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Abstract

Modeling well responses through data-driven methods requires the handling of large amounts of data

to capture the complexity of the physical processes and operation modes taking place in a well. Data-

driven models often benefit from the careful design of input features that simplify the learning task for

the modeling algorithm, but its design increases the complexity and can be nonscalable. Moreover,

the data used for training such models often is long-term production data, which has imperfections

such as noise, abrupt changes, and missing data gaps. Thus, most modeling frameworks require

substantial data cleaning and selection of specific time periods potentially eliminating useful data.

This work combined a wavelet-based decomposition with machine learning and deep learning

algorithms in a framework to generate full data-driven well models. Wavelet transforms are useful

for preserving relevant information such as short-term localized events as well as longer duration

e↵ects present in data. These properties make them an ideal candidate for the design of useful

features for modeling reservoir response in combination with machine and deep learning algorithms.

This work focused on using pressure and flow rate data to build a data-driven model a well’s response.

A method for model feature design using wavelet transforms is introduced. The research shows that

applying the Maximum Overlap Discrete Wavelet Transform Multiresolution Analysis (MODWT-

MRA) to pressure and flow rate data from a well results in a decomposition analogous to a set of

superposed wells in space. The MODWT-MRA thus splits the complex reservoir response signal
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into a set of simpler ones. This property is then leveraged to systematically design model features

that are then used by machine learning and deep learning models to build data-driven models.

Two specific applications are presented, capturing a well’s pressure response from flow rate

data and reconstructing the flow rate history. Within each application, two scenarios are also

shown, single-well and double-well. For creating the models, the linear Lasso and the deep-learning

LassoNet models are explored. Both methodologies are shrinkage methods, however they di↵er in

their complexity and capacity as function approximators. The results reveal significant benefits of

applying the MODWT-MRA for input feature generation. Handling of noise becomes trivial with

the use of the MODWT-MRA and there is an increase in model accuracy when compared with

base scenarios without the use of the MODWT-MRA. The methodology also allowed for the use of

incomplete datasets as the uncertainty caused by missing data gaps is encapsulated within a few

levels of the decomposition.
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Chapter 1

Introduction

1.1 Motivation

Understanding the dynamics of subsurface flow systems such as oil and gas reservoirs is of impor-

tance during the development and operation of energy extraction projects. Quantifying hydrocarbon

reserves is crucial for asset management and portfolio optimization in oil and gas companies. Iden-

tifying properties of the fluid and reservoir is necessary when designing a field development plan

and ensuring optimal productivity during operations together with well integrity requires constant

surveillance of the reservoir. All these applications demand models of the system whether it is a sin-

gle well or an entire reservoir. Models allow us to make estimates, forecasts and quantify uncertainty

so that informed decisions can be made at the right time.

Subsurface flow models come in multiple varieties and they can be classified according to their

complexity, scale, objective, or data source. Models of varying spatial or time scale can encompass

an entire field of hundreds of square miles or a be devoted to a single well and its drainage area.

Models such as reservoir simulators estimate fluid flow years into the future whereas a single well

1
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model may focus on a few hours or days. Moreover, model complexity can be measured by the

physical interactions being accounted for as well as the required computational cost. Additionally,

models can be classified according to their objective. Mechanistic models are useful to understand

the drivers of specific behaviors, such as the decrease or increase of oil production in a well. On the

other hand, descriptive or predictive models such as production decline curves only try to replicate

the behavior without focusing on its mechanics.

Historically, physics-based models have been the most common regardless of the modeling objec-

tive. These models use knowledge of the underlying physical principles and governing equations to

generate predictions to project unrealized scenarios with quantifiable uncertainty. Because physics-

based models encode conservation and constitutive laws they are extremely useful when data are

limited and provide unique explanatory power that in the hands of an expert can provide insights

into the mechanics of a system. As more complexity has been introduced, nonlinear physics-based

models have become very computationally intensive. An example is reservoir simulators, which can

take days to run even in high-performance computer clusters. In such problems, systems of highly

nonlinear partial di↵erential equations are solved over thousands of grid components to obtain fluid

flow predictions [Sun and Zhang, 2020]. The physics may include coupled geomechanical and ther-

mal components on top of the required flow dynamics. At a certain point, the computational cost of

solving such a problem may be so high that the solution is no longer actionable for decision making.

Models and data are intrinsically connected. Physics-based models are characterized by uncer-

tain parameters that must be determined from data. In subsurface flow applications, data can be

time invariant such as well logs, geologic and seismic surveys or time-varying such as production

volumetric flows, downhole or manifold pressure and temperature readings, etc. In recent decades,

there has been massive advancements in data collection and streaming capabilities in the oil and gas

industry. Remote sensing, cheap data storage, the explosion of machine learning and the declining
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cost of cloud computing have redefined modeling strategies and increased the number of data-driven

model applications. Such models rely on statistical methodologies to capture a mathematical func-

tion that models the observed data. This function can be explicit such as in a linear regression or

implicit and di�cult to extract like a Neural Network. Significant work has been done in data-driven

models with applications in geological parameterization, uncertainty quantification, reduced order

modeling and well test interpretation [Jin et al., 2020], [Tian and Horne, 2019], [Liu et al., 2020],

[Lee et al., 2018]

However, data always come with uncertainty. Noise, heterogeneous sampling, and biases in data

collection are present in real life datasets. In the oil and gas industry, compromises are often made in

data acquisition due to cost constraints, equipment limitations and conflicting operational objectives.

Because of this, purely data-driven models have limitations and the modeling objectives must be

specified accordingly. Predictive or descriptive applications are areas where these limitations can be

managed properly to achieve reliable and generalizable results.

In the oil and gas industry, field production data are an often-overlooked source of information.

Data are usually acquired for surveillance or monitoring purposes and they reflect the complexities

of daily operations of a reservoir. Noise is inherent to production data and missing data due to

equipment malfunction is commonly found. Because data quality is a crucial element for data-

driven models, when using production data significant e↵ort is put into choosing the right portions

of a dataset, cleansing, and preprocessing the data to make it useful for modeling. Because of this

information loss, it is more di�cult to extract knowledge of physical parameters from production

data. However, the data are still a product of the underlying physical processes so with the right

approach it can still be possible to extract useful information from them.

In this work, the focus was on making use of oil and gas production time-series data to generate

predictive and descriptive models of individual well responses both in isolation and with interactions
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between multiple wells. In [Willcox et al., 2021] three elements of the computational task of learning

from data were defined: (1) the representation of the parameter-to-observable map in the learning

problem, (2) the optimization of search algorithm, and (3) the nature of the underlying application

and the characteristics of its data. This work tackled the three tasks jointly. For the first task,

wavelet transforms were used to represent and encode the observable reservoir response from a

well. Secondly, machine learning and neural networks were used as the algorithms for searching and

obtaining an adequate representation of the mentioned response. Finally, the work explored how

specific wavelet transforms can exploit the underlying structure of production data and leverage

its apparent flaws to generate a streamlined data-driven methodology for extracting value of field

production data.

1.2 Literature Review

The oil and gas industry is heavily data-driven and model-driven. Data-driven models have been used

in the industry since its early days. Decline curves are an example of simple predictive data-driven

models. In those, oil production is forecasted by choosing from a small pool of basic mathematical

models and early production data is used to fit the parameters of the chosen model. In the modern

day, the availability of large amounts of historical data has resulted in a proliferation of data-driven

models of increasing complexity for a wide array of applications.

Overall, data-driven models can be classified according to their application. Due to the limitation

for explaining the mechanics of a process, the applications have been focused around three general

areas: production forecasting, production characterization and model identification. In production

forecasting the goal is to come up with a predictive model for oil, gas or water flowrate. Production

characterization updates estimates of production by analyzing past data. Examples of this are well

flow allocation models or oil fraction estimation for a certain production period. Model identification
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is concerned with discovering unknown reservoir properties or relationships using sensor readings or

production data. All these applications make use of a shared pool of methodologies and strategies

when assembling data-driven models and have common set of challenges as well.

1.2.1 Data-driven models for production forecasting

Extensive work has been done in the field of production forecasting. There is a wide variability

in the scope of the prediction whether in spatial or temporal scale. In [Kubota et al., 2019] the

authors used historical data to predict oil rate at a field level for mature assets. The model relied on

months of historical data to predict up to 6 months of production. Variables such as the number of

producers and injection rates were used to fit the Recurrent Neural Network (RNN) that estimated

production. Similarly, in [Aizenberg et al., 2016] a data-driven model was built to predict the

monthly oil production of an entire asset in the coastal swamps of the Gulf of Mexico. The authors

designed a Multi-Layer Neural Network with Multi-Valued Neuron model (MLMVN) which proved

to have good results in multiple months ahead predictions at full field level. [Wei et al., 2022]

generated predictions for pressure and saturation fields using a neural network architecture. The

methodology required creating a two-dimensional training dataset from point time series data using

interpolation via kriging and random forests. Then a ConvLSTM model was used to obtain future

pressure distributions and saturation was estimated using relative permeability curves. The data-

filling methodology ignored any heterogeneity in the reservoir potentially limiting its reliability.

In [Davtyan et al., 2020] the authors also tackled the problem of forecasting oil production for

a mature field but included both spatial and temporal variables when designing their model. A

set of tailored features were then extracted to build a linear model capable of predicting up to

12 months ahead. The problem of missing data was also explored with the authors choosing a

reduced version of the potential input variables due to lack of completeness in the dataset. In
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[Yuan et al., 2021] a deep learning model was proposed for prediction of initial production for a field

development block. The data used included time-series and static data and required multiple steps of

preprocessing. However, missing data limited the applicability of the methodology and the proposed

model proved to have high variance in prediction performance. Focusing on a smaller spatial scale,

the authors in [de Oliveira Werneck et al., 2022] used a deep-learning, time-series approach to

forecast daily oil production and bottom-hole pressure for individual wells using production data.

In the work, multiple data preprocessing techniques were tested and heavy feature engineering was

deemed necessary to fit the specific datasets.

Because of the lack of complete physical theory, the high availability of data and the relatively

short lifespan of wells, unconventional reservoirs have been the focus of a lot of recent work in

data-driven models for production forecasting. In [Cao et al., 2016] a neural network model that

estimates oil production at a well level was developed for unconventional fields. The authors use

tubing pressure estimates and adjacent well histories to predict potential production in undrilled

locations. The authors in [Zhan et al., 2019] applied an LSTM model to predict oil rate for individual

wells using limited initial production data in an unconventional asset. Their methodology requires

careful choice of relevant adjacent wells to use as inputs as well as tubing pressure information for

the target well. [Razak et al., 2021] expanded the inputs for a predictive model to include formation

and fluid properties, well control data as well as early production history. Their model used a deep

learning architecture to predict oil, water, and gas production as multivariate time-series under

varying operating controls. They tackled the issue of limited data by applying transfer-learning to

a model by training with data of nearby or similar wells. In [Chaikine and Gates, 2021] five-year

cumulative production profiles were predicted for multistage hydraulically fractured wells using a

combination of Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) units

in a deep learning model. However, performance results proved to be poor at individual well level
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and only being relatively accurate when aggregating results to field level.

The review of the past work in production forecasting revealed a common set of problems mod-

elers need to deal with when trying to design a predictive model. In multiple works, only a small

fraction of the total available data was utilized due to heterogeneous sampling and incomplete vari-

ables. Many of the proposed models used specifically designed inputs which relied on combinations

of raw variables. This amplified the e↵ect that missing data in single variables can have for the

overall completeness of a dataset. A lot of the modeling methodologies used di↵erent varieties of

neural networks to achieve the prediction, whether cases o↵-the-shelf architectures or purpose-built

ones. This showcases the e↵ectiveness of that class of models and the relative ease of use that such

models have nowadays.

1.2.2 Data-driven models for model identification

Model identification is by definition an inverse problem. Most applications of this type use measure-

ments to establish properties of the subsurface system such as boundary conditions, fracture presence

or rock characteristics. Pressure transient formation and well testing are examples of model identifi-

cation procedures where data-driven methodologies have historically coexisted with physical models.

The objective of well testing is to estimate the productivity of a well and properties of the formation

based on pressure and flow-rate measurements. These data are then matched to analytical solutions

of fluid flow in porous media under varying flow regimes and reservoir boundary conditions. The

analytical solutions contain the desired parameters so significant attention is put in accurately fitting

the data through optimization. Contemporary e↵orts using data-driven methodologies have tried to

automate the process and reduce the potential for human error. In [Dong et al., 2022] the authors

propose an automated methodology for well test interpretation that identifies the curve type and

associated parameters out of four types of well models. The model relies on a Convolutional Neural
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Network trained with synthetic labeled cases and is capable of achieving high accuracy in test cases

using also synthetic data. [Chu et al., 2019] compared the performance of a Fully-Connected Neural

Network (FCNN) and a CNN for well test curve classification. The authors concluded that the CNN

had a more robust performance in the classification results. In [Tian and Horne, 2015] the authors

applied feature based machine learning to interpret pressure downhole gauge (PDG) data. Linear

and Kernel Ridge Regression models were tested and they achieved success in deconvolving the data

and reconstruct both pressure and flowrate histories. Later in [Tian and Horne, 2017] two RNN

structures were used to learn the pressure response of a well from PDG data. The tested structures

were a Nonlinear Autoregressive Exogenous Model (NARX) and a standard RNN. The model re-

sults helped correctly identify the reservoir model and accurately forecast the reservoir performance.

[Tian and Horne, 2016] used machine learning based multi-well testing learn the correlation between

producer rate features and injector pressures. The methodology was able to capture the injectors’

influence on producers thus determining well connectivity.

1.2.3 Data-driven models for production characterization

The problem of production characterization deals with understanding past behavior of a reservoir.

Often the desired variable is derived from incomplete measurements or proxies that require a model

to translate the readings. Examples of this are well rate allocation in commingled structures and fluid

determination in multiphase flow wells. These problems are well suited for data-driven modeling since

historical is often available and discovering physical processes or properties is not the main objective.

In [Alakeely and Horne, 2021] the authors tackle the well liquid rate allocation problem by building

a deep-learning proxy model to estimate well liquid and multiphase flow rate in di↵erent choke

conditions using surface measurements as model inputs. The results have a superior performance

when with standard empirical methods such as Gilbert correlation. In [Kim and Durlofsky, 2021]
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bottomhole pressure sequences were used as input for estimating past water and oil rates at a well

level. The model used a RNN proxy model that achieved close agreement with numerical simulation

thus allowing the results to be used for well control optimization. [Li et al., 2021] tackled the problem

of missing segments in well history data. A series of models including decision trees, boosting and

random forest regressions were set to recover up to 30% of the missing dataset. The authors found

that adaptive boosting and bagging gave the best performance, but a rich dataset was required for

the methodology to work accurately.

1.2.4 Wavelet applications in subsurface flow literature

The use of wavelets has a long history in the oil industry. Its origin can be traced to the work of

[Morlet et al., 1982a] on seismic signal decomposition. During the 1990’s wavelets were applied to

pressure data mainly for denoising and compression. For denoising, multiple methodologies were

developed mostly based on thresholding with a significant amount of work devoted to choosing the

appropriate wavelet, level of decomposition and threshold for di↵erent types of datasets. [Bernasconi

et al., 1999] designed a wavelet-based lossy data compression algorithm for downhole drill bit data

including pressure, torque and accelerations. [Kikani et al., 1998] developed a methodology for

denoising pressure transient data by applying the wavelet transform and thresholding the resulting

high frequency coe�cients. However, in that methodology the threshold was chosen by dropping

coe�cients until the signal passed a visual inspection. [Ribeiro et al., 2008] explored di↵erent

wavelet basis and decomposition levels to identify which one is more suitable for denoising and

outlier removal in pressure transient data. No universally applicable wavelet basis was identified but

it was found that the Daubechies family tended to generalize better for pressure transient signals.

[Athichanagorn et al., 1999] proposed an encompassing methodology for processing and analysis of

long-term pressure data. This methodology covers the full spectrum of applications provided the
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basis for much of the later work. The first three steps are focused on increasing the quality of the

data and make ample use of the wavelet transform. The later steps do not involve the use of wavelets

explicitly but depend on the completion of first steps to be successful. Keeping with the tradition of

previous work, this study built upon these steps to tackle the long-term pressure transient problem.

The steps are:

1. Outlier removal – The goal of the step is to remove aberrant data points that are not part of

the signal. This stage is done by iteratively eliminating detail coe�cients by using a shrinking

threshold. The data is analyzed in a reversed-time fashion because changes in pressure are

lower at later times, making it easier to identify outliers.

2. Noise removal - The purpose of this stage is to smoothen the data and extract the most repre-

sentative features of it. In this application, wavelets are particularly useful when compared to

traditional filters because of their multiresolution properties which preserve most of the sharp

features of the data. [Athichanagorn et al., 1999] proposed a wavelet shrinkage strategy where

the detail signals are shrunk toward zero, e↵ectively reducing noise. The strategy uses a hybrid

threshold at this step meaning that a soft thresholding criterion is applied in continuous (low

variability) data regions and a hard thresholding criterion is used near discontinuities. In con-

trast, [Kikani et al., 1998] exclusively used soft thresholding for the denoising step. However,

both approaches require knowledge of the noise level of the pressure and flow-rate signal, which

can be unknown in practice. To solve this problem, [Ouyang et al., 2002] proposed to fit a

logarithmic function using the polytope method to determine the noise level in pressure data

and making it easier to set the threshold when the noise magnitude is unknown.

3. Transient identification – The goal of this step is to identify potentially unknown flow-rate

changes based on sudden changes in pressure data. For this, [Athichanagorn et al., 1999]
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proposed the use of the wavelet modulus maxima. The intuition behind this is that at inter-

mediate levels of decomposition, the noise singularities disappear while the signal singularities

are still present. Then, after a decomposition level and a threshold is chosen, the starting

positions of new transients can be identified by picking those detail signals with wavelet mod-

ulus maxima higher than the threshold. [Ouyang et al., 2002] later proposed to use pressure

ratios to estimate how the predictability of individual transients when using the methodology

developed by Athichanagorn.

