FEED ZONES IN GEOTHERMAL WELLBORES

A REPORT

SUBMITTED TO THE DEPARTMENT OF PETROLEUM ENGINEERING

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

t

i

By

Mario Castaneda

march 1981

ACKNOWLEDGMENIS

I would like to express **my** gratitude to Dr. Roland Horne for his guidance **as** research advisor.

I would like also to thank Coordinadora Ejecutiva de Cerro Prieto, through its Department of Studies, who kindly contributed the field pressure and temperature logs used in this report.

I greatly appreciate the financial support for my graduate studies at Stanford University, from the Instituto de Investigaciones Electricas, Banco de Mexico and the Consejo Nacional de Ciencia y Tecnologia.

TA'BLE OF CONTE	Ν	т	S
-----------------	---	---	---

.

.

T	INTRODUCTION	1
II	LITERATURE SURVEY	2
III	STATEMENT OF THE PROBLEM	4
IV	RESULTS	4
	A) - OBSERVATION 1 : WELL M-9	
	B) OBSERVATION 2 : WELL M-42	
v	CONCLUSIONS	11
VI	REFERENCES	12
VII	FIGURES	14

-

INTRODUCTION .

The location of feed zones or permeable levels in geothermal reservoirs is of great importance when a reinjection program is being planned in a geothermal field, mainly because it is desired to know where the injected water is going to go into the formation. The location of feed zones can also help us to have a better understanding in the interpretation of downhole measurements. It has been found that when separate feed zones are present in a wellbore, fluid movement results and wellbore pressure and temperature profiles are not those corresponding to reservoir.

This fluis movement is the result of two properties of geothermal reservoirs: one is the fractured nature of the reservoir and the other Is the non-static reservoir fluid state, Most geothermal fields consist of fractured rock. A well draws its fluid from one, or at most, **a** few fractures. Often, one dominates. It is only at the depth of the dominant fracture where the well contacts the the reservoir and truly reflects reservoir pressure. Pressure measurements taken elsewhere In the well reflect the only weight of the fluid column (water, two phase, steam) in the well.

Therefore, if reliable information about the reservoir is desired, a better understanding of the location of the feed zones in a wellbore is necessary.

II. - LITERATURE SURVEY .

The presence of fluid movement in shut-in oil wells has been recognized in the past in the petroleum literature. The need to understand this condition in the producing well was a factor that led to the development of more efficient production practices and to improvement in methods of completion of new wells. Dale⁽¹⁾ developed a velocity recorder that indirectly measured the flow of fluids in a well. He found that in some wells with long production intervals only a fraction of the formation in the upper part of the zone contributed any production. Thus, the migration of fluids and gas from one sand to another or from the producing interval into formations that were supposed to be excluded from the well was identified.

In geothermal wells, the appearence of this fluid movement presents a problem in the interpretation of downhole measurements, Only just a few technical papers have been appeared in the geothermal literature dealing with this fact. Recently, such internal flow was recognized by Grant (2,3). He pointed out that the internal flow was due to the existence of major feed points at which the well was in equilibrium with the reservoir. When the pressure gradient exceeded the hydrostatic, the fluid moved within the well entering at one point and leaving at another. This phenomenon "masked" the true reservoir temperature and pressure. Thus, the well temperature profile is partially or wholly determined by fluid motion within the well and consequently those measurements cannot be literally interpreted as the reservoir temperature profile. Therefore, careful interpretation is needed in single phase systems and even more care in two phase systems. Several suggestions were given in order to find the permeable levels (feed points) under certain

reservoir and well conditions.

Multiple feed points in a geothermal well can also cause instability in well performance. Bixley <u>et al</u>⁽⁴⁾ pointed out that fluids of varying enthalpy enter and flow in the well. Fluid density and pressure difference between the two feed zones consequently vary and feedback between this pressure difference and the flow from each feed point causes sustained oscillation in pressure, enthalpy and mass flow at the wellhead. Also, they observed that downhole pressure and temperature measurements in these wells were strongly influenced by these flows. The downhole measurements over the section of the hole where flow occurs do not reflect reservoir values. Unless such internal flows in the well are recognized downhole pressure and temperature data will be wrongly interpreted.

In an attempt to identify the permeable levels or feed zones, Syms <u>et al</u>⁽⁵⁾used a flowmeter log in a geothermal wellbore. They pumped cold water down the bore from surface and determined from the flowmeter log where it went into the formation. A temperature log would usually give an idea of how far the injected water travel down the bore but unless the bore intersects only one loss zone, ambiguous interpretations of a temperature log can result. Therefore, the flowmeter log could help them to identify natural flows between the permeable levels.

Although flowmeter logs can identify such permeable levels, there are geothermal reservoirs with temperatures as high as 340 C (Bermejo <u>et al</u>⁽⁶⁾) in which we could have technical difficulties in running this log.

111.- STATEMENT OF THE PROBLEM ,

Feed zones causing internal flow. In wellbores have been found to be present in geothermal reservoirs. Unless such internal flows in the well are recognized, downhole pressure and temperature data will be wrongly interpreted. Some techniques for determining feed zones have been given recently in the literature but these techniques are qualitar tive and cannot be applied in all cases, A more general and systematic method would be of great use,

IV.- RESULTS

A combination of pressure and temperature data gathered from respective logs is used here to locate the feed zones in a particular well. Pressure and temperature logs are run when the well is shut-l'n, The temperature log is used to calculate average density values using the steam tables and then the hydrostatic pressure gradients corresponding at specific depth intervals calculated and compared with pressure gradients obtained from the pressure log, looking for pressure gradients greater or less than hydrostatic within the well, Pressure gradients exceeding thy hydrostatic result from an upflow of fluid within the well. Pressure gradients less than hydrostatic indicate downflow of fluid due to the losses of pressure with the friction of fluid with the bore or pipe, Because the density values are taken from the steam tables for pure water, some correction may be applied when we are dealing with brine. This correction is made by superposing both graphs of pressure and density gradients vs depth.

