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Abstract 

Structural uncertainty is the first-order uncertainty in reservoir modeling both in terms of 1) the 

difficulty of structural interpretation due to limited data acquisition/quality and 2) the magnitude of 

its impact on uncertainty in hydrocarbon in-place and fluid flow performance. Though it is a 

common practice to consider structural uncertainty in the evaluation of hydrocarbon in-place in the 

appraisal phase of field developments, structural uncertainty is rarely considered when evaluating 

future production performance in the production phase. The reason is mainly the difficulty in 

integrating dynamic data into structural uncertainty modeling. This research aims at developing a 

method/workflow for structural uncertainty modeling which integrates geophysical and geological 

data during the process of history matching. 

This dissertation first proposes a semiautomatic seismic interpretation method using geostatistical 

pattern simulation. From the resulting multiple structural interpretations, a prior stochastic 

structural model is built and used as a geological/geophysical constraint for the subsequent history 

matching. Next, a new history matching method is proposed: numerical models are inverted from 

dynamic fluid flow response while honoring the previous structural model. The method consists of 

searching for numerical models that match production history from a large set of prior structural 

model realizations. To make such a search effective, a parameter space defined with a “similarity 

distance” is introduced. The inverse solutions are found in this space using a stochastic search 

method. Synthetic but realistic reservoir examples are presented to demonstrate the proposed 

workflow/methods. 
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Chapter 1  

Introduction 

History matching of structurally complex reservoirs is one of the most challenging tasks in 

reservoir characterization, where the difficulty arises from large uncertainty in reservoir geometry 

itself, resulting from limited quality and resolution of seismic data. In addition to the uncertainty in 

the fault/horizon positions due to the low resolution of seismic images, the process of structural 

interpretation and migration is not unique and often rely on subjective decisions made by experts. 

The traditional history matching approach starts by fixing the reservoir geometry to a single 

interpretation. This may results in a failure to match past production, and it may lead to future 

development planning based on a “wrong” structural interpretation. Indeed in many cases the 

reservoir geometry has a stronger impact on production behavior than the petrophysical properties 

distribution. 

This problem is already recognized in the domains of geophysics and geoscience, and several 

attempts were made to quantify the structural uncertainty. Thore et al. (2002) proposed a 

geostatistical approach for generating equiprobable multiple structural models accounting for 

multiple sources of uncertainties; more precisely, the uncertainties in migration, horizon picking, 

and time-to-depth conversion. The method calls for perturbing the position of horizons and faults 

starting from a “best” structural model obtained by expert’s interpretation, and accounting for 

uncertainties from different sources. Later, Lecour et al. (2001) applied this method to a more 

complex fault network modeling focusing only on the uncertainty resulting from interpretation. 

Similar applications are also found in Samson et al. (1996), Corre et al. (2000), and Charles et al 

(2001). Methods for addressing structural uncertainty resulting from seismic processing 

(migration) have been also proposed. Clapp (2001, 2003) proposed a stochastic methodology for 

assessing the uncertainty in seismic imaging resulting from velocity modeling, where multiple 
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seismic velocity fields are stochastically generated accounting for the uncertainty associated with 

the error in velocity analysis from seismic gathers. By inputting these multiple velocity models 

into the migration of seismic data, multiple seismic data/image sets are obtained. Grubb et al. 

(2001) also proposed a multiple migration method for addressing the velocity uncertainty 

attributed to the ill-posedness of seismic inversion, where multiple migrations are achieved by 

inverting multiple velocity models using a global optimization technique. 

All of these approaches have the potential to open the way for “considering structural uncertainty 

as a parameter for history matching (Thore et al., 2002)”, providing reservoir engineers access to 

prior information on uncertainty related to structural interpretation/seismic processing. However, a 

method for inverting reservoir structure from production data under the constraints of prior 

geological information has been lacking. An attempt of dynamic data integration into stochastic 

structural uncertainty modeling is found in Rivenæs et al. (2005). Their approach utilizes 

stochastic tools for perturbing horizons from a deterministic structural model and for simulating 

fault patterns. The realizations that match historical pressure data are chosen by screening 

realizations using a streamline flow simulator. Their practice (Rivenæs et al., 2005) showed that 

experts often give significantly different structural interpretations although based on the same 

seismic image, thus the structural models should be built based on such several geological 

scenarios. 

The major difficulty in history matching of structural geometry is attributed to the lack of efficient 

optimization methods for solving an inverse problem where the (discrete) choice of the structural 

interpretation is one of the parameters. Gradient-based methods do not apply in such inherently 

discrete parameter space. Also, reservoir geometry is often too complex to be parameterized in a 

Cartesian parameter space or to be addressed in the context of stochastic optimization methods 

such as the genetic algorithm.  

This dissertation proposes a new method/workflow for modeling reservoir structural uncertainty 

integrating dynamic production data with geophysical/geological data. The proposed methodology 

does not history match a reservoir structure by a mere perturbation made from a single structural 

interpretation: it considers the multiple alternatives of seismic processing/interpretation which 

constitute the major source of structural uncertainty.  Figure 1.1 illustrates the proposed workflow. 

It consists of two stages; prior and posterior structural uncertainty modeling. The modeling of prior 

structural uncertainty considers the geological/geophysical sources of uncertainty such as non-
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uniqueness in the migration results due to uncertainty in velocity modeling, multiple alternative 

structural interpretations due to different decisions made on fault/horizon identification, and the 

error in horizon/fault positioning due to the low resolution of seismic images or time-to-depth 

conversion error. Uncertainty modeling at this stage aims at providing the parameter space for 

history matching; i.e. a large set of structural models which consists of hundreds of structural 

realizations and covers a large range of prior structural uncertainty. Such a large set of structural 

models is built by stochastically perturbing horizon and fault positions from several alternative 

structural interpretations (Fig. 1.1). Note that the computational cost for generating a new 

realization is extremely inexpensive compared to the cost required to flow-simulate this realization 

in the next stage. The second stage, the modeling of posterior structural uncertainty, is 

implemented by searching for a set of model realizations that match past production behavior in 

this parameter space (history matching, Figure 1.1). The goal of this stage is to reduce the 

structural uncertainty through the incorporation of dynamic production data. History matching 

requires several flow simulations on the model realizations which can be expensive: thus at this 

stage it is essential to search for model realizations with a reasonable number of flow simulations 

using an efficient optimization technique. 

 

 

 

 

 

 

 

 

Figure 1.1: Proposed workflow for structural uncertainty modeling 
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This thesis consists of two parts (Parts I & II) that describe the new methodologies to implement 

the proposed workflow. Part I first reviews the multiple migration method of Clapp (2001, 2003) 

in Chapter 2. His method starts from the generation of multiple alternatives of seismic images 

depicting the uncertainty in the seismic velocity model used for migrating raw seismic data; this 

provides the multiple migration results needed to start the workflow illustrated in Figure 1.1. The 

next step of the workflow is to build several structural models from the previously obtained 

alternative seismic images. However, the manual interpretation of seismic sections is often time 

consuming especially when the volume of data is large. In practice, this manual labor cost may be 

a major obstacle to utilizing multiple alternative seismic interpretations for structural uncertainty 

modeling. Commercially available automatic interpretation tools are hardly applicable for 

structurally complex reservoirs since most algorithms rely on a simple autotracking of amplitude 

peaks. Therefore, a new semiautomatic seismic interpretation method is proposed in Chapter 3. 

This method is designed to assist in the seismic interpretation based on multiple migration results. 

This is done by autopicking faults and horizons on the seismic sections. A geostatistical pattern 

simulation method (Arpat, 2005) is used instead of the traditional autotracking technique. Once 

those multiple structural interpretations are obtained, a large set of structural models, which define 

a parameter space where history matching take places, are generated. Part II discusses how to 

implement the history matching in this discrete parameter space. In Chapter 4, a new method for 

inverting geological architecture from production data is proposed. The key idea of the method is 

to parameterize the geological architectures towards a spatial inverse problem.  This parameter 

space is then provided with a distance function that measures the “similarity” between any two 

different geological architectures. Chapter 4 illustrates the proposed methodology through an 

example taken from a facies modeling problem. The method is then applied to structural modeling 

problems in Chapter 5. Chapter 6 summarizes and discusses the conclusions and future directions 

of this work. 
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Part I 

Modeling Seismic Imaging Uncertainty 

 

Chapter 2  

Multiple Seismic Imaging Assessing Velocity 

Uncertainty 

Clapp (2004, 2003, 2001) proposed a methodology for assessing the seismic imaging uncertainty 

related to the seismic velocity model used for migrating raw seismic data. By accounting for the 

uncertainty in seismic velocity estimation (Clapp, 2003) or moveout measurements (Clapp, 2004) 

and by inputting multiple velocity models into the migration, multiple seismic data/image sets are 

obtained. Structural models interpreted on the resulting multiple seismic images can be used as a 

set of prior reservoir models which starts the structural uncertainty modeling workflow proposed in 

this dissertation (Fig. 1.1). This chapter first reviews two methods of Clapp. The velocity 

uncertainty is modeled accounting for error in velocity estimation from seismic gathers in the first 

method (1-D super Dix, Clapp, 2003), while it is modeled in the second method (Clapp, 2004) in 

the context of tomography. Then, based on an actual reservoir data from the North Sea, a synthetic 

seismic imaging uncertainty model is constructed in collaboration with Clapp1 and Biondi2 to 

illustrate the methodology. 

                                                        
1, 2 Department of Geophysics, Stanford University 
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2.1 Methods: Review 

2.1.1 Uncertainty in Velocity Estimation Using Dix Formula 

The methodology of Clapp (1-D super Dix, 2003) focuses on the uncertainty in seismic velocity 

estimated from common mid-point (CMP) gathers. A typical example of velocity estimation is 

given in Figure 2.1. 

 

 

 

 

 

 

 

 

Figure 2.1: Example of velocity estimation from CMP gather, (a) CMP gather, (b) RMS velocity 
estimation on velocity scan, (c) interval velocity from RMS velocity 

(Source: Robert G. Clapp, Multiple realizations and data variance: Successes and failures, 
Stanford Exploration Project, Report 113, 2003) 

 

Figure 2.1a shows an example of a CMP gather (traveltime vs. offset) obtained at a particular 

common midpoint. Assuming waves as expanding circles, the relation between traveltime and 

offset is described as: 
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 t: two-way traveltime (i.e. traveltime from source to receiver) 

 τ: zero-offset two-way traveltime (called “traveltime depth”) 

 h: half-offset 

 vRMS: root-mean-square (RMS) velocity 

 

 

 

 

 

Figure 2.2: Horizontal layer assumption for a velocity field 

 

Assuming a horizontally layered velocity field (Fig. 2.2) where the velocity of each layer is 

defined as interval velocity (vint), RMS velocity (vRMS) in Eq. 2.1 is defined from Dix Formula as 

below: 
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Δτ in Eq. 2.2 is the layer thickness in traveltime depth, which is related to the physical layer 

thickness Δz as: 
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According to Eq. 2.1, the amplitude shown in the CMP gather is regarded as a collection of 

hyperbola curves which are characterized by traveltime depth and corresponding RMS velocity at 

individual reflection points. The actual relation between traveltime and offset is not exactly 

hyperbolic since wave propagation is not precisely circular in laterally heterogeneous velocity 

field. However, it is an usual practice to estimate RMS velocity using this hyperbolic 

approximation. The velocity scan (Fig. 2.1b) for estimating RMS velocity is generated from the 

CMP gather by taking the summation of amplitude along each hyperbola curve, then plotting that 

sum in a traveltime depth vs. RMS velocity plane. On the velocity scan, we observe a peak of 

strong amplitude responses which indicates the RMS velocity corresponding to reflection point at 

traveltime depth τ. The RMS velocity is estimated as a function of τ by autopicking the maximum 

amplitude response on the velocity scan (dashed line in Figure 2.1b). The interval velocity (vint, 

dashed line in Figure 2.1c) is calculated from the autopicked RMS velocity using the relationship 

expressed in Eq. 2.2. 

However, the amplitude response peak usually shows considerable spread on the velocity scan, 

which indicates that the autopicked RMS velocity is uncertain. This uncertainty is attributed to the 

noise in the seismic data and the limited applicability of the hyperbolic approximation. Clapp 

(2001, 2003) proposed to generate multiple equiprobable realizations of the velocity as a function 

of depth, instead of obtaining a single best-estimate velocity model. The multiple velocity models 

are then used to produce equiprobable migrations of the seismic data. The methodology takes the 

following procedure. 

 

1) Autopicking of RMS velocity and evaluation of error variance 

The first step is to obtain the RMS velocity from the velocity scan by autopicking, and to evaluate 

the error variance of the RMS velocity from the velocity scan. The error variance σv
2(τ) at 

traveltime depth τ is evaluated as, 

 ( )
( ) ( ){ } ( )

( )∫
∫ −

=
RMS

4
RMS

RMS
4

RMS
2

pick_auto,RMSRMS2
v

dv,vs

dv,vsvv

τ

τττ
τσ   (2.4) 
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where vRMS,auto_pick(τ) is the autopicked RMS velocity at traveltime depth τ, s(τ) is the semblance (= 

amplitude stacked along each hyperbola) plotted on the velocity scan. In actual application, σv
2(τ) 

is calculated in a discretized form of Eq. 2.4. The example of the evaluated autopicked RMS 

velocity and the square-root of error variance is depicted in Figure 2.3. 

 

 

 

 

 

 

 

Figure 2.3: Example of autopicked RMS velocity and it's square-root error variance 

Source: Robert G. Clapp, Multiple realizations and data variance: Successes and failures, 

Stanford Exploration Project, Report 113, 2003 

2) Construction of the inversion problem 

The interval velocity vint is obtained from the autopicked RMS velocity vRMS using the relation in 

Eq. 2.2. In principle, it is possible to directly solve for vint by inverting the linear system in Eq. 2.2. 

However, in practice, the autopicked RMS velocity curve shows considerable small scale 

fluctuation, often due to noise in the data. Since the interval velocity is a function of the derivative 

of the RMS velocity, the direct calculation of vint from noisy vRMS by simply relying on the 

solution of a linear system would produce an erroneous interval velocity model. 

One of the solutions to avoid a solution of Eq. 2.2, which is noisy, is to add a regularization 

constraint to Eq. 2.2 to smooth the modeled interval velocity. In other words, one tries to obtain an 

interval velocity model which has a given desired smoothness and also best fits to the autopicked 

RMS velocity. This is achieved by solving an inversion problem, where as input data the 
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autopicked RMS velocity vRMS is used and a target model is the interval velocity vint. This 

inversion problem is constructed based on Eq. 2.2 and also uses the error variance σv
2 of Eq. 2.4 in 

order to account for the uncertainty in autopicked vRMS. This is done as follows: 

Eq. 2.2 is rewritten as follows by specifying Δτj = Δτ (constant): 
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Using Eq. 2.5 as a forward model, the misfit of vRMS,i
2 between that obtained from the autopicked 

RMS velocity (data), vRMS,auto_pick,i, and that derived from the interval velocity to be inverted 

(model), vint,i, is evaluated as: 
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For simplicity, the autopicked RMS velocity vRMS,auto_pick,i will be denoted as vRMS,i hereafter. The 

residual rn,i to be minimized in the inversion problem is defined from the misfit ri (Eq. 2.6) and the 

error variance σv,i
2 (Eq. 2.4) as follows: 
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The minimization of the residual rn,i accounts for the data uncertainty in vRMS,i in obtaining the 

best-fit model, i.e., since i,n
2

i,vi rr σ= from Eq. 2.7, a large misfit ri is allowed for a large error 

variance σv,i
2 and vice versa. 

Eq. 2.7 is written in matrix form as, 

 ( )22
1 CD intRMSn vTvr −Σ=    (2.8) 
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where: 

 [ ]N,ni,n2,n1,n r,,r,,r,r KKKK=T
nr  

 [ ]2
N,RSM

2
i,RSM

2
2,RSM

2
1,RSM v,,v,,v,v KKKK=T2

RSMv  

 [ ]2
Nint,

2
iint,

2
2int,

2
1int, v,,v,,v,v KKKK=T2

intv  

 [ ]N,,i,,2,1 KKKK=TT  

 Σ: diagonal matrix whose diagonal element is 1/σv,i
2 

 D1: diagonal matrix whose diagonal element is 1/Ti
 

 C: lower triangular matrix with the elements of 1 (causal integration) 

A regularization term, whose purpose is to generate smooth inverted vint, is added to the problem 

as: 

 2D intm vr =      (2.9) 

By minimizing rn and rm jointly using the least square optimization, the maximum likelihood 

solution of the interval velocity vint is obtained. This is done through the minimization of,  

 
222

0 mn rr ε+≈     (2.10) 

where ε is a scaling weight. 

 

3) Generation of multiple realizations of interval velocity 

The next step is to generate multiple realizations of interval velocity vint
(l) based on the maximum 

likelihood model vint
(0) obtained from Eq. 2.10. This is achieved through generating multiple 

residual vectors rn
(l) which have the same covariance structure as that of the initial residual vector 



CHAPTER 2. MULTIPLE SEISMIC IMAGING  12 

 

rn
(0) obtained from ( )2)0(2

1
)0( CD intRMSn vTvr −Σ= . For this purpose, a filter matrix H is 

constructed a method based on prediction error filter (PEF, see Claerbout and Fomel, 2004, for 

details). 

The important property of the filter matrix H is: if we apply the filter matrix H to the initial 

residual vector rn
(0), we obtain white noise vector y(0) as output (Fig. 2.4, see Claerbout and Fomel 

for proof and method for obtaining H). Inversely, if we apply the inverse of the matrix H, i.e. H-1, 

to an arbitrary chosen white noise vector y(l), we obtain a new residual vector rn
(l), which exhibits 

the same covariance structure as the initial residual vector rn
(0).  

 

 

 

 

 

 

Figure 2.4: Property of filter matrix H 

Source: Robert G. Clapp, Multiple realizations and data variance: Successes and failures, 

Stanford Exploration Project, Report 113, 2003 
 

Therefore, introducing the filter matrix H, Eq. 2.8 is rewritten as: 

 ( )22
1 CDHH intRMSn vTvry −Σ==    (2.11) 

The vector y in Eq. 2.11 is white noise. The multiple realizations of interval velocity vint
(l) are 

generated by substituting y by a series of randomly chosen white noise vectors y(l), and solving Eq. 

2.11 for vint. The use of prediction error filter results in the preservation of the covariance vector. 

The corresponding multiple RMS velocity models vRMS
(l) are calculated from    vint

 (l) using Eq. 2.5. 
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Using the multiple velocity models vRMS
(l), multiple seismic data sets are obtained by migrating 

raw seismic data, and then depth-converted using vint
 (l). 

The migration takes considerable CPU time (much larger than any other reservoir modeling 

process such as geostatistical or flow simulation). This is because, while geostatistical simulation 

operates only on the physical model space (i.e. three-dimensions at most), migration operates both 

on data and model space increasing the dimensionality of the problem. For example, a three-

dimensional poststack migration calls for 5-dimensional nested loops and could take several days 

of CPU time (for each migration). Adding the uncertainty in velocity to the problem adds one more 

loop. Furthermore, the volume of a seismic data/image is generally much larger than the volume 

covered by a reservoir model grid. 

2.1.2 Velocity Uncertainty in Tomography 

Clapp (2004) extended the methodology described above (Section 2.1.1) to a more complex 

problem, namely, tomography or tomographic migration velocity analysis (MVA). 