4. Flow history reconstruction – It is not uncommon for production data to have incomplete

flow rate history or uncertainty in the flow rate measurement. In this step, the methodology

developed by Athichanagorn does not make explicit use of the wavelet transform and instead

formulated the problem of filling flow-rate gaps as a nonlinear regression with flow-rate being

as the unknown parameter. For this step, it is key that the previous three steps have been

executed successfully.

5. Behavioral filtering – The goal of this step is to identify inconsistent or aberrant pressure

transients that lead to an incorrect reservoir parameter estimation. These anomalies might be

caused by failures in the pressure gauge during sudden changes and thus should be excluded

from analysis. [Athichanagorn et al., 1999] used the variance between a regression match and

the data as a measure to find aberrant transients. By iteratively eliminating transients with

the maximum variance and refitting a regression on pressure, the approach reduces the error

in model parameter estimates. In machine-learning based modeling, this step is referred as

concept drift.

6. Data interpretation – This step is focused in analyzing the long-term data concurrently by

using a moving window of analysis. This was done to accommodate the possibility of reservoir

parameters changing during the data acquisition period. The proposed window should contain
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a few transients and the subsample of the data is then used to run a regression to determine

the local values of reservoir parameters.

The application of wavelet transforms demonstrated potential for modeling characteristic be-

haviors in long-term pressure transient data at varying scales. These can be time-localized events

such as flow rate changes or long-term e↵ects such as pressure depletion or combinations of short

and long-term transients. However, as it is evident from the seven steps described previously, the

task of analyzing production pressure data was heavily fragmented and multiple parameters had to

be sequentially chosen to come up with a good understanding of the data. This sequential nature

of the operation poses a challenge as errors made in the early steps can propagate to the later

stages. Moreover, the need or identifying breakpoints for transient identification adds to the chal-

lenges, as breakpoints in real data tend to be slow changes and not sharp transitions. In addition to

that, setting up thresholds for outlier detection and denoising makes it necessary to know the noise

magnitude, which is unknown in real data.

1.3 Summary and Research Objectives

The oil and gas industry has a rich history of data-driven models. The recent availability of large

scale datasets as well as the advancements in the field of artificial intelligence have allowed for the

improvement of models for forecasting, model identification and production characterization. For

model identification at the well level, multiple challenges remain including the need for data cleansing

and preprocessing, design and selection of model input features that capture the relevant physics,

as well as the limited ability of models to deal with missing data. This work aimed to tackle those

challenges by leveraging the properties of wavelets and making use of advanced machine learning

models. Specifically, the objectives of the conducted research were:

1. Design an integrated framework for modeling a well’s response using long term pressure and
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flow rate production data.

2. Build a fully data-driven methodology that captures the physical processes within a well.

3. Deal with noise and data imperfections as an inherent property of the data.

4. Create an automated process for designing model input features.

5. Allow for the building of models with incomplete data without loss of performance.

1.4 Dissertation Outline

This work is organized as follows:

Chapter 2 introduces the fundamentals of wavelets, wavelet filters and transforms as well as

their applications to data driven modeling of flow rate and pressure data. The chapter outlines a

series of structural requirements and constraints that guide the choice of a wavelet transform that

can be integrated with machine learning models. The Maximal Overlap Discrete Wavelet Transform

(MODWT) is introduced as well as the concept of a Multiresolution Analysis (MRA), specifically the

MODWT-MRA. Finally, the implications of applying the MODWT-MRA to flow rate and pressure

data are discussed in the context of its application to data-driven models.

Chapter 3 develops a methodology to combine the MODWT-MRA with machine learning and

deep learning methods to model pressure response from flow rate history data. Two modeling

methodologies are introduced, the Lasso and LassoNet and relevant theory is presented for such

methodologies. Afterwards, the developed methodology is applied to both one-well and two-well

scenarios. For each scenario, the e↵ects of missing data gaps are explored as well.

Chapter 4 applies the proposed wavelet and machine learning methodologies to the problem of

flow rate reconstruction. As in Chapter 3, the one-well and two-well scenarios are explored. The

e↵ects of missing data in the modeling process are also studied.
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Chapter 5 contains the summary and conclusions of this work. The main ideas are revisited and

a list of additional applications for the developed methodology are explored.



Chapter 2

Wavelet Transforms for

Data-Driven Modeling

Modeling reservoir response through data-driven methods requires a set of input variables to codify

the necessary information to obtain a reservoir’s response from available data such as oil or liquids

flow rate and make estimates of future behavior or fill in data gaps. This set of input variables,

also referred to as features are fundamental in determining a model’s performance and ability to

capture complex behavior. Defining features to capture reservoir response can be a challenge due

to the complexity of the physical process, changes in flow regimes or operation modes. Moreover,

in a reservoir there is often a superposition of processes happening such as noise, well interference,

water injection pressure support, etc. This makes it more di�cult for the modeler to choose features

but also can inform potential choices for model input variables. A useful set of features is one that

allows the modeling technique to extract maximum information with minimum e↵ort. This means

preserving relevant information such as short term localized events as well as longer duration e↵ects

that might be present in data. Wavelet transforms have been shown to have some of those desirable

15
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properties, which make them an ideal candidate for using in the design of useful features for modeling

reservoir response. This chapter showcases some of the properties of wavelet transforms and defines

the relevant mathematics that give rise to their usefulness for feature building in data-driven models.

2.1 Introduction

Wavelet Transforms are part of a larger set of time-frequency transforms capable of decomposing

and analyzing the structure of a time series. The Fourier Transform is the most popular of this

longer set of transforms as it provides a way of decomposing data into a frequency-by-frequency

basis. For discrete data, the Discrete Fourier Transform (DFT) provides the same representation of

the data in the frequency domain. However, both the Fourier Transform and DFT do not preserve

information in time, meaning that the time location of events such as abrupt changes is lost after

applying the transform. Moreover, Fourier transforms require a time series to be stationary, which

implies that all the identified frequencies must be present throughout the entire duration of the data

series. This is a very strong assumption when for real data such as oil production, where operational

changes and flow regimes are not necessarily present or constant during the entire data acquisition

period.

To overcome the challenge of preserving time information, the Short-Time Fourier Transform

(STFT) was developed [Allen, 1977]. The STFT takes a sliding window of the data and applies the

Fourier transform to the window. By doing this, specific frequencies can be assigned to individual

windows of time with a resolution equal to the width of the window. However, the STFT is not

perfect since events happening within a specific window cannot be localized with higher time reso-

lution. A visual way to observe this and compare the Fourier Transform with the STFT is to plot

the time-frequency plane, as shown in Figure 2.1.

The Wavelet Transform [Morlet et al., 1982c],[Morlet et al., 1982b] proposed a better way of
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preserving both frequency and time information. It overcomes the fixed time-frequency resolution

of the STFT by using a di↵erent basis function called the mother wavelet. This function is then

dilated and translated to capture features local in time and frequency. This allows for an adaptive

time-frequency partition that becomes long in time when low frequency behavior is present and

short in time when high frequency events exist. Because of this, a more adequate frequency and

time resolution is achieved in the transform as shown in Figure 2.1(d). The Wavelet Transform is a

function of scale, as opposed to frequency like the Fourier Transform. Intuitively, scale is similar to

frequency but inversely related in the sense that an increase in scale also increases the time support

of the basis function thus reducing the frequency resolution of high frequencies. Inversely, a decrease

in scale reduces the time support and increases the resolution of higher frequencies. Section 2.2

will formally define the wavelet transform in both continuous and discrete form and use it to derive

other wavelet transforms such as the Maximum Overlap Wavelet Transform (MODWT) which can

be useful to create inputs for data driven models.

]

Figure 2.1: Partitioning of the time-frequency plane

2.2 Continuous and Discrete Wavelet Transforms

Similarly to the Fourier Transform, the Wavelet Transform is defined in both continuous and discrete

form. In this section the Continuous Wavelet Transform (CWT) will be defined first followed by the

Discrete Wavelet Transform (DWT), which can be thought as a discretized version of the DWT.
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2.2.1 Wavelet Functions

Before defining the Wavelet Transform, it is necessary to specify the basis functions. As sine and

cosines are the basis functions for the Fourier transform, the wavelet function forms the basis for

all wavelet transforms. There are multiple types of wavelet functions but all of them share a set

of defining characteristics. Loosely defined, a wavelet is a wave-like function that has a beginning

and an end in time, similar to a wave packet. Formally, a wavelet  (t) is a function of time t that

satisfies the so-called admissibility condition [Mallat and Mallat, 1999]:

C =

Z 1

0

| (f)|
f

df < 1 (2.1)

where  (f) is the Fourier Transform of the wavelet function  (t), and is a function of frequency f .

For the admissibility condition to be met,  (f) must decline quickly as f ! 0. To guarantee that

C > 0 then  (0) = 0 which translates to [Gençay et al., 2002]:

Z 1

�1
 (t)dt = 0 (2.2)

Equation 2.2 implies that the wavelet function has a zero mean. Additionally, a wavelet function

must satisfy the condition of unit energy:

Z 1

�1
| (t)|2dt = 1 (2.3)

Once a valid wavelet function has been defined, the wavelet transform simply projects another

function x(t) onto the wavelet space by applying the convolution:

W (u, s) =

Z 1

�1
x(t) u,s(t)dt (2.4)
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where:

 u,s(t) =
1p
s
 

✓
t� u

s

◆
(2.5)

The resulting wavelet transform W (u, s) is known as the Continuous Wavelet Transform (CWT)

and is a function of two variables representing translation u and dilation s. In a similar form, the

inverse transform can be defined by:

x(t) =
1

C 

Z 1

0

Z 1

�1
W (u, s) u,s(t)du

ds

s2
(2.6)

Applying the wavelet transform to a function or data (Equation 2.4) is known as analyzing or

decomposing. Conversely, applying the inverse transform (Equation 2.6) is known as synthesizing or

reconstructing. The CWT’s parameters u and s can take an infinite number of values and therefore

contain a large amount of redundant information. In practice, only a limited number of parameters u

and s is needed to capture all information present in the original function. The minimum number of

wavelet coe�cients needed to preserve all the original information is known as a “critical sampling”

of the CWT and is what defines the Discrete Wavelet Transform (DWT). This critical sampling is

obtained by discretizing s and u:

s = 2�j
, u = k2�j (2.7)

where j and k define the set of discrete translations and dilations defining the DWT. Intuitively,

the CWT exists for all values in the time-frequency space, whereas the DWT only exists at certain

points in that space defined by:

 j,k(t) = 2j/2 
�
2jt� k

�
(2.8)
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2.2.2 Wavelet Filters

Wavelet filters are the discrete equivalent of wavelet functions. The same properties of integration

to zero and unit energy for wavelet functions  described in Equations 2.1 through 2.3 apply to

wavelet filters. For a filter h of length L, the zero integration condition becomes zero sum condition:

L�1X

l=0

hl = 0 (2.9)

and the unit energy condition can be expressed as:

L�1X

l=0

h
2
l = 1 (2.10)

The critical sampling condition requires the wavelet filter hl to be orthogonal to its even shifts

[Gençay et al., 2002]:
L�1X

l=0

hlhl+2n = 0, for all integers n > 0 (2.11)

When dealing with filters it is useful to analyze them with respect to their frequency response.

This characterizes the way di↵erent frequencies in a signal get filtered when the filter is applied.

The frequency response function, also known as transfer function is defined as:

H(f) =
1X

k=�1
wke

�i2⇡fk (2.12)

where i =
p
�1, f is the frequency and wk is the impulse response function of a filter. The impulse

response function is a function of time and denotes the filter’s response to the unit impulse signal:

xt =

8
>>><

>>>:

1 if t = 0

0 otherwise

(2.13)
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The frequency response function in Equation 2.12 can be rewritten as:

H(f) = G(f)e�i✓(f) (2.14)

where G(f) is called the gain function and it denotes the magnitude of the frequency response

function: |H(f)| = G(f) and ✓ is the phase angle of the filter.

Wavelet filters are high-pass filters, meaning that their gain function decreases monotonically

as f ! 0. For the transform to cover the entire frequency spectrum, a low-pass or scaling filter is

necessary. For most wavelet filters, the low-pass filter coe�cients can be obtained from the high-pass

ones by applying the quadrature mirror relationship:

gl = (�1)l+1
hL�1�l for l = 0, ..., L� 1 (2.15)

The simplest wavelet filter is the Haar wavelet [Haar, 1910] which is a filter of length L = 2 and

its wavelet filter coe�cients h and scaling coe�cients g are defined as:

h0 =
1p
2
, h1 = � �1p

(2)
(2.16)

g0 = g1 =
1p
(2)

(2.17)

Figure 2.2 shows the wavelet and scaling functions in the time domain as well as the squared

frequency response |G(f)|2 of the corresponding filters. It can be seen that the wavelet filter high-

pass as |G(f)|2 ! 0 as f ! 0. Conversely, the scaling filter is low-pass with |G(f)|2 ! 0 as

f ! 1/2
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Figure 2.2: (a) Haar wavelet function. (b) Haar scaling function. (c) Squared frequency response
function for the Haar wavelet and scaling filters

2.2.3 Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) was defined previously by Equations 2.4, 2.5, 2.7 as a

discretized version of the CWT. However, it can also be defined by using wavelet filters. The

projection of the data over translations and dilations of the wavelet function is equivalent to a

matrix operation executing the convolution of the data with a series of wavelet filters. These filters

are associated with specific scales and as such can capture changes within those scales.

Assuming a time series x of length N = 2J , we can obtain the wavelet coe�cients w by applying

the DWT operator W :

w = Wx (2.18)

where W is an N ⇥ N is an orthonormal matrix. The resulting coe�cients x can be decomposed

into J + 1 vectors:

w = [w1,w2, ...wJ ,vJ ]
T (2.19)

where wj is a vector of wavelet coe�cients of length N/2j and vJ is a vector of length N/2J of



2.2. CONTINUOUS AND DISCRETE WAVELET TRANSFORMS 23

scaling coe�cients. The wavelet transform matrix W is composed by rows of the form:

h1 = [h1,N�1, h1,N�2, ..., h1,1, h1,0]
T (2.20)

where h1, 0, ...h1,L are the filter coe�cients for a wavelet of length L and all values L < t < N are

zero. By circularly shifting h1 by factors of two, the next rows of the matrix W are obtained:

h(2)
1 = [h1,1, h1,0, h1,N�1, h1,N�2, ..., h1,3, h1,2]

T (2.21)

h(4)
1 = [h1,3, ..., h1,0, h1,N�1, h1,N�2, ..., h1,5, h1,4]

T (2.22)

Then, the matrix W1 as a N/2⇥N sized matrix of the circularly shifted versions of h1 in the form:

W1 =
h
h(2)
1 ,h(4)

1 , ...,h(N/2�1)
1 ,h1

iT
(2.23)

In a similar fashion, we can define h2 as the zero-padded scale 2 wavelet filter coe�cients in

the same way as Equation 2.20. Then W2 can be constructed in a similar way as Equation 2.23

but shifting the vector h2 by a factor of 4. Consecutively, one can construct Wj in the same way

by shifting hj by a factor of 2j . The matrix V is a column vector with all elements being 1/
p
N .

Finally, the N ⇥N dimensional matrix W is built as:
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W =

2

666666666666664

W1

W2

...

Wj

Vj

3

777777777777775

(2.24)

The practical implementation of the DWT follows the so-called pyramid algorithm [Mallat and

Mallat, 1999]. Stated simply, the pyramid algorithm recursively applies the wavelet and scaling

filters h1 and g1 to the data and subsamples the output of the filter to half its original length at each

iteration. Therefore, the coe�cients wj+1 are half the length of wj which is known as decimation.

2.3 Maximal Overlap Discrete Wavelet Transform

The definition of the DWT in Equation 2.18 assumed a dataset length N = 2J . For many appli-

cations, this length requirement cannot be met or is unrealistic. Another important limiting factor

of the DWT is the length decimation of the wavelet coe�cients. Because the DWT represents the

critical sampling of the CWT, the resulting coe�cients wj decrease in length with increasing scale

level j. To address this issues, an alternative to the DWT applicable to any sample size N and with

no decimation was developed in the form of the Maximum Overlap Discrete Wavelet Transform

(MODWT) [Percival and Walden, 2000].

The MODWT has the following defining properties:

1. Defined for any sample size N , as opposed to the DWT which requires N = 2J .

2. No coe�cient decimation with increasing j. Coe�cients wj for the MODWT are of length
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N independently of level j. Because it is not a critical sampling, the MODWT does contain

reduntant information.

3. The coe�cients of the MODWT multiresolution analysis are zero-phase. This implies that

events in the original series are captured in the MODWT multiresolution analysis at the same

time point as in the original series (aligned).

4. Invariant to circular shifting or translation of the data. This property means that the shifting

the input x by a k time steps results in a shift in the MODWT coe�cients of the same k steps.

This is not a property of the DWT where a shift in the input data results in di↵erent wavelet

coe�cients.

The MODWT is defined as:

ew = fWx (2.25)

where fW is a (J+1)N⇥N matrix defining the MODWT decomposition. The matrix of coe�cients

ew is composed by J + 1 vectors in the way:

ew = [ ew1, ew2, ..., ewJ , evJ ]
T (2.26)

where ewj is of length N/2j . The wavelet coe�cients ewj is associated with changes on a scale of

length �j = 2j�1. The vector evJ is also of length N/2J and contains the scaling coe�cients that

capture changes on a scale of length 2J = 2�J .

