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Abstract

The optimization of the type and location of new wells is ampartant issue in oil field
development. Computational algorithms are often emplogedhis task. The problem is
challenging, however, because of the many different welfigarations (vertical, horizon-
tal, deviated, multilateral, injector or producer) thatsnie evaluated during the optimiza-
tion. The computational requirements are further incréageen geological uncertainty is
incorporated into the optimization procedure. In largals@pplications, involving hun-
dreds of wells, the number of optimization variables anddize of the search space can
be very large. In this work, we developed new procedures & placement optimization
using particle swarm optimization (PSO) as the underlyipgnaization algorithm. We
first applied PSO to a variety of well placement optimizagwablems involving relatively
few wells. Next, a new procedure for large-scale field dgwalent involving many wells
was implemented. Finally, a metaoptimization procedurel&ermining optimal PSO pa-
rameters during the optimization was formulated and tested

The particle swarm optimization is a population-basedbaglostochastic optimization
algorithm. The solutions in PSO, called particles, movehia $earch space based on a
“velocity.” The position and velocity of each particle arpdated iteratively according
to the objective function value for the particle and the posiof the particle relative to
other particles in its (algorithmic) neighborhood. The P8@brithm was used to optimize
well location and type in several problems of varying comjijeincluding optimizations
of a single producer over ten realizations of the reservaidehand optimizations involv-
ing nonconventional wells. For each problem, multiple mation runs using both PSO
and the widely used (binary) genetic algorithm (GA) werfqened. The optimizations



showed that, on average, PSO provides results that are@ufmethose using GA for the
problems considered.

In order to treat large-scale optimizations involving siigant numbers of wells, we
next developed a new procedure, called well pattern opétioa (WPO). WPO avoids
some of the difficulties of standard approaches by consigegpeated well patterns and
then optimizing the parameters associated with the welepatype and geometry. WPO
consists of three components: well pattern description (YR@II-by-well perturbation
(WWP), and the core PSO algorithm. In WPD, solutions encode pattern type (e.g.,
five-spot, seven-spot) and their associated pattern apsralhese pattern operators de-
fine geometric transformations (e.g., stretching, rotgtapplied to a base pattern element.
The PSO algorithm was then used to optimize the parametdssdaaed within WPD. An
important feature of WPD is that the number of optimizationafales is independent of
the well count and the number of wells is determined durimgdptimization. The WWP
procedure optimizes local perturbations of the well lamagi determined from the WPD
solution. This enables the optimized solution to accounidoal variations in reservoir
properties. The overall WPO procedure was applied to seeptahization problems and
the results demonstrate the effectiveness of WPO in largle-groblems. In a limited
comparison, WPO was shown to give better results than otioizs using a standard
representation (concatenated well parameters).

In the final phase of this work, we applied a metaoptimizapoocedure which opti-
mizes the parameters of the PSO algorithm during the opditioiz runs. Metaoptimiza-
tion involves the use of two optimization algorithms, whére first algorithm optimizes
the PSO parameters and the second algorithm uses the parsimetell placement opti-
mizations. We applied the metaoptimization procedure terd@ane optimum PSO param-
eters for a set of four benchmark well placement optimirapimblems. These benchmark
problems are relatively simple and involve only one or twaigal wells. The results ob-
tained using metaoptimization for these cases are bether tthose obtained using PSO
with default parameters. Next, we applied the optimizedpeater values to two realistic
optimization problems. In these problems, the PSO withnoged parameters provided



comparable results to those of the default PSO. Finally, ppdied the full metaoptimiza-
tion procedure to realistic cases, and the results werershowe an improvement over
those achieved using either default parameters or paresrageermined from benchmark

problems.

Vi
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Chapter 1
| ntroduction and Literature Review

Field development optimization involves the determinaid the optimum number, type,
location, trajectory, well rates, and drilling schedulenefv wells such that an objective
function is maximized. Examples of objective functions sidered include cumulative oll
(or gas) produced and net present value (NPV). The optimizéask is challenging, be-
cause many wells may be required and different well typesi¢a, horizontal, deviated
or multilateral; producer or injector) may have to be evidda The incorporation of ge-
ological uncertainty, treated by considering multiplelizzdions of the reservoir, further
increases the complexity of the optimization problem.

The computational demands of these optimizations are awitst, as the objective
function values of many field development scenarios mustdmepated. Each evalua-
tion requires performing a simulation run, and for large @mplicated reservoir models,
the simulation run times can be large. The number of simanatrequired depends on the
number of optimization variables, the size of the searckhespand on the type of optimiza-
tion algorithm employed.

In large-scale field development problems, the number olswebuired can be sub-
stantial; up to several hundred wells in recent applicatiorhis increases the complexity
of the optimization problem. Furthermore, the performaniciae underlying optimization
algorithm may degrade for very large numbers of optimizatiariables. It is therefore es-
sential to have efficient and robust optimization proceslfioe this family of optimization
problems.
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In this work, we evaluated the particle swarm optimizati®®sQ) algorithm for well
placement optimization problems. Results using PSO wergaoed to those obtained
using a binary genetic algorithm. Next, we developed a neseguure, called well pat-
tern optimization (WPO), which can be used for optimizatieolpems involving a large
number of wells arranged (essentially) in patterns. Fnale applied a metaoptimization
procedure to improve the performance of the general PSQigdgofor field development
optimization problems.

1.1 Literature Review

The literature related to well placement optimization isyvextensive. Different opti-
mization algorithms, hybrid techniques, surrogate moiproxies), constraint handling
methods, and applications, have been presented. In theseetion, we review the well
placement optimization literature in the aforementionatkgories. Next, we discuss rele-
vant PSO research including PSO parameter selection arabptghization techniques.

1.1.1 Well Placement Optimization
Optimization algorithms

The well placement optimization problem is a high-dimenalpmultimodal (for nontriv-
ial problems), constrained optimization problem. The mptation algorithms employed
for this problem fall into two broad categories: global starstochastic algorithms and
gradient-based algorithms. The stochastic optimizatigorahms, such as genetic algo-
rithms (GAs) and simulated annealing, are computationaletsoof natural or physical
processes. They do not require the computation of derastiin addition, stochastic op-
timization algorithms possess mechanisms or algorithrperators to escape from local
optima, e.g., the mutation operator in GAs [1]. Howeversthalgorithms tend to require
many function evaluations and their performance dependdhenuning of algorithmic
parameters [1, 2, 3].

Gradient-based optimization algorithms require the cawatpan of gradients of the ob-
jective function. The gradients can be computed using atwibcedures or by numerical
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finite differences. Gradient-based algorithms seek to avgthe objective function value
in each iteration by moving in an appropriate search dioactlhus, gradient-based algo-
rithms are computationally efficient, though they are sp8bke to getting trapped in local
optima. In the following sections, we discuss the specificisastic and gradient-based
algorithms employed for well placement optimization.

Stochastic optimization algorithms

The most common stochastic optimization algorithms foll pkelcement optimization are
simulated annealing (SimA) and GA. The SimA algorithm usesanalogy of metal cool-
ing to find solutions to optimization problems [4]. SimA d$awith a point in the search
space and evaluates the objective function at this poinevApoint is generated by a small
perturbation of the current solution. Next, the objectivadtion value at this new point is
evaluated, and if the function value is lower (for minimipa), the new point is accepted
as the new starting point. However, if the new point has adrigibjective function value,
it may be accepted with a probability proportional to a “tergiure” parameter that de-
termines the progress of the algorithm. The algorithm isunitil the temperature reaches
some minimum value.

In [5] the SimA algorithm was applied to maximize NPV by opizimg the schedule
and location of horizontal wells with fixed orientations. eTwell placement optimization
problem was first formulated as a traveling salesman probIe&S®) with potential well lo-
cations represented as cities on the TSP tour. The drilchgdule was determined by the
sequence for visiting the cities. The resulting TSP was #odved by the SimA algorithm.
The procedure was successfully applied to optimize thetilmes of 12 wells. However,
the TSP formulation is not efficient for well placement optiation problems because, in
practice, every feasible grid block is a potential well loza. In that case, the TSP tour
becomes large due to the many well locations to be evalu&edhermore, the TSP is a
difficult optimization problem whose complexity increasésh the number of tours [6, 7].
Other authors [8, 9] have also used SimA, but they applieclhyerithm directly to opti-
mize well locations; i.e., a TSP formulation was not used.
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Another type of stochastic optimization algorithm appliedwell placement optimiza-
tion is the genetic algorithm (GA). GA appears to be the mogtupar optimization algo-
rithm employed for well placement and other reservoir-nggmaent-related applications
[10, 11, 12]. There have been many successful applicatibi@&Aofor well placement
optimization—see, for example [8, 13, 14, 15,16, 17, 1820921]. GA is a computational
analog of the process of evolution via natural selectioren@lsolutions compete to survive.
GAs represent potential solutions to the optimization fEwbas individuals within a pop-
ulation. The fitness (solution quality) of the individualodves as the algorithm iterates
(i.e., proceeds from generation to generation). At the drileosimulation, the best indi-
vidual (individual with highest fitness) represents thaigoh to the optimization problem.
Simple GA uses three operators, selection, crossover, atation [22, 23, 24] to generate
new individuals from existing individuals.

The two main variants of the GA are the binary GA (bGA) and thetimuous or real-
valued GA (cGA). In binary GA, the optimization parameteesy(,:, 7, k locations of
well heel and toe) are encoded and manipulated as binagblesi. Necessary conversions
from binary to decimal are performed before the functionweaidon step. Most previous
GA implementations have involved bGA, though applicatiossng cGA were recently
presented [15, 25]. GA-based procedures have been appliggtimize the locations of
both vertical wells [8, 14, 16, 17, 19, 26, 21, 27] and nonemtinal wells [13, 18, 20,
28, 29].

Another type of evolutionary algorithm, the covariance mmaadaptation evolution
strategy (CMAES), was recently applied to optimize noncatie@al well locations [30].
The CMAES algorithm was found to provide comparable resaolthdse obtained using a
bGA.

The solutions obtained using GA can be improved by combi@#gand other op-
timization algorithms, e.g., ant colony algorithm [31], dke-Jeeves pattern search algo-
rithm [20], polytope algorithm [14, 17, 21, 26] or tabu sé®jt4]. These hybrid algorithms
have been demonstrated to provide better results and reduggutational expense com-
pared to using only GA [20, 31, 32].
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Gradient-based optimization algorithms

Gradient-based optimization algorithms that have beetieapfor the optimization of well
location include stochastic approximation and adjoirddabgradient algorithms. In [8], the
simultaneous perturbation stochastic approximation £R&jorithm was applied to op-
timize the location of vertical wells. The SPSA algorithn3]8& an approximate gradient-
based algorithm. To compute the gradient, a random dimedtidirst generated at the
current point. The random direction is used to generate svwopoints and function evalu-
ations are performed at these new points. Using the twoifumetaluations, the direction
of increase (for maximization) or decrease (for minimiaajiin the objective function can
be determined [8, 33]. The benefit of the SPSA algorithm i tie computation of gra-
dients is independent of the number of variables in the apétion problem, as only two
function evaluations are required to approximate the gradin [8] a finite difference gra-
dient algorithm (FDG) was also applied to optimize well lbteas. The FGD algorithm is
similar to SPSA, except that in the former, the gradiente€angputed using two-sided finite
difference approximations for each optimization variableéhile the gradients computed
using the FDG procedure are comparably more accurate [8tl88jhumber of function
evaluations required to provide the gradient is much latigen in SPSA. The SPSA al-
gorithm was reported to be better than the FDG algorithm fintizing well locations.
In addition, the FDG algorithm was found to be more suscéptibbgetting stuck in local
optima [8].

In [8], the SPSA algorithm was compared to bGA, very fast SEMASA), and Nelder-
Mead simplex algorithms. The SPSA algorithm was found tégoer better than the other
algorithms in optimizations involving vertical wells. Hewer, the use of the SPSA al-
gorithm presents some challenges. The step size for ctitgylaew solutions must be
chosen carefully, otherwise new solutions may be infeasidlore generally, the objective
function surfaces for well placement optimization probderan be very discontinuous, es-
pecially when the permeability field is highly heterogerngoun such situations, gradients
are not well defined and gradient-based algorithms may enepproblems.

Other gradient-based algorithms have also been applieddtmplacement optimiza-
tion. In [34] a constrained quasi-Newton method was appieedptimize vertical well
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locations by minimizing pressure drawdown. Pressure dosmdwas computed semi-
analytically, while the gradients of pressure drawdowrhwéspect to the well locations
were computed numerically. In [35], the problem of optimgithe number and location
of injection wells in a two-dimensional reservoir model wamsidered. A steepest de-
scent algorithm was employed for the optimization. In [3)}, adjoint method for well
placement optimization in two-dimensional models was gmé=d. These authors placed
“pseudowells,” producing or injecting at low rates, at eatthe eight blocks surrounding
the current well location. At each iteration, the adjointthoel was used to compute rate
gradients for each of the pseudowells at each time step. fdtkents at the pseudowells
were then summed, and the well was moved in the directionepteudowell with the
largest summed gradient. The gradients computed in [36j@ravith respect to the orig-
inal well location, but with respect to the rates at the psaells. A similar pseudowell
technique was applied in [37], though in this method the igratdbf the objective function
was computed with respect to continuous well locationss @pproach allows for arbitrary
search directions and step sizes.

The adjoint-based methods have the advantage of high catgnal efficiency. As
is the case with all gradient-based algorithms, howevey tire susceptible to getting
trapped in local optima, so the optimized solutions will élegp on the starting points. In
addition, the use of pseudowells can pose challenges is gagemany wells or with non-
conventional wells such as deviated or multilateral welts guch wells were considered in
[36, 37]), although a modified pseudowell technique for w&jectory optimization was
recently presented in [38]. Finally, adjoint methods reg@aiccess to the simulation code,
which is not a requirement for any of the other methods camnsilabove.

Well placement optimization with stochastic optimizatiaigorithms requires a large
number of function evaluations, each of which entails a faten run. The computational
expense can be reduced in several ways, including perfgrthim simulations in parallel
on distributed processors, using coarse reservoir mogg]sgemianalytic modeling [34],
and the use of surrogate models (proxies). In the next seotie describe some of the
proxies used in well placement optimization.
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Use of proxies

Proxies are computationally fast but approximate modelshvare incorporated into opti-
mization procedures. They reduce computational demandsdugcing the number of full
simulations performed during the optimization. Proxies paovide estimates of the ob-
jective function value of new development scenarios usiegipusly simulated scenarios.
The estimated objective function values can then be useeléotpromising scenarios for
simulation during the optimization.

Examples of proxies used in well placement optimizationude kriging [17, 21, 26,
39], least squares [39], neural networks [17, 20, 40], elubased statistical proxies [13,
41], and neuro-fuzzy methods [19, 42]. Other authors hagd psoxies based on reservoir
parameters to screen well locations, e.g., productividexn[30], productivity potential
[43], and quality maps of oil and gas produced [19]. In [19, &8], the objective of the
optimization was to place the wells in reservoir locationattmaximized the screening
parameters.

Field development constraints and treatment

In well placement optimization, two kinds of constraintsreunonly considered are bound
and practical constraints. Bound constraints on the vasahtise because solutions are
sought within specified variable ranges. For example, dllswaust be drilled in the fea-
sible reservoir region. Practical constraints are relatethe field development project,
and examples include [11, 29]: well-pair distance constsadrilling schedule constraints,
well rate constraints, production facility constraintsnstraints on the number of wells, etc.
The incorporation of these constraints increases the dliffiof the optimization problem
[3, 6].

Different approaches have been employed for handling it development scenar-
ios in well placement optimization. The most common metlsdatde penalty method where
infeasible solutions are penalized [17] or assigned a laegative NPV [44, 45]. Other in-
vestigators handle constraints using different solutiocoeing or specialized algorithms.
In an application involving irregular reservoir boundari&A individuals were encoded
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using a one-dimensional list of the feasible grid blockg [Bdprocedure for handling dif-
ferent well placement optimization constraints such asimas well length and minimum
distance between wells was presented in [29]. These igatsts used a two-population
binary GA where each individual belongs to one of the two pajens depending on its
feasibility. When an infeasible individual is encounteradpecial operator is used to “re-
pair”’ the individual until it becomes feasible.

1.1.2 Large-ScaleField Development Optimization

Large-scale field development optimization problems weaptimizing the location and
type of a large number of wells, with recent applicationlaing several hundred wells
[44, 45]. A straightforward approach for representing thietson parameters in such cases
is to consider a series of wells and to concatenate the weldll optimization parameters.
For problems with many wells, however, the number of optahian variables becomes
large, thereby increasing the complexity of the optim@matproblem. The performance of
the underlying optimization algorithm many degrade foyMarge numbers of variables.
For example, if a bGA is employed for the optimization of hreds of wells, very long
chromosomes will result. Because the population size in Gieisrmined from the length
of the chromosome (e.g., it can be chosen to be equal to théemaf bits in the chro-
mosome [17, 22]), large population sizes will be requireddbieve acceptable algorithm
performance. This in turn leads to high computational expedditional complications
may result when necessary constraints (e.g., minimumteelell distances) are incorpo-
rated, and this can negatively impact algorithm perforneanc

One way to approach large-scale field development optimizgroblems is to con-
sider alternative solution representation techniquesctwlead to a reduction in the size
of the search space or number of optimization variabledet@ift solution representation
techniques have been considered. In [14], a bGA was usedtitminp the locations of
vertical and horizontal wells (with fixed orientation) ineservoir with noncommunicating
feasible regions and irregular boundaries. In these opétinns, feasible well locations
were represented by a one-dimensional vector. This teabrpgevents wells from being
located outside the feasible reservoir regions and wasesafidly applied to optimize the
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location of 33 new wells in a real field application. Howewde length of the GA indi-
vidual will increase with the number of wells consideredwds shown in [16] that this
approach is not efficient because of major discontinuitigbe search.

