THE DESIGN AND CONSTRUCTION OF AV ABSOLUTE PERMEAMETER TO MEASURE THE EFFECT OF ELEVATED TFERATURE ON THE ABSOLUTE PERMEABILITY TO DISTILLED WATER OF UNCONSOLIDATED SAND CORES

A Report Submitted to the Department of Petroleum Engineering of Stanford University in Pulfillment of the Requirement for the Degree of Master of Science

> By Abraham Sageev December, 1980

To Michal

# Acknowledgments

I would like to express sincere appreciation to my research advisor, Dr. Henry J. Ramey, Jr., for his advising, guiding, and supporting me throughout this work.

Many thanks are due to my friends and the department staff who helped me finish this work.

Financial support was provided through the Stanford Geothermal Program by the Department of Energy, Grant No. DE-AT03-80SF11459.

# Abstract

A new absolute permeameter was designed and constructed in order to investigate the effect of temperature on absolute permeability. The main goal of this work was to improve the controls of the permeameter and to investigate the flow of distilled water through unconsolidated silica sand cores. No significant change in the absolute permeability with a change in temperature was observed. This result is different than results reported in previous work done at Stanford. It is believed that system problems, such as converging flow in the core plugs, caused the observation of permeability reduction with an increase in temperature.

This work will be extended to consolidated sandstones and will aid in the design of relative permeability experiments.

# Table of Contents

|                       | page |
|-----------------------|------|
| Acknowledgements      | i    |
| Abstract              | ii   |
| List of Illustrations | v i  |
| List of Tables        | viii |

| 1. | Introdu | ction                                          | 1  |
|----|---------|------------------------------------------------|----|
| 2. | Apparat | us Description                                 | 3  |
|    | 2.1.    | Air Bath Set-up                                | 3  |
|    | 2.2     | Water Pump and Accumulator                     | 6  |
|    | 2.3     | Excess Flow Loop                               | 6  |
|    | 2.4     | Filters                                        | 8  |
|    | 2.5     | Confining Pressure System                      | 8  |
|    | 2.6     | Core Holder                                    | 10 |
|    | 2.7     | Temperature Recording                          | 10 |
|    | 2.8     | Pressure Differences Recording and Calibrating | 10 |
|    | 2.9.    | Cooling System                                 | 15 |
|    | 2.10    | Flowrate Measuring                             | 17 |
|    | 2.11    | Intake Water System                            | 18 |
|    | 2.12    | Vacuum System                                  | 18 |
|    | 2.13    | Gas System                                     | 18 |
|    | 2.14    | Valve Manifold                                 | 19 |
| 3. | Apparat | us Improvements                                | 21 |
|    | 3.1     | Vibrations in the Air Bath                     | 21 |
|    | 3.2     | Accumulator                                    | 21 |
|    | 3.3     | Excess Flow Loop                               | 23 |
|    | 3.4     | Pressure Taps                                  | 23 |
|    | 3.5     | Core Plugs                                     | 25 |
|    | 3.6     | Sand Sieving and Cleaning                      | 26 |

# Table of Contents, cont.

| 4. | Procedu | ire                                               | 29 |
|----|---------|---------------------------------------------------|----|
|    | 4.1     | Sand Preparation                                  | 29 |
|    | 4.2     | Sand Packing                                      | 29 |
|    | 4.3     | Geometry Measuring                                | 31 |
|    | 4.4     | Core Holder Packing                               | 31 |
|    | 4.5     | Confining System Preloading                       | 31 |
|    | 4.6     | Pressure Transducer Calibration                   | 33 |
|    | 4.7     | Filter Inspection and Installation                | 33 |
|    | 4.8     | Charging the Accumulator                          | 33 |
|    | 4.9     | Washing the System (without the core)             | 34 |
|    | 4.10    | Setting the Excess Loop Pressure                  | 35 |
|    | 4.11    | Vacuuming of the System (without the core)        | 35 |
|    | 4.12    | Installing the Core Holder in the Air Bath        | 36 |
|    | 4.13    | Charging Confining Water and Pressurizing         | 36 |
|    | 4.14    | Vacuuming the System                              | 37 |
|    | 4.15    | Flooding and Pressurizing the System              | 37 |
|    | 4.16    | Initiating Flow, Temperature Recording, ∆p Recor- | 38 |
|    |         | ding, and Cooling System Flow                     |    |
|    | 4.17    | Measurements at Various Flowrates at a Constant   | 38 |
|    |         | Temperature (T, Ap, q)                            |    |
|    | 4.18    | Heating the System                                | 39 |
|    | 4.19    | Cooling the System                                | 39 |
|    | 4.20    | Stopping the Flow                                 | 42 |
|    | 4.21    | Confining Pressure Bleed Off                      | 42 |
|    | 4.22    | Removing. : the Core Holder                       | 42 |
|    | 4.23    | Taking the Core Holder Apart and Inspecting It    | 43 |
|    | 4.24    | Problems                                          | 43 |
|    |         | 4.24.1 Filter Plugging                            | 43 |
|    |         | 4.24.2 Plugging of the Down Stream Needle Valve   | 44 |

# Table of Contents, cont.

| 5. | Summary | of Results                               | 45 |
|----|---------|------------------------------------------|----|
|    | 5.1     | Permeability Calculations                | 45 |
|    | 5.2     | Error Analysis                           | 56 |
|    | 5.3     | Results of Runs $8$ , $9$ , 10, and $11$ | 58 |
| 6. | Conclus | ions                                     | 65 |
| 7. | Referen | ces                                      | 66 |
| 8. | Tables  | of Data                                  | 67 |

# List of Illustrations

|     |                                                                              | page           |
|-----|------------------------------------------------------------------------------|----------------|
| 1.  | General view of the apparatus                                                | 4              |
| 2.  | Schematic diagram of the apparatus - water flow                              | 5 <sup>.</sup> |
| 3.  | A schematic diagram of the water pump, the accumulator and the overflow loop | 7              |
| 4.  | A schematic of the confining pressure system                                 | 9'             |
| 5.  | Core holder body                                                             | 11             |
| 6.  | Up stream core plug                                                          | 12             |
| 7.  | Down stream core plug                                                        | 13             |
| 8.  | A schematic of the core holder                                               | 14             |
| 9.  | A schematic of the cooling system                                            | 16             |
| 10. | Flow rate measuring system                                                   | 17             |
| 11. | Main valve manifold                                                          | 20 .           |
| 12. | "01d" accumulator arrangement                                                | 22             |
| 13. | "New" accumulator piping                                                     | '22            |
| 14. | "Old" pressure taps                                                          | 24             |
| 15. | "Old" head loss on the core                                                  | 24             |
| 16. | End effects pressure losses                                                  | 26             |
| 17. | Up stream and down stream core plugs before improvement                      | 28             |
| 18. | Working sheet of geometry measurements and weights                           | 32             |
| 19. | Pressure differential recording at k measurements and during heating         | 40             |
| 20. | Heating cycle profile: 150°F to 250°F, run number 11                         | 41             |
| 21. | Viscosity of water vs. temperature at 200 psia                               | 48             |
| 22. | Viscosity of water vs. temperature at saturation pressure                    | 50             |
| 23, | $\mu_{p}/\mu_{sat}$ vs. temperature                                          | 51             |

| 24. | 4. Viscosity vs. temperature at 200 psia (improved ra  | ange 70 <sup>0</sup> F | to 100 <b>°</b> F) | 52 |
|-----|--------------------------------------------------------|------------------------|--------------------|----|
| 25. | 5. Permeability vs. temperature for 150 mesh sand, ru  | ın number              | 8                  | 60 |
| 26. | 5. Permeability vs. temperature for 150 mesh sand', ru | un number              | 9                  | 61 |
| 27. | 7. Permeability vs. temperature for 200 mesh sand, ru  | un number              | 10                 | 62 |
| 28. | B. Permeability vs. temperature for 260 mesh sand, ru  | un number              | 11                 | 63 |
| 29. | 0. Permeability vs. temperature for runs 8, 9, 10, 1   | 1                      |                    | 64 |

page

# List of Tables

| 1.  | Water viscosity                                                                       | 47 |
|-----|---------------------------------------------------------------------------------------|----|
| 2.  | Specific volume of water (at saturation)                                              | 53 |
| 3.  | Specific volume of water (at 200 psia)                                                | 54 |
| 4.  | Water viscosity and specific volumes at 200 psia (used in the calculations)           | 55 |
| 5.  | $\Delta\mu$ and Av for various temperatures                                           | 57 |
| 6.  | $\overline{k}_{T_{ab}}$ and $\Delta \overline{k}_{T_{rel}}$ for runs 8, 9, 10, and 11 | 67 |
| 7.  | Data for run number 8                                                                 | 68 |
| 8.  | Data for run number 9                                                                 | 71 |
| 9.  | Data for run number 10                                                                | 74 |
| 10. | Data for run number 11                                                                | 77 |

page

# 1. Introduction

Absolute permeability is an important parameter in the evaluation and performance of geothermal or hydrocarbon reservoirs. Primary production of oil and gas reservoirs does not change the temperature of the system. This is not the case in geothermal reservoirs or in many of the EOR\* projects. In these reservoirs the temperatures of the formations change and, along with this, many of the formation properties change. Absolute permeability is an essential parameter and there is a great need to study the effect of temperature on absolute permeability.

A grid of experiments investigating the effect of temperature on absolute permeability has been carried out throughout the last decade. These experiments covered a range of rock types, fluids, confining pressures and several other system characteristics. It is evident that not all the results are in agreement. In some cases the observations in the laboratory yielded different interpretations by the researchers. Cassé (1974) interpreted a decrease of absolute permeability to distilled water of Berea sandstone with an increase in temperature as a temperature effect. Other observers, including Sydansk (1980) claim a permeability reduction is due to fines migration and not temperature effects.

Upon searching the literature, another disagreement surfaces that is somewhat easier to settle. There are different laboratory observations for the same experiments. Most of these disagreements can be settled by taking a close **look** at the "control" the experimenter has of the system. Runs have to be repeated with improved systems that will give maximum

-1

EOR means "Enhanced Oil Recovery"

'information about the parameters included' in the experiment.

This is the point at which this work is introduced. Out of the grid of possible experiments, one configuration of rock, confining and pore pressures, and fluid was chosen. This work studied the effect of temperature on the absolute permeability to distilled water of unconsolidated sand cores. Work done at Stanford University, primarily by Casse and Aruna (1976), produced adecreaseinpermeability with an increase in temperature. This decrease in permeability could not be explained by thermal expansion, porosity changes, or other explanations that were suggested, such as silica-water attraction. This work was set up to design and construct an absolute permeameter with improved system controls in order to take a close look at the change of permeability with temperature.

# 2. Apparatus Description

Figure 1 is a rough  $60^{\circ}$  axonometric view of the apparatus while Figure 2 is a schematic of the system. Later in this chapter all the components will be described in detail. Most of the equipment (air bath, recorders, pumps) was used in other experiments. The valves, the tubing, and the core holder are new.

#### 2.1 Air Bath Set-up

Air Bath Specifications: "Blue M" by Blue M Electric Company, Blue Island, IL.

Model #: ROM - 1406C-1 Serial #: CD - 10690 Line Voltage: 240V/1 PH/60 Hz Temperature Range: To  $343^{\circ}C/650^{\circ}F$ Line Currents: L<sub>1</sub> - 40A, L<sub>2</sub> - 40A

The air bath houses the following:

The heating coils before the core The core holder Four (4) thermocouples Flow lines Pressure recording lines Confining pressure line

To minimize vibration the core holder hangs from the ceiling of the bath and sits on a rubber cushion. The tubing in the bath is tied together in various places with thermal tape to further dampen vibration.

The bath maintains a .constant temperature. It has a variable' heating capacity and small temperature oscillations. The temperature bath will heat up an increment of  $100^{\circ}$ F in about fifteen minutes. The core heating requires about two to three hours.

The bath is equipped with a vent which makes controlled cooling possible. The bath had 100 hours of use when this project began. The project used another 370 hours.



-4-

••

Fig. 1: General View of the Apparatus





ł,

-5-

#### 2.2 Water Pump and Accumulator

Water pump specifications:
Lapp Pulsafeeder Model #LS.20 Serial no. X-7704 Process Equipment Lapp Industries Company, Inc. Leroy, NY
Accumulator specifications:
Greerolator Model f20-30 TMR 5 1/2 WS Serial #14008 30 cubic inches A division of Greer Hydraulics, Inc. Los Angeles, CA

Figure 3 presents the pump and the accumulator. The tubing and valves between "A" and "D" are 1/4". (See section 3.2 for other details). The gas line coil and the flow line coil separate the pump from the recording elements. The coils reduce vibrations that are caused by the pump and transfered to the transducers. The pump is set directly on the floor so no vibrations are transferred to the recording tables. The pump can produce a maximum flow of about 1150 cc/hour at room conditions. This arrangement produced a good dampening of the pulses, leaving them almost negligible. In other words, as can be seen in Figure 18, the thickness of the lpsi plate line is practically the thickness the pen produces.

# 2.3 Excess Flow Loop

Figure 3 presents the excess flow loop or the overflow loop. This flow system accepts the difference of flow between the pump's output and the flow in the core.

The pressure relief value is a 1/4" "Nupro" value with swagelock fittings. The operating pressure can be manually set at a range of 150 psig

-6-



Figure 3 - A SCHEMATIC DIAGRAM OF THE WATER PUMP, THE ACCUMULATOR, AND THE OVER FLOW LOOP

to 350 psig. The value is set horizontally in order to get a constant behavior of both the spring and the travelling seat. In addition to the improvement in the flow control described in section **3.3**, the loop provides a safety value for the whole system. Most importantly, it protects the accumulator from a 25% increase in the line pressure. This high pressure would blow the diaphragm in the accumulator.

# 2.4 Filters

There are two parallel up stream filters and one down stream filter. Seven micron filters were used although other types of filter elements  $(60 \mu)$  can be used.

The up stream filters cannot be changed during the run. Some air would be driven into the core. But'the flow can be directed through either one of them. This doubles the time for plugging. The down stream filter can be changed in the middle of a run. Figure 2 shows the location of the filters.

# 2.5 Confining Pressure System

Figure 4 presents a schematic diagram of the confining pressure system. Water .was used instead of oil in the confining chamber of the core holder. This eliminates contamination of the down . stream if a failure should happen. Furthermore, a spill of oil in the bath at 300°F can be dangerous . The pressure is applied by an "Enerpac" hand pump rated at 10,000 psig. The pump is oil operated. The converting vertical vessel (see Figure 4) is not in the bath. The oil inlet is on the top and the water outlet is on the lower part. The volume of the vessel is larger than the confining chamber in the core holder so that no

-8-



Figure 4 - A SCHEMATIC OF THE CONFINING PRESSURE SYSTEM

oil can get into the bath.

The pressure gauge is a "Helicoid" gage U.S .A. , 8 1/2 W, 10,000, 50 libs., subd.  $\pm 1/4\%$  accuracy.

# 2.6 Core Holder

The core holder . consists of three parts: (1) The core holder body, Figure 5; (2) The up stream core plug, Figure 6: and (3) The down stream core plug, Figure 7.

It is rated at about 4000 psig confining pressure. The core plugs are sealed by "o" rings at both ends. The viton sleeve supporting the sand is held in an aluminum perforated sleeve. The assembled core holder is presented in Figure 8. This core holder was redesigned by Mr. A. Sufi, and, to date, has been performing very well.

# 2.7 Temperature Recording

Five (5) thermocouples are scanned about once in ten (10) seconds by a Leeds and Northrup Speedomax Recorder. The recorder has twenty-four channels and a range of  $0^{\circ}F$  to  $600^{\circ}F$ . Figure 8 shows the location of the five thermocouples: (1) in stream, up stream of the core; (2) in stream, down stream of the core; (3) up stream core plug metal; (4) core holder body surface; and (5) out flow temperature entering the flowrate metering burette. All thermocouples were checked and the recorder calibrated prior to the runs and during the runs. The resolution of the recorder is about  $\frac{+}{-} 1^{\circ}F$ .

