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Abstract

Temperature change plays an important role in many downhole processes, and tem-

perature measurements have long been used to monitor the performance of producing

wells, evaluate water-injection profiles and diagnose the e↵ectiveness of fracture jobs,

etc. However, for many years, the utilization of downhole temperature measure-

ment was largely over-shadowed by other measurements obtained through sophisti-

cated suites of logging tools. However, the development of fiber-optic technology

has helped a resurgence of interest in temperature measurement. One characteristic

of fiber-optic temperature measurement is that it is capable of measuring multiple

points simultaneously. The fiber-optic tool used to measure temperature is called a

Distributed Temperate Survey (DTS), which measures temperature along the whole

interval covered by the fiber.

In our study, we explored approaches of how to interpret DTS data. The significant

contributions of this work include:

1. Building a wellbore/reservoir coupled thermal model

The need to interpret wellbore temperature profiles measured by Distributed

Temperature Sensors (DTS) requires a correspondingly sophisticated type of

well model. To be specific, this model should be capable of predicting pressure

and temperature distributions under a nonisothermal, multicomponent and mul-

tiphase production scenario. In our model, wellbore pressure and temperature
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were solved separately and then coupled by iteration. Accuracy was assured by

the following three ways:

(a) Using the drift flux model to predict multiphase flow pressure;

(b) Fluid PVT properties were obtained by solving Equations of State, which

is more accurate than the values obtained by averaging or mixing rules;

(c) Using numerical methods to solve the heat transfer between wellbore and

formation, avoiding the assumption of an invariant relaxation length.

This model was verified by comparing with several previously published models.

2. Estimating flowrate profile from temperature profile measurement

Measuring flowrate profile can be a challenging job for traditional single-point

flowrate measurement tools, and it becomes very unreliable especially for multi-

phase flow and complex well geometries. However, temperature profile provides

an alternative approach for measuring flowrate profiles. As the temperature in

the wellbore is influenced by the properties and flowrate of the inflows from

di↵erent entry points, measured temperature can be used to estimate flowrate.

Therefore, the DTS data are very valuable for estimating flowrate profiles. In

our study, we used two di↵erent inverse methods separately. Although the

philosophy and performance of these two methods are di↵erent, both succeed in

estimating flowrate profile from the temperature profile. The multiphase case

was also considered, in which we found that it requires more input information

than just temperature data to achieve a good estimate of flowrate profile.

3. Evaluating formation properties

Temperature is also a function of formation properties, and thus it can be used

to evaluate the formation. We found that temperature data are more sensitive

viii



to the properties in the near-well formation than pressure data. This finding

is confirmed by our study on several di↵erent cases of single-layer reservoirs.

Furthermore, multilayer and horizontal wells, both of which have multiple entry

points in the well, were also studied. Finally, a successful analysis of a real case

was helpful to verify our findings.
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Chapter 1

Introduction

Temperature change plays an important role in many downhole processes, and tem-

perature measurements have long been used to monitor the performance of producing

wells, evaluate water-injection profiles and diagnose the e↵ectiveness of fracture jobs,

etc. However, for many years, the utilization of downhole temperature measurement

was largely over-shadowed by other measurements obtained through sophisticated

suites of logging tools. However, the development of fiber-optic technology has helped

a resurgence of interest in temperature measurement.

One characteristic of fiber-optic temperature measurement is that it is capable

of measuring multiple points simultaneously. The fiber-optic tool used to measure

temperature is called a Distributed Temperate Survey (DTS), which measures tem-

perature along the whole interval covered by the fiber. Because temperature in the

wellbore is related closely to flow conditions, the distributed temperature data ob-

tained from DTS are very valuable for downhole production surveillance.

As DTS is a newly-emerged technology, with significant potential applications in

oil/gas wells, the objective of this research was to study the interpretation of DTS

data and explore what reservoir and well information the temperature data indicate

directly or indirectly. In this chapter, the DTS system is introduced, followed by the

1
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outline of this dissertation.

1.1 Distributed Temperature Survey System

1.1.1 Basics about DTS

DTS monitoring was the first commercially successful optical monitoring service of-

fered in the oil/gas market (Drakeley et al. 2006). According to Brown (2008), in

the most basic form, a DTS system comprises a strand of optical fiber, a laser light

source, an optical splitter, an optoelectronic signal-processing unit and a display unit

(Figure 1.1). The core of fiber is very thin, 5-50 microns in diameter, and the core is

surrounded by an protective layer of silica known as cladding, which has a di↵erent

reflective index from the core.

The fiber is interrogated by a 10-ns lasers pulse (its equivalent interval length is 1

m). Because of the reflective index contrast between the core and cladding of the fiber,

each laser pulse is reflected back along the boundary between the core and cladding.

The backscattered light wavelength will be shifted through a phenomenon known as

Raman backscattering. According to the Raman theory, the negative part of the

backscattering shift, namely the anti-Stokes Raman backscattering, is temperature-

dependent. The in-situ temperature can then be calculated by the intensity ratio

between Stokes and anti-Stokes backscattered light. This process is illustrated in

Figure 1.1.

The backscattered light is also analyzed to determine how far down the fiber

it originated. Because each input pulse is 10-ns long, the interval from which the

backscattered light originated will correspond directly to a specific meter-long segment

of the fiber. Consequently, a log of temperature can be calculated at one meter

intervals along the length of the fiber by using only the laser source, the analyzer and
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a reference temperature with the surface system. In other words, a DTS system can

obtain temperature profiles along the interval of the well that is covered by the fiber.

Comparing to traditional temperature logging methods, which are point-by-point

measurements, DTS measures multiple points simultaneously. The unique advantages

of DTS summarized by Pinzon et al. (2007) are as follows:

1. Minimize well intervention;

2. Sustain flow in high-production-rate wells;

3. Save cost;

4. Improve safety.

Figure 1.1: Sketch of a DTS system. (Al-Asimi et al., 2003)
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1.1.2 Placement of Fibers

Due to the small size of optical fibers, various downhole installation methods of DTS

can be applied. For our research, the installation method matters, because it deter-

mines what temperature profiles the fiber actually measures. Referring to Figure 1.2,

there are three di↵erent temperature profiles to be considered:

1. Geothermal temperature: the original temperature profile of the formation,

which depends on the thermal conductivity of the rock;

2. Entry temperature: the temperature of the fluid at the sandface (and thus

referred as sand face temperature in some literature), before it enters the well

and mixes with the fluid in the well. At the location where fluid flows into

wells, the entry temperature is di↵erent from the geothermal temperature as a

result of several thermal phenomena such as viscous dissipation and adiabatic

expansion. In contrast, at the locations of no fluid flow, the entry temperature

measured by DTS is the same as the geothermal temperature;

3. Mixing temperature: the temperature of the fluid in the wellbore, after mixing

with the fluid coming from other entry points in the wellbore.

Several common installation methods relevant to our study are illustrated in Fig-

ure 1.3, 1.4 and 1.5.

The fiber can be attached to sand screens, as shown in Figure 1.3. The tem-

perature measured by DTS is the mixing temperature. Similarly, in a vertical well

installed with several inflow-control-valves (ICV) (Figure 1.4), the fiber is attached

to tubing, and DTS also measures the mixing temperature. Alternatively, the fiber-

optic can be installed permanently: being cemented, as shown in Figure 1.5. The

temperature data obtained from this installation method are the entry temperatures.
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Temperature 
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Figure 1.2: Three di↵erent temperature profiles, Tm = mixing temperature, Te =
entry temperature.

However, there is a potential risk associating with this installation method: the fiber-

optic cable can be damaged during perforation. Therefore, in practice, to prevent

the damage by perforation guns, several fiber optic strands are cemented at di↵erent

locations around the wellbore.

1.2 Statement of Purpose

DTS technology has already been applied to operating fields. For example, James

(2000) used DTS data to identify formation damage in a production field. Nath et

al. (2005) present a case of a field using DTS data to monitor steam breakthrough in

a steam-flooding project. As summarized by Drakeley et al. (2006), several potential

uses of DTS are:

• Thermal profiling of well
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Figure 1.3: DTS installed in a sand screen completion.
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Tubing Casing Cement Fiber-optic 
cable 

ICV 

Figure 1.4: DTS installed in wells with inflow-control-valves.

• Production and injection profiling

• Identification of well problems

• Monitoring of water, gas, steam breakthrough

• Optimization of gas lift

In our study, we explored approaches of how to interpret DTS data. Our study

did not cover all the applications listed above, but was focused in the following three

directions:

1. Building a wellbore/reservoir coupled thermal model

The model is capable of calculating pressure and temperature distribution both

in the reservoir and the wellbore. This model can also handle multiphase flow,
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Tubing Casing Cement Fiber-optic 
cable 

Perforation 

Figure 1.5: DTS is cemented.

in which thermodynamic properties of fluid are calculated by solving a com-

positional simulation problem. Flash calculation is performed and equations

of state are solved to obtain the composition of the fluid at certain temper-

ature and pressure. Moreover, a comprehensive list of underground thermal

phenomena is modeled to ensure the accuracy of this model.

The details of building this mode, such as control equations and solution algo-

rithms, etc. are explained in Chapter 4.

2. Estimating flowrate profile from temperature profile measurement

Measuring flowrate profile can be a challenging job for traditional single-point

flowrate measurement tools, and it becomes very unreliable especially for multi-

phase flow and complex well geometries. However, temperature profile provides

an alternative approach for measuring flowrate profiles. As the temperature in
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the wellbore is influenced by the properties and flowrate of the inflows from

di↵erent entry points, measured temperature can be used to estimate flowrate.

Therefore, the DTS data are very valuable for estimating flowrate profiles. In

our study, we used two di↵erent inverse methods separately. Although the phi-

losophy and performance of these two methods are di↵erent, both succeed in

estimating flowrate profile from the temperature profile. The multiphase case

was also considered, in which we found that it requires more input information

than just temperature data to achieve a good estimate of flowrate profile. The

inverse modeling results are shown in Chapter 5.

3. Evaluating formation properties

Temperature is also a function of formation properties, and thus it can be used

to evaluate the formation. We found that temperature data are more sensitive

to the properties in the near-well formation than pressure data. This finding

is confirmed by our study on several di↵erent cases of single-layer reservoirs.

Furthermore, multilayer and horizontal wells, both of which have multiple entry

points in the well, were also studied. Finally, a successful analysis of a real case

was helpful to verify our findings. The details are elaborated in Chapters 6 and

7.
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Literature Review

2.1 DTS Application

The DTS system has become a compelling piece of permanent downhole monitoring

equipment. Data acquired from DTS are interpreted qualitatively in some projects,

e.g. Nath et al. (2005) used the DTS in a steam injection project to locate steam

breakthrough zones and identify steam zone development, which provide valuable in-

formation for steam breakthrough management. Meanwhile, others tried quantitative

interpretation of DTS data, e.g. Ouyang and Belanger (2006) provide a numerical

approach to estimate flowrate profile from the temperature profile. They concluded

that DTS data can be used to determine the production profile under certain circum-

stances like single-phase flow. However, under other more complicated circumstances,

like multiphase flow or horizontal well, additional data may be required to perform

flow profiling by DTS data. Brown et al. (2007) monitored production flowrate and

change over time by DTS data in a real developing field. In their project, optic fiber

was installed on the periphery of the sand-screening shroud, from which the fiber can

measure the sand face temperature before it enters the well. Their novel manner of

installation of DTS fiber makes them very useful when doing the flowrate profiling.

10
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Brown et al. (2007) succeeded in estimating flowrate even after gas breakthrough

which involves multiphase flow and changing gas/oil ratio.

2.2 Flow Modeling

Many papers have been published on the topic of the heat transfer between wellbore

and formation. Ramey (1962) provided an analytical model to predict the tempera-

ture profile in an injection well. In that paper, Ramey presented a simple analytical

equation for wellbore temperature based on a simplified heat balance. Apart from

this analytical temperature equation, Ramey also proposed a simple procedure to

estimate an overall heat-transfer coe�cient for wellbore heat losses comprising both

transient heat resistance in the formation and near-wellbore heat resistance. De-

spite its simplification, in practice Ramey’s approach seems to work remarkably well

(Jacques, 2004). Horne and Shinohara (1979) extended Ramey’s model to production

wells. These models succeed in predicting the temperature profile, given the entering

temperature and flowrate. However, these analytical models are constrained to sim-

ple scenarios, like single phase and constant fluid-properties. Livescu et al. (2008)

implemented a numerical multiphase thermal wellbore model, and it is fully coupled

with a general purpose reservoir simulator. Ouyang and Belanger (2006) also built

a numerical wellbore model, specially for DTS data interpretation. Using their well-

bore model, Ouyang and Belanger (2006) succeeded in estimating flowrate profile by

solving an inverse problem.

Reservoir dynamic thermal modeling is a relevant topic for DTS application. The

research of heat transfer in porous media can also be traced back to Ramey. Atkin-

son and Ramey (1977) studied three mechanisms governing the energy transport of

porous media flow: convection, conduction and storage of energy in the solid and

fluid. Their study was based on the assumption of uniform and constant fluid flow
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field, and thus the energy balance was uncoupled from mass balance equations. The

governing equation, which is a di↵usion-convection type Partial Di↵erential Equation

(PDE), is di�cult to solve mathematically. By making assumptions to simplify fluid

and formation interaction, Atkinson and Ramey derived an analytical solution. There

has been much research e↵ort spent in deriving analytical solutions to the di↵usion-

convection PDE. Neuringer (1968) used Greens functions to solve an instantaneous

line source di↵using in a gravity field problem, and Yee (1990) gave an approximate

analytical solution to the same problem. Ramaznov and Nagimov (2007) presented an

analytical expression for the calculation of temperature distribution. In their work,

they coupled the energy equation with flow equation, so temperature distribution

can be calculated with variable pressures. However, they neglected the heat conduc-

tion term for mathematic convenience, and did not justify the consquence. Recently,

Duru and Horne (2008) gave an analytical solution to a comprehensive reservoir ther-

mal model. They considered heat conductive, convective mechanism and also other

thermal phenomena, like viscous dissipation and adiabatic expansion heating/cooling

e↵ect. Their thermal model was coupled with the pressure equation, and solved by

Operator Splitting and Time Stepping technique, which separately solved parabolic

di↵usion equation and hyperbolic convective equation at each time step and moved

forward in time space.

Although the analytical approach has advantages of explicit expression, fast com-

putation and high accuracy, it usually requires neglecting terms to simplify the prob-

lem, and it is not applicable to complicated scenarios. Under certain circumstances,

a numerical method is preferred. Dawkragai (2006) derived a numerical multiphase

model to predict temperature in a horizontal well. In his model, all the relevant

mechanisms were considered, including multiphase flow. Based on the primary work

of Dawkragai, Yoshioka (2007) analyzed entering fluid temperature in a horizontal

well. Sui (2008) presented a method to determine multilayer formation properties
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from DTS data, and concluded that layer permeability, damage permeability and

damaged radius can be determined uniquely using single-point transient pressure

data and transient distributed temperature data.

Based on the treatment of fluid PVT properties, numerical models can be cate-

gorized as black-oil models or compositional models. More specifically, in a black-oil

model, the fluid PVT properties are treated as a single function of pressure and

temperature, which means the PVT properties are interpolated from empirical rela-

tionships. While a compositional model is more general, it computes PVT properties

from a function of in-situ composition, which is dependent on pressure and tempera-

ture. Stone et al. (1989), and Livescu et al. (2008) built black-oil models and Stone

et al. (2002), Pourafshary et al. (2008) and Livescu et al. (2009) developed composi-

tional models. However, our model di↵ers from these compositional models. Stone et

al. (2002) did not include slip between phases, which is an important phenomenon in

multiphase flow. Pourafshary et al. (2008) did not consider transient e↵ects in either

the mass or energy conservation equations. Livescu et al. (2009) used the drift-flux

model to capture the slip between phases. As stated in their paper, the drift-flux

model is relatively simple, continuous and di↵erentiable. Also in their model, the

accumulation term was included to model the transient e↵ects.

2.3 Inverse Modeling

To estimate flowrate or formation properties from DTS data is to solve an inverse

problem. Di↵erent solution methods to interpret DTS data have been published.

Sui et al. (2008) succeeded in using the least-square method to estimate formation

properties from DTS data, while their discussion is constrained to commingled reser-

voir and single-phase flow. Zhuoyi et al. (2010) built a model to calculate pressure

and temperature distribution in horizontal wells, and use traditional Markov Chain
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Monte Carlo (MCMC) method to interpret the pressure and temperature data to ob-

tain a flow-rate profile along horizontal wells. Their method was applied successfully

to a real data set, and generated satisfactory results. Brown (2005) also succeeded

in inverting flowrate profile from a real DTS data set, by using a neural-network

optimization algorithm.

In a di↵erent approach, Kitanidis (1995) noted the suitability of using a stochastic

model in solving the inverse problem. In contrast to deterministic methods, which

yield a single answer based on the assumption that the data are perfect without

errors, the stochastic method takes into consideration the imperfection both in data

and forward model, and generates a series of solutions that are equally plausible

candidates to be the actual values. In his paper, Kitanidis reviewed key concepts and

equations related to the stochastic approach to inverse modeling, and discussed the

challenge of striking a proper balance between resolution and noise suppression.
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Theory

In a flowing fluid, there are several heat transfer mechanisms controlling the temper-

ature of the fluid. One mechanism that plays an important role is the Joule-Thomson

e↵ect. This mechanism relates the temperature change with the pressure change, and

it is important for the inversion of formation properties using temperature data. In

this chapter, we explain the Joule-Thomson e↵ect and introduce the coe�cient of this

e↵ect.

As stated in Chapter 1, one objective of this research was to estimate the flowrate

and formation properties by temperature data, which requires solving inverse prob-

lems. One solution method we used is the quasilinear inverse model based on Bayes

theory. The characteristic of this inverse model is that its estimate results strike a bal-

ance between data reproduction and noise suppression. The theory and formulation

of this inverse model are explained in this chapter.

As noise is prevalent in data, denoising is a prerequisite step for most data analysis

work. Temperature variations in the original data contain useful information as well

as noise. The denoising method should be able to smooth out the variations at high

frequency (noise), while keep the variations at low frequency (useful information).

The wavelet method is able to examine the data sets at multiple resolutions, and a

15
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desired level might be achieved. In this level, useful information is kept, on the other

hand, noise is removed. The theory of wavelet analysis is explained in this chapter.

3.1 Joule-Thomson E↵ect

In thermodynamics, the Joule-Thomson e↵ect describes the temperature change of a

gas or liquid when it is forced through a valve or porous plug while kept insulated so

that no heat is exchanged with the environment (Roy, 2002). The e↵ect is named for

James Prescott Joule and William Thomson, who discovered it in 1852.

1. Joule-Thomson Process

The study of the dependence of the energy and enthalpy of real gases on pressure

was conducted by Joule and Thomson. In their experiment, a sample of a gas,

initially at P1, V1, and T1 was forced through a porous plug at constant pressure,

P1. The gas came out of the other side of the plug at P2, V2, and T2. The

apparatus was insulated so that heat transferred with surrounding equals zero.

The work has two terms: the work done on the system to force the gas through

the plug and the work done by the system on the surroundings as it came out

the other side of the plug.

The total work is:

w = �p1(0� V1)� p2(V2 � 0) = p1V1 � p2V2 (3.1)

As q = 0, the change in internal energy of the gas is:

�U = q + w = 0 + p1V1 � p2V2 6= 0 (3.2)

This process is not at constant internal energy. The enthalpy, however, is given
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by:

�H = �U +�(pV ) = p1V1 � p2V2 + p2V2 � p1V1 = 0 (3.3)

So the Joule-Thompson experiment is a process at constant enthalpy.

Consider a process that proceeds along a constant-enthalpy line in the direc-

tion of decreasing pressure. On the pressure-temperature diagram for a typical

real gas shown in Figure 3.1, the process proceeds along a constant-enthalpy

line from high pressures where the temperature increases, until the inversion

temperature, after which, as the fluid continues its expansion, the temperature

drops. If we do this for several constant enthalpies and join the inversion points,

a line called the inversion line is obtained. This line intersects the T-axis at a

certain temperature, named the maximum inversion temperature.

