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1. FRACTURE CHARACTERIZATION USING PRODUCTION DATA 
This research project is being conducted by Research Assistant Egill Juliusson, Senior 
Research Engineer Kewen Li and Professor Roland Horne. The objective of this project is 
to investigate ways to characterize fractures in geothermal reservoirs using production 
data. 

1.1 SUMMARY 
This report illustrates a new method for the computation of tracer transport through a 
fracture network, with the inclusion of Taylor dispersion effects. The approach is based on 
successive convolutions of the one-dimensional advection-dispersion equation, as the 
tracer travels down the various flow paths between two wells. The computational 
efficiency of the method was enhanced by performing the convolutions in Laplace space. 
Special attention was given to the time discretization of in the convolution approach and 
selection of an algorithm for the numerical inverse Laplace transformation. 
 
The second part of this report ties in with previous investigations on inferring well-to-well 
connections based on tracer data. In this case we discuss a nonparametric, approach in 
which the functions are first converted to Laplace space, where the inversion is carried out, 
and then the resulting estimates are converted back to real space. This method seemed to 
be infeasible. Finally, a parametric approach to revealing the well-to-well connections is 
discussed. This approach is based on nonlinear least squares regression, using the trust 
region reflective algorithm, where the one-dimensional advection-dispersion equation is 
used as a parametric model function. 
 

1.2 INTRODUCTION 
The quarterly report from Fall 2009 discussed a study of tracer and thermal transport 
through a discrete fracture network using a finite volume reservoir simulator similar to the 
well known TOUGH2 simulator. The discretization method used allowed explicit 
simulation of fractures with realistic dimensions. This also enabled us to visualize the 
propagation of pressure, temperature and tracer saturation in the reservoir with time. The 
study gave some important insights into the differences between tracer and thermal 
transport through a fracture network. For example, the tracer response was shown to be 
more dependent on the specific fracture paths linking two wells than the thermal front. The 
reason for this was that the (nonreactive) tracer had negligible interaction with the matrix 
while the thermal front could only propagate when the fracture walls (adjacent matrix 
elements) had cooled down.  
 
The downside of this full-fledged simulation method was that, the rapid movement of the 
tracer front in the fractures caused the simulations to be very computational inefficient and 
numerical dispersion was large and hard to quantify accurately. 
 
In the quarterly report from Winter 2010 a fast but simplified numerical modeling method 
for calculating flow through a discrete fracture network was discussed. The method was 
developed based on the assumption of steady-state, incompressible single-phase flow, 
which made the problem analogous to analyzing a network of resistors. The single-phase 
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incompressibility assumption should be a relatively good approximation for most EGS 
(Enhanced Geothermal Systems) and other single-phase geothermal systems.  
 
The way the method works is to take an arbitrary network of fractures and break it down 
into a set of nodes (fracture intersections) and edges (fracture segments) that connect the 
nodes. The net inflow into each node is then used to set up a system of equations that 
describe the flow in the entire network. The system of equations can then be solved to find 
the flow rate in each fracture segment. At this point, some relatively efficient graph 
algorithms are employed to find all paths connecting any two wells. The travel time and 
flow rate attributable to each path can also be found, which means essentially that 
dispersion free tracer transport through the network has been computed. Being able to 
solve this problem without any numerical dispersion effects brought us a step closer to 
characterizing the effects of fracture networks on production data.  
 
In this quarterly report we illustrate how the effects of Taylor dispersion (molecular 
dispersion within each fracture) can be added to the computations. Our approach is based 
on successive convolutions of the one-dimensional advection-dispersion equation in 
Laplace space. Special attention is given to the time discretization in the convolution 
approach and selection of a numerical algorithm for the inverse Laplace transformation. 
The results indicate that Taylor dispersion can influence the tracer returns dramatically and 
mask much of the dispersion caused by the variation of flow paths through the fracture 
network. 
 
A slightly more involved, but similar, method might be applicable for computation of the 
thermal response, e.g. based on the analytical solution presented by Gringarten and 
Witherspoon (1975). The details of how to compute the interaction with the matrix blocks 
have not been worked out however, and that may prove to be quite challenging. 
 
The quarterly reports from Winter, Spring and Summer 2009 discussed a number of 
approaches to revealing well-to-well connectivity using tracer data. In this report we 
present two additional such methods. Each method involves deconvolution; the first is 
nonparametric and performed in Laplace space; and the second is based on a parametric 
model. The parametric model used here is based on the solution to the one-dimensional 
advection-dispersion equation, for a unit impulse injection of tracer 

1.3 TAYLOR DISPERSION BY SUCCESSIVE CONVOLUTION IN DISCRETE 
FRACTURE NETWORKS 
The quarterly report in Winter 2010 discussed a simplified way of looking at fracture 
networks and how to decompose the flow into pulses of tracer coming through each flow 
path between two wells. The outcome was a way to visualize the dispersion attributable to 
the complexity of the fracture network, without any interference from numerical 
dispersion. An example with four wells is shown in Figure 1.1. The wells are depicted with 
red lines.  
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Figure 1.1: An example fracture network with two injection wells (red lines to the left) and 
two production wells (red lines to the right). 

 
The pressure in the two wells to the left (the injectors) was set to 200 bar while the right 
most wells (the producers) had a constant pressure of 198 bar. The network was then 
simplified and the flow through it was computed via nodal analysis. The flow directions 
are shown in Figure 1.2. 
 

 

Figure 1.2: Flow paths and directions of flow through the fracture network presented in 
Figure 1.1. 
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The dispersion attributable to the fracture network can be generated by collecting the 
arrival time and flow amount along each path. This is shown in Figure 1.3 (top) along with 
the cumulative amount of flow recovered (bottom). 

 

Figure 1.3: These plots illustrate the arrival time versus the amount of flow travelling 
along each path from well 2 (upper left) to well 3 (upper right). 

 
Note that from these graphs we can see that three flow paths transmit the bulk of the flow 
from well 2 to well 3. Figure 1.4 illustrates the paths and labels the largest (in terms of 
flow), the most transmissible and the fastest. 
 

 

Figure 1.4: Flow paths from well 2 to well 3. Note that the fastest flow path is different 
from the most transmissible and largest flow path. 
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All but fracture-induced dispersion effects (most importantly numerical dispersion) are 
circumvented in these calculations. That also means that some physically realistic 
dispersion effects need to be added, such as Taylor dispersion (Horne and Rodriguez, 
1983), which is a significant effect generated by the interplay between molecular diffusion 
and the development of a velocity profile between two parallel plates. It is important to 
understand the relative contribution of this effect as compared to the dispersion effects 
induced by the multiple flow paths through the fracture network to be able to understand 
whether it is plausible to extract information about individual fractures (or fracture paths) 
explicitly from tracer data. As discussed in the quarterly report from Fall 2009, this type of 
comparison is not easily done using traditional finite volume reservoir models because of 
numerical dispersion effects. 
 
An analytical solution to the one-dimensional advection-dispersion equation was used to 
compute the Taylor dispersion effects. The unit impulse kernel for this equation is defined 
as 
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where L is the length of the fracture segment, u is the flow velocity and D is the dispersion 
coefficient. The time values ta and td are the advective and dispersive time scales, defined 
as 
 
 /at L u=  (1.2) 
 
and  
 
  (1.3) 2/dt D u=
 
If a tracer slug of concentration co released at location x=0 over a (small) time interval ∆t, 
the response seen at distance L1 would be as described by following the convolution 
equation:  
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Here the subscript 1 refers to the properties of fracture segment 1 (edge 1, linking nodes 1 
and 2). Similarly, the response at the next node (node 3, which we assume to be linked to 
node 2 via edge 2) could be computed by the convolution of c1(t) and the unit impulse 
kernel for edge 2. 
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Considering the fact that node 2 could branch out to more than one edge (say edges 3 and 
4) the response at node 3 could be computed as 
 

 2
2 2 1 1 2

2 3 4 0

( , ) ( , ) ( )
tqc L t c L t d

q q q
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+ + ∫  (1.6). 

 
Continuing in this manner all the way to the final node gives the effective dispersive 
response along each path. Taylor dispersion was modeled by using Equation (1.7) to 
compute the dispersion coefficient in each fracture segment (Horne and Rodriguez 1983). 
 

 
2 22

105Taylor
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u bD
D

≈  (1.7). 

 
The molecular diffusion coefficient, Dmol, was set to 10-10 m2/s. 
 