In order to verify this approach field pressure and temperature data gathered from two wells of the Cerro Prieto Geothermal field (located approximately 35 km south of Mexicali B.C.Mexico) were used,

WELL M-9.- The data analyzed using this method correspond to pressure and temperature logs run in this well by Lawrence Berkeley Laboratory (LBL) on Oct/26/1979 to test a combined function tool. Because of the reliability of the data, their surveys 10 and 11 were taken for this analysis only. This well was considered to be a good test example because the presence of a known perforated zone at 2348-2810 ft (720-860 m) depth interval gave a clear indication of a feed zone. A description of the completion of this well is presented in figure # 18. Pressure and temperature data for such surveys are presented. in tabla 1, fig. 1 and table 2, fig. 2, respectively. Pressure and hydrostatic gradient values at specific depth intervals are presented in tables 3 and 4 and figures 3 and 4 for survey 10 and 11. Figure 5 presents the curves of figure 3 superposed taking into account any change in density for geothermal brines with respect to pure water, as explained before. On this figure it is clearly shown that the pressure gradient exceeds the hydrostatic at depth of 2800 ft to bottomhole, approximately, indicating an upflow of fluid within the well and a less well defined downflow (pressure gradient less than hydrostatic) at depth interval of 2600-2800 ft aproximately. Figure 6 presents the same behavior for survey 11. In this case tha data was not taken below 2600 ft but the graph shows a pressure gradient less than the hydrostatic at the same depth interval as survey 10. Figure 7 presents the difference in pressure and hydrostatic gradients for both surveys revealing the same results.

The same procedure was followed by converting the pressure and temperature data to an average density value for specific depth intervals resulting on the same conclusions as before (see tables 5 and 6,

figures 8, 9, 10 and 11).

Although this was a demonstration of recognising fluid motion within this particular well and hence the feed zones, more test examples were examined. A particularity of this well was that the perforated interval was cemented in earlier years (June/1975) because of production problems. It was considered a good idea to look for temperature and pressure logs run during the time this interval was sealed in order to see any changes from the interpretation given before. One of the problems of getting the data was the lack of pressure and temperature logs run simultaneosly in this well. Fortunately, three sets of data were found that satisfied this requirement.

The first set of data was from logs run a few days after the cementing job was made (see figures 12a, 12b). This well was on small bleed. As before, the same technique was applied to these set of logs. Figure 12c presents the pressure and hydrostatic gradients vs depth. We can observe on this graph that there is no appreciable difference between them. Apparently, there is no indication here of any flow leaving or entering the perforated interval, as we should expect because of the cementing job. However, we find a more or less constant hydrostatic gradient below 800 m due to the constant temperature profile at this depth interval (see figure 12b), The interpretation here is that an amount of fluid is flowing from the bottom to approximately 800 m keeping the constant temperature on this interval but small enough that there is no appreciable difference on the pressure gradient from the hydrostatic. Since the well was bleeding this flow tended to rise to the surface flashing at few meters below the wellhead, as it can be seen on the boiling point profile plot for this well (figure 15).

The presence of this small flow capable of keeping constant temperature profile in a geothermal well has been discussed in the literature by some authors⁽²⁾.

The second set of data was from logs run two months after the cementing job was made (figure 13a, 13b). The well was bleeding and the fluid was flashing at depth of 300-350 m, as it can be seen in the boiling point profile plot (figure 15). Figures 13c and 13d show the pressure and hydrostatic gradients as well as the difference between them vs depth, respectively. As we can observe, there was no difference in gradients around the perforated interval. Unfortunately, these logs were not run deep enough to notice any difference at the lower part of the well. The maximum gradient difference was at depth of 300-350 m, but because the fluid was boiling at this depth, we may consider that it is the boiling phenomenon that is causing this behavior.

!

ļ

1

ł

The third set of data was from logs run after two years the cementing job was made (figure 14a, 14b). The well was on small bleed and the fluid was flashing at 300-350 m depth (see figure 15). Figure 14c, 14d and 14e show the pressure and hydrostatic gradients vs depth and the difference between them, respectively, As we can observe, there is not a definite trend on the pressure gradient at the perforated interval nor at bottomhole and it is not possible to have any interpretation as we did before. This could be a result of not allowing the pressure gage enough time to stabilize when the pressure measurements were taken (as it would suggest due to the shorter depth interval taken from station to station when the log was run). However, figure 14a suggests that the total bleeding is coming from the top of the perforated

interval alone and that a colder region exists below this interval.

These observations suggest that at the time these logs were run, the perforated interval was no longer sealed. In fact, personnel from the production department ⁽⁷⁾ confirmed this suggestion because they were convinced that the cement was **degradated and the seal was** completely or at least partially lost. This could also contribute to support the argument of having a feed point at this depth when the LBL pressure and temperature logs were interpreted.

From the interpretation given before using the four set of logs we could characterize the well M-9 as that having three major feed zones: two within the perforated interval and the other near the bottom of the well.

The existence of pressure gradients less than hydrostatic at the perforated interval meaning downflow of fluid could be explained because the location of this well in the field. This well is situated at the periphery of the field and it was found that a possible cold-water inflow is taking place at this part of the field (Mañon <u>et al</u> (8))

<u>WELL M-42.-</u> The completion of this well is presented in figure 19. Two sets of pressure and temperature logs were used when applying the suggested method to this well. The first set of logs were run on Jan/14/1975 (see figures 16a and 16b). This well was completely shut-in at the wellhead. The pressure and hydrostatic gradients vs depth are presented in table 10 and figure 16c. Figure 16d presents both gradients superposed. As we can observe in this figure, there is a pressure gradient less than hydrostatic at 700-875 m depth interval and a pressure gradient greater than hydrostatic from 875 m to bottomhole, approximately. Figure 16e presents the difference in pressure and

hydrostatic gradients and again we observe the same result **as** above. However, observing the completion **in this well** (figure 19) we see that the well is cased from surface to **a** depth of 1000 m approximately. One possible explanation would be a casing fracture at that particular depths but such casing fractures had not been detected before. It is difficult to confidently make such an assertion based on only two singlé-data points.

