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Abstract

This thesis develops mixed finite-element (MFE) methods for the discretization and

numerical simulation of the reservoir flow equations. MFE methods provide the

proper framework for the interpretation and theoretical analysis of multipoint flux

approximations (MPFA), which are the industry standard discretization methods for

reservoir simulation on advanced grids. The key contributions of this research are:

(1) a proof of convergence of MPFA methods on three-dimensional rectangular paral-

lelepipedic grids, and (2) a new streamline tracing method that gives exact streamlines

from MPFA discretizations.

On two-dimensional triangular, or quadrilateral grids, and on three-dimensional

tetrahedral grids, Wheeler and Yotov employed the first-order Brezzi–Douglas–Marini

(BDM1) space to provide the link between MPFA and MFE methods, which allowed

them to prove convergence of MPFA on such grids. On hexahedral grids, however, a

different velocity space must be introduced to establish the bridge between MFE and

MPFA discretizations.

In this dissertation, we present a new velocity space on three-dimensional hexa-

hedra. The new velocity space is defined using four degrees of freedom per face,

which are the normal components of the velocity field at the vertices of each face.

The new space is compatible in the sense of Babuška and Brezzi with a piecewise

constant pressure discretization and therefore yields a consistent MFE method. An

error analysis of the new MFE discretization proves its convergence and leads to error
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estimates for the scalar and vector variables.

The application of a vertex-based quadrature rule reduces the new MFE to the

widely used MPFA O-method on three-dimensional hexahedra. This represents the

first direct link between MFE and MPFA on hexahedral grids, which we exploit to

provide a proof of convergence of the MPFA O-method, along with error estimates

for the pressure and velocity fields.

In the context of streamline simulation, the quality of the velocity field is essential

to the accuracy of the overall method. The streamlines are traced by integration of

the velocity field, which is interpolated from the MPFA fluxes. Current streamline

tracing algorithms rely on low-order velocity reconstruction techniques that do not

preserve the accuracy of the fluxes computed by MPFA discretizations. On advanced

grids, this can lead to O(1) numerical errors.

In this work, we exploit the links between MPFA and MFE methods to interpret

the MPFA fluxes as MFE degrees of freedom. The MPFA velocity field is then

reconstructed through interpolation of the fluxes by the MFE velocity shape functions.

Therefore, the streamlines are traced on the velocity field corresponding exactly to the

MPFA discretization. After a detailed description of the streamline tracing algorithm,

we provide comparisons of low- and high-order accurate tracing methods by means

of challenging numerical experiments.
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Chapter 1

Introduction

This chapter presents the challenges posed by modern reservoir simulation grids on the

discretization of the traditional and streamline-based reservoir simulation equations,

defines our objectives and outlines the contents of the thesis.

1.1 Reservoir simulation grids

1.1.1 Geological models

Petroleum reservoirs are hydrocarbon bearing geologic formations. The reservoir rock

is a porous medium filled with a variety of chemical components (hydrocarbons, water,

gases, etc) that can form several fluid phases. Reservoir models play a central role in

the development and production of petroleum fields. They are used to understand,

monitor and predict the flow of reservoir fluids in order to optimize the hydrocarbon

production.

The most challenging task in building a reliable reservoir model is the accurate

representation of the geology. The remote subsurface location of petroleum reservoirs

limits the amount and quality of data available for their characterization. Actual

1



CHAPTER 1. INTRODUCTION 2

measurements of rock properties is only possible at the wells, which leads to very

sparse hard data sets. Remote sensing techniques based on geophysical principles such

as seismic imaging are used to infer rock properties between the wells. However, the

seismic data are composed of impedance and velocity measurements that are only an

indirect measure of the rock porosity. Complex deconvolution techniques are required

to interpret the seismic data as soft geological data. Current technologies allow

large-scale reservoir features, such as the geometry of trapping structures, bedding

horizons, faults or fractures to be visible in the deconvoluted seismic images. However,

small-scale geological features, such as porosity or permeability variations within a

depositional bed, are hard to distinguish from the noise in the seismic signal that

traveled through miles of rock. Geophysical data are therefore only exploitable to

determine the main geological features of petroleum reservoirs.

Geostatistical methods are used to integrate the hard data at the wells and the

soft geophysical data into a realistic and coherent geologic model, and to represent in

a statistical sense the small-scale rock property variations invisible in the soft data.

The main objective is to represent the property (e.g. porosity and permeability)

distributions properly, which is the key factor in a reservoir flow response. The

first step in building a geostatistical model is to understand the reservoir geology.

The types of deposition, erosion and deformation that created and transformed the

reservoir are inferred from the general geology of the field area as well as from analog

outcrops and from the hard and soft data available. The geological assumptions

are then translated by geostatistical methods into spatial correlation models. Two

main types of geostatistics are used to model spatial correlation structures: two-point

statistics, based on variogram models, and multipoint statistics, based on training

images [18; 29; 36; 65]. Typically, multipoint statistics are used to generate realistic

depositional, or erosional, patterns and to determine the distributions of the geological

facies within the reservoir. Within each facies, the spatial variations in the rock
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properties, such as porosity or permeability, are then modeled through two-point

statistics.

Modern reservoir characterization techniques lead to highly detailed geological

models. Reservoirs are usually represented by a hexahedral grid, fine enough to accu-

rately render the complex geometry of the main geological features and to properly

account for the rock property variations, which are both essential for reliable model-

ing of reservoir flow performance. The grid is also usually distorted to better follow

the geology [47] and each gridblock is assigned a porosity and a permeability value.

1.1.2 Simulation models

The high level of detail displayed in the geological models (or geomodels) limits their

use for flow simulation applications. These models commonly have on the order of

107 or 108 gridblocks. Despite the fast progress of parallel computing techniques,

solving complex flow and transport problems on such grids remains out of reach.

Even if direct flow simulation is possible on the geomodel, it is simply too slow to be

routinely used by reservoir engineers.

To perform flow simulations, a model of manageable size (105 or 106 gridblocks) is

usually constructed. Upscaling techniques are used to generate this coarser reservoir

model from the high-resolution geomodel. A variety of upscaling methods exist and

are employed throughout the industry [21; 32]. The challenge is to build a grid that

retains the important flow characteristics of the geological model.

Nowadays, selection of the geological features that are of significance for flow

simulations is usually based on a simple single-phase flow simulation performed on the

geomodel. Because of its efficiency, the streamline method is often used to perform

this first rough estimation of the reservoir flow behavior [40; 61]. The streamlines

provide a natural way to select the geological features to retain in the simulation

model.
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Features at a variety of scales need to be accounted for. Some large scale fea-

tures, such as major faults or pinchouts often play an essential role in the reservoir

flow behavior. Other large-scale characteristics like some depositional layerings have

minimal impact on the flow behavior and are often discarded. Similarly, some small

high-permeability streaks or some small fractures often have a dramatic effect on

the flow, while the streamlines might be completely insensitive to other small-scale

geological features.

To limit the numerical errors, the simulation grid is designed to follow closely

the geological structures that have a strong impact on the flow behavior. The vast

majority of simulation grids are composed of general hexahedral elements that are

distorted to accommodate the geological geometries. Unstructured grids, composed

of more general-shaped elements, such as tetrahedra, have recently gained popularity.

Their inherent flexibility allows them to conform to complex geometries with much

less elements than required by structured hexahedral grids.

Once the simulation grid is created, it must be populated with porosity and per-

meability values that provide the simulation grid with the same flow characteristics

as the geostatistical grid. A variety of methods have been devised to obtain upscaled

rock properties equivalent to the fine scale geology. To properly represent geological

features that are not necessarily aligned with the simulation grid, tensor permeability

coefficients are necessary [21; 32].

In this thesis, we will consider reservoir simulation grids composed of general

triangles or quadrilaterals in two dimensions and general tetrahedra or hexahedra in

three dimensions. The general hexahedral elements are by far the most commonly

used in the oil industry, and they play a central role in this work. Unless otherwise

mentioned, the grids considered can be distorted, but for simplicity their elements

must remain properly defined (non-degenerate) and convex. General full permeability

tensors are considered, with the restriction that they must remain symmetric and
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positive definite, for physical reasons.

1.2 Governing equations

Although petroleum engineering problems rarely involve a single fluid phase, the

single phase flow problem plays a central role in the development of numerical sim-

ulation techniques. This section therefore begins with a description of this simple

flow problem. We then present the complexities introduced when several fluid phases

are flowing simultaneously through the porous rock. The last part shows how these

complications are usually handled by introducing the fractional flow formulation.

1.2.1 Single phase flow

Let us consider a single fluid phase flowing in the porous rock. Darcy’s law states

that a fluid moves through a porous medium with a volumetric velocity u inversely

proportional to the potential gradient ∇Φ

u = −k

µ
∇Φ, (1.1)

where k is a symmetric positive definite tensor representing the rock permeability and

µ represents the fluid dynamic viscosity. The potential Φ combines a pressure and a

gravity term:

Φ = p + ρgD, (1.2)

where p, ρ, g and D are respectively, the fluid pressure and density, the gravitational

constant and the depth.

In the remainder of this thesis, we will neglect gravity effects and identify the flow

potential with the fluid pressure. It is understood that if the gravity term is non-

negligible, the pressure has to be replaced by the full expression of the flow potential.
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The continuity equation, stating the conservation of mass of the fluid phase, reads

∂φρ

∂t
+∇ · (ρu) = ρf, (1.3)

where φ is the rock porosity and f is a volumetric source term. If the fluid and rock

are assumed incompressible, (1.3) is simplified into

∇ · u = f, (1.4)

which is combined with (1.1) to give the second-order pressure equation:

−∇ · k
µ
∇p = f. (1.5)

Since k is positive definite and µ > 0, (1.5) forms an elliptic problem, which would

become parabolic for compressible flow.

1.2.2 Multiphase flow

Consider, for simplicity, two immiscible and incompressible fluid phases. A more

comprehensive presentation of multiphase flow problems can be found in [10] or [20].

The wetting phase is denoted w (e.g. water) and the non-wetting phase o (e.g. oil.)

The two phases share the pore space, and we denote by Sw and So their respective

saturations linked through

Sw + So = 1. (1.6)

Capillary effects allow the two phases to have distinct pressures, pw and po, linked

by the capillary pressure function

Pc(Sw) = po − pw, (1.7)
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where Pc is in general considered to be a function of the wetting phase saturation.

Capillary effects can be included in the formulation by using the global pressure [20],

Here, we assume negligible capillary forces and write

p = po = pw. (1.8)

Under the incompressibility assumption, the mass balance of either phase reads

φ
∂Sα

∂t
+∇ · uα = fα, (1.9)

where α represents either phase (α = o, w). fα is the α-phase volumetric source

term. The volumetric α-phase velocity uα is given by Darcy’s law

uα = −krα

µα

k∇p = −λαk∇p, (1.10)

modified in the case of multiphase flow by introducing the relative permeability krα.

Here µα and λα are respectively the α-phase viscosity and mobility.

1.2.3 The fractional flow formulation

The solution of the multiphase flow equations is greatly simplified by using the frac-

tional flow formulation that leads to a pressure equation and a saturation equation (or

a set of saturation equations when more than two phases are present). We introduce

the total velocity

u = uw + uo, (1.11)

which can be written

u = − (λw + λo) k∇p = −λk∇p, (1.12)

where we use λ to represent the total fluid mobility.
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The continuity equation for the total fluid velocity is obtained by summing both

equations of (1.9) and using (1.6):

∇ · u = fw + fo = f, (1.13)

where f is a total volumetric source term.

The combination of (1.12) and (1.13) yields the second-order pressure equation

−∇ · (λk∇p) = f. (1.14)

The total mobility λ is always strictly positive, which provides an elliptic character

to the pressure equation. Once again, as in the single phase case, the compressibility

effects would make the pressure equation parabolic.

To obtain the saturation equation, we introduce the fractional flow function

ϕw =
λw

λ
, (1.15)

that is used to express the wetting phase velocity in terns of the total velocity:

uw = ϕwu. (1.16)

Injecting (1.16) in (1.9) provides an equation relating the water saturation to the

total fluid velocity:

φ
∂Sw

∂t
+∇ · (ϕwu) = fw. (1.17)

This saturation equation is hyperbolic in nature and becomes parabolic when the

capillary effects are accounted for.

The fractional flow formulation allows a transformation of the problem (1.9) into

the pressure and saturation equations of (1.14)–(1.17), which are coupled through
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the total fluid velocity u. The major advantage of this formulation is that it allows

the use of distinct numerical methods to solve the two equations, which have very

different mathematical properties.

General-purpose simulators model multi-component multiphase flow and trans-

port in reservoirs. For such systems, while the number of coupled conservation equa-

tions grows with the number of components, the overall mathematical structure is

similar to the simple two-phase flow problem just described. That is, the flow problem

is described by a near-elliptic pressure equation, and the transport of the components

is described by a set of near-hyperbolic conservation laws. The discretization operator

is divided in two parts: (1) a static geometric part that accounts for permeability and

geometry variations between the control volumes, and (2) a dynamic part, λp. The

static part is obtained through a pre-processing step from the discretization of the

elliptic pressure equation (1.14), and is provided to the simulator as input. In this

work, we focus on the solution of the elliptic pressure equation. We present in the

following section the classical discretization method used in the oil industry to solve

this flow problem.

1.3 Finite volume discretizations

Let Ω ⊂ Rd be the reservoir domain in dimension d = 2, 3. The simulation grid

represents a partition Th of Ω into a set of N non-overlapping control volumes Ki, i =

1, . . . , N . Each gridcell is associated with a node xi located at its center.

The goal of finite volume (FV) methods is to compute numerically the pressure

pi in each gridblock Ki. To find the N pressure unknowns, an integral form of the

mass balance equation is enforced on each control volume. Focusing on the elliptic

problem of (1.4) or (1.13), the continuity equation is integrated over an element Ki
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to give ∫

Ki

∇ · u dKi =

∫

Ki

f dKi. (1.18)

The Gauss-Ostrogradsky theorem transforms the left-hand side into an integral on

the boundary Γi of Ki: ∫

Γi

u · ni dΓi =

∫

Ki

q dKi, (1.19)

where ni is the outward-pointing unit normal to Γi. We define the scalar flux out of

the element Ki as

Fi :=

∫

Γi

u · ni dΓi. (1.20)

The flux Fi is linked to the fluid pressure by (1.1) or (1.12). We write

Fi = −
∫

Γi

λ (k∇p) · ni dΓi, (1.21)

with the understanding that in the case of single-phase flow λ represents the inverse

of the dynamic viscosity, and for multiphase flow λ is the total mobility. In essence,

the multiphase pressure equation only differs from the single phase flow problem in

that the mobility λ depends on the saturation (through the relative permeabilities).

Let us now introduce the set Ji of indices j of elements Kj sharing a face Γij with

element Ki. The total flux Fi is expressed as

Fi =
∑
j∈Ji

Fij, (1.22)

where Fij is the fluid flux from Ki to Kj:

Fij = −
∫

Γij

λ (k∇p) · nij dΓij, (1.23)

where nij is a unit vector normal to Γij and oriented from Ki to Kj.
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We now make one of the key assumptions for spatial discretization methods in

reservoir simulation. We assume that in the neighborhood of the interface Γij, the

mobility λ is smooth enough to be considered constant, so that the interface flux is

rewritten as

Fij ≈ −λij

∫

Γij

(k∇p) · nij dΓij, (1.24)

where λij is the average mobility at the interface Γij. This approximation allows a

decoupling of the dynamic data contained in λ from the static data included in the

permeability tensor k and implicitly present in the geometry of the face Γij and in

the gradient operator ∇. We define the static part of the flux as

F̃ij = −
∫

Γij

(k∇p) · nij dΓij. (1.25)

The total flux is then obtained from its static part through

Fij ≈ λijF̃ij. (1.26)

We now focus on the computation of the static flux from a set of neighboring

pressure nodes. Let us define the set Λij of elements Kl touching the interface Γij, i.e.

Kl ∈ Λij if it shares at least a vertex with the interface Γij. The cornerstone of finite

volume methods is the approximation of F̃ij from the pressure nodes of Λij through

a discretization of the pressure gradient. The resulting flux approximation expresses

F̃ij as a linear combination of the neighboring pressure points

F̃ij =
∑

Kl∈Λij

Tl pl, (1.27)

where Tl are static transmissibility coefficients [10]. In reservoir simulation, these sta-

tic coefficients are preprocessed before the full multiphase flow simulation. The total
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transmissibility coefficient is then obtained by multiplying the static transmissibility

by the mobility λij. This separation of the static and dynamic part of the transmissi-

bility allows a decoupling of the spatial discretization from the non-linearities of the

flow problem.

The number of pressure points necessary to properly approximate the flux through

an interface depends strongly on the grid geometry and the complexity of the perme-

ability field. Two main methods are used: the two-point flux approximation (TPFA)

only uses the upstream and downstream elements Ki and Kj, and the multipoint flux

approximation (MPFA) takes into account the entire set Λij in the flux computation.