In general, the response for each path, K, was computed as 
 

 ( ) ( )k
K o tot k

k kl
l

qc t c tq t
q

κ= ∆ ∏∑ C  (1.8) 

 
where k runs over all edges on path K, and l runs over all edges with outflow from the node 
which edge k has flow out of. The symbol C  denotes the successive convolution of all the 
kernels on path K.  
 
In performing these successive convolutions numerically one must pay special attention to 
the time discretization used for the kernels. The operation can be viewed as generating two 
vectors, κ1 and κ2, with equal time discretization and taking the inner product between the 
first and the second, by incrementally shifting the second and padding non-overlapping 
parts with zeros. This is better illustrated by the following example. Suppose: 
 
κ1 = [ 1  2  3];      κ2 = [0  –1  4] 
 
Then the convolution of the two would be computed by the taking the following inner 
products: 
 
           1   2   3 
4  –1   0      0 
 
           1   2   3 
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      4  -1   0      -1 
 
            1   2    3 
            4  –1   0     2 
 
            1   2    3 
                 4  –1   0     5 
 
            1   2    3 
                       4  –1   0    12 
 
 
Note that here it is implied that the discretization interval is dτ=1 and more importantly it 
must be the same for each κ such that the inner products make sense in view of them 
approximating the convolution integral. This method is relatively quick and simple when 
convolving only a few vectors with relatively few values. The outcome of convolving two 
vectors of size n and m will be of size n+m-1. Therefore, the length of one of the vectors 
used for each successive convolution will increase rapidly making this method 
computationally inefficient. Note that the size of dτ would often be quite small since it 
must be small enough to capture the sharp peaks in some of the kernel functions. This in 
turn made the length of the κ vectors large. 
 
Successive convolutions are more easily dealt with in Laplace space, since convolution 
turns into multiplication under the Laplace transform. Taking the Laplace transform of 
Equation (1.8) gives: 
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The Laplace transform of the kernel function for the one-dimensional advection-dispersion 
equation is: 
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Given this form of  in Laplace space the path kernel can quickly be computed as: ( )k sκ%
 
 ( ) ( )K

k

sκ κ= k s∏% %  (1.11) 

 
And then  can be numerically transformed back to the time domain at well chosen 
time values, using a suitable numerical inversion method.  

( )K sκ%

 
We tried working with two numerical inversion methods, the Stehfest method (Stehfest, 
1970) and the Den Iseger method (Den Iseger, 2005). Both methods computed function 
values in real space, at user-supplied time values, given the functional form in Laplace 
space. The Stehfest algorithm was advantageous in the fact that it worked with any set of 
time values, while the Den Iseger algorithm was designed to return values at evenly spaced 
time intervals. Both algorithms were relatively easy to implement, although the Den Iseger 
method did require complex number arithmetic. The Stehfest algorithm ran faster, but was 
less accurate, especially when it came to inverting functions that have a lot of variability at 
late times. That is, in cases where sharp responses at late times needed to be inverted, the 
Stehfest algorithm would fail while the Den Iseger method worked seamlessly, as 
illustrated in Figure 1.5. 
 

 

Figure 1.5: Inverting kernels with high Peclet numbers worked well with the Den Iseger 
method while the Stehfest algorithm would fail. 

 8



 
Another important part of being able to invert the tracer kernels successfully was to make 
sure that an appropriate time discretization was selected. The kernels could take on various 
shapes as shown in Figure 1.6 
 

 

Figure 1.6: Kernels with Peclet numbers 10-3 (top left), 10 (top right) and 107 (bottom). 
 
In general, the kernels with low Peclet numbers (uL/D = ta/td) have a sharp peak at early 
times and kernels with high Peclet numbers have a sharp peak at late times. To be able to 
capture these peaks properly with an even time discretization, we had to make sure that the 
time interval used was sufficiently fine. To make this possible we computed the time 
location of the peak, tpeak, and the time at which the integral of the kernel reaches a certain 
small fraction, ttake off.: 
 
 2 2

peak a d dt t t= + − t  (1.12) 
 

 ( )21 2 1 12 (2 ) 2 (2 ) (2 )takeoff d d a d at t erfc t erfc t t erfcε ε− − −≈ − + tε +  (1.13) 

 
where, ε, is a small faction of one, e.g. 10-3. These time values bracket the transient part of 
the rise in concentration of the tracer slug. We decided that ten numerical values should 
suffice to capture this transient and thus chose the discretization time interval: 
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10

peak take offt t
dt

−
=  (1.14) 

 
Then, to determine the final value in the discretization we used an approximation similar to 
Equation (1.13), that is: 
 

 ( )21 2 1 12 (2 1 ) 2 (2 1 ) (2 1 )final d d a d at t erfc t erfc t t erfc tε ε− − −≈ − + − + −ε +  (1.15) 

 
So the final discretization would be from 0 to tfinal with spacing dt, but to remain practical 
in the computational effort we capped the number of discretization values at 2000 points. 
 
The inversion and discretization were tested for a wide range of ta and td values. One of the 
most meaningful ways of testing the quality of the results was to evaluate the integral of 
the kernels numerically, as this integral should equal 1. It turned out that results of 
identical quality were obtained as long as the ratio ta/td remained the same. This ratio is the 
Peclet number. Figure 1.5 shows the integral of the kernel function versus the Peclet 
number for the kernel, with the kernel computed from the true equation in real space, and 
inverted from Laplace space using the Den Iseger and the Stehfest method. Because the 
discretization was finite, there were some errors in then numerical integration even when 
the true equation was used. This was most evident for Peclet numbers less than 1 and more 
than 107, but that error could be reduced by allowing the number of discretization points to 
exceed 2000. Moreover, it was clear that the Den Iseger method was very accurate for the 
entire range of values tested and the quality of the kernels computed by the Den Iseger 
method were entirely controlled by the quality of the time discretization. The Stehfest 
method, on the other hand, would only work for Peclet numbers less than or equal to 10. 
This is why the Den Iseger method was the preferred candidate for inverting the successive 
convolutions back to real space. 

 

Figure 1.7: A comparison of the numerical integral of the discrete kernel function as 
computed analytically in real space (true) or analytically in Laplace space and 
then inverted to real space by the Den Iseger method or the Stehfest method. The 
comparison is made over a range of Peclet numbers. The ideal result should 
always equal one. 
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The construction of the time discretization discussed in Equations (1.12) to (1.15) was 
based only on a single kernel. When dealing with the inversion of a kernel composed of 
successive convolutions, the time discretization was modified such that, in stead of taking 
dt as described in (1.14), we used: 
 

 
10

peak take off
k k

K

t t
dt

−
=
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 (1.16) 

 
where k goes over all the edges (fracture segments) on path K. Then:  
 
 , ,final K final k

k
t t=∑  (1.17) 

 
The justification for this is that each kernel can be viewed as a probability distribution for a 
random number, say Xk.  The successive convolution of those distributions is equivalent to 
finding the probability distribution for the sum Y=ΣkXk. This means that the extreme 
values (analogous to ttake off and tfinal) should sum up to even more extreme values for Y. For 
skewed distributions, the individual peak values will not sum up to the peak of the 
combined distribution, but this effect did not seem to matter much for the numerous cases 
we tested. 
 
By solving the problem of successive convolutions we were able to compute and compare 
the effects of Taylor dispersion to the effects of fracture induced dispersion on tracer 
returns. Figure 1.8 (top) shows the tracer return from well 2 flowing to well 3 if Taylor 
dispersion is included. The lower part of the figure shows the returns coming from 
individual flow paths. These return profiles indicate that at least two of the three main flow 
paths could be identified. Note that these computations were based on the same scenario as 
in Figure 1.4. 
 
The cumulative returns were compared to the cumulative returns computed without 
dispersion, as shown in Figure 1.9. 
 
Figure 1.9 shows that in this case the fracture-induced dispersion is significant and thereby 
one might hope to gain some information about the properties of the more significant flow 
paths between the wells. On the other hand, this result was very sensitive to the way the 
relationship between fracture length, L, and aperture, b, was defined. Models of the type 
b=aLs are referred to in the literature (Watanabe and Takahashi, 1995), where a and s are 
constants. For the case presented in Figures 1.2-1.4 and 1.8-1.9 we used:  
 
  (1.18) 5 0.61.5 10b −= × L
 
The fracture lengths were drawn from a lognormal distribution and therefore b was also 
distributed log-normally with values ranging from about 0.1 to 1 mm (Figure 1.10).  
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Figure 1.8: Tracer return curves of tracer from well 2 to well 3 including Taylor 
dispersion. The top plot has the total tracer return, while the lower plot shows the 
returns coming from each individual path. The largest slugs have a relatively 
high Peclet number, i.e. little dispersion. 