Another solution representation technique that leadsdoatton in the number of vari-
ables is to consider well patterns in the optimization. Kwgand least-square algorithms
were applied in [39] to optimize the location of an invertagefspot pattern element in a
waterflooding project. The pattern element was represemigdfour optimization vari-
ables: the spatial location of the injector and two well spgparameters. A fixed pattern
approach (FPA) for optimizing wells in reservoirs with gréar boundaries was also used
in [32]. In FPA, wells are optimized in a line drive patternngstwo optimization variables
- well spacing and distance to the reservoir boundary. Theguture, which was applied to
a field case, reduced the number of simulations requireceioptimization. A robust field
development procedure, described in [45], was appliedesstually to giant fields [44, 46].
To reduce the number of optimization variables, three dfiepattern types were consid-
ered: inverted five-spot, inverted seven-spot, and stagdere drives. These investigators
considered different well types and a specified set of waltsms in their optimizations.

In optimizations using concatenated well-by-well paramgt treatment of well-pair
distance constraints requires specifying user-definegskimld values. These values have
the effect of reducing the search space of solutions coresidend may affect the quality of
solutions obtained. In optimizations with well patterige bptimum pattern type, size, and
orientation for a given application are unknown. Previoppligations with well patterns
consider a single pattern type [32, 39], or a set of well patevith fixed well spacings
[45]. In this thesis, we introduce a new well pattern optiati@n procedure that generalizes
previous techiniques. We will show that this approach id eited for optimizing large-
scale field development.

1.1.3 Particle Swarm Optimization (PSO) Algorithm

The particle swarm optimization (PSO) algorithm [47, 48, 80] is a relatively new al-
gorithm for global optimization. The algorithm mimics thecgal interactions exhibited in
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animal groups, e.g., in fish swarms and in bird flocks. Like@#e PSO is a population-
based algorithm. PSO solutions are referred to as partialleer than individuals as in GA.
The collection of particles in a given iteration is calle@ twarm. The position of each
particle is adjusted according to its fithess and positi¢ative to the other particles in the
swarm.

The GA and PSO algorithms share some similarities. Both élgos have operators
to create new solutions from existing solutions. Both alsiuide random components to
prevent solutions from being trapped in local optima. Thgoathms differ, however, in
the number and type of operators used to create and impraw#oss during the optimiza-
tion. GA has three main operators: selection, crossover,namtation. There are many
strategies for applying these operators [51, 52], and teedpion will depend on the spe-
cific optimization problem [7, 22]. The basic PSO algorithm,constrast, has one main
operator, the “velocity” equation, which consists of sebeomponents and moves the par-
ticle through the search space with a velocity (though, i@ Pé&ach particle also carries a
memory). The velocity provides the search directions fahgaarticle, and is updated in
each iteration of the algorithm. The GA and PSO algorithrss differ in the number of
vectors associated with each individual or particle. In @¥ere is one solution vector for
each individual. However, for PSO, there are three vectsss@ated with each patrticle:
current position, velocity, and previous best position.

The PSO algorithm uses a cooperative search strategy fioniaption where particles
interact with each other. This interaction is achieved gisieighborhoods, where a particle
can only interact with other particles in its neighborho@d 3, 53]. Depending on the
number of neighborhoods used, the global best (gbest) aadlbest (Ibest) PSO variants
are obtained [3]. In gbest PSO, a single neighborhood aantaall the particles is used.
For the Ibest PSO, more than one neighborhood is employéxiagtimization, and each
particle may belong to multiple neighborhoods.

The computation of particle velocities at each iteratioasuthe locations of the best
particles found so far. Particle velocities are computadilarly for the gbest and Ibest
PSO variants, except that in gbest PSO, the best partidheiaritire swarm is used, while
in the lbest PSO, the best particle in a particle’s neightodhis used. The choice of
neighborhood topology also affects the PSO algorithm perémce and different types
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of neighborhood topologies (e.g., random, ring) have beseldped [2, 3, 54, 55]. Faster
convergence is observed for gbest PSO, but there is a higbegstibility of getting trapped

in local optima. On the other hand, the Ibest PSO is slowercé provide robust results
especially in problems with many local optima [3, 53].

The PSO algorithm has been applied successfully in mangrdift application areas
such as training neural networks [47, 48, 56], dynamic enoaalispatch problems [57],
pole shape optimization [58], water reservoir operatiams$ planning [59], placement of
sensors for civil structures [60], geophysical inversebpgms [61] and flow shop schedul-
ing problems [62]. Although the PSO algorithm does not appehave been applied pre-
viously within the context of oil reservoir simulation, iak been used for related subsurface
flow applications. Specifically, in [63] PSO was applied taataminated groundwater re-
mediation problem using analytical element models. Thegtigators minimized the cost
of remediation by optimizing the number, location, and saté (vertical) extraction and
injection wells. Several algorithms were applied, inchgicontinuous GA, simulated an-
nealing, and Fletcher-Reeves conjugate gradient. The &=dts were obtained using the
PSO algorithm. The authors also compared the effectivenieGg\ and PSO algorithms
for the elimination of wells when the number of wells reqdiveas overspecified. The PSO
algorithm was also found to be more effective for this aggilan. These findings provide a
key motivation for our work on applying the PSO algorithm tellplacement optimization
problems. Furthermore, the PSO algorithm has been fountade better results, and in
general to require fewer function evaluations, than GA &, 64] and SimA [61] algo-
rithms for applications involving scheduling, geologiaatersion and computer hardware
design.

Like other stochastic optimization algorithms, the parfance of PSO depends on the
values assigned to the parameters in the algorithm. We nesust previous work related
to choosing PSO parameter values.
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PSO parameter selection

The PSO algorithm has several parameters which must befispdaefore performing an
optimization run. These include population size, the maximmumber of iterations, and
the weights of the inertiaw(), cognitive ¢;), and social {;) components of the velocity
equation [3]. These weights affect the trajectories of thdigles. If a local best PSO
variant is used, a neighborhood topology must also be spdcifihe swarm size affects
the search ability of the PSO algorithm and it is chosen bardle size of the search space
and problem difficulty [53]. Population sizes in the range6f40 were recommended in
[2, 53].

Several authors have proposed specific PSO parameter walteehniques for obtain-
ing appropriate parameter values. Valuesof 1, ¢; = ¢ = 2.0 were used in [47, 48].
These were heuristic values and have since been found tateiBISO convergence re-
quirements [3, 53]. It has been shown that particle trajezdacan be converging, cyclic or
diverging [3]. Modifications have been introduced to curltipbe divergence issues, e.g.,
use of velocity clamping (or restriction) and use of indrti@ights other than unity, for
examplew = 0.729 in [65]. These modifications lead to better convergenceataristics
of the PSO algorithm.

Others authors studied the stability and convergence oP®®@ particle trajectories
(see for example [50, 58, 66, 67, 68]) in order to understaamtigle dynamics and to
choose optimal PSO parameters. These studies provideidedataathematical analyses
describing the relationships between particle trajecaony the values ab, ¢;, andc,. The
different parameter regions (i.e., valueswpt;, andc;) where a particle’s trajectory would
converge were shown in [50]. In [66], so-called parameteud$s were proposed where
the values otv, ¢, andc, were selected based on the results of exhaustive sampling of
w, ¢1, andey in optimizations involving mathematical functions, etpe Rosenbrock and
Griewank functions. The first step in the cloud method is teteseveral parameter points
(combinations ofv, ¢; andcy) from the regions that resulted in low objective function
values (for minimization). Then, the selected parametensewsed in other optimization
problems. A constriction factor, which damps the computadigle velocity and ensures
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that the swarm converges, was introduced in [67]. DiffeRRBO variants with parameter
values determined from analysis of particle trajectoriesendeveloped in [68].

The work [61, 66, 67, 68] on particle swarm stability and cengence often involves
some simplifications [3]. For example, these studies irva@vsingle particle, and the
effect of particle-particle interactions are not consaterAnother method for determining
optimal PSO parameters is to actually optimize the paranvataes during optimization.
This method is described in the next section.

1.1.4 Metaoptimization for Parameter Deter mination

The parameters in the PSO algorithm can be directly optidnfaze a given optimization
problem [2, 69, 70, 71]. This method, referred to as metaupétion [69, 70, 71], elimi-
nates the need to specify parameter values for a given pnafhe cloud method described
in the previous section also eliminates this need).

Metaoptimization involves the use of two optimization aijoms. Within the context
of PSO, the first algorithm optimizes the PSO parameterdewie second one optimizes
the specific optimization problem using the PSO parametetareed from the first algo-
rithm. In practice, any optimization algorithm can be usaddptimizing the PSO param-
eters. PSO is commonly employed for this purpose [2, 69,al8jpugh a continuous GA
was used in [71].

We focus on applications that use PSO for optimizing thermpatar values. The first
and second PSO algorithms are referred to as the “supers@@nand “subswarm PSO”
respectively [69]. Each superswarm PSO particle corredptma point in the search space
of PSO parameters (e.qu, c1, ¢3). The fitness of a superswarm particle is computed by
performing several subswarm optimizations using the patara from the superswarm
particle. The subswarm optimizations are performed oreeithe target problem or one
or more representative optimization problems, in our caseell placement optimization.
The fitness functions are defined differently for the subswand superswarm and depend
on the objective function in the subswarm. In the subswalne objective is to minimize
some error (if the global optimum is known) or maximize sonbgeotive function, e.g.,
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NPV in well placement optimization problems. In the supermsw optimizations, the ob-

jective is to minimize average error, or maximize the avemalgjective function value from

several subswarm optimization runs. Multiple subswarninaigation runs are performed
for each superswarm particle because of the stochasticenatihe PSO algorithm. The

above-mentioned metaoptimization applications (exc2ptysed a gbest PSO with a sin-
gle neighborhood, while [2] considered two types of neighbod topologies.

The metaoptimization procedure has been demonstratedvalprbetter results com-
pared to standard PSO with unoptimized parameter values7[®971]. However, this
method is computationally intensive due to the large nunabdunction evaluations re-
quired. A large number of function evaluations is neededbse the actual optimization
problem is solved many times (in subswarm optimization yussg different PSO param-
eters. As a result, many metaoptimization studies [2, 7Dh@%e used computationally
inexpensive mathematical test functions, e.g., RosenbRastrigin and Sphere functions
[2, 3], for the subswarm optimizations.

The metaoptimization procedure can be used in two ways.t, Firsan be applied
to determine the best PSO parameters for a given set of sbegithmark optimization
problems, where the objective function surfaces are kndwwough exhaustive sampling.
Then, the optimized PSO parameters are used to solve irephgblems in the hope that the
PSO parameters are optimal (or at least reasonable) far gneblems. In [2], several PSO
parameters including population size, number of particiEsmed, topology type (random
and circular)w, c;, andc,y, were optimized over several mathematical test functigifigr
the metaoptimizations, the number of particles informed ifiost functions) was found to
be 3. In all test functions considered, a variable randomghimrhood topology was found
to be better than a fixed circular topology.

Metaoptimization can also be applied directly to each netimopation problem. Such
an application may be preferable because the best parassteigs will in general de-
pend on the specific problem considered. In [69], a metadapdition procedure was used
for training neural networks, where PSO parameters, intiaaidio the number of hidden
layers in the network, were optimized for the subswarm. €hesearchers reduced the
computational expense by using a smaller number of pastentel fewer iterations in the
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superswarm PSO. They also performed several PSO optionzatising the optimized pa-
rameters for similar optimization problems. The resultsexampared to those obtained
using standard PSO (with parameters from the literaturdle FSO with the optimized
parameters was found to provide the best results. Spebyfiféd] reported that the PSO
with optimized parameters produced more robust resultsandgerged faster for the train-
ing of neural networks. Motivated by these findings, we wilblere the use of a metaopti-
mization procedure for determining PSO parameter valuesdtl placement optimization
problems.

1.2 Scope of Work

Optimizing the placement of new wells in a field developmawigxt is essential in order
to maximize project profitability. This dissertation foesson the development of efficient
optimization algorithms and procedures for these typesptifrozations. We applied the
PSO algorithm to different optimization problems. We alswided a new procedure for
large-scale field development optimization. In this metiiody, the number of optimiza-

tion variables does not increase with well count. Finallg studied the use of metaopti-
mization techniques to improve the performance of the Pg0righm for well placement

optimization.

This objectives of this research were:

e to evaluate and apply the PSO algorithm for well placementopation problems.
We considered several optimization problems and compa&$d éptimization re-
sults to those obtained using bGA. The examples considevetVed different num-
bers of wells, well types (producer and injector, vertigad aonconventional), num-
ber of realizations, and size of the search space.

¢ to develop and apply new approaches for large-scale fieldlojement optimization
involving many wells. We developed a new well pattern optiamtion (WPO) al-
gorithm which contains two optimization phases. In the folsase, optimizations
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were performed using a new (generic) well pattern desoriptin the (optional) sec-
ond phase, phase 1 solutions were improved further usingoyelell perturbation.

In both phases, we used the PSO algorithm for the underlyptign@ations. We

considered different optimization problems including aecavith multiple reservoir
models and a reservoir with an irregular boundary.

¢ to improve the performance of the PSO algorithm for well ptaent optimization
using metaoptimization. For this study, we applied PSO opimization techniques
to a variety of well placement optimization problems.

1.3 Dissertation Outline

This dissertation is organized as follows. In Chapter 2, wseuls the application of
the PSO algorithm to several well placement optimizatioobfgms. First, we describe
the PSO algorithm in detail, presenting different variasftshe algorithm, neighborhood
topologies, and treatment of infeasible particles. We tbemsider several optimization
problems of varying complexity in terms of the size of thershaspace, the dimension
and size of the reservoir, and the number and type of wellsidered. We compare PSO
optimization results to those obtained with a binary GA iempénation. For all examples,
we performed multiple optimization runs because of thehsstic nature of the GA and
PSO algorithms.

The PSO algorithm performed very well for all of the optintiea problems consid-
ered. In one example, we assessed the sensitivity of PSO Amdgalts to varying swarm
(population) sizes. For small swarm/population sizes,RB® algorithm achieved better
results than bGA. The performance of both algorithms wasiath@ same for large popu-
lation sizes. The senstivity results indicated that PSGsfsidhilar or better solutions than
bGA using fewer function evaluations. These findings aregreament with those ob-
served by [61, 62, 64]. Other examples were also considaphading optimizing the well
type and location of 20 vertical wells, optimizing the Idoatof four deviated producers,
and optimizing the location of two dual-lateral wells. Ireie examples, PSO achieved
better results (on average) than bGA. The work presentedapi€h?2 has been published
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in Computational Geosciencgg?].

Chapter 2 describes the application of the PSO algorithm tohlgm involving up
to 20 vertical wells, in which the well-by-well optimizatioparameters are simply con-
catenated. Using this approach in large-scale field dewsdop projects would result in a
great number number of variables and a very large searcke spachapter 3, we intro-
duce a new procedure, called the well pattern optimizatWRPQ) algorithm, which can
be used for optimization problems involving a large numbiewells. WPO consists of
a new well pattern description (WPD), followed by an optiowall-by-well perturbation
(WWP), with both procedures incorporated into a core PSO naetbgy. WPD repre-
sents solutions at the level of well patterns rather thaividdal wells, which can lead to
a significant reduction in the number of optimization valésb Using WPD, the number
of optimization variables is independent of the number dfsxeonsidered. In WPD, each
potential solution consists of three elements: param#tatsefine the basic well pattern,
parameters that define so-called well pattern operatodsthensequence of application of
these operators. The well pattern operators define pati@nsformations that vary the
size, shape and orientation of the well patterns considieréte optimization. The opti-
mum number of wells required, in addition to the producgedtor ratio, is obtained from
the optimization. Optimized solutions based on WPD are adweapeated patterns; i.e., the
method does not lead to irregular well placements. The suiese use of WWP allows
(limited) local shifting of all wells in the model, which ebles the optimization to account
for local variations in reservoir properties.

The WPO optimization procedure introduced here differs fthenwork of [45] in sev-
eral respects. We used a different technique to represestito field development scenar-
ios, and our algorithm considers very general well patteFhss was accomplished through
use of pattern transformation operations, which allowgratt to be rotated, stretched or
sheared to an optimal degree. This can be important, for pbeamn situations where there
are preferential flow directions in the field. In addition targdard patterns, the algorithm
accepts user-defined patterns. WPD also eliminates the aeeeli-to-well distance con-
straints in the optimization. This is useful as highly coaisted optimization problems are
generally more difficult to solve than less constrained [aais [3, 6]. Finally, the use of
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WWP enables the local adjustment of well locations.

The WPD and WWP procedures were applied to different well placgmptimization
problems. In these examples, we performed multiple opations using the WPO pro-
cedure to gauge the degree of variability in the runs. In aoblpm, we compared WPD
optimizations using one and four well pattern operator® fHsults show that better results
were obtained using four well pattern operators. We peréatiimoth WPD and WWP op-
timizations for two examples, one involving five realizaigoof a reservoir model, and the
other a reservoir with an irregular boundary. These opttiins demonstrated our ability
to optimize large-scale field development. In the exampias tise WWP optimizations,
WWP was shown to improve the objective function value in eatcmopation run. Specif-
ically, average improvements in NPV of 22% and 34% over ttet W&PD solutions were
obtained.

The main benefits of the WPO procedure are that the optimum euaflwells is de-
termined during the optimization and that well-pair distamronstraints do not need to be
considered. Part of the work presented in Chapter 3 has bddishpad in [73].

In the work described in Chapters 2 and 3, we applied PSO dgfatameter values
suggested in the literature. These values were obtaineddroanalysis of particle trajec-
tories and numerical experiments with mathematical fumst{68]. In Chapter 4, we show
the application of the metaoptimization procedure to oSO parameters.

We first applied the metaoptimization procedure for fourdienark well placement op-
timization problems. Because of the very large number oftfanevaluations required by
the metaoptimization procedure, we computed the full dedunction surface exhaus-
tively for each problem. This allowed inexpensive repetisi of optimization runs because
we only needed to look up the NPV values. We demonstratedhkamnetaoptimization
procedure provides better results than those obtained &$®© with unoptimized param-
eters. These results are consistent with those found im BtB® metaoptimization studies
[68, 69].

