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Abstract

Determining the best location for new wells is a complex problem that depends on

reservoir and fluid properties, well and surface equipment specifications, and economic

criteria. Various approaches have been proposed for this problem. Among those,

direct optimization using the simulator as the evaluation function, although accurate,

is in most cases infeasible due to the number of simulations required.

This study proposes a hybrid optimization technique (HGA) based on the ge-

netic algorithm (GA) with helper functions based on the polytope algorithm and the

kriging algorithm. Hybridization of the GA with these helper methods introduces

hill-climbing into the stochastic search and also makes use of proxies created and cal-

ibrated iteratively throughout the run, following the idea of using cheap substitutes

for the expensive numerical simulation. Performance of the technique was investigated

by optimizing placement of injection wells in the Gulf of Mexico Pompano field. A

single realization of the reservoir was used. It was observed from controlled exper-

iments that the number of simulations required to find optimal well configurations

was reduced significantly. This reduction in the number of simulations enabled the

use of full-scale simulation for optimization even for this full-scale field problem. Well

configuration and injection rate were optimized with net present value maximization

of the waterflooding project as the objective.

The optimum development plan for another real world reservoir located in the

Middle East was investigated. Optimization using the numerical simulator as the

evaluation function for the field posed significant challenges since the model has half

a million cells. The GA was setup in parallel on four processors to speed up the

optimization process. The optimal deployment schedule of 13 predrilled wells that
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would meet the production target specified by the operating company was sought.

The problem was formulated as a traveling salesman problem and the order of wells

in the drilling queue was optimized.

Ways to assess the uncertainty in the proposed reservoir development plan were

also investigated since we never possess the exhaustive information about the true

reservoir but rather we may have geostatistical realizations of the truth constructed

from the information available. An approach that can translate the uncertainty in

the data to uncertainty in terms of monetary value was developed. In this study the

uncertainties associated with well placement were addressed within the utility theory

framework using numerical simulation as the evaluation tool. The HGA was used to

reduce the computational burden of making numerous numerical simulations. The

methodology was evaluated using the PUNQ-S3 model, which is a standard test case

that was based on a real field and was used for the PUNQ project in context of the

EU-Joule program. Experiments were carried on 23 history-matched realizations and

a truth case was also available. The results were verified by comparison to exhaustive

simulations. Utility theory not only offered the framework to quantify the influence of

uncertainties in the reservoir description in terms of monetary value but also provided

the tools to quantify the otherwise arbitrary notion of the risk attitude of the decision

maker.
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Chapter 1

Introduction

1.1 Statement of the Problem

Decisions have to be made at every level of reservoir development. For many cases,

optimal decisions are dependent on many nonlinearly correlated parameters, which

makes intuitive judgement difficult. In such cases automated optimization is an op-

tion. The impact of development decisions on the success or failure of a project can

be significant. Also, most of the time, a slightly better decision may lead to a con-

siderable increase in the value of the project. Thus, decisions should be based on

the most relevant and accurate tools available. However, such tools are most often

computationally expensive.

Consider the problem of finding the optimum locations for infill wells in water-

flooding. Numerical models are the basis for our decision since they are detailed

predictive tools that are able to evaluate the complex interactions of the dependent

parameters, such as reservoir and fluid properties, well and surface equipment spec-

ifications, and economic criteria. On the other hand, the numerical models used in

the oil industry for reservoir evaluation are generally too CPU intensive to couple

with an automated optimization scheme. Two things would make the optimization

process feasible:

• Reduction of the necessary number of simulations.

1



2 CHAPTER 1. INTRODUCTION

• Approximation of the numerical model with a less expensive tool.

Various researchers have looked into these approaches. Reduction of the number of

evaluations is the first idea that comes to mind. However special care should be taken

to avoid local extrema that will lead to suboptimal decisions. Approximation of the

full numerical model is also an option. However decisions based on an approximate

tool, unless the approximation is either very good or fortunately correct, may not be

optimal. This study proposes a methodical solution to the problem by utilizing both

of these approaches together.

The following list summarizes the requirements that must be met by any solution

approach that would optimize reservoir engineering problems as robustly as possible:

Computational feasibility - This requirement necessitates an efficient algorithm.

Ability to avoid local optima - Local optima can be avoided by a stochastic rather

than deterministic algorithm. Stochastic algorithms also rely less on the initial

guess.

Flexibility - The proposed approach should be able to handle continuous param-

eters as well as discrete. Such a flexibility allows for optimization of discrete

decision variables together with continuous parameters. In addition, since dif-

ferent decisions may lead to different numbers of parameters to be optimized,

the ability to handle different numbers of parameters simultaneously is also

required.

Generality - The approach should not be problem-specific. The method should

adapt to the characteristics of the problem as the optimization progresses.

We now summarize the tools investigated as ways to meet these requirements.

Genetic Algorithm (GA) was chosen as the basis of the algorithms. GAs provide

a good start to meet some of the requirements listed earlier. GAs are stochastic

algorithms that work with discrete parameters. Continuous parameters are handled

by fine discretization. The simple GA was extended in this study with some im-

provements that have been suggested in the literature. The proposed GA also allows
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solutions of different structures, for instance different number of parameters, to be

modified simultaneously for optimality. GAs are also easily hybridized (coupled) with

other techniques. Another favorable GA property is that they are easily parallelized

since they modify a set of solutions simultaneously.