1.3.1 Two-point flux approximation

The TPFA method is best understood in the context of one-dimensional flow. The

pressure is assumed to vary linearly within each of the two control volumes sharing

an interface (see Figure 1.1). The potential gradient is therefore taken constant in

each control volume. Enforcing the pressure and flux continuity across the interface

leads to an expression of the static flux:

F̃12 = T1p1 + T2p2, (1.28)

where the transmissibility coefficients

T1 = −T2 =
2

∆x1/k1
x + ∆x2/k2

x

(1.29)

verify the usual harmonic permeability average property.

For multidimensional problems, TPFA is based on a dimensional split, such that

the interface transmissibilities is computed in each direction independently. This
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-F̃12

- x

p1 p2

Figure 1.1. Schematic of the two-point flux approximation method for one-
dimesional problems.
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Figure 1.2. 5-point (×) and 9-point (◦) stencils corresponding to the TPFA and
MPFA methods on a two dimensional Cartesian grid.

procedure leads to a five-point stencil in two dimensions (Figure 1.2) and to a seven-

point stencil in three dimensions. As a matter of fact, on Cartesian grids and in the

presence of diagonal permeability coefficients, TPFA is equivalent to the classical

seven-point finite difference method in three dimensions [10].

TPFA represents the most widely used discretization method in reservoir simula-

tion. However, the basic underlying assumptions of TPFA do not allow the method

to represent grid distortion, or non-diagonal tensor permeabilities, properly. In such
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cases, the TPFA method does not lead to a convergent discretization, and can produce

O(1) errors in the computations.

1.3.2 Multipoint flux approximations

MPFA methods are designed to overcome the deficiencies of TPFA for advanced

simulation grids. An excellent introduction (including an extensive literature review)

to MPFA discretizations is given by Aavatsmark [1].

The first derivation of these methods was presented for two-dimensional structured

grids independently by Aavatsmark et al. [2] and Edwards and Rogers [34]. These

methods have been extended to unstructured grids [3; 4; 33; 67] and three-dimensional

hexahedral grids [5; 45; 46].

To simplify the presentation, we present MPFA methods on two-dimensional struc-

tured quadrilateral grids. Extensions to unstructured or three-dimensional grids are

straightforward, since they rely on the same concepts as those developed for two-

dimensional structured quadrilateral grids.

MPFA methods employ an extended stencil to approximate the interface static

fluxes. F̃ij is thus computed as in (1.27) with the pressure nodes from the entire set

Λij of gridblocks Kl touching the interface Γij. For a structured quadrilateral grid,

six pressure nodes are thus used to compute a flux (Figure 1.3), which leads to a

nine-point stencil (Figure 1.2). On three-dimensional structured hexahedral grids,

a 27-point stencil is used.

To compute the transmissibility coefficients of (1.27), a dual grid is created, stag-

gered with the primal grid defined by the gridblocks. Each cell of the dual grid is

referred to as an interaction region and is centered on a node of the primal grid

(Figure 1.4). The interaction regions divide each cell into four subcells and each

cell interface into two subinterfaces. The transmissibility coefficients of (1.27) are

obtained by solving local problems on the interaction regions.
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Figure 1.3. MPFA stencil for a two-dimensional structured quadrilateral grid.

*

*p1
p2

p3
p4

Figure 1.4. Interaction region (dashed line) for a sub-interface flux in MPFA on a
two-dimensional structured quadrilateral grid.



CHAPTER 1. INTRODUCTION 16

MPFA methods are constructed to be linearly exact for general grid geometries

and tensor coefficients. This means that a linear pressure variation must be repre-

sented exactly by the MPFA discretization. The local problem is defined through

an approach similar to that of the one-dimensional problem, but generalized in two

dimensions to assume that the pressure varies linearly within each subcell. A flux

continuity condition is enforced on each subinterface to guarantee mass conserva-

tion across the interfaces. Pressure continuity can only be enforced weakly. Existing

MPFA methods differ mainly in the way this weak pressure continuity is formulated.

In the so-called O-method, one imposes the pressure to be continuous at the midpoint

of the interface.

In two-dimensional structured grids, a linear pressure approximation in each of

the four subcells leads to the definition of 3× 4 = 12 degrees of freedom in the local

system of an interaction region. The 12 conditions used to determine the system

are: (a) four flux continuity conditions across the subinterfaces, (b) four pressure

continuity conditions across the subinterfaces and (c) honoring the pressure values at

the gridcell centers. On three-dimensional structured hexahedral grids, an interaction

region is composed of eight subcells. Allowing the pressure to vary linearly within each

subcell leads to the definition of 4× 8 = 32 degrees of freedom. The system is closed

with (a) flux continuity conditions across the twelve subinterfaces, (b) twelve pressure

continuity conditions at the interface midpoints and (c) honoring the pressures at the

centers of the eight gridcells of the interaction regions.

1.4 Streamline simulation

Streamline simulation is a fast alternative to classical reservoir simulation methods

and as such, it is increasingly used in reservoir engineering applications. We here

recall the main steps of the basic streamline method. For simplicity, we consider as in
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Section 1.2 the case of a two-phase immiscible displacement process, with negligible

capillarity and gravity forces. A more complete introduction to streamline methods

can be found in [12; 28].

The streamline method relies on the fractional flow formulation that separates the

pressure equation (1.14), representing the flow problem, from the saturation equa-

tion (1.17), governing the transport problem. In the absence of sources, the divergence

of the total-velocity vanishes, and the transport problem can be written as

φ
∂Sw

∂t
+ u · ∇ϕw = 0. (1.30)

Using the identity

u · ∇ ≡ ‖u‖ ∂

∂s
, (1.31)

where s is the arc-length of a streamline, we can reformulate the saturation equation

into a one-dimensional transport problem

φ
∂Sw

∂t
+ ‖u‖∂ϕw

∂s
= 0. (1.32)

Let us now introduce the time-of-flight variable τ , defined as the travel time of a

fluid particle along a streamline. The time-of-flight is linked to the arc-length s and

total velocity through
∂τ

∂s
=

φ

‖u‖ . (1.33)

The streamline method uses the time-of-flight variable to put the transport problem

in an extremely simple form:
∂Sw

∂t
+

∂ϕw

∂τ
= 0. (1.34)

Instead of solving the hyperbolic transport problem on the simulation grid, where

the time-step size is limited by stability conditions [27], the streamline method solves
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the saturation equations as a series of unconditionally stable one-dimensional dis-

placement problems along the flow paths (i.e. streamline coordinates).

Streamline simulation uses a sequential approach to solve the flow and the modified

transport problem. First, the pressure equation is solved on the simulation grid

and the streamlines are traced. Second, the transport problem is posed along the

streamlines where the saturations are advected according to (1.34). The quality of

the streamlines, in terms of location and time-of-flight, is therefore crucial to recover

an accurate overall solution.

To trace streamlines, the velocity field within each control volume is expressed

as a function of interface fluxes. The streamline is then integrated using this (re-

constructed) velocity field by following the path of a fluid particle in time. This

integration is usually performed to arbitrary precision, either analytically or numeri-

cally depending on the complexity of the velocity field. The real challenge in tracing

accurate streamlines is the reconstruction of an accurate velocity field from the in-

terface fluxes. This reconstruction obviously depends on the discretization used for

the pressure equation and becomes a challenging problem in the presence of grid

distortion and permeability tensors.

1.5 Problem statement

Conventional finite-volume and streamline-based reservoir simulation rely on MPFA

methods to discretize the pressure equation on distorted grids and/or in the presence

of tensor permeability coefficients. Despite the wide use of MPFA methods in the

oil industry, rigorous analysis of their properties is still limited by the mathematical

framework on which they rely. In this work, we place MPFA methods in the con-

text of mixed finite element (MFE) discretizations. MFE methods have a powerful

mathematical framework that is well-suited for theoretical analysis of discretization
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problems. On two-dimensional triangles and quadrilaterals and on three-dimensional

tetrahedra, a link between MPFA and MFE method has been established recently [70],

but this correspondence does not exist on hexahedra. We present a new MFE method

on hexahedra that reduces into an MPFA method thus providing the missing link.

In light of this new MFE method, the question of the convergence of MPFA

methods on hexahedral grids is addressed in this work. Hexahedral grids form the

majority of the reservoir simulation models and TPFA methods are known to yield

non-convergent discretizations on such grids in the presence of grid distortion or

permeability tensors. Although the convergence of MPFA has been observed numer-

ically [6], a proof has remained elusive. We here provide, for the first time, an error

analysis that establishes mathematically the convergence of MPFA on rectangular

hexahedra and provides theoretical error estimates confirmed by numerical experi-

ments.

We further exploit the MFE framework to tackle the problem of tracing accurate

streamlines when MPFA is used to discretize the pressure equation. The reliability

of streamline simulations relies heavily on the quality of the streamlines used to solve

the transport problem. We revisit the problem of streamline tracing by relying on

the MFE framework. A theoretical justification for the low-order streamline tracing

methods currently in use [26; 60] is provided, and high-order methods adapted to

MPFA discretizations are outlined.

1.6 Thesis overview

Chapter 2 is an introduction to mixed finite-element methods applied to the solution

of the elliptic pressure equation. These methods use a finite-element approach to

solve the mixed variational form of the flow problem, in which the unknowns are

both the pressure and velocity fields. Just as finite-volume methods use two- or
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multiple pressure points to obtain a flux description, MFE discretizations can involve

velocity fields of different accuracy. The choice of velocity fields is, however, limited by

compatibility conditions between the pressure and the velocity spaces. When a single

pressure unknown per element is used, which is of primary interest for finite-volume

schemes, two velocity fields can be chosen: the Raviart-Thomas-Nédélec [58; 63] and

the Brezzi-Douglas-Marini[15; 16] velocities that we present at the end of the chapter.

These two velocity spaces do not allow a link to be established between MPFA

and MFE methods on hexahedra. We therefore devote Chapter 3 to the presentation

of a new velocity space on hexahedra that allows MPFA methods to be placed in

the context of MFE methods. In Chapter 3, we also present the link between the

MFE and FV method that relies on an inexact numerical quadrature. The chapter

is concluded by comparing numerically the performance of the various discretizations

in terms of accuracy and monotonicity.

Chapter 4 is focused on mathematical analysis of both the new MFE method

and its localized form into MPFA. In particular, we establish that the new velocity

space induces the Babuška-Brezzi condition, when combined with a piecewise constant

pressure description. The MFE method is shown to be convergent, and we provide

error estimates for the pressure and velocity fields. We then proceed to error analysis

of MPFA and establish its convergence on rectangular hexahedral grids in the presence

of full-tensor permeabilities. Optimal error estimates for MFPA are provided and

confirmed by a numerical convergence study.

Chapter 5 presents application of the links between MFE and MPFA methods

to streamline simulation. The problem of tracing streamlines from either MFE or

FV discretizations is revisited. A streamline tracing algorithm is developed for MFE

methods. Using the links between MFE and FV discretizations, we justify using the

new tracing algorithm for MPFA methods. The algorithm obtained is the natural

extension of Pollock’s [60] tracing method for general tetrahedral or hexahedral grids.
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The new method presents two major advantages over the streamline tracing algorithm

developed for MPFA by Prévost [61] and Hægland et al. [38]. First, our algorithm

provides more accurate streamlines and second, our approach does not require an

expensive flux postprocessing, such as that used by the other methods. Numerical

experiments are performed to test the accuracy and robustness of the streamline

tracing algorithm.



Chapter 2

Mixed finite element methods

This chapter serves as an introduction to mixed finite element methods. Although

this content is not new, it is reminded for the sake of completeness since the concepts

introduced here will be heavily used in the following chapters.

We start by describing the mixed variational formulation of the elliptic pressure

equation. We then present the mixed finite element discretization and the solution

of its system. We finish the chapter by a review of known velocity spaces compatible

with a piecewise constant pressure space.

2.1 The mixed variational formulation

Mixed finite element (MFE) methods represent a finite-element approach to the dis-

cretization of the flow problem. The term mixed indicates that MFE methods solve

simultaneously for both the pressure and velocity fields.

22



CHAPTER 2. MIXED FINITE ELEMENT METHODS 23

MFE methods discretize the mixed variational form of the elliptic pressure equa-

tions of (1.5) or (1.14). The problem is written in mixed form as

k−1u +∇p = 0 in Ω ⊂ Rd, (2.1)

∇ · u = f in Ω ⊂ Rd, (2.2)

where d = 2, 3 is the space dimension. (2.1) and (2.2) represent Darcy’s law and the

mass balance equation, respectively. Once again, u is the volumetric velocity, p is

the pressure, f is a source term, and k is the permeability tensor. We here recall

that the permeability tensor must be symmetric positive definite, which ensures the

existence of k−1. Its components must be bounded but may be highly discontinuous

and display large anisotropy ratios. The governing equations are supplemented with

the following boundary conditions:

p = p̄ on ΓD, (2.3)

u · n = 0 on ΓN , (2.4)

where ΓD and ΓN are respectively the Dirichlet and Neumann partitions of the domain

boundary ∂Ω such that ΓD ∩ ΓN = ∅, ΓD ∪ ΓN = ∂Ω. n is the outward unit normal

to ∂Ω.

Let W ≡ L2(Ω) be the Sobolev space of square integrable functions in Ω ⊂ Rd,

with the usual inner product (·, ·) and norm ‖ · ‖L2(Ω) = (·, ·)1/2. We introduce the

space

V ≡ H0,N(div, Ω) = {v : v ∈ H(div, Ω), v · n = 0 on ΓN} (2.5)

of functions in H(div, Ω) with null normal trace on the Neumann boundary ΓN ,
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where the space

H(div, Ω) =
{
v : v ∈ (L2(Ω))d,∇ · v ∈ L2(Ω)

}
(2.6)

is equipped with the norm:

‖v‖H(div,Ω) = (‖v‖2 + ‖∇ · v‖2)1/2. (2.7)

The space H(div, Ω) is defined such that a vector v belonging to this space admits a

well-defined normal trace on ∂Ω [17]:

v̄ ≡ v · n ∈ H−1/2(∂Ω). (2.8)

Denoting by H1/2(Γ) the dual space of H−1/2(Γ) for Γ ⊂ ∂Ω, we also define the

duality product:

〈ū, p̄〉Γ =

∫

Γ

ūp̄ dΓ, ū ∈ H−1/2(Γ), p̄ ∈ H1/2(Γ). (2.9)

Making use of the functional spaces defined above, we can express the problem given

by Equations (2.1)–(2.2) with boundary conditions (2.3)–(2.4) in its mixed variational

form:

Find (u, p) ∈ V ×W such that

(v, k−1u)− (∇ · v, p) = −〈v · n, p̄〉ΓD
∀v ∈ V , (2.10)

(q,∇ · u) = (q, f) ∀q ∈ W. (2.11)

It is well known that this problem has a unique solution [17].
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2.2 Discretization

The mixed variational formulation provides the basis for the mixed finite element

method. MFE methods approximate the pressure and velocity fields simultaneously.

Let V h ⊂ V , and Wh ⊂ W be finite dimensional subspaces of the corresponding

continuum spaces, the mixed finite element approximation of (2.10)–(2.11) reads:

Find (uh, ph) ∈ V h ×Wh such that

(vh, k
−1uh)− (∇ · vh, ph) = −〈vh · n, p̄〉ΓD

∀vh ∈ V h, (2.12)

(qh,∇ · uh) = (qh, f) ∀qh ∈ Wh. (2.13)

For the MFE method to be consistent and convergent, the spaces V h and Wh cannot

be chosen independently; they must satisfy a standard coercivity condition and the

discrete inf-sup condition [11; 13; 14; 17].

The global spaces V h and Wh are constructed by means of: (1) a partition Th of the

domain Ω into nonoverlapping elements {K} (in this thesis, we restrict our attention

to triangular, quadrilateral, tetrahedral or hexahedral elements); and (2) polynomial

spaces defined locally, on a reference element K̂. Examples of successful mixed finite

element spaces are those of Raviart–Thomas [63] or Brezzi–Douglas–Marini [16] on 2D

triangular and quadrilateral elements and those of Nedelec [58], and Brezzi–Douglas–

Duran–Fortin [15] on 3D tetrahedral or hexahedral grids.

