$$
(21a)

this integral can be evaluated numerically using Simpson's rule. One of the last stages of the mathematical derivation is to apply eq. 21a over all the slots in one row (i.e., n slots) and then the summation is done 'over all the vertical rows in the liner, yielding the total dimensionless pressure drop created a.t point M by production through a slotted liner, This stage is carried out as follows: considering Fig. 4 which shows 3 vertical rows of slots; the right and the left ones are slots "i", and the staggered central one is a row of slots "j". As can be seen, the cumulative lengths of the slots in one row is L/2, which is one. half of the formation thickness, In addion to the real slots, there are also image ones in order to satisfy the boundary conditions. In the right row (and of course in all the other vertical rows of slots "1") there are two types of slots: one is adjacent to the upper boundary and the second type is slots which are away from the boundary. The slots "j" (staggered rows, Fig. 4) are also either adjacent to the lower boundary or away from it. So, for convenience purpose let us consider separately the contribution of each type of slots to the total pressure drop. We begin with the slot "1" adjacent to the upper boundary:

$$\Delta p_{D_{1}}^{i}(M,t_{D}) = \frac{1}{4 \cdot NS} \sum_{i=1}^{NS} \int_{0}^{t} \frac{\exp[-r_{1D}^{2}/4t_{D}]}{t_{D}} \cdot \left\{ erf \frac{z_{mD}^{+h}D}{\sqrt{4t_{D}}} - erf \frac{z_{mD}^{-h}D}{\sqrt{4t_{D}}} \right\}$$
$$\cdot \left\{ erf \frac{z_{mD}^{+h}D}{\sqrt{4t_{D}}} - erf \frac{z_{mD}^{-h}D}{\sqrt{4t_{D}}} - erf \frac{z_{mD}^{+}(2nL_{D}^{-h}D)}{\sqrt{4t_{D}}} \right\}$$
$$+ \sum_{n=1}^{\infty} \left[erf \frac{z_{mD}^{-}(2nL_{D}^{-h}D)}{\sqrt{4t_{D}}} - erf \frac{z_{mD}^{-}(2nL_{D}^{+h}D)}{\sqrt{4t_{D}}} \right] \left\{ dt_{D} \right\}$$
(22)

Eq. 22 can be written also in the following way:

$$\Delta p_{D_{1}}^{1}(M,t_{D}) = \frac{1}{4 \cdot NS} \sum_{i=1}^{NS} \int_{0}^{t} \frac{\exp[-r_{iD}^{2}/4t_{D}]}{t_{D}}.$$

$$\cdot \left\{ \sum_{n=-\infty}^{+\infty} \left[erf \frac{z_{mD}^{+2nL} + h}{\sqrt{4t_{D}}} + erf \frac{z_{mD}^{+2nL} - h_{D}}{\sqrt{4t_{D}}} \right] \right\} dt_{D} \qquad (22a)$$

Then the pressure drop caused by slots "1" which are away from the upper boundary is given by:

$$\Delta p_{D_{2}}^{i}(M,t_{D}) = \frac{1}{4 \cdot NS} \sum_{i=1}^{NS} \int_{0}^{t} \frac{exp[-r_{1D}^{2}/4t_{D}]}{t_{D}}$$

$$\cdot \{ erf \frac{z_{mD}^{+3h}}{\sqrt{4t_{D}}} = erf \frac{z_{mD}^{+2h}}{\sqrt{4t_{D}}}$$

$$+ erf \frac{z_{mD}^{-2h}}{\sqrt{4t_{D}}} = erf \frac{z_{mD}^{-3h}}{\sqrt{4t_{D}}}$$

$$+ \sum_{n=1}^{\infty} [erf \frac{z_{mD}^{+(2nL_{D}^{+3h})}}{\sqrt{4t_{D}}} = erf \frac{z_{mD}^{-3h}}{\sqrt{4t_{D}}}$$

$$+ erf \frac{z_{mD}^{+(2nL_{D}^{-2h})}}{\sqrt{4t_{D}}} = erf \frac{z_{mD}^{+(2nL_{D}^{+2h})}}{\sqrt{4t_{D}}}$$

$$+ erf \frac{z_{mD}^{-(2nL_{D}^{-2h})}}{\sqrt{4t_{D}}} = erf \frac{z_{mD}^{-(2nL_{D}^{-3h})}}{\sqrt{4t_{D}}}$$

$$+ erf \frac{z_{mD}^{-(2nL_{D}^{-3h})}}{\sqrt{4t_{D}}} = erf \frac{z_{mD}^{-(2nL_{D}^{-2h})}}{\sqrt{4t_{D}}}] \} dt_{D}$$
(23)

Eq. 23 can be written in another form, which is:

$$\Delta p_{D_2}^{i}(M,t_D) = \frac{1}{4 \cdot NS} \sum_{i=1}^{NS} \int_{0}^{t_D} \frac{\exp[-r_{iD}^2/4t_D)}{t_D}$$

$$\cdot \left\{ \sum_{n=-\infty}^{+\infty} \left(\operatorname{erf} \frac{z m D + 2 n L_D + 3 h_D}{\sqrt{4 t_D}} - \operatorname{erf} \frac{z m D + 2 n L_D + 2 h_D}{\sqrt{4 t_D}} \right.$$

$$+ \operatorname{erf} \frac{z m D + 2 n L_D - 2 h_D}{\sqrt{4 t_D}} - \operatorname{erf} \frac{z m D + 2 n L_D - 3 h_D}{\sqrt{4 t_D}} \right\} dt_D \qquad (23a)$$

and further going down to a third slot, results in:

15

$$\Delta p_{0}^{i}(M,t_{D}) = \frac{1}{4 \cdot NS} \sum_{i=1}^{NS} \int_{0}^{t_{D}} \frac{\exp[-r_{1D}^{2}/4t_{D}]}{t_{D}} \cdot \left\{ erf \frac{z_{mD}+5h_{D}}{\sqrt{4t_{D}}} = erf \frac{z_{mD}+4h_{D}}{\sqrt{4t_{D}}} + erf \frac{z_{mD}-4h_{D}}{\sqrt{4t_{D}}} = erf \frac{z_{mD}-5h_{D}}{\sqrt{4t_{D}}} + erf \frac{z_{mD}+(2nL_{D}+5h_{D})}{\sqrt{4t_{D}}} = erf \frac{z_{mD}+(2nL_{D}+4h_{D})}{\sqrt{4t_{D}}} + erf \frac{z_{mD}+(2nL_{D}+5h_{D})}{\sqrt{4t_{D}}} = erf \frac{z_{mD}+(2nL_{D}-5h_{D})}{\sqrt{4t_{D}}} + erf \frac{z_{mD}-(2nL_{D}-4h_{D})}{\sqrt{4t_{D}}} = erf \frac{z_{mD}-(2nL_{D}-5h_{D})}{\sqrt{4t_{D}}} + erf \frac{z_{mD}-(2nL_{D}+4h_{D})}{\sqrt{4t_{D}}} = erf \frac{z_{mD}-(2nL_{D}+5h_{D})}{\sqrt{4t_{D}}}$$

$$(24)$$

Again, eq. 24 can be expressed as follows:

+

$$\Delta p_{D_{3}}^{i}(M,t_{D}) = \frac{1}{4 \cdot NS} \sum_{i=1}^{NS} \int_{0}^{t_{D}} \frac{\exp\left[-r_{iD}^{2}/4t_{D}\right]}{t_{D}}$$

$$\cdot \left\{ \sum_{n=-\infty}^{+\infty} \left(\operatorname{erf} \frac{z_{mD}^{+2nL} D^{+5h} D}{\sqrt{4t_{D}}} - \operatorname{erf} \frac{z_{mD}^{+2nL} D^{+4h} D}{\sqrt{4t_{D}}} \right) + \operatorname{erf} \frac{z_{mD}^{+2nL} D^{-4h} D}{\sqrt{4t_{D}}} - \operatorname{erf} \frac{z_{mD}^{+2nL} D^{-5h} D}{\sqrt{4t_{D}}} \right\} dt_{D} \qquad (24a)$$

These equations for Δp_D^i 's should be written for all real slots which consist one row. Now, considering the staggered rows "j", one gets the the pressure drop caused by a slot which is the nearest to the upper boundary (Pig. 4) :

$$\Delta p_{D_{1}}^{j}(M, t_{D}) = \frac{1}{4 \cdot NS} \sum_{j=1}^{NS} \int_{0}^{t_{D}} \frac{\exp[-r_{jD}^{2}/4t_{D}]}{t_{D}}$$

$$\cdot \{ erf^{z}mD^{+2h}D = erf^{z}mD^{+h}D - \sqrt{4t_{D}} + erf^{z}mD^{-h}D - erf^{z}mD^{+h}D - \sqrt{4t_{D}} + erf^{z}mD^{-h}D - erf^{z}mD^{-2h}D - \sqrt{4t_{D}} + erf^{z}mD^{+(2nL}D^{+2h}D) - erf^{z}mD^{+(2nL}D^{+h}D) - \sqrt{4t_{D}} + erf^{z}mD^{+(2nL}D^{+2h}D) - erf^{z}mD^{+(2nL}D^{-2h}D) - erf^{z}mD^{+(2nL}D^{-2h}D) - erf^{z}mD^{+(2nL}D^{-2h}D) - erf^{z}mD^{-(2nL}D^{-2h}D) - erf^{z}mD^{-(2nL}D^{+2h}D) - erf^{z}mD^{-(2nL}D^{+2h}D) - erf^{z}mD^{-(2nL}D^{+2h}D) - erf^{z}mD^{-(2nL}D^{+2h}D) - erf^{z}mD^{-(2nL}D^{-2h}D) - erf^{z}mD^{-(2nL}D^{-h}D) - erf^{z}mD^{-(2nL}D^{-h}D^{-(2nL}D^{-h}D^{-h}D) - erf^{z}mD^{-(2nL}D^{-h}D^{-h}D) - erf^{z}mD^{-(2nL}D^{-h}D^{-h}D^{-($$

Eq. 25 can be written in the following manner:

and a second and a second

$$\Delta p_{D_{1}}^{j}(M,t_{D}) = \frac{1}{4 \cdot NS} \int_{j=1}^{NS} \int_{0}^{t} \frac{\exp\left[-r_{jD}^{2}/4t_{D}\right]}{t_{D}} \cdot \left\{ \int_{n=-\infty}^{+\infty} \left(\operatorname{erf} \frac{z_{mD}^{+2nL} + 2nL_{D}^{+2h}}{\sqrt{4t_{D}}} - \operatorname{erf} \frac{z_{mD} + 2nL_{D} + h_{D}}{\sqrt{4t_{D}}} \right. + \operatorname{erf} \frac{z_{mD}^{+2nL} - h_{D}}{\sqrt{4t_{D}}} - \operatorname{erf} \frac{z_{mD} + 2nL_{D} - 2h}{\sqrt{4t_{D}}} \right\} dt_{D}$$
(25a)

Moving to a lower slot, just beneath the first one, we obtain:

$$\Delta p_{D_2}^{j}(M,t_D) = \frac{1}{4 \cdot NS} \int_{j=1}^{NS} \int_{0}^{t_D} \frac{\exp[-r_{jD}^2/4t_D]}{t_D}.$$

$$\cdot \left\{ \operatorname{erf} \frac{z_{mD}^{+4h}}{\sqrt{4t_{D}}} - \operatorname{erf} \frac{z_{mD}^{+3h}}{\sqrt{4t_{D}}} \right. \\ + \operatorname{erf} \frac{z_{mD}^{-3h}}{\sqrt{4t_{D}}} - \operatorname{erf} \frac{z_{mD}^{-4h}}{\sqrt{4t_{D}}} \\ + \sum_{n=1}^{\infty} \left[\operatorname{erf} \frac{z_{mD}^{+(2nL_{D}^{+4h})}}{\sqrt{4t_{D}}} - \operatorname{erf} \frac{z_{mD}^{+(2nL_{D}^{+3h})}}{\sqrt{4t_{D}}} \right] \\ + \operatorname{erf} \frac{z_{mD}^{+(2nL_{D}^{-3h})}}{\sqrt{4t_{D}}} - \operatorname{erf} \frac{z_{mD}^{+(2nL_{D}^{-4h})}}{\sqrt{4t_{D}}} \\ + \operatorname{erf} \frac{z_{mD}^{-(2nL_{D}^{-3h})}}{\sqrt{4t_{D}}} - \operatorname{erf} \frac{z_{mD}^{-(2nL_{D}^{-4h})}}{\sqrt{4t_{D}}} \\ + \operatorname{erf} \frac{z_{mD}^{-(2nL_{D}^{+3h})}}{\sqrt{4t_{D}}} - \operatorname{erf} \frac{z_{mD}^{-(2nL_{D}^{-4h})}}{\sqrt{4t_{D}}} \right] \right\} dt_{D}$$

$$(26)$$

Eq. 26 can be expressed as:

$$\Delta p_{D_2}^{j}(M,t_D) = \frac{1}{4 \cdot NS} \sum_{n=1}^{NS} \int_{0}^{t_D} \frac{\exp[-r_{jD}^2/4t_D]}{t_D} \cdot \frac{\exp[-r_{jD}^2/4t_D]}{t_D} \cdot \frac{\exp[-r_{jD}^2/4t_D]}{t_D} \cdot \frac{\exp[-r_{jD}^2/4t_D]}{t_D} \cdot \frac{\exp[-r_{jD}^2/4t_D]}{\sqrt{4t_D}} \cdot \frac{\exp[-r_{jD}^2/4$$

and **so** on, going down **and** writing all expressions for the various slots, until reaching the last one which **is** adjacent to the lower boundary (Fig. 4) :

$$\Delta p_{D_{Last}}^{j}(M,t_{D}) = \frac{1}{4 \cdot NS} \sum_{j=1}^{NS} \int_{0}^{t_{D}} \frac{exp[-r_{jD}^{2}/4t_{D}]}{t_{D}}$$

$$\cdot \{ erf \frac{zmD - (L_{D} - h_{D})}{f4t_{D}} - erf \frac{zmD - (L_{D} + h_{D})}{\sqrt{4t_{D}}}$$

$$+ \sum_{i=1}^{\infty} \{ erf \frac{zmD + ((2n-1)L_{D} + h_{D})}{\sqrt{4t_{D}}} - erf \frac{zmD + ((2n-1)L_{D} - h_{D})}{\sqrt{4t_{D}}}$$

$$+ erf \frac{zmD - ((2n+1)L_{D} - h_{D})}{\sqrt{4t_{D}}} - erf \frac{zmD - ((2n+1)L_{D} + h_{D})}{\sqrt{4t_{D}}} \} dt_{D}$$
(27)

The above equation can be written in a condensed form **as:**

$$\Delta p_{D_{Last}}^{j}(M,t_{D}) = \frac{1}{4 \cdot NS} \sum_{j=1}^{NS} \int_{0}^{t_{D}} \frac{\exp[-r_{jD}^{2}/4t_{D}]}{t_{D}}.$$

$$\cdot \{\sum_{n=-\infty}^{+\infty} (\exp[\frac{z_{mD}^{+}(2n-1)L_{D}^{+h}D}{\sqrt{4t_{D}}} - \exp[\frac{z_{mD}^{+}(2n-1)L_{D}^{-h}D}{\sqrt{4t_{D}}})\}dt_{D} \quad (27a)$$

Again, this summation of Δp_D 's should be carried on until the last real slot "j" is considered.

The total dimensionless pressure drop will be then:

$$P_{D}(M,t_{D}) = \Delta p_{D}^{i} + \Delta p_{D}^{i} + \Delta p_{D}^{i} + \cdots + \Delta p_{D}^{j} + \Delta p_{D}^{j} + \Delta p_{D}^{j} + \cdots$$
(28)

Some important facts should be noticed in eqs. 22-27: the summations of all error functions inside the integrals are constant for all vertical rows "i" and rows "j". Therefore, this summation is done only once. However, these constants are different for the vertical rows "i" and "j". There is a second way to calculate the total pressure drop. In this way the contribution of all slots in one vertical row is calculated before considering another row, while in the present method the contribution to the pressure drop of all slots which have the same elevation in the vertical rows "i" and "j" is calculated first. As a matter of fact, the computer program (App. A) was compiled using the second method ; handling first all real and image slots in vertical row and then considering the other rows. The second method was chosen only because of convenience (see also section 2.3, eq. 33). Note also that with a alight modification, the system on Fig. 4 could be reduced to a more basic unit consisting of only one **i** and one j slots.

2.2 Short-Time Behaviour

In Studying the short-time behaviour of eq. 28, three cases were considered:

i) $0 < z_{mD} < h_D$ or $2h_D < z_{mD} < 3h_D$ or $4h_D < z_{mD} < 5h_D$, etc. This means that the elevation of the considered point is between the lower and upper tips of one of slots "i".

ii) $h_D \langle z_{mD} \langle 2h_D \rangle$ or $3h_D \langle z_{mD} \langle 4h_D \rangle$ or $5h_D \langle z_{mD} \langle 6h_D \rangle$, etc., i.e., the elevation of the considered point is between the lower and upper tips of one of slots "j".

20

iii) $z_{mD} = h_D$ or $z_{mD} = 2h_D$ or $z_{mD} = 3h_D$, etc.

<u>'Case (i)</u>: for $t_D \neq 0$ and $0 < z_{mD} < h_D$

erf
$$\frac{z_{mD} + h_D}{\sqrt{4t_D}} \neq 1$$

erf $\frac{z_{mD} - h_D}{\sqrt{4t_D}} \neq -1$

Then considering eq. 22:

$$\Delta p_{D_{1}}^{i}(M,t_{D}) = \frac{1}{4 \cdot NS} \sum_{i=1}^{NS} \int_{0}^{t_{D}} \frac{\exp[-r_{iD}^{2}/4t_{D}]}{t_{D}} \cdot \{1 - (-1) + 0\} dt_{D}$$
$$= \frac{1}{2 \cdot NS} \sum_{i=1}^{NS} \int_{0}^{t_{D}} \frac{\exp[-r_{iD}^{2}/4t_{D}]}{t_{D}} \cdot dt_{D}$$
(29)

changing variable:

$$u = r_{1D}^{2} / 4t_{D} , \quad du = -\frac{r_{1D}^{2} \cdot dt_{D}}{4t_{D}^{2}}$$

$$\Delta p_{D_{1}}^{i}(M, t_{D}) = \frac{1}{2 \cdot NS} \sum_{i=1}^{NS} \int_{-\frac{1}{2}}^{r_{1D}^{2} / 4t_{D}} \frac{-exp(-u)}{u} du$$

$$= -\frac{1}{2 \cdot NS} \sum_{i=1}^{NS} Ei(-r_{D}^{2} / 4t_{D}) \qquad (29a)$$

where $-\Sigmai(-x)$ the Exponential integral (see Nomenclature). It can easily be demonstrated that all other pressure drops(i,e,eq. 23-27) at early times are zero. In this case:

$$p_{D}(M,t_{D}) = \Delta p_{D_{1}}^{i}(M,t_{D}) = -\frac{1}{2 \cdot NS} \sum_{i=1}^{NS} Ei(-r_{iD}^{2}/4t_{D})$$
 (29b)

By the same course of manipulation , if

$$2h_D < z_{mD} < 3h_D$$
, one gets for $t_D + 0$:

erf
$$\frac{z_{mD} - 2h_D}{\sqrt{4t_D}} \neq 1$$

erf
$$\frac{z_{mD} - 3h_D}{\sqrt{4t_D}} \rightarrow -1$$

Then, considering eq. 23:

$$\Delta p_{D_{2}}^{i}(M,t_{D}) = \frac{1}{4 \cdot NS} \sum_{i=1}^{NS} \int_{0}^{t_{D}} \frac{\exp[-r_{iD}^{2}/4t_{D}]}{t_{D}} \cdot \{1-1+1-(-1)+0\} dt_{D}$$
(30)

or:

$$\Delta p_{D_{2}}^{i}(M,t_{D}) = -\frac{1}{2 \cdot NS} \sum_{i=1}^{NS} Ei(-r_{iD}^{2}/4t_{D})$$
(30a)

All other summations of the error functions in eqs. 22,24-27 becom zero, and again eq. 28 is given by:

$$p_{D}(M,t_{D}) = \Delta p_{D}^{i}(M,t_{D}) = -\frac{1}{2 \cdot NS} \sum_{i=1}^{NS} Ei(-r_{iD}^{2}/4t_{D})$$
 (30b)

Case (ii)

By the same reasoning as in the previous case, it can be easily shown that eq. 28 becomes (for early times) :

$$p_{D}(M,t_{D}) = -\frac{1}{2 \cdot NS} \sum_{j=1}^{NS} Ei(-r_{jD}^{2}/4t_{D})$$
Case (iii)
In this case, eq. 28 simply becomes:
(31)
$$p_{D}(M,t_{D}) = -\frac{1}{4 \cdot NS} \sum_{i=1}^{NS} Ei(-r_{1D}^{2}/4t_{D}) - \frac{1}{4 \cdot NS} \sum_{j=1}^{NS} Ei(-r_{jD}^{2}/4t_{D}) \quad (32)$$

Since for $z_{mD}=h_{D}$, $erf\frac{z_{mD}-h_{D}}{\sqrt{4t_{D}}} = 0$ and $erf\frac{z_{mD}-h_{D}}{\sqrt{4t_{D}}} \neq -1$
2.3 Long-Time Behaviour

As mentioned at the end of section 2.1 the total pressure drop can also be calculated by handling firstly the effects of all slots in one row and then considering other vertical rows. Therefore, eq. 28 can be written in the following way:

$$p_{D}(M, t_{D}) = \frac{1}{4 \cdot NS} \sum_{i=1}^{NS} \int_{0}^{t_{D}} \frac{\exp[-r_{1D}^{2}/4t_{D}]}{t_{D}} \cdot \frac{\left\{\sum_{n=-\infty}^{+\infty} (\exp[\frac{z_{mD}+2nL_{D}+h_{D}}{\sqrt{4t_{D}}} - \exp[\frac{z_{mD}+2nL_{D}-h_{D}}{\sqrt{4t_{D}}}) + \sum_{n=-\infty}^{+\infty} [\exp[\frac{z_{mD}+2nL_{D}+3h_{D}}{\sqrt{4t_{D}}} - \exp[\frac{z_{mD}+2nL_{D}+2h_{D}}{\sqrt{4t_{D}}}] + \exp[\frac{z_{mD}+2nL_{D}+2h_{D}}{\sqrt{4t_{D}}}] + \exp[\frac{z_{mD}+2nL_{D}-3h_{D}}{\sqrt{4t_{D}}}] + \exp[\frac{z_{mD}+2nL_{D}+3h_{D}}{\sqrt{4t_{D}}} - \exp[\frac{z_{mD}+2nL_{D}+4h_{D}}{\sqrt{4t_{D}}}] + \exp[\frac{z_{mD}+2nL_{D}+3h_{D}}{\sqrt{4t_{D}}}] + \exp[\frac{z_{mD}+2nL_{D}-3h_{D}}{\sqrt{4t_{D}}}] + \exp[\frac{z_{mD}+2nL_{D}-3h_{D}}{\sqrt{4t_{D}}}$$

$$\cdot \left\{ \sum_{n=-\infty}^{+\infty} \left(\operatorname{erf} \frac{z_{mD} + 2nL_{D} + 2h_{D}}{\sqrt{4t_{D}}} - \operatorname{erf} \frac{z_{mD} + 2nL_{D} + h_{D}}{\sqrt{4t_{D}}} \right. \\ + \operatorname{erf} \frac{z_{mD} + 2nL_{D} - h_{D}}{\sqrt{4t_{D}}} - \operatorname{erf} \frac{z_{mD} + 2nL_{D} - 2h_{D}}{\sqrt{4t_{D}}} \right) \\ + \sum_{n=-\infty}^{+\infty} \left(\operatorname{erf} \frac{z_{mD} + 2nL_{D} + 4h_{D}}{\sqrt{4t_{D}}} - \operatorname{erf} \frac{z_{mD} + 2nL_{D} + 3h_{D}}{\sqrt{4t_{D}}} \right) \\ + \operatorname{erf} \frac{z_{mD} + 2nL_{D} - 3h_{D}}{\sqrt{4t_{D}}} - \operatorname{erf} \frac{z_{mD} + 2nL_{D} - 4h_{D}}{\sqrt{4t_{D}}} \right) \\ + \operatorname{erf} \frac{z_{mD} + 2nL_{D} - 3h_{D}}{\sqrt{4t_{D}}} - \operatorname{erf} \frac{z_{mD} + 2nL_{D} - 4h_{D}}{\sqrt{4t_{D}}} \right)$$

Eq. 33 is the second way of calculation of the total dimensionless pressure drop, and the computer program is based on this equation (see App. A).