Some of the same traits that make the GA robust and powerful also make it slow

and inexact in refinement of the solution. The GA typically has rapid initial progress

during the search, but has problems locating the final optimal solution. Because of

these limitations, this study investigated specific helper methods that significantly

improve the efficiency. Hill-climbing effects were introduced, through the polytope

method, in order to resolve the GA pitfall of poor refinement. Several other techniques

were employed to further aid search.

The idea of using a cheaper approximation of the numerical model was also inves-

tigated through the proxy approach. A proxy of the numerical simulator is created

and improved at every GA iteration. This approach has several advantages over cre-

ating a proxy with a big initial investment of numerical simulations. First of all, the

determination of the number of simulations to create a sufficiently accurate proxy

does not always have an intuitive basis. Besides, with iterative proxy improvement,

the next solution vector to be simulated is chosen intelligently by the GA and is

dependent on the results of the previous simulations. This dependence on previous

simulations allows the algorithm to adapt itself to the characteristics of the problem

as the run progresses. Ordinary kriging and neural networks were investigated as

proxies in this study.

It was also realized that the numerical model with which the optimization algo-

rithm evaluates the potential well configurations is constructed with data that are

sparse thus numerical simulation forecasts are uncertain. These uncertainties further

complicate the optimization problem. Decision analysis tools and the utility theory

framework were utilized to deal with the uncertainty. The problem was represented

as a decision tree and utility functions were used to quantify risk attitude.

In order to handle the cases where the utility framework becomes computationally

infeasible, the problem was formulated as the optimization of a random function. This

approach was demonstrated to be a quick and approximate way of dealing with the



4 CHAPTER 1. INTRODUCTION

uncertainties.

The algorithm developed here is referred to as the Hybrid Genetic Algorithm

(HGA). The following chapters explain the tools that make up the HGA and present

some synthetic cases and application to two real world cases.

1.2 Literature Survey

1.2.1 Methods

Many real world problems are not straightforward, and this is often true for reservoir

development problems as well. Even some of the simple synthetic cases considered

in this study had several local optima. The real reservoir problems we considered

have many feasible but not optimal solutions, which would all lead to a suboptimal

reservoir development plan. The existence and the need to avoid these local optima

drove us to use stochastic optimization techniques. Some of the most significant

stochastic optimization techniques are summarized here. Also, methods to construct

proxy functions to aid optimization and uncertainty assessment tools are examined.

Optimization Techniques

Stochastic optimization algorithms gain an increasing amount of attention as we

realize that even seemingly simple real world problems have local optima. Stochastic

algorithms are effective at avoiding local optima by continuing to search somewhat

randomly in areas beyond attractive zones. Greedy algorithms such as simple hill-

climbers will tend to converge to the local optimum closest to the starting point. In

many cases, the chance that this solution is the global optimum is very slim.

Stochastic optimization algorithms should not be confused with random search.

Stochastic algorithms employ a randomized search; this does not imply directionless

or unstructured search. Through algorithm parameters, it is possible to tune the

balance between exploitation and exploration. Gradient-based algorithms can be seen

as pure exploiters, they therefore lack robustness. In this section we will now introduce

some robust stochastic optimization algorithms.
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A very basic approach to avoid local optima would be to carry out gradient-

based searches from random initial points. This naive approach is obviously blind in

terms of seeing the big picture. One can also try to choose several starting points

based on engineering judgement, however many problems have too many factors to

evaluate manually. In particular, the time factor is hard to predict without physical

simulation of the underlying process. Here we focus on structured and stochastic

automatic optimization techniques that have been applied successfully to real world

problems.

Simulated Annealing (SA) (Metropolis et al., 1953) was inspired by an analogy

to the thermodynamic process of freezing liquids and crystallization or metal cooling

and annealing. When a liquid is cooled down slowly, a pure crystal is formed and

this state is believed to be the minimum energy state of atoms. The interesting

fact is that nature is able to find this minimum energy state when the system is

cooled down sufficiently slowly. The analogy in optimization is that the search state

is initially perturbed randomly and unlike in greedy algorithms a worsening step is

sometimes accepted with a probability decreasing with the number of steps taken. The

magnitude of perturbation also decreases as the algorithm progresses. This approach

is able to avoid local optima and is often effective if its parameters are tuned optimally.

SA parameters are often very problem-specific and require experimentation and fine

tuning.

During the last 30 years, there has been a growing interest in problem-solving

systems inspired from the principles of natural selection and genetics (Michalewicz,

1996). These optimization techniques are often referred to as evolutionary techniques

and they are based on nature’s way of finding the individual fittest to its environment.

Evolutionary methods differ in the tools they employ and their applicability. Here,

we discuss some of the most significant evolutionary techniques.

Fogel et al. (1966) introduced Evolutionary Programming. Briefly, Fogel et al.

applied perturbation (mutation) and natural selection on a population of solutions,

with increasing population size at each iteration.

Evolution strategies, introduced by Rechenberg (1973), evolved a single point

rather than a population. At each iteration, the point is perturbed by an amount
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drawn randomly from a Gaussian distribution with zero mean and the resulting solu-

tion is accepted if and only if it improves the objective function. This idea is borrowed

from nature since large changes in nature occur less often.

Holland (1975) introduced Genetic Algorithms (GAs). Different from the previ-

ous evolutionary techniques, Holland employed ideas from Mendel’s genetics as well

as Darwin’s theory of natural selection. GAs use natural selection, mutation and

crossover to modify a set of solutions (population) simultaneously, in the effort to

evolve the population to its globally optimal solution. GAs have mathematical foun-

dations of how and why they work. Numerous improvements and modifications to

GAs have been proposed since their debut.