Let Nu
1 , . . . , N

u
nu

and Np
1 , . . . , Np

np
form two bases for the velocity and pressure

spaces V h and Wh, respectively. The velocity and pressure solutions to the mixed

finite element problem of (2.12)–(2.13) are expressed as linear combinations of basis
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functions, Nu
i , Np

j and corresponding velocity and pressure components Ui, Pj:

uh =
nu∑
i=1

UiN
u
i , (2.14)

ph =

np∑
j=1

PjN
p
j . (2.15)

The velocity unknowns Ui are defined as fluxes across element edges (2D) or faces

(3D). The pressure unknowns Pj are defined as element pressures. The above dis-

cretization yields an indefinite linear system of the form


 A −Bt

B 0





 u

p


 =


 Ru

Rp


 (2.16)

where u and p are the vectors of flux and pressure unknowns, A is a square matrix

of size nu × nu and B is a matrix of size np × nu:

Ail = (Nu
i , k

−1Nu
l ), (2.17)

Bjl = (Np
j ,∇ ·Nu

l ), (2.18)

and Ru and Rp are the right-hand side vectors of the Darcy and mass balance equa-

tions:

Ru
i = −〈Nu

i · n, p̄〉ΓD
, (2.19)

Rp
j = (Np

j , f). (2.20)
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2.3 Numerical integration

The construction of the MFE matrix requires evaluation of the integrals of (2.17)–

(2.18). The integrals are usually evaluated numerically by quadrature rules [39] be-

cause an analytical integration is often challenging and sometimes impossible.

A quadrature rule is a set of ninteg weights wk and points xk (k = 1, . . . , ninteg)

defining a numerical approximation of an integral:

∫

Ω

h(x)dΩ =

ninteg∑

k=1

wkh(xk) + R ≈
ninteg∑

k=1

wkh(xk) (2.21)

where R is the remainder, or error, committed by the quadrature rule in its approxi-

mation of the integral. This error depends on the number and location of the points

involved in the quadrature and on the complexity of the integrand h(x).

Sometimes, the numerical quadrature used for the integration of the MFE system

is not exact. This reduced integration approach can have two known effects on the

MFE system: localization [52; 53; 70] and stabilization [50].

2.4 Solution of the MFE system

The MFE system of (2.16) is nonsingular under the inf-sup condition, but its indefinite

character requires special numerical solution techniques [22]. We use an augmented

Lagrangian method, known as Uzawa’s algorithm [22; 35] to solve the system (2.16).

Alternatively, one may hybridize the system and solve a symmetric, positive definite

system for the traces of the pressure at the element edges [17]. A third option is to

eliminate the velocity unknowns from the MFE system. Because MFE methods are

locally conservative at the element level, each element can be viewed as a control

volume on which a mass balance condition is enforced. The MFE system of Equation
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(2.16) is thus rewritten as a finite volume method:

C p = R, (2.22)

where C is a matrix of size np × np given by

C = BA−1Bt, (2.23)

and R is the right-hand side vector:

R = Rp − (
BA−1

)
Ru. (2.24)

In general, the matrix C is a full matrix. This means that the pressure of a given

element depends on all pressure nodes of the grid.

In some cases, a reduced integration approach can be used to localize the MFE

stencil and yield a sparse finite-volume system. The inexact quadrature restricts the

interactions between velocity degrees of freedom, which leads to a sparse matrix A.

In some cases, reviewed in Section 3.1, this gives sparse matrices A−1 and C.

2.5 The reference element

2.5.1 Coordinate mapping

In mixed finite element methods, the global spaces V h and Wh are constructed from

spaces defined locally, on a reference element K̂. The reference element K̂ is linked to

any given element K in the physical space by a mapping, or change of coordinates ϕ
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Figure 2.1. Mapping of triangular elements.
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Figure 2.2. Mapping of quadrilateral elements.

defined by:

ϕ : Rd −→ Rd

x̂ ∈ K̂ 7→ x = ϕ(x̂) ∈ K.
(2.25)

This mapping must be smooth and invertible for all elements. This ensures that, for

any x̂ ∈ K̂, the Jacobian matrix D(x̂) = ∂ϕ/∂x̂ of the transformation is invertible,

and that its determinant J(x̂) = det D(x̂) is bounded away from zero.

The map ϕ from the reference triangle, square, tetrahedron and cube to the
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Figure 2.3. Mapping of tetrahedral elements.

Figure 2.4. Mapping of hexahedral elements.

physical space is shown respectively in Figures 2.1–2.4. The mapping ϕ is given

by:

x = ϕ(x̂) =

nnode∑
a=1

Na(x̂)xa, (2.26)

where xa are the nodal coordinates of the element in physical space, and Na are the

usual finite element hat functions in reference space [39].
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2.5.2 The Piola transform

In addition to the mapping of the coordinates ϕ, we use D(x̂) and its determinant

J(x̂), to define the Piola transform as the mapping of the velocity field from the

reference space to the physical space [17; 48; 66]:

v(x) = P(v̂)(x) =
1

J(x̂)
D(x̂)v̂(x̂), (2.27)

with x = ϕ(x̂). The essential property of the mapping P is that it preserves the

normal trace of the vector field. In our context, this means that the fluxes through

element faces in the reference and physical spaces are equal.

2.6 Velocity spaces

2.6.1 Compatible mixed finite elements

One of the essential features of the mixed finite element discretization described above

is that the pressure and velocity spaces cannot be chosen independently of each other.

To render a consistent approximation, they must satisfy two conditions [13; 17]: a

standard coercivity condition, and the discrete inf-sup condition [11; 14].

To provide a link to finite-volume methods, we restrict our attention to discretiza-

tions involving a single pressure unknown per element. Thus, the pressure is constant

over each control volume, and the corresponding basis function is simply equal to one

inside an element, and zero elsewhere. The unknowns are the cell-centered pressures

and, clearly, the number of pressure unknowns is equal to the number of elements

(np = nelem).

The Babuška–Brezzi condition [11; 14] limits the choice of velocity spaces compati-

ble with a piecewise constant pressure field severly. In particular, the inf-sup condition



CHAPTER 2. MIXED FINITE ELEMENT METHODS 32

requires that the divergence of the discrete velocity field belongs to the pressure space.

For our purpose, this means that only velocity fields of constant divergence can be

used. Two known velocity spaces verify this necessary condition: the lowest-order

Raviart–Thomas–Nédélec space and the first order Brezzi–Douglas–Marini space.

2.6.2 The lowest-order Raviart–Thomas–Nédélec space

The simplest polynomial subspace conforming in H(div, K̂) is the lowest-order Raviart-

Thomas-Nédélec space, RTN0 developed in two dimensions by Raviart and Thomas [63]

and later extended to three dimensional elements by Nédélec [58]. Velocity fields in

RTN0 are described by a constant normal trace on element faces. Knowledge of the

fluxes across each faces of an element is therefore sufficient to fully describe the RTN0

velocity field. Thus, three degrees of freedom are needed to fully characterize RTN0

on triangles, four on quadrilaterals and tetrahedra, and six on hexahedra.

To describe an RTN0 velocity field, a single shape function per face is needed.

The velocity shape function associated with a face is a vector field that has a unit

outward flux across that face and a normal trace identically equal to zero on all

other faces. Figures 2.5–2.6 present respectively the two-dimensional and three-

dimensional RTN0 shape function associated with one of the faces of each reference

element.

We now recall the form of the RTN0 velocity fields on the various reference ele-

ments. On simplices, which are triangular and tetrahedral elements, the RTN0 veloc-

ity field is characterized by a constant component in each direction plus a constant

divergence term. This gives

û(x̂) =


 a1 + bx̂

a2 + bŷ


 , (a1, a2, b) ∈ R3, (2.28)
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for triangles and

û(x̂) =




a1 + bx̂

a2 + bŷ

a3 + bẑ


 , (a1, a2, a3, b) ∈ R4 (2.29)

on tetrahedra.

On bilinear and trilinear elements, (quadrilaterals and hexahedra), each velocity

component varies linearly with respect to its own coordinate. In two dimensions,

û(x̂) =


 a1 + b1x̂

a2 + b2ŷ


 , (a1, a2, b1, b2) ∈ R4, (2.30)

for quadrilaterals and on three-dimensional hexahedra,

û(x̂) =




a1 + b1x̂

a2 + b2ŷ

a3 + b3ẑ


 , (a1, a2, a3, b1, b2, b3) ∈ R6. (2.31)

2.6.3 The first-order Brezzi–Douglas–Marini space

The Brezzi–Douglas–Marini space of order one, BDM1(K̂), defines a velocity field

with normal traces varying linearly on each element face. The space was created for

two-dimensional elements by Brezzi, Douglas and Marini [16] and later extended to

three-dimensional elements by [15]. BDM1(K̂) is of higher order than RTN0(K̂), but

it is constructed in such a way that it remains compatible with a piecewise constant

pressure field and it is conforming in H(div, Ω).

In two dimensions, two degrees of freedom per edge are necessary to fully describe

a BDM1 velocity field. This leads to a space of dimension six for triangles and eight for
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Figure 2.5. Two-dimensional RTN0 shape functions for the top edge of the reference
triangle (left) and quadrilateral (right).

Figure 2.6. Three-dimensional RTN0 shape functions for the top face of the refer-
ence tetrahedron (left) and hexahedron (right).
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quadrilaterals. In three dimensions, three degrees of freedom per face are necessary

and the dimensionality reaches 12 for tetrahedra and 18 for hexahedra.

On simplices, BDM1 is simply the space of linear polynomials in d-dimensions:

BDM1 = (P1(K̂))d, (2.32)

such that on triangles,

û(x̂) =


 a1 + b1x̂ + c1ŷ

a2 + b2x̂ + c2ŷ


 , (2.33)

with (a1, . . . , c2) ∈ R6, and on tetrahedra,

û(x̂) =




a1 + b1x̂ + c1ŷ + d1ẑ

a2 + b2x̂ + c2ŷ + d2ẑ

a3 + b3x̂ + c3ŷ + d3ẑ


 , (2.34)

with (a1, . . . , d3) ∈ R12.

On the reference quadrilateral, the space is defined through

BDM1(K̂) = (P1(K̂))2 + r curl(x̂2ŷ) + s curl(x̂ŷ2), (2.35)

which gives velocity fields of the form:

û(x̂) =


 a1 + b1x̂ + c1ŷ − rx̂2 − 2sx̂ŷ

a2 + b2x̂ + c2ŷ + 2rx̂ŷ + sŷ2


 , (2.36)

with the parameters (a1, . . . , s) ∈ R8.
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On the reference hexahedron, BDM1(K̂) is defined through:

BDM1(K̂) = (P1(K̂))3 +

{
6∑

i=1

ricurl(χi)

}
, (2.37)

where (r1, . . . , r6) ∈ R6. The vector functions χi are given by

χ1 =




0

0

x̂ŷẑ


 , χ2 =




0

0

x̂ŷ2


 , χ3 =




x̂ŷẑ

0

0


 ,

χ4 =




ŷẑ2

0

0


 , χ5 =




0

x̂ŷẑ

0


 , χ6 =




0

x̂2ẑ

0


 ,

(2.38)

so that BDM1 velocity fields take the form

û(x̂) =




a1 + b1x̂ + c1ŷ + d1ẑ + (2r2 − r5)x̂ŷ + r1x̂ẑ − r6x̂
2

a2 + b2x̂ + c2ŷ + d2ẑ + (2r4 − r1)ŷẑ + r3x̂ŷ − r2ŷ
2

a3 + b3x̂ + c3ŷ + d3ẑ + (2r6 − r3)x̂ẑ + r5ŷẑ − r4ẑ
2


 , (2.39)

with the parameters (a1, . . . , r6) ∈ R18.

On quadrilaterals and hexahedra, the BDM1 spaces have more degrees of freedom

than the space of first-order polynomials. A naive construction of these spaces using

higher-order polynomials leads to velocity fields with non-constant divergence. The

MFE so-defined does not verify the inf-sup condition [11; 14] (see for example, the

attempt by Nédélec [59]). As presented in (2.35) or (2.37), BDM1 velocities are based

on the space of linear polynomials enriched by curl terms. These terms add linearly

varying normal components on each face, while maintaining a constant velocity di-

vergence. This enriches the velocity space with higher order terms, while maintaining
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Figure 2.7. The two BDM1 recirculation shape functions for the top face of the
reference hexahedron.

its compatibility with a constant pressure space.

The degrees of freedom of BDM1 are the moments of order zero and one on

each face. We use the RTN0 shape functions to describe the net fluxes through the

element faces, that is, the moments of order zero. Recirculation shape functions are

then added to the set of RTN0 shape functions to describe the linear variation of the

normal components across faces.

Thus, one recirculation shape function is associated with each face in two dimen-

sions and two per face in three dimensions. They have a zero net flux through any of

the faces, but describe a linearly varying normal trace along one of the main direc-

tions of the face. As an illustration, Figure 2.7 shows plots of the RTN0 and the two

recirculation shape functions associated with the top face of the reference hexahedral

element.



Chapter 3

MPFA as a new MFE method

In this chapter, we introduce MJT, a new velocity space on hexahedra. This space

is defined by four flux degrees of freedom per face. Postponing the analysis of the

induced MFE method to the next chapter, we introduce the trapezoidal quadrature

rule that localizes the MFE method into an MPFA finite volume discretization. The

various discretizations are tested at the end of the chapter by challenging numerical

experiments.

3.1 Relationship between FV and MFE methods

Despite the wide use of MPFA methods in the oil industry, their analysis is still

relatively limited by the mathematical framework on which they rely. The study of

finite volume discretizations is often easier in the context of finite element methods.

Therefore, much research has been devoted to establishing relationships between finite

volume and finite element methods [7; 42–44; 68; 71].

In their seminal work, Russell and Wheeler [64] established the equivalence be-

tween traditional finite differences and certain mixed finite elements (the lowest or-

der Raviart–Thomas space, RT0 [63]) with quadrature (a midpoint-trapezoidal rule).

38
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Analysis of the method, including superconvergence results, followed in [69]. Arbo-

gast et al. [8; 9] extended that work to full-tensor coefficients in 3D. They used an

expanded mixed method (also based on the lowest-order Raviart–Thomas–Nedelec

space, RTN0 [58; 63]), where they discretized the scalar, its gradient, and the vector

variable. This approach leads to a 9-point stencil in 2D and a 19-point stencil in

3D. Unfortunately, these discretization schemes may be associated with severe loss of

accuracy in the presence of discontinuous coefficients. In a recent paper, Chen and

Yu [24] obtain a cell-centered finite-difference method with a 19-point stencil using

the BDDF1 space [15] and certain quadrature rules. They do not provide, however,

a link to MPFA methods.

Higher-order finite-volume methods on rectangles derived from mixed finite ele-

ments with quadrature have been developed and analyzed in [19]. These high-order

methods are not cell-centered schemes. Klausen and Winther [43; 44] proved conver-

gence of the MPFA O-method in 2D by means of a broken RT0 space.

Recently, the link between the Brezzi–Douglas–Marini mixed finite element method

of order one and MPFA has been established in the context of numerical discretiza-

tion [70] and streamline simulation[49; 54; 55] [55]. Wheeler and Yotov [70] used the

BDM1 space [15; 16] and numerical quadrature for proving convergence of MPFA

on two-dimensional triangles and quadrilaterals and three-dimensional tetrahedra.

Three-dimensional hexahedral elements were not considered.

The underlying reason for the difficulty in extending this approach to hexahedra is

obtaining a vector space conforming in H(div) that localizes to a finite volume method

under appropriate quadrature. To localize the MFE into an MPFA, the velocity

space needs to be defined by vertex-based shape functions. Therefore, the number

of unknowns defining the velocity field on a face needs to be equal to the number

of face vertices. On two dimensional triangular, or quadrilateral grids, an element

edge is defined by two vertices. The space BDM1, defined by two shape functions
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per edge, can thus be localized into an MPFA. On three dimensional tetrahedra,

three vertices are necessary to define the triangular faces. The extension of BDM1

to three dimensions [15] is defined using three degrees of freedom per face, which

allows the corresponding MFE method to be reduced to an MPFA by the trapezoidal

quadrature.

BDM1 cannot, however, be localized by this approach on hexahedra. In this

chapter, we present a new vector space, MJT, defined on the reference hexahedron

that is conforming in H(div), and that has four degrees of freedom per face [52; 53].

The construction of the new space is similar to that of the BDM class of spaces [15;

16] (enrichment of the space of linear polynomials by divergence-free polynomials of

higher degree), but does not contain the space BDM1.

This chapter is focused on the introduction of the MJT space and on the presenta-

tion of its localization into an MPFA discretization. The consistency and convergence

analyses of both the new MFE and the MPFA methods are given in next chapter.

3.2 A new mixed finite element

In this section, we present the new mixed finite element. The key requirement on

the velocity space is that it allows for localization into a cell-centered finite volume

method. For this, we need different degrees of freedom from those of existing spaces

(like RTN [58; 63] or BDM [15; 16]). We design a space that is conforming in H(div)

and that has four degrees of freedom on each quadrilateral face of the hexahedral

element.

We define our MFE on the reference hexahedron element K̂ = [−1, 1]3. Although

the velocity space can be used with general hexahedra in physical space, we restrict

our analysis to grids formed of rectangular parallelepipeds K of size hx × hy × hz.