#### 2.8 Pressure Differences Recording and Calibrating

The pressure recording system includes the following: (1) pressure taps, 1/16" lines open at the sand faces, Figure 8; (2) pressure lines

-10-



Figure 5 - CORE HOLDER BODY



Figure 6 - UP STREAM CORE PLUG



Figure 7 - DOWN STREAM CORE 'PLUG



Figure 8 - A SCHEMATIC OF THE CORE HOLDER

and valve manifold, Figure 2; (3) transducers, Figure 2; (4) pressure indicators, Figure 2; and (5) recorder, Figure 2.

Pressure gauges read the pressures up stream of the core and down stream of the viscometer, Figure 2.

The sensitivity of the readings to the location of the pressure taps is presented in section 3.4. The core transducer has a 1 psi plate model KP 15. The viscometer transducer has a 5 psi plate. The pressure indicators (one for each transducer) are model "CD 25" by Dynasciences Corporation. The recorder is a two (2) channel "Chessell BD9" Recorder.

The up stream pressure gauge is a "Duragauge AISI 3/6 tube and socket, 0-600 psi, 5 psi subd." The down Stream gauges are a "U.S. Gauge" make, 0-600 and 0-1000 psi range. The accuracy of the transducers is  $\pm 1\%$  of the plate value.

Calibration is done by a manometer. A water manometer is used for the 1 psi plate and a mercury one is used for the 5 psi plate. The mercury calibration is done with a nitrogen cushion while the water column is applied directly to the transducer.

The transducer plates can be changed during a run. They are located high above the valve manifold and can be bled after reinstalling. They can be recallibrated during a run as well.

# 2.9 Cooling system

Figure 9 presents the cooling system. The first goal is to cool the outflow from the bath to room temperature. This is done by running a coil of the flow line through a vessel with tap water circulating in it.

The second goal is to keep the water flowing through the fine needle

-15-



Figure 9 - A SCHEMATIC OF THE COOLING SYSTEM

value at a constant room temperature. The performance of the value is very sensitive to changes in room temperature. The temperature is kept constant by surrounding the 1/8" flow lines with a 1/4" flow line and letting tap water run in the annular space. This cooling exchanger is located before the needle value.

# 2.10 Flowrate Measuring



Figure 10 - Flowrate Measuring System

A very important point must be made here and it will be stressed in other places throughout the report. It is said that 10 cc are measured for all flowrates. Perhaps due to a thin layer of water, only 9.8 cc are actually measured. This will introduce an error in the absolute value of  $\mathbf{k}$ , but as long as the measuring procedure is followed in the same way every time, an error in the relative changes in  $\mathbf{k}$  is not introduced.

The time needed to produce the given volume in the burette is measured by a "Precision Scientific Com." timer, which is good to about 0.05 seconds, cat. #69230, 120V - 60 cycles.

#### 2.11 Intake Water System

In order to be able to change the intake water reservoir without shutting down the pump and without getting air into the suction, a two stage feeding system was built (Figure 1). The larger reservoir, #15, is a five gallon glass bottle that can be replaced. Water is syphoned to the primary reservoir, #17, a 4000 cc glass bottle. This lower primary reservoir is not touched during the run and the pump's suction end is never above water level. An adjusting valve is located on the syphon between the two reservoirs and it is set in such a way that the level of water in the low reservoir is constant (around the 4000 cc mark).

#### 2.12 Vacuum System

Vacuum is applied by the vacuum pump. A liquid trap is located between the pump and the flow lines. The vacuum is measured with a "Labconco" mercury gauge which is good to 5 microtorr. The gauge is disconnected before **flow** is initiated *to* protect it.

# 2.13 Gas System

A 2200 psig nitrogen bottle supplies gas to charge the gas chamber in the accumulator. It also supplies gas to the up stream or down stream ends of the core if gas flood is desired (Figure 2).

-18-

# 2.14 Valve Manifold

Figure 11 presents a schematic diagram of the valve manifold. All the gas valves and the transducer valves are needle valves, installed to prevent shocks. The down stream control valve' and \_\_\_\_\_\_ auxiliary valve (7 and 6 in Figure 11) are fine needle valves.





#### 3. Apparatus Improvements

Four major problems that arose during the first run were: (1) Noise and pump pulsations affecting the transducer's performance; (2) Control of the average pore pressure with varying flowrates; (3) A calculated permeability that was flowrate dependent; and (4) Plugging of the down stream needle valve. These problems were studied in order during the next seven runs. Actually, this procedure yielded a sensitivity analysis of the behavior of the apparatus. The magnitude of the problems and the ways for improving the apparatus are described in the following sections.

# 3.1 Vibrations in the Air Bath

The flow was initiated at room temperature. For a given accumulator setting and a constant flow the core transducer (1psi plate) had a certain magnitude of oscillation. When the bath was turned on, the oscillation magnitude doubled. The main cause was the fact that the core holder sat on the bath floor and the vents' vibration was picked up by the pressure taps. The problem was solved by hanging the core from the main ceiling frame of the bath. A rubber lining separated the core holder from the frame to further dampen the vibratons.

# 3.2 Accumulator

The two following changes cut the pump pulsation effect on the core transducer by 50% each time.

The first accumulator piping was the 1/8" tubing shown in Figure 12.

-21-



Figure 12 - "Old" Accumulator Arrangement

The connection to the core at point "A" was moved to point "B" as is shown in Figure 13. This put the accumulator in the direct line of the pulsations and 'helped the accumulator absorb the pulses.



Figure 13 - "New" Accumulator Piping

The second change was the replacement of the section of 1/8" tubing

"ABC" by a 1/4" tubing. The improvements, as was mentioned before, were significant.

# 3.3 Excess Flow Loop

A serious problem arises when a pulsating pump, an accumulator, and a back pressure needle valve are used. One must adjust the outlet flow to be exactly the same as the pump output. If the flows are not the same, the accumulator either loads or unloads, hence varying the pressure. The problem was magnified when the accumulator unloaded into the flowing system. Rust and gum (orange in color) would build in the accumulator. When unloading would occur, the rust and gum would plug the filters and accumulate in the upper section of the core.

The two problems were solved by introducing the excess flow loop presented in Figure 3. The pressure regulator maintained a good average up stream pressure, and as long as the output of the pump was larger than the flow in the core, the extra flow exited through the excess loop. The volume of the tubing between point "A" and point "B" (Figure 3) is larger than the maximum pulse of the pump. So no fluid that went by point "B" towards the accumulator could find its way back to the core. This completely isolates contamination in the accumulator from the core. All up stream sand faces of the cores were inspected and showed no evidence of contamination after the excess loop was introduced.

#### 3.4 Pressure Taps

Naturally, in the initial construction of the apparatus the pressure taps were as in Figure 14.

-23-



FIGURE 14 - "Old" Pressure Taps

At this point a serious flowrate dependency of the permeability was experienced. By all means the flow is laminar, as shown in section 5, hence thereshouldnot be flow rate dependency. It is obvious that the Ap measured is not only the Ap of the core but includes the Ap in the tubing sections A-B and C-D. Simplified we have the following condition:



"Figure 15 - "Old" Head Loss on the Core

 $\Delta p_{AB}$  and  $\Delta p_{CD}$  are mostly a function of V but some of the "T" and elbows and other irregularities are a function of V<sup>2</sup> and hence are not linear with **q** as Darcy's law is. This yielded part of the permeability (k) dependence upon the flowrate (q). Varying the flowrate (q) from 200 cc/hour to 300 cc/hour caused a drop in k of about 100 md from a level of 3500 md.

Figure 8 presents the solution to this problem. The pressure taps were made of 1/16" tubing and put into the 1/8" flow lines . at the sand face. This cut the flow rate dependency of the permeability by 50%. This pressure tap \_\_\_\_\_\_ measures the kinetic potential of the flow:



A sample calculation shows that the extra Ap due to the flow is negligible:

$$Ap = \frac{14.7 \ \gamma \ V^2}{2g}$$

Where:  $Ap \equiv p s i$   $\gamma \equiv kg/cm^{3} = 10^{-3}$   $V \equiv cm/sec \simeq 0.3 \qquad (Maximum flow)$   $g \quad cm/sec^{2} = 981$ so:  $\Delta p = \frac{14.7 \times 10^{-3} \times 0.3^{2}}{2 \times 981} = 687 \times 10^{-9} psi$ 

# 3.5 Core plugs

As presented in section 3.4, the rate dependency remained. It was reduced by half but something was still wrong. A closer look at the core plugs is presented in Figure 17. As they were, there was a serious

-25-

end effect in the sand due to converging of flow. The receiving channels were simply not big enough. This caused the  $\Delta p$  to look as presented in Figure 16:



FIGURE 16 - End Effects Pressure Losses

 $\Delta p_{AB}$  and  $\Delta p_{CD}$  are a function of the flow. This was a key factor once improved. The improved core plugs are presented in Figures 6 and 7. Once improved, not only did the k dependency on **q** vanish, but k increased by as much as 30%. That is logical since  $\Delta p$  decreased by a large amount for the same flow.

# 3.6 Sand Sieving and Cleaning

Finally, to complete this section, one more problem was solved: the plugging of the needle valve that sets the flow in the core. The sand was sifted about five times, and then washed with distilled water and dried at 70°C. That improved the flowing stability a great deal. The particles . plugging the needle valve were smaller than seven microns since a seven micron filter is up stream of the valve. The sand sand sizes are about

-26-
130 to 180 microns so probably the flow of fines did not affect the permeability. 'Furthermore, after the first heating cycle to  $300^{\circ}$ F, the plugging effect practically disappeared.



\$

Figure 17 - UP STREAM AND DOWN STREAM CORE PLUGS BEFORE DAPROVEZENTS

#### 4. Procedure

The main goal of this section is to advance an operating description so that the work can be reproduced. Furthermore, the mechanical behavior of the system is one of the sources for an evaluation of the system and what can be done with it in the future. Several problems and disagreements may orginate from a different and inconsistent procedure. Many schematics and diagrams in other sections will be referred to in the following section.

#### 4.1 Sand Preparation

The Ottawa silica sand was carefully sieved. Two sands were used: mesh 120-150 (what is left on the 150 Mesh screen) and mesh 170-200 (what is left on the 200 mesh screen). An initial quantity of about 500 cc of sand is put on the top sieve. Then only the desired mesh is resieved four (4) more times. Sieving time is about 15-30 minutes for every cycle.

After a large enough quantity of the two grain sizes was on hand, washing commenced. The coarse portion (mesh 150-120) was washed under tap water through a mesh 270 screen three times, about 5 cc of sand at a time. Then all the sand was washed three times with distilled water. The finer sand (mesh 200-170) was washed three times with distilled water, not through a screen. The sands were dried in an oven at 60"-70°C.

In order to achieve a good sieving of the sand, the quantity on every sieve should be small. A thin layer of sand will expose a better fraction of the grains on a sieve to the holes. One cycle of sieving produced 10-30 cc of the single mesh sand.

#### 4.2 Sand Packing

1. Wash the up stream core plug with water and acetone and dry. Protect

-29-

the "o" ring from the acetone.

- 2. Cut a 1 1/2" x 1 1/2" mesh 270 screen and place it on the core plug end. Put the screen ring on and tap down gently with a plastic hammer. Be sure that the screen is not dammaged. Cut the extra parts of the screen below the ring. Inspect care-fully.
- 3. Repeat steps 1 and 2 for the down stream core plug.
- 4. Cut an 8" piece of viton tubing. Square one end and wash it with water. Wash the aluminum perforated sleeve and push the viton into the sleeve. Center the viton. Then dry the inside of the viton and, as much as possible, the aluminum sleeve.
- 5. Fit the squared viton end onto the up stream core plug so that two things happen: (1) the rubber sleeve goes as far on the end plug as possible and (2) the aluminum sleeve overlaps the core plug by the width of the screen ring, about 3/16". Clamp with a clamp that does not exceed the aluminum sleeve diameter. Put the clamp as close as possible to the aluminum sleeve. Make sure that the clamp does not cut the rubber. The core plug and sleeve are set vertically with the open end of the sleeve pointing upwards.
- 6. Take 100 cc of sand in a 100 cc beaker and weigh it.
- 7. Fill the sleeve with 30 cc of sand.
- 8. Use a stainless steel rod about 2 1/2" long and 3/8" in diameter with a rounded end. Let it drop on the sand from a height of about 2"-3". Pound the sand 50 times. (30 cc were used to protect the up stream screen) Then tap the aluminum sleeve with the handle

-30-

of a medium screwdriver, 50 times, at the sand face level, while turning the core  $360^{\circ}$  (on a circle).

- Repeat steps 7 and 8 with a 20 cc increment until the level of the sand is 3/16" below the aluminum sleeve end.
- 10. Weigh the sand left in the beaker. (Figure 17)
- 11. Put up stream core plug in place. Tap it very gently. Make sure it is vertical. Clamp it as close as possible to the aluminum sleeve. Cut the viton at the upper level of the upstream core plug.

# 4.3 Geometry Measuring

For each run, the core dimensions were recorded on a data sheet like Figure 18. The upstream measurements are taken  $90^{\circ}$  apart. The down stream measurements are taken  $120^{\circ}$  apart.

# 4.4 Core Holder Packing

- 1. Set the core holder body in a vise with the flange pointing upwards.
- 2. Clean "o" rings' housing. Oil thinly.
- 3. Oil "o" rings thinly.
- 4. Clean flange surfaces.
- 5. Oil bolts.
- 6. Fit core into core holder body and tighten bolts in a 90° alternating manner. Use spring washers. Do not overtighten. Tighten to the same torque.

# 4.5 Confining System Preloading

Two things are done here: (1) Charge water in the high pressure vessel

DATE: SUD 24 1986 = W\_ = 134.55 WEIGHT BIFORE PACHING = 304.70 g WEIGHT OFTTR PACHING = 170.159 MESH- MIX: 5/ NOIE 200 WESH UP STAFPIE NUC 31 ארד דמיט מיציונאד SHND 84.679 77 = 1.589866 9/cc Figure 18 - WORKING SHEET OF GEOMETRY MEASUREMENTS AND WENGHTS 916.0 Loand = 6.7825 + 0.49520.6653-0.732 -0.916 = 6.2955" = 15,99057 cm Dramd = 1.022" = 2.59520 cit 1 6.7825 PACKWE SAND DINSITY : SS = Wind -ĮJ 3/ F F VE ALUMINIUA Vmud = Aquid & Land = 84,62977 Cm Å Asmed = A Daugh = 5, ×124,8 Cm +0.132 J 61-506 18 H.O i la 0 4957 DOWN STRATT FILLS KUN : 11 <u>ل</u>ن.

and (2) charge oil in the hand pump.

- **1.** Close value 34.
- 2. Open valve 32.
- 3. Open valve 33.
- 4. Connect a distilled water reservoir to port B.
- 5. Connect a vacuum trap to port A.
- 6. Pullalight vacuum until the water gets to the vacuum trap.
- 7. Close valve 33.

4

- 8. Disconnect vacuum system.
- 9. Fill oil (vacuum oil) in port C of the hand pump.

# 4.6 Pressure Transducer Calibration

Calibration is done with a mercury manometer for the 5 psi viscometer and a water manometer for the 1 psi plate. For the calibration, the transducers are disconnected from the main system and once the indicator and the recorder are calibrated, the transducers are put back in place.

# 4.7 Filter Inspection and Installation

The previously used up Stream filters and the down stream filter are disconnected and inspected. Usually, the filter elements have to be changed every other run. After putting in anew filter element (of the desired specifications), the filters are reinstalled.

#### 4.8 Charging the Accumulator

Figure 3 .describes. this section.

- 1. Take accumulator off, including valve 27.
- 2. Wash liquid port.
- 3. Fill up liquid port with distilled water with the port facing upwards.

- Apply pressure to the gas port until water flows through valve
   27 (valve facing up) .
- 5. As water is flowing through valve 27, close it.
- 6. Install the accumulator.
- 7. Charge the gas manifold with 300 psig.
- 8. Open valve 20.
- 9. Close valve 26.
- 10. Open valve 16 until pressure in the gas gauge is 195 psig.
- **11.** Close valve 16.
- The accumulator is ready for use at an average pore pressure of 200 psig.
- 13. Close the main gas valve on the bottle.
- 14. Open valve 19 to bleed off the gas manifold.
- 15. Close valve 19.

