
TECHNIQUES FOR MODELING COMPLEX RESERVOIRS AND

ADVANCED WELLS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ENERGY

RESOURCES ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Yuanlin Jiang

December 2007



c© Copyright by Yuanlin Jiang 2008

All Rights Reserved

ii



I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

Dr. Hamdi Tchelepi Principal Advisor

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

Dr. Khalid Aziz Advisor

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

Dr. Roland Horne

Approved for the University Committee on Graduate Studies.

iii



Abstract

The development of a general-purpose reservoir simulation framework for coupled

systems of unstructured reservoir models and advanced wells is the subject of this

dissertation. Stanford’s General Purpose Research Simulator (GPRS) serves as the

base for the new framework. In this work, we made significant contributions to

GPRS, in terms of architectural design, extensibility, computational efficiency, and

new advanced well modeling capabilities.

We designed and implemented a new architectural framework, in which the fa-

cilities (man-made) model is treated as a separate component and promoted to the

same level as the reservoir (natural) component. The framework is quite general and

extensible. It reduces the cost of incorporating new models into GPRS significantly.

This is demonstrated by incorporating several new facility capabilities, namely, the

Multisegment Well (MSWell) model and handling well-group constraints. Two new

data structures have been built for GPRS to accommodate robust and computation-

ally efficient simulation. They honor the separation of the reservoir and facilities

components and give researchers freedom to develop their own discrete formulations

and solution methods. The new data structures also simplify the construction and

assembly of Jacobian matrices.

The MSWell was fully integrated into the new GPRS framework. This can be seen
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as an example of a significant capability extension of a general-purpose simulator.

Moreover, a new rigorous well-group treatment is proposed and implemented. This

new model accounts for interactions between the wells in the group and allows for

using one’s favorite pipeline flow correlation. The well-group model benefits from

the flexible data structures of GPRS. For example, one can combine any available

facilities object such as standard and multisegment wells and mixed well grouping

of both kinds. With these new extensions, GPRS can simulate coupled systems of

(unstructured) reservoir models and advanced wells.

A general discrete wellbore model (GenWell) that extends the MSWell treat-

ment from the perforation all the way to the surface was developed. The GenWell

model shares the advantages of the MSWell model, but it also accommodates com-

plex pipeline topology, such as general branching, loops and multiple exits. In the

GenWell model, wellbores and pipeline networks are discretized into various types of

segments. Nodes and connections are defined based on the segments, and the discrete

system is abstracted as a graph (nodes and connections) in a manner that is quite

similar to the representation of unstructured reservoir models in GPRS.

As part of this work, advanced multistage linear solution strategies were devel-

oped. Based on the new block data structures, we developed and implemented block

ILU preconditioners. These block preconditioners help further speed up the simula-

tion. The two-stage CPR (Constrained Pressure Residual) preconditioning approach

is extended to handle systems with the MSWell model. The data structures and linear

solvers we developed are fully compatible with AIM (Adaptive Implicit Method). We

demonstrate that the CPR preconditioned GMRES solver based on the new frame-

work is the best linear solution strategy for large-scale AIM simulation of unstructured

reservoir models and advanced wells.
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Chapter 1

Introduction and Objectives

1.1 Background

A modern oilfield is a very complicated system. The field may contain one or several

reservoirs, a large number of wells, and complex surface production facilities. The

system is dynamic and its various components may be tightly coupled. For example,

during the life of a reservoir, recovery operations can change from simple depletion

to waterflooding and perhaps advanced enhanced oil recovery (EOR) displacement

processes. In practice, the number, type, and operating conditions of wells change

as production operations and recovery strategies evolve. Pipeline networks may be

reconfigured, or expanded, for optimal performance, and control devices and sensors

may be installed throughout the system (surface and subsurface facilities) to monitor

performance and manage field-scale production strategies dynamically. Numerical

reservoir simulation serves as a primary tool for quantitative reservoir management,

in which detailed modeling of such complex systems of reservoirs, wells, and surface

facilities is required.

1
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Reservoir simulation is the science of using computer programs to solve the equa-

tions the govern flow and transport in natural porous geologic formations and asso-

ciated wells and production networks. The computer program - reservoir simulator

- takes input information about the geometry and properties of the reservoir, and

with appropriate initial and boundary conditions, the code simulates the petroleum

recovery process being studied [2]. During the last 20 years, many new technologies

have been developed in the oil industry, with which engineers can obtain much more

information about reservoirs. Reservoir engineers integrate static and dynamic data

from a variety of sources to build the reservoir models that are used for numerical

simulation. These include structural, stratigraphic and property data obtained from

seismic measurements, core analysis, well logs and transient well tests. Moreover, dy-

namic data including production and injection information, pressure and temperature

measurement are collected in the field. All this static and dynamic information must

be reflected in the long-term reservoir-management plan as well as the short-term

field operations. The need to improve the quality of the predictions obtained using

reservoir flow simulation has led to enormous growth in the reservoir characterization

models, both in geometric complexity and level of detail, that are used. There has

also been a comparable growth and development of well modeling technologies (e.g.,

horizontal, multilateral, and so-called smart wells), and the need for accurate numer-

ical replantation of the flow behaviors in wellbores continues to grow. With these

developments and the huge gains in computational power, there is strong demand

for accurate and computationally efficient simulation of coupled large-scale reservoir

models, advanced wells, and associated production facilities. Modern reservoir models

may have millions of cells with highly complex structures and property distributions.

Moreover, the physical models used to represent the dynamic recovery processes have

grown in complexity; examples include compositional representations with large num-

bers of components, coupled thermal-compositional processes, geomechanical effects,
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etc.

Researchers and engineers can use reservoir simulators to (1) design development

plans for new fields, (2) improve the understanding about reservoirs with history

matching, and (3) optimize the production under certain constraints.

While existing simulators can be used to perform some aspects of coupled real-field

reservoir-facilities systems, there are several outstanding practical and computational

research challenges that must be tackled. This dissertation is aimed at developing

flexible and efficient computational research platform for numerical modeling of cou-

pled systems of reservoirs, advanced wells, and production facilities. Such a platform

serves to enhance the quality and efficiency of research efforts across a wide range of

interest areas. Stanford’s General Purpose Research Simulator (GPRS) [8] served as

the starting point for this effort.

Next, we describe the overall general-purpose research simulation landscape, and

we place this research effort in that broad context. Since this dissertation builds

on, redesigns, and significantly extends the original GPRS simulator, the description

given next is quite brief, with emphasis on the broad outlines of the previously missing

capabilities in GPRS, as well as the new advances in general-purpose simulator design

and solution methods that are developed as part of this work.

1.1.1 General-Purpose Reservoir Simulation

The literature related to the development of general-purpose reservoir simulation

methods and tools is rich. This is particularly the case at Stanford, where it has been

a long standing passion to develop research platforms for general-purpose simulation,

and several researchers in the SUPRI-B/HW groups pursued various aspects of the
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challenge. Efforts related to general-purpose numerical reservoir simulation can be

traced back to the 1980s [3, 55]; in fact, these two references provide an excellent re-

view of the various general-purpose thermal-compositional formulations that are still

used by the reservoir simulation community, both in academia and industry. Since

the mid-eighties, several simulation packages have been developed at Stanford, in-

cluding FLEX [52], SPARTA [32], and Byer’s simulator [6]. Based on this cumulative

knowledge base, Cao developed a General Purpose Research Simulator (GPRS) in his

Ph.D. work [8].

Cao’s [8] primary objective was to allow for flexible nonlinear compositional for-

mulations, so that researchers can compare existing methods and propose new and

improved models. What distinguished GPRS form the previous work is that the

computer code, which was written in C++, was designed and implemented with

general-purpose reservoir simulation applications in mind. Since then, GPRS has

grown significantly and has become a vital simulation research platform at Stanford

and elsewhere. Since GPRS served as the starting point for the work reported in this

dissertation, we provide a very brief summary of that simulator.

GPRS was developed based on object-oriented programming methods using the

C++ language. A generalized compositional formulation was used in order to allow

researchers to test and validate various choices for the variable sets used to describe

compositional flows in porous media. GPRS employs a graph-based approach to

represent the discrete equations and relations between reservoir cells (gridblocks),

which was proposed by Lim [30], and Lim and Aziz [31]. Specifically, a connec-

tion list is used to describe the relation between the reservoir gridblocks. With this

approach, one can handle generally unstructured reservoir models quite easily. For

example, GPRS can be used to simulate models generated by discrete fracture model-

ing (DFM) approaches. Such models have extremely different cell sizes and complex
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geometry [22]. Moreover, Cao [8] and Cao and Aziz [9] described the details of the

IMPSAT (IMPlicit Pressure and SATurations, explicit compositions) formulation,

and they derived the associated stability criteria based on a linear analysis. They

demonstrated convincingly that for compositional problems, IMPSAT enjoys much

better stability and overall computational performance compared to the IMPES (Im-

plicit Pressure and Explicit Saturation) formulation. That development led to a

multilevel AIM (Adaptive Implicit Method) approach, in which one can dynamically

combine IMPES, IMPSAT, and FIM (Fully Implicit Method) in a single model to

solve large-scale compositional problems efficiently. This powerful AIM framework is

a significant contribution and is now considered a fundamental aspect of the GPRS

simulation platform.

In recent years, GPRS has served as a research platform in the department as

well as in some other institutes. Rather than coding a reduced version of a simulator

from scratch, researchers can start from a well designed and actively maintained

general-purpose, yet modular, code base. This dramatically reduces their workload

and allows them to focus on their specific research interest. GPRS also acts as the

integral container of the various research activities in the SUPRI-B/HW research

groups. All of their research work may be preserved in GPRS, and it helps to push

GPRS to a new level. When researchers leave, the newcomers may resume previous

work easily. GPRS is one of the best vehicles to deliver the latest research work to

the scientific community and the industry.

While GPRS had proved to be a flexible compositional simulator for unstructured

reservoir models, it did not provide capabilities for modeling advanced wells (e.g.,

multisegment wellbore) and coupling to surface facilities (e.g., well-group constraints

and coupling to pipeline networks). In recent years, there have been several efforts

aimed at modeling multiphase wellbore flows, and there has also been a major focus
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on coupling strategies of reservoir models, advanced wells, and production facilities.

1.1.2 Discrete wellbore models

In the last decade, many ultra-deep, long horizontal, multilateral, wells have been

drilled. These wells, which can be very expensive, can lead to complex wellbore flows.

Accurate modeling of the flow behavior in wellbores, including frictional losses, mul-

tiphase flow effects, gas hydrates, is crucial for effective field operations. Meanwhile,

intelligent wells, which have down-hole equipment, are developed and deployed in the

field, and these add to the challenge of modeling the overall coupled system. The

original Standard Well (StdWell) model cannot describe the flow behaviors in wells

and production networks. Therefore, more complicated well models, in which the

conservation laws for flow in wells are discretized and solved, have been developed.

The most common practice in reservoir simulation has been to treat wells as

source/sink terms in the gridblocks they penetrate. In order to account for the dis-

parity between the typical sizes of wells and computational gridblocks, a well model

is usually employed. Nolen [33] describes the details of the Standard Well (StdWell)

model, various extensions, and associated assumptions. In recent years, there has

been strong interest in accurate and efficient modeling of the flow behaviors in ad-

vanced wells (e.g., horizontal, deviated, and multilateral). Holmes et al. presented

a black-oil multisegment wellbore (MSWell) model [24]. In that discrete wellbore

model, four variables, namely, mixture velocity, gas and water phase holdups, and

pressure, are defined for each segment. The governing equations are the mass balance

equations for oil, gas and water and one pressure relation (i.e., momentum balance)

for each segment. Pressure loss due to gravity, friction, and acceleration are con-

sidered. Later, Stone et al. extended the multisegment well to compositional and
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thermal simulation [48]. Shi et al. extended the drift-flux model for two-phase and

three-phase flows, in which phase slip effects in the wellbore are accounted for [47, 46].

The multisegment model has been implemented in EclipseTM [20], and it represents

the state-of-the-art in terms of coupling reservoir models and advanced wells. How-

ever, the MSWell research developments of recent years [46] were implemented as an

independent module; as a result, the MSWell model was not integrated into GPRS.

1.1.3 Coupled Reservoir-Facilities Simulation

In addition to new types of wells, new subsurface and surface equipment are being

installed. For example, complex surface pipeline networks are installed to transport

steam from the generator to the well sites and deliver oil and gas to tanks. All of these

types of equipment have an important impact on the performance of the production

system. We use the term ‘facilities’ to cover all of these objects, including wells,

pipelines, sensors, separators, etc. Thus, the ‘facilities’ represent the aggregation

of all man-made equipment installed in an oilfield. Several investigators, many at

Stanford, had worked on coupling reservoir models and facilities.

For example, Schiozer and Aziz, and Schiozer [45, 44] presented a domain decom-

position (DD) method to simulate reservoirs and surface facilities. They pointed out

that the explicit treatment of the reservoir model and the facilities can lead to large

errors. Small timesteps may help reduce error, but they make the overall perfor-

mance prohibitively expensive. An iterative nonlinear solution strategy was proposed

to solve the reservoir and facilities separately, followed by updating the boundary

conditions until global convergence is reached. This can be a very expensive method.

To improve the efficiency, a nonlinear preconditioner (different from the one used in

iterative linear solvers) based on domain decomposition is applied at the beginning
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of a timestep to predict the boundary conditions between the reservoir and the facil-

ities. A fully implicit coupled reservoir-facilities simulation was investigated, and the

conclusion was that the method is not very efficient, especially when the number of

surface facility nodes is large. The iterative method with the nonlinear preconditioner

based on DD was their preferred method for systems with complex facilities.

Later, Byer [6] and Byer et al. [7] extended Schiozer’s work and presented a new

solution strategy. Similar to Schoizer’s work, they used a nonlinear preconditioner

to predict the behavior of the reservoir and facilities models. However, the precondi-

tioner was more sophisticated; it combined both DD and multigrid. An algebraically

constructed coarse reservoir grid was, and the coarse-system solution was used to

precondition the fully coupled problem. Byer also investigated an adaptive explicit

coupling method. According to his results, a fully coupled system can be solved effi-

ciently with that nonlinear preconditioner. The solution strategy developed by Coats

et al. for coupled reservoir-facilities simulation is also based on domain decomposi-

tion [13]. In each Newton iteration, a subdomain including perforations and networks

is decoupled. A smaller-size Jacobian matrix (compared with the global full Jaco-

bian matrix) is formed and solved for this subdomain. The solution vector is used

to update the unknowns of the perforations and the network. Then the global Jaco-

bian (including both reservoir and network models) is constructed according to the

latest results (updated perforations and network variables, and unchanged reservoir

variables). The convergence of the Newton iterations guarantees that the final result

is a fully implicit solution.
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1.2 Objectives

One of the major objectives of this work has been to design and implement an efficient

and extensible framework for compositional simulation of coupled unstructured reser-

voir models, advanced wells, and surface facilities. The reservoir and facilities models

can have complex geometry and each may be discretized using very large numbers of

computational elements. The new general-purpose framework should allow multiple

researchers to work on GPRS at the same time, and it should also simplify the devel-

opment work of each individual researcher. The impact of new models should be as

local as possible, so that developers do not need to study the entire GPRS design and

code base before they can contribute. This way, researchers can focus their efforts on

their specific model developments.

In the original GPRS, the only available ‘facilities’ object was the standard well

model. A major target of this research effort is the development and integration of

new ‘facilities’ capabilities in GPRS, including discrete models for describing flow

in wellbores and surface networks. The framework should allow for fully coupled

treatment of reservoirs, advanced wells, and surface networks, and it should also

be open to new models. A major first step is to integrate the multisegment well

(MSWell) model [24, 47, 46] into the new GPRS platform. Another target is the

development of rigorous and flexible treatment of well groups, and the integration

of such models in the code base. We are also interested in the development of a

general discrete wellbore/pipeline model that can handle general branching, loops,

and counter-current flow efficiently.

As mentioned earlier, fully coupled treatment of reservoir-facilities systems is a

difficult challenge. An important aspect of this dissertation is the development of
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robust and computationally efficient linear-solution algorithms for coupled multiseg-

ment wells and complex unstructured reservoir models. This is quite different from

previous work based on domain decomposition; here, we want to solve a consistent

fully coupled system, where the global Jacobian matrix is always constructed using

the latest iteration results.

1.3 Dissertation Outline

This dissertation proceeds as follows. Chapter 2 presents the architecture design we

developed and implemented in the new GPRS. This is a new general reservoir-facilities

framework, which separates the entire system into two parts: reservoir and facilities.

General interfaces are designed for key components in the framework.

In Chapter 3, the basic data structures of the original version of GPRS are re-

viewed [8], and two new data structures are proposed and implemented in the new

framework. These two data structures are built on top of the basic data structure,

and they offer great flexibility and honor data encapsulation. Consistent with the

framework design, the two data structures also separate the data for the reservoir

model from the facilities components. Basic algorithms, e.g., matrix-vector multi-

plication and block ILU factorization, are implemented for these multilevel sparse

block-based data structures.

In Chapter 4, the standard well model is reviewed. Based on the work of Holmes

et al. and Shi et al. [24, 47, 46], a multisegment well (MSWell) model is implemented

and integrated into the GPRS framework using the new multilevel data structures.

This can be seen as an example of how to integrate new models into the redesigned

GPRS framework. The MSWell model integration is investigated from several aspects,
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including constraint equations, data structures, and initialization procedures.

In Chapters 5, a rigorous well-group model is developed and implemented in

GPRS. The new approach accounts for the interactions between wells in the group

and incorporates pipeline correlations. The model allows for fully coupled reservoir

simulation with rigorous constraints on well groups. The new model is quite flexible

and can easily accommodate new models to represent the subordinate well types.

Chapter 6 discusses our proposed general discrete wellbore model - GenWell, which

can handle systems with complex branching and loops. This is an extended MSWell

model. Objects and variables are defined differently compared to the MSWell model.

GenWell can be used to simulate both wellbore and surface pipeline networks. The

MSWell, well-group, pipeline models honor mass-balance strictly, and transient mul-

tiphase effects are accounted for throughout the system.

Chapter 7 covers the latest linear solution strategies in GPRS. The main focus of

that chapter is on new robust and efficient multistage linear solvers for large-scale,

compositional, unstructured reservoir models coupled with MSWells wells.

All these new developments, including the architectural framework, data struc-

tures, facility models, linear solvers and preconditioners, are fully compatible with

the compositional AIM (Adaptive Implicit Method) formulation. The AIM simula-

tion framework of the new GPRS is described and demonstrated in Chapter 8.

In Chapter 9, we make a summary of the work and draw conclusions. Several

future work directions are recommended as well.



Chapter 2

Framework for Reservoir-Facilities

Simulation

Oilfield production systems are made up of the natural underground reservoir(s),

which contain the oil and gas resources, and the man-made facilities deployed for

production operations, including wells, pipelines, pumps, separators, gathering sys-

tems, storage, etc. The physics of flow in natural porous media is different from that

in wells and pipes, and the governing equations for flow in reservoirs and pipes are

quite different. So, it is natural to decompose the oilfield system into two compo-

nents: reservoirs and facilities. The two components are coupled through completions

(open hole or perforations), which connect wells with the reservoir. The models used

to represent the (natural) reservoir and the (man-made) facilities can be quite com-

plex. Accurate representation of the flow behavior of coupled reservoir and facility

models is an important aspect of state-of-the-art reservoir management. Therefore,

a general simulation framework to incorporate various reservoir and facilities models

is necessary. Such a framework should be computationally efficient in order to deal

12
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with field-scale problems, and it should be readily extensible by researchers to new

modeling ideas and solution strategies.

In this chapter, we propose a new general computational framework, based on an

adaptive implicit formulation, that can flexibly handle various reservoir and facility

models. This new framework has been implemented in Stanford’s General Purpose

Research Simulator (GPRS), and it has the following characteristics:

1. Flexibility: The framework can combine different models in one simulation case.

For example, the user can have an unstructured reservoir model with different

well types (e.g., standard and multisegment wells) in one case. The framework

should be able to incorporate new reservoir and facility models relatively easily.

2. Accuracy: The framework allows users to simulate multicomponent multiphase

flow for highly detailed unstructured reservoir models and advanced wells ac-

curately, including rigorous treatment of constraints on wells, well groups, and

general production facilities.

3. Efficiency: The framework employs data structures and solution algorithms that

lead to efficient and scalable computations.

4. Maintainability: The reservoir and facility models are implemented as sepa-

rate components that communicate through a generalized interface. Moreover,

within each component, the data and functions are encapsulated to the extent

possible, and test modules are provided for components and sub-components.

As a result, extensions and new developments will be largely localized. More-

over, the simulator is managed by a dedicated professional using sophisticated

code-management software.
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2.1 New GPRS Framework

In the original GPRS framework, the field (C++) class was responsible for construct-

ing all the objects related to the reservoir model and the wells. In that design, the

reservoir class was effectively at the highest level in the framework, and it was respon-

sible for most numerical tasks, including time-step calculation, implicit level labeling,

and Jacobian matrix assembly. Moreover, the reservoir class also owned the classes

for the fluid system, rock properties, rock-fluid relations, computational grid, etc. In

addition, the reservoir class also owned the objects and functionality of the wells and

the linear solver. Figure 2.1 shows the original framework of GPRS

1

reservoirreservoirreservoirreservoir

solversstdwell rock grid …

fieldfieldfieldfield

Figure 2.1: Original Framework of GPRS

The original framework reflected the traditional dominant position of the reservoir

model in the simulation system. That design allowed for some level of extensibility.

For example, new well models could be implemented into the framework as subordi-

nates of the reservoir class. However, the new implemented well models may duplicate

functionality that is already in place for the existing models and also lead to many

inconsistencies in the interfaces, data structures, and solver related functions. These

are not easy issues to resolve. The reservoir class of the previous design took on too
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much responsibility, and that is counter to modular object oriented design princi-

ples. This extra functionality turned the reservoir class into a ‘monster’ class that

is very difficult to maintain, or extend. The original framework did not reflect the

important role of facilities in modern oilfield systems. The extensibility of the overall

simulator was quite limited. Adding new models entailed significant changes in many

components and sub-components.

We developed a more flexible, extensible, component-based framework to incor-

porate new research ideas for numerical modeling of coupled reservoirs and advanced

facilities. A schematic of the new GPRS framework is shown in Figure 2.2. In

the figure, blue arrows represent a subordinate relation and red arrows represent a

‘derived-from’ relation.

1

reservoir

grid

field

solvers

SimMaster

facilities

rock

fluid…stdwell

pipeline

smart wells

wellgroupwells

…mswell

Figure 2.2: New Framework of GPRS
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2.2 ‘SimMaster’ and Reservoir Classes

In the new framework, we added a new class called ‘SimMaster’, which is the admin-

istrator of a system composed of directly related reservoirs and facilities. The system

may contain one reservoir and a few wells, or multiple reservoirs linked by a common

aquifer, wells, or a surface pipeline network. As the administrator, the SimMaster

class takes over most of the simulation related numerical tasks from the original reser-

voir class, such as calculating timestep, allocating implicit levels and communicating

with solvers. With respect to SimMaster, the solver class is a subordinate in the new

design.

Since most of the numerical tasks and solver objects are taken over by SimMaster,

the reservoir class has been greatly simplified. The new reservoir class focuses on

describing the reservoir model, such as the properties of the grid, fluids, rock, etc.

This is an improved object-oriented design. For the treatment of flow and transport

in the reservoir, GPRS employs a generalized compositional-thermal formulation for

both unstructured and structured grid with multilevel adaptive implicit treatment [8].

2.3 ‘Facilities’ Class

The ‘facilities’ class represents the aggregation of all wells and other man-made equip-

ment in the oilfield production system, and it is serves as a subordinate to the Sim-

Master class. In the new approach, the ‘facilities’ and ‘reservoir’ classes are at the

same level. The two classes are equally important parts of the SimMaster class. This

treatment reflects the importance of facilities in the overall system. The new facilities

class has the well, well-group, and pipeline classes as subordinates. Note that the well

class has no direct interface to either the reservoir or SimMaster classes. The well
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class in this framework is an abstract class that defines a general interface to the

facilities class and some common functionality for different subordinate well classes.

The well class has the standard well (StdWell) and the multisegment well (MSWell)

models as derivative classes. The detailed treatment of the StdWell and MSWELL

models is given in Chapter 4. The new architecture is extensible. For example, a new

model, e.g., well with intelligent completions and control devices, can be implemented

in the framework as a new derivative of the well class. In the current framework, the

new model automatically obtains the common functionality across well models. This

facilitates code reuse and helps developers focus on new functionality requirements

for the added model.

The ‘well-group’ class describes a group of wells connected to a junction point.

The wells in the group share common constraints. A well group is composed of three

parts: wells, pipeline connections, and a junction. The group may include a number of

standard and multisegment wells. The junction, at which the pipelines join together,

is the point where the constraint for the well-group is applied. The typical constraints

are junction pressure and phase rate. In well-group modeling, the pipeline network

connecting the wells is represented with a simple pressure correlation. The wells, how-

ever, are often discretized into segments, for which the mass and momentum balance

are solved. Simulation of wells and well-groups is an effective tool for studying the

injection and production rate allocation among interacting wells. Moreover, a multi-

level nested well-group model can be used to simulate the entire production network.

Details about modeling wells, well groups, and pipeline systems are presented in later

chapters.
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2.4 Interface of Key Classes

SimMaster, facilities, reservoir and solver are the four key classes in the new GPRS

platform. Most data exchanges take place among them (Figure 2.3). Therefore, a

general interface has been defined. For each timestep, SimMaster decides the timestep

size and assigns it to both the reservoir and the facilities. The reservoir and facilities

construct their own Jacobian matrices and residual equations using their own data

and variables. They also exchange a small amount of information about the boundary

to complete this step. For example, wells need information about perforated cells,

and the reservoir model needs information about the wellbore pressure. All Jacobian

related computations from the reservoir and facilities classes are delivered to the

solvers, which are responsible for computing the numerical solution of the coupled

system. The solution of the linear system is transferred back to the reservoir and

facilities, so that both of them can perform a Newton update and calculate variables

for the new iteration. Then, both the reservoir and facilities decide if they converged.

Then, the convergence flags are delivered to SimMaster, which decides whether to

proceed to the next timestep, or perform another iteration.

From this general interface (Figure 2.3), we can see that the facilities and reservoir

classes play similar roles in the framework. They both share similar interfaces with

other components. From a numerical simulation perspective, discrete representations

of the governing equations, which describe the physics of interest, are used for both

reservoir and facilities models. Typically, reservoir models are dominant, in terms

of both physical size and the number of computational cells and variables used to

describe the physics. However, there is growing interest in modeling coupled reservoir

models and advanced facilities, such as multilateral and smart wells. In the new GPRS

simulator, it is really up to the user how complex each of the reservoir and facilities
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Figure 2.3: Interfaces between major components of GPRS

components are. For example, by using a very coarse reservoir model, but a very

accurate multisegment well model, GPRS can be turned into a wellbore simulator.

Well performance engineers can use it for their study interests, e.g., flow assurance.