Next, we used the metatoptimization procedure for realisgll placement optimiza-
tion problems. We considered two optimization problemsthimfirst, we optimized the
type and location of 15 wells using the well-by-well concetgon approach. In the second
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problem, we performed WPO optimizations. The metaoptiropatesults were shown to
give better results than those using default parameterarangeters from the benchmark
problems.

In Chapter 5, we present conclusions and recommendatiorigtioe research on the
development of robust and efficient procedures for wellgxtaent optimization.



Chapter 2

Use of PSO for Well Placement
Optimization

In this chapter, we describe the details of the PSO algortised in this work. Well
placement optimization problems of varying complexity &eonsidered. These problems
included optimizing the location of a single producer oear teservoir models, optimizing
the location and type of 20 vertical wells, optimizing thedton of four deviated pro-
ducers, and optimizing the location of two dual-lateralducers. In each problem, we
performed multiple optimizations using the PSO algorithmd aompared results to those
obtained using bGA. These results demonstrate the supesrormance of PSO for the
cases considered.

2.1 Particle Swarm Optimization (PSO) Algorithm

The PSO algorithm is a population-based stochastic opitoiz procedure developed by
[47, 48]. The algorithm mimics the social behaviors exl@iby swarms of animals. In the
PSO algorithm, a point in the search space (i.e., a possihiéan) is called a particle. The
collection of particles in a given iteration is referred tothe swarm. The terms ‘particle’
and ‘swarm’ are analogous to ‘individual’ and ‘populatiarsed in evolutionary algorithms
such as GAs. We will use these terms interchangeably in Hapter.

At each iteration, each particle in the swarm moves to a nesitipo in the search

20
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space. We denoteas a potential solution in the search space &mensional optimiza-
tion problemx;(k) = {z;1(k),...,z;4(k)} as the position of théth particle in iteration
k, xP***!() as the previous best solution found by tiie particle up to iteratiork, and

xbest(k) as the position of the best particle in the neighborhood digla x; up to itera-
tion k. We will discuss neighborhood topologies in detail in Sat.1.1. One option is for
the neighborhood to include the full swarm of particles, inieh casex?est(k) = x9(k),
wherex? (k) is the global best particle position.

The new position of particle in iterationk + 1, x;(k + 1), is computed by adding a

velocity, v;(k + 1), to the current positiow; (k) [47, 48, 65]:
x;(k+1) =x;(k) +vi(k+1)-At, (2.2)

wherev;(k+1) = {v; 1 (k+1),...,v;,4(k+1)} is the velocity of particle at iterationk + 1,
andAt is a ‘time’ increment. Here, consistent with standard PS@@mentations, we set
At = 1. It should be noted, however, that recent work has demdasdtimproved results
using variableAt [50, 49], so this might be worthwhile to consider in futureestigations.
The elements of the velocity vector are computed as [3, 65]:

vi(k+1) =w-vi(k)
+ ¢ - Dy(k) - (3PN (k) — x,(k)) (2.2)

]

+ ca - Da(k) - (x* (k) — xi(k)),

)

wherew, c¢; andc, are weightsD, (k) andD,(k) are diagonal matrices whose diagonal
components are uniformly distributed random variablesh tange [0, 1]; ang, j €
{1,2,...,d}, refers to thejth optimization variable. In the optimizations performadhis
chapter, we set = 0.721 ande¢; = ¢ = 1.193. These values were determined from
numerical experiments performed by [68]. We note that itasgible to optimize these
parameters as part of the overall procedure. A metaopttmaizarocedure that optimizes
the PSO parameters during optimization will be describe@hapter 4.

The velocity equation (Eq. 2.2) has three components, refep as the inertia (term
involving w), cognitive (term involvingc;), and social (term involving:) components
respectively [3]. The inertia component provides a degfe®wtinuity in particle velocity
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from one iteration to the next, while the cognitive compdreauses the particle to move
towards its own previous best position. The social compfnan contrast, moves the
particle toward the best particle in its neighborhood. Eh#see components perform
different roles in the optimization. The inertia componenables a broad exploration of
the search space, while the cognitive and social compomantsw the search toward the
promising solutions found up to the current iteration.

Figure 2.1 shows the velocity computation and solution tgdaiterationk + 1, for a
particle in a two-dimensional search space. Helé) is the particle’s previous velocity,
while v¢(k) is the velocity (cognitive) from the current positiat (k)) to the particle’s pre-
vious best position>(fb“t(k:)), andv?(k) is the velocity (social) from the current position
to the current neighborhood best positiorf%¢!(k)). The velocity vectorsy;(k), vi(k),
andv¢(k) are used to compute;(k + 1) according to Eq. 2/2. The new particle velocity,
v;(k + 1), is added to the current position to obtain the new positectar,x;(k + 1), as
shown in Eq. 2.1.

2.1.1 PSO Neighborhood Topology

Particle topologies or neighborhoods refer to the groupihgarticles into subgroups. A
particle can communicate and exchange information abewgehrch space only with other
particles in its neighborhood [2]. The performance of th©Rgorithm depends to some
extent on the neighborhood topology, as discussed belovarfcfe ; is in the neighbor-
hood of particle if there is a ‘link’ from particle: to ;. This means that particlginforms
particle: about its position in the search space. Partjcle called the informing particle
(informant), while particle is called the informed particle [2]. Each particle is a membe
of its neighborhood, i.e., each particle informs itself.eTieighborhood size refers to the
number of particles in the neighborhood.

The neighborhood topology is defined by a so-called adjgceratrix m;;, where the
rows correspond to informing particles and the columnsespond to the informed parti-
cles. In general, the matrix is nonsymmetric and containgszend ones as entries, with an
entry of one indicating that partictas contained in the neighborhood of partigléarticle
1 informs particlej). The matrix always has ones on the diagonal because edotiger
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x@(k) . beest(k:)
@® x(k —  current solution
o beest(k) —  previous best solution up to
® x"'(k) —  neighborhood best solution
® xi(k+1) — newsolution

Figure 2.1: Illustration of PSO velocity and particle pasit update for particles; in a
two-dimensional search space.
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contained in its own neighborhood. Using the adjacency imatris possible to define
different types of neighborhood topologies.

In all topologies considered in this work, the locations loé particles in the search
space do not affect the neighborhood, as only the particlé&tes are required to define
the topologies. Here, particle index refers to the positbthe particle in the array of
particles.

There are several types of PSO neighborhood topologies][2;TBe star topology
(Fig.'2.2(a)) has only one neighborhood and each partidetiak to every other particle.
PSO algorithms using this topology are called ‘global best'gbest’ algorithms [3, 7,
48, 54]. The use of this topology has been found to lead tarapnvergence, though the
algorithm is susceptible to getting trapped in local minini&e adjacency matrix for the
star topology is a matrix with ones for all entries.

The topologies shown in Figs. 2.2(b) and 2.2(c) have mone ¢ime neighborhood. In
the ring topology (Fig. 2.2(b)), each particle has a linkvto adjacent particles; thus each
neighborhood contains a total of three particles. The rmEdioods in the ring structure
are overlapping because each particle resides simultalyeiouthree neighborhoods. For

example, with reference to Fig. 2.2(b), particle 2 is in héigrhoods containing particles
8,1and2; 1,2 and 3; and 2, 3and 4. In the cluster topology ZF&jc)), the eight particles
are placed in two neighborhoods, each containing fourgasti PSO algorithms using the
ring and cluster neighborhood topologies are called ‘Ibest’ or ‘Ibest’ algorithms [3, 7].
In Figs. 2(a), 2(b), and 2(c), the red particle corresponddhé global best and the blue
particles represent the local best particles in their retsgeneighborhoods. The adjacency
matrices for the ring and cluster topologies with eightipbes are shown in Fig. 2.3.

PSO neighborhood topologies can be fixed or they can be varibdteration. In fixed
neighborhood topologies, the links between particles dochange with iteration. The
star, ring, and cluster topologies (Fig. 2.2) are exampfd#ed topologies. In variable
neighborhood topologies, links between particles can waity iteration. This is achieved
by creating new links and by permuting the particle indics A type of variable neigh-
borhood topology is described next.
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(b) Ring

(c) Cluster

25

Figure 2.2: Examples of PSO neighborhood topologies foisgesy with eight particles.

1100 0001 1 1110000
11100000 11110001
01110000 111 10000
00111000 11110000
00011100’ 0O 00O0OT1T1TT1H1
000O0OT1T1T10Q0 00001111
000O0O0OT1TI1T1 0O 00O0T1T1T1]1
1 00 0O0O011 01 001111
(a) Ring (b) Cluster

Figure 2.3: Adjacency matrices for the ring and cluster logies shown in Fig. 2/2.

Random variable neighbor hood topology

The random variable neighborhood topology is similar todtae neighborhood topology
(Fig. 12.2(a)), except that each particle has links to sonrégbes in the swarm but not
to other particles. The links between the particles arerdeted probabilistically. The

adjacency matrix for this topology still contains ones oa tlagonal; otherwise;; = 1

only when a generated random number is less than a specifiedlplity p, computed as
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Number of particles informed
Size of each neighborhood

5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40

Particle index Particle index
(&) number of informants (b) neighborhood size

Figure 2.4: Number of particles informed and neighborhded ssing Eq. 2.3 withV, =
40 and N; = 3. Note that the number of particles informed and neighbadhoo
size will change when the links are updated.

follows [2]:

p= 1_(1_1/N5)N17 (23)

whereN; is the swarm size andy; is the mean number of particles to be informed. Here
p is the probability that a particle is selected randomly ljwéplacement) aftel; trials to

be informed. We takéV; = 3, as suggested by [2]. After populating the matrix, the mean
number of nonzero elements on any row, i.e., the mean nunfilbeighborhoods to which
each particle belongs, i§;.

The neighborhood topology is updated (by creating new )iifka better solution is
not found in the previous iteration. Fig. 2.4 shows an exangblthe number of particles
informed and neighborhood size for each particle using Bw&h N, = 40. The dashed
line in each plot represents the mean of the plotted quaitity links and the neighborhood
size for each particle change when the links are updated.raraom variable topology
used here is robust and reduces the susceptibility of solsito get trapped in local optima.
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2.1.2 Treatment of Infeasible Particles

For boundary constrained optimization problems, diregtliagtion of Egs. 2.1 and 2.2
above may cause some particles to leave the feasible refjiba search space. To handle
these infeasible solutions, we apply the ‘absorb’ techai@, 74]. In the absorb technique,
invalid particles are moved to the nearest boundary bynggd#il variables outside the fea-
sible region to their nearest bound (Eqg. 2.4). In additibe,dffected velocity components
are set to zero (Eq. 2.5).

L ifa i (k+1)<l;
rik+1)=1¢ "7 w1 <1 7 (2.4)
U if .’L’Z’J‘(k’ -+ 1) > Uy
Ui,j(k + 1) =0 if xi,j<k -+ 1) < lj or LCZ'J'(]{Z + 1) > Usj. (25)

In Egs. 2.4 and 2/9, andu; are the lower and upper bounds of tfta component of the
search space. Note that Eq.|2.5 is used only after Eq. 2.pledpand the modified veloc-
ity is relevant for the computation of;(k + 2). Other approaches for handling infeasible
particles are discussed in [2, 3, 74, 75], though the styategcribed above was found to
perform the bestin [74, 76].

2.2 Implementation of PSO for Well Placement Optimiza-
tion

We now describe the specific PSO algorithm used in this wokkugéd the random neigh-
borhood topology [2, 55] described above. In this case, &t particle among the neigh-
bors of a particle was selected and serves as the local bestdbparticle. The local
best particle was then used in the computation of partidecitg. The absorb technique
[74, 76] was employed to handle infeasible particles.

In the applications involving deviated and multilateralliaethe resulting well config-
urations may be invalid even after applying Eq. 2.4. For gXanthe main bores of two
wells may intersect even though the particle is feasible.hdiodle such cases, we used
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a penalty method where we assigned a negative objectiveéidangalue to particles that
result in invalid well configurations. This prevents thesetigles from being selected as
the best particle in their neighborhoods. Other infeagialicle treatment techniques are
discussed in [3].

2.21 PSO Algorithm Steps

Our implementation of PSO was for parallel computationr@dults presented in this sec-
tion used a cluster of 50 processors). Algorithm 1 presémsteps in the PSO algorithm
for a maximization problem. Step 1 initializes the values pf,, c3, N, (Swarm size size)
and K (number of iterations). The values of ¢; andc, are taken from [68]. Step 3
initializes each component of the particle position,(k), with random elements drawn
from a uniform distribution/, vV j € {1,...,D}, Vi € {1,...,N,}. Step 4 initializes
each component of the velocities,;(k), to zero. Step 5 computes the objective function
for all particles. In our application, the objective furmtiwas evaluated in all cases by
performing a reservoir simulation run (surrogate modelsawmt applied in this work).

Step 6 updates the previous best position for each parfitie.particle indices (posi-
tions of particles in the array of particles) are permutestap 9 (this is not required if the
random variable topology is used), and the neighborhoadsdoh particle are generated
in step 10. Note that steps 9 and 10 are only performed if tiecte function does not
improve in the previous iteration. Step 14 determines ttst jp&rticle in the neighborhood
of particlei. New particle velocitiesy;(k + 1), are computed in step 15. Steps 17-21
update all components of the position of partitldn step 19, infeasible components of
the position and the corresponding velocity componentsrardified using Eqgs. 2.4 and
2.5. Step 22 evaluates the objective functjd;(k + 1)) based on the new particle po-
sition. The function evaluations in step 22 are carried nygdrallel. Steps 25-32 update
the previous best positions for each particdﬁ’,e“(k), if the new objective function value,
f(xi(k + 1)), is better than that at the previous best positifix”"*(k)). The algorithm
terminates when a maximum number of iterations is reached.

The algorithm described above is a ‘synchronous’ PSO algur[2, 3, 76], in which
the previous best particle position for each particle isated after computing the objective
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function for all particles. This approach differs from amsyachronous’ PSO algorithm
[3], where the previous best particle positions and the pasdicle in all neighborhoods

are updated after computing the objective function of eaaftigge. The asynchronous
procedure has better convergence and requires fewer dnnewialuations [3]. However,

the asynchronous approach is a sequential algorithm, whelesynchronous approach is
better suited for the parallel implementation used here.

2.2.2 Objective Function Evaluation

In all the problems considered, the net present value (NP& used as the objective
function. Evaluating the NPV of each potential solutionuiegs performing a simulation
run. The resulting fluid production profiles generated fromgimulation run were used to
compute the NPV as follows:

~ CF, capea
NPV:;(lJFT)t—C pez (2.6)
whereT is the total production time in years,is the annual discount raté;***** is the
capital expenditure which represents the total cost td anidl complete all of the wells,
andC'F, represents the cash flow at timeThe capital expenditure(*****) is incurred at
timet = 0 and is computed as:

chll

(eaver Otop + Lmaincdrill
§ : w w
w=1

2.7)

lat
N

. Z[Cljunc I L;aj] Cdm‘ll}
=1

Y

whereN < is the number of wellsV!* is the number of laterals in well, C? is the cost
to drill the main bore to the top of the reservoir ()" represents the drilling cost within
the reservoir ($/ft)C/“" is the junction cost of laterd] L™ is the length of the main
bore (ft), andL% is the length of lateral (ft). Eq./[2.7 can be used for any well type, e.g.,

vertical, deviated, and multilateral wells and can be gasibdified if needed to account
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Algorithm 1 PSO algorithm

1:
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33:
34:

w
> Q

w=0.721, ¢; = ¢y = 1.193, defineN,, K
Set iteration index = 1
Initialize x;(k): x; ; (k) ~ U(lj,u;) ¥V j, Vi
Initialize v;(k): v; j(k) =0V 5, Vi
Compute objective functiory,(x;(k)), Vi
xS (k) = x;(k), Vi
whilek < K do
if No improvement in objective function valalen
Permute the particle indices
Reinitialize the neighborhoods for each particle
end if
=1
whilei < N, do
Determine best particle in neighborhood of particle
Computev;(k + 1) using Eq| 2.2
J=1
while j < D do
zij(k+1) = i (k) + vij(k +1)
Apply Egs! 2.4 and 2.5 if necessary
J=J+1
end while
Compute objective functiory,(x;(k + 1))
i=1i4+1
end while
whilei < N, do
if f(xi(k+1))> f(x"*'(k)) then
x4 1) = x;(k + 1)
else
pbest(k + 1) pbest(k)
end if
1=1+1
end while
k=k+1
end while
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for variableCri,
The cash flow at time, C'F';, is given by:

CFt - Rt - Eta (28)

whereR,; and E; represent the revenue ($) and operating expenses ($) tespeat time
t. These quantities depend on the fluid production volumematt

Rt = poQ? + pQQ?> (29)

wherep, andp, represent the oil price ($/STB) and gas price ($/SCF) @acand Q7
represent the total volumes of oil (STB) and gas (SCF) prodogedthe time step. Our
models in this chapter do not include gas, in which d@@$e- 0. The operating expense at
timet, E;, is computed as

Ep = phQ)" + 1, Q1 (2.10)

wherep?, represents water production costs ($/STjB),represents water injection costs
($/STB), andQ*” and Q""" represent the total volumes of water produced (STB) and in-
jected (STB) respectively at tinte We tookp,, p,, p2, andp’, to be constant in time in all
cases.

