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Abstract

Carbon capture and storage (CCS) is a key technology to reduce CO2 emissions

from industrial processes, in particular from fossil-fuel based electricity generation.

One important aspect of CCS is the safe long-term storage of the captured CO2 in

geological formations, especially in deep regional saline aquifers. Predicting the long-

term evolution of the injected CO2 requires an understanding of the basic physical

mechanisms and the ability to capture them in field-scale numerical simulations.

Simple mathematical models of trapping processes are developed to allow the

identification of the dominant physical processes during CO2 storage and their as-

sociated length and time scales. First-order estimates of the duration of the active

storage period and the migration distance are obtained as a function of the average

properties of the aquifer. These estimates support the selection of storage sites, in

particular at the early stages when limited data is available. They also show that

the length scales associated with the physical processes in regional aquifers can span

several orders of magnitude.

Multiscale simulation techniques are necessary to resolve physical processes and

geological heterogeneity. In particular, robust multiscale methods of elliptic flow

problems, must be developed. The multiscale finite volume method is analyzed in

the context of multipoint flux approximations and shown to lose monotonicity for

anisotropic problems. Strong anisotropy arises in the simulation of CO2 storage,

because of the large aspect ratios of regional aquifers. A new compact coarse operator

and new local fine-scale problems are introduced to obtain monotone coarse pressure

solutions for anisotropic domains. This development presents a major step towards

multiscale simulation of CO2 storage in large regional saline aquifers.
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Chapter 1

Introduction

1.1 Carbon capture and storage

Carbon Capture and Storage (CCS) involves capturing the CO2 arising from indus-

trial processes and transportation to a suitable storage site, where most of it will

be sequestered from the atmosphere permanently. CO2 capture is more easily ap-

plied to large point sources, such as fossil fuel power plants, fuel processing plants

and plants for the manufacture of iron, steel, cement and bulk chemicals, than to

dispersed emission sources. The transport of large quantities of carbon dioxide from

the source to the storage site will require a large network of pipelines. Currently

carbon dioxide pipelines extend over more than 2500 km in the western US, where

they carry 50 MtCO2/yr from natural sources to enhanced oil recovery projects in

West Texas and elsewhere (Metz et al., 2006). Several geological storage repositories

have been suggested, including depleted oil and gas reservoirs, unmineable coal beds,

saline aquifers, and deep sea sediments. Gigatonnes of CO2 per year must be stored in

the subsurface to make a significant contribution to the mitigation of climate change

(Metz et al., 2006). The capture and storage of carbon dioxide can be implemented

at a large scale by applying known technology developed for other purposes, that are

is technically feasible today (Metz et al., 2006).

1
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Figure 1.1: (a) Predicted emission scenarios. The line labeled 500 ppm is the emis-
sions scenario necessary to stabilize the CO2 concentration at approximately twice the
preindustrial average. (b) Schematic version of figure a, showing the 7 stabilization
wedges. Both graphs are modified from Pacala & Socolow (2004).

1.1.1 Clean coal technology

According to the U.S. Department of Energy, the term clean coal technology describes

a new generation of energy processes that sharply reduce air emissions and other

pollutants from coal-burning power plants.

Coal is a cheap mainstay of electricity generation in both the developed and

developing world, and its use is projected to increase. Coal has the highest carbon

content of all fossil fuels, and its increased use will worsen the climate change problem

(Katzer, 2007). The large-scale implementation of CCS is therefore an important part

of clean coal technology. CCS allows significant reduction in CO2 emissions while

allowing coal to meet future energy needs. However, critics warn that CCS should

not be seen as a silver bullet to reducing emissions, nor should it be researched and

developed at the expense of other environmentally sound, technologically feasible, and

economically affordable solutions to climate change (Union of Concerned Scientists,

2001).

It is hoped that limiting atmospheric CO2 concentrations to less than double

the preindustrial concentration of 280 ppm will prevent the most damaging climate

change. This requires that emissions are held constant at 7 billion tons of carbon per

year (GtC/yr) for the next 50 years, while the current trend will lead to emissions of
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approximately 14 GtC/yr in 2060 (figure 1.1a). Pacala & Socolow (2004) have intro-

duced the concept of a stabilization wedge (figure 1.1b), as an activity that reduces

emissions to the atmosphere that starts at zero today and increases linearly until it

accounts for 1 GtC/yr of reduced carbon emissions in 50 years. A few examples of

such activities are: efficient vehicles and buildings, substitution of gas baseload power

for coal baseload power, substitution of nuclear, wind or photovoltaic power for coal

power, biomass fuel for fossil fuel, and CO2 capture at baseload power plants, H2

plants or coal-to-synfuel plants. Seven stabilization wedges are necessary to avoid a

doubling of preindustrial atmospheric CO2 concentrations. Currently, no single avail-

able technology can provide even half of the necessary emission reductions. However,

Pacala & Socolow (2004) argue that the necessary reductions in carbon emissions are

already possible with a portfolio of options available today. They have identified 15

activities, including those listed above, which can contribute one stabilization wedge

each.

Assuming that CCS prevents 90% of the fossil carbon from reaching the at-

mosphere, a stabilization wedge could be achieved by the installation of 800 GW

of baseload coal power plants with carbon capture. The associated geological storage

would require that current CO2 injection, for enhanced oil recovery, be scaled up by

a factor of 100 over the next 50 years, or the equivalent of 3500 storage projects

comparable to the current CO2 storage operations at the Sleipner-Vest natural gas

field, operated by Statoil (Torp & Gale, 2004).

1.1.2 Geological CO2 storage

Geological storage of anthropogenic CO2 as a mitigation option for climate change

was first proposed by Marchetti (1977). No further published research was done

until the Norwegian Parliament decided to stabilize Norway’s CO2 emissions at the

1989 levels by the year 2000 and introduced a carbon tax, approximately equal to

50 $/ton CO2, on CO2 emissions from burning natural gas offshore. In response to

this, Statoil initiated small-scale CO2-storage tests in 1989 (Kaarstad, 1992). The

options for geological storage where first fully explored during the First International
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Conference on Carbon Dioxide Removal in Amsterdam in 1992. Storage in saline

aquifers (Kaarstad, 1992; Koide et al., 1992), depleted oil and gas reservoirs (van der

Burgt et al., 1992), as well as a combination of enhanced oil recovery with CO2 storage

(Bondor, 1992; Legg, 1992; van der Meer, 1992) were proposed. The storage of CO2

in deep sea sediments is distinct from aquifer storage on land or on the continental

shelf, due to the neutral buoyancy of the injected CO2 and the potential of a self-

sealing CO2 hydrate cap (Koide et al., 1995, 1997; House et al., 2006). Enhanced

coal bed methane recovery from unminable coal seams also provides a possibility for

geological CO2 storage (Stevens et al., 2001). Some have argued that CO2 can be

stored in basaltic rocks in regions where large sedimentary basins are not common,

such as the Indian subcontinent (McGrail et al., 2006). However, questions remain

about the potential for leakage through fractures that are very common in basalts.

The worldwide storage capacity in depleted oil and gas fields is estimated between

675 and 900 GtCO2, the capacity of unminable coal seams is estimated between 3 and

200 GtCO2, and the capacity of saline aquifers is at least 1000 GtCO2 and possibly

up to 10000 GtCO2 (Metz et al., 2006). House et al. (2006) initially estimated that

the economic zone of the US alone has a storage capacity of more than 10000 GtCO2.

More recently, Levine et al. (2007) showed that the average formation permeabil-

ity and geomechanical considerations may limit the storage capacity substantially.

McGrail et al. (2006) estimate that the Columbia River Flood Basalt Province alone

has a CO2 storage potential greater than 100 GtCO2. The Deccan Volcanic Province

in India has roughly three times the volume of the Columbia River Flood Basalt

Province, and it may be an important storage option.

CO2 storage combined with enhanced oil recovery or enhanced coal bed methane

recovery is favorable, because hydrocarbon recovery will offset a part or all of the

costs associated with CCS. Unfortunately, the storage capacity of these systems is

limited, and CO2 may have to be transported over long distances from the CO2

sources in urban areas to the storage locations in hydrocarbon provinces. Carbon

storage on a scale large enough to make a significant contribution to the reduction

of CO2 emissions, appears to be viable in saline aquifers. The source–sink matching

is easiest for saline aquifers, because many urban areas are located on sedimentary
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basins. As of today, there are no economic benefits associated with storage in saline

aquifers that can help offset the storage cost. Therefore, other incentives, such as the

carbon-emissions tax in Norway, must be in place for the adoption of aquifer storage.

Since CO2 emission regulations, taxes, or both, are expected in the near future, saline

aquifer storage is currently the most promising large-scale geological storage option.

Therefore, this thesis focuses on accurate mathematical modeling of the complex flow

behaviors associated with CO2 storage in saline aquifers.

1.2 Saline aquifer storage

The term saline aquifer or saline formation is used to identify deep sedimentary

rocks saturated with formation waters or brines, which contain high concentrations

of dissolved salts. Due to their high salinity, these brines are not used as sources

of drinking water and cannot be used for irrigation. On the contrary, unsustainable

exploitation of shallow groundwater resources may lead to upconing of underlying

brines and to a subsequent deterioration of the water quality (Zhou et al., 2003). In

some locations deep brines are used for low-temperature geothermal power generation

(Lund et al., 2005). In other areas, deep aquifers are used for the injection of drilling

slurries (Reed et al., 2002), hazardous chemical waste (Saripalli et al., 2000), and

liquid radioactive waste (Rumynin et al., 2005). In comparison with the enormous

volumes of saline aquifers available, only a negligible fraction is currently used.

Saline aquifers occur in sedimentary basins throughout the world and are not

restricted to coal, oil, or gas provinces. Holloway & Savage (1993) have argued that

CO2 should be injected at depths greater than 800 m. For a geothermal gradient of

25 ◦C/km, this is the depth required for CO2 to be in a dense supercritical state,

although this depth may vary between 650 and 1200 m in a particular sedimentary

basin (Bachu & Stewart, 2002).

Carbon dioxide is injected in the supercritical state to decrease the storage volume,

but the long-term storage capacity of an aquifer is determined by the amount of CO2

that can be dissolved into the brine (Bachu & Adams, 2003). Supercritical CO2 is

less dense than the brine under all continental and shallow marine storage conditions.
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An impermeable seal, such as a shale or clay layer, overlying the storage formation is

therefore always necessary to prevent upward migration of the injected CO2 towards

the surface. To prevent upward migration of the CO2 along an inclined seal towards

the surface a structural trap, (figure 1.4a), is thought to be necessary for long-term

storage security. Based on these and other criteria, Bachu (2003) have proposed a

screening and ranking methodology to identify suitable storage aquifers.

CCS projects targeting saline aquifers are under discussion in many countries,

including Norway, the US, Japan, Canada, Australia, the UK, France, Germany,

Italy, and Poland (Metz et al., 2006). The Sleipner Project, a gas field operated by

Statoil on the Norwegian continental shelf, is a good example of CO2 storage in a

saline aquifer. Approximately 1 MtCO2/yr is removed from the natural gas stream

produced at the Sleipner-Vest platform and injected into the Utsira formation. The

operation started in October 1996, and over the lifetime of the project a total of 20

MtCO2 is expected to be stored. The evolution of the Sleipner CO2 plume has been

successfully monitored by seismic time-lapse surveys. The surveys also show that the

caprock prevents migration out of the storage formation (Torp & Gale, 2004).

1.2.1 Storage security and CO2 migration

We expect that some fraction of the injected CO2 will remain mobile and buoyant

in the subsurface for several hundreds or even thousands of years. Therefore, the

security of the storage depends strongly on the quality of the geological seal preventing

upward migration. The geological seal in oil and gas fields is intact, because they have

retained buoyant fluids over millions of years. As long as the integrity of the seal has

not been compromised by hydrocarbon extraction, CO2 stored in depleted oil and gas

reservoirs is unlikely leak to the surface. In saline aquifers no such test of the seal

integrity exists, and therefore leakage of CO2 into the shallow subsurface and back

into the atmosphere is a major concern that must be evaluated carefully. On the

other hand, storage security is increased by physical and chemical processes in the

subsurface that either make the CO2 negatively buoyant or immobile. Such trapping

processes progressively reduce the amount of CO2 available for leakage, and increase
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the storage security over time (Metz et al., 2006).

The redistribution of the injected CO2 between different physical and chemical

states is illustrated schematically in figure 1.2. The competition between leakage

and trapping processes determines what fraction of CO2 remains permanently in the

subsurface.

1.2.2 Leakage mechanisms

Leakage of CO2 stored in saline aquifers is a major concern, and the research in this

field is growing rapidly. Given a laterally continuous seal and a structural trap, Metz

et al. (2006) identify the following leakage pathways:

1. Through the pore system in low-permeability caprocks, such as shales, if the

capillary entry pressure at which CO2 may enter the caprock is exceeded.

2. Through openings in the caprock, such as lateral discontinuities or fractures

and faults.

3. Through anthropogenic pathways, such as poorly completed and/or abandoned

pre-existing wells.

Gasda et al. (2004) have identified abandoned wells as one of the most probable leak-

age pathways for CO2 storage projects, due to their high density in many sedimentary

basins, i.e., 350000 wells in the Alberta basin. Nordbotten et al. (2004) have used

semi-analytic solutions to show that leakage through multiple passive wells is not a

simple sum of single well leakage rates, due to leakage induced draw-down around

passive wells. They have also identified that multiple aquifers and aquitards mitigate

leakage into shallow zones, because of loss of CO2 into the intervening aquifers. Nu-

merical comparisons under less restrictive assumptions have shown that the inclusion

of additional processes leads to reductions in leakage rates (Ebigbo et al., 2006).

Pruess (2005) showed that non-isothermal effects are important during leakage

along faults and lead to a self-limiting behavior of the leakage rate. In case CO2

does leak into the shallow subsurface, CO2 will displace the lighter resident soil gas.

Therefore, CO2 concentrations may approach 100% in some parts of the vadose zone,
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even for small leakage fluxes (Oldenburg & Unger, 2005). Leakage of CO2 plumes is

similar to migration of plumes of volatile organic compounds, and similar remediation

approaches may be applicable (Zhang et al., 2005).

1.2.3 Trapping mechanisms

Carbon dioxide can leak from the geological storage formation back into the at-

mosphere, because it is mobile and positively buoyant with respect to the brine.

Any process that either immobilizes CO2, makes it negatively buoyant, or both, is

considered a trapping mechanism. Three dynamic trapping mechanisms have been

recognized in saline aquifers:

1. Residual trapping, which refers to the formation of residual CO2 through capil-

lary snap-off in the wake of a migrating immiscible CO2 plume. Residual CO2 is

still buoyant, but it is immobilized because it is disconnected from the flowing

saturation. Holtz (2002) was among the first to point out the potentially large
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residual saturations in CO2–brine systems. Kumar et al. (2005) showed that

the formation of residual saturation may be the dominant trapping mechanism

in saline aquifer storage, and they highlighted the importance of the magnitude

and variation of the residual saturation in the formation as a key petro-physical

property.

2. Dissolution trapping, which refers to the dissolution of CO2 into the brine. Dis-

solved CO2 is still mobile, through the migration of the CO2-rich brine. How-

ever, the brine density increases with increasing CO2 saturation (Yang & Gu,

2006), and the negative buoyancy prevents leakage of dissolved CO2 (Lindeberg

& Wessel-Berg, 1997). Convective motion induced by dense plumes of CO2-rich

brine may have the potential to increase the overall dissolution rate of the CO2

significantly (Ennis-King et al., 2005).

3. Mineral trapping, which refers to precipitation of dissolved CO2 as carbonate

or calc-silicate minerals. Gunter et al. (1997) have shown that the CO2 trap-

ping reactions are expected to take hundreds of years to complete. Xu et al.

(2003) showed that the mineral trapping capability of arenaceous formations

after 10,000 years is comparable to CO2 dissolution in pore waters. Johnson

& Nitao (2003) and others have argued that the feedback between the dissolu-

tion/precipitation and the formation permeability may be important.

Figure 1.2 illustrates the relationship between the different CO2 trapping processes

and the states of CO2 in the subsurface. Mineralization offers the hope for perma-

nent storage on geological timescales, but CO2 is effectively trapped by dissolution

and residual trapping much earlier. Therefore, we refer to direct dissolution of the

mobile CO2 plume and residual trapping as primary trapping processes, and to the

dissolution of residual CO2 and the mineralization of dissolved CO2 as secondary

trapping processes. Figure 1.3 is a conceptual sketch of the evolution of the different

states of CO2 over time.

During the injection period, the CO2 plume contacts fresh brine as it is advancing

into the aquifer, leading to some CO2 dissolution. Residual trapping is expected

to be very effective in the period immediately following the end of injection, as the
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CO2 migrates toward the top of the aquifer (Kumar et al., 2005). It is possible to

enhance trapping during the injection period and for some period after the end of

injection, leading to engineered trapping. Examples of engineered trapping include

water-alternating-gas injection (Kovscek & Cakici, 2005; Juanes et al., 2006; Ide et al.,

2007), and the circulation of brine to increase dissolution (Leonenko & Keith, 2008).

However, engineered trapping at large scales will increase the storage cost and is

therefore unlikely in aquifers, where economic benefits do not offset the increased

cost.

In most situations we have to rely on the trapping of CO2 by natural processes,

in the post-injection period. This reliance on natural trapping processes makes the

proper selection of the storage site very important. This thesis focusses on natural

trapping processes in the post-injection period. In situations where the immiscible

CO2 plume has ponded in a structural trap (figure 1.4a) and has come to rest, no

further residual saturation forms, and dissolution of CO2 into the underlying brine

is the main process reducing the volume of the stationary CO2 plume. As long as

the immiscible CO2 plume continues to migrate, CO2 dissolves into fresh brine and

residual CO2 forms in the wake of the moving CO2 plume (figures 1.4b-c).

We may also distinguish an active storage period, during which mobile buoyant

CO2 is present and leakage is possible, from a passive storage period, where CO2 is

only redistributed between trapped phases (figure 1.3). During the active period,

leakage and trapping processes compete to reduce the mobile buoyant CO2 volume.

The active period ends when all injected CO2 has either leaked or been trapped. The

time when a CO2 storage site switches from the active to the passive period is an

important time scale that provides an indication of the storage security of a particular

site.

1.3 Thesis overview

The concern about leakage of CO2 from a storage site is a dominant theme in the

technical literature and also the main concern of the broader public. An important

part of the portfolio of measures to avoid leakage is to choose the storage site and
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the injection scheme to accelerate trapping processes. Effective trapping reduces

the time available for leakage, the active storage period, and is therefore crucial to

storage security. Effective trapping also reduces the migration distance of the injected

CO2, which reduces the likelihood of encountering a leakage pathway. To estimate

the trapping rates, we need to understand the underlying physics of the primary

trapping processes, namely dissolution and residual trapping. We also need to ensure

that numerical models used to predict storage performance are able to resolve these

dynamic flow and transport processes adequately. Therefore, this thesis consists of

two parts:

1. Chapters 2 and 3 present simple mathematical models that aim to capture the

fundamental dynamics of dissolution and residual trapping.

2. Chapter 4 presents multiscale numerical algorithms for the numerical simula-

tions of CO2 storage in large-scale heterogeneous formations.

We develop simple mathematical models of trapping processes to construct a con-

ceptual framework to elucidate the relations among the driving forces, flow charac-

teristics, and the rates of trapping. These models allow us to identify the dominant

processes during CO2 storage and their associated length and time scales. This gives

us first-order estimates of the duration of the active storage period and the migration

distance, and how they depend on the average properties of a storage site. These

simple estimates support the selection of storage sites, in particular at the begin-

ning when limited data is available. Such a conceptual framework also allows us to

understand and evaluate the results of complex numerical models.

The models of CO2 plume migration and trapping show the limitations of current

numerical simulation tools for large-scale geological systems, and have lead us to

the development of new multiscale methods for flow in heterogeneous porous media.

In § 4 we present a robust framework for multiscale discretizations of heterogeneous

elliptic equations, which lie at the heart of any reservoir simulator. This framework

provides the core of a multiscale numerical method for CO2 storage; in the near

future we hope to be able to simulate CO2 storage at the field scale, while resolving

important trapping processes appropriately. We believe that such an approach has to
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(a) (b) (c)

Figure 1.4: Sketches of the limiting cases investigated with simple process models:
(a) Dissolution trapping of CO2 ponded in structural trap. (b) Residual trapping of
CO2 migrating in a horizontal aquifer. (c) Residual trapping of CO2 migrating in a
sloping aquifer. In all cases CO2 plume is dark gray, residual CO2 light gray, and
dissolved CO2 shaded.

be adopted to obtain reliable predictions of the long-term evolution of CO2 plumes

and the duration of the active storage period.

1.3.1 Process models for CO2 trapping

To understand the two primary trapping processes we consider the three limiting cases

shown in figure 1.4. In § 2 we assume that the injected CO2 has ponded in an anticline.

In this scenario, no residual saturation forms and the volume of the plume decreases

only by dissolution into the underlying brine (figure 1.4a). If the mass transfer of the

dissolved CO2 is diffusive, then the dissolved CO2 will increase proportional to t1/2. In

this case, the active storage period is very long (>100,000 yrs), and significant leakage

may occur even if the leakage rate is small. However, the unstable density gradient

in the brine may allow for convective mass transport of dissolved CO2. Assuming the

aquifer is large enough, the dissolved CO2 increases linearly. Rapid dissolution short-

ens the active storage period, and the cumulative leakage will be reduced significantly.

A criterion that determines the dominant mode of mass transport is therefore very

important. In § 2.2 we analyze the linear stability of the diffusive boundary layer,

forming below the interface separating supercritical CO2 from the underlying brine,

and determine the onset of convection as a function of average reservoir parameters.

In § 2.3 we present preliminary results on two-dimensional dissolution rates in the

fully non-linear regime using direct numerical simulations.
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In § 3 we consider the spreading of CO2 in horizontal and inclined aquifers (fig-

ure 1.4b-c). In both cases, the continued migration of the CO2 plume leads to sig-

nificant residual trapping. We have used a vertical-equilibrium sharp-interface model

to study the migration of CO2 plumes in the post-injection period. In § 3.3 we use

similarity solutions to the governing equations to study the effect of vertical confine-

ment on the migration of CO2 plumes. We show that accounting for the confinement

is important to obtain correct scaling laws for the CO2 plume. In § 3.4 we study

the migration of a CO2 plume in a sloping confined aquifer. We show that the CO2

migration can be approximated by a hyperbolic conservation law, if the aquifer is con-

fined. This has allowed us to model residual trapping semi-analytically, and we have

obtained estimates for the duration of the active storage period and the maximum mi-

gration distance. Comparison of our results for the sloping case with the self-similar

solutions for horizontal aquifers shows that residual trapping is much more efficient

in sloping aquifers.

1.3.2 Multiscale simulation of CO2 storage

In § 3 we show that the CO2 plume migrates like a traveling wave for tens and up

to a few hundred kilometers. Accurate description of the interface separating the

gravity current from the brine is necessary for reliable predictions of the transport

behavior of CO2 plumes, and this poses significant challenges for numerical models

of the large-scale flow systems of interest.

Gravity currents form a narrow tongue that requires resolution at the sub-meter

scale. In addition, we show in § 2 that the convective instability in high-permeability

aquifers may require numerical resolution on the decimeter scale. The length scales

associated with the physical processes during CO2 storage may therefore span as

much as six orders of magnitude in a sloping high-permeability aquifer. The fraction

of the simulation domain that requires these high resolutions is generally small and

may be associated with several features, such as multiple supercritical CO2 plumes

and interfaces between brine and potable ground water.

However, adaptive methods for multiphase flow and transport in heterogeneous
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porous media are not well developed. This is partly because of upscaling and down-

scaling problems when the mesh size is changed. Recently, multiscale methods that

work on a single coarse grid and incorporate finescale effects through numerical ba-

sis functions have been developed. Multiscale methods offer adaptivity through the

selective updating of basis functions. In § 4 we discuss the multiscale finite volume

(MSFV) method introduced by Jenny et al. (2003). The MSFV method is currently

the only multiscale method for porous media transport that has been extended to in-

clude wells (Lee et al., 2008), compressibility (Lunati & Jenny, 2006; Zhou & Tchelepi,

2008), and gravity (Lunati & Jenny, 2008). However, the original MSFV method is

only robust for uniform grids, which prevents the application to saline aquifers that

typically have very large aspect ratios. In chapter 4 we analyze the monotonicity of

the original MSFV method, and we develop a new Compact Multiscale Finite Volume

(CMSFV) discretization that is robust for large aspect ratios. Once these different

results have been combined into a single multiscale simulator, the MSFV method

should be able to simulate CO2 storage in saline aquifers at dramatically reduced

computational cost.



Chapter 2

Dissolution Trapping &

Convection in the Brine

2.1 Introduction

Dissolution of the supercritical CO2 into the brine is an important primary trapping

process that reduces the volume of the CO2 plume, and it therefore determines the

duration of the active storage period (figure 1.3). Lindeberg & Wessel-Berg (1997)

pointed out that the density of the brine increases with increasing CO2 saturation,

and Yang & Gu (2006) verified this for a CO2–brine system at reservoir conditions.

Dissolved CO2 is considered trapped, because the CO2-rich brine migrates downward

and leakage is not likely. The associated reduction in the total volume of the system

also allows the pressure in the aquifer to relax.

At an interface where both the supercritical CO2 and the brine are at rest the

dissolution of CO2 will be slow. In this case, the dissolution rate of the CO2 across

the interface is controlled by molecular diffusion of dissolved CO2 in the brine, and

we expect the dissolution rate of CO2 to decay as t−1/2. Much more rapid dissolution

of CO2 occurs across an interface where the supercritical CO2 continues to contact

fresh brine, due to advection in either phase. Both the buoyancy driven migration

of the supercritical CO2 as well as convective motion in the brine can lead to rapid

dissolution.

16
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Once the CO2 plume has ponded in an anticline, only convective motion in the

underlying brine can increase the dissolution rate of the CO2 (figure 1.4a). We

assume that the supercritical CO2 is separated from the brine below by a horizontal

interface. Across this horizontal interface, CO2 dissolves into the brine to form a

diffusive boundary layer that grows with time (Lindeberg & Wessel-Berg, 1997). The

CO2-rich brine in this boundary layer is heavier than the underlying fresh brine. Once

the boundary layer has grown to a sufficient thickness, it will become unstable, so

that fingers of dense CO2-rich brine propagate downward. In this case the dissolution

rate is determined by convective mass transport in the brine.

We use both a linear stability analysis and direct numerical simulation to study

the onset of this instability. Linear stability analysis is a standard method used to

determine the stability of a particular base-state. In 2.2.3 we study the stability of

the concentration profile of dissolved CO2 in the brine below the interface. If the

concentration profile is unstable to small perturbations, convective motion in the

brine will develop. The advantage of linear analysis is that it can detect very small

unstable wavelengths, because it is not limited by numerical resolution. However,

the linear analysis is valid only at early times when the perturbations are small. In

§ 2.2.4 we validate the direct numerical simulations against the linear theory, and

we use simulations to investigate the nonlinear evolution of the instability at larger

times. These direct numerical simulations are used in § 2.3 to study the long-term

dissolution rate of CO2 in saline aquifers.

2.2 Onset of convection in the brine

2.2.1 Model problem

Numerical simulations of the full two-phase problem by Lindeberg & Bergmo (2003)

have shown that the interface between the supercritical CO2 and brine, remains rel-

atively sharp and is not deflected by the density fingering in the underlying brine,

as shown schematically in figure 2.1. Both Lindeberg & Bergmo (2003) and Ennis-

King & Paterson (2003) showed that local equilibrium between the supercritical CO2
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Figure 2.1: Supercritical CO2 accumulates along the impermeable top boundary. It
slowly dissolves into the underlying brine, forming a heavier boundary layer. The
resulting gravitational instability leads to the convective transport of CO2 saturated
brine plumes.

and the brine can be assumed across the interface. We assume, therefore, that the

supercritical CO2 layer acts as a horizontal upper boundary, with a constant CO2

concentration. These authors propose that the gravitational instability can be stud-

ied in the context of a finite domain, bounded at the top by a constant concentration

boundary, using the Boussinesq approximation. This problem is analogous to ther-

mal convection in a porous medium with insulated boundaries, that is rapidly heated

from below, or cooled from the top, and initially at a fixed temperature. Elder (1967)

showed that the diffusive layer at the boundary becomes unstable only after an ini-

tial period of decaying perturbations. After this critical time, plumes or fingers of

hot fluid rise into the porous medium. This onset time for convection is an impor-

tant timescale that determines the efficiency of dissolution trapping in saline aquifer

storage.
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2.2.2 Previous work

The stability of a concentration base profile to small perturbations depends on the

nature of the base-state. For steady base-states, linear stability theory leads to an

algebraic eigenvalue problem (Drazin & Reid, 1981; Nield & Bejan, 1999). The dif-

fusive boundary layer, however, is a time dependent base-state, and linear stability

theory leads to a non-autonomous linear system of ordinary differential equations. A

common approach to such stability problems is the use of frozen time coefficients, the

so-called quasi-steady-state approximation (QSSA). This assumption reduces the sys-

tem of differential equations to a standard algebraic eigenvalue problem (Lick, 1964;

Robinson, 1976). The QSSA is valid if the growth rate of perturbations is large com-

pared to the growth rate of the diffusive boundary layer. Initially, when the boundary

layer grows rapidly, the QSSA is not justified, but it becomes valid for large times

when the base-state changes relatively slowly (Tan & Homsy, 1987; Riaz & Meiburg,

2003a,b). Gresho & Sani (1971) have shown that the QSSA is not valid for the onset

of the instability of a thermal boundary layer in a viscous, incompressible fluid.

In order to avoid using the QSSA for small times, several authors have solved

the initial value problem (IVP) numerically for a large number of random initial

conditions. However, the solution of the initial value problem is sensitive to the

particular initial conditions and is therefore not unique (Foster, 1965). Foster (1965,

1968), Gresho & Sani (1971) and Jhavery & Homsy (1982) solved the IVP for a

thermal boundary layer in a viscous, incompressible fluid. Caltagirone (1980) and

Kaviany (1984) investigated the IVP for a thermal boundary layer in a porous medium

due to a step change in temperature. Ennis-King & Paterson (2003) extended the

analysis of Caltagirone (1980) to anisotropic porous media, and they applied it to

CO2 storage. All of these investigations give a wide range of critical times, depending

on the particular method of measurement of the growth rate.

The stability of time dependent base-states can be investigated by energy methods

(Homsy, 1973; Caltagirone, 1980). Energy methods give a lower bound for the onset

of the instability, but give no information about the growth rate and wavenumber of

the most dangerous disturbance.
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For unbounded domains Pritchard (2004) and Ben et al. (2002) argue that a fun-

damental limitation on the accuracy of the solution at short times is the assumption

of decoupled normal modes in the streamwise direction. Since the disturbances are

confined within a narrow diffusive zone, the global Fourier eigenfunctions of the diffu-

sion operator do not provide an optimal basis for streamwise perturbations (Pego &

Weinstein, 1994). Ben et al. (2002) note that the Hermite polynomial based discrete

eigenspectrum of the self-similar diffusion operator is the natural basis for streamwise

perturbations in an unbounded domain. This eigenspectrum is the solution of the

stability problem for the zero wavenumber. The first mode is neutral, it has zero

growth rate, while the rest of the modes decay with time. Therefore, the first mode

becomes dominant after a relatively short time. For small wavenumbers, the per-

turbation dynamics can then be projected onto this dominant mode to increase the

growth rate from zero to positive values.

A similar approach is adopted here for the stability analysis in the semi-infinite

domain. We use the self-similar transform of the diffusion operator in the inhomoge-

neous direction with localized eigenfunctions. The zero wavenumber solution shows

that the first mode of the self-similar diffusion operator decays with time, while the

rest of the spectrum decays more rapidly. We use this dominant first mode to capture

the perturbation dynamics for larger wavenumbers, which shift the growth rate from

negative to positive values at later times. We show that in contrast to the longwave

instability in an unbounded domain, a critical time, critical wavenumber, and a long

wavelength cutoff characterize the stability problem in the semi-infinite domain.

It is important to note that the dominant mode solution becomes inaccurate for

large times and large wavenumbers. For these cases, we use the QSSA in self-similar

coordinates, and we show by comparion with solutions to the IVP that the QSSA

gives good results. Compared to the poor accuracy in the original coordinates, the

success of both QSSA and IVP in self-similar coordinates is due to the localized basis

functions in the streamwise direction.