Another interesting evolutionary algorithm was proposed by Koza (1992). This

algorithm, named Genetic Programming, evolves hierarchically structured computer

programs to solve the desired problem. The evolved programs consist of trees made

up of terminals and functions.

For the purposes of reservoir development optimization, GAs seem to be a very

appropriate choice. In comparing performance to SA, GAs were shown to solve prob-

lems with the same order of computational effort (Goldberg, 1989; Davis, 1991) for a

wide range of problems, given that both algorithms are tuned near-optimally. This

is not surprising since both algorithms provide the flexibility to adjust exploitation

and exploration. However, considering the reservoir development problem, GAs have

several advantages over the other stochastic techniques discussed here. First of all

discrete parameters, that often show up in reservoir development optimization, are

handled intuitively. Continuous parameters are handled by fine discretization, which

is sufficient for our purposes. GAs can work with various data structures simulta-

neously, which enables us to optimize the problem definition itself. For instance,

consider the well placement problem; in GAs, we can introduce the number of wells

as an unknown. Parallelization of GAs is also straightforward, since they evaluate

a population of solutions simultaneously. In addition adaptive GAs have been pro-

posed, in which the algorithm parameters are adapted to the problem as the run

progresses. GAs are also suitable for hybridization with other algorithms.

In some of the synthetic well placement problems considered in this study, the GAs
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have very rapid initial progress towards the optimum, however they lack refinement.

Hill-climbing effects have been introduced through the polytope method (Nelder and

Mead, 1965), also known sometimes as the simplex method. The combination of

GA and polytope methods has been used previously for the well placement problem

by Bittencourt and Horne (1997). Algorithms that combine local gradient search

and GAs may be referred to as hybrid GAs or sometimes as memetic algorithms.

Bittencourt and Horne called the combined algorithm the Hybrid Genetic Algorithm

(HGA), a term that will also be used here.

Proxy Generation

Since the appropriate evaluation function for reservoir development (e.g. the nu-

merical simulator) is most often very expensive computationally, the idea of using a

cheaper approximation of this expensive function is attractive. In the literature, this

cheaper alternative is referred to as a proxy function or a surrogate model. This func-

tion can be seen as an interpolating and extrapolating function, or as multivariable

regression. There are many candidates for the proxy. Some of the most widely used

and efficient ones are discussed here.

Polynomial regression is the most common of the proxy generating methods. The

idea is to fit a polynomial of degree n to a set of observations computed using the full

evaluation function. The idea is extended easily to multiple dimensions. Problems

arise when the data are erratic or the dimensions are high. In such cases, very high

order polynomials are necessary for a reasonable fit to the data, which causes a lack

of generalization. Splines have been introduced to approximate the data with local,

low order polynomials that are continuous (first derivative exists). This works well,

however multidimensional splines are very complex and this approach is still an area

of research. Also polynomial regression is not necessarily data exact.

Kriging (Matheron, 1965) is an interpolation-extrapolation algorithm used widely

in earth sciences to predict earth properties. With kriging, we have control over two-

point statistics of our estimations through the variogram (although this variogram

is not reproduced exactly by the estimations). Hence the configuration of data with

respect to the point to be estimated plays an important role. Although not utilized
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commonly in earth sciences practices, the algorithm can be extended to multiple

dimensions without significant increase in complexity. Kriging estimations are also

exact at data locations. Another favorable property is that, given a set of data, when

using all data for estimation (i.e. global kriging, see Goovaerts, 1997), the covariance

matrix has to be calculated only once. Afterwards, each estimation requires only a

matrix multiplication. It is also possible to obtain estimation variances at estimated

points that helps extend the search to the least visited areas of the search space.

Neural Networks (NNs) (Anderson, 1995) have also been utilized in function ap-

proximation. NNs have gained acceptance as powerful interpolation techniques in the

engineering community. NNs are not data exact, but they are able to represent very

complex functions, continuous or discrete. NNs can map multidimensional spaces

into a lower-dimensional space, thus can be used easily for multivariable regression.

We have tested both kriging and NNs as proxy functions in this study. We choose

kriging mainly for its exactness property and easy extension to multidimensional

space. We choose NNs for their applicability in a very broad range of problems.

Uncertainty Assessment Tools

Decision analysis tools to quantify and manage risk have been utilized across a wide

range of industries (Chacko, 1993). Specifically the utility framework provides an

established framework that enables the quantification and management of uncertainty

(DeGroot, 1970). The utility framework is intuitive and very useful since it honors

the fact that every decision maker who is given options with probabilistic outcomes

would act according to their own risk attitudes which may be very different. The

utility theory provides the framework and the tools to quantify the rather abstract

notion of risk attitude and helps in making decisions in the presence of uncertainty

(Holloway, 1979).

There have been several applications of decision analysis tools in the petroleum

industry as well (Simpson et al., 2000; Thankur, 1995; Jonkman et al., 2000; Erdogan

et al., 2001; Sarich, 2001). These applications of decision analysis tools were mostly

used during exploration and initial development stages of reservoirs (Jonkman et al.,

2000). Application of the decision theory framework coupled with full field-scale
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numerical simulation has not been common mainly due to computational infeasibility

and the lack of involvement of the fields of petroleum engineering and management

science.

The problem was also formulated as the optimization of a random function. The

GA is known to be able to cope with random functions and there have been applica-

tions to problems in industries other than petroleum engineering (Goldberg, 1989).