The second set of logs were run on May/13/1976 (see figures 17a, 17b). This well was on small bleed and it was flashing at 350 m approximately. Table 11 and figure 17c present the pressure and hydrostatic gradients vs depth for this run. We can observe on this figure an appreciable deviation of pressure gradient from the hydrostatic at 900 m to bottomhole indicating a injection of fluid at this location (900 m). Also, in this figure we do not see any pressure gradient less than hydrostatic at 700-900 m depth interval as we did when analyzing the last set of logs for the completely shut- in well case. The likely reason for this may be that the magnitude of the bleed was such that water did not flow down the wellbore. Figure 17d presents the difference in pressure and hydrostatic gradients and we observe the same results. This well is located also at the periphery of the field but the same cold water inflow that is occuring in well M-9 is not apparent in this analysis.

It should be pointed out the need for sufficient and accurate information about well completion in order to make this kind of interpretation. Potentially the interpretation could lead us to detect any fracture or leaks on the production pipe or casing. Furthermore, it is believed that a careful logging procedure when taking pressure measure-

1

ments would result In a more reliable pressure gradient data to be used for this Snterpretation technique. Needless to say it would be of great help **If** we had a device that could measure pressure difference instead of pressure at any specific depth within the wellbore. The use of such device could give us a quantitative value fot the magnitude of the flow. Such a device *is* not presently available commercially in the geothermal industry but efforts are being made to develop this type of differential pressure gauge (Kratz <u>et al</u> (9))

10

1.

V.- CONCLUSIONS .

l

I, - Fluid movement within the well may be detected using data from pressure and temperature logs run simultaneosly in a geothermal wellbore.

11.- Pressure gradients different than hydrostatic have been found in the well by this method indicating the existence of fluid movement, even when the well **is** closed at wellhead.

111.- The need to have sufficient and accurate information about well completion **as** well as other kind of information related to the reservoir was helpful in interpreting the obtained results.

IV.- It is expected that the use of a differential pressure device would provide better pressure gradient data,

VI, - REFERENCES .

Ì

- (1). Dale C.R., "Bottomhole Flow Survey For Determination of Fluid and Gas Movements in Wells", Trans AIME (1949) 186, 205-210.
- (2). Grant A. M., "Interpretation of Downhole Measurements on Geothermal Wells", Applied Mathematics Division, Dept. of Scientific and Industrial Research, New Zealand (Dec 1979).
- (3). Grant A.M., "Interpretation of Downhole Measurements at Baca Field", Proc. of Fifth Workshop on Geothermal Reservoir Engineering, Stanford University (Dec 1979).
- (4). Bixley F.P., Grant M.A., Syms C.M., "Instability in Well Performance", Geothermal Resources Council (Transactions), 1979.
- (5). Syms C.M., Bixley F.P., "The interpretation and Application of Flowmeter Logs in Geothermal Wellbores", Proceedings of The New Zealand Geothermal Workshop (Oct 1979).
- (6). Bermejo F.J., Cortez A.C., Aragon A.A., "Physical and Thermodynamic Changes Observed in The Cerro Prieto Geothermal Field", First Symposium on The Cerro Prieto Geothermal Reservoir, San Diego Ca., (Sept 1978).
- (7). Ing. Rafael Molinar (personal communication).

- (8). Mañon M.A., Sanchez A.A., Fausto J.L., Jimenez S.M.E., "Preliminary Geochemical Model of The Cerro Prieto Geothermal Field", First Symposium on The Cerro Prieto Geothermal Reservoir, San Diego Ca⁷., (Sept 1978).
- (9). Kratz H.R., Day E.A., Ginn W.G., "Improved Geothermal Well Logging Tools Using No Downhole Electronics", Final Report, Systems Science and Software, La Jolla Ca., SAN-1315-1, (July 1979).

Table 1. - PRESSURE AND TEMPERATURE DATA FROM SURVEY # 10

DEPTH (ft)	PRESSURE	(psia)	TEMPERATURE	(°C)
100	153.4		138.2	
200	195.0		138.2	
300	237.1		139.0	
400	279.6		139.0	
500	323.4		138.2	
1000	533.0		138.2	
1500	744.6		138.2	
2000	956.5		139.8	
2500	1166.1		148.9	
2560	1201.3		153.8	
2570	1205 .4			
2580	1209.5			
2590	1213.7			
2600	1217.7		162.1	
2700	1249.0		176.0	
2800	1281.5		195.8	
2900	1319.7		204.8	
3000	1364.5		207.3	
3100	1410.2		203.2	
3200	1454.3		200.7	
3300	1495.9		202.4	
3400	1536.5		204.0	
3500	1575.4		208.1	
3600	1612.5		215.5	
3675	1629.3		218.8	

15

i

i

Table 2.- PRESSURE AND TEMPERATURE DATA FROM SURVEY # 11

DEPTH	(ft)	PRESSURE	(psia)	TEMPERATURE	("C)
0		130.0		125.3	
100		197.1		146.4	
200		232.8		146.3	
300		272.8		146.1	
400		313.5		145.8	
500		355.7		145.4	
1000		565.4		142.9	
1500		776.4		141.0	
2000		987.6		140.3	
2100		1030.0		140.6	
2200		1072.8		141.1	
2300		1113.9		141.5	
2400		1156.4		142.0	
2500		1197.8		143.2	
2520		1205.0		145.8	
2540		1212.5		147.7	
2560		1219.9		148.5	
2580		1227.1		150.3	
2600		1234.8		152.7	

Ĵ,

1

1

Table # 3.- PRESSURE GRADIENT VS DEPTH. SURVEY # 10.