 Migration Velocity Analysis (MVA) 

Suppose that raw seismic data is already migrated using a given velocity model, and we are 

interested in whether this velocity model is reasonable. One way to investigate this is to plot the 

amplitude of the migrated data on depth vs. half-offset plot or depth vs. reflection angle (i.e. 

reflection angle between source and receiver) plot, which method depends on the migration 

method used. As conceptually illustrated in Figure 2.5, an amplitude peak (reflector) appearing on 

this plot should be flat if the velocity used for the migration is correct. If the velocity is too high or 

too low, the reflector deviates from the flatness as depicted in Figure 2.5. With the correct velocity 

model the reflector will migrate to the same position, deviation from flat (i.e. moveout) indicates 

an error in the velocity model. The moveout is often parameterized as a function of offset (or 

reflection angle) and a parameter γ. This function is called moveout function and the parameter γ is 

the ratio of slowness (inverse of velocity) to “true” slowness. Thus the value of parameter γ 

indicates the desired change of velocity to obtain a better migration result. The standard approach 

for estimating the γ field is to take the summation of amplitude values along the moveout function 

over the range of offset (or reflection angle) and generate a parameter γ vs. depth plot, and then 

pick γ value at the highest amplitude peak. Notice the similarity of this approach to the velocity 
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estimation by autopicking from a velocity scan (Section 2.1.1).  Similarly to the velocity 

estimation in Section 2.1.1, one desires the estimated γ field to be smooth by avoiding noise. 

 

 

 

 

 

 

 

Figure 2.5: Conceptual illustration of moveout 

Tomography 

Once the initial guess of γ field is estimated, the slowness (inverse of velocity) is solved using 

tomography. Tomography is a nonlinear problem. The standard solution is to linearize around the 

slowness model used for migration. The residuals to minimize in this tomography problem are: 

 ΔsTDr 0data −= γ     (2.12) 

 Δs)A(sr 0model +=     (2.13) 

D is an operator to convert parameter γ (i.e. the parameter that informs desired change in slowness 

to reduce moveout) into corresponding change in travel-time Δt. T0 is constructed based on the 

slowness model used for migration and tells how a change in slowness Δs corresponds to a change 

in travel-time Δt. Therefore, minimizing rdata by fitting T0Δs to Dγ serves as the minimization of 

moveout. The residual rmode is a regularization term to smooth slowness s. s0 is an initial slowness. 

The slowness s is iteratively updated by minimizing 
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222

modeldata rr0 ε+≈    (2.14) 

where ε is a scaling weight. The γ field is also updated after every iteration step and converges 

toward to γ = 1.0. 

Multiple realizations of γ field 

Clapp (2004) proposed to perform multiple tomography starting from multiple realizations of 

initial guess of γ field, instead of using a single “best” estimation of γ. The methodology takes two 

hierarchical procedures. 

First, some number of realizations of smooth γ field that reasonably fits to the highest amplitude 

peak on the parameter γ vs. depth plot is generated by minimizing 

 
222

modeldata rr0 ′+′≈ ε    (2.15) 

where: 

 )g(gWr smoothmaxgdata −=′    (2.16) 

 smoothmodel Agr =′     (2.17) 

gmax is the value of parameter γ at the highest amplitude peak on the plot. This gmax is updated after 

each iteration step by selecting new gmax from the vicinity of current gsmooth within a given range. 

Weight Wg is to consider the amplitude value for fitting. The residual r’mode is a regularization 

term to smooth gsmooth. Multiple realizations are obtained by adding random noise to r’data in Eq. 

2.16. 

Then, starting from each of multiple initial guess of γ fields, multiple slowness fields are solved 

through tomography. Again, multiple realizations of slowness are generated for each initial guess 

of γ by adding random noise to rdata in Eq. 2.14. 
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2.2 Synthetic Reservoir Example 

2.2.1 Model Description 

The synthetic reservoir model is constructed based on an actual reservoir data from the North Sea. 

The model is a two dimensional cross-section consisting of 680*340 grid blocks, 3400m in 

horizontal direction and 850m in vertical direction. The grid block size is 5m in horizontal and 

2.5m in vertical. The depth of reservoir is 2270 ~ 3120 m-TVDSS. Figures 2.6 and 2.7 show the 

facies distribution and net-to-gross ratio, i.e. (net sand thickness in gridblock)/(gross gridblock 

thickness),  distribution of the reservoir model. The reservoir is a faulted sand stone reservoir with 

thin shale layers and tiny calcite bodies (Fig. 2.6). The upper and lower part of the reservoir is 

shaly sand while the middle part of the reservoir is clean sand embedded by discontinuous thin 

calcite bodies. Porosity and permeability were geostatistically simulated constrained by the facies 

and net-to-gross ratios and are depicted in Figures 2.8 and 2.9. Average porosity and permeability 

are 0.24 and 537 mD, respectively. Water saturation distribution (Fig. 2.10) was modeled with 

OWC at 2688.5 m-TVDSS and capillary transition using J-function from the porosity and 

permeability realization (Table 2.1). The fluid densities are obtained from the field data. The 

reservoir is modeled as undersaturated reservoir without gas cap. The water saturation of shale and 

calcite bodies is specified as 1.0. 
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Figure 2.6: Facies model 

 

 

 

 

 

Figure 2.7: Net-to-gross ratio model (a) and histogram of net-to-gross ratio in Sand (b). Net-to-
gross ratio in Shale and Calcite is set to 0.0 

 

 

 

 

 

Figure 2.8: Porosity model (a) and histogram of porosity in Sand (b).Porosity in Shale and Calcite 
is set to 0.001 
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Figure 2.9: Permeability model (a) and histogram of permeability in Sand (b).Permeability in 
Shale and Calcite is set to 0.001 mD 

 

 

 

 

 

Figure 2.10: Water saturation model 

Table 2.1: Parameters for modeling capillary transition of water saturation 

Sand 

J(Sw)=0.12*(Sw - Swir)
 -0.5 - 0.12504071   (φ=0.25, K=500 mD) 

H = 31831.6*J(Sw)*TS*(φ/K)0.5 / (ρw - ρo) 

OWC = 2688.5 m 

TS = 22 dynes/cm 

ρw = 995 kg/m3 

ρo = 730 kg/m3 

Shale/Calcite Sw = 1.00 
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 The rock physics properties are simulated based on the petrophysical properties model. Figure 

2.11 depicts the bulk density section calculated from the simulated porosity and net-to-gross ratio 

realizations. The fluid densities are obtained from actual field data (Table 2.2). Mineral density and 

composition for sand and shale are given in Table 2.2. The density of calcite is taken from the 

literature (Table 2.2; see Mavko et. al, 1998). Figure 2.12 shows a P-wave velocity section 

generated from the porosity, net-to-gross ratio, and water saturation realizations. The P-wave 

velocity of water saturated sand is calculated using the empirical correlation given in Table 2.3 

(Han, 1986; see Mavko et. al, 1998). Gassmann’s relation (1951; see Mavko et. al, 1998) was 

applied for fluid substitution using bulk modulus obtained from field data and literature value 

(Table 2.3). The P-wave velocity of shale is calculated using empirical correlation (Table 2.3, 

Gardner, 1974; see Mavko et. al, 1998). P-wave velocity of calcite is obtained from the literature 

(Table 2.3; see Mavko et. al, 1998). The P-wave impedance model (Fig. 2.13) is computed from 

bulk density and P-wave velocity. As depicted in Figure 2.13, shale layers and calcite bodies are 

highlighted by high impedance. 

 

 

 

 

Figure 2.11: Bulk-density model (a) and histogram of bulk-density (b) 

 

 

 

Figure 2.12: P-wave velocity (a) and histogram of P-wave velocity (b) 
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Figure 2.13: P-wave impedance model (a) and histogram of P-wave impedance (b) 

Table 2.2: Parameters for bulk-density calculation 

Bulk 
density 

ρb = φ * ρfl + (1-φ) * ρm 

Fluid 
density 

ρfl = ρw * Sw + ρo * (1-Sw) 

Matrix 
density 

Sand/Shale: ρm = ρsand * NTG+ρsh * (1-NTG) 
Calcite:  ρm = 2.71 

Mineral composition for ρsand & ρsh 
 Mineral Density Composition 

Quarts 2.654 0.6 
Feldspar 2.630 0.3 

 
Clean Sand 

Rock frg. 2.710 0.1 
Quarts+Rock frg. 2.642 0.2  

Shale Clay minerals 2.500 0.8 
 

Table 2.3: Parameters for P-wave velocity calculation 

Vp = (5.55 - 6.96*φ-2.18C)*1000.  (30 MPa, Han 1986, Water saturated rock) 
Vs = (3.47 - 4.84*φ-1.87C)*1000.  (30 MPa, Han 1986, Water saturated rock) 
C = 1 – NTG 

 
Sand 

Fluid Substitution (Gassmann 1951) 
Kfl1 = Kwat,  Kfl2 = Russ average of Kwat & Koil 
Kmin = Russ average of Ksand & Kclay 
Kwat = 2.14 GPa, Koil = 0.5 GPa 
Ksand = 39 GPa, Kclay = 25 GPa (from Han 1986) 

Shale ρb = 1.75*(Vp/1000.)0.265  (Gardner 1974) 
Calcite Vp = 6640 m/s 

sand

calcite

shale

Imp (m/s-g/cm3)

3400 m

- 3120 m

- 2270 m

850 m

680*340 Blocks, Grid Size: DX = 5 m,  DZ = 2.5 m

(a) (b)

sand

calcite

shale

sand

calcite

shale

Imp (m/s-g/cm3)
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- 3120 m

- 2270 m

850 m

680*340 Blocks, Grid Size: DX = 5 m,  DZ = 2.5 m

(a) (b)
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2.2.2 Result and Discussions 

A synthetic seismograph is generated from the rock physics property model and utilized for 

seismic imaging. Figure 2.14 depicts the result of multiple seismic imaging (courtesy of Robert 

Clapp) obtained by the method of Clapp (2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14: Multiple seismic images stochastically modeled accounting for velocity uncertainty 
(Courtesy of Robert Clapp)  
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These seismic images are generated using the multiple tomography method (Clapp, 2004). As 

depicted in Figure 2.14, the seismic imaging uncertainty model results in a nonuniqueness in 

horizon reflector positions due to the stochastic perturbation of seismic velocity, accounting for the 

error variance associated with the estimate of RMS velocity. The continuity of reflectors also 

changes at the location of the fault with small throw. These variations are subtle visually. 

However, such subtle difference in a structure can cause a significant change in fluid flow behavior 

depending on the type of a reservoir. For example, in a layer-cake-type reservoir comprising 

alternating clean sand and shale layer, a change in the juxtaposition of layers across faults due to a 

slight perturbation of horizon reflector positions results in a significant difference in flow pattern 

and flow communication between fault blocks. On the other hand, the position of the faults with 

large throw and their throw do not exhibit significant uncertainty in this uncertainty model. Images 

1~5 in Figure 2.14 are created from the same initial guess of γ filed, where as images 6~10 are 

from another initial guess of γ filed. Note that difference between the group of images 1~5 and the 

group of images 6~10 are larger than the difference between the images in the same group. 

The seismic imaging uncertainty modeled in Figure 2.14 considers two hierarchical sources of 

uncertainty; 1) uncertainty associated with different initial guess for the tomography problem, 

which is modeled accounting for the error associated with the moveout measurement, and 2) 

uncertainty due to the error in fitting goal of the tomography problem. The magnitude of 

uncertainty is larger in the former than the latter. However, the difficulty in this approach is, even 

using different initial guesses, the final solutions of the velocity model can fall into the same local 

minimum due to the nonlinearity of the tomography problem. In such cases, it is a practical idea to 

increase the number of realizations of the initial guess, and also to increase the variability among 

the multiple initial guesses. Then, the resulting uncertainty in seismic imaging would be much 

larger. Figure 2.15 shows such an example (courtesy of Robert Clapp). In this figure, “image B” is 

obtained by migrating the same seismic data as used for “image A”, but using a velocity model 

related to a different subsurface structure above the reservoir (Fig. 2.16). These two velocity 

models are obtained by the tomography using significantly different initial guesses of γ field. Both 

γ fields are from Eqs. 2.15~2.17 but using different tuning parameters. As depicted in Figure 2.15, 

the resulting seismic images are also significantly different exhibiting different fault positions and 

fault throws in addition to the different horizon positions. 
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Figure 2.15: Multiple seismic images modeled accounting for the uncertainty in prior knowledge 
in velocity uncertainty (Courtesy of Robert Clapp)  

 

 

 

 

 

  

 

Figure 2.16: The subsurface structures corresponding to Image A and Image B in Figure 2.15. 
Notice the difference in the structure above the reservoir (Courtesy of Robert Clapp)  
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Chapter 3  

Semiautomatic Seismic Interpretation Using Pattern 

Simulation 

Aside from the CPU cost of migration, the manual labor cost of seismic interpretation is a primary 

factor preventing the consideration of multiple alternative seismic data sets. Since manual 

interpretation is time consuming especially when the volume of data is large, it is critical to 

automate some part of that interpretation process in order to build large numbers of structural 

models from various seismic images. Unfortunately, commercially available automatic 

interpretation tools are hardly applicable for structurally complex reservoirs since most algorithms 

rely on a simple autotracking of amplitude peaks. For that reason, the need for a new method that 

reduces manual interpretation for seismic interpretation arises. 

Recently, a pattern-based geostatistical sequential simulation (SIMPAT) algorithm was proposed 

by Arpat (2005). The algorithm is designed to simulate facies or petrophysical property models 

using a training image as prior model for the spatial patterns being simulated. Although the 

SIMPAT algorithm is originally developed for characterizing geological objects such as fluvial 

channels, it also has the potential to be applied to seismic interpretation problems for the following 

reasons. 

1) The SIMPAT algorithm is built on a pattern recognition process. This process is similar to 

horizon/fault picking in manual seismic interpretation process, since manual horizon picking is 

done based on visual inspection of reflections “patterns” rather than on a mere tracking of 

amplitude peaks. 
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2) The pattern similarity evaluation method used in SIMPAT algorithm works better for filtered 

(training) images (Arpat, 2005). Considering that a seismic amplitude image represents the 

earth’s filter of naturally occurring horizons, the problem is relevant to SIMPAT. 

This chapter proposes a semiautomatic seismic interpretation method by adapting the SIMPAT 

algorithm. The idea is to use the SIMPAT algorithm to automate a part of the interpretation task as 

an aid to identify and extract faults and horizons on seismic sections. In order to improve the 

pattern simulation accuracy of the SIMPAT algorithm, a dual-scale pattern recognition method is 

proposed. This method is particularly effective to jointly simulate geological objects characterized 

by different representative scales, such as faults and horizons. This chapter briefly reviews the 

SIMPAT algorithm first and shows how we can implement a seismic interpretation using 

SIMPAT. Then, a dual-scale pattern recognition approach is proposed. Finally, the complete 

workflow of a SIMPAT-aided semiautomatic seismic interpretation is presented. The methodology 

is demonstrated using seismic images generated in Chapter 2. 

3.1 SIMPAT Algorithm: Review 

The semiautomatic seismic interpretation problem is categorized as a “soft data conditioning” 

problem amongst the algorithms covered by SIMPAT (Arpat, 2005). Numerous implementation 

details are discussed in Arpat (2005). This section first reviews unconditional simulation by 

SIMPAT to illustrate the basic concept of the SIMPAT algorithm. Then, a mutigrid approach 

(Tran, 1994; Strebelle, 2002), which is an essential algorithm adapted by SIMPAT, is discussed. 

Finally, the review focuses on how soft data conditioning is performed by the SIMPAT algorithm. 

3.1.1 Unconditional Simulation 

The SIMPAT algorithm belongs to the family of multiple-point geostatistics, i.e. a multiple-point 

statistic (MPS) simulation (Srivastava, 1992; Guardano and Srivastava, 1993; Strebelle, 2002), 

which has become increasingly popular because of its ability to reproduce complex geological 

patterns (e.g. sinuous channels) that cannot be modeled by two-point statistics moments (i.e. 

variograms). The MPS simulation advocates the use of a “training image”, a reservoir analog of 

sorts, which depicts a set of geological patterns or heterogeneities to be reproduced on a realization 

being simulated. The role of the training image is to provide information about spatial continuity 
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and patterns of geological features. Thus it can be a purely conceptual image inferred through 

geological interpretation without the need of being constrained to any specific reservoir data. 

Unlike kriging-based simulation techniques such as sequential Gaussian simulation, the 

information on spatial continuity is directly borrowed from the training image without requiring an 

analytical formulation. Due to this flexibility of the algorithm, the multiple-point geostatistical 

methods can reproduce complex geological features (e.g. meandering channel) which can not be 

simulated by traditional variogram-based techniques, since the conditional spatial continuity does 

not need to be simple enough to be expressed by an analytical formula (e.g. variogram). 

The major difference between the MPS simulation and the SIMPAT algorithm is that, while the 

MPS simulation simulates geological facies at a single grid node based on a conditional probability 

inferred from a training image, the SIMPAT algorithm simulates geological objects as a “pattern”. 

The “pattern” for the simulation is retrieved from a pattern database (Fig. 3.1) constructed from a 

training image using a template, thus the algorithm does not require any probability model. 

 

 

 

 

 

Figure 3.1: Pattern database construction of SIMPAT algorithm, Unconditional simulation 

Source: Guven Burc Arpat, Sequential simulation with patterns, 

Ph.D. Dissertation, 2005 

Figure 3.1 illustrates an example of the pattern database construction from a training image. As 

depicted, the training image is scanned by a template to extract the geological patterns. The 

extracted patterns are stored in the pattern database, i.e. a set of the patterns in the size of the 

template that appear on the given training image. The next step of the SIMPAT algorithm is the 

pattern simulation on a simulation grid, utilizing a sequential simulation algorithm; i.e., visiting 

nodes on a simulation grid along a random path. The procedure takes the following steps: 
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1. Visit an empty grid node at location u and place the template there. Extract any data from any 

previously simulated nodes covered by the template. The SIMPAT notation denotes this 

pattern as a “hard” pattern hd(u), in order to distinguish this pattern from a “soft” pattern 

which is discussed later. 

2. Search the pattern database (Fig. 3.1) and find a pattern hpat which is most “similar” to the 

pattern hd(u) extracted in step 1. To evaluate the similarity between the patterns, the SIMPAT 

algorithm uses the Manhattan distance as a similarity measure. The Manhattan distance 

between the patterns a and b, where a and b are expressed as vectors whose elements ai and bi 

are grid values filled in the template, is given as below: 

 ∑ −=
i

ii bad ba,      (3.1) 

A smaller distance ba,d  indicates a greater similarity between a and b. Therefore, in order 

to find the most similar pattern hpat to the pattern hd(u) from the training database, the 

SIMPAT algorithm simply calculates the Manhattan distance between hd(u) and each of the 

patterns included in the training database, and selects a pattern hpat that achieves the 

minimum Manhattan distance. 

4. Paste the selected best-matching pattern hpat on the template location at grid node u.  

5. Go to another empty grid node by following a random path, and repeat steps 1~4 until the 

entire grid is simulated. 

Note that, at each simulation on empty grid node u, a pattern hd(u) (which includes some empty 

grid nodes in the template) is overwritten by the whole pattern of hpat. In other words, the 

SIMPAT algorithm copies patterns from the training image on the simulation grid randomly, by 

matching the patterns to the previously copied patterns. The reproduction of the geological pattern 

depicted in the training image is achieved by this direct copying. However, since the algorithm 

uses a random path for sequential simulation, a different realization is obtained by changing the 

random path.  
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3.1.2 Multiple-Grid Approach 

Since the SIMPAT algorithm consists of copying patterns using a template, naturally, using a 

larger template captures the pattern of geological variability better. However, the large template 

size requires considerable CPU time (= increased time for looking up most similar pattern), and 

also requires a larger hard and soft training images in order to extract a large enough numbers of 

pattern pairs to construct a meaningful pattern database. In order to avoid this problem, the 

SIMPAT algorithm adopts a multiple-grid approach (Tran, 1994; Strebelle, 2002). 

 

 

 

 

 

 

Figure 3.2: Illustration of the multiple-grid concept in SIMPAT algorithm 

Source: Guven Burc Arpat, Sequential simulation with patterns, 

Ph.D. Dissertation, 2005 

Figure 3.2 illustrates the concept of the multiple-grid simulation. As shown in the figure, the 

algorithm first simulates geological patterns by visiting every g-th grid node (Fig. 3.2a) using a 

coarse template (Fig. 3.2c). The coarse template consists of the same number of template nodes as 

the fine template (Fig. 3.2d), but its template nodes are placed with the spacing of g pixels. This 

coarse template is used for evaluating the Manhattan distance (Eq. 3.1) between hpat and hd(u). 