Let us now examine the first summation of the error function in eq. 33:

$$\sum_{n=-\infty}^{+\infty} \left(\operatorname{erf} \frac{z_{mD} + 2nL + h}{\sqrt{4t_{D}}} - \operatorname{erf} \frac{z_{mD} + 2nL_{D} - h_{D}}{\sqrt{4t_{D}}} \right)$$
(34)

By changing variable, eq. 34 becomes:

$$\sum_{n=-\infty}^{+\infty} \left(\operatorname{erf} \frac{z_{mD} + 2nL + h}{\sqrt{4t_{D}}} \right) = \operatorname{erf} \frac{z_{mD} + 2nL_{D} - h_{D}}{\sqrt{4t_{D}}} =$$

$$= \frac{2}{\sqrt{\pi}} \sum_{n=-\infty}^{+\infty} \frac{\left(\frac{z_{mD}+2nL_{D}+h_{D}}{\sqrt{4t_{D}}} - u^{2}dn\right)}{\left(\frac{z_{mD}+2nL_{D}-h_{D}}{\sqrt{4t_{D}}}\right)}$$
$$= \frac{1}{\sqrt{\pi t_{D}}} \sum_{n=-\infty}^{+\infty} \int_{-h_{D}}^{h_{D}} \exp\left[-\frac{\left(z_{mD}-z_{D}+2nL_{D}\right)^{2}}{4t_{D}}\right] dz_{D} \qquad (34a)$$

The above change of variable is done by letting

$$u = \frac{z_{mD} - z_{D} + 2nL_{D}}{\sqrt{4t_{D}}}$$

Eq. 34a can be written in a different way as:

$$\frac{1}{\sqrt{\pi t_{D}}} \sum_{n=-\infty}^{+\infty} \int_{-h_{D}}^{h_{D}} \exp\left[-\frac{\left(z_{mD}^{-}z_{D}^{+}2nL_{D}^{-}\right)^{2}}{4t_{D}^{-}}\right] dz_{D} = \frac{1}{\sqrt{\pi t_{D}}} \int_{-h_{D}}^{h_{D}} \sum_{n=-\infty}^{+\infty} \exp\left[-\frac{\left(z_{D}^{-}z_{mD}^{+}2nL_{D}^{-}\right)^{2}}{4t_{D}^{-}}\right] dz_{D}$$
(35)

From Poisson's summation formula⁶ :

$$\sum_{n=-\infty}^{+\infty} \exp\left[-\frac{(z_{D}-z_{mD}+2nL_{D})^{2}}{4t_{D}}\right] = \frac{\sqrt{\pi t_{D}}}{L_{D}}\left\{1+2\sum_{n=1}^{\infty}\cos\frac{n\pi(z_{D}-z_{mD})}{L_{D}}\cdot\exp\left[-\frac{n^{2}\pi^{2}t_{D}}{L_{D}^{2}}\right]\right\}$$

Therefore:

25

and a second second

$$\sum_{n=-\infty}^{+\infty} \left(\operatorname{erf} \frac{z_{mD}^{+2nL} + h}{\sqrt{4t_{D}}} - \operatorname{erf} \frac{z_{mD}^{+2nL} - h_{D}}{\sqrt{4t_{D}}} \right) =$$

$$= \frac{1}{L_{D}} \left\{ 2h_{D}^{+} 2\sum_{n=1}^{\infty} \exp\left[-\frac{n2\pi 2t_{D}}{L_{D}^{2}} \right] \cdot \int_{-h_{D}}^{h_{D}} \cos\frac{n\pi (z_{D}^{-} - z_{mD})}{L_{D}} dz_{D} \right\}$$
(36)

and:

$$\int_{-h_{D}}^{h_{D}} \frac{n\pi (z_{D} - z_{mD})}{L_{D}} dz_{D} = \frac{L_{D}}{n\pi} \left[\sin(n\pi - \frac{h_{D} - z_{mD}}{L_{D}}) + \sin(n\pi - \frac{h_{D} + z_{mD}}{L_{D}}) \right]$$
$$= \frac{2L_{D}}{n\pi} \sin(n\pi - \frac{h_{D} - z_{mD}}{L_{D}}) + \sin(n\pi - \frac{h_{D} + z_{mD}}{L_{D}}) = \frac{2L_{D}}{n\pi} \sin(n\pi - \frac{h_{D} - z_{mD}}{L_{D}})$$

Hence, eq. 36 becomes:

$$\sum_{n=-\infty}^{+\infty} \left(\operatorname{erf} \frac{z_{mD} + 2nL_{D} + hD}{\sqrt{4t_{D}}} - \operatorname{erf} \frac{z_{mD} + 2nL_{D} - hD}{\sqrt{4t_{D}}} \right) =$$

$$= \frac{1}{L_{D}} \left\{ 2h_{D} + \frac{4L_{D}}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \exp\left[- \frac{n^{2}\pi^{2}t_{D}}{L_{D}^{2}} \right] \sin\frac{n\pi}{L_{D}} h_{D} \cdot \cos\frac{n\pi}{L_{D}} z_{mD} \right\}$$
(37)

In the same way, it is not difficult to demons'trate that the second summation of the error function in eq. 33 can be expressed as:

$$\sum_{n=-\infty}^{+\infty} \left(\operatorname{erf} \frac{z_{mD}^{+2nL} p^{+3h}}{\sqrt{4t_{D}}} \right)^{-} \operatorname{erf} \frac{z}{mD} \frac{+2nL}{\sqrt{4t_{D}}} \right)^{-3h} = \frac{1}{\sqrt{4t_{D}}} = \frac{1}{$$

and:

$$\sum_{n=-\infty}^{+''} (erf \frac{z_{mD}^{+2nL} - 2h_{D}}{\sqrt{4t_{D}}} - erf \frac{z_{mD}^{+2nL} + 2h_{D}}{\sqrt{4t_{D}}} =$$

$$= -\frac{1}{L_{D}} \left[4h_{D}^{+} + \frac{4L_{D}}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} exp \left[-\frac{n^{2}\pi^{2}t}{L_{D}^{2}} \right] sin \frac{n\pi}{L_{D}} 2h_{D} \cdot cos \frac{n\pi}{L_{D}} z_{mD} \right]$$
(39)

So, combining eqs. 37+38 we obtain:

$$\sum_{n=-\infty}^{+\infty} \left(\operatorname{erf} \frac{z_{mD}^{+2nL} p^{+3h} p}{\sqrt{4t_{D}}} - \operatorname{erf} \frac{z_{mD}^{+2nL} p^{+2h} p}{\sqrt{4t_{D}}} + \operatorname{erf} \frac{z_{mD}^{+2nL} p^{-2h} p}{\sqrt{4t_{D}}} - \operatorname{erf} \frac{z_{mD}^{+2nL} p^{-3h} p}{\sqrt{4t_{D}}} \right) =$$

$$= \frac{1}{L_{D}} \left\{ 2h_{D} + \frac{4L_{D}}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \exp\left(-\frac{n^{2}\pi^{2}t}{L_{D}^{2}}\right) \left[\sin \frac{n\pi}{L_{D}} 3h_{D} - \sin \frac{n\pi}{L_{D}} 2h_{D} \right] \cdot \cos \frac{n\pi}{L_{D}} z_{mD} \right\}$$

$$(40)$$

In a similar way the next summation of error functions in eq. 33 is expressed as:

$$\sum_{n=-\infty}^{+\infty} \left(\operatorname{erf} \frac{z_{mD}^{+2nL_{D}^{+5h}}}{\sqrt{4t_{D}^{-}}} - \operatorname{erf} \frac{z_{mD}^{+2nLD^{+4h}}}{\sqrt{4t_{D}^{-}}} + \operatorname{erf} \frac{z_{mD}^{+2nL_{D}^{-4h}}}{\sqrt{4t_{D}^{-}}} - \operatorname{erf} \frac{z_{mD}^{+2nL_{D}^{-5h}}}{\sqrt{4t_{D}^{-}}} \right) =$$

$$= \frac{1}{L_{D}} \left\{ 2h_{D}^{+} + \frac{4L_{D}}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \exp\left(-\frac{n^{2}\pi^{2}t_{D}}{L_{D}^{2}}\right) \left[\sin\frac{n\pi}{L_{D}} 5h_{D}^{-} - \sin\frac{n\pi}{L_{D}} 4h_{D} \right] \right\}$$

$$\cdot \cos \frac{\mathbf{n}\pi}{\mathbf{L}_{\mathrm{D}}} \mathbf{z}_{\mathrm{mD}}$$
 (41)

Therefore, the pressure drop created at point $\tt M$ by all rows "i" can be written as:

$$\Delta p_{D_{\text{Total}}}^{i}(\mathbf{M}, \mathbf{t}_{D}) = \frac{1}{\sum_{n=1}^{NS}} \int_{0}^{t} \frac{\exp\left\{-r_{1D}^{2}/4t_{D}\right\}}{t_{D}} \cdot \left\{\frac{1}{L_{D}}\left(2\mathbf{k}\cdot\mathbf{h}_{D}+\frac{L_{D}}{n}\sum_{n=1}^{\infty}\frac{1}{n}\exp\left(-\frac{n^{2}\pi^{2}t}{L_{D}^{2}}\right) \left[\left\{(\sin\frac{n\pi}{L_{D}}h_{D}+\sin\frac{n\pi}{L_{D}}h_{D}\right\}\right] + \sin\frac{n\pi}{L_{D}}h_{D}\right\} - \sin\frac{n\pi}{L_{D}}h_{D}\right\} - \sin\frac{n\pi}{L_{D}}h_{D} + \sin\frac{n\pi}{L_$$

Where k is the number of slots in one vertical row and $2\,k\cdot\,h_{\rm D}$ equal to $L_{\rm D}$.

It is well known that:

$$sin(x)+sin(3x)+sin(5x)+\dots+sin((2l-1)x) = \frac{sin^{2}(lx)}{sin(x)}$$
Also:
$$sin(0)+sin(2x)+sin(4x)+\dots+sin((2l-2)x) =$$

$$= \frac{sin(lx)\cdot sin((l-1)x)}{sin(x)}$$
and:
$$sin(3x)+sin(5x)+\dots+sin((2l+1)x) =$$

$$= \frac{sin(lx)\cdot sin((l+2)x)}{sin(x)}$$

So, eq. 42 is written in the following form:

$$\Delta p_{D_{\text{Total}}}^{i}(M,t_{D}) = \frac{1}{4 \cdot NS} \sum_{i=1}^{NS} \int_{0}^{t_{D}} \frac{\exp[-r_{iD}^{2}/4t_{D}]}{t_{D}}$$

$$\cdot \left\{1 + \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \exp\left(-\frac{n^2 \pi^2 t_D}{L_D^2}\right) \left[\frac{2 \sin\left(\frac{n \pi}{L_D} h_D \cdot k\right) \cdot \sin\left(\frac{n \pi}{2 L_D} h_D\right) \cdot \cos\left(\frac{n \pi}{L_D} h_D \frac{2 k - 1}{2}\right)}{\sin \frac{n \pi}{L_D} h_D}\right] \\ \cdot \cos \frac{n \pi}{L_D} z_{mD} \right] dt_D$$

$$(42a)$$

It can easily be shown that the pressure drop created at point M by all vertical rows "j" is given by:

$$\Delta p_{D}^{j}_{Total}(M,t_{D}) = \frac{1}{4 \cdot Ns} \sum_{j=1}^{NS} \int_{0}^{t_{D}} \frac{\exp[-r_{jD}^{2}/4t_{D}]}{t_{D}} \cdot \cdot \{1 + \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \exp(-\frac{n^{2}\pi^{2}t_{D}}{L_{D}^{2}}) [(\sin\frac{n\pi}{L_{D}}0h_{D} + \sin\frac{n\pi}{L_{D}}2hD + \sin\frac{n\pi}{L_{D}}4h + \cdots) - (\sin\frac{n\pi}{L_{D}}3h_{D} + \sin\frac{n\pi}{L_{D}}5h_{D} + \cdots)] \cdot \cos\frac{n\pi}{L_{D}}z_{mD}] dt_{D}$$

$$(43)$$

or:

$$\Delta p_{D}^{j}(M,t_{D}) = \frac{1}{4 \cdot NS} \sum_{j=1}^{NS} \int_{0}^{t_{D}} \frac{\exp[-r_{jD}^{2}/4t_{D}]}{t_{D}}.$$

$$\cdot \left\{1 + \frac{4}{\pi} \sum_{n=1}^{\infty} \exp\left(-\frac{n^2 \pi^2 t_D}{L_D^2}\right) \left[\frac{\sin\left(\frac{n\pi}{L_D}h_D \cdot k\right) \cdot \sin\left(\frac{n\pi}{L_D}h_D(k-1)\right)}{\sin\left(\frac{n\pi}{L_D}h_D\right)}\right]$$

$$-\frac{\sin(\frac{n\pi}{L_{D}}h_{D}\cdot k)\cdot\sin(\frac{n\pi}{L_{D}}h_{D}(k+2))}{\sin\frac{n\pi}{L_{D}}h_{D}}]\cdot\cos\frac{n\pi}{L_{D}}z_{mD}\}dt_{D}$$
(43a)

Again, **k** is the number of slots in one vertical row. **Eq.** 43a can be further simplified to:

$$\Delta p_{\text{Total}}(\mathbf{M}, \mathbf{t}_{D}) = \frac{1}{4 \cdot N_{S}} \sum_{j=1}^{N_{S}} \int_{0}^{\mathbf{t}_{D}} \frac{\exp[-\mathbf{r}_{jD}^{2}/4\mathbf{t}_{D}]}{\mathbf{t}_{D}} \cdot \left(1 + \frac{4}{\tau} \sum_{n=1}^{\infty} \frac{1}{n} \exp(-\frac{n^{2}n^{2}\mathbf{t}_{D}}{\mathbf{L}_{D}^{\alpha}}) \left[\frac{2\sin(\frac{nn}{L_{D}}h_{D}\cdot \mathbf{k}) \cdot \sin(\frac{-\frac{2\pi n}{2}h_{D}}{\mathbf{L}_{D}}) \cdot \cos(\frac{\pi n}{L_{D}}h_{D}\frac{2\mathbf{k}+1}{2})}{\sin\frac{\pi n}{L_{D}}h_{D}}\right]$$
$$\cdot \cos\frac{n\pi}{L_{D}} z_{mD}^{3} d\mathbf{t}_{D}$$
(43b)

Adding eq. 43b to eq. 42a we obtain the total pressure drop created at point M by all rows of slots in the liner, **as was** previously written:

$$\Delta p_{D}(M,t) = \Delta p_{D}^{i}(M,t_{D}) + \Delta p_{D}^{j}(M,t_{D})$$
(28a)
Total Total

It will be convenient to define the functions:

$$R^{i}(r_{iD},t_{D}) = \frac{\exp[-r_{iD}^{2}/4t_{D}]}{t_{D}}$$
(44)

$$R^{j}(r_{jD},t_{D}) = \frac{exp[-r_{jD}/4t_{D}]}{t_{D}}$$
(45)

$$Z^{1}(t_{D}/L_{D}^{2}, z_{mD}, h_{D}, k) = 1 + \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \exp(-\frac{n^{2}n^{2}t_{D}}{L_{D}})$$

$$\frac{2\sin\left(\frac{\mu}{L}h_{D}\cdot k\right)\cdot\sin\left(\frac{\mu}{2L}h_{D}\right)\cdot\cos\left(\frac{\mu}{L}h_{D}\frac{2k-1}{2}\right)}{D} \cdot \left\{\frac{1}{L_{D}}b\right\}\cdot\cos\frac{\mu}{L_{D}}z_{mD}$$
(46)

$$z\mathbf{j}(\mathbf{t}_{\mathbf{D}}/\mathbf{L}_{\mathbf{D}}^{2}, \mathbf{z}_{\mathbf{m}\mathbf{D}}, \mathbf{h}_{\mathbf{D}}, \mathbf{k}) = \frac{1 + \frac{\pi}{4} \sum_{n=1}^{\infty} \exp(-\frac{n^{2}n^{2}t}{\mathbf{L}_{\mathbf{D}}^{2}}) \cdot \frac{2\sin(\frac{2\pi}{L_{\mathbf{D}}}h_{\mathbf{D}}\cdot\mathbf{k}) \cdot \sin(-\frac{3n\pi}{2L_{\mathbf{D}}}h_{\mathbf{D}}) \times \cos(-\frac{\pi}{L_{\mathbf{D}}}n) \frac{2\mathbf{k}+1}{2})}{\sum_{n=1}^{\infty} \frac{1}{2} \cos(\frac{\pi}{L_{\mathbf{D}}}n) \exp(-\frac{n^{2}n^{2}t}{2}) + \cos(\frac{\pi}{L_{\mathbf{D}}}n) \exp(-\frac{n^{2}n^{2}t}{2}) \exp(-\frac$$

Combination of eqs. 28a, 42a, 43b, 44-47 yields:

$$p_{D}(M,t_{D}) = \frac{1}{4 - NS} \begin{bmatrix} NS & \int^{t} D & R^{i}(r_{iD},t_{D}) \cdot Z^{i}(t_{D}/L_{D}^{2},z_{mD},h_{D},k) dt_{D} \\ + & \sum_{j=1}^{NS} & \int^{t} D & R^{j}(r_{jD},t_{D}) \cdot Z^{j}(t_{D}/L_{D}^{2},z_{mD},h_{D},k) dt_{D} \end{bmatrix}$$
(48)

It **is** well known that the line source solution is expressed by the formula:

$$p_{\rm D}(r_{\rm D},t_{\rm D}) = -\frac{1}{2} \operatorname{Ei}(-r_{\rm D}^2/4t_{\rm D})$$
 (49)

Where $= \varepsilon_1(-r_p^2/4t_p)$ is the Exponential integral. For $t_p/r_p^2 > 70$, the line source solution can be approximated within one percent error by^{14} :

$$p_{D}(r_{D}, t_{D}) \approx \frac{1}{2}(\ln \frac{t_{D}}{r_{D}^{2}} + 0.80907)$$
 (50)

By adding and substracting the line source solution on the right hand side of eq. 48, we obtain:

$$p_{D}(M,t_{D}) = \frac{1}{4 \cdot NS} \begin{bmatrix} \sum_{n=1}^{NS} & \int^{t_{D}} R^{i}(r_{iD},t_{D}) \cdot Z^{i}(t_{D}/L_{D}^{2},z_{mD},h_{D},k) dt_{D} \\ + \sum_{j=1}^{NS} & \int^{t_{D}} R^{j}(r_{jD},t_{D}) \cdot Z^{j}(t_{D}/L_{D}^{2},z_{mD},h_{D},k) dt_{D} \end{bmatrix} \\ + p_{D}(r_{D},t_{D}) - p_{D}(r_{D},t_{D})$$
(51)

Let us define the function:

 $s(r_{iD}, r_{jD}, z_{mD}, t_D, h_D, L_D, k, NS) = -p_D(r_D, t_D)$

$$+ \frac{1}{4 \cdot NS} \begin{bmatrix} \sum_{i=1}^{NS} & \int^{t_{D}} R^{i}(r_{iD}, r_{D}) \cdot Z^{i}(t_{D}/L_{D}^{2}, z_{mD}, h_{D}, k) dt_{D} \\ + \sum_{j=1}^{NS} & \int^{t_{D}} R^{j}(r_{jD}, r_{D}) \cdot Z^{j}(t_{D}/L_{D}^{2}, z_{mD}, h_{D}, k) dt_{D} \end{bmatrix}$$
(52)

The function **s** is the so-called pseudo-skin factor due to analogy with the skin factor defined by Van Everdingen¹⁶ and Hurst¹⁰. Note that $\mathbf{R^{i}}, \mathbf{R^{j}}$ and hence **s** are implicitly functions of θ . Eq. 51 can be therefore written as:

$$p_{D}(M,t_{D}) = p_{D}(r_{D},t_{D}) + s(r_{iD},r_{iD},z_{mD},t_{D},h_{D},k,NS)$$
(53)

As shown by eq. 53, the dimensionless pressure drop created at point M due to production through a liner, can be expressed as the sum of two terms, the first one of which is the line source solution and the second is the pseudo-skin function, s. The pseudo-skin function is a function of dimensionless time, but it will be shown that this function can be approximated by * The dimensionless thickness, L_D , can be expressed as: $L_D=2kh_D$

- **a** constant for large values of time.
 - By definition:

$$R^{i}(r_{iD},t_{D}) = \frac{\exp[-r_{iD}/4t_{D}]}{t_{D}}$$
$$R^{j}(r_{jD},t_{D}) = \frac{\exp[-r_{jD}^{2}/4t_{D}]}{t_{D}}$$

Expansion of the exponential function gives:

 $e^{-x} = 1 - x + x^2 + 0(x)$

so:

$$R^{i}(r_{iD},t_{D}) = \frac{1}{t_{D}} \left[1 - (r_{iD}^{2}/4t_{D}) + (r_{iD}^{4}/16t_{D}^{2}) + 0(1/t_{D}^{3}) \right]$$

$$R^{j}(r_{jD},t_{D}) = \frac{1}{t_{D}} \left[1 - (r_{jD}^{2}/4t_{D}) + (r_{jD}^{4}/16t_{D}^{2}) + 0(1/t_{D}^{3}) \right]$$

We can approximate the ${\tt R}$ functions by the first term within one percent error ${\tt if:}$

$$\frac{1}{t_{D}} > Max \begin{cases} 25r_{1D}^{2}/t_{D}^{2} \\ \\ \\ \\ 25r_{jD}^{2}/t_{D}^{2} \end{cases}$$

.

or:

$$t_{D} > Max \begin{cases} 25r_{1D}^{2} \\ \\ \\ \\ \\ 25r_{1D}^{2} \end{cases}$$

In that case, the R functions can be approximated by:

$$R^{i}(r_{iD},t_{D}) \cong 1/t_{D}$$
(54)

$$R^{j}(r_{iD},t_{D}) \cong 1/t_{D}$$
(55)

Now, considering the Z functions defined by eqs. 46, 47, we notice that the value of each term of the infinite series decreases rapidly when t_D increases, and the Z functions will be different from unity by less than 1% as soon as:

$$\tau_{D} > \frac{5L_{D}^{2}}{\pi} , \text{ (since for } \exp\left[-\frac{2t_{D}}{L_{D}^{2}}\right] < 0.01 + t_{D}^{2}$$

For large values of t_D , the pseudo-skin function can be approximated by using eqs. 50,54,55:

$$s(r_{iD}, r_{jD}, z_{mD}, t_{D}, h_{D}, L_{D}, k, NS) = -\frac{1}{2}(ln(t_{D}/r_{D}^{2}) + 0.80907)$$

$$+ \frac{1}{4 \cdot NS} \left[\sum_{i=1}^{NS} \int_{0}^{t_{D1}} R^{i}(r_{1D}, r_{D}) \cdot Z^{i}(t_{D}/L_{D}^{2}, z_{mD}, h_{D}, k) dt_{D} \right]$$

$$+ \sum_{j=1}^{NS} \int_{0}^{t_{D1}} R^{j}(r_{jD}, r_{D}) \cdot Z^{j}(t_{D}/L_{D}^{2}, z_{mD}, h_{D}, k) dt_{D} \right]$$

$$+ \frac{1}{4 \cdot NS} \left[\sum_{i=1}^{NS} \int_{t_{D1}}^{t_{D}} R^{i}(r_{1D}, r_{D}) \cdot Z^{i}(t_{D}/L_{D}^{2}, z_{mD}, h_{D}, k) dt_{D} \right]$$

$$+ \sum_{j=1}^{NS} \int_{t_{D1}}^{t_{D}} R^{j}(r_{jD}, r_{D}) \cdot Z^{j}(t_{D}/L_{D}^{2}, z_{mD}, h_{D}, k) dt_{D} \right]$$

$$= \frac{1}{4 \cdot NS} \left[\sum_{i=1}^{NS} \int_{0}^{t_{D1}} R^{i}(r_{iD}, r_{D}) \cdot Z^{i}(t_{D}/L_{D}^{2}, z_{mD}, h_{D}, k) dt_{D} \right]$$

$$+ \sum_{j=1}^{NS} \int_{0}^{t_{D1}} R^{i}(r_{jD}, r_{D}) \cdot Z^{i}(t_{D}/L_{D}^{2}, z_{mD}, h_{D}, k) dt_{D}$$

$$+ \sum_{j=1}^{NS} \int_{0}^{t_{D1}} R^{j}(r_{jD}, r_{D}) \cdot Z^{j}(t_{D}/L_{D}^{2}, z_{mD}, h_{D}, k) dt_{D} \right]$$

$$+ \frac{2 \cdot NS}{4 \cdot NS} \int_{0}^{t_{D1}} \frac{1}{t_{-}} dt_{D} = \frac{2(2ntD}{2} + 0.80907)$$

$$(56)$$

Eq. 56 can further be simplified to:

$$s(r_{iD}, r_{jD}, z_{mD}, t_{D}, h_{D}, L_{D}, k, NS) =$$

$$= \frac{1}{4 \cdot NS} \left[\sum_{i=1}^{NS} \int_{0}^{t_{D1}} R^{i} (r_{iD}, t_{D}) \cdot Z^{i} (t_{D}/L_{D}^{2}) dt_{D} \right]$$

$$+ \sum_{j=1}^{NS} \int_{0}^{t_{D1}} R^{j} (r_{jD}, t_{D}) \cdot Z^{j} (t_{D}/L_{D}^{2}, z_{mD}, h_{D}, k) dt_{D} \right]$$

$$- \frac{4}{2} (2n \frac{t_{D1}}{r_{D}^{2}} + 0.80907) \qquad (57)$$

where:

As can be seen from eq. 57, the pseudo-skin function becomes a constant within one percent error at large values of t_D $(t_D > t_{D_1})$. The values of the pseudo-skin factor are printed on Tables B-1: B-31.