In order to analyze the long-term evolution of the unstable modes predicted by

the linear stability theory, we carry out high-accuracy direct numerical simulations

(DNS) using a vorticity based formulation (Tan & Homsy, 1988). Voss & Sousa
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(1987) have also carried out numerical simulations of density-driven flows. We use

the methodology developed by Ruith & Meiburg (2000) using Fourier-Galerkin de-

composition in the lateral direction and compact finite differences in the streamwise

direction to solve for the velocity field. A 4th order Runga-Kutta method is used

for time integration. The nonlinear simulations are validated by comparison to the

linear stability analysis. Excellent agreement is observed at early times for growth

rates associated with individual wavenumbers. The long time behavior, however, is

characterized by complex nonlinear interactions that require DNS.

2.2.3 Linear stability analysis

Governing equations

The equations describing the Boussinesq-flow in a horizontal porous layer, where

gravity points in the positive z direction, are:

u = −K

µ
(∇P − ρgẑ) , (2.1)

φ
∂C

∂t
= −u · ∇C + φD∇2C , (2.2)

∇ · u = 0 , (2.3)

ρ = ρ0 + ∆ρC . (2.4)

The normalized concentration C of the heavier fluid, u = (u,w) is the Darcy velocity.

K is the permeability, D is the diffusion coefficient, φ is the porosity, and µ is the

viscosity. The unit vector in the direction of the gravitational acceleration is ẑ.

Density ρ is specified as a linear function of concentration, and ρ0 is the density of

the lighter fluid. The initial conditions are u(x, z, t = 0) = 0 and C(x, z, t = 0) = 0,

and the boundary conditions are given by
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w(x, z = 0, t) = 0 , w(x, z = H, t) = 0 ,

C(x, z = 0, t) = 1 ,
∂C

∂z

∣∣∣∣
x,z=H,t

= 0 .

We define the following characteristic scales:

U =
K∆ρg

µ
, (2.5)

ρ∗ = ρ1 − ρ0 = ∆ρ , (2.6)

P ∗ =
µUH

K
= ∆ρgH , (2.7)

t∗ =
φH

U
=

φµH

K∆ρg
. (2.8)

where H is the domain thickness and U is the buoyancy velocity. The corresponding

dimensionless equations are

∇ · u = 0 , (2.9)

u = − (∇P ′ − Cẑ) , (2.10)

∂C

∂t
= −u · ∇C +

1

Ra
∇2C . (2.11)

A modified pressure P ′ = ∇(P − ρ0gẑ/∆ρgH) appears in the above equations. The

Rayleigh number, Ra, is the only dimensionless parameter in the problem, which is

defined as

Ra =
UH

φD
=

K∆ρgH

φDµ
. (2.12)

The boundary conditions are given by

w(x, z = 0, t) = 0 w(x, z = 1, t) = 0 ,

C(x, z = 0, t) = 1
∂C

∂z

∣∣∣∣
x,z=1,t

= 0 .
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We eliminate pressure by taking the curl of (2.10) and substitute the transverse

velocity from the continuity equation. The streamwise velocity, w, and concentration

are decomposed into the base-state and perturbation components

(w, c)(x, z, t) = (wo, Co)(z) + (ŵ, ĉ)(z, t)eikx . (2.13)

The base velocity, wo, is zero, and the base concentration, Co, is assumed constant

in the x-direction and given by the solution of (2.11), with u = 0. The perturbation

variables are decomposed into eigenfunctions, which depend on time and the stream-

wise coordinate, and normal modes in the transverse x-direction with wavenumber k.

The linearized perturbation equations can then be expressed as(
∂2

∂z2
− k2

)
ŵ = −k2ĉ , (2.14)

∂ĉ

∂t
− 1

Ra

(
∂2

∂z2
− k2

)
ĉ = −∂Co

∂z
ŵ , (2.15)

with boundary conditions

ĉ(z = 0, t) = ŵ(z = 0, t) = 0 , (2.16)

∂ĉ

∂z

∣∣∣∣
z=1,t

= ŵ(z = 1, t) = 0 . (2.17)

Equation 2.11 admits a streamwise 1-D, base-state solution, Co, which is

Co(t, z) = 1 − 4

π

∞∑
n=1

1

2n − 1
sin ((n − 1/2)πz) e−(n−1/2)2π2t/Ra .

The length δ(t) over which C0 is significantly different from zero is the so-called

“penetration depth” of the diffusive boundary layer. For δ ∝ √
4t/Ra � 1, the

domain can be considered semi-infinite in the positive z-direction, and the base-state

is given by

Co(z, t) = 1 − erf

(
z

√
Ra

4t

)
on z ∈ (0,∞) (2.18)
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with the boundary conditions

Co(z = 0, t) = 1 , (2.19)

Co(z → ∞, t) → 0 . (2.20)

The problem has now been redefined as the stability of a diffusive boundary layer

in a semi-infinite domain. The parameter range over which the results are valid,

for the original layer geometry in a finite domain, is given by δ ∝ √
4t/Ra � 1.

Note that the semi-infinite domain does not impose any external length scale on the

problem. An internal length scale in the problem is the time dependent penetration

depth δ(t). A Rayleigh number based on δ(t) is itself time dependent, such that a

critical Rayleigh number, Rac = Ra(δ(tc)), is merely a function of the critical time,

tc, at which the boundary layer becomes unstable. On the other hand, the Rayleigh

number can also be scaled out of the equations by specifying the length scale as a

ratio of diffusion to buoyancy velocity, H = D/U . In this case, the critical time, tc,

is the only criterion for the onset of instability. For our analysis, we choose to work

with the latter. However, we retain the Rayleigh number, with an arbitrary length

scale H, for convenience in comparing the linear stability analysis with the nonlinear

results discussed in § 2.2.4. In the discussion of the dimensional results (§ 2.2.5), we

show that the imposed length scale cancels out, so that the choice of length scale is

arbitrary.

The perturbation equations (2.14-2.17) can be solved in a straight forward manner

using the quasi-steady-state approximation (QSSA). Earlier investigations have shown

that the QSSA gives accurate results for relatively long times. A fundamental problem

with such an approach is that the concentration eigenfunctions are localized in the

boundary layer, while the eigenfunctions of the operator ∂2/∂z2, z ∈ (0,∞) have

global support. Hence, they do not provide an appropriate basis for streamwise

perturbations (Chang et al., 1998). Therefore, a finite time is required, in the initial-

value-problem (IVP), before the global eigenfunctions can accurately represent the

localized structure of the streamwise perturbations. Since the critical time of this

problem can relatively short, the QSSA in the original coordinate system may not
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able to resolve the early time behavior appropriately.

Localized eigenmodes of the diffusion operator

In a semi-infinite domain, we transform the perturbation equations such that the

eigenfunctions associated with the streamwise diffusion operator are localized around

the base-concentration front. The objective is to achieve considerable improvement in

accuracy at small times, even with the QSSA. Following a coordinate transformation

to the similarity variable of the base-state, ξ = z
√

Ra/4t, the base-state and the

perturbation equations can be expressed as

Co(ξ) = 1 − erf(ξ) , (2.21)(
Ra

4t

∂2

∂ξ2
− k2

)
ŵ = −k2ĉ , (2.22)

∂ĉ

∂t
− 1

t

(
1

4

∂2

∂ξ2
+

ξ

2

∂

∂ξ
− k2t

Ra

)
ĉ =

√
Ra

πt
e−ξ2

ŵ , (2.23)

with boundary conditions

ĉ(ξ = 0, t) = ŵ(ξ = 0, t) = 0 , (2.24)

ĉ(ξ = ∞, t) = ŵ(ξ = ∞, t) = 0 . (2.25)

Note that the self-similarity applies only to the base concentration. The amplitude

and the spatial structure of perturbations are time dependent. The streamwise oper-

ator of the concentration perturbation in the transformed coordinate, ξ, is

L =
1

4

∂2

∂ξ2
+

ξ

2

∂

∂ξ
, ξ ∈ (0,∞) . (2.26)

We expand the perturbation concentration as

ĉ(ξ, t) =
∞∑

n=1

An(t)φn(ξ) , (2.27)
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Figure 2.2: Disturbance concentration profile for Ra = 500 and k = 0 at different
times, obtained from, (a) the IVP in the ξ-t coordinate system with (2.21-2.23) and
(b) the IVP in the z-t coordinate system with (2.14-2.18). Random initial conditions
are used for both cases. Plot (a) shows that the concentration profile resolves into
the correct solution within a very short time, starting from any given set of white
noise initial conditions. For the z-t coordinate system on the other hand, plot (b),
convergence is much slower and is strongly dependent on initial conditions.

with

Lφn = λnφn(ξ) = λne−ξ2Hn(ξ) ; n = 1, 2, 3, ..... (2.28)

The eigenfunctions φn of L are the Hermite polynomials Hn(ξ) in a semi-infinite

domain with weight function e−ξ2
(Robinson, 1976). The associated eigenvalues are

λn = −n for n = 1, 2... , and the dominant mode of the perturbation concentration is

φ1 = ξ e−ξ2
. These eigenfunctions, which are localized around the base-state, provide

an optimal basis for streamwise perturbations in the semi-infinite domain (Pego &

Weinstein, 1994). We note from (2.22) and (2.23) that for k = 0 and using (2.27) the

perturbation amplitude can be expressed as

dAn

dt
= λnAn . (2.29)

All modes decay as t−n for k = 0, so that the flow is stable in the longwave limit.

The perturbation eigenfunction related to the largest eigenvalue, φ1 = ξ e−ξ2
, decays
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as 1/t.

We solve the initial-value problem given by (2.21-2.23) to show that the preferred

mode of the streamwise perturbations for k = 0 is φ1. Figure 2.2(a) shows that the

concentration eigenfunction resolves into the dominant mode of L, given by ξ e−ξ2
, in

a very short time (t = O(1/Ra)) for any given set of white-noise initial conditions.

We show in § 2.2.3 that the time required for convergence to the first eigenfunction is

several orders of magnitude smaller than the critical time for the onset of instability.

Therefore, the IVP in ξ-t coordinates can yield accurate results for short times.

In order to highlight this phenomenon, figure 2.2(b) plots the perturbation eigen-

function in the z-t coordinates, obtained by solving the IVP, given by (2.14-2.18).

Although the white noise initial conditions converge to ĉ ∼ z e−z2Ra/4t, the time re-

quired for convergence is several orders of magnitude larger than in the self-similar

coordinates, as shown in figure 2.2(a). Hence, the small-time dynamics in the z-t

coordinate system are obscured during the period it takes for the random initial

perturbations to resolve into the dominant mode. This explains why earlier investi-

gations using the IVP in the z-t coordinate system did not produce accurate results.

For the ξ-t coordinate system, on the other hand, the localized eigenfunctions of L
converge rapidly to the exact solution, thereby giving an accurate growth rate of the

disturbance at small times.

Dominant mode solution

Robinson (1976) used a one-term approximation to the solutions in his QSSA analysis

in z-t coordinates, and he found that the error is small when compared to expansions

using many terms. In the ξ-t coordinates such a one-term approximation is expected

to be even better, because we use an eigenfunctions expansion. We use the leading

order approximation for ĉ from (2.27), substitute it into the IVP, given by (2.23), and

integrate across the domain to obtain

dA1

dt
= −A1

t
− A1k

2

Ra
+

√
Ra

πt
〈e−ξ2

ŵ〉 , (2.30)



CHAPTER 2. DISSOLUTION TRAPPING & CONVECTION IN THE BRINE 28

where

〈e−ξ2

ŵ〉 =

∫ ∞

0

e−ξ2

ŵ dξ∫ ∞

0

ξ e−ξ2

dξ

. (2.31)

Again using only the leading order estimate of ĉ to solve for ŵ, we obtain(
∂2

∂ξ2
− 4tk2

Ra

)
ŵ = −4tk2

Ra
A1 ξ e−ξ2

. (2.32)

This can be solved analytically for ŵ to obtain

ŵ = −A1k

√
t

Ra

{
e2k

√
t/Ra

(∫ ξ

0

ξ e−2kx
√

t/Ra−x2

dx − B1

)

−e−2k
√

t/Ra

(∫ ξ

0

ξ e2kx
√

t/Ra−x2

dx − B2

)}
, (2.33)

where

∫ ξ

0

ξ e−2kx
√

t/Ra−x2

dx = −1

2
e−2kξ

√
t/Ra− ξ2 − k

2

√
πt

Ra
ek2

erf

(
ξ + k

√
t

Ra

)
, (2.34)

and

∫ ξ

0

ξ e2kx
√

t/Ra−x2

dx = −1

2
e2kξ

√
t/Ra− ξ2

+
k

2

√
πt

Ra
ek2

erf

(
ξ − k

√
t

Ra

)
. (2.35)

The constants B1 and B2 are obtained by satisfying the boundary conditions ŵ = 0

at ξ = 0,∞. Using this value of ŵ(ξ, t), we can then solve the integral in (2.31)

numerically to obtain the amplitude equation for the dominant mode

dA1

d t
= σ(t; k) A1 , (2.36)

with growth rate σ. Equation 2.36 shows that the perturbations grow exponentially.
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Figure 2.3: (a) Growth rate vs. wavenumber curves for Ra = 500 computed by
the dominant mode method and the IVP. The flow is stable for small times. The
growth rate increases with time to become positive at the critical time tc and the
critical wavenumber kc . Flow instability increases with time beyond tc with both
shortwave and longwave cutoffs. Comparison with the IVP shows exact agreement for
small times and small wavenumbers. (b) Comparison of the dominant mode method
and the QSSA with the initial value problem for two perturbation wavenumbers at
Ra = 500. The dominant mode solution gives exact results for small times but
becomes inaccurate for later times particularly for large wavenumbers. The QSSA on
the other hand is reasonably accurate for all times.

The growth rate σ(t; k) is obtained without the QSSA and is expected to yield accu-

rate results.

It is interesting to compare the above development for the semi-infinite case with

that of the infinite case analyzed by Ben et al. (2002). The eigenfunctions of the

self-similar operator in the latter case are the full range of Hermite polynomials, The

associated eigenvalues are λn = −n/2. for n = 0, 1, 2... resulting in a neutral mode for

the zeroth eigenvalue. In a semi-infinite domain, on the other hand, the self-similar

operator has eigenfunctions based upon only those Hermite polynomials which satisfy

the boundary condition ĉ(ξ = 0, t) = 0. The associated eigenvalues are −1,−2, ... ;

therefore, a neutral mode is not present.

The presence of a zero eigenvalue in the unbounded case implies a longwave insta-

bility (σ = 0) for k = 0, such that the flow is always unstable for small wavenumbers.

For the semi-infinite domain, on the other hand, the dominant mode decays as t−1,
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hence σ = −1/t for k = 0, so that the flow is always stable for small wavenumbers. A

longwave cutoff therefore exists along with a critical time at which the flow becomes

unstable.

The existence of a critical time as a function of the Rayleigh number has been

noted previously (Ennis-King & Paterson, 2003; Ennis-King et al., 2005). However,

its exact value as well as the fundamental mechanism have not been given explicitly.

Consider the growth rate, given by

σ(t; k) = −1

t
− k2

Ra
+

k√
π

F (t; k) , (2.37)

where F (t; k) is computed numerically from (2.31). Since F (t; k) > 0 the stabilizing

effects come from the first two negative terms on the left hand side. The first term,

−1/t, which is due to the nonzero eigenvalue of the dominant mode of L, insures that

σ < 0 for very small times. In physical terms, the flow can become unstable only

when the perturbations grow at a rate faster than the decay rate of the first mode of

L.

It is important to note that selecting only the first mode to capture the pertur-

bation dynamics cannot be accurate for the entire range of length and time scales

of interest, in view of the absence of a neutral mode of L. We show in § 2.2.3 that

the dominant mode solution gives exact results in comparison with the IVP only for

small values of k
√

t/Ra. Therefore, we use the QSSA for (2.21-2.25), to solve for

the growth rates for larger values of k
√

t/Ra. We also show that when the QSSA is

used with the governing equations in the self-similar coordinates, accurate results are

obtained.

Results

The growth rate vs. wavenumber curves given by both the dominant mode method

and the numerical solution of the IVP are shown in figure 2.3(a) for different times.

High accuracy numerical simulations of the IVP were carried out for each wavenumber

k on a fine computational grid, by using standard methods for 1-D problems. The
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Figure 2.4: (a) Critical time vs. Ra. (b) Critical wavenumber vs. Ra, given by
the dominant mode solution. The critical time varies as the 1/Ra, while the critical
wavenumber scales linearly with Ra.

evolution of the maximum value of either the concentration or the velocity eigen-

function forms the basis of the growth rate plotted at a particular time for each

wavenumber. Completely stable behavior is indicated by σ < 0 for all wavenumbers

at early time. A critical time, tc, is also shown when the growth rate just becomes

positive at a critical wavenumber kc. At larger times, the stability curve displays a

maximum growth rate at a corresponding most dangerous wavenumber, and a long-

wave and a shortwave cutoff. Comparison of the dominant mode solution with the

IVP results shows exact agreement for all wavenumbers at small times when k
√

t/Ra

is small. For longer times, the growth rate begins to deviate from the IVP result at

larger wavenumbers. However, the critical time and the longwave cutoff are computed

exactly by the dominant mode solution.

Since the dominant mode solution does not give accurate results for large values of

k
√

t/Ra, we use the QSSA in self-similar coordinates to compute the growth rates.

Figure 2.3(b) compares the growth rate as a function of time obtained from the

IVP with the results computed from the dominant mode method and the QSSA, for

two wavenumbers. The dominant mode method again gives exact results for small

times, but deviates from the IVP solution for large times, particularly for the larger

wavenumber. The QSSA, on the other hand, gives reasonably accurate results for
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Figure 2.5: (a) Maximum growth rate σmax as a function of time, and (b) The most
dangerous wavenumber kmax as a function of time, for different Rayleigh numbers.
All the results are obtained using the QSSA.

all times. This clearly shows that the QSSA in the self-similar coordinates can be

employed to obtain reliable results even for short times.

Figures 2.4(a) and (b) respectively show the critical time and the critical wavenum-

ber as a function of the Rayleigh number computed by the dominant mode method.

The critical time varies as Ra−1, while the critical wavenumber scales linearly with

Ra. Similar scalings have been obtained by Caltagirone (1980), but our analysis elim-

inates the effect of the initial condition. We obtain tc ≈ 146/Ra and kc ≈ 0.07 Ra for

the critical time and wavenumber. These relationships apply only when
√

4t/Ra � 1.

The maximum growth rate as a function of time and the corresponding most dan-

gerous mode for various Ra, computed by the QSSA, are shown in figures 2.5(a) and

(b) respectively. The maximum growth rate, σmax, increases rapidly at early time

beyond tc, reaches a maximum value and decays approximately as t1/4 at late times.

The most dangerous wavenumber kmax also displays approximately t1/4 scaling.

The evolution of the longwave, kl, and the shortwave, ks, cutoff is plotted in

figure 2.6. The former decays approximately as t1/5, while the latter decays much

faster as approximately t4/5 at long times.
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Figure 2.6: (a) The longwave cutoff wavenumber kL as a function of time for different
Rayleigh numbers, computed by the dominant mode method. kL behaves similarly
for all Ra and varies approximately linearly with time. (b) The shortwave cutoff kS

computed by the QSSA.

2.2.4 Direct numerical simulation

Numerical method and validation of the numerical solution

Nonlinear fingering dynamics govern the long term flow behavior. We solve the non-

linear problem with a high accuracy, vorticity based method proposed by Ruith &

Meiburg (2000). This method has been employed successfully to obtain highly accu-

rate results for various miscible flow problems in porous media. (Camhi et al., 2000;

Riaz & Meiburg, 2003b, 2004b). High resolution finite-difference simulations have

been reported recently by Otero et al. (2004), for high Rayleigh number convection

in a porous layer of finite depth. They compare the numerical results with analytical

heat flow estimates. We compare our numerical simulations with the results from the

linear stability analysis.

The governing equations used for direct numerical simulations are (2.10) and

(2.11). We use a vorticity formulation for (2.10) to eliminate pressure. By taking

the curl of (2.10) we obtain,

ω = −∂C

∂x
= −∇2ψ , (2.38)
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where ω is the vorticity and ψ is the streamfunction which is related to velocity as

w =
∂ψ

∂x
, (2.39)

u = −∂ψ

∂z
. (2.40)

We assume the vorticity and streamfunction to be periodic in the transverse x-

direction, and for concentration we impose symmetry conditions. The boundary

conditions are therefore given by

C(z = 0, x, t) = 1 ,
∂C

∂z
(z = 1, x, t) = 0 , (2.41)

∂C

∂x
(z, x = 0, t) = 0 ,

∂C

∂x
(z, x = A, t) = 0 , (2.42)

w(z = 0, x, t) = 0 , w(z = 1, x, t) = 0 , (2.43)

u(z, x = 0, t) = 0 , u(z, x = A, t) = 0 . (2.44)

The aspect ratio A = L/H, where L is the lateral extent of the computational domain

and H is the layer thickness (figure 2.1). The streamfunction ψ = 0 on all boundaries

while ω = 0 at x = 0 and x = A. Boundary conditions for vorticity at z = 0, 1 are

obtained from (2.38).

We solve the Poisson equation (2.38) by expanding ω and ψ in Fourier modes in

the x-direction. We then solve the resulting ODE for the decoupled z-direction eigen-

functions with 6th order compact finite differences (for details see Riaz & Meiburg,

2003b). The velocities are then computed from (2.39) and (2.40), where the deriva-

tives of ψ are evaluated with 6th order compact finite differences. Time integration

of (2.11) is carried out using a standard 4th order Runga-Kutta method, where all

the spatial derivatives are again evaluated with 6th order compact finite differences.

The resulting numerical scheme resolves all relevant length and time scales accurately.

The initial condition for the concentration is given by (2.18) with a starting time of

t = 0.2. The initial condition for velocity is w = u = 0.
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Figure 2.7: Comparison of the growth rates obtained from nonlinear direct numerical
simulation and the linear initial value problem, for two different initial perturbations
with wavenumber, k.

The explicit nature of time integration imposes a strict limit on the time steps.

Although stable time steps are given by the CFL condition, we use even smaller time

steps, on the order of 10−5, to insure accuracy. Spatial resolution of the computational

grid ranges from 512×512 grid points for small Rayleigh number cases to 2048×2048

grid points for larger Rayleigh number cases. These fine spatial and temporal reso-

lutions produce converged results. Appropriate grid spacing for different parameter

combinations is obtained by consideration of the cutoff mode provided by the linear

stability analysis. The grid spacing is chosen such that it is smaller than the cutoff

wavelength. Additionally, the divergence of the velocity field is checked throughout

to ensure exact mass conservation for a given grid spacing.

Validation of the numerical simulations was performed by comparing the growth

rates with those obtained from the linear stability analysis. The numerical simulations

are perturbed with pure sinusoidal modes in the transverse direction, superimposed

on the initial concentration profile. The growth rate is measured using the norm of

vorticity, defined as
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ω(t) =

∫ 1

0

∫ A

0

ω(z, x, t) dx dz . (2.45)

The growth rate for the numerical simulations is then defined as

σDNS =
1

∆t
ln

(
ω(t)

ω(t − ∆t)

)
. (2.46)

Figure 2.7 shows that the growth rates for the two cases as a function of time for

two wavenumbers, although not exactly equal, are in good agreement. The reason

for this small discrepancy may be related to the 2-D nature of perturbations in the

numerical simulations, which show a slightly higher rate of growth than those in the

1-D initial value problem.

The flow structure for Ra = 4000

We begin our discussion of the nonlinear dynamics by analyzing the concentration

contours for Ra = 4000. An aspect ratio, A = 1 will be used throughout unless

noted otherwise. In order to observe the nonlinear behavior, we perturb the initial

concentration with white noise. The initial disturbances are localized within the

diffusive zone to avoid unphysical conditions of C > 1 or C < 0. The wavelength

selection mechanism is largely independent of the amplitude and the particular values

of the random initial perturbations.

Figure 2.8 presents the concentration contours at different times. This simulation

was carried out with 1024× 1024 grid points. At an early time of t = 1, figure 2.8(a)

shows a multitude of competing fingers. The number of fingers is about 24, which

is close to 22, predicted by the linear stability analysis. In § 2.2.4 we will precisely

quantify the dominant wavenumber for nonlinear simulations and compare them with

the linear stability results.

Figure 2.8(b) shows the concentration contours at a later time of t = 1.8. The

number of fingers is much smaller than that at t = 1. This increase in the finger

wavelength is primarily due to vigorous nonlinear interactions such as merging and

shielding. Fingering instability in this case is reminiscent of viscous and gravitational

instability of displacement type flows in porous media (Zimmerman & Homsy, 1992;
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Figure 2.8: Concentration contours at different times for Ra = 4000. (a) t = 1, (b)
t = 1.8, (c) t = 2.3 and (d) t = 3.8 A large number of fingers consistent with the linear
stability analysis develop initially. Nonlinear interactions rapidly reduce the number
of fingers and give rise to large scale structures at later times. The fingers at later
times are connected to the top boundary at discrete locations. These connections act
as feeding sites of the high density fluid to the convecting fingers below.
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Figure 2.9: Vorticity contours in the background with overlapping streamlines for
Ra = 4000, t = 2.3. Corresponding concentration contours are shown in figure 2.8(c).
The vorticity field has a dipole structure that drives the high density fluid through
the fingers. The stream lines show how the fluid travels laterally and then descends
through the isolated feeding sites for the fingers. The direction of fluid circulation is
shown by the arrows.

Tchelepi & Orr , 1994; Manickam & Homsy, 1995). The driving force for instability,

i.e. the density gradient, is weakened progressively as the fingers move away from

the top boundary. In addition to the diffusive spreading, nonlinear finger interactions

tend to further smooth out the concentration gradients of a large number of competing

fingers. At a later time of t = 2.3 shown in figure 2.8(c), some of the smaller fingers

disappear due to diffusive smearing, while others merge to form large-scale structures

that develop relatively independently. This trend continues for later times, as shown

in figure 2.8(d) for t = 3.8. It is interesting to note that even at late times, large-

scale fingers are connected to the diffusive boundary layer at discrete narrow locations,

which serve as feeding sites of high density fluid.

Fingering dynamics are revealed by analysis of the vorticity profile that generates

the rotational flow responsible for driving the fingers. Figure 2.9 plots the vorticity

field contours for Ra = 4000 at t = 2.3. The corresponding concentration field

is shown in Fig, 2.8(c). Superimposed on the vorticity field in figure 2.9 are the

streamlines showing the negative (dashed lines) and positive (solid lines) circulation

paths. The vorticity field displays a dipole structure of negative (light) and positive

(dark) vorticity pairs. Very high vorticity pairs are concentrated at the root of the

fingers, which act as feeding sites for the finger portions away from the top boundary.

The corresponding streamlines show how the fluid is drawn from the sides to flow
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laterally along the top boundary layer and down through the high-vorticity regions

at the finger roots. Although the highest vorticity magnitude occurs at the finger

roots, the tips of the fingers also display a moderate accumulation of vorticity.

Dominant wavenumber of nonlinear flows

As noted above in § 2.2.4, the early time wavelength developed by the nonlinear

simulations is in close agreement with that predicted by the linear stability analysis.

In order to compare the time evolution of the preferred mode of the nonlinear flow,

we define a dominant mode as

n̂ =

∫ K

0

kE(k) dk∫ K

0

E(k)dk

, (2.47)

where n̂ is the dominant wavenumber, k is the Fourier mode and E(k) is the energy

spectrum associated with the Fourier transform of the vorticity field. We compute

E(k) as

√
E(k; t) =

∫ x

0

(∫ 1

0

ω(z, x, t)dz

)
e−ikx dx . (2.48)

The dominant mode n̂ is an integral measure of the transverse perturbation spec-

trum. We have observed the spectrum to be highly localized around the high energy

modes. The magnitude of n̂ is a reasonable approximation of the high energy modes

in the spectrum. We have also observed that the energy spectrum is only weakly

dependent on the random disturbances introduced as initial conditions. Figure 2.10

shows the evolution of n̂ for various Rayleigh numbers. The most dangerous mode

kmax from the linear stability analysis is also shown for comparison. We observe a

good agreement of n̂ with kmax for short times. The onset of the nonlinear regime leads

to the deviation of the dominant mode away from the most dangerous mode. This

deviation from kmax is stronger and occurs earlier for higher values of Ra, indicating

a stronger influence of nonlinearity for larger Rayleigh numbers.
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Figure 2.10: The dominant mode of the nonlinear simulations as a function of time for
different values of the Rayleigh number. Also shown are the most dangerous modes
given by the linear stability analysis. Good agreement is observed between the two
for early times. At later times the onset of nonlinear behavior leads to a significant
deviation from linear results.

Influence of the Rayleigh number

Figure 2.10 shows that the nonlinear behavior is strongly dependent on the Rayleigh

number. In order to estimate the influence of Ra on the flow dynamics, we com-

pare the relatively early-time behavior at two Rayleigh numbers. Figure 2.11 plots

the concentration contours for Ra = 1000 at t = 2.2 and Ra = 8000 at t = 1.6.

These simulations employ 512 × 512 and 2048 × 2048 grid points, respectively. The

concentration front moves much faster for the latter case. The Ra = 1000 case de-

velops a few large fingers and also shows a substantial amount of diffusive smearing

in other regions of the concentration front. The large-scale fingers appear to move

independently, without interacting with neighboring fingers. The Ra = 8000 case,

on the other hand, develops a vigorous instability that results in complex fingering

structures. Compared to the Ra = 4000 case shown in figure 2.8(b) at t = 0.18, the

Ra = 8000 case already shows well developed discrete feeding sites. Note that new

feeding sites develop as the old ones are abandoned. In other regions, multiple fingers
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Figure 2.11: Concentration contours for (a) Ra = 1000, t = 2.2 and (b) Ra = 8000,
t = 1.6. The larger Rayleigh number case is marked by intense nonlinear interaction
between competing fingers. The small Ra case shows larger fingers with a strong
diffusive spreading.

can attach to a single feeding site, nonlinear interactions then select finger one over

the others as the preferential flow path.

The complexity of the fingering structures suggest that the long term fate of the

nonlinear competition cannot be predicted from the concentration profiles at earlier

times, especially for large Rayleigh numbers. In order to analyze the fingering dynam-

ics at long times, we plot the concentration profiles in figure 2.12 for various Rayleigh

numbers at times when the concentration front reaches the bottom boundary. We

designate this time as tb. The small Rayleigh case, Ra = 1000 at time tb = 8.9,

shows that two large fingers survive to reach the bottom boundary. Comparison with

figure 2.11(a) shows that the fingering configuration is completely different from that

at an earlier time of t = 2.2. The Ra = 2000 case at tb = 7 displays slightly narrower

fingers, with one isolated finger in the middle making it to the bottom boundary,

while two other fingers, attached to a single feeding site, are still in competition. For

larger Rayleigh number cases, Ra = 4000, tb = 8 and Ra = 8000, tb = 8.5, more

fingers reach the bottom boundary. Many of these fingers can be observed to undergo

strong interactions while others are in the process of fading out. Figures 2.12(c) and
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Figure 2.12: Concentration contours at time tb, when the concentration front reaches
the bottom. (a) Ra = 1000, tb = 8.9. (b) Ra = 2000, tb = 7. (c) Ra = 4000, tb = 8.0.
(d) Ra = 8000, tb = 8.5. The late time dynamics is governed by large scale fingers.
Large Rayleigh number cases continue to display vigorous fingering interactions.
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Figure 2.13: The position of the most advanced portion of the front as a function
of time for different values of the Rayleigh number. The tip moves faster for larger
Rayleigh numbers for early times. Fingering interactions significantly influence the
rate of front propagation at later times, particularly for large Ra cases.

2.12(d) clearly show the fading of the fingers is due to shifts in the feeding sites as well

as due to lateral pinch-off, where one diagonally moving finger cuts the fluid supply

of a neighboring finger. An interesting consequence of these fingering interactions is

an increase in tb for larger values of the Rayleigh number, as compared to the small

Ra cases. Note that tb = 8.9 for Ra = 1000, it decreases to 7 for Ra = 2000 but then

again increases to 8 for Ra = 4000 and then to 8.5 for Ra = 8000.

The position of the most advanced section of the concentration front, the tip

position, as a function of time is shown in figure 2.13 for various Rayleigh numbers.

For the small Ra = 500 case, the front initially propagates as t1/2 and then switches to

a linear growth for larger times. Higher Rayleigh number cases display the diffusive

t1/2 behavior for relatively shorter times. The Ra = 2000 case displays a faster

than linear growth of the tip position at later times. The tip travels quickly for the

Ra = 8000 case, but for a very small initial time. It is clear that by t = 5 the tip is

moving faster for the Ra = 2000 case as compared the Ra = 8000 case. Consequently

the time for a finger to reach the bottom boundary is shorter for the Ra = 2000 case.
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As shown by the concentration contours in figure 2.12 this behavior is due to more

intense finger interaction at higher Rayleigh number cases, such that the interacting

fingers do not allow any one finger to clearly breakaway ahead of the front. For the

smaller Ra cases, on the other hand, isolated fingers travel faster due to the absence

of interference from neighboring fingers.