However, once the best-matching pattern is found, the full pattern of hpat (i.e. a pattern extracted 

from the training image at the same location as the “sparse” pattern of hpat is extracted) is pasted 

on the simulation grid. Then, the simulation proceeds to a refined grid (Fig. 3.2b) using a refined 

template (Fig. 3.2d). This refining is repeated until g = 1.  
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3.1.3 Soft Data Conditioning  

Consider the problem of simulating fluvial channels using seismic data as soft conditioning data. 

This problem is called a “soft data conditioning” problem since the simulated geological object 

will be conditioned to soft (secondary) information from seismic images rather than to the direct 

(hard) information such as from well observations. The soft data conditioning technique in 

SIMPAT requires supplying two training images, i.e. a “hard training image” and a “soft training 

image”. In Figure 3.3, the example of the hard training image contains fluvial channels reflecting 

the desired pattern of channel objects to be simulated. The soft training image is a seismic image 

obtained by forward-modeling the seismic data on the hard training image. It can be as simple as a 

moving average of the hard training image or as complex as the result of full seismic wave 

modeling. 

The hard variable patterns (e.g. channel object) and soft variable (e.g. seismic amplitude) patterns 

are related to each other and stored in a pattern database. An example of pattern database 

construction is as shown in Figure 3.3: 

 

 

 

 

 

 

 

 

Figure 3.3: Pattern database construction of SIMPAT algorithm, Soft data conditioning 

Source: Guven Burc Arpat, Sequential simulation with patterns, 

Ph.D. Dissertation, 2005 
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As depicted in the figure, both training images are scanned by a template to extract the patterns. 

The hard image patterns and the soft image patterns extracted at the collocated grid node are 

coupled and stored in the pattern database as a pair of hard and soft patterns. Thus the constructed 

pattern database can be considered as a training database which stores the information about 

pattern-to-pattern correlation observed between hard and soft training images. 

Using the constructed pattern database, channel objects are simulated while being conditioned to 

actual seismic data. The actual seismic data is denoted as “soft data” in SIMPAT. The procedure 

takes the following steps: 

1. Visit an empty grid node at location u and place the template there. Extract any data from 

any previously simulated nodes covered by the template. Denote this (hard) pattern as hd(u). 

2. Extract the pattern of the soft data at node u by placing the template on the collocated soft 

data grid. Denote this (soft) pattern as sft(u). 

3. Search the pattern database and find a joint pair of hard and soft patterns (hpat, spat) 1) 

whose hard pattern (hpat) is most similar to hd(u) and 2) whose soft pattern (spat) is also 

most similar to sft(u). The individual similarity between the patterns (i.e. hard-to-hard and 

soft-to-soft) is evaluated using the Manhattan distance (Eq. 3.1). Therefore, the pair of 

patterns (hpat, spat) which best matches hd(u) and sft(u) jointly is found by searching the 

pattern database for the pair of (hpat, spat) which shows a minimum for 

( ) ( )usftspat,uhdhpat, dwdw 21 + , for some user-specified weights w1 and w2. 

4. Paste the best-matched pattern hpat on the template location at grid node u.  

5. Go to another empty grid node and repeat steps 1~4 until the entire grid is simulated.  

The SIMPAT simulation with soft data conditioning is also implemented using the multiple-grid 

approach (Section 3.1.2). Notice that, at the early stage in the multiple-grid simulation with the 

coarsest grid, a pattern is determined mostly based on matching soft data patterns, i.e. spat and 

sft(u), since at this stage there are few previously simulated patterns. Thus the algorithm first 

draws a rough framework of channels mostly by conditioning to soft data, then, fills the gaps with 

patterns consistent with the hard training image. 
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3.2 Application of SIMPAT Algorithm to Seismic Interpretation Problems  

The semiautomatic seismic interpretation proposed in this dissertation is designed to assist in 

interpreting multiple seismic images, obtained in Chapter 2. As illustrated in Figure 3.4, an 

interpreter first selects one seismic image from the set of multiple seismic images, and manually 

interprets its geological structure. Then, using this pair of 1) one seismic image and 2) 

corresponding structural interpretation as a “training pattern database”, a new structural 

interpretation on another seismic image is geostatistically simulated using SIMPAT. As shown in 

Figure 3.4, the selected seismic image and the corresponding (manual) structural interpretation are 

input as “soft training image” and “hard training image”, respectively, in SIMPAT. Then, the soft 

image patterns extracted from the seismic image and the hard image patterns from the structural 

interpretation are paired at the collocated grid nodes and stored in the training pattern database as 

in Figure 3.4. This training pattern database serves as a “teacher” in the subsequent simulation 

process by providing information about how an interpreter correlated the pattern of amplitude to 

the pattern of horizons or faults during manual structural interpretation. The new seismic image is 

then input as “soft data” to SIMPAT. The sequential simulation is implemented as described in the 

previous section: i.e., at grid node u, SIMPAT algorithm extracts the pattern of previously 

simulated faults and horizons hd(u) by placing a template window. The pattern of seismic image 

sft(u) is also extracted at the collocated grid node u using the same template. Then, a pair of hard 

image pattern and soft image pattern (hpat, spat) that yields a minimum in Eq. 3.2, is selected 

from the training pattern database and hpat is pasted at the template location at u: 

  Weighted sum = ( ) ( )usftspat,uhdhpat, dwdw 21 +  (3.2) 

  d  =  Manhattan distance 

The term d<spat, sft(u)> in Eq. 3.2 is used to find the pattern pair (hpat, spat) whose spat (= 

amplitude pattern) is as similar as possible to the amplitude pattern sft(u) observed on the currently 

interpreted seismic image at location u. Thus the minimization of this term can be seen as an 

attempt to find hpat (= pattern of fault and horizon) which is best correlated to the amplitude 

pattern sft(u) observed at u. The criterion for choosing the “best correlated hpat to sft(u)” is given 

by the training pattern database which relates hpat and spat based on the manual structural 

interpretation by an expert. On the other hand, the minimization of the term d<hpat, hd(u)> in Eq. 

3.2 is to find hpat that yields the smoothest transition from the previously simulated faults and 
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horizons hd(u). The pattern pair (hpat, spat) that minimizes d<spat, sft(u)> and the one that 

minimizes d<hpat, hd(u)> often conflict. Thus by minimizing the weighted sum of these terms, 

SIMPAT algorithm seeks the pattern pair (hpat, spat) that provides the best compromise between 

reproduction of pattern-to-pattern correlation and smoothness of the simulated realization. 

The seismic image input to SIMPAT can be a two-dimensional seismic data or a two-dimensional 

section of three-dimensional seismic data. The “simulated” seismic interpretation is produced as a 

pixelized “image” of faults and horizons, and will be converted into the final structural 

interpretation result with some interactive manual editing by the interpreter as described later. The 

faults and horizons are simulated at this stage as fault picks and horizon picks extracted from a 

seismic image, without conditioning to well markers. Although a geostatistical method is used for 

seismic interpretation, the additional stochasticity brought by the pattern simulation is of minor 

importance at this stage in terms of the uncertainty modeling: the major source of uncertainty is 

attributed to the seismic imaging uncertainty discussed in Chapter 2.    

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Schematics of semiautomatic seismic interpretation using SIMPAT algorithm 
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In actual applications, the SIMPAT algorithm can not be used to directly simulate edge images due 

to the limitation of the Manhattan distance, Eq. 3.1, in capturing the difference between complex 

edge-type patterns. When applied to “sparse” images, the “most similar” patterns evaluated by 

Manhattan distance are prone to be biased toward “sparser” patterns, resulting in the 

underestimation of the continuity of edge image (see Arpat, 2005, for an example on fractures). 

Arpat suggested applying a distance transformation to this categorical edge image in order to avoid 

this problem (2005). The basic idea is to convert edge images into more blurred images such as 

proximity maps (Fig. 3.5) and simulate proximity maps instead of simulating “sparse” edge 

patterns. The example of proximity maps generated from the structural interpretation (i.e. faults 

and horizons) is depicted in Figure 3.5.   

 

 

 

 

 

 

Figure 3.5: Distance transformation of structural interpretation into proximity maps for faults and 
horizons 

The proximity map is practically the opposite of a distance map, thus it is created by calculating 

the distance to the closest fault or horizon and reversing the normalized distance to a proximity 

measure. To jointly simulate proximity maps of faults and horizons using the SIMPAT algorithm, 

Eq. 3.2 is rewritten as; 

Weighted sum = ( ) ( ) ( )usftspat,uhd,hpatuhd,hpat 2211 dwdwdw 211 ++    (3.3) 

where subscripts 1 and 2 denote the proximity maps of faults and horizons, respectively. The 

pattern triplet (hpat1, hpat2, spat) is used in constructing the training database instead of the 

pattern pair (hpat, spat). The simulated structural model (= faults and horizons) is obtained by 
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back-transforming the simulated proximity maps. This back-transformation can be a simple 

thresholding of the proximity map (i.e., convert the pixels with the value of proximity exceeding a 

given threshold to edge pixels and rest of the pixels to background pixels), or can be a more 

sophisticated method described in a later section. 

The SIMPAT simulation is implemented on the multiple seismic images obtained in Chapter 2 

(Fig. 2.14). To create a training structural interpretation result, the horizon and faults are manually 

picked on an arbitrary selected seismic image (image 1 in Figure 2.14) as shown in Figure 3.6. In 

this particular example, the boundary between shaly sand/clean sand and that between calcite/clean 

sand are relatively clear on the seismic image. We decided to pick positive amplitude peaks to 

create a training structural interpretation result (Fig. 3.7). 

 

 

 

 

 

Figure 3.6: Preliminary manual seismic interpretation 

 

 

 

 

 

Figure 3.7: Final structural interpretation and structural model 
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Figure 3.8 shows the result of seismic interpretation with SIMPAT using the manually interpreted 

structural model (Fig. 3.7) and also using the seismic image utilized for manual interpretation 

(image 1). The training interpretation results and the seismic images are showing in the top row in 

the figure. The rest of the rows are the results of SIMPAT-aided seismic interpretation. The left 

column shows the seismic images on which the algorithm is applied. The center column depicts the 

simulated horizons and faults. The right column shows the seismic image overlaid by the simulated 

horizons and faults. As shown in the figure, the results are quite encouraging, at least for this 

simple application. 
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Figure 3.8: Simulated structural models from seismic images in Figure 2.14 
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Part of the reason for the successful results in Figure 3.8 is due to the relatively small variability 

between the seismic images. As depicted in Figure 2.14, most of the structural uncertainty is 

observed in horizon positions, whereas the overall structural configuration does not show much 

variability between the images. In such a case, SIMPAT executes a relatively simple task since the 

seismic image stored in the training database and that used for the pattern conditioning are similar 

to each other. However, as discussed in Chapter 2, a much larger structural uncertainty can be 

expected if the seismic velocity uncertainty is modeled by using completely different initial 

guesses for the tomography (Fig. 2.15), instead of modeling multiple initial guesses by a stochastic 

perturbation around the “best” guess. In such cases, the application of SIMPAT becomes 

challenging. Figure 3.9 depicts the result of the SIMPAT-aided seismic interpretation implemented 

on the seismic images in Figure 2.15. The training seismic image and the corresponding training 

structural interpretation are obtained from “image A” depicted in Figure 2.15. Using this training 

dataset, faults and horizons are simulated using a seismic image “image B”. As shown in the 

figure, the result of SIMPAT simulation lacks geological reality in this “difficult” case. The next 

section discusses an enhancement of SIMPAT algorithm to solve this problem. 
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Figure 3.9: Simulated structural models from seismic images in Figure 2.15 
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3.3 Improvement of Pattern Simulation Accuracy Using Dual-Scale Pattern 

Recognition 

The difficulty in jointly simulating faults and horizons is mainly due to the difference in “optimal 

scales” for recognizing fault patterns and horizon patterns. The scale for the pattern recognition is 

determined in the SIMPAT algorithm by the size of the template. When the multiple-grid approach 

(Tran, 1994; Strebelle, 2002) is applied, the coarseness of template is determined by the coarseness 

of grid nodes being simulated (see Figure 3.2). Thus the scale for evaluating the “best” pattern 

using Eq. 3.2 or Eq. 3.3 changes as the multiple-grid simulation proceeds. Figure 3.10 illustrates 

how the faults and horizons are simulated at each stage of the multiple-grid simulations for the 

case presented in Figure 3.8. As mentioned, the actual simulation is implemented as a joint 

simulation of proximity maps of faults and horizons (Fig. 3.10). The realizations depicted in Figure 

3.10 are the back-transformed images from the simulated proximity maps in Figure 3.11, overlaid 

on the seismic image used for conditioning. As shown, SIMPAT first establishes the overall 

configuration of the reservoir structure at the first stage (= coarsest) of the multiple-grid simulation 

(multiple grid = 4*4; i.e. simulation on every 4th grid node). At this stage, the realization shows an 

almost identical structure as the training structural interpretation, except that the number of fault 

blocks is increased in the simulated realization compared to the training interpretation. The faults 

are successfully positioned at this stage, accurately identifying significant discontinuities in 

seismic amplitude reflectors. However, the horizons positioned on the image do not accurately 

follow the reflectors due to a too large template size. As the multiple-grid simulation proceeds, the 

fitness of horizons to the reflectors improves with the reduction in the size of the template, whereas 

the fault segments tend to be broken apart because the template size has become too small. 
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Figure 3.10: Realization of horizons and faults at each stage of multiple-grid simulation  
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Figure 3.11: Realization of horizon and fault proximity maps at each stage of multiple-grid 
simulation 
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Figure 3.10 illustrates that the “best” pattern triplet (hpat1, hpat2, spat) chosen by Eq. 3.3 depends 

on the size of the template, and in addition, the optimal template size for identifying faults is larger 

than that for picking horizons. In fact, this observation is analogous to the general experiences in 

manual seismic interpretations: an interpreter might pay more attention to large scale structure than 

details when picking faults, while one might focus on details when picking horizons by tracing 

reflectors. Based on this observation, a dual-scale pattern recognition approach is designed as 

shown in Figure 3.12.  

 

 

 

 

 

 

 

 

Figure 3.12: Illustration of dual-scale pattern recognition approach, multiple-grid: 1*1, scale 
difference: 4, i.e., coarse template: 4*4, fine template: 1*1 

 

In this approach, Eq. 3.3 for choosing the “best” (hpat1, hpat2, spat) is rewritten as: 

 Weighted sum= 

( ) ( ) ( ) ( )usft,spatuhd,hpatusft,spatuhd,hpat 22221111
2211

dwdwdwdw 2121 *5.0*5.0 +++
        (3.4) 

Subscripts 1 and 2 denote the proximity maps of fault and horizon, respectively. Superscripts 1 and 

2 respectively denote the patterns extracted using the coarse template (black in Figure 3.12) and 
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the fine template (gray in Figure 3.12). The minimization of the terms with superscript 1 attempts 

to account for the large scale seismic amplitude features as well as preserving the fault segment 

continuity, while the minimization of the terms with superscript 2 fits the horizon segments to 

reflectors focusing on finer scale. Thus, by minimizing the weighted sum in Eq. 3.4, one tries to 

find an optimal balance between fault and horizon identification. Once the “best” pattern triplet 

(hpat1, hpat2, spat) is found, hpat1 (fault proximity map) and hpat2 (horizon proximity map), 

both extracted by the fine template, are pasted on the simulation grid. In other words, the coarse-

scale template is only used for evaluating Eq. 3.4 but not used for simulating (= pasting) the 

pattern. The latter is done to maintain consistency between the simulated fault and horizon 

proximity maps. The example of Figure 3.12 considers the final stage of multiple-grid simulation 

(i.e. multiple grid = 1*1), applying a scale difference (between the template for faults and 

horizons) of 2 (i.e. coarse template = 2*2, fine template = 1*1). Dual-scale templates are used 

during every stage of the multiple-grid simulation. The scale difference can be made larger if 

suitable. 

The dual-scale pattern recognition approach is applied to the seismic interpretation case in Figure 

3.9 and compared to the results using the original SIMPAT algorithm. Figure 3.13 compares the 

simulated structural models between the original SIMPAT and the dual-scale pattern recognition 

approach. The same results are shown in Fig. 3.14 overlaid on the conditioning seismic image. The 

scale of template windows at each stage of multiple-grid simulation is designed as tabulated in 

Table 3.1. 

Table 3.1: Scale of template in multiple-grid simulation  

 Coarse template 
(fault) 

Fine template 
(horizon) 

Multiple-grid 1 4*4 4*4 
Multiple-grid 2 4*4 2*2 
Multiple-grid 3 4*4 1*1 

 

As shown in the figures, the quality of the simulated structural images has improved considerably, 

although the realizations still exhibit some noise. This noise will be further removed by 

postprocessing and some interactive manual editing by the interpreter as discussed in the next 

section. 
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Figure 3.13: Simulated structural models, original SIMPAT vs. dual-scale pattern recognition 
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Figure 3.14: Simulated structural models overlaid on conditioning seismic image, original 
SIMPAT vs. dual-scale pattern recognition 
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Average CPU time for simulating one realization is compared as Table 3.2. 

Table 3.2: Comparison of average CPU time  

 Original SIMPAT Dual-scale pattern 
recognition 

Average CPU time 
per 1 realization 

 
45.8 min 

 
19.4 min 

 

The reduction of CPU time is due to the decrease in the number of nodes visited during the 

sequential simulation. SIMPAT algorithm arranges the random path for the simulation such that 

the template does not exceed the boundary of the simulation grid. Thus, if a coarse template is used 

in conjunction with a fine template, less simulation grid nodes are visited compared to the 

simulation using only a single-size template (Fig. 3.15). 

 

 

 

 

 

 

 

 

 

Figure 3.15: Random path arrangements for sequential simulation, original SIMPAT vs. dual-
scale pattern recognition 
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3.4 Workflow: SIMPAT-Aided Semiautomatic Seismic Interpretation 

The complete workflow of SIMPAT-aided semiautomatic seismic interpretation is summarized in 

Figure 3.16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16: Workflow of SIMPAT-aided semiautomatic seismic interpretation  
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Preprocessing of Seismic Images 

As shown in the figure, the seismic training image and the conditioning seismic images are 

preprocessed through histogram equalization (Fig. 3.17) before inputting into the SIMPAT 

simulation. As illustrated in Figure 3.17, the histogram equalization transforms images such that 

the histogram of amplitudes becomes uniformly distributed. This preprocessing enhances the 

contrast in the seismic image and reduces the unevenness in the amplitude. The latter is 

particularly important for the SIMPAT simulation as a semiautomatic seismic interpretation. The 

similarity evaluation based on the Manhattan distance is particularly sensitive to a dissimilarity 

between amplitude values of reflectors regardless of their similarity in shape. As a consequence, if 

the same reflector appears in the seismic training image and the conditioning seismic image but 

with different amplitude values, then SIMPAT may not recognize that reflector as a horizon. The 

histogram equalization avoids the problem by reducing the regional variation in amplitude values 

in seismic images, yet preserving the shape of reflectors. 

 

 

 

 

 

 

Figure 3.17: Histogram equalization of seismic images 
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postprocessed by the following procedure (Fig. 3.18) instead of the conventional back-

transformation (= simple thresholding): 

1) Smooth the proximity maps through a moving average followed by histogram 

equalization. A small window (e.g. 3*3) is used for the moving average to avoid losing the 

structure of the image. The histogram equalization is applied to recover the contrast of the 

image lost by the moving average. Repeat this operation 2 or 3 times. 

2) Convert the smooth proximity maps into binary images using a certain threshold. This 

threshold is set lower than that used for the conventional back-transformation. As a result, 

the binary images exhibit “blobs” rather than lines (Fig. 3.18). 

3) Extract the fault and horizon segments from the binary images through skeletonization. 

Hilditch’s algorithm (Rutovitz, 1971; Stefaneli, 1986) is used to extract skeletons in this 

example. 