Figure 3.1: Pressure-Temperature diagram for a typical real gas. (Zemansky, 1968)
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2. Joule-Thomson Coe�cient

In the Joule-Thomson experiment, we could select a value for �p, and then

measure �T . The ratio of these two quantities is an approximation to a deriva-

tive.
�p

�T
=
@p

@T
= µJT (3.4)

where µJT is defined as the coe�cient of the Joule-Thompson e↵ect.

µJT = (
@p

@T
)JT =

(@H
@p

)T

(@H
@T

)p
=

(@H
@p

)T

Cp

(3.5)

where Cp is the heat capacity at constant pressure.

As:

dH = TdS + V dp (3.6)

(
@H

@p
)T = T (

@S

@p
)p + V (3.7)

and we know that:

dG = V dpSdT (3.8)

(
@S

@p
)T = (

@V

@T
)p (3.9)

so Eq. 4.46 can be written as:

(
@H

@p
)T = V � T (

@V

@T
)p (3.10)

Finally, we reach an expression to calculate Joule-Thomson coe�cient:
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µJT =
T (@V

@T
)p � V

Cp

(3.11)

For a real gas, (@V
@T

)p can be obtained from any equation of state. If we use the

van der Waals equation of state, as shown in Eq. 3.12:

pV = RT � a

V
+ bp+

ab

V 2
(3.12)

the Joule-Thomson coe�cient can be written as:

µJT =
( 2a
RT

)� b

Cp

(3.13)

Whether temperature increases or decreases during an adiabatic expansion de-

pends on the sign of the Joule-Thomson coe�cient µJT of the fluid. Because

pressure always drops in an adiabatic expansion process, temperature increases

if the sign of µJT is negative, while temperature decreases if the sign of µJT

is positive. As shown in Eq 3.11, the Joule-Thomson coe�cient depends on

the temperature and pressure before expansion. As we mentioned earlier, at

a certain point, µJT changes its sign. An example of the µJT values for nitro-

gen and helium at atmosphere pressure and at di↵erent temperature is shown

in Figure 3.2. From the plot, we can see that helium’s inversion temperature

is 51K, while nitrogen’s inversion temperature is 621K. At room temperature,

helium has a negative Joule-Thomson coe�cient while nitrogen has a positive

one, which means that helium can be warmed from Joule-Thomson expansion

and nitrogen can be cooled.
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Figure 3.2: Joule-Thomson coe�cient at various temperatures. (Zemansky, 1968)
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3.2 Stochastic Inversion Based on Bayes Theorem

Physical theories allow us to make predictions: given a complete description of a

physical system, we can predict the outcome of measurements. This problem of

predicting the result of measurements is called the forward problem. The inverse

problem consists of using the actual result of measurements to infer the values of the

parameters that characterize the system. Unlike the forward problem which can give

a unique solution in most cases, the inverse problem may not bear a unique solution,

because often it is an ill-posed problem in the mathematical sense. To consider

the inverse problems in a probability sense can help to solve the nonuniqueness.

Rather than being considered as the chances of an event in repeated experiments in

the classic statistics sense, probability can be regarded as a state of information in

Bayesian statistics sense, which interprets probability in terms of a ‘subjective’ degree

of knowledge of the ‘true’ value of a given physical parameter. By subjective we

mean that it represents the knowledge of a given individual, obtained using rigorous

reasoning, but that this knowledge may vary from individual to individual because

each may possess di↵erent information (Tarantola, 2004). The subjectivity comes

from the di↵erent opinions about the balance between how closely the data should

be reproduced and how smooth the curve should be. There is no doubt that it is

preferable that the forward model can generate results close to the data. However, as

data are seldom perfect, and we believe that our model should bear a certain degree of

smoothness, we can not achieve a satisfactory estimation by simply reproducing the

data. In this section, we show a method to strike for a reasonable balance between

‘data reproduction’ and ‘smoothness’.

The most general theory is obtained when using a probabilistic point of view,

where the prior information on the model parameters is represented by a probability

distribution over the ‘model space’. The method shown here explains how this priori
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probability distribution is transformed into the posteriori probability distribution, by

incorporating a physical theory (relating the model parameters to some observable

parameters) and the actual result of the observations (with their uncertainties). As

summarized by Kitanidis (2007), this method can:

1. provide a representative solution that contains features common to all possible

solutions;

2. provide a range of possible solutions and present a confidence interval;

3. provide many equally plausible solutions that are consistent with the data, yet

di↵erent su�ciently to di↵er from each other.

In this section, the derivation of a linear inverse model is presented, and key

concepts as well as the method to choose reasonable prior covariance are explained.

Then, we will explain a linearization process which can extend the linear inversion

applicable to quasilinear problems.

3.2.1 Linear Inversion

For illustrative purpose, we start our discussion of inverse modeling from the linear

inversion.

Consider s(x) is an unknown function that we want to estimate, e.g. flowrate in

our case. s(x) is modeled as:

s(x) =
pX

k=1

fk(x)�k + ✏(x) (3.14)

The first term is the prior mean, where fk(x) are known functions and �k are

unknown coe�cients; the second term is a random function with zero mean and

covariance function defined by our input. This linear model is versatile in the sense
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that it includes the deterministic (the first term) and stochastic (the second term)

terms. After discretization (like implementing a finite-di↵erence model), s(x) is an

m by 1 vector, m is the grid number of unknowns. The mean of s is:

E[s] = X� (3.15)

where X is a known m ⇥ p matrix, and � are unknown drift coe�cients with the

size of p. The covariance of s is:

E[(s� µ)(s� µ)T ] = Q (3.16)

Q is usually parametrized through a variogram or generalized covariance function

(GCF). Thus, Eq 3.14 can be written as:

s = X� + ✏ (3.17)

where ✏ has zero mean and covariance matrix Q.

The observation vector y (DTS data in our case) is related to the unknown vector

s by the linear relation:

y = Hs+ v (3.18)

where H is an n by m given matrix (n is the number of data points, m is the number

of grid cells); v is an error term, which is the deviations between observations and

modeling results, with mean zero and covariance matrix R. Without the term v,

the modeling results should match the observations exactly. However, because errors

exist both in the measurement and our forward model, we need v to take this flaw

into consideration.
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3.2.2 Bayesian Analysis

We assume we already have a prior probability density function p0(s), according to

Bayes theorem, the posterior probability density function p00(s) can be computed from

the prior by weighting the likelihood, which is the probability density function of y

given s, p(y|s):

p00(s) = Cp(y|s)p0(s) (3.19)

The C is a normalization factor to guarantee the probability density function integral

has a value of 1.

As we assumed, the prior probability density function is Gaussian, and � is mod-

eled as uniform over all space:

p0(s, �) / exp(�1

2
(s�X�)TQ�1(s�X�)) (3.20)

The likelihood function is:

p(y|s) / exp(�1

2
(y �Hs)TR�1(y �Hs)) (3.21)

Thus, the posterior probability density function is:

p00(s, �) / exp(�1

2
(s�X�)TQ�1(s�X�)� 1

2
(y �Hs)TR�1(y �Hs)) (3.22)

The negative logarithm of posterior probability density function is:

1

2
(s�X�)TQ�1(s�X�) +

1

2
(y �Hs)TR�1(y �Hs) (3.23)

Minimizing Eq 3.23 with respect to s and � is the same as achieving maximized

posterior probability density function. Note that the first term in Eq. 3.23 represents

a penalty for not reproducing data, and the second term represents a penalty for
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deviating from the mean.

After algebraic derivation (the derivation process can be referred to Kitanidis,

2007), the posterior mean can be solved as:

ŝ = ⇤y (3.24)

where ⇤ functions, as a pseudoinverse of H, can be found by solving the following

system: 2

64
 �

�T 0

3

75

2

64
⇤T

M

3

75 =

2

64
HQ

XT

3

75 (3.25)

where the coe�cient:

 = HQHT +R,� = HX (3.26)

ŝ is the best estimate, and we can generate conditional realization by perturbation.

The procedure to generate a conditional realization is as follows:

1. Generate an unconditional realization sui with zero mean and covariance matrix

Q, a realization of the measurement error vi with zero mean and covariance

matrix R;

2. Then the conditional realization can be calculated by:

sci = sui +X� +QHT ⇠ (3.27)

⇠ and � can be found by the solution of a system:

2

64
 HX

(HX)T 0

3

75

2

64
⇠

�

3

75 =

2

64
y + v �Hsu

0

3

75 (3.28)
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3.2.3 Quasilinear Inversion

Linearization

Most practical applications are not linear, but most of these nonlinear problems can

be reformulated in a way that allows us to use the linear equations described in Section

3.2.1. According to Kitanidis (2007), the model starts from a nonlinear relationship

between y and s:

y = h(s) + v (3.29)

We still assume a Gaussian distribution of error terms, with covariance matrix

given by Q and R. The posterior probability density function can be written as:

p00(s, �|y) / exp

�1

2
(y � h(s))TR�1(y � h(s))� 1

2
(s�X�)TQ�1(s�X�)

�
(3.30)

To achive the maximum-a-posteriori or MAP value, we must minimize the following

negative log likelihood function:

L =
1

2
(y � h(s))TR�1(y � h(s)) +

1

2
(sTGs) (3.31)

in which,

G = Q�1 �Q�1X(XTQ�1X)�1XTQ�1 (3.32)

Then use successive linearization to minimize Eq. 3.31. We start from an estima-

tion of s̃, and then use first derivative to approximate h(ŝ):

H̃ =
@h

@s
|s=s̃ (3.33)

h(ŝ) = h(s̃) + H̃(s� s̃) (3.34)
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The measurement equation may be written in the linear form:

y � h(s̃) + H̃s̃ = H̃(s� s̃) (3.35)

Then, we can use the linear inverse equations:

 ̃ = HQHT +R, �̃ = HX (3.36)

2

64
 ̃ �̃

�̃T 0

3

75

2

64
⇤̃T

M

3

75 =

2

64
H̃Q

XT

3

75 (3.37)

Then the estimate is:

ŝ = �(y � h(s̃) + H̃s̃) (3.38)

If ŝ does not converge to s̃, we use ŝ to update s̃ in Eq. 3.33 and repeat the process

until convergence. The estimation obtained leads to the maximum� a� posteriori

value.

The covariance matrix of the posterior is hard to compute. However, there is a

famous relation known as the Cramer-Rao lower bound stated as below:

V � �XM +Q�QH̃T⇤T (3.39)

We can use this lower bound as an approximation to the covariance matrix. Thus,

the confidence interval can be calculated by:

si = ±1.96
q
Vii (3.40)

where si is the best estimate and Vii is the diagonal elements of covariance matrix V .
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Derivative Computation

Computation of the derivative H̃ (named sensitivity matrix or Jacobian matrix) is

expensive, because usually the matrix itself has a large dimension (n⇥m), and it

involves forward simulation while building it. The computation e↵ort can be reduced

by choosing intelligently how to build the derivative matrix. As observation point

number n is much smaller than grid number m, it is preferable to run the forward

simulation n times rather than m times. The method is known as adjoint-state

method, and is explained by the following example.

We assume our forward model is a partial di↵erential equation solved by finite-

di↵erence method, and we have the following linear system:

A(s)� = b(s) (3.41)

where s is the model parameter, i.e. flowrate in our problem, � is data, i.e. tempera-

ture. Reformulate the equations to obtain:

� = A�1b,�i = eTi A
�1b (3.42)

where ei is a column vector with zeros everywhere except at row i where it is 1. The

index of this nonzero term is determined by mapping the observation to the grid data.

For example, in a one-dimensional problem, our observation locations are [3, 5], while

our gridding locations are [1,2,3,4,5], so e1 is an m-element column vector with 1 on

the third element, 0 elsewhere; e2 is an m-element column vector with 1 on the fifth

element, 0 elsewhere.

Then,
�i

sj
= eTi A

�1(
@b

@sj
� @A

@sj
�) (3.43)

Because the @A/@sj and @b/@sj are very sparse matrices, the term (@b/@sj�@A�/@sj)
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can be calculated e�ciently and stored into a matrix S in advance. We note that

the eTi A
�1 is the most expensive part, as it requires inverting the big matrix A in

forward modeling, and as in this adjoint-state method, we calculate n rows instead

of m columns, so the computation is reduced a lot. We build the derivative matrix

row by row, which involve n times inverting matrix A, and n times multiplication

between eTi A and jth column in matrix S.

3.2.4 Structure Parameters Selection

As discussed in Section 3.2.1, the prior covariance matrix is Q, while the error in

measurement is also a Gaussian distribution, the covariance of which is R. The

expressions for Q and R may involve parameters. For example, if the covariances are

chosen as Eqs. 3.2.4 and 3.2.4.

Qij = �✓1 |xi � xj| , ✓1 > 1 (3.44)

Rij = ✓2, ✓2 > 0 (3.45)

There are two parameters known as ✓1 and ✓2 determining the behavior of the

model, and these two parameters are structural parameter. In his paper, Kitanidis

(2007) stated that ✓1 is to control the degree of smoothing in the obtained best

estimate; the smaller the value of ✓1, the smoother the best estimate. Meanwhile, a

larger ✓2 smooths the estimates and yields an estimate that reproduces the data less

faithfully. Therefore, as discussed in Kitanidis (2007), by adjusting these parameters,

one can produce di↵erent solutions. Most importantly,
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• ✓1
✓2

controls how closely measurements are reproduced and how finely s̃ is re-

solved. The higher the ratio, the more faithful the reproduction of the data and

the more details appear in the estimate. However, choosing too high a value of

this ratio will produce estimates that are excessively a↵ected by noise and thus

contain spurious features in the estimates.

• Multiplying both ✓1 and ✓2 but the same factorM2 has no e↵ect on the posterior

mean s̃. However, it changes the posterior standard deviation and the spread

of the conditional realization by factor M. Thus, the error estimates or range of

possible solution depends on the choice of the structure parameters.

Kitanidis (2007) provides an objective approach to select the parameters. The

idea is to find the parameters that maximize the probability of the data. Using

the same probabilistic mode that we used to find the posterior of s, we can derive

the probability density function of y given the vector of structural parameters ✓.

Then, using a well-established approach, known as restricted maximum a poserieri

probability, we can find the parameters that maximize this expression for the actual

data. The method of finding the structural parameter used by Kitanidis is cross

validation. Consider an (n � K) by n matrix P so that P� = 0 and P P T is a

diagonal matrix. Then, the transformed data � = Py have zero mean and covariance

matrix P P which is diagonal with entries �2
i equal to the variances of �.Then ✏ can

be found through normalization, ✏i =
�
i

�
i

.

Note that P should be (n �K) by n and verify that the imposed conditions are

met. The significance of the generated transformed data is that they allow us to test

the model and fit its parameters. The ✏ values are supposed to have zero mean and

variance 1. The restricted maximum likelihood approach can be seen as a method to

select parameters so that the variance is indeed near 1.
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Q2 =
1

n�K

n�kX

k=1

ln✏2i (3.46)

By doing so, we select the right scaling for the parameters and thus find proper

confidence intervals. Also the method of rest rived maximum likelihood finds the

ratio of the parameters that optimizes the predictive ability of the model. Such a

measurement is cR.

cR = Q2exp(
1

n�K

n�kX

k=1

ln�2i ) (3.47)

This is the geometric mean of the normalized variances of the delta residuals. The

idea is that a good set of ✓ parameters should give small delta residual, which can be

measured by the value of cR.

3.3 Wavelet Analysis for Data Denoising and Edge

Identification

Noise is prevalent in data. Unlike ‘perfect’ synthetic data generated from forward

models, data measured from the fields usually bear certain degrees of noise. Certainly,

the noise in the data a↵ect interpretation results. Noise disguises true phenomena,

and sometimes, it leads to misunderstanding of the data. As we will show in Chapter

5, although some inverse models used in interpretation work are capable of handling

certain degrees of noise in the data, denoising is still recommended as a prerequisite

step for data interpretation.

In the DTS data we studied, we noticed that wellbore temperature will change

abruptly at the fluid entry points. If we can identify these points, the number of un-

knowns in the inverse problem will be reduced by an order of magnitude, from the total
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number of simulation grids (hundreds to thousands) to the number of entry points (of-

ten less than ten). Although most fluid enters the well through perforation points, the

locations of which are documented by drilling engineers, there are always exceptions:

the fluid might enter the well from unexpected entry points, the perforation-depth

logging is not available and fluid enters the well through sand screens but not perfo-

rations, etc. Therefore, it is important to take the step of locating entry points on

the DTS data, or ‘edge identification’.

The desired result of denoising is that the data should be neither too noisy as

the noise will ruin the interpretation, nor too smoothed as they will lose the abrupt

changes at entry points. Wavelet analysis, which is a multiresolution signal processing

method, was used in our study. Wavelet analysis decomposes the original signals

into di↵erent resolutions until a desired level is achieved: at this level, the noise in

the signal has been su�ciently suppressed while the information of entry points are

preserved. The theory of wavelet analysis is introduced in this chapter, while the

result of its application is discussed in Chapter 5.

3.3.1 Wavelet Theory

Wavelets are functions that satisfy certain mathematical requirements and are used in

representing data or other functions. This idea originated from the Fourier transform

which approximate a function by superposing sines and cosines. However, in wavelet

analysis, the scale that we use to look at the data plays a special role. Wavelet

algorithms process data at di↵erent resolutions. At each resolution, the signal is

projected onto a continuous family of frequency bands. The frequency bands or

subspaces (subbands) are scaled versions of a subspace. This subspace in turn in

most situations is generated by the shifts of one generating function  2 L2(R), the

mother wavelet.

The subspace of resolution a or frequency band [1/a, 2/a] is generated by the
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functions (sometimes called child wavelet):

 a,b(t) =
1p
a
 (

t� b

a
) (3.48)

where a is positive and defines the scale and b is any real number and defines the

shift.

The projection of a function x onto the subspace of scale a then has the form:

xa(t) =
Z

R
WT {x}(a, b) ·  a,b(t)db (3.49)

with wavelet coe�cients

WT {x}(a, b) =
Z

R
x(t) a,b(t)dt. (3.50)

It is helpful to think of the coe�cients as a filter. The filter or coe�cients are

placed in a transformation matrix, which is applied to a raw data vector. The co-

e�cients are ordered using two dominant patterns: one works as a smoothing filter

(like a moving average), and the other works to bring out the detail information of

the data.

Figure 3.3 and 3.4 show an example of the wavelet analysis by Mallat and Hwang

(1992). The original data signal was passed through the low-pass and high-pass

filters. As shown in the figure, at each level of decomposition, the approximated

signal provides information on the overall features in the original data, while the detail

signal describes changes in the signal on local scales. As the level of decomposition

increases, the approximated signal gives coarser scale. This decomposition process

can be continued until the desired level of coarseness is reached.
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Figure 3.3: Wavelet decomposition. (Mallat and Hwang, 1992)
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Figure 3.4: Wavelet decomposition (continued). (Mallat and Hwang, 1992)
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3.3.2 Wavelet Transform Algorithm

It is possible to compute the wavelet transform in the time domain using Eq. 3.50.

However, it is much simpler to use the fact that the wavelet transform is the convo-

lution between the two functions x and  , and to carry out the wavelet transform

in Fourier space using the Fast Fourier Transform (FFT). In the Fourier domain, the

wavelet transform is simply:

Wn(s) =
N�1X

k=0

x̂k ̂
⇤(s!k)e

i!
k

n�t (3.51)

where the ˆ indicates the Fourier transform, and the Fourier transform of the time

series is given by:

x̂k =
1

N

N�1X

n=0

xne
�2⇡ikn/N (3.52)

To use this formula, the Fourier transform of the wavelet function should be known

analytically. In addition, the wavelets must be normalized as:

ˆ (s!k) = (
2⇡s

�t
)1/2 ̂0(s!k) (3.53)

The steps to compute the wavelet transform for a time series are thus:

1. Choose a mother wavelet,

2. Find the Fourier transform of the mother wavelet,

3. Find the Fourier transform of the time series,

4. Choose a minimum scale s0, and all other scales,

5. Perform the following for each scale:

(a) Use Eq. 3.53 to compute the child wavelet at that scale;
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(b) Normalize the child wavelet by dividing by the square-root of the total

wavelet variance (the total of  2 should then be one, thus preserving the

variance of the time series)

(c) Multiply by the Fourier transform of your time series;

(d) Use Eq. 3.51 to transform back to real space.