The mapping x = ϕ(x̂) from reference to physical space is therefore affine, with a
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constant, diagonal Jacobian matrix:

D =
∂ϕ(x̂)

∂x̂
=




hx/2 0 0

0 hy/2 0

0 0 hz/2


 , detD =

hxhyhz

8
. (3.1)

The mapping of a scalar field is simply:

q(x) = q̂(x̂). (3.2)

A vector function v̂(x̂) ∈ (L2(K̂))3 is mapped according to the Piola transform [17]:

v(x) =
1

detD(x̂)
D(x̂)v̂(x̂). (3.3)

In our case, since D(x̂) = const, a vector field is transformed by simple stretching of

the individual components.

In the remainder of this section, we work in the reference configuration exclu-

sively. Therefore, we drop the hat notation although we still denote quantities on the

reference element.

3.2.1 Velocity space

We introduce the MJT space

V (K) = P 1(K) + Span{curlχi, i = 1, . . . , 12}, (3.4)
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where

χ1 =




0

0

xy2


; χ2 =




0

xz2

0


; χ3 =




0

yz2

0


; χ4 =




0

0

xy2z


 ;

χ5 =




0

0

x2y


; χ6 =




0

0

x2z


; χ7 =




yz2

0

0


; χ8 =




xyz2

0

0


 ;

χ9 =




xy2

0

0


; χ10 =




0

x2z

0


; χ11 =




y2z

0

0


; χ12 =




0

x2yz

0


.

The components vx,vy,vz of a vector field v ∈ V (K) take the form:

vx =a0 + a1x + a2y + a3z + 2r1xy − 2r2xz

− 2r3yz + 2r4xyz + (r5 − r10)x
2 − r12x

2y,
(3.5)

vy =b0 + b1x + b2y + b3z − 2r5xy − 2r6xz

+ 2r7yz + 2r8xyz + (r11 − r1)y
2 − r4y

2z,
(3.6)

vz =c0 + c1x + c2y + c3z − 2r9xy + 2r10xz

− 2r11yz + 2r12xyz + (r2 − r7)z
2 − r8xz2.

(3.7)

The essential observation is that a vector field v ∈ V (K) has a bilinear normal

component on every face of the reference hexahedron.

Lemma 3.2.1. dimV (K) = 24.

Proof. It suffices to show that the twelve polynomial vectors added to P 1(K) through

curlχi, i = 1, . . . , 12 are independent. Let v ∈ Span{curlχi, i = 1, . . . , 12} with
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v = 0. The conditions vx = vy = vz = 0 yield:

2r1xy − 2r2xz − 2r3yz + 2r4xyz + (r5 − r10)x
2 − r12x

2y = 0,

−2r5xy − 2r6xz + 2r7yz + 2r8xyz + (r11 − r1)y
2 − r4y

2z = 0,

−2r9xy + 2r10xz − 2r11yz + 2r12xyz + (r2 − r7)z
2 − r8xz2 = 0.

(3.8)

The first component shows that

r1 = r2 = r3 = r4 = r12 = 0, r5 = r10. (3.9)

The second component implies that

r5 = r6 = r7 = r8 = 0, r11 = r1. (3.10)

From Equations (3.9)–(3.10) we have that r10 = r11 = 0. The third component yields

r9 = 0.

We define the projection operator ΠK : H1(K) → V (K) as follows:

〈(v −ΠKv) · nf , q〉f = 0, ∀q ∈ Q1(f), (3.11)

where f represents a face, and nf its outward unit normal. Q1(f) is the space of

bilinear functions on f . The number of degrees of freedom defining the projection

operator is 6 × dimQ1(f) = 24, and is therefore equal to the dimension of V (K).

(We will later see that we associate the degrees of freedom with the component of the

vector field normal to each face at the vertices of that face.)

Theorem 3.2.2.

1. The degrees of freedom defining ΠK determine V (K).

2. The global space V h induced by V (K) is conforming in H(div).
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Proof. Since the number of degrees of freedom defining ΠK is equal to the dimension

of V (K), it suffices to establish unisolvence to prove the first assertion. We must

show that for ΠKv ∈ V (K), if all the degrees of freedom 〈ΠKv · nf , q〉f , ∀q ∈ Q1(f)

vanish, then ΠKv ≡ 0. From the form of the vector field (3.5)–(3.7), we have the

following expressions for ΠKv ·nf on the faces x = ∓1, y = ∓1, z = ∓1, respectively:

ΠKv · nx=∓1 =(a0 ∓ a1 + (r5 − r10)) + (a2 ∓ 2r1 − r12)y

+ (a3 ± 2r2)z + (−2r3 ∓ 2r4)yz,
(3.12)

ΠKv · ny=∓1 =(b0 ∓ b2 + (r11 − r1)) + (b1 ± 2r5)x

+ (b3 ± 2r6 − r4)z + (−2r6 ∓ 2r8)xz,
(3.13)

ΠKv · nz=∓1 =(c0 ∓ c3 + (r2 − r7)) + (c1 ∓ 2r10 − r8)x

+ (c2 ± 2r11)y + (−2r9 ∓ 2r12)xy.
(3.14)

Because ΠKv · nf ∈ Q1(f), vanishing degrees of freedom imply that the coefficients

of the monomials in Equations (3.12)–(3.14) vanish. This yields 24 conditions on the

coefficients of the vector field, which we write as a 24× 24 linear system of equations:

Mξ = 0, (3.15)

where ξ = [a0, . . . , a3, b0, . . . , b3, c0, . . . , c3, r1, . . . , r12]
T . It can be checked that M has

full rank, so ξ = 0 and the first assertion follows.

To prove the second assertion, we must show that if the degrees of freedom on a

face f vanish, then the normal component ΠKv · nf ≡ 0 on f . This immediately

follows from the fact that ΠKv · nf ∈ Q1(f) for all faces.
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3.2.2 Pressure space

We define the space for the scalar variable on the reference element K as

W (K) = P0(K), (3.16)

and the associated projection operator PK : L2(K) → W (K) through

(p− PKp, q)K = 0, ∀q ∈ W (K). (3.17)

Remark 3.2.3. Our choice of velocity and pressure spaces satisfies that

divV (K) = W (K). (3.18)

3.2.3 The new mixed finite element

We define our finite element in the sense of Ciarlet [25] as the following triplet

(K, M (K),N (K)):

Definition 3.2.4.

1. The reference domain K = [−1, 1]3.

2. The finite-dimensional space of functions on K:

M(K) = V (K)×W (K). (3.19)

3. The set of degrees of freedom for the velocity and pressure, respectively:

〈ΠKv · nf , q〉f , ∀q ∈ Q1(f), (3.20)

(PKp, q)K , ∀q ∈ W (K). (3.21)
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Lemma 3.2.5. The local projection operators ΠK and PK satisfy the following com-

mutativity property:

divΠKv = PKdivv ∀v ∈ H1(K). (3.22)

Proof. Let v ∈ H1(K) and let q ∈ W (K). Using the Green formula for v and its

projection ΠKv ∈ V (K), we have

(div (v −ΠKv) , q)K = −(v −ΠKv,gradq)K + 〈(v −ΠKv) · n, q〉∂K . (3.23)

Since q ∈ W (K) ≡ P0(K), the first term on the right hand side of Equation (3.23)

vanishes. Also, from the definition of ΠK , the second term is identically equal to

zero. Equation (3.23) reduces to

(divΠKv, q)K = (divv, q)K (3.24)

or, equivalently,

PKdivΠKv = PKdivv. (3.25)

Since W (K) = divV (K), then divΠKv ∈ ImPK and the lemma follows.

Remark 3.2.6. Property (3.22) is often expressed by stating that the following diagram

commutes:
H1(K)

div−−−→ L2(K)

ΠK

y
yPK

V (K)
div−−−→ W (K).

(3.26)
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3.3 Trapezoidal quadrature

For v̂, û ∈ V̂ (K̂), we introduce the trapezoidal quadrature on the reference ele-

ment K̂:

(v̂, k̂
−1

û)Q̂,K̂ :=
8∑

i=1

v̂(x̂i) · k̂−1
(x̂i)û(x̂i), (3.27)

where x̂i refers to the coordinates of the ith vertex of the reference element. Using

the coordinate mapping and the Piola transform, we have, for element K in physical

space:

(v, k−1u)K =

(
1

detD(x̂)
D(x̂)v̂(x̂), k−1 1

detD(x̂)
D(x̂)û(x̂)detD(x̂)

)

K̂

= (v̂, k̂
−1

û)K̂ ,

(3.28)

where k̂ = detDD−1kD−t is the pull-back of the permeability tensor [48]. The quadra-

ture rule on element K is then defined as:

(v, k−1u)Q,K := (v̂, k̂
−1

û)Q̂,K̂ . (3.29)

We extend this definition to functions v, u ∈ V h by defining the global quadrature

(v, k−1u)Q =
∑

K∈Th

(v, k−1u)Q,K . (3.30)

Lemma 3.3.1. The form (·, k−1·)Q is an inner product in V h and (·, k−1·)1/2
Q is a

norm on V h equivalent to ‖ · ‖L2(Ω).

Proof. Because the linearity and symmetry are trivial, it suffices to verify positiveness

to prove that (·, k−1·)Q is an inner product in V h. Let v ∈ V h. On any element K, we

can express v|K as a linear combination of the shape functions N i describing V (K).

From Equations (2.14) and (3.29), and because k is a uniformly positive, bounded
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tensor, we have

c0‖v|K‖2
L2(K) ≤ (v|K , k−1v|K)Q,K ≤ c1‖v|K‖2

L2(K). (3.31)

From Equation (3.30), we have, globally,

C0‖v‖2
L2(Ω) ≤ (v, k−1v)Q ≤ C1‖v‖2

L2(Ω). (3.32)

The lower bound of Equation (3.32) proves the positivity of (·, k−1·)Q. The upper

bound of Equation (3.32) proves that (·, k−1·)1/2
Q is a norm equivalent to ‖ ·‖L2(Ω).

Let us now consider the mixed finite element method perturbed by the application

of the quadrature (3.30): we seek (ũh, p̃h) ∈ Mh such that

(vh, k
−1ũh)Q − (divvh, p̃h) = −〈vh · n, p̄〉ΓD

∀vh ∈ V h, (3.33)

(qh, divũh) = (qh, f) ∀qh ∈ Wh. (3.34)

The tilde indicates the perturbation due to the numerical quadrature.

3.4 Localization into MPFA

In the MFE system (2.16), the elements Aij of the matrix A represent the interaction

between the ith and jth velocity unknowns:

Aij = (Nu
i , k

−1Nu
j )Q. (3.35)

The new velocity space is designed so that each velocity shape function vanishes at all,

but one vertex (Figures 3.1–3.2). Since the trapezoidal quadrature only involves the

grid vertices, the elements Aij can be nonzero only when they involve two unknowns
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Figure 3.1. The four vertex-based MJT shape functions for the top face of the
reference hexahedron.

representing velocity components on the same vertex.

Around a given vertex v, a local system can thus be formed, which involves only

the twelve velocity unknowns Ui (four in each direction, see Figure 3.3) located

at that vertex, and the cell-centered pressures Pj of the eight elements sharing that

vertex:

Avuv = Bt
vpv, (3.36)
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Figure 3.2. Representation of the four vertex-based MJT velocity degrees of free-
dom associated with a face of a three-dimensional Cartesian grid.

with uv = [U1 U2 ... U12]
t, pv = [P1 P2 ... P8]

t, and Av and Bt
v the restrictions of A

and Bt to the local system. Av is symmetric positive definite and can be inverted to

give the velocity unknowns as a function of the pressure unknowns:

uv = Muv, with M = A−1
v Bt

v. (3.37)

In multipoint flux approximation methods, each face is divided into four subfaces,

over which the flux is approximated (see, e.g. [1]). An interaction region is formed

around each vertex to determine the fluxes through the twelve subfaces involved from

the eight neighboring cell-centered pressures:

fsubfaces = MMPFApv, (3.38)

where fsubfaces = [f1, ..., f12]
t is the vector of unknown fluxes through the subfaces and

MMPFA is a local transmissibility matrix. Figure 3.3 represents the eight elements

and twelve subfaces involved in an MPFA interaction region for a three-dimensional

rectangular grid.
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Figure 3.3. The eight elements (dotted line) and twelve subfaces (solid lines) of
an MPFA interaction region and their associated twelve MJT velocity
degrees of freedom (arrows) for a three-dimensional Cartesian grid.
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Although the elements of the matrices M and MMPFA are too complex to be

reported here, it can be checked analytically that,

M = MMPFA. (3.39)

Therefore, the degrees of freedom of the new velocity space correspond exactly to

the subfluxes of the MPFA O-method. The new mixed finite element method with

the trapezoidal quadrature is nothing else than the MPFA O-method for rectangular

hexahedral grids (REFERENCES).

To visualize the localizing effect of the trapezoidal quadrature, let us re-write (2.16)

as (2.22):

C p = R.

When the mixed finite element system is fully integrated, A−1 is a full matrix, which

leads to a full matrix C. However, sub-integration by trapezoidal quadrature renders

a block-diagonal matrix A and, in turn, a block-diagonal inverse A−1 (12×12 blocks).

Matrix C becomes sparse and the MPFA O-method is recovered. Figure 3.4 repre-

sents the matrix C obtained on a 3 × 3 × 3 grid (27 elements) with the MJT space

for the following three cases:

1. Full integration. C is full.

2. Trapezoidal quadrature and diagonal permeability tensor. The classical 7-point

stencil of the finite difference or TPFA method is recovered.

3. Trapezoidal quadrature and full permeability tensor. The discretization leads to

a 27-point stencil that is equivalent to the MPFA-O method.

Figure 3.5 shows the sparse finite volume system with a 27-point stencil obtained

for a 5× 5× 5 Cartesian grid populated with a full-tensor permeability.
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Figure 3.4. Stencils of the fully-integrated (top) and localized new mixed finite
element method in the case of diagonal (bottom-left) and full-tensor
(bottom-right) permeability coefficients.
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Figure 3.5. Matrix of the localized M -based MFE for a 5× 5× 5 grid, reproducing
the well-known structure of the 27-point stencil.

3.5 Numerical experiments

3.5.1 Patch tests

In this section, we test the ability of the various discretizations presented in this thesis

to reproduce a constant velocity field on general hexahedral grids. The RT0-based

MFE method is known to fail such a test, even when the element faces are planar [57].

The performance of higher-order mixed finite element methods is, however, unpub-

lished. BDM1 and MJT will, in general, not reproduce the exact solution for distorted

hexahedral grids, whereas the MPFA O-method is designed to satisfy this test.

The uniform-flow test case is set up in a domain of unit dimensions. The faces

located at x = 0 and x = 1 are assigned Dirichlet boundary conditions with a pressure
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Table 3.1. Average time-of-flight error of the various discretizations on the three
patch tests.

Test case RT0 BDM1 MJT MPFA
1 2.03 % 0 % 0 % 0 %
2 8.91 % 0 % 0 % 0 %
3 1.9 % 0.003 % 0.001 % 1.25 %

of one and zero, respectively. All other boundaries are impermeable. The porous

medium is isotropic and of unit permeability. The exact solution to this problem

consists of a linear pressure variation and a constant velocity field in the x-direction.

Three grids were used to assess the behavior of the various discretizations when

handling general hexahedra:

1. Pyramid : A 3 × 3 × 3 grid consisting of elements that make up the shape of

truncated pyramids. All faces of this grid are planar.

2. Twisted face: The grid is formed by two elements stacked in the vertical direc-

tion. The face shared by the two elements has a saddle shape. It is twisted in

such a way that there is no net flow through it, even though it is not aligned

with the flow direction.

3. General hexahedra: A 4 × 4 × 4 grid, shown in Figure 3.8, which consists of

general hexahedra with curved faces.

The first two grids are inspired by the test cases of Naff et al. [57]

To assess the quality of the velocity discretization on these grids, we used the

algorithm presented in Chapter 5 to trace the exact streamlines corresponding to the

flow field. We compare the numerical travel time necessary to completely cross the

domain to its theoretical unit value. The errors of each method for the three grids

are reported in Table 3.1.
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Figure 3.6. RT0 (left) failing and BDM1 (right) passing the first patch test involving
elements in shape of truncated pyramids.

Figure 3.7. RT0 (left) failing and BDM1 (right) passing the second patch test in-
volving a nonplanar face.

It is clear that for the first two test cases, RT0 does not produce the exact solution,

while BDM1 does. Figure 3.6 (pyramid grid) and Figure 3.7 (twisted grid) show

sixteen streamlines obtained with the RT0 and BDM1 mixed finite element methods.

For these two cases, the fully-integrated and reduced-integrated MJT-based mixed

finite element method yield exact streamlines, which therefore overlap with those

from BDM1.

High-order mixed finite element methods, however, are not guaranteed to represent
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Figure 3.8. 4× 4× 4 grid of general hexahedra used for the third patch test.

a constant velocity field exactly on general hexahedral grids. The reason behind this

behavior is the highly nonlinear dependence of the determinant of the Jacobian J on

the geometry in the Piola transform of the velocity. Figure 3.9 shows the streamlines

for the third test case (the distorted hexahedral grid of Figure 3.8). In this case, even

though very accurate, the higher order mixed methods do not represent the uniform

flow test case exactly. It is also apparent that, in this case, reduced integration

degrades the global accuracy of the MJT-based mixed finite element method.