2.2.5 Discussion

We analyze the stability of a diffusive boundary layer in a semi-infinite domain. This

analysis is applicable when the penetration depth of the diffusive boundary layer, δ,

is small relative to the domain thickness, H. The penetration depth at the onset

of instability is given in dimensional form as δc ≈ 24µD/(K∆ρg). We must have

δc � H for the assumption of the semi-infinite domain to be valid. The dimensional

critical time, which is then independent of the length scale, is given by

tc = 146
φµ2D

(K∆ρg)2
. (2.49)

Similarly, we define the dimensional critical wavelength λc as

λc =
2πµD

0.07K∆ρg
. (2.50)

To validate both the linear analysis and the numerical simulations, the predictions

of tc and λc should be compared with experimental observations. Unfortunately

Elder (1968) only states the Rayleigh number of his experiments and does not give

all the data necessary to calculate tc and λc. Green & Foster (1975) have reported

experiments of a salt solution diffusing into the top of a Hele Shaw cell. The Rayleigh

number in their experiment is Ra = KρgH/(µD) = 90500. They do not report the

onset time, but they give the wavelength of the first observed fingers as λ = 1.8 mm

and note that this may be an over estimate. For the same parameters, our linear

stability analysis predicts a critical time of tc = 4 s and a critical wavelength of

λc = 0.6 mm. The critical wavelength predicted by linear theory is generally smaller

than the wavelength first observed, because the fingers are initially not visible in
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Figure 2.14: (a) Variation with permeability of the critical time, tc, the critical wave-
length, λc and the penetration depth at the critical time, δc, for ∆ρ = 5 kg/m3,
φ = 0.3, µ = 0.5 cP and D = 10−9 m2/s. For this range of permeability variation
tc varies between 2000 yrs and 10 days while λc goes from about 100 m to less than
a meter. The penetration depth δc gives information regarding the applicability of
our analysis with respect to the layer thickness H, such that δc � H. (b) The ad-
vance of the fastest finger tip is shown until the bottom of the simulation domain
is reached. A diffusive, t0.5, behavior is observed at early times, while the fingers
advance proportional to t at later times.

the experiments. By the time they become observable, they have already coarsened.

Given this experimental limitation on the detection of the critical parameters, high

resolution numerical studies as reported above are valuable because the growth of

perturbations can be detected before they become visible.

The critical time and the critical wavelength can vary by orders of magnitude

depending on the properties of the geological formation. While viscosity, diffusion and

density difference have more or less similar values for typical aquifers, permeability

can vary over a large range of values, and therefore introduces the largest variations

in tc and λc. Figure 2.14(a) shows that δc decreases from 55 m to about 0.07 m when

the permeability increases from 1 mD to 3 D. Hence our results for the semi-infinite

domain will apply to high permeability layers with a thickness of few tens of meters,

but for low permeability formations the thickness has to be several hundred meters

for our results to be applicable. The critical wavelength decreases from λc ≈ 200 m

to λc ≈ 0.3 m and the critical time for the onset of the instability decreases from
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tc ≈ 2000 yrs to tc < 10 days as the permeability decreases from 3 D to 1 mD.

The critical wavelength, λc, is an indication of the length scales that have to be re-

solved by numerical simulations to capture the convective transport and the resulting

solution trapping. In high-permeability aquifers the initial unstable perturbations

are much smaller than the size of grid blocks typically used in field-scale reservoir

simulations. A numerical study of the high permeability Sleipner injection site by

Lindeberg & Bergmo (2003) shows that a grid block size of 3 × 4 cm is necessary to

capture the initial fingering with a standard reservoir simulator. For field scale simu-

lation the grid size has to be increased to 100 × 100 m. Lindeberg & Bergmo (2003)

show that simulations using such coarse grids delay the time of onset to 100 yrs, so

that the onset of convection is delayed by 2 orders of magnitude, compared to the

fine grid. Such increases in the onset time may, or may not, be acceptable depending

on the time scale of storage. More importantly, the failure to resolve the unstable

length scales at small times, may lead to significant errors in the nonlinear regime,

even if the dominant length scales at long times are coarse enough to be resolved on

the chosen coarse grid. Diersch & Kolditz (2002) have investigated the convergence

of the Elder problem. They show that even at late times, when most of the structures

are large enough to be resolved on a coarse grid, the solution is sensitive to the grid

size.

Following the onset of instability, the strength of convective mixing can be de-

termined qualitatively from the speed of the most advanced finger tip, shown in

figure 2.14(b) for several values of the permeability. All other properties are held

fixed at the same values as in figure 2.14(a). For all permeability values, the position

of the finger tips is initially proportional to t1/2. Eventually, however, they acceler-

ate and the penetration is approximately proportional to t. Note that the late time

rate of advance is similar for all values of permeability. Larger permeability values

simply lead to an earlier switch from t1/2 to the linear regime. In high permeability

formations, solution trapping is therefore strongly enhanced by convection, and it

may be the dominant mechanism reducing the mass of the CO2 plume. To assess the

safety and effectiveness of CO2 storage in high-permeability formations, it is therefore

necessary to simulate this convective process accurately.
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Heterogeneity is important for the miscible, viscous fingering instability (Tchelepi

& Orr , 1994; Riaz & Meiburg, 2004b; Prassad & Simmons, 2003). Some attempts

have been made to model the effect of heterogeneity on the mechanism of this in-

stability (Gounot & Caltagirone, 1989), but this remains one of the directions of

future research. The fine stratigraphic layering of sedimentary rocks causes strong

anisotropy of the permeability. In general, the vertical permeability may be several

orders of magnitude smaller than that in the horizontal direction. Ennis-King & Pa-

terson (2003) have shown that anisotropy has an equally strong effect on the critical

time and wavelength as the magnitude of the permeability. The analysis developed

here can easily be extended to include the effects of anisotropy.

Our analysis does not include the full dispersion tensor, which accounts for the

influence of velocity induced dispersion (Yortsos & Zeybek, 1988; Tchelepi et al.,

1993). Recent work by Riaz & Meiburg (2004a) suggests that for homogeneous porous

media, velocity induced dispersion is generally equivalent to a slight increase in the

level of molecular diffusion.

2.2.6 Conclusions

Accurate numerical simulation of density fingering over long times at the field scale

is one of the main challenges in predicting the movement of CO2 underground. Our

theoretical and numerical results are valuable for understanding density driven con-

vection during CO2 storage in saline aquifers. Our analysis is directly applicable to

the thermal instability problem and resolves the issue of the critical time and the

critical wavenumber. We also highlight the physical mechanisms of instability that

give rise to both the long wavenumber cutoff and the critical time for the onset, in a

semi-infinite domain.

The disturbances only become experimentally observable a finite period after the

critical time, and it is therefore difficult to measure the critical time with reasonable

accuracy. For typical aquifers with moderate permeability, the onset time can be as

large as hundreds of years. The prediction of the critical wavelength is crucial in

choosing the grid resolution in the numerical simulation. Although the large scale
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fingers at later times can be resolved with fewer grid blocks, the errors introduced by

ignoring the small-scale dynamics at early times, may have a significant influence on

the late time behavior.

The simplifications necessary to treat the problem theoretically may introduce

significant errors when such results are applied to real aquifers. The important as-

sumptions are the homogeneity and isotropy of the porous medium, as well as the

assumption of single-phase flow and the absence of velocity induced dispersion. The

assumption of single-phase flow will break down if capillary forces are significant.

Additionally, physical mechanisms related to dissolution, precipitation and geochem-

ical reactions, which are not accounted for in our analysis, can be expected to play

a role. Some of these processes may be incorporated in the linear stability analysis,

while others can only be investigated with high-resolution nonlinear simulation. The

results for the basic gravitational fingering instability presented here, form the basis

to investigate the effect and importance of these additional processes.

2.3 Convective dissolution rates

Once the onset time for convection in an aquifer has been determined, the evolution

of the convective dissolution rate determines the time scale necessary to dissolve the

injected CO2. To obtain estimates of the convective dissolution rate, we use direct

numerical simulations to study the long-term behavior of the convective mass trans-

port in open and closed systems. In a closed system, the background concentration of

dissolved CO2 in the domain increases and convection decays as the domain is satu-

rated. In an open system, the domain is infinite so that the background concentration

of dissolved CO2 remains effectively zero, and convection continues as long as CO2

is supplied. Regional saline aquifers are often very large and are likely to behave as

open systems, so that dissolution may be a very effective trapping process.

All simulations reported below are solutions to the two-dimensional model prob-

lem introduced in § 2.2.1. All results are non-dimensionalized using the characteristic
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Figure 2.15: Evolution of the concentration in an open aquifer for Ra = 4000.

scales (2.5) to (2.8), and the concentration of CO2 in the brine, C = c/ceq, is normal-

ized by the equilibrium concentration at the CO2-brine interface, ceq. The concentra-

tion is given by c = xcρc , where xc is the mass-fraction of CO2 in the brine and ρc is

the density of the dissolved CO2. As before, the governing parameter is the Rayleigh

number, Ra = k∆ρgl/φµD, where l is a suitable length scale specified below.

2.3.1 Convection in open systems

We consider an open aquifer of width, L, and infinite depth. In this case the appro-

priate length scale, l, is the width of the domain, L. For the numerical simulations

we choose H 
 L, and we report results only for the time during which the plumes
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of dissolved CO2 have not reached the bottom of the domain. Figure 2.15 shows the

evolution of gravity driven fingers, or plumes, of dense CO2-rich brine in a typical

simulation. The nonlinear interactions of the fingers have already been described in

§ 2.2.4-2.2.4, and here we focus on the evolution of the dissolution rate, dC/dτ . We

define the dissolution rate as the rate of change of the total dissolved CO2 in the

domain, given by
dC

dτ
≡ d

dτ

∫ L

0

∫ H

0

Cdx dz. (2.51)

Figure 2.16(a) shows the evolution of dC/dτ , for a typical simulation at Ra = 4000.

This evolution can be divided into three stages. For τ < 1 the diffusive boundary

layer is stable and the dissolution rate decays as, dC/dτ ∝ τ−1/2. After the onset of

convection the dissolution rate fluctuates, and the peaks correspond to the growth of

large fingers. After an initial transient, 1 < τ < 10, the dissolution rate fluctuates

around a constant value of dC/dτ ≈ 0.017. We refer to this average value as the

open-system dissolution rate, 〈dC/dτ〉. Figure 2.16(b) shows that 〈dC/dτ〉 is nearly

independent of Ra, because Ra can be scaled out of the problem in a domain of

infinite depth, see also the discussion in § 2.2.3.

This open-system dissolution rate allows simple estimates of the time necessary
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to dissolve a given mass of CO2 injected into a saline aquifer based on its average

petrophysical properties. The mass dissolution rate of CO2 per unit width in the

open convection regime is given by

dmc

dt
≈

〈
dC

dτ

〉
k∆ρgceq

φµ
, (2.52)

where mc is the total mass of dissolved CO2. The onset time, τo, of the convective

mass transport is given by the first minimum in the evolution of the dissolution rate

(figure 2.16a, see also figure 2.18a). For the range of Ra investigated (see figure 2.18b),

it is given by

to = 6215
φµ11/5D6/5

(k∆ρg)11/5H1/5
, (2.53)

as computed from DNS. This onset time, to, decreases with Ra and it is larger than

the theoretically predicted critical time, given by (2.49), obtained from linear theory

in § 2.2.3.

2.3.2 Convection in closed systems

If the aquifer is of finite thickness, the suitable length scale, l, is the aquifer thickness,

H. Figure 2.17 shows how the nature of the concentration field changes after the

fingers have started to interact with the bottom boundary. After the fingers reach

the bottom the convection cells coarsen rapidly until the size of a convective cell is

approximately H. Figure 2.18(a) shows the evolution of the CO2 dissolution rate

for various values of Ra. The early phase of the evolution is similar to the semi-

infinite aquifer. An initial phase of diffusive mass transport is followed by open-

system convective mass transport after the onset time. However, after the fingers

have reached the bottom of the aquifer, the dissolution rate decays very rapidly. We

refer to this late stage as closed-system convective mass transfer, to distinguish it

from the earlier vigorous regime. The time when the plumes start to interact with

the bottom boundary, τi, is independent of Ra (figure 2.18a). The dimensional form

is given by

ti ≈ 15
φµH

k∆ρg
. (2.54)



CHAPTER 2. DISSOLUTION TRAPPING & CONVECTION IN THE BRINE 52

z

0 1 2 3 4
1

0

z

z

z

0.2

0.4

0.6

0.8

1.0

0.0

0 1 2 3 4
1

0

0 1 2 3 4
1

0

0 1 2 3 4
1

0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

x

C

C

C

C

(a) ¿ = 7.4

(b) ¿ = 22.1

(c) ¿ = 36.7

(d) ¿ = 124.7

Figure 2.17: Evolution of the concentration in a closed aquifer, for Ra = 1000. (a)
Plumes of dissolved have not reached the base of the aquifer. Convection similar to
an open aquifer. (b-d) Convection in a closed aquifer.



CHAPTER 2. DISSOLUTION TRAPPING & CONVECTION IN THE BRINE 53

10-1 100 101 102 
10-4 

10-3 

10-2 

10-1 

τ

dC
dτ

102 103 104 

10-2 

10-1 

100

101 

102 

Ra

τ
c

τ
0

DNS:

τ
i

τ

τ
c
    (theory)

τ
0

τ
i (a) (b)

Figure 2.18: (a) Evolution of the dissolution rate, dC/dτ , for various Ra in a closed
aquifer. (b) Variation of the time scales discussed in the text as a function of Ra.

At t ≈ 15ti the aquifer is saturated to 95%, and convective motion is negligible. If

this stage is reached in a CO2 storage project, the size of the chosen aquifer is too

small to dissolve all the injected CO2 into the formation brine. In general, we expect

the storage aquifer to be large enough to dissolve several times the volume of the

injected CO2.

2.3.3 Convective time scales

Using linear theory and high accuracy numerical simulation, we identify three con-

vective time scales:

1. The critical time, tc ∝ k−2, is the time after which small perturbations grow, it

gives an analytic lower bound for the onset of convection.

2. The onset time to ∝ k−2.2, marks the transition from diffusive to convective

mass transfer, and corresponds to the appearance of the first fingers in the

concentration profile. For large Ra, we expect to to approach tc from above.

3. The interaction time, ti ∝ H/k, marks the transition to a regime of decaying

convection, and corresponds to the first fingers interacting with the bottom of

the domain.
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The first two time scales are independent of the thickness of the aquifer, because

they are determined by the growth of the boundary layer, which we assume to be

much smaller than H. The interaction time, ti, is of course directly proportional to

H. These time scales identify three dynamic regimes of mass transport in the brine,

shown in figure 2.18(b). These three regimes may be characterized as:

1. In the diffusive regime (t < to) the concentration of dissolved CO2 in the aquifer

increases proportional to t1/2, and the dissolution rate of CO2 decreases rapidly

as t1/2. In the absence of the gravitational instability this would be the only

regime.

2. In the open-system regime (to < t < ti) the dynamics are independent of the

domain size. In this regime the total concentration increases linearly with t,

and the open-system dissolution rate is given by 〈dC/dτ〉 ≈ 0.017. This is the

most effective regime of mass transfer (gray triangle in figure 2.18b), and is

characterized by rapidly growing fingers with strong nonlinear interactions.

3. The closed-system regime (t > ti), where the finite size of the aquifer influences

the dynamics of convection. This regime is characterized by large, slow convec-

tive cells. The dissolution rate decays rapidly and dissolved CO2 approaches its

equilibrium concentration throughout the aquifer.

Consider an aquifer with the following properties: H = 200 m, µ = 5 · 10−4 Pa s,

∆ρ = 5 kg/m3, and D = 10−9 m2s−1. We illustrate the effect of permeability variation

by considering a high-permeability aquifer with, porosity φ = 0.3 and permeability

k = 3400 mD, and a low-permeability aquifer, with φ = 0.1 and k = 10 mD. In

the high-permeability aquifer, the critical time is 4 days, the onset of convection

enhanced dissolution is after 20 days, the plumes reach the base of the aquifer after

approximately 80 yrs, and the aquifer would be saturated after approximately 1200

yrs. In the low-permeability aquifer, the critical time is 450 yrs, the onset of convective

dissolution is not until 680 yrs, the plumes reach the base of the aquifer after 9510 yrs,

and the aquifer would be saturated after 150000 yrs. This simple example illustrates

that the time scales of dissolution trapping are strongly dependent on the permeability
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of the aquifer. In general, the dissolution of CO2 into the brine will be greatly

enhanced by density driven convection in large high-permeability aquifers, because

the onset time is short, the dissolution rate in the open-system regime is high, and

the transition to finite-acting convection is late.

2.3.4 Further work

The results on the dissolution rate presented above are preliminary; in the future we

plan to extend this work to three-dimensions and to heterogeneous domains. These

results would allow simple order-of-magnitude estimates of the time necessary to

dissolve a given mass of CO2 injected, through a given interfacial area. Unless the

supercritical CO2 has ponded in a structural trap, the area of the interface changes as

the supercritical CO2 migrates due to buoyancy. In this case, it would be instructive

to combine the dissolution rates obtained from high accuracy simulations with the

simple models of gravity currents discussed in § 3.



Chapter 3

Residual Trapping &

CO2 Gravity Currents

3.1 Introduction

The formation of residual saturations is the second primary trapping process that

reduces the volume of mobile CO2, and therefore determines the duration of the active

storage period (figure 1.3). When the saturation of the non-wetting CO2 decreases,

a process referred to as imbibition, an interplay of viscous and capillary forces at

the pore-scale leads to the formation of disconnected essentially-immobile bubbles

of residual CO2 (3.1a). Imbibition takes place in the wake of the migrating CO2

plume, and residual trapping continues as long as the CO2 migrates. To understand

residual trapping it is therefore essential to understand the buoyancy driven migration

of the CO2 plume. In the two aquifers shown in figure 1.4(b) and (c) the CO2

plume migrates as a gravity current and residual trapping is likely to be an important

trapping process. In § 3.1.1 we give a brief introduction to the pore-scale phenomenon,

and we introduce a nomenclature suitable for the simple model we adopt. A discussion

of the current research on the formation of residual saturations is beyond the scope

of this thesis. Instead we adopt the simplest trapping model, and we focus on the

interplay between sweep and residual trapping, which has so far not received much

attention in CO2 storage.

56
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After the end of injection the advective forces are small compared to gravitational

and capillary forces, and we study the migration of the CO2 using a simplified model

assuming gravity-capillary equilibrium in the vertical direction and a sharp interface

between the CO2 plume and the ambient brine. Vertical-equilibrium sharp-interface

models are commonly used in hydrology, petroleum engineering, and applied math-

ematics, because they allow analytic and semi-analytic solutions that give insight

into the underlying dynamics. CO2 storage in saline aquifers raises new questions

that have not been addressed by the literature on vertical-equilibrium sharp-interface

models, reviewed in § 3.1.2. We focus on the effects of confinement, residual trap-

ping and slope on the migration of CO2 plumes in saline aquifers. In § 3.2 we derive

the vertical-equilibrium sharp-interface equations for a confined sloping aquifer with

constant residual saturations.

In § 3.3 we study the effect of confinement on the spreading of the CO2 plume,

in absence of residual trapping. We use the scaling laws, associated with similarity

solutions for confined and unconfined aquifers, to detect the influence of confinement

in more general numerical solutions. Using this novel approach, we are able to show

that confinement has a strong effect on the migration of the CO2 plume, due to the

less mobile ambient brine. In other words the mobility ratio between the CO2 and

the brine is an important parameter governing the migration of the CO2.

In § 3.4 we turn our attention to the relation between the sweep of the gravity

current and residual trapping. We extend the work on horizontal confined aquifers,

presented in § 3.3, to include residual trapping, and show that the solutions remain

self-similar. This implies that the volume of the current decreases as a power-law

in horizontal aquifers. Using the horizontal aquifer as a base case we show that

residual trapping is much more effective in sloping aquifers. The hyperbolic limit of

the equations allows us to study analytically how far the CO2 migrates up-dip and

how long it remains mobile.
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3.1.1 Immiscible displacements and residual saturations

In many sedimentary rocks supercritical CO2 is typically the non-wetting phase rela-

tive to the ambient brine. At the front of the CO2 plume the CO2 saturation increases,

and the brine is drained from the pore space. The capillary entry pressure prevents

the drainage of the brine from the smallest pores, resulting in an incomplete displace-

ment (Lenormand et al., 1983). We refer to the brine left behind the advancing CO2

front as the residual brine, Sbr. Bachu & Bennion (2007) showed that Sbr can range

from 0.2 to 0.68 at storage conditions in saline aquifers. The high end of these values

is surprising and may in part be due to heterogeneity and gravity segregation in the

experiments. They also show that the presence of residual water reduces the apparent

permeability of the CO2 to approximately 1/5 of the single phase permeability. We

refer to this value as the relative permeability of CO2, denoted krc.

If the CO2 plume is migrating laterally as a gravity current the CO2 saturation

decreases at the trailing edge of the plume (figure 3.10), and the ambient brine imbibes

into the pore space previously occupied by CO2. Preferential imbibition of the brine

into the smaller pores and interfacial instabilities leave CO2 behind as disconnected

bubbles and ganglia of CO2 (figure 3.1a), which are effectively immobile (Lenormand

et al., 1983). We refer to this immobile CO2 saturation as the residual CO2 saturation,

Scr, and to the process as residual trapping. Bachu & Bennion (2007) report values

of Scr from 0.1 to 0.35 for saline aquifers in the Alberta basin, indicating that they

will trap CO2 efficiently.

3.1.2 Gravity currents in porous media

While the residual saturation is an upscaled parameter that is determined by viscous

and capillary forces on the pore scale, the vertical sweep is a macroscopic quantity

that can be studied using fluid mechanical models of gravity currents in porous media.

Simple models to describe the fundamental behavior of such flows have been developed

independently in several disciplines, including petroleum engineering (Lake, 1989) and

hydrology (Bear, 1972). They are based on two common assumptions: hydrostatic

distribution of the pressure and complete segregation of the fluids. In this case the
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dimensionality of the problem is reduced, and an equation governing the evolution

of the interface is obtained. We will refer to such models as vertical-equilibrium

sharp-interface models.

Sedimentary rocks are layered, and therefore aquifers may have very large aspect

ratios (length:height 
 1). In this case the pressure distribution is close to hydro-

static throughout the aquifer. A hydrostatic pressure distribution indicates that the

saturation be given by gravity-capillary equilibrium in the vertical direction. In hy-

drology this is also called Dupuit’s approximation, and in petroleum engineering it

is referred to as vertical equilibrium and was first introduced by Dietz (1953). Yort-

sos (1995) presented a rigorous derivation of the vertical-equilibrium sharp interface

model from the full governing equations of incompressible two-phase flow in porous

media.

If the thickness of the released fluid is large compared to the capillary transition

zone, the saturation in each fluid is approximately constant (figure 3.1b). As a first

approximation we replace the transition zone by a sharp interface and assume that

the saturations above and below the interface are constant.

An additional assumption that is commonly made is that the flow is unconfined.

In this case the ambient fluid is assumed to be inviscid, so that the pressure on

the interface is constant. This approximation results in the so-called porous medium

equation, which has received a lot of attention in the applied mathematics community

(Aronson, 1985). Woods (2002) reviewed the large variety of similarity solutions for

gravity currents obtained from porous medium type equations. We show in 3.3.2

that this approximation is also valid if the gravity current is much thinner than the

aquifer.

The groundwater table is often well described by an unconfined vertical-equilibrium

sharp-interface model. This set of approximations gives rise to the Boussinesq’s equa-

tion (Bear, 1972). Henry (1959) used a confined vertical-equilibrium sharp-interface

model the describe a salt-water intrusion into fresh-water aquifers. In petroleum en-

gineering confined vertical-equilibrium sharp-interface models have been used water

or gas injection (Dietz, 1953; Fayers & Muggeridge, 1990). Both disciplines have

used unconfined models to describe the upconing of gas-liquid interfaces near wells
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line log (Koperna & Kuuskraa, 2006), and the simplified step function saturation
profile corresponding to the sharp-interface approximation. (c) The geometry of the
porous layer and the variables used in the derivation are shown.

(Bear, 1972; Lake, 1989). Coats et al. (1971) used a vertical-equilibrium model, which

accounts for presence of a capillary transition zone, to formulate efficient quasi-three-

dimensional reservoir simulators. Parker & Lenhard (1989) introduced a similar model

for the migration of non-aqueous phases along the groundwater table.

Nordbotten et al. (2005), Lyle et al. (2005), Vella & Huppert (2006), and Bickle

et al. (2007) used sharp-interface models to study the development of CO2 plumes

during the injection period in confined and unconfined aquifers. During injection

the CO2 saturations increase, and no residual CO2 forms. After several decades the

injection of CO2 ends, and the CO2 plume migrates as a gravity current for several

hundreds or thousands of years, so that the long term evolution of the CO2 plume

may be modeled as an instantaneous release of finite volume. In the post-injection

period the CO2 saturation decreases in the wake of the gravity current, and residual

trapping reduces the current volume (figure 3.10). Kochina et al. (1983) extended

the sharp-interface model to allow for a constant residual saturation, and studied the

decay of the plume volume after a finite release. We extend their work to confined

sloping aquifers and consider the limiting cases.
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3.2 Governing equations

3.2.1 Derivation

We consider the flow of supercritical CO2 with density, ρc = ρ, and viscosity, µc, and

of brine with density, ρb = ρ + ∆ρ, and viscosity, µb, in a sloping porous layer of

constant thickness, H, with dip angle, θ ≥ 0, and infinite lateral extent (figure 3.1c).

Both fluids are considered incompressible, and we assume that the porous medium

is homogeneous and isotropic with permeability, k, and porosity, φ, and that the

top and bottom boundaries are impermeable. We also assume that gravity–capillary

equilibrium is maintained in any vertical cross section of the current (figure 3.1b), and

we replace the transition zone by sharp-interface and assume that the saturations

above and below the interface are constant. We denote the thickness of the CO2

plume by hc = h so that the depth of the brine is given by hb = H − h. In this case

the pressure in the aquifer is given by

p =

{
pI − gρ(z − hb) + Pc, for z > hb,

pI − g(ρ + ∆ρ)(z − hb), for z ≤ hb,
(3.1)

where pI is the unknown pressure at the interface, Pc is the constant capillary pressure,

and g is the gravitational acceleration. The volume flux per unit width, qp, of phase

p ∈ {c, b} is given by the multiphase extension of Darcy’s law qp = −kλp∂φp/∂x,

where φp = p−gρp(x sin θ+z cos θ) is the potential of phase p, and λp = krp/µp is the

mobility of phase p. The flow rate per unit width of phase p is given by Qp = hpqp.

In the absence of a source term, and with the assumption of incompressibility the

global conservation of volume is given by Qc + Qb = 0. Using this constraint we can

eliminate ∂pI/∂x from the expressions for the flow rates, and we obtain

Qc = −Qb = kg∆ρ
hλc(H − h)λb

hλc + (H − h)λb

(
sin θ − cos θ

∂h

∂x

)
.
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To obtain an equation for the evolution of the interface, we consider the conser-

vation of the CO2 volume Vc over region ∆x and time ∆t as shown in figure 3.1(c).

∆Vc = φ (1 − Sbr) ∆h∆x =
(
Qc|x − Qc|x+∆x

)
∆t + Rc.

The source term, Rc, accounts for the volume of CO2 that is lost as residual saturation

Scr in the wake of the plume. Following Kochina et al. (1983) we assume a constant

residual saturation, Scr, so that

Rc =

{
−∆h∆xScr, for ∂h/∂t < 0,

0, for ∂h/∂t ≥ 0.

Taking limits for small ∆x and ∆t the equation for the evolution of the interface is

given by
∂h

∂t
= κ

∂

∂x

[
h(H − h)

h(M − 1) + H

(
− sin θ +

∂h

∂x
cos θ

)]
, (3.2)

where we have introduced two parameters. The conductivity, κ, of the CO2 is given

by

κ =

{
κ1 = kλc∆ρg

φ(1−Sbr−Scr)
, for ∂h/∂t < 0,

κ0 = kλc∆ρg
φ(1−Sbr)

, for ∂h/∂t > 0,
(3.3)

where κ1 ≥ κ0, and the mobility ratio that is given by M = λc/λb. The mobility ratio

M measures the change in the mobilities across the advancing part of the interface,

because we neglect the effect of the residual CO2 on the mobility of the brine. For

geological CO2 storage the ambient brine is less mobile, M > 1 (Adams & Bachu,

2002), and we restrict the discussion to this range. For Scr = 0 the coefficient 3.3

becomes continuous and equation 3.2 reduces to the form given by Bear (1972).

Note that the parameters are not independent; λc occurs in both. This choice of

parameters allows a simple reduction of (3.2) in the limits max(h) � H or M � 1,

as discussed in § 3.3.2. In these limits the equation loses its dependence on M, but

retains the parameter κ. To allow this reduction κ must be defined in terms of the

mobility of the CO2, and must be independent of the mobility of the ambient brine.
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Figure 3.2: The geometry of the initial condition and the three associated length
scales H, Ld, and Lf . A particular initial condition h0[x] and the corresponding
idealized step function initial condition h∗

0[x] are shown. The arrows indicate that
the fluid has been injected over the entire thickness of the reservoir.

Equation (3.2) is invariant under the substitution

hb = H − hc, M = λb/λc, κ = κM = κλb/λc, θ = −θ. (3.4)

This transformation can be used to obtain a similar expression for the evolution of

the thickness of the ambient brine hb from (3.2).

The thickness of the zone saturated with residual saturation is given by hr[x, t1] =

hmax[x, t1] − h[x, t1], where hmax is the largest thickness the CO2 plume has achieved

at a particular location up to the time of consideration

hmax[x, t1] = max
t≤t1

(h[x, t]), ∀x.

We also refer to hr as the residual surface that identifies the fraction of the aquifer

swept by the CO2 plume. In the absence of residual trapping this surface has no

significance.

Initial and boundary conditions

We consider the evolution of the CO2 plume after injection has stopped (t ≥ t0).

Figure 3.2 illustrates the plume shape at the end of the CO2 injection, which serves

as the initial condition for the post-injection period under consideration here. We

assume that CO2 has been injected along the whole depth of the aquifer, and that
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it has formed a gravity tongue along the upper boundary of the porous layer (Riaz

& Tchelepi, 2006). Near the injection site the CO2 has displaced the water over an

average distance of Ld. The initial saturations in the CO2 plume and in the brine are

Sc = 1 − Sbr and Sc = 0, respectively. This corresponds to a porous medium that is

invaded by the released fluid for the first time, which is appropriate for CO2 storage

in saline aquifers. The lateral extent of the fluid invasion is determined by the viscous

to gravity ratio Rvg = (u/Ld)/(ug/H) = (uµgH)/(k∆ρgLd), where u is the average

horizontal flow velocity, and ug = k∆ρg/µ is a gravitational velocity (for detailed

discussion see Tchelepi, 1994). When Rvg is small, gravitational forces dominate the

flow, and a thin gravity tongue forms at the top of the aquifer. When Rvg is large

the interface advances over the entire thickness of the aquifer. Ld increases with

time during the injection period, and Rvg generally decreases over time. During CO2

storage large quantities of fluid are injected, and the horizontal velocity, u, is high. As

a result Rvg is initially large, and the interface advances over across the full thickness

of the aquifer. Over time Rvg decreases, and a gravity tongue will form, leading to

the initial condition shown in figure 3.2.

The CO2-brine interface transitions from h0 [xi,0] = H to h0 [xo,0] = 0 over a

frontal region of width Lf = xo,0 − xi,0. The volume of CO2 is given by the integral

over the initial distribution

V = 2φ(1 − Sbr)

∫ xo,0

0

H − h0 dx. (3.5)

The length scale Ld is chosen so that an idealized step function initial profile located

at x = Ld has the same CO2 volume as the particular initial condition (V = 2φLdH).

The idealized initial condition is

h∗
0 =

{
H, for |x| ≤ Ld,

0, for |x| > Ld.

This initial configuration imposes three length scales: the layer height H, the average

displacement distance Ld, and the width of the front at the end of injection Lf

(figure 3.2). The two boundary conditions for (3.2) require that h[x, t] → 0 for
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|x| → ∞.