The matrix fW then defines the MODWT decomposition is made of J +1 submatrices of N ⇥N

size, so that:
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fW =

2

666666666666664

fW1

fW2

...

fWJ

eVJ

3

777777777777775

(2.27)

The wavelet and scaling filter coe�cients of the MODWT are rescaled filters of the DWT:

ehj = hj/2
j egJ = gJ/2

j (2.28)

The N ⇥ N submatrix fW is built by shifting to the right the filter coe�cients eh1 by integer

units:

fW1 =
h
eh(1)
1 , eh(2)

1 , ..., eh(N�2)
1 , eh(N�1)

1 , eh1

iT
(2.29)

In a similar fashion to Equation 2.29, the submatrices fW2, ...,
fWJ are formed replacing eh1 with

ehj . This matrices can be interpreted as interweaving versions of the DWT equivalent matrices Wj .

2.3.1 MODWT Multiresolution Analysis (MODWT-MRA)

So far, the DWT and MODWT have been introduced as wavelet transforms applicable to real

discrete datasets. In the process, the DWT proved to be unsuitable for datasets of nondiadic

length and coe�cient length decimation makes it di�cult to use of the DWT coe�cients for further

modeling. The MODWT overcomes those challenges but the resulting coe�cients are still not

directly interpretable in a physical sense because they exist in the scale domain. To use the output
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of wavelet transforms for modeling purposes, it is desirable to have the obtained decomposition in the

same domain as the original data. Some wavelet transforms, including the DWT and MODWT allow

for the construction of a multiresolution analysis (MRA) which can be thought as an approximation

of a function or dataset at di↵erent resolutions in the original domain of the function.

To build the MODWT-MRA, we can represent the t element of a data series x as a linear

combination of the MODWT wavelet coe�cients:

xt =
J+1X

j=1

edj,t, t = 0, ..., N � 1 (2.30)

where edj,t is the element corresponding to time t of the MODWT inverse transform of the jth

level coe�cients ewj :

edj = fWT
j ewj for j = 1, ..., J (2.31)

and the J + 1 component of the MODWT-MRA is then edJ+1 = eVT
J VJ . It must be noted that

the wavelet coe�cients ewj represent the wavelet decomposition corresponding to scale �j = 2j � 1

so conversely, the MODWT-MRA components edj = fWT
j ewj contain the portion of the original data

corresponding to scale �j . Scale � in this context is relative to the sampling rate of the data.

Combining Equations 2.25 and 2.31 we can see that the j component of the MODWT-MRA is

the result of the application of the inverse MODWT to the jth component of the MODWT:

edj = fWT
j
fWjx (2.32)

The described properties of the MODWT-MRA make it an ideal candidate for decomposing oil

production data for use in data-driven modeling. The ability to capture events at multiple scales,

lack of decimation and zero-phase lag make it straightforward to use as input for machine learning
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models.

2.4 MODWT-MRA Applied to Flow Rate and Pressure Data

Section 2.3.1 defined the MODWT-MRA as applied to any function or dataset. This section expands

on those definitions as applied to the specific case of flow rate and pressure data from an individual

well. Pressure and flow rate are related to each other through the pressure transient equation as

derived using the Duhamel superposition theorem [Kuchuk et al., 2010]:

p(t) = p0 �
Z t

0

dq

d⌧
(⌧) pu(t� ⌧) d⌧

= p0 �
Z t

0
q(t� ⌧)

dpu

d⌧
d⌧

(2.33)

where pu is the unit-rate pressure response of the system when q = 1. Equation 2.33 expresses

the transient pressure as a convolution of the derivative of the flow rate and unit-rate pressure

response. Also it can be read as the convolution between the flow rate and the derivative of the

unit-rate pressure response. If we define the unit-rate impulse response as the time-derivative of the

unit-flow rate response:

dpu

dt
⌘ g(t) (2.34)

Then the integral given by Equation 2.33 can express pressure as the output of a system to the

flow rate input:



2.4. MODWT-MRA APPLIED TO FLOW RATE AND PRESSURE DATA 29

Figure 2.3: Comparison between the MODWT-MRA and the DWT-MRA. Because of decimation,
the DWT-MRA shows longer step changes at higher levels of decomposition.
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p(r, t) = p0 �
Z t

0
qsf g(r, t� ⌧) d⌧

= p0 � qsf (⌧) ⇤ g(r, t)

(2.35)

In the Laplace domain, Equations 2.35 becomes:

p(r, s) =
p0

s
� qsf (s) g(r, s) (2.36)

Applying the jth level MODWT-MRA operator fWj in the Laplace domain is equivalent to

multiplying by the Laplace transform of the filter ehj : L{ehj} = hj . Then the MODWT-MRA in the

Laplace domain becomes:

dj = h
⇤
j hjx (2.37)

Combining Equations 2.36 and 2.37 the pressure response at scale j can be obtained in the

Laplace domain by simply multiplying the equation by hj and its inverse h
⇤
j :

pj(r, s) = h
⇤
j hj

p0

s
� h

⇤
j hj qsf g(r, s) (2.38)

In Equation 2.38, it must be noted that qsf(j) = h
⇤
j hj qsf is the Laplace transform of the jth

MODWT-MRA level of flow rate. Therefore, Equation 2.38 establishes that the pressure response at

scale �j is the output of the system characterized by g when the input is the flow rate MODWT-MRA

component at scale �j . Therefore, Equation 2.38 can be rewritten as:

pj(r, s) = h
⇤
j hj

p0

s
� qsf(j) g(r, s) (2.39)
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2.4.1 Virtual Wells

The implications of Equation 2.38 for a well production dataset containing pressure and flow rate

time series is significant. Applying the MODWT-MRA to both pressure and flow rate data is

mathematically analogous to decomposing the data coming from a single well into a set of “virtual

wells” existing simultaneously in time and spatial location (Figure 2.4). The additive nature of the

MODWT-MRA allows for the flow rate decomposition to be mass preserving because the original

total volume is always obtained when adding the derived MODWT-MRA flow rate components.

Similarly, a pressure MODWT-MRA decomposition follows the principle of superposition as the sum

of the pressures “felt” by virtual wells are the actual pressure readings at the sensor location. These

specific properties of the MODWT-MRA can be particularly useful when applying the decomposition

to generate input features for a data driven model of reservoir response. Because of the preservation

of the physical behavior within each decomposed flow rate-pressure data pairs, the MODWT-MRA

becomes a data enhancement methodology, where information is not lost but instead potentially

complex behavior is split into simpler components. This has the e↵ect of reducing the complexity

of the function space where a data-driven model would have to operate while learning the reservoir

response model.

2.4.2 MODWT-MRA Parameters

To apply the MODWT-MRA to flow rate data, its necessary to specify the maximum scale level J

of the transform. This determines the “depth” of the decomposition and the scale and duration of

the events captured at each decomposition level. The maximum possible scale level J depends on

the length of the data. For a time series of length N = 2J , the maximum number of levels in the

decomposition is J . However, for high frequency long-term well production data, N can be very

large and because of it J can also be large. In practice, a level J0 < J is usually su�cient. A useful
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Figure 2.4: The MODWT-MRA decomposes flow rate and pressure data into analogous “virtual
wells”

heuristic is to have J0  log2(N) so the decomposition does not consider scales longer than the time

series itself. A more restrictive condition requires that LJ0 , the length of the filter at the J0th level,

is less than the sample size. This condition LJ0 < N which then guarantees the alignment of the

MODWT wavelet coe�cients with the original series and prevents “wrappings” of the time-series at

level J0. [Cornish et al., 2006]

Nevertheless, when applying the condition LJ0 < N , the resulting J0 might still be too large for

practical applications. A factor that must be considered when applying the MODWT or MODWT-

MRA for data-driven modeling, is the length of the datasets used for validation and testing of the

resulting model. It is common practice that the validation and testing datasets are of shorter length

than the training or fitting dataset. Therefore, an updated condition LJ0 < Ntest must be applied

so that the training, validation and testing datasets contain the same number of variables.

The conditions previously described set an upper limit to J0. However, the maximum possible

J0 might not be the optimal number for every application or dataset. Ultimately, practical consid-

erations and specific knowledge of the processes taking place in the reservoir and their respective

duration can also be used to set J0. The MODWT-MRA splits the data into frequency bands of the
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form:


1

2j+1 �t
,

1

2j �t

�

where �t is the sampling period. The scaling or smooth component captures lowest frequencies in

the band:


0 ,

1

2J+1 �t

�

Conversely, the frequency bands correspond to periods of di↵erent duration as shown in Table

2.1. This implies that events of limited duration will be contained to the corresponding jth level

of the decomposition. It must be noted that as J0 becomes smaller, the scaling or low frequency

band becomes wider but the resolution at the highest frequencies where j = 1, 2, ...j << J0 keeps

unchanged. This becomes relevant when data contains noise, as noise is by definition high-frequency.

Therefore, regardless of the choice of J0, noise will always be contained at the lowest j levels.

The wavelet filter is another parameter that needs to be chosen before the decomposition is

applied to the data. The wavelet filter is the basis for the decomposition and it partly determines

the quality of the decomposition. Because the wavelet function is used to represent the behavior

of the data, it helps when the wavelet function mimics or somewhat resembles the behavior of the

data. Common types of wavelet filters are the Haar and Daubechies filters. An example of this is

Table 2.1: Period length for each level of the MODWT where �t corresponds to the sampling period

Level j Lower End Upper End
1 2�t 4�t

2 4�t 8�t

3 8�t 16�t

...
...

...
J 2J�t 2J+1�t

J (Scaling) 2J+1�t 1
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flow rate data, which can be thought of a superposition of piece-wise constant functions. Because

of this the Haar wavelet is a reasonable choice to use as a basis function for the decomposition in

this particular application.

2.5 Summary

Data-driven models often require designing input variables that capture the relevant behavior of a

reservoir while filtering out the noise and irrelevant information. Wavelet transforms are well suited

to decompose the structure of a dataset in a way that preserves short and long-term events. They

do so by projecting the data into a space defined by translations and dilations of a mother wavelet

function thus partitioning the time-frequency space.

The most common wavelet transform is the DWT. However, it su↵ers from several disadvantages

that make it unsuitable for data-driven modeling such as data decimation, translation variance and

nonzero phase. The MODWT overcomes these disadvantages by keeping redundant information and

allows for the construction of a multiresolution analysis (MODWT-MRA) that provides an additive

decomposition while preserving the time-frequency partitioning of the DWT. The MODWT-MRA

applied to flow rate and pressure data creates “virtual wells” that preserve the same physical behavior

of real wells while splitting the complexity of the original data into simpler components.



Chapter 3

Modeling Pressure Response

3.1 Introduction

The pressure transient equation described in Equation 2.33 establishes the relationship between

pressure and flow rate as an input-output system where the reservoir is characterized by a response

function g(t). As such, production measurement of flow rate and pressure can be seen as readings

coming in and out of the system and can be used for determining the response function. This chapter

deals with the problem of approximating the response function using a data-driven approach with

flow rate data as the input and pressure as the output. Two types of function classes were proposed

for the approximation, linear and nonlinear. This chapter deals with both approaches including

feature (input) generation, model fitting, and results analysis.

To obtain such a model of the reservoir, a complete modeling framework was developed. This

framework covers the entire data processing pipeline that a modeler must go through in a real life

scenario. It also deals with challenges that appear when dealing with production data such as data

imperfections or discontinuities. In addition to the fitting of the flow rate to pressure mapping,

35
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additional goals were established for the full modeling framework to expand its applicability to

realistic scenarios. These objectives are:

1. Use of a full data-driven model. No explicit use of flow equations or assumptions on the

reservoir model..

2. Minimize the process of data cleaning and avoid the selection of individual transients for

modeling.

3. Seamlessly deal with the presence of noise in the data. Assume that noise is an inherent

characteristic of the data.

4. Allow for the use of incomplete data in the model building process. This can be in the form

of data discontinuities in time or uneven sampling frequencies between data variables.

All the previous objectives directly tackle issues commonly encountered when using field pro-

duction data. Establishing them as properties of the methodology rather than working around

them allows for a more robust and replicable process. The proposed framework incorporates the

theory developed in the previous chapter and combines it with machine-learning and deep learning

algorithms to create a complete modeling procedure for capturing pressure response. This chapter

presents the modeling framework by first focusing into the model input or features development, then

introducing relevant background on the modeling techniques and then evaluating the performance

of the framework. Finally, the issue of missing data is explored.

3.2 Model Input Development

The objective of this stage is to obtain the set of input variables that will be used by the statistical

model to approximate the reservoir pressure response function. The simplest and initial input
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variable to be tested is flow rate itself without any modification or preprocessing. This is the base

scenario and therefore the application of the MODWT-MRA decomposition is tested against this

scenario.

3.2.1 Decomposition Algorithm

Once the wavelet filter, decomposition depth and boundary conditions have been chosen, the features

can be created accordingly. The feature generation process can be summarized in the following steps:

1. Select flow rate data to be used for modeling.

2. Split datasets into training, validation and testing if applicable.

3. Determine the maximum decomposition level J0. The depth of the decomposition must be

applicable to all training, validation and testing datasets.

4. Apply the J0th level MODWT-MRA separately to each of the datasets.

3.3 Modeling Techniques

3.3.1 Lasso Regression

Lasso regression is a type of linear regression with shrinkage, a type of regularization where the

objective is to select the smallest subset of input features with the strongest e↵ects on the output

variable. This is a desirable property when trying to identify the relevant MODWT-MRA flow rate

levels that are relevant for the target well’s pressure responses.
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The Lasso estimate is defined as:
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lasso = argmin
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where �̂lasso are the regression coe�cients corresponding to each of the input predictors, � is the

regularization parameter that controls the predictors coe�cient shrinkage and i, j are the data and

feature indexes.

The computation of the �̂lasso coe�cients can be done through coordinate descent or using

the Least Angle Regression (LARS) algorithm. Implementations of this methodology are readily

available for multiple programming languages like R or Python in packages such as glmnet [Friedman

et al., 2010] and sckit-learn [Pedregosa et al., 2011].

3.3.2 LassoNet Regression

LassoNet is an extension of the Lasso that combines the linear component and a neural network

component to preserve the feature sparsity properties and interpretability of the Lasso and the

flexible function representation of neural networks. LassoNet does so by using a residual neural

network architecture consisting of a single residual connection and an arbitrary feed-forward neural

network. The functional form of the LassoNet is [Lemhadri et al., 2021]:

f✓,W (x) = ✓
T
x+ gW (x) (3.3)
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where gW is a feed-forward neural network with weights W , ✓ denotes the residual layer param-

eters and x are the input features. A graphic view of the LassoNet architecture is shown in Figure

3.1. The loss function for LassoNet is:

L(✓,W ) =
1

n

nX

i=1

l

⇣
f✓,W (xi), yi

⌘
(3.4)

where n is the number of observations in x, and l denotes the appropriate loss function such as

squared error. Finally, the objective function for LassoNet is defined as:

min
✓,W

L(✓,W ) + � ||✓||1

s.t. ||W (1)
j ||1  M |✓j |, j = 1, ..., d

(3.5)

whereW (1)
j are the weights for feature j in the first hidden layer, � is the regularization parameter

which encourages sparsity similar to that of the Lasso. The parameter M controls the strength of

the linear and nonlinear components. A consequence of the constraint on Wj is that Wj = 0 if ✓j = 0

so the feature j does not participate in the network if the residual layer weight ✓j is zero. When

M = 0, only the residual layer is active and the formulation is that of the Lasso. Alternatively,

when M ! +1 , the regular unregularized neural network is obtained.

The LassoNet training fits the linear (residual) and nonlinear components simultaneously thus

capturing the nonlinearities and selecting the relevant features at the same time. Algorithmically,

a gradient descent step is done first to all model parameters followed by a hierarchical proximal

operator applied to the input layer pair ✓,W (1).

The LassoNet can be implemented using deep-learning frameworks such as PyTorch or Ten-

sorFlow. An ongoing experimental implementation is available for Python through the LassoNet

package and it incorporates the basic training modules using PyTorch as the neural network engine.
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Figure 3.1: LassoNet architecture. Figure recreated from [Lemhadri et al., 2021]

LassoNet Training

In addition to the parameters � and M , there are other parameters that need to be tuned for training

the LassoNet. One of the most important one is the size of the feed forward neural network. In

this work, only fully connected neural networks were tested with sizes ranging between 1-5 hidden

layers and 100-500 units per layer. For the application in hand, the size of the hidden layers proved

to be more important than the number of hidden layers. Overall, the best compromise of speed and

accuracy was found by using a single hidden layer of size 100. This makes the full neural network a

3-layer network when counting the input and output layers as well.

Another highly relevant choice that must be made is the optimizer used for fitting the neural

network. For this specific application, the Adam optimizer [Kingma and Ba, 2014] was used with a

learning rate between 0.001 and 0.01. Carefully choosing the right set of parameters and using cross

validation does not guarantee success for all training experiments. For this application, retraining

the LassoNet with the same parameters can lead to significantly di↵erent results. In general, similar

results are reached when retraining but it is not uncommon to obtain poor results if the optimizer

converge in a local minimum. Setting a seed for the random number generator and fine tuning the
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optimizer learning rate help with alleviating this problem.

To identify a suitable regularization �, the best process is to use cross-validation and trace a

“regularization path” where � is slowly increased until the model is fully regularized and all the

features have been dropped out. Then, the � value can be selected by simply choosing the value

with the best cross-validation loss. However, tracing the regularization path can be challenging if

the starting point is poorly chosen or the step taken at each iteration is too small or too large.

The ideal path starts with all the features present in the model and ends with a model where all

features have been dropped. Starting the path at � = 0 can lead to time consuming or irrelevant

results, specially if the step between consecutive � is small. At each value of � the LassoNet needs

to be trained multiple times when using cross-validation, so identifying the right step and range

for the regularization parameter is crucial for time management. For this exercise, it was found

that defining the path as a geometric progression covering multiple orders of magnitude was best.

Specifically, the path started at � = 400 and had a maximum value of � = 6, 600. In practice this

maximum value was rarely reached because most features were dropped at lower values of �.