3.5.2 Monotonicity properties

Exact solutions of the elliptic pressure equation must satisfy the maximum principle:

in the absence of sources or sinks, the pressure inside the domain cannot be above

(below) the maximum (minimum) value at the boundary. This property is violated by

most discretization methods, when the permeability anisotropy is large and misaligned

with the simulation grid. In this section, we test the monotonicity of the various
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Figure 3.9. Streamlines obtained by RT0 (top-left), fully integrated BDM1 (top-
right), fully integrated MJT (bottom-left) and localized MJT (bottom-
right) for the third patch test.

discretizations presented in this paper.

The test problem is defined on a domain of unit dimensions discretized with a

9 × 9 × 9 Cartesian grid. The boundaries of the domain are set to a zero pressure

and the center gridcell is fixed at unit pressure. The permeability is homogeneous,

but highly anisotropic. The principal values of the permeability tensor are (100, 1, 1).

The principal direction associated with the largest permeability is in the horizontal

(x, y)-plane, and forms an angle θ with the x-axis.



CHAPTER 3. MPFA AS A NEW MFE METHOD 59

In view of the maximum principle, the pressure should be nonnegative. The

magnitude of the negative values obtained with a numerical method can, therefore,

be considered as a measure of the severity of non-monotonicity. In Figure 3.10,

we plot the minimum value of the pressure computed with the different methods, as

a function of the rotation angle θ of the permeability tensor. The first observation

is that for such a high permeability anisotropy, all methods considered here (RT0,

BDM1, MJT and localized-MJT) produce non-monotonic solutions for some range

of the rotation angle θ. Not all methods, however, produce equally unsatisfactory

results. The RT0 discretization is the worst, yielding non-monotonic solutions for

all θ, with minimum pressures around pmin ≈ −0.18 for θ ∈ [20◦, 45◦]. The mixed

finite element discretizations based on the BDM1 space and the new MJT space

produce much better (and similar) results: minimum pressures around pmin ≈ −0.03,

and monotonic solutions when θ approaches 45◦. This monotonic behavior in the limit

θ → 0◦ and θ → 45◦ is preserved by the localized version of the MJT method. For

intermediate values of θ, however, the quality of the solution degrades substantially

(pmin ≈ −0.15).

3.6 Summary

In this chapter, we introduced a new mixed finite element method for general hexa-

hedral elements. The method is based on a new velocity space defined by the com-

ponents of the velocity field at the face vertices, which generates a bilinear velocity

approximation on each face. The new velocity space induces the commutativity prop-

erty (3.22), which is used to show the consistency proof presented in the next chapter.

The vertex-based trapezoidal quadrature was then introduced. It was shown to

form an inner product in V h but does not integrate the MFE system exactly. Be-

cause the MJT velocity shape functions are vertex-based, the trapezoidal quadrature
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Figure 3.10. Monotonicity test of the various discretization methods for a rotating
permeability tensor with 100/1 anisotropy ratio.

localizes the interactions between the velocity degrees of freedom. The velocity un-

knowns can be eliminated through the solution of local systems that correspond to

the MPFA systems formed within the interaction regions. This shows that the the

localized MJT method is, in fact, the sparse (local support) MPFA O-method.

Finally, we compared via numerical experiments the performance of classical (RT0

and BDM1) MFE methods to the MJT-based discretization, and to MPFA. The MJT-

based method was found to be the most robust discretization, in terms of sensitivity

to grid distortion and permeability anisotropy.



Chapter 4

Convergence analysis

This chapter contains the mathematical analysis of the MJT-based MFE method.

MJT is shown to verify the Babuška-Brezzi condition, which establishes the consis-

tency of the induced MFE method. The error analysis of the BDM spaces can be

carried out without modifications for the MJT space, which is thus proved convergent

and optimal error estimates are provided.

The influence of the localizing trapezoidal quadrature on the consistency and

convergence of the MFE method is then investigated. An error analysis shows that

although the convergence is affected by the inexact quadrature, the MPFA method

induced by the inexact integration of MJT remains convergent.

4.1 Consistency and convergence of the new MFE

Let V̂ (K̂) and Ŵ (K̂) be, respectively, the velocity and pressure spaces on the refer-

ence element, as defined above. Let V (K) and W (K) be their equivalent on physical

space, defined via the transformations (3.3) and (3.2), respectively. Now, let ΠK

and PK be the local projection operators (in physical space) associated with V (K)

and W (K). Also, let hK = diam(K) = max{hx, hy, hz}.

61



CHAPTER 4. CONVERGENCE ANALYSIS 62

The approximation properties of the projection operators are well known [17].

Since the mapping from reference to physical space is affine, V (K) ⊃ P 1(K) and

W (K) = P0(K), and we have

‖v −ΠKv‖L2(K) ≤ C‖v‖Hr(K)h
r
K , 1 ≤ r ≤ 2. (4.1)

‖div(v −ΠKv)‖L2(K) ≤ C‖divv‖Hr(K)h
r
K , 0 ≤ r ≤ 1. (4.2)

‖q − PKq‖L2(K) ≤ C‖q‖Hr(K)h
r
K , 0 ≤ r ≤ 1. (4.3)

We have the local properties of our mixed finite element. In order to construct

the global spaces, let Th be a partition of the domain Ω into rectangular paral-

lelepipeds {K}. We define the global spaces

V h ≡ V (Th) := {v ∈ H0,N(div, Ω) : v|K ∈ V (K) ∀K ∈ Th} , (4.4)

Wh ≡ W (Th) :=
{
q ∈ L2(Ω) : q|K ∈ W (K) ∀K ∈ Th

}
, (4.5)

Mh := V h ×Wh. (4.6)

We extend the projections ΠK and PK to H1(Ω) and L2(Ω), respectively, in the

classical way:

Πh : H1(Ω) → V h with Πh|H1(K) = ΠK , (4.7)

Ph : L2(Ω) → Wh with Ph|L2(K) = PK . (4.8)

The global commutativity property

H1(Ω)
div−−−→ L2(Ω)

Πh

y
yPh

V h
div−−−→ Wh,

(4.9)
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and global approximation properties

‖v −Πhv‖L2(Ω) ≤ C‖v‖Hr(Ω)h
r, 1 ≤ r ≤ 2. (4.10)

‖div(v −Πhv)‖L2(Ω) ≤ C‖divv‖Hr(Ω)h
r, 0 ≤ r ≤ 1. (4.11)

‖q − Phq‖L2(Ω) ≤ C‖q‖Hr(Ω)h
r, 0 ≤ r ≤ 1. (4.12)

follow immediately from the local properties [17].

Theorem 4.1.1. There exists a unique solution (uh, ph) ∈ Mh to the discrete prob-

lem (2.12)–(2.13). Let (u, p) ∈ V ×W ≡ H0,N(div, Ω)×L2(Ω) be the solution to the

continuous problem (2.10)–(2.11). Then we have the following error estimates:

‖u− uh‖L2(Ω) ≤ Chr‖u‖Hr(Ω), 1 ≤ r ≤ 2. (4.13)

‖div(u− uh)‖L2(Ω) ≤ Chs‖divu‖Hs(Ω), 0 ≤ s ≤ 1. (4.14)

‖p− ph‖L2(Ω) ≤ Ch
(‖p‖H1(Ω) + ‖u‖H(div,Ω)

)
. (4.15)

Proof. We define

Zh = {v ∈ V h : (divv, q) = 0 ∀q ∈ Wh} . (4.16)

It is well known [17] that a unique solution (uh, ph) ∈ V h × Wh exists if the pair

(V h,Wh) is such that the following conditions are satisfied:

(v, k−1v) ≥ c‖v‖2
H(div,Ω) ∀v ∈ Zh, (4.17)

sup
v∈V h

(divv, q)

‖v‖H(div,Ω)

≥ c‖q‖L2(Ω) ∀q ∈ Wh. (4.18)

Let v ∈ Zh, we have divv ∈ divV h = Wh and since divZh ⊥ Wh, we have

‖divv‖2
L2(Ω) = 0, so that

‖v‖2
H(div,Ω) = ‖v‖2

L2(Ω). (4.19)
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Now, from the ellipticity of the bilinear form (·, k−1·) we have

(v, k−1v) ≥ c‖v‖2
L2(Ω) (4.20)

The coercivity condition (4.17) follows immediately from (4.19)–(4.20).

Since the commutativity property (4.9) holds, the inf-sup condition (4.18) is equiv-

alent to continuity of the velocity projection operator Πh [13], that is:

‖Πhv‖H(div,Ω) ≤ C‖v‖H(div,Ω). (4.21)

To show (4.21), we use the global approximation results (4.10) and the classical inverse

estimates [25]:

‖v‖H1(Ω) ≤ Ch−1‖v‖L2(Ω), (4.22)

‖divv‖H1(Ω) ≤ Ch−1‖divv‖L2(Ω). (4.23)

Indeed,

‖Πhv‖H(div,Ω) ≤ ‖Πhv − v‖L2(Ω) + ‖v‖L2(Ω)

+ ‖div(Πhv − v)‖L2(Ω) + ‖divv‖L2(Ω)

≤ Ch
(‖v‖H1(Ω) + ‖divv‖H1(Ω)

)
+ ‖v‖H(div,Ω)

≤ C
(‖v‖L2(Ω) + ‖divv‖L2(Ω)

)
+ ‖v‖H(div,Ω). (4.24)

The error estimates (4.13)–(4.15) follow directly from the analysis in Brezzi et al. [16]

since the derivation of the estimates depends only on the approximation properties

of Πh and Ph.
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4.2 Consistency and convergence of MPFA

In this section, we evaluate the influence of the inexact numerical quadrature used to

localize the mixed finite element method on the convergence of the cell-centered finite

difference method. The structure of the proof follows that of Wheeler and Yotov [70],

but is simplified as we restrict the study to rectangular grids.

4.2.1 Consistency

Theorem 4.2.1. The perturbed mixed finite element problem (3.33)–(3.34) admits a

unique solution (ũh, p̃h) ∈ Mh.

Proof. We proceed as in the proof of Theorem 4.1.1. The inf-sup condition (4.18) is

not affected by the quadrature (in particular the commutativity property (4.9) holds).

Therefore, it suffices to prove coercivity of (·, k−1·)Q in Zh, that is,

(v, k−1v)Q ≥ c‖v‖2
H(div,Ω) ∀v ∈ Zh, (4.25)

which is established as in the proof of Theorem 4.1.1, simply replacing condition (4.20)

by the lower bound in (3.32).

4.2.2 Preliminary results

First, we introduce the lowest order Raviart–Thomas–Nedelec space [58; 63] directly

on a rectangular parallelepiped in physical space,

RTN 0(K) = Q0(K) + xQ0(K), (4.26)
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and the associated projection Π0
K : H1(K) → RTN 0(K) such that

〈(
v −Π0

Kv
) · nf , q

〉
f

= 0, ∀q ∈ P0(f). (4.27)

We naturally extend RTN 0(K) and Π0
K to Ω:

RTN 0
h :=

{
v ∈ H0,N(div, Ω) : v|K ∈ RTN 0(K) ∀K ∈ Th

}
(4.28)

Π0
h : H1(Ω) → RTN 0

h with Π0
h|H1(K) = Π0

K . (4.29)

We recall the continuity of Π0
h,

‖Π0
hv‖L2(Ω) ≤ C‖v‖L2(Ω), (4.30)

the approximation property,

‖v −Π0
hv‖L2(Ω) ≤ Ch‖v‖H1(Ω), (4.31)

and a commutativity property, similar to that of Equation (3.24),

(div(v −Π0
hv), q)K = 0 ∀q ∈ P0(K). (4.32)

We now prove several lemmas that will be used in the next subsection to establish

convergence of the cell-centered finite difference method.

Lemma 4.2.2. (v −Π0
Kv,v0)Q,K = 0, ∀v ∈ V (K), ∀v0 ∈ P 0(K).

Proof. It suffices to prove the assertion for v0 = (1, 0, 0)t on the reference element,
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and the lemma will follow by symmetry. Let v0 = (1, 0, 0)t, we have

(v −Π0
Kv,v0)Q,K =

〈(
v −Π0

Kv
) · nx=−1,−1

〉
x=−1

+
〈(

v −Π0
Kv

) · nx=1, 1
〉

x=1

(4.33)

since v0 is normal to all but the two faces x = −1 and x = 1. Both face integrals on

the right hand side of (4.33) vanish from the definition of Π0
K in (4.27).

Lemma 4.2.3. ‖ΠKv‖H1(K) ≤ C‖v‖H1(K), ∀v ∈ H1(K).

Proof. We introduce v̄, the projection of v onto the space of constant vectors P 0(K).

We have

|ΠKv|H1(K) = |ΠKv − v̄|H1(K)

≤ ‖ΠKv − v̄‖H1(K)

≤ Ch−1‖ΠKv − v̄‖L2(K) (inverse inequality)

≤ Ch−1
(‖ΠKv − v‖L2(K) + ‖v − v̄‖L2(K)

)

≤ C‖v‖H1(K) (approximation property) (4.34)

where we have used the inverse estimate (4.22) and the approximation property (4.1).

We now finish the proof:

‖ΠKv‖H1(K) ≤ ‖ΠKv‖L2(K) + |ΠKv|H1(K)

≤ ‖ΠKv − v‖L2(K) + ‖v‖L2(K) + |ΠKv|H1(K)

≤ C‖v‖H1(K), (4.35)

where we have used the approximation property (4.1) and the bound (4.34) in the

last inequality.
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Lemma 4.2.4. Assume that k−1 ∈ W 1
∞(Th), that is, k−1 ∈ W 1

∞(K) in each ele-

ment K. Then

|(v −Π0
hv, k−1Πhu)Q| ≤ Ch‖u‖H1(Ω)‖v‖L2(Ω) ∀v ∈ V h. (4.36)

Proof. On any element K, we express:

(v −Π0
Kv, k−1ΠKu)Q,K = (v −Π0

Kv, (k−1 − k−1)ΠKu)Q,K

+ (v −Π0
Kv, k−1ΠKu)Q,K .

(4.37)

The first term on the right-hand-side of (4.37) can be bounded using Taylor expansion

and the equivalence of (·, k−1·)1/2
Q,K and ‖ · ‖L2(K):

(v −Π0
Kv, (k−1 − k−1)ΠKu)Q,K

≤ Ch‖k−1‖W 1∞(K)‖ΠKu‖L2(K)‖v −Π0
Kv‖L2(K)

≤ Ch‖k−1‖W 1∞(K)‖u‖L2(K)‖v −Π0
Kv‖L2(K) (continuity of ΠK)

≤ Ch2‖k−1‖W 1∞(K)‖u‖L2(K)‖v‖H1(K) (approximation property)

≤ Ch‖k−1‖W 1∞(K)‖u‖L2(K)‖v‖L2(K) (inverse estimate). (4.38)

From Lemma 4.2.2, the last term of (4.37) is:

(v −Π0
Kv, k−1ΠKu)Q,K

= (v −Π0
Kv, k−1(ΠKu−ΠKu))Q,K

≤ Ch‖k−1‖W 0∞(K)‖ΠKu−ΠKu‖L2(K)‖v −Π0
Kv‖L2(K)

≤ Ch2‖k−1‖W 0∞(K)‖ΠKu‖H1(K)‖v‖H1(K) (approximation property)

≤ Ch2‖k−1‖W 0∞(K)‖u‖H1(K)‖v‖H1(K) (Lemma 4.2.3)

≤ Ch‖k−1‖W 0∞(K)‖u‖H1(K)‖v‖L2(K) (inverse estimate). (4.39)
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Combining (4.38) and (4.39), and summing over all elements, leads to the global

bound in the lemma.

Definition 4.2.5. The global quadrature error for the bilinear form (·, k−1·) is:

EQ(v, k−1u) =
∑

K∈Th

EQ,K(v, k−1u)

=
∑

K∈Th

(
(v, k−1u)K − (v, k−1u)Q,K

)
.