# 4.9 Washing the System (without the core)

- 1. Connect the by-pass instead of the core.
- 2. Install the by-pass for the down stream pressure tap.
- 3. Plug the upstream pressure tap; close valve 10.
- 4. Open valve 8.
- 5. Open valve 7.
- 6. Valve 5 points at valve 7.
- 7. Choose an upstream filter.
- a. Open valve **31**.
- 9. Open valve 28; make sure there is water.
- 10. Close valve 10.
- **11.** Close valve 12.

- 12. open valves **11**, 13, 14.
- 13. Set the pump at 500 and turn it on.
- 14. Wash with 250 to 500 cc.

#### 4.10 Setting the Excess Loop Pressure

- 1. Take the hose off the pressure regulator (Figure 3).
- 2. Open the adjusting screws on the pressure regulator.
- 3. Close valve 7.
- Look at the upstream gauge. It will oscillate ±10 psi around 150 psig.
- 5. Close the adjusting screws on the pressure regulator until the pressure on the upstream gauge oscillates around 250 psig.
- 6. Connect the excess flow hose.
- 7. Open valve 7 and bleed.
- 8. Stop the pump.

## 4.11 Vacuuming of the System (without the core)

- 1. Close valves 1, 7, 8, and 9.
- 2. Connect the vacuum pump trap. Start the pump.
- 3. Valves 23, 22 remain closed.
- 4. Open valve 21.
- 5. Open valve 15 to drain the transducer line.
- 6. Open valve 12.
- 7. Close valve 11; allow a few minutes to pass.
- 8. Close valve 12.
- 9. Open valve 11.
- 10. Close valve 15.
- 11. Open valve 10; allow a few minutes to pass.

- 12. Close valve 10.
- 13. Open valve 23.
- 14. Open valve 22; allow a few minutes to pass.
- 15. Close valve 22.
- 16. Close valve 23.
- 17. Connect the vacuum gauge to the valve 23 port.
- **18.** Open valve 23 and vacuum to 2 torr or less.

#### 4.12 Installing the Core Holder in the Air Bath

- 1. Close valve 21.
- 2. Open valve 15.
- 3. Stop the vacuum pump; allow a few minutes to pass.
- 4. Disconnect the by-passes in the bath (two of than).
- 5. Place the core holder in the mounting device.
- Connect the confining port, down stream port, upstream port, upstream thermocouple, upstream pressure tap, and down stream pressure tap.
- 7. Tape the surface thermocouple to the core holder surface.

# 4.13 Charging Confining Water and Pressurizing

- Remove the confining pressure plug, located at the top center of the coreholder.
- 2. Open valve 34.
- 3. Pump until water comes out of the port.
- 4. Stop the above port.
- 5. Pump confining pressure to 500 psig.
- 6. Bleed water from valve 33 until oil appears. .

- 7. Close valve 33.
- 8. Pressurize to 500 psig.

#### 4.14 Vacuuming the system

- 1. Close valve 15.
- 2. Turn the vacuum pump on after emptying the trap.
- 3. Increase confining pressure by increments of 500 psi per 10 minutes.
- 4. Monitor vacuum quality.
- 5. For at least three to four hours, reduce the vacuum to 1 torr or less.
- 6. Check for confining pressure leaks and for movements of the down stream plug.
- 7. Be sure to protect the vacuum trap.

#### 4.15 Flooding and Pressurizing the System

- **1.** Close valve 23.
- 2. Disconnect the vacuum gauge.
- 3. Open valve 1.
- 4. Turn on the pump and set it at 150 cc/min.
- 5. Allow time to pass until water enters the trap.
- 6. Close valve 21.
- 7. Stop the vacuum pump and disconnect the trap.
- 8. Let pressure build up until the excess flow loop is flowing.
- 9. Open valve 27 to connect the accumulator.
- 10. Allow a few minutes for the pressure to stabilize.

# 4.16 Initiating Flow, Temperature Recording, Ap Recording, and Cooling System Flow

- 1. Switch on the indicators.
- 2. Turn on the cooling water at about 200-500 cc/min.
- 3. Turn on the temperature recorder.
- 4. Open valves 10 and 12.
- 5. Close valves 13 and 14.
- Open needle valve .7 slightly while watching the 1 psi indicator.
   Stop when the indicator shows 0.5 psi.
- 7. Set the pump at 600 cc/min.
- 8. Allow 15 minutes to one hour to stabilize.
- 9. Be sure there is always a flow through the excess loop.

# 4.17 Measurements at Various Flowrates at a Constant Temperature (T, $\Delta p$ , q)

To calibrate the recorder (Ap recorder) do the following:

For the viscometer:

- 1. Close valve 12.
- 2. Open valve 14.
- 3. Adjust the recorder needle to zero. Do not touch the indicator.
- 4. Close valve 14.
- 5. Open valve 12.

Operate the valves gently to prevent shocks.

For the core transducer:

- 6. Close valve 10.
- 7. Open valve 13.
- 8. Set the recorder needle to zero.
- 9. Close valve 13.
- 10.) Open valve 10.

The Ap on the core,  $\Delta p_c$ , can be read on the corresponding pen on the recorder. Figure 19 shows an example of the Ap record,

Figure 20 shows an example of the temperature record, When the four bath thermocouple .records agree, the temperature can be read on the scale. (The recorder was precalibrated)'.

Flow rate measurements are made with a burette. See Figure 10. The flow rate is changed by closing or opening value 7. Always be sure that 100-200 cc/hour flows through the excess loop.

#### 4.18 Heating the System

The bath was precalibrated. The target temperature was set and heating started; Figure 20 shows the heating profile for run #11. Heating of 50°F increments takes 2 to 2-1/2 hours. While heating, the confining liquid expands, and is bled by valve 33. Valve 33 is a needle valve and the bleeding should be done gently to prevent surges. Surges can be seen in Figure 19. Usually, when the confining pressure reads 2050-2100 psig, it' is bled to 2000 psig. Make sure that valve 34 (Figure 4) is closed. The only time it is opened is when the hand pump is used.

#### 4.19 Cooling the System

The bath has both an inlet and an outlet. Generally at temperatures exceeding 150°F, these vents are closed. To cool the system, open the vents and turn the temperature knob to the minimum setting. Watch the fluid temperature upstream from the core. When it gets to the desired temperature, set the knob to that temperature.

The cooling is at least as long a process as the heating. Cooling to room temperature may take six hours. During the cooling cycle,

-39-



AND DURING HEATING



<sup>.</sup>Figure 20 - HEATING CYCLE PROFIEE: 150°F to 250°F, RUN #11

6

the confining pressure requires control. Open valve 34 and pump the pressure back to 2000 psig. Close valve 34. The gauge will read 2200 psig. Subtracting 200 psig for the average pore pressure will yield a confining pressure of 2000 psig.

#### 4.20 Stopping the Flow

- **1.** Close valve 7.
- 2. Close valve 1.
- 3. Close valve 27.
- 4. Stop the pump.
- 5. Close valve 29.
- 6. Open valve 7 and bleed the pressure to 0.
- 7. Shut down the recorders and the indicators.
- 8. Shut down the cooling water.

#### 4.21 Confining Pressure Bleed Off

Open value 33 and bleed the confining pressure slowly. Make sure the core pressure has dropped to zero before <sup>'</sup> bleeding the confining pressure.

#### 4.22 Removing the Core Holder

- **1.** Disconnect the down stream pressure tap.
- 2. Remove the upstream pressure tap.
- 3. Disconnect the upstream, metal and surface thermocouples.
- 4. Disconnect the upstream and down stream ports.
- 5. Close valve 33.
- 6. Disconnect the confining port.
- 7. Remove the core holder.

#### 4.23 Taking the Core Holder Apart and Inspecting It

- 1. Put protectors on all six Swagelock fittings.
- 2. Set the core holder in vise, flanges up. Take the bolts apart.
- 3. Work the core plugs and core out with two screwdrivers.
- 4. Take the core plugs off.
- 5. Inspect: Sand Face Screens "O" rings Viton tubing

# 4.24 Problems

The main problems were filter and valve plugging.

### 4.24.1 Filter plugging

When the upstream filter plugs, switch to the other as follows:

Close valve 7

Switch valve 2 to the other filter

Open valve 7 (start the flow).

This procedure will not shock the system. Keep valves 3 and

4 always open.

When the downstream filter plugs, do the following:

Close valve 7 Close valve 31 Remove filter and change the element Reinstall the filter Open valve 31 until the flow is zero Open valve 31 completely Open valve 7 to start the flow.

# 4.24.2 Plugging of the down stream needle valve

This problem is common. Particles of  $6\mu$  and smaller will pass through the filters, but will not pass the valve. Tapping the valve casing will usually clean it. Sometimes it is necessary to open the valve completely. To do that, divert the flow to valve 6, then work valve 7 a few times, and direct the **flow** back to valve 7.

In most of the runs this problem disappeared after the first heating cycle.

#### 5. Summary of Results

In this section, the calculation of permeability is shown and a sample calculation is presented. Finally, the results of the runs and a discussion are presented.

#### 5.1 Permeability Calculations

The core used in this experiment has a cylindrical shape. The fluid flows in the axial direction through a circular cross section. The flow is considered linear and laminar. Laminar flow is guaranteed if the Reynolds number is less than unity:

$$R_{e} = \frac{\rho v d}{u} < 1.0$$
 (5-1)

where: ρ = density, g/cc v = velocity, cm/sec d = average grain diameter, cm μ = viscosity of the flowing liquid, g/cm-sec

For the highest flow rate of about 1000 cc/hour at 300°F and with the unconsolidated sand used in this study:

 $\begin{array}{l} \rho = 0.918 \ \text{g/cc} \\ v = 0.0525 \ \text{cm/sec} \\ d = 160 \,\mu = 0.016 \ \text{cm} \\ \mu = 0.1829 \ \text{cp} = 0.001829 \ \text{g/cm-sec} \end{array}$ 

And the corresponding Reynolds number is:

$$R_{e} = \frac{(0.918) (0.0525) (0.016)}{(0.001829)} = 0.42 < 1.0$$

For a linear laminar flow, Darcy's law applies:

$$q = k \frac{A \Delta p}{\mu L}$$
(5-2)

where: 
$$q = cc/sec$$
 at flow conditions  
 $A = cm^2$   
 $Ap = at$  (1.0333 kg/cm<sup>2</sup>)  
 $L = cm$   
 $\mu = cp$   
 $k = Darcies$ 

Rearranging for k:

$$k = \frac{q\mu L}{A \Delta p}$$
(5-3)

L and A are measured with a micrometer.  $q_{sc}$  is measured at room conditions and must be converted to  $q_{res}$ :

$$q_{res} = q_{sc} \left( \frac{v_T}{v_{sc}} \right) = \left( \frac{\Psi_{sc}}{t} \right) \left( \frac{v_T}{v_{sc}} \right)$$
 (5-4)

where: v = specific volume, cf/lb  $V_{sc} = \text{measured in the burette, usually 10 cc}$  $t = \text{time to flow } V_{sc}$ , sec.

Ap is measured in psi, and is converted to atmospheres by:

$$14.696 \text{ Ap}, \text{psi} = 1 \text{ atm}$$

This yields:

$$k = \frac{\left(\frac{v_{sc}}{t}\right)\left(\frac{v_{T}}{v_{sc}}\right)\left(\mu_{T}\right)\left(L\right)\left(14.696\right)}{(A) (\Delta p)} = \frac{\left(14.969\right)\left(v_{sc}\right)\left(v_{T}\right)\left(\mu_{T}\right)\left(L\right)}{(A) (\Delta p) (t) (v_{sc})}$$
(5-5)

Assuming that  $\mathbb{V}_{sc} = 10 \text{ cc}$ , and  $A = 5.292 \text{ cm}^2$ , equation (5-5) becomes:

k, Darcies = 27.7677 
$$\frac{\left(\nu_{\rm T}, \frac{ft^3}{1b}\right) (\mu_{\rm T}, cp) (L, cm)}{\left(\Delta p, psi\right) (t, sec) \left(\nu_{\rm sc}, \frac{ft^3}{1b}\right)}$$
(5-6)

Any units may be used for the specific volume terms as long as both terms are consistent. The viscosity,  $\mu$ , at run temperature is obtained from published data. Table 1 presents liquid water viscosity, and Figure 21

# Table 1 - Water Viscosity

| т,  | Viscosity at *<br>Saturation Temp. |        | Viscosity at ***<br>200 psi                   |        | μ<br>p |    |
|-----|------------------------------------|--------|-----------------------------------------------|--------|--------|----|
| °F  | $10^{3}\mu \frac{1b}{ft eec}$      | μ, ср  | $10^7 \mu \frac{1b \text{ sec}}{\text{ft}^2}$ | μ, ср  | 'sat   |    |
| 32  | 1.20                               | 1.786  | 366.0                                         | 1.752  | 0.9810 |    |
| 40  | 1.04                               | 1.548  |                                               |        |        |    |
| 50  | 0.88                               | 1.310  | 271.3                                         | 1.299  | 0.9916 |    |
| 60  | 0.76                               | 1.131  |                                               | 1.128  | 0.9927 | ** |
| 70  | 0.658                              | 0.9792 |                                               | 0.9732 | 0.9939 | -  |
| 80  | 0.578                              | 0.8602 |                                               | 0.8561 | 0.9952 | F  |
| 90  | 0.514                              | 0.7649 |                                               | 0.7621 | 0.9964 |    |
| 100 | 0.458                              | 0.6816 | 142.0                                         | 0.6799 | 0.9975 |    |
| 150 | 0. 292                             | 0.4345 | 89.1                                          | 0.4266 | 0.9818 |    |
| 200 | 0.205                              | 0.3051 | 62.7                                          | 0.3002 | 0.9839 |    |
| 250 | 0.158                              | 0.2351 | 47.6                                          | 0.2279 | 0.9694 |    |
| 300 | 0.126                              | 0.1875 | 38.2                                          | 0.1829 |        |    |
| 350 | 0.105                              | 0.1563 | 31.8                                          | 0.1523 |        |    |
| 400 | 0.091                              | 0.1354 |                                               |        |        |    |
| 450 | 0.080                              | 0.1191 |                                               |        |        |    |
| 500 | 0.071                              | 0.1057 |                                               |        |        |    |
| 550 | 0.064                              | 0.0952 |                                               |        |        |    |
| 600 | 0.058                              | 0.0863 |                                               |        |        |    |

\* Principles of Heat Transfer, Kreith (1973). \*\*Completed Using Figure 23 \*\*\*ASME Steam Tables, p. 280, table 10





is a graphical presentation. The effect of viscosity on permeability ,determination is given in the error analysis., section 5.2.