 

Figure 1.9: A comparison of the cumulative tracer returns (assuming 100% tracer 
injection) with (magenta dots) and without (blue line) Taylor dispersion. It seems 
fair to say that that the fracture induced dispersion is significant in this case, 
since it clearly affects the shape of the return curve. 

 

 12



 

Figure 1.10: Distribution of the log of fracture lengths and aperture values. 
 
Then we tried a slight change in way the apertures were modeled, by taking: 
 
  (1.19) 5 0.63 10b −= × L
 
Now the apertures ranged from approximately 0.2 to 2 mm. A computation of the tracer 
returns for the same scenario as referred to in Figures 1.8 and 1.9 gave the results seen in 
Figures 1.11 and 1.12. 
 

 

Figure 1.11: Tracer return curves of tracer from well 2 to well 3 including Taylor 
dispersion. The top plot has the total tracer return, while the lower plot shows the 
returns coming from each individual path. The largest slugs have a relatively low 
Peclet number, i.e. high dispersion. 
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Figure 1.12: A comparison of the cumulative tracer returns (assuming 100% tracer 
injection) with and without Taylor dispersion. Here Taylor dispersion has 
become large enough to mask the contribution from individual fractures. 

 
Note that the seemingly small change in the way the fracture apertures were modeled had a 
significant effect on the tracer returns. The three flow paths were now indistinguishable, 
because of the Taylor dispersion, which was in turn proportional to the square of the 
aperture. In other words, large apertures caused the low Peclet numbers, which made it 
harder to identify individual flow paths from tracer returns. From the definitions of Taylor 
dispersion and the Peclet number: 
 

 2 2 2

105
2 2

105

mol
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mol

D LuL uL HbPe
u bD b
D

= = =
q

 (1.20) 

 
This shows that the Peclet number was approximately proportional to the inverse of the 
aperture and the inverse of the flow rate (and q~k~b2). This meant the tracer returns from 
the largest flow paths would tend to have the lowest Peclet numbers (i.e. be most 
dispersed), and therefore these would tend to mask the returns coming from smaller flow 
paths. This effect is unfortunate since it could eliminate the possibility of identifying the 
number of dominant flow paths between two wells. It is important to understand that this is 
may well be a common phenomenon, and that should be kept in mind in the interpretation 
of tracer tests. 
 

1.4 INFERRING WELL-TO-WELL CONNECTIVITY 
The quarterly reports from Winter, Spring and Summer 2009 discussed a number of ways 
to infer well-to-well connectivity based on tracer data. A simple yet effective way was to 
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compute the correlation between the time-shifted injection histories and the production 
history. A similar approach with time-shifted injection histories was used in conjunction 
with the ACE algorithm to find the optimal, smooth, transformations between the injection 
and production data. The strength of the ACE algorithm is it quantifies the variability in 
the production data due to each injection data series, without a predefined relationship 
between the two. A slightly more restrictive approach to the problem was taken by using a 
nonparametric deconvolution technique to quantify the transfer function (i.e. tracer kernel) 
between well pairs. This technique does not require a specific functional form for the 
kernel, other than it must have some degree of smoothness. The main restriction is that the 
data used to solve the problem must be obtained at steady-state flow conditions, with only 
the tracer concentration varying. This is perhaps both the strength and weakness of this 
approach. The strength is that the well-to-well connections are specific to a specific 
combination of input flow rates, and therefore the input flow rates could be varied until an 
optimal set of connections is found. The main weakness is that obtaining enough data to 
find the connections at each set of input flow rates may take several months or years. 
 
In this section we discuss two additional deconvolution methods for inferring well-to-well 
connectivity. The first did not turn out to be useful but is documented for completeness. It 
is based on a nonparametric deconvolution approach where the problem is transferred to 
Laplace space to investigate the possibility of using a regularization constraint derived 
from the functional form of the tracer kernel in Laplace space. The second method was 
quite restrictive, in that a specific functional form for the kernel was assumed, and we 
invert to find the parameters controlling that functional form. 

1.4.1 Nonparametric deconvolution in Laplace space 
The general multi-well tracer deconvolution problem is to find the kernel functions, κk(t), 
for each producer-injector pair, by solving the equation: 
 

 ,
1 0

( ) ( ) ( )
r tN

p r k k
k

c t c t dτ κ τ τ
=

= −∑∫  (1.21) 

 
where cp is the produced tracer concentration, cr is the injected tracer concentration and Nr 
is the number of injectors. In the nonparametric deconvolution approach, we treat κk(t) as 
unknown at each time, t. Thus, when there are more than one injector this problem is 
underdetermined and some sort of regularization must be applied to obtain a degree of 
continuity in the estimate for κk(t). Such methods were also discussed in the quarterly 
report from Summer 2009. Although those methods worked reasonably well, the kernel 
estimates would tend to show unrealistic fluctuations at late times, where the true solution 
would tend monotonically to zero.  
 
Equation (1.21) can be converted to Laplace space, to yield: 
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where s is the Laplace time variable and the tilde overbars denote the Laplace transforms 
of the corresponding functions in real space. Equation (1.22) shows more clearly how 
underdetermined the problem is, i.e. there are Nr unknown variables for each equation. 
Therefore, a regularization could be applied to find a meaningful solution for . The 
regularization method that we had in mind involved a utilization of the fact that; the one-
dimensional kernel function in Laplace space is negative and monotonically increasing for 
all odd derivatives (with respect to s), and positive and monotonically decreasing for all 
even derivatives. Or more succinctly: 
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and: 
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For Equation (1.24) we assumed that s was real valued (as opposed to complex). This 
meant that the outcome of our estimations should belong to a family of infinitely smooth 
functions, in the sense that it should have smooth derivatives of all orders. 
 
To test whether this regularization condition was unique enough to allow reasonable kernel 
estimates in real space we created orthogonal injection histories of the type: 
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where Nch is the number of changes in injection, H is the Heaviside step function, aj,k is a 
multiplier defining the injection amount and tj,k is the time at which the injections change. 
In Laplace space: 
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The production history in Laplace space could be computed from Equations (1.22), (1.23) 
and (1.26). 
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Figure 1.13 shows the injection histories for two wells, two randomly chosen kernels that 
define the connection to a production well, and the corresponding production history 
computed by Equation (1.21). 
 

 

Figure 1.13: Injection histories for two wells (top) and the corresponding tracer kernels 
(middle) defining the connection to a production well with the production history 
shown on the bottom plot. 

 
The corresponding functions in Laplace space are illustrated in Figure 1.14. 
 
 
Before figuring out the details of how to solve Equation (1.22) subject to the constraints 
defined by Equation (1.24), we tried solving it without regularization in a least squares 
sense. This is the pseudoinverse solution, i.e. 
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Figure 1.14: Laplace space version of injection histories for two wells (top) and the 
corresponding tracer kernels (middle) defining the connection to a production 
well with the production history shown on the bottom plot 

 
With this solution we were able to find kernel estimates that reproduced the production 
data exactly, as illustrated in Figure 1.15.  
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Figure 1.15: Reproduction of the tracer production data using solving the least squares 
problem without any regularization terms. 

 
It was not surprising that we were able to fit the production data to such great accuracy 
since our problem was highly underdetermined. The more interesting thing however was 
that the kernel estimates that came out did not equal to the true solution, but they did fulfill 
the constraints in Equation (1.24). This was confirmed by successive numerical 
differentiation of the outcome. A log-log plot of the true kernels and the kernel estimates is 
shown in Figure 1.16. 
 

 

Figure 1.16: The kernel estimates did not match the true kernels very well in Laplace 
space, when using the pseudoinverse solution. However, the smoothness 
constraint (1.24) was fulfilled. 
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In the case shown here the data were matched perfectly, and the smoothness of the solution 
was in line with Equation (1.24). Thereby it was clear that this regularization method 
would not be sufficient to constrain the solution to a realistic estimate of the tracer kernel. 
The estimated kernels were converted with the Stehfest algorithm to view the solution in 
real space (Figure 1.17). As expected, the match was poor. The Stehfest inversion could 
not be blamed for this mismatch, since the Stehfest method would work well if we tested it 
with the true kernel data in Laplace space. 
 

 

Figure 1.17: Estimated and true kernels in real space. The estimate kernels were converted 
from Laplace space using the Stehfest algorithm. 