3.4 Summary

In this chapter, we explained three preliminary theories to our research.

Firstly, the Joule-Thomson theory which relates the temperature change to the

pressure change during a adiabatic process was explained. The direction and mag-

nitude of the temperature change due to a pressure change of a certain type of fluid

is determined by Joule-Thomson coe�cient. The Joule-Thomson coe�cient (µJT ) of

any fluid can be calculated through equation of state. Generally speaking, most gases

have a positive µJT , and thus the temperature of the gas decreases when the pressure

drops during a Joule-Thomson process; while most liquids have negative µJT , and

have a temperature increase when the pressure drops. Therefore, the Joule-Thomson

e↵ect helps to identify the type of the fluid flowing into the well by monitoring tem-

perature variations. Also, this e↵ect is important for inverting formation permeability

from temperature changes.

Secondly, the stochastic inverse model based on Bayes’ theory was introduced.

This inverse model is advantageous by having regulation parameters. The regulation

helps the estimation result be at a reasonable balance between data reproduction and

noise suppression. Also, this inverse model is a stochastic approach, which generates

many equally plausible solutions that are consistent with the data. The theory of this

model was introduced in this chapter, and the result is presented in Chapter 5.

Thirdly, wavelet theory was explained. This technique was used in our research
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because its level-by-level ability of processing data. Wavelet can decompose data by

several di↵erent levels, each of which has di↵erent a resolution. The desired level

should smooth out the temperature variations at high frequency (regarded as noise),

while the low-frequency variations are kept. These low-frequency variations on a DTS

data set is important because they are corresponding to the entry points along the

wells. This is elaborated later in Chapter 5.
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Wellbore/Reservoir Coupled

Thermal Model

Wellbore temperature distributions are the results of nonisothermal transport of ther-

mal energy and mass through both hydrocarbon-saturated reservoir (porous-medium

flow) and wellbore (tube flow). There are several heat transfer mechanisms control-

ling this underground thermal phenomenon. For flow in a porous medium, heat is

transported through conduction in the solid phase, conduction and convection in the

fluid and conduction between solid phase and liquid phase. For flow in a wellbore,

heat is transported through convection and conduction in the liquid phase, meanwhile

is lost into the surrounding environment through conduction and radiation.

In order to understand the thermal phenomena of the underground flow, a well-

bore/reservoir coupled thermal model is required. This model should be capable of

computing temperature both in the wellbore and reservoir by considering comprehen-

sive heat transfer mechanisms. The governing equations and solution methods of the

model are explained in this chapter.

After our model was verified by comparing to published results, this model was

used to conduct a series of sensitivity tests on di↵erent fluid and formation properties.

39
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This process helped us find out the parameters to which the temperature signal is

sensitive, which is a critical step for analyzing temperature data from distributed

temperature measurement.

4.1 Modeling Procedure

The temperature distribution in the wellbore is a result of flow in the reservoir and

in the wellbore. The reservoir model was built first, followed by the wellbore model.

In both models, the governing equations are mass balance, momentum balance and

energy balance equations. The formulation of each of these equations is explained,

and then a numerical solution scheme and coupling method are presented.

4.1.1 Reservoir Pressure Model

Fluid flow in porous media can be modeled through three fundamental equations:

Darcy’s law, equations of state and mass balance. Darcy’s law is expressed in Eq.

4.1:

u =
↵

µ
krp (4.1)

where ↵ = 0.001127, if all other quantities are in field units; e.g., pressure in psi,

flowrate in bbl/day, velocity in ft/s, length in ft, permeability in md and viscosity

in cp.

The fluid and rock are considered to be slightly compressible, which means rock

porosity is a function of pressure. Isothermal rock compressibility is defined as:

cR = � 1

Vp

(
@Vp

@p
)T =

1

�
(
@�

@p
)T (4.2)

where Vp is the pore volume of the rock, and p is the pore pressure. Integrating
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this expression subject to the condition �(p0) = �0, where the superscript 0 denotes

the reference condition, we obtain:

�(p) = �0exp[cR(p� p0)] (4.3)

The exponential can be expanded to give:

�

�0
= 1 + cR(�p+

cR(�p)2

2
+ . . .) (4.4)

Using a first-order approximation of this expansion, we obtain the porosity ex-

pressed as a function of pressure:

� = �0(1 + cR�p) (4.5)

If the reservoir is discretized by gridding into cells, as shown in Figure 4.1, in

which x, y, z directions are denoted as cell i, j, k, the mass balance can be described

as the mass flow rate mi,j,k across each interface between discretized cells plus the

source term balance the mass accumulation Mi,j,k:

i i+1i-1

i-1/2 i+1/2

x 

z 

y 

Figure 4.1: Gridding cells in x direction.
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mi�1/2,j,k �mi+1/2,j,k +mi,j�1/2,k �mi,j+1/2,k +mi,j,k�1/2�mi,j,k+1/2�mw
i,j,k =

@Mi,j,k

@t
(4.6)

Each term in Eq. 4.6 is explained in the following.

1. Inflow and outflow term:

Introducing Darcy’s law gives:

mi�1/2,j,k = ⇢0(⌥x)i�1/2,j,k(pi�1,j,k � pi,j,k) (4.7)

where the x-direction transmissibility ⌥x is defined as:

(⌥x)i�1/2,j,k = ↵(
�y�zkx
Bµ�x

) (4.8)

A similar expression can be formed for mi+1/2,j,k.

2. Source and sink term:

mi,j,k = ⇢0qwi,j,k (4.9)

where qw is the wellbore volumetric flowrate.

3. Accumulation term:

@Mi,j,k

@t
=

Mi,j,kn+1 �Mn
i,j,k

�t
=

1

�
�tMi,j,k (4.10)

where Mn
i,j,k is

Mi,j,k = ⇢0
Vi,j,k�n

5.615Bn
(4.11)
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in which 5.615 is a unit conversion factor when the field unit system is used.

Hence the time di↵erence can be written as:

@Mi,j,k

@t
=

1

�t
⇢0

Vi,j,k

5.615
(�n+1cf + bn�0cR)(p

n+1 � pn) (4.12)

where pn and pn+1 are the pressures at time steps n and n+ 1.

For multiphase flow, we used the Corey (1954) expression to describe relative

permeability in oil/gas flow. The expression for oil relative permeability is:

kro = (
So � Sor

1� Sor

)4 (4.13)

and for gas relative permeability is:

krg = [1� So � Sor

Sm � Sor

]2[1� (
So � Sor

1� Sor

)2] (4.14)

where Sor is the residual oil saturation, Sm is the lowest oil saturation at which the

gas tortuosity is infinite.

As an example, such a relative permeability curve is shown in Figure 4.2.

4.1.2 Reservoir Temperature Model

The solution of the reservoir energy balance equation gives temperature distribution

in the reservoir. To derive the energy balance equation for a homogenous porous

medium, the energy balance equations for the solid and fluid parts were derived

separately from the first law of thermodynamics, and averaged over a control volume

to obtain the general form of the model. If we assume that heat transfer between

formation fluid and rock grains is instantaneous, which is an assumption verified by
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Figure 4.2: Example of relative curves calculated by Coreys equation (Sor = 20%,
Sm = 90%).

Bejan (2004), the energy balance equation is written as:

⇢Cp
@T

@t
� ��T

@p

@t
= kTr2T � ⇢cpurT + (�T � 1)urp (4.15)

where u is velocity, � is the thermal expansion coe�cient and the over bars stand for

the mean properties for the mixture of fluids and rocks. The discretized form of this

equation is explained in Appendix B.

There are five terms in this equation, from left to right, these terms are: transient

temperature variation, temperature change caused by temporal fluid expansion, heat

conduction, heat convection, temperature change caused by spatial fluid expansion

and viscous dissipation. The transient reservoir temperature is a function of mass flow

rate. Moreover, due to the thermal e↵ects like expansion and viscous dissipation,

temperature variation is also a↵ected by pressure change. Therefore, temperature

data are related to the properties of the formation (e.g. permeability, porosity and
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heat conductivity etc.) This fact provides us an opportunity to infer flowrate and

formation parameters by using temperature data. A further sensitivity study on the

relevant parameters in Eq.4.15 is helpful to understand the magnitude of temperature

change to di↵erent parameter’s change. The results of this sensitivity test are shown

later in Section 6.3.

4.1.3 Wellbore Pressure Model

Total pressure gradient during wellbore flow is the sum of the static, friction and

kinetic gradient, which is described by:

�dp

dz
= g⇢m +

fmV 2
m⇢m
2d

+ ⇢mVm
dVm

dz
(4.16)

where f is friction coe�cient, V is velocity, d is diameter of the flow path, z is the

depth and the subscript m stands for mixing fluid.

1. Static gradient

The mixture density is the volumetric-weighted average of di↵erent phases:

⇢m = ⇢gfg + ⇢l(1� fg) (4.17)

where fg is the in-situ volume fraction of the gas phase. The di�culty of

using Eq. 4.17 comes from the fact that the volume fraction is often not equal

to the ratio of the superficial gas velocity to the mixture velocity, although

most homogeneous multiphase flow models assume so. To be more specific, the

homogeneous model assumes:

fg =
Vsg

Vm

(4.18)

where Vsg means superficial velocity for gas.
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However, due to the contrast of the flow properties between gas and liquid

phases, flow is not ‘homogeneous’. For example, in an oil/gas vertical flow, the

gas phase moves faster than the liquid and has larger concentration in the center

of the pipe. Thus, in-situ gas velocity is the sum of bubble rise velocity V1 and

channel center mixture velocity C0Vm. An expression that combines these two

mechanisms can be written as:

Vg = C0Vm + V1 (4.19)

where Vg is the flow velocity of the gas phase, C0 is the profile parameter,

which describes the e↵ect of the velocity and concentration profiles, Vm is the

volumetric flux of the mixture, and V1 is the drift velocity of the gas, describing

the buoyancy e↵ect.

Noting that in-situ velocity is the ratio of superficial velocity Vsg to volume

fraction fg, thus fg in Eq.4.18 can be calculated from Eq. 4.20, as long as we

have the expressions for C0 and V1. We used the values found by Hasan and

Kabir (2007), listed in Table 4.1.

fg =
vsg

C0vm + v1
(4.20)

2. Friction gradient

The friction factor in all flow patterns is estimated from mixture Reynolds

number,

Rem = vm⇢md/µm (4.21)

in which viscosity µm is a mass-average mixture viscosity.
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We used the Chen (1979) correlation to calculate friction factor, which is:

fm =
1

[4log( ✏/d
3.7065 �

5.0452
Re

m

log⇤)]2
(4.22)

where ✏ is roughness and ⇤ is:

⇤ =
(✏/d)1.1098

2.8257
+ (

7.149

Rem
)0.8981 (4.23)

3. Parameters

The values of the profile parameter Co and the drift velocity V1 depend on

the flow pattern, well deviation, flow direction and phases. The values and

expressions, use by Hasan and Kabir (2007) are summaried in Table 4.1.

Table 4.1: Parameter for drift flux model (for upward cocurrent flow).
Flow Pattern Flow Parameter C0 Rise Velocity v1

Bubbly 1.2 v1b

Slug 1.2 v̄1b

Churn 1.15 v̄1b

Annular 1.0 0

The parameters in Table 4.1 include:

v1b = 1.53[g(⇢l � ⇢g)�/⇢
2
l ]

1/4 (4.24)

where � is the roughness of the tubing material.

and:

v̄1b = 0.35
q
gD(⇢l � ⇢g)/⇢L(F✓)(Fa) (4.25)
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in which, the well-deviation factor F✓ is given by:

F✓ =
p
cos✓(1 + sin✓)1.2 (4.26)

and the annulus factor Fa is given by:

Fa = (1 +
0.29di
do

) (4.27)

where subscript i is the inside of the well, and o is the outside of the well.

4. Pattern Transition Criteria

The use of the Hansan and Kabir drift flux parameters expression should be

consistent with their pattern transition criteria (Hasan and Kabir, 2007). Tran-

sition from bubbly to slug flow occurs at the volume fraction exceeding a value

of 0.25. Thus, the superficial gas velocity needed for transition from bubbly

flow is:

vgb =
C0vsL + v1

4� C0
cos✓ (4.28)

However, bubbly flow will persists if the mixture velocity is higher than vms,

given in the following expression (Shoham, 1982):

2v1.2ms(
f

2d
)0.4(

⇢L
�
)0.6

s
0.4�

g(⇢L � ⇢g)
= 0.725 + 4.15

s
vsg
vm

(4.29)

Transition to churn flow from bubbly flow occurs when:

vsg > 1.08vsL (4.30)

Transition from churn to annular flow occurs when vsg exceeds the value giving
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by the following expression (Taitel et al., 1980):

vgc = 3.1[g�(⇢L � ⇢g)/⇢
2
g]

1/4 (4.31)

5. Computational Algorithm

We adhered to the following algorithm for assigning flow pattern to any com-

putation cell in the top-down calculation approach. We assumed that at the

wellhead, if vsg is greater than that given by Eq. 4.31 and fg > 0.7, then the flow

pattern is assigned to be annular flow. We therefore followed this logic down

the wellbore until Eq. 4.31 and/or fg > 0.7 is no longer satisfied, at which point

annular flow can no longer exist anywhere further down the wellbore.

A result from Hasan and Kabir (2007) showed that the drift flux model reproduced

a set of field data more closely than the homogeneous model, as the comparison shows

in Figure 4.3.

4.1.4 Wellbore Temperature Model

Energy transportation in the wellbore is governed by heat convection, heat conduc-

tion, source/sink and friction heating. By summing up all these terms, the energy

balance in the wellbore can be written as Eq. 4.32:

cp⇢⇡r
2
w

@T

@t
= cp⇢

@(qT )

@z
+ 2⇡rw(⇢vecpTe)� 2⇡rwU(Tw � Tr) + (�T � 1)qrp (4.32)

where rw is the radius of the well.

The heat loss from the wellbore to formation is described by the total heat transfer

coe�cient U , which represents the total heat transfer resistance of the flowing fluid,

tubing, casing annulus, casing wall and cement sheath to the heat flow, as shown in

Figure 4.4.
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Figure 4.3: Comparison of drift flux model and homogeneous model, from Hasan and
Kabir (2007).

We derived an expression for the overall heat transfer coe�cient for the case of

a hot fluid flowing through tubing insulated with a dry air annulus by considering

di↵erent heat transfer mechanisms between the fluid and the formation.

The rate of heat transfer between the flowing fluid and the inside tubing wall is

given by Eq.4.33:

Q = 2⇡rtihf (Tf � Tti)�L (4.33)

where hf is heat transfer coe�cient influenced by the fluid properties and temperature

di↵erence between the fluid and the inside tubing wall, and subscript f refers to fluid,

ti refers to inner side of tubing.

Heat flow through the tubing wall, casing wall and the cement sheath occurred

through conduction, which can be described by the Fourier law. Fourier discovered

that the rate of heat flow through conduction is proportional to the temperature gradi-

ent in the medium, and the proportionality factor is termed the thermal conductivity
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Figure 4.4: Sketch of wellbore geometry.
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of the medium. In a radial system, heat flow rate is described by Eq. 4.34:

Q = �2⇡rkh
dT

dr
�L (4.34)

Integration of Eq.4.34 with constant Q gives Eqs.4.35 to 4.37 for conduction

through the tubing wall, casing wall and cement sheath:

Tubing : Q =
2⇡ktub(Tii � Tto)�L

ln r
to

r
ti

(4.35)

Casing : Q =
2⇡kcas(Tci � Tco)�L

ln r
co

r
ci

(4.36)

Cement : Q =
2⇡kcem(Tco � Th)�L

ln r
h

r
co

(4.37)

Three mechanisms govern the heat transfer in the annulus between tubing and

casing: conduction of the air in the annulus, radiation and natural convection. Ra-

diation is the phenomenon that a heated body emits energy, the rate of which is

dependent on the surfaces area and the emitting and absorbing characteristics of

each medium. Natural convection is the heat transfer caused by the fluid motion

resulting from density variation at di↵erent temperatures. The total amount of heat

flow is the sum of the heat transferred by each of these three mechanisms. In practice,

it is convenient to define the heat transfer rate through the annulus in terms of the

heat transfer coe�cient hc (natural convection and conduction) and hr (radiation),

and the heat transfer can be calculated by Eq. 4.38.

Q = 2⇡rto(hc + hr)(Tto � Tci)�L (4.38)

where subscript to refers to outer side of tubing, ci refers to inner side of cement.
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Note that:

Tf � Th = (Tf � Tti) + (Tti � Tto) + (Tto � Tci) + (Tci � Tco) + (Tco � Th) (4.39)

As the heat flow is assumed to be steady-state at any particular time, the values

of Q in Eqs 4.33 to 4.37 are equal. Solving for the respective temperature di↵erences

in these equations and substituting them into Eq.4.39 to give Eq. 4.40:

Tf � Th =
Q

2⇡�L
[

1

rtihf

+
ln r

to

r
ti

ktub
+

1

rto(hc + hr)
+

ln r
co

r
ci

kcas
+

ln r
h

r
co

kcem
] (4.40)

Then,

U = [rto]
�1[

1

rtihf

+
ln r

to

r
ti

ktub
+

1

rto(hc + hr)
+

ln r
co

r
ci

kcas
+

ln r
h

r
co

kcem
]�1 (4.41)

Thus, U can be calculated once ktub, kcas, kcem, hf , hr and hc are determined. We

followed the procedure of Willhite (1967) to determine these parameters. According to

Willhite, the thermal conductivity of tubing and casing steel as well as film coe�cient

hf in turbulent flow are much higher than other materials in the wellbore, and they

can be removed from the equation without a↵ecting the result much. Eq. 4.41 can

be simplified to Eq. 4.42:

U = [
1

(hc + hr)
+

rtoln
r
h

r
co

kcem
]�1 (4.42)

1. Radiation hr

The radiant heat flux Qr between the outer surface of the tubing at temperature

Tto and the inside surface of the casing at Tci can be calculated from the Stefan -

Boltzmann law, as shown in Eq. 4.43:
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Qr = 2⇡rto�Ftci(T
⇤4
to � T ⇤4

ci )�L (4.43)

The asterisk refers to absolute temperature in Rankine and � is the Stefan-

Boltzmann constant. Ftcp is the view factor representing the fraction of the

radiation emitted from the external surface area of tubing Ato, which is inter-

cepted by the inner casing surface area Aci. This term relates the geometry of

the wellbore and the emitting properties of the tubing and casing surfaces to

the radiant heat flux. The emitting property of a surface is expressed in terms

of its emissivity, a measure of its ability to absorb radiation. For a concentric

annulus,

1

Ftci

=
1

F tci

+ (
1

"to
� 1) +

Ato

Aci

(
1

"ci
� 1) (4.44)

in which, "to and "ci are the emissivities of the external tubing and internal

casing surface, respectively. F tci is the overall interchange factor between the

two surfaces. F tci is 1 for wellbore heat transfer. The radiant heat flux Qr can

also be calculated by the equations in terms of heat transfer coe�cient hr:

Qr = 2⇡rtohr(Tto � Tci)�L (4.45)

By comparing Eq. 4.43 and Eq. 4.45, hr can be written as:

hr = �Ftci(T
⇤2
to + T ⇤2

ci )(T
⇤
to + T ⇤

ci) (4.46)

hr can be calculated if Tto and Tci are known.

2. Natural convection hc
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Heat transfer by conduction and natural convection between the inside casing

surface and the outside tubing surface is given by Eq. 4.47.

Qc =
2⇡khc(Tci � Tto)�L

ln r
ci

r
to

(4.47)

where Qc is the heat transfer rate due to conduction and natural convection,

and khc is the equivalent thermal conductivity of the annular fluid.