1.2.2 Optimization of Reservoir Development

In the petroleum literature, the word optimization has often been misused to describe

the act of manually trying several things and picking the best. Here, optimization

refers to objective function maximization (or minimization) with a structured and

automated algorithm that generates solution vectors according to the function values

of previously evaluated solution vectors.

Previous researchers in the petroleum literature have approached the optimization

of reservoir development in different ways. These approaches can be grouped into two

major headings, direct optimization and use of a proxy.

Direct Optimization

Rian and Hage (1994) presented the basic setup for automatic optimization of well

locations using a numerical simulator. They pointed out that optimization with

conventional full-scale models has computational constraints due to the number of

simulations required, thus they proposed a faster but limited front-tracking simulator

as their objective evaluation tool.

Beckner and Song (1995) formulated the problem of optimization and scheduling

of wells as a traveling-salesman problem and used simulated annealing to optimize

well locations and drilling schedule. Their emphasis was on problem setup, rather

than the methods used for optimization. They showed that the computational time

was feasible for such automatic optimization, with the numerical model used (36×3×3
grid blocks). They also pointed out that optimization algorithms coupled with the

numerical model has the potential to evaluate the nonlinear effects of the optimized
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parameters.

Bittencourt and Horne (1997) investigated optimization of well placement using a

hybrid of GA and polytope method. This method was used to estimate the optimal

locations for the placement of 33 wells. Bittencourt and Horne indexed active cells

only, arguing that (i, j) indexing is not suitable because the optimization algorithm

could place wells in inactive regions. In the present study, several types of well-

block indexing were investigated for a synthetic case and it was discovered that (i, j)

indexing of wells is more suitable for optimization algorithms since other kinds of

indexing may introduce artificial noise due to the discontinuities in the indexed search

space.

Güyagüler and Gümrah (1999) optimized production rates for a gas storage field

using GAs coupled with a numerical simulator. This study demonstrated the limi-

tations of using approximated methods by comparing production schedules obtained

by linear programming to those obtained by GAs. The approach used simple GAs,

which are shown here and by other researchers to have a lot of room for improvement.

Use of a proxy

Rogers and Dowla (1994) trained a NN with a large initial computational investment

of numerical simulations, and then utilized this NN proxy of the simulator to optimize

groundwater remediation.

Aanonsen et al. (1995) selected a set of well configurations to simulate and then

constructed response surfaces from the simulation results, using several regression

techniques (including kriging). The study then estimated the well location on this

response surface, also assessing uncertainty in a very simple manner. Aanonsen et al.

demonstrated that in several relatively simple cases the regression-estimated response

surface was sufficiently accurate to allow the proper location to be found.

Pan and Horne (1998), in an approach similar to Aanonsen et al., used uniform

design and kriging to decrease the number of simulations to less than an exhaustive

search. This work proposed the idea of uniform refinement areas of search spaces

with favorable objective function value.
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Stoisits et al. (1999) used a NN proxy to represent the components of the pro-

duction system, and then used a simple GA to optimize production. Stoitis et al.,

demonstrated that rigorous optimization with the GA was superior to the conven-

tional approach of sequential one-dimensional optimization for the production opti-

mization problem.

Centilmen et al. (1999) used NN as a substitute for the numerical simulations. The

NN was used to try to capture the nonlinear effects of geometric well configurations on

productivity from the reservoir. The numerical model was replaced by the NN which

is able to output production profiles from wells. The accuracy of such an approach

for full field-scale models is not clear and such a proxy may be unnecessarily complex

for the purposes of this study since we expect the proxy to estimate only the global

objective function value, for instance Net Present Value (NPV).

Johnson and Rogers (2001) used a NN proxy for the numerical model in an effort

to optimize water injector locations for the Pompano field. Prior to optimization,

Johnson and Rogers preselected 25 candidate locations for injection wells based on

injectivity criteria. The present study found that a preselection of locations based on

criteria other than the objective function can be limiting.

1.2.3 Survey Results

Direct optimization is very often prohibitive in terms of CPU requirements. Proxies,

on the other hand, are very fast, however they often require an initial investment

in computation. The magnitude of this initial computational investment is unclear.

Also the training points are chosen synchronously; that is, the choice of a particular

point to be simulated is independent of the others even though in real life the choice

of later experiments would be based on the experience of earlier observations.

These various issues demonstrate that there remains considerable room for the

improvement of generality and robustness in the area of reservoir development. The

HGA shows potential as a robust and general approach. The HGA employs direct

optimization and proxy approaches simultaneously. The proxy ought to evolve intel-

ligently as the GA iterates. This work investigated the design of such a composite and
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adaptive algorithm, and tested its effectiveness in a range of artificial test problems

and real field cases.

The presence of uncertainty for the well placement optimization problem has most

often been addressed approximately or has been completely overlooked. Decision

analysis tools were employed for the methodical assessment of uncertainty in this

study. A quicker and approximate approach of formulation of the problem as the

optimization of a random function was also experimented with.



Chapter 2

Theoretical Foundations

The theoretical foundations of the tools that make up the HGA for reservoir devel-

opment optimization are discussed in this chapter.

2.1 Genetic Algorithms

Greedy gradient-following algorithms have local scope. These algorithms modify a

single point and the optima they seek is within the neighborhood of the current

point. Such methods have been studied extensively and are very efficient for smooth,

unimodal (i.e. single optimum) problems. However, real world problems are often

multimodal, noisy and discontinuous. Greedy algorithms lack robustness on such

challenges. GAs on the other hand, although not as efficient as greedy algorithms for

some problems, have reasonable performance for a very wide range of problems.