By using a very accurate discrete pipeline model, GPRS can be used as a multiphase

transient pipeline simulator. Production engineers can use it to improve network

design and optimize production operations. Of course, the main utility of GPRS

continues to be efficient simulation of large-scale, heterogeneous reservoir models with

unstructured grids. The new flexible framework enables us to have a combination of

all of these components with an arbitrary level of complexity.



Chapter 3

Innovative Data Structures in

GPRS

Reservoir models continue to grow in geometric complexity and resolution level. In

recent years, there has been a strong focus on complex gridding techniques, and that is

moving the simulation community toward unstructured reservoir models. The physi-

cal mechanisms that must be accounted for are also becoming more complex including

coupled thermal-compositional processes involving large numbers of components. In

addition, accurate modeling of geomechanical effects has become important. Facility

models have also grown in complexity as more advanced wells (multilateral, hori-

zontal), pipeline networks, and gathering systems are developed and integrated into

reservoir management and production operations. Modeling the flow and transport

in these facilities is a challenging problem and deserves a focused effort. In reservoir

simulation, we are interested in integrated modeling of reservoirs and facilities in a

flexible and computationally efficient manner.

In Chapter 2, we described the new GPRS framework where the reservoir and

20
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the facilities models are treated as separate components. The physics, governing

equations, and numerical treatment of flow and transport in reservoirs and facilities

are quite different. Moreover, these systems are coupled and dynamic (i.e., their

representation changes with time). In practice, this means that building a numerical

simulation platform that is modular, efficient, and flexible, while allowing for tight

coupling of reservoirs and facilities (i.e., all this information may go into a single global

Jacobian matrix) is quite challenging. For that purpose, new flexible data structures

were designed, and implemented in GPRS, with emphasis on compatibility with high-

performance scalable computational algorithms.

The term ‘data structure’ refers to a scheme for organizing related pieces of infor-

mation. A good data structure design has the following features:

• Accessibility: Users should be able to generate, access, and modify data easily.

• Encapsulation: Data should be hidden by the object that owns it, and other

objects should have minimal dependency on the detailed format of the data.

• Extensibility: It should be easy to fit future developments into the data struc-

ture and expand it if necessary.

• Computational efficiency: The data structures should be compatible with state-

of-the-art computational algorithms.

In this chapter, we first describe the fundamental data structures of GPRS. Then, the

advantages and disadvantages of the original data structure will be discussed. After

that, two newly developed data structures will be introduced. We will show how the

new structures satisfy the four requirements listed above.
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3.1 Original Data Structures in GPRS

Various pieces of information are stored in different formats in GPRS. Figure 3.1

shows the hierarchy of the data structures in GPRS, which will be introduced from

top to bottom. At the topmost level, all the data structures in GPRS are split into two

categories based on their storage formats: (1) raw data in arrays, and (2) matrices.

1

matrices
raw data in 

arrays

property data 
in arrays

matrix data 
in arrays

GPRS data 

structure

derivative 

data in arrays

non-derivative 

in arrays

secondary 

variables in arrays

constant data 

in arrays

primary variables 

in arrays

Figure 3.1: Hierarchy of the data structures in GPRS

3.1.1 Raw Data

The raw data is the data stored in arrays based on a certain order: cell-, connection-,

or well-based, for example. The raw data is obtained from input files, or generated

from simple property calculation functions. The raw data is stored contiguously in

one dimensional arrays and can be easily accessed by indices. Direct operations on

such data can achieve good cache utilization, if used wisely. The raw data in GPRS
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includes property data and matrix data.

Property Data in Arrays

As suggested by their name, property-data arrays store the physical properties of

the model. In order to optimize memory and cache utilization, the data is grouped

according to property type, rather than cells, or connections. For example, there is

one array that stores the pressure variables of all reservoir cells, by cell number. The

length of the array is equal to the number of reservoir cells.

These property data have two subsets, and both of them have a very clear physical

meaning. One is non-derivative data, such as saturation and porosity. The other

one is derivative data, such as ∂Kr/∂Sw, ∂φ/∂Po. One of the primary uses of the

property data is to generate Jacobian matrix information in the linearization process.

For example, the derivative of the water-conservation residual equation with respect

to the oil pressure of cell i, ∂Rw,i/∂po,i, is an element in the Jacobian matrix. It will

be calculated using property data according to the specific formulation of interest.

The computed matrix data are also stored in arrays.

Matrix Data in Arrays

The derivatives of the governing discrete equations with respect to variables are stored

in arrays. These derivatives are components of the Jacobian matrix, and they are

stored using different data structures. In GPRS, three arrays are used to store the

matrix information of the reservoir. They are the diagonal, upper off-diagonal, and

lower off-diagonal arrays. In reservoir simulation, each cell may have several equations

and variables, which leads to a natural block structure in the Jacobian matrix. The

diagonal array stores the diagonal blocks, one by one in cell ordering. Within a small



CHAPTER 3. INNOVATIVE DATA STRUCTURES IN GPRS 24

block, the data is stored column-wise. The off-diagonal arrays are similar to the

diagonal array, except that the small blocks are stored in the order of the connection

list.

3.1.2 Compressed Row Sparse Matrix Format

GPRS supports various matrix formats, including dense, banded, and Compressed

Row Storage (CRS) format. These data structures are used by the appropriate algo-

rithms (e.g., linear solvers). The CRS format is the most frequently used format in

GPRS, because it can represent general sparse matrices [37]. CRS is a widely used

format in all kinds of simulation applications. Many algorithms have been developed

for the CRS format, which is one of its biggest advantages. A new matrix format

based on the CRS format is proposed and implemented in GPRS. We begin with a

description of the CRS format here. A general sparse 5× 5 matrix with 11 non-zero

elements is used to illustrate the CRS format (in the following data structure, indices

and labels are 0-based).




1.0 2.0 0.0 0.0 0.0

3.0 4.0 0.0 0.0 0.0

0.0 0.0 5.0 6.0 0.1

0.0 0.0 7.0 8.0 0.0

0.2 0.0 0.0 0.0 0.3




In the CRS format, there are three arrays, which are listed in Table 3.1 and 3.2.

For a matrix with dimensions of nrow × ncol and nnz non-zero elements, the three
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label 0 1 2 3 4 5

row pointer 0 2 4 7 9 11

Table 3.1: Row pointer array of the CRS format

label 0 1 2 3 4 5 6 7 8 9 10

col index 0 1 0 1 2 3 4 2 3 0 4

value 1.0 2.0 3.0 4.0 5.0 6.0 0.1 7.0 8.0 0.2 0.3

Table 3.2: Column index and value arrays of the CRS format

arrays are defined as follows:

• The ‘value array’ stores all the non-zero elements in the matrix row by row,

whose length is always nnz.

• The row pointer (row ptr) is a 0-based index array, which stores the position of

the first non-zero ‘value’ in each row. Its length is nrow + 1 and always starts

with 0 and ends with nnz.

• The column index (col ind) is a 0-based index array, whose length is the same

as the ‘value array’. It stores the column index of each non-zero value.

A non-zero can be located using the ‘row pointer array’ and the ‘column index array’.

The ‘value array’ stores the non-zero element at that location.

Constructing a CRS matrix requires two steps. In the first step, the incidence

matrix is built up based on the location of the non-zero elements. An incidence

matrix function scans the equations one by one to count the non-zeros and builds the

row-pointer and column-index arrays. In the second step, a filling function populates

the matrix data (stored in the diagonal and off-diagonal arrays) into the value array

of the CRS matrix. The elements are in different orderings, and complex indexing
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operations are needed to fill-in the elements. We refer to these two steps as the

Jacobian matrix assembly process.

In addition to complexity, the CRS matrix format lacks flexibility. It is almost

impossible to add new elements into a constructed CRS matrix, unless you can foresee

this request and prepare a stored ‘zero’ element at that location. For example, if the

entry ‘1.0’ needs to be inserted at (2,3) of the previous sample matrix, both the column

index array and the value array have to be resized and most of their values need to

be updated. The ‘row pointer array’ remains the same size, but needs to update

its values. In such cases, the simulator has to completely destroy the matrix and

build a new one. In reservoir simulation, the incidence matrix may change with time,

due to changes in the treatment of unknowns in a cell from implicit to explicit, for

example. Another common dynamic change is due to the addition or removal of wells,

or a change in their operating constraints, or status. In each iteration, complicated

indexing operations are needed to fill-in the new values (e.g., due to Newton updates)

into the CRS format. Repeatedly calling these functions can be very expensive.

The CRS matrix format limits the extensibility of the simulator. It is very hard

to incorporate new models into GPRS with CRS as the Jacobian matrix format. The

matrix-skeleton building function and the filling function of the CRS matrix format

need to know the exact location of every non-zero term. However, new models always

introduce new equations and variables. Consequently there may be many new non-

zero elements in the Jacobian matrix with very different fill-in patterns. With CRS,

the matrix assembly functions need to be rewritten for every new model. If several

different models are used together, the matrix structure can be very complicated. It

is a nightmare to maintain this kind of data structure, and further extension can be

extremely difficult.

In the following sections, we describe two newly developed data structures in
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detail, and show how they can greatly facilitate the Jacobian matrix assembly process,

retain flexibility, and achieve computational efficiency.

3.2 Multilevel Sparse Block Matrix

The Multilevel Sparse Block (MLSB) matrix data structure is a hierarchical storage

system, which corresponds to the component structures of the physical models. We

developed this data structure for systems with many relatively independent compo-

nents. For example, an oilfield production system, which includes reservoirs, wells,

and surface facilities.

In this data structure, a higher level matrix is composed of a number of indepen-

dent sub-matrices. The higher level matrix only contains some general information

(e.g., the size of matrix) and the pointers to the sub-matrices. There are no require-

ments regarding the format of the sub-matrices, which means the overall system can

be composed of several different types of matrices. The implementation details of the

sub-matrices are completely hidden from the higher level matrix. This feature honors

data encapsulation and achieves great flexibility and extensibility. New models can

be integrated in GPRS without changing the high-level architecture. In the following

subsections, we go through the matrix hierarchy from top to bottom.

3.2.1 First Level: Global Matrix

In general-purpose reservoir simulation, we often need to solve a coupled system that

contains many complex objects such as reservoirs, wells, and surface facilities. Each

of these objects has its own nonlinear equation and variable sets. Generally, the

Newton-Raphson method is employed as the nonlinear solver. Therefore, in fully
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coupled schemes, a global Jacobian matrix that incorporates all the derivatives of

the different governing equations with respect to all the variables, is required. Figure

3.2 shows a Jacobian matrix generated for a three-dimensional structured reservoir

model with several wells. The blue dots represent non-zero elements.

Figure 3.2: Typical matrix in reservoir simulation

The seven-diagonal banded structure in the matrix represents the reservoir equa-

tions and associated variables. The diagonal part in the bottom right corner repre-

sents the well equations and variables. The lower-left rows and upper-right columns

represent the coupling terms between the reservoir and wells. In Chapter 2, we sepa-

rated the facilities from the reservoir. Consequently, the global Jacobian matrix can

be conceptually separated into four parts:
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• JRR, derivatives of reservoir equations with respect to reservoir variables;

• JRF , derivatives of reservoir equations with respect to facilities variables;

• JFR, derivatives of facilities equations with respect to reservoir variables;

• JFF , derivatives of facilities equations with respect to facilities variables.

In the MLSB data structure, the first level is the global Jacobian matrix, which is

defined as a wrapper. The matrix does not contain any substantial information other

than handles to the four submatrices. The structure of the wrapper Jacobian matrix is

shown in Figure 3.3. The wrapper has no requirement on the types of its submatrices.

The prototype of the global Jacobian matrix is provided in the following pseudocode:

      
RF 

     
RR 

 
FF 

 
FR 

Figure 3.3: Submatrices in global matrix

template < class MatrixRRJ, class MatrixRFJ,

class MatrixFRJ, class MatrixFFJ >
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class SysMatWrapper {

public:

SysMatWrapper(); // Constructor

operator*(Vector& v); // Matrix-vector operator

private:

int nRows; // No. of rows

int nCols; // No. of cols

MatrixRRJ *mRRJ; // RRJ pointer

MatrixRFJ *mRFJ; // RFJ pointer

MatrixFRJ *mFRJ; // FRJ pointer

MatrixFFJ *mFFJ; // FFJ pointer

};

The reservoir object in GPRS is in charge of building and managing JRR. The

facilities object is responsible for the other three matrices. This design honors data

encapsulation. Any update in the reservoir, or the facilities, is local and will not

affect the global Jacobian matrix. An interface is provided, such that other objects

may obtain access to the various submatrices. This structure give us great flexibility

to design solution strategies. For example, we can get the decoupled facilities matrix

JFF , without any cost since it is a stand-alone matrix. The same operation would

be very expensive, if the global CRS format is used. Iterative solution strategies for

the reservoir and facilities can be easily implemented. The details of the solution

strategies will be covered in Chapter 7.
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3.2.2 Second Level: Reservoir and Facilities Matrices

The four submatrices in the first level of the MLSB matrix have substructures of

their own. The reservoir matrix contains information from the reservoir model. In

order to improve data processing efficiency and avoid extensive memory usage, the

basic data structure mentioned in Section 3.1 is reused. The major data in the JRR

matrix is the diagonal, upper off-diagonal, and lower off-diagonal data arrays. The

reservoir matrix contains only handles to these basic arrays and some additional

information, such as the implicit level of the gridblocks. Reusing the basic data

structures significantly reduces the memory cost of the simulator. Any change in the

basic arrays is equivalent to updating the matrix. Therefore, explicitly updating the

matrix, which is an expensive operation, is avoided. The pseudocode for the reservoir

matrix is presented as follows:

class SubRRBlk {

public:

SubRRBlk::SubRRBlk(); // Constructor

operator*(Vector& v); // Matrix-vector operator

private:

int nRows; // No. of rows

int nCols; // No. of cols

double *mDiag; // Diagonal array

doulbe *mOffD_A; // Upper off-diagonal array

double *mOffD_B; // Lower off-diagonal array

int *mImpLvl; // Implicit level of cells;

};
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The submatrices JRF , JFR, and JFF are the responsibility of the facilities class,

and each of them is a stand-alone matrix. As discussed in the previous chapter, the

facilities class represents the aggregate of all the wells and surface facilities in the

field. There may be hundreds of these objects in a field model. Each facility object,

e.g., a multisegment well, owns a set of stand-alone matrices, named JRW , JWR, and

JWW , respectively. JRW is the section of the Jacobian matrix, which corresponds to

the derivatives of the reservoir equations with respect to the well variables. JWR and

JWW are defined in similar manner.

JFF is a wrapper, and it contains the handles to the JWW matrices from all sub-

ordinate facility objects. The structures of JFR and JRF are similar to the structure

of JFF . Figure 3.4 shows a small reservoir model with two facility objects: one is a

standard well, and the other is a well with four segments. The level-three matrix for

the system is illustrated in Figure 3.5. The pseudo-code for the JFF matrix is written

as:

class FFJWrapper {

public:

FFJWrapper(); // Constructor

operator* (Vector& v); // Matrix-vector operator

private:

int nRows; // No. of rows

int nCols; // No. of cols

int nSubs; // No. of submatrices

std::vector<SubMat *> mMatList; // submatrix pointers

};
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Well 1Well 2

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 3.4: Sample reservoir with wells

RR

WR1

WR2 WW2

RW
1

RW
2

Figure 3.5: Submatrices in matFRJ, matRFJ and matFFJ
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3.2.3 Third Level: Well Matrices

The matrices JRW , JWR, and JWW are basic matrices, which may have substructures.

As mentioned before, there is no format requirement for these basic matrices; they

can even be full matrices. The implementation details are left for model developers.

Here, we only discuss the data formats currently used in GPRS, which can serve as

an example for future development.

Based on model types, the matrix set of JRW , JWR, and JWW can be very different

in both size and format. Figure 3.6 shows the structure of the JFR, JFF , and JRF

matrices. These illustrations correspond to the StdWell and the four-segment well

shown in Figure 3.4. The blue blocks in the matrices represent non-zero elements.

The layout of the multisegment well equations will be discussed in detail in Chapter

4.

In our implementation, this three-level MLSB matrix data structure forms the

new foundation for GPRS. Within this structure, we can have arbitrary levels of ma-

trices. This may be necessary when the system gets more complicated. For example,

the global matrix may have four, or even more, levels, when a well-group model is

incorporated into the system. This will be discussed in Chapter 5.

3.2.4 Matrix-Vector Multiplication

There are many linear solver options in GPRS. Among them, Krylov subspace solvers

are used most frequently. These solvers can solve large general sparse matrices effi-

ciently with the aid of good preconditioners [42]. Krylov solvers have no requirement

for the matrix format and can solve any matrix for which a matrix-vector multiplica-

tion operation defined. The details of linear solvers and solution strategies are covered
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Figure 3.6: Sample FRJ, FFJ, and RFJ matrices
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in Chapter 7. Here, we only focus on the matrix-vector operation of the MLSB matrix

format.

As mentioned before, the global Jacobian matrix in the MLSB format has handles

to the four sub-matrices in a 2 × 2 form. The details of the reservoir matrix, or the

number and type of facility objects, are not visible to the global matrix. However, this

does not prevent us from defining a generic matrix-vector operation. The operations

of a high level matrix are defined based on operations on the sub-matrices. For

example, the matrix-vector operation involving Aglobal can be defined as follows:

Aglobal · b =




JRR JRF

JFR JFF


 ·




br

bf


 =




JRR · br + JRF · bf

JFR · br + JFF · bf


 , (3.1)

where br, bf are the reservoir and facilities parts of the vector, b. JRF has sub-

matrices, so its matrix-vector operation is based on the matrix-vector operations of

its sub-matrices, and it can be written in a similar manner to Equation 3.1. Hence,

as long as the matrix-vector operations for the most basic matrices are defined, the

matrix-vector operation for all levels of matrices can be easily constructed. The model

developers need to propose, or adopt, matrix formats for their models, and they are

also responsible for providing the matrix-vector operations for their matrices.

3.3 Block Compressed Row Sparse Matrix

In the previous sections, we presented a new matrix data structure, which has great

flexibility, and that allows for reusing the basic data structures. The matrix-vector

operation is defined for the overall matrix; therefore, it can be used by Krylov sub-

space solvers. However, it is very difficult to implement other algorithms, such as
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LU factorization for systems composed of sub-matrices. Since the incomplete LU

family of factorizations is a very important preconditioner class, we developed a new

computationally efficient data structure that makes use of the basic data arrays.

As discussed before, the CRS matrix format is one of the most frequently used data

structures in linear algebra. It has many compatible algorithms, including solvers and

preconditioners. For example, SPARSKIT [42] provides many ILU solvers for CRS

matrices. We define a new class named ‘comprow Mat pointer’, which is based on

the CRS matrix format. The difference is that the elements in the matrix are not

of common type, such as double, float, or integer. Instead, they are pointers. These

entries point to the corresponding data blocks in the basic data arrays, as shown

in Figure 3.8. This pointer matrix and the basic data arrays can be employed to

represent a block matrix, as shown in Figure 3.7. The pointer matrix and the basic

data arrays form our block compressed sparse row (BCRS) data structure. The

pointer matrix has the following characteristics:

1. Easy to build and maintain;

2. Less memory cost than the original pointwise data structure;

3. Many algorithms available;

4. Robust and efficient;

5. Compatible with AIM (Adaptive Implicit Method).

Most algorithms that can make use of the standard CRS matrix format can be

applied to the block CRS matrix format with little modification. All we need is to

replace arithmetic operations with small matrix operations. Table 3.3 shows a few

examples. The block version of the ILU factorization is the most important algorithm

used with this matrix data structure in GPRS.
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Figure 3.7: Mapped block compressed row matrix for a simple AIM Jacobian

Figure 3.8: Block compressed row pointer matrix for AIM
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pointwise a− b 1/aii aii × bij

blockwise A−B inv(Aii) Aii ·Bij

Table 3.3: Corresponding pointwise and blockwise matrices operations

Combined with block solvers, the block compressed row sparse matrix format has

better numerical stability than the pointwise matrix format. Many algorithms, e.g.,

the ILU family, require the matrix to have non-zero (or not extremely small) diagonal

element values to ensure the existence of the reciprocal of a diagonal. Extremely

small, or zero, diagonal elements are not common, but they do occur in reservoir

simulation. It is one of the major causes of solver related problems. This block

matrix structure only requires that the diagonal blocks (see Table 3.3) be invertible.

This helps to improve the stability of solver related computations. The details of the

ILU algorithm based on the block compressed row sparse matrix format is discussed

in Chapter 6.

The block compressed row matrix format is computationally efficient. The posi-

tions of the pointers in the pointer matrix are decided by the cell-based and connection-

based numbering. These can be assumed static for most simulations. Therefore, the

pointer matrix is usually constructed only once and remains unchanged in the course

of a simulation. The new matrix format reuses the basic data structure; the ‘point-

ers’ point to different locations in these data arrays (Figure 3.8). This feature helps

reduce memory cost, since the pointer matrix and the pointers reference locations

are not changed. Updating the basic data arrays is equivalent to updating the block

compressed row sparse matrix. This is a great advantage compared with a global

pointwise representation as in the original CRS format.

Our block compressed row matrix format is fully compatible with AIM (Adaptive

Implicit Method). An additional array stores the implicit level of each cell. Each



CHAPTER 3. INNOVATIVE DATA STRUCTURES IN GPRS 40

cell may be assigned an implicit level between one (for the pressure) and the number

of primary variables. For example, the matrix in Figure 3.7 corresponds to a 3 × 3

two-dimensional problem with implicit levels of {3, 2, 1, 2, 1, 2, 1, 2, 3}.

3.4 Concluding Remarks

In this chapter, we introduced the basic data structures of GPRS. Two new ma-

trix data structures were developed to represent the Jacobian matrix for complex

reservoir-facilities simulation. The design of the data structures reflects the sepa-

ration of the reservoir and facility models in the new framework. In the next few

chapters, we describe how these data structures greatly facilitate the extension of

GPRS to new modeling capabilities. The corresponding high-performance solvers

and preconditioners based on these data structures are discussed in Chapter 7.



Chapter 4

Well Modeling

In Chapter 2, we described the new GPRS framework, in which the reservoir and

facilities are treated as separate components. This was motivated by the growing

complexity of well models and production facilities. We define facilities as the aggre-

gation of all man-made objects in an oilfield. The most common facilities are wells

and surface pipeline networks. In recent years, many new facilities, such as advanced

wells, downhole separators, and complex offshore production systems have been de-

veloped and deployed in the field. Therefore, integrated modeling of reservoirs with

these complicated facilities is necessary for reservoir management. In Chapters 4, 5

and 6, we discuss the modeling of different types of facilities.

In this chapter, we describe a new computational framework for numerical simu-

lation of coupled reservoirs and standard well (StdWell) models, and we describe the

detailed treatment of the multisegment well (MSWell) model in the new GPRS.

41
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4.1 Standard Well Model

In reservoir simulation, the standard model treats a well as a source, or sink, term

that is added to the gridblocks penetrated by the well [2, 35] [33]. At best, the

well is treated as a boundary condition in a manner that ignores the details of fluid

flow in the wellbore itself. The standard well (StdWell) model has been widely used

in reservoir simulation. The standard model had been extended to handle a single

lateral well, which can be vertical, tilted, or horizontal. In the StdWell model, density

variations along the wellbore length are accounted for approximately. Some extended

standard well models can deal with friction using simplified treatments of frictional

losses [20]. We are interested in efficient and accurate representation of the flow

in complex wells; however, detailed understanding of the standard well model is a

necessary prerequisite for such models.

4.1.1 Variables and Equations

Consider a standard well model with n perforations. The pressure values at the

sandface, pw
i , are the unknowns. We can write n equations for the well, where the first

n− 1 equations describe the pressure relation between two neighboring perforations.

Specifically, the expression can be written as [8]:

pw
i+1 − pw

i =
1

2
(ρw

i + ρw
i+1) g ∆hi,i+1 (i = 1, 2, s, n− 1), (4.1)

where ρw
i stands for the density of the fluid mixture in the wellbore around perfora-

tion i, g denotes the gravity constant, and ∆hi,i+1 is the height difference between

perforations i and i + 1. Generally, it is difficult to determine the density of the fluid

mixture in the wellbore. One of the most frequently used approximations is a volume
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weighted phase density [33]:

ρw =

∑np

p=1(ρp qw
p )∑np

p=1 qw
p

, (4.2)

where ρp is the phase density in the perforated reservoir cell, and qres
p is the phase

volumetric rate through a perforation, which is calculated by [35]:

qw
p = WI λp (pp − pw). (4.3)

In Equation 4.3, WI is the well index describing the transmissibility between the

wellbore and the perforated cell, λp is the phase mobility (the ratio of the phase

relative permeability and the viscosity), pp is the phase pressure in the perforated

gridblock.

Equation 4.2 assumes that the fluid property between two perforations in the

wellbore of a production well is only affected by the fluid through the nearest upstream

perforation. The assumption is that pressure differences between the wellbore and the

perforated cell do not cause significant density changes. Equation 4.2 gives a rough

estimate for the fluid density. The equation can be problematic when the throughput

in the wellbore is very high, and the pressure differences between the wellbore and

perforated cells are large.

In addition to the n − 1 pressure relation equations (Equation 4.1), there is one

more equation, which is the well constraint equation. This constraint equation reflects

the physical control strategy on a well. The most common constraint equations are

phase rate control and wellbore pressure control. Here, we only describe the treatment

of the oil-rate control case. The other rate constraints are very similar. The constraint
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equation for oil-rate control using the standard well model can be written as:

Rctrl =

nperf∑
i=1

(
np∑

p=1

ρp λp xo,p WI (pp − pw)

)

i

− ρo qo = 0, (4.4)

where nperf is the number of perforations, np is the number of phases, ρp is the

phase density, xo,p is the mass fraction of the oil component in phase p. Note that

all these quantities are for a particular perforation i. ρo is oil density at standard

conditions, and qo is the specified oil production rate. The transmissibility term of

each perforation in Equation 4.4 (i.e., the term multiplying the pressure difference)

also appears in the reservoir equation of the perforated cells.

For a well with BHP (Bottom Hole Pressure) control, the constraint equation can

be written as follows:

Rctrl = p
ref
− ptarget = 0, (4.5)

where p
ref

is a reference pressure, which is typically the wellbore pressure at the first

perforation, pw
1 , and ptarget is the user-specified operating pressure.

4.1.2 Density Treatment

The density, ρw
i , in Equation 4.1 depends on the wellbore pressure and the phase

fractions. However, in the standard well model, the phase density is lagged by one

iteration when constructing the Jacobian matrix terms. In other words, the standard

well model is not strictly fully implicit. Specifically, for each iteration, the derivatives

of the wellbore density with respect to other variables are zero. This one-iteration

lag treatment helps reduce the complexity of well modeling greatly. At convergence,

one obtains the same solution as the fully implicit method. The drawback of this
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treatment is that for different problems, it may take a large number of iterations to

converge, and sometimes, the iteration scheme does not converge at all.