DEPTH (ft)	PRESSURE GRADIENT (p/ft) × 100	HYDROSTATIC GRADIENT (p/ft) × 100
100		40.21
200	41.60	40.21
300	42.10	40.17
400	42.50	40.17
500	43.80	40.21
1000	41.92	40.21
1500	42.32	40.21
2000	42.38	40.17
2500	41.92	39.97
2560		39.74
2600	38.60	39.53
2700	38.00	38.95
2800	38.80	38.19
2900	38.00	37.50
3000	44.80	37.17
3100	45.70	37.23
3200	44.10	37.40
3300	41.60	37.40
3400	40.60	37.33
3500	38.90	37.17
3600	37.10	36.88
3675	22.40?	36.57

i.

1

1

1

.

i

DEPTH (ft)	PRESSURE GRADIENT (p/ft) × 100	HYDROSTATIC GRADIENT (p/ft) x 100
100		
200	35.70	39.89
300	40.00	39.90
400	40.70	39.90
500	42.20	39.92
1000	41.94	39.98
1500	42.20	40.06
2000	42.24	40.11
2100	42.40	40.13
2200	42.80	40.11
2300	41.10	40.08
2400	42.50	40.07
2500	41.40	40.03
2520	36.00	39.96
2540	37.50	39.88
2560	37.00	39.68
2580	36.00	39.76
2600	38.50	39.68

I

ŧ

ì.

ł

i

t

Table # 4.- PRESSURE GRADIENT VS DEPTH. SURVEY # 11.

Table # 5.- AVERAGE DENSITY VALUES FOR A GIVEN DEPTH. SURVEY # 10.

DEPTH	(ft)	DENSITY (1) lb/ft	DENSITY (2) 1b/ft
100			57.90
200		59.90	57.90
300		60.62	57.85
400		61.20	57.85
500		63.07	57.90
1000		60.36	57.55
1500		60.94	57.90
2000		61.03	57.85
2500		60.36	57.55
2600		55.58	56.92
2700		54.72	56.09
2800		55.87	54.99
2900		54.72	54.00
3000		64.51	53.53
3100		65.80	53.61
3200		63.50	53.85
3300		59.90	53.86
3400		58.46	53.76
3500		56.02	53.53
3600		53.43	53.10
3675		32.26?	52.66

(1) FROM PRESSURE DATA

4

ł

i

I 1

ί

-

I, I

1

ŀ

!i (2) FROM TEMPERATURE DATA

Table	#	6	AVERAGE	DENSITY	VALUES	FOR A	GIVEN	DEPTH.
			SURVEY #	# 11.				

DEPTH	(ft)	,	DENSITY (1) 1b/ft	DENSITY (2) 1b/ft
100			* = = =	
200			51.41	57.44
300			57.60	57.45
400			58.61	57.46
500			60.76	57.48
1000			60.39	57.57
1500			60.83	57.69
2000			60.77	57.76
2100			61.06	57.78
2200			61.53	57.76
2300			59.18	57.72
2400			61.20	57.70
2500			59.61	57.65
2520			51.84	57.54
2540			54.00	57.42
2560			53.28	57.14
2580			51.84	57.26
2600			55.44	57.14

(1) FROM PRESSURE DATA

1 . . .