Genetic Algorithms (GAs) are search algorithms based on the mechanics of natural

selection and natural genetics (Goldberg, 1989). These algorithms combine survival

of the fittest among string structures (solution vectors) with a structured yet ran-

domized information exchange. GAs modify a set of solution vectors simultaneously,

as opposed to modifying a single point. In every iteration (generation), a new set

of solution vectors (population) is created from the pieces of the fittest of the older

solution vectors. An occasional new vector is tried out to introduce further variety.

Some of the GA vocabulary is summarized in Table 2.1. The GA and engineering

13
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Table 2.1: The GA vocabulary.

GA vocabulary Engineering vocabulary
environment objective function evaluator
population set of solution vectors
chromosome, string encoded solution vector
gene an element of the encoded string
fitness function value
individual data structure
generation GA iteration
reproduce carry on to the next iteration

vocabulary will both be referred to in this discussion.

GAs were developed by Holland (1975). The central theme of GAs is robust-

ness, which is the balance between exploitation and exploration that is necessary for

survival in different and complicated environments as defined by Goldberg (1989).

Exploitation constitutes to making the most out of the information available about

the problem without further exploration. Such a balance is necessary for survival

of species in different environments. GAs employ natural selection (selection based

on fitness) as well as crossover for information exchange and mutation to introduce

further variety (randomness) into search. We will now discuss why such a strategy

may lead to the optimal solution. We will use the binary alphabet, {0,1}, however
the demonstration is general to arbitrary alphabets.

2.1.1 String Representation of Solutions

Solutions in GAs have to be represented in the form of strings. Strings representing

each parameter are encoded in some fashion and arranged linearly.

GAs work in discretized space. The length of the strings representing potential

solutions to the problem depends on the range of the parameters (minimum and

maximum) and also the precision with which the solutions are sought within this

range. Binary strings with an alphabet size of two (0 and 1) are common, however
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any alphabet size may be employed. Given the range (xmin and xmax), precision (p)

and the alphabet size (Na) the string length (l) has to satisfy the following relation:

N l−1
a <

xmax − xmin

p− 1 < N l
a − 1 (2.1)

Once the string length is defined we can decode the real value from a given string:

x = xmin +

[
l∑

i=1

N i−1
a · bi

] [
xmax − xmin

N l
a − 1

]
(2.2)

When an alphabet size of two is employed Eqn. 2.2 reduces to binary encoding.

Integers may be represented as is by having unit precision and the alphabet size as

Na = xmax − xmin + 1.

2.1.2 Population

One of the distinctive features of GAs is that they modify a set of solutions simul-

taneously rather than the more conventional way of modifying a single solution at a

time. Simultaneous modification of a set of solutions enables more robustness since

different areas of the parameter space are searched simultaneously. Populations also

enable the crossover operator helping to combine better parts of multiple solutions to

create an even better one.

2.1.3 Fitness Based Selection

The individuals are selected according to their fitness. Individuals with higher fitness

have higher chances to reproduce. The selection process is based on the spin of a

roulette wheel with slot sizes proportional to individual fitnesses. The simple GA

flowchart is given in Fig. 2.1. Selection, crossover and mutation are the only tools

required to implement a simple GA.

2.1.4 GA Operators

Before introducing their purpose, we introduce the mechanics of the GA operators

and selection based on fitness.
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Create initial population

N
Return best

Y

Select individuals

Apply GA operators: crossover, mutation

Stop

criteria

met?

Figure 2.1: Simple GA flowchart.

The two GA operators are crossover and mutation. Two strings are crossed over

from a randomly selected crossing point. For instance if the strings 00110010 and

10001101 were to be crossed over from point 3, the offsprings would look like this:

00110010

10001101
→ 00101101

10010010

This type of crossover is called single-point crossover. There are several types

of crossovers in the literature (Goldberg, 1989) that are simply different ways of

combining two strings. Crossover is carried out with a probability pc.

Mutation on the other hand reverses a gene within a string, that is, makes it 1 if

it is 0, and makes it 0 if it is 1, with the probability pm.

2.1.5 The Schema Theorem

Remark It should be noted that the schema is conceptualized for demonstration

purposes only and that the GA does not explicitly use the schema to solve a

problem.

Holland demonstrated why GAs work with what he called the Schema Theorem

(Holland, 1975). The concept of schema is now introduced.

Schema A schema (Holland, 1975), H , is a similarity template describing a subset of

strings with similarities at certain string positions. In a binary alphabet {0,1},
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the schema is introduced by adding the * i.e. the don’t care symbol; {0,1,*}. A
schema is a pattern matching template. In a schema, 1 matches a 1, 0 matches

a 0, and * matches either. For instance schema H = 1 ∗ 0 matches two strings,
{100,110}, and H = 0 ∗ 1∗ matches four strings, {0010,0110,0011,0111}.

Two important properties of a schema are its order and defining length.

Order, o(H) Order of a schema is the number of fixed positions.

o(11 ∗ 01 ∗ ∗) = 4

Defining length, δ(H) Defining length of a schema is the distance between the first

and last fixed string position.

δ(11 ∗ 01 ∗ ∗) = 5− 1 = 4

Having these definitions, we can now quantify the effects of selection and reproduc-

tion. Let m(H, t) be the number of strings matching a particular schema H contained

within the population A(t) at generation t.