4) Overlay the resulting skeletons of faults and horizons. 
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Figure 3.18: Schematics of the postprocessing of simulated proximity maps 
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Figure 3.19: Simulated structural models, conventional back-transformation vs. postprocessing 
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Figure 3.20: Simulated structural models overlaid on a conditioning seismic mage, conventional 
back-transformation vs. postprocessing 
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Figure 3.19 compares the structural models obtained by postprocessing the simulated proximity 

maps against those obtained by the conventional back-transformation. The same realizations are 

depicted in Figure 3.20 overlaid on the conditioning seismic image. Considerable improvement has 

been obtained. 

Interactive Manual Editing 

The skeletonization by the Hilditch’s algorithm results in a binary skeleton image where the width 

of all skeletons is one pixel. This characteristic of skeletons allows the automatic editing of line 

segments such as endpoint detection, autoconnection, removal, and pruning (Fig. 3.21). Assisted 

by the autoediting of line segments, an interpreter can interactively edit faults and horizons by 

simple manual operations. 

 

 

 

 

 

Figure 3.21: Automatic editing of line segments 

 

Figures 3.22 and 3.23 show examples of interactive manual editing of horizons and faults on 

realizations 1 and 2 in Figure 3.19 (right column, after postprocessing), respectively. As depicted, 

the editing starts from fault segments. The endpoints of line segments are automatically detected. 

The interpreter decides which segments on the image to remove, connect, or prune. Then, these 

segments are autoedited by following the specification of the interpreter. Next, the skeletons of 

horizons are overlaid and cut by the edited fault segments. The endpoints of horizon segments are 

autodetected. The horizons are edited in the same manner as fault editing as shown in the figure. 

Finally, the edited horizon segments are autoconnected to faults. Figure 3.24 shows the structural 

models obtained after interactive manual editing.  
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Figure 3.22: Example of interactive manual editing, Realization 1 
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Figure 3.23: Example of interactive manual editing, Realization 2 
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Figure 3.24: Structural models after interactive manual editing 
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Part II 

Dynamic Data Integration 

 

Chapter 4  

Distance-based Model Parameterization for Solving 

Inverse Problem 

The focus of the previous chapters (Part I) is on the modeling of structural uncertainty from 

seismic imaging based on a geophysical/geostatistical approach. Part II of this dissertation focuses 

on 1) the prior structural uncertainty resulting from multiple structural interpretations and 2) the 

dynamic data integration through history matching. This completes the workflow of Figure 1.1. A 

new method for inverting geological architecture from production data is proposed. This 

methodology is designed as a general solution for spatial inverse problems before being tailored 

for structural uncertainty modeling. Therefore, structural modeling problems are set aside for the 

next chapter. In this chapter, the general methodology is discussed and illustrated with a facies 

modeling problem. 

4.1 Motivation  

Spatial inverse problems are an important class of inverse problems in many areas of the Earth 

Sciences. In its general formulation, one is interested in characterizing aspects of an unknown 

spatial phenomenon by means of data gathered through multiple acquisition techniques, either 

direct and local sampling, or through what could be generally described as remote sensing 

techniques. The latter could consist of geophysical (e.g. seismic, gravity, EM, etc) or other 
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techniques that provide large scale information of the medium under investigation (e.g. pump tests, 

tracer tests, etc…) and these will be the focus of this chapter. 

The solution to such characterization problem often starts by defining a “model” for the medium 

under investigation. This model is described by a set of parameters or variables m which could be 

as simple as a 1D layered model, containing for each layer one or more properties of the 

subsurface medium, such as electrical resistivity in an electrical sounding experiment. A more 

involved parameterization would be to discretize the spatial domain of interest by means of a grid 

with grid cells each describing one or more property values. In that case, one has as many 

parameters in the set m as there are grid cells times the number of properties considered. 

Depending on the model parameterization and on the type of data d gathered, the problem is either 

well-posed or ill-posed (the question of how complex a model should be is not considered in this 

chapter). In most spatial problems, the problem is ill-posed, hence multiple solutions are possible. 

In this chapter, we will consider problems that are clearly ill-posed. 

The methodology proposed in this dissertation relies on a stochastic approach to solving such 

problems as framed by Bayes’ rule (see also Tarantola, 1987; Moosegard and Tarantola, 1995; 

Omre and Tjelmeland, 1996). This law considers a conditional distribution (termed posterior 

model) of the model variables M given the data d as a model for the remaining uncertainty on M 

when d is known. Bayes’ rule states that 

 
f ( | ) f ( )

f ( | )
f ( )

= == =
=

D d m M m
M m d

D d
  (4.1) 

The density f(M=m), termed prior (uncertainty) model, describes the uncertainty of the model 

parameters prior to obtaining or considering the data d. The likelihood function f(D=d|m) 

describes the relationship between the data d and each model m that could possibly be drawn from 

the prior uncertainty model. In ill-posed problems, the specification of the prior is critical since it 

determines the nature of the inverse solutions. More specifically, in a spatial and geological 

context the prior model can be seen as the set of possible realizations m that follow a certain 

spatial continuity model (e.g. variogram, training image) as deemed relevant for the phenomenon 

under study and compatible with the data at hand. Selecting an appropriate prior model is often a 

critical part in solving the inverse problem. If the prior model is wrong then either no solution can 

be found because the selected prior is incompatible with the data, or worse, solutions can be found 
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but they are all inconsistent with the spatial variability of the actual phenomenon. Hence, 

predictions made from such inverse solutions could be erroneous as well.  

Current approaches to solving spatial inverse problems do not provide much flexibility in stating 

the prior model. In many cases one resorts to either regularization methods (e.g. Lee and Seinfeld, 

1987) or to a multi-Gaussian prior (e.g. Chu, Reynolds, and Oliver, 1995; Li, Reynolds, and 

Oliver, 2003), because the latter (1) only requires the specification of the mean and spatial 

covariance and (2) is mathematically congenial, particularly if the forward model is linear. As a 

result, the solutions look overly smooth or consistently express homogenous spatial variability far 

different from the actual heterogeneity present. Boolean techniques (Viseur, 1999; Deutsch and 

Wang, 1996; Georgsen and More, 1992; Holden and others, 1998) or process-based model (Bridge 

and Leeder, 1979; Allen, 1978; Mackey and Bridge, 1995) provide alternatives to Gaussian-related 

models but are difficult to constrain to various different types of data and often require CPU-

intensive Markov chain sampling. Markov Random Fields (MRFs, see Tjelmeland, 1998) show 

promise but requires a tedious parameter estimation based on training data and have not proven 

practicality on three-dimensional examples or large models. 

The development of multiple-point geostatistics (Journel, 1992; Srivastava, 1992) jointly with the 

advent of fast simulation algorithms (Strebelle, 2002) provided a new avenue for defining prior 

models consistent with the spatial variability actually observed in nature. Multiple-point 

geostatistics relies on the concept of a training image, which serves as a three-dimensional analog 

representative for the variability of the studied phenomenon. Simulation techniques aim at 

reproducing some of the key lower and higher-order statistics present in the training image while at 

the same time constraining to local (hard and soft) data (Strebelle, 2002; Caers, Strebelle, and 

Payrazyan, 2003 for a case study). A practical algorithm for solving inverse problems under a 

training image-based prior model, termed probability perturbation method, was proposed in Caers 

(2003), later framed within a Bayesian context in Caers and Hoffman (2006). Several large 3D 

case studies including the inversion of flow, pressure and 4D seismic in turbidite and fluvial 

depositional systems have been published demonstrating practicality (Hoffman and others, 2005; 

Yamada and Okano, 2005; Caers and others, 2006; Castro and others, 2006). 

These case studies have shown that the selection of an adequate training image is critical to solving 

the inverse problem. Solution may not be found when a wrong training image, not representative 

of the actual spatial variability, is chosen, and even if one can find solutions, the uncertainty 
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related to the training image choice is not addressed; correspondingly the uncertainty in the 

posterior is unrealistically small. Note that choosing a training image is no less subjective than 

choosing a multi-Gaussian model with given spatial covariance. Both are equally committing 

regarding the choice of all statistics of the prior model, hence on the nature of the inverse 

solutions. One solution to address uncertainty of the training image is to randomize certain aspects 

of it, e.g. width/thicknesses of geological features, proportions etc. Similarly, one can randomize 

variogram parameters in a multi-Gaussian model. However, such randomization falls short in 

dealing with the first order uncertainty, i.e. the existence of several very different geological 

scenarios. Practice (e.g. Hoffman and others, 2005; Maharaja, 2006) has shown that the choice of 

such training image is often discrete and limited to a small set of alternative scenarios. Within each 

such scenario several subcategories may exist, e.g. different turbidites in a clastic system. 

Geologists are able to interpret, from the available data, which categories (class or subclass of 

depositional systems) are likely to occur in the subsurface. 

The question addressed in this chapter is: how do we solve spatial inverse problem when the 

discrete choice of the training image needs to be considered? This chapter does not consider the 

selection process that lead to this discrete set. In this chapter, it is argued that an explicit 

parameterization of the “training image variable” is not needed (and may be too difficult). Instead, 

a stochastic search method that searches for inverse solutions in a space defined by a large set of 

prior model realizations is proposed. These prior model realizations are generated as random 

outcomes from the several possible training images. To make such search effective, a static 

measure of difference (distance function) between any two model realizations is defined. The 

distance function is chosen such that the static distance between any two model realizations 

correlates statistically with the difference in the forward model response (“dynamic” or “response” 

distance). It is shown that by so doing any stochastic search for realizations that match the data d 

becomes feasible and effective. Two such search methods, termed the neighborhood algorithm 

(NA, Sambridge, 1999) and the tree search utilizing Geometric Near-neighbor Access Tree 

(GNAT, Brin, 1995), are explored. A synthetic example is used to illustrate the methodology and 

demonstrate the critical issue of selecting a problem-tailored distance function. The wider impact 

of the use of distances in such types of spatial modeling problems is discussed. 



CHAPTER 4. DISTANCE-BASED MODEL PARAMETERIZATION 

 

61 

4.2 Illustrative Example 

Before the methodology is described, the importance of the prior model choice in solving spatial 

inverse problems is illustrated. More particularly, the inversion of permeability from time-varying 

fluid flow and pressure response observed in wells (i.e. history matching problem) is considered. 

Figure 4.1 depicts a reference permeability distribution (courtesy of Kent Johansen1), considered as 

the “true” geological subsurface, in an oil reservoir where oil is recovered from three producers by 

injecting water from two injectors. The production data were obtained by running a flow 

simulation model (a finite difference implementation of porous media flow PDEs) on this 

reference reservoir. Our interest lies in studying the impact of the prior model and the inverse 

algorithm on the inverse solution(s). 

 

 

 

 

 

Figure 4.1: Reference model and well locations, Illustrative example (Courtesy of Kent Johansen) 

 

Figure 4.2 shows the results obtained from applying a gradient-based optimization method (using 

an adjoint technique to calculate the gradient, courtesy of Kent Johansen1). In these methods one 

treats the inverse problem as one of minimizing an objective function consisting of a mismatch 

term and a regularization term.  
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 gk,l(m): forward model response simulated from model m at time k and location l 

 dk,l: data observed at time k and location l 

 mprior : prior model (= initial model) 

 ω : weight for mismatch term 

 σ : weight for regularization term (= regularization parameter) 

The vector m consists of the unknown permeability in each grid-block. A minimum can be 

obtained using nonlinear least squares optimization techniques such as Gauss-Newton or 

Levenberg-Marquardt, which require a gradient (or Jacobian) of the flow simulator response with 

respect to each grid-cell permeability. Regularization terms are chosen to enforce some 

smoothness on the inverse solution or, in this case, to penalize a deviation from a given initial 

model. The latter technique is also known as Randomized Maximum Likelihood (RML, see Li, 

Reynolds, and Oliver, 2003; Oliver et. al., 1996). The given initial permeability model serves as a 

geological constraint from which deviation is penalized. Three different constraints are considered. 

Case 1 (Fig. 4.2A) considers an initial guess which is very close to the reference truth. Case 2 (Fig. 

4.2B) considers a wrong initial model with wrong channel geometry leading to wrong connectivity 

of channel sands between wells, i.e. the fluid flow path geometry between some injectors and 

producers is different from the truth. Case 3 (Fig. 4.2C) also starts from a wrong initial model (a 

simple kriged permeability map), however, it is solved without imposing any constraint (i.e. no 

regularization). For the case close to the truth (Case1, Fig. 4.2A), the traditional inverse solution 

easily reproduces the “true” geology with a perfect match to the data. However, the changes to the 

initial model are just a few percentages. On the other hand, if a wrong geological constraint is 

imposed (Case2, Fig. 4.2B), the production data cannot be matched because the inverse solution is 

not allowed to deviate enough from that “wrong” initial guess. The solution obtained without 

imposing any geological constraint (Case3, Fig. 4.2C) achieves a perfect match to the data with 

fairly small forward modeling cost. However, this inverse solution contains many artifacts not 
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representative of the geological architecture of a channel system. In other words, the inverted 

permeability lacks geological realism. Thus, the RML method works well if the major geometries 

of the spatial variable are known and only relatively small changes need to be made to obtain an 

inverse solution. This makes sense given that any gradient-based optimization technique can 

converge only to a local minimum (which need not be an acceptable inverse solution or a global 

minimum). 
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Figure 4.2: Inverse solutions by the gradient-based method vs. reference & initial models, match 
of forward model response to data (dot: data, line: model response), Illustrative example, Cases 

~3 (Courtesy of Kent Johansen) 
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One effective way to impose geological realism by construction is to start with a training-image-

based constraint as proposed in Caers (the probability perturbation method, PPM, 2003). The PPM 

method solves the inverse problem by constraining the statistics of the inverse solutions to those 

obtained from a given training image, instead of solving a problem with minimal deviation from an 

initial guess. Moreover, the PPM search for an inverse solution is stochastic as opposed to the 

deterministic gradient-based method; thereby, local minima can be avoided. Figure 4.3 depicts the 

inverse solutions using the probability perturbation method obtained with different training images. 

Case 4 (Fig. 4.3A) is solved using the reference training image which is used for generating the 

production data (true geology, Fig. 4.1). Case 5 (Fig. 4.3B) is constrained to a training image 

which visually resembles the “true” geological patterns. Case 6 (Fig. 4.3C) uses a training image 

that depicts narrower channels than the truth, yet the channel orientation is correct. Case 7 (Fig. 

4.3D) is constrained to a channel orientation completely different from the “truth”. The problem is 

solved by inverting for sand distribution (lithology type) instead of permeability. A uniform 

permeability for sand and background is assumed. As illustrated in the figure, if the “true” training 

image is provided (Case 4, Fig. 4.3A), the inverse solution reproduces an inverse solution with the 

same geological patterns as the reference and with quick convergence (13 flow simulations). 

Unlike the gradient-based method, the methodology does not require an initial guess close to the 

truth; multiple alternative solutions (considered as samples of a posterior distribution) can be found 

by restarting with a different initial guess. The inverse solution of Case 5 (Fig. 4.3B) and Case 6 

(Fig. 4.3C) also reproduces the “true” geological architecture fairly reasonably, providing the right 

connectivity of flow paths between producers and injectors. However, there is a significant 

increase in the number of flow simulations needed. If a completely wrong training image is 

provided (Case 7, Fig. 4.3D), the data cannot be matched. 
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Figure 4.3: Inverse solutions by the probability perturbation method vs. reference & initial 
models, match of forward model response to data (dot: data, line: model response), Illustrative 

example, Cases 4~7 
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A simple fact highlighted in these examples is that, regardless of the type of inverse modeling 

approach, the inverse solutions strongly depend on how one chooses to impose geological 

constraints. In complex geological environments, an accurate determination of the geological 

depositional system is often difficult given limited data. In such case, the geological interpretation 

is not unique and relies on a subjective decision of the expert(s).  Since interpretations are 

subjective and uncertain, one could opt for selecting multiple possible geological scenarios instead 

of betting on a single subjective choice (either through a particular type of regularization or one 

single training image) as was done in each of the above examples. Such multiple geological 

alternatives can be modeled through constructing several possible training images. In the context 

of Bayesian inversion (Eq. 4.1), this approach is regarded as an attempt to model the prior 

uncertainty f(M=m) by accounting for multiple geological interpretations rather than one single 

interpretation. A flexible methodology to achieve inverse solutions under such prior is proposed 

next. 

4.3 Methodology 

Solving spatial inverse problems by considering the discrete choice between multiple training 

images is a challenging task. Gradient-based optimization methods do not apply in such inherently 

discrete parameter space. Most stochastic search methods, including genetic algorithms, PPM, or 

even Markov chain Monte Carlo sampling require some form of parameterization of the problem, 

then finding those set of parameters that match the data. Instead of focusing solutions by means of 

parameterization, a methodology based on a measure of similarity between outcomes/samples of 

the prior model is proposed. 

4.3.1 Discrete Space Parameterization 

The method proposed in this dissertation does not attempt to parameterize complex geological 

architectures by a necessarily large set of model parameters. This set may need to be very large 

(example: every grid cell property could be a parameter). Instead, it is suggested to generate a large 

set of prior model realizations in advance, thus providing multiple training images to the 

geostatistical sampling algorithm. 



CHAPTER 4. DISTANCE-BASED MODEL PARAMETERIZATION 

 

68 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Proposed workflow for solving spatial inverse problem 

 

Figure 4.4 illustrates this idea. The goal is to generate realizations of channel systems constrained 

simultaneously to dynamic fluid flow responses, facies observation at wells, and seismic data (if 

available) while respecting the geological concept expressed by several alternative training 

image(s). In order to address the uncertainty related to each geological scenario, multiple training 

images, each representing variations of a geological scenario, are constructed. As depicted in 

Figure 4.4, a large set of model realizations is geostatistically simulated from the different initial 

training images by conditioning only to facies observation at wells and seismic data. This 

potentially very large set of model realizations represents a (discrete) prior uncertainty distribution 

f(M=m). Any set of realizations creates a discrete space, and, if enough realizations are generated, 

then this space represents a rich set of prior knowledge. Inverse modeling essentially boils down to 

searching in that space for model realizations that match the data d (in case the likelihood is a 

• • • •

• • • •
Geological
Scenarios

(TI)

Realizations

Prior Uncertainty Model

Production Data History Matching

• • •

Posterior Uncertainty Model

Well Data

Seismic

• • • •

• • • •
Geological
Scenarios

(TI)

Realizations

Prior Uncertainty Model

Production Data History Matching

• • •

Posterior Uncertainty Model

Well Data

Seismic

Stochastic Search

(Training images)

• • • •

• • • •
Geological
Scenarios

(TI)

Realizations

Prior Uncertainty Model

Production Data History Matching

• • •

Posterior Uncertainty Model

Well Data

Seismic

• • • •

• • • •
Geological
Scenarios

(TI)

Realizations

Prior Uncertainty Model

Production Data History Matching

• • •

Posterior Uncertainty Model

Well Data

Seismic

Stochastic Search

(Training images)



CHAPTER 4. DISTANCE-BASED MODEL PARAMETERIZATION 

 

69 

spike). The set of realizations found in this way are a discrete representation of a posterior 

distribution f(M=m|d) (Boucher, 2007). To make this search effective, the notion of similarity 

distance is introduced. 

 

 

 

 

 

 

 

Figure 4.5: Conceptual illustration of prior uncertainty space defined by similarity distance 

 

As shown in Figure 4.5, realizations/samples are considered as points in a space. The distance 

between any two model realizations is defined by a distance function called “similarity distance”. 

The similarity distance measures how much any two realizations look alike. Such definition is 

inherently a subjective decision on what is deemed “similar”. Rather than considering this as a 

disadvantage, we will exploit this subjectivity to tailor the distance function to the particular 

problem at hand, namely: 1) what are we trying to match and 2) what are the matched realizations 

used for? Hence, the choice of distance function is a critical element in our methodology and is 

discussed in extenso.  

Methods for inversion that utilize a Cartesian parameter space (e.g. gradient-based methods or 

PPM) also consider models as points in a space. The distance between points (Euclidian distance) 

defined in Cartesian parameter space is essentially a similarity measure, namely, the square-root of 

the sum of squared differences of the model parameters. For example in gradient-based methods 

one relies on the smoothness of the function measuring the mismatch O between the data and the 
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model response. Two models with similar parameter sets (small Euclidean distance) would need to 

have a small difference in the O function value for gradient-techniques to apply. 