3. • COMPUTATIONAL PROCEDURE AND NUMERICAL RESULTS

The solution has been evaluated from eq. 33 using Simpson's rule for integration purposes.

The computer program was compiled using the following parameters as entry values (see also App. A) :

Reservoir thickness, slot length, number of pairs of staggered vertical rows of slots (this **is** also the number of slots in one ring), well radius, dimensionless distance of point for which the pressure drop is calculated, elevation of point **M** and its orientation (angle = ϑ) with respect to the origin of **X-Y** coordinates and a tolerance (for convergence purposes). The dimensionless time should also be specified.

The program considers penetration ratio of 0.5 , i.e., the total cumulative lengths of slots in one vertical row is half of the formation thickness.

For representation of results, the elevation of point M was located at the center of formation and its position is between two vertical rows of "i" slots (for $r_D=1$, the position is half of the circumferencial distance).

Burns² also uses "observation height" is halfway between top and bottom of the interval, while Muskat¹¹ concluded that the exact steady-state wellbore pressure for a partially penetrating well could be obtained within ¹/₂ accuracy (assuming a uniform flux distribution at the wellbore) by computing the pressure at a location 3/4 of the distance from the top of the layer to the bottom of the well. The calculations were also made by using 10

intervals of dimensionless time δt_D per log cycle, starting from $\Delta t_D = 0.001$. Accuracy was checked (with satisfactory results) in the following manner:

1) For $r_D=0$, the results were compared with the semi-analytical solution given in Table 1, which was derived by Gringarten and Ramey^a. This solution is numerically equal to the line source solution. No difference is noticed between the results presented in Table 2 and Table 1. The line source is always obtained for $r_D=0$, no matter what is the number of vertical rows of slots. The limit case is, of course, for infinite number of vertical rows (NS+∞) which is the surface cylinder solution (see also Fig.5, on which the line source solution was plotted for $r_D=0$).

2) For $r_0 = 0.5$, 6 pairs of staggered vertical rows were sufficient to reproduce to within 5 digits accuracy the results of the semi-analytical solution for the surface cylinder presented in Table 1. The reproduced results are shown in Table 3 and on Fig. 6.

3) For $r_D=2$, again for NS=6, there is agreement within 5 digits accuracy of the results given in Table 4 and the solution presented in Table 1 (see also Fig. 7)

4) For r₀=1, this case was the last one used to check the validity of the computer program • No complete agreement for this case could be obtained with the surface cylinder solution no matter what was the number of vertical rows of slots, probably since it **is** a limit case. However, for **30** pairs of vertical rows

37

. .

(or 30 slots in each ring of slots), for t_D^{-3} and on, the difference between the surface cylinder solution given in Table 1 and the obtained results which are shown in Table 5, is only -0.0022. This difference is constant and therefore becomes negligible later on (see also Fig. 5, and App. A for more details).

3.1 Computer Runs

After the validity of the computer program was checked, the following cases were run:

i) Firstly, the number of rows had to be specified. All cases were run with 4 different pairs of staggered vertical rows of slots (\cdot NS), namely 1 pair, 2, 3, 6 and 12 pairs. The 1 pair case was run for the sake of representation; since the usual practice is to specify two rows for each nominal pipe diameter⁴ and the smallest one is of 23/8" which requires more than 1 pair of rows. However, for r_{D} -1, additional cases of 4,8 and 10 pairs also considered.

ii) Secondly, the influence of slot length was checked. Four different cases of dimensionless slots lengths were run, i.e. 0.2, 0.4167, 0.5714 and 1.0. Because the cumulative lengths of slots in one row should be always (as imposed) one half of the formation thickness, the shorter the slots become, their number in one row is increased (see Tables 8-1 to B-23).

111) Thirdly, dimensionless pressure drops were obtained for various dimensionless distances which were: $r_D^{=0}$ (representing the line source case), $r_D^{=0.5}$ and $r_D^{=1}$ (on the surface) and $r_D^{=2}$.

iv) Variation of formation thickness was also checked (but

not shown; see section 3.2).

Three facts should be noticed: almost all cases were run by considering an elevation of a point at the center of formation and location was half-way between two vertical rows of slots. Only Tables B-32 and B-33 show different cases where elevation of the point was at the center of formation $+ \frac{1}{2}$ of dimensionless **slot** length and the location of point was $\frac{1}{4}$ of the **circumferenci**-al distance between two vertical rows of "i" slots; these cases were run for $r_D=1$.

3.2 Results and Calculation of Pseudo-Skin Factors

The results of all runs with relevant data are shown in Tables 2-5 and B-1 to B-33.

It was found that the variation of dimensionless formation has no actual influence on the dimensionless pressure drop.

The variation of dimensionless pressure drop with dimensionless slot length is negligible (see Tables B-1 to B-23)

There is a pseudo-skin factor which becomes a constant after a certain time and decreaseswhen the number of vertical rows is increased. The pseudo-skin factor becomes negligible when the number of pairs of staggered vertical rows is more than 3, in all cases. All values of the pseudo-skin factor are printe in Tables B-1 to B- 31.

23	0	0.25	0.50	0.75	1	2	3	5	10
1 1.5 2 3 4 5 6 8	.0001 .0006 .0015 .0056	.0002 .0007 .0020 .0040 .0103	.0001 .0006 .0027 .0063 .0111 .0167 .0296	.0025 .0067 .0117 .0228 .0341 .0451 .0558 .0760	.0565 .0692 .0799 .0980 .1132 .1267 .1389 .1607	.0001 .0006			
1 • 10 ⁻¹ 1.5 2 3 4 5 6 8	.0125 .0392 .0732 .1463 .2161 .2799 .3376 .4378	.0192 .0492 .0844 .1576 .2265 .2893 .3462 .4449	.0436 .0805 .1187 .1911 .2573 .3172 .3714 .4660	.0949 ,1379 ,1766 .2458 .3071 .3622 .4123 .5002	.1800 .2216 .2574 .3194 .3735 .4223 .4670 .5462	.00i4 .0053 .0111 .0262 .0436 .0621 .0809 .1187	.0001 ,0007 .0023 .0051 .0089 .0190	. 0001	
1 1.5 2 3 4 5 6 8	.5221 .6873 .8117 .9947 1.1285 1.2340 1.3210 1.4598	.5282 ,6917 .8152 .9971 1.1303 1.2354 1.3223 1.4607	.5462 .7047 .8254 1.0042 1.1358 1.2399 1.3260 1.4635	,5755 .72 62 .8423 1.0160 1.1448 1.2472 1.3322 1.4682	.6151 .7554 .8654 1.0323 1.1574 1.2575 1.3408 1.4748	.1556 .2414 .3172 .4439 .5462 .6316 .7047 .8254	.0315 .0690 .1097 .1897 .2629 .3285 .3873 .4887	.0005 .0030 .0085 .0271 .0522 .0804 .1097 .1678	.0002 . 0008 .0019 .0063
* • 10' ∎5 2 3 4 5 6 8	1.5683 1.7669 1.9086 2.1093 2.2521 2.3631 2.4538 2.5971	1.5690 1.7674 1.9090 2.1096 2.2523 2.3632 2.4539 2.5972	1.5713 1.7689 1.9102 2.1103 2.2529 2.2637 2.4543 2.5975	1.5751 1.7715 1.9121 2.1116 2.2539 2.3645 2.4550 2.5980	1.5806 1.7750 1.9148 2.1134 2.2552 2.3655 2.4559 2.5987	.9227 1.1060 1.2399 1.4325 1.5713 1.6798 1.7689 1.9102	.5736 .7394 .8641 1.0472 1.1811 1.2866 1.3737 1.5124	.2228 .3431 .4424 .5981 .7174 .8139 .8949 1.0259	.0135 .0407 .0750 .1481 .2178 .2814 .3309 .4390
1 10 ² 15 2 3 4 5 6 8	2.7084 2.9107 3.0543 3.2569 3.4006 3.5121 3.6032 3.7470	2.7085 2.9108 3.0544 3.2569 3.4006 3.5121 3.6032 3.7470	2.7087 2.9109 3.0545 3.2570 3.4007 3.5122 3.6033 3.7471	2.7091 2.9112. 3.0547 3.2571 3.4008 3.5122 3.6033 3.7471	2.7096 2.9115 3.0550 3.2573 3.4009 3.5124 3.6034 3.7472	2.0202 '2.22'09 2.3637 2.5654 2.7087 2.8200 2.9109 3.0545	1.6209 1.8195 1.9613 2.1620 2.3048 2.4157 2.5065 2.6498	1.1296 1.3218 1.4604 1.6578 1.7989 1.9089 1.9990 2.1415	.5231 .6880 .8123 .9950 1.1288 1.2342 1.3212 1.4599

<u>Table 1</u> -- Continuous Surface Cylinder Source (After Gringarten, A.C., et al^a.)

. 6

、 .

TABLE 2

UNSTEADY PRESSURE RESPONSE IN A SLOTTED LINER

ARRANGEMENT OF SLOTS: 6 STAGGERED VERTICAL ROWS(3 PAIRS) CIMENSIONLESS PRESSURE EROP IS CALCULATED AT SENTER OF FORMATION

RD= 0.00

DIMENSIONLESS SLOT LENGTH IS: .4167

Pit	TD	PO	TD	PO
•57863E-43	.200E+00	.73207E-01	• 209E+02	.19086E+01
.70756E-43	.300E+00	.14628E+00	s3005+02	.21093E+01
• 44348E-38	.400E+00	.21613E+00	.400E+02	.22521E+C1
.579422-29	.500C+00	.27989E+00	.500E+62	.23630E+01
.18998E-23	.600E+00	.33762E+00	.600E+02	.24538E+01
·941775-20	.7 JOE+00	.39001E+00	.700E+02	.25306E+01
.42077E-17	.800E+00	43781E+00	.800E+02	.25971E+01
·416385-15	. 900E+00	.48167E+00	• 90 OE+ 02	.26358E+01
.15021E-13	.1 JOE+01	.52214E+00	• 100E+03	.273E4E+01
.26745E-12	.200E+01	.81171E+00	• 20 OE+ 03	.30543E+01
.13875E-06	.300E+01	.99466E+00	.300E+03	.32569E+31
·13093Ξ-04	.+0JE+01	.11285E+01	.400E+03	.34006E+01
·13524E-03	.503E+01	12339E+01	.500E+03	.35121E+J1
.57415E-03	.6002+01	.13210E+01	•600E+03	.36032E+(1
.15451E-02	.700E+01	.13952E+01	.700E+03	.36803E+01
.31906E-02	.030E+01	•1 4598 E+01	_ a00£+03	.37470E+01
· 55685E-02	.960E+01	.15169E+01	.900E+03	.38 J59E+C1
.86726E-02	.100E+02	.15683E+01	•100E+04	.38585E+01
·12457E-31				
	Pit . 578632-43 . 70756E-43 . 443482-38 . 579422-29 . 18998E-23 . 941772-20 . 420772-17 . 416082-15 . 150212-13 . 267452-12 . 138752-06 . 130032-04 . 135242-03 . 574152-02 . 319062-02 . 867262-02 . 124572-31	PitTD $.578632-43$ $.2000000$ $.707560000$ $.3000000$ $.443482-38$ $.4000000$ $.443482-38$ $.4000000$ $.579422-29$ $.50000000$ $.189982-23$ $.60000000$ $.941772-20$ $.70000000000$ $.420772-17$ $.8000000000000000000000000000000000000$	PitTDPO $.578632-43$ $.200E+00$ $.73207E-01$ $.70756E-43$ $.300E+00$ $.14628E+00$ $.443482-38$ $.40E+00$ $.21613E+00$ $.579422-29$ $.500E+00$ $.27989E+00$ $.18998E-23$ $.600E+00$ $.33762E+00$ $.941772-20$ $.700E+00$ $.39001E+00$ $.42077E-17$ $.800E+00$ $.43781E+00$ $.41608E-15$ $.900E+00$ $.46167E+00$ $.15021E-13$ $.100E+01$ $.52214E+00$ $.26745E-12$ $.200E+01$ $.81171E+00$ $.13875E-06$ $.300E+01$ $.99466E+00$ $.13003E-04$ $.403E+01$ $.11285E+01$ $.13524E-03$ $.500E+01$ $.13210E+01$ $.15451E-02$ $.700E+01$ $.13952E+01$ $.57415E-03$ $.603E+01$ $.13952E+01$ $.55685E-02$ $.900E+01$ $.15169E+01$ $.86726E-02$ $.100E+02$ $.15683E+01$ $.12457E-01$ $.100E+02$ $.15683E+01$	PitTDPOTD.578632-43.200E+00.73207E-01.200E+02.70756E-43.300E+00.14628E+00.300E+02.443482-38.400E+00.21613E+00.400E+02.579422-29.500E+00.27989E+00.500E+62.18998E-23.600E+00.33762E+00.600E+02.94177E-20.700E+00.39001E+00.700E+02.42077E-17.800E+00.43781E+00.800E+02.41638E-15.900E+01.52214E+00.100E+03.26745E-12.200E+01.52214E+00.100E+03.13875E-06.300E+01.99466E+00.300E+03.13903E-04.400E+01.12339E+01.600E+03.57415E-03.600E+01.13952E+01.700E+03.55665E-02.900E+01.15683E+01.900E+03.55665E-02.900E+01.155685E+01.900E+03.5665E-02.100E+02.15683E+01.100E+04.12457E-31.100E+02.15683E+01.100E+04

-	12	2	2.1	4	دی TABLE	5 3	ď 0	5	50	5	70	5	20	
	U	ISTEA	IY PR	SSUR	E RESFO	INSE	IN C	SLOT	161 1	INER				
 ARRANG	CHENT	OF SL	.ots:	12	ST AGGER	RE D	VERTIC	AL R	OWS (6 P	(IRS)			
DIMENS	IUNLES	S PR	SSURE	<u> IRO</u>	P IS 6	LCL	ILATE1	AT G	ENTER	OF F	ORMATI	0N		
۰ د د در ۱۹۹۵ می در برسی ۱۹۹۵ می می می د ۱۹۹۵ می در برسید می می د ۱۹۹۵ می در برسید می می در ۱۹۹۵ می می در برسید می می در در در														
	and the second sec	w reasons the state of the second law		·····								and the second difference in the second s		

				¥J	FD.	
and a second company of the second company o						
• 1	6.E-62	.82515F-30	· 20 97 +00	. 118667400	260F482	- 1 91 025+91
. 2	000E=02	- 30 901 E=16	. 7/3E A00	194405455	7000400	01000000
		* 00 901L-10	• 36 32 400	•171101700	• 3 L U E T U Z	• 211032 + 01
			THE REAL PROPERTY.		********	• • • • • • • • • • • • • • • • • • • •
	1005-02	- 5/415E-E4	. 7ru: +62	-31719:+00		.23637E+01
	00E-02	-10625E-07	.6002+00	.37142:+00	.6.4.462	.24543E+01
• 6	00E-02	.10223E-06	.730E+60	· 42079E+60	.7JUE+02	.25310E+01
• 7	13 L E - 32	•52831E−i6	.862E+6C	. 465995+00	.80CE+02	•25975E+01
• ċ	30€ - 02	.18485 <i>c</i> −35	•90 DE +00	•50762E+00	.905E+02	.26562E+01
9	-0E-62	149813E-15		. 546181+00	1000-03	-27087E+01
	STE-EE	.11171E-04	200E+61	.82539E+56	*200E+63	.30545E+01
	2005-01	-57245E=3	-3002 +01	+1-042-+01	.3	.32569E+C1
.3	U.E-U1	.25554E-J2	•4032+61	.11357:+01	. 4. CE+03	.34006E+01
• Li	-U.E-31	•627 60 E- 0 2	.503E+01	12399E+01	.522E+03	.35121E+01
• 5	535E-01	.11068E-01	.600E+01	.13260E+01	.620E+03	.36032E+01
	GEE-JI	=16093E=,1	70-00-401	139952411		368835+91
.7	100E-EI	.22965E-1		14635-4.1		.374705+01
	JJJ JJ	29534	9.1 1 + 1 1	1525 35 411		385595+11
	LUCE-CI	- 35460E- 1	1.0-+02	157127+01	1	-38586F+C1
• 1	Là à E + à C	.43602E+C1	11001-01		• * • • • • • • •	• • • • • • • • • • • • • • • • • • • •
the second s						
	-					
						-

6 STUR 1 - FORM - 1754 - 51 - 7 - 45																
5		:	<u>, </u>	5	32	5	40	5	50	3	ė0	5	70	5	ໍງ	5

	TABLE 4
÷	UNSTEADY PRESSUEE RESPONSE IN A SUDTEE LIDER
	APRANGEMENT OF SLOTS: 12 STAGGERED VERTICAL ROWS(6 PAIRS)
	DIMENSIONLESS PRESSURE DROP IS CALCULATED AT CENTER OF FORMATION

DIMENSIONLESS SLOT LENGTH IS: .4167

FD	PD	1 0	<u> </u>		P0
1005 00					
●100E=02 200=-02	•57863E-43	-200E+00	.11106E-01	. 200E+02	.12399F+01
-2002-02	• 10756E-43	.3002+00	•26215E-01	.300E+02	.14326E+01
-4005-02	• 331552-39	-400E+00 -	.43641E-01	-400E+02	·15713E+01
- 500E-02	1.5505-25	5-396+99	=62078E-01	.508E+02	.16798EFFE
600-02-	737445 34	6.996+00	1889275-01	.600E+02	+17659E+11
• 7 0 0E - 02			99365F-01	.700:+02	184456+11
.800E-02	.324725+16	●GU9E+UU 0005+00	•118/0E+00	.800E+02	.19102E+01
-9002-02	.117715-14	+900E+00 +862+04	•13/31E+00	·9005+02	19682E+01
-100E-01 -	-210 36F -12	-1000+01	15562E+00	•100E+03	.20202E+J1
.200E-01	-1119817		- 131/235+0U	2005+03	= 236375+01
.300E-51	-10785E-05-				-25654E+U1
.40JE-01	·11656E-04	5 27 2+ 01	631615400	++005+03	=270376+01=
.500E-01	.51959E-04	•600E+01	-78476F+00	•500E+03	.28200E+01
•500E-01	·14714E-03	.7012+01	.768685100	.0002+03	•23109E+J1
.7002-01	.319482-03		87543538	./	-298785+01
.800E-01	58479E-03	9002+01	-87643F+04		=. 30545E+01
.300E-01	.95214 =- 03	-100E+02	922735+00		
•130E+30	-14250E-02		and the second s		

TABLE 5

UNSTEADY PRESSURE RESPONSE IN A SLOTTED LINER

ARRANGEMENT OF SLOTS: 60 STAGGERED VERTICAL ROWS(30 PAIRS) DIMENSIONLESS PRESSURE DROP IS CALCULATED AT CENTER OF FORMATION

RD= 1.00

DIMENSIONLESS SLOT LENGTH IS: .4167

TŪ	PD	TD	PD	TD	PG
.1002-02	.16371E-01	.2002+00	·23524E+00	•200E+02	•13126E+01
.200E-02	.23265E-01	.300E+00	.31719E+00	 3005+02 	.21112E+01
.300E-J2	.28798 ∑- 01	.+30 2 +30	.37134E+00	.400E+02	22530E+31
•400E-ú2	.335412-01	.500E+00	.42016E+00	•500E+02	∎23634E+81
.500E-02	.37745 <u>≓</u> 01	.ú00E+00	.46478E+00	•600E+02	.24537E+01
.600E-02	41553E-01	.700E+00	.50591E+00	•700E+02	.25302E+01
.700E-02	•45059E-01	.800E+00	•54407E+00	.800E+02	.25965E+01
.800E-02	.48324E-J1	· 300E+00	• 57963E+00	•900E+02	.26550E+01
.900E-02	.51391E-01	.10GE+01	.61293E+00	.100E+03	.27074E+01
.100E-01	•54293E-01	.2002+01	.86322E+00	·200E+03	.305282+01
.200E-01	.77750E-01	.3 392+01	•1J301E+01	.300E+03	•32551E+01
.300E-01	·957972-01	.→00E+01	.11552E+01	.400E+03	. 33967E+01
.40CE-01	•11105E+0C	.500E+01	.12553E+01	•500E+03	.35102E+01
.500E-31	12453E+00	.6JGC+01	.13387E+01	.600E+03	.36013E+ <
.600E-01	.13675E+00	.70CE+01	.14101E+01	•700E+03	.36783E+01
•700E-01	•14801E+00	.300Z+01	.1+726E+01	.800E+03	.37 45 OE+ 01
.800C-01	.15853L+00	.908E+01	15292E+01	•900E+03	.38C38E+01
.900E-01	16844E+00	.100E+02	.15782E+01	•100E+ <i>04</i>	.385652+01
.100E+00	17785E+00				

4. NOMENCLATURE*

- c, * total compressibility
- d, distance in space
- h slot length
- h_D = dimensionless slot length
- k formation permeability
- k total number of slots in one vertical row
- NS number of pairs of vertical rows of slots (also number of slots in one ring of slots)
- Δo pressure drop
- p₁ initial pressure in the reservoir
- 9 dimensionless pressure drop
 - q = fluid withdrawal per unit length or unit area (or volume) of a source = strength
 - Q total withdrawal from a well (rate of production)
- r_i, r_i distances in **X-Y** plane (to slots)
 - r_{iD} dimensionless distance in X-Y plane (to slots)
 - rin = dimensionless distance in X-Y plane (to slots)
 - r_{D} = dimensionless radial distance
 - r. * wellbore radius
 - s * pseudo-skin factor
 - t producing time
 - t_D = dimensionless producing time
 - x abscissa of a point
 - y * ordinate of a point

c-g-s units

z = elevation of a point

 z_m = elevation of point M in a reservoir

 z_{mD} = dimensionless elevation of a point a in a reservoir

- n = diffusivity
- µ = viscosity
- \$ = porosity
- θ = angle which the projection of point M on the X-Y plane makes with the origin of coordinates

Subscripts and Superscripts

- D = dimensionless
- i = pertaining to vertical row of slots "i"
- j = pertaining to vertical row of slots "j"
- m = any point in space
- t = total
- w = well

SPECIAL FUNCTIONS

Error Function: $\operatorname{erf}(\mathbf{x}) = \frac{2}{\sqrt{\pi}} \int_{0}^{\mathbf{x}} e^{-\frac{\mathbf{u}^{2}}{du}} du$ Exponential Integral: $\operatorname{Ei}(-\mathbf{x}) = \int_{\mathbf{x}}^{\infty} -\frac{\mathbf{u}^{2}}{\mathbf{u}} du$

5. REFERENCES

- Brons, F., Marting, V. E.: "The Effect of Restricted Fluid Entry on Well Productivity", JPT, Feb. 1961, 172-174.
- Burns, W. A., Jr.: "New Single-Well Test for Determining Vertical Permeability", Trans. AIME (1969),246,743-752.
- 3. Buzarde, L. E., Kastor, R. L., Bell. W. T., and DePriester, C. L: "Production Operation Course I-Well completions", SPE of AIME, 1972, Chap. IV.
- 4. Composite Catalog, World 0il ed. 1974-5, 2894.
- 5. Carslaw, R. s., and Jaeger, J. C.: <u>Conduction of heat in</u> <u>Solids</u>, Oxford at the Clarendon Press (1959), 255-256.
- 6. Carslaw, H. S., and Jaeger, J. C: Op. cit., 275-276.
- 7. Gringarten, A. C., and Ramey, H. J., Jr.: "The Use of Source Functions in Solving Unsteady-Flow Problems in Reservoirs", SPEJ, Oct. 1973; Trans. AIME (1975), <u>255</u>, 285-296.
- 8. Gringarten, A. C., and Ramey, H. J., Jr.: "A Comparison of Different Solutions to the Radial Flow Problems", paper SPE 3817, submitted for publication.
- 9. Hubbert, M. K.: "Darcy's Law and the Field equations the flow of underground Fluids", Trans. AIME (1956), 207, 222-239.
- 10. Hurst, W.: "Establishment of the Skin Effect and its Impediment to Figid Flow into a Wellbore", Pet. Eng., Oct. 1953, 25,B-6.