3.2.2 Dimensionless form

We chose the following dimensionless variables

η = h/H, ξ = x/L, σ = κ/κ1 ≤ 1, t/t∗,

In § 3.3 the natural length scale is given by L = Ld because the evolution in a

horizontal aquifer is symmetric. In § 3.4 we consider sloping aquifers and the natural

length scale is L = 2Ld, so that the initial aspect ratio of the current is therefore

given by A0 = L/H. We may choose either diffusive or an advective characteristic

time scale, t∗, given by

ta = L(κ1 sin θ)−1, or td = L2(κ1H cos θ)−1, (3.6)

so that ϑ = t/td and τ = t/ta. Substituting these definitions into equation 3.2 we

obtain two dimensionless equations

σ−1ητ + fξ = Pe−1 (fηξ)ξ , or σ−1ηϑ + Pefξ = (fηξ)ξ , (3.7)

depending on the choice of the characteristic time scale. The flux function is defined

as

f =
η(1 − η)

η(M − 1) + 1
, (3.8)

and the dimensionless discontinuous coefficient is given by

σ =

{
1, ητ < 0, or ηϑ < 0,

1 − ε, ητ > 0, or ηϑ > 0,
(3.9)

depending on the choice of the characteristic time. Equations 3.7a and b have the

same dimensionless governing parameters

M =
krcµb

µckrb

, Pe = A0 tan θ, ε =
Scr

1 − Sbr

.
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The mobility ratio, M ≥ 0, the Peclet-number, Pe ≥ 0, and the residual, 0 ≤ ε < 1.

The advective and diffusive time scales are related by τ = Pe ϑ. Next, we study the

evolution of CO2 plumes with respect to these three parameters.

3.2.3 Discretisation

High accuracy numerical solutions of equation 3.7 were obtained as follows. The spa-

tial domain was divided into N grid cells of width ∆ξ centered at ξi =
(
i − 1

2

)
∆ξ,

where i ∈ [1, N ]. The temporal domain has been divided into T constant time steps

of size, ∆τ , so that the solution is obtained at times τn = n∆τ , for n ∈ [1 T ]. The nu-

merical approximation of the cell average in the i-th cell is given by
∫ ξi+1/2

ξi−1/2
η(ξ, τn)dx =

ηn
i +O(∆ξ2). The right hand side of (3.7) was discretised in divergence form to ensure

discrete conservation (Leveque, 2002), and central differences were used for all spa-

tial derivatives. The time derivative was discretised using the explicit forward Euler

method with a constant time step ∆τ . The update formula is given by

ηn+1
i = ηn

i − ∆τ

∆ξ

(
F n

i+1/2 − F n
i−1/2

)
. (3.10)

The numerical flux function F n
i+1/2 = F [

ηn
i , ηn

i+1

]
is given by

F [
ηn

i , ηn
i+1

]
= −

ηn
i+1/2

(
1 − ηn

i+1/2

)
ηn

i+1/2 (M − 1) + 1

ηn
i+1 − ηn

i

∆ξ
, (3.11)

where ηn
i+1/2 =

(
ηn

i+1 + ηn
i

)
/2. The numerical results were validated against the early

similarity solution derived in § 3.3.1 (see figure 3.6a).

3.3 Regime transition: confined to unconfined

First we study the effect of the mobility ratio, M, on a finite release in a two-

dimensional horizontal and confined aquifer without residual trapping (Pe = ε = 0 or

Scr = Sbr = θ = 0). We choose this simple model problem, illustrated in figure 3.3, to

study how the transition from confined to unconfined flow depends on the mobility
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ratio. The current is initially given by two tilting interfaces and later by a spreading

mound. The tilting interfaces correspond to self-similar solutions of (3.2) for a con-

fined aquifer that predict that the tips of the interface propagate as x ∝ t1/2. At late

time the governing equation simplifies to the porous medium equation for an uncon-

fined aquifer. The spreading mound is a similarity solution to the porous-medium

equation and predicts tip propagation as x ∝ t1/3. We use these scaling laws, which

are predicted by the similarity solutions, to study when this transition occurs and

how the transition from confined to unconfined flow depends on the mobility ratio.

3.3.1 Self-similar solution at early times

For Lf < Ld the fronts are initially separated, and the finite propagation speeds of

the tips of the two interfaces ensure that the fronts will evolve independently until

their inward propagating tips collide (figure 3.3b). As a result, during the early period

each front can be analysed in isolation, and it is convenient to shift it to the origin

(x̂ = x − Ld), so that the initial condition becomes

ĥ0 =

⎧⎪⎪⎨
⎪⎪⎩

H, for x̂ ≤ x̂i,0,

h0 [x̂ + Ld] , for x̂i,0 < x̂ < x̂o,0,

0, for x̂ ≥ x̂o,0.

The new boundary conditions are

ĥ [x̂ → −∞] = H, ĥ [x̂ → ∞] = 0. (3.12)

The early evolution of the interface is independent of the front separation 2Ld, but

the duration of this early period depends on Ld.

Dimensional analysis

We follow the general procedure for dimensional analysis given by Barenblatt (1996).

The problem defined above has three dimensions: length L, height H∗, and time T .

The dimensions of the variables and parameters appearing in (3.2) and the initial
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Figure 3.3: The evolution of buoyant CO2-vapor (gray) released into a horizontal
porous layer saturated by brine (white). The outward propagating tip of the interface
is marked by xo. All figures are exaggerated in the vertical direction, to make the late
solution (d) visible. In many situations of interest the width of the invaded region in
figure (a) is several times larger than the aquifer thickness.
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Figure 3.4: Similarity solution is shown for different values of M. The variable θ is
the non-dimensional thickness of the CO2, it is measured from the top of the aquifer.

condition are

[ĥ] = [H] = H∗, [x̂] = [Lf ] = L, [t] = T, [κ] = L2H∗−1

T−1, [M] = 1.

The dimensions of the parameters κ, H, and t are independent, and the parameters

give the length scale l = (κHt)
1
2 . We obtain the dimensionless parameters

Π =
ĥ

H
, Π1 = ζ =

x̂

(κHt)
1
2

, Π2 = ζf =
Lf

(κHt)
1
2

, Π3 = M. (3.13)

The non-dimensional interface height Π can be written as a dimensionless function,

ψ, of the dimensionless variables Π = ψ [Π1, Π2, Π3] . We seek a similarity solution

for times after the details of the particular initial condition have disappeared. As

time increases Π2 → 0, while Π3 remains finite, and x̂ can always be chosen so that

Π1 is finite. Following the procedure given by Barenblatt (1996) we assume complete

similarity in the parameter Π2, and we seek a solution of the form Π = ψ [Π1, 0, Π3] =
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θ [Π1, Π3]. The expressions for ĥ and x̂ in these variables are

ĥ = Hθ [ζ, M] , x̂ = ζ [M] (κHt)
1
2 . (3.14)

Dimensional analysis shows that the tip propagation is proportional to t1/2 when

this scaling analysis is valid. The inner tip position is given by x̂i = ζi [M] (κHt)1/2,

and the outer tip position by x̂o = ζo [M] (κHt)1/2, where ζi and ζo are dimensionless

quantities that depend only on the mobility ratio M. Substituting relationships (3.14)

into (3.2), we obtain a nonlinear ordinary differential equation for θ:

−ζ

2

dθ

dζ
=

d

dζ

(
θ(1 − θ)

θ(M − 1) + 1

dθ

dζ

)
. (3.15)

The mobility ratio M is the only parameter determining the shape of the similarity

solution at early times. The inner and outer boundaries of integration ζi and ζo are

unknown, and must be determined as part of the solution. The boundary conditions

are:

θ (ζi) = 1,
dθ

dζ

∣∣∣∣
ζi

=
ζiM

2
, θ (ζo) = 0,

dθ

dζ

∣∣∣∣
ζo

= −ζo

2
.

The boundary conditions on θ are the non-dimensional form of (3.12), and the condi-

tions on dθ/dζ come from inserting the conditions on θ into (3.15). Equation (3.15)

and the boundary conditions are invariant under reflection in ζ, so that if θ1(ζ) is

a particular solution θ1(−ζ) is also a solution. The physical interpretation of this

reflection is exchanging the position of the fluids on either side of the initially ver-

tical interface. The evolution of the interface at early times has been reduced to a

nonlinear eigenvalue problem for a second order ordinary differential equation, with

two unknown eigenvalues and four boundary conditions. The two additional bound-

ary conditions allow the unique determination of the eigenvalues as a function of the

mobility ratio M. For unit mobility ratio (3.15) reduces to a simpler equation

−ζ

2

dθ

dζ
=

d

dζ

(
θ(1 − θ)

dθ

dζ

)
(3.16)
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Figure 3.5: The numerical values for the outer (a) and inner (b) tip positions are
shown as a function of M (solid lines). The scaling laws (3.17) and (3.18) are shown
as dashed lines.

that has been obtained by Huppert & Woods (1995). The solution is symmetric with

respect to the origin, and the eigenvalues become ζi = −ζo = 1. Huppert & Woods

(1995) have obtained the solution θ = 1
2
(1 + ζ). We note that ζi = −ζo = −1 and

θ = 1
2
(1 − ζ) is also a solution. In the numerical solutions for the case M �= 1 we

have chosen ζi < 0 and ζo > 0 (see figure 3.4). This choice places the CO2 on the

left side and the brine on the right side of the tilting interface and is consistent with

geometry shown in figure 3.2.

Numerical solution of eigenvalue problem

The nonlinear eigenvalue problem is solved numerically for the shape of the interface

and the tip positions as a function of M. We only need to obtain numerical solutions

for M > 1, the corresponding solutions for M < 1 can be obtained from the transfor-

mation (3.4). A shooting method is used to integrate inward from both boundaries of

the domain. The mismatch of θ and dθ/dζ at the origin was minimized to determine

the eigenvalues for a given value of M. The analytical solution for M = 1 was used as

an initial guess for ζi and ζo, and M was increased incrementally to obtain solutions
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for M > 1. The resulting interface shapes are shown in figure 3.4.

As the mobility ratio increases a gravity tongue develops along one of the horizon-

tal boundaries. In the limit of M → ∞ the interface appears to approach a vertical

line. The CO2 viscosity, µc, is kept constant, because the similarity variable ζ de-

pends on µc through κ. Assuming krc and krb are constant, increasing the mobility,

M = µb/µc · krc/krb, we increase µb, and in the limit µb → ∞ the brine becomes

immobile and the interface remains vertical.

Figure 3.5(a, b) shows the position of the inner and outer tips as a function of

increasing mobility ratio. For large values of M the positions of the tips follow scaling

laws given by

ζi = −e0.2210M−0.4997 ≈ −1.24√
M

, for M > 10, (3.17)

ζo = e0.8645M−0.4163 ≈ 2.37

M0.42
, for M > 200, (3.18)

which are shown as dashed lines in figure 3.5. The outward propagating non-dimensional

tip position for M < 1 is obtained from the following argument

x̂o [Mp < 1] = −x̂i[Mq > 1] = −ζi[Mq] (κqHt)
1
2 = −ζi[M

−1
p ]

(
κpHt

Mp

) 1
2

.

The inward propagating tip xi [Mp < 1] can be obtained by an analogous argument.

The self-similar tip positions for M < 1 are given by ζo [M < 1] = −ζi[M
−1]/

√
M

and ζi [M < 1] = −ζo[M
−1]/

√
M. The position of the outward propagating tip of the

interface at early times is given by

xe
o =

{
Ld + ζo [M] (κHt)

1
2 , M ≥ 1,

Ld − ζi [M
−1]

(
κHt
M

) 1
2 , M < 1,

(3.19)

where the superscript e is used to indicate the scaling for the early similarity solution.
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Figure 3.6: (a) The numerical solution to (3.2) with initial condition (3.22) and
M = 10 is plotted at various times, t, and compared to the self-similar solution
obtained from (3.15) (solid grey line). (b) Numerical solutions to (3.2) with M = 20
and initial condition (3.25) is shown for several values of the parameter a in the initial
condition and compared to the solution of (3.15) with a = 0 (solid grey line).

The position of the inward propagation tip is given by

xi =

{
Ld + ζi [M] (κHt)

1
2 , M ≥ 1,

Ld − ζo [M−1]
(

κHt
M

) 1
2 , M < 1.

(3.20)

The numerical values of ζo and ζi can be obtained from figure 3.5 or from (3.17) and

(3.18) in the appropriate limits.

Range of validity of the early similarity solution

The similarity solutions described above were obtained under the assumption of com-

plete similarity in Π2, which corresponds to a step function initial profile (Lf = 0).

Barenblatt & Zeldovich (1972) have shown that similarity solutions are intermedi-

ate asymptotic solutions for a much larger class of initial conditions. Therefore,

the analysis presented above also applies to initial profiles with a finite front width

(Lf �= 0), for which Π2 �= 0. For this larger class of initial conditions the similarity

solution will be valid after the details of the initial conditions have dissipated, because

Π2 = Lf/ (κHt)1/2 approaches zero for Lf � (κHt)1/2. Hence every particular initial
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condition will be asymptotic to the similarity solution for

t 
 te =
L2

f

κH
. (3.21)

This is illustrated for a particular initial condition in figure 3.6(a). The initial condi-

tion is a ramp defined by

ĥ0 =

⎧⎪⎪⎨
⎪⎪⎩

0, x̂ < −0.5,

x̂ + 0.5, −0.5 ≤ x̂ ≤ 0.5,

1, x̂ > 0.5.

(3.22)

In this case Lf = κ = H = 1, and we have chosen a mobility ratio of M = 10.

The partial differential equation (3.2) was solved numerically (see § 3.2.3), and the

solutions at various times are plotted as dashed lines. The similarity solution obtained

from the eigenvalue problem is shown for comparison. The particular solution is

essentially identical to the similarity solution at t = 10, which is only an order of

magnitude larger than the lower bound te = 1.

For t 
 te the similarity solution is valid until the inward propagating tip reaches

the origin xi (tb) = 0, where tb is the back-propagation time (figure 3.3b). Solving

(3.20) for tb we obtain

tb =

⎧⎨
⎩

L2
d

κHζi[M]2
, M ≥ 1,

L2
dM

κHζo[M−1]2
, M < 1.

(3.23)

Hence the early self-similar solution is valid for te � t � tb. We can also define

a new length scale Lb = 2xo(tb), the width of the current at the back-propagation

time . For small M, Lb provides a suitable initial length scale for the late similarity

solution in § 3.3.2. Lb is given by

Lb =

⎧⎪⎨
⎪⎩

2Ld

(
1 +

ζi[M−1]
ζo[M−1]

√
M

)
, M < 1,

2Ld

(
1 + ζo[M]

ζi[M]

)
, M ≥ 1.

(3.24)

In some situations the CO2 may not fill the entire depth of the domain, so that the
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idealized initial condition is given by

h∗
0 =

{
H − a, for |x| ≤ Ld,

0, for |x| > Ld,
(3.25)

where a < H is the thickness of the brine in the injection zone. Figure 3.6(b) compares

numerical solutions to (3.2) with M = 20 for various values of a, with the solution to

(3.15), which corresponds to a = 0. Solutions for a �= 0 are also self-similar in the

early similarity variable, so that the outward propagating tip propagates as t1/2 for

a �= 0. The position of the tip ζo in self-similar coordinates decreases with increasing

a, but for a/H < 0.2 the difference is less than 10% compared to the values of ζo

given in figure 3.5(a). The evolution of currents that do not occupy the full thickness

of the layer is similar to those investigated here and follows the same early scaling

law. These results indicate clearly that the viscosity of the brine cannot be neglected,

even if the CO2 plume does not occupy the full thickness of the aquifer. A full

investigation of this larger family of similarity solutions for a �= 0 is beyond the scope

of this investigation.

3.3.2 Self-similar solution at late times

Reduction to the porous medium equation

At the back-propagation time tb the interface detaches from one of the horizontal

boundaries, and the thickness, h, of the CO2 decreases monotonically as a function

of time (figure 3.3c, d). At late times h � H, and we expect the solution for a finite

layer to be similar to the solution in a half-space. The equation for the half-space

can be obtained from (3.2) by taking the limit for H → ∞, for finite h and M, or

equivalently taking the limit h → 0 for finite H and M. Consider the limit of the

nonlinear diffusion coefficient in (3.2) for small h, keeping M and H constant,

lim
h→0

h (H − h)

h(M − 1) + H
= h. (3.26)
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In this limit (3.2) reduces to the porous medium equation

∂h

∂x
= κ

∂

∂x

(
h
∂h

∂x

)
, (3.27)

which has been studied intensively, and the similarity solution for a finite release of

fluid into a two-dimensional porous half-space was found by Barenblatt (1952).

We expect that the limit (3.26) becomes a good approximation even if h � H

is finite, and (3.27) becomes a good approximation for (3.2) after some time. The

parameter M can vary over several orders of magnitude, and we need to consider its

effect on the validity of approximation (3.26). Consider the approximation in the

denominator of (3.26) for finite but small values of h

h(M − 1) + H ≈ H.

Large values of M require even smaller values of h to allow this approximation. Since

h is a monotonically decreasing function of time, the half-space approximation will

become valid for all M eventually. In § 3.3.3 we develop an expression for the onset of

half-space behaviour as a function of M. For small M the half-space approximation

becomes valid very quickly. In the limit of small mobility ratios we obtain

lim
M→0

h (H − h)

h(M − 1) + H
= h, (3.28)

and (3.2) reduces to (3.27) at all times and for all values of h and H. As mentioned

in § 3.1.2, the simplification in this limit is responsible for the success of (3.27) in

problems of unconfined flow, where the ambient fluid is a gas (M � 1).

Equation (3.27) depends only on the CO2 mobility, λc, not on the mobility ratio

M. From the global conservation of mass Qc + Qb = 0, we can obtain an expression

for the Darcy velocity qb in the ambient fluid

qb = − hcqc

(H − hc)
. (3.29)

For finite h and qc the flux in the brine qb becomes negligible as H → ∞. In contrast
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to the early evolution, where M is the governing parameter, the problem becomes

independent of the mobility ratio at late times, because the brine is stationary.

Barenblatt’s solution

In either limit the initial condition for the porous medium equation is a particular gas

distribution h̃[x], with finite width Lb, in a half-space otherwise saturated by water.

The volume of current is given by

V =

∫
h̃[x]dx = 2LdH. (3.30)

A similarity solution in the parameters

h =

(
V 2

κt

) 1
3

ϕ[ς] and x = ς(κV t)
1
3 (3.31)

has been found by Barenblatt (1952) and is given by

h[x, t] =

⎧⎪⎨
⎪⎩

1
6

(
V 2

κt

) 1
3

(
ς2
o − x2

(κV t)
2
3

)
, for |x| ≤ xl

o,

0, for |x| > xl
o.

(3.32)

From the definition of the self-similar coordinate, ς, the tip propagation at late times

is proportional to t1/3, and the front position at late time is given by

xl
o = (9κLdHt)

1
3 . (3.33)

The superscript l identifies the tip scaling for the late similarity solution. The late

similarity solution depends on the CO2 volume V = 2φLdH, but it is independent of

the local length scale Lf of the initial front, and the mobility ratio M. In contrast

the early tip scaling (3.19) is independent of the global length scale Ld, but depends

on Lf and M.

The similarity solution obtained for the idealized initial condition is an intermedi-

ate asymptotic solution for a larger range of initial conditions with Lb �= 0, for times
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larger than

t 
 tl = t̃ +
L3

b

2κgLdH
, (3.34)

where t̃ is the time at which (3.26) becomes valid. This lower bound becomes impor-

tant when M � 1, and the porous medium equation becomes valid very quickly. In

this case t̃ = tb and (3.24) is a suitable initial length scale Lb, so that tl becomes

tl =
L2

d

κH

⎛
⎝8

(
1 +

√
Mζi [M

−1]

ζo [M−1]

)3

− M

ζo [M−1]2

⎞
⎠ . (3.35)

3.3.3 Non-self-similar transition

We obtain a description of the front propagation speed at early times from the sim-

ilarity solution describing a tilting interface (§ 3.3.1). At late times the governing

equations simplify to (3.27), and the similarity solution of Barenblatt (1952) gives

the propagation speed at late times. The transition from the early to the late simi-

larity solution will not be self-similar, and must be investigated numerically.

We study this transition as a function of the dimensionless mobility ratio, M. We

consider initial distributions that are symmetric with respect to the origin, so that

we only need to consider the spatial domain [0, a], where a > 0 is chosen larger than

the maximum propagation distance estimated from (3.33). The initial condition in

all simulations is the following step function

η [ξ, ϑ = 0] =

{
1, ξ ≤ 1,

0, ξ > 1.
(3.36)

The problem is symmetric with respect to the origin, so that the boundary condition

at the origin is ∂η(0, ϑ)/∂ξ = 0, and the outer boundary condition is η(a, ϑ) = 0.

Transition time

The two examples in figures 3.7(a) and 3.7(b) show the numerical transition from

the early to the late similarity solution. The initial condition is the early similarity
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Figure 3.7: The transition of the numerical solution (light lines) from the early to
the late similarity solution (both heavy lines) is shown in scaled coordinates. (a) The
numerical solution is shown at ϑ = ϑb + {1, 4, 10, 30, 100}, where ϑb = 0.61; (b) The
numerical solution is shown at ϑ = ϑb + {101, 102, 103, 104, 105}, where ϑb = 7.1.

solution at the non-dimensional back-propagation time ϑb given by

ϑb =

⎧⎨
⎩

1
ζi[M]2

, M ≥ 1,

M
ζo[M−1]2

, M < 1.
(3.37)

In figure 3.7(a) the evolution is shown for M = 1/2. In this case the curvature of

the early and the late similarity solution is of the same sign. The main difference

between them is the slope at the origin, where the early similarity solution has a

finite slope, but the late similarity solution has zero slope. In this case the transition

period is relatively short, and the late similarity solution is a good approximation to

the solution for ϑ > 100. Figure 3.7(b) shows the transition for the case M = 10. In

this case the curvature of the early and the late similarity solution is of opposite sign.

The numerical solution adjusts very slowly and the transition period is very long.
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Transition of the scaling for the tip position

Figure 3.8(a-d) shows the numerical results for the non-dimensional position of the

outward propagating tip ξo of the CO2 as a function of non-dimensional time ϑ. The

figure shows the effect of increasing the mobility ratio M on the tip propagation and

the timing of the transition. The scaling laws for the tip position obtained from the

early and late similarity solutions are also shown. In non-dimensional coordinates

these scaling laws (3.19, 3.33) simplify to

ξe
o =

{
1 + ζo [M] ϑ

1
2 , M ≥ 1,

1 − ζi [M
−1] ϑ

1
2 M− 1

2 , M < 1,
(3.38)

ξl
o = (9ϑ)

1
3 , (3.39)

respectively. The shifted tip position ξo−1 is plotted as a function of time in logarith-

mic axes, so that the early scaling law (3.38) plots as a straight line with slope 1/2.

In these variables the late scaling law (3.39) does not plot as a straight line, but it

approaches a straight line with slope 1/3 for large times, where it becomes valid. The

late scaling law is independent of M, and therefore represented by the same curve in

all four figures, while the straight line corresponding to the early similarity solution

is shifted downward as M increases.

Comparison of the numerical results with the scaling laws from the early and late

similarity solutions leads to the following four observations:

1. The numerical tip position initially follows the early scaling law ξo ∝ ϑ1/2, and

then the scaling law for late times ξo ∝ ϑ1/3.

2. The transition time ϑt increases monotonically with increasing M. Comparison

of figures 3.8(a) and 3.8(b) shows that this increase is very small for M < 10−1.

Figures 3.8(c) and 3.8(d) show a rapid increase of the transition time for M >

10−1.

3. The transition from early to late scaling is short for M ≈ 10−1 (figure 3.8b),

and increases rapidly for M > 10−1 (figure 3.8d).
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Figure 3.8: The numerical results for the non-dimensional tip position ξo are shown
as a function of non-dimensional time ϑ, for different mobility ratios M. In all figures
the numerical solution is given by dots (· · · ), the tip scaling from the early similarity
solution by a dashed line (- - -), and the tip scaling from the late similarity solution
as a full line (—). (a) ϑt = 2.0, ϑb = 0.1; (b) ϑt = 2.5, ϑb = 0.24; (c) ϑt = 29.3,
ϑb = 1; (d) ϑt = 811.3, ϑb = 1; (d) ϑt = 811.3, ϑb = 7.1.
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4. The tip position follows the early scaling law ξo ∝ ϑ1/2 even after the early

similarity solution has become invalid at ϑb (3.37). In figure 3.8(a-c) the early

scaling law continues to be valid almost up to ϑt. This shows that the finite

depth of the layer continues to have a strong effect on the solution, even after

the interface has detached from one of the boundaries.

Although the early and late scaling behaviours are separated by a transition period,

it is useful to define a dimensionless transition time ϑt that falls within this transition

period. This transition time defines a lower bound for the validity of the late similarity

solution. The difference between the early and the late scaling laws is given by

f [ϑ; M] =
(
ξl
o − 1

)− ξe
o, (3.40)

where ξl
o is given by (3.39), and ξe

o by (3.38). We use the substitution ϑ = y6 to

eliminate ϑ1/2 and ϑ1/3 and obtain a cubic in y. Let Mt denote the value of M, where

the early scaling law is tangent to the late scaling law such that f(ϑ; Mt) = 0. For

M ≥ Mt the non-dimensional transition time ϑt can be defined as the intersection

of the early and late time scaling laws (figure 3.8c, d), and is therefore given by

the largest real root of f(ϑ; M ≥ 1) = 0. For M < Mt the two scaling laws do

not intersect, but the transition time can be defined as the point of minimal vertical

distance between the two scaling laws (figures 3.8c and 3.8d) given by the local

minimum of (3.40). Solving for the appropriate root and the minimum we obtain the

following expression for the non-dimensional transition time

ϑt =

⎧⎪⎪⎨
⎪⎪⎩

1
9ζo[M]6

(
1 + 2 cos

[
π
3
− θ

3

])6
, M ≥ 1,

M3

9ζi[M−1]6

(
1 + 2 cos

[
π
3
− θ

3

])6
, Mt ≤ M ≤ 1,

64M3

9ζi[M−1]6
, M ≤ Mt,

(3.41)

where θ is the principle argument of the following complex numbers

θ =

⎧⎪⎨
⎪⎩

Arg
[
−2 + 3ζo [M]2 + iζo [M]

√
12 − 9ζo [M]

]
, M ≥ 1,

Arg

[
−2M

3
2 + 3

√
Mζi

[
1
M

]2 − iζi

[
1
M

]√
3M

(
4M − 3ζi

[
1
M

]2
)]

, Mt ≤ M ≤ 1.
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Due to the change in the definition of the transition time at Mt the graph is not smooth

at this point (figure 3.9). For M < Mt the transition time increases very slowly with

M, while it increases strongly for M ≥ Mt (figure 3.9). Mt can be obtained by finding

the value of M for which the local minimum of (3.40) is zero.

Mt − 3

4
ζi

[
M−1

t

]2
= 0. (3.42)

This equation must be solved numerically, because ζi

[
M−1

t

]
is not known analytically,

and we obtain Mt = 0.1839. For large values of M, ξo(ϑt) 
 1, and (3.40) simplifies

to f ≈ f̂ = ξl
o − ξe

o and gives a scaling law for the transition time ϑt = 0.45M5/2.

For small values of M, (3.20) can be used to simplify (3.41) to obtain a constant

ϑt = 1.96. Equation 3.41 is complicated to evaluate, and we therefore introduce

a simple expression based on the two limits discussed above and a simple fit for

intermediate values.

ϑt ≈

⎧⎪⎪⎨
⎪⎪⎩

0.45M
5
2 , 102 < M,

36.6M
3
2 , Mt ≥ M ≤ 102,

2, M < Mt.

(3.43)

3.3.4 Regime diagram

We summarize our results on the evolution of a finite release of CO2 into a horizontal

aquifer saturated with brine, where the density difference between the immiscible

fluids is the only driving force. Figure 3.9 combines all time scales into a M-ϑ regime

diagram that describes the evolution of a finite CO2 plume. The only parameter in

this problem is the mobility ratio, M = λc/λb, between the CO2 and the brine. The

magnitude of a particular dimensional time scale is given by the characteristic time

td = L2
dκ

−1H−1 formed using the displacement distance Ld, the conductivity of the

CO2 given by κ, and the height of the layer H. The CO2 mobility, λc, appears in

κ, and κ enters the characteristic time td used for the non-dimensionalisation, hence

λc is constant and changes in M are due to changes in λb. For all finite values of M

the evolution can be divided into three dynamic stages: an early self-similar regime,

a transition period, and a late self-similar regime.
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Figure 3.9: Regime diagram for a finite release of fluid into a horizontal porous slab,
showing the non-dimensional time scales obtained in this study, and the shapes of the
gravity current as a function of the mobility ratio M. The shaded region indicates
the transition period between the similarity solutions. The characteristic time to
dimensionalize all results is td = L2

dκ
−1H−1

After the details of the initial condition are lost, the interface shape and dynamics

are asymptotic to an early similarity solution that corresponds to a tilting interface.

The early similarity variable is ζ = x(κHt)−1/2, so that the non-dimensional tip posi-

tion is given by ξo ∝ ϑ1/2. During this period the left and the right interfaces evolve

independently, and the length scale of their separation, 2Ld, does not appear in the

similarity variable. In this phase, both fluids move with non-zero velocities, and there-

fore the mobility ratio M determines the shape of the interface. We have not plotted

the lower bound for the onset of the early similarity solution (3.21), because this time

scale depends on the initial width of the front Lf , which is given by ϑe = (Lf/Ld)
2.

The validity of the early similarity solution ends at the back-propagation time, ϑb,
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because the inward propagating tips of the two initially separated fronts begin to

interact at the origin (figure 3.3b). Figure 3.9 shows that ϑb increases monotonically

with time, and follows simple scaling laws for small and large M. Physically we can

explain the increase of ϑb with increasing M by the increasing viscosity of the brine,

which slows down the inward propagating tip of the tilting interface. The period

during which the early similarity solution is valid increases with increasing M, be-

cause the ϑe �= ϑe[M]. As long as Lf �= 0 there are always values M ≤ Mc such that

ϑe ≥ ϑb, and hence the early similarity solution is not realized. Mc is determined by

the equation Lf/Ld =
√

Mc/ζo[M
−1
c ] for Mc < 1, a similar equation can be found for

Mc > 1. Even in the case Lf = 0 the early similarity solution will not be realized

in the limit M → 0, because ϑb → 0. Figure 3.8 shows that the scaling law for the

non-dimensional tip position ξo ∝ ϑ1/2 is valid for a significant time even after the

early similarity solution itself has become invalid at ϑb.

The initial similarity solution is followed by a period where the solution is not

self-similar and must be obtained numerically (figure 3.7). For M � 1 we can define

the transition period as ϑb < ϑ < ϑl, where ϑl is given by (3.35). The duration of

the transition period increases as M → 0, because the upper boundary is constant

ϑl = 8, while the lower boundary is proportional to ϑb ∝ M1/6. For M > 1 we have

no estimate of the upper boundary of the transition period. The numerical results in

figure 3.8(b-d) show that the transition period increases with increasing M. From the

transition of the scaling laws for the tip position we have defined a transition time ϑt,

that provides a lower bound on the onset of the late similarity solution. Equation 3.41

or (3.43) shows a rapid increase of ϑt with increasing M for M > Mt.

After the transition period the late similarity solution becomes valid, because

the CO2 occupies only a small fraction of the thickness of the aquifer, and (3.2)

reduces to (3.27). Equation 3.27 admits a similarity transformation in the variable

ς = x/(κV t)−1/3, and the analytical solution was obtained by Barenblatt (1952). In

contrast to the early similarity solution, this late similarity solution is independent

of M and depends on the volume of the gravity current, given by V = 2LdH. In

this limit the velocity of the brine is negligible, which explains why the problem

is now independent of the mobility of the brine, and hence the mobility ratio M.
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Figure 3.10: Current evolution in an aquifer with 30 mD permeability, for details of
the physical properties see § 3.5.2. CO2 currents (dark grey) and the zone containing
residual saturation in their wake. Figures a to d show the evolution in a horizontal
aquifer. These figures are equivalent to figure 3.3, but they include the effect of
residual trapping. Figures e to h show the evolution in an equivalent aquifer sloping
with 5◦.

When the late similarity solution is valid, the non-dimensional tip position is given

by ξo ∝ ϑ1/3. Again the scaling for the tip position becomes valid before the solution

is fully self-similar.

3.4 Gravity currents with residual trapping

The regime diagram of gravity currents in horizontal aquifers (figure 3.9) shows clearly

that the confined nature of the aquifer has to be taken into account if gravity currents

with M > 1 are considered. The mobility ratio for the migration of the CO2 plume

is M ≈ 5, so that we have to study the effect of residual trapping on a CO2 plume

migrating in a confined aquifer. In particular the early similarity solution (figure 3.4)

shows that a gravity tongue forms for M > 1, which reduces the vertical sweep of the

CO2 plume. Most research on residual trapping during CO2 storage has focused on

the effect of hysteresis on the magnitude of Scr, and the design of injection strategies
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that maximize residual trapping during or shortly after the injection period (Mo et al.,

2005; Juanes et al., 2006; Ide et al., 2007). We focus on the effect of the vertical sweep

efficiency, S, which is defined as the fraction of the aquifer contacted by the CO2 plume

during its buoyancy-driven migration in the post-injection period. A volume balance

argument shows that the up-dip migration distance, x↑, is approximately given by

x↑ ≈ Vc/ (φHSScr) , (3.44)

where Vc is the volume of CO2, H the thickness of the aquifer, and φ the porosity.