The linearity parameter M is one of the most relevant parameters in terms of model performance

impact as it controls the flexibility of the model. The authors of the LassoNet suggest a value of

M = 10 as best for most applications. For this work however, the best performance was obtained

with a value of M = 200. Higher values of M could also be used but proved to be more prone to

overfitting. Values lower than M = 100 showed high bias, especially in scenarios with large amounts

of missing data.
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3.4 Single Well Response

A single well scenario exists when a well interacts in isolation with the reservoir. It might be an

unlikely scenario for a real oil field albeit it is the initial building block for modeling more complex

systems. As stated earlier, the objective of the single well problem is to obtain the reservoir response

function g(t) from available flow rate and pressure readings. The problem is framed as a forward

one, where the physical input of the system is the flow rate and the output is the pressure response.

The model itself is a function mapping between these datasets and corresponds to a nonparametric

representation of the function g(t).

3.4.1 Data Generation

To test the methodology a set of synthetic datasets was generated. Each dataset consisted of

a single well flow rate and pressure data. The flow rate data for the well was generated as a

randomized step function with up to 35 step changes with a maximum value of 400 STB/day. The

sampling frequency of the data was set to one observation per hour and a total duration of one year.

The pressure solutions were obtained analytically on Laplace space and subsequently subjected to

numerical inversion using the Gaver-Stehfest algorithm [Jacquot et al., 1983]. A total of 20 data

sets were constructed with di↵erent flow rate sequences each to test the methodology in a variety

of production scenarios. The 20 data sets shared the same reservoir model, which includes wellbore

storage, skin e↵ect, infinite acting radial flow and a constant pressure boundary. Moreover, Gaussian

noise of 5% and 1% was added to both flow rate and pressure datasets correspondingly. The reservoir

was assumed homogeneous with parameters summarized in Table 3.1. Figure 3.2 shows five of the

20 datasets generated with the described methodology.
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3.4.2 Model Specifications

Four model specifications were fitted for the 20 synthetic datasets. Two of the models were based

on the Lasso and two used the LassoNet for the fitting. In all cases, the train and validation sets

Table 3.1: Reservoir parameters for the synthetic data sets

Parameter Value
k 100
S 0

C (STB/psi) 0.001
µ (cp) 1
h (feet) 50

� 0.2
ct (/psi) 5e-6
rw (feet) 0.208
re (feet) 10,000

B 1

Figure 3.2: Examples of the flow rate and pressure synthetic datasets
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used 80% of the data with the last 20% reserved for the test set. The baseline scenarios used flow

rate as the only model feature. For the MODWT-MRA models, the wavelet filter was the Haar filter

and the depth parameter J was set to 12 for a total of 13 features. Table 3.2 contains the di↵erent

Figure 3.3: Flow rate MODWT-MRA decomposition of one of the synthetic datasets. Higher fre-
quency components are captured by the details and the lowest frequencies are contained in the
smooth.
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Table 3.2: Model descriptions for the scenario with complete data

Model Name Regression Method Features Target
A Lasso

Flow rate (unprocessed)
Pressure

B LassoNet
C Lasso

MODWT-MRA of flow rate
D LassoNet

names and specifications for all four models, referred as models A through D.

Gamma Deviance as Performance Metric

To e↵ectively compare model performance across di↵erent datasets, gamma deviance was chosen

as the performance metric. Because the synthetic datasets contain a variety of ranges in pressure

response, a metric that could be compared across scales is necessary. R2 is one of such metrics,

however during testing of scenarios with missing data, R2 proved to be an unreliable metric due to

reduced variance in the samples. Gamma deviance is an scaling-invariant metric that derives from

the more general Tweedie deviance [Dunn and Smyth, 2008], [Dunn and Smyth, 2005]. In fact, both

mean squared error and gamma deviance are both special cases of the Tweedie deviance. Equation

3.6 shows the definition for the gamma deviance:

D(y, ŷ) =
1

nsamples

nsamples�1X

i=0

2
⇣
log(ŷi/yi) + yi/ŷi � 1

⌘
(3.6)

3.4.3 Performance Results

Figures 3.4 to 3.7 show the results of the four proposed models for one of the 20 synthetic datasets.

For this scenario, all four models show a good performance of capturing the pressure response from

flow rate data. However, models A and B which use only the unprocessed flow rate display much

higher noise in the pressure estimates when compared to models C and D although there is no

observable bias in the estimate. Models C and D, which use the MODWT-MRA decomposition
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as inputs clearly display a significant noise reduction in the pressure estimate. This behavior is

not unexpected, because the noisy components of the flow rate are contained in a few levels of the

MODWT-MRA and thus can be deemed less relevant for the pressure estimate.

Figure 3.4: Model A: Lasso regression with unprocessed flow rate as input. Top panel: Pressure
estimates. Bottom panel: Unprocessed flow rate schedule.

Figure 3.5: Model B: LassoNet with unprocessed flow rate as input. Top panel: Pressure estimates.
Bottom panel: Unprocessed flow rate schedule.

A more representative way to assess the performance of the di↵erent models is to compare them
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Figure 3.6: Model C: Lasso regression with flowrate MODWT-MRA as input. Top panel: Pressure
estimates. Center panel: Unprocessed flow rate schedule. Bottom panel: Flow rate MODWT-MRA.

Figure 3.7: Model D: LassoNet with flow rate MODWT-MRA as input. Top panel: Pressure
estimates. Center panel: Unprocessed flow rate schedule. Bottom panel: Flow rate MODWT-MRA.
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across multiple datasets. Figure 3.8 shows the gamma deviance distribution of all four models across

the 20 synthetic datasets. In training, all four models show a tight gamma deviance distribution. It

is clear however that models C and D have a lower median gamma deviance and thus display better

performance. The same trend is true for the test data, in which both models C and D also outperform

models A and B. These results point that for the single well scenario, using the MODWT-MRA of

flow rate as an input seems to be a better option than using only the unprocessed flow rate data.

By comparing the performance distribution of models B and C, it is evident that better perfor-

mance is gained by using the decomposed MODWT-MRA. In this scenario, the linear Lasso with

MODWT-MRA features outperforms the more complex LassoNet without the MODWT-MRA fea-

tures. For test data, both models C and D present more consistent performance distributions.Model

D (LassoNet with MODWT-MRA) has the best overall results. This is not unexpected because

model D combines the high flexibility of the LassoNet with the benefits of using the MODWT-MRA

decomposition as inputs.
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Figure 3.8: Single well scenario models comparison. The top panel corresponds to training data and
bottom panel shows the test data. A lower gamma deviance denotes better performance
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3.4.4 Handling Missing Data

It is not uncommon for production data to contain gaps of di↵erent duration. These can be caused

by faulty equipment, operational constraints or unknown causes. With this in mind, the modeling

framework was designed to allow for these gaps to exist without deeming the entire dataset unusable.

The goal of the framework is not to fill the gaps or make assumptions about the missing data but

instead to allow for the use of an incomplete dataset while still obtaining a model of the reservoir

response.

Missing data gaps can be viewed as individual events of specific duration. The true physical

event itself, such as a flow rate change is unknown but the absence of information has a beginning

and end. Therefore, as noted in Section 2.4.2, the uncertainty about the event is contained in one of

the bands of the MODWT-MRA decomposition depending on the time duration of the missing data

gap. This property is the foundation to the proposed methodology’s ability to deal with missing

data. Conceptually, the MODWT-MRA decomposition encapsulates the uncertainty of the missing

data gap in a limited set of the decomposition levels. This allows for the model features to still

capture the higher or lower frequency events present in the data with minimum disruption. Using

the virtual wells analogy presented in Section 2.4.1, the missing data are then missing only in only

a few of the virtual wells.

However, the MODWT-MRA cannot be applied to a dataset with null data. Hence, a substitute

for the missing data is needed. When inserting values, the objective is to minimize the disruption

to each of the MRA decomposition levels and keep it as close as possible to what it would have

been without missing data. For the proposed methodology, a linear interpolation is applied to the

missing data before applying the MODWT MRA. The linear interpolation results in MRA detail

series where the interpolated regions have values close or equal to zero. Because the MODWT-MRA

details are centered in zero, applying linear interpolation does not a↵ect the mean value at each
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level. For small amounts of missing gaps, the e↵ect of the interpolation in the variance at each level

becomes negligible. For data with many gaps or large amounts of missing data, the interpolation

causes a decrease in the data variance at the relevant MRA scales [Percival, 2008]. However, for

the purposes of designing input features for a pressure model the bias in the input MRA variances

is acceptable. Figure 3.9 shows the MODWT-MRA decomposition of a dataset with missing data

and compares it with the same decomposition done with the full data. In the high frequency levels,

the MODWT-MRA of missing data shows flat lines for the missing gaps. At low frequencies the

di↵erence between the decompositions with or without missing data becomes imperceptible to the

naked eye.

The updated framework to design models features when missing data is present then becomes:

1. Select flow rate data to be used for modeling.

2. Split datasets into training, validation and testing if applicable.

3. Identify the missing flow rate data gaps and apply linear regression to fill the gaps.

4. Determine the maximum decomposition level J0. The depth of the decomposition must be

applicable to all training, validation and testing datasets.

5. Apply the J0th level MODWT-MRA separately to each of the datasets.

3.4.5 Missing Flow Rate Data

For this exercise, the original 20 synthetic datasets were modified to include missing data in flow rate.

The goal of this exercise is to understand the impact of incomplete input in the pressure estimate

of the model. To introduce missing gaps, ten windows of 300 hours were deleted from the flow rate

data at randomized places for each well. The methodology results in no single dataset containing

the same missing data points. The inserted missing data gaps can overlap with each other creating
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longer duration gaps. The total percentage of missing flow rate data per dataset ranged between

15% to 35% as noted in Table 3.4. Pressure data was not modified for any of the datasets. Because

Figure 3.9: Flow rate MODWT-MRA decomposition showing the e↵ect of missing data. The shad-
owed area displays the missing data gaps. Di↵erences in the MODWT-MRA levels decreases at
lower frequencies.
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Table 3.3: Model descriptions for the scenario with missing flow rate data

Model Name Regression Method Features Target
A Lasso Flow rate

Pressure
B LassoNet (Linear interpolation only)
C Lasso Flow Rate
D LassoNet Lin. Interp. + MODWT-MRA

both the Lasso and LassoNet cannot be fitted with missing data, the flow rate for models A and B

(no MODWT-MRA) was also linearly interpolated to allow for model fitting. For models C and D,

both the linear interpolation and MODWT-MRA decomposition were applied to flow rate. Table

3.3 shows the features and target descriptions for all four models A-D for the missing flow rate data

scenario.

Table 3.4: Fraction of total missing flow rate data for each of the synthetic data sets.

Dataset Missing Flow Rate %
d1 0.25
d2 0.30
d3 0.25
d4 0.23
d5 0.16
d6 0.21
d7 0.34
d8 0.29
d9 0.29
d10 0.34
d11 0.33
d12 0.35
d13 0.30
d14 0.29
d15 0.20
d16 0.30
d17 0.30
d18 0.32
d19 0.29
d20 0.35



3.4. SINGLE WELL RESPONSE 54

Performance Results: Missing Flow Rate Data

Figure 3.10 and 3.11 show the the pressure models fitted with the Lasso and LassoNet respectively

using Dataset d1 with incomplete data. In both, there was only a linear interpolation in the missing

flow rate data but no MODWT-MRA was applied. It can be noted that in both train and test

datasets, the models show a relatively unbiased pressure estimate in the sections where flow rate data

was available. However, the two models display highly noisy estimates, especially when compared

with models C and D in Figures 3.12 and 3.13 which incorporate the MODWT-MRA of flow rate

as inputs. Models C and D are able to reduce the noise levels significantly in the test datasets and

show little decrease in performance overall. The results are similar across the rest of the 20 datasets,

with models C and D showing less noisy pressure estimates.

Figure 3.14, shows the gamma deviance distributions across all datasets. It is noticeable that

model D, the LassoNet with flow rate MODWT-MRA inputs has the best median performance as well

as the lowest 75 percentile for test data. The models that used the MODWT-MRA decomposition

of flow rate as input show significantly better performance than those using the unprocessed flow

rate. Overall, the introduction of missing data a↵ected negatively the performance distributions of

all models by increasing the variance. However, it is clear from Figure 3.14 that the gamma deviance

distributions for models C and D are shifted towards lower (better) values compared to models A

and B.
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Figure 3.10: Model A: Lasso regression with missing flow rate data. Top panel: Pressure estimates.
Bottom panel: Unprocessed flow rate schedule.

Figure 3.11: Model B: LassoNet with missing flow rate data. Top panel: Pressure estimates. Bottom
panel: Unprocessed flow rate schedule.
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Figure 3.12: Model C: Lasso regression with missing flow rate data. Top panel: Pressure estimates.
Center panel: Unprocessed flow rate schedule. Bottom panel: Flow rate MODWT-MRA.

Figure 3.13: Model D: LassoNet with missing flow rate data. Top panel: Pressure estimates. Center
panel: Unprocessed flow rate schedule. Bottom panel: Flow rate MODWT-MRA.
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Figure 3.14: Single well scenario models comparison. The top panel corresponds to training data
and bottom panel shows the test data. A lower gamma deviance denotes better performance
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3.4.6 Missing Flow Rate and Pressure Data

The next scenario to test the methodology is one where both the flow rate inputs and pressure

outputs have some amount of missing data. Having missing data in both inputs and outputs is a

much more challenging modeling scenario due to data fragmentation. Even as individual variables

have relatively small amounts of missing data, the remaining data may not be contiguous and the

missing gaps might not occur at the same time for each variable. Since a model can only e↵ectively

“learn” from the parts of the dataset with both flow rate and pressure, the modeling di�culty

becomes higher with increasing data fragmentation. Nonetheless, applying the MODWT-MRA can

still encapsulates the uncertainty within a few levels for the flow rate data. However, for pressure

data this is not the case as it is used without processing other than interpolation.

For this scenario, the strategy for introducing missing data was applied to both flow rate and

pressure datasets by randomly deleting consecutive periods of 300 hours. Within a single dataset,

the process was applied independently to flow rate and pressure. This results in missing gaps that

are not necessarily aligned in time for both variables thus increasing data fragmentation. Table 3.5

shows relevant statistics for the resulting datasets. It can be seen that for each variable (flow rate

or pressure) the total missing fraction is between 17% to 38% per variable. However, when looking

at the fraction of the data that is fully complete, the percentage oscillates between 39% and 61%.

Therefore, without applying some measure to fill those gaps or contain them around 50% of the data

could be unusable for learning.

Similarly to Section 3.4.5, linear interpolation was used to fill the missing gaps in flow rate and

pressure data for models A and B since both the Lasso and LassoNet cannot natively handle missing

data. For models C and D, both linear interpolation and the MODWT-MRA decomposition were

applied to flow rate while pressure was only interpolated. Table 3.6 contains the descriptions of all

four models A-D for this scenario.
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Table 3.5: Missing data statistics for each of the synthetic data sets.

Dataset Missing Flow Rate Missing Pressure Full Data
No data

(any variable)
d1 0.32 0.32 0.48 0.11
d2 0.17 0.27 0.61 0.06
d3 0.36 0.25 0.52 0.12
d4 0.34 0.22 0.53 0.09
d5 0.30 0.38 0.41 0.09
d6 0.29 0.27 0.45 0.01
d7 0.23 0.33 0.47 0.03
d8 0.38 0.35 0.39 0.12
d9 0.29 0.30 0.46 0.05
d10 0.29 0.30 0.48 0.07
d11 0.36 0.28 0.45 0.08
d12 0.28 0.26 0.50 0.05
d13 0.27 0.31 0.47 0.06
d14 0.33 0.31 0.46 0.11
d15 0.34 0.34 0.42 0.10
d16 0.24 0.35 0.47 0.06
d17 0.24 0.26 0.57 0.07
d18 0.24 0.28 0.52 0.04
d19 0.29 0.29 0.50 0.08
d20 0.31 0.22 0.57 0.11

Model Name Regression Method Features Target
A Lasso Flow rate

Pressure
(Linear

interpolation)

B LassoNet (Linear interpolation only)
C Lasso Flow Rate
D LassoNet Lin. Interp. + MODWT-MRA

Table 3.6: Model descriptions for the scenario with missing flow rate and pressure data

Figure 3.15 shows the results for model A applied to dataset d1. In the areas where flow rate data

were present, a noisy yet unbiased estimate was achieved. The pressure response when there is no

flow rate data available cannot be estimated and results in a straight line. Figure 3.16 displays the

results for model B applied to dataset d1. A noisy but unbiased pressure estimate is also obtained

with the LassoNet when the input is only flow rate and the pressure estimates where there is no

data result in a straight line. Figure 3.17 shows model C applied to dataset d1. In contrast to

previous scenarios without missing data or missing flow rate only, model C shows a noisy pressure

estimate even when using as inputs the MODWT-MRA of flow rate. There is little to no di↵erence
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in the estimates of model A and C for this dataset. In contrast, Figure 3.18 shows a much less noisy

pressure estimate even when both flow rate and pressure data are missing. The LassoNet is able to

filter out the noisy components of flow rate in a better way than the Lasso (model C) and is able

to create an unbiased an less noisy estimate compared to models A B and C. These results suggest

that the di�culty of capturing pressure behavior with fragmented data requires a methodology of

higher complexity such as the LassoNet.

These results are further confirmed when looking at the gamma deviance distributions across

the 20 di↵erent datasets. Figure 3.19 shows that models B and D, which were fitted with the

LassoNet have the best test-set performance. Models A and C, fitted with the Lasso have the

highest dispersion. Model D has the lowest median gamma deviance but it is noticeable that model

B shows the least variance in pressure estimates. Overall, the models that used the LassoNet

performed better and the use of the MODWT-MRA decomposition of flow rate resulted in lower

noise even when showing a slightly higher variance across datasets.

Figure 3.15: Model A: Lasso regression with missing gaps in both pressure and flow rate data. Top
panel: Pressure estimates. Bottom panel: Unprocessed flow rate schedule.
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Figure 3.16: Model B: LassoNet with missing gaps in both pressure and flow rate data. Top panel:
Pressure estimates. Bottom panel: Unprocessed flow rate schedule.

