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1. FRACTURE CHARACTERIZATION USING PRODUCTION 

DATA 

This research project is being conducted by Research Assistant Egill Juliusson, Senior 

Research Engineer Kewen Li and Professor Roland Horne. The objective of this project 

is to investigate ways to characterize fractures in geothermal reservoirs using production 

data. 

1.1 SUMMARY 

The quarter's activities in this project are reported in three parts. The first part is on 

advances that have been made in solving the advection-dispersion equation which 

governs tracer and thermal transport. The key idea behind these advances is to encode the 

tracer production in terms of cumulative injection, as opposed to time. This way to tracer 

production can be computed for any given flow rate. Moreover, these advances can be 

used in the two-dimensional discrete fracture network simulator, discussed in earlier 

quarterly reports (winter and spring 2010).  

 

The second part is a review of methods that have been identified for the interpretation of 

pressure or flow rate communication between wells. The section is divided into 

subsections on rate-pressure, pressure-pressure and rate-rate regression models. The rate-

rate regression models are covered more extensively than the others, since these methods 

look promising for prediction of flow rates in enhanced geothermal systems. 

 

Finally, we document the various types of regression models that have been used to infer 

well-to-well connectivity in this investigation. The discussion helps clarify the linkage 

between the various linear and nonlinear, and parametric or nonparametric approaches 

that have been suggested. The simplest and most restrictive methods are reviewed first, 

and the discussion ends with a review of the alternating conditional expectation model, 

which is very flexible, but has relatively poor predictive power. 

 

1.2 INTRODUCTION 

A part of this project has focused on the numerical simulation of tracer transport through 

fractures. Traditional finite volume and finite element simulators have not proven to be 

very efficient in handling such simulations because of computational inefficiencies that 

arise due the interplay between fast traveling tracer fronts, small computational elements 

and time stepping.  

 

In the quarterly reports from winter and spring 2010 a fast but simplified numerical 

modeling method for calculating flow through a discrete fracture network was discussed. 

The method was developed based on the assumption of steady-state, incompressible 

single-phase flow, which made the problem analogous to analyzing a network of 

resistors. The single-phase incompressibility assumption should be a good approximation 

for most EGS (Enhanced Geothermal Systems) and other single-phase geothermal 

systems. The effects and implementation of Taylor dispersion were also discussed, and in 

particular the sensitivity of the solution to how fractures are modeled. 
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In this quarterly report, a solution to the one-dimensional advection-dispersion equation 

for transient flow rate and dispersion is developed. This solution may be of interest on its 

own, since it is a general and compact analytical solution to a commonly encountered 

partial differential equation, which has not been reported in the literature to the best of 

our knowledge. The key idea is to transform the time variable into cumulative injection. 

Although it has not yet been verified it looks like this transformation is applicable to 

many known solutions of the advection-dispersion equation, even in two or three 

dimensions. Moreover, this solution brings the possibility of lifting the steady-state flow 

condition on the discrete fracture simulator discussed in the previous paragraph 

 

Much of our work to date has focused on tracer transport. To broaden the horizon we 

have looked into pressure and flow rate data. A brief literature survey of methods for 

interpreting pressure and rate signals between wells is presented here. This field seems to 

be addressed well by researchers in the petroleum industry and a couple of promising 

methods were identified. Some of the key components of the methods were also 

implemented to enhance our understanding of how they work. 

 

Several regression methods have been used in this project and related projects to infer 

well-to-well connectivity using tracer data. These methods have evolved in complexity in 

an attempt to capture the rather complex pattern of tracer returns under variable injection 

conditions. It is worthwhile to review these methods, along with the main assumptions 

made to allow greater flexibility in capturing complex time series. This shows also that 

care must be taken in choosing not too complex a model, since that can lead to models 

with poor predictive capacity. 

 

1.3 ADVECTION-DISPERSION EQUATION WITH TIME VARYING 

COEFFICIENTS 

A key element for the extension of the discrete fracture simulator discussed in the 

quarterly reports from winter and spring 2010 was to develop an analytical solution for 

tracer transport under transient flow conditions (transient flow rate and dispersion). In 

this case, the advection dispersion equation would be: 

 

  

  
  ( )

  

  
  ( )

   

   
   (2.1) 

 

Here we will show the development of a solution to this equation, using the known 

solution for the impulse response on an infinite x-domain, assuming constant velocity, 

  , and dispersivity,   . This solution, for a tracer slug (impulse) of mass   released at 

   , at time    is: 
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This essentially describes a normal distribution in  , with a linearly increasing mean, 

  (    ), and variance,    (    ). The state of the tracer concentration as a function 

of   at a time    is shown in Figure 1.1, along with the observed concentration at a 

location  , at times        . 

 

Figure 1.1: Tracer slug as a function of x (on the left) and as seen at location  , up until 

time   . 

 

Now, say that at time,   , the injection rate changes such that the flow velocity and 

dispersion become    and   . The observed returns at   after    can be computed by 

identifying that the response at   is a combination of impulse responses coming from 

small impulses released at incremental locations along x (dashed boxes in Figure 1.1), 

each with associated mass: 
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Thus, the concentration function becomes: 
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Note here that after time    we have a convolution of two impulse responses, in terms of 

 . Remembering that the impulse response can be viewed as a normal probability 

distribution, scaled by    , we obtain: 
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where   (    (    )    (    )) denotes the probability density function (pdf) for a 

normally distributed variable with mean   (    ) and variance    (    )  The first 

key observation here is that the sum,  , of two normally distributed random variables, say 

   and   , will have a mean equal to the sum of the means of    and   . Similarly the 

variance of   will be the sum of the variances of    and   . Secondly it is important to 

observe, that the pdf of  , is the convolution of the pdf’s of    and   , which is precisely 

what was seen in (2.5). Thus, 
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From this point it is straight forward to infer that if the flow rate is changed again, with a 

corresponding change in   and  , these changes can be incorporated into the mean and 

variance of   . For example after   changes in injection: 
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Letting the changes in time,           , become incrementally small leads to the 

solution of (2.1), given a tracer slug of mass   released at    , at time   : 
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(2.9) 

 

A discrete (albeit slightly convoluted) version of this formulation was derived by Carlier 

(2008). Carlier also listed three other impulse response solutions, derived for different 

boundary conditions. The solution given for a constant flux concentration boundary on a 

semiinfinite domain for constant   and   is (Zuber, 1974): 

 

 (            )  
  

   (    )√    (    )
 
 
(  (    )  ) 

   (    )          (2.10) 

 

Carlier generalized this solution for a discrete number of flow periods. If we let these 

discrete periods become incrementally small the solution generalizes to an expression 

similar to Equation (2.9): 
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(2.11) 

 

Here it has been shown that two impulse response solutions which were derived for 

constant   and  , can be generalized to solutions with time varying coefficients by 

replacing    with ∫  ( )  
 

  
 and    with ∫  ( )  

 

  
. It seems logical to suppose that 

other versions of impulse response solutions to the advection dispersion equation could 

be generalized in the same manner, e.g. Equations (7), (8), (26) and (27) in Carlier 

(2008). 

 

Figure 1.2 shows the semiinfinite and infinite impulse responses to a sinusoidal flow rate 

and a step-wise varying flow rate (in this case we let  ( )   ( )   ( )). 
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Figure 1.2: Impulse responses to the advection-dispersion equation with varying flow 

velocity and dispersion. The time varying flow velocities are above the 

corresponding impulse responses for an infinite medium (   ) and a semiinfinite 

medium (   ). Here                    and  ( )   ( ). 

 

The impulse response can be used to find the response for any transient input of the tracer 

concentration. To see this, imagine a series of impulses, released from point     at 

times   . Each impulse has mass: 

 

  (  )   (      ) (  )    =   ( 
 ) (  )     (2.12) 

 

where   ( ) is a time varying concentration introduced to the flow stream at      
Replacing   in (2.9) with   (  ), and integrating with respect to    over all times from   

to  , leads to the concentration for any time varying concentration injected. 
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Similarly, for the semiinfinite case, replacing   in Equation (2.11) with   (  ) leads to: 
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Tracer responses for the same situation as presented in Figure 1.2, except with a linearly 

increasing concentration, are shown in Figure 1.3. 
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Figure 1.3: Responses to the advection-dispersion equation with a linearly increasing 

injection concentration (  ) and varying flow velocity and dispersion. The time 

varying flow velocities,  ( ), are above the corresponding responses for an 

infinite medium (   ) and a semiinfinite medium (   ). Here         
           and  ( )   ( ). 

 

1.3.1 Cumulative injection model for multiwell tracer tests 

Although the models presented in Equations (2.13) and (2.14) lack some essential 

properties, e.g. matrix diffusion (Jensen, 1983), they give some insight into which 

predictors might be appropriate for finding a unique transfer function between injector 

and producer. Take Equation (2.13) for example. Assuming that dispersion depends on 

velocity as  ( )    ( ) and letting  ( )    ( ), Equation (2.13) can be rewritten as: 
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Noting that: 
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Substituting into (2.15) gives: 
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Equation (2.17) is a convolution equation in terms of cumulative injection. To be able to 

use it the concentration needs to be represented as a function of cumulative injection, and 

the transfer function will also be a function of cumulative injection. This transfer 

function, however, is representative of the connectivity between the wells, independent of 

what the current injection rate is. Therefore, it can be applied to predict tracer 

breakthrough at any injection rate, and it can be compared to other such transfer functions 

without the bias caused by variable injection rates. Moreover, this type of model might 

work well in conjunction with a pressure or rate based model, since the signals generated 

by varying both injection rate and concentration at the same time could be interpreted by 

these methods. For example, a nonparametric deconvolution approach, similar to that 

introduced in the quarterly report from summer 2009 would probably work well. 

 

1.4 INTERPRETATION METHODS FOR PRESSURE AND FLOW RATE DATA 

The interpretation of pressure signals has been a long standing research topic in both the 

ground water hydrology and the petroleum sciences. A multitude of regression methods, 

analytical models and numerical models have been documented. This section provides a 

brief overview of a few notable methods, relating rate-pressure, pressure-pressure and 

rate-rate interactions between wells. Nonparametric models based on the pressure 

equation, will in generally involve solutions of the deconvolution problem, because 

pressure disturbances in the reservoir are superposable. The pressure and rate in a well 

are often linearly related, which makes it possible to find a unique transfer function 

between pressure, or rate, in one well and pressure, or rate, in another well. 