- 11. Muskat, M.: <u>The Flow of Homogeneous Fluids Through Po-</u> <u>rous Media</u>, T. W. Edwards, Inc., Ann Arbor, Mich. (194.6) 273.
- Muskat, M.: <u>Physical Principles of Oil Production</u>, McGraw-Hill Book Co., Inc., New York (1949), 210-220.
- 13. Nisle, G. R: "The Effect of Partial Penetration on pressure Build-Up in Oil Wells", Trans. AIME (1958), <u>213</u>, 85-90.
- 14. Ramey, H. J., Jr.: "Application of the Line Source Solution to Porous Media-A Review", Producers Monthly, May 1967, 4.
- 15. Theis, C. V.: "The Relationship between the Lowering of the Piezometric Surface and the Rate and Duration of Discharge Using Ground-Water Storage", Trans. AGU (1935) (1935), 519-524.
- 16. Van Everdingen, A. F.: "The Skin Effect and its Influence on the Productive Capacity of a Well", Trans. AIME (1953), <u>198</u>, 171-176.

APPENDIX A

Computer Program

1....General

The computer program was compiled in order to calculate the dimensionless pressure drop given by eq. 33 in the text. It is divided into two parts: The main program and the subroutine. The subroutine computes the infinite summation of all error functions in the integrands in eq. 33, while the main program uses Simpson's rule for integration purposes. It should be mentioned again that the program firstly computes the pressure drops created by all real and image slots in one vertical row and then considers another row; while in the text the explanations refer to another method where all pressure drops created by slots which have the same elevations are firstly computed and then slots in other elevations are considered (eqs. 22-27)

2.... The Main Program

The following parameters are needed for the calculations:

- 1) Reservoir thickness = L (ft.)
- 2) Slot length = SL (inch)
- 3) Number of vertical staggered rows of slots (or number of slots in one ring) = NS
- 4) Well radius = r_w (ft.)
- 5) Dimensionless distance of point $M = r_D$
- 6) Dimensionless time = $t_{\rm D}$
- 7) The elevation of point M = z_{mD}

- 8) The angle of point M with respect to the origin of X-Y coordinates (Fig. 3) = Theta
- 9) The tolerance, which is used for testing the convergence of the infinite summation of the error functions = 10^{-10} . This tolerance can be changed and is used in the eubroutine.

3. <u>Subroutine Sum</u>

As said above, this subroutine calculates all error function summations, using a certain tolerance which decreases when t_D increase. Three hundred terms are considered at most, but more terms can be added.

FROGRAM LINER(INPUT, OUTPUT, TAPE6=OUTPUT) REAL L.LD DIMENSION PDT(300), TDT(800), FIL(360), FJL(360), FIC(360), FJC(360), AFIR (360), FUR (360), RI (360), RJ (360), ALFA (360), GETA(360) FIL=VALUE OF FUNCTION TO BE INTEGRATED AT THE LEFT SIDE OF TIME INTERVAL FOR #I# SLOTS. FUL=DITTO,FOR #J# CLOTS. FIC = VALUE GF FUNCTION TO BE INTEGRATED AT THE CENTEP OF TIME INTERVAL FOR #I# SLOTS. FJC=DITTO,FOR #J# SLOTS. FIR=VALUE OF FUNCTION TO BE INTEGRATED AT THE PIGHT SIDE OF TIME INTERVAL FOR #I# SLOTS. FUR=DITOO, FOR #J# SLOTS. NS=NUMBER OF STACGZQED (PAIRS) ROUS OF SLOTS. THERE ARE TWO KINDS OF SLOTS: ONE IS SLOTS #I#, AND THE SECOND, ONE IS SLOTS #J# WHICH ARE ROTATED IN RELATION TO SLOTS #I #. RI=DISTANCE OF THE POINT FOR WHICH THE PRESSURE CROP IS TO BE CALCULATES DUE TO PROOUCTION THRU #I # SLOTS. RJ=DITTO,FOR ≠J≠ SLOTS. SILC=SUM OF ERROR FUNCTIONS AT THE CENTER OF TIME INTERVAL FOR ≠I≠ GLOTS. SJLC=DITTO,FOF ≠J≠ SLOTS. SILR=SUD OF ERROR FUNCTIONS AT THE LEFT SIDE OF TIME INTERVAL FOR #I# SLOTS. SJLR=DITTO,FOR #J# SLOTS. --INPUT DATA RESERVOIR THICKNESS L(FT.) L=4. SLOT LENGTH (INCH) SL=2. NO. OF GLOTE IN ONE ROW IS CALCULATED NGL=L+6/GL HELL RADIUS RH=1.76. RD, LD, HD=DIMENSIONLESS DISTANCE, THICKNESS AND SLOT LENGTH, RESPECTIVELY RD=1.0 LD=L/RW HD=SL/12./RW ZHD=LD/2.+0.01 TOL=1.E-13 TD=0. NS=12 THETA=15. STI=0.0]1 DT=DTI/5. NCT=0 XH=RW*RD*COS5 (THETA) та=енткототно (ТНЕТА) WRITE(6,100) DO 12 I=1,NS , ALFA (I)=330 ./NS*I WRITE(6,125) I,ALFA(I) RI(I)=SQRT((X)-RW+305D(ALFA(I)))++2+(YM-RW+SIND(ALFA(I)))++2)/RW 12 CONTINUE 00 13 J=1,NS EETA (J)=360./NC*J-180./NS

54

2 C C C 0 С С С С С C С C ċ С C Ĉ C 000 С C С C 3 0 C

```
WRITE(6,126) J,BETA(J)
      RJ(J)=SQRT((XH-RW+COGG(BETA(J))) ++2+(YM-RW+SIND(BETA(J)))++2)/RW
   13 CONTINUE
      PD=0.
      PJI=0.
      P:) J=0.
      DO 8 I=1,NS
      FIL(I) =0.
      FJL(I)=0.
      HRITE(6,127) I,RI(I),I,RJ(I)
    8 CONTINUE
      NC=6
С
       DO 1 K=1,NC
      IF(K-1) 2,2,3
    2 NINT=10
       GO TO 4
    3 NINT=9
    4 60 5 J=1,NINT
       DO 6 L1=1,5
       T1=T0+DT/2.
       IF (TD. GE.0.1) TOL=1.E-09
С
       CALL SUM(T1, N3L, LD, HD, ZMD, TOL, NS, SILC, SJLC)
       TD=TD+DT
       CALL SUN(TD, NGL, LD, HD, ZMD, TOL, NS, SILR, SJLR)
       00 7 I=1,NS
       E=RI(I)*RI(I)
       F=RJ(I) + RJ(I)
       E1=E/(4.*T1)
       E11=E/(4.*TD)
       F1=F/(4.*70)
       F11=F/(4.*T1)
       IF(E1.GE.130.) E1=100.
       IF (F1.GE.100.) F1=100.
       IF(E11.GE.100.) E11=100.
IF(F11.GE.100.) F11=100.
       FIC(I)=1./T1*EXP(-E1)*SILC
       FJC(I)=1./T1*EXP(-F11)*SJLC
       FIR(I)=1./TO*EXP(-E11)*SILR
       FJR(I) = 1./TD + EXP(-F1) + SJLR
       PDI=PDI+.25*DT/6.*(FIL(I)+4.*FIC(I)+FIR(I))
       PDJ=PDJ+.25* JT/6.* (FJL (I) +4.*F JC (I) +FJR (I))
       FIL(I)=FIR(I)
       FJL(I) = FJR(I)
     7 CONTINUE
       PD=PD+PDI+PCJ
       PJI=J.
       POJ=0.
       PP3=PD/NS
     5 CONTINUE
       NC T=NC T+1
        TJT(1187) =TD
        POT (HCT) = PPD
     5 CONTINUE
        DT=10.+0T
     1 CONTINUE
```

```
55
```

```
PRINT 93,NCT
    HRETEID, LOHI
    N=2*NS
    W.RITE(6,135) N.NS
    WRITE (6, 136) RD, HD
    WRITE(6,131)
    NCP1=3*//C+1
    NCP=3+NC
    00 15 I=1,NCP
    K=NCF1+I
    N=NCP2+3
    WRITE(6,132) TOT(I), POT(I), TOT(K), POT(K), TOT(N), POT(N)
 15 CONTINUE
    WRITE(6,133) TOT(NCP1), PDT(NCP1)
 99 FORMAT (4X, + NCT=+, 14)
100 FORMAT(1H1)
125 FOSHAT(4X, *ALFA(*, 13, *) =*, F8.2)
126 FORMAT (4X, *BETA (*, 13, *) =*, F8.2)
127 FORMAT(4X, #RI(*, I3, *) =*, F10.5, 5X, #RJ(*, I3, *) = ; F10.5)
131 FORMAT(12%,*TC*,12%,*PO+,10%,*TD*,11%,*PD*,11%,*TO*,11%,*PD*,//)
132 FORMAT(7X, C10.3, 2X, E11.5, 2(03X, E10.3, 2X, E11.5))
133 FORMAT(J7X, E10.3, 2X, E11.5)
134 FORMAT (1H1,///,22X,+UNSTEADY PRESSURE RESPONSE IN A SLOTTED LINER+
   6,11)
135 FORMAT(12X, #ARRANGEMENT OF SLOTS: +, I3, 2X, #STAGGERED VERTICAL ROWS
   A(+,I3,2X,*PAIRS)*,/)
136 FORMAT(12X, #DIMENSIONLESS PRESSURE DROP IS CALCULATED AT CENTER OF
   A FORMATION*,//, 22%, *RD=+, F5.2, //, 12%, *DIMENSIONLESS SLOT LENGTH I
   35: *, F6.4, //)
    STOP
```

END

	SUBROUTINE	SUHET, NSL, LO, HD,	ZHD, TOL, NS, SI	L, SJL)
	REAL LD			
	SQT=SQRT (T)			
	FAC=2.+30T			
	C1=(ZMD+H5)/	FAC		
	C2= (ZHD-HD))/	FAC		
	C3 = (7MD+HD-)	NIZEAC		
	C4=(7HD-HD-)	DIZEAC		
	CIT-EDE (D-L			
	SET-EKLIGTIC	287 10 23 2927 04 1		
	950-EKU1091-	ERFLUMI		
	K=398		· ·	
	12=NSL-1			
	D0 1 I1=1, I2	•	a ta Marine a sua a sec	
	SEI=SEI+ERF((ZX0+(2+I1+1)+H))/FAC)-ERF((Z	ND+2+I1+HDJ/FAG
A	A+ERF((ZHD-2*	I1 THD) (FAC) -ERF((ZMD-(2+I1+1)	*HD)/FA3)
	SEJ=SEJ+ERF((ZH0+2*I1*H0)/F/	AC)-ERF((ZMD+(2+11-1)+HD)/FAC)
4	A+ERF((ZHD-(2	+I1-1)+HD}/FAC)·	-ERF((ZMD-2+11	*HD)/FAC)
1	CONTINUE		•	
	SI=SEI			
	SJ=SEJ			
	00 2 N=1 K			
	E1=17ND+H0+2	TNTE OLZEAC		
	F2-1200-00+2			
	F3= (2 MU+HU+2			
	F4=(2HD-HJ-2			
	F5=(ZM0+H0+(2*N-1)*L0)/FAC		
	F6=(ZMO-H0+(2=N-1)+LD)/F4C		
	F7=(ZM0+H0-(2*N+1)*LD)/FAC		
	F8=(ZMD-HD-(2* 11+1) * L D) / FAC		
	SPI=ERF(F1)-	ERF (F2) + ERF (F3) -	-ERF(F4)	
	SPJ=ERF(F5)-	EFF(F6) +ERF(F7).	-ERF (F 8)	
	00 4 I1=1,I2	· · · · · ·	•	
	A=ERF ((ZMC+ (2*I1+1) *HD+2*N*I	DI/FAC)	
	D=ERF ((ZNC+2	*1 1* HD+2*N*LD)/1	FAC)	
	C=ERF ((ZMD-2	*I1*H0+2*N*L0)/!	FAC)	
	D=ERF((ZMJ-(2+11+1) +HD+2+N+	LD)/FAC)	
	E=ERF ((ZMD-2	*I1*HD-2*N*LD)/	FAC)	
	F=FRF ((7M)- (2+71+1) +HD -2+N+	DI/FACI	
	G=ERF((7MD+(2 + 1 + 1) +HD-2+N+	D)/FAC)	
	H=FRE((7HD+2		FAC)	
	SPT =SPT +A -C +			
	At========+++++++++++++++++++++++++++++	2711443+24841	FACI	
	R1=EPE((730)	(2+T1-1)+4D+2+N	H D)/FAC)	
		72474-43400 4240	+ D) / FAC)	
		12"11" 7474 AUD 224 HAL D1		
		ZTITNUTZTN'LUN	/ F ACJ #1 D\'/ E AC\	
	CI=ERF((ZNG-			
	F1=ERF((ZhU-	2-11+HU-2+N+LU).	/FAGJ	
	G1=ERF((ZHD+	2+11+11J-2-N+LU)	VFAUJ	
	H1 = ERF(CZH0+	(2+11-1)+HU-2+N		
	SPJ=SPJ+A1-B	1+C1-D1+E1-F1+G	1-H1	
4	CONTINUE			
	SI=5I+SPI			
	SJ=SJ+SPJ			
	TEST OF CONV	ERGENCE		
	IF (SJ.LE.1.E	-50) SJ=1.E-50		
	AI=SPI/SI			
	AJ=SPJ/SJ			

С

```
D=AHAX1(AT,AJ)

IF(D-TCL) 3,3,2

2 CONTINUE

WRITE(6,100)

100 FORMAT(//,1X,*NO CONVERGENCE FOR 300 TERHS*,)

3 SIL=SI

IF(SJ.EQ.1.E-50) SJ=C.

SJL=SJ

RETURN

JND
```
APPENDIX B

Tabulated Results

The numerical results of all computer runs with calculated pseudo-skin factors are printed in the following pages.

UNSTEADY PRESSURE RESPONSE IN A SLOTTED LINER

.

AFF.ANGEMENT OF SLOTS: 2 STAGGERED VERTICAL ROWS(1 PAIR)

DIMENSIONLESS PRESSURE DROP IS CALCULATED AT CENTER OF FORMATION

RD= 1.00

DIMENSIONLESS SLOT LENGTH IS: .2000

.100E-02 .48020E+00 .200E+00 .17508E+01 .200E+02 .200E-02 .62760E+00 .300E+00 .18540E+01 .300E+02 .300E-02 .71785E+00 .400E+02 .400E+01 .400E+02 .400E-02 .78367E+00 .500E+00 .19918E+01 .500E+02 .500E-02 .83577E+00 .600E+00 .20448E+01 .600E+02	PD
.2001-02 .627602+00 .3002+00 .185402+01 .3002+02 .3002-02 .717352+00 .4002+00 .193002+01 .4002+02 .4002-02 .717352+00 .5002+00 .199132+01 .5002+02 .4002-02 .783672+00 .5002+00 .199132+01 .5002+02 .5002-02 .835772+00 .6002+00 .204432+01 .6002+02	.35188E+(1
•300E+02 •71735E+00 •400E+00 •19300E+01 •400E+02 •400E-02 •78367E+00 •500E+00 •19913E+01 •500E+02 •500E-02 •83577E+00 •600E+00 •20443E+01 •600E+02	.371752+[1
•400E-02 •783672+00 •5002+00 •19918E+01 •500E+02 •500E-02 •83577E+00 •6002+00 •20448E+01 •600E+02	.38593E+01
.500E+02 .83577E+00 .600E+00 .20448E+01 .600E+02	.39696E+01
	.40599E+01
•600E-02 •87900E+00 •700E+00 •20915E+01 •700E+02	.41364E+01
.700E-02 .91599E+00 .200E+00 .21337E+01 .800E+02	.42927E+01
•800E-02 •94832E+00 •900E+00 •21722E+01 •900E+02	.42613E+01
•900E-02 •97704E+00 •100E+01 •22077E+01 •100E+03	.43137E+C1
•100E-31 •10029E+31 •200E+01 •24661E+01 •200E+03	.46590E+01
.200E-01 .11749E+01 .300E+01 .26348E+01 .300E+03	.48613E+01
•300E=01 •12762E+01 •400E+01 •27696E+01 •400E+03	.500505+01
.400E-01 .134825+01 .5005+01 .286095+01 .5005+03	.51164E+C1
•500E-31 •14039E+01 •600E+01 •29445E+01 •600E+03	.52075E+01
•E00I-01 •14495E+01 •700E+01 •30160E+01 •700E+03	.52845E+01
.700E-01 .14881E+01 .300E+01 .30786E+01 .800E+03	.53512E+01
•800E=01 •15214E+01 •300E+01 •31342E+01 •900E+03	.54101E+01
.900E-01 .15509E+01 .100E+02 .31843E+01 .100E+04	.54627E+C1
.100E+00 .15772E+01	

PSEUDO-SKIN FACTOR=1.6042

UNSTEADY PRESSURE RESPONSE IN A SLOTTED LINER

ARRANGEMENT OF SLCTS: 2 STAGGEPED VERTICAL ROWS (1 PAIR). DIMENSIONLESS PRESSURE DROP IS CALCULATED AT CENTER OF FORMATION

R0= 1.00

DIMENSIONLESS SLOT LENGTH ID: .4167

TD	PD	TD	PD	το	ÞD
•100E-02	•4052UE+10	.20JI+00	•17327E+01	•2E+u2	•35007F+01
.2uu∈=u2	.62752E+LU	.3Ju⊑+88	■133682+61	.360E+62	.369945+01
.300E-02	.71735E+US	•400° ± +0€	•1912LE+u1	•4E+i2	•38412E+u1
•₩60Ĕ=u2	•78238E+0J	•500E+08	19738E+01	.50LE+62	.395155+11
.50JE-02	.83347E+L0	.600E+03	·2.267E+01	.6.LE+02	.40419E+01
.6CLE-02	.87558E+J3	.7u3∑+üü	·21735E+01	.7. uE+02	.411835+61
.7uud-u2	•91143E+cù	.8€0±+100	.21156E+i1	.3E+32	.41847E+11
.8ujE=û2	•94265E+U0	.90JE+30	•21541E+01	•9_uE+u2	.424325+01
.90UE-U2	• 97 J 32 E+ 3 3	.1LJE+u1	.218977+01	.1E+L3	·42956E+11
.10cE=01	· 3)516E+J9	·2002+01	.24481E+u1	.2 E+u3	.45409E+51
.200E-01	•1161JE+v1	. 3. JE +u 1	.26167E+u1	.3LuE+03	.48433E+J1
.30uE-ú1	.126∂8E+c1	.4u3E+01	.274252+01	.4LLE+63	.49869E+01
.4JUE-U1	.133.9E+61	·5032+01	.23429E+01	.5CuE+63	.50983E+11
.50LE-01	•13863E+11	.6.3E+31	.29264F+61	.6LLE+L3	.51894E+01
.60.E-31	.1→317E+c1	.7002+01	.2998CE+01	.7.LE+03	·5286-F+01
.700E-01	.147J1E+J1	.85JE+01	.3.606E+01	.362E+63	.53332E+91
.800E-01	·15334E+c1	.9.32+01	·3:162E+01	.91.E+63	.539205+01
.90JE-01	.15329E+u1	.100E+02	.31662E+C1	.1E+ü4	·54447E+.1
.100E+00	.15592E+01				

UNSTEADY PRESSURE RESPONSE IN A SLOTTED LINER

ARRANGEMENT OF SLOTS: 2 STAGGERED VERTICAL ROWS (1 PAIR) DIHENSIONLESS PRESSURE DROP IS GALCULATED AT CENTER OF FORMATION