A sample calculation of the permeability at a given constant temperature follows. This example will establish the permeability for a case in run 11:

> T = 250°F Second cooling cycle Record of measurements: 889-896

Measurement 889 will follow:

Date: September 26, 1980  $\Delta p_{core} = 0.664 \text{ psi}$  V = 10 cc t = 60.75 sec  $T_{sc} = 74^{\circ}\text{F}$ From Table 4:  $\mu_{250} = 0.2279 \text{ cp}$   $V_{250} = 0.016990 \text{ ft}^{3}/1b$   $V_{74} = 0.016048 \text{ ft}^{3}/1b$  L = 15.9906 cm  $A = 5.2924 \text{ cm}^{2}$ 

Hence, equation (5-6) yields:

 $\mathbf{k}_{250} = 27.7677 \quad \frac{(0.016990) \cdot (0.2279) \cdot (15.9906)}{(0.664) \cdot (60.75) \cdot (0.016048)} = 2.656 \text{ Darcy}$ 

This calculation was done for eight measurements at this temperature and the average of the eight is:

$$k_{250} = 2.673$$
 Darcy

The eight values of  $k_{250}$  are presented in Figure 28. The average value  $\overline{k}_{250}$  is presented in Figure 29.



n h





Figure 23 -  $\mu_p/\mu_{sat}$  vs TEMPERATURE



Figure 24 - VISCOSITY vs TEMPERATURE AT 200 PSIA (Improved Range - 70°F to 100°F)

|                                           | Abs Press.                                      | Spec                                               | ilic Volum                                     | e                                             |                                            | nthalpy                                   |                                                |                                            | Entropy                                                              |                                                                                                                           |                                          |
|-------------------------------------------|-------------------------------------------------|----------------------------------------------------|------------------------------------------------|-----------------------------------------------|--------------------------------------------|-------------------------------------------|------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Temp<br>Fahr<br>t                         | Lb per<br>Sq In.<br>P                           | Sat.<br>Liquid<br>V1                               | Evap<br>Vig                                    | Sat.<br>Vapor<br><u>v</u> t                   | Sat.<br>Liquid<br>hs                       | Evap<br>h ig                              | Sat.<br>Vapor<br>hg                            | Sat.<br>Liquid<br>St                       | Evap<br>51g                                                          | Sat.<br>Vapor<br><sup>S</sup> t                                                                                           | Fahr<br>t                                |
| 110.1                                     | 75110                                           | 0.016510                                           | 50.21                                          | 5022                                          | 148 00                                     | 990.2                                     | 1138.2                                         | 0.2631                                     | 1.5480                                                               | 1.8111                                                                                                                    | 180.0                                    |
| 111.1                                     | 7.850                                           | 0016522                                            | 48.172                                         | 18.189                                        | 150.01                                     | 989.0                                     | 1 139.0                                        | 02662                                      | 1.5413                                                               | 14075                                                                                                                     | 182.5                                    |
| 184.8                                     | 8 203                                           | 0016534                                            | 46.232                                         | 46.249                                        | 152.01                                     | 987.8                                     | 1 139.8                                        | 0.2694                                     | 1.5346                                                               | 1.8040                                                                                                                    | 184.9                                    |
| 185.0                                     | a <b>568</b>                                    | 0016517                                            | 44.383                                         | 44.400                                        | 154.02                                     | 986.5                                     | 1 1 40.5                                       | 02725                                      | 15279                                                                | 1.8004                                                                                                                    | 186.6                                    |
| 188.9                                     | 8.947                                           | 0.016553                                           | 42.621                                         | 42.638                                        | 156 03                                     | 9u.3                                      | 1 1 413                                        | 02756                                      | 1.5213                                                               | 1.7969                                                                                                                    | 188.0                                    |
| 190.8                                     | 9 340                                           | 0016572                                            | 40.941                                         | 40.957                                        | <b>)58.04</b>                              | 984.1                                     | 1142.1                                         | 0.2787                                     | 15148                                                                | 1.7934                                                                                                                    | <b>190.0</b>                             |
| 192.0                                     | 9.747                                           | 0.016585                                           | 39.337                                         | 39.354                                        | 160.05                                     | 982.8                                     | 1142.9                                         | 0.2818                                     | 1.5082                                                               | 1.7900                                                                                                                    | 192.0                                    |
| 194.8                                     | 10.168                                          | 0016598                                            | 37.808                                         | 37.824                                        | 162 05                                     | 981.6                                     | 1)43.7                                         | 0.2848                                     | 1.5017                                                               | 1.7865                                                                                                                    | 194.0                                    |
| 196.1                                     | 10.605                                          | 0016611                                            | 36.348                                         | 36.364                                        | 164 06                                     | 980.4                                     | 1)44.4                                         | 0.2879                                     | 1.4952                                                               | 1.7831                                                                                                                    | 196.0                                    |
| 198.3                                     | 11.058                                          | 0.016624                                           | 34.954                                         | 34.970                                        | 166.08                                     | 979.1                                     | 11452                                          | 02910                                      | 1411118                                                              | 1.7798                                                                                                                    | 111.1                                    |
| 200.8                                     | 11.526                                          | 0 0) 6637                                          | 33 622                                         | 33.639                                        | 168 <b>09</b>                              | 977.9                                     | 1146.0                                         | 0.2940                                     | 14024                                                                | 1.7764                                                                                                                    | 1d0.1                                    |
| 204.J                                     | 12.512                                          | 0 0) 6654                                          | 31.135                                         | 31.151                                        | 172.11                                     | 975 4                                     | 1147.5                                         | 0.3001                                     | 14697                                                                | 1.7698                                                                                                                    | 204.9                                    |
| 208.8                                     | 13.568                                          | 0 01 6691                                          | 28 862                                         | 28.878                                        | 176.14                                     | 972 8                                     | 1149.0                                         | 03061                                      | 1.4571                                                               | 1.7637                                                                                                                    | 208.0                                    |
| 212.8                                     | 14.696                                          | 0 0) 67 19                                         | 26.782                                         | 26.799                                        | 180.17                                     | 970.3                                     | 1150.5                                         | 03121                                      | 14447                                                                | 1.7568                                                                                                                    | 212.9                                    |
| 215.8                                     | 15.901                                          | 0 01 6747                                          | 24.878                                         | 24894                                         | 18420                                      | 967.8                                     | 1152.0                                         | 03181                                      | 1.4323                                                               | 1.7505                                                                                                                    | 216.0                                    |
| 228.8                                     | 17.186                                          | 0.016775                                           | 23 131                                         | 23.148                                        | 118.23                                     | 965.2                                     | 1153.4                                         | 0324)                                      | I 4201                                                               | 1,7442                                                                                                                    | 220.0                                    |
| 114.J                                     | 18556                                           | 0016805                                            | 21.529                                         | 21.545                                        | 19227                                      | 962.6                                     | 1154.9                                         | 03300                                      | 1.4081                                                               | 1,7380                                                                                                                    | 224.0                                    |
| 228.8                                     | 20.015                                          | 0.016834                                           | 20 056                                         | 20.073                                        | 196.31                                     | 960 0                                     | 1156.3                                         | 0.3359                                     | 1.3961                                                               | 1,7320                                                                                                                    | 111.1                                    |
| 232.8                                     | 21.567                                          | 0.016864                                           | 18 701                                         | 18.718                                        | 70035                                      | 957.4                                     | 1157.8                                         | 0.3417                                     | I3842                                                                | 1,7260                                                                                                                    | 232.0                                    |
| 235.9                                     | 23.216                                          | 0.016895                                           | 17.454                                         | 17.471                                        | 204.40                                     | 954.8                                     | 1159.2                                         | 03476                                      | 13725                                                                | 1,7201                                                                                                                    | 236.0                                    |
| 248.8                                     | 14.968                                          | 0.036926                                           | 16.304                                         | 16.321                                        | 20845                                      | 952.)                                     | 11 <b>60.6</b>                                 | 0.3533                                     | 1.3609                                                               | 1.7147                                                                                                                    | 240.0                                    |
| 244.9                                     | 26 826                                          | 0.036958                                           | 15.243                                         | 15.260                                        | 212.50                                     | 949.5                                     | 1162.0                                         | 03591                                      | 13494                                                                | 1.7085                                                                                                                    | 244.J                                    |
| 248.0                                     | 28.796                                          | 0.016990                                           | 14.264                                         | 14.281                                        | 21636                                      | 946 8                                     | 1163.4                                         | 0.3649                                     | 13379                                                                | 1.7028                                                                                                                    | 141.1                                    |
| 252.8                                     | <b>30.883</b>                                   | 0.017022                                           | 13.358                                         | 13.375                                        | 220.62                                     | 944.1                                     | 1164.7                                         | 03706                                      | 13266                                                                | 1.6972                                                                                                                    | 252.0                                    |
| 256.8                                     | 33.091                                          | 0017055                                            | 12.520                                         | 12.538                                        | 224.69                                     | 941.4                                     | 1166.1                                         | 03763                                      | <b>13154</b>                                                         | 1.6917                                                                                                                    | 256.0                                    |
| 260.0                                     | 35.427                                          | 0.017089                                           | 11.745                                         | 11.762                                        | 228.76                                     | 938.6                                     | 1167.4                                         | 0.3819                                     | 1.3043                                                               | 1.6862                                                                                                                    | 260.0                                    |
| 264.9                                     | 37.894                                          | 0.017123                                           | 11.025                                         | 11.042                                        | 232.83                                     | 935.9                                     | 1168.7                                         | 0.3876                                     | 13933                                                                | 16808                                                                                                                     | 264.8                                    |
| 268.0                                     | 40.500                                          | 0.017157                                           | 10.358                                         | 10.375                                        | 236.91                                     | 933.1                                     | 1170.0                                         | 03932                                      | 1.2823                                                               | 1.6755                                                                                                                    | 268.0                                    |
| 272.8                                     | 43.249                                          | 0017193                                            | 9.738                                          | 9.755                                         | 240.99                                     | 930.3                                     | 1171.3                                         | 0.3987                                     | 12715                                                                | 11.6702                                                                                                                   | 171J                                     |
| 276.9                                     | 46.147                                          | 0.017228                                           | 9.162                                          | 9.180                                         | 245.08                                     | 927.5                                     | 11725                                          | 04043                                      | 12607                                                                | 1.6650                                                                                                                    | 276.4                                    |
| 280.0<br>284.0<br>288.0<br>111.1<br>296.0 | 49.200<br>52.414<br>55.795<br>59.350<br>63.084  | 0.017264<br>0.01730<br>001734<br>0 01738<br>001711 | 8.627<br>8.1180<br>7.6634<br>72301<br>6.8259   | 8 644<br>8 1453<br>7.6807<br>72475<br>6 8433  | 249.17<br>253.3<br>257.4<br>261.5<br>265.6 | 924.6<br>921.7<br>918.8<br>915.9<br>913.0 | 1173.8<br>1175.0<br>1176.2<br>1177.4<br>1178.6 | 04098<br>0.4)54<br>04208<br>04263<br>04317 | 1.2501<br>12395<br>1.2290<br>1.2186<br>12082                         | 1.6599<br>1.6548<br>1.6498<br>1.6449<br>1.6449<br>1.6400                                                                  | 111.1<br>284J<br>288.0<br>792.0<br>296.0 |
| 380J                                      | 67.005                                          | D 01145                                            | 6 4483                                         | 6 4658                                        | 269.7                                      | 910.0                                     | 1179.7                                         | 0437/                                      | 2 1.1979                                                             | 1.6351                                                                                                                    | - 300.8                                  |
| 384J                                      | 71.119                                          | 0 01749                                            | 6 0955                                         | 6.1 130                                       | 273.8                                      | 907.0                                     | 11809                                          | 04420                                      | 5 1.1877                                                             | 1.6303                                                                                                                    | 384.8                                    |
| 384J                                      | 75.433                                          | 0 01753                                            | 5.7655                                         | 5 7830                                        | 278.0                                      | 9M.0                                      | 1182.0                                         | 04479                                      | 9 1.1776                                                             | 1.6256                                                                                                                    | 308.0                                    |
| 312,8                                     | 79.953                                          | 0.01757                                            | 5 4566                                         | 54742                                         | 282.1                                      | 901.0                                     | 1183.1                                         | 0453                                       | 3 1.1676                                                             | 1.6209                                                                                                                    | 312.8                                    |
| 316,8                                     | 84.688                                          | 0.01761                                            | 5.1673                                         | 5.1849                                        | 286.3                                      | 897.9                                     | 1184.1                                         | 04580                                      | 5 1.1576                                                             | 1.6162                                                                                                                    | 315.0                                    |
| 111.1                                     | 89.643                                          | 0.01766                                            | 4.8961                                         | 4.9138                                        | 290 4                                      | <b>894.8</b>                              | 1) 85.2                                        | 04640                                      | 0 1.1477                                                             | 1.6116                                                                                                                    | 328.8                                    |
| 324.8                                     | 94.826                                          | 0.01770                                            | 4.6418                                         | 4.6595                                        | 294.6                                      | 891.6                                     | 1) 862                                         | 04692                                      | 2 1.1378                                                             | 16071                                                                                                                     | 324.8                                    |
| 328.9                                     | 100.245                                         | 0.01774                                            | 4.4030                                         | 4.4208                                        | 298.7                                      | 888.5                                     | 11872                                          | 04745                                      | 5 1.1280                                                             | 16025                                                                                                                     | 111.1                                    |
| 332.9                                     | 105.907                                         | 0.01779                                            | 4.1788                                         | 4.1966                                        | 302.9                                      | 8853                                      | 1) 88.2                                        | 0.4798                                     | 3 1.1183                                                             | 13981                                                                                                                     | 332.8                                    |
| 336.9                                     | 111.820                                         | 0.01778                                            | 3.9681                                         | 3.9859                                        | . 307.1                                    | 882.1                                     | 1) 89.1                                        | 04850                                      | 0 1.1088                                                             | 15936                                                                                                                     | 336.8                                    |
| nu                                        | 117.992                                         | 0 01 787                                           | 3.7699                                         | 3.7878                                        | 3113                                       | 878.8                                     | 190.1                                          | 04903                                      | 2 1.0990                                                             | 1.5 <b>892</b>                                                                                                            | 348 m                                    |
| 344.9                                     | 124.430                                         | 0 01 792                                           | 3.5834                                         | 3.6013                                        | 315.5                                      | 875.5                                     | 1191.0                                         | 04954                                      | 4 1.0894                                                             | 1.3849                                                                                                                    | 344.3                                    |
| 348.9                                     | 131.142                                         | 0.01797                                            | 3407a                                          | 3.4258                                        | 319.7                                      | 872.2                                     | 1191.1                                         | 05006                                      | 5 1.0799                                                             | 1.5 <b>806</b>                                                                                                            | YiJ                                      |
| 352.9                                     | 138.138                                         | 0.01 801                                           | 32423                                          | 3.2603                                        | 323 9                                      | 868 9                                     | 1192.7                                         | 0.5055                                     | 3 1.0705                                                             | 15763                                                                                                                     | 352.8                                    |
| 355.9                                     | 145.424                                         | 0.01 805                                           | 3 0863                                         | 3.1044                                        | 328 1                                      | 865.5                                     | 1193.6                                         | 0.511                                      | 0 1.0611                                                             | 1.5721                                                                                                                    | 356.0                                    |
| 368.0                                     | 153.010                                         | 0.01811                                            | 2.9392                                         | 2.9573                                        | 332.3                                      | 862.1                                     | 11944                                          | 0316                                       | 1 1.0517                                                             | 7 15678                                                                                                                   | 360.8                                    |
| 364.8                                     | 160.903                                         | 001816                                             | 2.8002                                         | 2.8184                                        | 336.5                                      | 858 6                                     | 11952                                          | 0.521                                      | 2 1.0424                                                             | 1 5637                                                                                                                    | 364.8                                    |
| 368.0                                     | 169.113                                         | 001821                                             | 2.6691                                         | 2.6873                                        | 340 8                                      | 855.1                                     | 11959                                          | <i>0316</i>                                | 3 1.0332                                                             | 2 15595                                                                                                                   | 364.8                                    |
| 372.8                                     | 177.648                                         | - 0.01826                                          | 2.545}                                         | 2.5633                                        | 345.0                                      | 851.6                                     | 11%.7                                          | 0331                                       | 4 1.0244                                                             | 0 13554                                                                                                                   | 372.8                                    |
| 376.3                                     | 186.517                                         | 0.01831                                            | 2.4279                                         | 24462                                         | 349.3                                      | 848.1                                     | 1197.4                                         | 0536                                       | 5 1.0144                                                             | 8 15513                                                                                                                   | 372.8                                    |
| 388,8<br>314,8<br>388,0<br>392,8<br>395,8 | 195.729<br>205294<br>215220<br>225516<br>236193 | 001836<br>0.01842<br>001847<br>0.01853<br>0.01858  | 2.3170<br>2.2120<br>2.1126<br>2.0184<br>1.9291 | 23353<br>2,2304<br>2,1311<br>2,0369<br>1.9477 | 353.6<br>357.9<br>3622<br>366.5<br>370.8   | 844.5<br>840.8<br>a372<br>a334<br>829.7   | 1198.0<br>1198.7<br>1199.3<br>1199.9<br>12004  | 0.541<br>0 546<br>0.551<br>0.556<br>0.556  | 6 1.0057<br>6 0.9966<br>6 0.9876<br>7 0.9786<br>7 0.9786<br>7 0.9696 | 15473<br>15432<br>15392<br>15352<br>15353<br>15313                                                                        | 380.0<br>384.9<br>388.9<br>392.9<br>1161 |
| 480,8                                     | 247259                                          | 0.01864                                            | 1.8444                                         | 1 8630                                        | 375.1                                      | 825.9                                     | 1201.0                                         | 0.566                                      | 7 0.960                                                              | 7 1.5274                                                                                                                  | 4 0 H                                    |
| 404,0                                     | 258.725                                         | 0.01870                                            | 1.7640                                         | 1.7827                                        | 3794                                       | 822.0                                     | 1201.5                                         | 0.571                                      | 7 0.951                                                              | 1.5234                                                                                                                    | 4MJ                                      |
| 408,8                                     | 270.600                                         | 0.01875                                            | 1.6877                                         | 1.7064                                        | 383.8                                      | 818.2                                     | 12013                                          | 0 576                                      | 6 0.942                                                              | 13195                                                                                                                     | 408.0                                    |
| 412,8                                     | 282.894                                         | 0.01881                                            | 1.6152                                         | 1.6340                                        | 388.1                                      | 8142                                      | 1202.4                                         | 0.581                                      | 6 0334                                                               | 15157                                                                                                                     | 412.0                                    |
| 415,0                                     | 295.617                                         | 0.01887                                            | 1.5463                                         | 1.5651                                        | 3923                                       | 810.2                                     | 1202.8                                         | 0.586                                      | 6 0.925                                                              | 15118                                                                                                                     | 415.0                                    |
| 478.8                                     | 308.780                                         | 0.01894                                            | 1.4808                                         | 1.4997                                        | 396.9                                      | 806.2                                     | 2 1203.1                                       | 0.591                                      | 5 0.916                                                              | 5 1.5080                                                                                                                  | 428.8                                    |
| 414.J                                     | 322391                                          | 0.01900                                            | 14184                                          | 1.4374                                        | 4013                                       | 8022                                      | 1203.5                                         | a596                                       | 4 0.907                                                              | 7 1.5042                                                                                                                  | 424.3                                    |
| 428.8                                     | 336463                                          | 0.01906                                            | 1.3591                                         | 13782                                         | 405.7                                      | 798 0                                     | 1203.7                                         | D 601                                      | 4 0.899                                                              | 0 1.5004                                                                                                                  | 428.3                                    |
| 432.9                                     | 351.00                                          | 0.01913                                            | 1.30266                                        | 132179                                        | 410.1                                      | 793.9                                     | 1204.0                                         | <b>0</b> 606                               | 3 0.890                                                              | 3 1.4966                                                                                                                  | 432.8                                    |
| UIJ                                       | 366.03                                          | 0.01913                                            | 124887                                         | 1.26806                                       | 414.6                                      | 789.7                                     | 1204.2                                         | 0.611                                      | 2 0.881                                                              | 6 1.4928                                                                                                                  | 435.3                                    |
| 448.8                                     | 381.54                                          | 0.01926                                            | 1.19761                                        | 121687                                        | 419.0                                      | 785.4                                     | 1204.4                                         | 0.610                                      | 0 0.872                                                              | 9         14890           3         14853           7         14815           1         1.4778           5         1.4741 | 441J                                     |
| U 4 J                                     | 397.56                                          | 001933                                             | 1.14874                                        | 1.16806                                       | 4235                                       | 781.4                                     | 1204.6                                         | 0.621                                      | 0 0864                                                               |                                                                                                                           | 444 J                                    |
| 448.8                                     | 414.09                                          | 0.01940                                            | 1.10212                                        | 1.12152                                       | 428 0                                      | 776.7                                     | 7 1204.7                                       | 0.625                                      | 9 0455                                                               |                                                                                                                           | 441 J                                    |
| 458.8                                     | 431.14                                          | 0.01947                                            | 1.05764                                        | 107711                                        | 4325                                       | 7723                                      | 3 1204.8                                       | 0.630                                      | 8 0.847                                                              |                                                                                                                           | 4UJ                                      |
| 456.8                                     | 448.73                                          | 0.01947                                            | 1D1511                                         | 1. <b>03472</b>                               | 437 0                                      | 767.1                                     | 1204.8                                         | 0.05                                       | 6 <b>0.838</b>                                                       |                                                                                                                           | 455 J                                    |