Dropkin and Sommersacles (1965) measured values of khc between enclosed

vertical plates. Their data were correlated as a function of the Grashof (Gr)

number and Prandtl (Pr) number of the annulus fluid, as shown in Eq.4.48.

khc
kha

= 0.049(GrPr)0.333Pr0.074 (4.48)

where:

Gr =
(rci � rto)3g⇢2an�(Tto � Tci)

µ2
an

(4.49)

Pr =
canµan

kha
(4.50)

Calculation of the radiation and natural convection coe�cients requires knowledge

of tubing and casing temperatures. Therefore, the estimation of overall heat transfer

coe�cient U starts with an initial guess. With this initial guess of U , the temperature

of each interface can be calculated, and a new value of U can be estimated to update

the initial guess. The final estimation of U can be given after the iteration converges.

The iteration result of an example is shown in Figure 4.5.
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Figure 4.5: Iteration process of overall heat transfer coe�cient U .

4.1.5 Compositional Modeling

Our model considers the fluid composition. The compositional model involves di↵er-

ent hydrocarbon components: methane, ethane, propane, etc. and nonhydrocarbon:

water. Those components can reside in three fluid phases: oil, water and gas. A sys-

tem with Nc components has (2Nc+4) unknowns and (2Nc+4) equations. According

to Livescu et al. (2009), the unknowns are: gas, water, oil phase volume fractions ↵g,

↵w, and ↵o ; the wellbore pressure pw and temperature Tw ; the mixture velocity (to-

tal volumetric flowrate divided by flow path area) Vm; the component mole fraction

in the oil phase xc, and in the gas phase yc .

If the wellbore is discretized into Ns segments, (usually referred to as a multiseg-

ment well model), in each segment, there are (2Nc + 4) equations to solve for these

unknowns. We followed the approach of Livescu et al. (2009), and divided these

equations into (Nc + 2) primary equations and (Nc + 2) secondary equations. The

primary equations include Nc mass balance equations, one energy balance equation
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and one pressure drop equation. All these primary equations of wellbore and reservoir

were explained in detail in Section 4.1.1 to 4.1.4. Details of the secondary equations

are explained next. The secondary equations are mainly for calculating mole fraction

of each component in each phase, i.e. xc and yc , which are dependent variables de-

termined by pressure, temperature and phase volume fractions. We notice that if we

neglect these secondary equations, the model becomes a black-oil model.

These secondary equations are:

One in-situ volume fraction constraint:

X

p

↵p = 1 (4.51)

Two mole fraction constraints for oil and gas phases:

N
cX

c=1

xcp = 1, p = o, g (4.52)

(Nc � 1) phase equilibrium relations between oil and gas phases:

fc,o = fc,g (4.53)

where fc,o and fc,g are the fugacities of component c in the oil and gas phases respec-

tively.

By giving pressure and temperature, we can perform a flash calculation to deter-

mine the mole fraction in each phase of component c. The flash calculation proceeds

in the following steps.

1. Initial guess of K value

K is the ratio of mole fraction in gas phase to liquid phase, as shown in Eq.
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4.54:

Ki =
yi
xi

(4.54)

An empirical expression for K which is close to the true solution is given by the

Wilson equation:

Ki =
pci
p
exp[5.37(1 + !i)(1�

Tci

T
)] (4.55)

where Tci and pci are the critical temperature and pressure and eccentric factor

for component i.

2. Flash

With theK value and overall composition known, flash the mixture to determine

the vapor and liquid compositions. For a two-phase system, a mass balance on

1 mole of mixture yields:

zi = xil + yi(1� l) (4.56)

where l is the mole fraction of the mixture that is present as liquid phase.

We can then calculate mole fraction in each phase by the following equations:

xi =
zi

l + (1� l)Ki

(4.57)

yi =
Kizi

l + (1� l)Ki

(4.58)

The sum of all mole fractions in each phase must be one, so:

X

i

xi �
X

i

yi = 0 (4.59)
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Then we can substitute the expressions for xi and yi to obtain:

f(l) =
X

i

zi(1�Ki)

Ki + (1�Ki)l
= 0 (4.60)

This equation is solved iteratively to obtain the liquid fraction and Eq. 4.57

and 4.58 are used to obtain the mole fraction the component i in liquid and

vapor phase.

3. Equation of State (EOS) parameter

The phase compositions from Step 2 can be used to calculate all necessary pa-

rameters for the EOS. Recall that the EOS for a multicomponent system makes

use of mixing rules that rely on phase compositions. We used the Peng-Robinson

EOS to calculate fugacity coe�cients and enthalpies for each component. We

refer to Varavei et al. (2009) and Nasri and Binous (2009) for the expressions

of Peng-Robinson EOS, the main features of which are described as follows.

P =
RT

v̄ � b
=

a

v̄(v̄ + b) + b(v̄ � b)
(4.61)

The parameters a and b for a pure component are computed from:

a = 0.45748
R2T 2

c

Pc

↵
p
↵ = 1 + fw(1�

s
T

Tc

) (4.62)

b = 0.07780
RTc

pc
(4.63)

For a multicomponent mixture, the mixing rules for the two parameters are:

ai,k =
p
aiak(1� �ik) (4.64)
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am,j =
n
cX

i=1

n
cX

k=1

xijxkjai,k (4.65)

bm,j =
n
cX

i=1

xijbi (4.66)

where the constant �ik is called the binary interaction coe�cient between com-

ponents i and j.

Aj =
am,jP

(RT )2
(4.67)

Bj =
bm,jP

RT
(4.68)

Hence, by employing the related parameters for each phase, the compressibility

factor for the phase is calculated.

@am,j

@T
=

1

2

nX

i=1

nX

k=1

xijxkj(aiak)
� 1

2 (ai
@ak
@T

+ ak
@ai
@T

)(1� �ik) (4.69)

fw = 0.48 + 1.574w � 0.176w2 (4.70)

@2am,j

@T 2
=

nX

i=1

nX

k=1

xijxkj[�
1

4
(aiaj)

�3

2
(ai

@ak
@T

+ ak
@ai
@T

)

+
1

2
(aiaj)

� 1
2 (ai

@2ak
@T 2

+ 2
@ai
@T

@ak
@T

)](1� �ik) (4.71)

@ai
@T

= �0.442748R2T 2
c

pc
[fw

1

T 1.5
c

(1�
q
Tr)] (4.72)
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The expressions for fugacity coe�cient and enthalpy are:

'i = exp(
bi
bm

(Zi�1)�Ln(Zi�B)� A

2
p
2B

(
2
P

j yjAij

A
�Bi

B
)Ln

Zi + (1 +
p
2)B

Zi + (1�
p
2)B

)

(4.73)

H = RT (Z � 1) +
1

2
p
2BRT

p

Log(
Z + (1 +

p
2)B

Z + (1�
p
2)B

)(T
d

d
(A

(RT )2

p
)� A

(RT )2

p
)

(4.74)

4. Solve EOS for vapor and liquid volume

With all the necessary parameters known, the liquid and vapor volumes are

computed using the EOS. It is easiest to compute the compressibility factor of

each phase, Z l and Zv, and then calculate V l and V v with appropriate value of

P , R and T .

5. Calculate liquid and vapor fugacities

Once the liquid and vapor volumes are known, the fugacities are found simply

by substituting into the appropriate expressions. Thus,

f̂ l
i = f̂ l

i (V
l, P, T, x1, x2, · · ·), f̂ v

i = f̂ v
i (V

v, P, T, y1, y2, · · ·) (4.75)

6. Convergence

The system is in equilibrium when:

f l
i = f v

i , i = 1, Nc (4.76)

Numerically, this means that the system can be considered converged when:

�����
f l
i

f v
i

� 1

����� < " (4.77)



62 Chapter 4

7. Updating K values

If the system is not at equilibrium, new K values are estimated and the entire

procedure is repeated. The easiest approach is the successive substitution by

the following equation.

(Ki)
k+1 = (

f l
i

f v
i

Ki)
k (4.78)

where the index k is the iteration count.

The primary equations and secondary equations are solved sequentially at each

time step, and the iteration flowchart can be represented as in Figure 4.6. With a set

of initial guesses of pressure and temperature, the secondary equations can compute

the mole fraction of each phase, and calculate the fluid PVT properties, e.g. density

and enthalpy. Then these PVT properties are used by the primary equations for

calculating a new set of pressure and temperature, which is used to update the initial

guess. This iterative process continues until convergence is achieved.

4.1.6 Numerical Solution Scheme

Both the equations of wellbore and reservoir were solved numerically by finite-di↵erence

method. To make it simpler to implement the numerical method, a gridding method

based on a two-dimentional (both in reservoir radial direction r and depth direction

z) radial coordinate system was generated, as shown in Figure 4.7.

To improve the e�ciency of numerical method while preserving the accuracy,

a nonuniform grid block distribution was used. The lengths of each grid follow a

logarithmic sequence, and the radial distance can be defined through Eqs. 4.79 to

4.81 (Sui et al. 2008).

x = loga
lg

(r/rw), x = i�x,�x = 1 (4.79)
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Figure 4.6: Flowchart of solving primary and secondary equations.

Figure 4.7: Radial coordinates and logarithmic gridding.
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where alg is:

alg = (
re
rw

)
1

NR�1 (4.80)

where re is the radius of the reservoir, while rw is the wellbore radius.

Thus, the radial distance is:

ri = rwa
i
lg (4.81)

Subsequently, the partial derivatives of pressure and temperature with respect to

space variables are given by Eqs. 4.82 to 4.84.

@T

@r
=
@T

@x
· 1

rlnalg
(4.82)

1

r

@

@r
(r
@T

@r
) = (

1

lnalg
)2

1

r2
@2T

@x2
(4.83)

@p

@r
=
@p

@x
· dx
dr

=
@p

@x
· 1

rlnalg
(4.84)

Derivatives are approximated by finite di↵erences. The first-order derivative is

approximated by a forward di↵erence and the second-order derivative by central dif-

ferences:

@T

@t
=

T n+1
i,j � T n

i,j

�t
(4.85)

@p

@t
=

pn+1
i,j � pni,j
�t

(4.86)

@T

@x
=

T n+1
i+1,j � T n+1

i�1,j

2�x
(4.87)
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@p

@x
=

pn+1
i+1,j � pn+1

i�1,j

2�x
(4.88)

@2T

@x2
=

T n+1
i+1,j � 2T n+1

i,j + T n+1
i�1,j

�x2
(4.89)

The initial temperatures in the reservoir and wellbore are the same as the geother-

mal temperature. Initial pressure of the reservoir can be set with di↵erent values in

di↵erent cases. The reservoir boundary condition is set to be no-flow.

The mass balance equation Eq. 4.6, which is a first-order convection equation,

is di↵erent from the energy balance equation Eq. 4.15, which is a second-order

convection-di↵usion equation. We used the implicit Euler scheme (Eq. 4.90) to

solve the mass balance, and linearization by Jacobian matrix (Eq. 4.91) to solve the

energy balance.

A general form of the implicit Euler method used in time stepping is stated in Eq.

4.90:

dy

dt
= fyy

n+1 = yn +�tfyn+1 (4.90)

Linearization can be described as follows:

(I � h

2
An)u

n+1 = (I � h

2
An)u

n +
h

2
[f(u(n), tn) + f(u(n), tn+1)] (4.91)

where:

A =

2

666664

@f1
@u1
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@u2

· · · @f1
@u
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...
...

@f
m

@u1

@f
m

@u2
· · · @f

m

@u
m

3

777775

un,t
n+1

(4.92)

The input information into this model is total phase rate at the surface (then

the well is total-flowrate-control), initial geothermal temperature, initial pressure,
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rock and fluid thermal and flowing properties. The unknowns would be pressure and

temperature distributions in the reservoir and wellbore, and the flowrate profile in

the wellbore.

4.1.7 Couple Wellbore and Reservoir Models

The wellbore and reservoir are always coupled in practice, as they provide pressure

and temperature boundary conditions for each other. We used di↵erent methods for

coupling pressure and temperature.

The pressure equations of wellbore and reservoir can be combined into a single

coe�cient matrix, and the pressure in the wellbore and reservoir can be solved simul-

taneously. For illustration, we show an example of a well producing from two layers,

as sketched in Figure 4.8. The total fluid production rate at the surface is specified,

and the flowrates from each layer is summed up to the total flowrate, as shown in Eq.

4.93:

Qw = ⌥w[p1 � pw1 ] +⌥
w[p2 � pw2 ] (4.93)

where Qw is the total flowrate from the well, ⌥w is well transmissibility defined in

Eq 4.8, p1 is the pressure at the center of gridding cell 1, p2 is the pressure at the

center of cell 2, and pw1 and pw2 are wellbore pressure at cell 1 and 2. These two

pressure are related to a reference pressure pw, which is usually set to be the pressure

at the wellhead, as in Eqs. 4.94 and 4.95.

�p1 = pw1 � pw (4.94)

�p2 = pw2 � pw (4.95)
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Figure 4.8: A well producing from two layers.

The pressure drop in the wellbore can be calculated by the drift-flux model we

explained in Section 4.1.3.

Comparing with a well producing from a single layer, the case of a well producing

from multiple layers has an additional unknown pw and an extra equation residual

Eq. 4.93. If there are six gridding cells, as shown in Figure 4.9, there are totally seven

unknowns for a single-phase problem. For the finite-di↵erence method, the coe�cient

matrix A and the unknown vector x of the linear system Ax = b will be in the format

as shown in Figure 4.10.

Rather than solving simultaneously for the pressure in wellbore and reservoir,

we used a sequential solution method to couple the temperature in the wellbore

and reservoir. We know that the wellbore and reservoir interact in two ways: the

reservoir supports energy transport into the well by inflow of fluid at temperature

Te, or entry temperature (Te is a part of the source term in Eq. 4.32), which is the

interaction between Region 1 and 2 in Figure 4.11; meanwhile, the wellbore loses

heat into the reservoir, which occurs between Region 2 and 3 in Figure 4.11. The
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Figure 4.9: Gridding cells of a well in two layers.

Figure 4.10: Coe�cient matrix and unknown vector for a well in two layers.
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temperature distribution in the reservoir is solved first, which can give us a value

of entry temperature Te, and then considering this Te as a boundary condition, the

wellbore temperature model can be solved.

Figure 4.11: Sketch of two producing layers reservoir. (Region 1- Hydrocarbon-
bearing layer, Region 2-Wellbore, Region 3-Shale layer)

One assumption made here is that the heat transfer between Region 1 and Region

3 in Figure 4.11 is not calculated, in other words, the boundary conditions for solving

energy equations in Region 1 and 3 are no-heat-flow. The consequence is that the

calculated temperature at the boundary of Regions 1 and 3 might be di↵erent.

In summary, the coupling method is shown as the flowchart in Figure 4.12. Pres-

sures in the wellbore and reservoir are solved first, in which a matrix formed as in

Figure 4.10 is solved. The pressure di↵erence between the inside and outside of the

wellbore can then be used to calculate the flowrate profile. After we have the pres-

sure distribution in the reservoir, the temperature distribution in the reservoir can be

solved, to obtain the entry temperature Te. Finally, through the wellbore temperature
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Figure 4.12: Flowchart of solving pressure, flowrate and temperature.

model, the wellbore temperature profile is calculated.

4.2 Model Outputs and Verification

The model can compute the pressure and temperature distribution in the reservoir

and wellbore both in temporal and spatial dimensions, in other words, it simulates

the transient phenomena and distributed phenomena in the reservoir and wellbore.

We used Case 1-A.1 to show the simulation result, which is a single-phase oil well

producing from two layers. The properties of fluid and reservoir are listed in Table

4.2, and the simulation parameters are listed in Table 4.3. The simulated results in

the reservoir domain were studied first, followed by the wellbore domain. Then, we

verified our model by comparing with results published in the literature.

4.2.1 Outputs in Reservoir Domain

When the fluid is flowing towards the wellbore, the pressure drop in the wellbore

di↵uses into the reservoir. During the radial flow period, the pressure distribution

in the reservoir shows a straight line on semilog plot of pressure in temporal and

spatial dimensions, i.e. p vs. t and p vs. r, as shown in Figure 4.13. By contrast, the

process of energy transportation is a convection-conduction process. Therefore, the

temperature distribution in the reservoir is not a strictly straight line on a semilog plot
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Table 4.2: Parameter for Case 1-A.1.
Permeability of upper and lower layer [md] 5/20

Porosity [%] 0.5
Reservoir radius [ft] 1000

Distance between two layers [ft] 300
Layer thickness [ft] 1500
Wellbore depth [ft] 5000
Fluid density [kg/m3] 800
Heat capacity [J/kg/K] 1880

Thermal conductiivty [W/m/K] 0.05
Thermal expansion coe�cient � [1/K] 1.2e-6

Viscosity [cp] 2
Rock thermal conductivity [W/m/K] 0.25

Rock solid density [kg/m3] 2300
Rock bulk density [kg/m3] 1550
Total flowrate [bbl/day] 2500

Table 4.3: Simulation configuration for Case 1-A.1.
Cell number in well depth direction 100

Cell number in reservoir radius direction 50
Time step [days] 0.02
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of T vs. t and T vs. r, as shown in Figure 4.14. Another di↵erence between Figure

4.13 and Figure 4.14 is that the temperature signal at the wellbore is transported

into the formation at much slower rate than the pressure signal. At the time that

pressure has di↵used around 200 ft into the formation (shown in the lower right plot

in Figure 4.13), the temperature is only transported around 10 ft into the formation

(shown in the lower right plot in Figure 4.13), which means the investigation radius of

the temperature signal is much smaller than that of pressure signal. In other words,

temperate data are more suitable for evaluating the near � wellbore formation than

are the pressure data.

During the process of energy transportation from reservoir to the wellbore, due to

the viscous dissipation and adiabatic expansion, the temperature of the oil increases

when it flows towards the well, as shown in Figure 4.14. As we mentioned in Chapter

3, Joule-Thomson coe�cient µJT is usually negative for gases, resulting in a cooling

e↵ect when pressure drops. Therefore, the temperature decreases towards the wellbore

for a gas well, as shown in Figure 4.15.

4.2.2 Outputs in Wellbore Domain

Case 1-A.1 has two production layers, with total flowrate at the well head specified,

and the simulation takes a while for the two layers to stabilize after production, as

shown in the simulation result of flowrate in each layer (Figure 4.16). The distribu-

tion of temperature in the wellbore shows a ‘dip’ at the location of the entry point

(Figure 4.17), which is a signature that can be used to invert flowrate profiles from

temperature profiles. The temperature heats up as production continues, as shown

in Figure 4.17. This heating-up is sustained by two sources: 1. more hot fluid from

the lower layer enters the well; 2. the temperature in the reservoir heats up as the

pressure drop increases. When flow is stopped, these two heating sources disappear,

and the temperature decreases. As in Case 1-A.2, which has a shut-in periods, the
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Figure 4.13: Cartesian plot (two plots at the top) and semilog plot (two plots at the
bottom) of pressure in spatial and temporal dimensions during radial flow, single-
phase oil flow
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the bottom) of temperature in spatial and temporal dimensions during radial flow,
single-phase oil flow



Chapter 4 75

0 0.5 1
97

97.5

98

98.5

99

t days

T
 K

0 500 1000 1500
97

97.5

98

98.5

99

r ft

T
 K

10
−2

10
−1

10
0

97

97.5

98

98.5

99

t days

T
 K

10
−5

10
0

10
5

97

97.5

98

98.5

99

r ft

T
 K

Figure 4.15: Temperature distribution in the spatial and temporal dimensions of
single-phase gas flow.



76 Chapter 4

fluid is cooled down after the flow stops (Figure 4.18). Other than the fact that

heating sources cease, there are two other reasons for this cooling down: 1. heat is

lost to the formation through conduction; 2. increase of pressure during the buildup

period has a cooling e↵ect due to Joule-Thomson e↵ect. The magnitudes of tempera-

ture increase during the flowing period, and decrease during the shut-in period are a

function of flowrate, fluid and formation properties. Therefore, both the distributed

temperature and transient temperature are important for understanding production

status and formation properties.
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Figure 4.16: Flowrate history of each layer.