2.3 PSO Applications

We applied the PSO algorithm to several optimization pnoisle The random variable
neighborhood topology was used in these cases. The exaugpied in terms of the num-
ber and type of wells considered and also in the number ofresenodels included in the
optimization (multiple reservoir models were used to ipovate geological uncertainty).
Thus the size of the search space and the amount of computatjoired for function eval-
uations varied for the different cases. All examples usedNRV as the objective function,
with the NPV for each scenario computed using Eg! 2.6. The@oic parameters are
given in Table 2.1. The simulations were performed usingqf8ta’s General Purpose
Research Simulator (GPRS) [77, 78].
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In Examples 3 and 4, which involve deviated and multilatevalls respectively, we
used the projection well index method [79] to compute thd wmellex for each grid block
intersected by the well. This approach accounts for the lawgipetween the well and the
grid block approximately when the well intersects the blatkn angle. For representing
deviated and multilateral wells within the PSO and GA, wedube parameterization in-
troduced in [28, 20]. Basically, this approach describedsneding thei, j, k£ location of
the well heel, three additional parameters for the toe, amater defining the location of
junctions in terms of fractional distance along the maineb@nd parameters specifying
thei, j, k locations of the toes of each branch. Other well representafire also possi-
ble, though this representation allowed us to readily gansthe minimum and maximum
length of the main bore.

We compared the performance of the PSO algorithm to binary lt@feafter referred
to simply as GA. In [18], different sets of GA parameters wasasidered and an ‘optimal’
set was identified. We used this optimal set of parametersiinGA runs described in
this section. The GA uses the roulette wheel proportionageng method for selecting
individuals, called parents, to generate the new soluiilotise next generation. Crossover
between two parents generates two new individuals, calfisppring. Mutation is then
applied to the new individuals. We used single-point crees@nd bit-wise mutation in
generating new individuals. The GA also employs elitismgevehthe best individual is
carried to the next generation without any modificatione&dible individuals are assigned
negative objective function values (as is also done in P&Bigh keeps them from being
selected as parents in the next generation. For each of #mepa problems, we repeated
the optimization runs multiple times because of the staahaature of both the PSO and
GA algorithms. This allowed us to draw more general conolsiregarding the relative
performance of the two methods.

We also applied SPSA for several cases and found that it wpsidarmed consistently
by PSO and GA. This observation is in contrast to the findifg8joand may be due to
the need for different SPSA parameters for the types of problconsidered here. In a
limited study, we attempted to determine appropriate SP&Arpeters, but were not able
to achieve optimization results using SPSA that were coaiparto those using PSO and
GA.
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Table 2.1: Economic parameters for NPV computation
Drilling cost (to reservoir top).t?  50x10° ($)

Lateral junction cost(/#n¢ 1.5x10° ($)
Drilling cost per foot,Cri 10,000 ($/ft)
Oil price, p, 45 ($/STB)
Water production cos?, 10 ($/STB)
Water injection costy’, 10 ($/STB)
Discount rater 0.10

2.3.1 Examplel - Optimizing the placement of a single producer well

In this example, we determined the optimal location of alsinvgrtical production well.
Ten geological realizations were considered, and the tbgefunction was the expected
NPV, designatedNPV), computed agNPV) = (1/N)X¥ NPV,, whereNPV; is the
NPV of realization: (with N = 10 in this case). The reservoir model is two-dimensional
and contains 4& 40 grid blocks, with each block of dimensions 300300 ft x 50 ft.
Four realizations of the channelized permeability fielddisplayed in Fig. 2.5. Porosity
was taken to be constant and equal to 0.25. The system csmihiand connate water.
As there is no aquifer and no water injection, only oil is proed. Relative permeabilities
were not required for this example. The oil viscosityis 1.20 cp and oil compressibility
Co i1 2.0x107° psi~t. Rock compressibility, is 3.0 x 1075 psi~t. The system is initially
at a pressure of 4800 psi. The production well operates uadHP constraint of 1000
psi. Total production time is 5000 days.

For this example, there are only 1,600 possible well locatioThus, by performing
16,000 simulations (one for each well location in each radilbn), we could sample the
search space exhaustively and construct the full obje@tivetion surface. This surface,
shown in Figl. 2.6, is highly discontinuous and contains maogl maxima. This is because
of the high level of heterogeneity in these channelized risodehe global optimum well
location occurs at = 20, j = 20. Although we would expect the optimum well location to
occur somewhere near the middle of the model, it is fort@itihat this optimum lies right
at the center. The corresponding optintadP V) is $268x 10°.

We performed a sensitivity analysis to study the perforreasicPSO and GA using
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different swarm (population) sizes and numbers of itereti(generations). Note that, in
performing this sensitivity study, we did not need to parfiany additional flow simula-
tions, as we had already computed (and saved) the full algefetnction in constructing
Fig.[2.6. We considered swarm/population siz&s)@nd number of iterations/generations
(K) of 5, 10, 20, 30 and 40. We performed 20 optimization runsstrh combination of
N, and K. All tests were performed for both PSO and GA procedures.

(a) Realization 1 (b) Realization 2

(c) Realization 3 (d) Realization 4

Figure 2.5: Four realizations of the channelized permagliiéld used in Example 1.

Fig.[2.7 shows a comparison @fPV) as a function of the total number of simulations
per realization€ N, x K) for both the PSO and GA procedures féy of 5, 20 and 40 and
K of 5, 20 and 40. The solid red line corresponds to the GA smiythe blue dash-dot line
to the PSO solution (both the GA and PSO solutions are averager 20 runs), and the
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Figure 2.6: Objective function surface for Example 1.

solid line with circles to the global optimum. It is evidehtt the PSO method performed
as well or better than the GA for nearly all combinationsMaf and K considered; i.e.,
for the same number of function evaluations, PSO providedparable or better solutions
than GA. The advantage of PSO over GA is most noticeable favaams (population)
size of 5, in which case relatively few total simulations ezquired. For example, with
N, = 5 and K = 40 (200 simulations/realization), the PSO solution achie348% of
the global optimum, while GA achieved only 76.4% of this apim. For large swarm
(population) size V; = 40), the performance of the two methods was essentially thesam
Both algorithms converged to the global optimum after apnaexely 500 simulations per
realization.

Note that we used different random seeds in performing thienggations for each set
of N, and K. Therefore, in Fig. 2.7, for a given row of figures (all of whicorrespond to
the same value oK), the PSO and GA results for smail, (left column) do not exactly
correspond to the early portions of the results for lafgefcenter and right columns).

Figs. 2.8(a) and 2.8(b) show the converged well locationsuns with Ny = 20 and
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K = 5 for the PSO and GA algorithms respectively. Each point gpoeds to the con-
verged well location from one of the 20 optimization runsvésal of the points coincide
or are very close so fewer than 20 distinct points appean) tHese parameter values, the
PSO solutions are seen to be clustered in the vicinity of gieral well location ¢ = 20,

j = 20), in contrast to the GA solutions which show more scatter. o= 40, however,
the converged well locations cluster around the optimal Veelation, with less scatter
observed for both the GA and PSO algorithms (Figs. 2.8(c)2a8()).

2.3.2 Example 2 - Optimizing 20 vertical wells

In this example, we maximized NPV by optimizing the type aodation of 20 vertical
wells in a two-dimensional reservoir model. Only a singlalimation of the reservoir was
considered in this case. The grid contains 20000 grid blocks, each of size 300 st
300 ft x 50 ft. The permeability field is spatially correlated in tlmutheast-to-northwest
direction. The porosity, which is correlated with permdighivaries from block to block.
This example involves production and water injection wellere, the water viscosity,,
is 0.31 cp, oil viscosity is 1.20 cp, residual oil and connagger saturations are 0.2, and
the relative permeability endpoints!( and%? ) are 0.875 and 0.30 respectively. Corey co-
efficients for the oil and water curves are approximatelyah 2.9 respectively. Injection
wells are specified to operate at 2000 psi, while produceesadg at 1000 psi. The other
system properties are the same as in Example 1. The totalgirod time is 2000 days.

There are three optimization variables per w¢ll, ¢, n}, resulting in a total of 60
variables. The variablesandn designate well location antlis an indicator variable that
represents the well typd & 0 designates a production well arid= 1 an injection well).
An indicator variable of this type was used in [19, 28]. Theasw (population) size and
maximum number of iterations are 50 and 100 respectivelyes&hvalues were chosen
based on suggestions in [80, 81]. We performed optimizatims for the PSO and GA
algorithms.

Fig. 2.9 shows the optimal NPV for each run, as well as theageof these opti-
mal NPVs, versus the number of simulations. The average B&@m gave an NPV of
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Figure 2.7:(NPV) as a function of number of simulations per realization foOR$d GA
for Example 1.(NPV) represents the average over 20 optimization runs.

$2.05<10° compared to an average of $1:88)° for GA. Although PSO gave an aver-
age NPV that is 11% higher than that of the GA, it is evident tree of the PSO runs
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Figure 2.8: Optimal well locations from PSO and GA i3t = 20, and for number of
iterationsK = 5 (top row), andK = 40 (bottom row). Each point corresponds
to the well location from one of the 20 optimization runs (Exade 1).

gave a fairly low NPV. This highlights the need for multiplens. Note that, in these and
subsequent results, during the course of the optimizatamesind 5% of the scenarios had
invalid well configurations. For these cases we did not perfow simulations, but we
still included them in the total simulation count.

The optimal well locations for the highest NPV case using R83hown in Fig. 2.10(a).
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The analogous GA result is presented in Fig. 2.10(b). Thengability field is also shown
in these plots. It is evident that the wells were not gengialtated in low permeability
regions. Although the exact well locations differed sigrafitly between the two optimiza-
tions, it is interesting to note that there were many moralpcers (open white circles)
than injectors (solid black circles) in both cases. In addjtthere did not appear to be any
sort of well pattern arrangement emerging in either caseallyj it is evident that some of
the well locations were very close. This could be addredsedigh the use of well-to-well
distance constraints.

We compared the optimized NPV to the NPVs obtained for sewiil patterns. The
NPV for a repeated five-spot arrangement containing a tétaDavells was $1.410°,
which is considerably less than the optimal NPV achieved 89 P$2.05<10°). Interest-
ingly, however, for an inverted 13-spot arrangement (dairtg a total of 13 wells), the
NPV was slightly higher ($2.410°) than the optimized NPV for the 20 well case. This
suggests that 20 wells are not needed for this problem anththaumber of wells should
also be an optimization parameter (this issue will be ad@e# Chapter 3). The higher
NPV for the 13 well case is likely due to the high drilling cagtecified in this problem
($50% 10° to drill to the top of the reservoir).

NPV ($MM)

0 1600 2060 30‘00 40‘00 5000
Number of simulations
Figure 2.9: NPV of the best solutions versus the number ofilsition runs for PSO (blue
curves) and GA (red curves) for Example 2. Thin lines comesito individual
runs, while thick lines represent averages over the fows.run
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Figure 2.10: Permeability field and well locations from thesbruns using PSO and GA
for Example 2. The open white circles correspond to produaad the solid
black circles to injectors.

2.3.3 Example 3 - Optimizing four deviated producers

This example entails the determination of the optimal liocator four deviated monobore
producer wells. The reservoir model contains683 x 7 grid blocks, each of dimensions
60 ft x 60 ft x 20 ft. The other reservoir properties are the same as inqus\waxamples.
We consider only a single realization of the reservoir; teenpeability field is shown in
Fig.[2.11.

Each deviated well is represented by six optimization \des, resulting in a total of 24
variables. The maximum possible length of any well is spedifo be 2500 ft. Additional
constraints are also included. For example, if the maindfmeany two wells intersect, the
solution is considered invalid (see Section 2.1.2 for exgli@n of our treatment of invalid
solutions).

We performed five optimization runs for each algorithm. Rd.2 shows the optimal
results for each run and the average of these solutionss/éisunumber of simulations.
The averaged NPV for the PSO and GA algorithms are $419 and $44810° respec-
tively. Thus the average PSO solution is 7% higher than tleeage GA solution. The
converged well locations from the best run for both algonighare shown in Fig. 2.13. The
results consist of deviated and nearly horizontal wellsugh the two solutions differ in
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terms of the well locations and trajectories.

Figure 2.11: Permeability field for Example 3.
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Figure 2.12: NPV of the best solutions versus number of stian runs for PSO (blue
curves) and GA (red curves) for Example 3. Thin lines comesito individ-
ual runs, while thick lines represent averages over the @ias.r
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Figure 2.13: Optimum locations for four deviated productisells using GA and PSO
(Example 3).

2.3.4 Example4 - Optimizing two nonconventional producers

In our final example, the type of well was not specified explidut was determined as part
of the optimization. We optimized the location of two wellsdeallowed each well to have
zero, one or two laterals. The reservoir contains<B0 x 10 grid blocks of dimensions
60 ft x 60 ft x 20 ft. The other model properties are the same as in Exampkard 3.
Fig.[2.14 shows the permeability field for this case (a singéervoir model is considered).
In this problem, the maximum length of the main bore is 250anid the maximum
length of any lateral is 1000 ft. The parameterization ofheaell requires 16 variables,
for a total of 32 optimization variables. This problem is mdlifficult than Example 3
because of additional constraints on the trajectory of i thterals. Specifically, well
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configurations with intersecting main bores and/or lateaaé regarded as invalid.

We performed five optimization runs for each algorithm. Rid.5 shows the optimum
NPV for each run and the average of these results versus thearwf simulations for
the PSO and GA algorithms. The average NPV values for the P8@4A algorithms are
$151x10° and $12% 10° respectively. The average PSO solution is thus 19% higlzer th
the average GA solution for this case. Fig. 2.16 shows theerged well locations from
the best runs for both algorithms. Itis interesting to nbtd both procedures gave solutions
containing monobore wells without laterals (though thel\welations differ between the
two cases). Wells with one and two laterals did exist withi& $warm/population, but due
to the higher cost of these wells, they did not represent pienal solutions. For example,
in Fig.[2.17, we show an intermediate PSO solution that ohesua dual-lateral well. We
note finally that in runs with different cost parameters, imaeh wells were less expensive,
optimum solutions did contain dual-lateral wells.

Figure 2.14: Permeability field for Example 4.
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Figure 2.15: NPV of the best solutions as a function of the Inemof simulation runs for
PSO (blue curves) and GA (red curves) for Example 4. Thirslc@respond
to individual runs, while thick lines represent averagesrdiie five runs.

24 Summary

In this chapter, we described the application of the PSOriitgo to optimize the place-
ment of new wells in oil field development. We considered aetgiof optimization prob-
lems, involving vertical, deviated, and dual-lateral wedhd single or multiple reservoir
models, with the maximization of NPV as the objective fuoetiln all the example prob-
lems, we demonstrated that the PSO algorithm provided cabfgaor better results on
average than the bGA. However, there are still some issuas aoldressed.

In all the example problems, the solutions were represdmeisimple concatenation
of the well-by-well optimization parameters. There are sgoblems with this approach.
First, the approach can result in invalid well configurasiorFor example, two vertical
wells may occupy the same grid block, or be very close (see2Fl®). Well-pair distance
constraints can be incorporated into the optimization @doce to deal with these issues.
However, this will increase the difficulty of the optimizai problem. Another issue with
concatenating the well-by-well parameters is that for fEots containing many wells, the
number of variables and the size of the search space can beaynlarge.
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Figure 2.16: Optimum locations for two production wellsngslGA and PSO (Example 4).

The PSO parameters ( ¢;, ¢3) and neighborhood topology applied here were those
suggested in [68, 2] and were not tuned for the particulanopation problems considered.
Itis likely that the performance of the PSO algorithm coutdtmproved by optimizing the
PSO parameters and neighborhood topologies. This issligenalddressed later in Chapter
4.

In the next chapter, we introduce a well pattern optimizatityorithm where PSO par-
ticles represent full well patterns rather than individwalls. The new procedure enables
the optimization of field development problems with a largenber of wells. In addition,
the new procedure results in practical well configuratiom$ does not require the use of
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Figure 2.17: Intermediate PSO result showing a dual-lbveed and monobore well (Ex-
ample 4).

well-pair distance constraints.



Chapter 3
Well Pattern Optimization

In this chapter, we present a new procedure for optimizingelascale field development,
called well pattern optimization (WPQO). WPO consists of thmegn components: well
pattern description (WPD), well-by-well perturbation (WWRhd the PSO algorithm. In
this chapter, we first describe the WPD, which is a novel regmtagion for well patterns.
The components of WPD, which include a generic representédicdifferent well pattern
types and applicable pattern operators (rotation, schkgrsand switch), are discussed.
Next, we present the well-by-well perturbation (WWP) whiclm tee used to improve the
solutions obtained using WPD. Several example problems earsidered using the WPO
procedure. In total, these results demonstrate the apgltgaof WPO for large-scale field
development.

3.1 Waéll Pattern Description (WPD)

The overall well pattern optimization (WPQO) algorithm cantaas key components the
well pattern description (WPD), well-by-well perturbatj@nd the core optimization algo-
rithm (PSO in this case). The WPD, which we now describe, dreel patterns (rather

than individual wells) as the basic unit of representatidhus, in our PSO implementa-
tion, each particle represents a repeated well pattern. VR2code representations for
a wide variety of possible well patterns, in addition to trensformations that are used to
manipulate these well patterns. It is the parameters tHatadthe patterns and quantify

a7
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the transformations that are optimized during the coursim@foptimization. The WPD

representation offers several benefits including a redngti the number of optimization

variables, the ability to perform optimizations without lix®-well distance constraints,

and the automatic determination of the optimum number oflsv&he use of well patterns
also presents some challenges. For a robust optimizatimmy different well pattern types,
shapes and orientations must be considered, and there ry &akge number of possible
combinations of these attributes. Thus a concise solugpresentation, coupled with an
efficient and robust core optimization algorithm, is regdifor this problem.

In the WPD representation, each solution contains threepgrofioptimization param-
eters: the basic parameters associated with each of tleeahffwell patterns, parameters
that quantify the pattern operations, and parameters #fatedthe sequence of applica-
tion of these operations. In the following sections we wikdribe these three elements in
detail.