 



10 

 

1.4.1 Rate-pressure models 

Rate-pressure transfer functions are commonly used in well tests and interference tests. A 

multitude of analytical solutions for these types of models are in the literature, some of 

which are given in Lee (1982). Some very interesting generalizations of the analytical 

well test models for fractal dimensions can be found in the paper by Barker (1988).  

 

If an analytical rate-pressure model is not assumed, one can still assert (based on the 

superposition principle) that a change in production rate at     will induce a pressure 

change at   according to the convolution equation: 

 

 (   )    ( )  ∫  (     ) (   )  
 

 

 (2.18) 

 

Discusssions of the validity of this assumption can be found in Deng and Horne (1993) 

and Schroeter and Gringarten (2007), which conclude that if wellbore storage and skin 

effect are negligible, it should hold (and in many other cases as well). In other words, if   

and   are representative for measurements within the formation, then Equation (2.18) 

should hold. 

 

The unknown in Equation (2.18) is the pressure impulse response,  , which is the time 

derivative of the rate normalized pressure,   (   ). This is the characteristic rate-

pressure transfer function between the two wells in question, and it is determined by the 

physics of the reservoir. It is related to the diagnostic pressure derivative in well testing 

as follows: 

 

   (   )    ( )      (   )      (   )⁄⁄  (2.19) 

 

Schroeter et al. (2004) developed a widely used nonparametric single well deconvolution 

method for simultaneously obtaining   (   ) and  (   ). Some aspects of this method 

were improved by Levitan (2005) and Pimonov et al. (2009), but the basic method in the 

2004 publication is still the industry standard. The crux of the method is to transform the 

problem to a logarithmic time scale. This makes the problem nonlinear, which is not 

good, but it also makes it easier to capture the important part pressure transient with 

relatively few unknown parameters. A number of other deconvolution methods have also 

been proposed e.g. by Nomura and Horne (2009) and many others which are referred to 

in Schroeter et al (2004). 

 

Levitan (2006) also extended the work of Schroeter et al. (2004) to include the effects of 

multiple wells. The multiwell deconvolution equation is: 

 

 (    )    (  )  ∑∫  (      ) (      )  
 

 

  

   

 (2.20) 
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where   and   refer to each of the    wells in the reservoir. Levitan (2006) asserts that 

only pressure build-up data can be used for the deconvolution method, because variable 

skin effects often seen between drawdown and build-up would violate the deconvolution 

principle. He also stresses that it is impractical to extract information about the interwell 

transfer functions between wells   and   when both wells are active. The reason is that the 

pressure signal from the active well on itself (   ) will overshadow the interwell pressure 

signal (   ). Finally he mentions that the multiwell rate-pressure convolution problem 

could benefit from work on optimal production-injection signals, that would provide 

transients that are well suited for deconvolution. 

 

It is clear from this summary that researchers of well-to-well interaction in terms of rate-

pressure data have worked on problems similar to those that have been found for well-to-

well tracer interactions in this research project. Schroeter et al. (2004) solved the problem 

of finding an appropriate time scale by a logarithmic transformation of the time scales. In 

the quarterly report from summer 2009 we faced a similar problem of time scales that 

were hard to quantify, which was solved using a set of heuristic search algorithms. In the 

first section of this report we are suggesting a transformation of the time variable into 

cumulative injection. Finally, we also dealt with the problem of designing injection 

schedules that provide highly informative tracer transients, which is similar to the 

pressure transient topic mentioned by Levitan (2006).  

 

To highlight some of the differences between the pressure and tracer problem, we note 

that the pressure transport is governed by the diffusion equation, and the response is 

generally a linear function of the pressure change that caused the disturbance. Moreover, 

most of the pressure response is usually seen within a very short time frame, as compared 

to the tracer response. A pressure pulse is usually much easier to send and measure than 

is a tracer pulse. The tracer response is governed by the advection-dispersion equation. 

This means the tracer response is a linear function of the injected tracer concentration 

(which caused the disturbance), but a nonlinear function of the flow rate. Therefore, the 

well-to-well transfer functions (   ) that were found by deconvolution in the summer 

2009 quarterly report were specific to a single set of steady-state injection and production 

rates. This problem might however be solved by viewing the transfer function in terms of 

cumulative injection. 

 

1.4.2 Pressure-Pressure models 

Pressure-pressure deconvolution studies are less abundant in the literature. In fact we 

only reviewed a single study of pressure-pressure deconvolution, i.e. that of Onur et al. 

(2009). The work of Onur et al. utilized the deconvolution algorithm of Schroeter et al. 

(2004) with the extensions from Pimonov et al. (2009). It is shown that the pressure-

pressure relationship can be modeled by the convolution equation: 

 

 (   )    ( )  ∫  (     ) (   )  
 

 

 (2.21) 
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where  (   ) is the pressure-pressure impulse response that is to be determined. By 

comparison of Equations (2.21) and (2.18), it is not surprising that the same 

deconvolution methods are applicable. 

 

Much of the discussion in Onur et al. is on the diagnostic interpretation of   , which is 

similar to that of the diagnostic derivative,   , for rate-pressure responses. The main 

advantages mentioned for pressure-pressure deconvolution are that pressure signals are 

often less susceptible to noise and that   is independent of wellbore storage. It is stated 

that   is a unique function of the skin factor and the hydraulic diffusivity. This also 

means that problems are encountered in the presence of variable skin, and that 

permeability and porosity cannot be estimated individually. 

 

1.4.3 Rate-rate models 

Rate-rate models seem to have captured the attention of a slightly different group of 

researchers within the petroleum industry. The methods of characterizing the transfer 

functions in rate-rate modeling have been less focused on capturing the details of the 

transients, and more focused on multiwell applications and the long term effects that 

controlled injection has on production rates. Much work has been done on the so called 

capacitor-resistor models (CRM), which draw upon an analogy between the well-to-well 

connections and electric circuitry. Several variations of the CRM model have been 

suggested, e.g. by Yousef et al. (2005), Sayarpour et al. (2006) and Lee et al. (2009, 

2010). The governing differential equation used for the development of the CRM, 

assuming constant bottomhole pressure at the producer, is: 

 

   ( )

  
 

 

 
  ( )  

 

 
  ( ) (2.22) 

 

Here the subscripts   and   refer to production and re-injection, and T is a time constant 

representative of the drainage volume between the injector and producer. This equation 

has the solution: 

 

  ( )    ( ) 
 
 
  ∫  (   )

  
 
 

 
  

 

 

 (2.23) 

 

It is clear by contemplating this solution that the long term production rate will tend to 

follow the injection rate, and the time lag will be defined by the time constant T. Note 

also that the second term on the right is a convolution integral, similar to that shown in 

Equations (2.18) and (2.21). In this case, however, an analytical transfer function is 

assumed to be known, and only the time constant, T, is what needs to be determined. 

 

A multiwell analog of equation (2.23) was also derived by Yousef et al. (2006) (here 

assuming constant bottomhole pressure at the producer): 
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 (2.24) 

 

In this case, the indexes   and j refer to specific producers and injectors, respectively. The 

factor    should ideally be 1, but was included to allow more flexibility in fitting the 

model at late times. Note here that given constant injection rates, the late time production 

rate will be the weighted sum of the injection rates, with       defining the weights. Thus, 

      can be viewed as the long term contribution of injection in injector   to the 

production in producer  .  
 

The CRM model is essentially a parametric model, where the unknowns are the 

parameters   and T. An alternative approach, more in the line with what this research 

project has focused on, and the work of Schroeter et al. (2004), is to model the transfer 

function nonparametrically. Since the analytical solution of the rate-rate model is based 

on the convolution integral, a deconvolution approach is well suited to find the 

nonparametric transfer function. This approach was carried out by Lee et al. (2009), 

where he proposed a model of the form: 

 

    ( )      ( ) 
 

 
     ∑∫    (   )   ( )  

 

 

  

   

 (2.25) 

 

in which h denotes the nonparametric function to be determined. Lee et al. solved this 

equation using a deconvolution algorithm, similar to the one we proposed in the quarterly 

report from summer 2009. They did not, however, adjust the time scales dynamically and 

therefore the estimates for h were rather coarse. We suspect that the main reason for the 

method working as well as reported is that the test examples were based on data where 

the flow rates would stabilize quickly and thus the model was mostly being fitted to 

steady-state data points. This may very well applicable in practice, especially with 

incompressible (or slightly compressible) flows, where the time constant should be very 

small. 

 

In Lee et al. (2010) the development of the rate-rate model was based on a set of coupled 

differential equations similar to Equation (2.22), where for each of the    producers there 

was an equation of the form: 

 

     ( )

  
 ∑

   

  
    ( )

  

   

 ∑
   

  
    ( )

  

   

 (2.26) 

 

This set of equations can be represented in matrix form as: 
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and: 
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] (2.29) 

 

The solution to (2.27) is quite similar to equations (2.23) and (2.24), i.e.: 

 

  ( )    ( ) 
     ∫  (   )   

      

 

 

 (2.30) 

 

The main additional development in this solution is that the producer-producer 

interactions are now also taken into account, in addition to the injector-producer 

interactions. For practical applications it is more convenient to deal with the discrete form 

of Equation (2.27). This was done by Lee et al. (2010), which presented the discrete 

counterpart of (2.27) as: 

 

  (   )      ( )     ( ) (2.31) 

 

where   is a time-like discrete variable, and   and   are the discrete counterparts of    

and   , respectively. Equation (2.31) defines a multivariate autoregressive model for 

determining    with exogenous inputs,   . It is referred to as the M-ARX model. A set of 

    measurements yields   equations which can be solved together to find the 

elements of   and  . 

 

[  ( )   (   )]  [    ] [
  ( )    ( )

  ( )    ( )
] (2.32) 

 

To ensure that the solution is stable, it is important to add the constraint that     

(element-wise), or that (   )     . It can be shown via the z-transform (discrete 

analog of Laplace transform) that if the injection rates are kept constant, the production 

will stabilize at: 

 

   (   )          (2.33) 
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The matrix   (   )    then defines the interwell connectivity for each of the 

injector-producer pairs in terms of flow rate. 

 

If the total compressibility is small, the flow rates stabilize relatively quickly, i.e. within a 

few hours. This would likely be the case for production from enhanced geothermal 

systems, and thus the M-ARX model would be ideal, e.g. for reinjection scheduling. 