Figure 3.17: Model C: Lasso regression, missing gaps in both pressure and flow rate. Top panel: Pres-
sure estimates. Center panel: Unprocessed flow rate schedule. Bottom panel: Flow rate MODWT-
MRA.
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Figure 3.18: Model D: LassoNet, missing gaps in both pressure and flow rate. Top panel: Pressure
estimates. Center panel: Unprocessed flow rate schedule. Bottom panel: Flow rate MODWT-MRA.

3.5 Two Well Response

The next step in the modeling framework is the extension of the single well scenario to a multi-

well scenario, in this case the simplest one composed by two wells. The additional challenge in the

two well scenario is presented when the both wells are connected in the reservoir. The principle of

superposition establishes that the pressure response at any point in the reservoir is the caused by

the sum of the responses caused by each well. In the case of a specific well, the pressure readings

at the well will show interference from the second well at a distance. Section 3.4 showed that the

MODWT-MRA flow rate features are useful to build models of single wells. A natural extension is

then to evaluate the applicability of the framework to multiple wells and assess the applicability of

a similar methodology to obtain a pressure response model for one well in the presence of another.

Specifically, the two-well scenario is composed by a pair of wells called W1 and W2. Both wells
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Figure 3.19: Models comparison for the single well scenario with missing flow rate and pressure.
The top panel corresponds to training data and bottom panel shows the test data. A lower gamma
deviance denotes better performance
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can produce at the same time with di↵erent flow rates and are connected through the reservoir,

although that might be an unknown fact for the modeler. The objective is two-fold:

1. Identify if a well is connected

2. Obtain the pressure response model g(t) of one of the wells using a data driven methodology.

The scenario assumes that at least the flow rate schedules of the two wells are known and

the pressure history of at least one of the wells is available. Similarly to the single well scenario,

the methodology is tested in synthetic data to be able to identify it’s potential and measure it’s

performance when the true answer is known.

3.5.1 Data Generation

The data for the two well scenario were generated using a modified version of the data generating

function for the single-well scenario. The reservoir parameters were kept constant as shown in Table

3.7. For each well, a flow rate schedule was created using a randomized step function of up to 35

step changes and a maximum rate value of 400 STB/day. The sampling frequency for each well is

one observation per hour and the total duration of the data is 365 days. The pressure solutions were

obtained analytically on Laplace space, including superposition of the two wells and then subjected

to numerical inversion. A total of 20 datasets consisting of two wells each were created with di↵erent

flow rate schedules each. The same reservoir model and parameters were used as in the single well

scenario and Gaussian noise of 5% was added to flow rate data and 1% noise to pressure data.

3.5.2 Model Specifications

Similarly to Section 3.4, four model specifications were fitted for the 20 synthetic datasets. Two

of the models were based on the Lasso and two used the LassoNet for the fitting. The training

and validation sets used 80% of the data with the last 20% reserved for the test set. The baseline
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scenarios used flow rate as the only model feature. For the MODWT-MRA models, the wavelet

filter was the Haar filter and the depth parameter J was set to 12 for a total of 13 features. Table

contains the di↵erent names and specifications for all four models, referred as models A through D.

3.5.3 Performance Results

For the two well scenario, the goal is to capture the target well’s pressure response interacting with

the interfering well and also in isolation. A correctly fitted model of a well’s response should be able

to identify the e↵ect of the interfering well in conjunction with the self-response of the target well.

Model performance can be evaluated for the case of both wells flowing and thus interacting with

each other. In this case, there is not an assumption of a shut-in well.

Figures 3.20 to 3.23 show the results of the four models for the double well scenario for one of

the 20 datasets generated. For this dataset, all four models display unbiased estimates in both test

and train data for the target well W1. However, models A and B (Figures 3.20 and 3.21) which do

not use the MODWT-MRA in the flow rate inputs have a significantly higher noise in the pressure

estimates when compared with models C and D (Figures 3.22 and 3.23).

Table 3.7: Reservoir parameters for the synthetic data sets in the two-well scenario

Parameter Value
k 100
S 0

C (STB/psi) 0.001
µ (cp) 1
h (feet) 50

� 0.2
ct (/psi) 5e-6
rw (feet) 0.208
re (feet) 10,000

B 1



3.5. TWO WELL RESPONSE 66

Figure 3.20: Model A: Lasso regression with flow rate as input. Top panel: Pressure estimates.
Bottom panel: Unprocessed flow rate schedule.

Figure 3.21: Model B: LassoNet with flow rate as input. Top panel: Pressure estimates. Bottom
panel: Unprocessed flow rate schedule.
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Figure 3.22: Model C: Lasso regression with flow rate MODWT-MRA as input. Top panel: Pressure
estimates. Center panel: Unprocessed flow rate schedule. Bottom panel: Flow rate MODWT-MRA.

Figure 3.23: Model D: LassoNet with flow rate MODWT-MRA as inpu. Top panel: Pressure
estimates. Center panel: Unprocessed flow rate schedule. Bottom panel: Flow rate MODWT-MRA.
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Table 3.8: Model descriptions for the scenario with complete data

Model Name Regression Method Features Target
A Lasso Flow rate (unprocessed)

Pressure - Well W1
B LassoNet Well W1 and W2
C Lasso MODWT-MRA of flow rate
D LassoNet Well W1 and W2

3.5.4 Interference filtering

Another way to measure model performance is to evaluate the pressure response when only the

target well flowing. This measures the capacity of a model to capture a well’s self-response or the

pressure response of the well in isolation. A successful model should be able to estimate the correct

pressure self-response from data where two wells are flowing thus filtering out the interference in

the pressure signal. Evidently, estimate performance in this scenario is only possible using synthetic

data or by shutting the interfering well. In a real scenario, shutting a well might not be possible or

prohibitively expensive.

To test performance of interference filtering, the previously trained models were used to estimate

the pressure response of well W1 with the interfering well W2 is shut. The true self-response for

the target well W1 was obtained numerically for all 20 datasets using the same flow rate schedules.

This allowed to test the ability of the 4 models to filter out interference.

Figure 3.24 shows the results for model A, the Lasso with unprocessed flow rate as input. The

yellow line in the top panel represents the true self response for well W1 and the grey line is the

pressure data with interference. The di↵erence between these two lines can be attributed to the

e↵ect of the interfering well W2. It can be seen that the model estimate is noisy and mostly follows

the line with pressure data with interference. Moreover, the noise in the pressure estimate is of

similar magnitude to the actual interference e↵ect, making model A a poor model for interference

filtering.

Figure 3.25 shows the results for model B, the LassoNet with unprocessed flow rate as input.
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Similarly to model A, the pressure estimates mostly follows the pressure obtained with data with

interference. Model B does not display the ability to successfully capture the self response of the

target well W1. Moreover, it shows high levels of noise of comparable magnitude with the interference

e↵ect themselves.

Figure 3.26 shows the results for model C, the Lasso with the flow rate MODWT-MRA decom-

position as input. Even if the pressure estimate is less noisy than models A and B, model C still

follows the pressure line with interference. it is not a successful model to capture the self response

of the target well. In fact, because of the lack of noise, the di↵erence between the model estimate

and the true self-response is more evident than models A and B.

Figure 3.27 shows the results for model D, the LassoNet with the flow rate MODWT-MRA

decomposition as input. The pressure estimates closely follow the true self-response line and the

di↵erence between the self-response pressure data and the data with interference is clear. Out of

the four models, model D is the only one that displays the ability to successfully capture the target

well’s self-response.

Figure 3.24: Model A: Lasso regression with flow rate as input. The top panel displays the pressure
estimates, the bottom panel shows the unprocessed flow rate.
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Figure 3.25: Model B: LassoNet with flow rate as input. The top panel displays the pressure
estimates, the bottom panel shows the unprocessed flow rate.

Figure 3.26: Model C: Lasso regression with flow rate MODWT-MRA as input. The top panel
displays the pressure estimates, the bottom panel shows the unprocessed flow rate schedule.
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Figure 3.27: Model D: LassoNet with flow rate MODWT-MRA as input. The top panel displays
the pressure estimates, the bottom panel shows the unprocessed flow rate.

The results from Figures 3.24 to 3.26 are further confirmed by the gamma deviance distributions

across the 20 datasets. Figure 3.28 shows the distributions for the four models train, test datasets

as well as the no interference scenario. The test results show that when both wells are flowing, all

models have good performance, even if models A and B present noisy estimates. Model D has the

widest dispersion among all 4 models for test data.

However, the interference filtering scenario shows highly di↵erent results. Model D has a much

better performance across all 20 datasets. In fact it is the only model that showed a consistent

capacity to capture the target well’s self-response and filter out interference.

Overall, the results point to the benefit of using the MODWT-MRA flow rate decomposition

as input for modeling pressure. It allows for a better estimates in terms of noise filtering and

when combined with a flexible enough model such as the LassoNet, complex behaviors such as the

capturing of a well’s self response can be achieved. Model B showed that using only the LassoNet

is not enough for easily filtering out interference.
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Figure 3.28: Models comparison for the two well scenario. The top panel corresponds to training
data performance, medium panel shows the test data performance and bottom panel shows the
interference filtering results. A lower gamma deviance denotes better performance.
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3.5.5 Handling Missing Data

Similarly to the single well scenario, a the two-well scenario can also be modified to include varying

amounts of missing data. The challenge for this scenario is two-fold: identify the correct pressure

response model and deal with highly fragmented data. Data fragmentation is potentially higher

in the two well scenario because there are more variables in play. To test the performance of the

modeling framework, two missing data examples were designed: missing flow rate data and missing

both flow rate and pressure data.

3.5.6 Missing Flow Rate Data

The same 20 datasets from the two-well scenario were used to test the framework performance with

missing data. However, the datasets were modified to include missing data in both wells’ flow rate

data. A total of 10 periods of 300 hours of duration were eliminated from the flow rate data of

each well at randomized time locations. Missing data periods were allowed to overlap and create

longer overall missing data gaps, resulting in missing flow rate fractions between 17% to 39% per

well. Because each dataset is comprised of two wells, each with missing data, data fragmentation is

higher and fully complete data was reduced by about half per dataset as shown in Table 3.9. The

fully complete data fractions varies between 39% to 61% among the 20 datasets.

The same four model combination A-D was tested including the Lasso and LassoNet with pure

flow rate data as input as well as the MODWT-MRA of flow rate as input. Table 3.10 specifies the

full descriptions of all four models. Similarly to Section 3.4.5, linear interpolation was used to fill

the gaps in the missing data points so that both the Lasso and LassoNet could be fitted. Also, linear

interpolation was applied before the MODWT-MRA decomposition. The same Haar wavelet filter

and depth parameter J of 12 was maintained as in the two-well scenario with full data.

Figure 3.30 show the results of model A. It can be seen that the pressure estimate is centered
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around the true data when the flow rate data is present. Periods of missing flow rate data are

filled with straight lines. The pressure estimate of model A is consistently more noisy than the

true data, in a similar fashion to the case with full data. Figure 3.30 shows the results for model

B. Its results are similar to those of model A, with a high noise but unbiased estimate where flow

rate data is present. Model C, shown in Figure 3.31 shows little noise in the estimates and high

accuracy. These results are consistent with the results in the full-data scenario. Model D has the

least amount of noise of all the models and it also displays an unbiased estimate of pressure. Both

models that incorporate the flow rate MODWT-MRA show less noisy estimates even in a high data

fragmentation scenario.

Table 3.9: Fraction of total missing flow rate data for each of the synthetic data sets.

Dataset Missing Flow Rate W1 Missing Flow Rate W2 Full Data
d1 0.27 0.27 0.56
d2 0.27 0.32 0.48
d3 0.32 0.28 0.54
d4 0.17 0.27 0.61
d5 0.26 0.30 0.55
d6 0.36 0.25 0.52
d7 0.33 0.28 0.45
d8 0.34 0.22 0.53
d9 0.33 0.25 0.49
d10 0.30 0.38 0.41
d11 0.35 0.31 0.44
d12 0.29 0.27 0.45
d13 0.26 0.24 0.55
d14 0.23 0.33 0.47
d15 0.30 0.33 0.50
d16 0.38 0.35 0.39
d17 0.29 0.20 0.53
d18 0.29 0.30 0.46
d19 0.39 0.39 0.39
d20 0.29 0.30 0.48
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Figure 3.29: Model A: Lasso regression with missing flow rate data. Top panel: Pressure estimates.
Bottom panel: Unprocessed flow rate schedule.

Figure 3.30: Model B: LassoNet with missing flow rate data. Top panel: Pressure estimates. Bottom
panel: Unprocessed flow rate schedule.
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Figure 3.31: Model C: Lasso regression with missing flow rate data. Top panel: Pressure estimates.
Center panel: Unprocessed flow rate schedule. Bottom panel: Flow rate MODWT-MRA.

Figure 3.32: Model D: Lasso regression with missing flow rate data. Top panel: Pressure estimates.
Center panel: Unprocessed flow rate schedule. Bottom panel: Flow rate MODWT-MRA.



3.5. TWO WELL RESPONSE 77

Table 3.10: Model descriptions for the two-well scenario with missing flow rate data

Model Name Regression Method Features Target
A Lasso Flow rate (Linear interpolation only)

Pressure
Well W1

B LassoNet Well W1 and W2
C Lasso Flow rate Wells W2 and W2
D LassoNet Lin. Interp. + MODWT-MRA

Interference Filtering with Missing Flow Rate Data

In a similar way to the two-well full data scenario, the performance of the four models can be tested

using the self response of the target well W1. This is the response of the well W1 with the same

flow rate schedule but assuming the interfering well W2 is shut. Figures 3.33 to 3.36 show the

results of interference filtering for models A to D. Overall it is noticeable that models A, B and

C do not successful capture the self-response of the target well. The estimated pressure when the

interfering well is shut closely resembles that of the scenario with both wells flowing. Models A

and B display higher noise that can mask the results due to the fact that the interference e↵ect is

of similar magnitude to the noise levels. Model C has less noisy output but its pressure estimates

still resemble those of the case with both wells flowing. Only model D, the LassoNet with flow rate

MODWT-MRA inputs successfully captures the self response of the target well W1. In figure 3.36

it can be seen that the pressure estimate matches the theoretical pressure self-response and it also

displays a lower amount of noise when compared with models A and B. These results are similar

to those in the full-data scenario, proving that model D is still capable of fully capturing the self

response even with high data fragmentation.

However, the increase in data fragmentation does come with a downgrade in overall performance

for model D. In Figure 3.37, the gamma deviance distributions for all four models are shown for

train, test and interference filtering scenarios. Across the 20 datasets, model D has the lowest median

gamma deviance. However, there are some datasets where performance is not as good as it was with

full data. Nonetheless, model D is still the only one able to successfully filter out interference and
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capture the self-response for the target well.

Figure 3.33: Model A: Lasso regression with missing flow rate data. The top panel displays the
pressure estimates, the bottom panel shows the unprocessed flow rate.

Figure 3.34: Model B: LassoNet with missing flow rate data. The top panel displays the pressure
estimates, the bottom panel shows the unprocessed flow rate.
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Figure 3.35: Model C: Lasso regression with missing flow rate data. The top panel displays the
pressure estimates, the bottom panel shows the unprocessed flow rate.

Figure 3.36: Model D: LassoNet with missing flow rate data. The top panel displays the pressure
estimates, the bottom panel shows the unprocessed flow rate.
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Figure 3.37: Models comparison for the two well scenario with missing flow rate. The top panel cor-
responds to training data performance, medium panel shows the test data performance and bottom
panel shows the interference filtering results. A lower gamma deviance denotes better performance
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3

3.5.7 Missing Flow Rate and Pressure Data

The last case for the two-well scenario is to have missing data in both flow rate inputs as well as

the pressure training data. To create this case, the 20 datasets used in Section 3.5.1 were modified

to include ten missing data gaps in pressure and flow rate for both wells. In a similar fashion to

the previous section, the missing data gaps were of 300 hours of duration introduced at randomized

points in the data. Table 3.11 shows the missing data statistics for the 20 datasets. Between 19% to

38% of the flow rate data is missing per well in each dataset and the missing pressure data ranges

between 16% to 38%. Because of data fragmentation, the fractions of full data for each dataset are

only between 23% to 40%.

Table 3.11: Fraction of total missing flow rate and pressure data for each of the synthetic data sets.

Dataset
Missing Flow Rate

W1
Missing Flow Rate

W2
Missing Pressure

W1
Full Data

d1 0.27 0.30 0.26 0.24
d2 0.28 0.35 0.26 0.38
d3 0.25 0.36 0.16 0.38
d4 0.25 0.19 0.34 0.39
d5 0.32 0.26 0.29 0.32
d6 0.25 0.33 0.34 0.35
d7 0.27 0.34 0.30 0.33
d8 0.26 0.37 0.21 0.34
d9 0.27 0.27 0.31 0.40
d10 0.30 0.35 0.29 0.35
d11 0.29 0.33 0.29 0.32
d12 0.31 0.35 0.34 0.25
d13 0.30 0.38 0.36 0.34
d14 0.37 0.38 0.24 0.31
d15 0.33 0.30 0.35 0.38
d16 0.33 0.30 0.22 0.38
d17 0.35 0.31 0.28 0.34
d18 0.38 0.34 0.32 0.23
d19 0.36 0.38 0.21 0.32
d20 0.27 0.29 0.38 0.34

Figures 3.38 to 3.41 show the results of the two-well scenario with missing flow rate and pressure.
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Overall, a similar trend appears for all four models. Models A and B show a noisy but unbiased

prediction for times where the flow rate is available for both wells. Models C and D which use the

flow rate MODWT-MRA as input have less noisy estimates. Model C however is noticeably more

noisy than model D in this example, with model D having the closest fit and less noise of all four

models.