If density variations are not very important, then density can be treated explicitly

and the pressure relation (Equation 4.1) is linear. That is:

pw
i+1 − pw

i = Ci (i = 1, 2, · · · , n− 1). (4.6)

In this case, the pressure variables of all perforations in the reservoir conservation

equations and the well constraint equation can be expressed in terms of a reference

pressure. The oil-rate constraint equation for a standard well model can be written

as follows:

Rctrl =

nperf∑
i=1

WIi

(
np∑

p=1

ρp λp xo,p (pp − pwell
ref −∆pw)

)

i

− ρo qo = 0, (4.7)

where ∆pw
i is the pressure difference between perforation i and the reference point.

The standard well model is the simplest approach. A lot of assumptions and

approximations are used to simplify the description of the physics in the wellbore.

From the above discussion, we should be aware of the following shortcomings of the

standard well model:

• The standard well model only considers the hydrostatic pressure change in the

wellbore.

• The treatment of fluid density in the wellbore is approximate. At best, it is

treated by a one-iteration lag.

• No transient effects in the wellbore are accounted for, and phase holdup is

ignored.
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In some circumstances, these assumptions and approximations may not be appropri-

ate. Therefore, more accurate well models are needed to capture the fluid flow details

in the wellbore.

4.2 Multisegment Well (MSWell) Model

In the last decade, long deviated and horizontal wells have became one of the most

broadly used technologies in the petroleum industry. Many horizontal wells (espe-

cially offshore ones) may have huge volumetric rates. In such wells, friction and

acceleration are not negligible [34]. Even for vertical wells, studies of multiphase flow

show large phase holdup effects on the flow behavior [56, 47]. These effects ques-

tion the viability of the standard well model when multiple fluid phases with strong

density and viscosity contrasts are present in the wellbore.

The multisegment well model (MSWell) is commonly used to describe the impor-

tant flow behaviors in the wellbore [24, 20]. The MSWell model accounts for the

pressure drop due to friction and acceleration, in addition to the hydrostatic pressure

drop. Friction and acceleration can be dominant factors in long horizontal and devi-

ated wells with high flow rates. The MSWell model also accounts for differences in

the phase velocities in the wellbore [56, 47].

4.2.1 Geometry and Variables

In the MSWell model, the wellbore is discretized into a number of segments (Figure

4.1). A segment is a section of the wellbore with two outlets and is represented as

a control-volume in wellbore flow simulation. Typical parameters of a segment in-

clude its length, inner-diameter, friction coefficient, and inclination. The governing
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equations and associated primary variables are defined on these segments. The rela-

tion between segments in a discrete wellbore model is similar to the relation between

gridblocks in a reservoir model.

Figure 4.1: Discrete wellbore of the MSWell model

The multisegment well model is a prerequisite for modeling smart wells. In a smart

well, there are some special devices, such as valves, sensors, and downhole separators.

These objects can be modeled by special segments. The special segments may have

different variables and governing equations compared to a regular segment. In this

section, we focus on the multisegment well model (without special segments) for the

black-oil formulation.

As in the StdWell model, an MSWell model may have many perforations along the

wellbore. We assume that a segment can have at most one perforation. The segments

are numbered from heel to toe. The toe-end of a perforated segment is always located

in the center of the perforated reservoir cell. For a black-oil, isothermal MSWell model,

four variables are associated with each segment, which are pseg, αg, αw, Vm [20, 47].

The pressure of a segment, pseg, is defined at the toe-end of the segment. Since the
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Figure 4.2: Sample MSWell model with a small reservoir model

toe-end of a perforated segment is aligned with the center of a reservoir cell, the

flux between the reservoir and the well can be calculated from the pressures of the

perforated segment and the reservoir cell directly. The gas and water phase fractions,

αg and αw, are defined for the entire segment. The mixture velocity of a segment,

Vm, is defined at the heel end of a segment. Figure 4.3 shows the locations of the

variables for a single-lateral well with four segments.

The MSWell model can be used to simulate multilateral wells. A schematic of a

multisegment model for a multilateral well is shown in Figure 4.4. In general, each

segment may have one segment connected to its heel end, except for the top segment.

Each segment may have one, or more, segments connected to its toe end, except a

segment at the end of a lateral. A more general definition of variables and their

locations for a general branching system is discussed in Chapter 6.
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Figure 4.3: Schematic of a single-lateral MSWell model and its variables

Figure 4.4: Schematic of a two-lateral MSWell model and its variables
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4.2.2 Momentum and Mass Balance Equations

In the black-oil model, the governing equations for each segment are the momentum

balance equation and three component mass balances. A multisegment model for a

single-lateral well with n segments results in 4n equations. The momentum balance

equation for a segment in the MSWell model can be written as follows [24]

Rseg
p,i = pseg

i − pseg
i−1 − (∆ph,i + ∆pf,i + ∆pa,i) = 0 i = 2, 3, · · · , n, (4.8)

where pseg
i is the pressure of segment i, ∆ph,i is the hydrostatic pressure difference

between segments i− 1 and i, ∆pf,i is the pressure difference between segments i− 1

and i caused by friction, and ∆pa,i is the pressure difference between segments i− 1

and i due to fluid acceleration. Because the segment pressure is defined at the toe end

of a segment, the pressure difference between segments i− 1 and i is only determined

by the properties of segment i. This momentum equation is also called the ‘pressure

relation’ for segment i. Notice that we do not write a momentum balance equation

for the top segment.

The hydrostatic pressure term in Equation 4.8 can be written as:

∆ph,i = ρseg
i g ∆hseg

i , (4.9)

where ρseg
i is the density of the fluid mixture in segment i, and ∆hseg

i is the vertical

height of segment i. The friction pressure loss term can be written as [20]:

∆pf,i =

(
2ftp ρseg V 2

m

d

)

i

∆xi, (4.10)

where ftp is the friction factor, d is the diameter of the segment, and Vm is the

velocity of the fluid mixture in the segment. The pressure loss due to acceleration
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can be written as:

∆pa,i =

(
2 minVm

A

)

i

, (4.11)

where min is the mass flow rate of the mixture through a perforation, and A is the

cross-sectional area. Equation 4.8 establishes the relation between the pressure of the

segment and the pressure of the heel segment. Note, however, there is no pressure

equation for the top segment, since it has no heel segment. The multisegment well may

have a constraint equation, which is similar to Equation 4.4, or 4.5. The constraint

equation specifies the operating condition of the well. Care must be taken in the

treatment of the well constraint since the computational efficiency as well as the

ability to model transient behavior in the wellbore depends on it.

In addition to the pressure (momentum balance) equation, each segment has three

component mass conservation equations:

Rseg
c,i =

AiLi

∆t

np∑
p=1

[
(ρp xc,p αp)

n+1
i − (ρp xc,p αp)

n
i

]
+

np∑
p=1

[(A ρp xc,p Vsp)i − (A ρp xc,p Vsp)i+1]
n+1−

np∑
p=1

[ρp xc,p λp WI (pres − pseg)]n+1
i = 0 c = g, o, w,

(4.12)

where Li is the length of segment i, αp is the holdup (in-situ fraction) of phase p in the

segment, and Vsp is the phase superficial velocity. These equations are similar to the

component mass balance equations for flow in porous media, which we write for each

cell in the reservoir model. The difference is in the flux term. In wellbore flow, phase

velocities have no explicit relation with pressure gradient. The mixture velocity, Vm,

becomes one of the primary variables. Therefore, the flux term is written based on
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the phase superficial velocities rather than the pressure gradient.

Compared with the StdWell treatment, the MSWell model leads to more rigorous

representation of the density of the fluid mixture in a segment. The fluid-mixture

density can be written as

ρm = αgρg + αoρo + αwρw, (4.13)

where ρm is the density of the fluid mixture. In the equation, the phase holdups

are primary variables. The dependence of density on segment pressure, ∂ρm/∂p, is

also considered when constructing the Jacobian matrix. Therefore, the fluid density

in the well is fully coupled to the primary variables. This is much more rigorous

compared with the approach used in the standard well model (Equation 4.2). Friction

and acceleration are also accounted for in the MSWell model, which are treated in

a fully implicit manner. The MSWell model provides information about the flow

in the wellbore, including the distribution of pressure, velocity, and phase holdups.

Moreover, since we write a momentum and mass-balance equations for each segment,

transient effects in the wellbore can be represented.

These advantages come at a computational cost. Each segment has four equations

and variables. A multisegment well may include hundreds of segments; this results

in a large number of equations per well. Efficient solution of reservoir model that

are coupled to MSWells is a challenging task. Our specially designed linear solution

strategies for systems with MSWells are presented in Chapter 7.
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4.2.3 Constraint Equations and Jacobian Matrix Structures

Wells in the field are subject to various control strategies. These controls are rep-

resented by constraint equations. Even for the same control strategy (e.g., constant

oil-rate control), different discrete representations may be employed. For the MSWell

model, the constraint equation takes the place of the ‘pressure equation’ for the top

segment. Next, we discuss several constraint relations and their impact on the Jaco-

bian matrix.

A simple illustration is shown in Figure 4.5, which has a small two-phase reservoir

model with 3 × 2 gridblocks. The well has three segments and is perforated in the

second and fifth reservoir gridblocks. For fully implicit oil-water simulation, there are

Figure 4.5: Sample system with the MSWell model

two equations per cell (oil and water conservation equations). Therefore, the total

number of the reservoir equations of this case is twelve. Since each segment has four

equations, the three-segment well results in twelve well equations. The total number

of the equations in the system is 24. In the following discussion, sample Jacobian
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matrices will be shown for this system. We represent a Newton iteration as follows:




JRR JRW

JWR JWW


 ·




δur

δuw


 = −




Rr

Rw


 , (4.14)

where JRW is the sector of the Jacobian corresponding to the derivatives of the

reservoir equations with respect to the MSWell variables. JRR, JWR, and JWW are

defined in a similar manner. Rr and Rw are the residual vectors of the reservoir and

well equations respectively. δur and δuw are the corrections for the reservoir and well

variables from the Newton iteration.

According to the multilevel sparse block data structure, the JRW , JWR, and JWW

should be within the facilities matrices (JRF , JFR, and JFF ). Since the main focus

of this chapter is on the MSWell model rather than the data structures, we do not

consider the facilities level for simplicity.

Wellbore Pressure Control

Theoretically, one can specify the pressure of any segment to be a certain value. For

simplicity, we always choose the toe-end of the top segment as the reference point. If

the top segment is close to the first perforation in the well, the control is equivalent to

bottom hole pressure (BHP) control. If the top segment is at the surface, the control

is equivalent to wellhead pressure (WHP) control. The constraint equation for a well

with pressure control can be written as:

Rseg
1 = pseg

1 − p target = 0. (4.15)
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Figure 4.6: Jacobian matrix with pressure controlled well

Equation 4.15 has only one non-zero derivative:

∂Rseg
1

∂pseg
1

= 1. (4.16)

The structure of the corresponding Jacobian matrix is shown in Figure 4.6. We labeled

the equations and variables in the figure. The first twelve rows of the matrix are

derived from the reservoir equations, and the remaining twelve rows are from the well

equations. The constraint equation is the first well equation, which corresponds to the

13th row of the matrix and is labeled with ‘ctrl’. The first twelve columns represent

the reservoir variables and the remaining columns represent the well unknowns.

From the figure, the natural block structure of the reservoir equations and un-

knowns is quite clear; similarly, the multisegment well equations and unknowns have

their own block structure. The reservoir part (top-left 12× 12), JRR, is made up of
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6 × 6 blocks, each of which is a 2 × 2 block. Each off-diagonal (2 × 2) block cor-

responds to one connection between two reservoir gridblocks. Since the system in

Figure 4.5 is two-dimensional with cell based ordering, the reservoir part is a block

five-diagonal matrix. The well part JWW (bottom-right 12×12) has 3×3 blocks, each

of which is a 4×4 block, because each segment has four equations and four variables.

The off-diagonal blocks in JWW represent intersegment connections. A multisegment

well with a single lateral leads to a tridiagonal block structure, which is similar to

the discretization of a one-dimensional reservoir model. JRW and JWR represent the

coupling between the reservoir model and the well model. JRW contains two (4× 2)

blocks and JWR contains two (2× 4) blocks. The number of non-zero blocks in JRW

and JWR is the same as the number of perforations.

The dark blue cells in Figure 4.6 represent non-zero elements. In order to store the

data in a uniform block size, an entire block is kept even if there is only one non-zero

element in it. These stored zero elements are marked with light blue. For a constant-

pressure constraint, there is only one non-zero element, in the row corresponding to

the constraint equation (the 13th row of the matrix shown in Figure 4.6).

Rate Control

One can specify a target for any phase, or for the total production. All of these

constraints are very similar in implementation, so here we use oil-rate control as an

example. For a well under oil-rate control, the constraint equation can be written in

two different ways. These two forms are based on slightly different control strategies,

and they lead to different matrix structures, numerical performance, and computa-

tional results.

The first form is very similar to the oil-rate constraint equation in the standard
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well model (Equation 4.4). That is, the mass rate of the oil component from all the

perforations is equal to the specified rate:

Rctrl =

nperf∑
j=1

(
np∑

p=1

ρp λp xo,p WI (pres
p − pseg)

)

j

− ρo qo = 0. (4.17)

. In Equation 4.17, Rctrl depends on both formation and segment pressures at the

perforations. It is a function of the sandface fluid saturation as well. However,

although the equation shows up as if it is one of the first segment’s equations, it does

not rely on any variable in the first segment (the first segment is not perforated in

our example). The derivatives of Equation 4.17 with respect to the primary variables

are:

∂Rseg
1

∂pres
j

=

np∑
p=1

(
∂(ρpxo,pλp)

∂pres
WI (pres − pseg) + ρpxo,pλp WI

)

j

, (4.18)

∂Rseg
1

∂sres
j

=

np∑
p=1

(
ρpxo,p WI

∂λp

∂sres

)

j

, (4.19)

∂Rseg
1

∂pseg
j

= −
np∑

p=1

(ρpxo,pλp WI)j . (4.20)

This results in the Jacobian matrix shown in Figure 4.7. The constraint row (row 13)

has non-zero elements at the positions corresponding to the perforations (column 3,

4, 9, 10, 17, 21). Compared to the BHP-control case, the matrix has more non-zero

elements, and this leads to additional storage. In our example, we have two additional

4× 2 blocks, namely, block (13:16, 2:3) and block (13:16, 8:9), in the JWR part and

one additional 4× 4 block, (13:16, 21:24), in the JWW part.

In the matrix for the BHP case (Figure 4.6), the number of blocks in JWR is the

same as the number of perforations, and the number of upper, or lower, off-diagonal

blocks in JWW is the same as the number of intersegment connections. However, the
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Figure 4.7: Jacobian matrix with oil rate constraint

additional blocks introduced by Equation 4.7 ruin this simple one-to-one relation and

leads to many special treatments in implementation with complicated data structure

manipulations.

The other form of the oil-rate constraint is to equate the mass-rate of the com-

ponents out of the top segment (first segment) to the specified rate, which can be

written as:

Rctrl = A1

np∑
p=1

(ρp xo,p Vsp)1 − ρo qo = 0. (4.21)

Equation 4.21 depends only on the variables of the first (top) segment. The derivatives
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are as follows:

∂Rseg
1

∂pseg
1

= A1

np∑
p=1

(∂ρp xo,p Vsp)1

∂pseg
1

, (4.22)

∂Rseg
1

∂V seg
1

= A1

np∑
p=1

ρp xo,p
∂Vsp,1

∂V seg
1

, (4.23)

∂Rseg
1

∂αseg
g,1

= A1

np∑
p=1

ρp xo,p
∂Vsp,1

∂αseg
g,1

, (4.24)

∂Rseg
1

∂αseg
w,1

= A1

np∑
p=1

ρp xo,p
∂Vsp,1

∂αseg
w,1

. (4.25)

Further expansion of these equations depends on the specific flow model employed.

Here, we only focus on the structure of the Jacobian matrix, which is shown in Figure

4.8. The matrix structure is very similar to the one with BHP control (Figure 4.6).

The number of stored data blocks is exactly the same.

Link between the Two Rate Constraint Equations

Recall the segment component mass balance equation, which is given by Equation

4.12; we rewrite the equation for the oil component as:

Rseg
o,i =

Ai∆xi

∆t

np∑
i=1

[
(ρpxo,pαp)

n+1
i − (ρpxo,pαp)

n
i

]
+ (4.26)

np∑
i=1

[
(Aρpxo,pVsp)

n+1
i − (Aρpxo,pVsp)

n+1
i+1

]−
np∑
i=1

ρp,ixo,p,iλp,iWIi(p
res − pseg)i = 0.

This segment conservation equation is composed of three terms, which are accumu-

lation, flux between segments, and flux between the reservoir and a segment. If we
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Figure 4.8: Jacobian matrix with oil rate constraint

sum the equations of all the segments, the flux terms between segments cancel out,

and we get:

Ro =

nseg∑
i=1

(
A∆x

∆t

np∑
i=1

[
(ρpxo,pαp)

n+1 − (ρpxo,pαp)
n
]
)

i

+ (4.27)

np∑
p=1

(Aρpxo,pVsp)
n+1
1 −

nseg∑
i=1

[
np∑

p=1

ρpxo,pλpWI(pres − pseg)

]

i

= 0.

Only the outflow (for a production well) from the top segment remains. This term

also shows up in the second rate constraint equation (Equation 4.21). Substitution
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of Equation 4.21 in Equation 4.27 leads to:

Ro =

nseg∑
i=1

(
A∆x

∆t

np∑
i=1

[
(ρpxo,pαp)

n+1 − (ρpxo,pαp)
n
]
)

i

+ (4.28)

ρo qo −
nseg∑
i=1

[
np∑

p=1

ρpxo,pλpWI(pres − pseg)

]

i

= 0.

Equation 4.28 is the oil conservation equation for the entire well. If we ignore transient

effects, i.e., accumulation in each segment is ignored, Equation 4.28 can be simplified

to:

Ro = ρo qo −
nseg∑
i=1

[
np∑

p=1

ρpxo,pλpWI(pres − pseg)

]

i

= 0. (4.29)

Since an unperforated segment has no inflow from the reservoir, we can use the nperf

to replace nseg in Equation 4.29, and this leads to:

Ro = ρo qo −
nperf∑
j=1

[
np∑

p=1

ρpxo,pλpWI(pres − pseg)

]

i

= 0, (4.30)

which is very similar to the traditional (standard model) oil-rate constraint equation

(Equation 4.17).

Both Equation 4.17 and Equation 4.21 define a constant oil-rate control on the

MSWell, but they have different forms. The two equations also lead to differences in

the following aspects:

• Equation 4.17 may lead to a diagonal block (the 4 by 4 block in Figure 4.7) that

is not invertible for the first segment. The first row in the diagonal block is all

zeroes. This imposes serious difficulty to apply a block ILU preconditioner.

• Equation 4.17 does not consider transient effects. This may cause some errors
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when the well status changes. Equation 4.21 accounts for transient effects, and

naturally handles wellbore storage, which is important in simulating transient

well tests.

• Equation 4.21 leads to a Jacobian matrix structure similar to that obtained for

the pressure constraint. On the other hand, Equation 4.4 introduces additional

blocks in both JWW and JWR. This destroys the one-to-one relation between

the number of intersegment connections and the number of off-diagonal blocks

in JWW , as well as the one-to-one relation between the number of perforations

and the number of blocks in JWR.

Based on this discussion, we can see that Equation 4.21 is a much better choice

compared to Equation 4.17. We used Equation 4.21 as the rate constraint equation

in GPRS. We also showed that Equation 4.21 and the component mass equations can

be combined to form an equation similar to the standard well equation. This idea will

be used in the preconditioning strategies used to solve linear systems with MSWells,

which is investigated in Chapter 7.

4.2.4 MSWell Initialization

Before simulation begins, the system is assigned an initial state. However, significant

changes in the variables usually take place during the first timestep. In order to

ensure convergence of Newton’s method, a small timestep is strongly recommended

to begin the simulation.

A standard well with a rate constraint has only one variable, which is the ref-

erence pressure. The pressure may change significantly even if the pore volume of

the perforated gridblock is reasonably large and the production rate is not too high.
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Typically, the initial wellbore reference pressure (producer) is set slightly below the

reservoir pressure in the first perforated gridblock to start the simulation. With a

small initial timestep, the produced fluid volume is limited. Therefore, the pressure

changes in the gridblocks and the wellbore are also limited. The Newton method

usually can handle this setting reliably.

However, a multisegment well has more variables. As mentioned before, multiseg-

ment well may have more than one hundred segments. Each segment will have four

variables for the black-oil case and many more for compositional models. The typical

variables are pressure, mixture velocity, holdup of gas and water phases. Among these

variables, velocity is the most problematic one. Usually, the fluids in the wellbore are

stagnant before production starts. Once production begins, the velocity of the fluid

can reach large values quickly. For example, a 500 bbl/day flow rate in a wellbore

with a 0.32 feet radius yields a fluid velocity of about 8726 ft/day. Moreover, velocity

is the dominant nonlinear term in the friction pressure loss relation (Equation 4.10).

It is difficult for the Newton-Raphson method to converge when large changes in the

velocity take place during the iteration process. Another interesting thing is that the

big jump in velocity does not depend on time, which means that taking very small

time steps does not cure the problem.

From the above discussion, we see that it is crucial to have a good estimate to the

initial state of a multisegment well. This can be accomplished by the following steps:

1. Estimate holdups: Initial phase saturations in the perforated gridblocks are

known. Using the relative permeability data, the phase inflow ratios (holdups)

of all perforations is determined. Since we have no estimate of the pressure

yet, we cannot compute estimates of the flow rates through perforations. So

we assume a uniform flow rate distribution for all perforations. That is, all
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segments have the same phase holdups, which is the average of phase holdups

through all perforations.

2. Estimate density: Since we already have estimates for the holdup, we can com-

pute the density distribution in the segments.

3. Estimate wellbore pressure: First, we need to estimate the pressure relations

(momentum balance) of all segments. We consider gravity and friction effects.

The gravity relation can be easily computed, since we already have the mixture

density and the height of all segments. Friction is calculated using the current

estimate of velocity; at simulation startup, the velocity is zero, which means we

have no pressure drop due to friction yet. If the well is under pressure control,

the reference pressure is known. Once we have the estimate for the pressure

relations of all segments, the segment pressures can be computed. If the well is

under rate control, given the known pressure relations between segments, the

reference pressure can be calculated from Equation 4.7.

4. Estimate inflows from the reservoir: Once the wellbore pressure is estimated,

Equation 4.3 is used to calculate the inflow through each perforation.

5. Estimate the velocity of the fluid mixture: The mixture velocity of each segment

can be calculated from the rate of inflow from the reservoir and inflow from the

toe segments

6. Loop (optional): Go back to step 3, use the mixture velocity to update the

pressure loss.
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4.2.5 Homogeneous and Drift-flux Models

Multiphase flow in pipes is very complicated. It is very difficult to solve the governing

Navier-Stokes equations for multiphase flow. The computational cost is too high, and

the results are not necessarily accurate. In petroleum engineering, three kinds of flow

models are used to describe flow in wellbores and pipeline networks. These are (1)

empirical correlations, (2) homogeneous models, and (3) mechanistic models [36]. The

homogeneous model and its extension, the drift-flux model [56], are implemented in

the new GPRS. Since the wellbore is discretized into segments, the main purpose

of these flow models is to determine the flux term between segments in the mass

conservation equations. Here we write Equation 4.12:

Rseg
c,i =

AiLi

∆t

np∑
p=1

(
(ρp xc,p αp)

n+1
i − (ρp xc,p αp)

n
i

)
+

np∑
p=1

(
(A ρp xc,p Vsp)

n+1
i − (A ρp xc,p Vsp)

n+1
i+1

)−
np∑

p=1

ρp,i xc,p,i λp,i WIi (pres − pseg)i = 0 c = g, o, w.

(4.31)

In the flux terms, the phase superficial velocity, Vsp, is the key variable. In the

following discussion, we will see how the homogeneous and drift-flux models link Vsp

to the primary variable Vm.

Homogeneous Model

The basic homogeneous model assumes the fluid mixture flows as if it was a single-

phase fluid [20]. In the homogenous wellbore model, all phases share the same in-situ
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flow velocity. The slip between phases is ignored. The velocity relation is

Vp = Vm, (4.32)

where Vp is the in-situ phase velocity in the segment. By definition, Vp is related to

the superficial phase velocity by:

Vsp = Vp αp, (4.33)

where αp is the phase holdup (volume fraction) in a segment. Thus, in the homogenous

model, the superficial phase velocity has a simple relation with the mixture velocity:

Vsp = Vm αp. (4.34)

The homogenous model is the simplest discrete wellbore flow model. The equation

is differentiable, so it is suitable for the Newton-Raphson nonlinear solver. However,

the homogeneous model does not consider slip between phases. The model may be

quite off from the true physics in the wellbore. For example, the homogenous model

cannot be used to model gravity segregation of different phases [47].

Drift-flux Model

The drift-flux model is an extension of the homogeneous model. The model was first

published by Zuber and Findlay [56]. Unlike the basic homogeneous model, the drift-

flux model considers the relative velocity between different fluid phases. The different

phases may have different velocities, and in some cases, even different flow directions.

Similar to the homogenous model, the drift-flux model is continuous and differen-

tiable. Therefore, it is a suitable option to implement in reservoir simulators [47, 20].
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The general form of the drift-flux model can be written as [56]:

Vg = C0Vm + Vd, (4.35)

where Vg is the gas-phase velocity, C0 is the profile parameter, which reflects the

effect of velocity and concentration profiles, Vd is the drift velocity, which reflects the

buoyancy effect of the gas phase (Figure 4.9) [11]. The superficial gas-phase velocity

can be written as:

Vsg = αg Vg, (4.36)

and therefore

Vsg = αg C0Vm + αg Vd, (4.37)

C0 and Vd are the key parameters in the drift-flux model. In the discrete representa-

tion of the drift-flux model, these two parameters and the phase holdup determine the

relation between the phase superficial velocity and the fluid mixture velocity, which

are taken to be at the interface between two neighboring segments. The values of

these two parameters are calculated from the phase properties of the upstream and

downstream segments [47].

The homogeneous and drift-flux options have been implemented as part of the

MSWell model in GPRS. In the following discussion, a few cases with different flow

models will be tested.



CHAPTER 4. WELL MODELING 68

Figure 4.9: Schematic of velocity and concentration profiles [11]

4.2.6 Test Cases

Case 1: 1800-segment Well with the Drift-flux Model

The multisegment well model in GPRS is robust and computationally efficient. The

fully coupled reservoir-facilities framework enables users to decide on the level of

complexity for both the reservoir and well models. GPRS can be turned into a

wellbore simulator, by using a simple reservoir model as a boundary condition and a

complicated wellbore model. In order to test the numerical performance with large

numbers of segments and complex wellbore geometry, a test case was set up.