(4.40)

Lemma 4.2.6. Let v ∈ V h, v0 ∈ RTN 0
h, and k−1 ∈ W 1

∞(Th). The error introduced

by the quadrature rule is bounded:

|EQ(v0, k
−1v)| ≤ Ch‖v‖H1(Ω)‖v0‖L2(Ω). (4.41)

Proof. The trapezoidal quadrature is a Newton–Cotes type quadrature, well-known

to be exact for functions in Q1(K). Let v be the projection of v onto P 0(K), the

space of constant vectors on each element. Similarly, let k−1 be the cell-wise average

of k−1. On any element K, we express the quadrature error as:

EQ,K(v, k−1u) = EQ,K(v, (k−1 − k−1)u)

+ EQ,K(v, k−1(u− u)) + EQ,K(v, k−1u). (4.42)

The last term in (4.42) is identically zero, because the trapezoidal rule is exact for

linear functions. Using Taylor expansion, we bound the first term on the right-hand-

side of (4.42):

|EQ,K(v, (k−1 − k−1)u)| ≤ Ch|k−1|W 1∞(K)‖v‖L2(K)‖v0‖L2(K). (4.43)

An application of the Bramble–Hilbert lemma [13; 31] allows us to bound the second
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term:

|EQ,K(v, k−1(u− u))| ≤ Ch‖k−1‖W 0∞(K)|v|H1(K)‖v0‖L2(K). (4.44)

Combining (4.43) and (4.44) we obtain

|EQ,K(v, k−1u)| ≤ Ch‖k−1‖W 1∞(K)‖v‖H1(K)‖v0‖L2(K). (4.45)

Summing over all elements completes the proof.

4.2.3 Velocity error analysis

From the variational formulation of the continuous problem of Equations (2.10)–(2.11)

and the localized mixed finite element method of Equations (3.33)–(3.34), we obtain

the system of error equations:

(v, k−1u)− (v, k−1ũh)Q = (divv, p− p̃h) ∀v ∈ V h, (4.46)

(q, div(u− ũh)) = 0 ∀q ∈ Wh. (4.47)

We can simplify (4.47) using Equation (3.24) to obtain

(q, div(Πhu− ũh)) = 0 ∀q ∈ Wh. (4.48)

Since (Πhu − ũh) ∈ V h and divV h = Wh, we take q = div(Πhu − ũh) in (4.48),

which yields

div(Πhu− ũh) = 0. (4.49)
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We now rewrite (4.46) by introducing Πhu and Php, the projections of the continuous

solution onto the subspaces V h and Wh,

(v, k−1(Πhu− ũh))Q = (v, k−1Πhu)Q − (v, k−1u)

+ (divv, Php− p̃h),
(4.50)

where we have also used the fundamental property of the projection Ph in Equa-

tion (3.17). We expand the first two terms of the right-hand-side of (4.50) using the

projection operator onto RTN 0
h:

(v, k−1Πhu)Q − (v, k−1u)

= (v −Π0
hv, k−1Πhu)Q + (Π0

hv, k−1Πhu)Q − (Π0
hv, k−1Πhu)

− (v −Π0
hv, k−1u)− (Π0

hv, k−1(u−Πhu)).

(4.51)

The first term on the right-hand-side of (4.51) is bounded by Lemma 4.2.4. The

second and third terms were bounded in Lemma 4.2.6. Using v −Π0
hv as the test

function in the continuous variational Equation (2.10), we rewrite the third term on

the right-hand-side of (4.51) as

(v −Π0
hv, k−1u) = (div(v −Π0

hv), p)− 〈(v −Π0
hv) · n, p̄〉ΓD

. (4.52)

The first term on the right-hand-side of (4.52) vanishes by (4.32). Assuming smooth

enough boundary conditions p̄, the last term of (4.52) is zero by definition of the

RTN 0 degrees of freedom (Equation (4.27)), yielding

(v −Π0
hv, k−1u) = 0. (4.53)
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The last term on the right-hand-side of (4.51) is bounded by

|(Π0
hv, k−1(u−Πhu))|
≤ ‖k−1‖W 0∞(Th)‖Π0

hv‖L2(Ω)‖(u−Πhu)‖L2(Ω)

≤ C‖k−1‖W 0∞(Th)‖v‖L2(Ω)‖u−Πhu‖L2(Ω)

≤ Ch‖k−1‖W 0∞(Th)‖v‖L2(Ω)‖u‖H1(Ω), (4.54)

where we have used the fact that k is uniformly bounded, the continuity of Π0
h

as expressed in (4.30), and the approximation property (4.10). Combining Equa-

tions (4.52)–(4.54), we bound (4.51) by

|(v, k−1Πhu)Q − (v, k−1u)| ≤ Ch‖v‖L2(Ω)‖u‖H1(Ω). (4.55)

We now take v = Πhu − ũh as a test function and bound (4.50) using (4.55) and

(4.49):

|(Πhu− ũh, k
−1(Πhu− ũh))Q| ≤ Ch‖Πhu− ũh‖L2(Ω)‖u‖H1(Ω). (4.56)

The equivalence between the two norms (·, k−1·)1/2
Q and ‖ · ‖L2(Ω) yields

‖Πhu− ũh‖L2(Ω) ≤ Ch‖u‖H1(Ω). (4.57)

We can now establish error bounds on the velocity and its divergence for the cell-

centered finite difference method.

Theorem 4.2.7. The cell-centered finite difference method, equivalent to the MPFA
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O-method, admits a first order convergence for the velocity and its divergence:

‖u− ũh‖L2(Ω) ≤ Ch‖u‖H1(Ω), (4.58)

‖div(u− ũh)‖L2(Ω) ≤ Ch‖divu‖H1(Ω). (4.59)

Proof. The approximation property (4.10) and the bound (4.57) yields immediately (4.58).

The property (4.49), combined with the approximation property (4.11), proves (4.59).

4.2.4 Pressure error analysis

Theorem 4.2.8. The cell-centered finite difference method, equivalent to the MPFA

O-method, admits a first order convergence for the pressure:

‖p− p̃h‖L2(Ω) ≤ Ch(‖u‖H1(Ω) + ‖p‖H1(Ω)). (4.60)

Proof. It is well-known that the Raviart–Thomas–Nedelec space satisfies the inf-sup

condition (4.18) [17; 58]. Taking q = Php− p̃h in Equation (4.18), we obtain

‖Php− p̃h‖L2(Ω) ≤ C sup
v∈RT N0

h

(divv, Php− p̃h)

‖v‖H(div,Ω)

. (4.61)

From Equation (4.50) we can write

(divv, Php− p̃h) = (v, k−1(Πhu− ũh))Q − (v, k−1Πhu)Q

+ (v, k−1u)
(4.62)

= (v, k−1(Πhu− ũh))Q − (v, k−1Πhu)Q

+ (v, k−1Πhu) + (v, k−1(u−Πhu)).
(4.63)

We now use Lemma 4.2.6 to bound the second and third terms on the right-hand-side



CHAPTER 4. CONVERGENCE ANALYSIS 74

of (4.63). The first term is bounded by (4.57) and the last term by (4.10), to obtain

‖Php− p̃h‖L2(Ω) ≤ Ch‖u‖H1(Ω). (4.64)

Using the approximation property (4.12) and the triangle inequality in (4.64) con-

cludes the proof.

4.3 Numerical experiments

We now confirm numerically the error estimates of the previous sections. Let Ω =

[0, 1]× [0, 1]× [0, 1]. We introduce the diagonal tensors

k⊥1 =




3 0 0

0 2 0

0 0 1


 , (4.65)

k⊥2 =




3x + 1 0 0

0 2y + 1 0

0 0 z + 1


 , (4.66)

and the full-tensor permeability fields k1 and k2 defined as the rotations of k⊥1 and k⊥2

by 15◦, 30◦ and 45◦ around the x-, y- and z-axis, respectively. To fix ideas, we have

k1 ≈




2.0999 0.2919 −0.7450

0.2919 2.3499 −0.4388

−0.7450 −0.4388 1.5502


 . (4.67)

We define two test cases by associating the permeability fields k1 and k2 to the
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two pressure solutions p1 and p2, with

p1(x, y, z) = (x− x2)(y − y2)(z − z2), (4.68)

p2(x, y, z) = sin(πx) sin(πy) sin(πz). (4.69)

We partition the domain Ω into Cartesian grids with different levels of refinement

(from a 2 × 2 × 2 grid to a 16 × 16 × 16 grid). We impose Dirichlet boundary

conditions on ∂Ω, with prescribed pressures from the true solutions (4.68) and (4.69).

We analyze convergence of the mixed finite element method based on the new velocity

space MJT, as well as its localization into the MPFA O-method using the trapezoidal

quadrature. For comparison, we also provide the numerical convergence results for

the mixed finite element method with the RTN0 and BDM1 spaces. The numerical

errors and convergence rates for the pressure, velocity and velocity divergence in the

L2(Ω) norm are reported in Tables 4.1 and 4.2 for test case 1 and 2, respectively.

Clearly, the numerical experiments confirm the theoretical estimates.

Remark 4.3.1. The numerical error for the divergence of the velocity is the same for

all the discretization methods considered. Equation (2.13) implies

divuh = Phf. (4.70)

We also have, for the continuous solution,

divu = f. (4.71)

Therefore

‖div(uh − u)‖L2(Ω) = ‖Phf − f‖L2(Ω), (4.72)

which is the same for all four discretizations considered, since they have the same
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Table 4.1. Error values and convergence rates for the first example.
Method 1/h ‖p− ph‖L2 ‖u− uh‖L2 ‖div(u− uh)‖L2 |||p− ph|||

2 3.977E-03 4.061E-02 1.947E-01 1.827E-03
4 2.293E-03 2.261E-02 1.080E-01 4.558E-04

RTN0 8 1.188E-03 1.159E-02 5.535E-02 1.151E-04
16 5.996E-04 5.833E-03 2.785E-02 2.889E-05

rate 0.987 0.991 0.991 1.995
2 4.094E-03 2.741E-02 1.947E-01 3.031E-03
4 2.343E-03 8.729E-03 1.080E-01 9.933E-04

BDM1 8 1.197E-03 2.325E-03 5.535E-02 2.709E-04
16 6.008E-04 5.907E-04 2.785E-02 6.931E-05

rate 0.995 1.977 0.991 1.967
2 4.111E-03 2.640E-02 1.947E-01 3.095E-03
4 2.346E-03 8.118E-03 1.080E-01 1.006E-03

MJT 8 1.197E-03 2.138E-03 5.535E-02 2.720E-04
16 6.008E-04 5.416E-04 2.785E-02 6.938E-05

rate 0.995 1.981 0.991 1.971
2 4.688E-03 3.853E-02 1.947E-01 1.068E-03
4 2.423E-03 2.096E-02 1.080E-01 4.559E-04

MPFA 8 1.208E-03 1.049E-02 5.535E-02 1.363E-04
16 6.021E-04 5.226E-03 2.785E-02 3.587E-05

rate 1.004 1.005 0.991 1.926

pressure space Wh.

Remark 4.3.2. The numerical results indicate superconvergence of the pressure. This

is well known for the RTN0 and BDM1 spaces [15], and here we show that it is true

for the new mixed finite element space and for its localized cell-centered version. We

define the norm ||| · ||| based on the difference between the analytical solution and the

numerical solution at the center of each element. To be precise:

|||p− ph||| =
( ∑

K∈Th

|K|(p(x0,K)− ph(K))2
)1/2

, (4.73)

where x0,K is the center of element K. In Tables 4.1 and 4.2 we show that the

convergence rate for |||p− ph||| is of O(h2).
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Table 4.2. Error values and convergence rates for the second example.
Method 1/h ‖p− ph‖L2 ‖u− uh‖L2 ‖div(u− uh)‖L2 |||p− ph|||

2 2.450E-01 2.540E+00 1.533E+01 1.316E-01
4 1.348E-01 1.325E+00 8.549E+00 4.016E-02

RTN0 8 6.893E-02 6.665E-01 4.398E+00 1.054E-02
16 3.465E-02 3.336E-01 2.215E+00 2.669E-03

rate 0.992 0.998 0.990 1.982
2 2.590E-01 2.129E+00 1.533E+01 1.884E-01
4 1.410E-01 6.859E-01 8.549E+00 7.019E-02

BDM1 8 6.998E-02 1.832E-01 4.398E+00 1.956E-02
16 3.479E-02 4.658E-02 2.215E+00 5.026E-03

rate 1.008 1.976 0.990 1.960
2 2.601E-01 2.105E+00 1.533E+01 1.913E-01
4 1.412E-01 6.642E-01 8.549E+00 7.088E-02

MJT 8 6.999E-02 1.760E-01 4.398E+00 1.961E-02
16 3.479E-02 4.466E-02 2.215E+00 5.030E-03

rate 1.008 1.979 0.990 1.963
2 2.538E-01 2.495E+00 1.533E+01 5.223E-02
4 1.364E-01 1.254E+00 8.549E+00 1.841E-02

MPFA 8 6.913E-02 6.179E-01 4.398E+00 5.103E-03
16 3.468E-02 3.072E-01 2.215E+00 1.319E-03

rate 0.995 1.008 0.990 1.952



Chapter 5

A new framework for streamline

tracing

In this chapter, we exploit the MFE framework to propose a new streamline trac-

ing algorithm for general triangular, quadrilateral, tetrahedral and hexahedral grids

populated with tensor permeability coefficients. MFE methods provide a natural

tracing algorithm: the streamlines are integrated from the velocity field which is re-

constructed by interpolation of the flux degrees of freedom with the velocity shape

functions.

For FV discretizations, we make use of the established links with MFE methods.

The velocity field is thus reconstructed by interpolation of the FV fluxes with the MFE

velocity shape functions. This new approach provides a natural way of reconstructing

velocity fields from TPFA or MPFA fluxes. We thereby justify mathematically the

current tracing methods in use for finite difference [60] or TPFA [26] discretizations.

For MPFA, the new algorithm generates more accurate streamlines than existing

methods and avoids the flux post-processing techniques on which they rely [38; 62].

78
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5.1 Streamline tracing for MFE discretizations

5.1.1 General strategy

Our streamline tracing algorithm is based on a particle-tracking concept. A streamline

is traced by following the movement of a fluid particle in time. Since the mixed finite

element method provides a velocity field defined elementwise and not globally, it is

therefore natural to trace streamlines by segments, each segment corresponding to an

underlying element of the simulation grid. The streamline tracing procedure may be

summarized as follows [51]:

• Start at a launching point (x0, t0) in the simulation domain Ω. This defines the

location (in space and time) of the fluid particle that will be followed to trace

the streamline.

• Determine in what element the launching point lies. The tracing will start

within this element.

• Trace the streamline downstream towards a sink. The fluid particle is followed

forward in time. In each element crossed by the streamline:

– Trace the streamline downstream from the point of entry in the element.

– Store the exit point and corresponding time-of-flight.

– Move on to the next downstream element until a sink (element with a

production well) or an outflow boundary is reached.

• Trace the streamline upstream, towards a source. The fluid particle is followed

backwards in time. In each element crossed:

– Trace the streamline upstream from the entry point in the element.

– Store the exit point and time-of-flight.
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– Move on to the next upstream element until a source (element with an

injection well) or an inflow boundary is reached.

5.1.2 Tracing in the reference space

Most streamline tracing methods share the particle tracking approach described

above. They usually differ in the procedure chosen to integrate the streamline within

each element. For example, for low-order accurate methods on general triangular

or rectangular elements, an analytical integration of the streamline path is possi-

ble [26; 60]. When rectangular elements are distorted into general quadrilaterals, the

Jacobian of the coordinate mapping is not constant over the element and the ana-

lytical integration of the streamline is not possible in physical space. Moreover, in

the case of higher-order discretizations, the enrichment of the velocity fields prevents

the decoupling between the x- and y-components of the velocity used by Pollock to

obtain an analytical integration [60].

Because we are interested in tracing streamlines on distorted grids, we propose to

perform the tracing in the reference space and then map the solution to the physical

space. Two main reasons drive this choice. First, the velocity field and stream

function are known analytically on the reference element. Second, working on the

reference element permits a more elegant and efficient implementation of the tracing

algorithm.

To trace streamlines in the reference element, we recall that two mappings need

to be used: the isoparametric mapping of (2.26) for the coordinates, and the Piola

transform of (2.27) for the velocity. The general procedure to trace a streamline

within an element starts with the mapping of the entry point from the physical space

to the reference space. Then, the streamline is integrated and the exit point found in

the reference space. The exit point is finally mapped back to the physical space and

stored.
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Two approaches are possible to obtain the exit point of a streamline in an element:

an algebraic formulation using the stream function, and a numerical integration using

a Runge-Kutta-type method.

5.1.3 Integration of the streamline path

Stream function approach

In two dimensions, we can use the stream functions derived in [41] for the RTN0 and

BDM1 spaces. Using the fundamental property that the stream function is constant

along a streamline, we can write the path of the streamline that passes through a

point (x̂0, ŷ0):

Ψ(x̂, ŷ) = Ψ(x̂0, ŷ0), ∀(x̂, ŷ) ∈ streamline. (5.1)

This approach simplifies the tracing from the solution of an ordinary differential

equation to that of an algebraic equation. Since the stream function has an analytical

expression, the streamline path is known analytically and an efficient Newton method

can be used to solve the algebraic equation for the exit point up to machine precision.

Depending on the functional form of the stream function, (5.1) may lead to mul-

tiple solutions on the boundary of a given element. This situation cannot be encoun-

tered when using an RTN0 discretization, but it is not uncommon for BDM1 velocity

fields. This situation occurs when a streamline enters and exit an element several

times. To find the real exit point among the solutions of the streamline equation, the

time-of-flight is computed for each potential exit location. The correct exit point is

the solution that yields the smallest positive time-of-flight.