Figure 3.38: Model A: Lasso regression with missing gaps in both pressure and flow rate data. Top
panel: Pressure estimates. Bottom panel: Unprocessed flow rate.

Figure 3.39: Model B: LassoNet with missing gaps in both pressure and flow rate data. Top panel:
Pressure estimates. Bottom panel: Unprocessed flow rate.
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Figure 3.40: Model C: Lasso regression with missing gaps in both pressure and flow rate data.
Top panel: Pressure estimates. Center panel: Unprocessed flow rate. Bottom panel: Flow rate
MODWT-MRA.
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Figure 3.41: Model D: LassoNet with missing gaps in both pressure and flow rate data. Top panel:
Pressure estimates. Center panel: Unprocessed flow rate. Bottom panel: Flow rate MODWT-MRA.

Interference Filtering with Missing Flow Rate and Pressure Data

In a similar fashion to Section 3.5.6, the four models performance was tested against in the no

interference scenario. Figures 3.42 to 3.45 show the results for all four models A-D. Models A, B

and C failed to successfully capture the self response of the target well when the interfering well

W2 was shut. Both models A and B display a high noise estimate that masks the interference e↵ect

and model C even if less noisy than models A and B still shows large amounts of noise, especially

when compared with the scenario with no missing data. Only model D, the LassoNet with flow rate

MODWT-MRA inputs was successfully in capturing the target well’s self response. Not only did

model D was able to capture the self-response of the target well W1 but also achieved a minimum

amount of noise. It must be noticed that the correct pressure estimates were achieved when flow

rate data was available from the target well with straight continuous lines where no flow rate data

was available.
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As in Section 3.5.6, similar results appear throughout the 20 datasets. In this scenario, model

D still achieved the smallest median gamma deviance throughout all 20 datasets. However, the

distribution of gamma deviance became wider with the increase of missing data as shown in Figure

3.46

Figure 3.42: Model A: Lasso regression with missing gaps in both pressure and flow rate data. The
top panel displays the pressure estimates, the bottom panel shows the unprocessed flow rate.

Figure 3.43: Model B: LassoNet with missing gaps in both pressure and flow rate data. The top
panel displays the pressure estimates, the bottom panel shows the unprocessed flow rate.
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Figure 3.44: Model C: Lasso regression with missing gaps in both pressure and flow rate data. The
top panel displays the pressure estimates, the bottom panel shows the unprocessed flow rate.

Figure 3.45: Model D: LassoNet with missing gaps in both pressure and flow rate data. The top
panel displays the pressure estimates, the bottom panel shows the unprocessed flow rate.
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Figure 3.46: Models comparison for the two well scenario with missing flow rate and pressure
data. The top panel corresponds to training data performance, medium panel shows the test data
performance and bottom panel shows the interference filtering results. A lower gamma deviance
denotes better performance
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3.6 Summary

This chapter explored the use of a variety of machine learning and deep learning models for modeling

pressure response of wells both in isolation and in the presence of others. Overall, the approach for

all models was to use the MODWT-MRA decomposition framework to create useful features that

simplify the learning task for the data-driven algorithms. As shown in Chapter 2, the MODWT-MRA

decomposes data with complex behavior into a set of simpler datasets that in the particular case

of flow rate and pressure pairs are analog to virtual wells. The Lasso and LassoNet methodologies

were tested in two overall scenarios, single well and two-well. For each scenario, the regression

methodologies were tested with and without the use of the wavelet decomposition as inputs. Finally,

all scenarios were tested with varying amounts of missing data.

Coupling the flow-rate MODWT-MRA as an input with shrinkage methods such as the Lasso

and LassoNet resulted the ability to capture pressure response even with imperfect data. For the

single well scenario, the main advantage of using the MODWT-MRA decomposition resulted in a

significantly lower noisy estimate and higher accuracy even when using linear regression and in the

presence of missing data. The MODWT-MRA is able to contain the uncertainty caused by missing

data within a few levels of the decomposition.

Moveover, it is in the two-well scenario where the main benefits of using the wavelet decomposi-

tion came to light. A model that successfully captured an individual well’s pressure response in the

presence of interference was developed by pairing the MODWT-MRA flow rate features with the

LassoNet. Using linear methods such as the Lasso or not including the MODWT-MRA flow rate

inputs did not give successful results. Moreover, the model was still successful when dealing with

high data fragmentation of up to 60%.



Chapter 4

Modeling Flow Rate

4.1 Introduction

Flow rate reconstruction is the process of estimating a flow rate schedule from the available pressure

history. This is often a goal in cases where equipment such as flow meters have failed or operational

constraints caused unrecorded data periods. Building a data-driven model to model flow rate using

pressure history as input is the opposite problem to that of Chapter 3. From a methodological point

of view it is similar in the sense that a function mapping is generated using data, in this case using

pressure as the input and flow rate as the output. However, from a physical standpoint, the problem

is very di↵erent as it is an inverse problem and the pressure data used as input for the model has

gone through a process of information loss caused by di↵usion.

This chapter explores the applicability of the MODWT-MRA decomposition for the purpose of

modeling flow using data-driven models. First, a single well scenario was built and tested with

varying amounts of missing data and two data modeling methodologies, the Lasso and LassoNet.

This first scenario served as the building block for the two well scenario, where data from two

89
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connected wells were used to reconstruct the flow rate history of one of them. The additional

challenge of this scenario is caused by interference e↵ects present in the pressure histories. In this

case, a data-driven model needs not only to map the reverse relationship of flow rate and pressure

but also to identify and filter out the external interactions present in the input data. The two well

scenario also was tested with varying amounts of missing data, making the learning problem even

more challenging.

4.2 Single Well Scenario

A single well scenario is the simplest case for testing a flow rate recovery algorithm. In this scenario,

the pressure history of a well in isolation is used to generate a flow rate history estimate. Because

the objective of this exercise is to evaluate the usefulness of the MODWT-MRA decomposition

when designing a flow rate model, two sets of input features are compared: a base case of using

the unprocessed pressure history and the MODWT-MRA decomposition of flow rate. Similar to

Chapter 3, two modeling methodologies were tested with each set of pressure features, the Lasso

and LassoNet.

4.2.1 Data Generation

For the single well scenario, the set of 20 data sets used in Section 3.4 were used. Each dataset

consists of a single well flow rate and pressure data. The flow rate data for the well was generated

as a randomized step function with up to 35 step changes and a maximum value of 400 STB/day.

The sampling frequency of the data was set to one observation per hour and a total duration of one

year. The pressure solutions were obtained analytically in Laplace space and subsequently subjected

to numerical inversion using the Gaver-Stehfest algorithm [Jacquot et al., 1983]. A total of 20 data

sets were constructed with di↵erent flow rate sequences each to test the methodology in a variety
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of production scenarios. The 20 data sets shared the same reservoir model, which includes wellbore

storage, skin e↵ect, infinite-acting radial flow and a constant pressure boundary. Moreover, Gaussian

noise of 5% and 1% was added to both flow rate and pressure datasets respectively. The reservoir

was assumed homogeneous with parameters summarized in Table 4.1.

Table 4.1: Reservoir parameters for the synthetic data sets

Parameter Value
k 100
S 0

C (STB/psi) 0.001
µ (cp) 1
h (feet) 50

� 0.2
ct (/psi) 5e-6
rw (feet) 0.208
re (feet) 10,000

B 1

4.2.2 Model Input and Features Development

In an analogous way to Chapter 3, to create the input features of the flow rate reconstruction models,

the MODWT-MRA was applied to the unprocessed pressure data. The feature generation process

consists of the following steps:

1. Select pressure data to be used for modeling.

2. Split datasets into training, validation and testing if applicable.

3. Determine the maximum decomposition level J0. The depth of the decomposition must be

applicable to all training, validation and testing datasets.

4. Apply the J0th level MODWT-MRA separately to each of the datasets.

In this exercise, for all scenarios the decomposition depth parameter J0 was set to 12, result-

ing 13 total features from each individual pressure history. An example of the resulting pressure
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decomposition can be seen in Figure 4.1.

Figure 4.1: MODWT-MRA decomposition of pressure history
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4.2.3 Model Specifications

Four model specifications were fitted for the 20 synthetic datasets. Two of the models were based on

the Lasso and two used the LassoNet for the fitting. In all cases, the train and validation sets used

80% of the data with the last 20% reserved for the test set. The baseline scenarios used pressure

data as the only model feature. For the MODWT-MRA models, the wavelet filter was the Haar

filter and the depth parameter J was set to 12 for a total of 13 features. Table 4.2 contains the

di↵erent names and specifications for all four models, referred as models A through D.

Table 4.2: Model descriptions for the two-well scenario with missing flow rate data

Model Name Regression Method Features Target
AF Lasso

Pressure History
Flow Rate

BF LassoNet
CF Lasso MODWT-MRA of
DF LassoNet Pressure History

LassoNet Specifications

Both models BF and DF which use the LassoNet for fitting the data have a shared set of training

hyperparameters and hidden layer architecture. For both models, a hidden layer of size 1x100 was

defined for the fully connected part of the LassoNet. The input layer varied in size due to the

di↵erence in number of features and the output of both models was a vector containing the flow

rate estimates. The regularization hyperparameter � was selected through cross validation for each

dataset, however the initial � and regularization path (search space) was shared among the two

models. The search space for � was defined as a geometric progression of 150 points spanning from

� = 400 to � = 7, 000.

Both models BF and DF also share the hierarchy hyperparameter M that controls the relative

importance of the linear and nonlinear components in the LassoNet. A value of M = 0 results in

a Lasso regression while M ! +1 results in an unregularized fully connected neural network. For
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both models BF and DF the value was kept constant as M = 200. The experience gained using the

LassoNet revealed similar results at values of 200 < M < 300 with the larger parameter sensitivity

being �. For this reason and to save computational time, M was not part of the cross-validation

parameter optimization. The optimizer used for the neural network training was Adam with a

learning rate of 0.01. An early stopping strategy was used for training, halting the training when a

least 10 training epochs had passed without a minimum improvement of 1% in the validation set.

Performance Metric

To compare model performance across di↵erent datasets, gamma deviance was chosen as the per-

formance metric. This is not to be confused with the training loss function, which for the Lasso

is the L1 norm and for LassoNet is least squares. Because the synthetic datasets contain a variety

of ranges in flow rate histories , a metric that could be compared across scales becomes necessary.

Gamma deviance is scaling-invariant derived from the more general Tweedie deviance. In fact, both

mean squared error and gamma deviance are both special cases of the Tweedie deviance [Dunn and

Smyth, 2008], [Dunn and Smyth, 2005]. Equation 4.1 shows the definition for the gamma deviance:

D(y, ŷ) =
1

nsamples

nsamples�1X

i=0

2
⇣
log(ŷi/yi) + yi/ŷi � 1

⌘
(4.1)
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4.2.4 Performance Results

After training all four models for each of the 20 datasets, similar results were obtained for all

four models AF to AD in the single well scenario with no missing data. Figures 4.2 to 4.5 show

the results for all the four models for dataset d2, chosen for its representative results. Model AF

displays results centered in the true flow rate data and with less noise than the original data due

to the lower noise ratio in the input pressure data. However, due to the linear nature of the model,

the sharp step-like transitions in flow rate cannot be achieved completely and the estimates display

a slight but noticeable error at each flow rate step change. Model BF (Figure 4.3) shows a flow rate

estimate centered in the correct values and also with a less noisy output than the original pressure

data. The step transitions in the flow rate estimates are sharper than those of model AF but still

display residual e↵ects of the pressure di↵usion. Figure 4.4 shows the pressure estimates for Model

CF, the Lasso with the pressure MODWT-MRA decomposition as input. Overall, it has similar

results to other models showing an accurate prediction but more sharp transitions in the flow rate

estimates. Model DF (Figure 4.5), the LassoNet with pressure MODWT-MRA as input, has the

least noisy estimate and the sharpest transitions in the flow rate estimates. Analyzing the results

from a single datasets it is di�cult to identify a model that consistenly shows better performance.

However, observing the gamma deviance distribution for all 20 datasets in Figure 4.6, it can be seen

that models CF and DF, which incorporate the MODWT-MRA decomposition as input have the

lowest deviance and thus best performance. Model CF, the Lasso with MODWT-MRA pressure

features has the smallest median gamma deviance for the test sets as well as the least dispersion

across datasets. However, all models seem to have adequate performance for this simple one well

scenario.
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Figure 4.2: Model AF: Lasso regression with unprocessed pressure as input. Top panel: Flow rate
estimates. Bottom panel: Unprocessed pressure history.

Figure 4.3: Model BF: LassoNet with unprocessed pressure as input. Top panel: Flow rate estimates.
Bottom panel: Unprocessed pressure history.
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Figure 4.4: Model CF: Lasso regression with pressure MODWT-MRA as input. Top panel: Flow
rate estimates. Center panel: Unprocessed pressure history. Bottom panel: Pressure MODWT-
MRA.

Figure 4.5: Model DF: LassoNet with pressure MODWT-MRA as input. Top panel: Flow rate
estimates. Center panel: Unprocessed pressure history. Bottom panel: Pressure MODWT-MRA.
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Figure 4.6: Single well scenario models comparison. The top panel corresponds to training data and
bottom panel shows the test data. A lower gamma deviance denotes better performance
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4.2.5 Missing Flow Rate Data

The scenario with missing flow rate data is a more challenging and realistic application of flow-rate

reconstruction. In this scenario, the pressure history is assumed to be complete and the goal is to

fill in the missing gaps in flow rate. For this scenario, the same set of 20 datasets was used as in

Section 4.2.1 but with missing data gaps. To create the missing gaps in the flow rate schedules of

the 20 datasets, 10 contiguous periods of 300 hours in duration were deleted at random points in the

time series. This results in no single dataset containing the same missing data points. The inserted

missing data gaps can overlap with each other creating longer duration gaps. The total percentage

of missing flow rate data per dataset ranged between 15% to 35% as noted in Table 4.3. Pressure

data were not modified for any of the datasets.

The same set of four models AF to AD was tested as in the previous section. To successfully

use the Lasso or LassoNet with missing gaps and to be able to apply the MODWT-MRA, a linear

Table 4.3: Fraction of total missing flow rate data for each of the synthetic data sets.

Dataset Missing Flow Rate %
d1 0.25
d2 0.30
d3 0.25
d4 0.23
d5 0.16
d6 0.21
d7 0.34
d8 0.29
d9 0.29
d10 0.34
d11 0.33
d12 0.35
d13 0.30
d14 0.29
d15 0.20
d16 0.30
d17 0.30
d18 0.32
d19 0.29
d20 0.35
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interpolation was used to fill in the missing flow rate data. Figure 4.3 shows five of the 20 datasets

where the missing data gaps were introduced for flow rate.

For models AF and AC which use the Lasso, the linear interpolation in flow rate data introduces

a large bias for the training. To accommodate for this, a weighted Lasso was used where only the

complete flow rate periods were used for the fitting process. Specifically, the following transformation

was applied to the data for model AF:

ytrans =
p
w ⇤ y

xtrans =
p
w ⇤ x

(4.2)

where w is the weight vector, and wi = 1 when flow rate data is available and wi = 0 otherwise.

For LassoNet models AB and AC the weight vector w was passed directly to the loss function without

Figure 4.7: Datasets with missing flow rate data.
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the need for any data transform.

Table 4.4: Model descriptions for the single-well scenario with missing flow rate data

Model Name Regression Method Features Target
AF Lasso (weighted)

Pressure
Flow Rate

(interpolated)
BF LassoNet
CF Lasso (weighted) Pressure
DF LassoNet MODWT-MRA

Figures 4.8 and 4.9 show the results for models AF and BF corresponding to the Lasso and

LassoNet with unprocessed pressure features. Both models display accurate flow rate reconstruction

with less noise than the original data. As in Section 4.2.4, the step changes in flow rate are not as

sharp as the true data, reflecting a curved response that resembles the pressure transient. The use

of weighted Lasso in model AF was fundamental in achieving reasonable flow rate reconstruction.

Without weights in model AF, the obtained estimate is a constant line with the average flow rate

throughout the period.

Model CF, shown in Figure 4.10 is the Lasso with pressure MODWT-MRA inputs. As expected,

the estimate is less noisy because of the Lasso’s ability to filter out less relevant features such as

the high frequency noise levels in the MODWT-MRA. Other than noise reduction the results do not

show a significant improvement in the model performance compared with model AF.

Model DF shown in Figure 4.11 shows the LassoNet with pressure MODWT-MRA inputs. The

results are similar to model CF in terms of noise reduction and the model is able to accurately

reconstruct the flow rate signal.

Comparing models AF to DF across all 20 datasets gives a di↵erent perspective. Figure 4.12

shows the gamma deviance distribution for all 20 datasets and four models. It is clear that models

AF and CF which use the Lasso have consistently lower performance compared to the models that

use LassoNet. For this scenario, model BF has the lowest median gamma deviance for the test set

and also the lowest spread throughout the 20 datasets. Model CF, the Lasso with MODWT-MRA
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pressure features has the worst median deviance and also the largest dispersion.

Figure 4.8: Model AF: Lasso regression with unprocessed pressure as input. Top panel: Flow rate
estimates. Bottom panel: Unprocessed pressure history.

Figure 4.9: Model BF: LassoNet with unprocessed pressure as input. Top panel: Flow rate estimates.
Bottom panel: Unprocessed pressure history.
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Figure 4.10: Model CF: Lasso regression with pressure MODWT-MRA as input. Top panel: Flow
rate estimates. Center panel: Unprocessed pressure history. Bottom panel: Pressure MODWT-
MRA.

Figure 4.11: Model DF: LassoNet with pressure MODWT-MRA as input. Top panel: Flow rate
estimates. Center panel: Unprocessed pressure history. Bottom panel: Pressure MODWT-MRA.
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Figure 4.12: Single well scenario models comparison. The top panel corresponds to training data
and bottom panel shows the test data. A lower gamma deviance denotes better performance
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4.2.6 Missing Flow Rate and Pressure Data

The most complex case in the flow rate recovery single well scenario is that of missing data in both

pressure inputs and flow rate outputs. The increased complexity of the scenario comes from the

fragmentation of the data, as both features and target variables are incomplete. This fragmentation

decreases the amount of e↵ective data from which models can learn.