In this test case, a live-oil reservoir has a uniform initial pressure of 6400 psi at

a depth of 6000 ft. The bubble-point of the reservoir is 5014 psi. A 5 × 5 × 2 grid

is used to represent the reservoir model. The reservoir model is not the focus of this

case. The reservoir model mainly acts as a boundary condition. One bilateral well

is perforated in the top layer of the reservoir. Each lateral intersects five cells in a

row. The well contains three sections according to its shape: vertical, tilted, and
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horizontal. A diagram for the system is shown in Figure 4.10. The 5000 ft long

vertical zone is uniformly discretized into 1000 segments. At the end of the vertical

zone, the wellbore is split into two tilted branches. Each tilted branch is discretized

into 200 segments (7.07 ft/segment). The tilted branches have a slope of 45 degrees,

which means they deepen the well by 1000 ft. Each horizontal zone is 1000 ft long and

uniformly discretized into 200 segments. Overall, the entire wellbore is discretized

into 1800 segments, and each segment is about 5− 7 ft long. This is a very fine grid

for a wellbore. The well produces 1000 bbl/day under oil rate control. A drift-flux

model is used to simulate multiphase flow in the wellbore. We consider pressure losses

caused by gravity, friction and acceleration.

Figure 4.10: Layout of a bilateral MSWell and a small reservoir

With very small initial timesteps (on the order of a minute), we capture the

wellbore storage effect, in which the downhole rate is not equal to the wellhead rate.

GPRS is able to output the solution details of each segment. Profiles of segment

pressures and the gas-phase holdup along the wellbore are shown in Figure 4.11. The
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Y axes in the two subplots represent wellbore length (not depth) starting from the

wellhead. The curves for 1, 100 and 200 days are shown in the figure. The reservoir

bubble-point pressure (5014 psi) is marked with an orange vertical dash line in the

pressure plot.

The bubble-point line intersects the pressure curve of the first day at about 800 ft.

The segment pressure above this point is below the bubble point pressure. The gas

holdup curve also shows that gas comes out from the oil phase at the same point in

the gas-phase holdup plot. The bubble-point line intersects the pressure curve of the

100th day at about 3600 ft. We also observe gas coming out of solution at the same

point. The wellbore pressure keeps decreasing as we deplete the reservoir. Hence

the two-phase zone extends downward gradually, until the entire wellbore becomes

two-phase zone, which is observed at 200 days.

The gas holdup curve at 200 days is worth a detailed look. The well geometry

changes abruptly from vertical to tilted to horizontal. Since the tilted angle has an

important impact on the flow regime in the wellbore, abrupt transitions can lead to

discontinuities in the gas-phase holdup profile. The gas holdup in the tilted zone is

smaller than the holdups in the other two zones. This is because the gas phase has

much larger slip effect over the oil phase when the wellbore is tilted at 45 degrees [23,

47]. In other words, the gas phase in the tilted zone has relatively larger speeds than

those in the other two zones. Therefore, smaller gas holdup in the titled zone is

needed to obtain the gas-phase rate.

On the gas holdup curve at 200 days, we see a small kink at a depth of about 2000

ft. The slope changes at the segment with the pressure of 4014 psi. This value is a

data point in the gas PVT table. In GPRS, linear interpolation is used to calculate

phase-formation-volume factors from the PVT table. Since we only have a few data

points for the gas phase in the PVT table, the gas-phase compressibility obtained
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Figure 4.11: Pressure and gas-phase holdup profiles along the wellbore using a drift-
flux model with 1800 segments (Case 1)
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from the table is not continuous, which causes the kink. This reminds us that the

gas-phase holdup profile is very sensitive to the PVT data. Thus, the PVT properties

should be fine enough to capture the dynamic behaviors of interest.

In the plot, the gas holdup of the first segment is much higher than that of any

other segment. For example, at 200 days, the top segment has a gas holdup of 0.23,

while the gas holdup of the second segment is about 0.16. The discontinuity comes

from switching the segment types. Even for a wellbore using the drift-flux model, the

first segment is still a homogeneous segment. This is because the phase velocity in

a drift-flux segment relies on properties of the current segment and its heel segment.

The top segment has no heel segment. Therefore, the top segment has to be treated

as a homogeneous segment. In practice, the top segment is very small in size. So the

usage of the homogeneous model does not affect the results of the drift-flux model.

In a homogeneous segment, the gas phase has the same speed as the oil phase. On

the other hand, in the drift-flux segment, the gas-phase has a higher speed than the

oil-phase. When a two-phase fluid mixture flows from a drift-flux segment into a

homogenous segment, a higher value of the gas-phase holdup is needed to balance the

reduction in gas-phase speed.

The pressure profiles in the horizontal zone are almost vertical. In fact, there is

a pressure gradient in this part due to friction. However, the throughput (500 bbl

oil/day) is small and the wellbore roughness coefficient is normal. As a result, the

pressure loss is too small to be observed in the plot.

This case is also designed to test the solver capability of GPRS. We deliberately

discretized the wellbore into a large number of segments, which may be enough for

most wellbore simulations. The case is run on a personal computer with one 2.2 Ghz

CPU. The timesteps are one day, except a few smaller ones in the beginning. GPRS

can finish 200 days of simulation in 116 seconds. More performance information is
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listed in Table 4.1. We can see that GPRS can be used as a highly efficient multiphase

flow wellbore simulator.

Timestep 208

Newton Iteration 1009

Solver Iteration 5967

Solver Time (sec) 45.0

Total Time (sec) 116.0

Table 4.1: GPRS timing performance for Case 1

Case 2: 180-segment Well with the Drift-flux Model

The physical setting of the second case is the same as Case 1. However, the number

of segments is reduced to one-tenth of the first case. The entire wellbore is discretized

into 180 segments. The pressure and gas holdup profiles along the wellbore are plotted

in Figure 4.12.

The plot shows similar results to those of the 1800-segment well in Case 1. We

can see that the pressure and holdup properties change relatively smoothly along the

wellbore. In general, just as in reservoir modeling, grid refinement studies should be

performed to analyze the accuracy of the computed solutions.

Case 3: 180-segment Well with the Homogeneous Model

The third case is exactly the same as Case 2, except all the segments use the homo-

geneous model. The pressure and gas holdup profiles along the wellbore are plotted

in Figure 4.13.

By comparing Figure 4.12 and Figure 4.13, we find that the pressure profiles are

similar in both test cases, but the gas-phase holdup profiles are very different. In
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Figure 4.12: Pressure and gas-phase holdup profiles along the wellbore using a drift-
flux model with 180 segments (Case 2)
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Figure 4.13: Pressure and gas-phase holdup profiles along the wellbore using a ho-
mogeneous model with 1800 segments (Case 3)
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order to be precise, both pressure and gas-phase holdup profiles from the drift-flux

and homogeneous models at 200 days are plotted together in Figure 4.14.

Figure 4.14: Pressure and gas holdup profiles along the wellbore with both homoge-
neous and drift-flux models at the 200 days

There is no phase slip in a horizontal segment, which means the gas-phase holdup

of a drift-flux segment is identical to that of a homogeneous segment. The well is

under oil-rate control of 500 bbl/day. Therefore, the results for the horizontal part

(pressure, phase holdups, velocities) from both models are exactly the same. There is

some pressure drop along the horizontal part due to friction. However, compared to

the hydrostatic pressure loss, it is too small to be observed in the figure. In the tilted

and vertical zones, the two pressure profiles deviate from each other. This deviation
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comes mainly from the difference in the mixture density. The drift-flux model leads

to higher fluid mixture density, because the gas phase holdup is much smaller. Recall

that the pressure drop profiles in the horizontal part are the same. Therefore, heavier

fluid mixtures result in smaller pressures in the wellbore. The largest deviation is

about 41 psi, which takes place at the top segment.

The gas phase holdup profile from the homogeneous model is smooth and mono-

tonically increasing from the end of the tilted zone to the surface. The velocity of the

gas phase is always the same, by definition, to the velocity of the oil phase. So gas

holdup is independent of the segment shape (tilted or not). Pressure is the dominant

factor in gas holdup. Smaller pressure leads to larger gas holdup. Both curves have

a kink at the location corresponding to 4000 psi, which is due to the gas phase PVT

table. The gas phase velocity in the homogenous model is much lower than that from

the drift-flux. This results in much higher gas holdup in the homogenous model for

most segments.

The MSWell model was integrated into GPRS as an independent module. The

model can work with the various kinds of reservoir models and formulations that

GPRS supports. A case with MSWells and large-scale highly heterogeneous reservoir

model is tested in the chapter on Linear Solution Strategies. The plot of that system

is shown in Figure 7.22.

4.3 Concluding Remarks

The multisegment well model is based on discretizing the wellbore into segments, or

control volumes, and writing the governing equation. This is a very general framework

for wellbore simulation. There are many extensions that can be made to the MSWell
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model we designed and implemented in GPRS. One is modeling various devices with

special segments, such as valves, downhole separators, etc. These extensions can be

used to model smart wells, or other special well models.

Another direction is to incorporate new flow models. The homogenous and drift-

flux models have been implemented in GPRS as two subclasses, ‘HomoSegment’ and

‘DFSegment’. They share a common base class - ‘Segment’. The only difference be-

tween these two segment types is the way they handle the flux term between segments.

New flow models can be incorporated without changing any higher level functionality,

or component, in the architecture. These extensions can make the MSWell framework

a more sophisticated and accurate wellbore flow modeling tool.

It is also important to handle highly complex wellbore geometries with segments.

When we define segments and variables in MSWell, the flow direction is implicitly

assumed. For example, in Figure 4.4, segments 3 and 5 are the toe segments of

segment 2. This setting implies that segments 3 and 5 are similar to each other but

segment 2 is different. For a production well, the flow direction is assumed to be

from segments 3 and 5 to segment 2. However, from a more general viewpoint, the

flow direction of the phase may be quite complex. The flow direction should not

be presumed. In order to handle general branching systems with loops. We need

to change the way we define segments and variables. Such a general model can be

used to simulate surface pipeline systems as well as wellbores. This extension will be

discussed in Chapter 6.



Chapter 5

Well Group Modeling

In the last chapter, we discussed well modeling in reservoir simulation. Both the

standard well (StdWell) and multisegment (MSWell) were covered. Our focus was on

the MSWell model due to its generality. In practice, an oilfield may contain thousands

of wells, and most of them do not have independent controls. For example, pipelines

may be used to link a number of wells to a junction and form a well group. Control

is then applied on the junction to tune the pressure, or flow rate, of the system.

Here, we define the well-group as a single facility object. The definition covers both

the underground part (well) and the surface part (pipeline). Traditionally, well-group

modeling does not consider the pipeline part and uses a guide-rate to simplify the

problem. This is an easy method, but not rigorous. In this chapter, we propose a new

well-group modeling approach, which can avoid the shortcomings of the traditional

method. We will also show how the well-group model can be integrated into the new

reservoir-facilities simulation framework as a facility object.

79
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5.1 Objects and Concepts

A well group is two, or more, wells that are connected to a common junction by

pipelines. These wells share a common outlet/inlet at the junction. The junction

is also the point where constraints for the entire well group are applied. The wells

in a group can be production or injection wells. The wells interact with each other

through the reservoir, pipelines, and the junction. The wellhead is the terminal point

of a wellbore at the surface. The wellhead may have valves, or pumps, installed to

adjust the exit pressure or fluid flow rate. Figure 5.1 shows a diagram of a well group.

wellbore

wellhead

pipeline

junction

Figure 5.1: Single-level well group with three subordinate wells

The wells in an oilfield may be distributed over a very large area. Nearby wells

are usually grouped together, and a number of well groups may be connected by

pipelines to form a higher well-group level. Figure 5.2 shows a two-level well group,

in which the level-two group has three well groups. Even higher well-group levels can

be constructed in a nested manner.

Figure 5.3 shows a diagram of a more complex layout of a multilevel well group in
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Level 1

Level 2

Figure 5.2: Two-level well group with three subordinate well groups

a modern offshore oilfield. A number of wells in two reservoirs are grouped into three

groups, and the three groups are connected by pipelines to form a level-two well group.

Some pipelines connecting the level-one well group junctions to the level-two junction

can be several kilometers long. The exit of the level-two well group is connected to

floating production, storage, and offloading facilities (FPSO). We are interested in

simulating systems like this with arbitrary implicit levels, from the reservoir to the

storage.

Some commercial simulators use a guide-rate to handle well groups. The guide

rate is specified by the user, or calculated according to well production potential from

the last timestep [20]. The target rate of a well-group is allocated to the individual

wells based on the guide rate. In other words, during a timestep in a simulation, there

is no group constraint in force. Each well operates at a constraint according to its

share of the total rate. This is an easy method to handle well groups. Although the

target rate is strictly honored, the well operating rates may not be consistent with

the true behavior. The error can be significant when the timestep size is large, or
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when there is a special event, e.g., water breakthrough.

Figure 5.3: Production system of a modern offshore field [18]

In this chapter, we propose and implement a rigorous fully implicit treatment

of coupled well-groups and reservoir models. The well-group model accounts for

interactions between the wells in the group and incorporates pipeline correlations

when necessary. This framework is extensible to other well models. For instance,

the user can include MSWells, StdWells, or both types in one group. Minimal code

changes are needed for incorporating newly developed well models in the future.

In a well group system, we associate one constraint with the highest well-group

level. The lower well-group levels, or individual wells, may have their own economic

and physical limits, such as minimal wellbore pressure, maximum water cut, etc.
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However, during the simulation, these lower-level limits are not in force. The simula-

tor only checks whether the limits are violated at the end of each timestep. The limits

act as triggers leading to some events, such as switching group constraints, closing or

reopening of wells.

5.2 Jacobian Matrix Structure

The new general framework of GPRS offers great advantages in handling systems

with well groups. With some extension, the multilevel data structure can effectively

represent and process the well-group information. We describe the process using the

simple synthetic case shown in Figure 5.4. In this case, the system is composed of a

small reservoir model and four wells. Three wells, two MSWells and one StdWell, are

grouped together; there is also one individual MSWell in the system. As always, the

system can be expressed using a 2 × 2 block Jacobian matrix (upper right corner of

Figure 5.4), which is composed of four submatrices, JRR, JRF , JFR, JFF .

Although there are four wells in the system, the ‘facilities’ class only sees two

objects: a well-group and one individual well. This is because there are only two

constraints in the system. The individual wells in the group do not have their own

constraints; hence, they do not appear as facility objects. As a result, the facilities

matrices have two sets of submatrices, which are the contributions from the well-

group and the individual well (lower right corner of Figure 5.4). At this level, the

matrices from the individual well and the well-group are equivalent, but it is quite

obvious that the details of the contribution from the well-group will be much more

complicated than the contribution from the single MSWell. (A diagram of MSWell

matrices is shown in Figure 3.6).
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1

RFRR FFFR
Figure 5.4: Well group in reservoir and corresponding matrices

The matrices from a well group are JGR, JRG and JGG. Here, JRG represents the

part of the Jacobian matrix corresponding to reservoir equations with respect to well-

group variables. The other two are named in a similar manner. The individual well

submits its matrix contribution to the facilities object, while the wells in the group

submit their matrices to the well group. The well-group matrices are wrappers, which

contain matrices from the wells in the group and three matrices from the junction. The

detailed structures of the well-group matrices JGR and JGG are shown in Figure 5.5.

JGR contains JWR matrices from the wells. JGG contains a number of JWW matrices

(in blue) from the wells and three matrices from the junction (in green). JRG is in a

form similar to transposed form of JGR. JRG is composed of JRW matrices from the

wells in the group.

Overall, the matrices of the well-group model are very similar to those of the

facilities class, except that JGG is enlarged by matrices from the junction, and the

dimensions of JGR and JRG are changed correspondingly. (See Figure 3.5 for the
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structure of the facilities’ matrices). In the next section, we will discuss the equations

and variables that make up these matrices.

5.3 Governing Equations and Variables

The variables of a well-group model are composed of the variables from the wells and

the ones from the junction. The variables from the wells depend only on the well

type. The StdWell model has only one primary variable - bottom hole pressure, while

the MSWell model has a large variable set. No new variable is defined for the wells

in the group, but the junction introduces a few new variables. For the case shown in

Figure 5.4, the well variables in the well-group have three subsets, coming from the

three wells. The variables from the junction depend on the type of constraint on the

well-group. If the well-group is under constant oil-rate control, the junction variables

are the pressure at the junction, pJ , and nw (number of wells in group) oil component

rates from the wells. In this case, they are qo1, qo2, qo3.

For the first well in the well group shown in Figure 5.4 (MSWell), its governing

equations are very similar to the ones if the well was an individual one. The equations

for each segment are exactly the same, which are the pressure relation equation and

mass balance equations (Equation 4.8 and 4.12). However, the constraint equation

is slightly different. We use a constant oil-rate constraint as an example, and its

expression is written as:

R = F (pw, ...)− qo1 = 0. (5.1)

In this equation F (pw, ...) is the wellbore flux, which is a function of the wellbore

variables. The formulation of the flux depends on the type of well model. For the
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Figure 5.5: JGR and JGG matrices of well group

MSWell model, the formulation is Equation 4.4. For the StdWell model, the formu-

lation is Equation 4.21. To be general, we do not write down the specific expression

of the flux function.

For an individual well, qo,1 is a user-specified constant. In the well group case,

qo,1 is a variable that is associated with the junction object. In both scenarios, the

derivatives of Equation 5.1 with respect to the well variables are identical. Therefore,

the Jacobian matrices of the well in the well group are exactly the same as if the well

was alone. In other words, no special treatment is needed for the Jacobian matrix

of the well in a well-group. Since qo,1 is a junction variable, there is one additional

derivative, ∂R/∂qo,1. According to Equation 5.1, it is a constant of -1. The derivative

belongs to one of the junction matrices.

In each Newton update, once the junction variables, qo,i, are updated, they will be

sent to the corresponding well. Hence, when the well model linearizes its equations
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for the next Newton iteration, it will use the proper rate. Consequently, no special

treatment is needed for the right-hand-side vector.

The junction object introduces nw +1 new variables. Therefore, the same number

of governing equations is needed for the junction. The first is the constraint equation

for the entire well group, which is written in Equation 5.2:

R =
nw∑
i=1

qo,i − qo,t = 0, (5.2)

where qo,t is the target constant-rate for the entire well group. If the well is under

constant pressure control, the constraint equation is written as:

R = pJ − pt = 0. (5.3)

The remaining nw governing equations are the pressure relations between the well

reference pressure and the junction pressure:

R = pw
i − pJ −∆p(qo,i, ...) = 0 (i = 1, 2, 3, ...), (5.4)

where ∆p(qo,i, ...) is the pressure correlation for the pipelines between the wellheads

and the junction. Here, we consider the friction effect along the pipeline, which is:

∆pf =

(
2ftpρV 2

m

d

)
L, (5.5)

where L is the length of the pipeline. This equation can be replaced by other pipeline

correlations as needed.

For each iteration, the Jacobians of the well objects in the group are updated with

the last iteration results. Then, the wells submit their matrices to the well-group
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object. The well-group object prepares the matrices for the junction and combines

the matrices from both the junction and the wells to form the well-group matrices.

Then, the well-group matrices are submitted to the facilities object. The process

of constructing the right-hand-side vector for the well-group is similar to the above

process.

5.4 Example

A simple case was designed to show preliminary results of well-group simulation. The

reservoir model is homogenous with 20 × 20 gridblocks. There are four wells in the

system. Three MSWell producers are grouped into one well group. The constraint for

the well group is 1500 bbl/day of oil production. One StdWell is an individual water

injector under constant-pressure control. Producer #1 has the shortest distance to

the injector and Producer #3 is the farthest well from the injector. The system is

shown in Figure 5.6.

Initially, the reservoir contains oil and immobile water. Hence only oil is produced

in the early period. The oil and water production rates from the three subordinate

wells and the entire group are plotted in Figure 5.7 and Figure 5.8, respectively.

Among the three producers in the group, Producer #1 has the largest production

rate since it has the shortest distance to the injector. Producer #2 has a smaller

rate, and the rate from Producer #3 is the smallest one. The production rates of the

three wells are quite stable during the early stage. After about 170 days, water breaks

through in Producer #1, and its oil production drops significantly thereafter. The

well group has to lower the junction pressure to boost oil production from Producers

#2 and #3. After about 220 days, water breaks through in Producer #2, and the

oil rate of Producer #2 begins to drop. Producer #3 becomes the workhorse of the
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Figure 5.6: Reservoir with well group

system providing most of the oil production.

In this case, the simulation runs in fully implicit mode. The well group model

is fully coupled with the reservoir model. There is no assumption on the rates, or

pressures, for the wells in the group or for the junction. The wells in the group

compete with each other to produce at the junction constraint.

5.5 Concluding Remarks

In this chapter, we proposed a new approach to model well groups in reservoir simu-

lation. The treatment honors the well-group constraint and accounts for the coupling

between the wells and the reservoir. The model was integrated into the new GPRS

framework. The well-group model in GPRS takes advantage of the flexible data
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Figure 5.7: Oil and water rates of subordinate wells in well group
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Figure 5.8: Total oil and water rates of well group
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structures, and it is built using existing well models as a base. This reduces the

development and maintenance cost significantly. The new option enables GPRS to

perform fully coupled reservoir and well group simulation. The development of the

well-group model also demonstrates the flexibility of the new GPRS framework.

There are some suggested future extensions for well-group modeling:

• Implement other pressure correlations and flow models.

• Implement nested well groups, whose matrix is shown in Figure 5.9.

• Develop more effective linear solution strategies for systems with well groups.

Figure 5.9: JWR and JWW matrices of a nested well group



Chapter 6

General Pipeline and Wellbore

Modeling

The pipeline network plays a very important role in oilfield production operations.

Most of the time, the constraints in a production system are not on wellheads, but on

gathering systems and storage facilities. The pipeline network links the wellheads to

these facilities. Therefore, it is crucial to have fast and accurate pipeline simulation

tools.

The multisegment well model (MSWell) can handle transient effects very well. In

order to simulate the flow from the perforation to the production gathering system

seamlessly, we extend the MSWell treatment to cover pipeline networks. However,

pipeline networks have much more complex topology, including general branching,

loops, and multiple exits. The flow direction in pipeline networks may not be preas-

sumed. The existing MSWell model is unable to handle such cases. In this chapter,

we propose a new consistent model that works for both wellbore and general piping

systems.

92
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Most of the discussion in this chapter is based on modeling pipeline systems, but,

the approach is directly applicable to discrete wellbore models. This new general

discrete wellbore model is a stand-alone simulation package, but we describe how it

can be integrated into the GPRS simulator.

6.1 Segments, Nodes and Connections

Segments and their variables were defined in Chapter 4 for the MSWell model (Figure

4.3 and 4.4). However, those specifications may not be effective for pipeline networks.

The pipeline system may contain loops, crossovers and multiple exits. Therefore, we

developed a general model, referred to as “GenWell”, to handle a general branching

system like a pipeline network or a complex well.

Figure 6.1: Discretized pipeline
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The pipeline system is discretized into cells, called segments. An example of dis-

crete pipeline networks is shown in Figure 6.1. In the GenWell model, there are three

types of segments: two-outlet, multi-outlet, and special. The two-outlet segment is

the most common segment object. It is a section of pipeline with outlets at either

end. A two-outlet segment can always be split into an arbitrary number of smaller

two-outlet segments. A two-outlet segment is not necessarily straight, but may con-

tain bends and corners. However, in order to obtain optimal accuracy, we suggest

splitting the segments until all of them are nearly straight. The two-outlet segments

are used to represent the main part of the pipeline system. A multi-outlet segment,

as suggested by its name, has more than two outlets. These segments are used to

represent joints in a pipeline system. At a joint, there may be three or more branches.

Each branch is connected to one outlet of a multioutlet segment. Figure 6.2 shows

a straight two-outlet segment, a bent two-outlet segment, and a multioutlet (three)

segment. Two-outlet and multioutlet segments have the same set of variables and

equations. A shape factor is the only difference between them. With these two types

of segments, we are able to describe arbitrary shapes in pipeline networks.

(a) straight two-outlet (b) bent two-outlet (c) multioutlet
segment segment segment

Figure 6.2: Pipeline segments

It is common to have some special equipment in a pipeline network, such as

separators, valves etc. They may have very different functionality than just being a
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“pipe”. We use special segments to model such equipment. They may have different

variables and governing equations compared to two-outlet and multioutlet segments.

Special segments are on the list for future development. We provide a framework to

handle these special segments, but they are not the focus of this discussion.

In the GenWell Model, each segment has one and only one node associated with

it. The node is located at the center of the segment. The variables associated with

a segment are defined on the node. An abstract object “connection” is defined to

represent the relation between two connected segments. Connections have one-to-one

relation with outlets, i.e., a two-outlet segment has two connections associated with

it, and a multioutlet segment has more than two. The fluid-mixture velocity is defined

on the connection between two segments. Exits in the pipeline system are treated as

special connections, which connect exit segments to the external environment.

Discretizing a general branching system into segments is a gridding process. For

a given pipeline network, joints in the network are first identified and labeled as

multi-outlet segments. These multi-outlet segments split the entire pipeline network

into a number of two-outlet piping sections. In the next step, these large two-outlet

sections can be split into many smaller two-outlet segments according to accuracy

requirement. Once the segments are set up, nodes are assigned to the centers of the

segments. All the segments are labeled and form a segment list. Connections are

then built up according to the structure of the network. Each connection represents

a connection relation between two segments. Generally, the number of connections is

not the same as the number of segments. All of these connections form a connection

list, which is very similar to the one used in reservoir simulation.

The volume of a two-outlet segment is decided by its length and the cross-sectional

area. In the GenWell model, the fluid is assumed to be well mixed at junction

points. Therefore, the multi-outlet segments are junction points with reasonably
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small volumes. The suggested value is on the order of D3
in, where Din is the inner

diameter of the pipe at the joint point. The small size of the joint segments reflects

reality and ensures the fluid is well mixed at a joint. In some circumstance, different

branches may not split the phases evenly. This can be modeled by using different

governing equations for the multi-outlet segment. However, we do not consider this

scenario in this work.

After the discretization process, the pipeline system is abstracted as a graph.

There are a number of nodes, on which primary variables are defined. A segment can

be seen as a certain volume attached to a node. Component mass balance equations

will be written based on this volume. The connection list describes the topological

structure of the nodes, and the relative height of nodes is needed as well. This is

very similar to the method used for reservoir models. For some specific pipeline flow

model (e.g., drift-flux model), the inclination can have an impact on the flow. So

this information is preserved in the segment. Figure 6.1 shows a discretized general

branching system, where all the segments, nodes, and connections are labeled.

6.2 Governing Equations and Variables

By introducing connections and multioutlet segments, the GenWell model can easily

discretize arbitrary pipeline networks and wellbores. The variables of GenWell are

very similar to MSWell, but the places they are defined are different. Velocity is not

a segment variable any more; instead, it is defined as a connection property. In the

MSWell model, the momentum equation of one segment reflects the relation between

itself and its heel segment. In the GenWell model, the momentum equation is writ-

ten for a connection, which naturally reflects the pressure relation of two connected

segments.
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For the black-oil GenWell model, the variables of a segment are very similar to

the ones in a reservoir cell. If the fluid is single-phase/single-component, pressure pseg

is the only variable. If the fluid is three-phase/three-component, two phase holdups

αg,i, αw,i are primary variables. If the fluid is two-phase/two-component, we pick one

of the holdups as a primary variable. These variables are defined on nodes, which are

at the center of segments. The variable defined on a connection is the fluid mixture

velocity, Vm. In a general branching system, the number of connections is not the

same as the number of segments. Typically, when a loop is introduced into a network,

it adds more connections than segments.