RD= 1.00

DIMENSIONLESS SLOT LENGTH IS: .5714

TD	PO	TD	PD	TD	PC
•100E-02	•48020E+00	.2092+00	17282E+01	• 20 0E+ 02	.3 4962E+01
.20JE-02	•62752E+00	.300E+00	.183155+01	.300E+02	.363495+[1
.300E-32	.71735E+00	.4J0E+00	•19075E+01	.400E+02	.3e 367E+[1
.400E-02	.78238E+00	. 5002+00	.19692E+01	.500E+02	.39470E+01
.500E-02	.83347E+00	.6001+00	.20222E+01	.600E+02	.40 37 3E+[1
.600E-02	.87558E+00	.7 J9E+00	.20690E+01	•700E+02	.41138E+01
.700E-02	+91142E+00	.300E+00	.21111E+01	.800E+02	.41801E+C1
•800E-32	942635+00	.900E+00	•21496E+01	.900E+02	.42387E+01
.900E-02	.97027E+0J	.133E+01	.21852E+01	•100E+03	e42311E+C1
.100E-01	•99509E+00	.200E+01	.24435E+01	•200E+03	.46364E+J1
.2005-01	.11602E+01	. 3332+01	·26122E+01	.300E+03	.48337E+[1
.300E-01	12582E+01	.400C+01	• 2738 0E+01	.400E+03	.498242+01
.400I-01	13283E+01	•200E+01	.28383E+01	.500E+03	.50938E+[1
.500E-01	.13831E+01	.600E+01	.29219E+01	.600E+03	.51849E+01
•600E-01	.14281E+01	.703E+01	.29934E+01	.700E+03	.526195+01
.700E-01	.14662E+01	.333E+01	.30560E+01	.800E+03	• 53266E+ 31
.800E-01	·14994E+01	•908E+01	.31116E+01	•900E+03	.53875E+31
•900E-01	•15237E+01	. 139⊒+02	.31617E+01	•109E+04	.54401E+01
*TAAC4AA	+17749E+U1				

UNSTEACY PRESSURE RESPONSE IN A SLOTTED LINER

APRANGEMENT OF SLOTS: 2 STAGGERED VERTICAL ROWS(1 FAIR) DIMENSIONLESS PRESSURE DROP IS CALCULATED AT CENTEP OF FORMATION

RD= 1.00

4

DIMENSIONLESS SLOT LENGTH IS:1.0000

TD	PD	D	PO -	TD	PO'
e ∎00E~02	• 450 20E+ 00	•20CE+0"	17235E+01	•200E+02	.34310E+01
.200E-02	.6275.2E+00	.300E+00	.18264E+01	•300E+02	.36397E+01
.300E-02	.71735E+00	400C+00	.19023E+01	.400E+02	.38315E+01
.400E-02	.78238E+00	.500E+00	.19641E+01	.500E+02	.39418E+01
-500E-02	83347E+00	.600E+00	.20170E+01	.600E+02	-40321E+ [1
-600E-02	-87558E+00	.700E+00	.20638E+01	•700E+02	.41386E+T1
.700E-02	•91142E+00	.800E+00	.210595+01	+800E+02	.41750E+C1
.200E-02	.94263E+30	.90CE+00	.21445E+01	.900E+C2	.42335E+01
.9003-02	.97027E+30	.1002+01	•21800€+01	• 100E+ 03	•42859E+01
.1002-01	.995092+00	.203E+01	.24384E+01	.200E+03	:45312E+01
e 2 0 0 Ξ = 31	.11501E+31	.300E+01	.26070E+01	•300E+03	.48336E+91
.300E-01	12578E+31	.4CGE+01	.27328E+01	.400E+03	497722+31
.400E-01	.13276E+)1	.500E+01	.28332E+01	• 500E+03	.50886E+91
.500E-01	.13819E+01	.6002+01	.29167E+01	.600E+03	.51797E+01
.600E-01	.14264E+01	.700E+01	.29883E+01	.700E+03	.52567E+01
.7005-01	.146415+01	.800E+01	.30508E+01	.800E+03	.53234E+C1
.8 005-01	-14968F+01	.900E+01	.31065E+01	.900E+03	.53823E+[1
.900E-01	.152585+01	.100E+02	·31565E+01	.100E+94	.5435 0E+01
•109E+00	·15517E+01				

PSEUDO-SKIN FACTOR=1.5765

TABLE B-5 UNSTEADY PRESSURE RESPONSE IN A SLOTTED LINER

ARRANGEMENT OF SLOTS: 4 STAGGERED VERTICAL RONS(2 PAIRS) DIMENSIONLESS PRESSURE DROP IS CALCULATED AT CENTER OF FORMATION RD = 1.00

DIMENSIONLESS SLOT LENGTH IS: .2000

				. .	· _ ·	
		•				-
TD	PD	TD	PD	TD	PD	
.100E-02	-24010E+00	.200E+00	.88163E+90	.200E+02	•25435E+01	
.200E-02	.31380E+00	.300E+00	.94660E+00	.300E+02	.27422E+01	
.3002-02	.35893E+00	.400E+00	.10016E+01	.400E+02	.28839E+01	
4002-02	•39184E+00	.500E+00	.10508E+01	.500E+02	.29943E+01	
.500E-02	.41789E+00	.600E+00	.10955E+01	.600E+02	.308 46E+ C1	
.600E-02	.43950E+00	.730E+00	.11367E+01	.700E+02	•31611E+J1	
.7095-32	·457992+00	.3 3 3 E + 8 0	.11749E+01	.800E+02	.322745+01	
.8005-02	•47416E+00	.9302+00	12105E+01	.900E+02	.32859E+01	
.900 <i>E</i> -02	+48852E+00	.1002+01	.12438E+01	.100E+03	.33384E+E1	
.100E-01	•50144E+00	.200E+01	.14941E+01	.200E+03	.36837E+01	
.200E-01	.58746E+30	.3J0E+01	.16610E+01	.300E+03	.38360E+01	
.360E-01	.63812E+00	.400E+01	.17861E+01	.400E+03	•40296E+[1	
.400E-01	.67408E+30	.500E+01	.188625+01	•200E+03	.41411E+[1	
.5002-01	.701972+00	.600E+01	.19696E+01	•600E+03	.42322E+01	
.6 002-01	•72477E+00	.700E+01	• 20 41 OE+ 01	700E+03	.43092E+01	
.700E-01	•74405E+00	.800E+01	• 21035E+01	.800E+03	.43759E+01	
.800E-01	.76079E+00	.900E+01	.21591E+01	.900E+C3	.44347E+01	
.900E-01	·775592+00	.100E+02	.22091E+01	•100E+04	-44874E+01	
1002400	788905+00					

PSEUDO-SKIN FACTOR=0.6289

. .

in the second second

الالم المراجع المراجع

UNSTEADY PRESSURE RESPONSE IN A SLOTTED LINER

ARRANGEMENT OF SLOTS: + STAGGERED VERTICAL ROWS(2 PAIRS) DIMENSIONLESS PRESSURE DROP IS CALCULATED AT CENTER OF FORMATION

RD= 1.00

DIMENSIONLESS SLOT LENGTH IS: .4167

ΤΟ	PD	ст	P3	TD	D d
•100E=32	·24010E+u3	.20uE+0ú	.87263E+u0	+2.uE+12	•25345 <u>7</u> +01
.2012-u2	·313762+00	.3692+60	•93757E+ùù	•3JUE+W2	•27331±+J1
. 30 0E-u2	.35367E+13	-4CJC+ÜL	•99259E+Ju	.4.LE+62	.287495+01
.46JE-02	.33119E+00	.5.JE+00	•10417E+01	.5↓.E+u2	29852E+01
.50UE-02	.41674E+50	.600E+00	.10865E+01	.6yuE+02	.30756E+01
.600E-02	.43779E+u0	.7úúΞ+úú	11277E+01	.7E+L2	•31521E+01
.766E-02	.45571E+JJ	,8002+00	11659E+01	.844E+02	•32184E+01
.80(E-02	.47133E+_0	9.3E+60	12015E+01	.966E+62	.32769E+51
.900E+02	.48516E+0J	.103E+01	12348E+01	.10.E+03	.33293E+C1
•101E=01	.43750E+ui	.20 JE + J 1	.14851E+L1	.2.LE+U3	.36747∃+(1
.260E-01	.580512+00	.300 2 +01	·165262+01	.3.0E+03	.38770E+01
.30JE-01	.62998E+00	.400E+C1	.17771E+01	.4.LE+L3	.402065+01
.400E+ü1	.66545E+LU	.5002+01	18772E+01	.5CLE+63	.41320F+01
.501E-01	.69313E+20	.6602+01	.19605E+01	.6E+C3	.42231E+J1
.60LE=11	.71583E+u3	.700E+01	.20320E+01	.7.LE+03	•436u1E+01
.7652-51	.735.72+00	.80JE+01	.209452+01	.a.JE+63	.43669E+51
.800E-01	.75178E+uJ	·9-3E+01	.21501E+01	.3LCE+C3	•44257E+01
.96LE-01	.76550E+C)	.1030+02	.22001E+01	.100E+C4	.44784E+C1
.100E+00	.77988E+00				

UNSTEADY PRESSURE RESPONSE IN A SLOTTED LINER.

ARRANGEMENT OF SLOTS: 4 STAGGERED VERTICAL ROWS(2 PAIRS) DIMENSIONLESS PRESSURE DROP IS CALCULATED AT CENTER OF FORMATION

RD = 1.00

DIMENSIONLESS SLOT LENGTH IC: .5714

ΤD	PD	70	P 0	TD	PC
.1002-02	•24010E+00	.2002+00	.87036E+00	.200E+J2	.25322E+01
0200E-02	. 31376E+00	.3002+00	•93532E+00	.300E+02	.27309E+31
.300E-02	.358671+00	.4002+00	.99034E+00	.400E+02	.28727E+01
•+00 <u></u> -02	.39119E+30	.5302+00	10395E+01	.500E+02	.29830E+01
.500E-02	•41673E+00	.603E+00	.108425+01	•600E+02	.30 733E+C1
.600E-02	.43779E+00	.709E+00	.11254E+01	.700E+02	.31498E+01
•730E-02	•45571E+00	.800E+00	.11636E+01	.800E+02	• 32161E+[1
• 0 JJE- 02	•47131E+00	.300E+00	11992E+01	.990E+02	.32747E+[1
.900E-02	485142+00	.100E+01	12 32 5E +01	.100E+03	.332715+[1
.100E-01	.49754E+00	.200E+01	.14828E+01	.2005+03	.36724E+[1
.200E-01	•58013E+30	.3J0E+01	•16497E+01	.300E+03	.38747E+01
•300E-D1	•62998E+00	.+JJE+01	.17748E+01	• 40 DE + 53	.40184E+C1
•400E-01	.66416E+00	.500E+01	18749E+01	500E+C3	.41298E+01
.500E-01	.69155E+00	.633E+01	.19583E+01	.600E+03	.42209E+C1
.600E-01	.71404E+00	.700E+01	.20297E+01	.700E+03	.42979E+01
.700E-01	.73314E+00	.3 39E+01	.20922E+01	.800E+03	.43646E+C1
•300E-01	.74975E+00	.930E+01	·214795+01	•900E+03	.44235E+01
.900E-01	.76448E+00	.1002+02	.21978E+01	•100E+ù+	.44761E+01
.100E+00	.77773E+00				

UNSTEADY PRESSURE RESPONCE IN A SLOTTED LINER

ARRANGEMENT OF SLOTS: 4 STAGGERED VERTICAL ROWS(2 PAIRS) DIMENSIONLESS PRESSURE DEOP IS CALCULATED AT CENTER OF FORMATION

RD= 1.00

DIMENSIONLESS SLOT LENGTH IS:1.0000

TD	PD	TD	PD	TD	PO
.1002-02	.24010E+00	•200E+00	• 86895E+00	.2005+02	.25298E+01
.200E-02	. 31376E+00	.300E+00	.93288E+00	.300E+02	.27284E+01
.300E-02	.35867E+00	.400E+00	.98787E+00	.400E+02	.28702E+(1
.400E-02	•39119E+38	.509E+00	.10370E+01	.500E+02	.29805E+01
.500E-02	-41673E+00	.600E+00	.10818E+01	.600E+02	.30708E+[1
.600E-02	·43779E+00	.7 35 E+0,0	.11230E+01	.700E+02	.31473E+01
.7095-02	455712+00	.005E+00	11612E+01	.800E+02	.321362+[1
.800E-02	•47131I+00	.9 30E+30	.11967E+01	.900E+02	.32722E+31
.339E-02	.48514E+30	.1JJE+01	.123C0E+01	.10DE+03	.33246E+[1
.1092-01	·49754I+00	.200E+31	.148045+31	·200E+03	.36699E+01
.2005-01	•53006E+00	.30CE+01	.1E472E+01	·300E+03	.38722E+[1
.3005-01	•52891E+00	.405E+01	.17724E+01	.4005+03	.40159E+01
.40JE-J1	•663762+00	.5002+01	.187245+01	.500E+03	.41273E+01
.5392-01	.690942+00	.6332+31	·195532+01	.600E+03	+421842+01
.600E-01	•71320E+38	.700E+01	·20273E+01	.7005+03	-42954E+01
.7032-31	•73208E+00	.339E+01	.208985+01	.800E+03	.436215+01
.800E-01	.74849E+00	.9 JOE+01	.214535+01	.900E+03	.44210E+01
.9092-01 .1002+00	.763045+00 .776151+00	.1002+02	.219535+01	.100E+04	•44736E+01

UNSTEADY PRESSURE RESPONSE IN: A SLOTTED LINER

ARRANGEMENT OF SLOTS: 6 STAGGERED VERTICAL ROWS(3 PAIRS?

JIHENSIGNLESS PRESSURE DROP IS CALCULATED AT CENTER OF FORMATION

• •

RD= 1.00

DIMENSIONLESS SLOT LENGTH IS: .2000

				and share and a	s and a second
τo	PD	σT	- PD		P0
			· · · · ·		an a
.100E-02	.16007E+00	•200E+00	•60 <i>886</i> E* 00	.200E+02	-22664E+01
•200E-02	·20920E+00	.300E+00	.670925+00	-300E+02	-24650E+01
.300E-02	·23928E+00	.400E+00	a72509E+00	-488F+62	-26068E+01
•400E-02	·26122E+00	.5002+00	•77390E+01	-500E+02	-27171E+11
•500E-J2	·27859E+00	-630E+00	.81853E+00	- 600E+02	-280746+01
•600E-92	.29300E+00	-700 E+00	.85966 E+00	-7885+82	. 28830F+11
·709E-02	·30533E+00	-900E+00	.89782E+00	- 8005+02	295025401
SL-3006.	•31611E+10	-9102+00	.93338F+00	1000 <u>1</u> 402	703025401
. 90112	.325682+00	.1055+01	3666 #Exnn	+00C+0Z	*30000C+UL
100-01	334295400	2005401	e 3000002700	* IUUE * U.J	• 340125 • 11
2007-01	7046/.2.00	2002+01	B121/UETU1	•200E+03	•34065C+01
3002-01	• 37104EFUU	.3012+01	•13839E+01	•300E+03	.36088E+C1
•000 <u>2</u> -01	•425422700	•+JUE+01	•15090E+01	•400E+03	•37525E+01
•+012-01	e44943E+00	.500E+01	16090E+01	.500E+03	•36639E+[1
•2002-31	•46817E+00	.6 J02+01	•16924E+01	.600E+03	.33550E+01
.60JE-01	.483692+00	.7002+01	.17639E+01	.700E+03 -	-40320E+01
.700E-01	•49708E+00	.800E+01	.18264F+01	- 8005+03	.409875+01
.300E-01	.509005+00	900 E+01	18819 5+01	.0002-00	
.9332-81	-519862+00	1105402	- 10210F+01	100C-UG 100C-UG	1 24 D 25 1 04
.100E+00	•52991E+00	*****	• 193136 + UI	● TUUE TU4	•461062401

UNSTEADY PRESSURE RESPONSE IN & SLOTTED LINER

ARRANGEMENT OF GLOTS: 6 STAGGERED VERTICAL ROWG(3 PAIRS) DIMENSIONLESS PRESSURE DROP IS CALCULATED AT CENTER OF FORMATION

PJ= 1.00

DIMENSIONLESS SLOT LENGTH IS: .4167

то	PD	СТ	PD	TD	PD
.13.E-02	•16J07E+00	•200E+00	•5.285E+60	.200E+02	.22604E+01
·2015-02	.2∪917E+33	ڭ 11+ 12 م	•664917+UQ	.3JUE+02	+24590E+31
.360E-u2	.23912E+uu	- 4 J J E + J J	•71908E+CU	•400E+02	.26008E+01
.400E-02	•26u79E+€0	.5∪0E+Cu	•76789E+60	.5€€€+02	.271115+01
.53CE-02	.27782E+00	.60CE+60	812522+00	.6.LE+02	.28014E+01
.600E-u2	.29186E+L0	·70JE+06	.853651+00	.7ul2+02	·28779E+01
.7U6E-J2	•3u381E+ü8	.dùu≞+⊎ù	.89181E+30	.5JJE+02	.294425+11
.800E-32	•31422E+35	.9.JE+Lü	•92737E+00	.900E+02	-3002PF+01
.900E-32	·32344E+C3	• 1 J JÉ + J 1	.960672+00	.11.E+03	.305525+01
.10uE-01	.33172E+J0	·2102+11	•1211EE+E1	.2LLE+33	.34005E+01
.20JE-01	•38703E+00	• 3 0 0 ≤ + 0 1	•13778E+ú1	.JLUE+6J	.36028E+91
.3û€E-ú1	•41999E+J]	.40JE+J1	•15030E+01	.4CUE+03	.374655+31
.4JJE-01	·+÷3682+uJ	.5 <i>.002+</i> 01	•1613LE+01	.5U∪E+03	.385795+01
.50JE-01	. 40228E+u)	.6.JE+J1	16664E+01	.6.LE+13	•39490E+U1
•60»E-01	.47774E+00	.7CLE+01	17578E+61	.7uuE+03	.43260E+01
.7úu≅-ù1	.4911UE+JJ	• Suje +81	18204E+u1	•8∪∪E+u3	.40927E+01
.800E=01	.50301E+33	· 302I+61	.18759E+01	.9_uE+L3	.41516E+01
.900E-01	.513∂5E+JJ	.100E+02	192595+01	•1-0E+04	•42042E+01
.100E+06	.52393E+U3				

UNSTEADY PRESSURE RESPONSE IN A SLOTTED LINER

ARRANGEMENT OF SLOTS: 6 STAGGERED VERTICAL ROWS(3 PAIRS)

DIMENSIONLESS PRESSURE DROP IS CALCULATED AT CENTER OF FORHATION

RD= 1.00

.

DIMENSIONLESS SLOT LENGTH IC: .5714

ΤD	PD	TD.	PD	TD	PC	
.100E-02	.160075+00	.200E+00	.60139E+00	.2002+02	.225895+11	
.200E-02	•20917E+30	.3300+00	•66345E+00	.300E+02	.24575E+01	
.300 <i>E-</i> 02	239125+00	.+ 00E+00	.71762E+00	.400E+02	.25993E+ €	-
.400E-02	a 26079 2+ 00	.5002+00	.76643E+00	.5005+02	.27096E+J1	
.500E-02	27782E+00	.630E+00	.81105E+00	.600E+02	.28 000E+C1	
.600E-02	•29186E+00	.700E+00	85219E+00	.7005+02	₀28765E+01	
.700E-02	.30381E+00	.800E+00	.89034E+00	.800E+02	.29428E+01	
.800 <i>E</i> -02	.31421E+00	.900E+00	.92591E+00	.900E+02	.300135+01	
.900E-02	•32342E+00	.100E+01	•95921E+00	• 100E+03	.30537E+01	
.100E-01	.331702+00	.2002+01	.12095E+01	.200E+03	• 33991E + C	
.200E-C1	• 38673E+00	.300E+01	.13764E+01	.300E+03	•36014E+01	
.330E-01	41939E+00	.400E+01	.15015E+01	.400E+03	.37450E+C1	
•400E-01	•44232E+00	.500E+01	.16016E+01	.500E+C3	-33564E+J1	
.500E-01	·46123E+03	.3093+01	.16849E+01	.600E+03	.39475E+ 31	
.600E-01	•47655E+00	.700E+01	.17564E+01	.700E+03	•4t245E+01	
.700E-01	.489825+00	.3002+01	•18189E+01	.800E+03	.40913E+[1	
.800E-01	•50166E+00	.900E+01	.18745E+01	.900E+03	.41501E+01	
.900E-01	•51247E+30	.100E+02	.19245E+01	. 100E+34	.42028E+01	
.100E+00	•52249E+00					

UNSTEADY PRISCURE RESPONSE IN A SLOTTED LINER

ARRANGEMENT OF SLOTS: 6 STAGGERED VERTICAL ROWS(3 PAIRS) DIMENSIONLESS PRESSURE DROP IS CALCULATED AT CENTER OF FORMATION

RD= 1.00

DIAENSIONLESS SLOT LENGTH IS:1.0000

TD	PD	TD	PD	TD	P0
.100E-02	.16007E+00	.200E+00	.60003E+00	.2005+02	e22575E+01
.200 E-02	-20917E+00	.30DE+00	.66204E+00	.300E+02	.24561E+C1
.300E-02	.239122+30	.+03C+00	.71620E+00	. 400E+02	•25979E+01
- 400 E-02	.26079E+00	.5332+00	.76502E+00	.500E+02	.27 08 2E+[1
-500E-02	.27782E+00	.600E+00	.80954E+00	.600E+02	-27986E+01
.600 E-02	.29185E+00	.7002+00	.35078E+00	.7005+02	.28750E+01
.70JE-32	.303912+30	.6 33E+00	.86893E+00	.800E+02	•23414E+01
. 3 3 1 - 32	.314212+03	.7362+60	.92450E+00	.900E+02	.29399E+01
.9008-02	·32342E+09	.1332+31	.957792+00	.100E+93	.30523E+01
.10GE-01	.331705+00	.200E+01	.12081E+01	• 20 DE+ 33	•33 97 6E + 31
200E-01	-38671 E+00	.3332 + 31	.13750E+01	. 3002+03	.36000E+31
.3002-01	. 4192 8E+00	.400C+01	.150015+01	.400E+03	. 37436E+01
.430 E-01	.442575+00	.530E+01	.16001E+01	.500E+03	0385502+01
.5002-01	.46082E+00	.600E+01	.168355+01	.600E+03	. 39461E+[1
.6002-01	.47593E+JD	.700E+01	.175505+01	•200 E+03	.40231E+C1
.7005-01	.48912E+00	.000E+01	18175E+01	.800E+33	•40899E+01
.000E-01	.53084E+30	.300E+01	.18731E+01	.900E+G3	•41487E+01
.900E-01	•51155E+00	.100E+02	.19231E+01	.100E+04	.42014E+01
.100E+00	.52148E+00				

PSEUDO-SKIN FACTOR=0.3429

. . .