 

1.5 SUMMARY OF REGRESSION MODELING METHODS 

In this section we give an overview of the regression methods that have been used in this 

research project to infer interwell connectivity. We will try to keep the equations general 

in terms of notation, and give examples through references to other papers. In general we 

will refer to   as the input or predictor variable, and   as the output or response variable. 

We will also attempt to give graphical representations of each method to enhance 

understanding and shed light on the similarities and differences between each method. 

 

1.5.1 Multiple input linear regression 

Multiple linear regression is a model that relates a linear combination of multiple inputs, 

  , to a single output,  . In most cases there are multiple measurements in time so we 

have  ( ) and  ( ).  

 

 ( )  ∑    

  

   

( ) (2.34) 

 

Where    is the number of inputs, and the parameters    are the unknowns. Since there 

are usually more time measurements than unknowns, there will be more relations of the 

type (2.34) than unknowns and the    can be uniquely determined. A time lag,   , could 

also be considered by modifying (2.34) to: 

 

 ( )  ∑    

  

   

(    ) (2.35) 

 

The slopes,   , are generally assumed to be independent and can take any value. The 

multiple input linear regression model represented by (2.35) is shown graphically in 

Figure 1.4. 
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Figure 1.4: Linear regression model with multiple inputs and possible time lags 

 

The work of Urbino and Horne (1991) and Sullera and Horne (2001), relied mostly on 

regression models of this type, without the inclusion of time lags. The inclusion of time 

lags was presented earlier in this research project, in the quarterly report for winter 2009. 

The M-ARX model applied by Lee et al. (2010) can also be seen as a multiple input 

linear regression model, where some of the inputs, were the same as the output, but with 

a constant time lag. 

 

1.5.2 Single input convolution 

The single input convolution model in continuous form is: 

 

 ( )  ∫ (   ) ( )  

 

 

 (2.36) 

 

In discrete from this can be written as: 

 

 (  )  ∑    (     )

 ( )

   

 (2.37) 
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Where   is a counter of time measurements,  ( ) denotes a number dependent on  , 

    (  )   , and     is determined by the discretization used to approximate the 

integral. In equation (2.37) the function   is represented as a series of scalars, rather than 

a specific function of some undetermined parameters. That is why this is called a 

nonparametric model. Equation (2.37) clearly defines a linear regression system, much 

like Equation (2.35). The difference is that in the convolution model there are inputs from 

only one source, but with multiple time lags. Figure 1.5 shows the convolution model. 

 

 

Figure 1.5: Convolution model. The slopes,   , associated with consecutive time lags are 

positively correlated. This is usually imposed by introducing a penalty for large 

variances between consecutive slopes   . 

 

Again the output is a combination of linear functions, each of which can be defined by a 

single parameter,   . The factor    weights the influence that the input    time units ago, 

has on the output at the current time,  . 

 

In terms of the deconvolution problem it should be noted that there is one unknown (  ) 

for each time lag, i.e. each predictor. If the discretization for   coincides with the 

measurement times, there will be    equations and  ( )     unknowns. The 

unknowns associated with the small time lags (   for small  ) will appear in more of the 

equations than those associated with large time lags, and therefore the    for small   can 

be determined with more confidence. For real data sets with associated noise, the system 

will often be close to singular. A simple way to fix that is to reduce the number of 
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discretization points, i.e. time lags considered. Moreover, from the physics of the 

problem, one can usually deduce that  ( ) should be continuous. Thus, there should be a 

positive correlation between consecutive values of   . This is can be enforced by adding a 

regularization term to the solution method, as was done e.g. by Schroeter (2004), and 

Nomura and Horne (2009). 

 

1.5.3 Multiple input convolution 

The convolution model with    inputs affecting a single output, in continuous form, is: 

 

 ( )  ∑∫  (   )  ( )  

 

 

  

   

 (2.38) 

 

The discrete analog is: 

 

 (  )  ∑ ∑      (      )

 (   )

   

  

   

 (2.39) 

 

The coefficients,       (  )   , are analogous to what was seen for single well 

deconvolution. In terms of deconvolving (2.39), note that if there are    time 

measurements and the discretization of   coincides with  , the number of equations is    

but the number of unknowns is     . This means that the system is highly 

underdetermined. To make up for this, the system is usually solved with a smaller 

number of discretization points and added regularization terms for consecutive     in 

terms of  . Essentially, as the number of inputs,   , increases, the number of 

discretization points,  (   ), must decrease, and the reconstruction of  ( ) will be 

coarser. A graphical representation of multiple input convolution is given in Figure 1.6. 
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Figure 1.6: Multiple input convolution model. Generally the slopes,    , associated with 

consecutive time lags are positively correlated, i.e. there is a positive 

correlation between the slopes going from top to bottom in the left part of the 

figure. 

 

Multiple input deconvolution was applied for example by Lee et al. (2009) and in 

previous quarterly reports (summer 2009). 

 

1.5.4 Alternating conditional expectation 

The models that have been discussed so far can all be seen as linear regression models. 

That is, the output is a linear combination of multiple inputs, coming from different 

sources and with variable time lags. The alternating conditional expectation (ACE) model 

(Breiman and Friedman, 1985) is a more general model, in that it allows the functions of 

both the predictors and the responses to be nonlinear and nonparametric. The ACE model 

is as follows: 

 

 ( ( ))  ∑  (  (    ))

  

   

 (2.40) 

 

The main restrictions on   and    are, that they must be smooth. This allows for great 

flexibility in fitting data, but the solutions will be highly susceptible to noise. This 

flexibility is perhaps more clear when viewing the discrete form: 
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 ( (  ))  ∑  (  (     ))

  

   

 (2.41) 

 

Note that  ( (  )) and   (  (     )) are simply scalars which are only restricted to 

have a positive correlation with nearby scalars in terms of    The cost of this increased 

flexibility is that the predictive power of the ACE model will often be poor. Figure 1.7 

illustrates the ACE model graphically. 

 

 

Figure 1.7: A graphical representation of the ACE model with inputs from multiple 

sources sampled with a possible time lag 

 

The ACE model shown in (2.40) can be compared to the multiple input linear regression 

model (2.35). Note that simple straight lines which can be defined by a single parameter, 

have been replaced by a continuous sequences of    points. Thus the number of 

unknown variables for the model in (2.41) is     . The ACE model was applied in the 

winter 2009 quarterly report and Horne and Schutz (2008). The ACE algorithm could 

also be used in an autoregressive manner, much like the M-ARX model. We 

experimented with this approach, but found that it had stability issues, and poor 

predictive power. 

 

One of the drawbacks of using ACE is in the way described by Equation (2.40) is that 

this model assumes that the output is depend on each source with a unique time lag for 
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each source. However, the physics indicate that the response is a function of each source 

with multiple time lags. The ACE model could easily be used to take in data with 

multiple time lags as predictors, i.e.: 

 

 ( ( ))  ∑∑   (  (     ))

 

   

  

   

 (2.42) 

where   denotes the number of time lags taken into account. The graphical representation 

is shown in Figure 1.8. 

 

 

Figure 1.8: A graphical representation of the ACE model with inputs from multiple 

sources sampled with multiple time lag 

 

Although this model would be exceptionally robust in fitting data, its predictive power 

would most likely be very poor. The number of equations in this case would be    and 

the number of unknowns     
 . Additional constraints might be applicable to the model, 

e.g. by requiring there to be some sort of continuity between consecutive functions     in 

terms of  . The details of how to impose such a continuity constraint is not clear at this 

point. It might also be possible to use an alternative predictor, e.g. cumulative flow rate, 

to make the predictions of ACE more unique and meaningful. 

 

When using such a flexible regression method, the nature of the problem at hand should 

be carefully examined, since the nonuniqueness of the solution may lead to deceptively 

good data fits with poor representation of the physics of the problem. This may in some 

cases be avoided by choosing the predictors and responses carefully (e.g. based on 

physical intuition), and using a more restrictive regression model. 
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1.6 FUTURE WORK 

A few fundamental results of the advection-dispersion equation with time-varying 

coefficients were introduced in this report. This raises questions about whether similar 

results can be found for slightly more complex, but physically more realistic cases. For 

example, can multidimensional versions, or the matrix diffusion model used by Jansen 

and Horne (1983) be rewritten in terms of cumulative injection? Moreover, will the 

convolution model hold for more general cases, thus allowing the estimation of 

nonparametric transfer functions in terms of cumulative injection using a deconvolution 

approach. And perhaps most importantly, can the appropriate cumulative injection be 

determined when there are multiple wells flowing simultaneously. 

 

The estimation of interwell connectivity using a combination of rate data and tracer data 

should be tested using numerical modeling. Some work has already been done in this 

area, but numerical instabilities have caused progress to be slow. Once these problems 

have been solved we envision either continuing on, to work on optimization of reinjection 

scheduling, or moving the focus to interpretation of temperature signals. The reinjection 

scheduling problem could be tackled using a combination of the interwell conductivity 

parameters from the M-ARX model, and the interwell conductivity functions for tracer 

transfer, given in terms of cumulative flow rate. 

 

The solutions for the time varying advection-dispersion could also be added into the 

discrete fracture simulator developed in previous quarterly reports. 

1.7 CONCLUSIONS 

In this quarterly report we have presented a solution to the one-dimensional advection-

dispersion equation with time-varying coefficients. This solution has not been presented 

in the solute transport literature to our knowledge, although a similar conclusion in 

discrete and rather convoluted form was derived by Carlier (2008). We derived the 

solution for a single case of boundary and initial conditions, but the fundamental idea 

looks like it may be applicable to several other cases, even in higher dimensions. 

Moreover, we introduced a representation of the tracer kernel in terms of cumulative 

injection. This removes its explicit dependence on the flow rate, which allows for a more 

general interpretation. Some simplifying assumptions were made about the relationship 

between dispersivity and flow rate, and thus it remains to be seen how applicable this 

transformation is for more general cases. 