Numerical integration approach

A more general approach to obtain the streamline path is to use numerical integration

in time. This approach is valid in two and three dimensions. Because the velocity
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field is known analytically, an efficient numerical integration is possible by solving an

initial value problem for the streamline location x̂ on the reference element:

dx̂

dt̂
= û(x̂), x̂(t̂ = t̂0) = x̂0. (5.2)

In our implementation, we used an explicit Runge–Kutta method of fourth order [30],

which proved to be efficient and robust.

5.1.4 Time-of-flight computation

An integral form of (1.33) provides an expression of the time-of-flight τ along a

streamline L as a function of the arc length s:

τ :=

∫

L

φ

|u(s)| ds. (5.3)

In two cases only, the time-of-flight variable can be computed analytically. First,

for the RTN0 discretization on simplices, the velocity field is constant over each ele-

ment; therefore, the streamline is a straight line and the time-of-flight computation is

trivial. The second case is that of Pollock’s method [60] (that relies on an RTN0 ve-

locity field) on rectangular grids and in the presence of diagonal permeability tensors,

where each component of the velocity field depends exclusively on its own coordinate:

ux(x, y, z) = ux(x), uy(x, y, z) = uy(y) and uz(x, y, z) = uz(z). This decoupling of the

coordinates permits an analytical integration of the time-of-flight.

For general quadrilateral or hexahedral grids, and for higher-order velocity approx-

imations, a numerical integration of the time-of-flight is necessary. For consistency

with the rest of the streamline tracing framework, one must be able to evaluate the

integral in (5.3) on the reference space. Using the Piola transform, we can express the

reference velocity in terms of the physical one and recast the time-of-flight integration
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in terms of the reference coordinates only [41]:

τ =

∫

L̂

φ

|û(ŝ)|J(x̂) dŝ. (5.4)

It is worthwhile noting that the coordinate mapping between the reference and physi-

cal spaces is affine for triangular and rectangular elements. In this case, the Jacobian

is constant over the reference element and can be taken out of the integral in (5.4).

For general quadrilateral elements, however, the Jacobian varies inside the element.

Prévost et al. [62] used the value of the Jacobian at the center of the element as

an approximation. Hægland [37] showed, however, that this choice may lead to erro-

neous results and recommends keeping the Jacobian inside the integral. This explains

why the time-of-flight cannot be integrated analytically on general quadrilaterals even

when a low-order approximation is employed.

In our implementation, the time-of-flight integral of (5.4) is computed using a

quadrature rule when the stream function approach is used for the integration of the

streamline path. When the streamline path is integrated numerically, the time-of-

flight is computed within the Runge–Kutta stepping.

5.2 Streamline tracing for FV discretizations

5.2.1 A new approach

Our strategy to reconstruct the MPFA velocity fields is to interpret the total fluxes

or the subfluxes provided by MPFA as MFE degrees of freedom. This approach is

justified by the established equivalence between the finite volume and the mixed fi-

nite element methods. The shape functions of the MFE velocity spaces are used to

interpolate the TPFA or MPFA fluxes and yield a continuous velocity field within the
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control volume that is consistent with the discrete fluxes provided by the discretiza-

tions. The velocity fields so defined are guaranteed to be divergence-free, curl-free

and to yield a stream function [41].

5.2.2 Low-Order Tracing

The RTN0 space is used to reconstruct velocity fields defined by TPFA fluxes or the

total MPFA fluxes. Since the RTN0 degrees of freedom are defined as the total fluxes

through element edges, we write the reconstructed velocity in the reference space as

v̂(x̂) =

nf∑
j=1

FjN j(x̂), (5.5)

with nf the number of faces per element, Fj the TPFA flux ot the total MPFA flux

through face j and N j the RTN0 shape function corresponding to face j.

On rectangular grids populated with diagonal permeability tensors, we recover

Pollock’s method [60]. On general quadrilateral or hexahedral grids, with the coordi-

nate mapping of (2.26) and the Piola transform of (2.27), we obtain the extension

of Pollock’s method to distorted grids proposed by Cordes and Kinzelbach [26]. We

hereby provide a theoretical justification for these streamline tracing methods.

5.2.3 High-Order Tracing

To reconstruct a higher-order velocity field, the MPFA subfluxes are used. On two-

dimensional triangular or quadrilateral elements and on three-dimensional tetrahedral

elements, the BDM1 space is used to interpolate the MPFA subfluxes. On three-

dimensional hexahedral elements, the new velocity space MJT [52; 53] presented in
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Chapter 3 is used. The reconstructed velocity field is obtained through

v̂(x̂) =

nf∑
j=1

ndof∑
i=1

fj,iN j,i(x̂), (5.6)

where fj,i (i = 1, . . . , ndof ) are the MPFA subfluxes associated with face j. ndof is the

number of MPFA subfluxes defined per face. For two-dimensional grids, ndof = 2,

for the triangular faces of tetrahedra, ndof = 3 and for the quadrilateral faces of

hexahedra, ndof = 4.

The idea of using the MPFA subfluxes in the velocity reconstruction was first

introduced by Prévost et al. [62]. To trace streamlines, Prévost et al. proposed to

divide each control volume into subcells, defined as the regions of the control volume

delimited by the MPFA interaction regions. A flux post-processing technique was used

to recover fluxes through the edges of the interaction regions. The streamlines were

then traced on each subcell using the extension of Pollock’s algorithm to distorted

grids.

On hexahedral grids, Hægland et al. [38] proposed a streamline tracing algorithm

based on a linear interpolation of the corner velocities. These corner velocities are

obtained by a postprocessing of the MPFA subfluxes.

Using BDM1 or MJT to trace streamlines offers three advantages over the ap-

proaches of Prévost et al. and Hægland et al.

• BDM1 and MJT provide a velocity field with respectively linear and bilinear

normal components on control-volume edges, which is clearly more accurate

than the piecewise constant approximation obtained by Prévost et al.

• Although the MJT-based streamline tracing and the corner velocity interpo-

lation method of Hægland et al. both have bilinear normal components on

the faces of the hexahedra, the MJT velocity space provides a velocity field
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within an element which is divergence free, which is, as we saw in Chapter 3,

a necessary condition to prove the inf-sup property. The velocity interpolation

employed by Hægland et al. actually defines the MFE velocity space proposed

by Nédélec [59]. This space was found by Nédélec not to be compatible with a

constant pressure. This leads to a non-consistent and of course non-convergent

mixed finite element method. We argue that the corner velocity interpolation

method will lead to non-physical streamlines and errors in time-of-flight.

• The direct interpolation of the MPFA subfluxes using the MFE velocity shape

functions avoids the flux postprocessing procedures used by Prévost et al. and

Hægland et al.

5.3 Numerical Experiments

5.3.1 Mixed finite element discretizations

In this section, we test the performance of the proposed streamline tracing approach

on cases of increasing complexity. Focusing for now on MFE discretizations, we

systematically compare the behavior of low-order and high-order tracing, both in

terms of accuracy and grid sensitivity. For a clearer visualization of the results, we

here focus on two-dimensional examples.

Validation on a uniform flow field

This first test case is designed for validation purposes. It tests the ability of the tracing

method to produce exact results for a constant velocity field. The domain considered

is the unit square: Ω = [0, 1]2. The permeability is assumed to be homogeneous,

isotropic and equal to 1. Fixed pressures are imposed on the left and right boundaries

and they take values of 1 and 0, respectively. The top and bottom boundaries are
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impermeable. In this case, the exact streamlines are horizontal straight lines and a

fluid particle takes a unit time to travel through the entire domain.

To test the robustness and accuracy of the tracing algorithm on this simple prob-

lem, the domain was discretized with a variety of grids (Figure 5.1):

• A 10× 10 Cartesian grid serves as the base grid for our comparisons.

• The chevron grid is formed by keeping the vertical lines of the Cartesian grid

and reorienting the horizontal edges to obtain a chevron-like pattern.

• A random movement of the Cartesian grid nodes creates the random grid. The

node movement is bounded to ensure element convexity.

• The skewed grid is obtained from a diagonal distortion of the Cartesian grid.

All four grids have 100 elements. Four triangular grids were created from these

quadrilateral grids by splitting each quadrilateral into two triangles. By construction,

the triangular grids have twice as many elements as the quadrilateral grids: they are

all composed of 200 elements.

Ten streamlines were traced on each grid. Figure 5.1 shows the streamlines traced

on the four quadrilateral grids using the low-order RTN0 approximation. The stream-

lines are drawn with thick red lines, and the grid with thin black lines. The back-

ground colors represent the pressure field.

The results obtained in this first test case indicate that regardless of the type

of grid used (Cartesian, chevron, random or skewed), the type of building elements

(triangles or quadrilaterals), or the type of discretization (RTN0 or BDM1), all stream-

lines traced are perfect straight lines. Unit time-of-flight were invariably obtained and,

therefore, the tracing algorithm produces an exact time-of-flight in this case. This is

to be expected given that both RTN0 and BDM1 elements satisfy the patch-test [72],

that is, they can reproduce constant velocity fields in two dimensions.
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Figure 5.1. RTN0 streamlines for the uniform flow problem on a Cartesian (top-
left), chevron (top-right), random (bottom-left) and skewed (bottom-
right) grids.
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Robustness to grid distortion for a quarter of a five-spot problem

To quantify the robustness of the low-order and high-order versions of the streamline

tracing algorithm, we study how much grid distortion affects the accuracy of the

streamlines in terms of location and time-of-flight.

Using the same domain and grids as above, we now enforce pressures of 1 and 0

at the boundary edges of the bottom-left and top-right elements, respectively. The

rest of the domain boundary is impermeable. The Dirichlet boundary elements are

made identical regardless of the grid used to ensure comparable results.

Seven streamlines are traced on each grid and for each type of discretization. These

streamlines are launched from equally spaced points along the diagonal of the domain.

As an illustration, Figures 5.2 and 5.3 compare the streamlines traced using the RTN0

and BDM1 discretizations for the quadrilateral chevron and the triangular Cartesian

grids, respectively. These two examples clearly show the strong influence of grid

distortion on streamline accuracy for an RTN0 discretization as well as the improved

robustness demonstrated by BDM1. The higher-order method yields streamlines that

are much smoother and much less sensitive to the distortion of the underlying grid.

Notice, for example, the severe degree of nonsymmetry present in the streamlines

computed using the low-order method on the chevron grid (Figure 5.2): the center

streamline displays a tortuous path, when it should be a perfect straight line. This

behavior improves dramatically when the higher-order approximation is used.

To quantify the apparent increased accuracy and robustness of the streamlines

based on the higher-order velocity approximation, we compute the error in the time-

of-flight for each of the seven streamlines. Reference values are obtained using am

80×80 Cartesian grid with a BDM1 discretization. In Table 5.1 we report the average

(arithmetic mean) time-of-flight error for each grid and type of discretization. We

note the following observations:
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Figure 5.2. RTN0 (left) and BDM1 (right) streamlines on a quadrilateral chevron
grid.

Table 5.1. Average time-of-flight error for the diagonal flow problem.

Element type Discretization Cartesian Chevron Random Skewed
Triangle RTN0 11.39 % 16.09 % 13.05 % 9.14 %

BDM1 4.06 % 4.62 % 4.12 % 4.02 %
Quadrilateral RTN0 12.21 % 41.29 % 13.09 % 44.58 %

BDM1 2.45 % 5.51 % 2.13 % 2.85 %

1. For all grids, the time-of-flight error is lower —sometimes much lower— if the

high-order BDM1 approximation is used, rather than the low-order RTN0 ap-

proximation. BDM1 is more accurate than RTN0 by a factor of 5 to 15 in the

case of quadrilateral grids, and by a factor of 2 to 4 for triangular grids.

2. The variability of the BDM1 time-of-flight error is much smaller than that of

RTN0, confirming the robustness of the BDM1-based streamline tracing with

respect to grid distortion.
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Figure 5.3. RTN0 (left) and BDM1 (right) streamlines on a triangular Cartesian
grid.

Accuracy in the presence of heterogeneity

Heterogeneity of the medium —reflected in a discontinuous permeability field that

may vary several orders of magnitude— is an essential characteristic of petroleum

reservoirs. For this reason, we test the accuracy of our tracing method in heteroge-

neous domains. We employ a test case from an interesting study by Mosé et al. [56]

that compares the performance of several discretization methods in the presence of

heterogeneity. Four orders of magnitudes of permeability variations represent flow

barriers and high-permeability streaks that force the streamlines to meander through

the domain. The permeability field, shown in Figure 5.4, turns out to be challenging

for some discretization methods, and we use it here to assess the quality of the RTN0

and BDM1 streamlines. In this test case, pressures of 1 and 0 are set at the top

and bottom boundaries of the domain, respectively. The left and right boundaries

are impermeable. A total of 19 streamlines are launched from equally spaced points

located on the top boundary.

The 10× 10 quadrilateral Cartesian grid that constitutes the base case shown in
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Figure 5.4. Permeability field employed, taken from a test case in [56]. Perme-
ability values: white = 1; light gray = 10−1; dark gray = 10−2;
black = 10−3.

Figure 5.4 was refined into 20× 20 and 40× 40 Cartesian grids. Each of these grids

was also transformed into a triangular grid by subdividing each quadrilateral element

into two triangles.

Figures 5.5 and 5.6 compare the RTN0 and BDM1 streamlines on the 20 × 10

and 80×40 triangular grids, respectively. It is important to note that the streamlines

obtained with all grids and discretizations orders are physical: they avoid entirely

the low permeability regions, in agreement with the findings of Mosé et al. [56].

The streamlines computed with the higher-order BDM1 discretization, however, are

smoother and less sensitive to the level of refinement. We quantify these observations

by computing the time-of-flight errors on the streamlines using a 80 × 80 Cartesian

grid with a BDM1 discretization as a reference. The results are presented in Table 5.2.

As expected, the BDM1 errors are always much lower than those of RTN0.

A legitimate question to ask is what is the incremental cost associated with the

improved accuracy of BDM1. By now, we have established that for a given grid, BDM1

streamlines are more accurate than RTN0 ones. To obtain this accuracy, however,
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Figure 5.5. RTN0 (left) and BDM1 (right) streamlines for a grid of 200 triangular

elements.
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Figure 5.6. RTN0 (left) and BDM1 (right) streamlines for a grid of 3200 triangular
elements.

Table 5.2. Average time-of-flight error in the presence of heterogeneity.

Element type Discretization 10× 10 20× 20 40× 40
Triangle RTN0 13.39 % 6.55 % 3.49 %

BDM1 3.57 % 1.61 % 0.23 %
Quadrilateral RTN0 8.58 % 4.19 % 2.20 %

BDM1 5.64 % 2.00 % 0.02 %
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Figure 5.7. Average time-of-flight error as a function of the number of unknowns
for a sequence of triangular grids.

one must solve for roughly twice as many velocity unknowns. In Figure 5.7, we plot

the average time-of-flight errors for triangular grids as a function of the number of

unknowns. Clearly, for a given number of unknowns, BDM1 is more accurate than

RTN0. Refining the grid with an RTN0 discretization is not as efficient as increasing

the order of accuracy of the method by using the BDM1 space. Moreover, the slopes

of the two curves are different: BDM1 seems to converge faster than RTN0 as the

number of unknowns is increased, although this could be an artifact of not having

yet reached the asymptotic convergence regime.

Heterogeneous unstructured grids

Our last experiment for MFE discretizations tests the ability of the tracing method

to deal with more realistic reservoir simulation grids such as unstructured grids and

heterogeneous permeability fields. The domain, presented in Figure 5.8, is a 1 × 1

square of unit permeability except for two flow barriers of low (10−3) permeability

represented by the black elements. Once again, pressures of 1 and 0 are set at the

bottom-left and top-right corners (marked by thicker boundary lines) and the rest of
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Figure 5.8. Base case for the unstructured grid discretization.

the boundaries are impermeable.

Streamlines are launched from ten points located in the center of the domain.

Figure 5.9 shows a comparison of the RTN0 and BDM1 streamlines for this problem

using the same unstructured grid of 148 triangular elements. As before, the grid is

shown in thin black lines, the streamlines with thick red lines, and their launching

points are marked by a red star. The streamlines computed by the low-order and high-

order approximations on a refined grid of 350 elements are shown in Figure 5.10. In

agreement with previous observations, the BDM1 streamlines are smoother and much

less sensitive to the grid refinement level.

To compute the time-of-flight errors committed on this unstructured grid, similar

streamlines were traced on an 80 × 80 Cartesian grid with a BDM1 discretization.

Table 5.5 presents the time-of-flight errors committed for both the RTN0 and BDM1

discretizations on the 148-element and 350-element grids. For both grids, the BDM1

streamlines are about five times more accurate than the RTN0 ones.
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Figure 5.9. RTN0 (left) and BDM1 (right) streamlines for a 148-element grid.