DIMENSIONLESS PRESSURE DROP IS CALCULATED AT CENTER OF FORMATION

DIMENSIONLESS SLOT LENGTH IS: .4167

RD= 1++9

1 0	PD	Ð	P3	10	P 0
.100E-02	.12JJ5E+JU	.2JJE+00	.480652+00	.2. UE+02	.21380E+01
.200E-02	.15686E+j3	.369E+0v	•54261E+00	.300E+C2	·23367E+01
-30-E-62-	17934E+3E		596763+20	******E*62	.24784E+01
• • <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	=19560 E+c 0	+3032+00	+64557-+10	*500E+62	.258885+01
+500E=02	+2+337E+++	.602.+00	.59020.000	+6x+E+62	-26791E+01
.60(E-02	•2189úE+ú0	•703E+00	•73133E+00	•716E+02	.27556E+01
./00E-02	• ZZ / 86E+üü	•800E+80	•76949E+00	.80CE+62	.28219E+01
.8008-02	•23566E+cl	•900E+60	•80505E+00	.990CE+02	•28805E+01
1 76VL VC	2 2 206	* Å 1 d = *6 1		TATE ALS	293291432
			12300 101		
	3151654		17406-411	• • • • • • • • • • •	767/454.11
40,E-11	• 33345E+cG		+138082+01 -14807F+01	-400E+03	- 352412 + 01 - 373565 + 01
.530E-01	.34837E+J3	.6J]E+U1	.15641E+61	.6.0E+03	.38267E+01
	. 361 31E+10	.7: : *01	-16355-+01	.7:16+03	390375+01
.70-E-01	- 37 295 E+ 34	.8002+01	.16980-+01	*800E+03	.39734E+C1
-\$U-E-1	.38367E+	- 3 +01	17536 +01	.90.2.03	.402935.01
.90JE-01	. 39369E+u0	.1úJE+02	.18036E+01	.1.1E+64	.40819E+01
.18.E+60	.40316E+00				

PSEUDO-SKIN FACTOR=0.2234

A 0154 arcm (1) 10 5 10 5 10 5 50 5 60 5 70 5 90 5

UNSTEADY PRESSURE RESPONSE IN A SLOTTED LINER

ARRANGEMENT OF GLOTS: 12 STAGGEFED VERTICAL ROWS (6 PAIRS) DIMENSIONLESS PRESSURE DROP IS CALCULATED AT CENTEP OF FORMATION

RD= 1.00

DIMENSIONLESS SLOT LENGTH IS: .2000

СŢ	PO	סד	PD	TO	PO
.1062-62	• 800 33E-01	.20CC+00	•37544E+00	.2002+02	.20328E+01
•200E-02	10460E+00	.300E+00	.43739E+00	. 300£+02	•22315E+[1
.3002-02	11964E+00	.400E+00	.49155E+00	.400E+02	.23732E+ E1
.40JE-02	130612+33	.500E+00	•54036E+00	.500E+02	.24836E+01
.5012-02	139302+00	.600E+30	•58498E+00	.600E+02	.25739E+[1
.6001-02	·14650E+30	.700E+00	.626125+00	.700E+02	.255C4E+01
. 7002-02	.15256[+]]	.8 002+00	.654275+00	.800E+C2	.27167E+01
.3001-02	15806E+00	.900E+00	.69984E+00	.9005+02	.27752E+01
900E-32	.162853+00	.100E+01	.73313E+00	.100E+33	.282772+01
.1002-01	·167162+30	.200C+01	•90343E+00	.200E+G3	.31730E+31
-200E-01	•196522+00	.333E+01	.11503E+01	.300E+03	.33753E+01
.300E-01	.21568E+00	.40CE+01	.12754E+01	.400E+03	.35189E+01
.¥802-31	.23117E+30	.5032+31	.137555+01	.500E+03	. 36304E+(1
• 300E- úl	244712+00	.f.00C+01	.14539E+01	.6005+03	.37215E+01
.600E-01	·25694E+00	.7002+01	.15303E+01	.700E+03	.37985E+(1
.700E-01	.268212+00	.8002+01	.15923E+01	.900E+03	.38552E+[1
.8 JÚC-JI	.27874E+30	.900E+01	.16484E+01	.908E+63	.3324 DE+[1
.900E-01	·238652+00	.1305+02	.16984E+01	.1002+04	.39767E+61
•100I+00	.298051+00				

UNSTEADY PRESSURE RESPONSE IN A SLOTTED LINER

ARRANGEMENT OF SLOTS: 12 STAGGERED VERTICAL ROWS(6 PAIRS) DIMENSIONLESS PRESSURE DPOP IS CALCULATED AT CENTER OF FORMATION

RD= 1.00

DIMENSIONLESS SLOT LENGTH IS: .4167

TD	PD	CT	PD	TD	PD
.101E-02	•83J33E-01	• 25 JE +6 C	.37262E+3L	.2.uE+ú2	.20330E+01
.20LE-02	·10+592+J0	.3uuI+uU	.43458E+QU	.3.0E+02	•22286E+01
.36uE-32	.11956E+0J	.40 JE +J J	•43373E+03	.+ú∟E+C2	.237u4€+û1
. + J U E = J 2	.13040E+00	-500 <u>1</u> +00	• 53754E+00	.5.uE+ú∠	-24837E+01
.500E-02	.13391E+u3	.6362+u∂	.58216E+0J	.6LUE+02	.25711E+01
. 60 JE-02	.14593E+60	.7uúE+00	•62330E+u0	.7. JE+02	.26476E+01
.70CE-J2	.15191E+UJ	. 80 JE +0 J	.66145E+uü	.800E+02	.27139E+01
. SC 0 E- 02	.15711E+30	.90uE+00	.69702E+00	-900E+02	.27724E+01
.90JE-02	.10173E+u3	.10JE+01	.73031E+90	•100E+03	.28248E+01
.100E-01	.16538E+uJ	.2002+01	·93061E+30	.20LE+03	.317J2F+51
.200E-01	· 19423E+00	. 30 uc + u I	11475E+01	. 3. uE+43	.337255+01
.300E-01	.21304E+00	433E+01	·12726E+01	.+UUE+63	.35161E+01
4005-01	.22642E+05	.5.02+.1	13727E+01	.SLJE+ü3	.36276E+u1
.500E-01	.24191E+00	.630E+01	.1456LE+J1	.00.LE+03	•37186E+E1
. 6LUE-01	.25413E+48	.7uun +01	·15275E+01	.7.LE+03	.37957E+01
.700E-01	.20540E+34	.3332 +41	.1590CE+C1	.81LE+63	.38624E+11
.80LE-01	.27592E+00	• 96 úž +ú 1	·16456E+01	.9LLE+U3	.392125+61
.90JE-01	28533E+13	.100E+02	.16956E+ü1	.191E+64	.39739E+01
.120E+00	·29523£+00				
•700E-01 •800E-01 •903E-01 •100E+00	.20540E+00 .27592E+00 .28583E+00 .29523E+00	.3331+01 .9002+01 .1032+02	•1590(€+01 •16456∃+01 •16956Ξ+01	.811E+63 .911E+63 .191E+64	.38624E+ .39212E+ .39739E+

PRESSURE RESPONSE IN A SLOTTED

ARRANGEMENT OF SLOTS: 12 STAGGERED VERTICAL ROWS (6 FAIRS)

DIMENSIONLESS PRESSURE IS CALCULATED AT CENTED OF FORMATION

RD= 1.90

DIMENSIONLESS SLOT LENGTH IS: .5714

TD	PD	TD	P D	TD	P0
•1JIf-02	.800332-01	.2002+00	.372145+00	• 20 0E + 0 2	.202352+01
•2JOI-02	•10457E+90	.307E+00	•43409E+00	•309E+02	.222815+01
. 300≦-02	11956E+00	•+00E+00	.48824E+00	• 400E+02	.23639E+01
.400E-02	13040E+00	•200E+00	•53706E+00	■500E+02	• 24303E+31
.500E-02	·13891E+00	.600E+00	•58168E+00	.600E+02	.257J6E+01
.600E-02	14593E+00	.7032+00	.62291E+00	.700E+02	.26471E+01
.700E-02	151905+00	.800E+00	.66097€+00	•800E+02	.27134E+01
.800E-02	15711E+00	•300E+00	.69653E+00	.900E+02	.27719E+01
.9002-02	•16172E+00	.1JJE+01	.72983E+00	.100E+03	+28243E+[1
.100E-01	16586E+00	.20JE+01	• 98012E+00	· 200E+03	• 31697E+01
.200E-01	.19410E+00	.300E+01	•11470E+01	•300E+03	·33720E+31
.3002-01	21277E+00	.400E+01	.12721E+01	=400E+03	.35156E+01
.400E-01	.22805E+00	.500E+01	·13722E+01	•500E+03	.36271E+01
.500E-01	·24149E+00	.600E+01	•14555E+01	■600E+03	.37132E+01
•600E-01	•25368E+00	.70JE+01	,152705+01	e 700E+ 0 3	.37952E+01
.700E-01	.26493E+00	.8002+01	.15895E+01	.800E+03	.38619Et[1
.800E-01	·27544E+08	.900E+0I	.16451E+01	.900E+03	.39237E+01
.900E-01	•28535E+00	•103E+02	.16951E+01	.100E+04	.39734E+01
.109E+00	• 29475E+00				

UNSTEADY PRESSURE RESPONSE IN A SLOTTED LINER

ARRANGEMENT OF SLOTS: 12 STAGGERED VERTICAL ROWS (6 PAIRS) DIMENSIONLESS PRESSURE DROP IS GALCULATED AT CENTER OF FORMATION

RD= 1.00

DIMENSIONLESS GLOT LENGTH IS:1.3000

TD	PO	TD	PO	TD	PO
.100E-02	-80033E-01	.200E+00	.37189E+00	.2005+02	.202932+01
.200E-02	•10459E+00	.3002+00	.43384E+00	-300E+02	.222795+01
.30JE-02	11956E+30	.400E+00	.487995+00	• 400E+02	•23697E+01
.400E-02	13040E+00	.5002+00	•53681E+00	•500E+02	.24800E+01
.500E-02	13891E+00	.600E+00 .	58143E+00	. 600Ξ+02	•25703E+01
.600E-02	14593E+00	.70CE+00	.62256E+00	•700E+02	-26468E+01
.700E-02	•15190E+00	.800E+03	·66072E+00	.800E+02	.27131E+01
. 3002-02	.157112+00	.9002+00	.696285+00	•900E+02	.27717E+01
.900E-02	16172E+00	.1302+01	•72958E+00	.100E+03	.28241E+J1
.1002-01	•165862+00	,290E+01	.97937E+00	. 2005+03	.31694E+ J1
.2035-01	-19408E+00	.380E+01	11458E+01	•300 E+03	.3 37 17 E+C1
.300E-01	·21272E+30	. + 332+01	12719E+81	• 4002+03	•35154E+01
.400E-01	·22795E+00	.50CE+01	.137195+01	-200E+03	.36268E+J1
.50JE-01	·241352+00	.6332+31	.145535+01	.600E+03	.371792+01
.600E-01	.25351E+00	.7302+01	.15268E+01	•780E+03	•37949E+31
.7392-31	.264732+03	.3332+01	15893E+01	.800E+03	.38616E+01
.80CL-01	.27523E+00	.90CC+01	.16449E+01	.900E+03	.39205E+31
.900E-01	.28512E+30	·100E+02	.1694 SE+01	.100E+04	.39731E+01
.100E+0C	.Z9452≣+00				

ARRANGENINT OF SLOTS: 16 STAGGERED VERTICAL ROWS (8 PAIRS)

BIMENSIONLEGS PRESSURE PROP IS CALSULATED AT GENTER OF FORMATION

90- 1...)

DIMENSIONLESS SLOT LENGTH IS: .4167

.100 E-62	.6LJ25E-L1	.26JE+00	.326125+00	.200E+02	.19835-+01
.20JE-02	•75439E-J1	.3uùE+∂ŭ	•38808E+00	•3uúE+62	•21821E+01
-36-E-62	39668E-1				23239F+11
	9773861	.5002+80	.491042+00	+5. CE+62	+24342E+61
-56-2-62	+1; +19E+,1		, 53566: +16		.25246.+01
.6JLZ-02	.1.946E+J0	.70 JE +30	.5768CE+C0	.7. JE+62	.26011E+C1
•76.E-62	•11397E+00	.8ú∂Ξ+6C	•61495E+úD	.8üüE+C2	•26674E+01
.800E-02	•11793E+00	•90JE+00	•65052E+00	+900E+02	.27259E+C1
-96-E-62	121486+		.63381.+0	- LEF103	27783E+11
10-2-01	12471Etul	.2002.001	.93411=+68	*2.02+63	.312375+=1
-2005-01	14877E+VV	30 - +:1	.1:010:+01	.JCCE+63	.332608+01
.303E-01	•16673E+J0	• • · · · · · · · · · · · · · · · · · ·	•12261E+C1	.400E+03	.34696E+01
.4û€=01	•10195E+J0	.500E+01	13262E+01	.5.JE+03	•35811E+01
.50∪E-01	.19542E+JC	.6úJI+ú1	• 14095E+01	.6JUE+03	.36721E+01
- buut-01	- 2-763E+10	.7632+61		.7E+03	-37491E+C1
*735E=61	-21890EtcJ	16092+01	.15435-401	+000E+03	.38159E+01
-3002-01	-223+28+40	960 491	,15991:+01	.9:0E+03	.38747E+31
.96.c-01	.23933E+Lú	.1.JE+02	.16491E+01	.101E+04	.39274E+11
. <u>1.</u> ųΞ+ųύ	.24873E+00				

وود ست باردو	a 2104	·						77								
5	13	1	<u>.</u> ,	5	70	5	' O	5	50	5	60	5	70	5	80	5

TABLE B-19 UNSTEADY PRESSURE RESPONSE IN A SLOTTED LINER ARRANGEMENT OF SLOTS: 21 STAGGERED VERTICAL ROWS(1) PAIRS)	TABLE B-19 UNSTEADY PRESSURE RESPONSE IN A SLOTTED LINER ARRANGEMENT OF SLOTS: 21 STAGGERED VERTICAL ROWS(1) PAIRS) DIFENSION ESS PRESSURE DROP IS CALCULATED AT CENTER OF FORMATION	5	CS	5	70	5		60	5	5.5	5	. C		; 5		Ĵ	-	همینان بر مین :	
UNSTEADY PRESSURE RESPONSE IN A SLOTTED LINER ARRANGEMENT OF SLOTS: 21 STAGGERED VERTICAL ROWS(1) PAIRS)	UNSTEADY PRESSURE RESPONSE IN A SLOTTED LINER ARRANGEMENT OF SLOTS: 21 STAGGERED VERTICAL ROWS(1) PAIRS))	B-19	TABLE							
ARRANGEMENT OF SLOTS: 21 STAGGERED VERTICAL ROWS(10 PAIRS)	ARRANGEMENT OF SLOTS: 21 STAGGERED VERTICAL ROWS(10 PAIRS)					NER	11	E3TH	a sle	ÎN	ONSE	RESP	JURE	PRESG	LADY	+ST E	UF		
ARRANGEMENT OF SLOTS: 21 STAGGERED VERILOAE RONOR 20 TOENER	ARRANGEMENT OF SLOTS' 2L STAGGERED VENTIONE RONOR IS FORMATION				LIRS)	<u>.</u>		ROWS	TCAL	VCD1									
	- DTHENSTONEESS PRESSURE DROP-IS CALCULATED AT CENTER OF FURNIELEST			- <u></u>		<u></u>	<u>-</u>		107E	VER	2	AGGE	, 5	51 20	SLO	OF	INT	NGENE	ARRA

DIMENSIONLESS SLOT LENGTH IS: .4167

10	PD	10	Pŋ	10	P0
			7:45/5+00	- 2. 0E+02	.19589E+61
.100E-02	.430265-01	.2302+00	. 301741400	7 85485	21576E+01
.200E-02	.62752E-01	.300E+00	.353501400	• JUBE+02	
= 300E= #2-	717362-11				200075401
_LOEF-02-	-78256E-1	-5-1-+60	46646 ***		
		- 6000 +00	.51108-+00	+64-464	.25000000
	A7744F=11	.7. JE +30	.55222=+00	•700E+62	.25765E+U1
	015105-1	200F+00	.590372+00	.800E+02	.264285+01
./		304 T 100	525947+90	.9.0E+02	•27013E+01
.860E-62	.94913E-L1	.9602+00			275385+01
~9~~~~ # 2 ~	1907 Set	PASY YA		200 F + 0.3 -	309915+01
-ISUE-UL:	10094E+C0	*Cuutui		2212473	
-200E-01	12414E+C	.3.3.1.+01			744505+01
-30 0E-01	.14212E+10	•+00E+01	.12015=+01	+40CETUS	255655401
400E-01	•15736E+CO	.5JJE+C1	.13016:+01	.5642743	26/766×61
-566E-01	.17ü 83E+30	.6010+01	.13850E+01	.500E+03	• 384/8E + CL
		7:15 +6 +	14564:*01	1/112 100	
7- 5- 6- 6-		8035+61	15189 ***1	8:0E+03	
TEUL UL	7. 1.84 54. 1	9-1-1-1	15745-101		. 3851 11 111
ACULCUL.		110-+02	.16245:+01	.1.UE+04	· 39028E+01
• 90 LE= LL	• 21 4 F 5 1 0				
.136E+36	。ここちょうにゃんし				

PSEUDO-SKIN FACTOR=0.0443

78 1284 - mm 了 70 5 30 5 60 5 5 50 5 t **3** 20 **.** . -\$

TABLE B-20 UNSTEADY PRESSURE RESPONSE IN A SLOTTED LINER ARRANGEMENT OF SLOTS: 24 STAGGERED VERTICAL ROWS(12 PAIRS) DIMENSIONLESS PRESSURE DROP IS CALCULATED AT CENTER OF FORMATION RD=. 1.00

DIMENSIONLESS SLOT LENGTH IS: .2000

TD	PO	TO	PO	то	PD
.100E-02	.400162-01	•209E+00	.28770E+00	.200E+02	•19451E+11
.200E-02	•52301E-01	.300E+00	.34966E+00	.300E+02	.21437E+01
.300E-02	.598452-01	,408E+00	.40381E+00	#400E+02	22855E+01
.400E-02	· 65431E-01	.500E+00	+45262E+00	•5a0E+02	.23958E+01
.500E-02	•69997E-01	-600E+00	•49725E+00	-600E+02	.24852E+11
.5002-02	73959E-01	.7002+00	.53838E+00	.700E+02	-25626E+01
.700E-32	•77525E-01	.833E+00	.57654E+00	.800E+G2	.26290E+01
.800E-0Z	.80810E-01	.900E+00	061210E+00	.900E+02	.26875E+ [1
.900E-0Z	.33881E-01	.100E+01	a64540E+00	.100E+03	.27399E+01
.100E-01	•86781E-01	.200E+01	.89569E+00	• 20 DE+ 03	. 30 35 2E + 01
.200E-01	11022E+00	.300E+01	.10626E+01	-300E+03	.32876E+J1
.300E-01	•12826E+00	.403E+01	.11877E+01	.400E+03	.34312E+01
.400E-01	e143522+00	.530E+01	.12877E+01	.500E+03	.35426E+01
.500E-01	.15700E+00	.630E+01	.13711E+01	.600E+03	•36337E+01
.600E-01	16921E+00	.700E+01	.14426E+01	.700E+03	.37107E+ {1
.7092-01	a18048E+00	.800E+01	.15051E+01	.800E+03	.37775E+11
.3005-01	.19100E+03	.900E+01	-15607E+01	.900E+03	.38363E+E1
.900E-01	.20091E+00	-100E+02	-16107E+01	.100E+04	-38890E+01
.100E+00	a 210 32E+00				· •

-

	PSEUDO-	SKIN FA	CTOR=0.0305	
		····· · · ·		
· · · · ·				
-		• . •		

1. . . .

UNSTEADY PRESSURE RESPONSE IN A SLOTTEO LINER

ARRANGEMENT OF SLOTS: 24 STAGGERED VERTICAL ROWS(12 PAIRS) DIMENSIONLESS PRESSURE DROF IS CALCULATED AT CENTER OF FORMATION

RD = 1.00

DIMENSIONLESS SLOT LENGTH IS: .4167

TD	PD	TD	P D	۲D	PD
.1J0E-J2	•400162-01	.2372+00	.28691E+00	•200E+02	.19443E+01
.200E 02	•52234E-01	.300E+00	a 34886E+00	.3005+02	•21429E+01
•30úE-02	.59803E-01	.400E+00	.40301E+00	•400E+02	·22847E+01
.400E-02	.65325E+01	.500E+00	.45183E+00	.500E+02	.239502+01
.500E-02	.69810 <i>2</i> -01	.600E+00	•49645E+00	.600E+02	.24854 2+01
.600E-02	.73687E-01	•700E+00	• 53 75 8E+00	.708E+02	.25618E+01
.700E-02	.77173E-01	.800E+00	a 57574E+00	.800E+02	.26282E+01
.800E-02	.80384E-01	.903E+00	•61130E+00	•900E+02	.26367E+01
.900E-02	.83391E-01	.103E+01	•64460E+00	.100E+03	•27391E+01
.100E-01	.862362-01	.200E+01	89489E+00	• 200E+03	. 30644E+ 01
.200E-01	.10945E+00	.300E+01	10618E+01	•300E+03	•32868E+J1
.300E-01	•12747E+00	.400E+01	.11869E+01	•400E+03	.3+304E+C1
.400E-01	.14272E+00	.5 JOE+01	.12869E+01	•200E+03	.35418E+01
.500E-01	.15620E+00	.6JJE+01	.13703E+01	•600E+03	.36329E+C1
.600E-01	16842E+00	.7 JOE+01	.14418E+01	.700E+C3	.37J99E+01
.700E-01	17968E+00	.800E+01	.15043E+01	.800E+03	.377672+01
.800E-01	.19020E+00	.900E+01	15599E+01	.900E+03	.38355E+01
.900E+01	.20011E+00	.130E+02	•16099E+01	• 100E+04	.38882E+01
.100E+00	.209523+00				

													والمتحرجات والمتحرجات والمتحرج والمتحرج والم	ويستقدمون والمداور		والمتحاجبين والمتحاج والمتلة والمتع
	ن · تبد مغانور					-	. 0	5	50	\$	60	5	70	5	80	5
							TABL	E B-2	2							
···· · · · ·		U	ISTE	ADY	PRES	ŚŚUŔ	E RESP	ONSE	IN 4	SLO	TED I	INER				
		······	-			-										
ARRA	NGC	HENT	OF	SLOT	S:	2+	ST AGG	PED	VERTI	CAL	ROMS(12	PAIRS)			

DIMENSIONLESS PRESSURE DROP IS CALCULATED AT CENTER OF FORMATION RD= 1.00

DIMENSIONLESS SLOT LENGTH IS: . 571+

T O	P D	<u>1</u> 2	Pf:	10		
. 10CE-02	.4.016E-1	.220E+00	.28686E+úú	.200E+U2	•19442E+J1	
.200E-02	.52294E-01	.300 Ξ+ 01	•34882E+00	.3CUE+02	•21429E+U1	
- 30 LE-02	.598J3E-01	.40)E +0i	.4:297E+00	.4JÚE+02	• 22847E+91	
45 CE-02	= 65325E-E1			-5+1E+62	239502+01	
510E-02	-69813E-31	.6.32+00 -	49641-100	+600E+02	2465351	
	736872-1	700. +00	.5375h +:;	.7.1.5.1.6	•25618E*51	
.7.4.5-02	.77172E-01	.800E+30	.575702+00	.800E+62	•26281E+01	
- 80 (E= 0.2	.8. 383F1	.90 DE +00	.61126E+00	.906E+02	•26867E+C1	
3015-32	. 833 88 F= 61	.100E+01	.64456E+C0	.100E+63	.27391E+01	
		2:	. 19435-+60	2.0E+03	- 36844E+11	
	1.91254		1:617:+01	- 300E+63-	•32857E+01	
	+27:35+3	- 4 1- mil 1	11858 + 11		, 143,4F + []	
	1	5. 17+61	12859E+01	.51CE+03	.35418E+01	
	1261654 18	- 66 0E +01	137032+01	.6.LE+03	•36329E+C1	
. 50 02-01	+C + 77 E+ 5 5	77 .7401	14417=+01	.7.LE+03	.37C99E+C1	
	1003/ETLU	2-0-401	150422401	811E+13	377665411	
			15504-+61	9.1 5405	.383555+51	
	-140102-00-		+6092-401		33881 + 11	
9022-01				TAK N		
<u>,100</u> €+00	•∠1948E+JŰ					

PSEUDO-SKIN FACTOR=0.0296

						01								
 	 ÷.,	ę	10	ş	:0	۶1 ۶	50	5	5 3	5	70	5	50	5

TABLE B-23 UNSTEADY PRESSURE RESPONSE IN A SLOTTED LINER

ARRANGEMENT OF SLOTS: 24 STAGGERED VERTICAL ROWS(12 PAIRS)