Ennis-King & Paterson (2002) used this relationship to highlight the sensitivity of the

migration distance to the magnitude of Scr. Equation (3.44) shows that the effect of S
on the migration distance of the CO2 plume is comparable to that of Scr. The sweep

is expected to be less than unity, because gravity segregation and viscous instabilities

lead to the formation of a gravity tongue along the top of the aquifer.

3.4.1 Parabolic limit: horizontal aquifers

Here we extend the analysis presented in § 3.4 to include the effect of residual trapping.

In the presence of residual trapping an analogous transition from an early to a late

scaling law is observed. However, we show below that the exponents of the early

scaling laws are independent of the residual, while Bear & Ryzhik (1998) showed that

the exponents of the late scaling laws are a function of the residual. In the terminology

of Barenblatt (1996), the evolution of the current transitions from a similarity solution

first kind to a similarity solution of the second kind.

Early similarity solutions with loss

Initially the two interfaces of the current evolve independently and symmetrically

(figure 3.10a). Until they interact they evolve as tilting interfaces described by a self

similar solution given by a step function initial condition

η =

{
a, ξ < ξ̃,

b, ξ ≥ ξ̃,
(3.45)
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Figure 3.11: (a) Interface shapes for M = 1 and ε increasing from 0 to 1 in 0.2
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where ξ̃ is the initial position of the interface. Here we consider only the cases a = 1

and b = 0, but self-similar solutions are not limited to this choice. The outward and

inward propagating tips of the interface are denoted by ξo and ξi respectively. For

ξ̃ < ξ ≤ ξo the interface is advancing, and the thickness of the current is increasing,

ηϑ > 0, so that σ = 1 − ε. For ξi ≤ ξ < ξ̃ the interface is receding, and the thickness

of the current is decreasing, ηϑ < 0, so that σ = 1. The location ξ̃ of the discontinuity

in the coefficient is constant at early times.

Equation 3.7b and the initial condition (3.45) are self-similar in the variable ζ =

ξ/ϑ1/2. Therefore, the propagation of the plume tip at early time is given by the

scaling law ξo = a[ε, M]ϑ1/2, where a is a constant that decreases with increasing

ε. Inserting Pe = 0 and the similarity variable into (3.2b), we obtain the ordinary

differential equation

−ζ

2

dη

dζ
= σ̃

d

dζ

(
η(1 − η)

η(M − 1) + 1

dη

dζ

)
, (3.46)

where σ[ηζζϑ] = σ̃[ηζ ]. The mobility ratio, M, and the residual, ε, determine the

shape of the similarity solution at early times. The inner and outer boundaries of

integration ζi and ζo are unknown, and they are generally functions of both M and ε.

These eigenvalues must be determined as part of the solution, requiring two additional

constraints. The boundary conditions on the inward and outward propagating tips

are given by

η [ζi] = 1,
dη

dζ

∣∣∣∣
ζi

=
ζiM

2
, (3.47)

η [ζo] = 0,
dη

dζ

∣∣∣∣
ζo

=
−ζo

2(1 − ε)
. (3.48)

respectively. The conditions on η specify the vertical extent of the interface. The

conditions on ηζ have no direct physical interpretation, but they are required to satisfy

(3.15) at the boundaries ζi and ζ0, and they provide the two additional constraints

necessary to determine the eigenvalues. Together (3.46) and (3.47) form a nonlinear

eigenvalue problem for the shape of the interface and the two unknown tip positions,
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ζi and ζo. This eigenvalue problem is solved numerically as a function of M and ε

using a shooting method.

Figures 3.11(a-b) show that increasing M leads to the formation of a gravity

tongue, while increasing ε tends to shorten the gravity tongue and may lead to an

inflection in the interface. For M ≥ 1 the outward propagating tip position, ζo, is

mostly a function of ε, while the inward propagating tip position, ζi, is more strongly

affected by M (figure 3.11c-d). In the limit where all fluid is trapped, ε = 1, the

interface does not propagate, ξo = ξ̃, but the interface does recede, ξi �= ξ̃. However,

the distinction between the fluids across the receding interface is lost, and the interface

looses it physical significance. The evolution of this imaginary interface is still given

by (3.46), but it does not correspond to any fluid movement.

The early similarity solution shows that residual trapping has only a weak influence

on the evolution of the receding part of the interface. Instead residual trapping slows

down the advancing interface, because less fluid is supplied from the receding part.

A similar behavior is observed in the hyperbolic model discussed in § 3.4.2.

Regime transition and late solution

In § 3.3.2 we show that f → η at late times when the current is much thinner than

the thickness of the aquifer, so that (3.7b) reduces to

ηϑ = σ (ηηξ)ξ , (3.49)

for all M. The only parameter in this equation is the residual, ε, in the discontinuous

coefficient, σ. Semi-analytical solutions for the interface shape are available for the

radial (Kochina et al., 1983; Barenblatt, 1996), and linear cases (Bear & Ryzhik,

1998).

For a compact initial condition, the solution of a parabolic equation with a moving

discontinuous coefficient is a similarity solution of the second kind (Barenblatt, 1996).

These solutions are characterized by an anomalous exponent in the scaling laws that
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The shifted tip position, ξ̂ = ξo− ξ̃, is shown as function of ϑ, for increasing residuals,
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govern the solution. In this case we obtain

ξo = c1 [ε, M, η0] ϑ
β(ε), (3.50)

ηmax = c2 [ε, M, η0] ϑ
2β(ε)−1, (3.51)

V = c3 [ε, M, η0] ϑ
3β(ε)−1, (3.52)

for the tip of the plume, the height of the plume, and the volume of the plume.

Figure 3.12(a) shows the decrease of the anomalous exponent β with increasing ε.

For (3.49) the exponent must be determined numerically from a nonlinear eigenvalue

problem (see Bear & Ryzhik, 1998). As expected the increasing residual trapping

leads to a faster decrease of the plume volume and slower tip propagation. Another

characteristic of this type of solution is that the constants of proportionality (c1-c3)

in these scaling laws depend on the initial condition.

Figure 3.12(b) shows transition in the scaling law for the tip position from the

early scaling law, with the exponent 1/2, to the late scaling law with the anomalous
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exponent β ≤ 1/3. Initially only the constant in the scaling law is affected by ε,

but at late times both the coefficient and the exponent depend on ε. The sharp-

interface model presented here predicts that the volume of the current always decays

as a power-law in horizontal aquifers. In this case the current is never exhausted and

continues to spread. Capillary forces, which have been neglected in our model, will

arrest the movement of the current once it becomes too thin.

3.4.2 Hyperbolic limit: sloping aquifers

For confined sloping aquifers the current evolution is not self-similar, and no general

solutions to (3.2) are known. For large Pe, equation 3.7a reduces to a simpler equation

that allows an analysis of the current evolution. For Pe → ∞ we obtain the following

quasi-linear hyperbolic equation

ητ + σληξ = 0, (3.53)

where the derivative of the flux function is denoted λ ≡ fη.

Riemann problems

First we consider the two Riemann problems to understand the effect of trapping,

i.e. the discontinuous coefficient σ, on rarefactions and shocks. Then we consider a

hat function initial condition, representing a finite release of fluid, and the resulting

wave interaction. For non-zero values of loss, the wave interaction will lead to an

extinction of the current in finite time.

Rarefaction Consider the piecewise constant initial data

η[ξ, τ = 0] =

{
1, ξ ≤ ξ̃,

0, ξ > ξ̃.
(3.54)

The weak solution, a spreading wave or rarefaction, is obtained by the method of

characteristics. This rarefaction is a tilting interface analogous to the self-similar
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(b) The corresponding solution profiles given by (3.56) in self-similar coordinates.

solutions presented in § 3.4.1. Following the notation introduced there, we refer to

the tip propagating to the left as ξi and to the tip propagating to the right as ξo. The

characteristics of the solution originating at the discontinuity are given by

ξ = σ [ητ ] λ[η]τ + ξ̃, (3.55)

therefore all solutions are self-similar in the coordinate ξ/τ . The discontinuity in

σ leads to a discontinuity of the slope of the interface at ξ̃, but the interface itself

remains continuous, because λ = 0 at ξ̃. The equation for the evolution of η[ξ, τ ],

given by inverting (3.55) is

η [ξ, τ ; ε < 1, M �= 1] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, ξ ≤ ξi,

−τ+M̂(ξ0−ξ)+
√

Mτ(τ+M̂(ξ−ξ0))
M̂(τ+M̂(ξ−ξ0))

, ξi < ξ < ξ̃,

1
(1+

√
M)

, ξ = ξ̃,

−τ ε̂+M̂(ξ0−ξ)+
√

Mτ ε̂(τ ε̂+M̂(ξ−ξ0))
M̂(τ ε̂+M̂(ξ−ξ0))

, ξ̃ < ξ ≤ ξo,

0, ξo < ξ,

(3.56a)
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where M̂ = M− 1, ε̂ = 1− ε. For M = 1 the solution becomes piecewise linear and is

given by

η [ξ, τ ; ε < 1, M = 1] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1, ξ ≤ ξi,
1
2

(
ξ0−ξ
2τ

+ 1
)
, ξi < ξ < ξ̃,

1
2
, ξ = ξ̃,

1
2

(
ξ0−ξ

2τ(1−ε)
+ 1

)
, ξ̃ < ξ ≤ ξo,

0, ξo < ξ,

(3.56b)

where the positions of the outward and inward propagating tips of the rarefaction are

given by

ξo = (1 − ε)τ + ξ̃, and ξi = − τ

M
+ ξ̃. (3.57)

For tilting interfaces in the parabolic limit we have shown that ξi is a stronger func-

tion of M than ε. In the hyperbolic limit the entire receding interface has lost its

dependence on ε. Where the interface is advancing, f is scaled by σ = 1 − ε (fig-

ure 3.13a), and the residual reduces the propagation speed of the advancing interface

(figure 3.13b). This behaviour is analogous to the self-similar solutions in the par-

abolic limit. The solution for ε = 1 is still given by (3.56), but the advancing interface

is replaced by a discontinuity at ξ̃ with a jump from 0 to ηmax. A comparison of fig-

ures 3.11b and figure 3.13b shows that M and ε have a similar effect on the shape of

the interface in both the parabolic and hyperbolic limits.

For M = 0, equation 3.53 reduces to the linear advection equation

ητ + σηξ = 0, (3.58)

with a moving discontinuity in the velocity, σ. In this limit an ambiguity arises

in σ(ητ ), because ητ is singular at the discontinuity. The solution to (3.58) can

be obtained taking the limit of (3.56) as M → 0 and requiring that the solution

changes continuously with changes in the parameter M. In this limit the rarefaction
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degenerates to a contact discontinuity

η [ξ, τ ; M = 0] =

{
1, ξ ≤ Λcτ + ξ̃,

0, Λcτ + ξ̃ < ξ,
(3.59)

where Λc = 1 − ε is the speed of the discontinuity.

Shock Consider the piecewise constant initial data

η[ξ, τ = 0] =

{
ηL, ξ ≤ ξ̃,

ηR, ξ > ξ̃,
(3.60)

where ηL < ηR. The weak solution of (3.53) with (3.60) is a shock of strength,

ηs = ηR − ηL, given by

η [ξ, τ ; M] =

{
ηR, ξ ≤ Λτ + ξ̃,

ηL, Λτ + ξ̃ < ξ,
(3.61)

where Λ is the shock speed. Similar to (3.58) an ambiguity arises, because ητ is singu-

lar at the shock. Therefore we define the shock speed considering (3.53) regularized

by a diffusion term

ητ + σ [ητ ] fηηξ = νηξξ, (3.62)

where ν > 0. For initial data (3.60) the entropy-satisfying solution to (3.53) is defined

by the solution of (3.62) in the limit of small ν, the so-called vanishing viscosity solu-

tion. We assume the solution of (3.62) with (3.60) takes the form of a traveling wave

with constant speed Λν , so that η [ξ, τ ] = η̂ [ζ], where the traveling wave coordinate

is, ζ = ξ − Λντ . For a steady traveling wave the time derivative that determines the

value of σ is given by

ητ = ζτ η̂ζ = −Λν η̂ζ . (3.63)

For initial data (3.60) we expect the solution to be monotonically increasing, η̂ζ > 0,

so that the sign of ητ is determined by the direction of wave propagation, given by the

sign of Λν . The constant wave speed implies that ητ does not change sign, and hence
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σ is continuous, but its magnitude depends on the sign of the wave speed, σ = σ̂ [Λν ].

In the moving coordinate system (3.62) reduces to the ordinary differential equa-

tion with the boundary conditions η̂ → ηR for ζ → +∞, and η̂ → ηL for ζ → −∞.

After integrating once and eliminating the constant of integration with either bound-

ary condition, the following expression is obtained

η̂ζ =
σM (η̂ − ηL) (ηR − η̂)

ν
(
M̂η̂ + 1

)(
M̂ηL + 1

)(
M̂ηR + 1

) . (3.64)

This confirms our assumption that η̂ζ > 0 for ηL < η̂ < ηR. Equation (3.64) does

not depend on the wave speed, because consistency with both boundary conditions

requires that the wave speed be given by

Λν = σ
1 − M̂ηRηL − ηL − ηR(
M̂ηL + 1

)(
M̂ηR + 1

) , (3.65)

which has already been substituted into (3.64). For M = 1 the solution to (3.64) is

η̂ =
1

2

(
ηL + ηR + (ηR − ηL) tanh

(
(ζ − Cν)σ (ηR − ηL)

2ν

))
, (3.66)

where C is a constant of integration that can be determined by the initial position of

the discontinuity, ξ̃, and σ is given by (3.9). Equations (3.63) and (3.64) allow us to

write an equivalent definition of σ in terms of the sign of the wave speed

σ [ητ ] = σ̂ [Λν ] =

{
1, Λν > 0,

1 − ε, Λν < 0.
(3.67)

This definition is not ambiguous at discontinuities in the limit ν → 0. With this

definition of σ the Rankine-Hugoniot jump condition for the shock is

Λ = σ̂
f [ηL] − f [ηR]

ηL − ηR

= Λν , (3.68)

so that the shock speed of the limiting solution is identical to the wave speed of the
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viscous solution.

The geometric interpretation of the jump condition (3.68), is a cord joining f [ηL]

and f [ηR], as shown in figure 3.14a and b. For a given ηR and M the direction of

wave propagation as function of ηL is given by

Λν

⎧⎪⎪⎨
⎪⎪⎩

< 0, ηc < ηL < ηR,

= 0, ηL = ηc,

> 0, 0 < ηL < ηc,

(3.69)

where

ηc =
1 − ηR

(M − 1)ηR + 1
, (3.70)

which corresponds to a horizontal tangent and a stationary shock.

The speed of shocks moving to the right is not affected by trapping, while the

speed of waves traveling to the left is reduced due to trapping (figure 3.14c). This

behavior of the shock is analogous to the behavior of the rarefaction. In both cases

the speed of the interface is reduced, by a factor 1 − ε due to trapping, when it is

advancing, but it is not affected if the interface is receding. However, the parameter

that identifies whether the interface recedes or not is different for the rarefaction and
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the shock. For an interface with a finite slope, i.e. a rarefaction, the change of the

height of the interface with time, ητ , determines which parts of the interface recede.

For a vertical interface, i.e. a shock, the sign of shock speed, Λ, determines whether

the interface recedes across the shock or not.

Wave interaction

The evolution of a finite release of fluid is governed by the interaction of the shock

at the back of the current with the rarefaction at the front of the current. In the

presence of trapping this interaction leads to a rapid reduction of current volume,

and give rise to a finite migration distance and time. Consider the piecewise constant

initial data

ηH =

{
1, |ξ| ≤ 1/2,

0, |ξ| > 1/2.
(3.71)

Initially the solution of the front is a rarefaction given by 3.56 with ξ̃ = 1
2
, for all

M > 0, and the evolution of the back is a stationary shock (A to B in figure 3.15)

with constant shock strength (figure 3.16b), because Λ = 0 for ηL = 0 and ηR = 1

for all M > 0. When the back end of the rarefaction reaches the shock, the shock

strength decreases, and it begins to move. The solution, η, will then be given by

(3.56), but η [ξ < ξs] = 0, where the ξs is the shock position.

Shock evolution The waves begin to interact at the transition time, τt = M (B in

figure 3.15), and the shock speed begins to increase as the shock strength decreases.

Considering the shock strength, ηs, as a parameter along the shock path (B to D),

so that τ = τ [ηs], and ξ = ξ [ηs], we differentiate (3.55) and (3.68) to obtain two

differential equations

ξηs = ληs [ηs] τ + λ [ηs] τηs and ηsξηs = f [ηs] τηs . (3.72)

Eliminating ξηs we obtain the differential equation

dηs

dτ
=

f [ηs] − ηsλ [ηs]

ηsλη [ηs] τ
, (3.73)
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for the evolution of the shock strength. Together with the initial condition ηs [τt] = 1,

it determines the evolution of the shock strength (figure 3.16b). Once ηs is known,

the shock position is given by ξs = λ [ηs] τ + 1
2
. We solve for ηs instead of ξs, because

(3.73) is always separable.

If trapping occurs, ε �= 0, then the evolution of ηs is divided into an early period,

τt ≤ τ ≤ τp, during which the shock interacts with the receding portion of the

rarefaction (B to C in figure 3.15), and a later period τp < τ ≤ τf , where the shock

interacts with the advancing portion of the rarefaction (C to D). Hence, the problem

has three time scales: the transition time, τt, when interaction between waves begins

(B), the passing time, τp, when the shock passes the stationary point of the rarefaction

and starts to interact with the advancing section of the rarefaction (C ), and the final

migration time, τf , when the volume of the current goes to zero (D).

In the early period the shock strength and position are independent of ε and are

given by

ηs =
1

1 − M +
√

Mτ
and ξs = −1

2
+

(√
M −√

τ
)2

. (3.74)

We have shown in (§3.4.2) that the receding section of the interface is not affected by

trapping. Therefore, the shock strength and position are independent of the amount

of trapping. The early period extends until the shock migrates past the initial extent

of the current, ξs < 1
2
. The passing time and the shock strength at the passing time

are given by

τp =
(
1 +

√
M
)2

and ηs [τp] =
1

1 +
√

M
. (3.75)

In the absence of trapping (3.74) remain valid for all τ > τt (dashed line in figure 3.16).

After τp an explicit expression for ηs and ξs is only obtained for M = 1. We give the

full details for the case M = 1 to illustrate the structure of the solution, and for M > 1

we integrate (3.73) numerically, using (3.75) as an initial condition. For τp ≤ τ ≤ τf
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the shock strength for M = 1 is given by

ηs =

⎧⎨
⎩

ε−2
1+ 1

ε−1 t
−1− 1

2(ε−1)

2ε−1
, ε �= 1

2
,

log
(

2√
t

)
+ 1

2
, ε = 1

2
.

(3.76)

For ε = 1
2

the right hand side of (3.73) loses the explicit dependence on ηs, leading to

a simplified expression. The expression for the shock path is given by

ξs =

⎧⎨
⎩

(ε−1)
2ε−1

(
t − 22+ 1

ε−1 t
1

2−2ε

)
+ 1

2
, ε �= 1

2
,

1
2
(log( t

4
)t + 1), ε = 1

2
.

(3.77)

In the second phase the shock speed and position depend strongly on the amount

of trapping. Figure 3.16a illustrates the effect of increasing trapping on the current

evolution in the ξτ -plane for M = 1, and similar behavior is observed numerically for

other M (figure 3.15b). From (3.77), (3.76), and (3.56) the aspect ratio of the current

is given by

A =
ξo − ξs

ηs

=

⎧⎪⎪⎨
⎪⎪⎩

1 + (1 − ε)τ, τ < 1,

2τ − ετ 3/2, 1 < τ ≤ 4,

2(1 − ε)τ, 4 < τ < τf ,

(3.78)

for M = 1. Even in the presence of trapping A is always increasing for M ≥ 1. The

final residual surface, ηr, is the interface that divides the part of the aquifer that has

been invaded by the current, and now contains trapped fluid, from the region of the

aquifer that has not been invaded. The final residual surface for ξ < 1
2

is the initial

condition. For ξ > 1
2

the final residual surface is defined as ηr = ηs [ξs] and can be

calculated by eliminating τ between (3.76) and (3.77) to obtain ξ = ξ [ηr]. However,

it is not possible to invert this relationship to obtain an explicit expression for ηr

ξ =

⎧⎨
⎩

1
2

+ (ε−1)
2ε−1

(
ϕ(ηr) − 22+ 1

ε−1 ϕ(ηr)
1

2−2ε

)
, ε �= 1

2
.

e1−2ηr(2 − 4ηr) + 1
2
, ε = 1

2
.

(3.79)

were ϕ [ηr] =
(
2−

ε
ε−1 (−2εηr + ηr + ε)

) 1
2ε−1

−1

. The shape of the final residual surface
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Figure 3.16: (a) Portrait of the shock path and the leading characteristic of the
rarefaction, for increasing residual. The locus of the termination points, τf = τf [ξ↑],
is shown as a dotted line. (b) The corresponding temporal evolution of the shock
strength, ηs. (c) The corresponding final residual surfaces, ηr = ηr [τf ].
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Figure 3.17: Contour plots of the up-dip migration distance, log(ξ↑), on the left and of
the total migration time, log(τf ), on the right. The data for several potential storage
aquifers in Alberta, Canada, is shown as circles to indicate typical parameter values
(Bachu & Bennion, 2007).

is shown in figure 3.16c for increasing residual saturations.

Final migration time and distance The finite migration distance is an impor-

tant characteristic of the hyperbolic limit, in contrast to the self-similar solutions for

the horizontal case. The maximum migration distance and the corresponding total

migration time are amongst the most important time and length scales for CO2 stor-

age, and the analytic and semi-analytic results (figure 3.17) presented here show how

these scales depend on the governing parameters.

The total migration distance, ξ↑, is given by

ξ↑ =

{
1
2
− 21+ 1

2ε−1 (ε − 1)ε
1

2ε−1
−1, ε �= 1

2
,

1
2

+ 2e, ε = 1
2
.

(3.80)

Increasing mobility increases ξ↑, because a gravity tongue forms at the top of the

aquifer and only a small fraction of the aquifer is swept and contributes to residual

trapping.
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The final migration time for M = 1 is given by

τf =

⎧⎨
⎩

(
2−1− 1

ε−1 ε
)− 2(ε−1)

2(ε−1)+1
, ε �= 1

2
,

4e, ε = 1
2
.

(3.81)

The dimensionless final migration time increases strongly with increasing M. The

dimensionless time is only based on the properties of the released fluid. As M increases

the released fluid becomes increasingly less mobile, which retards the movement of

the released fluid.

Volume evolution The final migration time, τf , bounds the time available for

leakage from the storage reservoir. For smaller times the volume of mobile CO2 is a

basic quantity necessary to estimate maximum potential leakage over time. Analytic

expressions for the evolution of the current volume are given by integrating (3.56)

over the extent of the plume. The normalized current volume V = V (τ)/V (τ0) is

given by

V =

∫ ξo

ξs

η dξ = 1 − τε
(
1 +

√
M
)−2

(3.82a)

for τ < τp. In this early period both the shock and the receding part of the rarefaction

are independent of ε, and therefore the area containing residual saturation is also

independent of ε. Hence, the current volume decreases proportional to ε. The decay

of the current volume slows down with increasing M, because the receding interface

slows down. This behavior that is also observed in semi-analytic solutions for τ > τp.

At later times the lower limit of the integral is only known for M = 1, and in this

case the current volume is given by

V =

⎧⎨
⎩

1−ε
t(1−2ε)2

(
2−

ε
1−ε t

1
2(1−ε) − εt

)2

, ε �= 1
2
,

t
8

(
log

(
t
4

)− 1
)2

, ε = 1
2
,

(3.82b)

for τ < τf = 4e. Figure 3.18(a) shows how strongly the current volume is affected by

the magnitude of ε. This evolution is distinctly different from the power-law decay

obtained from the self-similar solutions for horizontal aquifers. It suggests that sloping



CHAPTER 3. RESIDUAL TRAPPING & CO2 GRAVITY CURRENTS 105

0 25 50
0

0.2

0.4

0.6

0.8

1

τ

V

(a)

0 100 200 300
0

0.2

0.4

0.6

0.8

1

τ

V

(b)

0.1

0.2
0.3

1
5

10
15 400.4 20

25

Figure 3.18: The effect of the governing parameters on the evolution of the current
volume. The passing and final migration times, are shown as circles and triangles.
(a) Increasing the residual, ε, from 0.1 to 0.9 at constant M = 1. (b) Increasing the
mobility ratio, M, from 1 to 40 at constant ε = 0.4. Circles denote

aquifers reduce the current volume particularly effectively. An evolution similar to

(3.82) is observed for a wide range of M (figure 3.18b).

The residual volume is given by Vr = 1 − V , and from (3.82) we see that volume

of trapped CO2 initially increases linearly as Vr ∝ τ , and it increases more slowly

for τ > τp. The efficiency of residual trapping decreases with time, because the size

of the receding interface, ηs, decreases rapidly, once the shock is interacting with the

advancing section of the rarefaction.

3.4.3 Numerical results

In this section we present numerical solutions to (3.7) and show that the current evo-

lution for intermediate values of Pe can be understood in terms of an early essentially

parabolic period followed by a late near hyperbolic regime. We also discuss important

length and time scales of the solution as a function of increasing Pe. The numerical

solutions were computed using standard finite volume techniques and explicit time

integration (Leveque, 2002).
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Near hyperbolic behavior for large M

In CO2 storage Pe is not necessarily large, but the mobility ratio is generally larger

than unity, M ≈ 5. Here we show that the particular shape of f leads to near

hyperbolic behavior of (3.7a) for small Pe and large M. Consider the differentiated

form of (3.7a) given by

σ−1ητ + ληξ = Pe−1
(
λ (ηξ)

2 + fηξξ

)
. (3.83)

In the absence of source terms the thickness η of the current decreases monoton-

ically with time and for M 
 1 the current takes the shape of a triangle composed

of a very elongate, flat, advancing tongue in the front and a short, steep, receding

tongue in the back (figure 3.10g-h). This asymmetry increases with Pe, M, and τ .

The hyperbolic approximation introduced in § 3.4.2 replaces the short, steep, receding

interface of the current by a shock.
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Figure 3.20: Evolution of the current volume, V , as a function of diffusive dimension-
less time, ϑ, for M = 5 and increasing Pe. The time axis at the top gives dimensional
values corresponding to the parameter choice discussed in § 3.5.2, assuming cos θ ≈ 1.

In the advancing tongue ηξξ � ηξ � 1, and hence both the diffusive, fηξξ, and the

second order term, λη2
ξ are small. The diffusive term is reduced further over the entire

current, because max(f) = 1/(1 +
√

M)2 decreases with increasing M. The second

order term η2
ξ is not small in the steep receding back of the current, and figure 3.19

shows that the error in the hyperbolic approximation is localized there.

Figure 3.19(a) illustrates how the error introduced by the hyperbolic approxima-

tion decreases with increasing M. For M > 5 and τ > 2τp the only significant error in

the hyperbolic approximation is due to small off-set in the shock position. In the limit

M = 0 a similarity solution to the full equation is available (Huppert & Woods, 1995),

and it is shown to provide an indication of the accuracy of the numerical method used.
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Once loss is introduced, ε > 0, the small differences in the sweep of the full solution

and the hyperbolic solution lead to differences in plume volume at any given time.

This volume error accumulates over time and leads to differences between the shock

location in the hyperbolic model and the back of the plume in the numerical solution

(figure 3.19b).

Transition from parabolic to hyperbolic behavior

In gently sloping media the current transitions from initial parabolic behavior to

hyperbolic behavior at late times (figure 3.20). Due to the distinctly different behavior

of these limiting cases for ε > 0 the transition is apparent in the evolution of the

current volume. An initial power-law decay of the current volume is followed by a

much more rapid decay characteristic of the hyperbolic limit.

For very large Pe the plume volume is given 3.82 and its semi-analytic extension

to M �= 1. This limiting solution is plotted in figure 3.20 as a function of the diffusive

dimensionless time, ϑ = τ/Pe, so that changes in Pe correspond to a stretching of

the time axis. We observe that the limiting solution describes the rapid decay of the

current volume at late times, even for Pe < 1.

Length & time scales for gravity currents with residual

The length and time scales that are important for gravity currents in sloping layers are

the propagation distance against gravity, ξ↓, and the time of the associated reversal

in the direction of the interface movement, τt. For a buoyant current the down-dip

propagation of the interface is due to the parabolic part of the equation. The reversal

of the interface movement indicates the transition from early near-parabolic to late

near-hyperbolic behavior. The continued volume loss and the resulting extinction

of the current give rise to additional length and time scales, the up-dip migration

distance, ξ↑, and the final migration time, τf . Numerical results for all four scales as

a function of increasing Pe are shown in figure 3.21. To determine the scales associated

with the end of the current the numerical simulation was terminated at V = 10−3.

This value was chosen to allow a reasonable detection of the gravity current tips,
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which become strongly affected by numerical diffusion for smaller cut-off volumes.

The rapid decay of the plume volume at late times (figure 3.20) suggests that the

results are not very sensitive to the cut-off, and the reasonable agreement between

numerical and limiting analytic results in figure 3.17 confirms this.

The down-dip migration distance, ξ↓, is not very sensitive to M or ε. For small Pe

it follows the relation τt = 1/
√

6Pe obtained for the similarity solution for M = ε = 0.

As the τt increases with decreasing Pe the current thickness decreases as well, and

the similarity solution for the unconfined aquifer becomes a better approximation.

As Pe increases ξ↓ approaches the position of the initial condition, which is also the

down-dip migration distance in the hyperbolic limit. The transition time, τt, appears

to approach the limiting hyperbolic solution much slower than the other parameters.

The up-dip migration distance, ξ↑, and the final migration time, τf , show a more

complicated behavior as Pe increases. As Pe goes to zero both become very large,

and this is consistent with the late similarity solution for the limiting case Pe = 0,

introduced in section § 3.4.2. As Pe increases the hyperbolic limit is approached

quickly, except for M = 0. However, for Pe ≈ 0.2− 0.5 a minimum in both quantities

is observed for M > 1. Hesse et al. (2006) showed that both ξ↑ and τf decrease with

increasing Pe for M = 0. Figures 3.17(c-d) show a similar behavior of ξ↑ and τf for

M < 1, but we observe an increase of ξ↑ and τf for M > 1 for Pe > 1.

3.5 Discussion

3.5.1 Assumptions

The most limiting assumptions in the derivation of the governing equations are the

homogeneity of the porous medium, the uniform saturation in the CO2 plume, and the

incompressibility of the CO2. While simple forms of heterogeneity in the across slope

direction can be included (Huppert & Woods, 1995) general forms of heterogeneity

require a full numerical solution. Ide et al. (2007) investigated gravitational spreading

of a CO2 plume in a horizontal, two-dimensional, heterogeneous aquifers with a reser-

voir simulator. They showed that the effect of capillary forces on residual trapping
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is larger than the effect of moderate permeability heterogeneity. In the absence of

capillary forces, their numerical simulations resemble figure 3.10(a-d). Simulations

including capillary forces lead to a thicker gravity current with a non-uniform vertical

saturation profile and an increase in capillary trapping (Mo & Akervoll, 2005).

It may therefore be interesting, to extend the model presented here to non-uniform

saturation distributions. The infinitely spreading solution obtained for horizontal

aquifers is a direct result of neglecting capillary forces. The current will stop prop-

agating once the hydrostatic potential at the tip of the plume decreases below the

entry pressure necessary for the CO2 to invade the largest pores. Even in very gently

dipping aquifers, the CO2 may rise vertically by several hundred meters, if the up-dip

migration distance is large. In these cases, the expansion of the CO2 will lead to an

increase in plume volume that may be significant, in particular if the CO2 becomes

gaseous.

In the hyperbolic model for sloping aquifers we neglect the second order term,

λ(ηξ)
2. This simplification leads to an unphysical vertical interface at the trailing

end of the current. Despite this simplification, we find that the resulting quasi-

linear hyperbolic model describes many characteristics of the current evolution very

well. The minimum in the migration distance and time observed in figure 3.21 is not

explained by the limiting cases we study. The most likely explanation is the down-dip

migration of the current against gravity. This down-dip migration is represented by

the second order term, λ(ηξ)
2 we have neglected. Inclusion of this term leads to a

fully nonlinear hyperbolic model

σ−1ητ + ληξ = Pe−1λ (ηξ)
2 , (3.84)

which is likely to exhibit this behavior. This model could still be solved by the method

of characteristics allowing fast and accurate solutions to be obtained by numerical

integration.