4.2.3 Verification

Our model was verified by comparing with two published cases. The first case (Case

1-B.1) we simulated is based on a production scenario made up by Alves et al. (1992),

in which gas-condensate is flowing in a vertical well. The relevant data of the fluid
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Figure 4.17: Di↵erent views of wellbore temperature data (DTS data).
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Figure 4.18: Temperature decreases during a shut-in period.

composition and operation condition can be found in Alves et al. (1992). In our

model, in the reservoir direction r, the total radius of reservoir was set to be 300 ft,

and discretized into ten logarithmic grids; for the wellbore direction z, we used 20

uniform grids. Time step was set to be 0.02 days, and the simulated production time

is 30 days. Steady state was achieved. The phase diagram and simulated wellbore

pressure and temperature at the steady state are shown in Figure 4.19, from which

we can see that there is phase change occurring during flow within the wellbore.

Figure 4.20 shows three simulation results: rigorous enthalpy-balance results from

Alves et al. (1992), our compositional model results and Ramey’s (1961) analytical

solution. Our model has a good match to the Alves et al. results, which verifies our

numerical model. Another observation is that the Ramey solution does not give a

correct temperature prediction in this case. The di↵erence between the Ramey model

and our numerical model is the treatment of the frictional heating e↵ect and phase

change: these two terms are neglected in Ramey’s model while they are modeled rig-

orously through energy balance equation and drift-flux model in our approach. In this
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case, phase change is encountered and the well production rate is high, both leading

Ramey’s model to an inaccurate temperature prediction. This comparison empha-

sizes the importance of building a compositional model for complicated production

scenarios. In addition, this shows the e↵ect of the presence of gas on the temperature

distribution, which is instructive for the estimation of phase flowrate or gas-oil ratio

from DTS data.

Figure 4.19: Phase diagram (black line) and simulated wellbore pressure temperature
(blue line) of gas-condensate case (Case 1-B.1).

The second case (Case 1-B.2) is a well producing volatile oil, following Pouraf-

shary et al. (2008). Composition is shown in Table 4.4. The phase diagram and sim-

ulated wellbore pressure and temperature from Pourafshary’s model and our model

are shown in Figure 4.21. Our model matches Pourafshary’s compositional model.

Again, this verifies our model. However, we observe a significant di↵erence between

the pressure prediction from the black-oil model and that of the compositional model,

as shown in Figure 4.22. As we mentioned earlier, the only di↵erence of these two
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Figure 4.20: Temperature prediction of gas-condensate case (Case 1-B.1).

models is the approach to calculate fluid phase properties. The pressure di↵erence

(Eq. 4.16) consists mainly of the hydraulic pressure change, which depends on fluid

mixture density, therefore, the di↵erent approaches which give di↵erent density out-

puts have di↵erent pressure predictions. However, temperature distribution does not

have such a close relationship with the fluid PVT properties, and there is no clear

discrepancy between the temperature predictions from these two models.

Table 4.4: Composition for the case of a volatile-crude oil, Case 1-B.2.
Component Mole Fraction

C1 0.55
C3 0.1
C4 0.1
C5 0.1
C7 0.075
C8 0.075
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Figure 4.21: Phase diagram and simulated wellbore pressure temperature of volatile
oil case (Case 1-B.2).

Figure 4.22: Pressure prediction from black-oil and compositional model.
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4.3 Sensitivity Test

There are several parameters a↵ecting the model output. A sensitivity test is useful

to give us a sense of how important each factor is. The parameters that we tested

are: thermal expansion coe�cient of the fluid, rock thermal conductivity, porosity of

rock, permeability and flowrate. The sensitivity test was based on a case of a single

producing layer (Case 1-C), the parameters of the Case 1-C are shown in Table 4.5.

Table 4.5: Parameter for Case 1-C.
Rock Fluid

Permeability [md] 20
� 0.5

� [1/K] 0.0001206
Surface flowrate [bbl/day] 2500

A comparison of the sensitivity tests is shown in Figure 4.23 to 4.27. There are

two types of figures: (1) transient entry temperature Te (temperature in sand face),

(2) temperature distribution in the wellbore after producing for 7 days.

Figure 4.23: Sensitivity to porosity �.

From the sensitivity test, the first important finding was that the temperature

responses (both distributed temperature and transient temperature) are sensitive to
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Figure 4.24: Sensitivity to permeability k.

Figure 4.25: Sensitivity to rock thermal conductivity kr.
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Figure 4.26: Sensitivity to flowrate q.

Figure 4.27: Sensitivity to thermal expansion coe�cient �.
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permeability and flowrate. As shown in Figures 4.24 and 4.26, there is a temperature

di↵erence of almost 4 oC corresponding to a ten-time di↵erence of permeability, and

0.8 oC temperature di↵erence as a result of five times di↵erence of flowrate. These

temperature variations can be distinguished easily in DTS data, considering the DTS

data resolution is 0.1 oC. Therefore, it is promising to estimate permeability and

flowrate from DTS data.

The second finding is that the temperature change follows a di↵erent trend with

di↵erent thermal expansion coe�cients. As shown in Figure 4.27, when the � value is

large, the fluid is mostly probable in gaseous phase, and the temperature decreases at

a pressure decreasing gradient according to the Joule-Thomson e↵ect. By contrast,

the temperature increases due to pressure decreasing when � is small, which indicates

a liquid phase. One application of this phenomenon is to use DTS data as a method

to identify the type of entering fluid. Fluid identification is useful in production mon-

itoring, and even more valuable in horizontal well operation and interwell correlation

tests.

4.4 Summary

In this chapter, the process of building a compositional wellbore/reservoir coupled

thermal model has been presented. This model is capable of computing pressure

and temperature distribution in the wellbore and reservoir under multiphase flow.

Accuracy of this model is assured in the following three ways: 1. using drift flux

model to predict multiphase flow pressure; 2. fluid PVT properties were obtained

by solving Equations of State, which is more accurate than the values obtained by

averaging or mixing rules; 3. using numerical methods to solve the heat transfer

between wellbore and formation, avoiding the assumption of an invariant relaxation

length. This model was verified by comparing with published results.
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Furthermore, based on this well model, several phenomena (e.g. multiphase flow,

Joule-Thomson e↵ect) a↵ecting the pressure and temperature distribution were stud-

ied and their influences were evaluated.

We concluded that a rigorous and complete well model is important for accurate

prediction of the temperature profile under complicated flow scenarios. This work

allows flowrate profiling based on DTS data. The understanding of how di↵erent

phenomena influence the temperature distribution is helpful to understand downhole

production scenarios.
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Flowrate Profiling by Temperature

The simulation results in Chapter 4 showed that temperature distribution in the

wellbore is a↵ected by flowrate profile, which makes estimating flowrate profile from

Distributed Temperature Survey (DTS) data possible. In practice, downhole flowrate

profiling is a time-consuming process for the traditional methods, in which spinner

is run through the target interval and measures flowrate only in a point-by-point

fashion. Even worse, sophisticated well geometries and complicated flow scenarios

limit the applicability of running a spinner tool. By contrast, the DTS system, in

which only optical fibers are installed downhole, can measure all the downhole points

simultaneously, providing us real-time monitoring of the whole downhole interval. It

is worthwhile to do research on inverting flowrate profile from the temperature profile,

making the DTS data more useful for downhole production surveillance.

In this chapter, di↵erent inverse methods were developed to invert flowrate profile

from the temperature profile. Two kinds of inverse model, i.e. Least-Square model

and Linear Inverse model based on Bayes’ Theory, were studied and compared. After

understanding the limitation of each method, the best-performing method was applied

to several cases of single-phase flow and multiphase flow, to explore the applicability

of inverting flowrate from DTS data.

87
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5.1 Problem Setup

As we mentioned in Chapter 2, several research works about estimating flowrate from

temperature data have been published. For an example, Ouyang and Belanger (2006)

used mixing temperature profile to estimate flowrate profile in vertical wells; Brown

(2005) was able to estimate flowrate profiles by using both mixing temperature and

entry temperature; Sui et al. (2008) also succeeded in estimating flowrate profiles

by using mixing temperature. Depending on the DTS installation methods, the data

available to us can be of three kinds: 1. entry temperature only, 2. mixing tem-

perature only, 3. both entry and mixing temperature. (The concept of mixing and

entry temperature was sketched in Figure 1.2 in Chapter 1.) However, in each of these

published studies, only one temperature data source was discussed. The estimation

result by using one kind of data source was not compared with another one. It is

very common that entry and mixing temperature data are not both available. There-

fore, in our research, we studied and compared the estimation results by using entry

temperature OR mixing temperature.

We showed that the mixing temperature (denoted as Tm) distribution is a function

of the flowrate and entry temperature (Te) of the entering fluid from each entry point,

and we also mentioned that both the Tm and Te can be measured by DTS. As shown

in Figure 5.1, in the gridding cells of the wellbore, both the Tm and Te are data, and

they are full vectors. Note that Te is not necessarily obtained from DTS measurement,

but can also be calculated by the reservoir/wellbore coupled thermal model. However,

the thermal model requires the knowledge of formation permeability. We reserve the

discussion of the relationship between temperature data and formation permeability

to the next chapter. Hence, in this chapter, the discussion is constrained to the

domain of wellbore, excluding the reservoir domain.

The unknown is then set to be the flowrate profile of the well. However, there



Chapter 5 89

are two very di↵erent options. The first one is to set the unknown as the flowrate

of every point in the well, resulting in a full unknown vector, as shown in Figure

5.1. For the other option, we can choose the locations of entry points, and set the

flowrate of each entry point as unknown. The unknown vector is then sparse, and it

only has nonzero elements at the locations of entry points. Therefore, the number of

unknowns is reduced greatly to the number of the entry points, as shown in Figure

5.2.

After the knowns and unknowns are specified, the inverse model is built by two

methods, with di↵erent objective function and method of solution. These two meth-

ods are the Least-Square method and Linear Inverse method, and they are discussed

in the following sections.
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Figure 5.1: The unknowns are set to be flowrate profile q, resulting in a full unknown
vector.
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Figure 5.2: The unknowns are set to be entry flowrate qe, resulting in a sparse vector.

5.2 Least-Square Method

5.2.1 Levenberg-Marquardt Least-Square Algorithm

A straightforward approach of setting up an inverse model is data-fitting by Least-

Square method (refered as L-S method in the following). The objective is to adjust

the parameters of a model function to best fit a data set. A data set consists of n

points (data pairs) (xi, yi), i = 1, · · · , n, where xi is an independent variable, and yi

is a dependent variable whose value is obtained by observation. The model function

has the form f(x, �), where there are m adjustable parameters held in the vector �.

The goal is to find the parameter values for the model which ‘best’ fits the data. The

Least-Squares method finds its optimum when the sum of squared residuals S is a

minimum.

S =
nX

i=1

r2i (5.1)

A residual r is defined as the di↵erence between the actual value of the dependent
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variable and the value predicted by the model.

ri = yi � f(xi, �) (5.2)

We used a numerical minimization algorithm, Levenberg-Marquardt, to solve this

problem. Like other numeric minimization algorithms, the Levenberg-Marquardt

algorithm is an iterative procedure. The process starts from an initial guess for the

parameter vector, �. In each iteration step, the parameter vector �, is replaced by a

new estimate, � + �. To determine �, the functions f(xi, � + �) are approximated by

their linearization.

f(xi, � + �) ⇡ f(xi, �) + Ji� (5.3)

where:

Ji =
@f(xi, �)

�
(5.4)

At the minimum of the sum of squares, the gradient of S with respect to � will

be zero. The first-order approximation of f(xi, � + �) gives:

S(� + �) ⇡
mX

i=1

(yi � f(xi, �)� Ji�)
2 (5.5)

Taking the derivative with respect to � and setting the result to zero gives:

JTJ� = JT [y � f(�)] (5.6)

where J is the Jacobian matrix whose ith row equals Ji, and f and y are vectors with

ith component f(xi, �) and yi, respectively. This is a set of linear equations which

can be solved for �.

Levenberg’s contribution is to replace this equation by a “damped version”:

(JTJ + �I)� = JT [y � f(�)] (5.7)
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where I is the identity matrix.

The (nonnegative) damping factor, �, is adjusted at each iteration. If reduction

of S is rapid, a smaller value can be used, bringing the algorithm closer to the Gauss-

Newton algorithm. On the other hand, if an iteration gives insu�cient reduction in

the residual, � can be increased, giving a step closer to the steepest descent direction.

For large values of �, the step will be taken approximately in the direction of the

gradient.

In the next section, we report the test of the performance of L-S method using a

synthetic case.

5.2.2 Di↵erent Unknown Vector Setups

The case 2-A.1 was used to test the performance of the L-S method, in which a

well is producing from two layers. In the process of generating the synthetic data,

the flowrate profile was specified. As mentioned earlier, the reservoir model is not

involved in this problem, and for the convenience of computation, entry temperature

(Te) was assumed to be the same as geothermal temperature. By specifying the

flowrate profile (only a temperature profile at a single time step was used, as shown

in the left plot in Figure 5.3, which is the temperature distribution after production

for 7 days) and properties of fluid, listed in Table 5.1, a synthetic set of Tm (Figure

5.3) was calculated from the well thermal model. In the inverse model, Tm, Te and

fluid PVT properties (Table 5.1) are given as inputs, in order to estimate the flowrate

profile.

We first set the unknown to be the flowrate at every point in the well, as shown

in Figure 5.1. The result of using L-S method is shown in Figure 5.4. This method

performs poorly. Even though case 2-A.1 is a simple production well, with single-

phase flow, and has only two entry points and no outflow (outflow is the flow in the

direction from wellbore back to the formation), as shown in Figure 5.4, this method
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Figure 5.3: Synthetic data set of case 2-A.1.

Table 5.1: Well and fluid parameters of case 2-A.1.
Fluid density (kg/m3) 800
Heat capacity (J/kg/k) 1601.8
Wellbore radius (inch) 1.5
Wellbore length (m) 3200

Surface flowrate (bbl/day) 1200
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still cannot estimate flowrate profile correctly from the input data. Even if we started

from a nonuniform initial guess, which contains the information about the locations

of entry points implicitly, the estimation (as shown in Figure 5.5) is still not good.

The reason of this failure is neither that the data set is not large enough, (we

also tried using synthetic data set generated on a finer grid, and did not improve the

result), nor that the stopping criteria for the iteration process is too loose or too tight.

As the residual after the inverse problem is very low, which is shown in Figure 5.6,

the DTS data can be reproduced very well, which means that both the true flowrate

(the left plot in Figure 5.3) and the estimated (but ‘wrong’) flowrate profile shown in

Figure 5.4 can generate the same shape of temperature profile (Figure 5.3).

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

3500

Temperature oC

D
e
p
th

 

 

0 1 2 3

x 10
−3

0

500

1000

1500

2000

2500

3000

3500

Flowrate m3/s

L
o
ca

tio
n
 m

 

 

Geothermal
DTS data
Data reproduced

True
Initial Guess
Estimation

Figure 5.4: Estimation result of setting flowrate profile as unknown, starting from
uniform initial guess.

To improve this model, adding more constraints into this problem was considered,

e.g. assuming that the flowing profile is increasing monotonically upwards in the

wellbore. However, this assumption would prevent the general application of this

inverse model: because the wellbore might encounter outflow, this constraint would
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Figure 5.5: Estimation result of setting flowrate profile as unknown, starting from
nonuniform initial guess.
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Figure 5.6: Residual value of each iteration.
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lose the potential application of using DTS to detect the leaking points. Therefore,

we did not add such constraints to the inverse model.

The second option for setting the unknowns to be entry flowrates (as sketched in

Figure 5.2) was then studied. Compared with the full vector in the first approach,

in this method, the number of unknowns is reduced to two. As shown in Figure

5.7, the flowrate can be estimated accurately. However, the success of this method

depends on the accuracy of input of the entry point locations. As an example shown

in Figure 5.8, if the location of upper layer is misplaced by 100 m, the estimation will

be misleading. Therefore, we learned that the accurate information about entry point

location is crucial for the success of the L-S method. As the temperature profiles of

mixing temperature and entry temperature can be measured by DTS, we studied how

to locate entry points from the DTS data. The results of our study are shown in the

next section.
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Figure 5.7: Estimation result when entry flowrates are set as unknown.
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Figure 5.8: Estimation result when wrong entry points locations are input.

5.2.3 Locate Entry Points Using DTS Data

Both the entry temperature and mixing temperature are sensitive to flowrate, and

thus it is possible to locate each entry point from either mixing temperature profile

or entry temperature profile.

• Entry points located by Tm

By examining the mixing temperature profile (Figure 5.3), there are small changes on

the mixing temperature profile at the locations of each individual entry point. The

derivative of temperature over the depth dT/dz shows spikes at the location of entry

points, as seen in Figure 5.9. However, this method of finding entry points cannot be

used on noisy data sets. For example, if the DTS data set is augmented with noise

with normal distribution, as shown in Figure 5.10, when the Singal-Noise Ratio of

the noise is 15 dB noise (Signal-Noise Ratio is defined as the amplitude of signal to

noise, as in Eq. 5.8), the entry points cannot be identified on the derivative curve.
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SNR = 10log10(
Asignal

Anoise

)2 (5.8)

A suitable denoising technique for this problem should be able to remove lo-

cal variation while keep the general trend. As wavelet theory has the advantage of

resolution-by-resolution analysis of data set, it is suitable for locating entry points on

noisy temperature data. We denoised the data by di↵erent wavelet levels (Symlets

4 wavelet was used), i.e. level 3, 5, and 8. The derivatives of these denoised data

at di↵erent level are shown in Figure 5.11, 5.12 and 5.13. At level 5, the derivative

of the denoised data has a clear spike at the location of entry point, however, level

3 or level 8 does not give good result, they give results either still too noisy or too

smoothed.
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• Entry points located by Te
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Figure 5.10: dT/dz of a noisy data set.
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Figure 5.11: dT/dz of the denoised data by wavelet level 3.
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Figure 5.12: dT/dz of the denoised data by wavelet level 5.
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Figure 5.13: dT/dz of the denoised data by wavelet level 8.
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On the profile of entry temperature (denoted as Te), because the entry temperature

is di↵erent from the original geothermal temperature, the Te profile also shows sig-

nature at the depths of the entry points (Figure 5.14). There are humps/dips on the

Te profile corresponding to the fluid flow. However, this is not always true. The vari-

ation magnitude depends on the fluid properties and rock permeability and thermal

conductivity. For example, when the formation has the properties shown in Table 5.2,

the entry temperature is almost the same as geothermal temperature (Figure 5.15).

Therefore, entry points cannot be identified by the Te profiles in this case.

Table 5.2: Formation properties for Figure 5.15.
Rock density (kg/m3) 2000
Heat capacity (J/kg/k) 400

Porosity radius 0.3
Thermal conductivity (W/m/K) 2

Permeability (md) 50

Another risk of using Te profile to locate entry points is from the leakage of the

fluid in the cement (as sketched in Figure 5.16). As shown in Figure 5.17, when the

fluid is leaking in the cement, the Te profile will not give accurate estimate of locations

of entry points.

5.3 Linear Inverse Model

As introduced in Chapter 3, the linear inverse model based on Bayes’ theory includes

both data and prior information into the objective function, and the estimation can be

regulated by structure parameters (Q1 and Q2), to obtain results that are a reasonable

balance between curve smoothness and noise suppression. (The process of choosing

Q1 and Q2 is explained in Appendix A.)

We used the case 2-A.1 to test this method, and the unknown was set to be

flowrate at each point in the well, which is a full vector, as shown in Figure 5.1. Fluid
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Figure 5.14: Te profile.
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Figure 5.15: Te profile when entry temperature is close to geothermal temperature.
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Figure 5.16: Fluid is leaking in the cement.
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Figure 5.17: Te profile when leakage occurs in cement.