# Table 2: SPECIFIC VOLUME OF WATER AT SATURATION

From: Steam Tables by C-E Power Systems

| Т, <sup>•</sup> F | $v, \frac{ft^3}{lb}$ |
|-------------------|----------------------|
| ADU.              | 2.3598               |
| .290.             | 2.3203               |
| 1220.             | 0.01836              |
| 1740              | 0.01823              |
| 1.00.             | 0.01611              |
| 350.              | 0.01795              |
| 340.              | 0.01787              |
| 230.              | 0.01775              |
| 223.              | 0.01765              |
| 210.              | 0.01/54              |
| 300.              | 0.01744              |
| 29u.              | 0.01735              |
| 280.              | C.U1725              |
| 270.              | 0.01716              |
| 260.              | 0.01708              |
| 250.              | 0.01699              |
| 240.              | 0.01692              |
| 230.              | 0.01684              |
| 220.              | 0.01676              |
| 210.              | 0.01669              |
| 200.              | 0-01663              |
| 190.              | 0.01656              |
| 180.              | 0.01650              |
| 170.              | 0.01644              |
| 160.              | 0.01639              |
| 150.              | 0.03633              |
| 140.              | 0.01628              |
| - 150.            | 0.01624              |
| 120.              | 0.01619              |
| 110.              | 0.01616              |
| ico.              | 0.03612              |
| 50.               | P04(4.0              |
| ŁU.               | 0.01606              |
| 70.               | 0.01604              |
| 60.               | 0.01602              |
| 50.               | 6.01601              |
| 49,               | 0.01601              |
| 32.               | 0.01601              |
|                   |                      |
|                   |                      |

Table 3: SPECIFIC VOLUME OF WATER AT 200 PSIA

From: ASME Steam Tables, p. 159, Table 3

| Т    | μ      | V                   |
|------|--------|---------------------|
| (°F) | (cp)   | ft <sup>3</sup> /1b |
| 69   | 0.992  | 0.016038            |
| 70   | 0.9732 | 0.016040            |
| 70.5 | 0.970  | 0.016041            |
| 71   | 0.964  | 0.016042            |
| 71.5 | 0.960  | 0.016043            |
| 72   | 0.953  | 0.016044            |
| 72.5 | 0.945  | 0.016045            |
| 73   | 0.940  | 0.016046            |
| 74   | 0.925  | 0.016048            |
| 75   | 0.915  | 0.016050            |
| 76   | 0.903  | 0.016052            |
| 77   | 0.890  | 0.016054            |
| 78   | 0.880  | 0.016056            |
| 79   | 0.870  | 0.016058            |
| 80   | 0.8561 | 0.016060            |
| 82   | 0.837  | 0.016066            |
| 148  | 0.4316 | 0.016320            |
| 1 49 | 0.4291 | 0.016325            |
| 150  | 0.4266 | 0.016330            |
| 151  | 0.4241 | 0.016335            |
| 152  | 0.4216 | 0.016340            |
| 153  | 0.4191 | 0.016345            |
| 155  | 0.4141 | 0.016355            |
| 248  | 0.2303 | 0.016960            |
| 249  | 0.2291 | 0.01697 5           |
| 250  | 0.2279 | 0.016990            |
| 251  | 0.2267 | 0.017005            |
| 252  | 0.2255 | 0.017020            |
| 298  | 0.1853 | 0.017420            |
| 299  | 0.1841 | 0.017430            |
| 300  | 0.1829 | 0.017440            |
| 301  | 0.1817 | 0.017450            |

Table 4 - Water Viscosity and Specific Volumes at -200 psig (used in the calculations)

#### 5.2 Error Analysis

The usual approximation for the error,  $\Delta G$ , of a function G(x) is:

$$\Delta G = \sum_{i=1}^{n} \left| \frac{\partial G}{\partial x_{i}} \right| \Delta x_{i}$$
 (5-7)

The basic equation for permeability is:

$$k = \frac{\nabla_{T} \mu_{T} L \nabla_{sc}}{\Delta p_{T} t \nabla_{sc} A}$$
(5-8)

Substituting  $A = \pi D^2/4$  and Ap in psi, equation (5-8) yields:

$$k = 18.71277 \frac{\nabla_{T} \mu_{T} L V_{sc}}{\Delta p_{T} t \nabla_{sc} D^{2}}$$
(5-9)

The absolute error in the permeability,  $\Delta k_{abs}$ , can be estimated by equation (5-7), yielding:

$$\Delta k_{abs} = k \left[ \frac{\Delta V}{V} + \frac{\Delta v_T}{v_T} + \frac{\Delta L}{L} + \frac{\Delta \mu}{\mu} \frac{T}{T} + \frac{2AD}{D} + \frac{\Delta(\Delta p)}{\Delta p} + \frac{\Delta t}{t} + \frac{\Delta v_{sc}}{\sigma v_{sc}} \right] (5-10)$$

The relative error in the permeability,  $\Delta k_{rel}$ , refers only to the variables measured in each calculation. Hence 2 $\Delta D$ / D and  $\Delta L/L$  cancel from equation (5-10) leaving:

$$\Delta \mathbf{k}_{rel} = \mathbf{k} \left[ \frac{\Delta \mathbf{V}}{\mathbf{V}} + \frac{\Delta \mathbf{v}_{T}}{\mathbf{v}_{T}} + \frac{\Delta \mu_{T}}{\mu_{T}} + \frac{\Delta (\Delta \mathbf{p})}{\Delta \mathbf{p}} + \frac{\mathbf{A} \mathbf{t}}{\mathbf{t}} + \frac{\Delta \mathbf{v}_{sc}}{\mathbf{v}_{sc}} \right]$$
(5-11)

The A values are:

v and 11 are functions of T(°F). Table 5 presents  $\Delta \nu$  and  $\Delta \mu$  for various temperatures.

| T (°F)                            | Room∿75°F | 150"     | 250°     | 300°     |
|-----------------------------------|-----------|----------|----------|----------|
| Δμ (ср)                           | 0.01      | 0.0025   | 0.0012   | 0.0012   |
| Av $\left(\frac{ft}{lb}^3\right)$ | 0.000001  | 0.000003 | 0.000008 | 0.000010 |

| Table 5 – Δμ, Av For Various 7 | Temperatures |
|--------------------------------|--------------|
|--------------------------------|--------------|

A sample calculation for  $Ak_{abs}$  and  $\Delta k_{rel}$  follows:

Run 11 T = 250°F Second Cooling Cycle Numbers of measurements: 889-896

Measurement 889 follows:

 $\begin{aligned} \mathbf{k} &= 2.656 \text{ d} \\ \nabla &= 10 \text{ cm}^3 \\ \nabla_{\mathbf{T}} &= 0.016990 \text{ ft}^3/1\text{b} \\ \mu_{\mathbf{T}} &= 0.2279 \text{ (cp)} \\ L &= 15.9906 \text{ cm} \\ Ap &= 0.664 \text{ psi} \\ \nabla_{sc} &= 0.016048 \text{ ft}^3/1\text{b} \\ \mathbf{t} &= 60.75 \text{ sec.} \\ D &= 2.59588 \text{ cm.} \end{aligned}$ 

$$\Delta k_{abs} = 2.656 \left[ \frac{0.025}{10} + \frac{0.000008}{0.016990} + \frac{0.00254}{15.9906} - \frac{0.0012}{0.2279} - \frac{2 \times 0.00254}{2.59588} + \frac{0.01}{0.665} - \frac{0.005}{0.665} - \frac{0.00001}{0.016048} \right] = 2.656 \left[ 0.037066 \right] = 0.098 \text{ darcy} = 98 \text{ md}$$

$$\Delta k_{abs} \text{ is about } 3.7\%$$

$$\Delta k_{rel} = 2.656 \left[ \frac{0.025}{10} + \frac{0.000008}{0.016990} + \frac{0.0012}{0.2279} + \frac{0.01}{0.665} + \frac{0.05}{60.75} + \frac{0.000001}{0.016048} \right] = 2.656 \quad 0.02399 = 0.064 \text{ d} = 64 \text{ md}$$

$$^{\Delta k}$$
 rel is about 2.4%

For the above set of k, at 250° eight different  $Ak_{rel}$  for various flowrates were calculated. The average error was found,  $\overline{\Delta k}_{rel}$ .  $\Delta k_{rel}$  is indicated by vertical bars on Figure 29.

The objective **is** the relative change in the permeability as a function of the temperature and not the variation **in** the initial permeability of every core. A constant measuring procedure was used for all the reported runs. For a more detailed description, see Section 4.

# 5.3 Results of Runs 8, 9, 10, and 11

Table 6 presents the  $\overline{k}$  and  $\overline{k}_{rel}$  for all the runs, Figures 25, 26, 27, and 28 present the calculated k for **all** runs.

The lines go through the  $\overline{k}$  values. Table 6 summarizes all the runs and Figure 29 presents them in a graphical way. All data is tabulated in Tables 7 - 10.



RUN #8





. RUN **#9** 





RŲN #10




RUN #11



Figure 29 - PERMEABILITY VS TEMPERATURE FOR RUNS 8, 9, 10, and 11

#### 6. Conclusions

The absolute permeability to distilled water of Ottawa silica sand was not dependent upon the temperature level from 70°F to 300°F. This result does not agree with much of the data in the literature. It is believed that some of the work done at Stanford University in recent years experienced mechanical problems that resulted in flow rate dependent permeability measurements which were interpreted as temperature dependent results. A sensitivity analysis of the apparatus helped in identifying sources of trouble. These problems were addressed and the performance of the apparatus improved.

In order to expand these conclusions it is recommended that future experiments be conducted, These experiments could study a range of consolidated sandstones, fluids, and confining and pore pressures. Then a study of the effect of temperature level on relative permeability should be resumed.

#### 7. References

- Amyx, J. W., Bass, D. M., Jr., and Whiting, R. L. Petroleum Reservoir Engineering, McGraw-Hill Book Company, Inc., New York, 1960.
- Aruna, M. "The Effect of Temperature and Pressure on Absolute Permeability of Sandstones," Ph.D. Dissertation, Stanford University, 1976.
- Cassé, F. J. "The Effect of Temperature and Confining Pressure on Fluid Flow Properties of Consolidated Rocks," Ph.D. Dissertation, Stanford University, 1974.
- Danesh, A., Ehlig-Economides, C., and Ramey; H. J., Jr., "The Effect of Temperature Level on Absolute Permeability of Unconsolidated Silica and Stainless Steel," <u>Transactions</u>, Geothermal Resources Council, <u>2</u> (July, 1978), 137-139.
- Gobran, B. D., Sufi, S. H., Sanyal, S. K., and Brigham, W. E. "Effects of Temperature on Permeability," <u>Fossil Energy</u>, 1980 Annual Heavy Oil/EOR Contractor Presentations-Proc., July 22-24, 1980.
- Keenan, J. H., Keyes, G. F., Hill, G. P., and Moore, G. J. Steam Tables, English Units, Wiley and Sons, New York, 1969.
- Kreith, F. Principles of Heat Transfer, Third Edition, Harper and Row Publishers, New York, 1973.
- Muskat, M. Flow of Homogeneous Fluids Through Porous Media, McGraw-Hill Book Company, Inc., 1937.
- Sanyal, S. K., Marsden, S. S., Jr., and Ramey, H. J., Jr. "Effect of Temperature on Petrophysical Properties of Reservoir Rocks," 49th Annual Fall Meeting, Houston, Texas, Society of Petroleum Engineers No. 4898, October 1974.
- Sydansk, R. D. "Aqueous Permeability Variation with Temperature in Sandstone," Jour. Pet. Tech. August 1980, 1329-1330.
- Thermodynamics and Transport Properties of Steam, American Society of Mechanical Engineers, New York, 1967.
- Weinbrandt, R. M., Ramey, H. J., Jr., and Cassé, F. J. "Relative and Absolute Permeability of Sandstones," <u>Society of Petroleum Engineering</u> <u>Journal</u>, (October, 1975), 376-384.