For each connection (except an exit connection), the pressure relation between

two segments can be written as (ignoring acceleration)

Rp = pseg
up − pseg

down + ρ g (hup − hdown)− 2ftpρV 2
m

D
∆x = 0, (6.1)

where h is the node height of each segment. The reference point for h is the ground

surface, and h is negative for subsurfaces pipes (i.e., wells). Subscripts up and down

are used to avoid pre-assumed flow directions.

For each segment, mass conservation equations of components are the governing

equations. Their discretized form is:

Rm,c =
V

∆t

np∑
p=1

[
(ρp xc,p αp)

n+1 − (ρp xc,p αp)
n
]
+

nconn∑
i=1

np∑
p=1

(A ρp xc,p Vsp)
n+1
i (c = g, o, w),

(6.2)

where V is the segment volume, and nconn is the number of connections associated

with the segment.
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Besides the momentum and mass balance equations, the pipeline system may

have constraint equations on exits. Similar to other well models, constraints in the

GenWell model can be constant pressure, or constant rate. In the GenWell model,

the pipeline network, or well object, may have more than one exit, and each of them

has an independent constraint. The constraint types and parameters can be different.

For example, a GenWell may have three exits. One may be operating under constant

pressure of 100 psi; the second may have a constant exit pressure of 120 psi; and the

third one could be operating under a constant oil-rate of 200 bbl/day.

The pressure constraint is applied to an exit segment, because pressure is a seg-

ment (node) variable. The expression for a constant pressure constraint is written as

Rctrl,p = pseg − p target = 0. (6.3)

The rate constraint is applied to an exit connection, because the velocity is defined

on connections. In this case, we have

Rctrl,q = A

np∑
p=1

( ρp xo,p Vsp )− ρo qo = 0. (6.4)

Vsp is the phase superficial velocity, which is the same as the one in the MSWell

model. In the GenWell model, we start to use a homogeneous flow model (Equation

4.34), in which all phases share the same velocity. Other flow models, e.g., drift-flux

model, can be implemented as future extensions.

We use a fully implicit scheme with our GenWell model, which has unconditional

stability and allows large timesteps. For a system with ne exits, nc connections, and

ns segments, we get ne constraint equations, nc − ne momentum equations (exits

are counted as connections) and ncomp ns mass balance equations, where ncomp is the

number of components. In total, we have ncompns+nc governing equations, and this is
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also the number of rows in the Jacobian matrix. The ordering starts with the velocity

at exit connections, followed by other velocities in the order of the connection list.

After that, the pressure and phase holdups of all segments are listed in the order of

the segment list. For an oil-water case, the equation and variable sets are given by

{Rp 1 , Rp 2 , ... , Rp nconn , Rm,o 1 , Rm,w 1 , ... , Rm,o nseg , Rm,w nseg}T ,

{V1 , V2 , ... , VnConn , po 1 , αw 1 , ... , po nseg , αw nseg}T . Therefore, the Jacobian

matrix for the system can be written in 2× 2 block form as




∂Rp

∂Xc

∂Rp

∂Xs

∂Rm

∂Xc

∂Rm

∂Xs


 ,

where Rp represents the pressure equations in residual form, Rm the mass balance

residual equations, Xc the vector of connection variables, and Xs the vector of segment

variables.

Figure 6.3 shows a Jacobian matrix from a pipeline simulation with the GenWell

model. The pipeline structure is shown in Figure 6.4, which has two components,

26 segments, and 28 connections. Therefore, the dimensions of the Jacobian matrix

is 80 × 80. It is very easy to see different non-zero patterns in the four parts of the

Jacobian matrix.

6.3 Example

A pipeline simulation case with complex geometry and strong transient effects is

designed to test the GenWell model. The structure of the pipeline network is shown

in Figure 6.4. The pipeline is discretized into 26 segments and 28 connections. Both
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Figure 6.3: Jacobian matrix for a pipeline simulation
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segment numbers (labels) and connection labels are shown in the figure. In the

discretized pipeline network, segments 3, 6, 13, 16 are multioutlet segments. Segments

21 and 26 have very large volumes and high initial pressure. They can be seen as

reservoirs, or tanks, and act as boundary conditions. Other segments are two-outlet

ones and have the same geometry. Among them, segments 1 and 2 are the exits of the

pipeline system. There is one loop in the system (between segments 6 and 13). The

frictional resistance of the right branch (segments 10, 11, 12) is four times larger than

the left branch (segments 7, 8, 9). The system contains both oil and water. Initially,

Tank #1 (segment 21) has 10% water and Tank #2 (segment 26) has 20% water.

The oil phase has a larger compressibility than the water phase. The system runs

at constant pressure applied on both segments 1 and 2. The driving force is liquid

expansion. In order to limit the depletion rate, the two tank connections (connections

24 and 28) are assigned very high friction coefficients. Therefore, most of the pressure

decline happens at these two locations. The energy of the system depletes within 180

days.

The pressure histories of selected segments are shown in Figure 6.5. The left plot

shows the pressure of the two tanks (segments 21 and 26). Both of them start from the

same initial pressure (1000 psi), but Tank #1 maintains at a higher pressure most of

the time. This is because Tank #1 has a higher oil phase percentage (90%) than Tank

#2 (80%). The larger overall compressibility of Tank #1 helps it maintain a higher

pressure. The right plot of Figure 6.5 shows the pressure history for segments 8, 11

and 16. From Figure 6.4, we can see that segments 8 and 11 are in the corresponding

positions of two parallel branches. Although the resistance of the right branch is

four times that of the left one, the pressure of segments 8, 11 are always the same.

Segment 16 has a slightly higher pressure, since it is the upstream segment.

The water-phase holdup history for several selected segments is shown in Figure
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Figure 6.4: Discretized pipeline of the example
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6.6. The left plot shows the water phase percentage of the two tanks, which are

basically at their initial values (0.1 and 0.2). With time, the water holdups of the

tanks drop slightly, because the oil-phase expands more with pressure decline. The

right plot of Figure 6.6 shows the water phase holdup histories of segments 3, 16, 17

and 22. Segments 17 and 22 belong to the two branches directly connected to the two

tanks, respectively. Therefore, their phase holdup histories are almost identical to

the tanks. The water holdups of segments 3 and 16 start from almost the same value,

which is a little bit smaller than 0.15. A water holdup of 0.15 is the average value

of the two tanks. At early time, almost the same amount of fluid comes out of the

two tanks and mixes at the junctions. Since the pressures of segments 3 and 16 are

much smaller than the tank pressure, their water holdups are slightly smaller than

0.15 due to different phase compressibilities. Later in time, the water-phase holdups

of the two segments drop significantly and that of segment 16 reaches 0.1. Tank #2

has more water and less overall compressibility. Tank #2 loses its energy faster, and

the system is gradually dominated by Tank #1, which has 10% water.

The mixture velocity histories of selected connections are shown in Figure 6.7.

The labels of the connections are shown in Figure 6.4 with blue circled numbers. The

left plot of Figure 6.7 shows the velocities of the two tank connections (connections

24 and 28). Again, we see that Tank #2 depletes faster than Tank #1. The right plot

shows the velocity histories of four segments. At any given time, the velocity ratio of

connections 16, 11, 1 and 14 is about 6:4:3:2. All the fluids from both tanks need to

go through connection 16. Therefore, the connection has the largest velocity in the

pipeline. The two exits are under the same constant pressure control, so they share

the total-rate evenly. The two branches of the loop have different resistances. The

resistance of the right branch is four times that of the left one. Hence the total-rate is

split according to the resistance. From Equation 5.5, it is easy to see that the velocity
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ratio between the two branches should be 2:1. This analysis ignores volume change

due to compressibility (we consider this in the simulation), because the system is

slightly compressible and the pressure differences between these segments are small

(refer to the right plot of Figure 6.5).
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Figure 6.5: Pressure of selected segments

6.4 Comments on Future Extension

We suggest that the GenWell model be implemented in GPRS to completely replace

the current MSWell model. This is because the traditional MSWell model is a subset

of the GenWell described here. The GenWell model can handle general branching and

loops with arbitrary flow directions, and multiple exits with different constraints. An

important step in that direction is to incorporate more flow models, e.g., the drift-flux

model, into GenWell. Other pressure correlations can be implemented as additional

options.
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Figure 6.6: Water holdup of selected segments
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The GenWell model overlaps somewhat with the well-group model. The well-

group model (discussed in Chapter 5) contains independent subordinate objects, i.e.,

the wells in the group. Therefore, the well-group matrix has substructure (Figure 5.5).

The advantage of the well-group model is that it can combine different well models

(e.g., StdWells and MSWells) in one group easily. With the implementation of new

well models, the capability of the well-group model is naturally expanded. However,

in the well-group model, the treatment for the pressure relation between the wellhead

and the junction point is relatively simple (Equation 5.4). The well-group model

has pre-assumed flow directions and cannot handle complex topology (e.g., loops).

The GenWell model is much more general. GenWell discretizes the entire subsurface

and surface piping system into segments and is able to provide much more detailed

information about the flow behaviors in complex wellbores and pipe networks.



Chapter 7

Linear Solution Strategies

In Chapters 2-6, we described the new design of the GPRS computational frame-

work, in which the reservoir and facility models are treated as separate numerical

components. New data structures consistent with this separation were designed and

implemented. The information is encapsulated within different objects and organized

in an efficient manner, and close attention has been paid to efficient computation

using these new multilevel data structures. The multisegment well (MSWell) model

and rigorous treatment of well-group constraints have been integrated into the new

GPRS simulator. The computational platform is quite flexible and can be further

expanded in a variety of ways.

As described in detail in Chapters 4, the MSWell model introduces a large num-

ber of equations and unknowns for each well. The Jacobian matrices for reservoir

models with MSWells are much more complex than those from reservoir models with

StdWells. One needs to tailor the solution strategy to accommodate the Jacobian ma-

trices obtained when large numbers of facilities equations and unknowns are present.

To efficiently solve large-scale, highly heterogeneous, unstructured reservoir models

107
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with advanced well models, we developed a new linear solver strategy for the new

GPRS framework. In this chapter, we discuss these new solvers and preconditioners.

Specifically, we designed and implemented a scalable multistage preconditioner

for large-scale reservoir models coupled with multilateral, multisegment wells. The

overall strategy is based on the two-stage, CPR approach [53]. In the first stage,

the full Jacobian matrix goes through two restrictions. Each MSWell is algebraically

reduced to a StdWell-like equation first. Then IMPES reduction is applied to the

reduced matrix to generate the corresponding pressure matrix. A multilevel, block

ILU(k) preconditioner is used for the second stage. Our multistage linear solver allows

for the simultaneous presence of standard and multisegment wells (with a wide range

of well controls) in the model. Several cases are used to demonstrate the performance

of the CPR-based preconditioner for reservoir models with multisegment wells.

7.1 Linear Solvers and Preconditioners in GPRS

The nonlinear coupled algebraic equations in reservoir simulation can be written as:

Rn+1 ≡ R(un+1) = 0, (7.1)

where R is the residual function, u is the unknown vector, n is the timestep level.

In reservoir simulation, the Newton-Raphson method is usually used to solve the

nonlinear system shown in Equation 7.1, which is linearized as follows:

Rv+1 = Rv +

(
∂R

∂u

)v

δuv+1 = 0, (7.2)
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where v is the Newton-Raphson iteration level. Equation 7.2 can be written as follows:

Jvδuv+1 = −R v, (7.3)

where the Jacobian matrix is defined as

J v =

(
∂R

∂u

)v

. (7.4)

Every Newton-Raphson iteration requires solution of the linear system (Equation

7.3). The system of linear equations has the following characteristics:

1. Large - the model can have O(106) cells with more than 10 components per cell;

2. Discontinuous coefficients;

3. Anisotropic coefficients;

4. Unstructured;

5. Non-symmetric;

6. Varying degrees of freedom;

7. Extended stencils (e.g., MPFA).

Therefore, linear solvers have a critical impact on the performance of a reservoir

simulator. We are interested in robust and efficient general-purpose simulation. In

this regard, GPRS is designed to serve as a platform for developing and testing various

solvers and preconditioners. These current solver options include:

1. Full matrix direct solver;
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2. Banded matrix direct solver;

3. BlitzPaK solver, which is a package of efficient solvers and preconditioners de-

signed specifically for reservoir simulation [15];

4. Pointwise GMRES solver;

5. Blockwise GMRES solver;

6. BiCGstab solver [17].

Preconditioners are algorithms to speed up the solution of systems of linear equations.

For large general linear systems in reservoir simulation, an iterative Krylov method

(e.g., GMRES, BiCGstab) without a preconditioner is not a feasible method [42].

In reservoir simulation, most of the research effort on linear solvers focuses on the

preconditioner rather than the Krylov projection method. GPRS provides various

preconditioner options, which are listed here:

1. Diagonal preconditioner;

2. Block diagonal preconditioner;

3. ILU(0) preconditioner [4, 37];

4. True-IMPES CPR preconditioner [53] (AMG [49] serves in the first stage);

5. Quasi-IMPES CPR preconditioner [53] (AMG serves in the first stage);

6. AMG preconditioner;

7. True-IMPES CPR preconditioner (SAMG [51] serves in the first stage);

8. Quasi-IMPES CPR preconditioner (SAMG serves in the first stage);
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9. SAMG preconditioner;

10. Block ILU(k) preconditioner;

11. Reservoir-facilities multilevel block ILU(k) preconditioner;

12. CPR preconditioner for advanced well models;

In this long list, the diagonal preconditioner is the simplest method. Each row and

corresponding RHS element are scaled with the diagonal element. The block diagonal

preconditioner scales the block rows and RHS elements with the diagonal blocks.

Generally, these two preconditioners are not effective, and they will not be discussed

further. The other preconditioners will be discussed in the following sections.

Although we have several solvers and a large number of preconditioners, not all

combinations are possible. For example, direct solvers do not work with precondition-

ers. Some combinations are possible, but are not provided as standard options. For

instance, the block GMRES solver (solver option 5) can work with the quasi-IMPES

CPR preconditioner (preconditioner option 5). However, we have not encountered

many cases for which the quasi-IMPES CPR preconditioner gives better performance

than true-IMPES with a pointwise GMRES solver. All compatible solver and precon-

ditioner combinations are listed in Table 7.1. In the table, P0 – P12 denote different

preconditioner options (P0 means no preconditioner used), and S1–S6 represent dif-

ferent solver options.

7.2 Introduction to GMRES

The generalized minimum residual (GMRES) solver is widely used in our community.

GMRES is also the primary solver option in GPRS. A brief introduction to GMRES



CHAPTER 7. LINEAR SOLUTION STRATEGIES 112

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

S1 x

S2 x

S3 x

S4 x x x x x x x x x x

S5 x x x x x x

S6 x x x x x x x x

Table 7.1: Compatible solvers and preconditioners in GPRS

is given here.

GMRES is an iterative algorithm used for solving linear system of equations in the

form of Ax = b [43]. Here, A denotes a sparse invertible matrix, b is a right-hand-side

(RHS) vector, and x is an unknown vector. For an m×m matrix, GMRES guarantees

convergence to the exact solution within m iterations. But in most realistic problems,

m is a very large number. For some cases in reservoir simulation, m can be more

than ten million. In practice, GMRES converges after a small number of iterations

when it is used in conjuction with a good preconditioner. The GMRES algorithm is

listed in Algorithm 7.1:

Algorithm 7.1 Algorithm of GMRES [42]

1: Compute r0 = b−Ax0, β := ‖r0‖2, and v1 := r0/β
2: Define the (m + 1)×m matrix H̄m = {hij}1≤i≤m+1,1≤j≤m. Set H̄m = 0.
3: For j = 1, 2, ..., m Do
4: Compute wj = Avj

5: For i = 1, ..., j Do
6: hij := (wj, vi)
7: wj := wj − hijvi

8: end For
9: hj+1,j = ‖wj‖2. If hj+1,j = 0 set m := j and go to 12

10: vj+1 = wj/hj+1,j

11: end For
12: Compute ym the minimizer of ‖βe1 − H̄my‖2 and xm = x0 + Vmym
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From the algorithm, we notice that GMRES is a general solver, which has no

specific requirements for the type of matrix or its data structure. It only requires

that a matrix-vector multiplication function be available (step 1 and step 4 in the

algorithm). The independence from the matrix data structure, or format, gives us

freedom to design and implement data structures that are specialized for reservoir

simulation. Two new matrix data structures specially designed for reservoir simula-

tion were presented in Chapter 3.

GPRS provides both pointwise and blockwise GMRES solvers (solver options 4 &

5). These two options use exactly the same implementation of GMRES. The difference

is the type of matrices and their matrix-vector operations. The pointwise GMRES

solves matrices in the CRS (compressed row storage) format (see Sparselib++ [37]),

which is a pointwise matrix format that can be used for structured and unstructured

systems. We employ our MLSB (multilevel sparse block) matrix when using blockwise

GMRES. The definition and matrix-vector operation for the MLSB matrix format are

given in Chapter 3.

Generally, the blockwise GMRES solver has better computational performance,

because the matrix-vector operation for block matrices benefits from better cache uti-

lization. Besides this, the matrix updating cost is much lower, because the new matrix

data structure avoids the complex indexing operations in the matrix filling function.

Some performance comparisons between the pointwise and blockwise GMRES are

provided later.

GPRS also provides a BiCGstab solver (solver option 6). Later, a benchmark case

is simulated with both GMRES and BiCGstab solvers. Based on this, and several

other cases, we have found that the performance of GMRES is usually better than

that of BiCGstab. Generally, the GMRES solver has about a 10-20% speedup over

the BiCGstab solver. Orthogonal minimum residual (ORTHOMIN) used to be the
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most prevalent linear solver in reservoir simulation, and is still the primary choice

in the EclipseTM simulator. A recent study showed that GMRES can be a better

option than ORTHOMIN for black-oil reservoir simulation [29].

7.3 Single-stage Preconditioners

The convergence rate of iterative linear solvers depends highly on the condition num-

ber of the matrix to be solved as well as the detailed character of the eigenvalue spec-

trum. Preconditioners are used to reduce the matrix condition number and speed

up the convergence of iterative solvers. Some stand-alone algorithms, e.g., Incom-

plete Lower Upper (ILU) factorization, can be directly applied as preconditioners.

These preconditioners are so-called single-stage preconditioner. Sometimes, several

algorithms are combined together to form a multistage preconditioner. Multistage

preconditioners have some additional overhead, but they may achieve much better

numerical performance. In this section, we will introduce the basic concept of a pre-

conditioner (left and right) and then discuss the single-stage preconditioner options

in GPRS.

7.3.1 Introduction

For a given matrix A, a preconditioner M is a matrix satisfying the following two

criteria [16]:

• M−1A should have a much smaller condition number than that of A. In other

words, M should be similar to A in some way. Of course M = A is a perfect

preconditioner, since the condition number of M−1A is unity. However, this
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‘perfect’ preconditioner violates the second criteria.

• M−1 should be cheap to compute. Typically, instead of getting the inverse of

M , we requires that the linear system of M x = b can be solved cheaply, where

b is a given RHS vector. In other words, we need to provide an efficient solver

for our preconditioning matrix M .

The preconditioner defined above is a left preconditioner, because M is applied

to the left side of matrix A. For a general sparse matrix system:

A x = b, (7.5)

it would be more efficient to solve an equivalent linear system with a much smaller

condition number [42]:

M−1A x = M−1b. (7.6)

As discussed before, Krylov subspace solvers (e.g., GMRES, BiCGstab) are based on

matrix-vector multiplication. Hence we do not need to compute M−1A explicitly.

We can simply provide an operation for M−1A:

w ← M−1A v, (7.7)

where v is a given vector and w is the result of the operation. Equation 7.7 with

a left preconditioned Krylov subspace methods is performed in two steps. The first

step is a basic matrix-vector multiplication:

v∗ ← A v, (7.8)
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where v∗ is an intermediate vector. Then, Equation 7.7 can be rewritten as:

w ← M−1v∗. (7.9)

The second step (Equation 7.9) is a preconditioner call, in which we solve the linear

system:

M w = v∗. (7.10)

Then the vector w of Equation 7.7 is obtained. Thus, each iteration in the precondi-

tioned GMRES calls the preconditioner once.

A right preconditioner is performed in a similar manner, but the preconditioning

matrix M is applied in the right side of matrix A. Instead of solving Equation 7.5,

we solve an equivalent equation:

AM−1(M x) = b. (7.11)

The above equation can be separated into two steps. In the first step, the iterative

solver solves a linear system shown in Equation 7.12:

AM−1 y = b, (7.12)

where

y = M x. (7.13)

For this linear system with a small condition number, AM−1, Equation 7.12 will be

solved until convergence. Each matrix-vector operation involves one preconditioner
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call and one normal matrix-vector (MV) operation involving A, which is in the reverse

order compared to left preconditioning. As a result of the first step, the interim vector

y is obtained. In the second step, one more preconditioner call solves for the original

unknown vector x

M x = y. (7.14)

In the following sections, we will discuss several important single-stage preconditioners

used in GPRS.

7.3.2 Incomplete LU Factorization (ILU)

In linear algebra, LU factorization is the process of representing a matrix A as a

product of a lower triangular matrix, L, and an upper triangular matrix, U ,

A = L U . (7.15)

For an n × n matrix, the LU factorization requires approximately O(n2) operations

with proper ordering, which is not competitive with iterative solvers [21]. Moreover,

the LU factorization of a sparse matrix does not necessarily result in sparse matrices.

So, LU factorization is not a practical solver option for large sparse matrices. However,

incomplete LU (ILU) factorization is used effectively as a preconditioner in many

iterative solvers [42]. In this section, we discuss several ILU preconditioners used in

GPRS.
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Pointwise ILU

Incomplete LU (ILU) factorization is one of the most popular preconditioner families.

Some non-zero elements in the L and U factors are ignored to reduce the cost and the

number of fill-ins. ILU has many varieties based on the level of fill-in [42]. Among

them, no fill-in ILU, ILU(0), is the simplest one. In the ILU(0) factorization, the

lower and upper triangular matrices only keep non-zero elements, whose positions

have non-zero elements in the original matrix. Therefore, if the lower and upper

triangular matrices of ILU(0) are overlapped together, we get a matrix with the same

non-zero structure as the original matrix, except that both lower and upper matrices

have diagonal elements. The diagonal elements in the lower triangular matrix are

all ‘1’s. Figure 7.1 shows a matrix and its ILU(0) factorization results. The ILU(0)

algorithm can be performed using the storage of the original matrix; no significant

additional memory is required. The two resulting L and U matrices are stored in

place, and the diagonal elements of the lower triangular matrix are not stored.

ILU(0) is a very simple and fast factorization. As a special case, ILU(0) of a

tridiagonal matrix is a complete factorization. Tridiagonal matrices often arise from

simple discretization of one-dimensional problems. However, generally the ILU(0)

approximation to the original matrix can be very poor. In order to improve the

accuracy, some ILU factorization algorithms with fill-in are developed, e.g., ILU with

threshold (ILUT) [41] and ILU with fill-in level k (ILUK) [42]. The more fill-in, the

more time the factorization takes. It is a trade-off between accuracy and speed.

There are several open-source high-performance pointwise ILU preconditioners

provided by software packages. The most popular ones are from SparseLib++ [37]

and SPARSKIT [40]. SparseLib++ provides an ILU(0) preconditioner, which is the

version used in GPRS (preconditioner option 3). SPARSKIT provides a large set of
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ILU family preconditioners, including ILU(0) and many other fill-in ILU precondi-

tioners. All of these ILU preconditioner packages require matrices to be stored in a

specific pointwise compressed matrix format.
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Figure 7.1: Distribution of non-zero elements in ILU(0) factorization

Blockwise ILU

In Chapter 3, we discussed the block compressed row sparse (BCRS) matrix format.

BCRS includes a compressed row sparse matrix of pointers and the Jacobian en-

tries in a special array form (Figure 3.7 and 3.8). Based on this data structure, we

implemented a blockwise incomplete LU factorization preconditioner with no fill-in,

BILU(0). The BILU(0) algorithm is the same as that of ILU(0), but all algebraic oper-

ations in ILU(0) are mapped into small matrix operations for BILU(0). Our BILU(0)

preconditioner is fully compatible with the Jacobian matrices associated with the

Adaptive Implicit Method (AIM). BILU(0) can handle matrices with various block

sizes in the diagonal and off-diagonals.

The first matrix shown in Figure 7.1 is composed of a number of 2 × 2 blocks.

This kind of matrix is very common in two-component black-oil reservoir simulation.
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The other two matrices in the same figure are the results of ILU(0) factorization.

Again, by definition, the diagonal elements in the lower-triangle matrix (the second

matrix in Figure 7.1) are all ‘1’s. The same matrix and its BILU(0) factorization

results are shown in Figure 7.2. The second and third matrices are lower-triangle and

upper-triangle matrices, respectively, from a block-based viewpoint. The diagonal

blocks of the lower-triangle matrix are all 2× 2 identity matrices.
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Figure 7.2: Distribution of non-zero elements in BILU(0) factorization

If we compare Figure 7.1 and Figure 7.2, it appears that BILU(0) has more non-

zeros elements than ILU(0). However, this is not the case, because the diagonal blocks

of the lower-triangle matrix are all 2 × 2 identity matrices. They have only ‘1’s on

the diagonal.

We define the number of blocks on the diagonal of the original matrix as nb (nb = 6

for Figure 7.1). The upper-triangle matrix of BILU(0) has nb more non-zeros than

that of ILU(0). These non-zero elements are located at the first super diagonal of the

upper-triangle block matrix. The lower-triangle block of BILU(0) has nb fewer non-

zeros compared to that of ILU(0), since all the elements on the subdiagonal are zeros.

Therefore, the overall non-zeros of BILU(0) and ILU(0) are the same. If the block

size is 3× 3 or more, the non-zeros are also the same in both ILU(0) and BILU(0).
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Based on the same data structure, blockwise ILU with fill-in level k, BILU(k),

is developed and integrated into GPRS [28]. The BILU(k) preconditioner has fill-

in blocks and offers better accuracy. BILU(k) is also more expensive compared to

BILU(0). Comparisons of BILU(k) and BILU(0) and the application of BILU(k) in

GPRS will be investigated later.

Comparison between Pointwise ILU & Blockwise ILU

The criteria to evaluate a solver or preconditioner are its robustness, accuracy, effi-

ciency and range of applicability. The performance of ILU and BILU are investigated

with respect to these four aspects. Two no-fill ILU preconditioners, BILU(0) and

ILU(0) are used as reference. Some analysis is covered in the following discussion and

some examples are provided in later sections.

The stability of the BILU(0) preconditioner is better than that of ILU(0). ILU(0)

without pivoting (pivoting could be an expensive operation for compressed sparse

matrices) requires all the diagonal elements to be non-zero. Zero, or nearly-zero

diagonal elements are common in reservoir simulation matrices. BILU(0) only requires

that all diagonal blocks are invertible, which is a less stringent requirement.