104 Chapter 5

parameters are shown in Table 5.1. The final result - the best estimate is shown in

Figure 5.18. The estimation is close to the true values, and can reproduce the DTS

data very well.
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Figure 5.18: Estimation result of linear inverse model for case 2-A.1.

We then used this model to study the influence of data qualities on flowrate

estimation: noise and data resolution.

• E↵ect of data noise

This method can tolerate a certain degree of noise. We added noise with normal

distribution to the synthetic temperature data. As shown in Figure 5.19, when the

noise has the Signal-Noise Ratio (SNR is defined in Eq. 5.8) at 10 dB, the estimation

is still within an acceptable range. But when the SNR of the noise is 1 dB, as shown

in Figure 5.20, this methods fails.

• E↵ect of data spatial resolution
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Figure 5.19: Estimation result of 10 dB Signal-Noise Ratio noisy data.
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Figure 5.20: Estimation result of 1 dB Signal-Noise Ratio noisy data.
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Usually, sparsity in the data set deteriorates parameter estimation. In the previous

test (result as shown in Figure 5.18), the simulation grid m has 250 cells, while the

data number n is 25. When the data number is smaller, for example, n is set to

be 10, the estimation result is worse (Figure 5.21). The Mean Square Error of the

estimation of flowrate in Table 5.3 becomes larger as the number of data is less. In

other words, data with high spatial-dimension resolution is helpful for estimation.

However, there is also an issue when the data number increases. By comparing

the case m = 250, n = 25 and m = 250, n = 50 in Table 5.3, we find that larger

n leads to worse estimations. The reason comes from the coarse simulation grid. If

we increase simulation grid point number (m) according the data point number, the

estimation can be improved. As shown in Table 5.3, for the case that n = 50, the

error of m = 500 is smaller than the case m = 250.

40 60 80 100 120
0

500

1000

1500

2000

2500

3000

Temperature oC

L
o
ca

tio
n
 m

 

 

DTS
Data reproduced

0 0.5 1 1.5 2 2.5

x 10
−3

0

500

1000

1500

2000

2500

3000

3500

Flowrate m3/s

L
o
ca

tio
n
 m

 

 

Initial Guess
Estimate
True

Figure 5.21: Estimation result when n = 10.
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Table 5.3: Error of di↵erent m and n
Simulation grid number m Data point number n m/n Error

250 5 50 52
250 10 25 11.5
250 25 10 6.7

250 50 5 7.5
500 50 10 6.7
1000 50 20 6.6
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5.4 Estimate Flowrate in Single-Phase Flow

The Linear Inverse model was used to study more cases of single-phase flow, to explore

the applicability of using this method to estimate flowrate from temperature data.

The following single-phase cases were generated by modifying case 2-A.1, and the

fluid properties are the same as Table 5.1.

1. Large number of entry points

If the well has multiple entry points, for example if there are five entry points,

as shown in Figure 5.22, the estimation is acceptable.
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Figure 5.22: Large number of entry points.

2. Small flowrate

If the upper layer has a very small entry flow rate (200 bbl/day) compared with

the lower layer (1500 bbl/day), and there is not a clear signature on the tem-

perature profile at the depth of entry point, as shown in Figure 5.23. However,

the estimation still identifies two entry points and matches the true data.
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Figure 5.23: Small flowrate.

3. Close-by entry points

As shown in Figure 5.24, the well has two pairs of close-by entry points. The

layers are 100 meters apart in these two pairs. The inverse model can find all

four entry points, and gives the right estimation.

4. Outflow

In the upper layer, the entry flowrate is set to be negative to have outflow at

this depth, as shown in Figure 5.25. Because the model was not imposed by

monotonic curve constraint, it can give the right estimation. This method can

help DTS data to identify a leaking point in the well.

5. Deviated well

When the well is deviated for 45o, as shown in Figure 5.26 , the estimation is

also acceptable.
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Figure 5.24: Close-by entry points.
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Figure 5.25: Outflow.
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Figure 5.26: A sketch of deviation angle.
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Figure 5.27: Deviated well.
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6. Changing flowrate

For this case, we used a single DTS profile to estimate a single flowrate profile. In

the case that flowrate is changed during production, if the set of transient DTS

data is available, this model can reconstruct the flowrate profile as a function

of time, as shown in Figure 5.28. This real-time interpretation of DTS data is

helpful for achieving real-time downhole production surveillance.
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Figure 5.28: Changing flowrate.
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5.5 Estimate Flowrate in Multiphase Flow

5.5.1 Problem Setup

A set of synthetic data was generated by our numerical model. In this synthetic

case (named as case 2-B.1), a vertical well produces hydrocarbon both in liquid and

gas phases from two entry intervals. The composition is listed in Table 5.4, and the

pressure-temperature diagram is shown in Figure 5.29. In the forward simulation,

the total phase flowrates were specified, and the calculated phase flowrate profiles

are shown in Figure 5.30. The pressure, temperature and holdup distribution in the

wellbore were obtained by forward simulation, as shown in Figure 5.31, 5.32 and 5.33.

Table 5.4: Composition for case 2-B.1.
Components Mol Fracton (%)

C1 24
C4 16
C6 20
C8 40

In the inverse model, we assumed that the locations of all the entry intervals were

known, and the unknowns are set to be the entry flowrate of each phase. Therefore,

there are four unknowns: oil and gas flowrates from each of two entry points. Least-

Square method was used to solve this inverse model. The available data are the

profiles of mixing temperature (Tm) and entry temperature (Te), pressure profile and

wellhead flowrate of each phase. We note that it may be di�cult to measure pressure

profile in practice, as the Distributed Pressure Sensor is technically immature and

not yet widely applied. It is best for the inverse model to minimize the usage of

pressure profile information, and thus we conducted the following tests, in an order

of increasing information usage.
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Figure 5.29: Pressure-Temperature diagram of case 2-B.1.
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Figure 5.30: Phase flowrate profile of case 2-B.1.
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Figure 5.31: Pressure profile of case 2-B.1.
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Figure 5.32: Temperature profile of case 2-B.1.
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Figure 5.33: Hold up of case 2-B.1.

5.5.2 Flowrate Estimation Results

• Test #1: no pressure information used

Our first estimation was made by specifying profiles of mixing temperature, entry

temperature and wellhead phase flowrates of oil and gas. Although we can reproduce

the temperature profile perfectly (the mean square error is 0.00046), the estimation

of phase flowrates depends on initial guess and converges to a local minimum, which

is not unique and thus not acceptable, as shown in Figure 5.34. Transient DTS data

are still not su�cient to solve this problem: when we included daily temperature

profiles over 20 days as constraints, a unique solution was still not achieved. This

result coincides with our discussion in Chapter 4, suggesting that temperature is not

very sensitive to phase behavior. On the other hand, pressure is related closely to

phase properties, which means pressure data would reduce the uncertainty to a great

extent in this problem. Therefore, in the following tests, pressure data were added to
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the inverse model to obtain a better estimation.
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Figure 5.34: Result of Test 1.

• Test #2: single pressure value used

In this test, in addition to the data used in Test #1, a pressure value at a single

location (at the wellhead) and a single time point (at the same time of the DTS

measurement) was added. As shown in Figure 5.35, the estimation improved, but

still was not correct.

• Test #3: pressure profile used

In Test #3, we added more pressure data. To be more specific, we added a

pressure measurement point above each entry location to the inverse model. A unique

and correct phase flowrate profile (Figure 5.36) is achieved. We also found that the

pressure profile data do not have to be measured frequently, and only one pressure

data measured above each entry location is su�cient to achieve good estimations of
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Figure 5.35: Result of Test 2.

phase flowrate profiles. Only two pressure values, one above each entry point, were

used, and the estimation of phase flowrates was accurate.

The fact that pressure plays an important role in estimating flowrate profile em-

phasizes the necessity of applying compositional models in complicated production

scenarios. Figure 5.37 shows the estimation of flowrate based on a black-oil model

(remember that the synthetic data are simulated by a compositional model) and spec-

ifying the same amount of data as in Test #3. The estimation does not reflect the

true values.

5.5.3 Three-Phase Flow

We added a certain amount of water to make three-phase flow in case 2-B.2. We

assumed that the presence of water does not a↵ect the phase diagram of the com-

position, and the Chen correlation (Eq 5.38) is still valid to calculate friction factor.

Compared with two-phase flow, in the three-phase flow, there are two new unknowns:
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Figure 5.36: Result of Test 3.
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Figure 5.37: Result of using Black-Oil model.
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water flowrate from each entry point. We found that even the temperature profile,

pressure profile and wellhead flowrate are not su�cient to obtain a unique solution, as

shown in Figure 5.38. For three-phase flow, as recommended by Ouyang and Belanger

(2006), other information, e.g. in-situ hold-up information, is required to estimate

the correct flowrate profile.
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Figure 5.38: Result of estimation three phase flow.

5.6 Summary

In this chapter, two methods, least-square method and linear inverse model, were used

to estimate flowrate from temperature data. In addition, two issues of di�culties

involving in the inverse modeling, data noise and complicated flow scenarios, were

solved. The findings and conclusions are summarized as follows:

1. In this problem, the least square method was not successful when the number

of unknowns is large, and it can only handle the case when all the locations of



Chapter 5 121

entry points are known (in which the number of unknowns equals the number of

entry points). By contrast, the linear inverse model can give correct estimation

of flowrate without knowing the locations of entry points, which avoids the risks

and uncertainties associating with the process of locating entry points.

2. Wavelet analysis is very helpful to identify the abrupt changes on temperature

profiles, which correspond to the entry points. The way that wavelet decom-

poses data into several resolutions with di↵erent frequencies enables us to find a

certain level of resolution, at which the high-frequency variations (usually they

are noise) are removed, whereas the low-frequency (the fluid entry points or

‘edge’) changes are kept.

3. In single-phase flow, several complex production scenarios were studied, and

no single case shows failure. Unlike noise, the well configuration (including the

deviation angles, distances between layers, the number of layers, etc.) does not

a↵ect the estimation much.

4. In two-phase flow, distributed pressure data are also required for a successful es-

timation of phase flowrates. We showed that a compositional model is necessary

in analyzing multiphase flow data, because the precise prediction of pressure is

important in flow profiling. For three-phase flow, we have the same conclusion

as Ouyang and Belanger (2006) that data sources other than DTS and DPS are

required for estimating flowrate profiles successfully.

In all, DTS has the advantage of providing exhaustive dynamic information along

the wellbore direction, and it should be interpreted together with other available data

to achieve estimates of flow profiles.
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Formation Evaluation by

Temperature: Single Entry

Analysis

In Chapter 5, wellbore temperature was analyzed to estimate flowrate, and the prob-

lem considered only the wellbore domain. However, the temperature signal contains

information about the formation properties too. Similar to pressure transient analy-

sis, temperature data are also useful for estimating formation properties. We found

that the temperature signal di↵ers from pressure signal in the way it travels through

the medium: the temperature signal travels much more slowly than the pressure

signal, which means the temperature measured in the wellbore is more sensitive to

the near-wellbore region properties than pressure. Based on this observation, our

wellbore/reservoir coupled thermal model was used to study the sensitivity of tem-

perature transient data to formation properties, and an inverse problem was solved

to estimate near-wellbore formation properties from transient temperature data.

We divide our discussion of evaluating formation properties into two parts: wells

with single entry point (single layer reservoirs) and wells with multiple entry points

122
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(multilayer reservoirs and horizontal wells), and these two parts are described in detail

in Chapter 6 and 7.

6.1 Damaged Zone Problem

The drilling process usually harms the vicinity surrounding the wellbore, generally as

a result of mud or cement filtrate invasion, and this area is called the damaged zone.

As shown in Figure 6.1, in between the cement of the wellbore and the formation,

there is a damaged zone, in which the permeability could be reduced significantly.

This near-wellbore damage a↵ects well productivity. A comprehensive evaluation of

this damaged zone is helpful to improve well productivity.

In pressure transient analysis, this damaged zone e↵ect is described by skin, which

is a dimensionless factor accounting for the additional pressure drop in the damaged

zone. If the permeability of damaged zone (denoted as kd), radius of damaged zone

(denoted as rd) and permeability of the undamaged formation (denoted as k) are

known, the skin factor can be calculated by using Eq 6.1.

s = (
k

kd
� 1)ln

rs
rw

(6.1)

The damaged zone has two parameters: permeability (kd) and radius (rd). The

e↵ects of these two parameters are combined in Eq. 6.1, and cannot be distinguished

by the skin factor. It would be a better approach to evaluate the damaged zone if

these two e↵ects could be described separately. Both Sui et al. (2008) and Duru et al.

(2011) show that the transient temperature signal is sensitive to the permeability and

radius of the damaged zone. As shown later in Section 6.3, unlike the pressure history,

which is not sensitive to radius and permeability of damaged zone, the temperature

history shows di↵erent signatures for di↵erent values of damaged zone radius and

permeability. Therefore, it is possible to use temperature history to estimate these
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Figure 6.1: Damaged zone in the near wellbore region.

two parameters, which are not distinguishable in pressure data. Before the estimation

results are presented, the ‘ring’ model used in this study is explained first.

6.2 Ring Model

To model the damaged zone problem, we used a model which consists of two ‘rings’.

As shown in Figure 6.2, both the cement and damaged zone are in the near-well ring,

while the undamaged formation is the outer ring. These two rings have di↵erent

permeability values. Therefore, the damaged zone can be modeled by the near-well

ring, and the undamaged formation is modeled by the outer ring. Through this ring

model, the parameters that are relevant to the damaged zone problem: damaged zone

permeability (kd), radius (rd) and formation permeability (k) are all included.

The same gridding method described in Chapter 4 was applied to this ring model,

the real space (Figure 6.2) was discretized by nonuniform cells in a cylindrical coor-

dinate system, and di↵erent cells can be assigned di↵erent permeability values.
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Well Outer ring Near-well ring 

Figure 6.2: Damaged zone problem modeled by the ring model.

6.3 Sensitivity Test

We constructed six cases to study the sensitivity of pressure and temperature signals

to damaged zone properties. The parameters of these six cases are listed in Table

6.1. The skins listed in the table were calculated by Eq. 6.1. These six cases have

the same formation permeability, but di↵erent damaged zone properties. For the first

three cases, they also have di↵erent skin factors, while the last three cases have the

same skin factor.

Table 6.1: The parameters of the six cases
Case rd(md) kd(md) k(md) Skin
1 5 10 50 6.44
2 5 5 50 14.48
3 5 2 50 38.63

4 20.00 10 50 11.98
5 3.79 5 50 11.99
6 1.65 2 50 11.99
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Pressure transient analysis has been used widely for estimating formation prop-

erties, in which the pressure derivative over time shows distinctive signatures for

di↵erent flow periods. As shown in Figure 6.3, the pressure derivatives of the cases

with di↵erent values of skin factor are easy to distinguish. However, the pressure

derivative is only sensitive to skin factor, but not to the damaged zone radius and

permeability. As shown in Figure 6.4, the pressure derivatives for case 4, 5 and 6 over-

lap each other, even though the damaged zone radius (rd) and permeability (kd) of

these cases are di↵erent (while skin factors are the same). This observation confirms

our previous statement that pressure transient analysis can only be used to estimate

skin factor, but not the radius and permeability of the damaged zone.
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Figure 6.3: Pressure derivative of the three cases with di↵erent skins.

When we examine the temperature transient behavior for these six cases, as shown

in Figure 6.5 and 6.6, both the temperature and temperature derivative curves show

di↵erent shapes for each case. Especially on the temperature derivative curve, there

are clearly two parts with di↵erent slopes, which correspond to di↵erent radii of
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Figure 6.4: Pressure derivative of the three cases with the same skins.

investigation. The early part is characterized by the damaged zone: the slope is

determined by the damaged zone permeability; while the slope of the late part is a

function of undamaged zone permeability. Because these six cases share the same

formation permeability, the slope of the late part is the same for all six cases. There

is a transition period between the early and late parts. The time of the transition

indicates the size of the damaged zone. Therefore, all the three parameters describ-

ing the damaged zone properties: kd, k and rd can be distinguished respectively by

the slopes of early part and late part, and the time of the transition period on the

temperature derivative curve.

6.4 Inverse Modeling and Results

In the inverse problem, the unknowns are permeability (kd) and radius (rd) of the

damaged zone, and the permeability (k) of the formation. The available data are the
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Figure 6.5: Temperature history of six cases.
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Figure 6.6: Temperature derivative of six cases.
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fluid properties, temperature history (Tt) and flowrate history (qt). A set of synthetic

data (named as case 3-A.1) were generated by our wellbore/reservoir coupled thermal

model based on the parameters shown in Table 6.2, and the flowrate and simulated

temperature histories are shown in Figure 6.7.

We used the Least-Square method discussed in Chapter 5 to solve the inverse

problem. As shown in Figure 6.8, the estimated three parameters kd, rd and k are

close to the true values. Moreover, the calculated values of skin (Eq. 6.1) by using

the estimated values and true values can match.

Table 6.2: Case 3-A.1 parameters
Formation permeability (md) 50md
Damaged zone radius (ft) 5ft

Damaged zone permeability (md) 10md
Skin 6.43

Fluid density (kg/m3) 800
Heat capacity (J/kg/k) 1601.8
Tubing radius (inch) 1.5

• Data noise

If the temperature history is augmented with noise, the presence of noise will

deteriorate the estimation. In case 3-A.2, the temperature data used in case 3-

A.1 were modified by adding random noise with di↵erent signal-to-noise ratios,

20 dB, 10 dB and 5 dB respectively (Figure 6.9). The estimations became

worse as noise increased (Figure 6.10). None of the results are acceptable, and

when noise is 5 dB, the results stay at the initial guess.

The noise in flowrate history also a↵ects the results. In case 3-A.3, flowrate

data were modified by adding noise with signal-to-noise ratio of 10 dB (Figure

6.11), while temperature data are still noise-free in this case, and the estimation

results are shown in Figure 6.12).
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Figure 6.7: Flowrate and temperature histories.
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Figure 6.8: Estimation results of case 3-A.1.
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Figure 6.9: Temperature history with noise of Signal-Noise Ratio 20 dB, 10 dB and
5 dB respectively, case 3-A.2.
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Figure 6.10: Estimation results of case 3-A.2.

200 5 10 15

2000

0

200

400

600

800

1000

1200

1400

1600

1800

Time, hrs

Flo
wr

at
e,

 b
bl

/d
ay

Figure 6.11: Noisy flowrate history, case 3-A.3.
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Figure 6.12: Estimation results of case 3-A.3.

• Data resolution

In case 3-A.1, the synthetic data were generated with a temperature data point

every 2.4 minutes (500 points for 20 hours), but if the temperature is measured

at a lower frequency, e.g., every 12 minutes (100 points) and 24 minutes (50

points) (these two cases are numbered as case 3-A.4), the shapes of the tem-

perature derivative will change (Figure 6.13). Therefore, if the temperature is

measured at a low temporal frequency, the estimations will be misleading, as

shown in Figure 6.14.

Aiming to find the limit of the parameters values that are estimable by temper-

ature data, we made a large collection of cases to test the inverse model. This case

space was generated by the following approach:

• Ten values of radius of damaged zone (rd) were picked randomly from 1 ft to 10

ft, and ten values of permeability of damaged zone (kd) were picked randomly

from 0.1 md to 10 md to have ten combinations of rd and kd (as the value
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Figure 6.13: Temperature derivative of the data with di↵erent measurement fre-
quency. Black line-data measured every 2.4 min; red line-data measured every 12
min; blue line-data measured every 24 min.(Case 3-A.4)
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Figure 6.14: Estimation results of case 3-A.4.
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assignment is random, only one example is shown in Figure 6.15). Subsequently,

permeability of formation (k) was assigned from 1 md to 100 md. Thus, ten

combinations of rd and kd and the ten values of k can form a 10x10 matrix,

which is the case space. As shown in Figure 6.15, the 10 combinations of kd

and rd form the volumes of the matrix, while the 10 values of k form the rows

of the matrix.