### 8. Tables of Data

| T(°F)<br>Run | Room<br>70°F-72°F | 150         | 250         | <b>3</b> 50 |
|--------------|-------------------|-------------|-------------|-------------|
|              | 5.033/0.134       | 4.947/0.188 | 4.906/0.148 | 4.886/0.168 |
| 0            | 4.869/0.133       | 4.851/0.119 | 4.868/0.151 |             |
| 0            |                   | 4.828/0.115 | 4.883/0.152 | 4:889/0:175 |
|              | 4.835/0.124       | 4.841/0.129 | 4.866/0.147 |             |
|              | 5.201/0.144       | 5.180/0.133 | 5.094/0.160 | 5.094/0.199 |
| 0            | 5.032/0.131       | 5.112/0.128 | 5.101/0.166 |             |
| 9            |                   | 5.034/0.127 | 5.081/0.163 | 5.113/0.193 |
|              | 5.086/0.145       | 5.089/0.136 | 5.058/0.163 |             |
|              | 2.764/0.073       | 2.702/0.059 | 2.691/0.059 | 2.694/0.066 |
| 10           | 2.642/0.066       | 2.695/0.063 | 2.699/0.059 |             |
| 10           |                   | 2.658/0.059 | 2.739/0.060 | 2.700/0.074 |
|              | 2.666/0.067       | 2.680/0.059 | 2.769/0.063 |             |
|              | 2.671/0.067       | 2.652/0.055 | 2.652/0.060 | 2.663/0.068 |
|              | 2.653/0.067       | 2.649/0.054 | 2.647/0.058 | ]           |
|              |                   | 2.610/0.054 | 2.635/0.061 | 2.666/0.071 |
|              | 2.612/0.067       | 2.634/0.054 | 2.646/0.062 |             |

Table 6 -  $\overline{k_T}$  and  $\overline{\Delta k_T}$  for Runs 8, 9, 10, and 11. (Darcies)

| Run no. | 8: | L = | 16.350 | cm; | A = | 5.293 | cm <sup>2</sup> ; | Mesh = | 120-150; | p | = 2000 | psig; |
|---------|----|-----|--------|-----|-----|-------|-------------------|--------|----------|---|--------|-------|
|         |    |     |        |     |     |       |                   |        |          | C |        |       |

| 1           |         |                    |      |        |       |          |         |
|-------------|---------|--------------------|------|--------|-------|----------|---------|
| Number of   |         | A                  |      |        | Run   | Effluent | · · · · |
| Measure-    | Date    | <sup>∆p</sup> core | V    | t      | Temp. | Temp.    | k       |
| ment        |         | (psi)              | (cc) | (sec)  | (°F)  | (°F)     | (md)    |
| 491         | 9/12/80 | 0.938              | 10   | 92.10  | 71    | 71       | 5067    |
| 492         | 11      | 0.938              | 11   | 92.80  | 11    | 11       | 5029    |
| 493         | 11      | 0.938              | 11   | 92.50  | 11    | 11       | 5045    |
| 494         | FT      | 0.739              | 11   | 117.05 | 11    | 11       | 5060    |
| 495         | 11      | 0.739              | 11   | 117.80 | 11    | 11       | 5028    |
| 500         | 11      | 0.553              | 11   | 156.65 | 11    | 11       | 5053    |
| 501         | 11      | 0.553              | 11   | 157.10 | 11    | 11       | 5038    |
| 504         | 11      | 0.724              | 11   | 116.90 | 73    | 73       | 5043    |
| 506         | 11      | 0.881              | 11   | 100.70 | 70    | 69       | 4981    |
| 507         | 11      | 0.882              | 11   | 100.50 | 11    | 11       | 4985    |
| 508         | 9/14/80 | 0.9115             | 11   | 43.35  | 152   | 68       | 4936    |
| <b>5</b> 09 | 11      | 0.9115             | 11   | 43.40  | 11    | 11       | 4931    |
| 510         | 11      | 0.9115             | 11   | 43.30  | 11    | 11       | 4942    |
| 511         | 11      | 0.714              | 11   | 54.90  | 11    | 11       | 4976    |
| 512         | 11      | 0.714              | 11   | 54.70  | 11    | 11       | 4994    |
| 513         | 11      | 0.4675             | 11   | 83.65  | 11    | 11       | 4988    |
| 514         | 11      | 0.4675             | 11   | 83.50  | 11    | 11       | 4997    |
| 515         | 11      | 0.7275             | 11   | 54.10  | 11    | 11       | 4956    |
| 516         | 11      | 0.7275             | 11   | 53.90  | 11    | 11       | 4974    |
| 517         | 11      | 0.928              | 11   | 42.90  | 11    | 11       | 4900    |
| 518         | 11      | 0.928              | 11   | 42.75  | - 11  | 11       | 4917    |
| 519         | 11      | 0.928              | 11   | 42.85  | 11    | 11       | 4905    |
| 520         | Ħ       | 0.461              | 11   | 46.42  | 11    | 11       | 4896    |
| 521         | 11      | 0.431              | 11   | 51.85  | 250   | 73       | 4903    |
| 522         | 11      | 0.416              | 11   | 54.40  | 11    | 11       | 4872    |
| 523         | **      | 0.552              | 11   | 40.30  | 11    | 11       | 4925    |
| 524         | 11      | 0.552              | 11   | 40.15  | 11    | 11       | 4944    |
| 525         | 11      | 0.550              | 11   | 40.40  | 11    | 11       | 4931    |
| 526         | 11      | 0.323              | tt , | 69.85  | 11    | 11       | 4856    |
| 527         | **      | 0.600              | 11   | 36.70  | 11    | 11       | 4976    |
| 528         | 11      | 0.581              | 11   | 38.10  | 11    | ŧī       | 4950    |
| 529         | 1 11    | 0.517              | 11   | 43.80  | "     | 11       | 4839    |
| 530         | It      | 0.544              | 11   | 40.90  | 11    | 11       | 4925    |
| 53 1        | 11      | 0.4155             | 11   | 54.10  | 11    | 1        | 4874    |
| 532         | 11      | 0.493              | 11   | 37.70  | 300   | 75       | 4855    |
| 533         | 11      | 0.487              | 11   | 37.85  | 11    | 11       | 4896    |
| 534         | 11      | 0.349              | 11   | 52.70  | 11    | 11       | 4906    |
| 535         | 1       | 0.378              | 11   | 49.05  | 11    | 11       | 486/    |
| 536         | It      | 0.432              | 11   | 42.60  | 11    | 11       | 4903    |
| 537         | 11      | 0.435              | t t  | 42.40  | 11    | It       | 4893    |
| 538         | 1 11    | 0.394              | 11   | 57.05  | 250   | 73       | 4849    |

 $\overline{\mathbf{p}} = 200 \text{ psig}$ 

| Number of   | Dato    | Δp    | V                                       | t      | Run  | Effluent | k    |
|-------------|---------|-------|-----------------------------------------|--------|------|----------|------|
| ments       | Date    | (psi) | (cc)                                    | (sec)  | (°F) | (°F)     | (md) |
| 539         | 9/14/80 | 0.394 | 10                                      | 56.80  | 250  | 73       | 4870 |
| 540         | ŦŤ      | 0.538 | 11                                      | 41.75  | 11   | 11       | 4852 |
| 541         | 11      | 0.538 | 11                                      | 42.15  | 11   | 11       | 4809 |
| 542         | 11      | 0.538 | TT                                      | 41.75  | 11   | 11       | 4852 |
| 543         | 11      | 0.582 | 11                                      | 38.45  | 11   | 11       | 4870 |
| 544         | TT      | 0.582 | 11                                      | 38.75  | 11   | 11       | 4833 |
| 545         | 11      | 0.370 | 11                                      | 60.95  | 31   | ŤŤ       | 4833 |
| 546         | TT      | 0.370 | 11                                      | 61.15  | 11   | 11       | 4817 |
| 547         | 9/15/80 | 0.941 | 11                                      | 41.80  | 155  | 72       | 4873 |
| 548         | 11      | 0.942 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 42.20  | 11   | 11       | 4822 |
| 549         | 11      | 0.770 | 11                                      | 51.45  | 11   | 11       | 4838 |
| 550         | 11      | 0.770 | 11                                      | 51.35  | 11   | 11       | 4848 |
| 551         | 11      | 0.484 | 11                                      | 81.70  | 11   | 11       | 4847 |
| 552         | t t     | 0.783 | 11                                      | 81.30  | 11   | 11       | 4880 |
| 553         | 11      | 0.778 | t T                                     | 115.40 | 71   | 69       | 4877 |
| 554         | 11      | 0.777 | 11                                      | 115.45 | TT   | 11       | 4881 |
| 555         | 11      | 0.918 | 11                                      | 98.00  | 11   | 11       | 4867 |
| 556         | 11      | 0.917 | 11                                      | 98.45  | 11   | 11       | 4850 |
| 557         | 11      | 0.462 | 11                                      | 193.80 | 11   | 11       | 4890 |
| 558         | 11      | 0.466 | 11                                      | 193.60 | 11   | 11       | 4853 |
| <b>5</b> 59 | 9/16/80 | 0.923 | 11                                      | 97.40  | 11   | 67       | 4870 |
| 560         | 11      | 0.923 | 11                                      | 97.55  | 11   | 11       | 4863 |
| 561         | 11      | 0.902 | 11                                      | 45.00  | 152  | 70       | 4804 |
| 562         | 11      | 0.902 | 11                                      | 44.90  | 11   | 11       | 4815 |
| 563         | 11      | 0.770 | 11                                      | 52.45  | 11   | 11       | 4829 |
| 564         | 11      | 0.791 | 11                                      | 50.85  | 11   | 11       | 4848 |
| 566         | 11      | 0.590 | 11                                      | 68.30  | 11   | 11       | 4839 |
| 567         |         | 0.589 | 17                                      | 68.40  | 11   | 11       | 4840 |
| 568         | 11      | 0.603 | 11                                      | 67.00  | 11   | 11       | 4827 |
| 569         | 11      | 0.378 | 11                                      | 59.20  | 250  | 76       | 4894 |
| 570         | 11      | 0.378 | 11                                      | 59.70  | 11   | 11       | 4853 |
| 571         | 1 11    | 0.485 | 1                                       | 46.20  | 11   | 11       | 4888 |
| 572         | 11      | 0.485 | 11                                      | 46.10  | 11   | 11       | 4899 |
| 573         | 11      | 0,547 | 11                                      | 41.10  | 11   | 11       | 4872 |
| 574         | 11      | 0.547 | 11                                      | 40.90  | 11   | 11       | 4896 |
| 575         | 11      | 0.400 | 11                                      | 46.15  | 300  | 77       | 4887 |
| 576         | 11      | 0.399 | 11                                      | 46.20  | 11   | 11       | 4894 |
| 577         |         | 0.528 | 11                                      | 35.10  | 11   | 11       | 4868 |
| 578         | 11      | 0.522 | 11                                      | 35.40  | 11   | 11       | 4882 |
| 579         | 1 11    | 0.307 | 11                                      | 60.10  | 11   | 11       | 4890 |
| 580         | 11      | 0 306 | 11                                      | 60.00  | 11   | 11       | 4914 |

Run no. 8: 
$$L = 16.350 \text{ cm}; A = 5.293 \text{ cm}^2; \text{ Mesh} = 120-150, p_c = 2000 \text{ psig};$$
  
 $\overline{p} = 200 \text{ psig}$ 

0.841

0.842

0.628

| Run no. 8 | Run no. 8: $L = 16.350$ ; $A = 5.293$ cm <sup>2</sup> ; Mesh = 120-150; p <sub>c</sub> = 2000 psig; |       |      |        |       |          |      |  |  |
|-----------|-----------------------------------------------------------------------------------------------------|-------|------|--------|-------|----------|------|--|--|
|           | p = 200                                                                                             | psig  |      |        |       |          |      |  |  |
| •         |                                                                                                     |       |      |        |       |          |      |  |  |
| Number of |                                                                                                     | ۸n    | v    | t      | Run   | Effluent | k    |  |  |
| Measure-  | Date                                                                                                | Core  | (cc) | (sec)  | Temp. | Temp.    | (md) |  |  |
| ment      |                                                                                                     | (psi) |      | (300)  | (°F)  | (°F)     | (ma) |  |  |
| 581       | 9/16/80                                                                                             | 0.482 | 10   | 38.25  | 300   | 77       | 4893 |  |  |
| 582       | 11                                                                                                  | 0.444 | 11   | 51.05  | 250   | 76       | 4865 |  |  |
| 583       | 11                                                                                                  | 0.444 |      | 50.90  | 11    | 11       | 4879 |  |  |
| 584       | 11                                                                                                  | 0.523 | 11   | 42.90  | 11    | 11       | 4882 |  |  |
| 585       | 11                                                                                                  | 0.524 | 11   | 42.95  | 11    | 11       | 4867 |  |  |
| 586       | 11                                                                                                  | 0.575 | 11   | 39.10  | 11    | 11       | 4872 |  |  |
| 587       | 11                                                                                                  | 0.575 | 11   | 39.30  | 11    | 11       | 4847 |  |  |
| 588       | 11                                                                                                  | 0.350 | 11   | 64.60  | 11    | 11       | 4844 |  |  |
| 589       | 11                                                                                                  | 0.352 | 11   | 63.85  | 11    | 11       | 4873 |  |  |
| 590       | 11                                                                                                  | 0.624 | 11   | 64.65  | 152   | 73       | 4832 |  |  |
| 591       | 11                                                                                                  | 0.623 | 11   | 64.35  | 11    | 11       | 4863 |  |  |
| 592       | 11                                                                                                  | 0.889 | 11   | 45.20  | 11    | 11       | 4880 |  |  |
| 593       | 11                                                                                                  | 0.889 | 11   | 45.10  | 11    | 11       | 4862 |  |  |
| 594       | 11                                                                                                  | 0.762 | 11   | 52.90  | 11    | 11       | 4836 |  |  |
| 595       | 11                                                                                                  | 0.762 | 11   | 52.70  | 11    | 11       | 4854 |  |  |
| 596       | 11                                                                                                  | 0.356 | 11   | 113.85 | 11    | 11       | 4809 |  |  |
| 597       | 11                                                                                                  | 0.355 | 11   | 113.85 | 11    | 11       | 4823 |  |  |
| 600       | 9/17/80                                                                                             | 0.983 | 11   | 91.45  | 72    | 74       | 4812 |  |  |
| 601       | 11                                                                                                  | 0.983 | 11   | 91.45  | 13    | 11       | 4812 |  |  |

105.30 106.30

142.60

| Run | no. | 9: | L = | 16.118 | cm; | A | = 5.293 | $cm^2$ ; | Mesh = | 120-150; p | = | 2000 | psig |
|-----|-----|----|-----|--------|-----|---|---------|----------|--------|------------|---|------|------|
|     |     |    |     |        |     |   |         |          |        | · •        | 7 |      | r 0  |

| Number of |         |        |      |        | Run  | Effluent |      |
|-----------|---------|--------|------|--------|------|----------|------|
| Measure-  | Date    | Δpcore | V    | t      | Temp | Temp     | k    |
| ment      |         | (nsi)  | (cc) | (sec)  | (°F) | (°F)     | (md) |
| 605       | 9/17/80 | 0,966  | 10   | 80.25  | 76   | 75.5     | 5223 |
| 606       | 11      | 0,965  | 11   | 80.30  |      | 1,5,5    | 5216 |
| 607       | 11      | 0.816  | 11   | 95.90  | 11   | 11       | 5165 |
| 608       | 11      | 0.815  | 11   | 96.50  | 11   | 11       | 5203 |
| 609       | 11      | 0.614  | 11   | 126.85 | 11   | 11       | 5189 |
| 610       | 11      | 0.614  | 11   | 126.40 | 11   | 11       | 5208 |
| 611       | 11      | 0.523  | 11   | 147.85 | 17   |          | 5227 |
| 612       | 11      | 0,958  | 11   | 81,30  | 11   | 11       | 5189 |
| 613       | 9/18/80 | 0.459  | 11   | 80,60  | 152  | 75       | 5193 |
| 614       | 11      | 0.459  | 11   | 80.70  | 11   | 11       | 5186 |
| 615       |         | 0.740  | 11   | 50.00  | 11   | 11       | 5192 |
| 616       | 11      | 0.740  | 11   | 50,15  | 11   | 11       | 5177 |
| 617       | 11      | 0.964  | 11   | 38.55  | 11   | 11       | 5170 |
| 618       | 11      | 0.963  | 11   | 38,60  | 11   | 11       | 5168 |
| 619       | 11      | 0.530  | 11   | 70.15  | 11   | 11       | 5167 |
| 620       | 11      | 0.535  | 11   | 69.20  | 11   | £1       | 5189 |
| 621       | 11      | 0.429  | 11   | 49.30  | 250  | 74       | 5106 |
| 622       | 11      | 0.429  | 11   | 49.25  | 11   | 11       | 5111 |
| 623       | 11      | 0.550  | 11   | 38,40  | ŧ1   | 11       | 5113 |
| 624       |         | 0,549  | 11   | 38,55  | 11   | 11       | 5103 |
| 625       | Ŧ       | 0.5115 | t I  | 41.50  | 11   | 11       | 5087 |
| 626       | 11      | 0.518  | 11   | 41.00  | 11   | 11       | 5085 |
| 627       | 11      | 0.371  | 11   | 57.40  | 11   | 11       | 5071 |
| 628       | 11      | 0.369  | 11   | 57.70  | TT   | 11       | 5072 |
| 629       | 11      | 0.420  | 11   | 41.80  | 301  | 74       | 5037 |
| 630       | 11      | 0.433  | 11   | 39.90  | 11   | 11       | 5119 |
| 631       | 11      | 0.355  | 11   | 49.30  | 11   | 11       | 5053 |
| 632       | 11      | 0.348  | 11   | 49.65  | 11   | 11       | 5118 |
| 633       | 11      | 0.277  | 11   | 62.35  | 11   | 11       | 5120 |
| 634       | 11      | 0.278  | 11   | 62.15  | 11   | 11       | 5118 |
| 635       | 11      | 0.392  | 11   | 44.40  | 11   | 11       | 5081 |
| 636       | 11      | 0.394  | 11   | 43.95  | 11   | 11       | 5107 |
| 637       | 11      | 0.357  | 11   | 58.80  | 250  | 76       | 5143 |
| 638       | 11      | 0.357  | 11   | 58.90  | 11   | 11       | 5133 |
| 639       | 11      | 0.460  | 11   | 45.85  | 11   | 11       | 5118 |
| 640       | 11      | 0.460  | 11   | 46.05  | 11   | 11       | 5096 |
| 641       | IT      | 0.546  | 11   | 38.90  | 11   | 11       | 5083 |
| 642       | 11      | 0.546  | ŢŢ   | 38.80  | 11   | 11       | 5096 |
| 643       | 11      | 0.403  | 11   | 52.75  | 11   | 11       | 5078 |
| 644       | 11      | 0.402  | 11   | 53.00  | 11   | 11       | 5067 |