 

The second part of this report gave a brief overview of models that have been used to 

describe rate-pressure, pressure-pressure and rate-rate interactions between wells. We 

attempted to give the most general form of the equations used in each case, along with 

the key tricks and assumptions used. The development of the rate-rate models was 

followed a bit more closely than the others. This was done mostly for the benefit of our 

understanding of how they work, and the fact that they seem particularly practical for 

large scale estimation and prediction. 
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The third section provided a relatively abstract overview of the regression models that 

have been used so far in relation to this research project. The section builds incrementally 

from relatively simple multiple input linear regression models to nonlinear nonparametric 

regression models with multiple inputs and multiple time lags (i.e. ACE). We also tried to 

analyze advantages and disadvantages of each method, and how more free parameters 

lead to better data fits but poorer predictive capabilities. 
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2. FRACTURE CHARACTERIZATION OF ENHANCED 

GEOTHERMAL SYSTEMS USING NANOPARTICLES 
This project is being conducted by Research Assistants Mohammed Alaskar, Morgan 

Ames and Chong Liu, Senior Research Engineer Kewen Li and Professor Roland Horne. 

The objective of this study is to develop in-situ multifunction nanosensors for the 

characterization of Enhanced Geothermal Systems (EGS). 

2.1 SUMMARY 

Iron oxide (Fe2O3) nanorice coated with surfactant (PVP) injection was conducted to 

explore the mobility of rod-like nanoparticles through a slim tube packed glass beads. 

Glass beads were used to study the iron oxide transport within a porous medium in the 

absence of the rock materials. The constraint imposed by the surface charge of rod-like 

nanoparticles was investigated. The surfactant coating of the nanoparticles modified their 

surface charge. Both the particles and flow medium have negative charge. Coated iron 

oxide particles were not identified in the effluent collected from the slim tube.  

 

Spherical silver nanoparticles were injected into Berea sandstone. The injection serves as 

preliminary testing of injecting metal alloys (tin-bismuth), which might be used as 

temperature sensors in geothermal reservoirs. The silver nanoparticles were identified in 

the effluent samples using SEM imaging. Their concentrations were determined by 

measuring their absorption using UV-visible spectrophotometry. The return curve showed 

that less than 25% of injected nanoparticles were recovered. 

 

The sonochemical synthesis of tin-bismuth alloy nanoparticles with a eutectic composition 

was performed. The tin-bismuth alloy has a melting point at temperatures of geothermal 

interest, which may make them suitable as temperature-indicative nanotracers. The 

nanoparticles were characterized using dynamic light scattering (DLS) and scanning 

electron microscopy (SEM) imaging. A sample of these alloy nanoparticles was subjected 

to a heating experiment to begin investigating their melting properties. This sample was 

then also characterized using DLS and SEM imaging. 

 

This report describes the results of the coated iron oxide nanoparticle injection into the 

packed slim tube, the spherical silver nanoparticles injection into Berea sandstone, and a 

bench heating experiment of tin-bismuth alloy nanoparticles. Characterizations of the iron 

oxide coated with PVP, silver nanoparticles, and tin-bismuth alloy nanoparticles are 

addressed. Standard measurements of porosity and permeability are also included. 

 

2.2 INTRODUCTION 

Last quarter (April-June 2010), iron oxide (hematite) nanorice injection experiments were 

carried out using Berea sandstone and a slim tube packed with glass beads. Influent and 

effluent samples were analyzed using DLS, UV-visible spectrophotometry and scanning 

electron microscopy (SEM). Iron oxide nanorice were not identified in effluent collected 

during the injection into Berea sandstone. DLS, UV-visible spectroscopy and scanning 

electron microscopy were used to examine the effluent samples, in which no nanoparticles 
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were detected. The iron oxide nanorice was, however, observed within the pores at the 

inlet side of the core. The iron oxide exhibited very low mobility during its injection 

through the slim tube packed with glass beads. The absorption of nanoparticles using UV-

visible spectrophotometry could not be measured due to their low concentrations, and thus, 

the concentration of iron oxide nanoparticles in the effluent relative to the concentration in 

the influent could not be determined. To better understand the relationship between particle 

geometry and transport, the iron oxide was coated with SiO2 and the surfactants TEA and 

PVP. Finally, the investigation of temperature-sensitive nanoparticles began with the 

synthesis of Sn-Bi alloy nanoparticles. The first attempt at the synthesis led to unsuccessful 

DLS measurements, either due to low ultrasonic power or an ineffective washing process. 

 

During this quarter, the iron oxide coated with surfactant (PVP) was injected into a tube 

packed with glass beads. The influent and effluent samples were characterized using 

scanning electron microscopy. Also, a second flow experiment using spherical silver 

nanoparticles injected into Berea sandstone was conducted. The concentration of silver 

nanoparticles in the effluent samples was measured using UV-visible spectrophotometry 

by measuring the nanoparticles absorption and relating it to particle concentration using a 

calibration curve. The return curve of the silver nanoparticles production was determined. 

Standard measurements on the core sample were also performed. These measurements 

included the gas and liquid permeability, porosity and pore volume measurements. Finally, 

the Sn-Bi alloy nanoparticle synthesis was repeated, and the particles were characterized 

successfully using DLS and SEM imaging. A sample of these particles was subjected to a 

heating test to investigate their melting behavior. This heated sample was also 

characterized using DLS and SEM imaging. For the heated sample, the DLS results 

showed a wider particle size distribution which included larger particles. SEM images 

showed agreement with the DLS results as well as visual clues that melting had occurred. 

However, due to the wide distributions of sizes in both the original and heated samples, 

rigorous analysis of size change due to melting could not be achieved based on the SEM 

images.  

 

2.3 BEREA SANDSTONE AND SLIM TUBE CHARACTERIZATION 

This section describes the measurements of the porosity, permeability and pore volume of 

Berea sandstone and slim tube packed with glass beads used in the silver nanoparticle and 

coated iron oxide nanorice injection experiments, respectively.  

2.3.1 Berea Core Characterization  

The core sample tested was Berea sandstone of 3.8 cm in diameter and 4.1 cm in length. 

The gas and liquid permeabilities were determined. The Klinkenberg (gas slippage) effect 

was considered to evaluate the equivalent liquid permeability. Then, the liquid 

permeability for the same core sample was carried out. Porosity and permeability results 

are summarized in Table 2.1. Note that this is the same core sample used previously in the 

iron oxide injection reported last quarter (April-June 2010), except that the core sample 

was shortened. So the rock properties of porosity and permeability are the same. The pore 

volume, however, has changed from 9 ml to 8 ml. 
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Table 2.1: Berea porosity and permeability measurements summary 

Property  Measurement method Value 

Porosity (%) Saturation with deionized water 17.1 

Permeability (md) Nitrogen permeability at 1.43 

atm.a 

152 

Equivalent liquid permeability 72.2 

Liquid permeability 60.7 

 

Figure 2.1 is a schematic of the apparatus used in the measurement of gas permeability. 

The gas flowed in this experiment was nitrogen (N2). The inlet and outlet pressures were 

measured using standard pressure gauges. The flow rate at the outlet was measured using a 

stop-watch and graduated cylinder. Calibration curves were included in the January-March 

2009 quarterly report. 
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Figure 2.1: Schematic of the apparatus for measuring gas permeability. 

 

The core was first dried in a furnace at 100
o
C under vacuum for 24 hours. After weighing 

the core sample, it was placed inside the core-holder under a confining pressure of 30 

atm.g. The gas permeability measurement was then started by introducing nitrogen at 

different flow rates and inlet pressures. The average gas permeability was found to be 

around 152 millidarcy by applying Darcy’s law for compressible fluids which is given by: 
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k






      (2.1) 

 

where  is the viscosity in centipoises, qtot is outlet volumetric flow rate in cubic 

centimeter per second, A is the core cross-sectional area in square centimeter, L is the core 

length in centimeter and inp  and outp  are inlet and outlet absolute pressures in 

atmospheres, respectively. 
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The gas permeability as a function of the reciprocal of mean pressure is depicted in Figure 

2.2. According to the Klinkenberg effect, extrapolating the straight line to infinite mean 

pressure (or zero reciprocal of mean pressure) intersects the permeability axis at a point 

designated as the equivalent liquid permeability (Amyx et al., 1960). In Figure 2.2, the 

average equivalent liquid permeability is approximately 72.2 millidarcy. 

 

Figure 2.2: Berea core gas permeability versus the reciprocal of mean pressure. 

 

The liquid permeability was measured on the same core sample directly. A schematic of 

the apparatus used in the measurement of liquid permeability is shown in Figure 2.3.  
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Figure 2.3: Schematic of apparatus for liquid permeability measurement. 

 

The core sample was first saturated with water outside the core-holder. The core and 

related system were evacuated using a Welch Vacuum Pump for 4 hours at a vacuum 

pressure of about 20 millitorr to remove moisture. Pure water was introduced to 

completely submerge the sample. The core was then left submerged overnight and the 

remaining vacuum released to aid the process of saturation. After that the core was 

removed and wiped dry to remove excessive water on the surface. Finally, the core was 

weighed and hence its porosity was calculated. The core turned out to have a porosity of 
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around 17.1 % and a pore volume of 8 cubic centimeters. The porosity calculation is as 

follows: 

100*
B

p

V

V


      (2.2) 

dsp WWV 
       (2.3) 

lrVB

2       (2.4) 

where   is the porosity in percentage, pV and 
BV  are pore and bulk volumes in cubic 

centimeter, respectively. sW and dW  are the weight of core after and before saturation, in 

gram, respectively. r  and l  are the radius and length of the core in centimeter, 

respectively. 

 

The average liquid permeability was found to be around 60.7 millidarcy. Darcy’s law for 

horizontal flow was utilized to compute the permeability. Darcy’s law for horizontal flow 

is given by: 

pA

Lq
kliq






      (2.5) 

where q is the volumetric flow rate in milliliter per second, µ is the viscosity in centipoise, 

L and A are the length and the cross-sectional area of the core in centimeter and square 

centimeter, respectively. p  is the differential pressure across the core sample in 

atmospheres. 

 

2.3.2 Polypropylene slim tube packed with glass beads 

To investigate the mobility of iron oxide nanoparticles in the absence of rock materials 

(such as clays), the nanoparticles were injected into a slim tube packed with glass beads. A 

30 cm long polypropylene slim tube was constructed. The tube was packed with glass 

beads (Glasperlen 1 mm in diameter from B. Braun Biotech International) and fitted with 

screens and valves at each end. This polypropylene slim tube is pictured in Figure 2.4. The 

porosity was measured by the saturation method. The porosity and pore volume of the 

glass bead packed slim tube were found to be approximately 46.8% and 2.39 ml, 

respectively. The permeability was estimated to be around 13 darcy.  
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Figure 2.4: Polypropylene slim tube packed with glass beads 

2.4 COATED IRON OXIDE CHARACTERIZATION AND INJECTION 

EXPERIMENT 

In three different experiments, the iron oxide nanorice were coated with silica (SiO2), the 

surfactants polyvinylpyrrolidone (PVP) and triethanolamine (TEA). The details of coating 

the iron oxide with the surfactants (PVP, TEA) or SiO2 can be found in the last quarterly 

report (April-June 2010). The uncoated nanorice exhibited very low mobility during their 

injection through the glass bead packed slim tube (April-June 2010) which was attributed 

to their geometry and/or surface characteristics. To investigate further if the surface charge 

was limiting their flow, the nanorice were coated with the surfactants or silica to modify 

their surface charge.  