In terms of geological CO2 storage we have neglected the dissolution of CO2 into

the brine. Two types of dissolution must be distinguished, direct dissolution of CO2

into the residual brine and the enhanced dissolution of CO2 at the interface between
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CO2 and brine due to convective currents in the underlying brine, see § 2. The direct

dissolution into the residual brine can be modeled in this framework, but the effect is

likely to be small compared with residual trapping. The enhanced dissolution due to

convective transport may become important at later times, because the gravity tongue

provides a large interfacial area. This process could be modeled conceptually through

an effective loss term. Detailed information regarding the convective dissolution rates,

similar to those presented in § 2.3, will allow us to estimate the magnitude of this loss

term. An extension of the model presented here would then allow for a comparison

of the relative contributions of dissolution and residual trapping.

The leading edge of the CO2 plume is both by gravitationally and viscously un-

stable and this leads to the formation of a gravity tongue in our solutions. Riaz &

Tchelepi (2006) have shown that this gravity tongue is also the dominant feature

in high resolution numerical simulations of two-dimensional vertical displacements.

The displacement may also be viscously unstable in the transverse direction, similar

to the Saffman-Taylor instability in a Hele-Shaw cell (Saffman & Taylor, 1958), or

the instability of viscous currents on inclined planes discussed by Lister (1992). The

linear instability of an immiscible displacement in a porous medium has been studied

by Yortsos & Hickernell (1989) and Riaz & Meiburg (2004a). However, these studies

consider advection dominated one dimensional base flows and not the two-dimensional

base flow in gravity-capillary equilibrium that is of interest here. The study of the

stability of the two-dimensional flows presented here is an interesting direction for

future research, but beyond the scope of this contribution.

3.5.2 Implications for CO2 storage in saline aquifers

We model the migration and the associated residual trapping of CO2 plumes in saline

aquifers using vertical-equilibrium sharp-interface models. The analysis of these sim-

plified models shows us how the most important dynamical parameters affect the

evolution of the footprint of the CO2 plume over time and the efficiency of residual

trapping. First, we compare the evolution of CO2 plumes in horizontal and sloping

aquifers. Then we consider a particular field case and show how our results have first
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order implications on the selection of storage sites.

Residual trapping in horizontal and sloping aquifers

Let us consider a deep saline aquifer with the following constant properties: H ≈
20 m, k ≈ 30 mD, and φ ≈ 0.1. In addition, we assume the following constant

fluid properties: ∆ρ ≈ 300 kg/m3, Scr = Sbr = 0.2, µc ≈ 0.06 · 10−3, µb/µc ≈ 10,

krc ≈ 0.2, and at the advancing interface krb = 1. In this case, the mobility ratio is

M ≈ 5, so that we expect the formation of a gravity tongue of CO2 along the top

of the aquifer. Finally, we assume that the aquifer has been invaded by CO2 over a

distance of Ld ≈ 500 m, so that the aspect ratio at the end of injection is given by

A = 2 · Ld/H ≈ 50.

Horizontal aquifers The evolution of the CO2 plume in a horizontal aquifer with

these properties is shown in figure 3.10(a-d), and the evolution of the volume of the

mobile CO2 plume is given in figure 3.20. For gravity currents with M ≈ 5 we expect

an extended early period where the tip position is given by x ∝ t1/2 (figure 3.9).

The regime diagram in figure 3.9 does not account for the effect of residual trapping,

but figure 3.12(b) shows that the transition from the early to the late scaling law is

similar for ε = 0.25 and ε = 0. We can therefore use the theory developed in § 3.3 to

estimate the duration of the early period, given by tb, and the time, tt, after which

we can expect the late scaling law to hold.

For M = 5, the dimensionless time scales are given by ϑb ≈ 4 and ϑt ≈ 265,

and the characteristic time is td = L2
d(κ1H)−1 ≈ 250 yrs. The interface will detach

from the aquifer after approximately tb ≈ 1000 yrs. At this time the footprint of the

CO2 plume is 4.6 km. In the period right after the detachment of the CO2 plume

residual trapping is the most effective, and the fraction of CO2 trapped as residual

saturation increases to 20% (figure 3.10b). The period that corresponds to rapid

residual trapping in a horizontal aquifer is approximately given by tb to 3tb.

The tip of the CO2 plume will continue to propagate proportional to t1/2 until

tt ≈ 66000 yrs, when the footprint of the plume is 20 km. Therefore, although the

CO2 plume shown in figure 3.10(c) is already very thin compared to the thickness of
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the aquifer, the plume tips are is still propagating according to the early scaling law,

x ∝ t1/2. This illustrates that the effects of confinement, expressed in the mobility

ratio, must be taken into account to understand the evolution of the CO2 plume. In

particular, confinement has an effect on the propagation of the gravity current long

after the CO2 plume has detached from the base of the aquifer at tb.

After tt the spreading of the CO2 plume slows down significantly, and in fig-

ure 3.10(d) the tips of the plume propagate according to the late scaling law. In this

late stage, residual trapping decreases the propagation velocity in a manner similar

to figure 3.12. As the plume slows down, residual trapping decreases rapidly. From

figure 3.10(a) to (d) we can see that it takes 3,000 yrs to trap the first 20%, about

30,000 yrs to trap the next 10%, and approximately 300,000 yrs to trap an additional

10%. This drastic decay of the rate of residual trapping in horizontal aquifers is a

consequence of the self-similar nature of the solution at late times, which requires

that the volume of the mobile CO2 plume decays as a power-law.

Sloping aquifers Figure 3.20 shows that the effectiveness of residual trapping in-

creases dramatically even for small dip angles. The evolution of the interface shape

for θ = 5◦ is shown in figure 3.10(e-h). We see that the migration time of the cur-

rent is reduced from approximately 40,000 yrs for a slope of 1/2◦ to approximately

2,000 yrs for a slope of 15◦. The up-dip migration distance decreases from 85.6 km

at 1/2◦ to a minimum of 82.8 km at 1◦ and slowly increases again to 84.5 km at 15◦.

As the slope of the aquifer increases the distance the plume can migrate before

it reaches the surface decreases. For an injection depth of 2 km, only angles of 1/2◦

and 1◦ prevent the CO2 from reaching the surface, and even for θ = 1/2◦ the CO2

rises 750 m vertically. Therefore, the depth of the current at the end of migration

is the important criterion for storage security. Given the dimensionless initial depth

d0 = D0/L the dimensionless final depth is d = −d0 + ξ↑ sin θ. We can define the

critical angle at which the injected CO2 reaches the surface as

θc = arcsin

(
d0

ξ↑

)
(3.85)
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Figure 3.22: Contour plots of the critical angle, θc, assuming d0 = 2 and the sweep,
S, as function of M and ε. The data for several potential storage aquifers in Alberta,
Canada, is shown as circles to indicate typical parameter values (Bachu & Bennion,
2007).

Figure 3.22(a) shows that the critical angle, θc, increases with ε and decreases with

M. For a given M and ε the CO2 will not reach the surface for θ < θc. The optimal

storage aquifer therefore has a few degrees of slope, just enough to cause lateral up-

dip migration and the corresponding efficient residual trapping, but without reducing

the distance to the surface too much.

Despite rapid trapping compared to the horizontal case, CO2 storage in saline

aquifers is limited by the poor vertical sweep, S, and the resulting long migration

distances. The vertical sweep can be defined as S = 〈hr〉 /H = 〈ηr〉, where 〈hr〉 is the

average residual surface. The initial volume of mobile CO2 is given by φ(1−Sbr)HL,

and the residual volume of CO2 at the end of the migration is given by φScr 〈hr〉 (x↑−
x↓). An expression for the vertical sweep, S, can be obtained from the conservation

of volume and is given by

S =
ε

ξ↑ − ξ↓
, (3.86)

where ξ↓ ≈ 0 in the hyperbolic limit. Figure 3.22(b) shows that the sweep is a strong

function of ε, increasing monotonically from zero at ε = 0 to unity for ε = 1. For the

data from Bachu & Bennion (2007), the sweep, S, can vary from less than 10−3 to
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more than 10−1, roughly three orders of magnitude, while the residual, ε, itself only

varies between 0.1 and 0.7. Therefore, the residual CO2 saturation, Scr, influences

the up-dip migration distance given by (3.44) more strongly through its influence on

the sweep than through its direct volumetric effect.

Large scale CO2 storage: Carrizo-Wilcox aquifer in Texas

Nicot (2008) considered the storage of roughly a fifth of the CO2 emissions from

coal power stations in the state of Texas over the next 50 years. This would re-

quire the injection of approximately 370·106 m3/yr of supercritical CO2, equivalent

to 50 MtCO2/yr, into the central section of the Carrizo-Wilcox aquifer. They envi-

sioned a line of 50 wells aligned perpendicular to the dip of the aquifer with a 1.6 km

spacing. These wells act as a 80 km long line source and our one-dimensional solution

is a reasonable approximation of the displacement away from the edges.

To obtain first order estimates of the migration distance of the injected CO2 we

assume the following constant aquifer properties estimated from the data given in

Nicot (2008): H ≈ 200 m, k ≈ 500 mD, φ ≈ 0.15, the average depth of injection

2.7 km, the average distance to the outcrop 100 km, and therefore and average dip

angle, θ ≈ 1.5◦. We assume the following fluid properties: ∆ρ ≈ 300 kg/m3, Scr =

Sbr = 0.2, µc ≈ 0.06 ·10−3, µb/µc ≈ 10, krc ≈ 0.2, krb = 1 (at the advancing interface).

Given this data the appropriate length scale at the end of 50 years of injection is

L ≈ 10 km, so that the initial aspect ratio is A = L/H ≈ 50. The three governing

parameters are therefore M ≈ 5, ε ≈ 0.25, and Pe = A tan θ ≈ 1.4. Figure 3.21 shows

that the migration distance and time for M = 5 are already close to the hyperbolic

limit for Pe = 1.4, so that we obtain ξ↑ ≈ 80 and τf ≈ 110 from figure 3.17.

The along slope migration distance would be approximately ξ↑L = 800 km, so

that the migration distance exceeds the up-dip extent of the aquifer significantly.

Under the simplifying assumptions made here, this particular injection scenario does

not ensure that all CO2 would be trapped by residual saturation alone. The initial

length scale L would have to be reduced to 100 km/ξ↑ = 1.25 km to achieve residual

trapping of all injected CO2. This could be achieved by increasing the width of the

injection zone from 80 to approximately 620 km. Another option would be to reduce
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the volume injected into this aquifer from 50 to roughly 6.5 MtCO2/yr, assuming the

original injection width of 80 km. In this case the CO2 would remain mobile for 1550

years after the end of injection.

3.6 Conclusion

We derive a vertical-equilibrium sharp-interface model governing the migration of an

immiscible gravity current in a two-dimensional confined aquifer. A simple model of

residual trapping allows the analysis of the relationship between the vertical sweep of

CO2 plume and residual trapping.

In the parabolic limit of the governing equations, corresponding to a horizontal

aquifer, the evolution of the CO2 plume is divided into three regimes. The mobility

ratio M is the parameter that determines the time scales separating these regimes.

We have obtained new similarity solutions in the variable ζ = x(κHt)−1/2 that are

valid at early times when the interface is tilting, due to a horizontal exchange flow.

These similarity solutions are a strong function of the mobility ratio M, and of the

residual, ε. In this regime the position of the tip of the interface is given by x ∝ t1/2,

so that the exponent is independent of ε. The numerical solution continues to follow

the early scaling law long after the interface has detached from one boundary. This

indicates that the finite thickness of the aquifer is important for gravity currents with

M > 1, and solutions that assume infinite depth are not valid until the current has

become very thin.

In the limits h → 0 and M → 0, the governing equation simplifies to the porous

medium equation. For ε = 0, this equation admits a similarity solution in the variable

ς = x/(κV t)−1/3, where the position of the tip of the interface is given by x ∝ t1/3.

For ε �= 0, the exponent in is a function of ε, x ∝ tβ(ε). This dependence is given by a

nonlinear eigenvalue problem. We obtain an expression for the transition time tt from

the t1/2 to the tβ(ε) scaling. The transition time, tt, increases monotonically with M,

but it is a weak function of M for M < 0.18, and it increases rapidly for M > 0.18. The

two self-similar regimes are separated by a transition period that is roughly centered

on tt. Numerical solutions of the governing partial differential equation are used to
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describe the evolution during the non-self-similar transition period. Numerical results

show good agreement with the early and the late similarity solutions.

During CO2 storage in horizontal saline aquifers M ≈ 5, and we expect a prolonged

period where the current spreads according to the early scaling law. Residual trapping

will be most effective in the time just after the current detaches from the base of the

aquifer. In the long term limit, the the current spreads very slowly and residual

trapping becomes less important. Despite continued loss of volume, the current is

never reduced to zero and continues to spread. This behavior is an artefact of the

model that neglects capillary pressure.

In the hyperbolic limit of the governing equations, appropriate for dipping aquifers,

the current is described by a travelling wave with hysteresis. The leading edge of the

interface is a rarefaction, and the trailing edge is a shock. The current volume is

reduced continuously by the residual, and the volume is reduced to zero in finite

time. We have obtained expressions for the up-dip migration distance and the final

migration time of the current.

In both the parabolic self-similar solutions and the hyperbolic rarefaction and

shock we observe that residual trapping affects the advancing section of the interface

more strongly than the receding section of the interface. Although trapping occurs

at the receding interface, the advancing interface is affected more strongly because

less fluid is supplied to it from the receding section.

In gently sloping aquifers, an initial near-parabolic regime with power-law decay

of the volume is followed by a near-hyperbolic regime with very rapid volume decay.

Increasing the slope of the aquifer or the initial aspect ratio of the current reduces

the duration of initial parabolic period.

Our results suggest that lateral migration of the injected CO2 along the seal will

trap the CO2 relatively quickly as residual saturation. Residual trapping is optimized

in sloping aquifers with small mobility ratios and high residual CO2 saturations.

However, the long migration distances of CO2, due to the formation of a gravity

tongue, may limit the volume of CO2 that can be stored in sloping regional aquifers.



Chapter 4

Multiscale simulation of

CO2 storage in saline aquifers

4.1 Introduction

4.1.1 Challenges in the numerical simulation

of CO2 storage in saline aquifers

The simulation of CO2 storage in saline aquifers is challenging because: the domi-

nant physical processes change as the plume evolves, the domain may be very large,

several key physical processes as well as geological heterogeneity require high spatial

resolution, and the uncertainty in the geological parameters is large.

During the relatively short injection phase, advection and gravitational forces are

expected to be important, while gravitational and capillary forces dominate the long

post-injection period. Finally, geochemical reactions that bind the CO2 in minerals

will become important. This change in the dominant processes over time limits the use

of highly specialized and efficient numerical methods, such as streamline simulations

(Jessen et al., 2005; Kovscek & Wang, 2005), or vertical equilibrium models discussed

in § 3, which exploit the dominance of particular terms in the governing equations.

The size of the simulation domain is another main challenge in the numerical

simulation of geological CO2 storage. In comparison to reservoir simulation for oil

119
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recovery, much larger domains have to be simulated and over much longer time pe-

riods. The CO2 plume may migrate laterally over 10’s to 100’s of kilometers in

regional aquifers, and toward the surface along wells and fractures. Nordbotten et al.

(2004) and Silin et al. (2006) showed that the interaction of the CO2 with shallower

aquifers and aquitards along the leakage pathway can reduce the leakage rate to the

atmosphere significantly. It may therefore be necessary to simulate fluid movement

in the overburden of the storage site, leading to even larger simulation domains. In

addition, large quantities of CO2 have to be injected to lead to a meaningful reduction

of CO2 emissions, and this may lead to displacements of the interface between brine

and potable groundwater on a basin scale (Nicot, 2008).

On the other hand, geological porous media, including saline aquifers, are hetero-

geneous on all length scales (Journel, 1986), and numerical simulation with very high

spatial resolution is necessary to capture the complex flow patterns that develop in

unstable displacements (Tchelepi & Orr , 1994). The simulation of CO2 storage also

requires high numerical resolution to capture the small length-scales associated with

important physical processes, such as diffusion and dispersion. In § 2 we show that

buoyancy driven fingers in the brine determine the dissolution rate of CO2, and may

require even higher decimeter-scale resolution. In § 3 we show that the adverse mobil-

ity ratio leads to dynamical instabilities such as long thin gravity tongues and viscous

fingers that require sub-meter-scale resolution in numerical simulation. The length

and time scales associated with the physical mechanisms during CO2 storage may

span six orders of magnitude in a sloping high-permeability aquifer, and this range

of scales considers only the continuum description where Darcy’s law is thought to

apply.

Finally, the uncertainty in the description of the geological storage site requires

many simulations to assess the uncertainty in model predictions (Kovscek & Wang,

2005). Similarly, the updating of the geological model through monitoring data re-

quires a large number of simulations (Doughty et al., 2007). Current reservoir simula-

tion technology may not be able to provide adequate numerical resolution to capture

physical processes and at the same time allow for the reasonable exploration of the
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Figure 4.1: An example of a typical regional aquifer under consideration for CO2

storage, the Carrizo Formation in east Texas is shown in grey. The figure is vertically
exaggerated 16:1, so that the true aspect ratio is much larger than it appears in the
figure. The sketch is simplified from Nicot (2008).

uncertainty through the investigation of many equally probable geostatistical real-

izations of the storage site. We therefore aim to develop computationally efficient

solution algorithms that can provide high resolution locally to capture the fine-scale

details of the flow field in very large simulation domains.

The fraction of the simulation domain that requires these high resolutions is gener-

ally small and may be associated with several features, such as multiple CO2 plumes

and interfaces between brine and potable groundwater. Recently multiscale meth-

ods have been developed that can resolve the large-scale flow on a coarse grid, using

numerical basis functions and have the ability to reconstruct fine-scale flow features

locally. Multiscale methods offer the desired adaptivity in highly heterogeneous do-

mains through the selective reconstruction and updating of basis functions (Jenny

et al., 2005). We focus on the multiscale finite volume (MSFV) method introduced

by Jenny et al. (2003). The MSFV method is currently the only multiscale method

for modeling flow in porous media that has been extended to most of the physical

processes necessary for CO2 storage in saline aquifers: compressibility (Lunati &

Jenny, 2006; Zhou & Tchelepi, 2008), gravity (Lunati & Jenny, 2008), and wells (Lee
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et al., 2008).

Grids with high aspect ratios are common in reservoir simulation, because oil

reservoirs are kilometers in areal extent and tens of meters thick, leading to simula-

tion domains with high aspect ratios (100:1 in 2D). In addition, geological layering

and fractures can introduce severe anisotropy, which is often miss-aligned with the

computational grid. Grid aspect ratios and permeability anisotropy have similar ef-

fects on the numerical discretization (see § 4.3.1) and can lead to significant challenges

in numerical modeling.

Large regional aquifers extend for several tens or even a few hundred kilometers,

but they are at most a few hundred meters thick (figure 4.1), leading to even larger

aspect ratios than in reservoir simulation of oil and gas fields (1000:1 in 2D). There-

fore, the problems with accurate and robust numerical discretization of anisotropic

domains with high aspect ratios are even more relevant in CO2 storage than in con-

ventional reservoir simulation. The original MSFV method, however, is only robust

for uniform grids and isotropic fine-scale permeability (Kippe et al., 2007; Lunati &

Jenny, 2007). The development of a multiscale finite volume discretization that is

robust for large aspect ratios is therefore an important step towards the simulation

of CO2 storage at the field scale.

4.1.2 Incompressible two-phase flow in porous media

Using a simple model problem, we illustrate the structure of the governing equations

that have to be solved for field-scale simulation of CO2 storage. We show how an

elliptic equation for the pressure arises. The repeated solution of this equation is

numerically expensive and multiscale solution algorithms are necessary to solve the

very large problems arising in CO2 storage in regional aquifers.

We consider the case of immiscible two-phase (supercritical CO2 and brine) flow in

a heterogeneous porous medium. For incompressible fluids and rock, the conservation



CHAPTER 4. MULTISCALE SIMULATION 123

equation for each phase can be written as

φ
∂Sc

∂t
+ ∇ · uc = −fp, (4.1)

φ
∂Sb

∂t
+ ∇ · ub = −fp, (4.2)

where Si, ui, and fi denote the saturation, Darcy velocity and source term (well) of

fluid phase i, and φ is the porosity. The subscripts c and b for the phase denote CO2

and brine. The saturation, Si, is the volume fraction of phase i in the pore space, so

that Sc +Sb = 1. For our problem, the viscosities of the CO2 and brine phases can be

different, but the viscosity of each phase is assumed to be constant. We also assume

that capillarity and gravity effects are negligible, so that Darcy’s law in terms of the

phase mobility, λi, is given by

ui = −λi∇p = −K(x)
kri(Si)

µi

∇p, (4.3)

where K(x) is the absolute permeability tensor field, p is the pressure, and kri and

µi are the relative permeability and viscosity of phase i. Summing the conservation

equations of both phases we obtain

∇ · u = f, (4.4)

where f = −fc−fb, u = uc +ub = −λ∇p is the total velocity, and the total mobility,

λ, is defined as

λ(x, Si) = K(x)

(
krc(Sc)

µc

+
krb(Sb)

µb

)
. (4.5)

This system of equations is supplemented with appropriate initial and boundary con-

ditions. In reservoir simulation, the system is often assumed to be closed, so that

no-flow boundary conditions are imposed at the periphery.

The total velocity, u, defined above allows us to rewrite (4.1) in terms of the

fractional flow, fi = ui/u, of phase i. Incompressible two-phase flow in porous media
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is therefore governed by the following coupled elliptic-hyperbolic system of equations

−∇ · [λ(x, Si)∇p ] = f, (4.6)

φ
∂Si

∂t
−∇ · [fi(Si)λ(x, Si)∇p ] = −fi. (4.7)

Equations (4.6) and (4.7) are usually referred to as the flow and transport problems,

respectively. The flow problem is an elliptic equation for p, and the transport problem

is a hyperbolic conservation law for Si. They are coupled through the dependence of

λ on the saturations Si, which are a function of space and time. These equations are

representative of the type of system that must be solved accurately and efficiently by

a simulator for CO2 storage.

At every time step, tn, in the solution process (4.6) has to be solved for the pressure

field, and in this context the total mobility is only a function of space. Therefore, we

drop the dependence of λ on µp and krp in (4.5) and set λ(x, tn) = K(x) to emphasize

its tensorial nature.

4.1.3 Multiscale methods for porous media

Natural porous media are heterogeneous at all length scales, and current advances

in data integration and subsurface description provide increasingly detailed descrip-

tions of the subsurface. Numerical methods for incompressible flow in porous media

therefore lead to discrete elliptic problems with highly oscillatory coefficients. Full

resolution of the fine-scale features of the coefficient in realistic problems is often too

expensive. In the last few years, several multiscale methods have been developed to

reduce the computational complexity by incorporating fine-scale features into a set of

coarse grid equations. A characteristic of multiscale methods for flow in porous me-

dia is that they allow a reconstruction of an approximate fine-scale solution from the

coarse solution. The fine-scale reconstruction of the flow field (p and u) is necessary

for the subsequent transport calculations, which are very difficult to upscale. Meth-

ods designed for flow in porous media include the multiscale finite element method

(Hou & Wu, 1997), the mixed multiscale finite element method (Chen & Hou, 2002;
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Aarnes, 2004), the two-scale conservative subgrid approach (Arbogast, 2002), the fi-

nite difference heterogeneous multiscale method (Abdulle & E, 2003), the variational

multiscale method (Juanes & Dub, 2008), and many others.

We discuss the multiscale finite volume (MSFV) method for elliptic problems,

which was introduced by Jenny et al. (2003, 2005, 2006). The method described in

§4.2 is identical to the original MSFV method, but we describe it from a different

perspective that motivated the new results and developments presented in §4.4 & §4.6.

For simplicity, we restrict the discussion to a two-dimensional (2D) orthogonal grid.

In § 4.1.2 we show that the pressure field in incompressible porous media flows is given

by the scalar elliptic boundary value problem (4.6). Introducing operator notation

the complete definition of the flow problem is

Lp(x) = f(x) (x ∈ Ω),

LΓp(x) = g(x) (x ∈ Γ := ∂Ω).
(4.8)

Here x = (x, y), and Ω ⊂ R2 is a rectangular open domain with boundary ∂Ω. L

is the linear elliptic operator on Ω and LΓ represents the linear boundary operators.

The elliptic operator L is defined by

L[•] = −∇ · (K(x)∇•) , (4.9)

where the tensor K is symmetric positive definite. In problems of flow and transport

in porous media the pressure equation, (4.8), is coupled to one or more transport

equations, given by (4.7).

4.1.4 Fine-scale problem

The hyperbolic nature of the transport equations requires that any numerical ap-

proximation of L be conservative, so that the corresponding flux field matches source

terms exactly. The finite volume approximation of (4.8) is given by

Lhph(xi, yj) = fh(xi, yj) ((xi, yj) ∈ Ωh),

LΓ
hph(xi, yj) = gh(xi, yj) ((xi, yj) ∈ ∂Ωh).

(4.10)
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Here h is a discretization parameter defining the centers of the finite control volumes

or cells Gh := {(x, y) : xi = (i+ 1
2
)h, yj = (j+ 1

2
)h; i ∈ (0, ..., n−1), j ∈ (0, ..., m−1)},

where m and n are the number of cells in the x- and y-directions. We only consider

square grids, because simple forms of grid stretching and skewness can be absorbed

into an effective permeability tensor, see § 4.3.1. The control volume centered on

(xi, yj) is denoted Ω̄hij
, and the four interaction regions that connect it to the sur-

rounding eight neighbors are labeled Ω̃
(d)
hij

, where d ∈ (1, 2, 3, 4). When we discuss

a control volume and its associated interaction regions, we drop the i, j subscript

(figure 4.2). The discrete operator for the ij-th cell is given by

Lhph(xi, yj) =
1∑

a,b=−1

ma,bph(xi + ah, yj + bh) = [ma,b]h ph, (4.11)

where we have dropped the i, j subscript on the discrete operator, Lh, and the coef-

ficients, ma,b, for clarity. For homogeneous problems it is convenient to express the

discrete operator using the stencil notation (Trottenberg et al., 2001)

Lhph = [ma,b]h ph =

⎡
⎢⎢⎣

m−1,1 m0,1 m1,1

m−1,0 m0,0 m1,0

m−1,−1 m0,−1 m1,−1

⎤
⎥⎥⎦

h

ph. (4.12)

To represent a constant solution exactly the coefficients ma,b must satisfy

1∑
a,b=−1

ma,b = 0. (4.13)

A stencil with n non-zero coefficients will be referred to as a n-point stencil. The

discrete problem 4.10 gives rise to the linear system, Lhph = fh, and the stencil,

[ma,b]h, corresponds to the non-zero entries in a row of Lh for a cell in the interior of

Ωh.
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Figure 4.2: (a) Nine cells of the finite volume grid are shown by dashed lines. The
four dual interaction regions, Ω̃(1) to Ω̃(4), which connect the shaded finite volume
cell in the center to its eight nearest neighbors are shown by solid lines. (b) A dual
interaction region is shown with the four coarse cell boundary segments labeled s1 to
s4 and the corresponding fluxes f1 to f4.

4.1.5 Multipoint flux approximations

On rectangular grids with aligned anisotropy finite volume methods use central dif-

ferences to approximate the fluxes across cell boundaries. Such two-point approxi-

mations for the fluxes give rise to a 5-point stencil that gives a second-order approx-

imation to L. On general non-orthogonal grids, as well as for non-diagonal tensors,

two-point flux approximations are not a consistent approximation of (4.8), and lead

to errors that do not diminish with grid refinement. Multipoint flux approximations

(MPFA) have been introduced to give a more accurate approximation of the fluxes

in these cases (for an introduction, see Aavatsmark, 2002). The properties of porous

media can exhibit very strong anisotropies and robust discretizations, Lh, for these

cases have been discussed by several authors (Aavatsmark et al., 1996; Lee et al.,

1998; Edwards & Rogers, 1998; Aavatsmark, 2002; Lee et al., 2002; Nordbotten &

Aavatsmark, 2005; Nordbotten et al., 2007). Although other MPFA methods are

possible, we use the term for methods that approximate the fluxes using a subset of

the six nodes surrounding the face through which the flux is computed (figure 4.2).

This gives rise to a 9-point stencil that approximates the integral form of (4.10) in
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each cell Ω̄hij
in the interior of Ωh

Lhph = [ma,b]h ph ≈
∫

Ω̄h

Lp dΩ. (4.14)

With (4.13) the stencil [ma,b]h has eight degrees of freedom. These eight coefficients

are determined by considering the fluxes induced across the cell boundaries by unit

sources in the eight neighboring cells (figure 4.2a). Every cell is linked to its eight

neighbors by four interaction regions, Ω̃(1) to Ω̃(4). Each interaction region contains

four cell boundary segments s1 to s4 (figure 4.2b). When considering a single inter-

action region the pressures in the corners are labeled p1 to p4 as shown in figure 4.2b.

In this contribution we only consider MPFA schemes based on the interaction

regions shown in figure 4.2a. Other choices of the interaction regions are possible

and have been discussed by Lambers et al. (2008). The MPFA schemes considered

here assume that the fluxes f1 to f4 across cell boundaries in each interaction region

can be expressed as a linear combination of the four coarse pressures p1 to p4 in the

corners of the dual ⎛
⎜⎜⎜⎜⎝

f1

f2

f3

f4

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

t1,1 t1,2 t1,3 t1,4

t2,1 t2,2 t2,3 t2,4

t3,1 t3,2 t3,3 t3,4

t4,1 t4,2 t4,3 t4,4

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

p1

p2

p3

p4

⎞
⎟⎟⎟⎟⎠ . (4.15)

Therefore, we need to determine the sixteen coefficients of the transmissibility matrix

T = {tm,k} that represent fluxes induced across the four boundary segments sm by

the four pressures pk. Once the four matrices T(1) to T(4) are known the discrete
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operator Lh is given by Lee et al. (1998) as

m1,0 = t
(1)
1,2 + t

(1)
4,2 − t

(4)
4,3 + t

(4)
3,3 (4.16)

m−1,0 = t
(2)
2,1 − t

(2)
1,1 − t

(3)
3,4 − t

(3)
2,4 (4.17)

m0,1 = t
(1)
1,4 + t

(1)
4,4 − t

(2)
1,3 + t

(2)
2,3 (4.18)

m0,−1 = −t
(3)
2,2 − t

(3)
3,2 − t

(4)
4,1 + t

(4)
3,1 (4.19)

m1,1 = t
(1)
1,3 + t

(1)
4,3 (4.20)

m−1,1 = −t
(2)
1,4 + t

(2)
2,4 (4.21)

m−1,−1 = −t
(3)
2,1 − t

(3)
3,1 (4.22)

m1,−1 = t
(4)
3,2 − t

(4)
4,2, (4.23)

where [ma,b]h differs from Lee et al. (1998) by a minus sign due to the definition of

Lh. The form of these equations can be understood from figure 4.2a.

In this framework, any method that determines T will lead to a conservative dis-

cretization, Lh. Originally MPFA methods were developed for a full tensor permeabil-

ity field that is constant in every control volume, Ω̄h, and analytical considerations

have been used to obtain the entries in T (Aavatsmark, 2002). In reservoir engi-

neering the tensor permeability field is usually computed using upscaling techniques

(Durlofsky, 1991).

4.2 Multiscale finite volume method

The spatial structure of K is often very complex, and it may contain discontinuities

of several orders of magnitude as well as patterns on many different length scales.

The grid size, h, for (4.10) must be chosen to resolve all features of the tensor K that

are considered important for the subsequent solution of the transport equations. In

the case of flow and transport in porous media this is often the geostatistical grid

(Journel, 1986) and in the context of the multiscale method it is referred to as the

fine grid. In applications of petroleum engineering and groundwater hydrology the

fine grid is generally too large to allow direct numerical simulation at reasonable cost.
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The MSFV method addresses this problem by a three step procedure (Jenny et al.,

2003): 1) Local numerical fine-scale solutions in each interaction region, are used to

construct a coarse operator that accounts for fine-scale information on a coarser grid.

2) Problem 4.8 is solved on the coarse grid with the coarse operator. 3) A locally

conservative fine-scale flux field is reconstructed solving local fine-scale problems in

each coarse cell. The MSFV flux reconstruction on the fine-scale is consistent with

the fluxes of the coarse pressure field. The MSFV method is distinguished from

other upscaling methods by the construction of the coarse operator and the locally

conservative flux reconstruction that is consistent with the coarse operator.