DIMENSIONLESS PRESSURE DROP IS CALCULATED AT CENTER OF FORMATION

RD= 1.00

DIMENSIONLESS SLOT LENGTH IS:1.0000

TD	PD	TG	P 0	70	Ро
.100E-02	.400162-01	-200 2+00	•28686 E+ ou	• 200E+02	.19442E+01
.200E-02	•52294E-01	.333E+00	.34831E+00	-300E+02	.21429E+01
.300E-02	.59803E-01	40GE+00	.40297E+00	.400E+02	.22846E+01
.400E-02	.65325E-01	.500E+00	.45178E+00	-200E+02	239505+01
-200E-32	-69819E-01	-S00E+00	.49E40E+00	+600E+02	.24853E+01
.600E-02	.73687E-01	.700E+00	• 53754E+00	•700E+02	.25618E+01
.700E-02	.771722-01	.8302+00	•57569E+00	+800E+02	.25281E+01
.8JJE-02	.80383E-01	.9082+00	.61126E+00	•900E+02	.26867E+01
9002-02	.83388E-01	.100E+01	.64455E+00	•100E+03	.27391E+01
.10)E-01	.862312-31	.2016+01	.89484E+00	200€+03	.338442+01
.2005-01	·10942E+30	0339E+01	.10617E+01	• 30 0E+03	.32867E+01
.3002-01	-12743E+00	409E+01	•118 68 E+01	.400E+03	.343J3E+[1
.4095-01	.142685+00	.500E+01	.12869E+01	•200E+03	.35418E+01
.5J02-01	.15615E+J0	.6J0E+01	•13703E+01	•600⊆+03	.36329E+01
.600E-01	.16837E+00	.700E+01	.14417E+01	.700E+03	•37099E+ti
.700E-01	.179642+00	.809E+01	.15042E+01	.800E+03	.37766E+[1
-830E-31	.19015E+00	-300E+01	15598E+01	.900E+03	-38 355E+C1
.9002-01	.20007E+00	.1005+02	16098E+01	.100E+64	.3888lE+[1
.139E+00	.20947E+00				

1 20 5 20 E

TABLE B-24 UNSTEADY PRESSURE RESPONSE IN A SLOTTED LINER

ARRANGEMENT OF SLOTS: 2 STAGGERED VERTICAL ROWS (1 PAIR)

DIMENSIONLESS PRESSURE DROP IS CALCULATED AT CENTER OF FORMATION

RD= ,50

DIMENSIONLESS SLOT LENGTH IS: .4167

1 0	PD	- D	P ŋ		P ()
•100E=02	•495J9E-29	•263E+60	.222362+60	.2.CE+02	·20533E+01
.20uE+02	.16541E-15	.3002+00	. 31120E+00	.300E+02	.22535E+01
<u>Ju_2</u> 2	* 24518-11	• 4 ÷ ú ÷ ÷ ú ù	.38545:+00		23960 -+01
***E=62	+22441E-08	.5032+00	.449815460	-3:0E+02	*25068E+61
	.63628E-,7	.6:]: +];	.5,680:+50	.6	.25975E+\$1
•000E-02	•60980E=06	•700E+00	.557961+00	.70JE+02	.26742E+61
•70LE-02	•31295E-05	.803E+00	•60441E+00	.800E+02	•27437E+01
•803E-02	•10838E=14	• 9J JE +0G	•54694E+00	.900E+02	•27993E+01
	*2802UL=_4	1602 101		*LicE+63	+285185+01
	-630181-14		.90/68_+_L	*2:05+63	.31975+12
			11469 + 61	-3v+E+03	340C1E+31
• 5022-91 - 5022-91	• 10000E=u1	• 4 U U 1 7 U 1 50)7 + 3 4	• 12/5/1+01	•466E+03	• 35438E + U1
	• 22 3 49 E - 0 1 74 3 E 2 E - 1 4		•130291+01	•>66E+U3	• 30553E + U1
10-2000	• 30692E-01	•0001TUL	•140912+01	• 61 UE+U3	• 37464E+UI
7. nF-01	65 74 QF			A FILL THO	
*445=01	7969AF	Q(17 4/1	. 16614-401	9 45.43	TOLOIFAN
.90JE-31	. 93 3 22E 1	.10JE+02	. 17144=+61	1. 1. F+04	40017F+01
•162E+UL	.1.752E+0C				

5

	the second se		the second s														
Martin Contractor				the second se	and the second second												
	and the second se	and the second s															
		-															
			in the second se														
			· · · · · · · · · · · · · · · · · · ·														
_																	
and the second s				and the second second													
						the second s											
	·	****							-								
PURIA	• • • · · · · · ·																
	•		- /						×	4							
									0								
										-							
				10			-										2
	¢.	• 1	•	1.1		·· •	E E	17	•	• ()	4	A0	٤.	70		30	2
	-				2		2	•)	-		4	~~	.	/ ¥	•	••	•
																	and the second se

DIMENSIONLESS PRESSURE OPOP IS CALCULATED AT GENTER OF FORMATION

RD= _5J

DIMENSIONLESS SLOT LENGTH IS: a4167

-to-	P3	<u> </u>	P')	10	P 1
					1000005401
12.5-12	24754E-29	. 20 DE +0 0	133981+60	.20GE+02	•1926UE+UI
	027:45-16	3435 +03	.236775+00	.3∪0E+02	.21261E+U1
200E-02	. 92/ 042-10		27307-+00	E+02	.226875401
306E-02			.33297=+86	+500E+02	.237955+01
Stut-12	112205-30		38772-+-1	.6.6	,247,15+11
560E-62	-518142-11	-0	43659-+00	.7. UE+02	.25468E+31
600E-02	.304902-36	./	L 8 1 8 0 7 + 0 0	.866E+02	•26133E+01
700E-02	.15647E+ú5	.8641 +40	- 401001-000 - 207075400	9 DE+02	.26728E+01
8005-62	.54188E−i5	.9602+00	. 523432+00		272455+61
916E-62	144136-14	1696+61		2.5.6.07	- 307035+01
IJGE-GI	318696-14			7	127275 + 61
20-1E-31	13388===2	.3cd=+01	.1:200:+01		741655+01
3002-01	.53040E-02	14602 101	405575401	1400EF03	352802+01
400E-61	.11186E-01	·5002+01	• 1699/2401	6. 0E+03	361915+01
50 JE-01	.18094E-01	.6CuE+C1	.13418:+01		
BUCF-U1	255046-11	.766-+91	14123-44	2005-07	775285+61
76-5-61	331 52E-1	· 8002+01	14793-411	LOCULTUS	70 247 + 11
BATT		.9005+01	153612+01		
00 5-04	- 48718E-11	.16JE+02	.15871E+C1	•1-CE+64	• 33/44C+NT
,9002-01	- 56546F=01				

PSEUDO-SKIN FACTOR=0.0159

27 4 3154 77 10 5 20 5 30 5 40 5 84 50 5 60 5 70 5 90 5

-									· · · · · · · · · · · · · · · · · · ·					
											أيد الإخباد الألالي في ا	and the second se		كبيني والمجالي وال
												-		,
2 · · ·			3	٤	10	•	50	5	60	5	70	5	63	2
•	÷ •	•		•	~~	•		-		-		•		
					TADI		-							
					TABL	E B-ZC)							
Provide a state of the state of														
And the second		A# # 11		-										
the second se		ショビ日	JE PRE	AULE	E-XES	HUNSE.		3141	11-1-E	LIVER				
A second se	-	-												
A construction of the second statement of the second s	and the second second second second					* * ****								
The second se														

ARRANGENENT OF SLOTS: 6 STAGGERED VERTICAL ROWS (3 PAIRS)

DIMENSIONLESS PRESSURE TROP IS CALCULATED AT CENTER OF FORMATION

	The second restaurant in the second	
and the second	The second s	

the second secon	an a	-
and the second s	and the second	-

DIMENSIONLESS SLOT LEEJGTH IS: .4167

1D	Pa		P D	<u>1</u> 0	Pŋ
.100E-02	•16503E-29	.2635+63	•121C9E+00	+210E+02	•19126E+01
•20 uE=02	.618ü3E-16	.36JE+00	·19354E+00	.31CE+02	.21127E+01
	306848-11		259745+46	E+12	.22553E+01
14102-12	748036-29	.5002+00	.31952 +66	5E:E+62	.23661E+01
.50úE+ú2	-212098-07	.660. +00	. 37386 +:0	.6	.245675+51
.600E-02	.2.327E-16	.7002+06	. 42322:+00	.7LLE+62	.25334E+01
.70LE-12	.10432E-05	.8JJE+00	•46843E+00	.8JÙE+02	•25999E+01
•80∪E+02	.36126E-35	.900E+00	.51006E+00	.900E+02	.26586E+01
96-6-92-		-1-02+01	54361-+00	-10CE+03	.271116+01
1902-01	212068-14		82782 +06	2: vE+03	.30569E+01
25 E = n 1		3662+61	1.1.066-101	.3000+03	.325942+61
. JULE-01	. 3 38 20 E-L 2	. 40 JE +01	.11382E+51	.4JJE+03	.34031F+01
•40CE+01	.77304E-02	.503€+01	12423E+01	.50LE+03	. 35146E+01
.500E−01	•12882E-01	.60JE+01	13284E+01	.600E+03	•36057E+01
-663E-01	-13734E-11	7:05+01	-140195+01	7:02+03	-368275+01
70	.25 187 1	.8002401	+14660-+01	.8E+03	.37495E+01
	-318035-1	.9002 +01	.15227-+11	.9.5E+03	.385435+31
. 900E-01	.38785E-01	10 JE +02	+15737E+C1	• 16 4 E+04	.38610E+01
.1CLE+CC	45962E-1				

PSEUDO-SKIN FACTOR=0.0025

ד אניה 154 אניה אניה איז איז 🗍

	5	. 0	\$	3	о <u>е</u>	40	5	50 5	63	5	20	Grannan ana ang ang ang ang ang ang ang an	- ^	
								-		5	/0	2	50	2
						TΔF	TFR-2	7						
		-UN	ISTE	ADY	PRESS	URE	SPONS	FTN & SI	ATTEN	TWE	0			
									91100	LINE	<u>N</u>			
and the second se		and the state of t					the second se							
Δ۶	RANGE	I. NT	0F	SLOT	C • 3	CT · CI								
A۴	RRANGE	HENT	OF	SLOT	S: 2-	ST AG	GERED	VERTICAL	ROWS(12	PAIRS)			

DIMENSIONLESS PRESSURE OROP IS CALCULATED AT CENTER OF FORMATION RD# 156

DIMENSIONLESS SLOT LENGTH IS : .4167

10	P0	70	PO	10	PD
1008-02	•41281E-30	• 20 JE +0 J	11869540		
2018-02	.15955E-16	-360F+00	- 101175+00	•266E+02	•19102E+01
3665-32-			• 1 7 1 1 2 2 4 9 9	+3-UE+02	•21103E+01
-0-2-02	-234395-59	5112 400	717717200	ATLUCTOC	*22529E*91
5052-02	-733-5F-1			12:01+62	236375+91
6000-02	.76469E-37	.76.0- +6.0		.b.it+(2	.245435+31
785E+82	+42186E- 6	.8037400	• 420012+UU //66642+00	•/wwE+02	•25310E+01
300E-02	-15545F-15	- 90 3E + 00	• 400UII4UU	• StuE+C2	•25975E+31
9112-52-		• 30 JL +00	+ 207041+90	+903E+02	•26562 <u>5</u> +01
IZE - IT				-11 GE+63	27:876401
2025			*02541-FUU	.2:0E+03	.305455+01
365-01	2664150.2	-30.00 +01	•20042.+C1	.30.5+03	.325792+01
LD:F-51	.6204EE-13	* 40 02 401	·11358E+01	+400E+03	.340075+01
54 JE-34	11.965-14	+ > J J = + 5 1	12399E+01	-5€0E+03	.351225+01
<u>Kuttant</u>	•11000E-01	.6002+01	.1326∂E+01	•6£0E+03	• 360 33E+01
	220255		13995-+01	RIGE B3	35803E+01-
			*1+635:*01	3. LE+03	-374705+01
		+9-0-+01	+15253 +01	.9:.::403	340595474
100E-01	• 304042=1	•10JE+02	·15713E+C1	.1. JE+04	-38586F+11
TAAS400	+4362IE=J1				

PSEUDO-SKIN FACTOR=0.000C

-0÷₩ 0134 anti∾ 🗍 . c٢ é0

	UNSTEADY PR	TABLE	B-29 NSC IN A SLOTT	ED LINER	
ARFANG	EMENT OF SLOTS:	4 STAGGER	ED VERTICAL RO	WSC 2 PAIR	S)
DIMENS	IONEESS PRESSUR	E DROP IS CA	LCULATED AT CE	NTER OF FORM	ATION
	RD= 2,00				
DIMENS	IONLESS SLOT LE	NGTH IS: .41	67		-
10	PD		20		
•100E-02	.578632-43	.2002+00	•18364E-01	.2005+02	.12560E+01
.200E-02	.70756E-43	.300E+00 -	.37344E-01	• 30 0E+02	•14487E+U1
				· · · · · · · · · · · · · · · · · · ·	
• 3 JUE - UZ	•99449E-39		.568/9E-U1	4002+02	• 190/ 4E+ UI
.300E-02	•99449E-39	.4012+00	.764545-01	-4002+02	=16959E+01
•400E-02 •500E-02	•99449E-39 •13187E-29 •43677E-24	.4012+00 .500€+00 .60€2+00	.568/9E-01 .764545-01 .959485-01	.400=+02 .5005+02 .5005+02	.150742+01 .16959E+01 .178505+01
.300E-02 .400E-02 .5302-02	.99449E-39 .13187E-29 .43677E-24 .21814E-20	.4012+80 .500€+00 .6002+00 .7005+00	.56879E-01 .764545-01 .959685-81 .11525E+00	.400=+02 .500=+02 .600E+02 .700=+02	-156742+01 -169595+01 -178505+01 -186665+01

and the second

A regional processor Anno 1990 and Anno 1990 Anno 1990 and Anno 1990 A regional and Anno 1990

. . . .

4

.8005-02	.97415E-16	.9062+00	15307E+00	.9005+02	.19843E+J1	
-9005-02	.35314=-14	.100E+01	.17148E+00	190E+03	.20363E+01	
.100E-31	63108E-13	2005+01	.33331E+00==	.2002+03	.23798E+01	
.200F-01	.335342-07	3 03E+0E-	.46001E+00=	- 3002+03-	-2 5815E+DE	
.3015-01		430=+01	56233E+00	4002+03	-27248[*11==	
.400E-01	.33368E-04	.500C+01	.64772E+00	.500E+03	.23361E+01	
.500E-01	.14231E-03	.600E+01	.72087E+00	.600E+03	.29270E+01	
.600E-01	.38405E-03	.700E+01	.78480E+00	•700E+03	.30040E+01	
.700 - 01	.794452-03	8-112+01		580E+03	-30796E+EE	
.800C-01	- 13881E-02	9 10E+01		908E+83	-31294E+01===	
.9035-01	-,21636112	1005-02	.933845+00	-100-+04	-31820E+01	
.100E+00	.31094E-02					

PSEUDO-SKIN FACTOR=0.0163

88

•

.

. .

.

...

.

TABLE B-30 UNSTEADY PRESSURE RESPONSE IN A SLOTTED LINER									
AFRANG	AFRANGEMENT OF SLOTS: 6 STAGGERED VERTICAL ROWS (3 PAIRS)								
DIHENSI	CONLESS PRESSUR	E DROP IS CA	LCULATED AT C	ENTER OF FORM	ATION				
	R0=-2.00								
DIHENSIONLESS SLOT LENGTH IS: +4167									
TD	PD	T.D.		TO	P0				
.100E-02	.57863E-43	.200E+00	·13054E-01	+200E+02	•1242 9E+01				
.209E-02	.707562-43	.300E+00	-28606E-01	.300E+02	.14352E+01				
.300E-02	.66302E-39	.400E+00	.46166E-01	. 400E+02	+15739E+01				
.4002-02	879126-30	500E+08_	.646482-01	.500E+82	-16824E+31				
.500E-02-	29118 2-24	-6002+00	.835145-01	+6005+02	=17715E+11				
.6032-02-	145435-20	.7092+90	.10246E+ 00	.700E+02	=184712+11==				
•709E=02	• 673592-18	00+3008.	•12130E+00	•800E+02	•13128E+01				
+0UUE=U2	•04944 <u>5-1</u> 0	.90JE+00	•13991E+00	•900E+02	-19708E+01				
• 1010 - 02	• 23742 <u>5=14</u>	.100E+01	.15822E+00	• 100E+03	•20228E+J1				
200F-31=	223565-17	TOOLARC	- 31199 JETU	2005+03					
-300F-01	212275-05		5/ 84 721210						
.420F-01	. 222455-34	-500C+01-	-540725400	5805+03	28 22 6 2 + 04				
.5005-01	948755-04	-500E+01	.70736F+00	- 500E+03	29135E+81				
.6J0E-01	.256085-03	.700=+01	.77129E+00	- 700E+03	299004F+01				
.700E-01-	52995E-03				375715+01				
.800E-01	926792-03	-900E+01	-87903F+00	9882+113	311595401				
.900E-01	-144672-32-	-100E+02	92533=+00=	10.07 + 04	31-58-56+01				
·1995+00	•20839E-92	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			and a state of the second s				
		PSEUDO-SKIN	FACTOR=0.0028						

-

. •

UNSTEADY PRESSURE RESPONSE IN A SLOTTED LINER

AF.F.ANGEMENT OF SLOTS: 24 STAGGEFED VERTICAL ROWS(12 PAIRS) DIMENSIONLESS PRESSURE DROP IS CALCULATED 4T CENTER OF FORMATION

RD= 2.00

DIMENSIONLESS SLOT LENGTH IS: .4167

TE	PŬ	TD	PD	то	PC
.1005-02	. 57863Ξ-43	.2002+00	.11087E-01	•200E+02	•12399E+31
200E 02	.707565-43	.30CE+00	.26196E-01	.300E+02	.1432 5E+ 01
.300E-02	16582E-39	.400E+00	.43622E-01	•400E+02	.15713E+01
.400E-02	·219873-30	.500E+00	.62059E-01	.500E+02	.16798E+01
.500E+02	.72961E-25	.600E+00	.80908E-01	.600E+02	.17689E+[1
.600E-02	.36611E-21	.700E+00	•99846E-01	•700E+02	18445E+01
.700E-32	.165942-18	.800E+00	11868E+00	•800E+02	.191025+01
.800E-02	.166961-16	● 00E+00	.13729E+00	.900E+02	.19682E+01
.900E-02	.61514E-15	.100E+01	.15560E+00	e100E+ú3	•202J2E+01
.10UE-01	•11207E-13	.200E+01	.31721E+00	• 200E+C3	.23637E+(1
.200E-01	·75272E-08	.330E+01	+44389E+00	•300E+03	+25654E+01
.300E-01	.85487E+06	.400E+01	.54620E+00	.400E+03	.27037E+01
.400E-01	.10175E-04	.500E+01	.63159E+00	•200E+03	• 28199E+J1
.500E-01	.478402-04	.630E+01	•7t474E+00	.600E+03	.29109E+01
.600E-01	·13973E-03	.706E+01	.76867E+00	700E+03	.29878E+ 31
.700E-01	·30894E-03	.800E+01	.82541E+00	.800E+03	.30545E+01
.800E-01	. 57170 <i>2</i> −03	.900E+01	.87641E+00	•900E+03	.31133E+01
.900E-01	•93715E-33	.100E+02	• 92 271 E+0 0	•100E+04	.31659E+01
-100E+00	·140873-32				

unsteady pressure response in a slotted liner-

arrangement of slots: & staggered vertical rows (3 pairs)

location of calculated pressure drop is 1/4 of circumferencial distance between two "i" vertical rows of slots

dimensionless pressure drop is calculated at center of formation

rd = 1.00

. . .

dimensionless slot length(hd) is: .4167

td	þq	t d	pd	t d	Þď
0. 100E-02	. 45045E-31	0. 500E+00	. 3068 1E+00	0.800E+02	24931E+0 1
0. 200E-02	.14136E-16	0. 600E+00	. 35143E+00	0. 900E 102	.25417E+01
0. 3005-02	14380E-11	0.700E+00	. 39256E+00	0. 100E+03	.25941E+01
0. 400E-02	. 50231E-09	0. 800E+00	.43072E+00	0. 200E +03	.29394E+01
0. 5002-02	17660E-07	0.900E+00	. 46628E+00	0. 300E+03	.31417E+01
0. 600E-02	.19527E-06	0.100E+01	.49958E+00	0.400E+00	. 32854E+01
0. 700E-02	.11095E-05	0.200E+01	.74987E+00	0. 500E+03	.33968E+01
C. 800E-02	, 41450E-05	0. 300E+01	. 91675E+00	0. 600E+00	.34879E+01
0. 900E-02	.11695E-04	0.400E+01	.10419E+01	0.700E+00	. 35549E+01
0.100E-01	.27056E-04	0.500E+01	_11419E+01	0. 800E+00	.36316E+01
0. 200E-01	.14008E-02	0.600E+01	12253E+01	0.900E+03	.36905E+01
0. 300E-01	.59288E-02	0.700E+01	12968E+01	0.100E+04	. 37431E+01
0. 400E-01	.12905E-01	0. 800E+01	_13593E+01	0. 200E+04	.40896E+01
0. 500E-01	. 21235E-01	0.900E+01	_14148E+01	0. 300E+04	_ 42923E+01
9. 600E-01	. 30185E-01	0.100E+02	_14648E+01	0.400E+04	- 44361E+01
0.700E-01	.39337E-01	0. 200E+02	.17993E+01	0.500E+04	45477E+01
0. 800E-01	. 48457E-01	0. 300E+02	_19979E+01	0. 600E+04	.46398E+01
0. 900E-01	.57426E-01	0.400E+02	.21397E+01	0.700E+04	.47159E+01
0. 100E+00	.66184E-01	0.500E+02	. 22500E+01	0.800E+04	. 47827E+01
0. 200E+00	,14201E+00	0. 600E+02	. 23403E+01	0.900E+04	_48415E+01
0. 300E+00	. 20384E+00	0.700E+02	24168E+01	0.100E+05	.48942E+01
0. 400E+00	. 25800E+00				

unsteady pressure response in a slotted liner

arrangement of slots: 6 staggered vertical rows(3 pairs)

location of calculated pressure drop is 1/2 of circumferencial distance between two "i" vertical rows of slots

dimensionless pressure drop is calculated at center+hd/2. of formation

rd= 1.00

dimensionless slot length(hd) is: .4167

td	p d	t d	pd	tď	pd
0.100E-02	. 45192E-07	0.500E+00	.40025E+00	0. 800E H02	. 25766E+01
0.2008-02	24014E-04 24754E-03	0.2005+00	48600E+00	0.100E+02	26875E+01
0 400E-02	. 85706E-03	0.800E+00	. 52416E+00	0. 200E H03	. 30329E+01
0. 500E-02	.18952E-02	0. 900E+00	55972E+00	0. 300E+03	. 32352E+01
0.600E-02	.33151E-02	0.100E+01	.59302E+00	0. 400E F00	. 33788E+01
0.700E-02	. 50483E-02	0.200E+01	.84331E+00	0. 500E+03	_34903E+01
0. 300E-02	.70222E-02	0.300E+01	. 1 <i>0</i> 102E+01	0. 600E+03	. 3581 3E+01
0.900E-02	.91785E-02	0.400E+01	.11353E+01	0.700E+03	.36584E+01
0.100E-01	. 11470E-01	0.500E+01	.12354E+01	0. 800E F03	. 37251E+01
0.200E-01	. 35452E-01	0.600E+01	. 13187E+01	0. 900E+03	. 37839E+01
0.300E-01	.59517E-01	0.700E+01	.13902E+01	0. 100E +04	. 38366E+01
0.400E-01	.79251E-01	0.800E+01	.14527E+01	0. 200E F04	. 41830E+01
0.500E-01	.96128E-01	0.900E+01	.15083E+01	0. 300E+04	4385/E+01
0. OWE - 01	11080E+00	0.100E+02	.15583E+01	0.400EF04	452962+01
0.700E-01	.12379E+00	0.200E+02	,19927E+01	0. 500E -04	. 46411E+01
0.800E-01	13553E+00	0.300E+02	.20913E+01	0. 600E+04	4/323E+01
0.900E-01	.14629E+00	0.400E+02	. 22331E+01	0.700E+04	.480932+01
0.100E+00	.15629E+00	0.500E+02	.23437E+01		. 48/61E+V1
0.200E+00	23520E+00	0.600E+02	243382+01	0. 700E+04	493306401
0.300E+00	.29/26E+00	0./00E+02	.251032401	0. 100EP00	. 470//2401
0.400E+00	.35143E+00				

APPENDIX C

Paper SPE 10785-by D. 'Spivak and R. N. Horne

UNSTEADY-STATE PRESSURE RESPONSE DUE TO PRODUCTION WITH A SLOTTED LINER COMPLETION

AWSTRACT

The transient behavoiur of production from a well with a slotted liner has been solved analytically by the source function method. The unsteady-state pressure response was examined as a function of slot frequency, slot length and penetration ratio of 0.5. The results indicate that due to limited entry into the well, skin effects appear. However, the effects become negligible when the number of slots distributed around the circumference of the liner is six or more. For more than six slots, the well behaves effectively like a continuous surface cylindrical source (or a line source well, depending on time and location).