 
Using these kernel estimates to reproduce the production data in real space showed (Figure 
1.18), that a good fit is obtained for the early time data, but the fit gradually worsened at 
later times. This was due to the nature of the Laplace transform. The Laplace transform 
retained information from early time data for all ranges of s, but for large s values, most of 
the late time information was suppressed and accuracy for late time inversions was lost. 
 
One final problem we encountered with this method was getting an accurate forward 
transform of the production data. We tried computing the forward transform, using the 
trapezoidal rule to approximate the definition of the Laplace transform. No noise was 
added to the production data. When inverting the outcome back to real space (using either 
the Stehfest or Den Iseger method) we obtained completely erratic results. Perhaps better 
results could have been obtained using a more sophisticated integration method (e.g. 
Gaussian quadrature based) but at this point we did not see reason to investigate that 
challenge, nor the complications of the effects of added noise. 

 20



 

Figure 1.18: The reproduction of the production data was poor at late times using the 
kernel estimates shown in Figure 1.17. 

 

1.4.2 Deconvolution based on a one-dimensional advection-dispersion equation model 
This section describes a parametric approach to solving the multiwell deconvolution 
problem. Although it is not particularly flexible, the approach gives a more complete 
picture of the methods that could be used, and complements the work we have done so far 
using nonparametric methods. 
 
The problem still involved finding the best estimate of the kernel functions κk(t), which 
solve Equation (1.19). As before, we treated this as a least-squares minimization problem 
(1.29), but the kernels were restricted to the functional form of Equation (1.31). We were 
searching for the values of the parameters, ta,k, td,k and fk, which gave the best fit of the 
model to the production data. 
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Here the kernel and production data time series are represented as vectors,  and pcκv v  and 
the injection data are now included in the matrix Cr,k which represents the convolution 
(approximated by the trapezoidal rule). 
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The vector,  holds the parameters with respect to which 
we want to minimize the problem. The kernels being considered were of the form 
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Equation (1.29) describes a nonlinear least squares minimization problem. To solve it 
efficiently we computed the gradient and the Hessian. The gradient was computed as:  
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Similarly, the Hessian was computed as: 
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To accelerate convergence, the matrix H2 was set to zero, in accordance with Gauss’ 
modification to Newtons method. The derivatives of the kernel functions with respect to αi, 
were computed automatically using the Symbolic Toolbox in MATLAB. The MATLAB 
function fmincon was then used to solve problem (1.29), using the trust region reflective 
algorithm. The objective function had a number of local minima and therefore it was 
necessary to try a few different initial guesses to get convergence to the known “true” 
solution. An example with five injectors and one producer is shown in Figure 1.19. As 
before we used somewhat idealized injection histories to make the problem better posed. 
 
 
Convergence to the “true” minimum was achieved after 16 trials with random initial 
guesses for αv . Each trial computation took only a few seconds (~10-30 sec) to run in 
MATLAB. A comparison between the true kernels and the estimated kernels is shown in 
the top part of Figure 1.20 and the fit to the production data is shown on the lower graph. 
Table 1.1 shows the parameter estimates and the true parameters used. 
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Figure 1.19: Injection history, random kernels and corresponding production history for 
five injectors and one producer. 

 
Table 1.1: Summary of parametric estimates for fit shown in Figure 1.20. 

  ta,true ta,est td,true td,est ftrue fest 
κ1 17.1 16.9 0.43 0.56 0.05 0.06 
κ2 40.0 40.5 1.14 1.05 0.20 0.20 
κ3 220.0 219.4 3.14 3.18 0.80 0.80 
κ4 66.7 67.1 6.67 6.22 0.15 0.15 
κ5 16.0 15.9 3.20 3.14 0.30 0.30 
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Figure 1.20: The estimation of five kernels and the fit to production data after solving 
problem (1.27) with a good initial guess. 

 
Admittedly, the case shown here did yield an unrealistically good fit because the 
production history was generated with the same model as we were trying to fit to the data. 
In reality the kernels could be more like the ones shown in Figures 1.8 or 1.11, and 
therefore kernel models with sums two (or even three) simple kernels might be more 
appropriate. That is, in stead of considering kernels of the form (1.31) one might want to 
use: 
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When poor initial guesses to the solution were made the minimization algorithm would 
converge to a local minimum with results such as those shown in Figure 1.21. 
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Figure 1.21: Results showing a solution of problem (1.29) with convergence to a local 
minimum. Even though the fit to the production data might seem quite good, the 
kernel estimates could be quite far off. 

 
The problem of needing a good initial guess could be combated in a few different ways. 
Transformations of the parameter space might be helpful, e.g. by searching for log(α) in 
cases where α is believed to be log-normally distributed; or by modifying problem (1.29) 
into a total least-squares problem, where the combination of the distances in t and cp are 
being minimized. We experimented with the idea of a logarithmic transformation of the 
parameter space for ta and td with no obvious improvements, but the testing was not 
rigorous. The total least-squares approach would require more work, but for many practical 
purposes, trying a few initial guesses would be a satisfactory approach. 

1.5 FUTURE WORK 

Future work will focus on additional analyses of production histories. Possibilities of using 
the tracer response to optimize production are being considered. A straightforward 
approach to this would be to attempt to minimize the amount of tracer produced over a 
specific time interval. This could be accomplished by evaluating the tracer kernels at 
several different injection rates and from that trying to guess what the kernels would look 

 26



like at other intermediate injection rates. Alternative approaches might also be considered 
such as attempting find the injection rates that minimize the variability in the tracer 
production signal. The ACE algorithm, discussed in the quarterly report from Winter 2009, 
may lend itself well to this type of analysis. 
 
To further our work of inferring of well-to-well connectivity, we have considered shifting 
the focus from tracers to pressure data. Nonparametric multiwell deconvolution approaches 
of pressure data have been discussed by Levitan (Levitan, 2006) and von Schroeter and 
Gringarten (Schroeter and Gringarten, 2007). Knowing both the tracer kernel and the 
pressure kernel for well-to-well connections could then be used to optimize injection 
schedules where the objective would be to provide maximal pressure support for 
production at the same time as the possibility of premature breakthrough would be 
minimized. 
 
An important difference between working with pressure and tracer deconvolution is that 
for pressure the injection rates can (and must) change to be able to decompose the pressure 
signal. Therefore, a variable injection rate test could be performed first to get a rough idea 
of which wells might be well connected from the pressure transients, and then that 
information might be used to improve the design of the tracer injection tests. 
 
Finally, we will give some thought to whether the simplified discrete fracture network 
analysis approach discussed in this report and the quarterly report from Winter 2010 can be 
extended to compute the transport of temperature signals and/or tracer signals in three 
dimensions. 

1.6 CONCLUSIONS 
This quarterly report discusses a way to compute the transport of tracer through a fracture 
network, including the effects of Taylor dispersion. The method is computationally 
efficient and provides an interesting way of comparing the dispersion induced by the 
multiple paths through the fracture network as opposed to the dispersion caused by 
molecular diffusion in narrow flow paths (Taylor dispersion). The computations show that 
the degree of Taylor dispersion is very sensitive to the fracture apertures. When the 
fracture apertures are relatively large, it becomes more likely that Taylor dispersion will 
mask the fracture induced dispersion effects, precluding the possibility of discerning the 
number of dominant flow paths between any two wells, by means of a tracer test. 
 
The second part of this report focuses on inference of well-to-well connectivity from tracer 
tests. This is a direct continuation of the work done in the quarterly reports from Winter, 
Spring and Summer 2009. Two methods are discussed; the first being a nonparametric 
deconvolution approach performed in Laplace space; and the second being a parametric 
deconvolution approach based on nonlinear regression with a one-dimensional advection-
dispersion model. The nonparametric Laplace space method seemed to be infeasible due to 
the imprecise way in which late time data were represented in Laplace space. The 
parametric approach involved working out the gradient and Hessian of a nonlinear least 
squares problem. The method seemed to work well for the test case we used, aside from 
some nuances with getting a good initial guess for the parameters. Extensions of the 
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method were suggested that could improve convergence and widen the range of conditions 
for which the method might work. 
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2. FRACTURE CHARACTERIZATION OF ENHANCED 
GEOTHERMAL SYSTEMS USING NANOPARTICLES 
This research project is being conducted by Research Associates Mohammed Alaskar and 
Morgan Ames, Senior Research Engineer Kewen Li and Professor Roland Horne. The 
objective of this study is to develop in-situ multifunction nanosensors for the 
characterization of Enhanced Geothermal Systems (EGS). 