For this scenario, the strategy of introducing missing data gaps consisted of deleting periods

of 300 consecutive hours from both flow rate and pressure data. Both variables were handled

independently, but overlapping missing periods in both pressure and flow rate appeared as well.

All 20 datasets were processed in this manner and no single dataset or variable within a dataset

has the same missing data gaps. Table 4.5 shows relevant completeness statistics for the resulting

datasets. For each variable (flow rate or pressure) the total missing fraction is between 17% to 38%

per variable. However, when looking at the fraction of the data that is fully complete, the percentage

varies between 39% and 61%.

As in Section 4.2.5, the missing gaps were processed using linear interpolation to be able to

apply the MODWT-MRA as well as to fit the Lasso and LassoNet. In this case, both flow rate

and pressure gaps were interpolated. After the interpolation, the MODWT-MRA could be applied

to the pressure data accordingly. As seen in Chapter 3, the uncertainty caused by missing data is

contained within a few levels of the MODWT-MRA (Figure 4.13).

Table 4.6 shows the definitions for models AF to DF for the scenario with missing flow rate and

pressure. As in Section 4.2.5, models AF and CF use weighted Lasso via the transformation defined

in Equation 4.2. The LassoNet models BF and DF also incorporate the weight vector w to make all

models comparable. No data transformation is used for models BF and DF. As in Section 4.2.5, the

weight vector w is defined as wi = 1 when flow rate data is available and wi = 0 otherwise.

Figure 4.14 shows the results for model AF. Evidently, the Lasso was unable to create an accurate
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Figure 4.13: Pressure MODWT-MRA with missing data. The e↵ect of missing data is mostly
contained in the high frequency levels of the MODWT-MRA.
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Table 4.5: Missing data fractions for each of the synthetic data sets.

Dataset Missing Flow Rate Missing Pressure Full Data
No data

(any variable)
d1 0.32 0.32 0.48 0.11
d2 0.17 0.27 0.61 0.06
d3 0.36 0.25 0.52 0.12
d4 0.34 0.22 0.53 0.09
d5 0.30 0.38 0.41 0.09
d6 0.29 0.27 0.45 0.01
d7 0.23 0.33 0.47 0.03
d8 0.38 0.35 0.39 0.12
d9 0.29 0.30 0.46 0.05
d10 0.29 0.30 0.48 0.07
d11 0.36 0.28 0.45 0.08
d12 0.28 0.26 0.50 0.05
d13 0.27 0.31 0.47 0.06
d14 0.33 0.31 0.46 0.11
d15 0.34 0.34 0.42 0.10
d16 0.24 0.35 0.47 0.06
d17 0.24 0.26 0.57 0.07
d18 0.24 0.28 0.52 0.04
d19 0.29 0.29 0.50 0.08
d20 0.31 0.22 0.57 0.11

Table 4.6: Model descriptions for the single-well scenario with missing flow rate data

Model Name Regression Method Features Target

AF Lasso (weighted) Pressure

(interpolated) Flow Rate

(interpolated)

BF LassoNet

CF Lasso (weighted) Pressure

(interpolated) + MODWT-MRADF LassoNet

flow rate estimate and the model shows extremely high bias. Even with the use of a weighted vector,

the Lasso cannot overcome the high data fragmentation problem. A similar result was obtained with

model BF (Figure 4.15). The model has a very high bias and is unable to get an accurate flow rate

estimate, only reflecting values close to the average flow rate.

A di↵erent result was obtained when the MODWT-MRA pressure features are introduced. Model

CF, the Lasso with pressure MODWT-MRA features achieved a much more unbiased estimate and

it is able to recover the flow rate in the regions where pressure is available. Similar results are shown
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in Figure 4.16 for model DF, where the use of MODWT-MRA pressure features and the LassoNet

clearly captured the flow rate when data is available and an unbiased model can be obtained even

in a highly data fragmentation environment.

Throughout the 20 datasets, similar results were obtained for all models AF to DF. Figure 4.18

shows the performance distributions for all datasets in the single well scenario with missing flow

rate and pressure data. As seen in the examples above, the models that do not incorporate the

MODWT-MRA features are unable to estimate flow rate. Both model AF and BF have significantly

larger train and test errors compared to models CF and DF, which incorporate the MODWT-MRA

features. Overall, model CF showed the best performance both in train and test scenarios. These

are similar results to those in Section 4.2.5. It is clear that using the MODWT-MRA features highly

simplifies the learning problem and allows for the use of highly fragmented data in a way that a

simple model such as the Lasso can estimate accurately the flow rate history from imperfect pressure

data.

Figure 4.14: Model AF: Lasso regression with unprocessed pressure as input. Top panel: Flow rate
estimates. Bottom panel: Unprocessed pressure history.
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Figure 4.15: Model BF: LassoNet with unprocessed pressure as input. Top panel: Flow rate esti-
mates. Bottom panel: Unprocessed pressure history.

Figure 4.16: Model CF: Lasso regression with pressure MODWT-MRA as input. Top panel: Flow
rate estimates. Center panel: Unprocessed pressure history. Bottom panel: Pressure MODWT-
MRA.
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Figure 4.17: Model DF: LassoNet with pressure MODWT-MRA as input. Top panel: Flow rate
estimates. Center panel: Unprocessed pressure history. Bottom panel: Pressure MODWT-MRA.

4.3 Two Well Scenario

The two well scenario for flow rate recovery is an extension of the single well scenario, where pressure

data from two connected and interacting wells are used for estimating the flow rate of one of the

wells, called the target well. The increased complexity of the two well scenario for a data-driven

model are the interference e↵ects present in the pressure data of the target well. Using only pressure

data from the target well is not su�cient to recover the flow rate history so the learning challenge

from a data-driven perspective is to simultaneously separate the interference e↵ects between both

wells in the pressure data and create a function map from pressure to flow rate for the target well.

Formally, the two-well scenario is composed by a pair of wells called W1 and W2. Well W1, is

the target well, whose flow rate response will be estimated. Well W2 is the interfering well. Both

wells can produce at the same time with di↵erent flow rates and are connected hydraulically through
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Figure 4.18: Single well scenario models comparison. The top panel corresponds to training data
and bottom panel shows the test data. A lower gamma deviance denotes better performance
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the reservoir, although that might be an unknown fact for the modeler. The objective is to obtain

a data-driven model that estimates the flow rate of well W1 using as input the pressure histories of

wells W1 and W2.

The scenario assumes that at least the pressure rate schedules of the two wells are known and

the flow rate history of at least one of the wells is available. Similarly to the single well scenario,

the methodology was tested in synthetic data to be able to identify its potential and measure its

performance when the true answer is known.

4.3.1 Data Generation

The data for the two well scenario were generated using a modified version of the data generating

function for the single-well scenario. The reservoir parameters were kept constant as shown in Table

4.7. For each well, a flow rate schedule was created using a randomized step function of up to 35

step changes and a maximum rate value of 400 STB/day. The sampling frequency for each well is

one observation per hour and the total duration of the data is 365 days. The pressure solutions were

obtained analytically in Laplace space, including superposition of the two wells and then subjected

to numerical inversion. A total of 20 datasets consisting of two wells were created, each with di↵erent

flow rate schedules. The same reservoir model and parameters were used as in the single well scenario

and Gaussian noise of 5% was added to flow rate data and 1% noise to pressure data.

4.3.2 Model Specifications

As in the single well scenario, four model specifications (AF, BF, CF and DF) were fitted for the

20 synthetic datasets d1 to d20. Models AF and CF are based on the Lasso and models BF and

DF use LassoNet for the fitting. There is a baseline model for both the Lasso and LassoNet which

uses as features the unprocessed flow rate history of both wells W1 and W2. Models BF and DF

use the pressure MODWT-MRA of both wells W1 and W2 as features. In models involving the
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Table 4.7: Reservoir parameters for the synthetic data sets

Parameter Value

k 100

S 0

C (STB/psi) 0.001

µ (cp) 1

h (feet) 50

� 0.2

ct (/psi) 5e-6

rw (feet) 0.208

re (feet) 10,000

B 1

MODWT-MRA the depth parameter J0 was set to 12, resulting in 13 features per well or a total of

26 features. Table 4.8 shows the details of all four models. In all cases, the train and validation sets

used 80% of the data with the last 20% reserved for the test set.

Table 4.8: Model descriptions for the single-well scenario with missing flow rate data

Model Name Regression Method Features Target

AF Lasso Pressure W1 & W2

(unprocessed)
Flow Rate W1

BF LassoNet

CF Lasso Pressure MODWT-MRA

W1 & W2DF LassoNet

LassoNet Specifications

As in the single well scenario, models BF and DF which use the LassoNet for fitting the data share

training hyperparameters and hidden layer architecture. For both models, a hidden layer of size

1x100 was defined for the fully connected part of the LassoNet. The regularization hyperparameter

� was selected through cross validation for each dataset, however the initial � and regularization path

(search space) is shared among the two models. The search space for � was defined as a geometric

progression spanning from � = 400 to � = 6, 600.
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Both models BF and DF also share the hierarchy hyperparameter M that controls the relative

importance of the linear and nonlinear components in the LassoNet. A value of M = 0 results in

a Lasso regression while M ! +1 results in an unregularized fully connected neural network. For

both models BF and DF the value was kept constant as M = 200. The experience gained using the

LassoNet revealed similar results at values of 200 < M < 300 with the larger parameter sensitivity

being �. For this reason and to save computational time, M was not part of the cross-validation

parameter optimization. The optimizer used for the neural network training was Adam with a

learning rate of 0.01. An early stopping strategy was used for training, halting the training when a

least 10 training epochs had passed without a minimum improvement of 1% in the validation set.

4.3.3 Performance Results

Figures 4.19 and 4.20 show the results for the baseline models AF and BF. Both the Lasso and

LassoNet models were able to capture the flow rate response for the target well W1 from the

unprocessed pressure history of the two wells. Models CF and DF, which incorporate the MODWT-

MRA features also successfully capture the flow rate history of the target well with a less noisy

signal than the original data. To further explore the di↵erences between the four models, the

gamma deviance distribution plots are shown in Figure 4.23. Overall, the four models have very

similar median values for the test set even if in training model DF appears more accurate. Both

models BF and DF which use LassoNet for fitting are slightly more accurate than the Lasso based

models regardless of the use of MODWT-MRA features. Model BF has the best performance overall.
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Figure 4.19: Model AF: Lasso regression with unprocessed pressure as input. Top panel: Flow rate
estimates. Bottom panel: Unprocessed pressure history.

Figure 4.20: Model BF: LassoNet with unprocessed pressure as input. Top panel: Flow rate esti-
mates. Bottom panel: Unprocessed pressure history.
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Figure 4.21: Model CF: Lasso regression with pressure MODWT-MRA as input. Top panel: Flow
rate estimates. Center panel: Unprocessed pressure history. Bottom panel: Pressure MODWT-
MRA.

Figure 4.22: Model DF: LassoNet with pressure MODWT-MRA as input. Top panel: Flow rate
estimates. Center panel: Unprocessed pressure history. Bottom panel: Pressure MODWT-MRA.
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Figure 4.23: Single well scenario models comparison. The top panel corresponds to training data
and bottom panel shows the test data. A lower gamma deviance denotes better performance
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4.3.4 Missing Flow Rate Data

In this scenario both wells W1 and W2 are flowing and the goal is to build a model for the flow rate

of well W1 using the pressure histories of both wells. The flow rate data is incomplete with gaps

in the flow rate history of the target well W1. The 20 datasets used in this scenario are based in

those of Section 4.3.1 with the added di↵erence of missing gaps in flow rate. A total of ten missing

gaps were introduced to the flow rate of well W1 at randomized points in time throughout each time

series with each gap being 300 hours long. No modifications were done for pressure data of either

wells W1 or W2. Table 4.9 shows the missing data statistics for all 20 datasets used in this scenario.

Four models were built using the Lasso and LassoNet methodologies. Both methodologies were

tested with the unprocessed pressure data as input as well as the MODWT-MRA decomposition of

pressure. Table 4.10 shows the definitions of all four models AF to DF. In an analogous way to the

single well scenario, the missing flow rate data was interpolated linearly before the modeling. For

the MODWT-MRA features, the interpolation was applied before applying the decomposition.

As described in Section 4.2.5, the linear interpolation in flow rate data introduces a large bias

for the training. To solve this issue in models AF and CF, a weighted Lasso was used. The weights

allowed only the complete flow rate periods to be used for the fitting process. Specifically, the

following transformation was applied to the data for model AF:

ytrans =
p
w ⇤ y

xtrans =
p
w ⇤ x

(4.3)

where w is the weight vector, and wi = 1 when flow rate data is available and wi = 0 otherwise.

Without using the data transformation, models AF and CF result in a constant flow rate estimate

through the entire time period. For LassoNet models AB and AC the weight vector w was passed

directly to the loss function without the need for any data transform.
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Figures 4.25 to 4.27 show the results of all four models for one of the 20 datasets. Models AF and

BF, which use the unprocessed pressure inputs display accurate and unbiased results in both training

Table 4.9: Fraction of total missing flow rate data in well W1 for each of the synthetic data sets.

Dataset Missing Flow Rate %

d1 0.25

d2 0.30

d3 0.25

d4 0.23

d5 0.16

d6 0.21

d7 0.34

d8 0.29

d9 0.29

d10 0.34

d11 0.33

d12 0.35

d13 0.30

d14 0.29

d15 0.20

d16 0.30

d17 0.30

d18 0.32

d19 0.29

d20 0.35

Table 4.10: Model descriptions for the two-well scenario with missing flow rate data

Model

Name

Regression

Method
Features Target

AF Lasso (Weighted)
Pressure W1 and W2

(Variable Transform)

Flow Rate (Interpolated +

Variable Transform)

BF LassoNet Pressure W1 and W2 Flow Rate (Interpolated)

CF Lasso (Weighted)

Pressure MODWT-MRA

W1 and W2

(Variable Transform)

Flow Rate (Interpolated +

Variable Transform)

DF LassoNet
Pressure MODWT-MRA

W1 and W2
Flow Rate (Interpolated)
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and test sets. As the noise level of pressure data is less than that of flow rate, the estimates are less

noisy than the true data, even for the linear Lasso model AF shown in Figure 4.24. Both models

AF and BF successfully recover the missing data gaps. Models CF and DF, which use the pressure

MODWT-MRA features show an unbiased and relatively accurate flow rate estimate (Figures 4.26,

4.27). However the flow rate changes are less sharp than the true data, a problem less present in

the models that do not use the MODWT-MRA features.

The results for all 20 datasets reveal a pattern where models AF and BF outperform significantly

the rest of the models (Figure 4.28). Both models AF and BF use the unprocessed pressure data

as input. These results suggest that using the MODWT-MRA decomposition for modeling flow

rate does not result in better accuracy as it does when modeling pressure. In this scenario, the

results point to model AF, the simplest of all four models, as the one with the lowest median gamma

deviance and the tightest distribution across datasets. Compared to the scenario with no missing

data, all models su↵ered from a decrease in performance throughout the 20 datasets. However

models CF and DF su↵ered the most, with a threefold increase in median gamma deviance for the

test set. In comparison, models AF and DF only had an increase of 7% and 29% increase respectively

in median gamma deviance for the test set.

4.3.5 Missing Flow Rate and Pressure Data

The last case for the two wells scenario is that of missing data in both pressure and flow rate. As

explained in Chapter 3, having missing data in both inputs and training outputs heavily increases

data fragmentation due to misaligned data gaps. For this case, the missing data gaps were introduced

at random points in time in both pressure data for wells W1 and W2 and flow rate data of well

W1. The missing data gaps had a 300 hour duration and the process was done independently for

each well and variable. This creates time series where the gaps are not aligned in time, increasing
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Figure 4.24: Model AF: Lasso regression with unprocessed pressure as input. Top panel: Flow rate
estimates. Bottom panel: Unprocessed pressure history.

Figure 4.25: Model BF: LassoNet with unprocessed pressure as input. Top panel: Flow rate esti-
mates. Bottom panel: Unprocessed pressure history.
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Figure 4.26: Model CF: Lasso regression with pressure MODWT-MRA as input. Top panel: Flow
rate estimates. Center panel: Unprocessed pressure history. Bottom panel: Pressure MODWT-
MRA.

Figure 4.27: Model DF: LassoNet with pressure MODWT-MRA as input. Top panel: Flow rate
estimates. Center panel: Unprocessed pressure history. Bottom panel: Pressure MODWT-MRA.
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Figure 4.28: Single well scenario models comparison. The top panel corresponds to training data
and bottom panel shows the test data. A lower gamma deviance denotes better performance
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the data fragmentation even more. Table 4.11 shows the missing data statistics for each of the 20

datasets used in this scenario.

Table 4.11: Fraction of total missing flow rate and pressure data for each of the synthetic data sets.

Dataset
Missing Pressure

W1

Missing Pressure

W2

Missing Flow Rate

W1
Full Data

d1 0.25 0.34 0.26 0.24

d2 0.25 0.34 0.28 0.38

d3 0.16 0.35 0.25 0.38

d4 0.34 0.29 0.28 0.39

d5 0.29 0.37 0.31 0.32

d6 0.33 0.27 0.25 0.35

d7 0.30 0.36 0.26 0.33

d8 0.20 0.26 0.25 0.34

d9 0.30 0.37 0.27 0.40

d10 0.29 0.17 0.30 0.35

d11 0.28 0.21 0.28 0.32

d12 0.34 0.18 0.30 0.25

d13 0.35 0.35 0.29 0.34

d14 0.23 0.23 0.37 0.31

d15 0.34 0.34 0.33 0.38

d16 0.22 0.22 0.33 0.38

d17 0.28 0.28 0.34 0.34

d18 0.31 0.35 0.37 0.23

d19 0.20 0.33 0.35 0.32

d20 0.37 0.29 0.27 0.34

The same combination of four models AF to DF was tested, with two Lasso based models and

two LassoNet based models. Both pressure and the pressure MODWT-MRA features were tested

as well. Table 4.12 shows the modeling methodologies and input definitions of all four models. In

a similar way to Section 4.3.4, for models AF and CF, which use the Lasso, a data transformation

was done to accomplish a weighted fitting to handle the bias introduced by the interpolation. The

weight transform was defined as:
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ytrans =
p
w ⇤ y

xtrans =
p
w ⇤ x

(4.4)

where w is the weight vector, and wi = 1 when flow rate data is available and wi = 0 otherwise.