 

2.4.1 Characterization of coated iron oxide 

Coated iron oxide particles were characterized in terms of size, surface charge (zeta 

potential) and pH using SEM imaging, zeta potential analysis and pH meter, respectively. 

The original iron oxide nanoparticles were 500 nm in length and 100 nm in diameter. 

Surface charge and pH measurements are summarized in Table 2.2. The reported zeta 

potentials are the average of three sets of measurement with standard deviation less than 2. 

 

Table 2.2: Zeta potential and pH level for original and coated iron oxide nanoparticles. 

Sample  Average zeta potential (mV) pH 

Original Iron 

oxide 

+59.3 3.3 

Iron oxide-SiO2 -32.4 5.56 

Iron oxide-PVP -9.5 4.82 

Iron oxide-TEA +18.9 4.5 

 

Note that there were three identical iron oxide samples each coated with different material. 

It was evident from the surface charge measurements that the coating materials have 
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altered the surface charge of the original iron oxide nanorice. The original (uncoated) iron 

oxide nanorice carries a high positive charge of 59.3 mV with low pH of 3.3 compared to 

the samples coated with silica (negative 32.4 mV and 5.56 pH) and PVP surfactant 

(negative 9.5 mV and 4.82 pH). The iron oxide coated with TEA surfactant resulted in 

moderately positive charge of about 18.9 mV. The zeta potential distribution of original 

and coated iron oxide nanoparticles can be depicted in Figure 2.5. 

 

 

Figure 2.5: Zeta potential distribution of coated and uncoated iron oxide nanoparticles. 

 

The glass beads used as the porous medium carry a negative charge. So it is of interest to 

inject particles that carry the same type of charge (i.e. negative charge), as similar charges 

repel and should prevent particle attachment to the glass beads. Based on this, the iron 

oxide nanoparticles coated with TEA surfactant were not selected for injection. 

 

From the surface charge point of view, the iron oxide nanoparticles coated with SiO2 were 

a very attractive candidate. They carry the highest negative surface charge among the three 

samples. Figure 2.6 shows the zeta potential distribution of silicon dioxide, iron oxides and 

silicon coated iron oxides. The peak of the distribution of the coated iron oxide nanorice is 

positioned between the peaks of the silicon dioxide and iron oxide.  

 

 

Figure 2.6: Zeta potential distribution of silicon only, iron oxide only and iron oxide nanoparticles coated with 

silica. 
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SEM imaging (Figure 2.7) showed that the iron oxide nanorice have a uniform SiO2 

coating of about 50 nm. As a result, the size of the iron oxide nanorices has changed from 

500 nm and 100 nm to 600 nm and 200 nm in length and diameter, respectively. It was 

also observed that the nanorice did not retain their original spindle-like shape with sharp 

edges (Figure 2.7 B). 

  

Figure 2.7: Iron oxide nanoparticles (A) before SiO2 coating, (B) after coating with SiO2. Coated sample did not 

retain its spindle-like shape as a result of the 50 nm SiO2 coat. 

 

Further evaluation of the nanorice coated with silica showed that the SiO2 nanoparticles 

(about 100 nm in diameter) were dominating the sample. There were more SiO2 

nanoparticles than Fe2O3. The existence of excess SiO2 nanoparticles resulted from the 

coating process. SEM image in Figure 2.8 is an example. Attempts to separate the silicon 

dioxide nanoparticles have not been successful and thus this nanofluid sample was not 

injected into the glass beads packed tube. 

 

Figure 2.8: SEM image showing single iron oxide nanorice among the dominating silicon dioxide nanoparticles.  

 

It was concluded that the iron oxide nanoparticles coated with SiO2 and surfactant TEA 

were inappropriate for injection. However, iron oxide coated with surfactant PVP retained 

suitable characteristics in that it carried negative surface charge of 9.5 mV (Table 2.2). To 
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coat the iron oxide with PVP, a 0.1 M solution of PVP in ethanol was prepared. Iron oxide 

nanofluid was then added, sonicated for 1 hour, and soaked overnight. The coated particles 

were cleaned by centrifugation three times at 6.5 krpm to remove excess surfactant. 

 

2.4.2 Iron oxide (Fe2O3) coated with surfactant (PVP) nanoparticle injection 
into glass beads packed slim tube  

The iron oxide nanorice coated with PVP surfactant was injected into the slim tube packed 

with glass beads. A schematic of the apparatus used is depicted in Figure 2.9.  

 

Figure 2.9: Experimental apparatus for nanofluid injection into glass beads packed tube. 

 

The slim tube was initially preflushed with several pore volumes using pure water. Then, 

one pore volume of the iron oxide nanofluid was injected at differential pressure of about 

0.14 atm. Following the nanofluid injection, 10 pore volumes of pure water was post 

injected at rate of 0.5 ml/min and eight effluent samples were collected. The permeability 

was not altered during or after the injection of the iron oxide.  

 

2.5 SPHERICAL SILVER NANOPARTICLES CHARACTERIZATION AND 

INJECTION EXPERIMENT  

The objective of this experiment was to investigate the transport and recovery of spherical 

silver nanoparticles through the pores of Berea sandstone. Initial testing with silver 

nanomaterial was conducted earlier with the injection of silver nanowires into Berea 

sandstone. The goal was to investigate the transport of a wire-like nanoparticle and 

experimentally verify if nanoparticles shape would initiate any complication to the 

particles flow. The silver nanowires were not detected in the effluent and were found 
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trapped at the inlet face within the pore spaces of the core rock. The details of the silver 

nanowires injections can be found in an earlier quarterly report (July-September 2009). 

The spherical silver nanoparticles injection serves as a preliminary to the testing of 

injecting spherical metal alloy (Tin-Bismuth) which might be used as temperature sensors 

in geothermal reservoirs. 

2.5.1 Characterization of silver nanoparticles 

Silver nanoparticles were characterized in terms of size, surface charge (zeta potential), 

light absorption and pH levels using SEM imaging, zeta potential analysis, UV-visible 

spectrophotometry and pH meter, respectively. The particle size was around 40 nm ±10 

(Figure 2.10). The silver nanoparticles synthesis is a protocol adapted from Kim et al. 

(2006). 

 

Figure 2.10 : SEM image of the silver nanoparticles.(Levard, personal communication) 

 

The silver nanofluid sample volume was 20 ml with concentration of 1 g/l. the sample was 

sonicated for about 10 minutes using a Branson 2510 Sonicator prior to dilution. Then the 

nanofluid was diluted one part of silver nanofluid into two parts of pure water. The final 

concentration used in the injection experiment was 0.5 g/l.  

 

The average zeta potential of the diluted silver nanoparticles sample was measured and 

found to be approximately negative 17 mV with standard deviation less than 2. The pH 

level was around 7.9. The zeta potential distribution of the silver nanoparticles is illustrated 

in Figure 2.11.  

50 nm
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Figure 2.11: Zeta potential distribution of the silver nanoparticles. 

 

UV-visible spectrophotometry was used to measure the absorption of the silver 

nanoparticles in effluent samples and hence their concentrations. This is an essential step 

as it enables us to construct the tracer return curve of concentrations verses volume 

injected. UV-visible spectrophotometry involves the spectroscopy of photons in the UV-

visible region, which means that it deals with light in the visible, near-ultraviolet and near-

infrared ranges. The spectrophotometer is the instrument used to measure the light 

intensity as a function of wavelength of light. Beer’s Law is used to quantify the 

concentrations of absorbing species in solution (Wittung et al., 1994). The law states that 

the absorbance of a solution is directly proportional to the path length through the sample 

and the concentration of absorbing species in solution. Beer’s Law is given by: 

 

  cLIIA o  /log10      (2.6) 

where A  is the measured absorbance, I  is the intensity of light passing through the 

sample, oI  is the intensity of light before it passes through the sample, L  is path length 

through the sample, c  is the concentration of absorbing species and   is the molar 

absorptivity constant which is specific for each species and wavelength at particular 

temperature and pressure and has units of cmMAU */ . 

 

Therefore, measuring the absorbance of the substance in solution and knowing the path 

length of the sample along with the absorptivity constant, the concentration of that 

substance can be calculated. Due to the difficulty in obtaining the absorptivity constant, it 

is common to determine the concentrations by constructing a calibration curve. This avoids 

having to rely on a value of the absorptivity or the reliability of Beer’s Law. The 

calibration curve is accomplished by making few dilutions, each with accurately known 

concentration. It is important to ensure that those concentrations bracket the unknown 

concentrations under investigation. For each dilution, the absorbance is measured and 

plotted against the sample concentration. This is the calibration curve. 

 

The original silver nanofluid was diluted one part of nanofluid to 100, 150, 200, 250, 300, 

400 and 500 parts of pure water. Then, the absorbance spectra were measured at room 
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temperature using a Shimadzu UV-1700 double beam spectrophotometer with a 12 mm 

square polystyrene cuvette. All samples had been sonicated prior to analysis to disperse the 

particles. The optical (absorbance) signatures of the diluted silver nanofluid samples are 

shown in Figure 2.12.  

 

Figure 2.12: Absorbance of diluted silver nanofluids of known concentrations. 

 

The absorbance readings were all taken at a wavelength of 408 nm, which is the 

wavelength at which the strongest (maximum) absorption occurs. The diluted sample 

concentrations and corresponding absorbance were used to construct the calibration curve 

(Figure 2.13). The calibration curve was used to determine the concentration of effluent 

samples using their absorbance. 
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Figure 2.13: Calibration curve of silver nanofluid prepared for injection into Berea sandstone. 