3.1.1 Basic Well Pattern Parameters

In order to consider different well pattern types in the optiation, a basic well pattern
representation is required. For this purpose, we extencetiresentation for inverted five-
spot patterns described in [39]. Our representation usasviariables to represent the
well pattern:{€°, n°, a, b}, where(¢°,1,°) designate the areal location of the center of the
pattern (a well may or may not be located(&t, n°)) anda andb specify well spacings.
We represent areal location usifg n) rather than the usualr, y) becausex is used to
designate PSO solutions. Our extended representatiorioi@ss:

P =A{1",[" 1, a,0]}, (8.1

wherel"? is an integer variable that defines the pattern type (e xgepsspot, nine-spot). If
we considetV, different well pattern types in the optimization, thét? € {1,2,..., N,},
with each value corresponding to a different pattern typée fepresentation shown in
Eq. 3.1 is quite simple and is applicable for many patteresy his representation could
be readily extended to account for more complex well arraveges such as 13-spot pat-
terns.
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Several well patterns, containing different numbers oflsygre shown in Fig. 3.1. It
is evident that, using the representation shown in Eqg. &dh @attern can be represented
in terms of the five variables appearing in the equation (sg€3R2). Were we to represent
each well individually, a five-well pattern would requiretparametersé{(andn locations
of each well) and a nine-well pattern would require 18 patanse Thus the representation
in Eq. 3.1 clearly leads to significant reduction in the disien of the search space.

B

(a) Inverted five-spot (b) Inverted six-spot
(c) Inverted seven-spot (d) Inverted nine-spot

Figure 3.1: lllustration of different types of well pattstrnlThe solid black circles represent
producers and the red circles with arrows represent injecto

In our algorithm, well patterns are in all cases repeatedltthé entire reservoir do-
main. Each pattern has the same size and orientation as skepbttern. Wells that fall
outside of the reservoir boundaries are eliminated frontdake set. The well pattern pa-
rameters; andb, in addition to the parameters connected to the operatars,determine
the total number of wells associated with each PSO soluparti€le). In this way, WPO
determines the optimal number of wells. We constrain tharmim and maximum values
of a andb such that the patterns they define are of physically reasesa®s. The bounds
prescribed for andb depend on the bounds used for the parameters associatethaith
pattern operators, as these also impact the size of themmtte
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Figure 3.2: Well pattern element representations for tkerted five-spot and seven-spot
patterns.

The well pattern representation in Eq./3.1 does not allovitfergeneral orientation of
well patterns. In fields with large-scale permeability teat or correlations, this represen-
tation may be suboptimal since patterns cannot align thisesto take advantage of trends
in flow. We now describe techniques that generalize the septation given in Eq. 3.1.

3.1.2 Waell Pattern Operators

Well pattern operators define operations that can be peeidon the encoded well patterns.
When applied to a pattern, these operators can alter thepaite, shape, orientation, type
(normal versus inverted) and the location of the wells ingh&ern. We developed four
well pattern operators: rotation, scale, shear, and svapgrators. The rotation operator
rotates a well pattern, the scale operator increases oeases the size of a well pattern,
the shear operator skews the shape of a well pattern, anavtted ©perator changes the
pattern type from the normal to inverted form by switchingguction wells to injection
wells and vice versa. Other operators can be readily incatpd into the WPD representa-
tion. In general, application of these pattern operatagsires the specification of several
parameters including the reference well. The referencé seeles as the origin for the
pattern operation and its location remains unchanged thiéewperation is performed.

We now define the pattern operators and associated paramesah pattern has wells
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located at the vertices of a polygon (outer wells) and, efmhe six-spot pattern, there
is also a well at the center (Fig. 3.1). In our numbering catiea, the outer wells are
numbered consecutively in the anticlockwise directiotofeed by the interior well(s).

Each pattern operator takes as input a well pattern and pesda new well pattern as
output. We designat®V;, to be anN x 2 matrix representing the well locations in the
input well pattern element (these well locations are desiggh¢, 7)) and W, to be the
corresponding matrix representing the output well Ioa'aii(nlesignatecﬂf, 7n)). In both
matrices, well locations are relative to the reference viedlated at <™/, /). The two
matrices are given by:

51 _ Sref m — 7,Iref él _ gref ﬁl _ 77ref
52 o gref Ny — nref 52 o é‘ref ﬁ2 _ 777“ef
Win - . . > Wout = ~ R . s
fn _ gref Mo — nref gn _ fref T — 777ef
ENuy — & Ny, — 17 €Ny, — € i, — 1

(3.2)
whereN,,, is the number of wells in the well pattern. Most of the welltpat transforma-
tions can now be described through the following operation:

wl =MWwW!

out — mn?

(3.3)

whereM is a2 x 2 transformation matrix. The specific formshf for the relevant pattern
operators are described below. We illustrate the well patperators using the inverted
five-spot and seven-spot well patterns, though the operatso apply to the other well
pattern types.

Rotation operator

The rotation operator, designatéxl,,, rotates a well pattern by an anglabout a reference
well, n™ef el € {1,2,..., N,,}. After the rotation, the locations of all wells other than
n ¢/ are altered. The rotation operator does not change the tibe ovell pattern. The
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rotation of the pattern element is achieved through usdef M, in Eq. 3.3, where

cosf) sinf
My = ) (3.4

—sinf cos6

This results in clockwise rotation fér> 0 and anticlockwise rotation far < 0. Figure 3.3
illustrates the rotation operator applied to an inverted-fipot pattern. In Fig. 3.3(a), the
initial well pattern (solid lines) is rotated about well 4t = —25° (anticlockwise
rotation). In the final pattern (dashed lines), the locaiohwells 1, 2, 3 and 5 differ from
those in the initial pattern. Fig. 3.3(b) showd® (clockwise rotation) about well 5.

(a) Rotation about well 4 with = —25° (b) Rotation about well 5 witld = 45°

Figure 3.3: lllustration of the rotation operator appliedah inverted five-spot pattern.

Scale oper ator

The scale operatoK),...., increases or decreases the size of a well pattern. The scale
operator requires as arguments the reference well in therpaand axis scaling factors

for the £ andn directions. If the scale factor for an axis is greater thath&,pattern is
stretched in that direction. If the scale factor is less thahe well pattern is shrunk along
that direction. A nonuniform scale matri§/,., is used to achieve the scaling of a well

Se 0
Msc - ¢ ) (35)
0 S,

pattern:
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whereS; andsS, are axis scaling factors. Figures 3.4(a) and (b) illustila¢escale pattern
operator applied to the inverted five-spot and inverted seyp®t patterns. In Fig. 3.4(a)
the well pattern is scaled relative to well 1 using scalingdes{0.75, 1.8}. In Fig. 3.4(b),
the inverted seven-spot pattern is scaled with facors, 2.0} relative to well 7. Because
the pattern is replicated over the entire field, it is cleat these scaling parameters will
have a strong impact on the total number of wells. In the exespphe scaling factors are

constrained to be between 0.5 and 2.

Figure 3.4: lllustration of the scale pattern operator fog tnverted five and seven-spot

patterns.

4? _____ ’3
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5“5
1 I22

(a) Scaling with factorg0.75, 1.8} from well 1
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(b) Scaling with factorg1.5,2.0} from well 7



CHAPTER 3. WELL PATTERN OPTIMIZATION 54

Shear operator

The shear operataf),;...., alters the shape of a well pattern by shearing (skewingytie
pattern in the& andn directions. The shear operator requires three argumemnéference
well and axis shearing factors for th@ndr directions. These factors indicate the amount
of shearing in each direction relative to the other direttidhe shearing of the pattern
element is achieved using a shear mathik,,:

1 o
M, = . (3.6)
H, 1

whereH, and H,, are axis shearing factors. Care must be taken in defining themam
and maximum values aoff; and H,, as well locations become colinearif; and H,, ap-
proach -1 or 1. In the examples, the shearing factors ardreamsd to be between -0.5 and
0.5. Figure 3.5 illustrates the shear operator applied iovarted five-spot pattern.

Switch operator

The switch operato),.,;;.», SWitches a well pattern from the normal to the inverted form
and vice versa. This is achieved by switching the type (pcedunjector) of all the wells
in the pattern. The switch operator does not require anynaegis.

The switch operator offers some benefits for the overall WRfOraghm. The switch
operator enables the algorithm to consider both normal awetted forms of the patterns
without increasing the number of patterns that need to baektfin the algorithm. The
switch operator also allows the algorithm to consider d&fe producer-injector well ra-
tios for the same well pattern parameters. The producecioy ratios for the normal and
inverted forms of the five-spot, seven-spot, and nine-sptiems are shown in Tahle 3.1
[82]. Figures 3.6(a) and (b) illustrate the switch pattepemtor applied to the inverted
five-spot and inverted seven-spot patterns.

Representation of well pattern operators

As described above, each pattern operator (except thelsakerator) requires the spec-
ification of a reference well in the pattern and at most twaitamithl operator arguments.
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(a) Shearing with factor§0.45, 0.3} from well 1

4
47 ~~ 3

(b) Shearing with factor§—0.50, —0.10} from well 5

Figure 3.5: Illustration of the shear pattern operator fierinverted five-spot pattern.

Table 3.1: Producer-injector ratios for different well teais
Pattern form

Pattern

Normal Inverted
Five-spot 1 1
Seven-spot 1/2 2
Nine-spot 1/3 3

This allows us to use a generic representation for theserpatiperators which can be
readily extended to other operators that may be introduced.
Let O; represent thgth pattern operator, whe®; € {O, ., Oscaie, Oshears Oswitch }-
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1 2 1 2
(b) Switching an inverted seven-spot pattern

Figure 3.6: lllustration of the switch pattern operator floe inverted five and seven-spot
patterns.

In the WPD representatiod; is represented as:

Oj = [ {n;'ef} 7{argj717argj,2}] (37)
~—_—  ——

reference well operator arguments

wherengef is the reference well for operatgrand{arg; ,, arg;,} is the list of arguments
for the operator.

In our implementation, the arguments appearing in Eq. ¥#epresented as normal-
ized variables between 0 and 1. Each variable is then rebealeequired before being
used in the pattern operation. This enables appropriateaege of information between
particles that are acted on by different operators duriregctburse of the particle swarm

optimization.
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3.1.3 Solution Representation in WPD

We now describe the overall representation of potentialtemis using the well pattern
description. Each solution (particle within our PSO impétation) consists of the ba-
sic well pattern definition and parameters (Eq. 3.1) and épeesentation for the pattern
operators (Eg. 3.7). In addition, each solution containstabsvariables that defines the
sequence of pattern operations when multiple operatorapied. Theith PSO particle,
x;, IS thus encoded as:

X = [{]Z-wp’ [ ZQ, 77?7 a;, bi]}A{Sz‘,h Sz‘,2, ceey Si,NO}J{Oi,la Oi,Qa ceey Oz‘,NO}L (3-8)
pattern;);rameters operato\r’ sequence patterr:gperators

where{I;”, [£?,n?,a;,b;]} are the pattern parameters for particléV, is the number of
pattern operatord,0; 1, O;», ..., O; n, } provide the list of pattern operators, and
{Si1,Si2,...,Sn,} represent the sequence of application of the pattern apsratach
Sij» Si; € {0,1,2,...,N,}, is an integer variable representing the index of a pattern
operator. For example, §;,; = 1 andS;, = 2, then the pattern operat@t, ; is applied
first and pattern operatda®; , is applied second (using the well pattern generated from
0;1). If S;; = 0, then thejth pattern operatoi; ;) is skipped.

All components of any patrticle;, which represents a PSO solution, are treated as real
numbers. However, some of the optimization parameterh,m@ef ands; ;, are integers.
Where necessary, we determine integer values from reals/alusimply rounding to the
nearest integer.

Examples of using one pattern operator and two pattern tgeran sequence are il-
lustrated in Figs. 3.7 and 3.8. In Fig. 3.7, the rotation afmris applied to the initial well
pattern (Fig. 3.7(a)) and the resulting pattern (Fig. 3)7ibrepeated over the entire do-
main (Fig. 3.7(c)). In the example in Fig. 3.8, the shear aradesoperators are applied in
sequence to an inverted seven-spot pattern. As indicataeatvells that fall outside the
reservoir boundaries are eliminated. It is evident fronséhiggures that a wide variety of
well patterns can be generated (and thus evaluated in the Wt@dure) using the WPD
representation.
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(a) Initial pattern (b) After rotation

(c) Repeated final pattern

Figure 3.7: Application of one pattern operator.

3.2 Wsdll-by-Well Perturbation (WWP)

Optimization using WPD produces solutions that consist peated well patterns. It is
possible to further improve the solution by performing opgations that involve perturb-
ing the well locations determined using WPD. We refer to tkisvall-by-well perturbation

(WWP). Following WWP, the basic patterns remain essentialfcinbut the well locations
within the patterns are shifted to improve the objectivection.
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(a) Initial pattern (b) After shearing

(c) After scaling (d) Repeated final pattern

Figure 3.8: Application of two pattern operators (shear scale).

We again use the PSO algorithm for the WWP optimization. Heyeigler, each PSO
particlex; contains a concatenation of the perturbations to be apmiéte well locations
determined from WPD:

X; = {Aflv Anl ) Af% AT]? y Afnu Ann ) ottt AgNa AUN}7 (39)
—— —— ———

well 1 well 2 well n well N
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whereN is the total number of wells as determined in the WPD optinoneandA¢,, and
An, represent the perturbations of the spatial locations of mePrior to simulation, the
actual well locations are obtained by adding the pertuobatto the corresponding well lo-
cation from the WPD solution. In our implementation, the mmom and maximum values
of A&, andAn, are constrained to keep wells from shifting from one patteranother.
We note that WWP could also be used for other determinatiort$) asl the completion
interval for each well in three-dimensional problems. Htation of wells could also be
considered through inclusion of an active/inactive opaion parameter for each well.
Neither of these options was considered in this work, thaigly could be incorporated
easily into the WWP procedure (the dimension of the searchespéic however, increase).

The WWP procedure introduces an efficient ‘local’ search, wiéads to improved
solutions (as will be demonstrated below). Improved sohgiare achieved because the
optimized well locations now account for local variatiomsporosity, permeability, and
other properties. The two procedures — WPD and WWP — are comptamebecause
WPD provides the ability to search efficiently on the largdesead to optimize well count,
while WWP enables local adjustments.

Although the dimension of the search space in WWP is the sanmatsging well-by-
well concatenation (for cases where the number of wells esifipd), WWP has several
advantages over well-by-well concatenation. SpecificaiyVWP, wells are allowed to
move only a limited number of grid blocks in each directiomisT'constraint’ can be eas-
ily incorporated into the optimization, in contrast to thengral well distance constraints
required using well-by-well concatenation. In additioechuse wells can move only lo-
cally in WWP, the size of the search space is much smaller thainfoin well-by-well
concatenation (despite the fact that the dimension of theckespace is the same in both
cases). Finally, in WWP the number of wells (as determined fileerVVPD optimization)
is fixed and does not need to be determined as part of the gation. Using well-by-
well concatenation, however, the number of wells should bésan optimization variable,
which further complicates the optimization.

It is important to note that the use of WPD followed by WWP canretkpected to
provide the overall global optimum that could (theoretigabe achieved through use of
well-by-well concatenation. This is because well-by-wglhcatenation entails a broader
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search, which should ultimately lead to a better globalroptn than that resulting from the
use of WPD plus WWP. However, the WPD plus WWP search is much moresaffiso
this approach is expected to provide better solutions givaatical computing resources.

3.3 ExamplesUsing WPO

We now describe the application of the WPO procedure to foamgye problems. In
all cases, we maximized net present value (NPV) using theegiures described above.
The economic parameters used for the computation of NPV améded in Table 3.2.
Simulation runs for Examples 1, 3 and 4 were performed usiagférd’s General Purpose
Research Simulator, GPRS [77, 78]. The 3DSL streamline ston]83] was used for
Example 2. Because of the stochastic nature of the PSO dggnite performed multiple
optimization runs with the same set of input parameters.s Enmiabled us to gauge the
degree of variability in the optimization results. In theufigs in this sectionZ-grid’ and
‘y-grid’ refer to grid block locations in the simulation mosdel

Table 3.2: Economic parameters for NPV computation

Well cost 3x 109 (%)

Oil price (Examples 1, 3) 60 ($/STB)
Oil price (Examples 2, 4) 80 ($/STB)
Gas price (Example 2) 2.5 ($/MSCF)

Water production cost (Examples 1, 3,4) 5 ($/STB)
Water injection cost (Examples 1, 3, 4) 5 ($/STB)

Water production cost (Example 2) 10 ($/STB)
Water injection cost (Example 2) 10 ($/STB)
Discount rater 0.10
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3.3.1 Example 1. WPD optimizations using different numbers of op-
erators

In this example, we performed optimizations using eithex onfour WPD operators per
particle. We optimize using only WPD — the second phase WWP @tion is not ap-
plied for this case.

We considered a synthetic, heterogeneous, two-dimerisEservoir model containing
100 x 100 grid blocks, with each block of dimensions 100xft100 ft x 40 ft. The
permeability field, shown in Fig. 3.9, was generated geissizlly using an exponential
variogram model with oriented correlation lengths of 1008rfd 5000 ft. Porosity varies
from block to block and is correlated with permeability. Tieservoir model initially
contains oil and waterS,; = 0.80, S,; = 0.20). The oil viscosityu, is 1.20 cp and
oil compressibilityc, is 2.0 x107° psi~'. For water we specify.,, = 0.31 cp and:,, =
2.9 x107° psi~!. Relative permeability end points for oil and water are 0.88 8.30
respectively. The initial reservoir pressure is 5000 psie production and injection wells
operate under BHP constraints of 1000 psi and 6000 psi regggcilhe total production
time is 3650 days.

1800
1600
1400
1200
1000

y—grid

Figure 3.9: Permeability field (Example 1).
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The four well pattern types shown in Fig. 3.1 were consid@rdde optimizations. We
performed optimizations using one and four operators. Rerdptimizations that apply
one operator per particle we used 20 PSO patrticles. In th#gairations, although each
particle had only one pattern operation performed on itpdgicular operator varied with
particle and iteration. For the optimizations that applyrfpattern operators per particle,
we used 40 particles. More particles were used in the opditioizs with four operators
because the number of variables is about twice as many as ioptimizations with one
operator. Four optimizations were performed in each cadesanh optimization was run
for 40 iterations. Function evaluations were performedarafiel using a cluster of up to
40 processors.