Figure 5.10. RTN0 (left) and BDM1 (right) streamlines for a 350-element grid.

Table 5.3. Average time-of-flight error for the heterogeneous unstructured grid test
case.

Discretization 148 elements 350 elements
RTN0 15.20 % 7.25 %
BDM1 3.17 % 1.71 %
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5.3.2 MPFA discretizations

In this section, we compare the streamlines obtained with the low-order and high-

order tracing methods described above, obtained from the same MPFA solution of

the elliptic pressure equation. The differences are due exclusively to the amount

of information used for the velocity reconstruction: only the MPFA edge fluxes in

the low-order RTN0-based tracing, and the MPFA half-edge fluxes in the high-order

BDM1-based tracing. Moreover, because they emanate from the same pressure solu-

tion and since their path is known analytically, no significant or consistent difference

was observed in the computational cost of both sets of streamlines. The differences in

computational cost are due solely to the numerical integration of the time-of-flight,

which was not found to depend strongly on the type of velocity field used. Once again,

we study the sensitivity of the method to grid distortion, permeability anisotropy and

heterogeneity.

Grid Distortion and Full-Tensor Permeability

A full permeability tensor is required for the description of anisotropic permeability

fields with principal directions misaligned with the simulation grid.

In this example, we test the ability of our streamline tracing algorithm to enhance

the velocity description and streamline quality in the presence of full tensor perme-

abilities. The first test case is based on a strongly distorted quadrilateral grid shown

in Figure 5.11 and formed by chevron-shaped elements exhibiting a 70◦ distortion

angle. To test the tracing methods on a triangular grid, each quadrilateral of the

chevron grid was also split in two triangles to form the grid shown in Figure 5.13.

The domain has impervious boundaries and quarter of a five spot pattern pressure

boundary conditions are set: unit pressure is fixed at the bottom-left gridblock and

zero pressure is imposed at the top-right cell.
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The permeability field is homogeneous but presents a ten-to-one anisotropy ratio

and is rotated by a 45◦ angle from the principal coordinate system:

k = Rt


 10 0

0 1


 R =


 5.5 4.5

4.5 5.5


 , (5.7)

with the rotation matrix R defined by

R =


 cos(45◦) sin(45◦)

− sin(45◦) cos(45◦)


 . (5.8)

The MPFA method leads to a nine-point stencil on the quadrilateral grid and, in

this case, the contributions of the diagonal entries of the stencil are expected to be

significant. The pressure solutions for this test case are presented in Figure 5.11

and Figure 5.13.

To compare the streamlines traced with the classical and higer-order flux recon-

struction techniques, we used a reference solution defined with the same boundary

conditions and permeability field, but computed on a 100 × 100 Cartesian grid and

solved with a BDM1 mixed finite element method. The reference streamlines are

shown in Figure 5.11 and Figure 5.13.

Figure 5.12 and Figure 5.14 compare the low-order (solid lines) and high-

order (dotted lines) streamlines obtained on the quadrilateral and triangular grids,

respectively. Table 5.4 reports the relative error in time-of-flight recorded for each

streamline, with respect to the reference streamlines obtained on the refined grid with

the mixed finite element method. The streamlines are numbered from from the top

to the bottom. The average time of flight error is also presented.

Clearly, for both the quadrilateral and the triangular grids, the streamlines ob-

tained with the BDM1-based flux reconstruction technique are more accurate, both in
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Figure 5.11. Pressure solution on the quadrilateral chevron grid and reference
streamlines.

terms of actual location and time of flight. In addition, we recall that this increased

accuracy of the BDM1-based tracing is obtained with the same computational cost

and memory requirements as the RTN0 streamlines.

To understand the importance of the time-of-flight accuracy, we focus our atten-

tion on the diagonal streamline (the fourth streamline from the top). In the simulation

of an injection problem, the time-of-flight along this diagonal streamline would pro-

vide the breakthrough time of the injected fluid. We see that using the RTN0-based

tracing, which is Pollock’s method corrected for grid distortion and full tensor per-

meabilities, would lead to a 11% error in the estimated breakthrough time. The use

of the BDM1-based tracing reduces this error to under 2%.

Permeability Heterogeneity

Reservoir heterogeneity is a key component of any reservoir model. It is therefore

crucial for a streamline tracing algorithm to accurately handle the discontinuities of
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Figure 5.12. Streamlines traced on the quadrilateral chevron grid with the RTN0

(solid lines) and BDM1 (dotted lines) velocity fields.

Figure 5.13. Pressure solution on the triangular chevron grid and reference stream-
lines.
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Figure 5.14. Streamlines traced on the triangular chevron grid with the RTN0

(solid lines) and BDM1 (dotted lines) velocity fields.

Table 5.4. Relative time of flight error for each streamline traced on the chevron
grids.

Quadrilaterals Triangles
SL # RTN0 BDM1 RTN0 BDM1

1 26.50 % 7.92 % 12.99 % 6.91 %
2 5.05 % 5.04 % 2.70 % 2.62 %
3 4.07 % 1.37 % 1.92 % 1.42 %
4 11.23 % 1.61 % 12.09 % 3.44 %
5 3.66 % 1.33 % 2.70 % 0.35 %
6 4.84 % 1.21 % 2.50 % 0.95 %
7 55.56 % 5.57 % 26.95 % 6.47 %

Avg. 15.84 % 3.43 % 8.84 % 3.17%
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permeability fields.

To isolate the influence of the permeability heterogeneity from that of permeability

anisotropy or grid distortion, we simulate a problem on a Cartesian grid populated

with heterogeneous but isotropic permeability. As in the previous section, we use

the test case proposed by Mosé et al. [56], designed to compare the performance of

various discretization methods in the presence of heterogeneity and presented in Fig-

ure 5.4. A unit pressure is set at the top boundary and a zero pressure at the bottom.

The left and right domain boundaries are impermeable. Streamlines are launched at

equidistant points located at the top of the domain.

On a Cartesian grid and with a diagonal permeability tensor, MPFA reduces to

the classical 5-point stencil of the two-point flux approximation. Because the diagonal

points are not included in the stencil, both subedge transmissibilities associated with

a given interface are equal, which leads to a constant velocity profile through any

given edge. For validation purposes, we here check that both the low- and high-order

tracing algorithms recover identical streamlines. The streamlines obtained from both

methods are plotted in Figure 5.15. A single set of streamlines is visible as they

overlap exactly. As expected, both tracing methods result in identical time-of-flights

as well.

Unstructured Grid

This last example represents a reservoir composed of two rock types, a base rock of

relatively high permeability and a low-permeability rock forming three flow barriers.

The permeability of the base rock presents a ten-to-one anisotropy ratio and its

principal directions are rotated by a 15◦ angle from the coordinate system:

k = Rt


 10 0

0 1


 R ≈


 9.40 2.25

2.25 1.60


 , (5.9)
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Figure 5.15. MPFA streamlines from the RTN0 and BDM1–based tracing (over-
lapping exactly).

with the rotation matrix R defined as in (5.8). The rock forming the flow barriers

is isotropic and of permeability 10−3.

The domain boundaries are impervious. An injector of unit pressure is placed at

the bottom left of the domain and a producer of zero pressure is located in the top

right corner. To describe accurately the geometry of the flow barriers and the well

locations, two unstructured triangular grids are defined. The coarse, 599-element grid

is shown on Figure 5.17 and the finer 4841-element grid is presented in Figure 5.18.

On the coarser grid, MPFA is used to solve the flow problem and streamlines are

traced using the RTN0 and BDM1 velocity field reconstruction. Ten streamlines are

launched from the edges of the injecting well and traced all the way to the edges of

the producing well. Figure 5.16 shows the launching points of the streamlines and

presents their numbering. Figure 5.20 compares the streamlines obtained on the

coarse grid with the RTN0- and BDM1-based tracing methods.

On the fine grid, a BDM1 mixed finite element method is used to solve for the
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Figure 5.16. Location of the streamline launching points on the edges of the gridcell
containing the injection well.

pressure and velocity fields and to trace the streamlines presented in Figure 5.19

that we use as reference.

Table 5.5 presents the relative errors in time-of-flight for the ten streamlines traced

on the coarse grid with the RTN0 and the BDM1 velocity fields. Once again, the re-

sults show how the BDM1-based tracing algorithm provides superior streamlines than

the RTN0-based method, both in terms of location and time-of-flight. It is interest-

ing to notice that the fifth and sixth streamlines traced with the RTN0 velocity field

present the largest time-of-flight errors. The corresponding BDM1-based streamlines

are more than twice as accurate. Because of their central location, these streamlines

have the highest velocities and shortest time-of-flight so that they carry the most flow

between the two wells. Therefore, in this example, the BDM1 tracing is expected to

have a large positive impact on the overall accuracy of the streamline method.

5.3.3 Three-dimensional unstructured grids

This serves as a simple illustration of the possible use of the streamline tracing ap-

proach developed here on a synthetic, but realistic reservoir simulation model.

The reservoir is bounded by trapping structured of anticline shape. Eleven major

faults are spread throughout the reservoir and are supposed to be flow barriers. At
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Figure 5.17. Coarse unstructured grid and permeability field.

Figure 5.18. Reference unstructured grid.



CHAPTER 5. A NEW FRAMEWORK FOR STREAMLINE TRACING 106

Figure 5.19. Streamlines traced on the reference unstructured grid.

Table 5.5. Relative time of flight error for the streamlines traced on the unstruc-
tured grid.

SL # RTN0 BDM1

1 3.94 % 1.37 %
2 5.61 % 3.01 %
3 7.88 % 4.37 %
4 9.86 % 7.08 %
5 20.15 % 8.50 %
6 17.84 % 8.03 %
7 12.13 % 8.23 %
8 8.80 % 6.90 %
9 7.22 % 4.72 %
10 11.71 % 10.60 %

Avg. 10.51% 6.28%
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Figure 5.20. Streamlines traced on the coarse unstructured grid with the RTN0

(top) and BDM1 (bottom) based tracing.
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this stage of the reservoir development, seven wells have been drilled in the formation.

Four wells are producing hydrocarbons and three wells are injecting water as an

improved recovery mechanism.

Because of the complex geometry of the reservoir, a tetrahedral grid is used to

represent accurately the geology. The grid conforms to the faults and the wells as can

be seen from the top view of Figure 5.21. The grid is also constrained to follow the

depositional horizons as can be seen in a side view of the reservoir in Figure 5.22.

A variogram-based geostatistical method [36] has been used to populate a geo-

model with permeability and porosity distribution matching the hard data available

at the wells. A local-global upscaling method [21] was used to provide equivalent

full-tensor permeability coefficients on the reservoir simulation grid.

The resulting grid is a fully unstructured tetrahedral grid populated with hetero-

geneous tensor coefficients. The pressure is maintained constant at the wells and the

reservoir boundaries and faults are considered to be impervious. The MPFA method

is used to properly discretize the elliptic pressure equation on this complex simulation

grid.

The high-order tracing algorithm, based on the BDM1 velocity reconstruction

was used to obtain the streamlines of the flow. To perform streamline simulation

with an appropriate accuracy, an extremely dense set of streamline is necessary

(Figure 5.23). For clarity of visualization, we only represent a dozen streamlines by

producing well. The streamlines are launched from the walls of the producers and

are colored accordingly (Figure 5.24).
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Figure 5.21. Top view of the synthetic reservoir.

Figure 5.22. Side view of the synthetic reservoir.
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Figure 5.23. Full set of streamlines necessary to solve the transport problem

Figure 5.24. A selection of representative streamlines traced using the BDM1-based
method



Chapter 6

Conclusions and Future Work

6.1 Conclusions

Traditional and streamline-based reservoir simulation rely on finite volume discretiza-

tions of the elliptic pressure equation. On advanced grids, involving distorted elements

and full-tensor permeability coefficients, multipoint flux approximations (MPFA) are

used to ensure the accuracy of the spatial discretization. Despite the wide use of

MPFA methods in the industry, their mathematical properties remain mainly un-

known. In this work, we study MPFA discretizations from the mathematical frame-

work of mixed finite element (MFE) methods.

To do so, a link must be established between MPFA and MFE discretizations.

On hexahedra, this requires a new MFE velocity space, which we introduce in this

dissertation. The new space is defined by four degrees of freedom per face. The trace

of the velocity field is thus bilinear on each face and can be defined by vertex-based

shape functions. The new space is constructed to be compatible with a constant

pressure space in each element. The resulting MFE method is thus consistent and

an error analysis establishes its convergence. The error estimates obtained and the

numerical experiments conducted show that, this new velocity space is, in fact, the

111
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most accurate of the three velocity spaces that are known to be compatible with a

piecewise constant pressure discretization –the other two spaces being the lowest-

order Raviart–Thomas–Nédélec (RTN0) and the first-order Brezzi–Douglas–Marini

(BDM1) space.

The application of the vertex-based trapezoidal quadrature to the new MFE

method restricts the interactions between velocity degrees of freedom. This local-

ization effect allows the MFE discretization to be written as a sparse finite volume

method that was shown to be the MPFA O-method. We have thereby established for

the first time a link between MFE and MPFA methods on hexahedra.

The trapezoidal quadrature used to reduce the new mixed finite element into

MPFA induces a scalar product on the new velocity space and preserves the consis-

tency of the discretization. An error analysis shows that the trapezoidal quadrature

is accurate enough to guarantee convergence of the MPFA O-method on rectangular

hexahedra.

The MFE framework of FV methods is finally used in the context of streamline

simulation. In this dissertation, we proposed a new streamline tracing method for

MFE and FV discretizations. In MFE methods, velocity shape functions are used to

interpolate the flux degrees of freedom into a velocity field, which can be integrated

to yield the streamlines. For FV discretizations, we rely on the established corre-

spondence between MFE and FV methods to interpret the TPFA or MPFA fluxes

as velocity degrees of freedom. The low-order version of the algorithm relies on an

RTN0 velocity field reconstruction and is, in fact, equivalent to the extension of Pol-

lock’s streamline tracing method to distorted grids. The higher-order version of the

algorithm that makes use of the BMD1 space on triangles, quadrilaterals and tetra-

hedra and of the new velocity space on hexahedra, was shown to yield more accurate

streamlines than any other existing method. In addition, the interpretation of the

MPFA fluxes as MFE degrees of freedom avoids the expensive flux post-processing
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techniques used by the other existing MPFA streamline tracing methods. This new

approach therefore leads to a streamline tracing algorithm that is (1) accurate enough

to allow the streamline method to be used on advanced grids without the O(1) errors

introduced by low-order tracing methods, and (2) fast enough to trace the millions

of streamlines required by a full-field simulation.

6.2 Future work

In this section, we present three possible extensions of the research work presented in

this dissertation.

Prism grids

A prism grid is the projection of a two-dimensional triangular grid onto the third

dimension. Such grids are particularly well-suited for the description of layered pe-

troleum reservoirs. The numerical or analytical convergence of MPFA methods, and

the relationship between MPFA and MFE methods on such grids remains unpub-

lished.

Three MFE velocity spaces are known to be compatible with a constant element

pressure on prism grids [23; 59]. However, none of these velocity spaces can be defined

by vertex-based degrees of freedom. Therefore, it seems challenging to relate MPFA

methods with existing MFE velocity spaces on prism grids.

The approach that we developed in this dissertation for the hexahedral element

can be applied for prisms in order to define a new space. The space should be defined

by four degrees of freedom per quadrilateral face and three degrees of freedom per

triangular face, leading to a space of dimension 18. A careful construction could

ensure that the space remains compatible with a piecewise constant discretization.

The application of the trapezoidal quadrature would localize such a space into an
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MPFA method, providing the missing link between MPFA and MFE methods on

prism grids. This link could potentially be exploited to develop a proof of convergence

of MPFA and a new streamline tracing algorithm on such grids.

New class of MFE spaces

This dissertation was focused on the study of MFE methods in the context of pe-

troleum reservoir simulation, and was therefore restricted to piecewise constant dis-

cretizations of the scalar variable. In other applications, it is possible to employ

higher-order descriptions of the scalar variable. An extension of the lowest-order

vector space developed in this work to a full class of vector spaces compatible with

higher-order scalar variable discretizations would be a valuable contribution to the

theory finite-element methods. The degrees of freedom for these spaces could be de-

fined as those of Nédélec [59], but for compatibility, should be constructed using the

Brezzi–Douglas–Marini [16] technique of enriching polynomial space by divergence-

free polynomials of higher degree.

Monotonicity

Permeability anisotropy and grid distortion can represent a challenge for the monotonic-

ity of spatial discretization methods. So far, there is no control-volume discretization

method known to be both linearly exact, and monotone for all permeability tensors

and grid distortion.

In [50], we presented a new approach for stabilization of MFE method in the

presence of anisotropy. Numerical experiments have shown that an inexact quadrature

can, in some cases, be used to improve the monotonicity of the MFE method. More

work is however required to fully understand and predict the effects of this reduced

integration approach on the MFE discretization.
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