 

2.5.2 Silver nanoparticle injection into Berea sandstone  

Silver nanoparticles injection was conducted to investigate their flow through the pores of 

Berea sandstone. A schematic of the apparatus is shown in Figure 2.14. Nanofluid solution 

was contained in a pressure vessel downstream of the water pump. The silver nanoparticles 

were injected with the aid of nitrogen gas. The configuration also allows for injection of 

particle-free water, without interrupting the flow. The silver nanoparticles were of an 

average size of 40 nm in diameter. 
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Figure 2.14: schematic of the silver nanofluid injection apparatus.  

 

Prior to the injection of the nanofluid, the core was preflushed with pure water to displace 

as much rock fines and debris as possible. The nanofluid injection sequence was similar to 

the process suggested by Kanj et al. (2009). The sequence involved the injection of a 

certain volume of nanofluid followed by a continuous injection of pure water. In particular, 

25% (2 ml of nanofluid) of the pore volume was injected. The silver nanofluid was diluted 

one part silver to ten parts of pure water. 

 

Subsequent to the injection of the nanofluid, a continuous flow of pure water (post 

injection) was introduced. Specifically, four pore volumes of pure water were injected 

while the effluent samples were collected. The total time of the experiment was 

approximately 30 minutes. The injection was at the rate of 1 milliliter per minute at a 

differential pressure of about 6.25 psig. A total of 12 effluent samples were collected at the 

rate of 2.5 milliliter per sample. All these samples were analyzed using UV-visible 

spectrophotometry. Samples from the first and third pore volumes were analyzed using 

SEM. 

2.6 SYNTHESIS, CHARACTERIZATION, AND HEATING TEST OF TIN-

BISMUTH ALLOY NANOPARTICLES 

In our second attempt to investigate temperature-sensitive nanoparticles, the sonochemical 

synthesis of tin-bismuth alloy nanoparticles of eutectic composition was repeated at a 

higher ultrasonic power. These particles were characterized using DLS and SEM imaging. 

A bench heating experiment was also performed to study the thermal sensitivity of these 

nanoparticles. The sample subjected to heating was then characterized with DLS and SEM 

imaging. 
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2.6.1 Synthesis of tin-bismuth alloy nanoparticles 

To perform the synthesis, Sn and Bi were melted together at the eutectic composition (~60 

wt % Bi and ~40 wt % Sn). After the alloy was cooled to room temperature, 100 mg was 

sonicated in 10 ml of mineral oil, a slight variation of the sonochemical method suggested 

by Chen (2005). The VC-505 ultrasonic processor manufactured by Sonics & Materials, 

Inc. with a 0.75 in. diameter high gain solid probe was used. The sonicator was operated at 

200 W (~95% amplitude) with a pulse setting of 20 s on, 10 s off. The mixture was cooled 

to room temperature. The alloy particles were washed and centrifuged several times with a 

1:1 mixture of hexane and acetone, rinsed in a solution of 0.1 M PVP in ethanol, and 

finally suspended in ethanol. The centrifuge setting was 6000 rpm for 15 minutes each 

time. 

 

2.6.2 Characterization of tin-bismuth alloy nanoparticles 

The tin-bismuth alloy nanoparticles were characterized in terms of size and shape using 

DLS and SEM imaging. 

 

It was determined from three consecutive DLS measurements that there was a wide 

distribution of the particle hydrodynamic diameter, as shown in Figure 2.15. 

 

 

Figure 2.15: Logarithmic particle size distribution based on hydrodynamic diameter for original Sn-Bi 

nanoparticle sample.   

 

It is believed that the improved washing technique (using a mixture of hexane and acetone 

instead of ethanol) allowed the particles to be well dispersed in ethanol, which in turn 

allowed successful DLS measurements. The three measurements are in relatively close 

agreement, with a standard deviation of about ±2 nm and an average modal value of 235 

nm. The hydrodynamic diameter ranged from ~100 nm to ~600 nm, with Run 2 showing a 

small peak at ~5500 nm. This indicates that there may have been large particles in the 

sample, either due to aggregation or from the original synthesis. 
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The SEM images of the sample show good agreement with the DLS measurements, as 

shown in Figures 2.16 and 2.17. 

 

 

Figure 2.16: SEM image showing the wide range of Sn-Bi nanoparticle sizes.   

 

Figure 2.17: SEM image of Sn-Bi nanoparticles showing the same area of the sample at higher magnification.   

 

It is apparent from Figures 2.16 and 2.17 that the “bare” Sn-Bi nanoparticles range from 

<100 nm to >500 nm. Furthermore, although many of the nanoparticles seem to be 
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spherical as expected, the presence of nonspherical crystalline structures indicates that the 

sonochemical synthesis did not reach completion. Aggregation on the substrate is observed 

in both figures, but it is unclear whether this aggregation occurs in solution or upon drying 

on the substrate. The DLS results suggest that the latter may be the case. 

2.6.3 Heating experiment 

To begin investigating particle melting and cooling behavior within the temperature range 

of interest, a sample of the nanofluid (Sn-Bi in mineral oil) from the synthesis described in 

Section 2.6.1 was subjected to a preliminary heating experiment. Although we are 

ultimately interested in the melting behavior of the Sn-Bi nanoparticles in water, the 

heating experiments were performed in oil due to the complications associated with the 

boiling of water at experimental conditions. As shown in the phase diagram Figure 2.18, at 

the eutectic composition, the Sn-Bi alloy melts at 139°C. In fact, the nanoparticles 

probably melt at a slightly lower temperature than this due to melting point depression. 

 

Figure 2.18: Phase diagram of Sn-Bi (NIST).   

 

The experiment used to heat the sample included a heating mantle connected to a 

temperature controller with a feedback thermometer as shown in Figure 2.19. 
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Figure 2.19: Experimental apparatus for Sn-Bi heating experiment 

 

The flask containing the Sn-Bi nanoparticles in oil was placed in the heating mantle, which 

was connected to the temperature controller. The temperature controller was also 

connected to a thermometer, the feedback from which affected whether the mantle was 

heated, cooled, or maintained and the rate at which this was done. The thermometer was 

positioned in port A. 

 

The sample was heated in steps to the expected melting point of 139°C. The sample was 

monitored for a color change near the expected melting point, and when none occurred, the 

sample was heated in steps to 210°C. No color change ever occurred, but the heating was 

stopped to prevent the mineral oil from burning. Also, it was assumed that melting had 

probably occurred regardless of the absence of color change. Finally, when the apparatus 

was at room temperature, the sample was removed from the flask. Then the sample was 

washed and centrifuged several times with a 1:1 mixture of hexane and acetone, rinsed in a 

solution of 0.1 M PVP in ethanol, and finally suspended in ethanol. The centrifuge setting 

was 6000 rpm for 15 minutes each time. This sample was then characterized using DLS 

and SEM imaging. 

 

2.7 RESULTS 

During this quarter, three experiments were conducted.  Two main flow experiments 

included the injection of iron oxide coated with surfactant (PVP) into the tube packed with 

glass beads and the injection of spherical silver nanoparticles into a Berea sandstone. The 

third experiment involved heating the Sn-Bi alloy nanoparticles. 
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In order to determine whether the transport of iron oxide nanorice was limited by their 

surface characteristics, iron oxide was coated with SiO2 and the surfactants TEA and PVP 

to modify its surface properties. Among all, iron oxide coated with PVP has been selected 

for injection as outlined in Section 2.4.1. Effluent samples at the first and second pore 

volume injected as well as the actual glass beads from the inlet and outlet were examined 

under SEM. The coated iron oxide was neither detected at the effluent samples nor within 

the glass beads. Note that testing the hypothesis made regarding the entrapment of iron 

oxide nanorice due to their geometrical size (length) was tested previously and details can 

be found in last quarterly report (April-June 2010). 

 

The second experiment involved the injection of spherical silver nanoparticles into Berea 

sandstone. The silver nanoparticles were transported through the pore space of the rock and 

were detected in the effluents. SEM imaging has confirmed the transport of the 

nanoparticles as shown in Figure 2.20. 

 

Figure 2.20: SEM image of effluent sample taken from the third post injected pore volume. 

 

The recovery of the silver nanoparticles can be observed visually, as shown in Figure 2.21. 

Cloudy samples are highly concentrated with silver nanoparticles compared to transparent 

samples. It could also be seen visually that the nanoparticles were recovered following the 

post injection of about 60% of the first pore volume of pure water and produced continuously 

until the bulk of these particles were displaced through the second pore volume. 
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Figure 2.21: Visual characterization of effluent samples for their silver nanoparticles content based on color. 

 

The concentration of the effluent samples was determined by measuring their absorbance 

using the UV-visible spectrophotometry. The absorption spectra for all effluent samples 

are depicted in Figure 2.22. 

 

Figure 2.22: Absorbance of all effluent samples collected during silver nanoparticles injection experiment. 

 

Most absorbance spectra have identical signature, except for sample S5 collected during 

the second post injected pore volume of water. Its spectrum was measured once at its 

original concentration and again after diluting it with two parts of pure water. Both 
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measurements (spectra) exhibited very similar signature but still different than the rest of 

the samples (Figure 2.22). Also note that samples (S3 and S4) collected during the second 

post injected pore volume were highly concentrated and therefore their absorbance spectra 

could not be measured directly. There were both diluted one part to four parts of pure 

water. The reported absorbance spectra (Figure 2.22) were for those diluted samples. The 

calibration curve was then used to obtain the corresponding concentrations for all samples 

(S2 to S12). Diluted samples (S3 and S4) concentration were calculated back using the 

following linear relationship. 

 

2211 VCVC        (2.7) 

where 
1C  and 

2C are concentrations before and after dilution, respectively. 
1V  and 

2V are 

sample volumes before and after dilutions, respectively.  

 

Following the determination of the effluent samples concentration, the production history 

curve of the silver nanoparticles was estimated (Figure 2.23). 

 

Figure 2.23: Production history (return curve) of silver nanoparticles. 

 

The amount of nanoparticles recovered can be calculated by integrating the area under the 

return curve. A rough estimate has indicated that less than 25% of injected nanoparticles 

were recovered.  

 

The final experiment to begin investigating the melting and cooling behavior of the Sn-Bi 

nanoparticles had inconclusive results due to the wide particle size distribution of the 
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original sample. The DLS results of the sample subjected to heating are shown in Figure 

2.24. 

 

Figure 2.24: Logarithmic particle size distribution based on hydrodynamic diameter for heated Sn-Bi 

nanoparticle sample. 