2.1 SUMMARY 

Injection of hematite (iron oxide Fe2O3) nanorice was conducted to explore the mobility of 
rod-like nanoparticles within the pore spaces of Berea sandstone. The purpose was to 
investigate constraints imposed by the geometry and aggregation of the rod-like 
nanoparticles. Hematite nanoparticles were not identified in the effluent collected from the 
Berea sandstone core. The hematite nanorice was, however, detected within the pores at 
the inlet side of the core. 
 
To study the transport of hematite nanorice within a porous medium in the absence of rock 
materials, a glass bead packed slim tube was designed and constructed. During this 
injection, a very small number of hematite nanoparticles were observed using SEM 
imaging of the effluent samples. However, the particle count was too low to be detected by 
UV-visual spectroscopy, so it was not possible to determine the concentration of the 
effluent samples. 
 
In order to determine whether the transport of hematite nanorice is limited by their 
geometry or their surface characteristics, the hematite nanoparticles were coated with silica 
(SiO2) and the surfactants triethanolamine (TEA) and polyvinylpyrrolidone (PVP) to 
modify their surface properties. The next step will be to characterize and inject the coated 
hematite. 
 
Tin-bismuth (Sn-Bi) alloy nanoparticles were synthesized to begin investigating 
temperature-sensitive particles. However, an attempt to characterize the particles using 
dynamic light scattering was unsuccessful due to the presence of large particulates.  
 
This report describes the results of the iron oxide nanoparticle injection into Berea 
sandstone and 30 cm glass bead packed slim tube as well as the synthesis of Sn-Bi alloy 
particles and the coating of hematite nanorice with surfactants.  

2.2 INTRODUCTION 

The last quarterly report (January-March 2010) described the injection of silicon dioxide 
nanoparticles into a 10m long sand-packed slim tube, and the analysis of this experiment. 
This included the characterization of the injected nanofluid as well as effluent samples. It 
was found that the silicon dioxide nanoparticles can be transported and recovered through 
a long flow path. To investigate the transport of nonspherical particles through porous 
media and to gain further experience in the synthesis of nanomaterials, a hematite (Fe2O3) 
nanofluid sample was synthesized and characterized using scanning electron microscopy. 
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In this quarter, hematite nanorice injection experiments were carried out using Berea 
sandstone and a glass bead packed slim tube. Influent and effluent samples were analyzed 
using dynamic light scattering, UV-visual spectroscopy and scanning electron microscopy. 
Standard measurements on the core sample were also performed. These measurements 
included the gas and liquid permeability, porosity and pore volume measurements. To 
better understand the relationship between particle geometry and transport, the hematite 
was coated with SiO2 and the surfactants TEA and PVP. Finally, the investigation of 
temperature-sensitive nanoparticles began with the synthesis of Sn-Bi alloy nanoparticles. 
 

2.3 BEREA SANDSTONE AND GLASS BEAD PACKED SLIM TUBE 
CHARACTERIZATION 

This section describes the porosity, permeability and pore volume measurements of Berea 
sandstone and slim tube packed with glass beads used in the hematite nanorice injection 
experiments.  

2.3.1 Berea Core Characterization  
The core sample tested was Berea sandstone of 3.8 cm in diameter and 4.9 cm in length. 
The gas and liquid permeabilities were determined. The Klinkenberg (gas slippage) effect 
was considered to evaluate the equivalent liquid permeability. Then, the liquid 
permeability for the same core sample was carried out. Porosity and permeability results 
are summarized in Table 2.1. 
 
Table 2.1: Berea porosity and permeability measurements summary 

Property  Measurement method Value 

Porosity (%) Saturation with deionized water 17.1 

Gas permeability 152 

Equivalent liquid permeability 72.2 Permeability (md) 

Liquid permeability 60.7 
 
Figure 2.1 is a schematic of the apparatus used in the measurement of gas permeability. 
The gas used in this experiment was nitrogen (N2). The inlet and outlet pressures were 
measured using standard pressure gauges. The flow rate at the outlet was measured using a 
stop-watch and graduated cylinder (the standard method of measuring the flow rate). 
Calibration curves were included in an earlier quarterly report (January-March 2009). 
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Figure 2.1: Schematic of the apparatus for measuring gas permeability. 
 
The core was first dried in a furnace at 100ºC under vacuum for 24 hours. After weighing 
the core sample, it was placed inside the core-holder under a confining pressure of 450 
psig. The gas permeability measurement was then started by introducing nitrogen at 
different flow rates and inlet pressures. The average gas permeability was found to be 
around 152 millidarcy by applying Darcy’s law for compressible fluids: 
 

)(
2

22
outin

outout
gas ppA

Lqpk
−

=
µ       (2.1) 

 
where µ is the viscosity in centipoise, qtot is outlet volumetric flow rate in cubic centimeter 
per second, A is the core cross-sectional area in square centimeter, L is the core length in 
centimeter and  and  are inlet and outlet absolute pressures in atmospheres, 
respectively. 

inp outp

 
The gas permeability as a function of the reciprocal of mean pressure is depicted in Figure 
2.2. According to the Klinkenberg effect, extrapolating the straight line to infinite mean 
pressure (or zero reciprocal of mean pressure) intersects the permeability axis at a point 
designated as the equivalent liquid permeability (Amyx et al., 1960). In Figure 2.2, the 
average equivalent liquid permeability is approximately 72.2 millidarcy. 
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Figure 2.2: Berea core gas permeability versus the reciprocal of mean pressure. 
 
The liquid permeability was measured on the same core sample directly. A schematic of 
the apparatus used in the measurement of liquid permeability is shown in Figure 2.3.  
 

 

Figure 2.3: Schematic of apparatus for liquid permeability measurement. 
 
The core sample was first saturated with water outside the core-holder. The core and 
related system were evacuated using a Welch Vacuum Pump for 4 hours at a vacuum 
pressure of about 20 millitorr to remove moisture. Pure water was introduced to 
completely submerge the sample. The core was then left submerged overnight and the 
remaining vacuum released to aid the process of saturation. After that the core was 
removed and wiped dry to remove excessive water on the surface. Finally, the core was 
weighed and hence its porosity was calculated. The core turned out to have a porosity of 
around 17.1 % and a pore volume of 9 cubic centimeters. The porosity calculation is as 
follows: 
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where φ  is the porosity in percentage, and  are pore and bulk volumes in cubic 
centimeter, respectively. and  are the weight of core after and before saturation, in 
gram, respectively. 
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respectively. 
 
The average liquid permeability was found to be around 60.7 millidarcy. Darcy’s law for 
horizontal flow was utilized to compute the permeability. Darcy’s law for horizontal flow 
is given by: 

pA
Lqkliq ∆

=
µ       (2.5) 

where q is the volumetric flow rate in milliliter per second, µ is the viscosity in centipoise, 
L and A are the length and the cross-sectional area of the core in centimeter and square 
centimeter, respectively.  is the differential pressure across the core sample in 
atmospheres. 

p∆

 

2.3.2 Polypropylene slim tube packed with glass beads 
To investigate the mobility of hematite nanoparticles in the absence of rock material (such 
as clays), they were injected into a slim tube packed with glass beads. A 30 cm long 
polypropylene slim tube apparatus was constructed. The tube was packed with glass beads 
of 1 mm diameter and fitted with filter paper, screens, and valves at each end. This 
polypropylene slim tube is pictured in Figure 2.4. The porosity was measured by the 
resaturation method. The porosity and pore volume of the glass bead packed slim tube 
were found to be approximately 47% and 2.5 ml, respectively. 
 

 
Figure 2.4: Polypropylene slim tube packed with glass beads 
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2.4 HEMATITE INJECTION EXPERIMENTS 

During this quarter, two main experiments were conducted. They serve as preliminary 
testing of the injection of hematite nanorice into Berea sandstone and into the slim tube 
packed with glass beads. The injection process and sampling strategies in both experiments 
were similar; however, they differ in some aspects such as total Pore Volume Injected 
(PVI), flow rates and sampling frequency. The following sections provide the specifics of 
each experiment. 

2.4.1 Hematite nanoparticle injection into Berea sandstone  
Injection of hematite (iron oxide Fe2O3) nanorice was conducted to investigate their flow 
through the pores of Berea sandstone. A schematic of the apparatus is shown in Figure 2.5. 
Nanofluid solution was contained in a pressure vessel downstream of the water pump. The 
hematite nanorice was injected with the aid of nitrogen gas. The configuration also allows 
for injection of particle-free water, without interrupting the flow. 
 
This experiment did not consider the temperature effect, so it was conducted at room 
temperature. The nanofluid contained hematite nanoparticles of the size of 500 nm in 
length and 100 nm in diameter.  
 