This work concludes that there **is** likely to be little reduction **in** flow efficiency **in** an ideal slotted liner completion, **unless** some slots are clogged.

INTRODUCTION

A viel is completed with a slotted liner when sand problems occur, mainly in unconsolidated formations¹. The slotted liner is a pre-perforated tubing. Usually, the slots are milled and machined in vertical rows, parallel to the **axis** of the pipe. The most common patterns of arrangements of slots are the staggered vertical rows, multiple staggered vertical and horizontal slots, as shown on **Pig. 1**. Standard spacing of slots is 6" between the slots in each vertical row, while their length is usually $1\frac{1}{2}$ to 2" depending on their width. The common practice is to specify two rows for each inch of nominal pipe diameter².

This work arrived at an analytical solution to the problem of transient pressure response due to production through a liner with staggered vertical rows of Slots. The technique used was as suggested by Gringarten and Ramey4. It applies the use of a line source of finite length which in return represents the system of slots. The solution technique was verified by comparison with the continuous surface cylinder solution in the case of a large number of vertical rows of slots. No storage or damaged zone effects were considered.

FROBLW DESCRIPTION

Consider an infinite. homogeneous and isotropic porous medium. The transient (unsteady-state) flow of a slightly compressible fluid is governed by the diffusivity equation:

$$\frac{\partial^2 \mathbf{p}}{\partial \mathbf{r}^2} + \frac{1}{\mathbf{r}} \frac{\partial \mathbf{p}}{\partial \mathbf{r}} + \frac{\partial^2 \mathbf{p}}{\partial \mathbf{z}^2} = \frac{1}{n} \frac{\partial \mathbf{p}}{\partial \mathbf{t}}$$
(1)

where $\eta = \frac{k}{\phi u c_t}$ is the diffusivity term. The solu-

1:: to a particular problem **is** determined by the **initial** and boundary conditions. One of the most wellknown solutions **is** Lord Kelvin's instantaneous point **source** function, which **is**:

$$\Delta p(M,t) = \frac{q}{8\phi c_{+}(\pi n t)^{3/2}} \exp(-\frac{d^{2}}{4nt})$$
(2)

Eq. 2 represents the pressure drop created at point M in a reservoir of infinite extent by an instantaneous point source of strength q at point P, distanced from point M (Fig. 2). The strength q is the withdrawal rate per unit volume of source; it is also defined as e withdrawal rate per unit length or area of source, depending on its nature, i.e., line source or surface cylinder source. From Eq. 2 solutions to many other problems are obtainable by integration . The instantameous infinite line source case, for example, is sbtained by expressing d in Eq. 2 in terms of x, y, z coordinates and integrating z from $-\infty$ to $+\infty$,

The method was first applied in pressure transient analysis by Theis

If there is a continuous withdrawal of fluid, of strength q from time 0 to t, the pressure drop created by this continuous point source is given by integration over time :

$$\Delta p(M,t) = \frac{q}{8\phi c_{t}(\pi \eta)^{3/2}} \int_{0}^{t} \frac{1}{(t-t')^{3/2}} e^{\pi \eta (\frac{q}{t-t'})} dt, \qquad (3)$$

References and illustrations at end of paper

UNSTEADY-STATE PRESSURE RESPONSE DUE TO PRODUCTION WITH A SLOTTED LINER COMPLETION

SPE 10785

Row consider the actual problem at hand. Fig. 3 shows the coordinate sketch of one slot. The pressure arop created at point M by a single slot is obtained by Lutegrating an instantaneous point source with respect to time and the z coordinate, in a manner similar to that used by Nisle⁵. Appendix A gives details of the derivation of the solution. Briefly stated, the continuous pressure drop created at point M by a single slot extending from z = 0 to z = 1 is expressed by the following equation:

$$\Delta p_{i}(M,t) = \frac{q_{i}}{8\phi c_{t}(\pi \eta)^{3/2}} \int_{0}^{t} \frac{exp[-r_{i}^{2}/4\eta(t-t')]}{(t-t')^{3/2}}$$

$$\cdot \{\int_{0}^{z} exp[-(z'-z_{m})^{2}/4\eta(t-t')dz']dt' \qquad (4)$$

Note that there are two sets of vertical rows of slots; one set being staggered from the other. The base eet of slots is referred to as the "i" slots and the staggered set as the "j" slots. Eq. 4 therefore refers to one of the i slots.

Eq. 4 can be expressed in terms of the error function (after making a change of variables) as⁶:

$$\Delta p_{i}(M,t) = \frac{q_{i}}{8\phi c_{t}^{\pi\eta}} \int_{0}^{t} \frac{\exp(-r_{i}^{2}/4\eta\tau)}{\tau}$$

$$\cdot \left\{ erf \frac{z_{m}}{\sqrt{4\eta\tau}} = erf \frac{z_{m}-\ell}{\sqrt{4\eta\tau}} \right\} d\tau \qquad (5)$$

Introducing some dimensionless variables (described in Appendix A) and considering a penetration ratio of ¹/₂ result in the following dimensionless pressure drop caused by **One** slot⁵; Although this configuration of the line source resulting pressure distribution will not correctly represent the impermeable liner between the slots.

$$p_{D_{i}}(M,t_{D}) = \frac{1}{4 - NS} \int_{0}^{t_{D}} \frac{\exp[-r_{iD}^{2}/4t_{D}]}{t_{D}}$$
$$\cdot \left\{ \exp[\frac{z_{mD}}{\sqrt{4t_{D}}} - \exp[\frac{z_{mD}-t_{D}}{\sqrt{4t_{D}}}] dt_{D} \right\}$$
(6)

where NS is the number of slots in each ring of slots. The integral in **Eq.** 6 can be evaluated numerically using Simpson's rule.

One of the last stages of the mathematical derivation is to sum Eq. 6 over all the slots in the liner.

In this work a reservoir of thickness h vith upper and lower impermeable boundaries was considered as shown on Pig. 4. Therefore, the boundary conditions are:

$$\frac{\partial \mathbf{p}_{\mathrm{D}}}{\partial z_{\mathrm{D}}}(\mathbf{r}_{\mathrm{D}}, \mathbf{0}, \mathbf{t}_{\mathrm{D}}) = \frac{\partial \mathbf{p}_{\mathrm{D}}}{\partial z_{\mathrm{D}}}(\mathbf{r}_{\mathrm{D}}, \mathbf{h}_{\mathrm{D}}, \mathbf{t}_{\mathrm{D}}) = 0$$
(7)

a

$$\lim_{\substack{\mathbf{r}_{D} \neq \infty \\ \mathbf{r}_{D} \neq \infty}} p_{\mathbf{D}}(\mathbf{r}_{D}, \mathbf{z}_{D}, \mathbf{t}_{D}) = 0$$
(8)

The upper and lower impermeable reservoir boundaries can be represented by considering **ingg** slots **and** adding their effects to those caused by the real ones.

There will therefore be an infinite summation over all real and image slots. Assuming that the formation is penetrated by an integral number of staggered pairs, with half length slots at top and bottom, the general model shown on Fig. 4 can be reduced to a basic unit as illustrated on Pip. 5. It should be noted that both on Pips. 4 and 5 the total cumulative length of the slots in one vertical row (either an 1 row or a staggered j row) is one half of the formation thickness, that is the penetration ratio is $\frac{1}{2}$.

Finally, the total dimensionless pressure drop created at point M by all real and image slots is given by :

$$p_{D}^{*}(M,t_{D}) = \frac{1}{4 \cdot NS} \sum_{i=1}^{NS} \int_{0}^{t} \frac{\exp[-r_{1D}^{2}/4t_{D}]}{t_{D}}$$

$$\cdot \{\sum_{n=-\infty}^{+\infty} (erf \frac{z_{mD}^{+2nh}D^{+2}D}{\sqrt{4t_{D}}} - erf \frac{z_{mD}^{+2nh}D^{-2}D}{\sqrt{4t_{D}}})\}dt_{D}$$

$$+ \frac{1}{4 \cdot NS} \sum_{j=1}^{NS} \int_{0}^{t} \frac{exp[-r_{jD}^{2}/4t_{D}]}{t_{D}}$$

$$\cdot \{\sum_{n=-\infty}^{+\infty} (erf \frac{z_{mD}^{+}(2n-1)h_{D}^{-2}D}{\sqrt{4t_{D}}} - erf \frac{z_{mD}^{+}(2n-1)h_{D}^{-2}D}{\sqrt{4t_{D}}}\}dt_{D}$$
(9)

Although this configuration of the line source resulting pressure distribution will not correctly represent the impermeable liner between the slots. Since the system modelled has "reservoir" both inside and outside the rings of slots, flow into the inner face of the ring of line source segments must pass between the slots from the outside. In the steadystate case, this difficulty is easily avoided by placing line source at the axis r = 0 of $\frac{1}{2}$ the total strenth of the NS line source segments around the circumference, and opposite in sign (1.e., a source as opposed to a sink). This configuration results in a circular no-flow boundary passing through each of the slots (provided they are regularly arranged around the ring), with the "inside" production into the slots being provided by the line source at the centerline. For unsteady state the situation is a little more complex, since the pressure and stream function are no longer harmonic; however, for $t_D/r_D^2>70$, the pressure function is approximately logarithmic and is therefore harmonic in s region close to the well and becomes harmonic over a wider radius as time progresses. For small radii (close to the well), the pressure and stream function are harmonic for very small times, and the circular line joining the slots is a very good approximation to a no-flow boundary. This is demonstrated on Pig. 6 which shows the isopotential lines and the directions of their normals for an arrangement of four slots (only one quadrant is shown).)

Thus to obtain the correct representation of the slotted liner, it is necessary to multiply the pressure drop given by Eq. 9 by two (to double the flow rate) and subtract the line source (exponential integral) pressure function:
SPE 10785

$$p_{D}(M,t_{D}) = 2 \cdot p_{D}^{*}(M,t_{D}) = \left[-\frac{1}{2} Ei(-r_{D}^{2}/4t_{D})\right]$$
 (10)

In this way the sum of the flow rates into a ring of slots will be2q, made up of a flow rate .q from the reservoir to the exterior of the slots, and a flow rate q from the centerline line source to the interior of the slots.

SHORT-TIME BERAVIOUR

In studying the ahort time behaviour of Eq. 10, three cases were considered (see Fig.4):

1)
$$0 < z_{mD} < l_D$$

2) $h_D - \ell_D < z_{mD} < h_D$

Case (1) : for $t_0 \neq 0$ and

$$erf \frac{z_{mD} \cdot z_{D}}{\sqrt{4 t_{D}}} \neq 1$$

$$erf \frac{z_{mD} - z_{D}}{\sqrt{4 t_{D}}} \neq -1$$

and Eq. 10 reduces to the following expression⁶:

$$r_{\rm D}(M, t_{\rm D}) = -\frac{1}{\rm NS} \sum_{i=1}^{\rm NS} Ei(-r_{\rm 1D}^2/4t_{\rm D})$$

+ $\frac{1}{2} Ei(-r_{\rm D}^2/4t_{\rm D})$ (11)

Case (2) : by the same reasoning as in case (1), it can easily be shown that Eq. 10 becomes 6 :

$$r_{\rm D}(M, r_{\rm D}) = -\frac{1}{N3} \sum_{j=1}^{NC} \frac{P((-r_{\rm D}^2/4r_{\rm D}))}{1-1} + \frac{1}{2} E((-r_{\rm D}^2/6r_{\rm D}))$$
(12)

Case (3) : in this case, Eq. 10 simply reduces to θ_1

$$P_{D}(M,t_{D}) = -\frac{1}{2tNS} \sum_{i=1}^{NS} \frac{Ei(-r_{1D}^{2}/4t_{D})}{\frac{1}{2tNS} \sum_{i=1}^{NS} Ei(-r_{jD}^{2}/4t_{D})}$$

+ $\frac{1}{2tNS} \sum_{i=1}^{NS} \frac{Ei(-r_{jD}^{2}/4t_{D})}{\frac{1}{2tNS} \sum_{i=1}^{NS} Ei(-r_{D}^{2}/4t_{D})}$ (13)

LONG-TIME BEHAVIOUR

For sufficent long time, Eq. 10 becomes:

$$p_{D}(M,t_{D}) = -\frac{1}{2}Ei(-r_{D}^{2}/4t_{D}) + \frac{s(r_{1D},r_{jD},z_{mD},\theta,t_{D},h_{D},h_{D},n_{s},NS)}{(14)}$$
where the first term is the line source solution and t_{s}

is the pseudo-skin factor which is dependent on time, but can be approximated by a constant (to any degree of accuracy) for large values of time. For accuracy of 1 percent s becomes a constant for a cutoff time given by:

$$t_{D}^{2} Max \begin{cases} 25r_{1D}^{2} \\ 25r_{jD}^{2} \\ 25r_{jD}^{2} \\ 5h_{D}^{2}/\pi^{2} \end{cases}$$

Full details of this derivation are given by Spivak⁶.

RESULTS

The integral in Eq. 9 was calculated using Simpson's rule with 100 time divisions per log cycle. Figs. 7,8 show the semi-log behaviour of P_D vs. t_D and t_D/r_D^2 considering different number of vertical rows of slots, $z_D = h_D/2$ (i.e., center of formation), different radii (r_D) and a penetration ratio of $\frac{1}{2}$.

The slot length was found to have an overall negligible effect.

The position of the pressure measurement (z_{mD}) does influence the pressure drop significantly, especially when P_D is calculated at $r_D = 1$. (on the surface of the liner). Away from the liner $(r_D>1)$, the importance of z_{mD} decreases as r_D increases. It was found that the maximum value of the pseudo-skin factor **s** for a liner which has only two staggered vertical rows (on slot per ring, or NS=1) is $s \equiv 3$ (on the surface). This parameter depends on the location of the pressure measurement, and takes smaller values further from the slot tip. When the number of vertical rows is in-creased to six (NS 3), the pseudo-skin factor rapidly decreases to $\mathbf{s} \equiv 0.7$. For more than six vertical rows, the well behaves effectively like a continuous surface cylindrical source (or a line source well, depending on time and location) for which values of p_D vs. t_D for different rD were calculated by Gringarten and Ramey Also, in interference tests the well would behave essentially as a line source even for less than six vertical rows of slots, depending on the observation radius unless some slots are clogged.

CONCLUSIONS

In this study, the effect of a slotted liner completion on pressure translent analysis was determined using **a** simple analytical model. It **was** concluded that:

(1) For penetration ratio of 0.5, the slotted liner adds negligible skin effect provided there are 3 (or more) alots around a circumference of the liner. This means that actually in most cases there is no flow restriction due to the slotted liner provided all the slots remain open (or at least 3 remain unclogged).
 (14) This is in direct agreement with the rule of thumb that recommends 2 slots for each inch of nominal pipe dim-deter.

UNSTEADY-STATE PRESSURE RESPONSE DUE TO PRODUCTION WITH A SLOTTED LINER COMPLETION

SPE 10785

(2) The length of the slots is not significant	Subscripts
rom a flow point of view.	0 * dimensionless
IOMENCLATURE	i • pertaining to slot i
ct • total compressibility	i * pertaining to slot i
d • distance in space	m • any point in space
2 • slot length	
$\hat{\boldsymbol{x}}_{\mathrm{D}}$. dimensionless slot length	
\mathbf{h} • formation thickness	$\frac{2}{2} \left(\frac{x}{x} - \frac{y^2}{y^2} \right)$
$\mathbf{h}_{\mathbf{D}}$ • dimensionless formation thickness	Error function: $\operatorname{err}(x) = \frac{1}{\sqrt{\pi}} \int e^{-\frac{1}{2}} dt$
k • formation permeability	Exponential integral: $-\Sigma_1(-x) \cdot \int_u^{\infty} \frac{e^{-u}}{u} du$
$\mathtt{a}_{\mathtt{s}}$ " number of slots in one vertical row	ACKNOWLEDGEMENT
NS • number of pairs of staggered vertical rows of slots (also number of slots in one ring)	Portions of this study were done in partial fulfillment of graduate degree requirements at Stanfor University, Funding was provided through a contract
Ap • pressure drop	with the U.S. Department of Energy, under contract DE-
P_{D} - dimensionless pressure drop	REFERENCES
 q • strength • fluid withdrawal per unit length, area or volume of a source 	1. Buzarde, L. E., Jr., Kastor, R. L., Bell , W. T.,
0 • total withdrawal from a well (rate of produc- tion)	and DePriester, C. L: <u>Production Operation Course</u>
r • distance in r- y plane	I-Well Completions, SPE of AIME, 1972, Chap. 10.
r _{(D} • dimensionless distance (to slots) in x-y plan(2. Composite Catalog, World Oll ed., 1974-5, 2843.
$\mathbf{r}_{\mathbf{jD}}$ = dimensionless distance (to slots) in x-y plant	 Gringarten, A. C., and Ramey, H. J., Jr.: The use of source and Greens Functions in solving Unsteady. Flow Droblems in Reactive and SEEL (Oct. 1973)
$r_{\rm D}$ - dimensionless distance	Trans. AIME(1973), 255, 285-296.
₹ _v • wellbore radius	4. Theis, C. V: "The relationship Between the
s = pseudo-skin factor	and Duration of Discharge Using Ground-Water Storage", Trans. AGU (1935), 519.
t • producing time	5. Nisle, G. R : The Effect of Partial Penetration on
t _D • dimensionless producing time	Pressure Build-Up in Oil Wells", Trans. AIME (1958) 213, 85-90.
x • abscissa of a point	6. Spivak, D.: "Unsteady-State Pressure Response in a
7 • ordinate of a point	Slotted Liner", NS thesis, Stanford U. (1981)
2 = elevation of a point	7. Carslaw, R. S., and Jaeger, J. C: <u>Conduction of</u> Heat In Solids Oxford at the Clarendon Pters
$\boldsymbol{z}_{\mathfrak{A}}$. elevation of point \boldsymbol{M} in a reservoir	(1959), 275-276.
n • diffusivity	8. Grinparten, A. C., and Ramey, S. J., Jr.: "A Comparison of Different Solutions to the Sadial
9 • viscosity	Flow Problem", Paper SPE 3817, submitted for publication.
¢ ▪ porosity	APPENDIX A: Derivation of Solution
 θ angle which the projection of point M on the : y plane makes with the origin of x-y-z coordirates. 	The solution to Eq. 1 in an infinite wedium may be derived using the source function wethod described by Gringarten and Ramey ³ . The pressure drop st (τ, z, t) due to an instantaneous point source at $z = z^{\prime}$, $t = 0$ is given by:

SPE 10785

$$\Delta p(r,z,z',t) = \frac{q}{8\phi c_t (\pi n t)^{3/2}} \exp\left[-\frac{r^2 + (z-z')^2}{4n t}\right] \quad (A-1)$$

here q is the strength of the source. The pressure rop due to an instantaneous line source of finite ength \mathfrak{l} (e.g., one slot) may be obtained by superposing bint sources along a line of z' from z' = 0 to $z' = \mathfrak{l}$, hus:

$$\Delta p(\mathbf{r}, \mathbf{z}, t) = \frac{q}{8\phi c_t (\pi n t)^{3/2}} \int_0^{\infty} \exp[-[r^2 + (\mathbf{z} - \mathbf{z}')^2] /4nt] d\mathbf{z}'$$
(A-2)

y changing variables, i.e., u= (z-z')//4nt , the bove integral may be represented in terms of the error unction as:

$$\Delta p(\mathbf{r}, \mathbf{z}, \mathbf{t}) = \frac{q}{8\phi c_{t} \pi n t} \left[erf \frac{z}{\sqrt{4nt}} - erf \frac{z-\ell}{\sqrt{4nt}} \right]$$
(A-3)

b obtain the continuous pressure drop created by a inite line source of length ℓ , we use again superposition, now in time:

$$\Delta p(\mathbf{r}, \mathbf{z}, \mathbf{t}) = \frac{q}{8\phi c_{t}\pi\eta} \int_{0}^{t} \frac{\exp(-r^{2}/4\eta\tau)}{\tau} [\operatorname{erf} \frac{z}{\sqrt{4\eta\tau}}] d\tau \qquad (A-4)$$

ith $\tau = t - t^{\gamma}$ and $d\tau = -dt^{\gamma}$ q. A4 represents the continuous pressure drop due to

single slot (finite line source).

The strength of one slot, for a penetration ratio f $l_{\!\!\!/ 2}$, is given by:

$$q = \frac{Q}{(0.5h/n_g)2 \cdot NS \cdot n_g} = \frac{Q}{h \cdot NS}$$
 (A-S'

here n_s is the number of slots in one vertical row and is the total withdrawal rate. By introducing the ollowing dimensionless variables:

$$h_{\rm D} = h/r_{\rm W} \tag{A-6}$$

 $\ell_{\rm D} = \ell/r_{\rm w} \tag{A-7}$

 $r_D = r/r_w$ (A-8

$$t_{\rm D} = \frac{kt}{\phi \mu c_{\rm t} r_{\rm w}^2} \tag{A-9}$$

$$z_{\rm D} = z/r_{\rm W} \tag{A-10}$$

$$P_{\rm D} = \frac{2\pi \kappa n \Delta p}{Q \mu}$$
 (A-11)

iq. A-4 can be written in the nondimensional form as:

$$\mathbf{p}_{D}(\mathbf{r}_{D},\mathbf{z}_{D},\mathbf{t}_{D}) = \frac{1}{4 \cdot NS} \int_{0}^{\mathbf{t}_{D}} \frac{\exp[-\mathbf{r}_{D}^{2}/4\mathbf{t}_{D}]}{\mathbf{t}_{D}}$$
$$\cdot \left\{ \operatorname{erf} \frac{''D}{\sqrt{4t_{D}}} - \operatorname{erf} \frac{\mathbf{z}_{D}^{-\ell}D}{\sqrt{4t_{D}}} \right\} dt D \qquad (A-12)$$

2

In our actual problem it is necessary to superpose the pressure drops due to the real and (infinite) image slots. When this is done, Eq. A-42 becowe Eq. 9 in the text.

Fig. 1-Slotted Liners (After Buzarde et al.¹)

- 10 g

Fig. 3- Coordinate Sketch of one Slot

Fig. 5- Basic Unit of the Model

 Fig. 6- Isopotential Contours for an Arrangement of Four Slots (One quadrant only is shown). Circular No-Flow Boundary is achieved by the Subtraction of the Line Source at the centerline (The origin in this diagram)

والمراجع والمتحص والمت

æ. · . .