ł

1

-

(2) FROM TEMPERATURE DATA

32 P-3 M-9 COMISION FEDERAL DE ELECTRICIDAD CERAS GEOTERMICAS CAMPO DE CERROPRIETO REGISTROS DE PRESION DE FONDO COMUCIONES EN EL POZO FLUYP POR PURCA DE 1" DE DIANSPRO CON VALUNTA FRONTA CNDICIONES EN EL POZO FLUYP POR PURCA DE 1" DE DIANSPRO CON VALUNTA FRONTA SION CABEZA 69 DEL REGISTRO 13 (2 m.) SION CABEZA 69 DEL REGISTRO 13 (2 m.) SION CABEZA 69 DEL REGISTRO 13 (2 m.) NOM CABEZA 69 DEL REGISTRO 13 (2 m.) NOM CABEZA 69 DEL REGISTRO 13 (2 m.) NOM CABEZA 60 DEL REGISTROS DEL REGISTRO NOM CABEZ							1-	
COMISION FEDERAL DE ELECTRICIDAD CERAS GEOTERMICAS CAMPO DE CERROPRIETO REGISTROS DE PRESION DE FONDO REGISTROS DE PRESION DE FONDO COMUNES EN EL POZO FLUTE DI JUNIO 2 DE 1975. SUDM CASEZA 69 TST (4.9 KA/CRE ²) LUTETO TE DIJUNTO CON VALINILA FRUILA SIDM CASEZA 100 TST (4.9 KA/CRE ²) LUTETO TE DIJUNTO TE DIJUNTO TE DIJUNTO POTO TE DI JUNIO 2 DE 1975. FUNDIDAD HAKINA 1785 FST (1255 S. S. C/CRE ²) LUTETO TE DIJUNTO TE DIJUNTO POTO TE DIJUNTO POT	•			32			P	3/1-9
CSRAS GEOTERMICAS CAMPO DE CERRO PRIETO REGISTROS DE PRESION DE FONDO COMO 9 JUNIO 2 DE 1975. CADDIONES EN EL POZO FLOVE POR FURGA DE 1º DE DIAISTRO CON VALVULA FXGULA A SION CASEZA 69 FSI (1.9 Kg/cm²) FUNDICAD VALVA 1765 FSI (1.9 Kg/cm²) FUNDICAD VALVA 1765 FSI (1.9 Kg/cm²) FUNDICAD VALVA DEL FREITER 13/9 E. FUNDICAD VALVA DEL FREITER 13/9 E. FUNDICAD VALVA DEL FREITER 13/9 E. VALVALA DEL FREITER 13/9 E. FUNDICAD VALVA FREITER 13/9 E. 100 100 1350 250 AR.3 200 300 300 525 BG.9 300 300 525 BG.9 500 300 525 BG.9 500 300 656 86.1 600 300 722 10.7 700 300 722 10.7 700 300 722 10.7 700 300 722 10.7 700 300 722 10.7 700 300 722 10.7 600 300 722 10.7 600 300 722 10.7 600	CON	AISION	FEDERA	L DF F	I FOT	BICID		
REGISTROS DE PRESION DE FONDO CONCIONES EN EL POZO FLEMA JUNIO 2 DE 1975. CNDICIONES EN EL POZO FLEMA JUNIO 2 DE 1975. SION CABEZA 69 FSI (A.9 KG/CR ²) TLYATO CON VALVILA FREITA SION CABEZA 69 FSI (A.9 KG/CR ²) TLYATO KT9176 SION CABEZA 69 FSI (A.9 KG/CR ²) TLYATO KT9176 SION CABEZA 69 FSI (A.9 KG/CR ²) TLYATO KT9176 FUNDIDAD MAXIMA JTA TRETISTIO 13 '92 m. TLYATO KT9176 M 59 6.9 300 100 100 101 13.4 200 40 co o ou 100 12.0 100 101 13.4 200 100 100 100 101 13.4 200 100 100 100 101 13.4 200 100 100 100 101 13.4 200 100 100 100 101 13.4 200 100 100 100 100 101 13.4 200 100 100 100 100 101 13.4 100 100 100 100 100 100 100<	C B	RAS GEO	TERMICAS			MICID	AD	
C 0 M-9 FECHA JUNIO 2 DE 1975. CNDICIONES EN EL POZO PUUNZE POR PURCA DE 1" DE DIANERAD CON VALVILA EXCITA A SION CLECZA 69 PST (4.9 Ke/cm²) TESION NAMAL ITCE FET (125.5 K Ke/cm²) TLEX CATO KE9126 FUNDIDAD MAXIMA DEL REGISTRO 1332 m. A DIO 100 B3.4 100 100 120 100 121 Ke/cm² 100 122 Ke/cm² 100 120 Ke/cm²	· ·	REG	ISTROS DE	CAMPU	DE CERR	OPRIET	0	1
C 0 M-9 JUNIO 2 DE 1975. CNDRIGNES EN EL POZO PIUYE POR PURGA DE 1º DE DIJASTRO CON VALVILA FRQUA S JON CABEZA 69 TSI (4.9 KG/cm²) SEJON MAXIMA 1786 FSI (125.5 KG/cm²) FUNDIDAD MAXIMA DE REXISTRO 13 92 m.			ISTRUS DE	PRESION	DE FO	NDO		
CUDICIDNES EN EL POZO FILUIE POR PURCA DE 1º DE 19/15. SION CABEZA 69 PSI (4.9 KE/CM ²) SION CABEZA 69 PSI (125.5 Kg/CM ²) ELIMINICA 1766 FSI (125.5 Kg/CM ²) FUNDIDAD MAXIMA DEL REGISTRIO 1332 M. NUMBER 1766 FSI (125.5 Kg/CM ²) FUNDIDAD MAXIMA DEL REGISTRIO 1332 M. NUMBER 1766 FSI (125.5 Kg/CM ²) FUNDIDAD MAXIMA DEL REGISTRIO 1332 M. NUMBER 1766 FSI (125.5 Kg/CM ²) FUNDIDAD MAXIMA DEL REGISTRIO 1332 M. NUMBER 1766 FSI (125.5 Kg/CM ²) FUNDIDAD MAXIMA DEL REGISTRIO 1332 M. NUMBER 1766 FSI (125.5 Kg/CM ²) FUNDIDAD MAXIMA DEL REGISTRIO 1332 M. FUNDIDAD MAXIMA DEL REGISTRIO 1332 M. NUMBER 1766 FSI (125.5 Kg/CM ²) FUNDIDAD MAXIMA DEL REGISTRIO 1332 M. NUMBER 1767 FSI (125.5 Kg/CM ²) FUNDIDAD MAXIMA DEL REGISTRIO 1332 M. FUNDIDAD MAXIMA DEL REGISTRIO 1332 M. FUNDI	CO M- 9	FFOU			3.005			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CNDICIONES EN EL P	OZO FLU	YE POR PUPC	A DE CHIE	1975.			
S SION CLEEZA <u>69 PSI (4.9 KC/cm²)</u> TLY:-20 KF076 FUNDIDAD VAXIMA DUL REGISTRY 0 1332 m. $\frac{149/n^2}{50}$ 20 40 00 100 120 $\frac{149/n^2}{50}$ 200 20 00 120 $\frac{150}{50}$ 1224 8.7 $\frac{150}{50}$ 1255 55.2 $\frac{160}{50}$ 125 30.7 $\frac{160}{50}$ 126 45.1 $\frac{160}{50}$ 167 30.7 $\frac{160}{50}$ 167 30.0 $\frac{160}{50}$ 167 30.0 $\frac{160}{50}$ 167 30.0 $\frac{100}{50}$ 167 30.0 $\frac{100}{50}$ 167 30.0 $\frac{100}{50}$ 1100 100 $\frac{100}{50}$ 1100 1000		DA.	10/1 10/16.		E DIANET	HO CON I	ALVIULA	FGULA
SESION HAXIMA 1786 FST (1225 F.82/CTC) FUNDIDAD HAXIMA DEL REGISTRO 1332 m. 100 0 69 50 124 8.7 100 191 103.4 150 260 hR.3 200 326 22.9 300 460 32.3 30 525 86.9 50 125 86.9 50 656 66.1 50 656 66.1 50 127 55.7 100 50 127 55.7 50 127 55.7 100 100 50 127 55.7 100 100 100 100 100 100 100 10	R SION CABEZA	69 FSI	(4.9 KE/0	721				
AVFUNDICAD HAXINA Delt REGISTRO 1332 m. List And OKP - 6126 M 66 6.0 100 120 M 66 6.0 100 100 100 100 101 13.4 100 200 200 200 200 200 326 22.9 300 300 400 200 400 200 300 250 29.3 27.6 300 400 <	RESION MAXIMA 178	6 FSI (125.5 Kg/ci	<u>n</u> 2)				· · · · · · · · · · · · · · · · · · ·