Matrices from reservoir simulation can have large blocks, because the reservoir cells

usually have multiple primary variables and governing equations. These blocks can

be seen as small dense matrices. This is a property of the Jacobian matrix, no matter

which format the matrix is stored in. The typical storage options are a pointwise

method (e.g., the CRS format) or a blockwise method (e.g., the MLSB format). Due

to the upwinding scheme in simulation, some of the elements in those small blocks

(generally, the off-diagonal blocks) are zeros, but these zeros are still stored. The

positions and the total number of those stored zero elements are dynamic. It is not
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a feasible option to identify the zero elements in the blocks and squeeze them out of

the matrix for every Newton iteration in a real simulation. It simply increases the

computational cost dramatically with trivial gain (slightly reduced memory cost).

When the standard pointwise ILU(0) algorithm is applied to block matrices (al-

though stored in pointwise matrix format), mathematically it is equivalent to the

BILU(0) algorithm as long as both of them exist. If both:

ILU0(A) = Lp Up (7.16)

BILU0(A) = Lb Ub, (7.17)

exist, we can always find an invertible matrix P , which can make:

Lp = Lb P (7.18)

Up = P−1 Ub. (7.19)

Again, this is only true when matrix A is a block matrix. In this circumstance, there

is no accuracy difference between ILU(0) and BILU(0), except truncation errors in

computation.

BILU(0) may be faster compared to ILU(0), because it benefits from better cache

utilization. Cache is the memory component embedded in a CPU, which lies between

the normal memory and the processor. Any data requested by a processor has to

be fetched from memory into cache and then passed to the processor. A single fetch

loads a series of contiguous data starting with the requested data item. The data

transfer speed from main memory to cache is much slower than the data transfer

speed between cache and the processor [27].

The operations in a block solver are based on block data. For example, one of the



CHAPTER 7. LINEAR SOLUTION STRATEGIES 123

steps in BILU(0) is to calculate the inverse of all diagonal blocks and store them in

the original space. In our block matrix format, these related elements, e.g., elements

in diagonal blocks, are continuous in memory. When a block solver fetches data from

memory to cache, a single fetch loads in a series of contiguous related elements. This

significantly reduces the number of fetches (slow operation) and speeds up the overall

computation. Typically, the advantage of BILU(0) over ILU(0) is more significant for

compositional models with large numbers of components, because of the larger size

of the data blocks.

The ILU family (both pointwise and blockwise) of preconditioners is quite gen-

eral. They can be applied to many types of matrices without knowing the details of

the problem that the matrix represents. However, the performance of ILU precon-

ditioners does depend on the properties of the linear system. The preconditioners

converge faster for more diagonally dominant matrices, which are associated with

smaller timestep in flow simulation. ILU preconditioners also work better for matri-

ces that are obtained from near-hyperbolic equations. For tightly coupled systems,

like the pressure equations in reservoir simulation, the ILU family of precondition-

ers may not be the best option. The nature of the system has a strong impact on

the numerical performance of a preconditioner. In the next section, we explore some

two-stage preconditioners, which combine different single-stage preconditioners. Gen-

erally, two-stage preconditioners require knowledge about the physics of the system;

however, when designed properly, they can be much more efficient than single-stage

approaches.
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7.3.3 Algebraic Multigrid (AMG)

For matrices from near-elliptic problems, e.g., the pressure system in reservoir sim-

ulation, the ILU preconditioned Krylov subspace solvers may stagnate after a few

iterations. The errors in problems of this type usually spans a large frequency spec-

trum. The local error (high frequency error) can be successfully removed by the solver

during the first few iterations, but it is very difficult for ILU preconditioned Krylov

subspace solvers to remove the low frequency error [10].

Multigrid methods are ideal linear solvers for elliptic problems [5]. In multigrid

methods, a hierarchy of coarse grids is generated on top of the original grid. Multigrid

can effectively remove the low frequency errors in near-elliptic problems by employing

both simple relaxation schemes (e.g., Gauss-Seidel) and coarse-grid correction. Al-

gebraic Multigrid (AMG) is one kind of multigrid methods [49]. AMG does not rely

on geometry information, but obtains the information directly from the matrix. This

makes it an ideal “plug-in” solver, which greatly facilitates its application. In most

simulation fields, including reservoir simulation, the gridding module and the solver

module are independent. It is difficult to exchange information between these two

modules. Beside that, several characteristics of the reservoir simulation models, such

as discontinuity and anisotropy in the coefficients, and generally unstructured grid

make it even harder to generate coarse-grid operators based on geometric information.

In reservoir simulation, IMPES (IMplicit Pressure Explicit saturation) is one of

the most important formulations [2]. In the IMPES scheme, pressure is the only

implicit variable in each gridblock. The other primary variables (saturations and

component mole fractions) are treated explicitly [2]. This results in a near-elliptic

pressure system. AMG is the most suitable solver for this linear system. In GPRS,

AMG is used as a “plug-in” solver for the pressure matrix. GPRS incorporates two
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AMG packages. One is the open-source version AMG developed in 1991 [38], and the

other one is a commercial package, SAMG, from SCAI [51].

AMG has strict requirements on the characteristics of the pressure matrix. The

most preferable matrix is an M matrix, which has nonpositive off-diagonal elements,

and all eigenvalues with a nonnegative real part [50]. Only the matrices from elliptic

or near-elliptic systems can be solved effectively by AMG. Otherwise, it may run

into problems. Because of this, AMG is usually used as a preconditioner for iterative

solvers rather than as a solver by itself. In GPRS, AMG preconditioned GMRES is

the primary linear solver option for IMPES simulation.

7.4 CPR for Reservoir Models with StdWells

The equations and unknowns in reservoir simulation have mixed properties. They

have both elliptic (pressure equations) and hyperbolic (advection equations) parts.

In FIM simulation, all primary variables are treated implicitly, and Newton-Raphson

method is employed as the nonlinear solver. Hence, we must solve an FIM Jacobian

matrix every iteration. When we solve the Jacobian with linear solvers, the error con-

tains both low frequency components (mainly through pressure) and high frequency

components (mainly through saturations and other variables). AMG cannot solve

the matrix, because the matrix arises from a mixed system, rather than an elliptic

system. The ILU family of preconditioners can be used as iterative-solver accelera-

tors to solve the matrix; however, the performance is usually poor. In the first few

iterations, the high frequency errors are usually reduced successfully by ILU, but the

low frequency errors persist as the iterations continue. [10].

In order to handle the Jacobian matrices in reservoir simulation, which have a
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mixed character, a two-stage preconditioner, the constrained pressure residual (CPR)

method, was proposed by Wallis et al. [53, 54]. In the first stage, the pressure system

is obtained from the fully coupled Jacobian using an efficient algebraic reduction

scheme, which mimics the steps associated with constructing the pressure equation

of the IMPES formulation. This pressure system preserves the coupling of the well-

reservoir system, and is solved with AMG. The low frequency errors are resolved in

this stage. In the second stage, an ILU preconditioner is usually applied to the full

Jacobian matrix, which removes the high frequency (local) errors.

The general form of the two-stage preconditioner can be written as [10]:

M−1
1,2 = M−1

2 [I − AM−1
1 ] + M−1

1 , (7.20)

where M1,2 denotes the two-stage preconditioner, M2 is the second stage precon-

ditioner, I is an identity matrix, A is the matrix to be solved, M1 is the first stage

preconditioner. In the following sections, we discuss the implementation details of the

two stages. A few large-scale, highly heterogeneous, unstructured models are used

to demonstrate the performance of the CPR preconditioner. Later, CPR is extended

to handle reservoir models with advanced well models. Therefore, it is important to

have a detailed investigation of CPR here.

7.4.1 First Stage: Pressure System

In the first stage of CPR, we need to construct a pressure matrix and solve it efficiently.

There are two approaches to get the pressure matrix from a fully implicit system in

reservoir simulation, which are plotted in Figure 7.3. Both of them start from a fully

coupled nonlinear equation set and end up with a pressure matrix. We will use a

reservoir with n grids and oil-water fluids as an example to describe the procedure.
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Figure 7.3: Relation of FIM and IMPES formulations

The first approach is the standard IMPES reduction (the red path in the plot). In

the first step of IMPES reduction, the transmissibility terms are treated explicitly, i.e.,

the flux term does not depend on sn+1. Therefore, sn+1 only exists in the accumulation

term of the conservation equations. By combining the oil and water conservation

equations of each cell (this is a linear operation), sn+1 can be completely removed.

Eventually, we get a total of n IMPES nonlinear conservation equations, in which

pn+1
i are the unknowns. In the second step of IMPES reduction, Newton-Raphson

method is used to linearize the n nonlinear equations and an n × n pressure matrix

is generated for each iteration [1].

The blue path in Figure 7.3 shows another two-step approach to generate a pres-

sure matrix. In the first step, the 2n conservation equations are linearized by the

Newton-Raphson method. One 2n × 2n matrix is generated for each iteration. The

matrix is the FIM Jacobian. In the second step, some saturation derivatives in the

FIM matrix are ignored and some derivatives are eliminated by linear operations.

Then we get the desired pressure matrix. The process of the second step will be
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discussed in detail later.

The two approaches lead to pressure systems that are quite similar. Both of them

contain important information about the fully coupled system. Typically, CPR serves

as the preconditioner for solving FIM matrices. Since the FIM matrix has been built

for the linear solver, the “blue path” is the better approach to decouple the pressure

matrix. In the second step of the ‘blue path’, two options, namely, true-IMPES and

quasi-IMPES, can be used to perform the reduction of the FIM Jacobian into an

IMPES-like matrix.

True IMPES Reduction

We select a block row in the FIM Jacobian matrix, which corresponds to the oil and

water conservation equations in one cell. These two rows may contain one 2 × 2

diagonal block and several off-diagonal blocks. We plot the diagonal block of cell i

and an off-diagonal block representing the flux between cell i and cell j as follows:




Aop + Fop Aos + Fos

Awp + Fwp Aws + Fws




i,i




F ∗
op F ∗

os

F ∗
wp F ∗

ws




i,j

,

where subscripts o, w, p, s represent oil, water, pressure, and saturation, respectively.

Aop is the derivative of the accumulation term of the oil equation with respect to

pressure, Fws is the derivative of the water flux term between cell i and cell j with

respect to the saturation of cell i. F ∗
ws is the derivative of the same water flux term

with respect to the saturation of neighboring cell j. We see that the diagonal block

contains contributions from both accumulation and flux terms. The off-diagonal

entries depend on the unknowns in the specific off-diagonal gridblock only. In the

‘true-IMPES’ reduction approach of an FIM Jacobian, we treat the saturation in the
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flux terms explicitly, but we use the the saturations of the last iteration rather than

the ones from the last timestep. This step is performed algebraically to remove all

the derivatives of the flux terms with respect to saturation. Then the above diagram

can be simplified as follows:




Aop + Fop Aos

Awp + Fwp Aws




i,i




F ∗
op 0

F ∗
wp 0




i,j

.

The dropped derivatives allow us to decouple the pressure system. Linear operations

can be used to eliminate the saturation derivative in the diagonal block. The result

is written as follows:




Jop − AosA
−1
wsJwp 0

Jwp Aws




i,i




F ∗
op − AosA

−1
wsF

∗
wp 0

F ∗
wp 0




i,j

,

where J denotes A+F . To be consistent, the same linear operation is applied on the

RHS vector as well. We can see that the first row corresponds to a pressure equation,

since it contains no saturation derivatives. The same linear operation is applied to

the cells (block rows) one by one, and we obtain a pressure matrix from the FIM

Jacobian. The procedure is valid for an arbitrary number of conservation equations

per cell.

The pressure matrix constructed with this algebraic reduction is very similar to

the one in the IMPES formulation. The only difference is related to the saturation. In

the algebraic construction of the ‘true-IMPES’ pressure matrix, the saturations and

related terms are treated with a one-iteration lag, because the last iteration values are

used to build the FIM matrix. However, for the matrix from the nonlinear IMPES

formulation, the saturations are fixed at the previous timestep.
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Quasi-IMPES Reduction

The quasi-IMPES algebraic reduction starts from the FIM matrix:




Aop + Fop Aos + Fos

Awp + Fwp Aws + Fws




i,i




F ∗
op F ∗

os

F ∗
wp F ∗

ws




i,j

.

In quasi-IMPES, we eliminate the saturation derivatives in the diagonal block by a

linear operation, which can be written as




Jop − JosJ
−1
ws Jwp 0

Jwp Jws




i,i




F1 F2

F ∗
wp F ∗

ws




i,j

,

where:

F1 = F ∗
op − JosJ

−1
ws F ∗

wp, (7.21)

F2 = F ∗
os − JosJ

−1
ws F ∗

ws. (7.22)

After this step, F2 is ignored, and we get a decoupled system as follows:




Jop − JosJ
−1
ws Jwp 0

Jwp Jws




i,i




F1 0

F ∗
wp F ∗

ws




i,j

.

The first row of above block row is the pressure equation for cell i. Since F2 is

dropped, we actually do not need to calculate Equation 7.22.
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Remarks on the Two Reduction Schemes

The true-IMPES and the quasi-IMPES reductions take similar steps but in differ-

ent orders. The true-IMPES reduction ignores some saturation derivatives first and

then conducts linear operations to remove the remaining saturation derivatives. The

quasi-IMPES conducts linear operations first and then ignore saturation derivatives

afterward. The dropped terms in the true-IMPES reduction can be explained as

explicit treatment of saturation in the flux terms. But the physical meaning of the

dropped terms in the quasi-IMPES is not clear. Based on a large number of simu-

lations, we have found that the true-IMPES reduction has consistently turned out

to be the better choice to decouple the pressure system. This is related to how the

resulting pressure system is solved as well, which is discussed later.

Pressure System and AMG

The above reduction process can be represented by the following expression:

Ap = R A
FIM

P , (7.23)

where A
FIM

is the fully implicit matrix, R is a row operation matrix, and P is a

column operation matrix, and Ap is an IMPES-like pressure matrix.

AMG is the best method for this kind of near-elliptic system. There are two

options to solve the matrix. One is to use AMG as a solver directly working on the

pressure matrix. An alternative is to use GMRES as the solver and AMG as the

preconditioner. Many cases have been tested with these two options. The results

show that using AMG directly is faster, while GMRES with AMG has slightly better

stability in very special cases. The investigation also shows that the pressure system
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in the first stage of CPR need not to be solved very accurately. One “V-cycle” of

AMG gives the best overall performance [25]. This conclusion is drawn based on the

typical linear accuracy requirement of reservoir simulation, which is to reduce the

residual by three to six orders of magnitude.

The solution vector from AMG, xp, is in the vector space of the IMPES system.

A prolongation operator is needed to project the vector into the vector space of the

FIM system:

x1 = P xp, (7.24)

where x1 is the solution vector of the first stage of CPR. Matrix P in Equation 7.24

is same as the one in Equation 7.23. For example, for a three-phase black-oil FIM

model (i.e., three unknowns per cell) with cell-based ordering, xp and x1 may look

like:

xp = {δp1, δp2, δp3, ..., δpn, δpw}T , (7.25)

x1 = {δp1, 0, 0, δp2, 0, 0, δp3, 0, 0, ..., δpn, 0, 0, δpw}T , (7.26)

where δpi is the Newton update of pi (pressure of cell i), δpw is the Newton update

of well pressure. The prolongation process can also be done for the AIM scheme, in

which the ‘0’s will be filled in according to the implicit level of the cells.

7.4.2 Second Stage: Simple Preconditioning of the Full Sys-

tem

In the second stage of CPR, the ILU family of preconditioners is commonly used.

The solution vector from the first stage is used to update the right-hand-side of the
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second stage, x1. The expression can be written as:

M2 x2 = b−A x1, (7.27)

where M2 stands for ILU preconditioner, x2 is the solution of the second stage of

CPR. The final solution of CPR preconditioner, x
CPR

, is the combination of results

from both stages:

x
CPR

= x1 + x2. (7.28)

GPRS provides ILU(0), BILU(0), BILU(k) [28], and multilevel BILU(k) as stand-

alone preconditioners. All of them can serve as the second stage preconditioner in

CPR. More detailed investigation about the performance of the ILU family of pre-

conditioners is given later.

7.4.3 Test Cases

In order to investigate the solver capabilities of GPRS, especially the block ILU and

CPR preconditioners, we present some test examples. A large black-oil case was

selected to validate GPRS and demonstrate its capabilities. A large compositional

case is used to show the different performance of several preconditioning options in

GPRS. The third case is for a fractured reservoir with highly unstructured grid and

a compositional fluid.

Case 1: SPE10 - Comparative Solution Project

The 10th SPE Comparative Solution Project is the latest comparative solution project

organized by the Society of Petroleum Engineers (SPE) [12]. The case is designed

for comparing upscaling approaches, and is also widely used as a benchmark case for
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large-scale highly heterogeneous reservoir simulation.

The dimensions of the SPE10 model are 1200×2200×170 ft. It has 60×220×85

(1,122,000) gridblocks. “The top 70 ft (35 layers) represent the Tarbert formation,

and the bottom 100 ft (50 layers) represent Upper Ness.” [12] The reservoir model is

shown in Figure 7.4. The porosity and permeability maps of the 5th layer (Tarbert

formation) and the 40th layer (Upper Ness) are shown in Figure 7.5 and 7.6. The

simulated period is 2000 days, with 0.74 pore volume injected (PVI). The total oil

production and water cut of the first producer from GPRS are plotted with results

from other simulators. From Figure 7.7 and 7.8, we can see that the GPRS results

are in good agreement with industrial simulators for this large-scale case.

By using our CPR preconditioned GMRES solver, GPRS can finish the SPE10

case using a single 2.2 GHz CPU in about 7 hours. Detailed timing performance is

listed in Table 7.2. The CPR preconditioned BiCGstab solver is used for the same

case. Its performance is listed in Table 7.3. By comparing the two tables, we see

that BiCGstab needs about 10% more time to finish the simulation. We also listed

the timestep, Newton and linear solver iteration information of both GMRES and

BiCGstab in Table 7.4. The results show small differences in the numbers of timesteps

and Newton iterations. However, BiCGstab needs 30% more preconditioner calls to

satisfy the same accuracy requirement. The preconditioner settings are identical in

the two runs. This case is consistent with our observation that GMRES, is on average,

a better solver than BiCGstab.

Overall, we see that the linear solver is the most expensive part for large-scale

black-oil reservoir simulation. In the test case, the linear solver takes 86.5% of the

total simulation time. Within the solver time, the CPR preconditioner accounts for

73.5%. The remainder is spent on the GMRES solver itself and some overhead.

Within the preconditioning part, solving the pressure matrix is the most expensive



CHAPTER 7. LINEAR SOLUTION STRATEGIES 135

Figure 7.4: SPE10 model 2 case

operation, which takes 55.8% of the solver time.

Case 2: 9-component compositional simulation

A 9-component compositional case was designed to further test the performance of

solvers and preconditioners. The reservoir model has 100×100×5 gridblocks, and the

scheme is fully implicit. So, we have 50,000 gridblocks and 9 equations and unknowns

per block, which leads to 450,000 equations and unknowns for the reservoir model.

One production well is completed in the reservoir. The system is undergoing primary

depletion. Many solver and preconditioner combinations are tested to compare the

performance. The results are listed in Table 7.5.
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Figure 7.5: Permeability and porosity map of the 5th layer of SPE10 case
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Figure 7.6: Permeability and porosity map of the 40th layer of SPE10 case
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GPRS

Figure 7.7: Oil rate of the four producers in SPE 10th case

GPRS

Figure 7.8: Water cut of the first producer in SPE 10th case
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Time (sec) % of total time % of solver time

Total running time 25406 100.0 N/A

Property calc. time 492 1.9 N/A

Linearization time 1059 4.2 N/A

Solver time 21973 86.5 100.0

GMRES/MV 5823 22.9 26.6

ILU factorization 2324 9.1 10.6

ILU solution 1057 4.2 4.8

Pressure matrix decoupling 501 2.0 2.3

Pressure solution 12268 48.3 55.8

Table 7.2: CPR preconditioned GMRES performance for SPE10 case

Time (sec) % of total time % of solver time

Total running time 26973 100.0 N/A

Property calc. time 493 1.8 N/A

Linearization time 1053 3.9 N/A

Solver time 24050 89.2 100.0

GMRES/MV 5876 21.7 24.4

ILU factorization 2341 8.8 9.7

ILU solution 1320 4.9 5.5

Pressure matrix decoupling 513 1.9 2.1

Pressure solution 14009 51.9 58.2

Table 7.3: CPR preconditioned BiCGstab performance for SPE10 case

B-GMRES stands for blockwise GMRES and P-GMRES stands for pointwise GM-

RES. CPR-BILU(0) means BILU(0) serves as the second stage solver in the CPR

preconditioner. The ‘solver iteration’ in the table refers to the total number of linear-

solver iterations in the entire simulation. The GMRES solver calls the preconditioner

once per iteration. Therefore, the number of the solver iterations is the same as the

number of times that the preconditioner is called. This is not always the case, e.g.,

the BiCGstab scheme calls the preconditioner twice per iteration. The more accu-

rate a preconditioner is, the less number of times it needs to be called. However, a
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Solver GMRES BiCGstab

Preconditioner CPR CPR

Timesteps 82 82

Newton iterations 351 352

Preconditioner calls 3307 4346

Table 7.4: Comparison of GMRES and BiCGstab solvers for SPE10 case

No. Solver Preconditioner Solver iteration Solution time Total time

1 P-GMRES ILU(0) 2748 2676.4 3117.7

2 B-GMRES BILU(0) 2748 2484.3 2926.6

3 B-GMRES BILU(1) 1328 1696.4 2137.9

4 B-GMRES BILU(2) 998 2182.8 2626.6

5 P-GMRES CPR-ILU(0) 68 321.4 762.1

6 B-GMRES CPR-BILU(0) 68 217.1 658.6

7 B-GMRES CPR-BILU(1) 66 469.1 909.4

Table 7.5: GPRS timing performance of a 9-component case (*time in second)

more accurate preconditioner is not necessarily preferred. Typically, the accuracy of

a preconditioner is correlated with computational cost. We need to carefully balance

convergence rate with computational cost.

Option 1 in Table 7.5 shows the performance of pointwise GMRES with point-

wise ILU(0) as a preconditioner. The options numbered 2, 3 and 4 use blockwise

GMRES with different levels of blockwise ILU as a preconditioner. We can see that

BILU(1) has the best performance among the three. BILU(2) provides more accurate

factorization, hence it needs much less solver iterations. However, due to the high

cost of level two factorization, its overall timing performance cannot beat that of

BILU(1) [28]. Item 5 uses pointwise GMRES with the CPR preconditioner, in which

pointwise ILU(0) serves as the second stage. Items 6 and 7 both use blockwise GM-

RES with the CPR preconditioner; note that different Blockwise ILU preconditioners

are used for the second stage. From the performance, we can see that BILU(0) is
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the best choice for the second stage of CPR. Only two solver iterations (or 3%) is

reduced by increasing the level of BILU in the second stage from 0 to 1. We also

observe that ILU(0) and BILU(0) are exactly the same in iteration numbers, and

so are CPR-ILU(0) and CPR-BILU(0). We explained in the previous section that

ILU(0) and BILU(0) have the same accuracy.

The most basic ILU(0) preconditioner is chosen as a base case in our comparison.

The solver time speedup factors of the other preconditioners are shown in Figure

7.9. There are two key observations from the plot. The first one is that CPR clearly

outperforms the ILU family of preconditioners. The other one is that BILU pre-

conditioners give much better performance than their pointwise counterparts. The

CPR preconditioner can achieve even better performance by using BILU in the sec-

ond stage. Note that the combination of block solvers and CPR can give more than

twelve fold speedup.

ILU(0) BILU(1) CPR−ILU(0) CPR−BILU(0)
0

2

4

6

8

10

12

14

Figure 7.9: Speedup factors of preconditioners

In Table 7.6, the detailed solver timing performance of CPR-ILU(0) and CPR-

BILU(0) are given. We can see that most of the gain in speed (86.3 of 104.3 sec)
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Solver P-GMRES B-GMRES -

Preconditioner CPR-ILU(0) CPR-BILU(0) (Difference)

Solver time 321.4 217.1 +104.3

GMRES/MV 92.6 73.8 +18.8

(B)ILU factorization 175.1 88.8 +86.3

(B)ILU solution 15.7 17.6 -1.9

Pressure matrix decoupling 19.8 20.1 -0.3

Pressure solution 18.2 16.8 +1.4

Table 7.6: Comparison of pointwise and blockwise solvers (time in sec.)

comes from the ILU factorization. BILU(0) has much faster factorization speed than

ILU(0). The BILU(0) algorithm we developed is based on our BCRS data structure

discussed in Chapter 3. It benefits from better cache utilization. The rest of the

gain comes from the GMRES solver itself. The matrix-vector operation based on

the multilevel block matrix (discussed in Chapter 3) also has better cache utilization

compared to traditional compressed matrix formats.

Case 3: 6-component compositional DFM (Discrete Fracture Model) sim-

ulation

A synthetic reservoir model was generated based on real data from a fractured car-

bonate reservoir [22]. The model contains 35 fractures and is discretized into 131,817

cells using a discrete fracture model (DFM) [26]. The model properties are highly

heterogeneous with a matrix permeability of 0.1 md and a fracture permeability of

1,000,000 md. The matrix porosity is 0.25 and the fracture porosity is 1.0. The

largest pore-volume of a gridblock is 1.24e+3 ft3, and the smallest pore volume is

7.22e-9 ft3. The reservoir fluid is described using 6 hydrocarbon components. An

injector and a producer are drilled in two disconnected fractures located at opposite
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corners of the reservoir model. The system is shown in Figure 7.10.

This case was chosen to show the performance of GPRS for a large-scale, highly

heterogeneous compositional model with unstructured grid. Particularly, we are in-

terested in the performance of the block solver and preconditioner. The case is run

with both pointwise and blockwise GMRES solvers and CPR preconditioners. The

performance information is listed in Table 7.7.

Figure 7.10: Reservoir model with 30 vertical fractures [22]

Solver P-GMRES B-GMRES -

Preconditioner CPR-ILU(0) CPR-BILU(0) (Difference)

Solver time (sec) 10442 6599 +3843

GMRES/MV time (sec) 2494 2213 +281

(B)ILU factorization (sec) 4566 676 +3890

(B)ILU solution (sec) 635 980 -345

Pressure matrix decoupling (sec) 432 422 +10

Pressure solution (sec) 2315 2308 +7

Memory cost (mega) 1396 1071 +325

Table 7.7: Comparison of pointwise and blockwise solvers for a DFM model with
unstructured grid.



CHAPTER 7. LINEAR SOLUTION STRATEGIES 143

Figure 7.11: Unstructured grid conforming to fractures in Figure 7.10 [22]

For this case, the block solver and preconditioner were 37% faster than the point-

wise one. The major gain comes from the BILU factorization, which has 6.8 times

speedup. In addition, the matrix-vector multiplication also contributes to the overall

speedup. The same as in Case 2, the solution time of pointwise ILU is slightly faster

than the blockwise counterpart. Since the number of timesteps and Newton iterations

are almost the same in both case, the time spent on pressure decoupling and solution

are quite similar for both options. We note that this test case cannot be solved in a

reasonable time if CPR is not used.