The ith string at generation t, Ai(t), gets selected with probability pi(t) propor-

tional to its relative fitness

pi(t) =
fi(t)

n∑
j=1

fj(t)
(2.3)

where n is the population size and fi(t) is the fitness of string Ai(t). At generation

t+ 1 we expect to have m(H, t+ 1) representatives of schema H given by

m(H, t+ 1) = m(H, t)
n · f(H, t)

n∑
j=1

fj(t)
= m(H, t)

f(H, t)

f̄(t)
(2.4)

where f(H, t) is the average fitness of the strings representing schema H at time

t. Equation 2.4 means that the number of schemata (plural of schema) with fitness

above the population average will increase (grow), similarly number of schemata with

fitness below population average will decrease (decay). This applies to every shema

in population A(t) in parallel. Note that the number of processed schemata in a
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population of size n is much larger than n, to be more specific it is in the order of

O(n3) (Holland, 1975). This is an important concept known as implicit parallelism,

which tells us that although only n strings are processed explicitly at each generation,

the GA implicitly processes around n3 schemata in parallel. This is information

processed implicitly at no cost, since the computation time is proportional to only

the population size, n.

If a schema H has fitness f(H, t) = f̄(t) + cf̄(t) where c is a constant and c > 0,

Eq. 2.4 can be rewritten as

m(H, t+ 1) = m(H, t)
f̄(t) + cf̄(t)

f̄(t)
= (1 + c) ·m(H, t) (2.5)

Writing everything in terms of m(H, 0) and assuming c stays constant over several

generations, we obtain

m(H, t) = m(H, 0) · (1 + c)t (2.6)

which states reproduction based on fitness gives above average schemata exponentially

increasing trials over generations where c remains a constant.

If only selection was utilized, the probability of survival of schema would be 1.0,

ps(H) = 1.0 . However reproduction alone does not introduce new strings into the

population. The GA operators crossover and mutation are introduced for this pur-

pose. Crossover is a means of random information exchange between strings. How-

ever, crossover will have disruptive effect on the above average schemata growth (Eq.

2.6). The probability of survival of schema H in the presence of crossover is given by

ps(H) = 1− pc
δ(H)

l − 1 (2.7)

where l is the string length. It is intuitive that schema with large defining length (e.g.

δ(1 ∗ ∗ ∗ ∗ ∗ 0) = 6) have a higher probability of crossover disruption than ones with
smaller defining lengths (e.g. δ(∗ ∗ ∗01 ∗ ∗) = 1).
Mutation is utilized in order to introduce additional variety into the population.

Mutation also has a disruptive effect on exponential growth. Survival probability of

schema H in the presence of both crossover and mutation is given by
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ps(H) = 1− pc
δ(H)

l − 1 − pm · o(H) (2.8)

where ps(H) is reset to zero if pc
δ(H)
l−1

+ pm · o(H) > 1.0
Equation 2.4 is then modified to give the actual schema growth equation in a GA

run:

m(H, t+ 1) = m(H, t)
f(H, t)

f̄(t)

[
1− pc

δ(H)

l − 1 − pm · o(H)
]

(2.9)

What Eq. 2.9 tells us is referred to as the Schema Theorem (Michalewicz, 1996):

Schema Theorem Short, low order, above average schemata receive exponentially

increasing trials in subsequent generations of a genetic algorithm.

The Building Block Hypothesis naturally follows the schema theorem:

Building Block Hypothesis A genetic algorithm seeks near optimal solutions through

the juxtaposition of short, low-order, high-performance schemata, which are

called the building blocks of the solution.

2.1.6 Deception

One should understand the GA phenomenon known as deception, to be able to use

them efficiently. In the previous section we showed that the genetic algorithm brings

together fit, short, low-order building blocks in the effort to create a fitter individual.

Consider a synthetic case where the solution vectors are made up of eight binary

strings. Assume the following schemata have above population average fitness:

H1 = 111 ∗ ∗ ∗ ∗∗ f(H1) > f̄

H2 = ∗ ∗ ∗ ∗ ∗ ∗ 11 f(H2) > f̄

Also assume that their combination has much less fitness than a third schema,

H3 = 000 ∗ ∗ ∗ 00:

crossover(H1, H2) = H1×2 = 111 ∗ ∗ ∗ 11
H3 = 000 ∗ ∗ ∗ 00 f(H3) >> f(H1×2)
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Further assume that the global optimum is Ag = 11111111. The GA would have

a hard time converging into Ag due to the fact that f(H3) >> f(H1×2), and might

converge to the the strong suboptimal of solution As = 00011100. The phenomenon,

where fit building blocks mislead the search, is called deception (Michalewicz, 1996).

Deception generally occurs when related string pieces are placed far apart in the

chromosome. The intuitive approach to avoid deception is then to place such phys-

ically related string pieces closer to each other. This requires some prior knowledge

about the objective function of the problem. However it is most often clear, through

expertise or experimentation, which parameters are related. For instance, consider

a reservoir development problem of finding the optimum location and injection rate

of multiple water injectors. For such a problem, one should not put the strings that

encode the well location, and the strings that encode its well rate, very far apart in

the chromosome.

2.1.7 Practicalities

Here we discuss some of the practical aspects of GA applications.

In a GA optimization run, the parameters to be varied are encoded and arranged

linearly into a string. To decrease the occurrence of deception, the related strings

should be placed close to each other.

The GA parameters have to be defined prior to optimization. For binary alphabets

Goldberg (1989) suggests an appropriate population size and De Jong (1975) suggests

appropriate GA operator probabilities based on experimentation over problems of

different nature:

Population size - same as total string length, n = l

Crossover probability - pc = 0.6 works well for a wide range of problems

Mutation probability - inverse of population size, pm = 1/n

Another way to adjust GA parameters is to let the GA adjust its own parameters,

which is referred to as parameter adaptation (Hinterding et al., 1997). Parameter
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adaptation is intuitive in that the algorithm itself evolves along with evolving strings.