Figures 3.10(a) and (b) show the evolution of the NPV of the evelopment scenario
versus number of simulations for the optimizations using @nd four operators. Each thin
curve corresponds to a different optimization run and tlaheurve depicts the average of
the best solutions from the four runs. NPV clearly improvéth weration, with the largest
improvement coming at early iterations. Tables 3.3 and Gmrsarize the results for the
optimization runs with one and four operators. In the optations with one operator,
the inverted nine-spot was the best pattern with an NPV 0D$28M (Table 3.3). This
development scenario has 30 producers and 9 injectors. hEargdtimizations with four
operators, the inverted seven-spot pattern, containingr@8ucers and 14 injectors, gave
the best scenario with an NPV of $2872 MM (Table 3.4).

Table 3.3: Optimization results using one pattern operd@rample 1)

Run Best pattern NPV Well count
P ($MM) Producers Injectors
1 inv. 9-spot 2591 26 10
2 inv. 7-spot 2449 28 14
3 inv. 6-spot 2575 28 9
4 inv. 9-spot 2597 30 9
Average 2553

Although the results in Tables 3.3 and 3.4 suggest that #hefifeur operators provides
generally better NPVs than those using one operator, it imeidtept in mind that twice
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Figure 3.10: NPV of the best solutions versus number of strans for the four optimiza-
tion runs using one and four pattern operators (Example 1).

Table 3.4: Optimization results using four pattern opesafBxample 1)

Run Best pattern NPV Well count
P ($MM) Producers Injectors
1 inv. 9-spot 2754 30 9
2 inv. 7-spot 2872 28 14
3 inv. 9-spot 2698 33 9
4 inv. 9-spot 2773 28 8
Average 2774

as many simulations were performed in the four-operatoe<ésan in the one-operator
cases. However, assessment of NPVs for the four-operatsrafter 800 simulations in-

dicates that on average these are superior to those frorngemerator runs after 800
simulations (average NPV of $2688 MM for the four-operators versus $2553 MM for

the one-operator runs). The maximum NPV for the four-operains after 800 simu-

lations ($2872 MM) was also considerably higher than thamfthe one-operator runs
($2597 MM). In all subsequent WPD optimizations describee hfour pattern operators
were used.
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Figures 3.11(a) and (b) show the well locations from the belsitions in the optimiza-
tions with one and four operators. The black dots inside evbiitcles represent producer
wells while the black crosses inside white circles desigmgection wells. In these figures,
the basic pattern element is depicted by the white lines. ollh&aturation at 500 days is
shown as background. It is evident that the best patternsralmth cases, rotated with
respect to the reservoir boundaries. This results frommtipact of reservoir heterogeneity
on the flow field. We note that, based on the oil saturation mapth patterns appear to
provide efficient sweep. It is difficult to draw quantitatigenclusions from these maps,

however, as the pattern that appears to have more unsweptsd@iD days (Figure 3.11(b))
actually leads to a larger NPV over the full simulation.

o
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(%} : 0.6
] | ) ]
.—Is o X . Is; 0.5
> >
© 1 . 0.4
Q . 0.3
0 . : 0.2
20 40 60 80 100 20 40 60 80 100
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(a) one pattern operator (b) four pattern operators

Figure 3.11: Well locations of the best solutions using gmerator and four operators (Ex-
ample 1). Oil saturation at 500 days shown as background. bldwk dots

inside white circles represent producer wells while while black crosses
inside white circles designate injection wells.

We next compared the optimization results with those obthinsing standard well
patterns (no optimization is performed). Results for stasgmtterns aligned with the
reservoir boundaries are presented in Table 3.5. We caesideell patterns with spacings
from 20 acres to 50 acres. This range was determined basée@ cwotinds specified far
andb and for the pattern operator parameters. Results for stdnddterns with 20 acre
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spacings gave negative NPVs and are not presented in tiee taislclear that the optimiza-
tion results are significantly better than those for thedaath patterns, which highlights the
potential benefits of using our procedure for large-scataropations.

Table 3.5: NPV of unoptimized standard well patterns foliedént well spacings. The well
patterns are aligned with the reservoir boundaries (Exarhpl

Spacing  Pattern NPV well coun.t
($MM) Producers Injectors
inv. 5-spot 1432 25 25
30 acres ?nv. 6-spot 749 25 45
inv. 7-spot  -991 65 30
inv. 9-spot  -1321 75 25
inv. 5-spot 1895 16 16
40 acres ?nv. 6-spot 1557 48 16
inv. 7-spot 245 44 20
inv. 9-spot 805 48 16
inv. 5-spot 2151 16 16
50 acres @nv. 6-spot 1780 16 28
inv. 7-spot 467 40 20
inv. 9-spot 707 16 28

3.3.2 Example 2: WPD and WWP optimizationsin reservoir with ir-
regular boundary

Here, we applied the WPD and WWP procedures to maximize NPV iseaveir with ir-
regular boundaries. The simulator used for this case wa$. 388. The two-dimensional
synthetic reservoir model contains 80132 grid blocks, with each block of dimensions
250 ft x 200 ft x 10 ft. Fig,|3.12(a) depicts the logarithm of the permeapfiild. Net-to-
gross ratio varies from block to block, with blocks outsitie boundary (feasible region)
having zero net-to-gross (Fig. 3.12(b)). The reservotidhy contains oil, gas and water
(Soi = 0.80, Sy = 0.01, S,; = 0.19). For fluid viscosities, we specify, = 1.2 cp,

iy = 0.01 cp, andy,, = 0.31 cp. Relative permeability end points for oil and water are
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Figure 3.12: Logarithm of permeability field and net-toggaatio (Example 2).

1.0 and 0.1 respectively. The initial reservoir pressur2780 psi. The production and
injection wells operate under BHP constraints of 1200 psi28@D psi respectively. The
total production time is 1825 days.

All of the pattern types shown in Fig. 3.1 were considerechin\WPD optimizations.
Each optimization run used 40 particles with four pattererafors applied. The runs
proceed for 40 iterations. Five such WPD runs are performeds Avident in Fig. 3.12, the
region in which wells could be placed is irregular. In the WRiDimizations, well patterns
were still replicated throughout the reservoir. Wells tfedlt outside the boundaries were
eliminated from the total set, so only those wells locatethenreservoir were included in
the simulations.

Following the five WPD runs, we performed five WWP optimizatiohise WWP opti-
mizations were based on the best solution from the WPD runar{ing the perturbations
are computed with respect to the best configuration detewdnirom the five WPD opti-
mizations). In the WWP runs, the optimization parameters wefimed such that the wells
always fall within the feasible region after the perturbas.

Fig.'3.13 shows the evolution of the best solutions for the faptimization runs (thin
lines) along with the average (solid line with circles). presents the results for
the five WPD optimizations. The results for the five runs wergegconsistent, with the
inverted five-spot found to be the best pattern in all cashs.rmiaximum NPV for the five
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runs was $1460 MM (run 3).

Using the best pattern from run 3, five WWP optimizations weea therformed. The
results are presented in Fig. 3.14, where the best WPD soligtishown (thick solid line,
corresponding to the first 1600 simulations) along with therage of the five WWP runs
(solid line with circles). It is clear that NPV increased ioth phases (WPD and WWP) of
the optimization and that WWP provides clear improvement thelWPD results. Results
from all five WWP runs are shown in Fig. 3.15, where the NPV of thstlscenario in
each run (thin lines) is displayed along with the averageeuit is evident that all of
the WWP runs provided an increase in NPV relative to the best WihIRign (dot-dash
line). Results from the five WWP runs are summarized in Table Baé. maximum NPV
is $1801 MM, which represents an increase of $341 MM (23.4%j the best WPD result
(run 3in Table 3.6).

Figs. 3.16(a) and (b) show the well locations from the best VER® WWP optimiza-
tion runs. Although the perturbations evident in Fig. 3t)&{o not appear that dramatic,
this configuration resulted in a significant improvement i\Nover the unperturbed con-
figuration.

We note finally that solving this optimization problem usiagraditional approach,
i.e., through use of concatenation of well parameters, avputsent some difficulties. For
example, constraints must be introduced to keep wells withé feasible region and to
satisfy minimum well-to-well distance requirements. Irpmration of these constraints
into the optimization may limit the effectiveness of stamtlalgorithms, particularly for
large numbers of wells.

3.3.3 Example 3: WPD and WWP optimizations over multiple reser-
voir models

In this example, we accounted for geological uncertaintpégforming the optimizations
over five realizations of the reservoir model. In each phdgbeoptimization, we opti-
mized expected NPV, designatédPV), which is simply the average of the NPVs over the
five models. The reservoir model consists of 6%3 blocks and the dimensions of each
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Figure 3.13: NPV of the best WPD solutions versus number ofilsitions (Example 2).
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Figure 3.14: NPV of best result from WPD and average NPV of & VWP solutions
versus number of simulations (Example 2).
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Figure 3.15: NPV of the best WWP solutions versus number of Isitimms (Example 2).
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Figure 3.16: Well locations for the best WPD and WWP solutionggdrithm of perme-
ability field is shown as background (Example 2). The cirelgh black dots
correspond to producers while the circles with crossegspond to injectors.
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Table 3.6: Optimization results using WPD with four pattepei@tors (Example 2)

Run Best pattern NPV Well count
($MM)  Producers Injectors
1 inv. 5-spot 1377 16 15
2 inv. 5-spot 1459 15 15
3 inv. 5-spot 1460 15 15
4 inv. 5-spot 1372 15 15
5 inv. 5-spot 1342 13 15
Average 1402

Table 3.7: Optimization results using the WWP procedure (Eptar)
NPV  Increase over WPD

Run
(SMM)  ($MM) %
1 1777 317 21.7
2 1787 327 22.4
3 1776 316 21.6
4 1801 341 23.4
5 1771 311 21.3

Average 1782 322 22.1

grid block are 100 ftx 100 ft x 30 ft. The permeability fields were generated geostatis-
tically using an exponential variogram model with corriglatlength of 1000 ft. Porosity
varies from block to block and is correlated with permedapili

We performed four WPD optimizations with four pattern operst Using the best so-
lution from the WPD runs, we then performed four WWP optimizagioEach optimization
run contained 40 particles and was run for 40 iterations.

Table 3.8 shows the optimization results from the WPD runs Bést pattern is con-
sistently a normal nine-spot pattern. Note that, althougDVéRly encodes the inverted
forms of the well patterns, the optimization consistentlytshed from the inverted to the
normal nine-spot. The best scenario (run 2) had an expedddadf $832 MM and con-
tained 7 producers and 29 injectors.
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Fig.'3.17 shows the evolution of the best solutions in the YW&D optimizations (thin
red lines) and the averagiPV) over all runs (solid red line with circles). Fig. 319 shows
the evolution of(NPV) for the best scenarios in the four WWP optimizations (thin blue
lines) along with the average result. There was very litlgation between the four WWP
optimizations. Again{NPV) increased with iteration during both phases of the optimiza
tion. Fig. 3.18 shows the evolution @NPV) in the best WPD run and the avera@¢PV)
of the four subsequent WWP runs. The increaséNRV) using WWP was substantial in
the first few iterations. Table 3.9 summarizes the resulth@WWP optimizations. The
WWP procedure improved the NPV in each case, with a maximuneaser inlNPV) of
$290 MM (34.9%) over the best WPD resullt.

Figs. 3.20(a) and (b) show the well locations for the besitgmis from the two phases
of the optimization, with the permeability field of one of thealizations shown in the
background. The degree of perturbation of the well locati@vident in Fig. 3.20(b), was
greater than that observed in Example 2.

Fig.'3.21 shows théNPV)s for each of the five realizations. We see that the use of
WWP provided improvement for all realizations.

Table 3.8: Optimization results using WPD with four pattepe@tors (Example 3)

(NPV) Well count
Run  Best pattern ($MM) “Producers Injectors
1 norm. 9-spot 705 8 30
2 norm. 9-spot 832 7 29
3 norm. 9-spot 723 9 27
4 norm. 9-spot 757 7 30

Average 754

3.34 Example4: Comparison of WPD to well-by-well concatenation

In this example, we performed a limited comparison of optations using the WPD repre-
sentation to optimizations using concatenated well pararseWe used the same reservoir
model and economic parameters as in Example 1, except thail ffrice was now $80/bbl.
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Table 3.9: Optimization results using the WWP procedure (Eptard)
(NPV) Increase over WPD

Run
(SMM)  ($MM) %
1 1116 284 34.1
2 1122 290 34.9
3 1119 287 34.5
4 1120 288 34.4

5 1115 283 34.0
Average 1184 286 34.4

[Ss—wPD (Avg)]

0 500 1000 1500
Number of simulations per realization

Figure 3.17:(NPV) of best results from the WPD optimizations versus numbermbik-
tions per realization (Example 3).

We first performed five WPD optimizations and then five optirtiazas with concatenated
well parameters using the same number of wells as in the be&t ¥gRition. In the op-
timizations using the well-by-well concatenation, we det@ed both well type and well
locations. Well-to-well distance constraints were notuded in the optimizations using
concatenation. Other comparisons between the two techsigre also possible. The ap-
proach used here does not require the determination of tir@apmumber of wells in the
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Figure 3.18:(NPV) of best result from WPD and averagdPV) of the best WWP solu-
tions versus number of simulations per realization (Exan3pl
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Figure 3.19:(NPV) of the best WWP solutions versus number of simulations peizeeal
tion (Example 3).

well-by-well concatenation runs, so in this sense the gioldetup provides an advantage
to this approach.
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Figure 3.20: Well locations for the best WPD and WWP solutiorexnteability field for
one of the realizations is shown as background (Examplel#).circles with
black dots correspond to producers while the circles wits®es correspond
to injectors.
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Figure 3.21: NPV of the phase 1 (WPD) and phase 2 (WWP) optiroizatior each real-
ization (Example 3).

In all optimizations, we used the PSO algorithm with 30 gde8. Each optimization
was run for 15 iterations. Fig. 3.22 shows the evolution ef dverage NPV of the best
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solutions from the five WPD runs and the analogous result ®rtins using the concate-
nated approach. The WPD approach clearly outperformed thdowevell concatenation.
This demonstrates that WPD indeed provides a useful andsmsolution representation.
It is also worth noting that the optimized scenarios deteediusing well-by-well concate-
nation did not satisfy well-to-well distance constraintile those using WPD did satisfy
these constraints. We note finally that further improvenaérihe WPD results could be
achieved through use of WWP.
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Figure 3.22: Comparison of the average NPV of the best solsittersus number of simu-
lations for optimizations using WPD and well-by-well corexadtion (Exam-
ple 4).

3.4 Summary

In this chapter, we described the development and applicati a new well pattern opti-
mization (WPQO) algorithm for optimizing well locations inr¢gge-scale field development.
The procedure comprises a well pattern description and labwyelell perturbation proce-
dure. All optimizations are performed using the PSO algarnit We considered different
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optimization problems and different variants of the WPO prhae. In the examples con-
sidered, the WPD procedure provided significant increas&&ivi, and further improve-

ments are possible using the WWP technique. These examplesdeate the applicabil-

ity of the WPO procedure for optimization problems with marsiha:

In the WPO optimizations, we have used default PSO paramiters, ¢;) and the
random variable neighborhood topology described in ChahteBetter optimization re-
sults may be obtained by tuning the PSO parameters. In thechapter, we describe the
application of a metaoptimization procedure for optimigidSO parameters in the WPO
optimizations.



Chapter 4

M etaoptimization for PSO Parameter
Deter mination

In this chapter, we describe the implementation of metaup#tion techniques to deter-
mine optimal PSO parameters. First, we describe the metaiaption procedure. We ap-
plied this approach to determine appropriate parameteesddy considering four bench-
mark well placement optimization problems. The optimizé&iOPparameters were then
used for two realistic well placement optimization probgeimcluding optimizing the loca-
tion of 15 vertical wells and WPD optimizations in two-dimensal reservoir models. For
these problems, we performed several optimizations usafguit and optimized param-
eters. We also applied the metaoptimization procedurettiréo the target optimization
problems (i.e., the optimal parameters are determinedhéoactual problem, not the bench-
mark problems). The results in this chapter demonstratefteetiveness of the metaopti-
mization procedure.

4.1 PSO Metaoptimization

In Chapters 2 and 3 we applied the PSO algorithm for well plasgraptimization, using
PSO parameters taken from the literature. As is the caselier stochastic optimization
algorithms, the performance of PSO depends on the valuggmasdsto the algorithm pa-
rameters. In this chapter, we describe the application oétaptimization procedure to

78
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optimize the key PSO parameters directly.

In PSO metaoptimization, two PSO algorithms are used [2, 8E first PSO algo-
rithm optimizes PSO parameters, while the second PSO #Higorses the optimized pa-
rameters to solve a specified optimization problem or prableThe first and second PSO
algorithms are referred to as the “superswarm PSO” and {gaitms PSO” respectively
[69]. The metaoptimization procedure can be used to determptimal PSO parameter
values for a set of small benchmark problems or it can be tiirepplied to the target
optimization problem. In the former case, the assumptiahas the parameters that are
optimal for the benchmark problems are also appropriatetfuer problems. We consider
both approaches in this chapter.

The metaoptimization procedure consists of three comgensaperswarm PSO, sub-
swarm PSO, and one or more optimization problems (optimigethe subswarm PSO).
Each superswarm particle has associated PSO subswarmeralSavbswarm optimiza-
tions are performed in order to evaluate the objective fonctalue of a superswarm par-
ticle. The relationship between the superswarm and sulbsW&O algorithms is shown in
Fig./4.1. In the figureN designates the number of subswarm particles&ride number
of subswarm iterations. We now describe the superswarmurah&arm PSO procedures.