 

The three measurements are in relatively close agreement, with a standard deviation of 

about ±2 nm and an average modal value of 321 nm. The hydrodynamic diameter ranged 

from ~100 nm to ~1000 nm. Appreciable secondary peaks in the range of ~4100 nm to 

~6400 nm are observed for all runs. This indicates that there are large particles in the 

sample, most likely do to aggregation and fusion of the particles during cooling. Selected 

particle size distribution curves for comparison of the original and heated samples are 

shown in Figure 2.25. 

 

 

Figure 2.25: Comparison of logarithmic particle size distribution based on hydrodynamic diameter for original 

and  heated Sn-Bi nanoparticle samples. 

 

As shown in the figure, there is an appreciable difference in the particle size distribution 

upon heating, with a large standard deviation of ±61 nm. The heated sample has a wider 

distribution and exhibits larger particle sizes. Also, the second secondary peak in the 
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micron scale is noticeably larger, indicating that there are more large aggregates. SEM 

images of the heated sample are shown in Figures 2.26 and 2.27. 

 

 

Figure 2.26: SEM image showing heated Sn-Bi nanoparticles. 
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Figure 2.27: SEM image showing large aggregate of heated Sn-Bi nanoparticles. 

 

Fusion of melted particles can be observed in both figures, and the sizes of both particles 

and large aggregates are within the range suggested by DLS results. While the fusion of 

melted particles could account for the shift in particle size distribution, it is difficult to 

come to any definite conclusions from the SEM results due to the very wide particle size 

distributions of both the heated and unheated samples. 

2.8 FUTURE WORK 

The next stage will be to inject pure water into the Berea core at higher flow rate in attempt 

to displace mobile silver nanoparticles. Also, the core will be backflushed with pure water 

to try to remobilize nanoparticles that might have been trapped at the inlet. The effluent 

samples will be characterized using UV-visible spectrophotometry as well as scanning 

electron microscopy. In addition, the experimental data will be fitted to an appropriate one-

dimensional advection-dispersion model. The Sn-Bi synthesis will be repeated at a higher 

ultrasonic power with the goal of obtaining a more monodisperse and uniform sample, and 

they will be subject to more investigation, including flow and heating experiments. Finally, 

more advanced sensitive particles will be synthesized. 
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3. FRACTURE CHARACTERIZATION USING RESISTIVITY 

This research project is being conducted by Research Assistant Lilja Magnusdottir, 

Senior Research Engineer Kewen Li and Professor Roland Horne. The objective of this 

project is to investigate ways to use resistivity to infer fracture properties in geothermal 

reservoirs. 

3.1 SUMMARY 

The aim of this part of the project is to use resistivity measurements and modeling to 

characterize fracture properties in geothermal fields. The resistivity distribution in the 

field can be estimated by measuring potential differences between various points and the 

resistivity data can be used to infer fracture properties due to the large contrast in 

resistivity between water and rock. 

 

A two-dimensional model has been made to calculate a potential field due to point 

sources of excitation. The model takes into account heterogeneity by solving the potential 

field for inhomogeneous resistivity. Fractures are modeled as areas with resistivity 

different from the rock, to investigate the changes in the potential field around them. The 

grid is rectangular and nonuniform so the fracture elements can be modeled smaller than 

the elements for the rest of the reservoir, in order to decrease the total number of 

elements. 

 

The possibility of using conductive fluid to enhance the contrast between fracture and 

rock resistivity is being explored together with the use of conductive fluid with time-

dependent resistivity measurements. A flow simulation has been performed where the 

distribution of a conductive tracer is observed. The tracer, which increases the 

conductivity of the fluid, is injected into the reservoir and a program that reads the flow 

simulation's output into the resistivity model has been made. The changes of the potential 

field at different time steps were then calculated as the tracer transfers through the 

fractures in the reservoir. Those time-dependent changes in potential field as the 

conductive fluid flows through the fracture network facilitate fracture characterization. 

3.2 INTRODUCTION 

The designing of optimal production wells in geothermal reservoirs requires knowledge 

of the resource’s connectivity and heat intensity for energy extraction. Drilling and 

construction of wells are expensive and the energy content from a well depends highly on 

the fractures it intersects. Fracture characterization is therefore important to increase the 

reliability of geothermal wells and thereby the overall productivity of geothermal power 

plants. 

 

In this project, the goal is to find ways to use Electrical Resistivity Tomography (ERT) to 

characterize fractures in geothermal reservoirs. ERT is a technique for imaging the 

resistivity of a subsurface from electrical measurements. Typically, electrical current is 

injected into the subsurface through conducting electrodes and the resulting electrical 

potentials are measured. Due to the large contrast in resistivity between water and rock, 

the resistivity measurements could be efficiently used to indicate fracture locations. 
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Resistivity measurements have been used widely in the medical industry to image the 

internal conductivity of the human body, for example to monitor epilepsy, strokes and 

lung functions as discussed by Holder (2005). In Iceland, electrical resistivity 

tomography methods have been used to map geothermal reservoirs. Arnarson (2001) 

describes how different resistivity measurements have been used efficiently to locate high 

temperature fields by using electrodes located on the ground’s surface. Stacey et al. 

(2006) investigated the feasibility of using resistivity to measure saturation in geothermal 

cores. A direct-current pulse was applied through electrodes attached in rings around a 

sandstone core and it resulted in data that could be used to infer the resistivity distribution 

and thereby the saturation distribution in the core. It was also concluded by Wang (2000) 

that resistivity data has high resolution power in the depth direction and is capable of 

sensing the areal heterogeneity. 

 

In the approach considered in this project, electrodes would be placed inside geothermal 

wells and the resistivity anomalies between them studied to locate fractures and infer 

their properties by resistivity modeling. Due to the lack of measurement points, i.e. 

limited number of test wells, we will endeavor to find ways to ease the process of 

characterizing fractures from limited resistivity data. To enhance the contrast in 

resistivity between the rock and fracture zones, the possibility of using conductive fluid is 

being explored. Furthermore, the influences of temperatures and fluid stream on 

resistivity measurements will be studied. The effects of mineralization in the fractures 

will also be examined, because fractures containing a lot of minerals can be more 

difficult to distinguish from the surrounding rocks. This report first describes the 

resistivity model that has been made to calculate a potential field due to point sources of 

excitation and then discusses a flow simulation made to study how a conductive tracer 

distributes through a simple fracture network. The potential difference between the 

injection well and the production well is measured at each time step, to see whether the 

resulting graph can be used to infer the fracture properties.  

3.3 RESISTIVITY MODELING 

One of the main problems in resistivity modeling is to solve the Poisson’s equation that 

describes the potential field and to efficiently complete the inversion iteration. That 

governing equation can be derived from some basic electrical relationships as described 

by Dey and Morrison (1979). Ohm’s Law defines the relationship between current 

density, J, conductivity of the medium, σ, and the electric field, E, as: 

EJ        (3.1) 

The stationary electric fields are conservative, so the electric field at a point is equal to 

the negative gradient of the electric potential there, i.e. 

E       (3.2) 

where   is the scalar field representing the electric potential at the given point. Hence, 

J       (3.3) 

Current density is the movement of charge density, so according to the continuity 

equation, the divergence of the current density is equal to the rate of change of charge 

density, 
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where q is the current density in amp m
-3

. Combining equations (3.3) and (3.4) gives the 

following Poisson’s equation which describes the potential distribution due to a point 

source of excitation, 

  ),,( zyxq      (3.5) 

The conductivity σ is in mhos m
-1

 and the electric potential is in volts. This partial 

differential equation can then be solved numerically for the resistivity problem. 

3.3.1 Finite Difference Equations in Two Dimensions 

The finite difference method has been used to approximate the solution to the partial 

differential equation (3.5) using a point-discretization of the subsurface (Mufti, 1976). 

The computational domain was discretized into NyNx  blocks and the distance between 

two adjacent points on each block is h in the x-direction and l in the y-direction, as shown 

in Figure 3.1. 

 

Figure 3.1: Computational domain, discretized into blocks. 

Taylor series expansion is used to approximate the derivatives of Equation (3.5) about a 

point (j, k) on the grid, 
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The point (j, k) represents the shaded area in figure 3.1 (area = hl) so the current density 

due to an electrode at that point is given by, 
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     (3.8) 

where I [amp] is the current injected at point (j, k) Combining equations (3.5)-(3.8) and 

solving for the electric potential   at point (j, k) gives, 
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The parameters ci represent the conductivity averaged between two adjacent blocks, i.e.    
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where ρ(j, k) is the resistivity [ohm-m] of the node at grid coordinates j, k.  

3.3.2 Iteration method 

In order to solve Equation (3.9) numerically and determine the results for electrical 

potential   at each point on the grid, an iteration method called Successive Over-

Relaxation (SOR) was used (Spencer and Ware, 2009). At first, a guess is made for  (j, 

k) across the whole grid, for example  (j, k)= for all j, k. That guess is then used to 

calculate the right hand side of Equation (3.9) for each point and the new set of values for 

 (j, k) is calculated using the following iteration scheme, 

nn Rhs  )1(1      (3.14) 

The multiplier ω is used to shift the eigenvalues so the iteration converges better than 

simple relaxation. The number ω is between 1 and 2, and when the computing region is 

rectangular the following equation can be used to get a reasonable good value for ω, 
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The natural Neumann boundary condition is used on the outer boundaries in this project, 

i.e. 0
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3.4 RESULTS 

First, a flow simulation was performed using TOUGH2 reservoir simulator to see how a 

tracer, which increases the conductivity of the fluid, distributes after being injected into 

the reservoir. The simulation was carried out on a two-dimensional grid with dimensions 

1000×1000×10 m
3
. The fracture network can be seen in Figure 3.2, where the green 

blocks represent the fractures and wells are located at the upper left and lower right 

corner of the network. 

 

Figure 3.2: Fracture network. 

The fracture blocks were given a porosity value of 0.65 and permeability value of 5×10
11

 

md (5×10
-4

 m
2
) and the rest of the blocks were set to porosity 0.1 and permeability 1 md 

(10
-15

 m
2
). Closed or no-flow boundary conditions were used and one injector at upper 

left corner, at (76, 924) m, was modeled to inject water at 100 kg/sec with enthalpy 100 

kJ/kg, and a tracer at 0.01 kg/s with enthalpy 100 kJ/kg. One production well at lower 

right corner, at (924, 76) m, was configured to produce at 100 kg/s. 