 $\overline{p} = 200 \text{ psig}$ 

|                               | p = 200 | <u>psig</u>       |           |            |                      |                           |           |
|-------------------------------|---------|-------------------|-----------|------------|----------------------|---------------------------|-----------|
| Number of<br>Measure-<br>ment | Date    | $\Delta p_{core}$ | V<br>(cc) | t<br>(sec) | Run<br>Temp.<br>(°F) | Effluent<br>Temp.<br>(°F) | k<br>(md) |
| 647                           | 9/18/80 | 0.401             | 10        | 81,20      | 153                  | 76                        | 5103      |
| 648                           | 11      | 0.614             | 11        | 60.90      | 11                   | 11                        | 5108      |
| 649                           | 11      | 0.614             | 11        | 60.55      | 11                   |                           | 5137      |
| 650                           | 11      | 0.888             | 11        | 42.10      | 11                   | "                         | 5109      |
| 651                           | 11      | 0.889             | 11        | 42.10      | 11                   | 11                        | 5101      |
| 652                           | 9/19/80 | 0.795             | 11        | 106.50     | 72                   | 72                        | 5038      |
| 653                           | 11      | 0.813             | 11        | 103.90     | 11                   | 11                        | 5050      |
| 654                           | 11      | 0.902             | 11        | 94.05      | 11                   | 11                        | 5028      |
| 655                           | 11      | 0.617             | н         | 126.75     | 11                   | 11                        | 5015      |
| 656                           | 11      | 0.860             |           | 98.60      | 11                   |                           | 5030      |
| 657                           | 11      | 0.606             | 11        | 63.75      | 151                  | 70                        | 5004      |
| 658                           | 11      | 0.605             | н         | 63.50      | 11                   | 11                        | 5032      |
| 659                           | 11      | 0.6045            | 11        | 63.65      | 11                   | 11                        | 5025      |
| 660                           | 11      | 0.787             | 11        | 48.40      | 11                   | 11                        | 5075      |
| 661                           | 11      | 0.787             | 11        | 48.80      | 11                   | 11                        | 5033      |
| 662                           | 11      | 0.910             | 11        | 42.15      | 11                   | 11                        | 5040      |
| 663                           | 11      | 0.905             | 11        | 42.30      | 11                   | 11                        | 5050      |
| 664                           | 11      | 0.3605            | 11        | 106 90     | TT T                 | 11                        | 5016      |
| 665                           | 1 11    | 0.370             | 11        | 57 40      | 250                  | 75                        | 5084      |
| 666                           | 11      | 0.370             | 11        | 57 60      | 11                   | 11                        | 5066      |
| 667                           | 11      | 0.570             |           | 45 90      | 11                   | 80                        | 5078      |
| 668                           | 11      | 0.405             | 11        | 45 55      | 11                   |                           | 5095      |
| 669                           | 11      | 0.405             | 11        | 37 95      | 11                   |                           | 5096      |
| 670                           | 11      | 0.550             | 11        | 37.95      | 11                   |                           | 5087      |
| 671                           | 11      | 0.370             | 11        | 57.60      | 11                   |                           | 5064      |
| 672                           | 11      | 0.570             | 11        | 41.85      | 300                  | 86                        | 5108      |
| 673                           |         | 0.4155            | 11        | 41.85      | 500                  | 11                        | 5134      |
| 67/                           | 11      | 0.424             | 11        | 33 00      |                      | 11                        | 5107      |
| 675                           |         | 0.313             | 11        | 47.30      | 11                   |                           | 5089      |
| 676                           |         | 0.305             | 11        | 47.30      | 11                   |                           | 5099      |
| 677                           | 11      | 0.309             | 11        | 58 10      | 11                   | 90                        | 5130      |
| 678                           |         | 0.298             | 11        | 58 40      | 11                   |                           | 5121      |
| 670                           | 11      | 0.297             | 11        | 50.00      | 251                  | 81                        | 5099      |
| 620                           |         | 0.4215            | 11        | 51 05      | 2.51                 | 78                        | 5108      |
| 601                           |         | 0.405             | 71        | 30.95      | 250                  | 76                        | 5060      |
| 600                           | 11      | 0.555             |           | 37.03      | 2.30                 | 10                        | 510/      |
| 602                           |         | 0.535             | 11        | 20 00      | 11                   |                           | 5066      |
| 003                           |         | 0.533             |           | 39.80      | 11                   | 11                        | 5024      |
| 004                           |         | 0.449             |           | 47.00      |                      | 11                        | 5056      |
| n X 3                         | 1       | 1 0.449           |           | 47.55      |                      |                           | 000       |

| Run no. 9: $L = 16.118$ cm; A | $A = 5.293 \text{ cm}^2$ ; Mesh = | 120-150; p <sub>c</sub> = 2000 psig |
|-------------------------------|-----------------------------------|-------------------------------------|
|-------------------------------|-----------------------------------|-------------------------------------|

| Number of<br>Measure-<br>ment | Date    | Δp<br>(psi)<br>0.4035 | V<br>(cc)<br>10 | t<br>(sec)<br>92,20 | Run<br>Temp.<br>(°F)<br>153 | Effluent<br>Temp.<br>(°F)<br>76 | k<br>(md)<br>5134 |
|-------------------------------|---------|-----------------------|-----------------|---------------------|-----------------------------|---------------------------------|-------------------|
|                               | -       | 0.4045                | 17              | 91.80               | "                           | 11                              | 5144              |
|                               | -       | 0.571                 | 11              | 65.20               | ŤŤ                          | 11                              | 5131              |
| 690                           | ł       | 0.572                 | 11              | 65.55               | 11                          | 11                              | 5094              |
| 691                           | 11      | 0.920                 | 11              | 41.10               | 11                          | 74                              | 5053              |
| 692                           | 11      | 0.920                 | 11              | 41.20               | Ħ                           | 11                              | 5040              |
| 693                           | 11      | 0.820                 | 11              | 46.20               | 152                         | 11                              | 5072              |
| 694                           | 11      | 0.821                 | 11              | 46.20               | 11                          | 11                              | 5066              |
| 695                           | } 11    | 0.493                 | 11              | 77.00               | 11                          | 11                              | 5061              |
| 696                           | 11      | 0.493                 | 11              | 76.55               | 11                          | 11                              | 5091              |
| 697                           | 9/20/81 | 0.850                 | 11              | 100.40              | 71                          | 69                              | 5089              |
| 698                           | 11      | 0.850                 | 11              | 100.75              | 11                          | 11                              | 5071              |
| 699                           | 11      | 0.6815                | 11              | 124.35              | 11                          | 11                              | 5124              |
| 700                           | ) 11    | 0.680                 | 11              | 124.65              | 11                          | 11                              | 5123              |
| 701                           | 11      | 0.535                 | 11              | 160.75              | Ħ                           | 11                              | 5068              |
| 702                           | 11      | 0.532                 | 11              | 111.90              | 11                          | 11                              | 5042              |

 $\overline{p} = 200 \text{ psig.}$ 

| Run ne | <b>o.</b> ] | 10: | L = | 16. | 303; | A | = | 5.293 | cm <sup>2</sup> ; | Mesh | = | 170-200; | P <sub>c</sub> | = | 2000 | psig; |
|--------|-------------|-----|-----|-----|------|---|---|-------|-------------------|------|---|----------|----------------|---|------|-------|
|        |             |     |     |     |      |   |   |       |                   |      |   |          | <u> </u>       |   |      |       |

| P | = | 2 | 00 | psig. |
|---|---|---|----|-------|
|   |   |   |    |       |

| Number of |         | Δn     | 17                     |            | Run   | Effluent | +    |
|-----------|---------|--------|------------------------|------------|-------|----------|------|
| Measure-  | Date    | core   | $\left( a_{n}\right) $ | t<br>(Tas) | Temp. | Temp.    | ĸ    |
| ment      |         | (psi)  | (66)                   | (sec)      | (°F)  | (°F)     | (md) |
| 704       | 9/21/80 | 0.867  | 5                      | 85.25      | 76    | 78       | 2765 |
| 705       | 11      | 0.884  | 11                     | 84.05      | 11    | 11       | 2750 |
| 706       | 11      | 0.790  | 71                     | 93.40      | 11    | 11       | 2770 |
| 707       | 11      | 0.8025 | 11                     | 92.50      | 11    | 11       | 2785 |
| 708       | 11      | 0.686  | 11                     | 106.95     | 11    | п        | 2763 |
| 709       | 11      | 0.702  | 11                     | 105.35     | 11    | n        | 2745 |
| 710       | 11      | 0.702  | TT                     | 106.05     | 11    |          | 2752 |
| 711       | 11      | 0.964  | 11                     | 76.30      | 11    | FT       | 2778 |
| 714       | 11      | 0.689  | 10                     | 104.50     | 152   | 75       | 2699 |
| 715       | 11      | 0.677  | 11                     | 106.10     | 11    | - 11     | 2705 |
| 716       | 11      | 0.802  | 11                     | 89.65      | TI    | 11       | 2703 |
| 717       | f1      | 0.784  | 11                     | 91.75      |       | 11       | 2701 |
| 718       | 11      | 0.951  | 11                     | 75.50      | 11    | 11       | 2706 |
| 719       | 11      | 0.712  | 11                     | 101.25     |       | 11       | 2707 |
| 720       | 11      | 0.907  | 11                     | 79.15      | 11    | 11       | 2703 |
| 721       | 11      | 0.907  | 11                     | 79.25      | 11    | 11       | 2696 |
| 723       | 9/22/80 | 0.972  | 11                     | 41.80      | 250   | 72       | 2689 |
| 724       | 11      | 0.955  | 11                     | 42.40      | 11    | 11       | 2698 |
| 725       | 11      | 0.948  | 11                     | 43.00      | n     | ŦŦ       | 2680 |
| 726       | 11      | 0.812  | 11                     | 49.90      | 11    | 11       | 2697 |
| 727       | 11      | 0.752  | 11                     | 54.20      | 11    | 17       | 2681 |
| 728       | 11      | 0.579  | 11                     | 70.25      | 11    | 11       | 2686 |
| 729       | 11      | 0.761  | 11                     | 53.30      | 11    | TT       | 2694 |
| 730       | 11      | 0.783  | 11                     | 51.70      | T1    | 11       | 2699 |
| 731       | 11      | 0.962  | 11                     | 34.55      | 301   | 75       | 2691 |
| 732       | 11      | 0.811  | 11                     | 40.95      | 11    | TT       | 2693 |
| 733       | 11      | 0.820  | 11                     | 40.75      | 11    | 11       | 2676 |
| 734       | tt      | 0.707  | 11                     | 46.95      | 17    | t f      | 2694 |
| 735       | 11      | 0.703  | 11                     | 47.20      | 11    | 11       | 2695 |
| 736       | 11      | 0.593  | 11                     | 55.80      | 11    | 11       | 2703 |
| 737       | 11      | 0.595  | 11                     | 55.75      | 11    | 11       | 2696 |
| 738       | 11      | 0.847  | 11                     | 39.05      | 11    | 11       | 2704 |
| 739       | 17      | 0.729  | 11                     | 55.40      | 250   | 75       | 2704 |
| 740       | 11      | 0.729  | 11                     | 55.50      | 11    | H        | 2699 |
| 741       | 11      | 0.830  | 11                     | 49.05      | 11    | 11       | 2682 |
| 742       | 11      | 0.831  | 11                     | 48.05      | 11    | 11       | 2709 |
| 743       | 11      | 0.920  | 11                     | 43.95      | 11    | 11       | 2701 |
| 744       | 11      | 0 921  | 11                     | 44.10      | 11    | 11       | 2689 |
|           |         | 0.741  |                        |            |       |          |      |
| 745       | 11      | 0.793  |                        | 50.70      | н     | 11       | 2716 |

Table '9

Run no. 10: 
$$L = 16.303$$
 cm;  $A = 5.293$  cm<sup>2</sup>; Mesh = 170-200;  $p_c = psig$ ;

| 1         |         | •                  |          |        |       |          |           |
|-----------|---------|--------------------|----------|--------|-------|----------|-----------|
| Number of |         | ٨n                 | V        | +      | Run   | Effluent |           |
| Measure-  | Date    | <sup>DP</sup> core |          |        | Temp. | Temp.    | k<br>(md) |
| ments     |         | (psi)              | (66)     | (sec)  | (°F)  | (°F)     | (ma)      |
| 747       | 9/22/80 | 0.570              | 10       | 125.90 | 152.5 | 78       | 2699      |
| 748       | 11      | 0.571              | 11       | 125.55 | 11    | 11       | 2702      |
| 749       | 11      | 0.753              | 11       | 95.50  | 11    | 76       | 2693      |
| 750       |         | 0.7705             | 11       | 93.10  | 11    | 11       | 2700      |
| 751       |         | 0.919              | 11       | 78.35  | 11    | 11       | 2690      |
| 752       | 11      | 0.952              | 11       | 75.40  | 11    | 11       | 2699      |
| 753       | 11      | 0.743              | 11       | 97.25  | 11    | 11       | 2681      |
| 754       | 11      | 0.7445             | 11       | 96.60  | 11    | **       | 2694      |
| 755       | 9/23/80 | 0.838              | 5        | 97.40  | 71.5  | 70       | 2663      |
| 756       | 11      | 0.837              | 5        | 98.55  | 11    | 11       | 2635      |
| 757       | 11      | 0.959              | 5.05     | 86.70  | 11    | TT       | 2641      |
| 758       | 11      | 0.959              | 5        | 85.90  | 11    | 11       | 2638      |
| 759       | 11      | 0.725              | 11       | 113.30 | 11    | 11       | 2646      |
| 760       | 11      | 0.726              | 11       | 114.10 | 11    | 11       | 2624      |
| 761       | 11      | 0.895              | 11       | 91.65  | 11    | 11       | 2650      |
| 762       | 11      | 0.893              | 11       | 92.15  | 11    | 11       | 2641      |
| 763       | 11      | 0.6535             | 10       | 113.40 | 151   | 74       | 2637      |
| 764       | 11      | 0.6565             | 11       | 112.15 | 11    | 11       | 2655      |
| 765       | 11      | 0.971              | 11       | 75.30  | 11    | 11       | 2673      |
| 766       | 11      | 0.9745             | 11       | 75.40  | 11    | 11       | 2660      |
| 767       | 11      | 0.814              | 11       | 70.05  | 151.5 | 73       | 2659      |
| 768       | 11      | 0.8155             | 11       | 89.80  | 11    | 11       | 2661      |
| 769       | 11      | 0.715              | 11       | 102.35 | 11    | 11       | 2663      |
| 770       | 11      | 0.7155             | 11       | 102.70 | 11    | 11       | 2652      |
| 771       | 11      | 0.758              | 11       | 52.80  | 249   | 78       | 2740      |
| 772       | 11      | 0.759              | 11       | 52.90  | 11    | 11       | 2731      |
| 773       | 11      | 0.783              | 11       | 50.85  | 11    | 11       | 2754      |
| 774       | 11      | 0.784              | 11       | 51.05  | 11    | 11       | 2740      |
| 775       | 11      | 0.8845             | 11       | 45.40  | "     | 11       | 2731      |
| 776       | 11      | 0.8875             | 11       | 45.20  | 11    | 11       | 2734      |
| 777       | 11      | 0.740              | 11       | 54.10  | 11    | 11       | 2739      |
| 778       | 11      | 0.740              | 11       | 54.00  | 11    | 11       | 2744      |
| 780       | 11      | 0.703              | 11       | 46.30  | 300   | 82       | 2705      |
| 781       | 11      | 0.602              | 11       | 55.20  | 11    | 11       | 2703      |
| 782       | 11      | 0.604              | 11       | 55.05  | 11    | 80       | 2704      |
| 783       | 11      | 0.510              | 11       | 65.00  | 11    | 78       | 2698      |
| 784       | 11      | 0.509              | 11       | 65.50  | 11    | 11       | 2700      |
| 785       | 11      | 0.691              | <u> </u> | 48.20  | It    | 11       | 2702      |
| 786       | 11      | 0.687              | 11       | 48.45  | п     | 11       | 2686      |
| 787       | 11      | 0.568              | 11       | 58.95  | n     | 11       | 2698      |