It must be noted that the weights are not related with the pressure input but only to the flow rate

output.

Table 4.12: Model descriptions for the two-well scenario with missing flow rate data

Model

Name

Regression

Method
Features Target

AF Lasso (Weighted)
Pressure W1 and W2

(Interpolated + Variable Transform)

Flow Rate (Interpolated +

Variable Transform)

BF LassoNet
Pressure W1 and W2

(interpolated)
Flow Rate (Interpolated)

CF Lasso (Weighted)

Pressure MODWT-MRA

W1 and W2

(Interpolated + Variable Transform)

Flow Rate (Interpolated +

Variable Transform)

DF LassoNet

Pressure MODWT-MRA

W1 and W2

(Interpolated)

Flow Rate (Interpolated)

Figures 4.29 to 4.30 show the results of all models for a single dataset. Similar to the results

obtained in Section 4.3.4, the two models that use the pressure data without the MODWT-MRA

have a good performance with less noise than the original data. Both models AF and BF display

sharp changes in flow rate, even if a truly constant flow rate estimate is not achieved between step

changes. In contrast, models CF and DF which use the MODWT-MRA pressure decomposition

show less sharp flow rate changes. Model DF also displays increased noise around the flow rate

changes.

The results for the 20 datasets follow the same described pattern. Figure 4.33 shows the gamma

deviance for all the 20 datasets. Similar to the scenario with only missing flow rate data, all models
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su↵er from a decrease in performance when compared to the scenario with no missing data. Model

AF, has the best overall performance with model BF showing similar results. Both models that

include the MODWT-MRA decomposition as inputs have worse performance than the baseline

models.

Figure 4.29: Model AF: Lasso regression with unprocessed pressure as input. Top panel: Flow rate
estimates. Bottom panel: Unprocessed pressure history.

Figure 4.30: Model BF: LassoNet with unprocessed pressure as input. Top panel: Flow rate esti-
mates. Bottom panel: Unprocessed pressure history.
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Figure 4.31: Model CF: Lasso regression with pressure MODWT-MRA as input. Top panel: Flow
rate estimates. Center panel: Unprocessed pressure history. Bottom panel: Pressure MODWT-
MRA.

Figure 4.32: Model DF: LassoNet with pressure MODWT-MRA as input. Top panel: Flow rate
estimates. Center panel: Unprocessed pressure history. Bottom panel: Pressure MODWT-MRA.
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Figure 4.33: Single well scenario models comparison. The top panel corresponds to training data
and bottom panel shows the test data. A lower gamma deviance denotes better performance
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4.4 Summary

In this chapter, a series of machine learning and deep learning models for modeling flow rate were

introduced. Two general scenarios were explored including single well and double well with increasing

amounts of missing data. The results obtained show that using pressure to recover flow rate is

possible even when large amounts of data are missing. However, the most successful models required

using weighted regression to successfully deal with missing data. Also, the results of this chapter

showed that applying the MODWT-MRA to pressure data used as model input was not as beneficial

when modeling flow rate as it was when modeling pressure as in Chapter 3.

The models that used the MODWT-MRA decomposition tended to produce an excessively

smooth flow rate estimate. While the MODWT-MRA decomposition can preserve sharp edges in

data, those edges end up being contained in the high frequency levels of the decomposition, which are

also the levels where noise is contained. This makes it complicated for models that apply shrinkage,

as the noise features is dropped thus decreasing the ability of the models to recreate sharp features.

This has consequences for flow rate estimation compared to pressure estimation, because flow rate

histories have sharp features whereas the physical relationship between flow rate and pressure causes

the pressure response to be smoother.



Chapter 5

Conclusions

This work introduced a framework to use time series production data to create a full data-driven

model of well response. The overall approach taken in this work was to allow for the use of imperfect

data without the need of tailored data cleaning and selection processes. Two applications were

studied for the designed methodology, modeling pressure from flow rate data and reconstructing

flow rate history using pressure data. For each application, single well and two well scenarios were

tested with increasing amounts of missing data.

The Maximum Overlap Discrete Wavelet Transform Multiresolution Analysis (MODWT-MRA)

was introduced as it proved have useful properties for building data-driven models. Among those

properties are its applicability to datasets of any length, lack of decimation and invariance to data

shifting. Moreover, the research showed that by applying the MODWT-MRA to production data

time series consisting of flow rate and pressure data, a decomposition into superposed virtual wells

is achieved. For pressure, the additive decomposition follows the principle of superposition, with

the original pressure signal recovered by adding all the MODWT-MRA components. When applied

to flow rate, the MODWT-MRA is mass preserving. These proved to be useful properties when the
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data contains imperfections such as noise and missing data because the noise gets contained in the

high frequency levels and the uncertainty caused by missing data is also contained to a few of the

total decomposition levels.

The modeling approach in both applications involved using the MODWT-MRA to create auto-

matic input features. By applying the decomposition, the goal was to split a complex dataset into a

set of data inputs with simpler behavior. This required the use of modeling methodologies capable

of shrinkage, this is automatically select useful variables and discard those that are not useful. Two

shrinkage methods were used for the study: the Lasso and LassoNet. These methods were chosen

because of their interpretability, ease of use and capacity for comparison as LassoNet is a nonlinear

generalization of the Lasso based on neural networks.

The results for modeling pressure pointed to a substantial benefit of using the MODWT-MRA

features. In most tests the produced estimates showed less noise and higher accuracy when compared

to models that used the unprocessed data. These advantages proved more significant when missing

data was present. In the two well scenario, creating a data-driven model for pressure allowed for

detecting connectivity and filtering out interference. In this case, only by using the MODWT-MRA

and a complex model like LassoNet could a true interference-free model be constructed from data

with interference.

For the flow rate recovery application, the advantages of using the MODWT-MRA were less

notable. In the single well scenario, similar results were obtained by using features with or without

the decomposition. In the two well scenario, no improvement was achieved when using the MODWT-

MRA decomposition.
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5.1 Future Work

Additional applications of the designed methodology remain to be tested. The ability of the method-

ology to seamlessly deal with noise and missing data are two of the properties that might prove useful

for other tasks. Some unexplored ideas are listed here:

1. Detecting interference and connectivity among more than two wells. Modeling pressure re-

sponse when more than two wells are connected is an interesting and challenging scenario,

especially if the degree of connectivity is unknown. The problem would be more di�cult to

model but it is possible that the wavelet decomposition presented here is useful to identify the

signature of multiple wells interfering with each other.

2. Flow rate allocation from multiple wells. In this application, the total flow coming from

multiple wells is known but the fractional contribution of each well is unknown. In this

scenario, the total flow rate from all wells could be decomposed into a set of virtual wells

each of which can then be assigned to one of the real wells by using a mixture model.

3. Temperature data incorporation. The e↵ect of the MODWT-MRA decomposition to temper-

ature data is unknown. In this work it was shown that mass preservation and superposition

were honored for flow rate and pressure respectively. The additive nature of the decomposition

opens the door for using the MODWT-MRA to use temperature time series to also identify

connectivity between wells or increase accuracy of existing flow rate models.



Appendix A

LassoNet Tuning and Parameter

Selection

A.1 LassoNet Implementation

As described in Section 3.3.2, LassoNet is an extension of the Lasso that combines the linear compo-

nent and a neural network component to preserve the feature sparsity properties and interpretability

of the Lasso and the flexible function representation of neural networks. The functional form of the

LassoNet is [Lemhadri et al., 2021]:

f✓,W (x) = ✓
T
x+ gW (x) (A.1)

where gW is a feed-forward neural network with weights W , ✓ denotes the residual layer param-

eters and x are the input features. The loss function for LassoNet is:
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L(✓,W ) =
1

n

nX

i=1

l

⇣
f✓,W (xi), yi

⌘
(A.2)

where n is the number of observations in x, and l denotes the appropriate loss function such as

mean squared error. The objective function for LassoNet is defined as:

min
✓,W

L(✓,W ) + � ||✓||1

s.t. ||W (1)
j ||1  M |✓j |, j = 1, ..., d

(A.3)

whereW (1)
j are the weights for feature j in the first hidden layer, � is the regularization parameter

which encourages sparsity similar to that of the Lasso.

The parameter M controls the strength of the linear and nonlinear components. When M = 0,

only the residual layer is active and the formulation is that of the Lasso. Alternatively, when

M ! +1 , the unregularized neural network is obtained.

The LassoNet can be implemented in any generic deep-learning framework such as Pytorch or

Tensorflow. The authors of LassoNet [Lemhadri et al., 2021] released a publicly available Python

package used in this work. This package can be installed by typing pip install lassonet or

downloaded from https://github.com/lasso-net/lassonet. This implementation is based on Pytorch

and contains a set of interfaces for creating LassoNet models for regression and classification as well

as utilities for fitting and validating a model. For the applications shown in this work, the base code

of the lassonet library was customized to allow for the incorporation of a weighted loss function

for model selection during training and cross validation.
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A.1.1 Cross-Validation Stragegy

In this work, the LassoNet models were built by creating an instance of the class LassoNetRegressor

through the LassoNetRegressorCV function, which implements a cross-validation strategy and re-

turns the best chosen parameters as well as the regularization path for the model. In this work,

the chosen cross-validation strategy was a time-series split, which is a specific kind of k-fold cross-

validation that maintains the temporal structure of the data. To achieve this, successive training

sets are supersets of those that come before them thus preventing a model from learning from future

data (Figure A.1)

Figure A.1: Time series cross-validation split

For most of the examples shown in this work, 5 cross-validation folds were used. In some instances

with missing data, the number of folds was reduced to 3 because the smallest training set would not

contain useful data otherwise. However, using less cross-validation folds contributed to instability

in the estimate of optimal �. A minimum of 5 folds is recommended unless missing data makes it

impossible to start the training.
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A.1.2 Regularization parameters

LassoNet allows for multiple ways of regularization. The first and most important is �, the Lasso-

like regularization parameter that reduces model complexity by shrinking the input coe�cients

towards zero. In addition to �, the neural network component of LassoNet can also be regularized

through dropout or adding L2 penalties to the skip connections. Dropout is the process of skipping

training passes in a random subset of the elements of a layer. This achieves sparsity without an

explicit requirement for it. The L2 penalty on the skip connection works in a similar way to the

� regularization parameter by increasing the value of the loss function, thus forcing the selection

of smaller weights. For the models presented in this work, the only regularization applied to the

models was � as it proved to be the most relevant for the problem at hand. Both dropout and the

L2 penalty on the skip connection were fixed at zero and a range of � values were tested through

the cross-validation strategy defined in A.1.1.

Figure A.2 shows the regularization path of dataset d8 in the two well scenario in Chapter 3. The

top panel shows the performance score of each of the cross-validation folds as well as the average

performance of all folds plotted against their regularization �. The value of � with the best average

score across folds is picked and the model is retrained using that �. The bottom panel of Figure A.2

shows the number of input features that are deemed relevant for each value of �. In this case as �

increases, the number of features decreases until the optimal set of eight features are chosen by the

model.

A.1.3 Hierarchy parameter

As mentioned previously, the parameter M controls the strength of the linear and nonlinear com-

ponents. When M = 0, only the residual layer is active and the formulation is that of the Lasso.

Alternatively, when M ! +1 , the unregularized neural network is obtained.
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Figure A.2: Regularization path of a dataset for the LassoNet in the two-well scenario for modeling
pressure data

The LassoNet authors recommend a value forM = 10. However this proved to be a very low value

for this application. Using such low values resulted in models with high bias, specially when more

features were being used. Values for M between 100-300 proved to be more successful in capturing

the relevant behavior. Values larger than 300 usually resulted in models prone to overfitting, even

with the use of cross-validation.



Appendix B

Flow Rate Reconstruction in Real

Data

B.1 Volve Dataset

A test of the flow rate modeling methodology was done using real production data from the Volve

oil field in the North Sea. The Volve field was produced from 2008 to 2016 by Statoil, (now Equinor)

and was developed with 27 wells. The field was produced using water injection for pressure support

and the production wells recovered a mixture of oil, gas and condensate.

To test the proposed methodology, well 15/9-F-11 was chosen. The well data contained a mixture

of oil, gas and water flow rates as well as down hole and well head pressure readings. The dataset

covered over three years of data with daily data points. Figure B.1 shows the production history for

the well.
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Figure B.1: Production history of Well 15/9-F-11 from the Volve oil field. The top panel shows the
liquids production history, the middle panel contains the gas production history and the bottom
panel shows pressure down hole and well head data.

B.2 Model Definition and Results

In contrast to the synthetic data scenarios showed in Chapter 4, the data from well 15/9-F-11 include

a mixture of liquid and gas phases with both oil and water production histories. For this exercise, oil

production rate was chosen as the target variable and down hole pressure data was used to generate

input variables. The fist month of production data was ignored to eliminate anomalies in flow rate

history not consistent with the rest of the dataset.

A model using the LassoNet and pressure MODWT-MRA features was built (Model D). The

specific model inputs were the MODWT-MRA 9-level decomposition of down hole pressure. The

choice of 9 MODWT-MRA levels was due to data length constraints as the total length of the data

was 1,133 data points. To train the model, 80% of the data was used and the last 20% was set aside

as test set. Table B.1 shows the model specifications for this scenario.
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Table B.1: Model descriptions for the two-well scenario with missing flow rate data

Model Name Regression Method Features Target

DF LassoNet Down hole pressure MODWT-MRA Oil rate

Figure B.2 shows the model results for well 15/9-F-11. It is noticeable that the model is able to

capture most of the variation in oil flow rate. In both train and test sections of the data, the large

sudden changes in flow rate are accurately captured by the model. However, the model overestimates

the oil rate in the latter section of the test data when the pressure data is slowly varying. It must

be noted that this scenario is being trained with less data than the synthetic scenarios as data from

well 15/9-F-11 was captured daily as opposed to hourly. Synthetic data scenarios had over 8,000

data points and in this case, well 15/9-F-11 only has 1,133 total data points. Those di↵erences

in data length may account partly for the less accurate performance of the model when compared

to synthetic data scenarios. Moreover, in the Volve reservoir, water injection was used to provide

pressure support, which highlights the added complexities of using real data.

B.3 Missing Data Scenario

A missing data scenario involving well 15/9-F-11 was also tested using the same model configuration.

However, in this scenario 25% of the data was removed and the gaps were linearly interpolated.

Pressure data was kept untouched and the 9-level MODWT-MRA decomposition was applied to

create the model features. Table B.2 shows the specifications of the model.

Table B.2: Model descriptions for the two-well scenario with missing flow rate data

Model Name Regression Method Features Target

DF LassoNet
Down hole pressure MODWT-MRA

(Interpolated)
Oil rate

Figure B.3 shows the result of the modeling for well well 15/9-F-11 with missing data. It is clear
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Figure B.2: Model results for well 15/9-F-11 from the Volve oil field. The top panel shows oil flow
rate, middle panel shows down hole pressure history and bottom panel shows the pressure MODWT-
MRA input features.

that the performance of the model degrades substantially when there is missing oil flow rate data.

The interpolation done to the target data introduces additional bias to the data and the LassoNet

is unable to fully capture the well behavior with the limited amount of existing data. Moreover,

the overestimation in oil flow rate in the test set is much more significant than in the case without

missing data.
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Figure B.3: Model results for well 15/9-F-11 with missing oil flow rate data. The top panel shows
oil flow rate, middle panel shows down hole pressure history and bottom panel shows the pressure
MODWT-MRA input features.

B.3.1 Including water production rate as input

To try to improve the performance results, another variation of the model was considered in the

missing data scenario. In this case, both pressure and water production rate were used as model

inputs. The oil flow rate missing data was kept at 25%. The model specifications are shown in Table

B.3. Water production rate in this scenario does not contain missing data.

Table B.3: Model descriptions for the two-well scenario with missing flow rate data

Model Name Regression Method Features Target

DF-W LassoNet

Down hole pressure MODWT-MRA

(Interpolated)

Water production rate MODWT-MRA

Oil rate

Figure B.4 shows the results of model DF-W which includes both pressure and water rate input
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features. It is evident that using water rate as input improves the oil rate estimate significantly

in the presence of missing data. However, in this case it also creates higher variability in the test

estimate, with estimated oil production spikes that do not match the real data.

Figure B.4: Model results for well 15/9-F-11 with missing oil data. The top panel shows oil flow
rate, middle panel shows down hole pressure history and bottom panel shows the pressure and water
rate MODWT-MRA input features.

B.4 Conclusions

The exercise presented in this section shows the added complexities of modeling flow rate using real

field production data. In this scenario, the available data was smaller than previous synthetic cases

even if it covered a longer real time span. The smaller size of the dataset impacted the capacity of

the model to capture complex behavior with missing data, specially with the missing data being in

the target variable (oil flow rate). Moreover, real production datasets can contain multiple phases

and types of liquids such as oil, gas and water rates. The data can also reflect the e↵ects of the

production strategy such as the pressure support caused by water injection.

Nonetheless, we showed that the same methodology of decomposing production time series using

the MODWT-MRA can be extended and combined with other kinds of data such as water flow

rate. In combination with a shrinkage model such as LassoNet, adding extra variables can help with

model performance when there is missing data.
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