 

The initial pressure was set to 10.13 MPa (100.13 bar), temperature to 150°C and initial 

tracer mass fraction was set to 10
-9

 because the simulator could not solve the problem 

with zero initial tracer mass fraction. Figure 3.3 illustrates how the tracer transfered 

through the fractures from the injector to the producer. After 4 days the tracer had 

distributed through the whole fracture network. 
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Figure 3.3: Flow simulation's results for tracer concentration. 

The resistivity model was changed so it had the same grid as the flow model and a 

program was made to read the results from the flow simulation and write them into the 

resistivity model, so that the right conductivity values can be assigned for the reservoir. 

The conductivity value of each block depends on the tracer concentration in that block, 

and it was assumed that the tracer decreases the conductivity, like for example a saline 

tracer. Table 1 shows how the conductivity values were assigned to different tracer 

concentration, X2. 

 

Table 3.1: Tracer concentration and corresponding conductivity values. 

Tracer 

concentration 

Conductivity 

[(ohm-m)
-1

] 

X2 ≤1·10
-9

 2.4 

10
-9

 <X2≤10
-8

 15 

10
-8 

<X2≤10
-7

 20 

10
-7 

<X2≤10
-6

 25 
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10
-6 

<X2≤10
-5

 30 

X2≥10
-5

 35 

 

The flow simulation calculated the tracer concentration at 97 different time steps and for 

each step the potential field was calculated using the resistivity model. Figure 3.4 shows 

the potential field for the four time steps shown in Figure 3.3. 

 

Figure 3.4: Flow Potential field at four different time steps. 

First, the tracer had only started flowing through the fracture from the injection well, but 

not reached the production well or the main fracture between them, so the potential 

difference was large. The potential was larger at the production well, because it 

distributed over a larger area near the injection well due to the tracer. Next, the tracer had 

gone through the middle fracture, which decreased the potential difference enormously. 

After that the tracer kept flowing through the fractures, but the change in the potential 

difference was much less. 

 

The potential difference between the injection well and the production well at each time 

step is shown in Figure 3.5. 
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Figure 3.5: Potential difference between two wells at different time steps. 

The potential difference between the wells decreases as more of the conductive tracer is 

injected into the reservoir. The difference changes dramatically between 0.938 days and 

1.112 days, but at 1.112 days the whole middle fracture receives a tracer concentration of 

more than 10
-9

. Another jump can be seen in the potential difference after approximately 

two days, but at that time the whole fracture network receives a tracer concentration of 

more than 10
-9

. The graph of the potential differences corresponds in that way to the 

fracture network, so by measuring the potential differences between two wells while 

injecting conductive tracer, some information about the network can be gained.  

3.5 FUTURE WORK 

One of the next steps is to calculate the time-dependent potential difference, while 

injecting conductive tracer, for different fracture patterns to study the correspondence 

between the potential difference and the fracture network. Other future goals are to use 

inverse modeling to estimate the fracture network from the potential difference measured 

between the wells. The initial study will use data from many wells at different locations, 

but then the number of wells will be decreased to see if it is possible to infer the fracture 

properties using only a few wells.     

 

The influences of temperatures on water resistivity as well as the potential changes due to 

fluid stream in the fractures will also be studied. The effects of mineralization will be 

examined as well since it could be difficult to distinguish resistivity between rock and 

fractures containing a lot of minerals.  



57 

 

4. REFERENCES 
 

Amyx, J. W., Bass, D. M. Jr., and Whiting, R. L. (1960), Petroleum Reservoir 

Engineering, Physical Properties. McGraw-Hill Book Co. 

Arnason, K.: Viðnámsmælingar í Jarðhitarannsóknum á Íslandi, Orkustofnun, Orkuþing 

(2001). 

Barker, J.: A generalized radial flow model for hydraulic tests in fractured rock. Water 

Resources Research, (1988).  

Breiman, L., and Friedman, J. H.: Estimating optimal transformations for multiple 

regression and correlation. Journal of the American Statistical Association, 

80(391), 580–598, (1985). 

Carlier, E.: Analytical solutions of the advection-dispersion equation for transient 

groundwater flow. A numerical validation. Hydrological Processes, (2008).  

Chen, Hongjie, Li, Zhiwei, Wu, Zhishen and Zhang, Zhijun: “A novel route to prepare 

and characterize Sn-Bi nanoparticles,” Journal of Alloys and Compounds. 2005, 

394, 282-285. 

Deng, X., and Horne, R.: Well Test Analysis of Heterogeneous Reservoirs. SPE Annual 

Technical Conference and Exibition, Houston, Texas, (1993). 

Dey, A. and Morrison, H.F.: Resistivity Modelling for Arbitararily Shaped Two-

Dimensional Structures, Geophysical Prospecting 27, I06-I36, University of 

California, Berkeley, CA (1979). 

Digital image. Phase Diagrams & Computational Thermodynamics. The National 

Institute of Standards and Technology. Web. 7 July 2010. 

<http://www.metallurgy.nist.gov/phase/solder/bisn.html>. 

Holder, D.S.: Electrical Impedance Tomography: Methods, History and Applications, 

IOP, UK (2004). 

Horne, R. N., and Szucs, P.: Inferring Well-to-Well Connectivity Using Nonparametric 

Regression on Well Histories. Proceedings, Thirty-Second Workshop on 

Geothermal Reservoir Engineering, Stanford University, Stanford, California, 

(2007). 

Jensen, C., and Horne, R.: Matrix diffusion and its effect on the modeling of tracer 

returns from the fractured geothermal reservoir at Wairakei, New Zealand. Proc. 

Ninth Workshop on Geothermal Reservoir Engineering, Stanford University, 

Stanford, California, (1983). 

Kanj, M., Funk, J., and Al-Yousif, Z.: “Nanofluid Coreflood Experiments in the Arab-

D,” SPE paper 126161, presented at the 2009 SPE Saudi Arabia Technical 

Symposium and Exhibition held in Saudi Arabia, Alkhobar, May 09-11. 



58 

 

Kim, D., Jeong, S. and Moon, J.: “ Synthesis of sliver nanoparticles using the polyol 

process and the influence of precursor injection,” Nanotechnology 17 (2006), 

4019-4024 

Lee, K. H., Ortega, A., Jafroodi, N., and Ershaghi, I. (2010). A Multivariate 

Autoregressive Model for Characterizing Producer Producer Relationships in 

Waterfloods from Injection/Production Rate Fluctuations,  

Lee, K. H., Ortega, Antonio, Nejad, A., Jafroodi, Nelia, and Ershaghi, Iraj.: A Novel 

Method for Mapping Fractures and High Permeability Channels in Waterfloods 

Using Injection and Production Rates. Proceedings of SPE Western Regional 

Meeting. Society of Petroleum Engineers (2009). 

Lee, W. J.: Well testing. Society of Petroleum Engineers. (1982). 

Levard, Clement. <clevard@stanford.edu (2010, July 8)>. [Personal email].  

Levitan, M.: Practical Application of Pressure/Rate Deconvolution to Analysis of Real 

Well Tests. SPE Reservoir Evaluation and Engineering, (2005), 8 (2): 113–121,  

Levitan, M.: Deconvolution of multiwell test data. SPE Annual Technical Conference 

and Exhibition, (2006), 24-27. 

Mufti, I.R.: Finite-Difference Resistivity Modeling for Arbitrarily Shaped Two-

Dimensional Structures, Geophysics, 41, (1976), 62-78. 

Nomura, M., and Horne, R.: Data processing and interpretation of well test data as a 

nonparametric regression problem. SPE Western Regional Meeting (2009). 

Onur, M., Ayan, C., and Kuchuk, F.: Pressure-Pressure Deconvolution Analysis of 

Multiwell Interference and Interval Pressure Transient Tests. Proceedings of 

International Petroleum Technology Conference. Society of Petroleum Engineers, 

(2009).  

Pimonov, E., Ayan, C., Onur, M., and Kuchuk, F.: A New Pressure Rate Deconvolution 

Algorithm to Analyze Wireline Formation Tester and Well-Test Data. 

Proceedings of SPE Annual Technical Conference and Exhibition, (2009), 1-23.  

Sayarpour, M., Zuluaga, E., Kabir, C. S., and Lake, L. W. The Use of Capacitance-

Resistive Models for Rapid Estimation of Waterflood Performance and 

Optimization. SPE Annual Technical Conference and Exhibition. Society of 

Petroleum Engineers, (2006). 

Schroeter, T. von, Hollaender, F., and Gringarten, A. C.: Deconvolution of Well-Test 

Data as a Nonlinear Total Least-Squares Problem. SPE Journal, 9(4), (2004). 

Schroeter, T. v., and Gringarten, A.: Superposition Principle and Reciprocity for 

Pressure-Rate Deconvolution of Data From Interfering Wells. SPE Annual 

Technical Conference, (2007). 



59 

 

Spencer, R.L. and Ware, M.: Computational Physics 430, Partial Differential Equations, 

Department of Physics and Astronomy, Brigham Young University (2009). 

Sullera, M. M., and Horne, R. N.: Inferring injection returns from chloride monitoring 

data. Geothermics, (2001), 30(6), 591–616. Elsevier. 

Stacey, R.W., Li, K. and Horne, R.N.: Electrical Impedance Tomography (EIT) Method 

for Saturation Determination, Proceedings, 31st Workshop on Geothermal 

Reservoir Engineering, Stanford University, Stanford, CA (2006). 

The MathWorks: Partial Differential Equation Toolbox 1, The MathWorksTM, Inc. 

(2003). 

Urbino, E. G., and Horne, R. N.: Optimizing reinjection strategy at Palinpinon, 

Philippines, based on chloride data. Sixteenth Workshop on Geothermal 

Reservoir Engineering. Stanford: Stanford University, (1991). 

Wang, P. and Horne, R.N.: Integrating Resistivity Data with Production Data for 

Improved Reservoir Modelling, SPE 59425, SPE Asia Pacific Conference, 

Yokohama, Japan (2000). 

Wittung, P., Kajanus, J., Kubista, M., and Malmström, Bo G. (1994). “Absorption 

flattening in the optical spectra of liposome-entrapped substances,” FEBS Letter 

352, 37-40. 

Yousef, A., Gentil, P., Jensen, J., and Lake, L.: A capacitance model to infer interwell 

connectivity from production and injection rate fluctuations. SPE Reservoir 

Evaluation & Engineering. (2005). 

Zuber, A.: Theoretical possibilities of the two-well pulse method, Symposium on isotope 

techniques in groundwater hydrology, Vienna, Austria, (1974). 