We estimated rd, kd and k of individual cases in the 10x10 matrix in Figure 6.15,

and calculated the relative error of kd, rd and k of each case. In these 100 cases, the

relative errors of kd and rd are in the same range, from 5% to 15%, and they are

larger than the relative errors of k, which varies from 2% to 8%. We generated the

case-space matrix (Figure 6.15) three times, and did not find a single case in which

the relative error exceeds a reasonable range.

All these cases were based on Case 3-A.1, in which the well has a simple production

scenario. Sui et al. (2008) studied a similar production scenario, and also estimated

permeability and radius of damaged zone successfully. In our research, to better

understand the applicability of using temperature to estimate formation properties,

we studied several cases with more complicated situations, and results are shown in

the next section.
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Figure 6.15: The case space.
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6.5 More Cases

6.5.1 Skin Factor of Asymmetric Damaged Zone

In practice, the damaged zone may not be symmetric around the well. As shown in

Figure 6.16, the cross section of the damaged zone is not a concentric circle, and the

properties are not homogeneous within the damaged zone. Therefore, the skin factor

in each direction is di↵erent. By using the traditional single-point measurement,

which only takes measurements at the axis of the well, the skin factor in each direction

cannot be estimated. However, for DTS technique, due to the small size of the fiber,

several fibers can be installed at various locations around the wellbore. As a matter

of fact, for the purpose of avoiding the damage by perforation guns, in practical

applications it is common to run several fibers strapped around the casing in order

to raise the chances that the fibers will survive.

Damaged zone 

Formation 

Well 

Figure 6.16: Sketch of an asymmetric damaged zone.

To study this asymmetric damaged zone problem, the ring model (originally shown

in Figure 6.2) was modified: the rings were divided into several partitions, and these

partitions could communicate with each other. Thus, each simulation cell has an
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additional parameters kc to describe the flow in the circumferential direction. In

addition, each individual partition can be assigned with di↵erent properties to model

the asymmetric damaged zone.

For the case (numbered Case 3-B.1), shown in Figure 6.17, there are three par-

titions, the properties of which are shown in Table 6.3. Three fibers were installed

in these three partitions, and the temperature histories of these three segments were

measured before the entry fluids were mixed together (Figure 6.18). By specifying

these temperature histories as well as fluid properties in the inverse model, the re-

sults of estimating damaged zone permeability, radius and formation permeability are

shown in Table 6.3. The estimation was not acceptable for all three partitions. In

another case, case 3-B.2, the kc is set to be zero, and thus there is no interpartition

flow. The estimation became acceptable (Table 6.4). By comparing cases 3-B.1 and

3-B.2, it is clear that the interpartition flow a↵ects the estimation results. The in-

fluence of kc is shown in Figure 6.19, which is a scatter plot of the estimation of kc.

In these cases, three partitions share the same kc/k ratio. Figure 6.19 shows a trend

that the estimation becomes worse as kc/k ratio increases.

Table 6.3: Estimation results of case 3-B.1
Partition 1 kd rd k kc

True 2 10 20 5
Estimate 1.5 22.5 16.3 4.2
Partition 2 kd rd k kc

True 5 5 100 10
Estimate 1.3 25.5 88.3 1.2
Partition 3 kd rd k kc

True 10 2 100 10
Estimate 1.3 10.0 92.2 1.4
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Par$$on'1'
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Figure 6.17: Sketch of the partitioned ring model.

Table 6.4: Estimation results of case 3-B.2
Partition 1 kd rd k

True 2 10 20
Estimate 1.75 12.5 18.3

Partition 2 kd rd k
True 5 5 100

Estimate 4.3 4.5 88.3
Partition 3 kd rd k

True 10 2 100
Estimate 11.3 1.1 93.2
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Figure 6.18: Temperature histories of three partitions of case 3-B.1.
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6.5.2 Gauge Placed Above the Entry Point

The temperature measurement point might be above the fluid entry point, as shown in

Figure 6.20. Due to heat transfer between the fluid and the formation when the fluid

flows along this distance, the shape of temperature derivative will change. In case

3-C.1 (input parameters are the same as case 3-A.1 listed in Table 6.2), temperature

was measured 500 ft above the fluid entry point. The gap between the gauge and

the entry point distorted the shape of the temperature derivative, as shown in Figure

6.21. Therefore, if the gap is ignored, the temperature history can be reproduced

by a wrong set of damaged zone and formation properties, and the estimations will

be misleading. However, if the gap is acknowledged and specified accurately, the

temperature data can still give a good estimation of the damaged zone and formation

properties (Figure 6.22).

D 

Gauge measurement point

Fluid entry point

Figure 6.20: Gauge is placed above the fluid entry point.

The heat loss of the flow will be large if the flowrate is very low. In case 3-C.2,

the distance is kept as 500 ft, and the flowrate is reduced to 100 bbl/day, and the

temperature derivative is a↵ected (Figure 6.23). In this case, even if the correct gap
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Figure 6.21: The temperature derivative when gauge is 500 ft above the entry point.
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Figure 6.22: Estimations of case 3-C.1 when the gap is known.
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distance is specified, the estimation is still not acceptable (Figure 6.24). Therefore,

it is recommended to run the fiber past the entry points rather than ending it above

them.
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Figure 6.23: Temperature derivative when gauge is 500 ft above the entry point, and
flowrate is 100 bbl/day.

6.5.3 Multiphase Flow

In case 3-D.1, there is a water-oil two-phase flow, and no damaged zone in the forma-

tion. In the forward modeling process, the e↵ective permeability of water and oil (kw

and ko) and total flowrate were specified, and temperature history of the fluid could

be generated. We first notice that the entering temperature (Te) is sensitive to water

saturation in water-oil two-phase flow (Figure 6.25). Therefore, in the inverse model,

if the relative permeability curve, total flowrate history and temperature history are
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Figure 6.24: Estimation results of case 3-C.2

known, while the total permeability (k) is set as unknown, the estimation is close to

the true value (Table 6.5).

Table 6.5: Estimation results of case 3-D.1
True Estimation

Permeability (md) 50.0 49.2

However, in contrast to case 3-D.1 which does not have a damaged zone, case

3-D.2 has a damaged zone, and thus we have two additional unknowns in the inverse

model: rd and kd. The estimation result is shown in Figure 6.26. Although the

estimation of formation permeability is acceptable, the estimations of kd and rd are

far from satisfactory. The multiphase flow brings another uncertainty into the inverse

problem. Water saturation and damaged zone may have the same e↵ect: either a high

water saturation or a large damaged zone can lead to a high entry temperature (Te).

Just by using temperature data, these unknowns are not distinguishable. Pressure

was also added to reduce the uncertainty, but as pressure is not very sensitive to

water saturation in single layer flow, the estimation cannot be improved with the
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Figure 6.25: Entering temperature is a function of water saturation.

help of pressure. Other sources of data might be more helpful for solving this inverse

problem, e.g. water saturation measurement.

6.5.4 Heterogeneity

Cases 3-E.1 and 3-E.2 were built to study the e↵ect of heterogeneity. In both cases,

there are five rings, as shown in Figure 6.27. These five rings have di↵erent permeabil-

ities, listed in Table 6.6. Case 3-E.1 is to study the sensitivity of temperature to local

heterogeneity. As shown in Figure 6.28, the temperature history of Case 3-E.1 almost

overlaps a homogeneous case, and the estimation cannot identify the heterogeneity

(Figure 6.29).

Table 6.6: Permeability for case 3-E.1 and 3-E.2
Ring 1 2 3 4 5

Case 3-E.1 20.0 20.0 20.0 5.0 20.0
Case 3-E.2 15.0 5.0 28.0 10.0 59.0
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Figure 6.27: The five-ring model for case 3-E.1 and 3-E.2.
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Figure 6.29: Estimation results of case 3-E.1.
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In case 3-E.2, the five rings were very heterogeneous, and were assigned random

permeability values between 1 md to 100 md, as listed in Table 6.6. The estimation

could not reconstruct the heterogeneous permeability, but the area-weighted arith-

metic mean of the estimation did match the true value (true = 42.1 md, estimation

= 40.2 md).

6.5.5 Initial Temperature

The drilling process usually reduces the temperature in the near wellbore region,

and thus the geothermal temperature measured in the wellbore immediately after

the drilling process is misleading. This wrong geothermal temperature will a↵ect the

temperature derivative analysis.

In case 3-F.1, the geothermal temperature in the near-well region is distorted by

the drilling process (Figure 6.30). When the wrong initial geothermal temperature

(red curve in Figure 6.30) is used in the inverse model, the estimation is incorrect

(Figure 6.31).

However, we note that the wellbore temperature has a tendency to restore to

the true geothermal temperature when the fluid stops flowing. In case 3-F.2, we

considered a shut-in period for 10 hours, and the temperature history is shown in

Figure 6.32. After the initial temperature was set as an unknown in the inverse

model, the estimation became acceptable (Figure 6.33).

6.6 Summary

In this chapter, the transient temperature data were used to estimate formation prop-

erties successfully in most cases. Di↵erent from the pressure transient signal, the

temperature transient is transported in the formation more slowly, and thus more

sensitive to the properties of near wellbore formation. Therefore, to evaluate the
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near-well damaged zone, other than estimating a skin factor by pressure transient

analysis, temperature data give estimations of both the size and permeability of the

damaged zone. This information, which is not obtained by pressure transient anal-

ysis, is very helpful to better understand the damaged zone and propose plans to

improve well productivity.

A numerical ring model was used in this study. Through this model, both radius

and permeability of the damaged zone can be defined. In addition, directional skin

can be defined by a modified version of this model. The synthetic studies were based

on several di↵erent production scenarios, concluding that transient temperature data

are sensitive to both the size and permeability of the damaged zone, and they can be

used to estimate these two parameters, although several cautions should be taken:

1. The gap between the measurement and the entry point a↵ects the estimation.

Thus, the correct information of distance of this gap should be obtained, and

the flowrate should not be very low if the gap is large. For DTS application, we

recommend to run the fiber through the entry point, to prevent the influence

of the gap.

2. The temperature data alone are not su�cient to estimate damaged zone prop-

erties if the flow becomes multiphase. However, the temperature data can still

give a reasonable estimate of undamaged formation permeability.

3. The measured initial temperature might be misleading due to previous drilling

or production jobs. A shut-in period and setting the initial temperature as

unknown would help to solve this problem.
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Formation Evaluation by

Temperature: Multilayer and

Horizontal Wells

The discussion of estimating formation properties from temperature is extended to

multilayered reservoirs in this chapter. Fiber optic DTS measures multiple downhole

points simultaneously, and the distributed data obtained can be used to evaluate the

formations properties in multiple layers. Unlike in a single-layer reservoir, fluids in a

multilayered reservoir flowing from di↵erent layers are mixed in the well, so that the

temperature measured in the tubing (Tm) di↵ers from the entry temperature (Te).

We studied the di↵erence between using Tm and Te to do the estimation. Moreover,

multilayered reservoirs are more complicated than single-layer reservoirs in having

vertical flows in the reservoir, which adds another unknown (vertical permeability)

into the inverse problem.

Horizontal wells were also studied. Similar to the wells in a multilayered reservoir,

horizontal wells have multiple entry points, but horizontal wells have a significant

di↵erence from vertical wells, making the estimation more di�cult. For example, in

153
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horizontal wells, where the horizontal section is penetrating a single layer, all the fluids

are flowing from the same depth with the same or similar geothermal temperature.

Therefore, the di↵erence between the entry temperature of the fluid from di↵erent

locations is not prominent. Consequently, it is hard to distinguish individual flows

after they mix in the well.

In this chapter, the relevant issues of estimating formation properties in multilay-

ered reservoir and horizontal wells are discussed. Several cases of di↵erent production

scenarios were studied using synthetic data. Finally, the estimation method was ap-

plied to analyze a real data set.

7.1 Multilayered Reservoir Type

According to the hydraulic connections, multilayered reservoirs can be defined into

two basic types: commingled and cross-flow. If hydraulic communication only occurs

in the wellbore, the reservoir is commingled, otherwise, it is a cross-flow reservoir, as

shown in Figure 7.1. Sui et al. (2008) used transient entry temperature profile and

total flowrate to achieve a correct estimate of permeability and radius of the damaged

zone. But the authors did not study the use of mixing temperature data, and the

discussion was limited to commingled reservoirs.

The objective of this study is the same as in the single-layer reservoir (Chapter

6): using temperature to estimate damaged zone properties and formation property.

However, multilayered reservoirs are more challenging than single-layer reservoirs. In

contrast to a single-layer case, where flowrate can be measured and set to be known in

the inverse model, in a multilayered reservoir, only a total flowrate can be measured,

while flowrate of each layer is unknown and needs to be estimated. Furthermore, if

the reservoir is cross-flow, there is an additional unknown: vertical permeability (kv).

To build an inverse model, the location of each entry point is known, and the
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unknown of each layer for commingled and cross-flow reservoir are listed in Table 7.1.

The ring model introduced in Chapter 6 was used for multilayered reservoir cases,

and the damaged zone properties can be defined separately in each individual layer.

As described in Chapter 1, the temperature data can be measured from two sources:

entry temperature (Te) if the fiber is cemented behind casing and mixing temperature

(Tm) if the fiber is attached to the tubing. We studied whether formation properties

can be extracted correctly by using each source separately. Least square method was

used to solve the inverse model. Commingled and cross-flow reservoirs are discussed

in Section 7.2 and 7.3 respectively.

Commingled reservoir Cross-flow reservoir 

Figure 7.1: Sketch of commingled and cross-flow reservoirs.

Table 7.1: Unknowns for commingled and cross-flow reservoirs
Commingled rd(md) kd(md) k(md) flowrate q(bbl/day)
Cross-flow rd(md) kd(md) k(md) flowrate q(bbl/day) kv(md)

7.2 Commingled Reservoir

Case 4-A.1 is a two-layer commingled reservoir, with layer properties listed in Table

7.2. The two layers are 1000 ft apart, and the simulated temperature profiles of Tm
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and Te are shown in Figure 7.2 and 7.3. As shown in Figure 7.4, by using either

Te or Tm, the estimations are close to true values. This finding coincides with the

conclusion in Sui et al. (2008).

However, there is a disadvantage of using Tm to do the estimation: the result

depends on the data quality of the whole temperature profile. In other words, noise

from each layer will a↵ect the estimation of other layers. As an example, in case 4-A.2,

when the lower part of the Tm data were added with white noise with signal-to-noise

ratio of 10 dB (Figure 7.5), the estimations of both layers were ruined (Figure 7.6).

By contrast, in the same case, the Te of the lower layer were augmented with noise

of 10 dB signal-to-noise ratio, only the estimation of the lower layer properties was

distorted, and the estimation of upper layer properties was not a↵ected (Figure 7.7).

Table 7.2: Layer properties for case 4-A.1
k(md) kd(md) rd(ft)

Layer 1 50 10 10
Layer 2 100 2 10

After studying case 4-A.1 and 4-A.2, which are based on simple production sce-

narios, more cases were built to study other relevant issues.

1. Large number of layers

In case 4-A.3, the number of layers is ten, and the reservoir is commingled.

Mixing temperature profile and entry temperature data were used separately to

estimate formation properties, and as shown in Table 7.3 (estimation results)

and Figure 7.8 (relative errors of estimations), the estimations are acceptable.

2. Distance between di↵erent layers

Mixing temperature profile is influenced by the flow from each layer, so the flow

from one layer a↵ects the temperature derivatives of the other. The magnitude
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Figure 7.2: Mixing temperatures of two layers for case 4-A.1. (Blue lines are the
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Figure 7.4: Estimation results by using Tm or Te (Case 4-A.1).
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Figure 7.5: Noisy mixing temperature profile, case 4-A.2.
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Figure 7.7: Estimation results of using Te in case 4-A.2.
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Table 7.3: Estimation results for case 4-A.3
Layer 1 k(md) kd(md) rd(ft)
True 50 2 10

Estimaiton 48.2 1.6 8.8
Layer 2
True 40 8 10

Estimaiton 38.2 8.2 8.2
Layer 3
True 30 6 10

Estimaiton 32.1 6.2 8.9
Layer 4
True 20 4 10

Estimaiton 21.2 3.2 8.0
Layer 5
True 10 2 10

Estimaiton 8.8 1.8 8.2
Layer 6
True 15 2 5

Estimaiton 12.4 1.6 4.2
Layer 7
True 25 8 5

Estimaiton 22.4 8.2 4
Layer 8
True 35 6 5

Estimaiton 32.6 6.2 4.9
Layer 9
True 45 4 5

Estimaiton 43.9 3.2 4.6
Layer 10
True 55 2 5

Estimaiton 53.2 2.3 4.2
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of the influence depends on the distance between di↵erent layers. As a derivation

of case 4-A.1, in case 4-A.4, the distance between two layer was reduced from

1000 ft to 50 ft. Due to the small distance between layers, the shape of the

mixing temperature derivatives of layer 1 (upper layer) changes (Figure 7.9).

The change of temperature derivative a↵ects the estimation, and the estimation

results of layer 1 by using mixing temperature profile is not acceptable (Figure

7.10).
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Figure 7.9: Derivatives of Tm for case 4-A.4.

However, the entry temperature (Te) is not a↵ected by other layers. The esti-

mation of using Te in case 4-A.4 is still acceptable (Figure 7.11).

3. Property contrast between di↵erent layers

We learned from case 4-A.4 that when using mixing temperature, the influence

of one layer on the other should be considered. Besides the distance between

layers, the contrast between properties of di↵erent layers is also an influential
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Figure 7.10: Estimation results of using Tm for case 4-A.4.
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Figure 7.11: Estimation results of using Te for case 4-A.4.

factor. Unlike the case 4-A.1, in which two layer properties are close to each

other, in case 4-A.5, the lower layer has permeability 50 times that of the upper

layer, as listed in Table 7.4. By comparing Figure 7.12 and 7.4, the estimation

by using mixing temperature in case 4-A.5 is not as good as the results obtained

in case 4-A.1.

Table 7.4: Layer properties for case 4-A.5
k(md) kd(md) rd(ft)

Layer 1 3 3 10
Layer 2 150 10 10

We also used entry temperature Te to do the estimation, and the result was

improved, as shown in Figure 7.13. This emphasizes the fact that the Te is less

a↵ected by the influence from other layers.
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Figure 7.12: Estimation results of using Tm for case 4-A.5.
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Figure 7.13: Estimation results of using Te for case 4-A.5.

7.3 Cross-Flow Reservoir

In cross-flow reservoirs, there is vertical flow between di↵erent layers due to the prop-

erty contrast between layers. As mentioned earlier, compared with commingled reser-

voirs, the inverse problem of cross-flow reservoirs has an additional unknown: vertical

permeability.

In case 4-B.1, there are two layers without damaged zones. Each layer is ho-

mogeneous with horizontal permeability as well as vertical permeability, (Table 7.5).

The entry temperature of each layers was used to estimate the formation properties,

and the results are close to the true values (Figure 7.14).

Table 7.5: Layer properties for case 4-A.5
k(md) kv(md)

Layer 1 100 10
Layer 2 50 10
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Figure 7.14: Estimation result of case 4-B.1.

However, if the two layers have damaged zones, and the properties of the damaged

zone are set as unknowns (case 4-B.2), the estimations by using entry temperature

are shown in Figure 7.15. Although the formation permeabilities (k) of both layers

are inverted correctly, the estimation results of kv, kd and rd of both layers are not

acceptable. If we examine the flow path in the reservoir (Figure 7.16), we find that

most cross-layer flow occurs in the near-wellbore region, which means the e↵ect of

cross-flow is mixed with the e↵ect of the damaged zone, which cannot be separated

by inversion of the temperature data. Pressure data are not helpful for this problem.

We have tried to add transient pressure data and distributed pressure data, but the

estimation was not improved. To solve this problem, information about the formation

properties is more helpful. For example, if the vertical permeability is known, the

estimation result by entry temperature for case 4-B.2 become much better (Figure

7.17).
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Figure 7.15: Estimation results of case 4-B.2.
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Figure 7.16: The flow path in case 4-B.2.
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Figure 7.17: Estimation results of case 4-B.2, where kv is known.
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7.4 DTS Application in Horizontal Wells

The idea of horizontal wells is to drill a well deviated from vertical by more than 80

degrees (as shown in Figure 7.18). Through this approach, the contact area between

wellbore and reservoir is maximized, and horizontal wells usually deliver much higher

productivity than vertical wells.