 

Figure 2.5: Experimental apparatus for nanofluid injection into Berea sandstone. 
 
Prior to the injection of the nanofluid, the core was preflushed with pure water to displace 
as much rock fines and debris as possible. The nanofluid injection sequence was similar to 
the process suggested by Kanj et al. (2009). The sequence involved the injection of a 
specified volume of nanofluid followed by a continuous injection of pure water. In 
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particular, 40% of the pore volume was injected. The hematite nanofluid was diluted 1:10 
(i.e. 1 part hematite to 10 parts pure water). 
 
Subsequent to the injection of the nanofluid, a continuous flow of pure water (post 
injection) was introduced. Specifically, 8 pore volumes of pure water were injected while 
the effluent samples were collected. The total time of the experiment was approximately 40 
minutes. The injection was at the rate of 2 milliliter per minute at a differential pressure of 
about 6 psig. A total of 17 effluent samples were collected at the rate of 3 milliliter per 
sample. Not all these samples were analyzed but rather a selection of some was made to 
reduce the analysis time. In that regard, samples from the second and fourth post injected 
pore volume where analyzed by SEM. 

2.4.2 Hematite nanoparticle injection into glass bead packed slim tube  
The hematite nanorice was also injected into slim tube packed with glass beads. The same 
experiment configuration (Figure 2.5) was used except that the coreflooding apparatus was 
replaced with a 30 cm long, 0.635 cm diameter polypropylene slim tube packed with 
spherical glass beads. The same hematite sample injected into the Berea sandstone was 
used in the glass beads injection experiment.  
 
The slim tube was initially preflushed with several pore volumes using pure water. Then, 
three different injections of hematite nanofluid, each followed with continuous injection of 
pure water (post injection) were conducted. In each experiment, the volume of hematite 
injected was about 40% of the pore volume (or 1 ml nanofluid). During the first injection, 
the hematite nanofluid was diluted (1 part of hematite to 10 parts pure water). In the 
second and third injections, the hematite nanofluid was not diluted. However, it was 
observed that the paper filters fitted at the tube inlet and outlet had clogged with  the 
nanorice (Figure 2.6) and therefore the filters were removed prior to the third injection. 

Accumulated hematite 
nanorice

Paper filters

 
Figure 2.6: Paper filters fitted to inlet and outlet valves during hematite injection 

experiment. The filters were removed prior to the third injection of hematite.   
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2.5 COATING OF HEMATITE NANOPARTICLES 

After early results indicated a difficulty in getting the hematite particles to pass through the 
core, it was postulated that their elongated shape caused them to have nonuniform surface 
potential that resulted in clustering of the particles.  Because this would be a general 
property of rod-shaped particles, an investigation of this issue was initiated, first by coating 
the hematite nanorice with different materials to alter their surface charges. 
 
Hematite was coated with SiO2 and the surfactants triethanolamine (TEA) and 
polyvinylpyrrolidone (PVP) in order to modify its surface properties and determine if 
transport is limited by geometry or surface properties. 
 
SiO2 was particularly attractive as a coating because it has already been injected into a core 
and recovered successfully. To perform this coating, 0.3 ml of hematite nanofluid 
suspended in water was diluted with 4 ml of water and 20 ml of ethanol, a slight variation 
of the process suggested by Lu (2002). 0.5 ml of 30 wt % ammonia solution and tetraethyl 
orthosilicate (TEOS) were added while the solution was stirred magnetically, and the 
reaction continued for 3 hours at room temperature. The coated nanorice were separated 
from the reaction medium via centrifugation and suspended in water. 
 
To coat the hematite with PVP, a 0.1 M solution of PVP in ethanol was prepared. Hematite 
nanofluid was then added, sonicated for 1 hour, and soaked overnight. The coated particles 
were cleaned by centrifugation three times at 6.5 krpm to remove excess surfactant. The 
TEA coating was identical, except a 0.1 M solution of TEA in water was used instead. 

2.6 TIN-BISMUTH NANOPARTICLE SYNTHESIS 

To begin investigating temperature-sensitive nanoparticles, the synthesis of Sn-Bi alloy 
nanoparticles was performed. The ideal geothermal temperature sensor should be nontoxic, 
able to pass through the reservoir, easily recovered if necessary, and should undergo an 
easily observable change in the temperature range of interest. One promising idea is a core-
shell particle with an inert, magnetic core and a shell that undergoes decomposition or 
phase change. One of the reasons hematite has been investigated is because of its behavior 
under an applied magnetic field. This would make it an ideal material for the inert core if 
the transport barriers can be overcome. The shell could be a metal alloy with a low melting 
point (i.e. within the range of common geothermal temperatures). Sn-Bi alloys could be 
used as sensors in the temperature range between eutectic melting point of the alloy 
(139°C) and the pure melting points of Bi and Sn (271°C and 232°C, respectively), as 
shown in Figure 2.7. 

 36



 
Figure 2.7: Phase diagram of Sn-Bi.  

 <http://www.metallurgy.nist.gov/phase/solder/bisn.html> 
 
Moreover, the alloy is stable under ambient conditions and both metals are inexpensive 
and nontoxic in their metallic states (Connor, 2010). Finally, there are known processes for 
depositing Sn-Bi coatings, particularly on hematite core particles (Connor, 2010). The 
synthesis of Sn-Bi alloy nanoparticles is considered a preliminary in the creation of the 
envisioned core-shell nanosensors.  
 
To perform the synthesis, Sn and Bi were melted together at the eutectic composition (~60 
wt % Bi and ~40 wt % Sn). After it was cooled to room temperature, 100 mg of the alloy 
was sonicated in 10 ml of mineral oil, a slight variation of the sonochemical method 
suggested by Chen (2005). The VC-505 ultrasonic processor manufactured by Sonics & 
Materials, Inc. with a 0.5 in. replaceable tip was used. The sonicator was operated at 100 
W (20% power) with a pulse setting of 1 s on, 10 s off. The sonicator is capable of 
operating at 500 W, but was not operated as such due to concerns that the organic solvent 
would break the replaceable tip. The mixture was cooled to room temperature and 
centrifuged. The alloy particles were washed several times with ethanol, and suspended in 
a solution of 100 mM PVP in ethanol. 
 
An attempt was made to characterize the alloy particles using dynamic light scattering, but 
this was unsuccessful due to the presence of large particulates in the sample. This is most 
likely due to the low power setting used for the sonicator as a precaution. In order to 
operate at higher powers in organic solvents, a solid probe was required, so a VC-505 with 
a 0.75 in solid probe was purchased. This ultrasonic processor is pictured in Figure 2.8. 
The synthesis will be repeated using this equipment at higher power. 
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Figure 2.8: VC-505 ultrasonic processor (Sonics & Materials, Inc.).   

<http://www.sonics.com/liquid-new-sheet/VC505-750.pdf> 
 

2.7 RESULTS 

Injection of hematite (iron oxide Fe2O3) nanorice was conducted to investigate their 
mobility within the pore spaces of Berea sandstone. The purpose was to investigate 
constraints imposed by the geometry and aggregation of the rod-like nanoparticles. The 
nanoparticles were found to be roughly 500 nm in length and 100 nm in diameter, resulting 
in an aspect ratio of 5:1 (Figure 2.9). By comparison, the hematite nanorice was at least an 
order of magnitude shorter than the silver nanowires injected previously (quarterly report, 
July-September 2009). Thus, the nanorice was used to test the hypothesis made regarding 
the entrapment of the silver nanowires due to their geometry (length). Hematite nanorice 
was not identified in effluent collected during the injection into Berea sandstone. Light 
scattering, UV-visible spectroscopy and scanning electron microscopy were used to 
examine the effluent samples, in which no nanoparticles were detected. The hematite 
nanorice was, however, observed within the pores at the inlet side of the core as illustrated 
by SEM micrographs in Figure 2.10.  
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Figure 2.9: SEM image of hematite nanorice influent. 
 

A

Hematite

 

B

 

Figure 2.10: SEM imaging of Berea sandstone at (A) front side, (B) back side of the slice. 
 