Summary

The CPR method has been proven to be an excellent preconditioner for FIM simula-

tion of complex reservoir models and the standard well model. The entire system is

closely coupled through the pressure. CPR requires some additional cost to construct

the pressure equation from the full system, which is then solved with an appropri-

ate preconditioner, such as AMG. After the residual is updated using the pressure
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solution, which is reflected in the RHS, the system is nearly decoupled. The ILU

preconditioner is quite effective in dealing with the remaining errors in the global so-

lution. Block second-stage preconditioners further improve the performance of CPR.

7.5 CPR for Reservoir Models with Multisegment

Wells

In Chapter 4, we discussed the multisegment well (MSWell) model, which has been

integrated in GPRS. A large number of segments may be used to represent multi-

lateral wells; for example, for a black-oil MSWell model, there are four equations

(Equations 4.8 and 4.12), and correspondingly four unknown variables, per segment.

This can easily lead to hundreds of equations and variables per well, and for systems

with large numbers of MSWells, this can become a significant part of the construction

and solution of the coupled system of reservoir models and wells.

Figure 7.12 shows a Jacobian matrix for a system with an MSWell. In fact, both

the reservoir and well parts of the Jacobian can be large and complex. Recall that

the reservoir and MSWell models are governed by different equations and different

variable sets. This increases the complexity of the Jacobian. Note that the Jacobian

matrix arising from a system with MSWells is stored using the multilevel sparse block

(MLSB) data structure. In systems with either MSWells or StdWells, the pressure is

always the major coupling mechanism. This implies that a CPR-like approach can

be a promising method to precondition the matrix for a system with MSWells. The

basic idea of CPR remains the same for a system with MSWells. In the first stage,

an approximate pressure matrix is constructed and solved. In the second stage, a

preconditioner, usually from the ILU family, is applied to the full matrix. There are
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two specific challenges we need to overcome before the CPR preconditioner can be

applied to coupled reservoir models with MSWells:

1. How to generate an approximate pressure matrix for a system with MSWells?

2. How to apply the ILU preconditioner using the multilevel sparse block (MLSB)

matrix in the second stage?

7.5.1 First Stage: Pressure Equation Construction and So-

lution

The MSWell model dramatically increases the number of equations per well. In

Chapter 4, for example, we showed a model with 1800 segments (Figure 4.10), where

we solve for four unknowns per segment. The resulting Jacobian is of mixed (elliptic-

hyperbolic) character, for both the reservoir and the wellbore. For the first stage of

CPR, we need to construct a pressure system of equations from the full Jacobian in an

algebraic manner; the constructed equation must capture the pressure coupling in the

reservoir-facilities model, and it should display near-elliptic character so that it can be

solved efficiently using multigrid. The algebraic construction, or decoupling process,

is accomplished in two steps. First, the MSWell equations in the Jacobian matrix are

algebraically reduced to a form similar to a StdWell equation. In the second step,

an IMPES reduction is applied to the modified matrix (the reservoir model and the

reduced well model) to generate the pressure matrix. The second step is identical to

the process described for the first stage of CPR for systems with StdWells.

For the system shown in Figure 4.5, the Jacobian matrix with an oil-rate constraint

is shown in Figure 7.12. The two red lines separate the reservoir and the facilities

(only one well) parts, and these four parts are stored in separate data structures. In
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Figure 7.12: Jacobian matrix with oil rate constraint (same as Figure 4.8)

Chapter 4, we discussed that the oil-rate constraint on the top segment is equivalent

to a StdWell-like constraint, given the oil conservation equations for all segments

(Equation 4.27 - 4.30). Summation of the oil-component conservation equations of

the segments, we get (same as Equation 4.28):

Ro =

nsegs∑
i=1

(
A∆x

∆t

np∑
i=1

[
(ρpxo,pαp)

n+1 − (ρpxo,pαp)
n
]
)

i

+ (7.29)

ρoqo −
nsegs∑
i=1

[
np∑

p=1

ρpxo,pλpWI(pres − pseg)

]

i

= 0.

Equation 7.29 is a summation of (non)linear algebraic equations. Since both differen-

tiation and summation operations can be exchanged, it does not matter if we sum the
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equations first and then generate derivatives, or do these operations in reverse order.

In our problem, the derivatives in the Jacobian matrix have already been generated,

and it is easy to work on the matrix directly. A matrix row operation can be applied

to the Jacobian to sum up the related equations. The dimension of the row operation

matrix is (nre + nw)× (nre + nwe), where nre is the number of reservoir equations, nw

is the number of wells and nwe is the number of total well equations. The expression

for the reduction operation is:

A∗
MS

= R
MS

A
MS

, (7.30)

where A
MS

is the Jacobian matrix for systems with MSWells, R
MS

is the row opera-

tion matrix, A∗
MS

is an intermediate Jacobian matrix.

R
MS

A
MS

Figure 7.13: MSWell matrix reduction in equations (row operation)

This process is shown in Figure 7.13 (nw = 1 , nwe = 12). In the plot, I represents

an identity matrix and 0 stands for a zero matrix. The row operation matrix leaves

the reservoir part of the matrix unchanged and replaces the constraint equation with

the summation. The other well equations are ignored. The last row of the matrix acts
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as a row selector. The positions of the non-zeros may be different for other constant

rate controls. The resulting matrix is shown in Figure 7.14. The same row operations

should be applied to the right-hand-side of the system.

Figure 7.14: Result of MSWell matrix reduction in equations (row operation)

The matrix in Figure 7.14 is not square, but has more unknowns than equations.

If the values of the segment variables (except pressure) are fixed at the last iteration,

the new constraint equation (Equation 7.29) has no derivatives with respect to them.

The matrix can be simplified as shown in Figure 7.15. The right-hand-side vector

remains unchanged in this reduction. If the pressure relation between segments (not

pressure) is fixed at the last iteration, then the pressure of the reference point (top

segment) is the only variable. Pressure derivatives of other segments will be lumped

into the reference pressure derivative (Equation 7.31):

∂R

∂pseg
i

=
∂R

∂(pseg
ref + ∆pi)

=
∂R

∂pseg
ref

, (7.31)

where ∆pi is the pressure difference between segment i and the top segment. Since

the pressure relation is fixed at the last iteration, ∆pi is a constant value. In this

step, no update is needed for the right-hand-side vector.

The one-iteration lag treatment for the segment pressure relations and the other

segment variables makes the reference pressure the only variable for the MSWell. The
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Figure 7.15: Reduced matrix with explicit treatment of velocity and holdups

A∗
MS

P
MS

Figure 7.16: MSWell matrix reduction in variables (column operation)
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process can be represented by matrix column operations shown in Figure 7.16. The

final result of the algebraic reduction of the MSWell equations is shown in Figure

7.17, which has an identical structure to the matrix of a system with StdWells. The

equation is written as:

A
Std

= R
MS

A
MS

P
MS

, (7.32)

where A
Std

is the reduced matrix, which has the same form as the one arising from

a system with StdWells; P
MS

is a column operator, which is also the prolongation

matrix for the solution vector.

After simplification of the MSWell representation in the algebraic system of equa-

tions, the IMPES reduction (true-IMPES or quasi-IMPES) is used to obtain the

pressure matrix. This step is exactly the same as that used in the system with the

StdWell model. Therefore, combining Equation 7.32 and Equation 7.23, the relation

between the Jacobian matrix (with MSWell) and the pressure matrix can be written

as:

Ap = R R
MS

A
MS

P
MS

P . (7.33)

The pressure matrix, Ap, is solved with AMG, and the pressure correction, xp needs

to go through two prolongation operations. The first one is for the reservoir part

(Equation 7.24), which is exactly the same as the procedure for a system with Std-

Wells. After the prolongation, the solution vector x1 is mapped back to the vector

space for an FIM system with StdWells. We need one more prolongation to expand

the well part:

x
1,MS

= P
MS

x1, (7.34)

where x
1,MS

is the final solution of the first stage of CPR, and P
MS

is the matrix
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shown in Figure 7.16. This operation assigns the pressure change of the reference

point to the pressure variables of all the segments and leaves the other variables as

zeros. The overall prolongation operation can be written as:

x
1,MS

= P
MS

P xp. (7.35)

If the MSWell model is operated under constant-pressure control, the pressure at

the reference point is set at a certain value. Again, for preconditioning purposes,

the pressure relation of segments will be fixed at the last iteration. Therefore, the

pressures of all the segments are known, and the reservoir is naturally decoupled from

the wells.

Figure 7.17: Final result of MSWell matrix reduction

Figure 7.18: Result of IMPES matrix reduction
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7.5.2 Second Stage: Reservoir-Facilities Block ILU Precon-

ditioner

The global Jacobian matrix of the system with MSWells is stored in the multilevel

sparse block (MLSB) data structure. At the top level, the matrix can be seen as a

2×2 block matrix. Current ILU preconditioners cannot factorize this matrix, because

the information is encapsulated within different submatrices.

The coupling between the reservoir and facilities is mainly through the pressure

relation. Since the pressure system including wells has been solved in the first stage

and removed from the right-hand-side vector, we can drop off JRF and JFR matrices

in the second stage for preconditioning purposes (Figure 7.19). Then the reservoir

and facilities parts are completely decoupled. ILU factorization can be applied to

each of them. It is worthwhile to restate that neglecting the two coupling matrices is

only as a preconditioner in the second stage of CPR. The linear solver always deals

with the fully coupled Jacobian with the 2× 2 substructure.

Figure 7.19: Decouple reservoir and facilities in the second stage of CPR

When we investigated the preconditioner options for systems with StdWells in

the previous section, we showed that BILU(0) is the best choice (Table 7.5) for the

second stage in CPR. A similar comparison indicates that for systems with MSWells,
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BILU(0) is still the best option for the reservoir part in the second stage of CPR. The

JFF matrix is composed of a number of submatrices from wells or well groups, which

lie on the diagonal of the JFF (Figure 3.5). These JWW matrices are not coupled

with each other, so they can be factored one by one.

For a single lateral well, the segments form a one-dimensional grid system. Hence,

the JWW matrix of the well is a tridiagonal block matrix. Figure 7.20 shows a 9-

segment well and its JWW matrix. Under this circumstance, the BILU(0) is an exact

LU factorization. If a well has multiple laterals, the JWW matrix is not tridiagonal any

more. Figure 7.21 shows the JWW matrix for a two-lateral, 9-segment well. For this

case, BILU(0) gives a poor approximation to the original matrix. Most of the time, it

fails to converge. For multilateral wells, BILU(1) is used for preconditioning the JWW

matrices in the second stage of CPR, and that gives excellent overall performance.

Figure 7.20: Single-lateral MSWell and its JWW matrix

In summary, the multilevel BILU preconditioner in the second stage of CPR for

coupled reservoir-facilities systems is composed of one BILU(0) preconditioner for

the reservoir matrix and a number of BILU(1) preconditioners for the well matrices
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Figure 7.21: Two-lateral MSWell and its JWW matrix

in the facilities part. This multilevel BILU strategy can be used as an independent

preconditioner (preconditioner option 11) for systems with MSWells. In this scenario,

without considering the pressure coupling, neglecting the coupling terms (JFR and

JRF ) may make the multilevel BILU a weaker preconditioner compared with the CPR

strategy used for StdWells.

7.5.3 Test Case

Case 4

A test case was set up to compare the performance of the MSWell and StdWell models.

This case also highlights the performance of the CPR and ILU preconditioners with

both well models. In this case, the reservoir model is an upscaled version of the top

part of SPE10, which has 110×30×16 gridblocks. The model is a highly heterogeneous

and has oil and water. Five bilateral horizontal producers and two vertical water



CHAPTER 7. LINEAR SOLUTION STRATEGIES 155

injectors are drilled in the reservoir. The producers have three perforations in each

horizontal branch. Each injector has two perforations at its bottom. The entire

system is shown in Figure 7.22. In order to have a detailed comparison, the case is

run with four different settings:

1. All seven wells use the StdWell model. The preconditioner option is CPR for a

system with StdWells.

2. All seven wells use the StdWell model. The preconditioner option is ILU.

3. The five bilateral producers use the MSWell model, and the two injectors use the

StdWell model. The preconditioner option is CPR for a system with MSWells.

4. The five bilateral producers use the MSWell model, and the two injectors use

the StdWell model. The preconditioner option is ILU, same as the second stage

of CPR for a system with MSWells.

The performance information is listed in Table 7.8. The solver time, which is

the time spent on solving the matrix, is the benchmark target. There are three key

observations from the table.

1. By comparing options 1 and 2, we see that CPR has much better performance

than ILU for a system with StdWells. For this case, the speedup factor is about

4.3. Similar performance is observed for the other examples presented in this

chapter.

2. By comparing options 3 and 4, we find that the CPR preconditioner gives much

better performance for system with MSWells compared to the ILU precondi-

tioner. The speedup factor is about six. This clearly shows the importance of

developing a CPR method for systems with MSWells.
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3. The system with MSWells is more costly to solve than the one with only Std-

Wells. For this case, the additional cost is about 40% (compare options 1 and 3).

This is not surprising, since the MSWell model provides information about the

flow behavior inside the wellbore by solving the relevant conservation equations.

Figure 7.22: Upscaled top formation of SPE10 reservoir model with MSWells

Well Type Stdwell Stdwell MS+Std MS+Std

Solver PGMRES PGMRES BGMRES BGMRES

Preconditioner CPR ILU CPR ILU

Timestep 19 19 19 19

Newton iteration 43 43 42 42

Solver iteration 239 4419 358 6339

Pressure iteration 239 0 358 0

Solver time 110.1 470.5 156.0 927.2

Total time 124.2 485.0 170.8 941.0

Table 7.8: GPRS timing performance for multisegment well case.
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7.6 Concluding Remarks

In this chapter, we discussed the solver and preconditioner options in GPRS. Pre-

conditioners are the focus of this chapter. We analyzed the implementation details

of the CPR preconditioner and demonstrated its excellent performance for various

large-scale simulation cases. As a two-stage preconditioner, each stage of CPR can be

further improved. The SAMG package is a better choice compared to the open-source

AMG preconditioner for the first stage. Block ILU preconditioners are developed to

further enhance the second stage performance. Optimal parameters are found for

various preconditioning options.

The two-stage CPR preconditioning approach is extended to handle systems with

MSWells. In the first stage, an algebraic two-step reduction procedure is developed

to construct a pressure matrix for the system. In the second stage, the coupling

terms between the reservoir and facilities are ignored, and a multilevel block ILU

preconditioner is developed to handle the decoupled objects. This approach can

be extended to a system composed of complex reservoir models and various facility

models. In the first stage, the coupled pressure system is constructed to cover all

the reservoir and facility objects. In the second stage, the objects are decoupled, and

preconditioners from the ILU family can be used to precondition the system.



Chapter 8

Adaptive Implicit Method

8.1 Introduction

In Chapter 7, we discussed preconditioning options for the linear solution of the Jaco-

bian matrices in GPRS. Among the various options, the block-based two-stage CPR

preconditioned GMRES solver, with AMG in the first stage and BILU in the second,

is the most robust and most computationally efficient approach. The CPR-based lin-

ear solver framework speeds up FIM (Fully Implicit Method) simulations significantly

in the presence of standard and/or multisegment wells. In this chapter, we discuss

another approach to speed up compositional simulation, namely, the Adaptive Im-

plicit Method (AIM) [19], in which a primary variable in a gridblock may be treated

implicitly, or explicitly, in a dynamic manner.

In FIM simulation, all the primary variables in a gridblock are treated implic-

itly (i.e., at the current time level), and this leads to an unconditionally stable time

discretization scheme. Therefore, in FIM simulation, one can take larger timesteps

158
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compared with explicit methods. However, for compositional models with large num-

bers of components, the FIM approach leads to very large Jacobian matrices, and that

increases the computational cost of constructing and solving the Jacobian matrices

significantly. On the other hand, in the mixed-implicit IMPES (IMplicit Pressure

and Explicit Saturation) formulation, only one variable - the pressure - is treated im-

plicitly in every gridblock, and the size of the Jacobian matrix is much smaller than

the corresponding FIM Jacobian; the price is that IMPES is conditionally stable

with possibly severe limits on the time step size, especially for highly heterogeneous

domains. However, for a given stable timestep size, IMPES has less discretization

error than FIM [2]. In most reservoir simulation problems, the IMPES timestep is

controlled by a few gridblocks with significant saturation changes, or high component

throughput. Even for highly detailed, strongly heterogeneous oppositional models,

the vast majority of gridblocks in a simulation model at a particular time do not

require such a small timestep size. Note that the location of the ‘problem gridblocks’

may change with time.

The Adaptive implicit method (AIM) combines both the fully implicit and ex-

plicit methods in one scheme to take advantage of both schemes, while avoiding the

shortcomings of each [19, 39]. In AIM, gridblocks can have different implicit lev-

els. Based on stability criteria, the ‘problematic’ gridblocks are identified and their

primary variables are assigned fully implicit treatment. This helps ensure stability,

while allowing for large timestep sizes. Subject to the stability criteria, the primary

variable in other gridblocks are treated explicitly. This AIM scheme reduces the size

of the Jacobian matrix and lowers the computational solution cost per Newton iter-

ation. Explicit treatment of the majority of the gridblocks also helps to reduce the

discretization error. The ultimate goal of compositional AIM simulation is to achieve

timestep sizes that are comparable, on average, to those employed in corresponding



CHAPTER 8. ADAPTIVE IMPLICIT METHOD 160

FIM simulation. When this can be achieved, AIM allows us to construct and solve

smaller Jacobians per Newton iteration; moreover, the results are more accurate than

FIM computations (smaller numerical dispersion effects).

The traditional AIM approach uses a combination of IMPES and FIM schemes [19].

A more general AIM scheme was proposed by Cao that combines IMPES, IMPSAT

(IMplicit Pressure and SATuration, explicit compositions) and FIM [8]. Carefully

tuned percentages of the basic schemes can make AIM a very efficient method. Our

focus in this chapter is on the data structures, linear solvers and preconditioners

for AIM simulation. In particular, AIM with fixed percentages of FIM and IMPES

gridblocks is used in the following discussion.

Generally, the implicit level of a gridblock in AIM can be different for different

timesteps. (Note that theoretically, one can label individual primary variables as

opposed to gridblocks). This leads to dynamic changes in the Jacobian matrix, where

both the overall size and the sparsity pattern of the Jacobian matrix can change

with time. Due to limitations associated with the pointwise data structures in the

previous version of GPRS, the Jacobian matrix had to be destroyed and rebuilt every

timestep [8]. The rebuilding process is very expensive and adds to difficulties in

maintaining and extending the simulator. This partly explains the limited availability

of good preconditioning methods for AIM. A pointwise ILU preconditioner was the

only option for AIM in the previous version of GPRS [8].

In this chapter, flexible and efficient data structures for the AIM formulation are

presented. With these data structures, the block based CPR preconditioned GMRES

solver is fully compatible with AIM, which is our proposed linear solution strategy for

compositional AIM models. A few large-scale, highly heterogeneous, compositional

cases are used to demonstrate the performance of AIM with our data structures and

CPR-based linear solver framework. The impact of AIM on the timestep size is also
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investigated.

8.2 Timestep and CFL Number

Although FIM is unconditionally stable, if the timestep size is too large, the Newton

iterations may not converge. In GPRS, the size of the FIM timestep is chosen as

follows [2]:

∆tn+1 = ∆tn
[
(1 + ω)ηi

δi + ωηi

]
, (8.1)

where ∆tn+1 is the size of timestep n + 1, ∆tn is the size of timestep n (the previous

timestep), ηi is the maximum allowed change in a primary variable. The values

of ηi for different variables should be chosen carefully, so that timesteps converge

within a reasonable number of Newton iterations. In GPRS, the default values are

200 psi for pressure, 0.2 for saturations, and 0.02 for component mole fractions. δi

is the actual change in a primary variable during the previous timestep, and ω is

a damping factor between 0 and 1. Smaller ω means adjusting the timestep size

more aggressively. Equation 8.1 is computed for every primary variable for all the

gridblocks in the reservoir model. The minimal value of ∆tn+1 is used as the size of

the next timestep [8].

Equation 8.1 constrains the timestep based on changes in the primary variables

(pressure, saturation(s), component mole fractions) only, and this may not be enough

in practical cases. For example, for some high-permeability gridblocks around a

BHP (Bottom Hole Pressure) controlled injector, the primary variables do not change

significantly after the displacement front passes through the well region. However,

these gridblocks may have extremely high throughput and cause stability issues. If
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these gridblocks are not given proper consideration when calculating the timestep

size, the simulator may overestimate the size of the timestep significantly, and that

can lead to convergence problems that are quite difficult to diagnose in practice.

In the AIM scheme, a CFL number is calculated based on the flow field of the last

timestep. The expression of the CFL limit for compositional two-phase flow is given

by [8, 14]:

CFLIMPES =
∆t

V φ
MAX

(
λo

λg

dλg

dSg
qg − λg

λo

dλo

dSg
qo

λo + λg

,
ρoqoxc + ρgqgyc

ρoSoxc + ρgSgyc

)
, (8.2)

CFLIMPES is the IMPES-based CFL for a gridblock, V and φ denote the bulk-volume

and porosity of the gridblock, ∆t is the timestep size, qp (p = o, g) denotes the phase

rates, xc and yc are the mass fractions of component c in the oil and gas phases,

respectively. Note that the CFL number is a local quantity [39]; for each gridblock,

the MAX operator selects the larger of the two terms: namely, saturation change,

and component-throughput. If only one phase (gas or oil) is present in a gridblock,

Equation 8.2 can be reduced to :

CFLIMPES =
∆t q

V φ
, (8.3)

where q is the flow rate for a gridblock. For a cell to be treated with IMPES, the

following condition must be satisfied.

CFLIMPES ≤ 1. (8.4)

Recall that in an IMPES simulation (i.e., only pressure is treated implicitly in all grid-

blocks), the global timestep is controlled by the gridblock with the largest CFLIMPES
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number. In AIM, there are two approaches for assigning the implicit level to the pri-

mary variables in a gridblock [8]. One is to fix the percentages of the FIM and

IMPES gridblocks. In this approach, we compute the CFLIMPES/∆t number for

each gridblock using Equation 8.2, or 8.3. Then the gridblocks in the model are

sorted according to these values. Then, the gridblocks that belong to the fraction

that exceeds the CFL limit are assigned FIM treatment; all the other gridblocks are

assigned IMPES treatment (i.e., only pressure is treated implicitly). So, the IMPES

gridblock with the largest CFLIMPES/∆t value dictates the timestep size such that

its CFL number is not larger than unity.

Figure 8.1 shows the sorted CFLIMPES/∆t for a fractured reservoir model at 10

days. The model has highly heterogeneous properties and unstructured grid (see Case

3 in Section 5). About 16% of the gridblocks have extremely large CFLIMPES/∆t

numbers (up to 3.1e+8, which does not fit in the figure). As shown in the figure, if

the percentage of gridblocks with FIM treatment is fixed at 30%, we obtain

CFLIMPES

∆t
= 2.8. (8.5)

Since CFLIMPES should be smaller, or equal, to unity (Equation 8.4) in order to

guarantee a stable numerical solution, the timestep size is limited to 2.8∆t ≤ 1, or

0.35 days. On the other hand, if the FIM fraction is fixed at 50%, the timestep

size can be up to one day. Note that if the FIM fraction is fixed at say 10%, then

the stable timestep size is limited to 7 × 10−5 days, which is too small to be of any

practical value.

From this discussion, we see that user-specified percentages of FIM and IMPES

gridblocks have a critical impact on the timestep size and consequently the overall

simulation performance.
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Figure 8.1: CFL number distribtion for a reservoir model with highly unstructured
grid (Case 3)
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In AIM simulation, the timestep size should be chosen based on the CFL constraint

(Equation 8.2); however, in order to obtain well-behaved and relatively smooth pro-

files of Newton iterations per timestep, the CFL-based stability criteria are usually

supplemented with ‘reasonable’ limits on the maximum allowable changes in the pri-

mary variables. In order to determine the percentage of the basic schemes, a plot like

Figure 8.1 can be quite helpful. One can also analyze the statistics of the (single-

phase) CFL numbers, for example, to help choose the FIM and IMPES percentages.

In practice, the percentages of the basic schemes are fixed at the beginning of a run,

and ∆t is chosen accordingly in the course of the simulation. In this approach, the

size of the Jacobian matrices is the same for all the timesteps. This approach is used

due to programming, memory management, and computational efficiency considera-

tions, especially when dealing with field-scale AIM compositional models. If the CFL

based ∆t is larger than a user-specified maximum length, the user-specified limit is

used. It is important to point out that even though the overall size of the Jacobian

matrix is the same, the sparsity pattern of the computed Jacobian may still change

with time, due to different distributions of the basic schemes.

An alternative approach is to vary the percentages of the basic schemes to achieve

a desired timestep size. The purpose of this approach is to achieve timestep sizes

that are close to those that would be obtained in an FIM simulation. In this case,

the CFL numbers for all the gridblocks are calculated with the desired timestep size

(Equation 8.2). The gridblocks with a CFL number larger than unity are treated

using FIM, and the others are treated with IMPES. The percentage of the basic

schemes can also be determined from a CFL-number plot like Figure 8.1. For a given

timestep, we can look up the point on the curve whose y coordinate is the reciprocal

of the timestep. Then, the x coordinate of the point is the percentage of the FIM

scheme. For example, in Figure 8.1, a two-day timestep leads to an AIM scheme with
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about 64% FIM gridblocks (blue arrows in Figure 8.1). Generally, the percentages of

the different schemes change every timestep using this approach. Consequently, the

overall size of the Jacobian matrices may change in the course of a simulation.

8.3 Data Structures for AIM

In Chapter 3, we proposed and implemented two new data structures to deal with

matrices in GPRS. In Chapter 7, we showed that our new multistage linear solvers and

preconditioners, which take full advantage of these new data structures, are robust

and efficient for FIM simulation. In fact, the new data structures were especially

designed with AIM (Adaptive Implicit Method) in mind. Here, we show how our

data structures and new linear-solver framework can be used to solve AIM problems

efficiently. In the previous chapters, we showed that for the FIM scheme, the new

data structures can simplify the matrix assembly process, reduce memory cost, and

speed up the simulation. For AIM simulation, the new data structures retain all

of these advantages. Additionally, the new data structures avoid the high cost for

destroying and rebuilding the Jacobian every timestep, which used to be the case for

AIM simulation with the original data structures in GPRS.

In an FIM simulation, all the cells have the highest implicit level. Hence, the spar-

sity structure of Jacobian matrices remains the same. However, in the AIM scheme,

the overall size of the Jacobian matrices may change if the approach with varying

percentages of basic schemes is used. The Jacobian matrices using the approach with

fixed percentages of the basis schemes are of the same overall size, but the structure

of the Jacobian matrices may still change, due to the changing spatial distributions

of the basic schemes. Therefore, the AIM scheme always leads to dynamic Jacobian

matrices.
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The compressed row storage (CRS) data structure does not accommodate dynamic

changes in the sparsity pattern of the Jacobian matrix. With the CRS format, if the

sparsity structure of the Jacobian matrix changes in the course of a simulation run,

the matrix has to be destroyed and rebuilt from scratch. On the other hand, the

new data structures can handle dynamic matrix structures in a very efficient manner.