4.1.1 Superswarm PSO

The superswarm PSO optimizes the parameters required BSBealgorithm. As shown
in Eq./ 2.2, repeated here for completeness, some of theamptarsy, ci, c;) are used in
the computation of PSO particle velocity,(k + 1):

vi(k+1) =w-v(k)
+ ¢1-Dy(k) - (2PN (k) — x;(k)) (4.1)

(F) - (x
+ ca - Da(k) - (x* (k) — xi(k)),

wherew, ¢; andc, are the weights of the inertia, cognitive, and social conemtsiD, (%)
and D, (k) are diagonal matrices whose diagonal components are mmyfatistributed
random variables in the range [0, H;(k) is the position of thath particle at iteration
k; xP**! (k) is the previous best particle position, axitt*s (k) is the best position in the
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Figure 4.1: lllustration of the PSO metaoptimization pihao® for one iteration of the su-
perswarm PSO.
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neighborhood of particlé In addition to these parameters, we can also optimize tighne
borhood topology typert,,.). The topology determines how*** is determined. In our

optimizations, we will consider four different neighbodubtopologies including the star,
ring, cluster and random variable topologies. These tapetoare described in Section

The superswarm PSO seeks to minimize average error (if t@abbptimum is known)
or maximize the average objective function values from sha&ibswarm PSO optimiza-
tions. Multiple subswarm optimizations are performedrjggshe same PSO parameters)
because of the stochastic nature of the PSO algorithm.

Each superswarm particle represents the set of PSO parametee optimized. The
definition of the objective function of each superswarmipbkrtdepends on the number of
test optimization problems considered and on the numbegpdtitions of the subswarm
optimizations. We now describe the objective function eatibn for the superswarm PSO
where we seek to determine optimal parameter values foy, c; andny,,.. Letp, p €
{1, 2,..., P} be the index of a test optimization problem. D&f(k) be the position of the
ith superswarm particle at iteratiérand lete,, , denote the best solution obtained from run
r of a subswarm optimization using test problgnThe objective function value of thgh
particle, F;(X;(k)), is computed as follows:

1 en 1o

where P is the number of test optimization problems considered fansl the number of
repetitions of the subswarm optimizations. In our appiareg we used values gffrom 1
to 4 and for the metaoptimizations using benchmark problemspecifiedr = 20.

4.1.2 Subswarm PSO

The subswarm PSO optimizes the test problem(s) using tlaenmders from the associated
superswarm particle. Let; ;(t) denote the position of thgth subswarm associated with
theith superswarm particl&; (k) (see Fig. 4.1). In each iteration of the superswarm PSO,
evaluation of the objective function for each superswarmiigla requires one or more
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subswarm optimizations. For each subswarm PSO, the PS@etas are fixed. In the
subswarm PSO, the particle velocity,; (¢ + 1), is computed as follows:

k) - Da(t) - (32 (t) — xq(t)) (4.3)
(

wheret is the index of subswarm iteration andl(k), ¢, (k) andc;,(k) are the parameter
values from superswarm partick; (k). The objective function of a subswarm particle
depends on the optimization problem to be solved. If thegloptimum is known, then the
subswarm PSO seeks to minimize error. Otherwise, the fitvfetbee actual optimization
problem is maximized (or minimized). The overall flow chafttilee metaoptimization
procedure is shown in Fig. 4.2.
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4.2 Benchmark Well Placement Optimization Problems

In the metaoptimization procedure, one or more optimizgpimblems are used to evaluate
the subswarm. We considered four well placement problerbsm@shmark problems. In all
problems, we maximized NPV by optimizing the location of @anéwo wells. Because of
the low dimension of the search space and the relativelylsnwalel sizes considered, we
were able to compute (and save) the full objective functiimaestively for each problem.
This allowed us to perform function evaluations by tableklap and enabled inexpensive
repetition of the optimization runs.

Benchmark problems 1, 3, and 4 use the same reservoir mogeblem 2, we max-
imized expected NPV by optimizing the location of a singledarcer over ten realizations
of a reservoir model containing 4@0 grid blocks. The details of the reservoir model and
problem set up for problem 2 were described in Section 2 13dlase not repeated here.

Reservoir model for problems1, 3, and 4

In problems 1, 3, and 4, we used a synthetic, heterogenemagjitnensional reservoir
model containing 2@20 grid blocks. Each grid block is 1504150 ftx50 ft. The perme-
ability field is shown in Fig. 4.3. Porosity is 0.20 and assdroenstant in all grid blocks.
The reservoir initially contains oil and wate${ = 0.85, S,,; = 0.15). The oil viscosityyu,

is 1.20 cp and oil compressibility, is 2.0x107° psi~!. For water we specify,, = 0.31 cp
andc,, = 2.9x107% psi~!. Relative permeability end points for oil and water are 0.88 a
0.30 respectively. The initial reservoir pressure is 43860 Producer wells operate under
BHP constraints of 1000 psi, while the injector (in problenopgrates at 5000 psi. Total
production time is 1500 days. For the NPV computation, weaseil price of 50 $/bbl,
water production and injection costs of 5 $/bbl, well cos$20x 10°, and a discount rate
of 10%.

Benchmark problem set up

We varied the number and type of wells in the benchmark probleA single producer
was considered in problems 1 and 2, two producers in probleam@® a producer and an
injector in problem 4. The problems are summarized in Talde 4
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Figure 4.3: Permeability field for benchmark problems 1,r8| 4.

Table 4.1: Benchmark optimization problems

Problem  Reservoir mod IWeII count # of opt. variables # of feasible solutions

Prod. Inj.
1 20x 20 x 1 1 0 2 400
2 40 x 40 x 1 1 0 2 1,600
3 20 x 20 x 1 2 0 4 159,600
4 20 x 20 x 1 1 1 4 159,600

As mentioned previously, we sampled the search space ofgrablem exhaustively.
The number of function evaluations required for each pmohikeindicated in Table 4.1. In
problems 3 and 4, there is the possibility of invalid solosdtwo wells located in the same
grid block). We penalized invalid solutions by assigningayé negative NPV value. All
simulations were performed using Stanford’s General Rgptesearch Simulator (GPRS)

(77, 78]

Fig. 4.4 shows the objective function surface for each ogaition problem. The surfaces
for problems 3 and 4 were obtained by taking a slice of thedaoliition with the second



CHAPTER 4. METAOPTIMIZATION FOR PARAMETER DETERMINATION 86

well at grid block (1,1). These surfaces are, in generahinand discontinuous. The global
optimum values for problems 1, 2, 3, and 4 are 23.81 $MM, Z66MIM, 19.43 $MM,
and 279.49 $MM respectively.
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Figure 4.4: Objective function surfaces for the four optiation problems considered.
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4.3 Metaoptimization Using the Benchmark Problems

We applied the metaoptimization for PSO parameter detextioim. Two metaoptimization
cases were considered. In case 1, we optimized, andc, in the superswarm. In these
optimizations, we used the random variable neighborhopdlégy with the number of
particles informed set at 3 (these are the default topolagpmeters used in Chapters
2 and 3). In case 2, we included the neighborhood type in thaopémization, i.e., we
optimizedw, ¢y, c2, andn,,,.. For this case, four neighborhood topologies were consdier
star, ring, cluster, and random variable. The parametgesfor the optimization variables
are shown in Table 4.2. The ranges farc,, andc, are based on previous studies on
the stability and convergence of PSO particle trajectdd€s 50]. All of the optimized
parameters are continuous exceptifgy,. which is discrete.

Table 4.2: Optimized PSO parameters

Parameter. Range Type
Minimum Maximum
w 0 1 continuous
1 0 2.0 continuous
Ca 0 2.0 continuous
Niype 1 4 discrete

In each metaoptimization case, we performed optimizafiostausing the test problems
separately, and then using all four together. For all oations, we set the superswarm
PSO population siz&/s"r<" = 20, maximum iteration/, to 100,w = 0.721, ¢; = ¢ =
1.193, and used the random variable topology.

For the subswarm PSO, we also used a populationEi#¢ = 20. The number of
iterations,T’, in the subswarm PSO optimization runs depends on the telstgon consid-
ered. In problem 17" = 400; in problem 2,7 = 1600 (per realization); and in problems
3 and 4,7 = 2000. TheT values for problems 1 and 2 are based on the number of func-
tion evaluations required to find the optimum solution byadtive search. The number
of repetitions, R, of the subswarm runs was set to 20. We performed five superswa
optimization runs.
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We also performed PSO optimizations for each benchmarkigmohising the default
parameter valuess(= 0.721, ¢; = ¢ = 1.193). Optimizations were performed using this
parameter set and the four different neighborhood topetodescribed earlier. For each
problem, we repeated the optimizations 20 times using alptpn size of 20 and number
of iterations (") as defined in the subswarm optimizations above.

M etaoptimization results

Figures 4.5-4.8 show the optimization results using stahB&O with unoptimized param-
eters (plots on left) and metaoptimization (plots on right)problems 1-4. The metaop-
timization results were averaged over five runs. The resafit$SO with unoptimized
parameters applied the default parameter set and the f@aredit neighborhood types
considered. The numbers on theaxis of the plot represent the index of the neighbor-
hood topology (1 - star, 2 - ring, 3 - cluster, 4 - random) ugethe optimizations. The
results show that metaoptimization provided better resolh average, compared to PSO
with unoptimized parameters. This means that the metagattion procedure was able
to find combinations ok, c¢;, andc, that result in improved algorithm performance. The
metaoptimization results when all four benchmark problevese optimized in the sub-
swarm optimizations are shown Fig. 4.9.

The optimized parameter values for the benchmark problerhen considered sep-
arately, are shown in Tables 4.3-4.6. The metaoptimizatsults when all benchmark
problems were considered together are shown in Table 4.g@eneral, the optimized pa-
rameter values varied with the benchmark problem. Theyddpended on whether or not
the neighborhood topology type was optimized. The weighth® cognitive and social
component of the velocity equatioa ( ;) showed some relationship. In almost all cases,
the optimized values aof, were larger than those ef which indicates a preference for
moving towards the neighborhood best solution at eachtiberaFigure 4.10 displays the
histogram of the optimized neighborhood topology type far tase 2 metaoptimization
runs. The preferred topology type in 23 of the 25 runs was alégyy with multiple neigh-
borhoods (i.e., not the star topology), with the ring andtdutopologies selected the most
frequently.
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In summary, the metaoptimization results demonstratetitieasuperswarm is able
to find parameters that provided better performance cordparasing PSO with unopti-
mized (standard) parameters. However, the optimum valties o,, andc, varied with
the benchmark problem considered, and whether or not tlghineihood topology type
was optimized. In the next section, we will describe the @ppibn of the optimized pa-

rameter values and a metaoptimization procedure for teah®ll placement optimization
problems.
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Figure 4.5: Comparison of metaoptimization and standard @& different topologies)
results for problem 1.

4.4 Applications of M etaoptimization

We applied the metaoptimization procedure and optimizeamaters to more realistic well
placement problems. We considered two optimization prableoptimizing the location of
15 vertical wells and WPD optimizations in a two-dimensiameakervoir. For each problem,
we performed optimizations using PSO with default and ojztéeh parameters. In the op-
timizations that used optimized parameters, we seleceegdhameters from the best case
1 and 2 metaoptimization runs when all the benchmark prableere considered together
(Table 4.7). The default and optimized PSO parameters angrsin Table 4.8. We also
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Figure 4.7: Comparison of metaoptimization and standard @& different topologies)
results for problem 3.

applied the metaoptimization procedure directly to the target optimization problems.
The economic parameters used for the computation of NPVhanersin Table 4.9.

4.4.1 Examplel: Optimizing thelocation of 15 vertical wells

In this example, we maximized NPV by optimizing the locatodi5 vertical wells consist-
ing of ten producers and five injectors. We used a synthetterbgeneous two-dimensional
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Figure 4.9: Metaoptimization results for problems 1-4.

reservoir model containing 4340 grid blocks, with each grid block of dimensions

150 ftx 150 ftx50 ft. The permeability field for the reservoir model is shawifrig. 4.11.
The initial reservoir pressure is 4800 psi and the produmedsnjectors operate under BHP
constraints of 2000 psi and 5000 psi. Total production tisn€825 days. The other reser-
voir and fluid properties are the same as those used in S&8ch In the optimizations
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Figure 4.10: Distribution of neighborhood topology typerfr the metaoptimization runs

using the benchmark optimization problems.

Table 4.3: Metaoptimization results using only problem 1

case 1 case 2
Run

Avg. Err w c1 Co Avg. Err w c1 Co Niype

(SMM) (SMM)
1 4.25e-04 0.565 0.208 1.886 6.80e-04 0.203 0.374 1.999
2 3.40e-04 0.147 0.393 1.891 3.40e-04 0.095 0.548 1.958
3 7.65e-04 0.658 0.422 1.825 5.10e-04 0.154 1.177 1.748
4 4.25e-04 0.097 0.548 1.745 4.25e-04 0.425 0.490 1.857
5 4.25e-04 0.576 1.309 1.414 4.25e-04 0.549 0.295 1.981

Average 4.76e-04 4.76e-04

NWEFE WN

performed here, the well-by-well parameters were coneael) resulting in a total of 30

variables (two per well). However, we imposed a minimum vpalir distance constraint
of 750 ft (five grid blocks) in order to obtain realistic sobrs and eliminate solutions

where wells may be too close. All infeasible well configuvas (i.e., those that violate the

well-pair distance constraint) were penalized by assmainegative NPV.

For the optimizations using the default and optimized pa&tans, we used a swarm



CHAPTER 4. METAOPTIMIZATION FOR PARAMETER DETERMINATION 93

Table 4.4: Metaoptimization results using only problem 2

case 1 case 2
Run

Avg. Err w c1 Co Avg. Err w c1 Co Niype

(SMM) (SMM)
1 2.10 0.360 0.291 1.638 2.10 0.063 1.055 1.937 2
2 2.10 0.258 0.043 1.432 3.15 0.409 0.250 1.975 3
3 3.15 0.299 1.180 1.589 2.10 0.012 0.621 1.665 2
4 2.10 0.353 0.568 1.485 3.15 0.493 0.404 1.667 4
5 2.10 0.040 0.743 1.987 2.10 0.392 1.037 1.706 3

Average 231 2.52
Table 4.5: Metaoptimization results using only problem 3
case 1 case 2
Run

Avg. Err w 1 Cy Avg. Err w cy Cy Ntype

(SMM) ($MM)
1 5.28e-03 0.419 0.700 1.783 5.27e-03 0.304 0.063 1.746 3
2 5.64e-03 0.872 1.242 0.006 5.34e-03 0.824 0.357 1.233 3
3 5.43e-03 0.635 1.403 1.391 5.18e-03 0.260 0.106 1.854 2
4 5.60e-03 0.556 0.119 1.811 5.43e-03 0.015 0.782 1.523 3
5 5.78e-03 0.006 1.612 0.528 5.11e-03 0.018 0.463 1.834 2

Average 5.55e-03 5.27e-03

size of 40. We used a large swarm size in this case because weze many invalid
solutions resulting from the well-pair distance constraifihe stopping criterion for the
optimizations was based on the number of simulations peddrfor feasible solutions.
We set this number at 1000, i.e., we ran the optimization$ 1000 simulations of feasible
scenarios were performed. We performed five optimizatiois for each problem.

For the metaoptimization runs, we reduced the swarm sizenantber of iterations
such that the number of simulations was reasonable. In therswarm, we used a swarm
size of 10 and ran the optimizations for five iterations. Far @associated subswarm opti-
mizations, we used 20 particles and ran the optimization4®0 simulations. To reduce
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Table 4.6: Metaoptimization results using only problem 4
case 1 case 2
Run
Avg. Err w cy Co Avg. Err w Niype
(SMM) (SMM)
1 7.35 0.110 1.899 1.827 7.69 0.687 0.005 1.419 2
2 7.43 0.071 0.141 1.764 7.09 0.323 0.187 1934 3
3 7.24 0.094 1.340 1.872 7.20 0.413 1867 1.762 2
4 7.03 0.343 0.263 1.368 7.63 0.084 0.241 1690 1
5 7.45 0.993 0.032 1.692 7.33 0.220 0.029 1875 2
Average 7.30 7.34
Table 4.7: Metaoptimization results using all benchmadbfgms
case 1 case 2
Run
Avg. Err w 1 Cy Avg. Err w Ntype
(SMM) (SMM)
1 2.58 0.493 0.665 1.467 2.86 0.970 1.152 1950 2
2 2.86 0.066 0.552 1.781 2.84 0.819 0.178 1.446 2
3 3.57 0.254 1.438 1.452 3.47 0.986 1.226 1911 2
4 3.08 0.676 0.072 1.919 3.06 0.010 0.858 1.487 1
5 2.70 0.368 1.318 1.562 2.73 0.285 0.639 1805 2
Average 2.96 2.99

Table 4.8: Default and optimized PSO parameters

Optimized Parameters

Parameter Default
case 1 case 2
w 0.721 0.493 0.285
c 1.193 0.665 0.639
Co 1.193 1.467 1.805
Niype Random Random Ring
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Table 4.9: Economic parameters for NPV computation

Well cost 3x10° ($)

Oil price 80 ($/STB)
Water production cost 10 ($/STB)
Water injection cost 10 ($/STB)
Discount rater 0.10

900
800
700
600
500
400
300
200
100

x—grid

Figure 4.11: Permeability field for Example 1.

computational demands, we did not repeat the subswarm igptions (i.e.,R = 1). We
performed five metaoptimization runs. All metaoptimizatimns were stopped when the
number of feasible simulations reached 1000.