More unbicade Ib/ing kg/mg 20 40 60 60 100 120 100 191 13.4 8.7 100 200 100 12.4 8.7 100 100 12.0 100 12.0 100 191 13.4 8.7 200 200 12.4 8.7 100 12.0 100 12.0 100 12.0 100 12.0 100 12.0	EUNDIDAD MAXINA	DEL REGI	STRO 1339 1	 D .		MENTO KI	9176	
KUFUNDICAD Ib/ ₁₁₈ 19/ ₁₁₈		•						to the state of the second
M 20 40 60 80 100 120 M 69 4.9 100 200 200 11	· · ·	ig	2					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Augustion 1	M	20	40	co	60	100	120
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	in2 kg	cm						
50 124 8.7 100 191 13.4 200 326 22.6 300 326 22.6 250 393 27.6 300 460 32.3 50 525 36.9 300 50 525 300 721 30.7 50 525 55.2 300 721 30.7 50 721 30.7 50 725 600 50 728 55.7 700 600 600 650 62.8 700 50 7185 55.7 700 600 728 600 62.3 800 750 60.2 1000 600 10.2 1000 600 10.2 10.0 1000 1000 1000 600 1.24 10.0 100 1.24 1.20 100 1.20 1.300 100 <	0 69 1	100						
100 101 13.4 200 150 260 18.3 300 200 326 22.6 300 200 323 27.6 400 300 460 32.3 500 50 525 36.6 500 300 1056 460 500 300 50 525 36.9 300 100 656 461 500 721 50.7 600 500 721 50.7 600 500 721 50.7 600 500 721 50.7 600 500 725.8 700 600 500 650 62.8 700 500 104.85.7 800 900 1000 900 1000 1000 900 1167.82.0 1000 900 1200 1300 1200 1300 1300 1200 1500 1500 1300 1740 126	50 124 8	7						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100 101 13.	4 200						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	150 260 hR	3						
250 393 27.6 300 460 32.3 50 525 36.9 300 656 46.1 450 656 46.1 500 785 55.2 500 785 55.2 700 800 800 800 900 650 650 61.4 900 67.8 650 61.4 900 67.8 900 67.8 900 67.8 900 67.8 900 67.8 900 10.12 900 10.12 900 10.12 900 10.12 900 10.12 900 10.12 900 10.12 900 10.12 900 10.12 900 10.12 900 10.12 900 10.12 900 10.12 900 10.12 900 <	200 326 22.	<u>9</u> 300		\mathbf{i}				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	300 460 22	6 400						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50 500 32.	3						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	JO 525 00.	500						
500 721 50.7 550 785 55.2 500 850 59.8 650 10.4 64.3 00 67.8 58.7 750 10.4 77.2 900 100.4 77.2 900 100.4 77.2 900 100.4 77.2 900 100.4 100.0 900 100.0 100.0 900 100.0 100.0 900 100.0 100.0 900 100.0 100.0 900 100.0 100.0 900 100.0 100.0 900 100.0 100.0 900 100.0 100.0 900 100.0 100.0 900 100.0 100.0 900 100.0 100.0 900 100.0 100.0 900 100.0 100.0 900 100.0 100.0 900 100.0 100.0 900 100.0	450 656 46.	$\frac{\circ}{1}$			$\lambda = 1$			
350 785 55.2 300 850 59.8 650 14 164.3 00 1978 187.7 100 1978 187.7 150 100.2 13.2 150 100.2 13.2 150 100.7 13.2 150 100.7 13.2 150 1167.82.0 1000 150 1224.51.0 1000 100 1385.5 1100 100 1385.5 1200 1200 1487 105 1300 1487 105 1300 1677 118 1400 1400 1400 1300 1740 122 139 1786 126 1500 1770 128 1400 1500 1740 1400 1500 1740 1400 1500 1740 1400 1500 1740 1400 1500 1740 1400 1500 1740	500 721 50.	600						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	50 785 55.2	2						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	300 850 59.8	3 700						
00 167.8 58.7 750 10.4.2 73.2 900 1°00 104.477.6 1000 50 1167.62.0 1000 900 1231.86.5 1000 900 1231.86.5 1100 100 1358.95.5 1100 100 1358.95.5 1200 1200 1487 105 130 1551 109 1300 1300 1300 1200 131.8 1400 1300 1740 122 139 1786 126 1400 1500 1500	650 012 54.	3						
100 0.0.2 //3.2 900 100 100 //1.6 1000 50 1167 //52.0 1000 900 1231 //1.6 1000 900 1231 //1.6 1000 900 1231 //1.6 1100 100 1355 //1.5 1100 100 1355 //1.5 1200 100 1467 //1.5 1200 100 1551 //1.05 1200 100 1677 //1.18 1400 100 1740 //1.22 1500 100 1500 1500	750 678 58.7							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100 hans 173.2	900				\sim		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	50 1167 82 0	2						
$ \begin{bmatrix} 50 & h 2c_4 & 61 & 0 \\ 00 & h 358 & 95 & 5 \\ \hline 50 & h 423 & h00 \\ \hline 100 & h 487 & 105 \\ \hline 100 & h 487 & 105 \\ \hline 100 & h 551 & 109 \\ \hline 100 & h 551 & 1$	900 h237 B6.5	1000						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	150 h202 b1.0							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100 h 358 95.5	- 100						
$\frac{1}{10} + \frac{487}{109} + \frac{105}{1551} = 109$ $\frac{1}{200} + \frac{1}{1614} + \frac{114}{114}$ $\frac{1}{200} + \frac{1}{1740} + \frac{118}{122}$ $\frac{1}{39} + \frac{1}{726} + \frac{126}{126} + \frac{1}{1500}$ $\frac{1}{100} + \frac{1}{100} $.050 h423 h00	1200						
$\frac{1300}{200} + \frac{1552}{1614} + \frac{114}{14}$ $\frac{1300}{100} + \frac{1740}{1740} + \frac{122}{122}$ $\frac{1400}{1500} + \frac{1500}{1500} + 1$	10 1487 105							
$\frac{11677 114}{300 1740 122}$ $\frac{1400}{300 1766 126}$ $\frac{1400}{1500}$ $\frac{1400}{1500}$ $\frac{1400}{1500}$ $\frac{1400}{1500}$	200 1552 109	- 1300						
1400 3 39 1 726 1 26 1 500 1 500 1 -	11674 114	-						
339 1786 126 1500 1500		1400						
	339 1786 796	15.00						
		1500						
	LAVACIONES							
	II ⁻							