Toe 

Heel 

Figure 7.18: A sketch of a horizontal well.

However, the trajectory of horizontal wells makes it extremely di�cult to run

production measurement tools in the horizontal part. Considering that the length

of a typical horizontal well can be thousands of feet, the flow along this length is

inhomogeneous, and it is important to monitor the production status along the whole

horizontal part for the purpose of optimizing production and identifying flow prob-

lems. The small size of optical fiber makes it feasible for measuring temperature

profiles along the horizontal part. Several studies have been done to analyze temper-

ature data in horizontal wells. For example, Yoshioka (2005) was successful in using

entry temperature profile to estimate flowrate profile in a horizontal well. Based on

the same model used by Yoshioka, Li (2010) achieved permeability distributions by

using transient entry temperature profiles in a horizontal well. These publications

stated that the flowrate profile and permeability distribution can be estimated by

entry temperature profiles, but they did not try to use mixing temperature to do the
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inversion. In our study, entry and mixing temperature profiles of horizontal wells

were studied separately to invert information of flowrate profiles and formation prop-

erties. The first step of this study was to build a horizontal well flow model, which is

described in the next section.

7.5 Horizontal Well Modeling

The control equations for horizontal wells are the same as the ones we used in vertical

wells, and the mass balance and energy balance equations for wellbore and reservoir

are the same as we discussed in Chapter 4. The di↵erence from vertical well models

comes from the pressure drop equation in wells. We used the homogenous model

developed by Ouyang (2005):

dp

ds
=

32⇢Q2ID
⇡2

[
fc
D5

] (7.1)

where D is the wellbore internal diameter, fc is the Fanning friction factor for fluid

flow in a circular pipe, ID is flow direction index, +1 for a production well and -1 for

a injection well, s is the position of the measurement in the well.

The reservoir is discretized by single stack of cells. Figure 7.19 is a top-view of a

horizontal well penetrating the whole reservoir. The reservoir consists of five layers.

These layers might have di↵erent permeability values. In the reservoir, we assumed

there is no cross flow between di↵erent layers and no vertical flows.

We used a synthetic case (case 5-A.1) to show the behavior of this numerical model.

In this case, a horizontal well was producing from an oil-saturated reservoir, and the

pressure was kept above saturation pressure. The horizontal section of the well is 3000

ft, and all its length is open to flow. The reservoir has five layers, sharing the same

width (600 ft). The permeability distribution of reservoir is shown in Figure 7.20.

The input parameters are summarized in Table 7.6. The total flowrate is controlled
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Figure 7.19: A top view of the flow direction in a horizontal well.

as 10,000 bbl/day. The simulation results of flowrate profile, pressure profiles, mixing

temperature profiles and transient entry temperature for individual layers are shown

in Figure 7.21, 7.22 and 7.23. The analysis of these data will be discussed in Section

7.6.

Toe Heel 

Layer 1
50 md

Layer 2
50 md

Layer 3
10 md

Layer 4
30 md

Layer 5
20 md

Figure 7.20: Permeability distribution of case 5-A.1.

7.6 Inverse Model and Results

In the inverse model, the data are the temperature profiles. Similar to vertical wells,

in horizontal wells the temperature profiles measured downhole could also be mixing

temperature (Tm) or entry temperature (Te). The unknowns are the permeability of
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Table 7.6: Input parameters for case 5-A.1
Fluid
µ(cp) 0.6

Cp(Btu/lb ·o F ) 0.6
⇢(lb/ft3) 43

Reservoir
Reservoir length(ft) 3000
Reservoir width(ft) 1000
Reservoir highth(ft) 500

Well
Well diameter (inch) 2.8
Relative roughness 0.01
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Figure 7.21: Simulation result of flowrate profile for case 5-A.1.
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Figure 7.22: Simulation result of pressure profile for case 5-A.1.
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Figure 7.23: Simulation result temperature profiles for case 5-A.1.
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each layer and the flowrate profile in the wellbore. The location of each entry point

is known, and this inverse problem is again solved by the Least-Square method.

7.6.1 Estimation Only by Using Tm

The mixing temperature profiles simulated in case 5-A.1 (Figure 7.23) were used to

estimate flowrate profile and formation properties. Compared to vertical wells, the

fluids entering the horizontal wells are from the same depth, sharing the same geother-

mal temperature. Therefore, the di↵erence between the entering fluid temperature

and the mixing fluid temperature is mainly due to the viscous dissipation and adia-

batic expansion, so the magnitude of the temperature di↵erence depends largely on

the flowrate and formation permeability.

In case 5-A.1, when the transient mixing temperature profiles were used to invert

formation properties, the results were not accurate (Figure 7.24). We notice that

in this case, the layers 3, 4 and 5 have smaller permeability values than layers 1

and 2 (Figure 7.20). A consequence of this permeability distribution is that the

temperature in the well is decreasing monotonically towards the well heel. Because

the temperature in the well is higher than its surrounding formation temperature in

this case, the fluid is constantly losing heat when it is flowing from the toe to the heel

of the well. Even though there is no cold fluid entering the well in the downstream,

the temperate will still decrease because of the heat loss. A comparison of the mixing

temperature profile of case 5-A.1 and a case where layers 3, 4 and 5 have no flow is

shown in Figure 7.25. No significant di↵erence was observed. Therefore, the mixing

temperature is not a sensitive indicator for cases having a declining (towards the well

heel) permeability distribution.

However, in case 5-A.2 the permeability is increasing monotonically towards the

heel of horizontal well, as shown in Table 7.7. The estimated formation properties

are close to the true values (Figure 7.26).
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Figure 7.24: Estimation results of using Tm for case 5-A.1.
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Figure 7.25: Temperature profiles when layers 3, 4 and 5 have no flow.
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Table 7.7: Layer properties for case 5-A.2
Layer 1 30 md
Layer 2 40 md
Layer 3 60 md
Layer 4 80 md
Layer 5 100 md
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Figure 7.26: Estimation result of using Tm for case 5-A.2.
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Through case 5-A.1 and 5-A.2, we learned that the permeability distribution is im-

portant for the success of inverting formation permeability using mixing-temperature

profile. A successful estimation can be achieved in the case where permeability is

increasing towards the toe of the well, whereas it is di�cult to invert formation cor-

rectly in other cases. Therefore, a subsequent measurement procedure is proposed

for general application of this study. For example, in case 5-A.1, the in flow control

valve in layer 1 (named as valve 1) is opened first, the permeability of layer 1 can be

estimated by measuring the temperature and the flowrate. Then the valves 2, 3, 4

and 5 are opened subsequently to obtain the mixing temperature profiles shown in

Figure 7.27. By using these temperature profiles, the permeability of all the layers

can be estimated correctly (Figure 7.28).
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Figure 7.27: Sequential temperature profiles for case 5-A.1.
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Figure 7.28: Estimation results of using sequential temperature profiles for case 5-A.1.

7.6.2 Estimation Only by Using Te

Similar to the multilayered reservoir cases discussed in Section 7.2, entry temperature

of each layer is not influenced by other layers in vertical wells. This is also true for

horizontal wells. In case 5-A.1, when the transient entry temperature (Figure 7.23)

in each layer is used, the estimations of permeability are acceptable (Figure 7.29).

The cases of 5-B.1 to 5-B.4 have di↵erent permeability distributions. Using entry

temperature, layer permeabilities can be estimated correctly in all these cases, as

shown in Figure 7.30 to 7.33. Again, this confirms the statement that using entry

temperature to invert formation properties is not constrained to permeability distri-

bution. This also coincides with the findings of Li (2011).
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Figure 7.29: Estimation results of using Te for case 5-A.1.
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Figure 7.30: Estimation results of using Te for case 5-B.1.
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Figure 7.31: Estimation results of using Tm for case 5-B.2.
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Figure 7.32: Estimation results of using Tm for case 5-B.3.
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Figure 7.33: Estimation results of using Tm for case 5-B.4.
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7.7 Real Cases

The real DTS data set we studied is from an oil producer. The well was producing

from three layers. The DTS was installed on the sand-screening. This installation

method was shown in Figure 1.3 of Chapter 1. As discussed, the measurement made

by this installation method is twofold: it measures entry temperature when there

is fluid flowing from the reservoir (in the production layer), or mixing temperature

otherwise. This is illustrated by Figure 7.34.

Mixing temperature

Geothermal

Temperature

Entry temperature

DTS

Production  
layer 

Figure 7.34: A sketch of DTS data in the real case.

The data available to us are 12 hour-DTS data, which were measured when the

well was first put into production. The total flowrate at the wellhead during this 12-

hour production was kept as constant at 7592 bbl/day. The data are shown in Figure

7.35. From the data, the three production layers are shown clearly: the temperature

dipped where the flow enters the well. We also calculated the derivative of entry

temperature in each layer, which is shown in Figure 7.36. The early parts of all these

derivatives are too noisy to reveal any trend. In contrast, in the late part of the
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derivative, the derivative bears a certain pattern of behavior, which will be indicative

of the far-well formation properties.
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Figure 7.35: DTS data.

We used the ring model and least-square method to analyze the DTS history. The

estimation results include radius and permeability of damaged zone and permeability

of undamaged zone for all three layers, and flowrate profile history. All these results

are listed in Table 7.8, and the model can reproduce the DTS data closely (Figure

7.37).

The flowrate profile cannot be measured directly from the well, and thus the

estimated flowrate cannot be verified. However, a comparison between the total
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Figure 7.36: Temperature derivatives for three layers.

Table 7.8: Estimation results for the real data set.
Layer 1

k 59.2 md
rd 3.2 ft
kd 7.1 md

Layer 2
k 30.3 md
rd 2.1 ft
kd 6.2 md

Layer 3
k 25.5 md
rd 3.2 ft
kd 5.3 md
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Figure 7.37: The reproduction of DTS data.

permeability obtained from analyzing the wellhead transient pressure data and the

height-weighted mean of the estimated permeability can help to validate the estima-

tion. As shown in Figure 7.38, the values are close to each other.

7.8 Summary

In this chapter, the discussion of evaluating formation properties was extended to

multilayered reservoirs and horizontal wells, both having multiple entry points in the

well. This research work took advantage of DTS, using the distributed temperature

data obtained from DTS to evaluate formation properties along the whole well length

simultaneously. An important issue is the installation method of the fiber. Di↵erent

installation methods give di↵erent measured temperature profiles. If only mixing

temperature is obtained, the influence between di↵erent layers should be taken into

consideration when doing the estimation. For example, a pair of close-by layers, or
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Figure 7.38: Comparison of the hight-weighted mean of permeability.

layers with huge properties contrast would ruin the estimation made by using mixing

temperature. However, the entry temperature is not influenced by other layers if no

leakage happens in the cement, so the estimation by using entry temperature is better

than mixing temperature in numerous vertical cases we studied.
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Conclusions and Recommendations

for Future Work

In this research, the downhole temperature behavior was studied in three subsequent

respects.

1. A numerical wellbore/reservoir coupled thermal model was built to study which

parameters are important in determine the downhole temperature distribution.

Through the synthetic study using this model, we found that temperature in

the wellbore is largely influenced by fluid Joule-Thomson coe�cient, flowrate

and formation permeability. Also, we concluded that a compositional model is

necessary for analyzing DTS data from complicated flows, e.g. multiphase flow.

2. We showed that flowrate can be estimated from temperature data. In our study,

both least-square method and linear inverse model were applied to solve the

inverse problem. As discussed in this dissertation, the success of least-square

method relies on the knowledge of the number and locations of each entry point.

By contrast, linear inverse model can invert flowrate profile from temperature

profile correctly without knowing the entry points number and locations.
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This research result makes the concept of ‘soft-sensor’ for monitoring flowrate

more realistic and achievable.

3. Temperature can also be very informative about formation properties, and it

is even better than pressure transient analysis in evaluating near-well damaged

zones.

The result of this study makes the downhole temperature data more useful to

understanding well perforation and reservoir characters. However, there are still large

spaces for better use of DTS data. Two directions are suggested for future research

work.

1. Apply Vertical Temperature Data to Reservoir Characterization

The reservoir characterization process is to build a geological reservoir model by

incorporating as many field data as possible. Well logs, seismic and production

data are the three main sources of data. A workflow of reservoir characterization

can be illustrated in Figure 8.1. First, a lithofacies model is built by integrating

well logging data and seismic data, and then a petrophysical model is generated

based on the lithofacies model. Thus, this petrophyisical model is conditioned

to the geological prior information and the seismic/well logging data. Subse-

quently, by doing history matching, the petrophysical model is conditioned to

production data. Finally, an optimized geological model is obtained.

The incorporation of DTS data to reservoir characterization workflow is promis-

ing because DTS has the following advantages:

(a) It has high vertical resolution, and the flowrate profile can be estimated

from the DTS. Therefore, comparing to the traditional single-point pro-

duction data (no matter whether the production is measured on the surface

or downhole), DTS can provide more information in the vertical direction.
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Figure 8.1: Flowchart of reservoir characterization.

This vertical production information can be used to constrain geostatistical

realizations. Thus, DTS is valuable to study the vertical heterogeneity

in the reservoir.

(b) DTS can provide information continuously during the production, and thus

it might be incorporated with 4D seismic data to capture the temporal

reservoir changes.

(c) The estimate of permeability from the temperature profile is more reliable

than from seismic or well logging data, because temperature is dynamic

data, while seismic or well log are static data. Permeability is a parameter

used to characterize dynamic flowing, so in order to estimate permeability

from seismic or well logging data, an empirical relationship between poros-

ity and permeability has to be used. However, the temperature is related

directly with permeability. Thus, it is promising to use the temperature

to estimate permeability field.
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2. Interpret DTS Data in an Interference Test

As the heat di↵uses very slowly in the reservoir, the DTS data in a single

well can only provide information in the near-wellbore region, and this region

is usually contaminated by the drilling operation and is not representative of

the whole formation. By contrast, in an interference test, temperature may be

recorded in an observation well at a distance away from the active well. The

time of water (or gas) breakthrough and sequence of water breakthrough in each

layer provides information of the layer permeability. DTS can monitor wellbore

production continuously, and sensitive to water (or gas) breakthrough.



Nomenclature

C0 distribution coe�cient in the drift-flux model, dimensionless

f fugacity

g gravity component along the well, ft/sec2

Hp specific enthalpy of phase p, btu/lbm

k permeability, md

Kc equilibrium ratio

mcp mass source/sink term for component c in phase p, lbm/day

mH thermal source/sink term, btu/day · ft

Nc number of component

Ns number of well segments

pp wellbore pressure, psi

Qloss heat loss to the surroundings, btu/day.ft

rin internal radius of the well, ft

Sp saturation of phase p
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t time, days

T reservoir temperature, oF

Tw wellbore temperature, oF

Up specific internal energy of phase p, btu/lbm

Uto overall heat transfer coe�cient, btu/day · ft2 ·o F

Vd drift velocity of gas in liquid, ft/sec

Vm mixture velocity, ft/sec

Vp velocity of phase p, ft/sec

Vsp superficial velocity of phase p, ft/sec

WI well index, cp · b/day · psi

Zc overall mole fraction of component c

↵p in-situ volume fraction of phase p

� thermal expansion coe�cient? 1/K

xcp molar fraction of component c in phase p

�p mobility of phase p, ft2/cp · rb

⇢p density of phase p, lbm/ft3

z mole fraction of gas in absence of water

Subscripts

a acceleration
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c component

f frictional

h hydrostatic

p phase

s superficial

r, z spatial directions



Appendix A

Structural Parameter Selection

Continuing from the discussion in Chapter 3 about the linear inverse model, the prior

of s(x) is a Gaussian random field, and its covariance matrix is Q. The measurement

equation is:

y = Hs+ v (A.1)

in which v is the error term with mean 0 and covariance R.

In the case that Q and R have linear generalized covariance function, they can be

written as:

Qi,j = �✓1|xi � xj|, ✓1 > 0 (A.2)

Ri,j = ✓2�i,j, ✓2 > 0 (A.3)

✓1 and ✓2 are the parameter we need to choose. According to Kitanidis (2007), these

structural parameters have the following characters:

1. a large ✓1 would replicate data more closely, while leading to more fluctuation in

the estimation, thus ✓1 has the e↵ect of suppressing fluctuations in the estimate

at the expense of sacrificing some of the resolution;

2. a large ✓2 smooths the estimates and yields an estimate that reproduces the
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data less faithfully.

One may need to select these two parameters, not only by previous experience,

which is subjective, but also under the guidance of the data. This is the problem of

structural-parameters estimation. The detail of the choosing structural param-

eters when applying linear inverse model to Case 2-A.1 (Chapter 5) are shown in the

following.

At optimum, Q2 should be equal to 1, from Figure A.1, when Q2 equals 1, ✓2 is

6.1 ⇥ 10�4; and we want to minimize cR by varying ✓1/✓2, as shown in Figure A.2,

✓1/✓2 = 0.0167 minimizes cR, thus, ✓1 is 10�5.

Figure A.1: Q2 vs ✓2.

One way of convincing that our estimation of ✓ is reasonable is to show we achieve

a good trade-o↵ between data fitting and resolution. The degree of meeting these

conflicting objectives can be measured through Jr and Jf , which are defined as:
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Figure A.2: cR.

Jr =
m�1X

i=1

(ŝi+1 � ŝi)
2 (A.4)

Jf =
nX

i=1

(yi �
mX

j=1

Hi,j ŝj)
2 (A.5)

Jr represents the flatness of the estimate, it is small when the estimate is relatively

uniform, and Jf represents how faithful the data is reproduced, when it is small, the

data is reproduced more faithfully. When ✓1/✓2 = 0.0167, Jr vs Jf is shown in Figure

A.3. This shows that under our estimation ratio between ✓1 and ✓2, Jr and Jf achieves

a good trade-o↵.

In the linear inverse modeling, two objectives have been set up: one is reproducing

the data and the other is to meet the requirement of the prior information, which

includes uniformity, flatness and smoothness of the estimate. The choices of the reg-

ulation schemes and the relative weighting of the two terms in the objective function
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Figure A.3: Trade-o↵ between Jr and Jf .

have profound e↵ects on the result of the inverse problem.

In summary, we parameterized the prior information and measurement error by

two structural parameters: ✓1 and ✓2. The choice of these parameters are guided by

the data, and the algorithm solves the problem in the sense of minimizing the loss

function which does not obtain the two objectives. As shown here, our estimation

of ✓s gives a good-trade o↵ between reproducing the data and being consistent with

prior information.



Appendix B

Numerical Distretization for

Reservoir Temperature Model

The detail of the discretized form of the reservoir temperature equation Eq. 4.15 is

shown in this Appendix. The Eq. 4.15 represents the energy balance in the reservoir,

considering several heat transfer mechanisms, is repeated here.

⇢Cp
@T

@t
� ��T

@p

@t
= kTr2T � ⇢cpurT + (�T � 1)urp (B.1)

where u is velocity, � is the thermal expansion coe�cient and the over bars stand

for the mean properties for the mixture of fluids and rocks. As discussed in Chapter

4, the first-order derivative is approximated by a forward di↵erence and the second-

order derivative by central di↵erences (Eq. 4.85 to 4.89). We used implicit method

in temporal advance, and the discretized form of Eq. B.1 can be written as Eq. B.2.

⇢Cp

T n+1
i,j � T n

i,j

�t
= kT

T n+1
i+1,j � 2T n+1

i,j + T n+1
i�1,j

�x2
� ⇢cpu

T n+1
i+1,j � T n+1

i�1,j

2�x

+(�T � 1)u
pn+1
i+1,j � pn+1

i�1,j

2�x
+ ��T

pn+1
i,j � pni,j
�t

(B.2)
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Again, as discussed in Section 4.1.6, the coe�cients in Eq. B.2 are obtained by

solving secondary equations. The solving scheme we chose to use is implicit Euler,

more details were discussed in Section 4.1.6.
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