Similar to the analysis done for the silver nanowire injection, a thin slice of the core at the 
inlet was cut and SEM imaging was performed on both sides. Hematite nanorice was 
observed on the front face but not on the back face. Poulton and Raiswell (2005) reported 
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that the natural spherical iron oxides nanoparticles (10-20 nm) in sediments tend to 
aggregate at the edges of clay grains, most likely because of their surface charge 
characteristics. Tipping (1981) and Tipping and Cooke (1982) observed that iron oxides 
were negatively charged in fresh water while the edge of clay has positive charge which 
may explain the particle aggregation at that location. The micrographs in Figure 2.10 do 
not provide conclusive evidence of this interaction between the sandstone clays and the 
hematite nanorice. Nevertheless, this result suggested that there may be interaction 
between hematite nanorice and the sandstone core itself and/or among the nanorice in the 
form of particle aggregation. To investigate these two separate issues independently, the 
hematite was injected into a porous medium that consisted of a tube packed with glass 
beads. Spherical glass beads with a diameter of 0.1 cm were packed into a polypropylene 
slim tube with a diameter of 0.635 cm and a length of 30 cm. 
 
Lecoanet et al. (2004) studied the mobility of several nanochemistry particulates in a 
column of tightly packed glass beads. Although all particles and the glass beads were 
negatively charged, the mobility of evaluated materials differed substantially from one 
another. For instance, 95% of injected fullerol particles were recovered rapidly as opposed 
to C60, where less than 50% of the influent concentration was recovered. 
 
In the case of hematite nanorice injection, both the glass beads and the hematite were 
negatively charged. A low particle count was observed using SEM imagery of several 
effluent samples at different post-injected pore volumes, as shown in Figure 2.11. The 
absorption of nanoparticles using UV-visible spectroscopy could not be measured due to 
their low concentrations, and thus the concentration of iron oxide nanoparticles in the 
effluent relative to the concentration in the influent also could not be determined. 
However, it was determined that in the absence of the clays and despite the fact that the 
porous medium and nanorice were carrying the same charge, the nanorice exhibited very 
low mobility. 

 

Figure 2.11: SEM image of effluent sample from the hematite glass beads injection. 
 
The actual glass beads from the inlet and outlet were also examined under SEM (Figure 
2.12). Although the hematite nanorice recovery and/or mobility were low, they were able 
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to flow to the outlet (about 30 cm distance). The particles were also found aggregated on 
the surface or within the surface defects of the glass beads themselves. 
 

Defect
Hematite

A

Aggregation

B

 

AggregationDC

 

Figure 2.12: Hematite nanorice aggregation on the surface of glass beads at (A) & (B) 
inlet and (C) & (D) outlet side of the flow apparatus.  

As can be observed in Figure 2.12, the anisotropic hematite particles have a tendency to 
aggregate in clusters. Lu et al. (2002) reported that iron oxide nanoparticles often 
aggregate in large clusters as a result of anisotropic dipolar forces. This aggregation could 
cause problems during transport through pore networks, such as bridging of the pores. 

2.8 FUTURE WORK 

The next stage will be to inject the hematite nanorice coated with PVP, TEA and SiO2 into 
the 30 cm slim tube packed with glass beads. Depending on the results of this injection, the 
same nanofluids will be injected into Berea sandstone. The influent and effluent samples 
will be characterized using dynamic light scattering, UV-visual spectroscopy as well as 
scanning electron microscopy. The Sn-Bi synthesis will be performed again with a 
sonicator that has a solid probe and can be operated at higher power. Then these 
nanoparticles will be fully characterized, and their melting behavior at different 
temperatures will be investigated. 
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3. FRACTURE CHARACTERIZATION USING RESISTIVITY 
This research project is being conducted by Research Assistant Lilja Magnusdottir, Senior 
Research Engineer Kewen Li and Professor Roland Horne. The objective of this project is 
to investigate ways to use resistivity to infer fracture properties in geothermal reservoirs. 

3.1 SUMMARY 
The aim of this part of the project is to use resistivity measurements and modeling to 
characterize fracture properties. The resistivity distribution in the field can be estimated by 
measuring potential differences between various points and the resistivity data can be used 
to infer fracture properties due to the large contrast in resistivity between water and rock. 
 
A two-dimensional model has been made to calculate a potential field due to point sources 
of excitation. The model takes into account heterogeneity by solving the potential field for 
inhomogeneous resistivity. Fractures are modeled as areas with resistivity different from 
the rock, to investigate the changes in the potential field around them. In the third phase of 
the project, which this report mainly discusses, the model is improved to solve the 
potential field for a nonuniform rectangular grid. The fracture elements can be modeled 
smaller than the elements for the rest of the reservoir, in order to decrease the total number 
of elements.  
 
The potential difference is calculated for a large number of fracture patterns, to investigate 
whether the results can be used to imply a pattern for an unknown field. The statistics give 
a better estimate of the fracture field by eliminating a great amount of possible fracture 
patterns for a certain potential difference. Some of the patterns have, however, similar 
potential differences. The possibility of using conductive fluid to enhance the contrast 
between fracture and rock resistivity is explored and the use of conductive fluid with time 
dependent resistivity measurements, in order to gain more information about the fracture 
properties.  
 
A flow simulation is performed where the distribution of a tracer is observed. The tracer, 
which increases the conductivity of the fluid, is injected into the reservoir and future work 
will involve connecting the results of the flow simulation to the resistivity model. The 
changes of the potential field at different time steps can then be calculated as the tracer 
transfers through the fractures in the reservoir. Those time dependent changes in potential 
field as the conductive fluid flows through the fracture network facilitate fracture 
characterization. 

3.2 INTRODUCTION 
The design of optimal production strategies in geothermal reservoirs requires knowledge of 
the resource’s connectivity and heat intensity for energy extraction. Drilling and 
completion of wells are expensive and the energy content from a well depends highly on 
the fractures it intersects. Fracture characterization is therefore important to increase the 
reliability of geothermal wells and thereby the overall productivity of geothermal power 
plants. 
 

 43



In this project, the goal is to find ways to use Electrical Resistivity Tomography (ERT) to 
characterize fractures in geothermal reservoirs. ERT is a technique for imaging the 
resistivity of a subsurface from electrical measurements. Typically, electrical current is 
injected into the subsurface through conducting electrodes and the resulting electrical 
potentials are measured. Due to the large contrast in resistivity between water and rock, the 
resistivity measurements could be efficiently used to indicate fracture locations. 
 
Resistivity measurements have been widely used in the medical industry to image the 
internal conductivity of the human body, for example to monitor epilepsy, strokes and lung 
functions as discussed by Holder (2005). In Iceland, electrical resistivity tomography 
methods have been used to map geothermal reservoirs. Arnarson (2001) describes how 
different resistivity measurements have been efficiently used there to locate high 
temperature fields by using electrodes located on the ground’s surface. Stacey et al. (2006) 
investigated the feasibility of using resistivity to measure geothermal core saturation. A 
direct current pulse was applied through electrodes attached in rings around a sandstone 
core and it resulted in data that could be used to infer the resistivity distribution and 
thereby the saturation distribution in the core. It was also concluded by Wang (2000) that 
resistivity data has high resolution power in depth direction and is capable of sensing the 
areal heterogeneity. 
 
In the approach considered in this project, electrodes would be placed inside geothermal 
wells and the resistivity anomalies studied between them to locate fractures and infer their 
properties by resistivity modeling. Due to the lack of measurement points, i.e. limited 
number of test wells, we will endeavor to find ways to ease the process of characterizing 
fractures from limited resistivity data. To enhance the contrast in resistivity between the 
rock and fracture zones, the possibility of using conductive fluid is explored. Furthermore, 
the influences of temperatures and fluid stream on resistivity measurements will be 
studied. The effects of mineralization in the fractures will also be examined, since fractures 
containing a lot of minerals can be more difficult to distinguish from the surrounding 
rocks. This report first describes the resistivity model that has been made to calculate a 
potential field due to point sources of excitation and then discusses the attempt to use that 
model to characterize different fractures patterns. 

3.3 RESISTIVITY MODELING 
One of the main problems in resistivity modeling is to solve the Poisson’s equation that 
describes the potential field and to efficiently complete the inversion iteration. That 
governing equation can be derived from some basic electrical relationships as described by 
Dey and Morrison (1979). Ohm’s Law defines the relationship between current density, J, 
conductivity of the medium, σ, and the electric field, E, as 

EJ σ=       (3.1) 
The stationary electric fields are conservative, so the electric field at a point is equal to the 
negative gradient of the electric potential there, i.e. 