FIGURE 12a.- Pressure profile for well M-9 (June61975)

FIGURE 12b. - Temperature profile for well M-9 (June61975).

DEPTH (m)	PRESSURE GRADIENT (4 P/ft) × 100	HYDROSTATIC GRADIENT (△P/ft) ≯ 100
100	40.8	39.6
150	42.1	39.1
200	40.2	38.7
250	40.8	38.4
300	40.8	38.1
350	39.6	37.6
400	40.2	37.1
450	39.6	36.8
500	39.6	36.3
550	39.0	36.0
600	39.6	35.6
650	39.0	35.5
700	39.0	35.3
750	39.0	35.2
800	37.8	35.1
850	38.4	35.3
900	39.0	35.6
950	38.4	35.6
1000	39.0	35.6
1050	39.6	35.6
1100	39.0	35.6
1150	39.0	35.6
1200	38.4	35.8
1250	38.4	35.8

1

Ι

ł -

Ţ

.

-

Table 7.- Pressure and hydrostatic gradients taken from pressure and temperature logs run on July/2/1975 . Well M-9 .

•		37
• • • • • • • • • • • • • • • • • • • •	SION	
OBP	LS CEO	
0 B M		TERMICAS CAMPO DE CERRO PRIETO
•	REGI	STROS DE PRESION DE FONDO
		- THEORON DE FONDO
F ZO M- 9	FECHA	AGOSTO 25 DE 1975
CONDICIONES EN EL PO.	zo <u>FLUY</u>	E POR LINEA DE 6" CON VALVITA DECITATA
	PRESI	ON NAXIMA.
PRECION MANUA	1000 00	$= \frac{1}{1 \cdot 1} \frac{1}{1 \cdot E/Cm^{-}}.$
	1000 PS	1 (76.5 KR/CH2) ELENENTO EMPLEADO KPG -6122
P FUNDIEAD FAXIRA	LT ULL	<u>GISTRO 850 m.</u>
	K	
	kg/	
CONTRACTOR	W Z	
50 257 18 1	. 100	
100 276 19		
150 1299 121 0	200	
300 1322	300	
	200	
- 300 1225 1:0 0	400	
250 1/89 37 4		
150 1550 130.7	500	
500 1650 147.0		
550 729 57.0	600	
500 780 55 F		
650 829 50 7	700	
700 400 63 0		
725 1939 56 0	800	
750 1060 168.1	900	
775 000 70.2	300	
300 1029 72.3	1000	
825 1059 71.1		
50 1088.76.5	1100	
	1200	
······································	1300	
	:	
	1400	
·		
SERVACIONES		
	· · - · · ·	
דדנווסד זק	Process	e profile for well M-9 (Aug /25/1075)
	1 <u>15380</u>	(aug./25/15/5).

DEPIH (m)	PRESSURE GRADIENT (▲P/ft) × 100	HYDROSTATIC GRADIENT (4 P/ft) × 100
100	11.6	37.1
150	14.0	36.9
200	17.1	36.7
250	23.8	36.5
300	36.0	36.3
350	39.0	36.2
400	37.2	36.2
450	36.6	36.1
500	36.0	36.1
550	36.6	36.1
600	36.6	36.1
650	36.6	36.1
700	36.6	36.1
725	36.6	36.1
750	36.6	36.1
775	36.6	35.9
800	36.0	35.7
825	36.6	35.9

Table 8.- Pressure and hydrostatic-gradients taken from pressure and temperature logs run on Aug/25/1975. Well M9

DEPTH (m)	PRESSURE GRADIENT (Å P/ft) × 100	HYDROSTATIC GRADIENT (& P/ft) * 100
100	9.8	36.9
200	17.4	36.4
300	37.2	36.2
400	37.5	36.0
500	38.7	35.9
600	36.9	35.9
700	35.1	35.8
725	36.6	35.8
750	36.6	35.8
775	35.4	35.8
800	39.0	35.8
825	34.1	36.2
850	37.8	36.3
900	37.2	36.3
1000	37.8	36.9
1025	38.5	37.3
1050	42.7	37.4
1075	37.8	37.4
1100	36.6	37.2
1125	39.0	37.0
1150	36.6	36.8
1175	40.2	36.6
1200	35.4	36.8
1225	39.0	36.7
1253	37.0	36.6

Table 9.- Pressure and hydrostatic gradients taken from pressure and temperature logs run on June/18/1977. Well M-9 .