Fig.[4.12 shows the average NPV of the best solutions velngusumber of simulations
performed. The metaoptimization results (cases 1 and 2 better than those obtained
from the optimizations using the default and optimized paaters. In Fig. 4.12, the case 1
metaoptimization (where we optimized ¢, ¢;) shows a rapid increase in average NPV
in early iterations. Metaoptimization with fixed neighbodu topology (case 1) provided
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(slightly) better results compared to the case where thghberhood topology was opti-
mized. The results for the optimizations using optimizechp@eters do not show consistent
advantages over the default parameters. In case 1, thesagtars provided better results,
but in case 2 they did not. Table 4.10 summarizes the aver&yefdr the different opti-
mizations and Table 4.11 gives the optimized parameters wigl locations from the best
optimization runs are shown in Fig. 4.13. In all cases, th# eations are at least five
grid blocks apart, although they do not exhibit any cleatgrat

1200
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600} f -

400f - | ===default parameters |

: . | == opt. params (case 1)

opt. params (case 2)|]

— meta-opt (casel)

: : meta-opt (case2)

0O 200 400 600 800 1000
Number of simulations

Average NPV ($MM)

2001+

Figure 4.12: Average NPV versus number of simulations ferdptimizations using de-
fault parameters, optimized parameters and metaoptilizptocedure (Ex-
ample 1).
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Table 4.10: Optimization results (NPV) for Example 1. AllMRalues have units of $MM
Default Optimized parameters Metaoptimization

Run
case 1l case 2 case 1l case 2
1 780 961 860 970 938
2 973 791 775 1028 893
3 877 809 813 1032 981
4 961 1006 813 875 891
5 738 917 827 914 948
Average 866 897 818 964 930

Table 4.11: Metaoptimization results for Example 1

casel case 2
Run

Avg. Err w c1 Co Avg. Err w c1 Co Niype

(SMM) (SMM)
1 970 0.918 1.818 1.467 938 0.790 1.468 0.237 3
2 1028 0.750 1.614 1.781 893 0.354 0.283 1.173 4
3 1032 0.945 0.799 1.452 981 0.222 1.536 0.616 2
4 875 0.281 1.297 1.919 891 0.933 0.909 0.769 1
5 914 0.433 1.336 0.754 948 0.356 0.241 0.827 2

Average 964 930
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Figure 4.13: Well locations from the best solution in theim@ations using default pa-
rameters, optimized parameters and metaoptimizatiorepgrtoe (Example 1).
The circles with black dots correspond to producers whike dhicles with
crosses correspond to injectors.
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4.4.2 Example2: WPD optimizationsin a 2D reservoir

In this example, we applied the WPD procedure to maximize NP s$ynthetic, hetero-
geneous two-dimensional model. The reservoir consist® of 63 grid blocks, each of
dimensions of 200 #200 ftx50 ft. The permeability field is shown in Fig. 4.14. The
initial reservoir pressure is 5000 psi and producers aretiojs operate under BHP con-
straints of 1000 psi and 5200 psi respectively. The othearves and fluid properties are
the same as those in the example described in Section 3.3.3.

We performed optimizations using the default and optimzameters. For these runs
we used a swarm size of 40 and performed 600 simulationselm#taoptimization runs,
for the superswarm, we set the swarm size to 10 and numbeeratidns to 5. For the
subswarm, we used a swarm size of 20 and and 10 iterations.

Figure 4.14: Permeability field for Example 2.

Figure 4.15 shows the average NPV of the best solutions sensmber of simulations
for all the optimization cases. The metaoptimization pduce provides better results than
the optimizations using default and optimized parametershis case, the metaoptimiza-
tion procedure again showed a rapid increase in NPV durimgdahly iterations. The results
for the optimizations using default and optimized paramsateere similar. Again, the case
1 parameters provided slightly better results on average tihe default parameters while
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the case 2 parameters gave lower NPVs. Table 4.12 shows MedsBIts for the different
optimization runs and Table 4..13 presents the optimizedmpaters. Figure 4.16 shows the
well locations from the best (overall) solution (run 5, cayef the metaoptimization runs.
The basic well pattern is an inverted six-spot with 6 prodsiead 18 injectors.

6000

—— default parameters |
—opt. params (case 1)
opt. params (case 2)|]
— meta-opt (case 1)
meta-opt (case2)

100 200 300 400 500 600
Number of simulations

Average NPV ($MM)

Figure 4.15: Average NPV versus number of simulations ferdptimizations using de-
fault parameters, optimized parameters and metaoptimizptocedure (Ex-

ample 2).

Table 4.12: Optimization results (NPV) for Example 2. AllMRalues have units of SMM
Default Optimized parameters Metaoptimization

Run
case 1 case 2 casel case?
1 5220 4962 5213 5536 5070
2 3735 5132 4911 5209 6161
3 5837 5111 4263 5910 5603
4 5110 5635 4684 5983 5649
5 4806 4191 5018 6371 6064

Average 4942 5006 4818 5802 5709
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Figure 4.16: Well locations from the best metaoptimization (Example 2). The circles
with black dots correspond to producers while the circleth wrosses corre-
spond to injectors.

Table 4.13: Metaoptimization results for Example 2

case 1 case 2
Run

Avg. Err w 1 Co Avg. Err w c1 Co Niype

(SMM) (SMM)
1 5536 0.462 1.058 1.339 5070 0.469 0.531 1.654 3
2 5209 0.967 1.135 1.177 6161 0.501 0.795 1.751 2
3 5910 0.902 0.979 1.451 5603 0.267 0.411 1.520 2
4 5983 0.589 0.876 1.171 5649 0.639 1.214 1.120 2
5 6371 0.543 1.336 1.440 6064 0.810 0.402 0.628 3

Average 5802 5709
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45 Further Assessment of the Metaoptimization Results

Here, we compared the values of the optimized PSO param(eters andc,) obtained
from the metaoptimization runs to those obtained by sargplinc;, andc, exhaustively
for the Rosenbrock and Griewank mathematical functionsurgig.17 shows plots af =
0.5(c1 + o) versusw for both the Rosenbrock and Griewank functions with the cargto
showing the average objective function values over sevara (the two exhaustive plots
are taken from [66]). In Figure 4.17, combinationswaf ¢; and ¢, that result in low
objective function values are preferred. We have supersegpdhew, ¢; andc, values
(indicated by the red dots) obtained from all the metao@ation runs in this chapter. In
both plots, most of the values of ¢;, andc; from the metaoptimization are located in the
regions with low objective function values. The lines on phhat indicate different regions
where a PSO particle trajectory may be convergent or divergehe interested reader is
referred to [3, 49, 50, 66] for more details regarding theggans. In general, the values
of w, ¢; ande, from the metaoptimization runs agree well with the condisioequired for
stable and convergent PSO patrticle trajectories desciibi&] 66].

46 Summary

In this chapter, we discussed the implementation of the opétaization procedure to op-
timize PSO parameters during optimization. Metaoptinzeitvolves the use of two PSO
algorithms, with the first one (superswarm PSO) optimizivgRSO parameters used in the
second one (subswarm PSO). The well placement problemssebred in the subswarm
PSO using the parameters from the associated superswatintgpdrhe metaoptimization
procedure was applied for well placement optimization gisour benchmark problems.
We performed optimizations first using each test problenassply, and then using all
four problems together. The latter procedure enabled ustirmine appropriate parame-
ters for a suite of optimization problems.

We applied the optimized parameters (from the metaoptimoiza with the benchmark
problems) to realistic and much larger well placement opzétions. Two well placement
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Figure 4.17: Comparison of the PSO parameters from the miatamation runs to those
obtained by samplingy, ¢; and ¢, exhaustively for the Rosenbrock and
Griewank functions in 10 dimensions. The background plbts & 0.5(c; +
¢2) versusw were obtained fron%G]. The red dots represent the results f
all metaoptimization runs.
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problems were considered including the optimization of &&igal wells and WPD opti-

mizations in two-dimensional reservoir models. The useptihoized parameters from the
benchmark problems did not result in optimized NPVs thatensgnificantly larger than

those determined using default parameters for the two enadlconsidered.

We also applied the metaoptimization procedure directihéotwo optimization prob-
lems. We compared metaoptimization results to those fraiimagations using the default
and optimized parameters for the same number of simulatisrsoth optimization prob-
lems, the best results were obtained using metaoptimizate, when the parameters were
directly optimized for the target problems. In addition, temotimization showed much
faster increases in average NPV in early iterations forweegdroblems considered. Thus
the results in this chapter suggest that metaoptimizationlsl be considered for practical
well placement optimization problems.



Chapter 5
Summary and Future Wor k

In this research, we investigated the use of the particleravagptimization (PSO) algo-
rithm to optimize the type and location of new wells. We addezl the problem of op-
timizing well locations in large-scale field developmentdlving many wells. We also
addressed issues related to the determination of optimubhgaBameters for well place-
ment optimization. The findings in this dissertation ar® aédevant for other optimization

contaminated groundwater applications.

5.1 Summary and Conclusions

5.1.1 Particle Swarm Optimization

e The particle swarm optimization (PSO) algorithm was impated and applied
to the optimization of well locations and type. The algamths stochastic and
population-based. The individual solutions, called péas, interact with each other
and exchange information regarding the search space.clarinteract with other
particles in their neighborhood. We implemented differpatticle neighborhood
topologies, which can affect algorithm performance.

e The PSO algorithm was applied to several well placementopdition problems of

105
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varying complexity. We considered problems with differeatbers of wells, differ-
ent types of wells (vertical, deviated, multilateral), afitferent sizes of the search
space. Multiple geological realizations were used in soases. We compared the
optimization results to those obtained using a binary GAARGn all examples
considered, we demonstrated that the PSO algorithm providmparable or better
results on average than the bGA. For a case in which the gbgbahum was known
(through exhaustive sampling), PSO was shown to achievgldfal minimum with
fewer function evaluations than bGA. For this case, thequarance of the PSO and
GA algorithms improved when the swarm/population size anttiye number of iter-
ations were increased. Our findings regarding the perfoceahPSO are consistent
with those from a related application involving the optiation of extraction well
locations in contaminated groundwater applications [63].

e The PSO algorithm was used also for other applications. #& wsed as the core
optimization algorithm in the well pattern optimization (WP procedure and was
applied for optimizing PSO parameters in the metaoptinongtrocedure.

5.1.2 Wsdll Pattern Optimization

e A new procedure for optimizing well placement in large-schéld developments
involving many wells was developed. The new algorithm,ezhlivell pattern opti-
mization (WPO), consists of a well pattern description (WP@orporated into a
core optimization algorithm. In the well pattern descops, each solution consists
of a representation of a particular well pattern along walktgrn operators that alter
the size, shape, and orientation of the pattern. Many eiffewell patterns can be
considered within WPD. It is the parameters associated Wwélpattern descriptions
and operators that are determined during the optimizatidhe encoded well pat-
terns are repeated across the field, which enables the optmmber of wells to be
determined as part of the solution. A desirable feature of Vig’that the compu-
tational complexity of the optimization is essentially @mendent of the number of
wells considered.

o A well-by-well perturbation (WWP) procedure was also develibp WWP, which
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can be applied as an optional second phase of the optinmzatiails a local pertur-
bation of the well locations obtained from the WPD optimiaati For the underlying
(core) optimization algorithm, we used particle swarm mtation (PSO).

e The WPO procedure was applied to four example cases. Sewrahts of WPO
were considered including the use of one versus four opsrébo each potential
solution and the use of WWP following optimization using WPDeTdverall opti-
mization procedure was shown to result in significant ineesan the objective func-
tion, particularly at early iterations, in all cases. In @@mple the WPO results for
net present value (NPV) were compared to those for standalighatterns of various
sizes. The NPVs using WPO were seen to be significantly lahgerthose for stan-
dard well patterns, highlighting the potential benefit af #igorithm for identifying
promising development scenarios. Significant improvernreNPV was obtained by
performing WWP optimizations on the best solution obtainddgu8VPD. For the
two examples in which WWP was applied, average improvemenii of 22%
and 34% over the best WPD solutions were achieved. We alsoarechpVPD re-
sults to those obtained from optimizations using concaéshevell parameters and
found the WPO procedure to provide better solutions.

5.1.3 Metaoptimization for Parameter Determination

e A procedure for determining optimum PSO parameters waseimehted and tested.
This procedure, called metaoptimization, optimizes PS@upaters during opti-
mization. Metaoptimization requires two PSO algorithmbeve the first algorithm
optimizes PSO parameters, and the second algorithm otsnaigiiven optimization
problem or problems using the PSO parameters from the fgetigim.

e We applied the metaoptimization procedure to determinémph PSO parame-
ters using four benchmark well placement optimization fois. In the metaop-
timizations, we considered two cases. In case 1, we opttniZ8O parameters
w, ¢1, ¢z, While in case 2, we optimized the neighborhood topolog typaddition
to w, ¢, co. We showed that metaoptimization provided results belten those
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5.2

for PSO with unoptimized parameters. Next, we applied thieaomimization to all
four benchmark problems in order to determine PSO parasttat are optimal for
multiple problems.

We applied the optimized PSO parameters and metaoptimizttitwo optimization
problems including optimizing the location of 15 verticadg (consisting of ten pro-
ducers and five injectors) and WPD optimizations in heteregas two-dimensional
reservoirs. For these examples, metaoptimization wasstowrovide the best re-
sults.

Recommendations for Future Work

In the PSO optimizations in Chapter 2, we represent solutisisg well-by-well
concatenation. For these optimizations, the PSO algoritiohmot include any con-
straint handling. If well-by-well parameter concatenatie to be used, it will be
necessary to incorporate constraint handling methodsdardo obtain practically
acceptable well configurations. This can be achieved byrakpeethods. One ap-
proach is to use penalty function methods and penalize falhgible solutions. We
used this method for an example problem in Chapter 4. Othaoappes include
feasibility preserving and repair methods [3]. In feadipipreserving methods, the
particle positions are computed so that constraints aréiolated. In repair methods,
special operators are used to repair an infeasible padidie adjust it so it satisfies
all constraints. A similar technique was implemented for @A29] to handle gen-
eral well placement optimization constraints. Other caist handling techniques
for PSO are described in [3].

Potentially the performance of the PSO algorithm could bgroved further by in-
corporating methods to increase or preserve the diverkibhegatrticles. As the PSO
particles converge, they may exhibit a tendency to clustaural the best solution,
especially when the star neighborhood topology is usedcd@ires for improving
the diversity of particles should be explored. For examipliie objective function
does not improve over a prescribed number of iterationsa@iém of the particles
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could be reinitialized around their local best positions [3

e The PSO performance could also be improved by balancingeaggbn and exploita-
tion within the optimization. One way to achieve this is t@wsgeneralized PSO
whereAt (in the velocity and position update equations) can takeesbther than
unity [50, 49].

e It may be of interest to investigate specialized PSO partidighborhood topolo-
gies. Also, other variants of the two-phase optimizatioatsgy (WPD followed by
WWP) should be considered. In addition, the number of patteonsidered could
be increased to include other well patterns, e.g., the b8wsell pattern. Such addi-
tions do not lead to an increase in the number of variablegsined)to represent the
patterns in WPD.

e The WPO procedure should be applied to larger models (in areaht) than those
considered here. It will also be of interest to test the WPQ@gdare for practical
problems. For such cases, it may be useful to extend the WWiRguoe to optimize
completion interval, to allow for the elimination of paiar wells, etc.

e The efficiency of the PSO and WPO algorithms may be improveoutiit the use
of surrogate (proxy) simulation models, e.g., krigingfistacal proxies, and neural
networks. This would act to reduce the number of time consgmsimulations re-
quired. Use of a hybrid optimization approach involving tenbination of PSO
with a local optimizer may also prove effective.

e The metaoptimization procedure was demonstrated to betig#eat optimizing PSO
parameters and providing better solutions, on averagajwelto those achieved us-
ing untuned/unoptimized PSO parameters. However, theedtoe is computation-
ally intensive because of the many function evaluationsireq. Surrogate models
should be incorporated into the metaoptimization procedoireduce the computa-
tional demands and to enable this approach to be used fdiqaieapplications.

e The combined optimization of well placement and well coighmuld be considered.
This will be very demanding computationally, so efficientiopzation strategies will
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need to be devised.



Nomenclature

Roman Symbols
a, b

('capex

Cdrill

Cjunc

Ctlor

C1, C2

CF

c

d

E

F

He, H,
Jwp

k

l

Ilat

[ main
M
My, M., My,

(NPV)
N,

well spacing parameters

capital expenditure, $

drilling cost within the reservoir, $/ft

junction cost of a lateral, $

cost to drill the main bore to top of reservoir, $
weight of cognitive and social components in PSO velocityagigpn
cash flow, $

compressibility, psi!

number of optimization variables

operating expense, $

objective function of superswarm patrticle

axis shearing factors

index of well pattern

index of iteration

lower bound of a variable

length of a lateral, ft

length of the main bore, ft

transformation matrix

rotation, scale, and shear transformation matrices
expected net present value

number of pattern operators
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D,

WY mOOT YWY O

Se, Sy
Sgi> Soia Swi

M Mg < s TN

Greek Symbols

1
w

index of a well

number of laterals in well

number of wells

number of particles informed

number of different well patterns

swarm size

number of wells in a well pattern

neighborhood topology type

pattern operator

pattern representation

number of optimization problems

index of optimization problem or price per unit volume, $E5B/SCF
total volume of fluid produced

diagonal matrices of random numbers between 0 and 1
number of subswarm optimizations or revenue, $
discount rate

operator sequence

axis scaling factors

initial gas, oil, and water saturations

time increment

total production time or number of iterations in subswarm
production time or index of iteration

upper bound of a variable

PSO particle velocity

matrix of well locations in a well pattern

superswarm PSO particle position

(subswarm) PSO patrticle position

viscosity, cp
inertia weight
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0

A, An
&

&, n°

Superscripts
0

c

g

g, 0, W

nbest

pbest

ref

S

wp

Subscripts
g, 0, w

?

Abbreviations

BHP
bGA
GA
gbest
GPRS

rotation angle

spatial perturbations of a well location
areal location of a well

center of a well pattern

PSO parameters from superswarm particle
cognitive

global best

gas, oil, and water phases

neighborhood best

previous best

reference

social

well pattern

gas, oil, and water phases

index of PSO particle or injected water

index of pattern operator or index of optimization variable
index of lateral

rock

rotation

production period

index of well

bottomhole pressure, psi

binary genetic algorithm

genetic algorithm

global best

general purpose research simulator
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Ibest

MM, $MM
NPV
PSO
SimA
SPSA
WPD
WPO
WWP

local best
million, million dollars

net present value

particle swarm optimization

simulated annealing

simultaneous perturbation stochastic approximation
well pattern description

well pattern optimization

well-by-well perturbation
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