Such dynamic parameter adjustment also takes into consideration the fact that the

best set of GA parameters changes as the run progresses. In other words, the optimum

GA operator probabilities are different at the initial and final stages of a GA run.

There are two ways to dynamically adjust parameters during a GA run:

Adaptive - The probability of the GA operators are adjusted according to their

previous performances (Davis, 1989). For instance, if the increase in mutation

probability increases the performance of the GA, then the mutation probability

is increased further.

Self-adaptive - The GA parameters are attached to the end of the string and are

evolved together with the rest of the problem parameters (Bäck, 1992). In this

way the operator probabilities, that produce fitter individuals, dominate.

Problem-specific knowledge should also be employed where appropriate. Some

problems necessitate data structures other than linear binary strings (e.g. trees).

Custom mutation and crossover operators have to be defined for such problems.

These custom GA operators have the potential to take advantage of problem spe-

cific engineering intuition. However caution should be taken not to exert extreme

bias on the algorithm since alternative or good solutions that contradict engineering

judgement may exist or such contradicting solutions may contain the building blocks

of an optimal solution.

It is also straightforward to parallelize GAs since at each generation the evaluation

of the individuals are independent of each other. The parallelization setup of the

algorithm is discussed in Appendix A.

2.1.8 Extensions

Numerous extensions have been proposed to the simple GA given in Fig. 2.1.

Elitism - The best of the older generation is copied to the next generation without

alteration. This ensures that the good solutions found earlier are not lost.
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Fitness scaling - The fitness of individuals are scaled, that is the relative fitness

differences among individuals are increased or decreased by exponentiating the

raw fitnesses. Scaling enables the control over selective pressure. Selective

pressure refers to the relative selection probability of individuals.

Tournament selection - Some number k of individuals is selected and the best of

them is reproduced (Goldberg et al., 1991). Increasing values of k increase the

selective pressure. Tournament selection is equivalent to scaling the fitness.

Rank-based selection - The rank of the individuals in the population determines

its fitness (Whitley, 1989). Ranking eliminates the problem of unfavorably

scaled fitness values.

Gray coding - The problem with straightforward binary encoding is that, the

strings that differ with only a single gene are not adjacent in decoded space.

Gray-coded strings have the property that, string that have a single different

gene are adjacent in the decoded space. This was shown to improve performance

in some cases (Mathias and Whitley, 1994).

2.2 Polytope Method

The polytope method is a hill-climbing algorithm that does not require derivative

information. The polytope method is also known sometimes as the simplex method,

not to be confused with the simplex algorithm used to solve linear programming

problems.

The polytope algorithm is a direct search hill-climbing method that can be utilized

with n + 1 linearly independent points in an n-dimensional search space (Gill et al.,

1981). The method was first established by Nelder and Mead (1965) and was used

for maximization in this study. At each stage of the algorithm the decision variables

x1, x2, · · · , xn+1 are arranged in the order of decreasing objective function value, f1 ≥
f2 ≥ · · · fn+1. Initially a trial point is generated by a single reflection step:

xr = c+ α(c− xn+1) (2.10)
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where c is the centroid of the n+1 points:

c =
1

n

n∑
i=1

xi (2.11)

and α (α > 0) is the reflection coefficient. The function is evaluated at the new point

xr, revealing the function value fr. The next step is taken according to the value of

fr:

• If f1 ≥ fr ≥ fn then replace the worst point (xn+1) with xr and proceed to the

next iteration.

• If fr > f1 then xr is the new best point. Assuming the direction of reflection

is towards the optimum, an expansion step is carried out. The expanded point

given by:

xe = c+ β(xr − c) (2.12)

is evaluated to find fe, where β (β > 1) is the expansion coefficient.

– If fe > fr then expansion is successful and xe replaces xn+1.

– If fe < fr then expansion fails and xr replaces xn+1.

• If fr < fn then the polytope is assumed to be too large thus is contracted:

– If fr ≥ fn+1 then

xc = c+ γ(xn+1 − c) (2.13)

– If fr < fn+1 then

xc = c+ γ(xr − c) (2.14)

where γ (0 < γ < 1) is the contraction coefficient. The function is evaluated at

xc to find fc. If fc is greater than both fr and fn+1, xc replaces xn+1, otherwise

further contraction steps are carried out.

The graphical representation of a polytope constructed in two-dimensional space

is shown in Fig. 2.2.
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Figure 2.2: A polytope and possible polytope steps in two dimensions.

2.3 Proxy Construction

The appropriate evaluation function for reservoir development (e.g. numerical simu-

lator) is most often very expensive computationally, thus the idea of using a cheaper

substitute to this expensive evaluation function is attractive. Kriging and NNs have

been considered as proxies in this work.

2.3.1 Kriging

The kriging algorithm is based on the theory of regionalized variables (Matheron,

1965). A regionalized variable refers to a phenomenon which is spread out in space

or time. Actually any variable can be considered to be spread out in the related

parameter space. From this point of view, kriging becomes nothing more than an

interpolation algorithm assuming correlation among data points. Kriging has been

used widely in earth sciences, particularly in geostatistics. Geostatistical applications

are usually limited to three dimensions, however the algorithm can be extended to

n-dimensions, thus kriging can be used for interpolation of multivariate functions.