The model parameterization proposed in this dissertation (Fig. 4.5) replaces the Euclidian distance 

by a distance function which does not require a vector form representation of the model parameters 

(training image, proportions, variogram parameters etc…): it works directly on the model 

realizations. This provides a greater flexibility to accommodate uncertainty on the prior geological 

scenario since 1) it does not require any explicit parameter to describe individual realizations and 

2) it easily handles discrete parameters such as different choice of geological scenarios.  

To search for realizations that match d, we will rely on the following key property: “to make a 

stochastic search (using any algorithm) for realizations that match the data d effective, the 

distance between any two realizations needs to statistically correlate with the difference in their 

forward model response”; the higher that statistical correlation, the more effective the search. 

As will be shown by illustration, given a distance function that satisfies this key property, the 

function measuring the mismatch between data and forward model response becomes “structured”, 

i.e. it is not a completely random functional of the model realizations. Unlike a Cartesian 

parameter space, this metric space is not defined by origin, dimension or direction: it is only 

equipped with a distance, and, as shown later, this is sufficient to apply a stochastic search 

effectively.  

4.3.2 Distance Function 

The choice of a distance function is critical to the proposed method. This choice depends on the 

particular type of data one is trying to match and the type of geometries present and, last, on the 

ultimate purpose for which the inverse solutions are used. Consider therefore the specific case of 

high-permeability flow paths as modeled through the channel system of Figure 4.4. The Hausdorff 

distance (Dubuisson and Jain, 1994, see Appendix A) is proposed here as an adequate similarity 

measure for capturing the similarity in channel geometry, since it is a standard similarity measure 

to compare the shape of two-dimensional or three-dimensional objects and is often used in object 

matching (shape matching) problems. Its validity for this type of flow problems is demonstrated 

through a numerical experiment; i.e. to show that the Hausdorff distance correlates with the 

difference in flow response for this particular type of application. 
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Figure 4.6: Training images representing prior uncertainty related to geological interpretation 

 

 

 

 

Figure 4.7: Well locations 

Figure 4.6 illustrates a set of training images representing alternative geological scenarios. To 

construct a prior uncertainty space that accommodates a large set of model realizations, a total of 
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4.7, all penetrating channel sand. In this synthetic problem, background mud is understood as a 

sealing rock which does not have flow capacity and storage capacity. The inner channel 

heterogeneity in petrophysical properties is considered negligible, thus channels are modeled with 

constant (known) porosity/permeability. The spatial distribution of channel sands is considered the 

unknown in this inverse problem. The forward model response is the production performance, i.e. 
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and 3 injectors (see Fig. 4.7 for well locations). In this experiment the forward model response is 

computed for all 405 models which will allow one to validate the Hausdorff distance. Note that in 

reality, for CPU reasons, it would not be possible to flow simulate all 405 models. This exercise is 

only meant to check the validity of the Hausdorff distance for these kinds of problems. 

The Hausdorff distance between any two realizations, dH(mi, mj), see Appendix A, is computed for 

every pair of 405 model realizations. Also, from the forward model response simulated on these 

realizations, a least-square misfit function is computed for every pair of model realizations mi and 

mj as: 
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 gk,l(mi):  forward model response simulated from model mi at time k and location l 

 

Note the difference between the misfit function G(mi, mj) of Eq. 4.3 (= misfit of forward model 

response g(mi) between models) and the mismatch of the forward model response g(mi) to data d 

(that is the mismatch or objective function formulated when solving a inverse problem). In fact, the 

data d can be seen as a particular response g(mtrue), namely that of the unknown truth mtrue. The 

plot of this misfit function G(mi, mj), Eq. 4.3, against the similarity distance dH(mi, mj), with some 

smoothing over a certain distance interval ΔdH, is similar to the omnidirectional variogram of 

forward model response expressed as a function of the similarity distance. If this variogram shows 

a structure (i.e. not a pure nugget), it indicates that the forward model response simulated on the 

model realizations is indeed spatially correlated in the space defined by the given similarity 

measure, in this case the Hausdorff distance. 
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Figure 4.8: Variogram of forward model response as a function of the Hausdorff distance 

 

Figure 4.8 depicts the pseudovariograms of the forward model response computed for pressure 

(BHSP), water cut (W.C.) and weighted sum of both (W.C.+BHSP). As shown in the figure, all 

variograms exhibit clear structure. The Gaussian structure with the lack of nugget effect observed 

in these particular variograms is attributed to the fact that a change in the facies distribution far 

away from any wells has no effect on the response function (see Fig. 4.9 for an example). The 

clear structure observed in the variogram should not be interpreted as a unique relation between the 

similarity distance and the misfit function. Like any other variograms, the variogram of forward 

model response only indicates at best a statistical correlation between forward model response and 

similarity distance, which, as shown in the next section, is satisfactory for achieving an effective 

stochastic search. 
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Figure 4.9: An example of realization pair that gives zero variogram at small similarity distance 

 

4.3.4 Stochastic Search 

Once a parameter space (= prior uncertain space) is defined with a distance function, the inverse 

problem is solved by searching in the space for model realizations that achieve minimum of 

objective function O(mi): 
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 gk,l(mi): forward model response simulated from model mi at time k and location l 

 dk,l: data observed at time k and location l 

Two stochastic search methods are explored, namely, the neighborhood algorithm (NA) and tree 

search.  

The Neighborhood Algorithm (NA) 

The neighborhood algorithm (NA, Sambridge, 1999) is a stochastic optimization algorithm 

proposed for seismic inversion problems and also applied for history matching problems 

(Demyanov, Subbey, and Christie, 2004; Christie, Demyanov, and Erbas, 2006). Although the 

method was originally designed for multidimensional Cartesian parameter space where parameters 

to be inverted are expressed in the form of a vector, with some reformulation of the algorithm, it is 

also applicable to the proposed metric space defined using only a metric distance. The method 

Realization A Realization BRealization A Realization B
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explores the space for multiple minima, partitioning the space into Voronoi cells as progressively 

more evaluations of the objective function O(m) are made. Note that in order to define Voronoi 

cells in any high-dimensional space, only knowledge of a distance is required.  

Each function evaluation consists in simulating the forward model response g(mi) and calculating 

the misfit function O(mi) from Eq. 4.4. The search path is stochastically decided based on the 

misfit function O(mi), which have been previously evaluated in the parameter space. A schematic 

of the step by step procedure of this approach is illustrated in Figure 4.10. 

 

 

 

 

Figure 4.10: Schematic steps of the neighborhood algorithm (NA) 

 

As depicted in the figure, the search is initiated by evaluating the objective function for some small 

number of initial model realizations which are separated as far as possible in terms of the similarity 

distance (depicted as black dots in step 1 in Fig. 4.10). Subsequently, the parameter space is 

compartmentalized by associating the remaining model realizations (white circles) to the nearest 

model (i.e. in terms of the similarity distance) whose forward model response is already simulated 

(black dots). Strictly speaking, one can not draw a figure as in Figure 4.10, since the space is only 

equipped with distance (not with direction). In the next set, one of the Voronoi cells is selected for 

further processing. This is decided by a Monte Carlo draw from a discrete probability distribution. 
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which is primarily a function of O(mi) and of other parameters explained further on. We denote 

this probability value as the “selection probability” (shown as underlined in the figure). Next, in 
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the drawn Voronoi cell, another realization is picked at random and its mistfit function is evaluated 

(this is model 5 in step 1). Given this model and its misfit function value, one can further 

compartmentalize the space (as shown in step 2) and update the discrete selection probabilities. 

This procedure is repeated until one obtains the desired numbers of model realizations that achieve 

sufficiently low value of the objective function. 

If the selected Voronoi cell does not any longer contain a model realization whose forward model 

response is not simulated yet (such as depicted as a white circle in Fig. 4.10), a new model 

realization is created by the stochastic perturbation from the model (a black dot) in the selected 

Voronoi cell using the probability perturbation method (PPM, Caers 2003). In other words, the 

initial set of 405 models is expanded by iteratively generating new models. This step is needed, 

since one cannot expect that, by searching on a limited (405) set, a sufficient amount of models 

that match the data can be found. Hence, the stochastic search can be seen as a way to create a set 

of initial models for more local search methods (gradient or PPM). By coupling the probability 

perturbation method, the prior uncertainty space turns into a potentially very large set of 

realizations regardless of the number of model realizations initially provided in the space. 

In Eq. 4.5 Ni is the number of model realizations which are included in the Voronoi cell i and 

whose forward model response is not simulated yet. The standardization parameter T is such that 

the total of the selection probability p(mi) over all Voronoi cells equals 1.0. As indicated in Eq. 

4.5, the smaller the objective function of model mi is, the greater the selection probability the 

Voronoi cell i receives, thus this Voronoi cell would be subject to intensive visits by a stochastic 

search path. Also, if the Voronoi cell i includes a larger numbers of models whose forward model 

response is not simulated yet, then, this Voronoi cell receives a higher chance of being visited. 

The neighborhood algorithm (NA) is a global search algorithm which has the potential to find 

multiple minima. The search is for most problems more efficient than other stochastic search 

methods (such as the genetic algorithm or Markov Chain Monte Carlo method) since the selection 

probability, Eq. 4.5, is strongly guided by the value of misfit function: the stochastic search path 

visits the region with low misfit function much more intensively than the region with high 

objective function, resulting in a finer compartmentalization of the space in low-misfit-function 

regions. However, as a trade off, it does not necessarily find all of the minima in the parameter 

space, since the search tends to concentrate on regions with low objective function rather than to 
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explore the space uniformly. If uniformity of search is critical for a particular application than 

other search methods should be employed such as the tree search, which is discussed next. 

Tree Search 

Another way to search for inverse solutions in the proposed parameter space is to store a large set 

of model realizations in a tree data structure and implement a stochastic search by traversing the 

tree. The tree data structure is constructed solely based on a distance metric, thus represents the 

spatial structure of the parameter space without requiring any other spatial properties such as 

dimensions or directions. In this dissertation, tree search optimization is implemented using the 

Geometric Near-neighbor Access Tree (GNAT, Brin, 1995) which was originally proposed for 

database search problems. The GNAT is constructed by the following procedure (see Fig. 4.11 for 

the schematic illustration): 

 

 

 

 

 

 

Figure 4.11: Schematic steps of GNAT construction 

 

1. Select some model realizations mi
(1) from the whole set of model realizations available. 

These model realizations are selected based on the similarity distance such that they are 

separated far away enough from each other. The selected model realizations are located at 

the first level nodes (= root nodes) of the tree. According to the similarity distance, associate 

the remaining model realizations to their closest mi
(1) as depicted in Figure 4.11. In Figure 

STEP 1:

STEP 2:

STEP 1:

STEP 2:
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4.11, mi
(j) denotes a single model realization and Mi

(j) denotes a set of model realizations 

associated to mi
(j). 

2. Go down to the second level of nodes. Select a few model realizations mi
(2) from the set Mi

(1) 

such that they are furthest away from each other. Locate them at the second level nodes, and 

then associate the remaining members of Mi
(1) to their closest mi

(2) as in Figure 4.11. They 

are denoted as set Mi
(2). Then go down to the third level of the nodes and do the same 

operation. Although Figure 4.11 only depicts the tree construction starting from m1
(1), actual 

tree branching is done for all branches. 

3. Repeat this until the entire tree is completely branched (i.e., the number of model realizations 

included in Mi
(j) becomes one at all branches of the tree). 

The GNAT exhibits a hierarchical tree structure that resembles a family tree; i.e. children are 

always more similar to their parent than to the siblings of their parent. In other words, model 

realizations similar to each other are hierarchically clustered in the tree structure by sharing the 

same ancestors, while dissimilar ones are located far away from each other. The dissimilarity 

among the siblings is greatest at the first level node (= root node), and the siblings becomes more 

similar to each other as the node goes down into the deeper branches. 

The optimization is implemented as a stochastic search by using the selection probability (Eq. 4.5) 

to decide the traversal path. The traversal is started from the top of the tree. At the currently visited 

node of the tree, forward response is simulated for children model realizations and selection 

probability (Eq. 4.5) is assigned for each child based on the evaluated objective function (Eq. 4.4). 

Then, the next path to go down is randomly decided based on the selection probability. In the 

context of the tree search optimization, Ni in Eq. 4.5 indicates the number of the model realizations 

which are the descendants of the realization i and also not flow-simulated yet. Thus a model 

realization located on top of the less explored branch receives a higher chance to be visited. Also, 

the selection probability is assigned in such a way that the family of realizations branching from a 

model that achieved the better match of forward response receives a higher chance to be explored. 

When the search arrives at the end of the tree, one goes back to the top of the tree, and starts the 

second round of tree search. This procedure is repeated until a desired number of model 

realizations that achieve sufficiently low objective function are found. 
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The GNAT structure is identical to a hierarchical Voronoi compartmentalization of the parameter 

space, where parents correspond to the Voronoi cells of higher hierarchy and children correspond 

to those of lower hierarchy. Thus, in a tree search optimization, the selection probabilities are 

hierarchically assigned in a prior uncertainty space, which tends to avoid a concentration of search 

visit to the currently found low-objective-function region which is typical for NA. The choice of 

the optimization algorithm between NA and the tree search optimization depends on the purpose of 

the inverse problem. NA is generally more efficient because of the stronger control of the objective 

function over the stochastic search (i.e. the selection probability is determined accounting for all 

objective functions previously evaluated in the entire space). On the other hand, the tree search 

optimization can be more global due to the hierarchical partitioning of the space. If one wishes to 

couple the probability perturbation method (PPM) with a stochastic search, NA is more suitable. 

4.4 Application Examples 

The applicability of the proposed method is investigated by considering the previous history 

matching problem. The synthetic data set and geological setting are the same as discussed in the 

numerical experiment for validating the Hausdorff distance (see Fig. 4.6 for a set of training 

images representing prior uncertainty in geological concept). Six different synthetic cases are 

retained by considering different reference models (= “true” geology) as depicted in Figure 4.12. 

The results of the neighborhood algorithm (NA) and the tree search are presented. 
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Figure 4.12: Reference models and corresponding training images 
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The Neighborhood Algorithm (NA) 

 The spatial inverse problem is solved by the neighborhood algorithm (NA) starting by generating 

81 facies realizations, each realization simulated from a different training image (Fig. 4.6). The 

probability perturbation method is hybridized with NA. The search is terminated when four history 

matched models are obtained. The results of the selected 3 cases (Cases 2, 3, and 6) are presented. 

As shown in Figure 4.12, the “true” geology of Case 2 exhibits clear channel direction with small 

channel sinuosity. The channels are highly connected due to the high net-to-gross ratio, thus all 

producers and injectors are penetrating a single flow-communicating sand body. The “true” 

geology in Case 3 also exhibits high net-to-gross ratio, but consists of significantly more sinuous 

channel sands. Hence the channel orientation is obscured by this high sinuosity. The “true” 

geology in Case 6 exhibits separate channel sands, providing distinct flow path between wells. 

Figures 4.13, 4.15, 4.17 compare the inverse solutions obtained in these cases against the “true” 

model and the initial model realizations chosen to start the search. The NA search is started from 8 

initial model realizations. The matched forward model responses of these cases are shown in 

Figures 4.14, 4.16, 4.18 together with the data and the initial forward model responses. A 

satisfactory match of production data is achieved in each case (see Figs. 4.14, 4.16, 4.18 for 

examples). Figure 4.19 compares the posterior distribution of net-to-gross ratio (= sand proportion) 

calculated from the model realizations sampled by the stochastic search against the prior 

distribution computed from the prior model realizations. 

 

 

 

 

 

Figure 4.13: Inverted model realizations vs. reference model, initial models, NA, Case 2 (The 
inverted model highlighted by light blue reasonably resembles to the reference model) 
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Figure 4.14: Match of forward model response to data, bottom-hole shut-in pressure (BHSP, 
upper row) and water cut (W.C., lower row), NA, Case 2 

 

 

 

 

Figure 4.15: Inverted model realizations vs. reference model, initial models, NA, Case 3 

 

 

 

 

 

Figure 4.16: Match of forward model response to data, bottom-hole shut-in pressure (BHSP, 
upper row) and water cut (W.C., lower row), NA, Case 3 
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Figure 4.17: Inverted model realizations vs. reference model, initial models, NA, Case 6(The 
inverted models highlighted by light blue reasonably resemble to the reference model) 

 

 

 

 

 

 

Figure 4.18: Match of forward model response to data, bottom-hole shut-in pressure (BHSP, 
upper row) and water cut (W.C., lower row), NA, Case 6 

 

 

 

 

Figure 4.19: Comparison of the prior vs. posterior distribution of net-gross-ratio, NA, Cases 2, 3, 
and 6 

 

‘True’ Geology

InvertedInitial (Selected out of 8)

‘True’ Geology

InvertedInitial (Selected out of 8)

Well1

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20
Years

B
H

S
P

 (
ps

ia
)

Well2

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20
Years

B
H

S
P

 (
ps

ia
)

Well3

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20
Years

B
H

S
P

 (
ps

ia
)

Well1

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
Years

W
.C

. (
fr

ac
.)

Well2

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
Years

W
.C

. (
fr

ac
.)

Well3

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
Years

W
.C

. (
fr

ac
.)

Data (reference) Initial matched

Well1

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20
Years

B
H

S
P

 (
ps

ia
)

Well2

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20
Years

B
H

S
P

 (
ps

ia
)

Well3

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20
Years

B
H

S
P

 (
ps

ia
)

Well1

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
Years

W
.C

. (
fr

ac
.)

Well2

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
Years

W
.C

. (
fr

ac
.)

Well3

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
Years

W
.C

. (
fr

ac
.)

Data (reference) Initial matchedData (reference) Initial matched

Case 2

0%

20%

40%

60%

80%

0.
10

0.
20

0.
30

0.
40

0.
50

Net-to-gross Ratio

P
ro

b
ab

ili
ty

Truth

Case 3

0%

20%

40%

60%

80%

0.
10

0.
20

0.
30

0.
40

0.
50

Net-to-gross Ratio

P
ro

b
ab

ili
ty

Truth

Case 6

0%

20%

40%

60%

80%

0.
10

0.
20

0.
30

0.
40

0.
50

Net-to-gross Ratio

P
ro

b
ab

ili
ty

Truth

Prior Distribution Posterior Distribution

Case 2

0%

20%

40%

60%

80%

0.
10

0.
20

0.
30

0.
40

0.
50

Net-to-gross Ratio

P
ro

b
ab

ili
ty

Truth

Case 3

0%

20%

40%

60%

80%

0.
10

0.
20

0.
30

0.
40

0.
50

Net-to-gross Ratio

P
ro

b
ab

ili
ty

Truth

Case 6

0%

20%

40%

60%

80%

0.
10

0.
20

0.
30

0.
40

0.
50

Net-to-gross Ratio

P
ro

b
ab

ili
ty

Truth

Prior Distribution Posterior Distribution



CHAPTER 4. DISTANCE-BASED MODEL PARAMETERIZATION 

 

84 

As shown in Figures 4.17 and 4.19, the inverse solution reasonably identified both channel 

geometry and net-gross-ratio of the “true” geology in Case 6 (the case where the “true” geology 

provides distinct flow path between wells); i.e., 3 out of 4 model realizations sampled by the 

stochastic search shows similar geological feature to the “truth”. Case 2 (the case with high net-to-

gross ratio and clear channel direction in “true” geology) also found at least one model realization 

almost identical to the “truth” by the stochastic search, while the sampled model realizations still 

exhibit considerable uncertainty in the geological concept (Fig. 4.13). This case at least reduced 

the uncertainty in net-to-gross ratio (Fig. 4.19). Case 3 (the case with high net-to-gross ratio and 

obscured channel direction in “true” geology) failed both to reproduce the “true” geological 

concept (Fig. 4.15) and to reduce uncertainty in net-to-gross ratio (Fig. 4.19). These results suggest 

that the magnitude of the posterior uncertainty modeled by an inverse solution is strongly 

controlled by the characteristic of “true” geology which produces the data. If the “true” geology 

provides data that properly discriminates preferential flow path in subsurface, inverse solution can 

easily identify the geological architecture with the limited samples from posterior (e.g., Case 6, 

Figure 4.17). However, given that data create multiple minima in the space, the posterior 

distribution still exhibits large uncertainty range (e.g., Case 2, Figure 4.13), hence even stochastic 

search do not sample the “true” geological architecture unless plenty enough models are sampled 

(e.g., Case 3, Figure 4.15). 