The geostatistical or fine-scale permeability field is commonly isotropic Journel

(1986), although skewed and stretched grids can introduce an effective fine-scale per-

meability anisotropy (see § 4.3.1). All multiscale methods introduced in § 4.1.3 con-

sider isotropic fine-scale permeability fields on rectangular grids, corresponding to

a diagonal effective fine-scale permeability tensor field. The multiscale method dis-

cussed here also assumes a diagonal fine-scale permeability tensor, except in § 4.4

where fine-scale anisotropy is introduced to allow an analysis of the MSFV method

for the homogeneous case.

4.2.1 The coarse operator

The coarse elliptic problem is defined by

LHpH(xi, yj) = fH(xi, yj) ((xi, yj) ∈ ΩH),

LΓ
HpH(xi, yj) = gH(xi, yj) ((xi, yj) ∈ ∂ΩH).

(4.24)

The coarse grid has a grid size H = nch, where the integer nc is the coarsening ratio,

assumed to be the same in both directions. In porous media applications values of nc

between 3 and 15 are a common choice, so that the coarse linear system can be up

two orders of magnitude smaller than the fine system in two dimensional problems

(Jenny et al., 2003). The centers of the coarse finite control volumes are defined by

GH := {(x, y) : xi = (i + 1
2
)H, yj = (j + 1

2
)H; i ∈ (0, ..., N − 1), j ∈ (0, ...,M − 1)}.

The coarse control volume centered on node (xi, yj) is denoted by Ω̄Hij
. The coarse
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grid operator of the MSFV method in stencil notation is given by

LHpH = [ma,b]H pH , (4.25)

and the corresponding coarse linear system is denoted by LHpH = fH , so that [ma,b]H
contains the non-zero entries in a row of LH in the interior of ΩH . The coarse operator

LH of the MSFV method incorporates the fine-scale information of K through a series

of local elliptic solutions on portions of the fine grid that allow the determination of

the coefficients in the coarse stencil [ma,b]H . Even if K is diagonal on the fine-scale, the

heterogeneity may give rise to an effective anisotropy on the coarse scale (Durlofsky,

1991; Wu et al., 2002; Jenny et al., 2003; Chen et al., 2007). The coarse operator LH

of the MSFV method is designed to capture this effective anisotropy on the coarse

scale. This contribution focuses on the construction of LH from the local elliptic

problems and the resulting properties of the coarse operator LH .

The control volumes shown in figure 4.2a correspond to the coarse cells Ω̄Hij
in

the MSFV method and the interaction regions form the dual cells Ω̃
(i)
Hij

. These coarse

grids are underlain by a fine grid containing the detailed structure of K. Numerical

solutions of local elliptic problems in the dual interaction regions are used in the

MSFV method to obtain the entries of T(i). In the MSFV method the entire set

of fine fluxes along each boundary segment, sm, is necessary for the reconstruction

(§4.2.3), therefore the vectors of fine transmissibilities are stored instead of the total

transmissibilities (figure 4.3). In analogy to (4.15) the matrix of fine transmissibilities

T∗ =
{
t∗m,k

}
is defined as

T∗ =

⎛
⎜⎜⎜⎜⎝

t∗1,1 t∗1,2 t∗1,3 t∗1,4

t∗2,1 t∗2,2 t∗2,3 t∗2,4

t∗3,1 t∗3,2 t∗3,3 t∗3,4

t∗4,1 t∗4,2 t∗4,3 t∗4,4

⎞
⎟⎟⎟⎟⎠ . (4.26)

The t∗m,k are column vectors and the matrix is of size (4 · ns) × 4, where ns is the

number of fine cells on the coarse boundary segment. The transmissibilities on the

coarse-scale, T, can be obtained by summing the column vectors in T∗. Therefore, the
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coarse operator of the MSFV method, LH , is defined analogous to MPFA methods,

and the coefficients of the coarse stencil [ma,b]H are given by (4.16) to (4.23). The

LH is therefore similar to discretizations Lh for non-diagonal tensors on the fine grid.

There is a large body of work in this field, and we use these results to understand the

properties of LH in the MSFV method.

4.2.2 Local elliptic problems — basis functions

In the general heterogeneous case T(i) will be different in every dual interaction re-

gion, but the determination of tm,k in the MSFV method is identical in all four dual

interaction regions. Therefore, we restrict the discussion to a single dual, and we drop

the superscript indicating the dual. The sixteen degrees of freedom tm,k in each dual

are determined by any four linearly independent elliptic solutions, φhl
, in Ω̃H . The

l-th local solution in the dual interaction region is given by

L̃hφhl
= 0 ((xi, yj) ∈ Ω̃H),

L̃Γ
hl

φhl
= g̃hl

(pk) ((xi, yj) ∈ Γ̃ := ∂Ω̃H).
(4.27)

Here the linear operator L̃h is the restriction of Lh to the open domain Ω̃H ⊂ Ωh, and

L̃Γ
h is the linear boundary operator. The local support of the L̃h requires that artificial

boundary conditions are imposed on Γ̃. The choice of L̃Γ
hl

is an important design choice

in the MSFV method. The two most common choices for L̃Γ
hl

, are the linear boundary

condition and the oscillatory boundary condition, both were introduced by Hou &

Wu (1997) in the context of the multiscale finite element method.

For any vector pk that contains the solution in the corners of Ω̃H , the boundary

condition g̃hl
(pk) interpolates the solution values onto the sides of Ω̃H . The simplest

choice is linear interpolation, in this case L̃Γ
hl

:= I, where I is the identity and the

boundary condition is given by

φhl
= g̃hl

(pk) = (1 − xb/H) pn + xb/Hpn+1 (4.28)
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Figure 4.3: The top row shows contour plots of the four standard basis functions of the
MSFV method, calulated numerically for a heterogeneous, isotropic fine permeability
distribution. The second row shows the underlying dual interaction region with the
fine grid and the fine fluxes t∗m,k along the coarse boundaries (small arrows) and the
total coarse fluxes tm,k integrated over each face (big arrows).

where n ∈ (1, 2, 3, 4) is circular, and xb is the appropriate coordinate along the bound-

ary. The oscillatory boundary condition is obtained by solving a reduced elliptic

problem along the boundary of Ω̃H . The reduced boundary operator is defined by

L̃Γ
hl

φhl
= − ∂

∂xb
kb

∂φj

∂xb
= 0, (xb ∈ Γ̃n)

φhl
(xb = 0) = pn, φhl

(xb = H) = pn+1

(4.29)

where n ∈ (1, 2, 3, 4) is circular, kb is the component of the permeability tensor along

the boundary, and Γ̃n is the boundary segment between pn and pn+1. In the context of

the MSFV method oscillatory boundary conditions are referred to as reduced bound-

ary conditions, and they are used to improve the accuracy of the MSFV solution in

problems with strong heterogeneity (Jenny et al., 2003).

While the reduced boundary condition is optimal for space-separable problems,

either choice introduces an error localized in a boundary layer, δ, near Γ̃. It has been
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shown that local oversampling can reduce this error at higher computational cost

(Hou & Wu, 1997; Hou et al., 1999). In all results presented in this paper the domain

has not been oversampled, but all developments presented below can be used with

oversampling.

In the MSFV method these four local solutions are interpreted as basis functions,

and the vectors of corner pressures are chosen as pk = [δ1k, δ2k, δ3k, δ4k]
T , where δik is

the Kronecker delta. In the homogeneous case the solution to (4.27) reduces to the

bilinear basis functions known from finite element methods. We also use the term

bilinear local problem or basis function for heterogeneous problems with the same pk.

Similarly we use the term linear basis function or local problem for cases where the

homogeneous limit admits a linear solution. Figure 4.3 shows these solutions for a

heterogeneous, isotropic permeability field. From each of the four local solutions we

obtain a vector of fine transmissibilities, t∗m,k, across each of the coarse cell boundary

segments. These vectors contain the fine transmissibilities ordered by increasing x or

y-coordinate. At the boundaries the dual interaction regions overlap by a fine cell so

that the corresponding entries in t∗m,k are half of the associated fine-scale flux. The

coarse transmissibilities are given by tm,k =
∑ns

i=1(t
∗
m,k)i, where ns is the number of

fine cells along the coarse boundary segment. The four local problems give a total

of sixteen constraints that determine T uniquely in a given dual interaction region

Ω̃H . The MSFV basis functions are a particularly convenient way of determining the

entries of T, because the entries can be obtained directly by integrating the fluxes in

the local problems along the coarse cell boundaries (figure 4.3). In general any set of

four linearly independent local pressure solutions can be used to determine T.

Once the transmissibility matrices are known for all dual interaction regions Ω̃
(d)
Hij

,

the coarse operator can be assembled. The coarse solution pH is obtained from the

coarse linear system, LHpH = fH .

4.2.3 Reconstruction of the fine-scale flux field

A conservative fine-scale flux field can be reconstructed from pH , solving Neumann

problems in each coarse cell (Gautier et al., 1999; Jenny et al., 2005). The Neumann
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problem for a particular coarse cell Ω̄H is defined as

L̄hp̄h = 0 ((xi, yj) ∈ Ω̄H),

L̄Γ
h p̄h = ḡ(pH) ((xi, yj) ∈ Γ̄ := ∂Ω̄H).

(4.30)

Here the linear elliptic operator L̄h is the restriction of Lh onto the open domain

Ω̄H ⊂ Ωh, and L̄Γ
h is the linear boundary operator. To obtain a fine reconstruction

that is locally conservative on Ωh the linear boundary operator L̄Γ
h must impose the

fluxes on Γ̄, and is hence defined by

L̄Γ
h p̄h := −kn

∂p̄h

∂xn

= ḡ(pH), (4.31)

where xn is the direction normal to the boundary, and kn is the permeability in

direction xn. The fluxes ḡ(pH) are informed by the coarse solution pH . Jenny et al.

(2003) use the superpositon of a second set of basis functions to obtain ḡ(pH). This

method becomes inefficient, if the basis functions have to be updated frequently.

Lunati & Jenny (2006) avoid the second set of basis functions and extract ḡ(pH)

from the interpolation of the coarse solution onto the fine grid, using the MSFV basis

functions.

If the MSFV method is formulated in terms of T∗ as above, the fluxes on the

boundary ḡ(pH) can be obtained directly without explicitly interpolating the coarse

solution. In each of the four dual interaction regions, Ω̃, surrounding the coarse cell,

Ω̄, the fine fluxes on the coarse boundary segments s1 to s4 can be evaluated from

⎛
⎜⎜⎜⎜⎝

f∗1
f∗2
f∗3
f∗4

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
(4·ns)×1

=

⎛
⎜⎜⎜⎜⎝

t∗1,1 t∗1,2 t∗1,3 t∗1,4

t∗2,1 t∗2,2 t∗2,3 t∗2,4

t∗3,1 t∗3,2 t∗3,3 t∗3,4

t∗4,1 t∗4,2 t∗4,3 t∗4,4

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
(4·ns)×4

⎛
⎜⎜⎜⎜⎝

p1

p2

p3

p4

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
4×1

, (4.32)

where ns is the length of the boundary segments and (p1, p2, p3, p4)
T are the values

of the coarse solution pH in the corners of the dual interaction region. Once the fine
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Figure 4.4: The fine-scale solution as well as the reconstructed conservative and the
interpolated multiscale solutions are shown for the same problem. The log of the
permeability is shown at the base of each figure. A unit pressure gradient is applied
in the x-direction, and homogeneous Neumann boundary conditions are applied in
the y-directions. (a) The fine-scale solution, ph. (b) The conservative solution from
the flux reconstruction on the fine grid, p̄h. (c) The coarse solution, pH , interpolated
onto the fine grid using the MSFV basis functions, p̂h. In (b) and (c) the coarse
solution, pH , is shown as large black dots.

fluxes in all dual interaction regions are known, the fluxes on the entire boundary

of the coarse cell ḡ(pH) can be assembled. Again, care should be taken to properly

treat the fine-scale fluxes at the boundaries of dual interaction regions; these fluxes

receive contributions from two interaction regions. To specify the unknown constant

in (4.30) the fine solution is set to the coarse solution at the center of the coarse cell.

The reconstructed solution is conservative on the fine grid, and the corresponding

fine flux field can be used in transport calculations.

In §4.4.2 the coarse operator, LH , is modified by changing the entries of T∗,

and it is important to maintain consistency between the coarse operator and the

reconstruction. The reconstruction of the flux boundary condition given in (4.32) is

always consistent with LH .
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4.2.4 Properties of the MSFV solution

Figure 4.4a shows the reference fine-scale solution for a heterogeneous permeability

field. Figure 4.4b shows that the solution obtained from the reconstruction of fine

fluxes, p̄h , is discontinuous at the coarse cell boundaries. These discontinuities are

not merely a function of the arbitrary constants in problem (4.30). There is no set of

pressure constants that eliminates the discontinuities in the reconstructed solutions.

The presence of strong heterogeneity leads to peaks at ∂Ω̄H , if the boundary condition

forces a high flux into a fine cell with low permeability. The magnitude of these peaks

in the fine solution is not bounded by the surrounding coarse solution. This leads

to the loss of monotonicity in the reconstructed fine-scale solution even if the coarse

solution is monotone. The variational multiscale method exhibits a similar loss of

monotonicity in the fine-scale pressure reconstruction Juanes & Dub (2008). Despite

these undesirable features of the reconstructed fine solution, the associated flux field

is generally a good approximation, and it has been used successfully in transport

calculations (Jenny et al., 2003; Juanes & Dub, 2008).

Figure 4.4c shows the interpolation of the coarse solution onto the fine grid using

the bilinear basis functions. This solution is denoted p̂h and defined in each dual

interaction region, Ω̃H , by

p̂h =
4∑

l=1

φhl
pHl

, (4.33)

where pHl
are the coarse pressures in the corners of Ω̃H .

This interpolated solution is not necessary for the MSFV method described above,

but has some attractive properties. Given a monotone coarse solution, pH , the in-

terpolation, p̂h, is monotone, because each of the numerical basis functions used for

interpolation is monotone. The interpolation p̂h is not conservative along the bound-

aries of the dual interaction regions on the fine grid. The fine fluxes derived from the

interpolation p̂h are therefore not locally conservative and cannot be used for trans-

port calculations. The interpolation p̂h is only continuous for pure Dirichlet local

boundary conditions in (4.27) without oversampling.
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4.3 Anisotropy and monotonicity

Kippe et al. (2007) and Lunati & Jenny (2007) have shown that the MSFV method

leads to unphysical oscillations in the coarse solution and unphysical recirculation in

the reconstructed fine-scale velocity field, if the aspect ratio of the grid is not close

to unity. Figure 4.4b & c show a local maximum in the coarse solution of the MSFV

method inside the domain even for an isotropic, heterogeneous problem.

4.3.1 Effective permeability tensor

In § 4.1.4 we introduced the discrete fine-scale operator, Lh for a uniform square grid.

A uniform rectangular grid with permeability tensor Kr is equivalent to a uniform

square grid with an effective permeability tensor, K, given by

K =

(
a c

c b

)
=

1

∆x∆y

(
∆y 0

0 ∆x

)
Kr

(
∆y 0

0 ∆x

)
, (4.34)

where ∆x and ∆y are the length of the finite control volumes on the rectangular

grid. The relation between the aspect ratio, A = ∆x/∆y, used by Kippe et al.

(2007) and Lunati & Jenny (2007), and the effective permeability tensor used here is

therefore a/b ∝ A−2. In all heterogeneous numerical examples Kr is isotropic and K

is diagonal, in this case a/b = A−2.

To understand the loss of monotonicity of the MSFV method we need to under-

stand the effect of coarse-scale anisotropy introduced by heterogeneity on the fine

scale. However, it is difficult to analyze the properties of multiscale methods for

heterogeneous cases with long correlation length. Durlofsky (1991) shows that the

effect of the fine-scale heterogeneity on the coarse scale is equivalent to a homoge-

neous anisotropic fine-scale permeability. This equivalent fine-scale permeability is

generally not aligned with the grid, c �= 0. In § 4.4 we use this analogy to study the

properties of the coarse operator of the MSFV method on a homogeneous anisotropic

fine-scale permeability field. Numerical examples in § 4.7 show that the behavior of

MSFV for these problems gives a good indication of its accuracy and robustness for
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Figure 4.5: Three solution profiles in the x-direction located at y = 1/2 are shown
for increasing values of the ratio a/b with c = 0. (a) anisotropy ratio, a/b = 1 > 1/3,
corresponding to A = ∆x/∆y = 1 . (b) anisotropy ratio, a/b = 1/100 < 1/3,
corresponding to A = 10. (c) anisotropy ratio, a/b = 1/2500 < 1/3, corresponding
to A = 50.

problems with anisotropy resulting from fine-scale heterogeneity.

Therefore, we introduce a rotated fine-scale permeability tensor only for the analy-

sis of homogeneous problem in § 4.4, while we assume K to be diagonal otherwise.

Since K is symmetric positive definite, the components of the effective tensor are

required to satisfy a > 0, b > 0, and c2 < ab. So that a, b, and c can also be expressed

as a rotation of a diagonal tensor

(
a c

c b

)
=

(
cos θ sin θ

− sin θ cos θ

)(
λ1 0

0 λ2

)(
cos θ − sin θ

sin θ cos θ

)
, (4.35)

where λ1 and λ2 are the principle components of the effective tensor (λ1 ≥ λ2) and θ

is the angle between the x-axis and the eigenvector associated with λ1.

Loss of monotonicity

Incompressible flow in porous media leads to elliptic problems with strongly heteroge-

neous anisotropic coefficients. Many numerical discretizations of the elliptic operators

lead to unphysical oscillatory solutions, and the design of robust schemes has received

a lot of attention. Generally it is not possible to construct a 9-point discretization

that is locally conservative, exact for linear pressure fields, and monotonic for all



CHAPTER 4. MULTISCALE SIMULATION 140

admissible a, b and c (Nordbotten et al., 2007). Diagonal dominance and the M-

matrix property together ensure the monotonicity of the discrete scheme, where an

M-matrix is defined as a nonsingular matrix A = {aij} whose off-diagonal elements

are non-positive (aij ≤ 0 for i �= j) and whose inverse is monotone, A−1 > 0 (Bunse

& Bunse-Gerstner, 1985). Nordbotten et al. (2007) have obtained less restrictive con-

ditions sufficient for monotonicity. For homogenous uniform grids considered in this

section their results reduce to

m0,0 > 0, (4.36)

max(m1,0,m0,1) < 0, (4.37)

m0,0 + 2 max(m1,0,m0,1) > 0, (4.38)

m1,0m0,1 − max(m1,1,m−1,1)m0,0 > 0. (4.39)

Kippe et al. (2007) and Lunati & Jenny (2007) have reported unphysical oscillatory

solutions that occur when the MSFV method is applied to heterogeneous anisotropic

problems. In heterogeneous domains it is not clear whether the loss of monotonicity is

caused by the assumptions on the boundary condition of the local problems 4.27, or by

the properties of LH itself. The following example will show that pH has oscillations

even in homogeneous domains, indicating loss of monotonicity of the coarse operator

LH .

Consider (4.10), with Ωh = (0, 1) × (0, 1), a square grid of 135 × 135 fine cells,

homogeneous Dirichlet boundary conditions, so that LΓ
h = I and gh = 0, the source

term

fh =

{
1 1/3 < x, y < 2/3,

0 otherwise,
(4.40)

and aligned anisotropy (c = 0). The source term is non-negative, fh ≥ 0, in Ωh

and therefore ph should be non-negative and have no local minimum in Ωh by Hopf’s

maximum principle (Strauss, 1992). For grid aligned anisotropy the discrete operator

on the fine grid Lh is the standard 5-point stencil. Figures 4.5a-c show that ph obeys

Hopf’s maximum principle, because the 5-point stencil satisfies conditions 4.36 to 4.39

for all ratios a/b.
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Figure 4.6: Numerical results for the stencil components m1,0 and m1,1 of the MSFV
method are compared to the analytic expressions of the MPFA O(1) method. The
components are shown as a function of the orientation of the tensor, θ, for several
ratios of the principal components, λ1/λ2.

Consider the same problem solved with the MSFV method with a coarsening ratio

nc = 5, giving 27×27 coarse cells. Figures 4.5a & b show that the coarse solution pH

is monotonic for a/b close to unity, but figure 4.5c shows that oscillations and local

minima occur as a/b decreases further.

4.4 Coarse operator for homogeneous problems

The properties of the MSFV coarse operator are analyzed with respect to anisotropy

and monotonicity. This section focusses on homogenous anisotropic permeability

fields. In this case the oscillatory local boundary conditions (4.29) reduce to linear

interpolations (4.28).

4.4.1 Original coarse operator

In §4.1.5 we show that the MSFV coarse operator is completely determined by T

and (4.16) to (4.23). In the homogenous case the transmissibilities tm,k of the MSFV

method are determined by the four bilinear basis functions in the dual interaction
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region. For grid aligned anisotropy, c = 0, the basis functions are given by

φ1 = (1 − x)(1 − y), φ2 = x(1 − y), φ3 = xy, and φ4 = (1 − x)y.

The analytical solutions for the bases functions are not known for anisotropy not

aligned with the grid (c �= 0), but these basis functions can be calculated numerically.

The discussion is therefore, initially restricted to problems with aligned anisotropy,

and in this case the matrix T is given by

T =
1

8

⎛
⎜⎜⎜⎜⎝

3a −3a −a a

b 3b −3b −b

a −a −3a 3a

3b b −b −3b

⎞
⎟⎟⎟⎟⎠ . (4.41)

From (4.16) to (4.23) we obtain the coarse operator of the MSFV method as

LH = [ma,b]H =
1

8

⎡
⎢⎢⎣

− (a + b) , 2 (a − 3b) , − (a + b)

2 (b − 3a) , 12(a + b), 2 (b − 3a)

− (a + b) , 2 (a − 3b) , − (a + b)

⎤
⎥⎥⎦

H

, (4.42)

for homogeneous problems with aligned anisotropy, c = 0. The coefficients m±1,0 and

m0,±1 in the stencil are only non-positive for an anisotropy ratio, a/b, between 1/3 and

3, outside this narrow interval LH violates (4.37). This is the cause of the oscillations

in homogeneous problems with aligned anisotropy observed in §4.3.1. The violation

of (4.36) to (4.39) does not immediately lead to a coarse solution pH that violates

Hopf’s maximum principle. In figure 4.5b the coarse solution pH is still oscillation

free although LH violates (4.37), but oscillations occur eventually if the anisotropy

increases further.

The coarse operator of the MSFV method is similar to the MPFA O(η) method,

for η = 1. This family of schemes was first introduced by Edwards & Rogers (1998),

however we follow the parametrization of Nordbotten et al. (2007) in terms of the

parameter η ∈ [0, 1). Although the general construction of the O(η) method requires
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Figure 4.7: The monotonicity regions of the original and compact coarse operator are
shown in the parameter space a/b vs. |c|/b. A gray grid shows the corresponding
angle, θ, and the ratio of principal components, λ1/λ2 in the effective permeability
tensor given by (4.35). All methods are monotone above the labeled line. (a) The
monotonicity regions of both the MPFA O(1) method and the coarse operator of the
MSFV method are compared. (b) The monotonicity region of the CMSFV method
equals that of the 7-point stencil.

η ∈ [0, 1), for the homogeneous case the O(1) method is well defined Nordbotten et al.

(2007). Previously the O(0) method has been emphasized by Aavatsmark (2002), the

O(1/2) method by Edwards & Rogers (1998), and the O(0.9) method by Pal et al.

(2007).

For homogeneous problems with aligned anisotropy (c = 0) the MSFV coarse

operator is identical to the MPFA O(1) method. For c �= 0 we have used numerical

solutions on the fine grid to compute the MSFV coarse operator. The MPFA O(0)

method was used to compute the basis functions on the fine grid. Figure 4.6 compares

the numerical results for the MSFV method to the analytic expression for the O(1)

method. Both methods have a similar behavior as the tensor is rotated. The difference

between the methods increases as the ratio of the principal components of K increases.
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The region where a stencil satisfies (4.36) to (4.39) will be referred to as the

monotonicity region of the stencil. The monotonicity region of the MSFV method is

shown in figure 4.7a and has the same characteristics as that of the O(1) method.

The monotonicity of both methods is very limited when anisotropy is aligned with

the grid and largest, if the tensor is rotated by 45◦. This unusual property of the

original MSFV method is an unanticipated consequence of using bilinear dual basis

functions within the finite volume framework of § 4.1.5.

4.4.2 Compact coarse operator

The limited monotonicity region of the MSFV coarse operator, when the anisotropy is

aligned with the grid, prevents the application of the MSFV method to many realistic

problems in subsurface flow, where grids with high aspect ratios are commonly used.

In §4.2 the MSFV method was formulated in terms of a MPFA method. It has been

shown that it is possible to construct MPFA methods with different monotonicity

properties while maintaining accuracy and convergence (Edwards & Rogers, 1998;

Nordbotten et al., 2007). For homogeneous anisotropic problems the following 7-

point stencil

[ma,b]h =

⎡
⎢⎢⎣

(c − |c|)/2 −b + |c| −(c + |c|)/2

−a + |c| 2(a + b − |c|) −a + |c|
−(c + |c|)/2 −b + |c| (c − |c|)/2

⎤
⎥⎥⎦

h

, (4.43)

is second order accurate. Two of the diagonal neighbors are always zero depending

on the sign of c, and therefore the stencil has 7 non-zero entries for c �= 0. All four

diagonal neighbors are zero for c = 0, and the method reduces to the standard 5-

point stencil. Nordbotten et al. (2007) have shown that the 7-point stencil has an

optimal monotonicity region, in the sense that no other 9-point stencil satisfies con-

ditions 4.37 to 4.39 over a larger range of parameters (figure 4.7b). For homogeneous

problems and inside its monotonicity region this 7-point stencil also leads to a linear

system, where Lh is a M-matrix. The 7-point stencil can be characterized using a

3-point flux approximation (figure 4.8), leading to one zero entry in every row of the
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Figure 4.8: The triangular domains of dependence of the fluxes in a dual interaction
region are shown for both signs of c. The corresponding orientation of the permeability
tensor is indicated by the ellipses.

transmissibility matrix

T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

⎛
⎜⎜⎜⎜⎝

a, c − a, −c, 0

c, b − c, −b, 0

c, 0, −a, a − c

b, 0, −c, c − b

⎞
⎟⎟⎟⎟⎠ c ≥ 0,

1
2

⎛
⎜⎜⎜⎜⎝

a − c, −a, 0, c

0, b, c − b, −c

0, −c, c − a, a

b − c, c, 0, −b

⎞
⎟⎟⎟⎟⎠ c < 0,

(4.44)

whose position depends on the sign of the off-diagonal component, c. Figure 4.8 shows

that the domain of dependence of each flux is aligned with the direction of maximum

connectivity. We refer to a stencil with three non-zero entries in each row of T as

a compact operator. The definition is based on T rather than the resulting stencil,

because the latter may lose its zero entries in the heterogeneous case, while the zero

entries in T always remain.
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4.5 Compact coarse operator for

heterogeneous problems

To obtain a multiscale finite volume method with better monotonicity properties,

a compact coarse operator is introduced that reduces to the 7-point stencil in the

homogeneous limit. The resulting compact multiscale finite volume (CMSFV) method

is otherwise identical to the original MSFV method proposed by Jenny et al. (2003).

The framework presented in §4.2 allows the necessary modification of T without

introducing inconsistencies in the reconstruction.

Four degrees of freedom are necessary to modify T to obtain a compact operator,

the corresponding compact transmissibility matrix is denoted T̄. These degrees of

freedom are obtained by reducing the number of local solutions from four to three,

providing twelve constraints on the sixteen unknown transmissibilities tm,k. Instead

of the four basis functions of the original MSFV method, defined in §4.2.2 the basis

Φ1 =
4∑

i=1

φi, Φ2 = φ1 + φ4, Φ3 = φ1 + φ2, and Φ4 = φ4,

can be used to determine the transmissibilities tm,k. This change in the basis does

not affect the coarse operator, but it separates the linear and the bilinear parts of the

solution. Linear solutions can be represented exactly by the first three bases, and we

eliminate Φ4 to obtain the four degrees of freedom necessary to modify T. The first

three basis functions Φ1 to Φ3 provide the following twelve constraints

0 = T̄( 1 1 1 1 )T , (4.45)

fx = T̄( 1 0 0 1 )T , (4.46)

fy = T̄( 1 1 0 0 )T , (4.47)

on T̄. The definition of T̄ is completed by placing a zero entry in each row. As in the

homogeneous case the zeros are placed to align the stencil with the principle direction

of anisotropy, which can be determined from the local flow information in (4.46) and
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(4.47). The compact transmissibility matrix, T̄, has the following rows,

(
t̄1,1, t̄1,2, t̄1,3, t̄1,4

)
=

⎧⎨
⎩

(
fx

1 , f y
1 − fx

1 , −f y
1 , 0

)
, f y

1 ≥ 0,(
fx

1 − f y
1 , −fx

1 , 0, f y
1

)
, f y

1 < 0,
(4.48)

(
t̄2,1, t̄2,2, t̄2,3, t̄2,4

)
=

⎧⎨
⎩

(
fx

2 , f y
2 − fx

2 , −f y
2 , 0

)
, fx

2 ≥ 0,(
0, f y

2 , fx
2 − f y

2 , −fx
2

)
, fx

2 < 0,
(4.49)

(
t̄3,1, t̄3,2, t̄3,3, t̄3,4

)
=

⎧⎨
⎩

(
f y

3 , 0, −fx
3 , fx

3 − f y
3

)
, f y

3 ≥ 0,(
0, −f y

3 , f y
3 − fx

3 , fx
3

)
, f y

3 < 0,
(4.50)

(
t̄4,1, t̄4,2, t̄4,3, t̄4,4

)
=

⎧⎨
⎩

(
f y

4 , 0, −fx
4 , fx

4 − f y
4

)
, fx

4 ≥ 0,(
f y

4 − fx
4 , fx

4 , 0, −f y
4

)
, fx

4 < 0,
(4.51)

expressed in terms of the transmissibilities fx and fy of the new bases functions Φ2

and Φ3. This definition of the compact transmissibility matrix reduces to (4.44)

in the homogeneous, anisotropic case. Since the MSFV method does not compute

an explicit upscaled effective permeability tensor, the orientation of the domain of

dependence is based on the numerically computed fluxes rather than the off-diagonal

component of the effective tensor.

The corresponding compact coarse operator is given by (4.16) to (4.23), where tm,k

has been replaced by t̄m,k in all equations. For the homogeneous case the compact

coarse operator is identical to the 7-point stencil, and hence the monotonicity of the

CMSFV method in the homogeneous parameter space is identical to that of the 7-

point stencil (figure 4.7b). In the general heterogeneous case the entries of T̄ are

calculated numerically from the basis functions Φ2 and Φ3. The choice of boundary

conditions for these local problems is discussed in §4.6.3.
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a) a/b = 1 b) a/b = 1/10 c) a/b = 1/100 d) a/b = 1/1000

Figure 4.9: The approach of the global fine-scale solution to transverse equilibrium,
as the effective anisotropy a/b increases. The boundary conditions for this problem
are p(x = 0, y) = 1, p(x = 1, y) = 0, and py(x, y = 0, 1) = 0 and the effective
permeability on the fine-scale is diagonal, c = 0. The log of the permeability field is
shown at the base.

4.6 Localization of fine-scale problems

The boundary conditions that are used to localize the elliptic problems in the dual

interaction regions, L̃Γ
h, have a strong influence on the properties of the coarse opera-

tor for heterogeneous problems. Two common choices, linear and reduced boundary

conditions have been introduced in §4.2.2. Either choice introduces an error into the

basis functions that is localized in a boundary layer. In many anisotropic porous

media problems the boundary layer quickly grows to the size of the local domain,

and local oversampling cannot eliminate the error introduced by the local bound-

ary conditions. However, in these cases the solution has a simple form, and this is

exploited here to construct local solutions that lead to a robust and accurate coarse

operator. A different approach to this problem is to introduce global information into

the basis functions (Chen & Durlofsky, 2006; Efendiev et al., 2006; Durlofsky et al.,

2007), which leads to improved accuracy but at increased computational cost.
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4.6.1 Transverse equilibrium

Problems of flow in porous media are often characterized by domains with high ef-

fective anisotropy and homogeneous Neumann boundary conditions. This allows the

solution of the elliptic problem to reach transverse equilibrium (TVE). Transverse

equilibrium is characterized by negligible gradients in the direction of high effective

permeability. This property has been exploited in the derivation of simplified analyti-

cal models (Yortsos, 1995), and efficient pseudo three-dimensional numerical methods

(Coats et al., 1971).