| Run no. | 10: L = | 16.303 cm; | A = | = 5.293 | $cm^2$ ; | Mesh = | 170-200; | P <sub>c</sub> | = 2000 | psig |
|---------|---------|------------|-----|---------|----------|--------|----------|----------------|--------|------|
|---------|---------|------------|-----|---------|----------|--------|----------|----------------|--------|------|

| Number of |         |                    |      |        | Run   | Effluent |      |
|-----------|---------|--------------------|------|--------|-------|----------|------|
| measure-  | Date    | $^{\Delta p}$ core | V    | t      | Temp. | Temp.    | k    |
| ment      |         | (psi)              | (cc) | (sec)  | (°F)  | (°F)     | (md) |
| 789       | 9/23/80 | 0.623              | 10   | 65.70  | 250   | 76       | 2668 |
| 790       | 11      | 0.625              | 11   | 65.10  | 11    | 11       | 2684 |
| 791       | 11      | 0.7345             | 11   | 55.05  | 11    | 11       | 2701 |
| 792       | 11      | 0.758              | 11   | 53.40  | 11    | 11       | 2698 |
| 793       | 11      | 0.835              | 11   | 48.40  | 11    | 11       | 2702 |
| 794       | 11      | 0.8365             | 11   | 48.45  | 11    | 11       | 2695 |
| 795       | 17      | 0.665              | 11   | 61.03  | 11    | 11       | 2691 |
| 796       | 11      | 0.665              | 11   | 60.75  | 11    | 11       | 2700 |
| 797       | 11      | 0.956              | 11   | 76.70  | 150   | 78       | 2679 |
| 798       | 11      | 0.952              | . 11 | 76.20  | 11    | 11       | 2694 |
| 799       | 11      | 0.871              | 11   | 84.40  | 11    | 11       | 2673 |
| 800       | 11      | 0.8735             | 11   | 83.50  | 11    | 11       | 2692 |
| 801       | 11      | 0.722              | 11   | 101.75 | 11    | 11       | 2674 |
| 802       | 11      | 0.727              | 11   | 100.90 | 11    | 11       | 2678 |
| 805       | . 11    | 0.570              | 11   | 129.00 | 11    | 11       | 2672 |
| 806       | 9/24/80 | 0.755              | 10   | 213.25 | 72.5  | 72       | 2658 |
| 807       | 11      | 0.749              | 5    | 108.05 | 11    | 11       | 2746 |
| 808       | 11      | 0.932              | 10   | 172.35 | 11    | **       | 2664 |
| 809       | 11      | 0.934              | 5    | 86.80  | 72    | 11       | 2639 |
| 810       | 11      | 0.866              | 10.3 | 192.70 | 11    | 11       | 2641 |
| 811       | 11      | 0.873              | 10   | 185.12 | 11    | 11       | 2648 |

 $\overline{\mathbf{p}} = 200 \ \mathbf{psig}$ 

| Run no. 11: L = 15.991 cm; A = 5.293 cm <sup>2</sup> ; Mesh = 170-200; $p_{a} = 2000 \text{ psi}$ |
|---------------------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------------------|

| Number of |         | ۸m                 | τ.7       |         | Run      | Effluent |      |
|-----------|---------|--------------------|-----------|---------|----------|----------|------|
| measure-  | Date    | <sup>11</sup> core | l v       | t       | Temp.    | Temp.    | k    |
| ment      |         | (psi)              | (cc)      | (sec)   | (°F)     | (°F)     | (mđ) |
| 811a      | 9/24/80 | 0.856              | 10        | 175.70  | 76.5     | 77       | 2651 |
| 812       | 11      | 0.853              | 11        | 175.70  | 76       | Π        | 2675 |
| 813       | 11      | 0.955              | 11        | 157.60  | 11       | 11       | 2664 |
| 814       | TT      | 0.953              | 11        | 157.75  | 11       |          | 2667 |
| 815       | 11      | 0.768              |           | 196.40  |          | 11       | 2658 |
| 818       | 9/25/80 | 0.935              | 11        | 163.40  | 74 :     | 74       | 2689 |
| 819       | 11      | 0.933              | 11        | 164.05  | n        | 11       | 2684 |
| 820       | - 11    | 0.934              | 11        | 164.10  | 11       | 73       | 2680 |
| 821       | 11      | 0.961              | 11        | 76.25   | 148      | 72       | 2666 |
| 822       | 11      | 0.960              | 11        | 76.60   | 11       | 11       | 2651 |
| 823       | 11      | 0.900              | TT        | 81.55   | 11       | 11       | 2656 |
| 824       | m       | 0.900              | 11        | 81.85   | п        | n        | 2646 |
| 825       | **      | 0.817              | 11        | 90.10   | н.       | n .      | 2648 |
| 826       | 11      | 0.816              | 11        | 89-95   | H        |          | 2656 |
| 827       |         | 0.756              | 11        | 97.20   | П        | 11       | 2653 |
| 828       | 11      | 0.960              | 11        | . 76.70 | 11       | ······   | 2648 |
| 829       | **      | 0.8315             | 11        | 48.50   | 250      | 74       | 2656 |
| 830       | 11      | 0.8265             | 11        | 48.75   | 11       | 11       | 2659 |
| 831       | 11      | 0.755              | 11        | 53.60   | <b>n</b> | н        | 2648 |
| 832       | "       | 0.7485             | 11        | 53.70   | n        |          | 2666 |
| 833       | 11      | 0.655              | 11        | 61.60   | н        | 11       | 2656 |
| 834       |         | 0.658              | 11        | . 61.60 | 11       | H        | 2643 |
| 835       | 11      | 0.7825             | <u>n</u>  | 51.80   | 11       | 73       | 2643 |
| 836       | 11      | 0.7275             | 11        | 45.50   | 300      | 76       | 2666 |
| 837       | 11      | 0.734              | fi fi     | 46.25   | 11       | ·····    | 2664 |
| 838       | "       | 0.669              | 11        | 49.70   | 11       | 11       | 2654 |
| 839       | 11      | 0.670              | 11        | 49.30   | 11       | 11       | 2671 |
| 840       | 11      | 0.615              | 11        | 53.65   | 11       | 11       | 2674 |
| 841       | 11      | 0.619              | 10.15     | 54.65   | 11       | 11       | 2648 |
| 842       | 11      | 0.740              | 10        | 44.70   | 11       | 11       | 2668 |
| 843       | 11      | 0.648              | <u>†1</u> | 51.25   | 11       | 11       | 2657 |
| 844       | 11      | 0.763              | 11        | 52.55   | 252      | 74       | 2649 |
| 845       | 11      | 0.764              | 11        | 52.25   | 11       | tt       | 2660 |
| 846       | "       | 0.823              | 10.15     | 49.90   | 11       | 11       | 2626 |
| 847       | 11      | 0.823              | 10        | 48.65   | 11       | 11       | 2652 |
| 848       | 11      | 0.717              | 11        | 56.40   | t1       | 11       | 2645 |
| 849       | 11      | 0.7145             | 11        | 56.00   | 11       | 11       | 2564 |
| 850       | 11      | 0.884              | 11.1      | 45.30   | 11       | 11       | 2651 |
| 851       | 11      | 0.883              | п         | .45 60  | 11       | 11       | 2638 |
| 852       | Ħ       | 0.9615             | 11        | 74 70   | 152      | 11       | 2654 |

 $\overline{p} = 200 \text{ psig}$ 

| Run no. 11: | L = 15.991 cm; | $A = 5.293 \text{ cm}^2;$ | Mesh = $170-200;$ | p_ = 2000 psig |
|-------------|----------------|---------------------------|-------------------|----------------|
|             |                |                           |                   | · ^ · 0        |

| Number of |         | -        |       | ++     |          | 7551                                   | ÷    |
|-----------|---------|----------|-------|--------|----------|----------------------------------------|------|
| measure-  | Data    | Δp       | v v   | t      | Kun      | Effluent                               | k    |
| measure-  | Date    |          | (cc)  | (sec)  | Temp.    | Temp.                                  | (md) |
| 853       | 0/25/00 | $(ps_1)$ | 10    | 77 55  | (°F)     | (°F)                                   | 0017 |
| 854       | 11      | 0.900    | 10    | 74.55  | 1.52     | 14                                     | 2047 |
| 855       | 11      | 0.902    |       | 79.60  |          | <u> </u>                               | 2000 |
| 856       | 11      | 0.9005   | 11    | 79.50  |          |                                        | 2045 |
| 857       |         | 0.0195   | 11    | 07.60  |          |                                        | 2649 |
| 858       |         | 0.024    | 11    | 7/ 20  |          | <u>↓</u>                               | 2042 |
| 859       | FT FT   | 0.907    | 10.01 | 94.30  |          | 1 11                                   | 2035 |
| 860       | 9/26/80 | 0.850    | 10.01 | 105 00 | 70       | 70                                     | 2647 |
| 861       | 9720700 | 0.840    | 10    | 105.00 | <u> </u> | / 5                                    | 2035 |
| 962       | 11      | 0.049    | 11    | 160.05 |          | 11                                     | 2030 |
| 863       | 11      | 0.932    | 11    | 169.05 |          |                                        | 2049 |
| 864       |         | 0.930    | 11    | 107.40 |          | 11                                     | 2000 |
| 865       | 11      | 0.800    |       | 196.30 |          | l                                      | 2000 |
| 866       |         | 0.802    |       | 196.90 | 150      | 7/                                     | 2043 |
| 867       |         | 0.832    | 11    | 88.65  | 150      | /4                                     | 2014 |
| 007       |         | 0.833    | 11    | 89.05  |          |                                        | 2599 |
| 860       | 11      | 0.902    |       | 81.75  |          | 11                                     | 2614 |
|           |         | 0.905    |       | 81.50  |          |                                        | 2013 |
| 070       |         | 0.954    | 11    | 76.95  |          |                                        | 2612 |
| 071       | 11      | 0.962    |       | 76.85  |          |                                        | 2607 |
| 072       |         | 0.812    | 11    | 90.85  |          | /3                                     | 2013 |
| 0/3       |         | 0.689    | 11    | 59.70  |          | 12                                     | 2638 |
| 074       |         | 0.089    | 11    | 59.60  | 11       |                                        | 2033 |
| 075       |         | 0.735    | 11    | 55.80  |          |                                        | 2636 |
| 8/0 .     |         | 0.735    |       | 55.80  |          |                                        | 2030 |
| 0//       |         | 0.797    |       | 51.50  |          |                                        | 2635 |
| 0/0       |         | 0.799    |       | 51.25  | 11       |                                        | 2037 |
|           |         | 0.681    | 11    | 60.20  |          |                                        | 2636 |
| 000       |         | 0.682    |       | 55.70  | 200      | 76                                     | 2034 |
| 001       |         | 0.600    |       | 55.70  | <u> </u> | 70                                     | 2071 |
| 002       |         | 0.000    |       | 55.90  | 11       |                                        | 2002 |
| 005       |         | 0.640    | 11    | 52.30  |          |                                        | 2007 |
| 004       | ·····   | 0.041    |       | 52.10  |          | 75                                     | 2670 |
| 000       |         | 0.694    |       | 48.20  |          | 75                                     | 2070 |
| 000       |         | 0.095    |       | 48.13  | 11       |                                        | 2009 |
|           |         | 0.568    | 11    | 59.25  | 11       |                                        | 2055 |
| 000       | 11      | 0.309    | 11    | 28.95  | 250      |                                        | 2003 |
| 889       |         | 0.665    |       | 60.75  | 250      | /4                                     | 2002 |
| 890       |         | 0.000    |       | 60.70  |          | ···· · · · · · · · · · · · · · · · · · | 2050 |
| 891       |         | 0.743    |       | 54.50  |          |                                        | 2647 |
| 892       | ,,      | 0./455   | TI    | 54.50  |          |                                        | 2638 |

<u>p</u> = 200 psig

Run no. 11: 
$$L = 15.991 \text{ cm}$$
;  $A = 5.293 \text{ cm}^2$ ; Mesh = 170-200;  $p_c = 2000 \text{ psig}$ ;

| Number of<br>Measure-<br>ment | Date    | ∆p<br>core<br>(psi) | V<br>(cc) | t<br>(sec) | Run<br>Temp.<br>(°F) | Effluent<br>Temp.<br>(°F) | k<br>(md) |
|-------------------------------|---------|---------------------|-----------|------------|----------------------|---------------------------|-----------|
| 893                           | 9/26/80 | 0.796               | 10        | 50.80      | 250                  | 74                        | 2640      |
| 894                           | F1      | 0.798               | 11        | 50.75      | TT                   | 11                        | 2645      |
| 895                           | 11      | 0.679               | 11        | 59.80      | 11                   | 11                        | 2634      |
| 896                           | 11      | 0.680               | 11        | 59.55      | 11                   | 11                        | 2645      |
| 897                           | 11      | 0.979               | 31        | 74.35      | 151                  | 74                        | 2633      |
| 898                           | 11      | 0.983               | 11        | 73.80      | 11                   | 11                        | 2642      |
| 899                           | 11      | 0.8755              | 11        | 83.15      | 11                   | 11                        | 2634      |
| 900                           | 11      | 0.880               | 77        | 82.50      | 150.5                | 11                        | 2640      |
| 901                           | 11      | 0.824               | 11        | 88.40      | **                   | 11                        | 2632      |
| 902                           | 11      | 0.828               | 11        | 87.75      | 11                   | 11                        | 2638      |
| 903                           | 11      | 0.868               | 10.05     | 84.45      | 11                   | 11                        | 2627      |
| 904                           | 11      | 0.873               | 10        | 83.80      | 11                   | 11                        | 2620      |
| 905                           | 9/27/80 | 0.917               | 10        | 176.85     | 72                   | 72                        | 2609      |
| 906                           | 11      | 0.917               | 10.05     | 177.65     | 71                   | 11                        | 2611      |
| 907                           | 11      | 0.964               | 10        | 168.35     | 11                   | FT FT                     | 2608      |
| 908                           | 11      | 0.9645              | 10        | 168.80     | 71.5                 | 71.5                      | 2618      |
| 909                           | 11      | 0.855               | 10.15     | 194.15     | 11                   | 11                        | 2606      |
| 910                           | 11      | 0.856               | 10        | 189.85     | 11                   | 11                        | 2623      |

 $\overline{P} = 200 \text{ psig}.$