 

 

 

 

 

Figure 4.20: Convergence of objective function during the stochastic search, NA, Cases 2,3,6 
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the history matching, yet exhibiting a steep rise at some points when the search occasionally shifts 

to a Voronoi cell containing models with large misfit. As tabulated in Table 4.1, a history match is 

achieved within a reasonable number of forward model response simulations in all six cases. The 

term reasonable refers to the number of flow simulations that are feasible in actual real reservoir 

simulation involving CPU-times of several hours for a single flow simulation. 

Table 4.1: Number of forward model response simulations required for stochastic search, the 
neighborhood algorithm (NA)  

 For finding 4 history 
matched models 

Per 1 history matched 
model 

Case 1 69 17.25 
Case 2 91 22.75 
Case 3 101 25.25 
Case 4 55 13.75 
Case 5 53 13.25 
Case 6 112 28 

 

Tree Search  

The tree search optimization is implemented by considering in the space including all of 405 facies 

realizations from 81 training images (Fig. 4.6); these realizations were utilized for generating the 

variogram in the previous section. The stochastic search is terminated after finding 4 model 

realizations that match historical production data. Figures 4.21, 4.23, 4.25 show the comparison of 

the history matched model realizations against the “true” reservoir model and the initial model 

realizations for the selected cases (Cases 1,4,5). The initial model realizations correspond to the 

realizations located on the top of the tree (in this application, the tree is branched starting from 4 

models). The history matching results of these cases are presented in Figures 4.22, 4.24, 4.26. 

Again, the history match is achieved with sufficient accuracy in every case. In Case 1 (Fig. 4.21), 

where the “true geology” exhibits clear channel direction with small channel sinuosity but good 

connectivity, two out of four history matched realizations successfully reproduced the “true” 

geological scenario. Case 4 (Fig. 4.23) and Case 5 (Fig. 4.25) failed to find the “true” geological 

scenario due to the high sinuosity and high net-to gross ratio of channel sand. The uncertainty in 

net-to-gross ratio is successfully reduced in all cases (Fig. 4.27). 
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Figure 4.21: Inverted model realizations vs. reference model, initial models, Tree Search, Case 1 
(The inverted models highlighted by light blue reasonably resemble to the reference model) 

 

 

 

 

 

 

Figure 4.22: Match of forward model response to data, bottom-hole shut-in pressure (BHSP, 
upper row) and water cut (W.C., lower row), Tree Search, Case 1 

 

 

 

  

 

Figure 4.23: Inverted model realizations vs. reference model, initial models, Tree Search, Case 4  
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Figure 4.24: Match of forward model response to data, bottom-hole shut-in pressure (BHSP, 
upper row) and water cut (W.C., lower row), Tree Search, Case 4 

 

 

 

 

Figure 4.25: Inverted model realizations vs. reference model, initial models, Tree Search, Case 5 
(The inverted model highlighted by light blue reasonably resembles to the reference model) 

 

 

 

 

 

 

Figure 4.26: Match of forward model response to data, bottom-hole shut-in pressure (BHSP, 
upper row) and water cut (W.C., lower row), Tree Search, Case 5 

Data (reference) Initial matched

Well1

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20
Years

B
H

S
P

 (
ps

ia
)

Well2

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20
Years

B
H

S
P

 (
ps

ia
)

Well3

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20
Years

B
H

S
P

 (
ps

ia
)

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
Years

W
.C

. (
fr

ac
.)

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
Years

W
.C

. (
fr

ac
.)

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
Years

W
.C

. (
fr

ac
.)

Data (reference) Initial matchedData (reference) Initial matched

Well1

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20
Years

B
H

S
P

 (
ps

ia
)

Well2

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20
Years

B
H

S
P

 (
ps

ia
)

Well3

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20
Years

B
H

S
P

 (
ps

ia
)

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
Years

W
.C

. (
fr

ac
.)

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
Years

W
.C

. (
fr

ac
.)

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
Years

W
.C

. (
fr

ac
.)

‘True’ Reservoir

History MatchedInitial

‘True’ Reservoir

History MatchedInitial

Data (reference) Initial matched

Well1

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20
Years

B
H

S
P

 (
ps

ia
)

Well2

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20
Years

B
H

S
P

 (
ps

ia
)

Well3

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20
Years

B
H

S
P

 (
ps

ia
)

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
Years

W
.C

. (
fr

ac
.)

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
Years

W
.C

. (
fr

ac
.)

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
Years

W
.C

. (
fr

a
c.

)

Data (reference) Initial matchedData (reference) Initial matched

Well1

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20
Years

B
H

S
P

 (
ps

ia
)

Well2

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20
Years

B
H

S
P

 (
ps

ia
)

Well3

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20
Years

B
H

S
P

 (
ps

ia
)

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
Years

W
.C

. (
fr

ac
.)

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
Years

W
.C

. (
fr

ac
.)

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
Years

W
.C

. (
fr

a
c.

)



CHAPTER 4. DISTANCE-BASED MODEL PARAMETERIZATION 

 

88 

 

 

 

 

 

Figure 4.27: Comparison of the prior vs. posterior distribution of net-gross-ratio, Tree Search, 
Cases 1, 4, and 5 

 

 

 

 

 

Figure 4.28: Convergence of objective function during the stochastic search, Tree Search, Cases 
1,4,5 

 

As depicted in Figure 4.28, the objective function exhibits a periodic fluctuation during the tree 

search optimization as the search repeatedly goes down the tree structure. In the tree search 

optimization, the choice of next trial for forward model response simulation is always limited to 

the children of the current trial, thus the search path is always restricted to the descendants of the 

current trial. This characteristics makes the tree search optimization less efficient compared to the 

Neighborhood Algorithm (NA): as shown in Table 4.2, the number of forward model response 

simulations required for the tree search optimization is generally larger than that of NA (Table 

4.1), although they are still reasonable CPU cost. However, on the other hand, it provides a greater 

possibility to explore the space globally than NA. 
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Table 4.2: Number of forward model response simulations required for stochastic search, Tree 
Search 

 For finding 4 history 
matched models 

Per 1 history matched 
model 

Case 1 81 20.25 
Case 2 190 47.5 
Case 3 93 23.25 
Case 4 88 22 
Case 5 90 22.25 
Case 6 186 46.5 
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Chapter 5  

History Matching of Reservoir Structure 

In Chapter 4, a new method to parameterize geological architecture for solving an inverse problem 

was proposed. The significant advantage of the proposed method over the traditional 

parameterization is that it can accommodate any kind of geological architecture in the parameter 

space, hence enables the inversion of discrete parameters such as outcomes from multiple 

geological scenarios, allowing one to assess easily a more realistic range of prior. The application 

of this method is not limited to the inversion of facies models: it is also applicable for the inversion 

of geological structure (i.e. horizons and faults) from dynamic fluid flow response. This chapter 

presents the application of the proposed distance-based parameterization method to a structural 

uncertainty modeling problem. By utilizing the proposed methodology, the implementation of the 

complete workflow proposed in Chapter 1 (Figure 1.1) is demonstrated. 

First, a prior structural uncertainty model depicted by multiple structural interpretations is 

discussed. These multiple structural interpretations can be the results from multiple migrations 

(Chapter 2) and the subsequent multiple seismic interpretations (Chapter 3) created as a seismic 

imaging uncertainty model, or they can be various structural interpretations based on a single 

seismic image depending on different decisions on fault/horizon identification. The aim of this 

prior structural uncertainty model is to provide a parameter space where a history matching 

exercise can take place. History matching of the reservoir structure is performed by applying the 

method of Chapter 4, using synthetic but real reservoir inspired examples. 
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5.1 Prior Structural Uncertainty Modeling 

Structural uncertainty is attributed to various sources, each with a different impact on fluid flow 

behavior. The level of uncertainty arising from each source can be different depending on the data 

acquisition condition in the field (e.g. land data vs. marine data, two-dimensional or three-

dimensional seismic, type of deposition environment, availability and accuracy of well 

correlations, availability of production data, etc.), the subsurface heterogeneity, and the complexity 

of the reservoir geometry. For example, land data generally provides poorer seismic data than 

marine data. The error in horizon positioning or time-to-depth conversion can be marginal if the 

wells are densely and evenly drilled over the entire field. The uncertainty in gross thickness can be 

affected by whether the wells are penetrating the entire reservoir interval. Also, if production data 

used for fault identification is available, uncertainty in fault pattern may be reduced. 

Although it is difficult to set general rules, a typical example of hierarchy in structural uncertainty 

is suggested in Figure 5.1, assuming poor seismic data and limited availability of well 

markers/production data. Each component of uncertainty appearing in Figure 5.1 is explained as 

below: 

 

 

 

 

 

 

 

Figure 5.1: Typical example of hierarchy in structural uncertainty 
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Migration Uncertainty 

Structural uncertainty resulting from uncertain migration can be a first order structural uncertainty 

especially when seismic data is of poor quality (i.e. large uncertainty in velocity analysis from 

seismic gathers) or when the lateral heterogeneity of subsurface velocity field is significant (i.e. 

multiple possible velocity fields from seismic inversion). In such situation, multiple seismic 

images migrated using different velocity models can produce significantly different structural 

interpretations that exhibit different fault patterns, appearance or disappearance of faults depending 

on which seismic image is considered. This uncertainty can be modeled using methods proposed 

by Clapp (2001, 2003; see Chapter 2 for the discussion) or Grubb et al. (2001). 

Structural Interpretation Uncertainty 

With poor seismic data, a single seismic image can produce considerably different structural 

interpretations depending on the different decisions made on horizon/fault identification (Rivenæs 

et al., 2005). Such an uncertainty from structural interpretation can be first order, especially when 

the structure is complex, since multiple interpretations can exhibit significant difference in fault 

intensity and fault pattern which may strongly affect fluid flow behavior. This uncertainty is 

modeled by providing multiple possible alternatives of structural interpretations. 

  Horizon Correlation Uncertainty Across Faults 

Correlating horizons across a fault can be difficult unless well markers are available on both side 

of the fault, since a “wrong” pair of reflectors can be picked as indicating the same horizon 

(Rivenæs et al., 2005). An erroneous horizon identification would lead to misinterpreting the fault 

throw, which would result in a wrong determination of flow communication between fault 

compartments. Ideally, this uncertainty should be modeled by providing multiple structural 

interpretations which covers every possible horizon identification. However, such a modeling is 

too time-consuming since this process requires expert decisions and manual handling which can 

not be easily automated. An alternative method is to stochastically perturb a horizon 

discontinuously across the fault, focusing only on the modeling of the uncertainty in fault throw. 

This method is practical because such modeling is fast and inexpensive. Although the multiple 

structural models generated by stochastic perturbation of a horizon do not perfectly honor the 

different alternative horizon picks, this inaccuracy is of marginal importance since the impact of 
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the horizon position on fluid flow is usually smaller than that of the fault throw (if the fault is not 

completely sealing). 

Top Horizon Positioning Uncertainty 

The uncertainty in horizon position is attributed to 1) the error in horizon picking due to low 

seismic resolution, and 2) time-to-depth conversion error. The uncertainty range associated with 

the former can be evaluated from the thickness of reflectors (after time-to-depth conversion). The 

uncertainty due to the latter is evaluated by analyzing the match between seismic and well depths 

(Charles et al., 2001), depth maps resulting from several conversion techniques (Corre et al, 2000), 

or the depth of a flat spot (Corre et al, 2000; Charles et al., 2001).  The magnitude of uncertainty 

varies locally depending on the distance from well markers. The uncertainty due to horizon 

positioning is considered to be of lower order importance compared to the uncertainty resulting 

from migration, interpretation (i.e. decision on fault/horizon identification), and horizon correlation 

across faults, in both terms of magnitude and impact on fluid flow. However, a typical exception is 

found in reservoirs with a gently dipping flank accompanied with an aquifer: in such reservoirs, a 

small error in top horizon positioning (often due to the time-to-depth conversion) can significantly 

affect the estimation of oil in-place or the prediction of water encroachment to producers coming 

from the aquifer. This situation arises since wells are preferentially drilled at the crest of the 

reservoir (unless the oil is recovered by water injection from an aquifer). Thus the reservoir 

structure is often uncertain near the aquifer unless sufficient delineation wells are drilled at the 

appraisal stage. The uncertainty in top horizon depth is stochastically modeled by perturbing a 

horizon position obtained from interpretation, using a spatially correlated perturbation magnitude 

(Samson et al., 1996). 

Gross Thickness Uncertainty 

The uncertainty in gross thickness is modeled by fixing the top horizon depth, and perturbing the 

bottom horizon from the interpretation using a spatially correlated perturbation magnitude 

(JACTATM/GOCAD1; Samson et al., 1996; Corre et al, 2000; Charles et al., 2001). Thus this 

uncertainty is equivalent to the uncertainty in the positioning of the bottom horizon. The 

magnitude of uncertainty is evaluated in the same manner as done for the top horizon. However, 

                                                        
1 Geo-modeling software released by Earth Decision Science.  
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the range of uncertainty is upper-bounded by the reservoir thickness. This uncertainty is also 

considered to be of lower order. The impact of gross thickness uncertainty is mostly felt in the 

pressure behavior. 

Fault Positioning Uncertainty 

The magnitude of uncertainty related to fault positioning depends on the resolution of the seismic 

image, thus its magnitude is evaluated from a visual inspection of the seismic image. This 

uncertainty is also of lower order importance compared to the uncertainty related to the fault 

identification or the uncertainty in fault throw. However, in case some wells are located close to a 

fault, a small perturbation of the fault position can strongly affect the production behavior. 

The first order uncertainties (migration uncertainty, structural interpretation uncertainty) located at 

the top of the hierarchy in Figure 5.1 are modeled by providing multiple structural models based 

on expert interpretations. The lower order uncertainties (smaller scale uncertainty) are modeled by 

stochastically perturbing horizons and faults from the interpretation. The stochastic perturbation of 

horizons can be implemented using JACTATM/GOCAD (Samson et al., 1996; Corre et al, 2000; 

Charles et al., 2001). Faults are stochastically perturbed using a method of Zhang and Caumon 

(2006). 

The structural uncertainty modeling tool in JACTATM (Samson et al., 1996; Corre et al, 2000; 

Charles et al., 2001) is designed to perturb the depth of a horizon by directly deforming a 

stratigraphic grid (i.e. corner point geometry grid which can be used for flow simulation) which is 

built from a structural model. The magnitude of the perturbation at each grid node on the horizon 

surface is modeled with a spatially correlated perturbation field which is stochastically simulated 

using geostatistical technique. JACTATM (Samson et al., 1996; Corre et al, 2000; Charles et al., 

2001) uses p-field simulation (Srivastava, 1992) for modeling the perturbation field. This 

perturbation field can vary spatially in accordance with the regional variation of uncertainty range; 

e.g. a large uncertainty range at a fault block without well markers and smaller uncertainty range at 

a fault block with wells. When perturbing a top horizon, the stratigraphic grid is deformed such 

that the displacement specified by the perturbation field is applied to all grid layers. When 

perturbing gross thickness, the specified displacement is applied to the bottom horizon of the 

stratigraphic grid, while the top horizon depth is frozen. The internal grid layers are displaced 

proportionally between the top and bottom horizons. The horizon depth at well markers is honored 
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by conditioning the perturbation field to zero at the well marker locations. If the perturbation field 

is simulated continuously across the faults, the horizons are perturbed continuously over the entire 

grid. If the perturbation field is modeled as discontinuous across the fault, the horizon is perturbed 

independently at the both side of the fault, allowing the modeling of uncertainty in fault throw. 

The fault network geometry perturbation method of Zhang and Caumon (2006) is also designed to 

directly deform a stratigraphic grid. Similarly to the horizon perturbation, the magnitude of the 

perturbation of a fault surface is provided as a geostatistically simulated perturbation field for each 

fault surface. The stratigraphic grid is deformed such that the specified perturbation magnitude is 

honored at the fault surfaces. This deformation takes place under constraints in order for such 

deformation not to destroy the grid structure. The perturbation also changes the horizon shape: 

however, the horizon depth at well markers is honored by freezing the displacement at grid blocks 

penetrated by wells. 

The prior structural uncertainty is modeled by creating a large set of structural models, consisting 

of hundreds of realizations, hierarchically by the following steps: 

1. The modeling starts by providing multiple structural models either from 1) structural 

interpretations based on the multiple seismic images migrated using several velocity models, 

or 2) multiple structural interpretations from a single seismic image with different decisions 

on fault/horizon identification. The stratigraphic grids are built for each structural model. 

2. For each of the structural models in step 1, a subset of structural models is generated by 

considering uncertainty on horizon correlation (fault throw uncertainty). This is implemented 

by perturbing the top horizon of the stratigraphic grids from step 1 using the stochastic 

perturbation field which is simulated discontinuously across the fault.  

3. The uncertainty on the top horizon position is modeled by perturbing the top horizon of each 

stratigraphic grid generated in step 2. This time, a continuous perturbation field over the 

entire grid is used. 

4. The gross thickness of each stratigraphic grid generated in step 3 is perturbed using a 

continuous perturbation field. 

5. The fault surfaces of the stratigraphic grid generated in step 4 is perturbed. 
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The range of perturbation at each step is decided based on the uncertainty range inferred from data, 

and can be different depending on the reservoir case at hand. The resulting large set of structural 

models represents a parameter space in which subsequent history matching takes place. 

5.2 History Matching 

History matching of reservoir geometry is implemented using the method proposed in Chapter 4. 

As discussed in Chapter 4, the choice of the distance function is crucial for the effective stochastic 

search. Near-neighbor search methods such as the neighborhood algorithm (NA) or tree search rely 

on the similarity of production response from the model realizations in the same neighborhood. In 

other words, the production response should be spatially correlated in the space provided with a 

particular distance function. The choice of the distance function can be problem dependent. 

However, once a proper distance function is found for a particular problem, it can be applied to the 

problem of the same type. Such a distance function can be selected by testing its applicability 

through a numerical experiment using a synthetic data set typical to the type of the problem in 

question, i.e., structural modeling in our case. 

The use of Hausdorff distance (Appendix A) is proposed to parameterize the space for inverting 

structural models. In order to calculate the Hausdorff distance between a pair of structural models, 

the geometry of each reservoir model is represented as a point set as depicted in Figure 5.2. This 

point set is generated by extracting the corner points of the stratigraphic grid belonging to the top 

and bottom horizon surfaces of the structure (Fig. 5.2). Figure 5.3 shows similarity distance 

calculations between some example structural models. As shown in the figure, the Hausdorff 

distance reasonably captures the similarity (or dissimilarity) of the reservoir geometry between the 

models. In order to reduce CPU cost for distance calculation, an efficient tree search technique 

(Octree) is utilized; otherwise, the computation cost can be expensive. Later in the next section, it 

is also shown that the Hausdorff distance correlates with the difference in production response 

using a synthetic set of structural models. 
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Figure 5.2: Representation of reservoir geometry as a point set 

 

 

 

 

 

 

 

Figure 5.3: Examples of Hausdorff distance between structural models 

5.3 Synthetic Reservoir Applications 

Synthetic case studies are conducted to demonstrate the applicability of the proposed method. 