φ−∇=E       (3.2) 
where φ  is the scalar field representing the electric potential at the given point. Hence, 

φσ∇−=J       (3.3) 
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Current density is the movement of charge density, so according to the continuity equation, 
the divergence of the current density is equal to the rate of change of charge density, 

),,(),,( zyxq
t

zyxQJ =
∂

∂
=∇     (3.4) 

where q is the current density in amp m3. Combining Equations (3.3) and (3.4) gives the 
following Poisson’s equation which describes the potential distribution due to a point 
source of excitation, 

[ ] ),,( zyxq−=∇∇ φσ     (3.5) 
The conductivity σ is in mhos m-1 and the electric potential is in volts. This partial 
differential equation can then be solved numerically for the resistivity problem. 

3.3.1 Finite Difference Equations in Two Dimensions 
Finite difference method is used to approximate the solution to the partial differential 
equation (3.5) using a point-discretization of the subsurface (Mufti, 1976). The 
computational domain is discretized into NyNx×  blocks and the distance between two 
adjacent points on each block is h in x-direction and l in y-direction, as shown in Figure 
3.1. 

 
Figure 3.1: Computational domain, discretized into blocks. 
Taylor series expansion is used to approximate the derivatives of Equation (3.5) about a 
point (j, k) on the grid, 
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The point (j, k) represents the shaded area in Figure 3.1 (area = hl) so the current density 
due to an electrode at that point is given by, 
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hl
Ikjq =),(      (3.8) 

where I [amp] is the current injected at point (j, k) Combining Equations (3.5)-(3.8) and 
solving for the electric potential φ  at point (j, k) gives, 
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The parameters ci represent the conductivity averaged between two adjacent blocks, i.e.    
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where ρ(j, k) is the resistivity [ohm-m] of the node at grid coordinates j, k.  

3.3.2 Iteration method 
In order to solve Equation (3.9) numerically and determine the results for electrical 
potential φ  at each point on the grid, the iteration method called Successive Over-
Relaxation is used (Spencer and Ware, 2009). At first, a guess is made for φ (j, k) across 
the whole grid, for example φ (j,k)= for all j,k. That guess is then used to calculate the right 
hand side of Equation (3.9) for each point and the new set of values for φ ( j, k) is 
calculated using the following iteration scheme, 

nn Rhs φωωφ )1(1 −+=+     (3.14) 
The multiplier ω is used to shift the eigenvalues so the iteration converges better than 
simple relaxation. The number ω is between 1 and 2, and when the computing region is 
rectangular the following equation can be used to get a reasonable good value for ω, 
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The natural Neumann boundary condition is used on the outer boundaries in this project, 

i.e. 0=
∂
∂
n
φ . 

3.4 RESULTS 
The resistivity model is used to calculate the potential difference for a large number of 
fracture patterns, to investigate whether the results can be used to imply a fracture pattern 
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for an unknown field. After defining the number of fractures, the model creates horizontal 
and vertical fractures of random sizes and at random locations. Figure 3.2 shows the results 
for two different fracture patterns (grey blocks), where the potential difference is 
calculated between two wells (black blocks) modeled at points (-50,50) and (50,-50). The 
field is 160×160 m2 with resistivity as 1 Ωm, and the fractures have resistivity 0.001 Ωm.  
 

 
Figure 3.2: Two different fracture patterns modeled (grey blocks). 
A current is set equal to 1 A at the well block (black) in the upper left corner of each field, 
and as -1 A at the well block (black) in the lower right corner, and the potential distribution 
is calculated. The potential difference between the two wells for the fracture pattern to the 
left of Figure 3.2 is 2.047 V while the difference is 1.548 V for the pattern to the right. The 
conductivity of water filled fractures is higher than the conductivity of the rest of the 
reservoir so higher potential differences between the two wells indicate lower conductivity 
between them, i.e. fewer fractures. That corresponds to the results for those two fracture 
patterns; the pattern to the left has higher potential difference and therefore fewer fractures 
than the one to the right which has lower potential difference. Knowing the potential 
difference between the wells can therefore help in eliminating a great amount of possible 
fracture patterns.  
 
Some different fracture patterns give similar potential difference, as the patterns shown in 
Figure 3.3. The potential difference between the wells is 1.327 V for the fracture pattern to 
the right and 1.310 V for the pattern to the right. So the difference between the patterns is 
small even though the patterns are quite different. It is therefore necessary to investigate 
other ways to facilitate fracture characterization, though the variation in potential 
distribution for various patterns can be helpful in suggesting some of the fracture 
properties.  
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Figure 3.3: Two fracture patterns (grey blocks) that give similar potential difference 

between two wells (black blocks). 
The possibility of using conductive fluid to enhance the contrast between fracture and rock 
resistivity is explored for the fracture pattern shown in Figure 3.4. 

 
Figure 3.4: A fracture pattern (grey blocks) and two wells (black blocks) used to explore 

the possibility of using conductive fluid to characterize fractures.  
The conductive fluid is assumed to fill up fractures up to a certain x-position and the 
potential difference is calculated for different positions of the conductive fluid. In Figure 
3.5, the potential difference calculated for different x-positions is shown to the left and the 
change in potential difference within each x-position interval is shown to the right. 
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Figure 3.5: Potential difference for fractures filled with conductive fluid up to different x-

positions (to the left) and the change in potential difference within each x-
position interval (to the right).  

As the conductive fluid flows over a larger region, the potential difference between the two 
wells decreases, because of the increasing conductivity between the wells. The derivative 
over each interval shows that the smallest change in potential difference is when the 
conductive fluid extends from -80 m to 20 m up to -80 m to 40 m. The interval from 20 m 
to 40 m is therefore expected to have the least number of fractures, since filling up the 
fractures at that interval with conductive fluid does not change much in the potential 
difference between the well. This holds true in this case since only two horizontal fractures 
are on that interval as can be seen in Figure 3.4, so getting the potential difference at 
different time steps when injecting conductive fluid is helpful in getting a better 
understanding of the fracture properties.   
 
In the results just described, the conductive fluid was assumed to spread uniformly over the 
whole area, which is obviously not the case when fractures are present. A flow simulation 
was performed using TOUGH2 reservoir simulator to see how a tracer, which increases the 
conductivity of the fluid, distributes after being injected into the reservoir. The simulation 
was carried out on a two-dimensional grid with dimensions 1000×1000×10 m3. The 
fracture network can be seen in Figure 3.6, where the green blocks represent the fractures 
and wells are located at the upper left and lower right corner of the network.  
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Figure 3.6: Fracture network. 
The fracture blocks are given a porosity value of 0.95 and permeability value of 1011  md 
(10-4 m2) and the rest of the blocks are set to porosity 0.1 and permeability 0.1 md (10-16 
m2). Closed or no-flow boundary conditions are used and one injector at upper left corner 
(76, 924) is modeled to inject water at 100 kg/sec with enthalpy 100 kJ/kg, and a tracer at 
0.01 kg/s with enthalpy 100 kJ/kg. One production well at lower right corner (924, 76) is 
configured to deliver heat at 100 J/s.  
 
The initial pressure is set to 1.013 MPa (10.13 bar), temperature to 150°C and initial tracer 
mass fraction is set to 10-9 because the simulator could not solve the problem with zero 
initial tracer mass fraction. Figure 3.7 illustrates how the tracer transfers through the 
fractures from the injector to the producer.  
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Figure 3.7: Flow simulation, tracer mass fraction.  
The tracer flows through the horizontal fracture and starts flowing through the first vertical 
fracture after approximately 9000 seconds. The tracer has flowed through both the vertical 
fractures after 180000 seconds and the tracer mass fraction in the fracture network keeps 
increasing as the production is allowed to continue.   
 
In order to connect the results of the flow simulation to the resistivity model, the grid for 
the resistivity model needs to be changed. The model is improved so it can solve the 
potential field for a nonuniform rectangular grid, so the fracture elements can be modeled 
smaller than the elements for the rest of the reservoir. The total number of elements can 
thereby be reduced. Figure 3.8 shows the improved grid for the resistivity model, which 
corresponds to the grid used for the flow simulation.  
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Figure 3.8: Improved grid for the resistivity model.  
The grid for the resistivity model is the same as the grid for the flow simulation so the 
results from the flow simulation can be used directly to assign conductivity values for the 
potential field calculations.  

3.5 FUTURE WORK 
One of the next steps is to connect the flow simulator to the resistivity model so that the 
results from the flow simulation can be read directly and conductivity values assigned for 
the reservoir. The potential difference will be calculated at different time steps as the tracer 
flows through the fracture network, and the results studied to infer the fracture properties.  
 
Other future goals are to study the influences of temperatures on water resistivity as well as 
the potential changes due to fluid stream in the fractures. Also, the effects of mineralization 
will be examined because it can be difficult to distinguish between rock and fractures 
containing a lot of minerals.  
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