Consider the elliptic problem given by (4.8) with a diagonal permeability ten-

sor, where the components of the tensor a(x) and b(x) are related by a constant

a(x) = A−2b(x). This is the typical effective permeability tensor arising from isotropic

problems in stretched domains, where A = ∆x/∆y. The pressure equation is then

given by
1

A2

∂

∂x

(
b(x)

∂p(x)

∂x

)
+

∂

∂y

(
b(x)

∂p(x)

∂y

)
= 0. (4.52)

Consider the case where homogenous Neumann boundary conditions are applied in the

y-direction, and constant Dirichlet conditions on the remaining boundaries, so that

an overall pressure gradient in the positive x-direction is imposed. The numerical

solutions in figure 4.9 show that the solution becomes one-dimensional in the x-

direction in the limit of large A. We integrate (4.52) in the y-direction to obtain an

expression for the effective one-dimensional pressure equation

1

A2

∂

∂x

∫ 1

0

b(x)
∂p(x)

∂x
dy +

(
b(x)

∂p(x)

∂y

∣∣∣∣1
0

= 0. (4.53)

The second term is zero due to the homogeneous Neumann boundary conditions. In

a boundary layer, δy ∝ A, near the Neumann boundaries the transverse gradients in

the solution vanish, ∂p/∂y ≈ 0. In the limit of large A the boundary layers from the

opposite sides of the domain merge so that p is in TVE and no longer a function of

y, and (4.53) is approximately equal to

1

A2

∂

∂x

(∫ 1

0

b(x)dy
∂p(x)

∂x

)
=

∂

∂x

(
〈a〉y (x)

∂p(x)

∂y

)
≈ 0, (4.54)



CHAPTER 4. MULTISCALE SIMULATION 150

where 〈a〉y (x) is the average of a(x) in the y-direction.

4.6.2 Bilinear local problems with

Dirichlet boundary conditions

The local elliptic problems, introduced in § 4.2.2, are constructed with Dirichlet

boundary conditions, and their behavior for large effective anisotropy is different

from the limit of the global solution with homogeneous Neumann boundary condi-

tions. In particular the second term of (4.53) is not zero and the limit of (4.52) for

large A is
∂

∂y

(
b(y; x)

∂p(y; x)

∂x

)
≈ 0. (4.55)

The solution consists of a family of decoupled one dimensional problems in the y-

direction, which are parameterized by x. Unless the pressures specified at the y-

boundaries are equal there will be significant fluxes in the y-direction.

When basis functions are constructed for problems with high effective anisotropy,

the boundary layer containing the error introduced by the localization spreads through

the entire dual interaction region and dominates the solution. Since it is not possible

to eliminate the localization error by oversampling, it appears that the MSFV method

cannot be accurate for high aspect ratios. However, it has been shown above that

the solution has a simple form as it approaches transverse equilibrium with increasing

anisotropy. If the local boundary conditions are chosen to allow transverse equilibrium

in the local solution, then the MSFV method can produce good results at high aspect

ratios.

We have shown in §4.4.1 that very large transverse fluxes occur in homogeneous

problems at high effective anisotropy and lead to the loss of monotonicity of the coarse

operator. The compact coarse operator is designed to minimize these fluxes and give

the largest possible monotone domain. To retain a monotone coarse operator for het-

erogeneous problems, it is therefore important that the local elliptic problems do not

introduce artificial gradients in the transverse direction. Given a coarse pressure field

in transverse equilibrium, ∂pH/∂y = 0, the local solutions must be able to interpolate

the coarse pressure onto the fine grid without introducing artificial gradients in the
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Figure 4.10: Comparison between the fine-scale solution ph and the interpolated
pressure field p̂h = φh1 +φh4 in a dual crossing the high permeability channel at a/b =
1/1000. (a) Fine-scale solution, ph, in the dual, rescaled to a unit pressure gradient,
is in transverse equilibrium. (b) Interpolated fine pressure p̂h with reduced boundary
conditions. (c) Interpolated fine pressure p̂h with linear boundary conditions. (d)
Interpolated fine pressure p̂h with hybrid boundary conditions.

y-direction.

Consider a domain with a high permeability channel in the y-direction, small

amplitude random noise, an effective anisotropy a/b = 1/1000, and the boundary

conditions p(x = 0, y) = 1, p(x = 1, y) = 0, and py(x, y = 0, 1) = 0. Figure 4.10a

shows that the fine-scale solution is in transverse equilibrium, and the reduced one

dimensional problem in the x-direction reflects the high permeability channel.

The advantage of the reduced boundary conditions is that they are also solutions

to one dimensional problems, and therefore recognize the high permeability channel.

Figure 4.10b shows that the channel is reflected in the superposition of the local

solutions. The reduced boundary conditions sample different realizations of the per-

meability and are therefore not identical. This introduces finite transverse gradients,

∂p̂h/∂y �= 0, even if the coarse pressure is in transverse equilibrium. Even small

transverse pressure gradients lead to very large fluxes as the effective anisotropy in-

creases, and this leads to the loss of monotonicity of the coarse operator even for

the compact stencil. Eliminating these gradients is therefore the key to a monotone

coarse operator and a robust MSFV method for heterogeneous anisotropic problems.

Linear boundary conditions are identical by construction and do not introduce

artificial transverse gradients. Therefore, linear boundary conditions give rise to a
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more robust coarse scale operator, but figure 4.10c shows that they give poor accu-

racy. In this case the linear boundary conditions have a large error. For isotropic

problems this error would be localized in a narrow boundary layer, but for high effec-

tive anisotropy the error spreads through the entire dual interaction region. Linear

boundary conditions therefore give a robust operator, but they may lead to poor

accuracy.

4.6.3 Linear local problems with hybrid boundary conditions

For highly anisotropic problems with homogeneous Neumann boundaries on the global

domain, the boundary conditions for the local elliptic problems must have the follow-

ing properties: To ensure robustness it is essential that the local elliptic problems can

reach transverse equilibrium. To ensure accuracy in the isotropic case the boundary

condition should be close to the reduced boundary condition. In the limit of high ef-

fective anisotropy the local elliptic problem should reduce to a close approximation of

the one dimensional problem (4.54). To allow a simple implementation the boundary

condition should adjust automatically to the magnitude of the effective anisotropy.

We propose hybrid boundary conditions for the local elliptic problems that ensure

transverse equilibrium, give good accuracy for all aspect ratios, and are parameter

free. To allow the local problems to reach transverse equilibrium homogeneous Neu-

mann boundary conditions need to be imposed in the direction of TVE instead of

Dirichlet boundary conditions. For the linear basis functions already introduced in

§4.4.2, homogeneous Neumann boundary conditions can be imposed naturally on the

faces perpendicular to the imposed gradient. The linear local problems are defined

by 4.27, with the boundary operator given as

L̃Γ
h2

= I, g̃h2 = 1, (xi = 0, yi), (4.56)

L̃Γ
h2

= I, g̃h2 = 0, (xi = 1, yi), (4.57)

L̃Γ
h2

=
∂

∂y
, g̃h2 = 0, (xi, yi = 0) and (xi, yi = 1) (4.58)
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for linear gradient, Φh2 , in the x-direction, and

L̃Γ
h3

= I, g̃h3 = 1, (xi, yi = 0), (4.59)

L̃Γ
h3

= I, g̃h3 = 0, (xi, yi = 1), (4.60)

L̃Γ
h3

=
∂

∂x
, g̃hl

= 0, (xi = 0, yi) and (xi = 1, yi), (4.61)

for linear gradient, Φh3 , in the y-direction. We can use these two solutions to define

the boundary conditions for a bilinear local problem Φh4

L̃Γ
h4

= I, g̃h4 = Φh2 , (xi, yi = 1), (4.62)

L̃Γ
h4

= I, g̃h4 = 1 − Φh3 , (xi = 0, yi), (4.63)

L̃Γ
h4

= I, g̃h4 = 0, (xi = 1, yi) and (xi, yi = 0). (4.64)

Together with the constraint, �0 = T�1, these three problems determine the coarse

operator uniquely. The standard set of bilinear basis functions can be obtained from

Φh2 to Φh4 through linear superposition. These bilinear basis functions have hybrid

boundary conditions and hence the transmissibility matrix T and the coarse operator

LH are modified. This modification is independent from the implementation of the

compact coarse operator.

The local problems defined above attain transverse equilibrium at high anisotropy

by construction (figure 4.10d). Transverse gradients in the local problems are re-

duced faster than in the global fine-scale solution, because the domain is smaller and

therefore boundary layers merge earlier. Therefore, hybrid boundary conditions have

robustness similar to linear boundary conditions. Section 4.11 shows that the accu-

racy of the hybrid boundary conditions is similar to that of the reduced boundary

conditions at low anisotropy. At high anisotropy the accuracy of the hybrid boundary

conditions is good if 〈a〉y in the dual interaction region is a good representation of

〈a〉y in the global domain.
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Figure 4.11: (a) The unit square domain Ω, with a 20 × 20 coarse grid. The back
squares indicate coarse blocks with sources fH = ±1. In these blocks the fine-scale
permeability is constant at the mean to give a uniform distribution of the fine-scale
flux. (b) A realization of the permeability field with small correlation length. Figures
c and d show realizations of the layered permeability fields at angles of 15◦ and −30◦

respectively. The logarithm of the permeability is shown in all cases.

4.7 Numerical results for heterogeneous problems

Two coarse scale operators and three local boundary conditions have been introduced

above, allowing six different combinations in addition to the fine-scale solution. To

distinguish the resulting combinations we denote the original operator by, MSFV,

the compact operator by, CMSFV, and the reduced, linear and hybrid local boundary

conditions by the post fix -red, -lin, and -hyb, respectively. This section focuses mostly

on the comparison between MSFV-red that is most commonly used and CMSFV-hyb

presented above.

In all tests a unit square domain has been used, and a diagonal pressure gradient

has been imposed by introducing coarse source terms fH in opposing corners. This is

similar to the quarter five spot configuration commonly used in reservoir simulation

(figure 4.11a). The fine grid has a dimension of 100× 100, and it has been coarsened

uniformly by a factor of five to produce a 20 × 20 coarse grid. Two types of per-

meability fields were used; fields with short correlation length resulting in a patchy

pattern, and fields with a short and a long correlation length resulting in a layered

pattern. Twenty realizations of the patchy permeability field with a log-normal dis-

tribution, a variance of log k of 2.0, a mean of 3.0, a dimensionless correlation length
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a) fs c) fs

f) MSFV-red

l) CMSFV-hyb

d) MSFV-red

j) CMSFV-hyb

b) fs

e) MSFV-red

k) CMSFV-hyb

g) CMSFV-lin h) CMSFV-lin i) CMSFV-lin

Figure 4.12: Comparison of time of flight maps between multiscale methods and
the fine-scale solution for three isotropic but heterogeneous fine-scale permeability
fields. All solutions are shown at the same injected volume, corresponding to the
breakthrough of the fine-scale solution. The fine-scale solution, fs, is shown in the first
row, a to c, the original MSFV -red method in the second row, d to f, the CMSFV -lin
method in the third row, g to i, and the CMSFV -hyb method in the fourth row, j to
l. The first column shows solutions for a realization of the permeability field shown
in figure 4.11b, columns 2 to 3 show solutions for realizations of layered permeability
fields at 15◦ and -30◦ (figure 4.11c and d).
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a) fs

d) MSFV-red

b) fs

k) CMSFV-hyb

c) fs

f) MSFV-rede) MSFV-red

h) CMSFV-ling) CMSFV-lin i) CMSFV-lin

j) CMSFV-hyb l) CMSFV-hyb

Figure 4.13: Comparison of time of flight maps between multiscale methods and
the fine-scale solution for three heterogeneous fine-scale permeability fields with grid
aligned fine-scale anisotropy, a/b = 0.01. All solutions are shown at the same injected
volume, corresponding to the breakthrough of the fine-scale solution. The figure
layout is the same as in figure 4.12.



CHAPTER 4. MULTISCALE SIMULATION 157

λ1 = λ2 = 0.05, and a spherical variogram have been generated with sequential

gaussian simulation (figure 4.11b). Layered permeability fields with a log-normal dis-

tribution, a variance of log k of 2.0, a mean of 3.0, a dimensionless correlation length

λ1 = 0.5, and λ2 = 0.02, and a spherical variogram have been generated with sequen-

tial gaussian simulation (Chen et al., 2007). The angle θ between the direction of

long correlation and the horizontal has been varied between θ = −45◦ and 45◦ in 15◦

intervals (figure 4.11c&d). For each angle, 20 realizations have been created and all

values reported are averages and standard deviations over all realizations.

For transport in porous media a major objective of multiscale methods is to obtain

accurate transport on the fine-scale. Comparing error norms of the reconstructed fine-

scale pressure does not give a good indication of the quality of the fine-scale transport.

Therefore, it is common to assess the quality of multiscale methods designed for

transport in porous media by comparing the concentration fields of a passive tracer

advected on the fine scale (Jenny et al., 2003; Aarnes, 2004). To eliminate numerical

diffusion introduced by advection schemes, the tracer distribution is calculated using

particles.

First we consider the domain shown in figure 4.11a with homogeneous Neumann

boundary conditions, so that the solution approaches transverse equilibrium at high

anisotropy. Figure 4.12 shows the tracer particles introduced at the source in the bot-

tom left corner. The particles are colored according to the time since they have been

introduced into the domain, their time of flight (TOF). For isotropic fine-scale per-

meability fields both the MSFV-red method and the CMSFV-hyb method are able to

reproduce the fine-scale structure in the tracer field. In these cases where the MSFV-

red method performs well the quality of the CMSFV-hyb solution is comparable to

the MSFV-red solution.

Figure 4.13 shows the tracer maps for the same permeability fields that are shown

in figure 4.12, but with uniform, grid aligned, fine-scale anisotropy of a/b = 0.01,

corresponding to an orthogonal grid with aspect ratio 1 : 10. The MSFV-red solu-

tion shows unphysical recirculation cells. The CMSFV-hyb solution shows no such

recirculation cells, has a monotonic coarse scale solution, and recovers the fine-scale
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Figure 4.14: Figures a and b show the mean L2-errors of the interpolated solution
p̂h and the reconstructed flux field ūh = −k∇p̄h as function of the orientation, θ, of
the fine-scale layering for isotropic fine-scale permeability, a/b = 1. Figures c and d
show the same for grid aligned fine-scale anisotropy a/b = 0.04 (∆x/∆y = 5). All
values shown are means over 20 realizations and the standard deviations are shown
as vertical bars, if they are larger than the symbols.
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detail of the tracer distribution. In the presence of fine-scale anisotropy the CMSFV-

hyb solution is a good approximation to the fine-scale solution, while the MSFV-red

solution has large errors and unphysical behavior.

The linear boundary conditions give comparable results for isotropic problems,

but lose accuracy as the aspect ratio increases. For flow across layers the errors are

largest (figure 4.13i), as expected from the discussion in §4.6.2.

Error norms for the pressure and the reconstructed flux obtained by both methods

are shown in figure 4.14. The interpolated pressure p̂h is proportional to the error

in the coarse solution, while the reconstructed, fine-scale flux ūh is proportional to

the error in the reconstructed pressure p̄h. Figure 4.14a shows that linear boundary

conditions lead to larger errors than reduced or hybrid boundary conditions for both

coarse operators. For clarity, the results for linear boundary conditions are omitted

from the other graphs. Figures 4.14a and b show that for isotropic fine-scale perme-

ability fields the errors in the MSFV-red and the CMSFV-hyb solutions are of the

same order of magnitude for flow along layers (0◦ < θ < 45◦). For flow across layers

(−45◦ < θ < 0◦) the error in the MSFV-red solution is significantly smaller, because

the reduced boundary condition is optimal for this special case. However, for any sig-

nificant anisotropy on the fine-scale the CMSFV-hyb solution becomes more accurate

than the MSFV-red for all angles (figure 4.14c and d).

Figures 4.15a and b show that for both the MSFV-red and the CMSFV-red

solutions the errors in the flux, ūh, grow exponentially with increasing fine-scale

anisotropy, while the errors for both the MSFV-hyb and the CMSFV-hyb remain

bounded. Therefore, in problems where the fine solution approaches transverse equi-

librium, the hybrid local boundary condition rather than the compact operator lead

to a monotone multiscale solution.

Consider the domain shown in figure 4.11a with homogeneous Dirichlet bound-

ary conditions, so that the solution cannot approach transverse equilibrium with

increasing anisotropy. Figure 4.16 shows that both the MSFV-lin and the MSFV-hyb

solution have lost monotonicity and the streamlines show unphysical recirculation

cells. The CMSFV-hyb solution has remained monotone and captures the fine-scale

transport. Similar behavior has been observed in §4.3.1 for homogeneous problems,
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ū

h
−

u
h
||
2

||
u

h
||
2

b)

Figure 4.15: Figures a and b show the mean L2-errors of the interpolated solution
p̂h and the reconstructed flux field as function of increasing fine-scale anisotropy a/b.
All values shown are means over 20 realizations of the permeability field shown in
figure 4.11a.

where all local boundary conditions become linear. Therefore, the compact operator

is necessary to obtain a monotone solution for strongly constrained pressure fields.

A similar situation is shown in figure 4.4c where a local maximum occurs in the

coarse solution computed by the MSFV-red method even for an isotropic problem

with Dirichlet constraints on only two boundaries. The compact operator gives a

monotone coarse solution in this case, demonstrating that it improves the monotonic-

ity even for isotropic problems with few constraints. Such situations arise commonly

in reservoir engineering in areas with horizontal wells that constrain the pressure over

many gridblocks.

In cases with or without transverse equilibrium the compact operator leads to a

linear system, LH , much closer to an M -matrix. A simple measure M(LH)i given by

by the ratio of the largest and smallest off-diagonal entries,

M(LHi,j
)i = −max(

(
LHi,j �=i

)
min(

(
LHi,j �=i

) , (4.65)

is introduced to quantify the magnitude of the violation of the M -matrix condition
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Figure 4.16: Results for the quarter 5-spot shown in figure 4.11a with homogeneous
Dirichlet boundary conditions. The first column shows contour maps of p̂h, the second
column shows a horizontal view of p̂h along the y-axis, and the third column shows
streamlines obtained from the conservative reconstruction p̄h. Figures a to c show
the results for MSFV-lin, figures d to f show results for MSFV-hyb, and figures g to
i show results for CMSFV-hyb.
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in the i-th row of the system matrix LH . If M(LH)i is non-positive, then the i-th row

of LH satisfies the M -matrix condition. As the magnitude of M(LH)i increases the

violation of the M -matrix condition becomes stronger. The norm ||M(LH)|| allows

us to quantify the quality of the coarse linear system resulting from a multiscale

discretization.

For heterogeneous problems LH does generally not satisfy the M-matrix property,

for any choice of operator and local boundary conditions, but the compact operator

always gives a system much closer to an M -matrix. The violations of the M -matrix

property are larger in magnitude (figure 4.17a and c) and much more common (fig-

ure 4.17b and d) in the coarse linear system arising from the original coarse operator.

For isotropic fine-scale permeability fields the dependence of ||M(LH)|| on the ori-

entation of the layering, shown in figures 4.14a&b, is analogous to the homogeneous

analysis in §4.4. For the original operator the violation of the M -matrix property

is largest for grid aligned layering and smallest for layering oriented at 45◦, corre-

sponding to the region of monotonicity shown in figure 4.7a, which is most limited

for anisotropy at 0◦ and unlimited for anisotropy at 45◦ to the grid. The compact

operator on the other hand produces linear systems with a maximum in ||M(LH)|| for

layering oriented between 15◦ and 30◦, corresponding to the region of monotonicity

shown in figure 4.7b, which is unlimited for anisotropy at 0◦ and 45◦. The improve-

ment in the quality of LH relative to the original operator is largest for layering that

is aligned, or close to aligned, with the grid. Comparing the first and second row of

figure 4.17, we see the that the violations of the M -matrix criterion produced by the

MSFV operator increase rapidly with increasing fine-scale anisotropy, a/b → 0, while

the CMSFV-hyb remains close to a M -matrix.

4.8 Discussion

In the formulation presented in §4.2 the MSFV method is defined by the properties

of the transmissibility matrix, T∗. The integrated form of T∗ directly defines the

coarse operator through (4.16) to (4.23) and the reconstruction of the conservative

fine-scale velocity is defined by T∗ through (4.32). The properties of T∗ are therefore
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Figure 4.17: The L∞ and L2-norms of M(LH) are shown as a function of the angle
of the layering. Figures a and b show results for a isotropic fine-scale permeability
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the starting point for the analysis of MSFV formulations and T∗ provides a direct

link to MPFA methods. This link has made it possible to take advantage of the

existing analysis of MPFA methods and to formulate the compact coarse operator

for the MSFV method. The construction of many other coarse operators is possible

in this framework, and as long as the modification is done at the level of T∗, the

resulting MSFV method will be: 1) conservative on the coarse level; 2) the fine scale

reconstruction of the fluxes will be locally conservative; 3) the fine-scale fluxes will

be consistent with the coarse fluxes.

The CMSFV method described here has been designed to give a coarse operator

with optimal monotonicity, but other design criteria, e.g. rotational invariance of the

discretization, may lead to other preferred coarse operators. The formulation given

here provides a consistent framework for the design of coarse operators by modifying

T∗. In a parallel Aavatsmark et al. (2008) have developed a compact MPFA method

with improved monotonicity for non-orthogonal quadrilateral grids with piecewise

constant, full-tensor permeability fields.

Our framework emphasizes that local elliptic solutions determine the numerical

entries of T∗, rather than their role as basis functions used for the interpolation of

the coarse solution. The concept of the basis function has been important in the

development of the MSFV method, but the formation of the coarse operator and the

fine-scale reconstruction of the conservative velocity field do not require explicit basis

functions. In the framework presented here coarse operators, which are not naturally

associated with a set of basis functions, can be considered, e.g. the compact operator.

In these cases the interpolation of the coarse solution with the standard basis functions

still gives a good approximation of the fine-scale solution, but the corresponding fine

fluxes are not consistent with the coarse fluxes. This is generally not a problem since

the fluxes derived from the interpolated solution are not used for transport.

The original bilinear basis functions require Dirichlet boundary conditions, which

are too restrictive for many anisotropic problems. Once the local elliptic problems

are not interpreted as basis functions, a larger range of local problems and local

boundary conditions can be considered. This allows the design of local problems

that take advantage of simplifications in the fine-scale solution, such as the linear
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flow problems with hybrid boundary conditions that are designed to capture TVE.

Lunati & Jenny (2007) modify the boundary condition for the flux reconstruction,

L̃Γ
h, to eliminate recirculation cells in the velocity field. Here we modify the boundary

condition of the local elliptic problems, L̄Γ
h, and hence the coarse operator to achieve

a monotone coarse pressure, which eliminates the unphysical recirculation cells.

The CMSFV-hyb method introduced here is only based on local information, be-

cause local methods are computationally efficient. It has been shown that the accu-

racy of purely local methods may be low if the permeability field has structures with

very long correlation lengths. Several authors have suggested the incorporation of

global data to increase accuracy at increased cost (Chen & Durlofsky, 2006; Efendiev

et al., 2006; Durlofsky et al., 2007). The coarse operator introduced here may also

increase the robustness of these applications.

Most recent studies of multiscale methods for flow in porous media have been

restricted either to tracer flow or to immiscible two phase flow (Chen & Hou, 2002;

Jenny et al., 2003, 2005; Aarnes, 2004; Juanes & Dub, 2008). In these problems only

the flux field is necessary for the solution of the transport problem, while the quality

of the solution itself - the pressure field - is not important. In many applications,

such as the three-phase black-oil formulation recently presented by Lee et al. (2008),

mass transfer between phases is an important physical mechanism. In particular

strongly non-linear phenomena such as phase appearance and disappearance are a

strong function of the pressure. For these applications the increased robustness of the

CMSFV-hyb method for the pressure equation will increase the stability of the coupled

problem. In these cases the pressure interpolation, p̂h, may be more appropriate for

the evaluation of the phase properties.

In the general heterogeneous anisotropic case neither coarse operator leads to a

linear system where LH is an M-matrix. However, compared to the original coarse

operator the compact operator leads to a LH with fewer positive off-diagonal entries

and these entries have a smaller magnitude. The performance of algebraic multigrid

solvers will not deteriorate seriously, unless the off-diagonal entries are substantial

(Ruge & Stüben, 1987). Therefore, we expect that the CMSFV method will avoid

problems with the performance of the linear solver.
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4.9 Conclusion

The construction of the MSFV coarse operator is identical to the construction of a

certain type of MPFA methods. The MSFV method is a natural extension of these

MPFA methods to numerical evaluation of the transmissibility matrix. Therefore,

the rich literature on the analysis of MPFA methods is directly relevant to the design

and analysis of MSFV methods.

The original MSFV coarse operator has a limited region of monotonicity for

aligned anisotropy. This leads to loss of monotonicity of the coarse pressure in prob-

lems with Dirichlet boundary conditions with increasing anisotropy.

A compact coarse operator for the MSFV method that reduces to a 7-point stencil

in the homogeneous case has been introduced. This compact operator has the largest

possible monotonicity region. In particular it is always monotone for grid aligned

anisotropy in homogeneous problems. In heterogeneous problems the compact opera-

tor leads to coarse linear systems that are close to a M -matrix. The compact operator

eliminates oscillations in anisotropic problems with Dirichlet boundary conditions.

For anisotropic problems with homogeneous Neumann boundary conditions the

fine-scale solution approaches transverse equilibrium as the anisotropy increases. To

obtain a monotone, accurate, multiscale solution the local boundary conditions must

be able to reach transverse equilibrium as well. A hybrid boundary condition has been

introduced that naturally allows transverse equilibrium and gives accurate solutions

for anisotropic problems.

The compact coarse operator in combination with the hybrid boundary condition

is the most robust multiscale finite volume formulation for large anisotropy and similar

in accuracy to the original MSFV method for isotropic problems.
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Conclusions

Saline aquifer storage of CO2 has the potential to reduce the emissions from fossil

energy significantly. The leakage of CO2 from the storage aquifer back into the

atmosphere is a main concern in developing this technology. Carbon dioxide can leak

from the geological storage formation back into the atmosphere, because it is mobile

and buoyant relative to the resident brine. Therefore, any process that immobilizes

the injected CO2, makes it negatively buoyant, or both, is considered a trapping

mechanism. The competition between leakage and trapping processes will determine

what fraction of the injected CO2 will remain in the subsurface permanently. While

mineral trapping offers permanent storage, leakage is unlikely after the CO2 has

dissolved into the brine or has become disconnected at the pore-scale, as a residual

saturation. Consequently dissolution and residual trapping determine the length of

the active storage period, during which leakage is possible.

5.1 Results

We studied dissolution and residual trapping using two different approaches. In order

to resolve the small length and time scales associated with buoyancy driven miscible

convection, we employed an innovative linear stability analysis in self-similar coordi-

nates, and we performed high accuracy nonlinear simulations to study the nonlinear

evolution of the instability.

167
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To study the migration and residual trapping of immiscible CO2 plumes in the

post-injection period, we employed vertical-equilibrium sharp-interface models, in

which the dimensionality of the problem is reduced in favor of the ability to focus on

the first-order behavior of the gravity current.

The dominant physical and chemical processes during CO2 storage in saline aquifers

change with time, and natural geologic formations are strongly heterogeneous. Pre-

dictions of the flow and transport behaviors for a particular storage site must account

for the presence of heterogeneity and be able to model the wide range of length and

time scales associated with the physical and chemical processes. To make numerical

modeling of such systems possible, we extend the multiscale finite volume (MSFV)

method to highly anisotropic problems. This will allow the robust numerical modeling

of CO2 storage in saline aquifers that commonly have large aspect ratios.

5.1.1 Dissolution trapping & convection

Dissolution is the dominant trapping process, if the CO2 has ponded in a structural

trap. Dissolution trapping will be effective, if the increased density of the saturated

brine induces convective currents. The permeability, k, of a formation is the most im-

portant physical parameter controlling convective dissolution. Linear stability theory

has shown that the critical time for the onset of the convective motion is proportional

to 1/k2 and the associated critical wavelength is proportional to 1/k. Direct numer-

ical simulations confirm the predictions of the linear theory at early times, and we

use them to study the nonlinear evolution of the dissolution rate of CO2 after the

onset of convection. In very large aquifers, the long-term dissolution rate is essen-

tially constant over time, independent of the Ra number, and proportional to the

permeaability. In closed aquifers, the dissolution rate evolves in a manner similar to

open aquifers until the plumes of dissolved CO2 reach the base of the aquifer. Once

these plumes interact with the base of the aquifer the dissolution rate decays very

rapidly.

We conclude that dissolution trapping is favored in large high-permeability aquifers,

because the onset of convection is early, the dissolution rate is high, and it remains
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nearly constant for long times.

5.1.2 Residual trapping & gravity currents

In situations where the buoyant supercritical CO2 migrates as a gravity current along

the top of the aquifer, residual saturation forms continuously in its wake. In this case,

residual trapping is likely to be the dominant trapping process. The effectiveness of

residual trapping is determined by the magnitude of the residual saturation and the

sweep efficiency of the CO2 plume. We have studied the interplay between the vertical

sweep of the CO2 plume and residual trapping analytically, using models of gravity

currents that assume vertical equilibrium and a sharp interface. We have identified the

mobility ratio between the CO2 and the brine as a key physical parameter governing

the spreading of the current and the sweep during the migration. In sloping aquifers,

the volume of the mobile CO2 plume is reduced to zero in finite time, while it decays

as a power-law in horizontal aquifers. Residual trapping is more efficient in sloping

aquifers, because the CO2 plume migrates along-slope at constant speed, while the

speed of migration decays in horizontal aquifers. For sloping aquifers, we obtain semi-

analytic estimates of the migration distance of the CO2 plume and the duration of

the active storage period.

Our results show that the poor vertical sweep of the CO2 plume gives rise to

long migration distances that may limit the storage capacity of saline aquifers. In-

creasing the slope of the aquifer leads to faster residual trapping, without increasing

the maximum migration distance of the CO2 plume significantly. However, for any

given injection depth, the along-slope distance to the surface decreases rapidly with

increasing dip of the aquifer. Leakage of CO2 at an outcrop of the aquifer will occur, if

the maximum migration distance of the CO2 plume exceeds the available along-slope

distance between the injection site and the outcrop. To reduce the duration of the

active storage period, potential storage aquifers should have enough dip to induce

lateral migration of the CO2 plume. However, the reduced along-slope distance to

the outcrop for large dip angles limits the volume of CO2 that can be stored. There-

fore, high-permeability, gently-dipping, and deep saline aquifers are optimal targets
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for CO2 storage, because they have relatively short active storage periods and large

storage capacities.

5.1.3 Multiscale methods for porous media

We developed a robust compact multiscale finite volume (CMSFV) method for het-

erogeneous anisotropic elliptic equations, which describe the flow (pressure) field in

porous media. The original multiscale finite volume (MSFV) method loses monotonic-

ity in the presence of moderate grid aligned anisotropy or equivalently for stretched

grids. By comparison with multipoint flux approximations, we show that the coarse

operator of the original MSFV method has a limited region of monotonicity, and

we introduce a new compact coarse operator with an optimal stability region. We

also show that the construction of the boundary conditions of the local elliptic prob-

lems must allow for transverse equilibrium to increase the monotonicity of the coarse

operator in heterogeneous problems.

We introduced new local elliptic problems with hybrid boundary conditions that

allow for transverse equilibrium and lead to a robust multiscale discretization in

the presence of strong heterogeneity. This compact discretization will allow the ap-

plication of the (C)MSFV method to CO2 storage in strongly heterogeneous and

anisotropic saline aquifers with large aspect ratios.

5.2 Future work

Here we briefly outline some of the research directions that follow directly from the

work presented in this thesis.

Convective dissolution The direct numerical simulations should be extended to

three-dimensions and the inclusion of permeability heterogeneity in order to obtain,

more realistic estimates of the long-term dissolution rate. These results will allow

simple estimates of the time necessary to dissolve a volume of CO2 through a given

interfacial area, an important quantity currently not available.
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Gravity currents The most interesting continuation of the work presented in § 3 is

the extension of the model to include the effects of CO2 dissolution into the brine. The

resulting relatively simple model would capture some of the main aspects of residual

and dissolution trapping and allow a comparison between trapping mechanisms. If a

simple model of leakage is included, the competition between leakage and trapping

processes can be investigated. Such a model may allow the computation of semi-

analytic versions of figure 1.3, which show the contribution of each trapping process.

The three scenarios shown in figure 1.4 are likely to produce qualitatively different

features in figure 1.3, which may form the basis of a classification of storage sites.

Multiscale simulation of CO2 storage The MSFV method has been extended to

include all the necessary physics: gravity and capillary forces, compressibility, wells,

and three-phase problems. We have extended it to problems with severe anisotropy,

expected in regional aquifers. Adaptivity criteria have been developed for the pressure

solver as well as for the solution of the transport equation promising large speed-

up compared to conventional simulations. We therefore plan to demonstrate the

application of the MSFV method to saline aquifer storage in the near future.
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