First, an application example is shown using single layer models with homogeneous petrophysical 

properties (Case A). The purpose in this first example is to test the robustness of the methodology, 

mainly in terms of convergence efficiency. Therefore, in this case, exaggerated uncertainty ranges 

are used. The applicability of the Hausdorff distance to structural modeling problems is also tested 

in this case. Then, we apply the method to a more realistic synthetic reservoir example which is 

built based on actual geological settings (Case B). 
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5.3.1 Case A 

5.3.1.1 Prior Structural Uncertainty Modeling 

The prior structural uncertainty is modeled considering the uncertainty in 1) geological 

interpretation (fault or no fault), 2) position of top horizon, 3) gross thickness and 4) the position of 

faults. The total of 400 prior structural models are built by: 

1) 4 different interpretations: w/ 3 faults, 2 faults, 1 fault and no fault 

2) 5 different perturbations of top horizons for each of the models from step 1: uncertainty 

range = 150 m 

3) 5 different perturbations of bottom horizons for each of the models from step 2: uncertainty 

range = 20 m 

4) 5 different perturbations of fault locations for each of the models from step 3: uncertainty 

range = 150 m 

The models with different interpretations are depicted in Figure 5.4. As shown in the figure, the 

variation of the structural geometry due to the different interpretations is exaggerated: i.e. the 

reservoir compartmentalization would be informed by the production data to some extent in 

realistic situations, thus it is unlikely that interpreter provides a model where the reservoir is 

completely partitioned by 3 faults (M1H1G0F0 in Fig. 5.4) and a model without fault (M4H1G0F0 

in Fig. 5.4).  However, since the purpose of Case A is to test the proposed methodology, this 

exaggerated uncertainty is adopted. Models generated by a stochastic perturbation of the top 

horizon based on a single interpretation are shown in Figure 5.5. In this case, the top horizon depth 

is stochastically perturbed using a discontinuous perturbation field across the faults (if the model 

includes faults), thus it accounts for the uncertainty related to the horizon correlation (fault throw 

uncertainty). As shown in Figure 5.5, the fault blocks exhibits connection and disconnection 

depending on the perturbation of the top horizon. For an interpretation that does not include a fault, 

this perturbation models the uncertainty related to horizon positioning. Figure 5.6 shows the 

structural models generated by perturbing gross thickness from a single model. Since the average 

reservoir thickness is approx. 30 m in this reservoir, the uncertainty range in gross thickness is set 

to 20 m, which leads to a smaller perturbation of the bottom horizon compared to that of the top 



CHAPTER 5. HISTORY MATCHING OF STRUCTURE 

 

99 

horizon (uncertainty range = 150 m). Figure 5.7 depicts the models generated by the lateral 

perturbation of faults from a single model. As shown Figures 5.4 ~ 5.7, the depth of top and 

bottom horizons are honored at the well markers. 

 

 

 

 

Figure 5.4: Structural models from different interpretation, Case A 

 

 

 

 

Figure 5.5: Structural models generated by the stochastic perturbation of top horizon from the 
same interpretation, Case A 

 

 

 

 

Figure 5.6: Structural models generated by the stochastic perturbation of gross thickness from the 
same model, Case A 
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Figure 5.7: Structural models generated by the stochastic perturbation of fault position from the 
same model, Case A 

 

The similarity distance (Hausdorff distance) is calculated for every pair of 400 structural models in 

the prior uncertainty set and the distance matrix is constructed. CPU time for calculating the 

distance matrix was 18.4 min. An efficient tree search technique (Octree) is utilized to reduce CPU 

cost for calculating the Hausdorff distance (otherwise, the matrix construction requires 3.6 hours).  

In this synthetic application study, flow simulations are run for all reservoir models retained in the 

parameter space, in order to confirm that the pseudovariogram of the production data actually 

shows structure in the parameter space defined by the Hausdorff distance. The water flooding 

performance is simulated for 10 years with 5 producers (P1, P3, P4, P6, P7) and 3 injectors (I2, I5, 

I8) (see Figs. 5.4~5.7 for well locations). The constant porosity and permeability are specified. The 

model is an undersaturated reservoir (no gas cap) with an oil-water contact at the depth of 2540m, 

located between wells P7 and I8. The flow simulation is performed with fixed oil rate and water 

injection rate, and bottom-hole shut-in pressure (BHSP) and water cut (W.C.) are recorded. The 

pseudovariograms of production data are computed for the misfits of water cut, shut-in pressure, 

and the total misfit (i.e. BHSP + water cut) and are depicted in Figure 5.8. The total misfit is 

calculated by weighting each of the water cut misfit and pressure misfit using the inverse of error 
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on the desired history matching accuracy. As shown in the figure, the pseudovariogram of 

production data exhibits clear structure. A Gaussian-type structure with some nugget is observed at 

the distance less than 300 ft. This part of the variogram is mostly attributed to the perturbation of 

gross thickness and the perturbation of fault location. This small scale perturbation may affect 
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far from the wells, the perturbation would have almost no impact on the flow. Thus many of the 
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are almost zero depending on the location where the stochastic perturbation took place, resulting in 

a low variogram at this scale of the similarity distance. 

 

 

 

 

Figure 5.8: Variogram of production data (standardized), Case A 

5.3.1.2 Case Setting 

Stochastic search is performed in the constructed parameter space, using 1) the neighborhood 

algorithm (NA) and 2) tree search. 6 cases are considered by selecting a reference model 

(considered as a “true” reservoir) from a set of prior uncertainty models for each case. This is an 

ideal case where it is known that the parameter space is large enough to span the structural 

uncertainty and include the real reservoir. Figure 5.9 depicts the reference structural models used 

for Cases A1 ~ A6. History matching is performed by including a reference model in the parameter 

space. The petrophysical parameters are fixed for simplicity. Bottom-hole shut-in pressure (BHSP) 

and water cut (W.C.) are simulated for 10 years by fixing oil production rate and water injection 

rate, and matched to the history (i.e. reference production data). 

 

 

 

Figure 5.9: Reference structural geometries, Case A 
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The number of reservoir models that can achieve history match to each reference model is known 

in advance in this synthetic case, since all prior models are already flow simulated for generating 

the variogram. Therefore, the target number of history matched models to be found by the 

stochastic search in each case is specified as tabulated in Table 5.1: 

Table 5.1: Number of reservoir models known to match production history 

 # of models in parameter 
space that matches history 

Target # of history 
matched models to be 

found by stochastic search 
Case A1 14 4 
Case A2 10 4 
Case A3 5 4 
Case A4 3 3 
Case A5 2 2 
Case A6 1 1 

 

From the table, it is predicted that the history matching is easier in Cases A1~2, and more difficult 

in Cases A3~A6. 

5.3.1.3 Results 

Neighborhood Algorithm (NA) 

The history matched structural models found in Cases A1~6 are compared to the reference model 

and the initial models chosen to start the neighborhood algorithm (NA) in Figures 5.10, 5.12, 5.14, 

5.16, 5.18, 5.20. The stochastic search is started from 10 initial models in each of these cases. The 

history matching results are shown in Figures 5.11, 5.13, 5.15, 5.17, 5.19, 5.21 together with the 

simulated performance of the initial models. 

As depicted in the figures, a satisfactory match of production data is achieved in every case (Figs. 

5.11, 5.13, 5.15, 5.17, 5.19, 5.21). The structural models that achieved history match exhibit almost 

identical structural geometry to the reference model in all cases except Case A2 (Figs.5.10, 5.12, 

5.14, 5.16, 5.18, 5.20). As shown in the figures, the difference between the history matched models 

and reference model is either in gross thickness or in fault position. In Case A2 (Fig. 5.12), where 
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the reference model does not include any faults, a history match is also obtained with models 

which have a single fault with flow communication between fault blocks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: History matched structural models vs. reference model, initial models, NA, Case A1 

 

Reference Model

Initial Models (selected out of 10)

History Matched Models

Reference Model

Initial Models (selected out of 10)

History Matched Models



CHAPTER 5. HISTORY MATCHING OF STRUCTURE 

 

104 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: History matching result, NA, Case A1 
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Figure 5.12: History matched structural models vs. reference model, initial models, NA, Case A2 
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Figure 5.13: History matching result, NA, Case A2 
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Figure 5.14: History matched structural models vs. reference model, initial models, NA, Case A3 
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Figure 5.15: History matching result, NA, Case A3 
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Figure 5.16: History matched structural models vs. reference model, initial models, NA, Case A4 
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Figure 5.17: History matching result, NA, Case A4 
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Figure 5.18: History matched structural models vs. reference model, initial models, NA, Case A5 
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Figure 5.19: History matching result, NA, Case A5 
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Figure 5.20: History matched structural models vs. reference model, initial models, NA, Case A6 
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Figure 5.21: History matching result, NA, Case A6 
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Figure 5.22: Optimization behavior, NA, Case A 
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The number of flow simulations required for the history matching is summarized in Table 5.2. 

Table 5.2: Number of flow simulations required for history matching 

# of flow simulations required  
Total per HM model 

# of history matched models 
targeted in stochastic search 

Case A1 32 8 4 
Case A2 65 16.25 4 
Case A3 65 16.25 4 
Case A4 86 28.6 3 
Case A5 131 65.5 2 
Case A6 71 71 1 

 

As tabulated, the history matches are efficiently achieved with a fairly reasonable number of flow 

simulations in Cases A1 ~A4. The computation cost, while acceptable, is more expensive in Cases 

A5 and A6, where only one or two models that can reproduce the past history are included in the 

prior uncertainty space. Figure 5.22 depicts the behavior of the objective function during the 

stochastic search. As shown in the figure, convergence of objective function is not clear: i.e. the 

objective function shows considerable fluctuations. This is because, in this implementation of the 

neighborhood algorithm, the probability of selecting a Voronoi cell is set to zero as soon as the 

Voronoi cell runs out of unvisited prior model. In other words, a Voronoi cell already fully 

explored is not visited any more. Such a Voronoi cell is usually located in the region where a low 

objective function is achieved; otherwise, it would not have been explored so intensely. Note that a 

Voronoi cell fully explored but not achieving history match is not necessarily a local minimum, it 

could have achieved history match had a larger number of prior models been provided in the prior 

uncertainty space. A better convergence of the objective function could be expected if the 

probability perturbation method (PPM, Caers, 2003) is coupled with the neighborhood algorithm 

as demonstrated in Chapter 4: i.e. when the search arrives into an “empty” Voronoi cell, a new 

structural model is generated trough a stochastic perturbation of the currently visited model. 

However, obstacles that prevent implementation of the probability perturbation method in this case 

are: 1) stochastic perturbation of horizon/fault is done as a black box inside the GOCAD software, 

which we require to access for implementing PPM, and 2) the number of perturbation parameters 

required for structural modeling could be potentially large, since PPM requires an explicit 

parameterization of the perturbation. 



CHAPTER 5. HISTORY MATCHING OF STRUCTURE 

 

117 

The sensitivity of the optimization efficiency to the number of initial models in the neighborhood 

algorithm is tested and depicted in Figure 5.23. Although the number of flow simulations required 

for finding one history matched model depends on the number of initial models in each case, the 

optimal number of initial models is case dependent. The sensitivity itself is not extremely large 

except for Case 5A (Fig. 5.23) where the required number of flow simulations is significantly high 

when the number of initial models is set to 10. 

The optimization was performed using a stochastic search method in this case study. Another way 

to perform the optimization is to use a “greedy” search method, where, the decision of a next trial 

is then deterministic (no selection probability). The Voronoi cell with the current best history 

matching model is selected. The advantage of the stochastic search method over the “greedy” 

method is that it can be implemented as a global search method that searches for multiple history 

matched models. In addition, in this case study, it was found that the stochastic search method is 

better than the “greedy” method even for finding a single history matched model. Figure 5.24 

compares the number of flow simulations required for the “greedy” search against that required for 

the stochastic search in finding a single history matched model. The “greedy” search could be 

more efficient than the stochastic search in terms of the require number of flow simulation in many 

cases (Cases A1, A2, A3 and A5). However, as observed in Case 4A and Case 6A in Figure 5.24, 

it requires a significantly larger number of flow simulations. In such cases, the search first arrives 

at a local minimum which is not deep enough to achieve history match, then seeks for another local 

minimum until arriving at a “deep-enough” minimum. Such a search path, which is unfortunately 

dependent on a random selection of the initial models, can be extremely inefficient. The efficiency 

of the stochastic search is more robust compared to the “greedy” search (Fig. 5.24) since the 

stochastic nature of the search path selection reduces the risk of heading to “not-deep-enough” 

local minima. 
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Figure 5.23: Sensitivity of optimization efficiency to the number of initial runs, NA, Case A 

 

 

 

 

 

 

 

 

 

Figure 5.24: Comparison of optimization efficiency, stochastic search vs. greedy search , NA, 
Case A 
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Tree Search Optimization 

 The tree search is applied to the previous cases (i.e. Cases A1 ~ A6). The history matched 

structural models are compared to the initial models and to the reference model in Figures 5.25, 

5.27, 5.29, 5.31, 5.33, 5.35. The GNAT is constructed in this case study by locating 4 models at 

the root of the tree. Figures 5.26, 5.28, 5.30, 5.32, 5.34, 5.36 show the results of history matching 

together with the simulated production on the initial models (flow simulation performed on the 

models located at the root of the tree). 

As depicted in the figures, a satisfactory match is obtained (Figs. 5.26, 5.28, 5.30, 5.32, 5.34, 5.36). 

Similarly to the results of the neighborhood algorithm, the history matched structural models are 

almost identical to the reference model in all cases except Case A2 (Figs. 5.25, 5.27, 5.29, 5.31, 

5.33, 5.35). 
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Figure 5.25: History matched structural models vs. reference model, initial models, Tree Search, 
Case A1 
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Figure 5.26: History matching result, Tree Search, Case A1 
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Figure 5.27: History matched structural models vs. reference model, initial models, Tree Search, 
Case A2 
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Figure 5.28: History matching result, Tree Search, Case A2 
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Figure 5.29: History matched structural models vs. reference model, initial models, Tree Search, 
Case A3 
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Figure 5.30: History matching result, Tree Search, Case A3 
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Figure 5.31: History matched structural models vs. reference model, initial models, Tree Search, 
Case A4 
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Figure 5.32: History matching result, Tree Search, Case A4 
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Figure 5.33: History matched structural models vs. reference model, initial models, Tree Search, 
Case A5 

Reference Model

Initial Models

History Matched Models

Reference Model

Initial Models

History Matched Models



CHAPTER 5. HISTORY MATCHING OF STRUCTURE 

 

129 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.34: History matching result, Tree Search, Case A5 
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Figure 5.35: History matched structural models vs. reference model, initial models, Tree Search, 
Case A6 
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Figure 5.36: History matching result, Tree Search, Case A6 
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The number of flow simulations required for history matching is tabulated in Table 5.3. 

Table 5.3: Number of flow simulations required for history matching 

# of flow simulations required  
Total per HM model 

# of history matched models 
targeted in stochastic search 

Case A1 99 24.8 4 
Case A2 63 15.8 4 
Case A3 206 51.5 4 
Case A4 163 54.3 3 
Case A5 38 19.0 2 
Case A6 20 20.0 1 

 

Again, history matches are achieved with a reasonable number of flow simulations. Figure 5.37 

depicts the optimization behavior of Cases A1~A6. As shown in the figure, the objective function 

exhibits a periodic fluctuation during the tree search optimization as the search repeatedly goes 

down the tree structure. The tree search optimization can also be implemented as a “greedy” search 

method by always selecting the children that achieved the best history match among the siblings as 

a next path to go down, instead of randomly drawing a next path based on a selection probability. 

Figure 5.38 compares the required number of flow simulations between the “greedy” search and 

the stochastic search in determining a single history matched model. This time, the optimization 

efficiency of the stochastic search is not necessarily robust: Case A4 required more than 100 flow 

simulations for finding a single history matched model. However, the robustness of the 

optimization efficiency of the stochastic search is still better than the “greedy” search. 
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Figure 5.37: Optimization behavior, Tree Search, Case A 
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Figure 5.38: Comparison of optimization efficiency, Stochastic search vs. greedy search, Tree 
search, Case A 

5.3.1.4 Impact of the Type of Structural Uncertainty on History Matching 

In order to investigate which structural uncertainty has the most significant impact on the success 

of obtaining a history matching, a sensitivity study is conducted. Figure 5.39 compares the bottom-

hole shut-in pressure (BHSP) and water cut (W.C.) simulated on models with different geological 

interpretations (see Fig. 5.3 for the structural models used for the simulation), while fixing all other 

uncertainties. Figure 5.40 depicts the comparison of the production behavior from models 

generated by perturbing the top horizon depth (using a discontinuous perturbation field across the 

faults), while fixing all other uncertainties. The structural models are depicted in Figure 5.4. 

Figures 5.41 and 5.42 show the sensitivity of the production behavior to the perturbations of gross 

thickness and fault position, respectively (The structural models are depicted in Figs.5.5 and 5.6). 

As shown in the figures, the greatest impact on production behavior is associated to uncertainty in 

geological interpretation, in other words, the decision on the fault identification. Also, the 

significance of the uncertainty modeled by the perturbation of the top horizon (in this case, the 

perturbation of fault throw) is almost comparable to the uncertainty in geological interpretation. 

This is because a change in fault throw leads to a connection or disconnection in flow 
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“fault or no fault”. As expected, the effects of uncertainties in gross thickness and fault position on 

the production behavior are least significant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.39: Sensitivity of the production behavior to the geological interpretation, Case A 
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Figure 5.40: Sensitivity of the production behavior to the top horizon position (fault throw), Case 
A 
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Figure 5.41: Sensitivity of the production behavior to gross thickness, Case A 
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Figure 5.42: Sensitivity of the production behavior to fault position, Case A 
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5.3.2. Case B 

5.3.2.1 Synthetic Reservoir Data  

 The proposed methodology is now applied to a synthetic reservoir case which considers a more 

realistic situation than Case A. The “true” reservoir model used in this Case B is built based on an 

actual geological setting. Figure 5.43 illustrates the “true” reservoir structure together with well 

locations. The reservoir is located at the flank of a salt dome and bounded by 2 sealing faults, a salt 

flank and an edge water. It is faulted by 4 parallel faults elongated along the slope of the salt flank. 

12 producers and 4 injectors are drilled as shown in the figure. The petrophysical properties 

models for the “true” reservoir are generated using sequential Gaussian simulation (Fig. 5.44). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.43: “True” reservoir structural model, Case B 
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Figure 5.44: Petrophysical properties models, Case B 

 

 A synthetic historical production performance is simulated for 10 years, specifying the oil 

production rate and water injection rate depicted in Figure 5.45. The oil is initially recovered by 

natural depletion. However, due to limited pressure support from the aquifer, oil production started 

declining after 2 years of production. One year later, peripheral water injection is started to 

maintain reservoir pressure. The reservoir pressure is successfully boosted, and the field 

production achieved a plateau rate for approximately 3 years. Then, due to increase in the water 

cut, oil production starts declining with the rise of water cut. The synthetic well production data 

(BHSP and W.C.) is generated from the simulated production behavior by adding some Gaussian 

noise. An example is shown in Figure 5.46. Figure 5.47 overlays the bottom-hole shut-in pressure 

at the reference depth of 6000 ft-TVSDSS, measured at 12 producers. This figure indicates that the 

reservoir fluid flow can communicate over the entire field, since the rises and falls of the pressure 

observed at all producers are synchronized. No significant discrete changes in pressure behavior 

between the various wells are observed. This insight can be utilized for structural interpretation. 

  

 

 

 

Figure 5.45: Synthetic field production performance, Case B 
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Figure 5.46: An example of synthetic well production data, Case B 

 

 

 

 

  

 

Figure 5.47: Overlaid plot of well pressure data, Case B 
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from field pressure data that the entire reservoir is flow-communicated. A total of 432 prior 

structural models are built by considering: 

1) 3 different interpretations (Figs. 5.48a & 5.48b) 

2) 3 different perturbations of the top horizons for each models from step 1, using a discontinuous 
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3) 3 different perturbations of the top horizons for each models from step 2, using a continuous 

perturbation field: the uncertainty range is 100 m 

4) 4 different perturbations of the bottom horizons for each models from step 3: the uncertainty 

range is 100 m 

5) 5 different perturbations of the fault locations for each models from step 4: the uncertainty 

range is 150 m 

As shown in Figure 5.48a, the first structural interpretation (Interpretation 1) includes a smaller 

number of faults than the “true” structure. The second interpretation (Interpretation 2) is exactly 

the same as the “true” reservoir (perfect geological scenario). The third interpretation 

(Interpretation 3) includes a larger number of faults than the “true” structure. The cross-sectional 

views of these structural models are shown in Figure 5.48b, together with permeability distribution 

(the selected cross-section is indicated by an arrow in Fig. 5.48a). 