We use the Jacobian matrix for an AIM reservoir model as an example. This is also

the matrix format used as a sub-component in the multilevel sparse block (MLSB)

matrix structure. The pseudocode of the matrix representation is as follows:

class SubRRBlk {

public:

SubRRBlk::SubRRBlk(); // Constructor

operator*(Vector& v); // Matrix-vector operator

private:

int nRows; // No. of rows

int nCols; // No. of cols

double *mDiag; // Diagonal array

double *mOffD_A; // Upper off-diagonal array

double *mOffD_B; // Lower off-diagonal array

int *mImpLvl; // Implicit level of cells;

}.

The matrix contains three data arrays: diagonal, upper and lower off-diagonal

arrays. Logically, these arrays represent the blocks (small dense matrices) on the

diagonal and the off-diagonals of the Jacobian matrix. The size of the diagonal array

is ncell × nc × nc, where ncell is the number of cells in the reservoir model and nc is

the number of components. The size of each off-diagonal array is nconn × nc × nc,

where nconn is the number of the connections between cells. The sizes of these arrays
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remain the same regardless of the specific spatial distribution of the basic schemes.

For the FIM scheme, all the elements in the arrays are used. For the AIM scheme,

only some of the elements in the blocks that make up these arrays are used. There

is an additional array ‘mImpLvl’ (whose size is equal to the number of gridblocks),

in which the implicit level of each gridblock is stored. The positions of the useful

elements in the blocks within the diagonal, upper, and lower off-diagonal arrays, can

be obtained from the ‘mImpLvl’ array.

Figure 8.2 shows a synthetic reservoir model with 4×2 gridblocks. The model has

three components. The gridblocks are labeled with the numbers in their upper-left

corners. A producer is located in cell 1 and an injector is in cell 8. In this case, the

maximum implicit level is three. Hence the diagonal and off-diagonal arrays are made

up of 3 × 3 blocks (although they are stored in one-dimensional arrays in physical

memory). The corresponding logical layout of the diagonal and off-diagonal arrays

is shown in Figure 8.3. The blue (both light and dark blue) blocks represent the

diagonal array, and the green (both light and dark green) blocks represent the two

off-diagonal arrays.

Figure 8.2: A synthetic reservoir model with AIM scheme
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Figure 8.3: Layout of the Jacobian matrix of reservoir model for AIM scheme
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For a certain timestep, the implicit level of each gridblock is shown in the bottom-

right corner. This information is stored in the “mImpLvl” array as {3, 2, 1, 2, 2, 1, 2, 3}.
In this scenario, only some of the elements in the diagonal and off-diagonal arrays

store valid information, which are marked with darker colors in Figure 8.3. The dis-

tribution of the useful entries can be inferred from the “mImpLvl” array easily. For

example, a block (i, j) has a useful subblock of li × lj, where li is the implicit level of

cell i and lj is the implicit level of cell j. In each Newton iteration, the linearization

function of the AIM scheme is responsible for updating the three basic arrays. This

is equivalent to updating the reservoir Jacobian matrix. If the implicit level of some

gridblocks changes, the sparsity pattern of the Jacobian matrix is easily updated.

The Jacobian matrix of the reservoir model can be solved with Krylov solvers,

which require a matrix-vector operation. The reservoir matrix is composed of the

three data arrays, which can be written in matrix form as:

Ares = D + L + U , (8.6)

where Ares is the reservoir Jacobian matrix, D, L and U are the diagonal, lower

off-diagonal, and upper off-diagonal matrices. The matrix-vector operation is imple-

mented as follows:

Ares b = D b + L b + U b, (8.7)

where b is a given vector. The matrix-vector multiplication is performed in three

separate steps, D b, L b, and U b. Each step can be decomposed into many small

block-vector multiplications. In AIM simulation, the size of the small blocks (dark-

color blocks in Figure 8.3) is dictated by the implicit level of the reservoir gridblocks.

The new matrix data structure can efficiently handle dynamic Jacobians during
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an AIM simulation. The size, sparsity pattern, entries of the Jacobian matrix can

be updated with minimal cost. In the new framework, the FIM Jacobian matrix

can be thought of as a special AIM case, where the implicit level of all gridblocks

is equal to the number of primary variables and is constant everywhere throughout

the simulation. In the new framework, the three arrays, namely, D, L, and U reuse

the three basic data arrays (introduced in Chapter 3 Section 1); this helps reduce the

memory cost of the simulation.

The Block Compressed Row Storage (BCRS) format is fully compatible with the

AIM scheme. In this data structure, a pointer matrix in compressed row storage

format is used. These pointers locate the blocks in the basic data arrays: diagonal,

upper, and lower off-diagonal arrays. The data structure also has the “mImpLvl”

array, which describes the dimension of the useful subblocks in the arrays. The data

structure offers wide flexibility in preconditioning strategies. For example, efficient

blockwise ILU factorizations can be developed based on this data structure. An

example of that is shown in Figure 3.8 and 3.7. Please refer Section 3 of Chapter 3

for details.

8.4 Preconditioners for AIM

The AIM scheme has some extra cost for calculating the CFL numbers, allocating

the implicit level, and reducing the implicit level in the gridblocks. For black-oil

isothermal simulation, the number of primary variables is up to three. It is not

always worthwhile to reduce the implicit level of gridblocks from three to one. The

AIM scheme is used more often in compositional simulation with large numbers of

components. The AIM scheme may reduce the size of the Jacobian significantly for

such cases. Recall that the size of the blocks is nc × nc. As nc increases, the block
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solvers and preconditioners can take more advantage of better memory and cache

utilization.

In Chapter 7, we showed that CPR is the most effective preconditioner for FIM

simulation. In the AIM scheme, some of the gridblocks use the FIM scheme, and the

others have lower implicit levels (e.g., IMPES). With the flexible and efficient data

structures we designed and implemented, we propose to use CPR for AIM simulation.

In the first stage, the pressure matrix is reduced from the AIM matrix as follows:

Ap = RAIM AAIM PAIM , (8.8)

where Ap is the reduced pressure matrix, AAIM is the AIM Jacobian matrix, RAIM

and PAIM are the restriction and prolongation matrices for AIM. The procedure is

similar to the one that generates the pressure matrix from the FIM matrix (Equation

7.23), which is discussed in Chapter 7 Section 4. The difference is that the restriction

and prolongation operations are affected by the implicit level of the gridblocks. The

same row restriction operation is applied to the right-hand-side vector:

bp = RAIM bAIM , (8.9)

where bp is the RHS vector of the pressure system, and bAIM is the RHS of the

original AIM system. The pressure solution can be obtained by solving:

Ap xp = bp . (8.10)

AMG is used as the solver for this stage. The resulting xp is in the vector space of the

IMPES system. A prolongation operation is needed to transfer the pressure solution
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back to the vector space of the AIM system, and this is written as:

x1,AIM = PAIM xp , (8.11)

where x1,AIM is the solution of the first stage of CPR for the AIM scheme.

In the second stage, an ILU preconditioner is used to solve the original AIM

matrix, and the RHS vector is updated with the first stage solution. That is:

M2 x2,AIM = bAIM −AAIM x1,AIM , (8.12)

where M2 represents the ILU preconditioner, and x2,AIM is the solution of the second

stage. The correction for the CPR preconditioner is the sum of the solutions from

both stages:

xCPR, AIM = x1, AIM + x2, AIM . (8.13)

In the following section, three cases are presented to demonstrate the performance of

the two-stage CPR-based linear solver for AIM systems.

8.5 Examples

Case 1

This is a basic case used to compare the performance of both FIM and AIM as well

as the performance of different preconditioners. The reservoir model is composed of

100×100×5 gridblocks, and the fluid has nine components. There is one production

well located in one corner of the reservoir. The system is in primary depletion. The

AIM scheme uses a combination of 80% IMPES and 20% FIM. We consider AIM
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simulation with three different preconditioners: blockwise CPR, pointwise CPR, and

ILU. An FIM run with pointwise CPR is provided as reference.

The simulation period is 20 days, and the timestep size is quite small. We at-

tempted to keep the numbers of timesteps and Newton iterations the same in both

AIM and FIM runs, so we can focus on the performance of the linear solver. More

complicated cases and analysis regarding timesteps will be provided later. The iter-

ation statistics and timing performance of the four runs are listed in Table 8.1.

Runs A B C D

IMPES/FIM 0.8/0.2 0.8/0.2 0.8/0.2 0.0/1.0

Solver BGMRES PGMRES PGMRES PGMRES

Preconditioner CPR-BILU CPR-ILU ILU CPR-ILU

Implicit variables 130000 130000 130000 450000

Timesteps 6 6 6 6

Newton iterations 19 19 19 19

Solver iterations 84 86 2503 75

Pressure iterations 84 86 N/A 75

Solver time 52.1 133.7 484.0 329.8

GMRES/MV 21.0 23.4 237.2 51.8

(B)ILU factorization 9.3 88.3 87.8 239.0

(B)ILU solution 6.3 6.4 159.0 17.2

Pressure decoupling 5.1 5.2 N/A 12.3

Pressure solution 10.4 10.4 N/A 9.5

Table 8.1: Performance of AIM and FIM schemes for Case 1

The upper part of the table lists the basic information of the simulation runs,

including the numbers of the implicit variables, timesteps, and the numbers of New-

ton, linear solver and pressure iterations. The lower part of the table lists the timing

performance of the linear solvers and their subcomponents. For example, the “GM-

RES/MV” row lists the time spent on the GMRES solver and the matrix-vector

multiplication operation (excluding preconditioning time). The reported time is in
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second.

If we compare Runs B and D, it is very clear that AIM is more computationally

efficient than FIM when the same pointwise CPR preconditioner is used. The speedup

factor in the solver is about 2.5. The AIM Jacobian matrix is much smaller than that

of FIM. Therefore, GMRES, ILU factorization, and the ILU solution time of Run B

are much less than those of Run D. Since 80% of the cells are IMPES, the workload

of the pressure decoupling process in AIM is also much smaller than that of FIM. The

pressure solution time is quite similar, since both schemes solve pressure matrices of

the same size and of very similar characteristics.

A comparison of Runs B and C shows that the CPR preconditioner in AIM has

much better numerical performance than ILU. The speedup in the solver time is

about 3.6 times. The major gain comes from GMRES and ILU solution times. The

ILU factorization time is almost the same, since the number of factored matrices

(i.e., number of Newton iterations) is the same in both cases. If we compare Runs

A and B, we see that the use of blocking in the solver and preconditioner speeds up

the computation. Most of the gain comes from the BILU factorization, and a small

portion comes from the blockwise GMRES solver. These gains are related to better

cache utilization.

Case 2

This is a highly heterogeneous case. The reservoir model is the top layer of SPE10,

which has 60× 220 gridblocks. The porosity and permeability maps of the model are

shown in Figure 8.4. The reservoir fluid has 6 components. The five standard wells

in the reservoir are in a 5-spot pattern. The wells are labeled in the porosity map

of Figure 8.4. The initial reservoir pressure is above the babble point. The injector
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(in the center of the reservoir) pumps light components (87% C1, 10% C3, 3% C6)

into the reservoir at a constant pressure. Both FIM and AIM schemes are used to

simulate the case for 4000 days. The AIM scheme uses 80% IMPES cells and 20%

FIM cells. All settings of the two runs are identical except the implicit level.

In Figure 8.5, we plot the distribution of the logarithm of the CFLIMPES/∆t

number throughout the domain at 1818 days. The figure shows that a relatively

small number of cells have a very high CFLIMPES/∆t value (in red), and that many

cells have a relatively high value (in yellow and green). These cells form the flow

paths between the injector and Producers 1, 2, 3. The rest of reservoir cells have very

low CFLIMPES/∆t values (in blue). According to the CFL constraint, the more FIM

cells in the model, the larger the timestep that one can take. The relation between

the percentage of FIM cells and the timestep size at 1818 days is plotted in Figure

8.6. From the plot, we can see that the CFL constraint for AIM, with 20% of the

cell treated with the FIM scheme, leads to a timestep size of approximately 50 days.

Since 50 days is larger than the user specified maximum timestep size (30 days), a

30-day period is selected as the size of the next step. Figure 8.7 shows the distribution

of FIM and IMPES in the reservoir model, with 20% of the cells treated with FIM

(red), and the IMPES cells (blue) make up 80% of the total cells.

The pressure and gas-phase distribution of the FIM scheme at 4000 days are

shown in Figure 8.8; the same quantities for the AIM scheme are shown in Figure 8.9.

The oil production histories of Producer 2 (upper-left corner in Figure 8.4) for both

schemes are plotted in Figure 8.10. As expected, the results of both schemes are very

similar.

The numerical performance of both schemes is listed in Table 8.2. The most

effective solver and preconditioner options, namely, blockwise GMRES and blockwise

CPR, are used in the simulations. In the AIM case, we deal with a much smaller
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Figure 8.4: Porosity and Permeability maps of the first layer of SPE10
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number of implicit variables and equations, which means we solve smaller Jacobian

matrices. For this case, the number of equations of the AIM scheme is one-third

of the FIM scheme. The size of the pressure matrices in the CPR preconditioner is

always the same.

In this test case, the maximum timestep allowed in the simulation is set at 30

days. The sizes of the timestep for the simulations using both schemes are plotted in

Figure 8.11. The simulation runs start with very small timestep size, which are then

increased relatively quickly. AIM only considers the constraint by the CFL number.

Therefore, in the early stage, the AIM run selects larger timesteps than the FIM

run. Several timestep cuts are observed in the early stages of the AIM simulation.

Later, the timestep size of both runs reaches the maximum user-specified value. If

both the CFL constraint (Equation 8.2) and variable-change limits (Equation 8.1) are

considered to decide the AIM timestep size, one may be able to avoid the timestep

cuts in the early stages.
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Figure 8.6: Relation between AIM timestep and percentage of FIM cells
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Case 3

A compositional case for a fractured reservoir model was selected to further test the

performance of the AIM scheme, especially the impact of different percentages of

IMPES and FIM on timesteps. The reservoir model and the layout of the fractures

and the wells are shown in Figure 7.10, and the grid is shown in Figure 7.11. The

reservoir model is discretized using a discrete fracture method (DFM) [26]. The

matrix and fractures are discretized into gridblocks according to their shape. About

12% of the reservoir cells are fracture cells, and 24% are matrix cells with connections

to the fractures. The fracture cells have 1,000 darcy permeability and unit porosity;

the matrix cells have 0.1 md permeability and a porosity of 0.25. The two wells

intersect two fractures that are not directly connected by other fractures. The wells

have very high throughput due to intersecting the fractures.

GPRS was run with three different options: AIM with 30% FIM and 70% IMPES

(referred to as AIM30), AIM with 50% FIM and 50% IMPES (referred to as AIM50),
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Figure 8.8: Pressure and gas saturation profile maps of FIM scheme at 4000 days
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Figure 8.9: Pressure and gas saturation profile maps of AIM scheme at 4000 days
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Figure 8.10: Oil rate history of Producer 2 with both schemes
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Figure 8.11: Timestep of AIM and FIM schemes for Case 2
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IMPES/FIM 0.8/0.2 0.0/1.0

Solver BGMRES BGMRES

Preconditioner CPR-BILU CPR-BILU

Implicit variables 26400 79200

Timesteps 169 187

Newton Iterations 707 722

Solver Iterations 2298 2327

Pressure Iterations 2298 2327

Solver time 195.9 367.9

GMRES/MV 80.1 153.4

BILU factorization 23.4 63.6

BILU solution 23.3 50.4

Pressure decoupling 15.4 48.5

Pressure solution 53.7 52.0

Table 8.2: Performance of AIM and FIM schemes for Case 2

and 100% FIM. Recall that the model has about 12% fracture cells and about 24%

matrix cells connected to fractures. These 36% of cells are potentially problematic.

AIM30 has enough FIM gridblocks to cover all the fracture cells, but not enough for

the matrix cells that are connected to fractures. AIM50 can cover both types of cells.

The simulation period is 30 days. The maximum allowed timestep size is 5 days.

The timestep sizes of the different schemes are plotted in Figure 8.12. From the figure,

we can see that the three curves overlap for early time. This is because very small

timesteps are used to ensure that the Newton method converges. Later, AIM30 hits

its CFL limit, and its timesteps are significantly lower than the other two schemes.

The maximum timestep of AIM30 is about 0.44 days. AIM50 has larger timesteps,

which are up to 1.3 days. In both AIM schemes, the timestep sizes are quite stable

and build up gradually.

The FIM scheme has identical timesteps with AIM50 for the first four days. Later
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on, the FIM scheme tries to use more aggressive timesteps, but most of these attempts

fail to converge within a given number of Newton iterations. The simulator has to

cut the timestep by half and restart the simulation from the last timestep. Because

of this, the timestep curve of FIM has many oscillations in the later stages. Cutting

a timestep means all previous Newton iterations are wasted. Hence it is a very costly

event in a simulation run.
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Figure 8.12: Timestep size of FIM and AIM schemes for Case 3

The iteration statistics and timing performance of the three schemes are shown

in Table 8.3. From the upper part of the table, we can see that AIM50 has the

least number of timesteps. Due to the timestep cuts, the FIM scheme uses three

more timesteps compared to AIM50. AIM30 has much smaller timesteps, and it

consequently needs many more timesteps to complete the simulation. Beside the

number of timesteps, AIM50 also wins in terms of the number of Newton iterations,

solver iterations, etc. In this table, the numbers in brackets are the wasted operations
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due to timestep cuts. The AIM30 scheme has no timestep cuts; AIM50 has two and

FIM has 34 timestep cuts. From the iteration statistics, it is not a surprise that

AIM50 has the best timing performance. In fact, the lower part of the table shows

that AIM50 has the best performance across the board. AIM50 is 3.2 times faster

than FIM in solver time, and 1.7 times faster than AIM30. The oil production rates

from the three runs are shown in Figure 8.13. The three curves are very close to each

other.

IMPES/FIM 0.7/0.3 0.5/0.5 0.0/1.0

Solver BGMRES BGMRES BGMRES

Preconditioner CPR-BILU CPR-BILU CPR-BILU

Implicit variables 26400 35636 79200

Timestep 138 (0) 81 (2) 85 (34)

Newton iterations 1056 (0) 564 (30) 651 (510)

Solver iterations 5510 (0) 2776 (308) 3666 (4585)

Pressure iterations 5510 (0) 2776 (308) 3666 (4585)

Solver time 8167.7 4910.1 15779.3

GMRES/MV 2336.6 1526.2 3661.7

BILU factorization 601.1 418.6 1286.3

BILU solution 932.8 591.0 2572.6

Pressure decoupling 284.7 221.4 786.1

Pressure solution 4010.6 2153.0 4867.6

Table 8.3: Performance of AIM and FIM schemes for Case 3

8.6 Concluding Remarks

The data structures we developed and implemented in GPRS are flexible and efficient

compared to the standard ones. The new data structures offer significant advantages

in processing AIM Jacobian matrices. The speedup factors between the different

schemes and preconditioner options are case sensitive. However, we can draw a few
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Figure 8.13: Production history of the producer in Case 3

general conclusions about AIM simulation:

• AIM is an effective approach for compositional simulation, which can reduce the

matrix size significantly by using explicit treatment for most gridblocks, while

taking timestep sizes comparable to FIM.

• With the new flexible and efficient multilevel block-based data structures, CPR

is a much better preconditioner compared to ILU for AIM simulation. The block

solvers and preconditioners can further speed up CPR for AIM simulation.

• For AIM simulation with large numbers of components and a high percentage

of FIM, the pressure matrix of the first stage in CPR become less important

as nc increases. In this case, the second stage preconditioner (BILU or ILU)

plays a more important role. Both GMRES and BILU benefit more from cache
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utilization due to larger block sizes in the Jacobian.



Chapter 9

Conclusions and Future Work

9.1 Conclusions

The development of a general-purpose reservoir simulation framework for coupled

systems of unstructured reservoir models and advanced wells is the subject of this

dissertation. Stanford’s General Purpose Research Simulator (GPRS) serves as the

base for the new framework. GPRS is a research platform for reservoir simulation

and related research (SUPRI-B/HW groups) at Stanford and elsewhere, and it has

been extended and enhanced in the last few years by a number of researchers. In this

work, we made significant contributions to GPRS, in terms of architectural design,

extensibility, computational efficiency, and new advanced well modeling capabilities.

Moreover, new robust and efficient linear solution algorithms for coupled reservoir-

facilities systems were developed and implemented.

As a first step, we designed and implemented a new architectural framework, in

which the facilities (man-made) are grouped and treated as a separate component,

189
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which is at the same level as the reservoir (natural) component. This reflects the

growing importance and complexity of facilities modeling, including accurate repre-

sentation of multiphase flow in wellbores and pipe networks. A new ‘solvers’ compo-

nent now sits at the same level as the reservoir and facilities models. Well-defined

component interfaces were designed and implemented. As a result, the new frame-

work is quite general and extensible, which reduces the cost of incorporating new

models into GPRS significantly. Adding a new model into a simulator is generally

a tough job, especially when a model relates to core components, e.g., changing the

structure of the Jacobian matrices. With the new flexible reservoir simulation plat-

form, the necessary effort (both in human resources and extent of code modification)

for incorporating a new model is expected to be much smaller than that with the

previous GPRS design. Instead of having to worry about the entire simulator and

get overwhelmed by the vast details of the GPRS code base, researchers can work on

specific components, or subcomponents, that allows them to quickly implement and

test their research ideas. The extensibility of the new GPRS framework is demon-

strated by incorporating several new facility models, namely, the Multisegment Well

(MSWell) and capabilities for handling constraints on well groups.

While flexibility and extensibility of the simulator framework are the primary ob-

jectives, making sure that robustness and computational efficiency are at the leading

edge has also been a major objective for this thesis. For that purpose, new data

structures have been built specially for GPRS. These new data structures honor the

separation of the reservoir and facilities components. Furthermore, these data struc-

tures were designed with the computational algorithms in mind. Specifically, we

designed and implemented a multilevel sparse block (MLSB) data structure, which

is consistent with the hierarchial structure in the new framework. The MLSB data

structure is flexible and allows the use of other data structures as subcomponents.
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This gives researchers freedom to develop their own discrete formulations and solution

methods. This new data structure also simplifies the construction and assembly of

Jacobian matrices. The pointer-based block matrix format takes advantage of both

the standard Compressed Row Storage (CRS) data structure (which is widely used

for sparse matrix computations) and the basic array-based data structure in GPRS,

in which the data representing the discrete form of the conservation equations of the

gridblocks is stored in diagonal and off-diagonal arrays.

The new data structures honor data encapsulation, and they are built with care-

ful attention to vectorization and block-based data representation. This leads to

efficient processing of the most important computational kernels (e.g. matrix-vector

multiplication, dynamic updating of the Jacobian). We emphasize that all these data

structures are fully compatible with the adaptive implicit method (AIM), which is a

fundamental and highly desirable feature of GPRS.

The MSWell model, which has been extended significantly over the last few years,

was previously developed as a separate code base for research into accurate modeling

of multiphase flow in wellbores. As part of this work, the MSWell model was fully

integrated into the new GPRS framework, and it may be seen as an example of a

significant capability extension of a general-purpose simulator. There is a huge dif-

ference between a piece of separate code that implements a small component, and a

stable option in a software package aimed at general-purpose reservoir simulation. So,

as expected, a great deal of effort has been spent in order for the flow modeling capa-

bility of complex reservoirs and MSWells to be robust and computationally efficient.

The MSWell capability in GPRS offers homogeneous and drift-flux flow models. The

MSWell treatment can account for transient and wellbore storage effects. We also

provide stable initialization, several well control methods, and highly effective linear

solvers and preconditioners for the MSWell model.
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GPRS has been extended to simulate coupled systems of (unstructured) reservoir

models and advanced wells. As part of this effort, a new rigorous well-group treatment

was proposed and implemented. This new model accounts for interactions between

the wells in the group and allows for using one’s favorite pipeline flow correlation. The

well-group model benefits from the new flexible data structures of GPRS. For example,

one can combine any available facilities object, such as standard and multisegment

wells and mixed well groups that include both kinds of wells.

Advanced linear solution strategies were also developed for GPRS. We demon-

strated the outstanding performance of the CPR preconditioner, with a number of

large-scale, highly heterogeneous, unstructured cases. Based on the new block data

structures, we developed and implemented block ILU preconditioners. These block

preconditioners help further speed up the simulation. The two-stage CPR precondi-

tioning approach is extended to handle systems with the MSWell model. In the first

stage, an algebraic two-step reduction procedure is developed to construct a pressure

matrix for the system with MSWells. In the second stage, the coupling terms in

Jacobian between the reservoir and facilities are ignored, and a multilevel block ILU

preconditioner is developed and used to handle the decoupled objects.

The data structures and linear solvers we developed are fully compatible with

AIM. In fact, they were designed to be especially efficient in handling the dynamic

Jacobian matrices associated with AIM simulation. We demonstrated that the CPR

preconditioned GMRES solver based on the new framework is the best linear solution

strategy for large-scale AIM simulation of unstructured reservoir models and advanced

wells. We also showed that the block data structures and solvers have significant

advantage over the original pointwise ones regarding efficiency and flexibility. With

the new efficient data structures and linear solvers, AIM simulation outperforms FIM

simulation for compositional simulation with large numbers of components.
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Another significant contribution of this work is the development of a general dis-

crete wellbore model, which we call GenWell. (This model is a stand-alone module).

GenWell extends the MSWell treatment from perforations all the way to the surface.

The GenWell model shares the advantages of the MSWell model, but it also allows

us to model flow in surface pipeline networks. Unlike the standard MSWell model,

GenWell accommodates complex pipeline topology, such as general branching, loops

and multiple exits. In the GenWell model, wellbores and pipeline networks are dis-

cretized into various types of segments. Nodes and connections are defined based

on the segments, and the discrete system is abstracted as a graph. Using small, yet

representative, examples, we showed that the GenWell model can handle multiphase

transient flow in wellbore and pipeline systems with loops, junctions, multiple exits,

and arbitrary flow directions.

9.2 Future Work

GPRS is now an efficient AIM compositional simulator for unstructured reservoir

models with advanced wells. With our work on facilities modeling and suggested

future extensions, GPRS can perform fully coupled reservoir-facilities simulation ef-

ficiently. Here, we list few high priority research directions related to GPRS:

• Implement the drift-flux flow model in the GenWell framework.

• Develop and implement special segments to model surface equipment in pipeline

networks.

• Integrate the GenWell model into GPRS.

• Implement nested well-groups.
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• Develop and implement other well models in the GPRS framework.

• Develop efficient linear solution strategies for systems with well groups and the

GenWell model.

• Develop parallel solvers and preconditioners based on the CPR method.

• Implement other multiphase flow correlations for well and surface networks.

With the new design of GPRS, research in the suggested areas can be conducted

in a much more efficient manner than with the previous version of GPRS.
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