44

i

ì

!

49 COMISION FEDERAL DE ELECTRICIDAD OBRAS GEOTERMICAS CAMPO DE CERRO PRIETO REGISTROS DE PRESION DE FONDO

P-2/N-42

020 M-	42		FECHA		JUNTO	3 DE 197	۲ <u>۲</u>			
CONDICIONES	EN EL	P07	CERRAI	00. SI	N FLUII	$\frac{-2}{2}$ CON AG	<u></u> 	FLOSO D		
4GOSTO DE	2 1 9 7 3	E:	SFEJO DI	P. AGUA	1 82 3	20 m	<u> </u>	<u>Dr 030 - 1</u> .	2017 20 1	21 112
FRESION CAB	EZA		CERO		<u><u> </u></u>	<u> </u>		····		
PRESION MAXI	MA		1593.5) PSI	(112.0	E=/om2)	मा.स	VENTO ET	P 0126	
ROFUNDIDAD	махіма	I	DEL REGI	STRO 1	1263 π.	<u> </u>				
			•	•						
-			19/ 2	,			<u></u>			
			M 'cm		20	40	60	80	100	120
FROFUNDIDAD	16,	ka,								
N.	/in ^c	^{лу} ст	100							
50		-								
<u> </u>	14.4	1.0	20.0							
150	36.2	6.1	200							
200	161	<u>11.3</u>	700							
250	235	16.5	300							
300	1311	21.8	400							
350	384	26.9								
400	458	32.2	500							
450	533	37.4								
- 500	605	<u>42.6</u>	600							
550	678	47.7								
600	751	<u>52.8</u>	700							
650	823	<u>57.8</u>								
700	895	<u>63.0</u>	800							
750	964	67.7	000							
800	1025	<u>72.0</u>	900					==\==		
<u> </u>	<u>1989 r</u>	1.5.5								
<u> </u>	11561	37.3	1000					\		
<u> </u>	1231 18	36.5								
. 1000	1750	<u>-0.7</u>	1100							
1050	17:40	24.8								
, 1100	ii 202 k	20. O	1200							

 1100
 1408 09.0
 1200

 1150
 1262 103
 1300

 1200
 1522 h07
 1300

 1250
 1570 h11
 1400

 1263
 1594 h12
 1400

 1500
 1500
 1500

FIGURE 16a.- Pressure profile for well M-42 (June/1975).

ļ-

FIGURE 16b.- Temperature profile for well M-42 (Jan./1975).

1500

OBSERVACIONES

DEPIH (m)	PRESSURE GRADIENT (▲P/ft) ¥ 100	HYDROSTATIC GRADIENT (AP/ft) × 100
200	45.6	43.1
250	45.1	43.1
300	46.3	43.1
350	44.5	43.1
400	45.1	43.0
450	45.7	42.9
500	43.9	42.7
550	44.5	42.4
600	44.5	42.1
650	43.9	41.6
700	43.9	41.4
750	42.1	40.9
800	37.2	40.2
850	39.0	38.7
900	40.8	36.4
950	45.7	34.4
1000	36.0	32.5
1050	36.0	31.9
1100	36.0	31.9
1150	34.1	31.9
1200	35.4	31.9
1250	34.7	31.8
1263	35.2	31.8

Table 10. - Pressure and hydrostatic gradients taken from pressure and temperature logs run on Jan/14/1974. Well M-42

بر

J

SEGISTROS DE PRESION DE FONDO

ю M- 42 FECHA МАУО 13 DE 1976
TITIES IN EL POZO FLUYE POR FURGA DE (1"Ø) 25 TH. CON VILVILA FRANKER
POZO EN CALENTAMIENTO.
$(142 \text{ FSI}) 10.0 \text{ Ke/cm}^2$
107.1 NEW (1524 FSI) 107.1 NE/CMC ELECTIVE FIELD FG 61/2
1-1 1 1-2 MAXIMA 1291 M.

			r.c/ 2						_
1		,	M CH	20	40	£ 0	8 D	100	
	15/.2	kç,	i I			72 3 4 4	<u> </u>		
	111" 		100		-				
100	213 -	15.0							
200		22-1	200						
		1.0.1	•						
			200						
							<u> </u>		
700 1	FEC /	1 <u>22,0</u> 152 5	~00						· · · · · · · · · · · · · · · · · · ·
-00	007	70.1							
200 1	103	77 5	500						
. 1000	1211	85.1				\mathbf{N}			
1050	1265	68.9	600						
1100	1319	<u>°2.7</u>	70.0						
	1.71	28.2	100			, _ \			
1200	1425	<u>100</u>	200						
1	1150	104	200				$\mathbf{\lambda}$		
	1221	<u>107</u> _	900						
· · · · · · · · · · · · · · · · · · ·			1000						
·			1001						
· •			7200						
			1200						
			1300						
			1000						
			1400						
							F====		
! !		'	.E 00						
4 									
ELERVACION	<u>ES</u>								
(•									

FIGURE 17a.- Pressure profile for well M-42 (May/13/1976).

DEPTH (m)	PRESSURE GRADIENT (P/ft) 100	HYDROSTATIC GRADIENT (P/ft) 100
200	31.1	37.2
300	35.7	36.3
400	36.6	35.6
500	35.1	34.7
600	34.4	33.9
700	33.2	33.2
800	32.9	32.5
900	32.3	31.8
1000	32,9	31.4
1050	32.9	31.2
1100	32.9	31.3
1150	31.7	31.2
1200	32.9	31.3
1250	33.5	31.3
1292	31.9	31.3

Table 11.- Pressure and hydrostatic gradients taken from pressure and temperature logs run on May/13/1976. Well M-42

FIGURE 18.- Well completion scheme for well M-9

- -

FIGURE 19.- Well completion scheme for well M-42.