  

 

 

 

 

 

   

 

Figure 5.48: Structural models based on 3 different interpretations, (a) three-dimensional view, 
(b) Cross-sectional view, Case B 
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5.3.2.3 Case Setting 

Using the structural dataset provided from the prior uncertainty modeling, stochastic search is 

performed using both the neighborhood algorithm (NA) and the tree search. The following 2 cases 

are considered. 

Case B1: Perform history matching in the parameter space that consists of all structural models 

built in Section 3.2.2. This means that the structural models derived from the perfect 

geological scenario (Interpretation 2 in Figs. 5.48a & 5.48b), including the “true” 

reservoir model, are included in the parameter space. 

Case B2: Perform history matching in the parameter space comprising only the structural models 

built from Interpretations 1&3. This means that the structural models derived from the 

perfect geological scenario are excluded from the parameter space. (A more realistic 

setting). 

Bottom-hole shut-in pressure (BHSP) and water cut (W.C.) are simulated for 10 years by fixing oil 

production rate and water injection rate to the history, and matched to the synthetic historical 

production data. The petrophysical parameters are fixed to the “true” petrophysical model. In both 

cases, the stochastic searchs are carried out aiming at finding two structural models that reproduces 

the historical production performance. 

5.3.2.4 Case B1 

Figures 5.49, 5.51 depict the history matched structural models obtained from the neighborhood 

algorithm (NA) and the tree search optimizations. The history matching results are shown in 

Figures 5.50, 5.52, respectively, together with the simulated performance of initial runs. Figure 

5.53 shows the behavior of the objective function during the optimization. 

The number of flow simulations required for the history matching is tabulated in Table 5.4. 
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Table 5.4: Number of flow simulations required for history matching, Case B1 

# of flow simulations required  
Total per HM model 

NA 46 23 
Tree search 41 20.5 

 

As depicted in Figures 5.50, 5.52, a history match is achieved with acceptable matching accuracy. 

All of the history matched structural models are those models derived from Interpretation 2 

(perfect geological scenario), and exhibit a fairly similar structural geometry as the “true” reservoir 

structure (Figs. 5.49, 5.51).   

 

 

 

 

 

 

 

 

 

 

 

Figure 5.49: History matched structural models, NA, Case B1 
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Figure 5.50: History matching result, NA, Case B1 
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Figure 5.51: History matching result, NA, Case B1 (2/3) 
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Figure 5.52: History matching result, NA, Case B1 (3/3) 
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Figure 5.53: History matched structural models, Tree search, Case B1 
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Figure 5.54: History matching result, Tree search, Case B1 
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Figure 5.53: History matching result, Tree Search, Case B1 (2/3) 
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Figure 5.53: History matching result, Tree Search, Case B1 (3/3) 
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Figure 5.55: Optimization behavior, (a) NA, (b) Tree search, Case B1 

Case B1: NA

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50

# of flow simulations

O
b

je
ct

iv
e 

fu
n

ct
io

n

Case B1: Tree Search

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35 40 45

# of flow simulations

O
b

je
ct

iv
e 

fu
n

ct
io

n

Case B1: NA

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50

# of flow simulations

O
b

je
ct

iv
e 

fu
n

ct
io

n

Case B1: Tree Search

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35 40 45

# of flow simulations

O
b

je
ct

iv
e 

fu
n

ct
io

n



CHAPTER 5. HISTORY MATCHING OF STRUCTURE 

 

153 

5.3.2.5 Case B2 

The history matching in this case is performed in the parameter space which does not include the 

perfect geological scenario, thus considered as a demonstration for a more realistic situation. The 

history matched structural models are compared to the truth in Figures 5.54, 5.56. The match to the 

production data is shown in Figures 5.55, 5.57, together with the simulated performance of initial 

runs. The behavior of the objective function during the optimization is illustrated in Figure 5.58. 

The number of flow simulations required for the history matching is presented in Table 5.5. 

Table 5.5: Number of flow simulations required for history matching, Case B2 

# of flow simulations required  
Total per HM model 

NA 47 23.5 
Tree search 76 38 

 

The matching accuracy of the match to production data is somewhat less than in Case B1 (Figs. 

5.55, 5.57). However, they are still within the acceptable range. As illustrated in Figures 5.54, 

5.56, the structural models that achieved the best match are the models derived from Interpretation 

3, i.e. the models with more faulting than the “true” geology. The efficiency of the optimization in 

this case (Fig. 5.58) did not change from that observed in Case B1 (Fig. 5.53), despite the smaller 

size of the prior uncertainty space. 
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Figure 5.56: History matched structural models, NA, Case B2 

5000

8500

Top Depth (ft-TVDSS)

‘True” Structure

History Matched Structural Models

5000

8500

Top Depth (ft-TVDSS)

5000

8500

Top Depth (ft-TVDSS)

‘True” Structure

History Matched Structural Models



CHAPTER 5. HISTORY MATCHING OF STRUCTURE 

 

155 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.57: History matching result, NA, Case B2 

(1/3) 
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Figure 5.55: History matching result, NA, Case B2 (2/3) 
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Figure 5.55: History matching result, NA, Case B2 (3/3) 
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Figure 5.58: History matched structural models, Tree search, Case B2 
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Figure 5.59: History matching result, Tree search, Case B2 
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Figure 5.57: History matching result, Tree Search, Case B2 (2/3) 
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Figure 5.57: History matching result, Tree Search, Case B2 (3/3) 
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Figure 5.60: Optimization behavior, (a) NA, (b) Tree search, Case B2 

 

Case B2: NA

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50

# of flow simulations

O
b

je
ct

iv
e 

fu
n

ct
io

n

Case B2: Tree Search

0

20

40

60

80

100

120

140

0 20 40 60 80

# of flow simulations

O
b

je
ct

iv
e 

fu
n

ct
io

n

Case B2: NA

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50

# of flow simulations

O
b

je
ct

iv
e 

fu
n

ct
io

n

Case B2: Tree Search

0

20

40

60

80

100

120

140

0 20 40 60 80

# of flow simulations

O
b

je
ct

iv
e 

fu
n

ct
io

n



CHAPTER 5. HISTORY MATCHING OF STRUCTURE 

 

163 

5.3.2.6 Optimization Efficiency 

The efficiency of optimization is investigated by performing 10 runs of stochastic search in the 

parameter space of Case B1, by changing the random number seed used for the stochastic search. 

Both the neighborhood algorithm (NA) and the tree search are run, aiming at finding a single 

history matched model. Figure 5.59 shows the number of flow simulations required for each run. 

As depicted in the figure, in Case B, the efficiency of the optimization is not robust compared to 

Case A even when using a stochastic search. The reason for this reduced robustness in terms of 

optimization efficiency is not the lack of a structure in the production response in the parameter 

space. As shown by the variogram of production data in this parameter space (Figure 5.60), which 

is generated after the history matching for an investigation, the production response exhibits clear 

structure. However, it is observed that the variance of production response in the parameter space 

is much smaller in Case B than in Case A (i.e. the sill of the variogram, before standardizing, is 

much lower), which means that the response surface of production data is relatively flat in this 

space. This is because, unlike Case A, all of the prior structural models are built without any 

completely sealing faults (known from the historical pressure). As a consequence, the dynamic 

change in simulated production between models with sealing faults and without sealing faults is 

lacking in Case B. Due to this flatness of the response surface, a stochastic search tends to be more 

random compared to Case A. This result indicates that the history matching method proposed in 

this dissertation is more effective and efficient when larger uncertainty (e.g. multiple geological 

scenarios very different from each other) is considered in a prior uncertainty model. 

 

 

 

 

 

Figure 5.61: Optimization efficiency, NA and  Tree search, Case B1 
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Figure 5.62: Variogram of production data, Case B1 

 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 500 1000 1500 2000 2500

V
ar

io
gr

am
 o

f P
ro

du
ct

io
n 

D
at

a



  165 
 

 

 

 

 

Chapter 6  

Conclusions and Future Work 

The importance of structural uncertainty evaluation has been well recognized in both 

geological/geophysical domains and reservoir engineering domain. The quantative evaluation of 

structural uncertainty is already proposed in the area of geoscience and applied to the evaluation of 

hydrocarbon in-place uncertainty. However, this uncertainty modeling method has been restricted 

to an assessment of uncertainty related to geological/geophysical data and interpretation. In other 

words, this structural uncertainty modeling has rarely been extended to the dynamic data 

integration. As a result, structural uncertainty models build by geophysists/geologists are often 

neglected by reservoir engineers, although the engineers also realize the importance of structural 

uncertainty. Reservoir models for flow simulation are built by fixing a structural model to single 

deterministic reservoir geometry and then history matched by modifying other reservoir 

parameters such as permeability. Or at most, history matching is performed by perturbing reservoir 

geometry around a single deterministic structural interpretation. 

This dissertation is motivated by the need to extend the structural uncertainty evaluation to 

dynamic data integration, and proposes a new method/workflow for structural uncertainty 

modeling which links a geophysical/geological approach to history matching. The proposed 

method/workflow is designed to account for multiple geological/geophysical alternatives provided 

as a prior model structural uncertainty. This is as opposed to defining a history matched model by 

perturbation around a single interpretation. Provided with the prior structural uncertainty model 

from geological/geophysical methods, the history matching serves as a way to screen out structural 

models/interpretations that can not explain past production behavior. By this way, the structural 

uncertainty can be reduced through the incorporation of the information from the production data.    
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A new workflow is proposed in Chapter 1. This workflow consists of 1) the generation of multiple 

structural interpretations accounting for seismic imaging uncertainty and interpretation uncertainty, 

2) the prior structural uncertainty modeling by the stochastic perturbation of horizons and faults 

starting from the multiple interpretations, and 3) history matching by honoring the prior 

uncertainty model. 

A geophysical methods to model seismic imaging uncertainty are reviewed in Chapter 2. The 

methodology focuses on uncertainty in seismic velocity, which is a key unknown parameter to 

seismic imaging. In this workflow, structural uncertainty is modeled as a set of multiple seismic 

images through multiple migrations of seismic data from alternative velocity models. The CPU 

cost for multiple migrations is still prohibitive for large-scale applications. However, the structural 

uncertainty modeling by assessing velocity uncertainty reviewed in Chapter 2 is one of the most 

promising methods to provide multiple structural interpretations for the proposed workflow. 

In Chapter 3, a geostatistical method for semiautomatic seismic interpretation is proposed and 

applied to the multiple seismic images obtained by the method of Chapter 2. In this approach, the 

part of interpretation process is automated to reduce the modeling cost. The key idea in Chapter 3 

is to retrieve the pattern-to-pattern correlation information from the database trained on a pair of 1) 

manual interpretation by an expert and 2) the seismic image used for the interpretation, and utilize 

it as a guidance for automatic seismic interpretation. It is shown that this approach is also effective 

to cases where the training seismic image and conditioning seismic image exhibit significant 

difference from each other. This effectiveness of the approach is achieved by introducing a dual-

scale pattern recognition approach into the SIMPAT algorithm. 

The methodology of Chapter 3 is designed following a traditional seismic interpretation approach; 

i.e., the interpretation on two-dimensional cross-sectional views sliced from a three-dimensional 

seismic image. However, the SIMPAT-aided semiautomatic seismic interpretation has the potential 

to be applied for full three-dimensional seismic interpretation. The principle of the techniques, 

namely pattern-to-pattern correlation and pattern recognition, is applicable to any dimension. Thus, 

in principle, it is possible to simulate proximity maps of fault surfaces and horizon surfaces in 

three-dimensional space, conditioning to three-dimensional volume of seismic amplitude. Once 

three-dimensional proximity maps are simulated and smoothed, the fault surfaces and horizon 

surfaces can be extracted from the proximity maps in the form of point sets, by sampling points at 

the proximity of fault/horizon locations indicated by the proximity maps. Recently, Frank (2006) 
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proposed a new method to reconstruct fault/horizon surfaces from point data (e.g. seismic 

interpretation result expressed as point sets). This methodology is proposed as a new 

semiautomatic three-dimensional geomodeling algorithm and applicable for modeling complex 

discontinuous surfaces such as faulted horizons. Frank (2006) showed that the method is robust for 

noisy and sparse point data. His method could be coupled with the SIMPAT algorithm to design a 

semiautomatic seismic interpretation in three-dimensional space. The expected challenge in this 

approach is the pattern reproduction accuracy of the SIMPAT simulation in three-dimensional 

space, since multiple-point geostatistical methods generally experience greater difficulty to 

reproduce three-dimensional training image patterns. The modeling accuracy of the SIMPAT 

algorithm to simulate proximity maps in three-dimensional space, conditioning to three-

dimensional amplitude volume, is subject to further investigation. 

In Chapter 4, a new method to parameterize geological architecture for solving an inverse problem 

is proposed. This methodology is a key technology to implement the workflow proposed in this 

dissertation that allows the posterior structural modeling through dynamic data integration. The 

central idea of this new parameterization is to replace Euclidian distance defined in Cartesian 

parameter space by a distance function (similarity measure) which is not restricted to the 

traditional vector-form representation. By eliminating the need to parameterize model realizations 

using a vector form, this new parameter space accommodates any type and variability of 

geological architecture, hence enables the inversion of discrete parameters such as outcomes from 

multiple geological scenarios. As a consequence, a greater flexibility in the prior model definition 

is achieved as opposed to the traditional parameterization techniques. Though the proposed 

parameter space is defined only by a distance metric, not by dimension/direction, it is shown 

through the synthetic application examples that an efficient stochastic search can be achieved 

solely relying on a distance metric. This distance metric can be tailored to the problem at hand. 

Given a proper choice of distance metric, the spatial structure of forward model response is 

achieved in the parameter space, allowing an effective stochastic search (not a random search). 

In Chapter 5, the workflow of the proposed method for modeling reservoir structure, confronting 

several structural interpretations of geophysical/geological data with dynamic production data, is 

implemented through synthetic reservoir cases. This workflow relies on the structural uncertainty 

modeling techniques using geostatistical methods. It is shown that, by parameterizing this 

uncertainty model using the Hausdorff distance, an efficient history matching can be achieved by 

means of a stochastic search, honoring the modeled prior structural uncertainty. The workflow 
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enables to model complex reservoir structures by fully integrating geophysics, geology and 

reservoir engineering data. It also links the geophysical/geological approach for uncertainty 

modeling and automatic history matching. The methodology does not history match a reservoir 

structure by a mere perturbation from a single structural interpretation: it considers multiple 

alternatives of seismic processing/interpretation.   

The synthetic reservoir cases of Chapter 5 treat other reservoir parameters, such as permeability 

and relative permeability, as “known” parameter, which is unrealistic in real reservoir cases. In real 

reservoir applications, a history matching may not be achieved by fixing such reservoir parameters 

to initial models especially when the number of producers is large. The proposed method for 

history matching of reservoir structure should be implemented as a first stage screening process of 

a hierarchical history matching workflow: i.e. we history match reservoir structure first by freezing 

other reservoir properties and eliminate those structural interpretations that can not explain 

historical production data. Then, by fixing structural geometry, we proceed to history match other 

reservoir properties which are of smaller scale. The aim of this first stage screening process is not 

to obtain a detailed history match of production data. Therefore, at this stage, it is a practical idea 

to use a coarse reservoir model grid and low resolution petrophysical properties models (without 

detailed geostatistical modeling) since the primary interest here is only in reducing the structural 

uncertainty through the incorporation of production data. Then, the CPU spent on flow simulation 

would be much less than a traditional flow simulation on a detailed petrophysical model. However, 

on the other hand, it is critical to construct a “rich” prior structural uncertainty model which covers 

a full range of structural uncertainty; otherwise, this first stage screening process may result in a 

“wrong” structural model. The synthetic reservoir study of Chapter 5 showed that the proposed 

history matching method is more efficient in terms of CPU cost when larger uncertainty range is 

considered as a prior uncertainty. Thus it is recommended not to restrict the prior uncertainty 

model to a single structural interpretation: multiple interpretations that cover rather extreme 

uncertainty range would work better in the proposed workflow. 

Part of the question to be addressed will be: what type of production data should be used to 

constrain the structural framework? Such data should be selected focusing on production data that 

is most impacted by reservoir geometry. Good candidates, in addition to historical pressure data 

and water cut data, are interference test data, tracer test data, RFT data, TDT log etc. since these 

data provides information about flow communication between fault compartments or some 

information about juxtaposition of layers across faults. In reality, reservoir structure is not the only 
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parameter which affects flow communication between fault compartments. The magnitude of the 

fault seal due to shale gouge is another factor. Also, faults are only conductive when it is critically 

stressed (Zoback, 2001). The former can be modeled as a function of fault throw (Yielding et al., 

1997; Manzocchi et al., 1999). With this technique, the magnitude of fault seal due to shale gouge 

is coupled with the fault geometry thus can be perturbed in history matching by the perturbation of 

structural geometry. The latter can be taken into account beforehand by evaluating the current 

stress status on fault surfaces based on the field stress information obtained by analyzing borehole 

failure while drilling (Zoback, 2001). 

The most important contribution of this work is the proposal of a new model parameterization 

method by means of a distance function. In this dissertation, this parameterization method is 

motivated by the needs to 1) accommodate complex geological architecture (such as faulted 

horizons) in a parameter space for an inverse problem and 2) consider multiple 

geological/geophysical alternatives as a prior uncertainty. Also, the distance function is chosen to 

achieve a particular history matching goal, i.e. the inversion of reservoir structure from production 

data. However, the idea of the use of a distance function for model parameterization inspires 

further research directions. For example, Scheidt and Caers (2007) proposed a new method to 

select representative reservoir models from a large set of model realizations by parameterizing the 

model space using a distance function, in order to evaluate future production performance 

uncertainty. Park and Caers (2007) proposed a new distance function for solving an inverse 

problem which reduces the dimensionality of a parameter space, and also structures the parameter 

space such that the number of local minima is reduced. Also, the history matching workflow as a 

screening of reservoir structural model from production data can be extended to a screening of 

scenario (e.g. training image) as suggested by  Park and Caers (2007). 
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APPENDIX A 

Hausdorff Distance 

The Hausdorff distance measures the spatial distance between the point set A and point set B. Let 

ai and bi be any point that belongs to the point sets A and B, respectively. The locations of points ai 

and bi are denoted as uai and ubi. Then, spatial distance between points ai and bi is defined as a 

vector norm ||uai - ubi||, i.e. Euclidean distance between the locations of points ai and bi. Using this 

definition, the spatial distance measured from a point ai to the point set B, d(ai, B), is defined as: 

 ii

i

ba
Bbi Bad uu −= ∈min),(    (A1) 

Using Eq.A1, the distance measured from the set A to the set B is defined as: 

  ),(max),( BadBAd iAai∈
=    (A2) 

It should be noted that the distance measured from the set A to the set B, d(A, B), and the distance 

measured from the set B to the set A, d(B, A), can be different. The Hausdorff distance dH(A, B) is 

defined as: 

  { }),(),,(max),( ABdBAdBAdH =    (A3) 

The Hausdorff distance is applicable for any two-dimensional or three-dimensional object as long 

as it can be represented as a point set. Thus it covers various types of geological architecture. 

When applied to the channel system consisting of binary facies, the channel objects are represented 

as a set of points where each point corresponds to a foreground facies pixel. If the depositional 

system consists of more than 2 facies, the geological architecture can be expressed by a point set 

that consists of edge pixels extracted from a model realization. To measure the similarity of a 

geologic structure (such as faulted horizons), one extracts corner points of stratigraphic grid to 

represent a structure as a point set. Depicted in Figure A are some examples of the Hausdorff 

distance (dH) computed between model realizations of channel system. 
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Figure A: Example of Hausdorff distance 
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