Ordinary kriging, which is the most widely used kriging method, was used in this

study. Ordinary kriging is used to estimate a value at a point of a region for which the

variogram is known, without prior knowledge about the mean. Furthermore, ordinary

kriging implicitly evaluates the mean in the case of a moving neighborhood.

Suppose the objective function value at point x0 in Fig. 2.3 is to be estimated
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x0

Figure 2.3: A two-dimensional parameter space with irregularly spaced data (circles)
and a location where value is to be estimated (cross).

with the n data points. Combining function values at the data points linearly with

weights λi (Wackernagel, 1998):

Z∗(x0) =
n∑

i=1

λiZ(xi) (2.15)

The weights are constrained to add up to one. In ordinary kriging, this constraint

is imposed by Lagrange formalism, with the introduction of the Lagrange parameter

µ. In simple kriging, which is the fundamental kriging algorithm, there is no need for

such a constraint since the weights are made to sum up to one by giving the weight

λln+1 to the mean, hence in simple kriging, prior knowledge of the mean is necessary.

The data are assumed to be part of a realization of an intrinsic random function

Z(x) with the variogram g(h). In a geostatistical study, the variogram that has a

best fit to the data would be chosen.

The unbiasedness is assured with unit sum of the weights:

n∑
i=1

λiE[Z(xi)− Z(x0)] = 0 (2.16)

The estimation variance is given by:
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σ2
E = E

[
(Z∗(x0)− Z(x0))

2
]

σ2
E = −γ(x0 − x0)−

n∑
i=1

n∑
j=1

λiλjγ(xi − xj) + 2
n∑

i=1
λiγ(xi − x0)

(2.17)

The ordinary kriging system is obtained by minimizing the estimation variance

with the constraint on weights:




γ(x1 − x1) · · · γ(x1 − xn) 1
...

. . .
...

...

γ(xn − x1) · · · γ(xn − xn) 1

1 · · · 1 0



·




λ1

...

λn

µ



=




γ(x1 − x0)
...

γ(xn − x0)

1




(2.18)

The left hand side describes the dissimilarities among data points while the right

hand side describes the dissimilarities between the data points and the estimation

point.

Performing the matrix multiplication, the ordinary kriging system can be rewritten

in the form:




n∑
j=1

λjγ(xi − xj) + µ = γ(xi − x0)

n∑
j=1

λj = 1
i = 1, ..., n (2.19)

Ordinary kriging is an exact interpolator, in other words, at the point of the data,

the estimated value is equal to the data value.

If all data are used for each estimation point, only the right hand side vector in

Eq. 2.18 is modified, while the left hand side matrix remains unchanged. Thus given

a data configuration, the left hand side matrix in Eq. 2.18 has to be inverted once.

The left hand side matrix in Eq. 2.18 has the size n+ 1, n being the number of data

points. After the inversion, every estimation requires a single matrix multiplication.

The correlation structure of the underlying function can be extracted by fitting

a variogram model to the data produced by this function, although the variogram is

not reproduced by the kriging estimates. However if the variogram used has a very

short correlation range, the ordinary kriging estimates will be equal to the mean for
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points not close to the data locations. The estimated surface would resemble circus

tents in the case of short correlation ranges. This would be unsatisfactory in that

it would never compute a value higher than the values at the known data points.

Therefore the variogram used for the optimization algorithm must have a very long

correlation range.

2.3.2 Neural Networks

The principles of Neural Networks (NNs) were influenced from how the human brain

works (Russell and Norvig, 1995). In the human brain, the fundamental functional

unit, called a neuron, consists of a cell body with dendrites and a long fiber called

the axon which has synapses at its end. Neurons are connected to each other through

the links of dendrites and synapses. Signals are propagated from neuron to neuron by

a complicated electrochemical reaction. A neuron fires current through its synapses

to the dendrites of the other neurons it is connected to. When the incoming current

raises the electrical potential of a neuron over a certain threshold, the neuron fires.

Although it is not fully understood how exactly the brain works, it is believed that

such a configuration leads to learning and consciousness.

The mathematical NNs consist of a number of nodes connected by links. Each

link has a weight value associated with it. Weights are the means of adapting the

NNs to the problem. Learning in NNs takes place by updating the weights. Some

of the nodes are connected to external points for input and output purposes. The

weights are modified in order to tune the NN behavior to match the imposed inputs

and resulting outputs.

Each node has input links from other nodes and output links to other nodes. Each

node makes a local computation, based on the cumulative input from its incoming

links and outputs, of a value based on its activation function. An illustration of

a typical NN unit is given in Fig. 2.4. Each unit has a threshold, conveniently

represented by a fictitious input to every node. The activation function used in this

study is the sigmoid function given by
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Figure 2.4: A typical neural network unit.
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(2.20)

Multilayer feed-forward NNs are capable of representing nonlinear functions of

any complexity. The structure of such a NN is illustrated in Fig. 2.5.

The NN can be trained by back-propagation learning. Weights are initialized

arbitrarily (randomly). Example inputs are presented to the network and if there is

an error between the example and the NN output, the weights are adjusted to reduce

this error. The trick for back-propagation learning is to assess the blame for an error

and divide it among the contributing weights (Russell and Norvig, 1995). The weight

for the link connecting hidden node j to an output node i is updated by

wt+1
j,i = wt

j,i + αaj∆i (2.21)

where α is a constant called the learning rate, aj is the output of node j, and ∆i

is given by

∆i = (Ti − ai)g
′
(∑

i

ini

)
(2.22)

where Ti is the true output, ai is the node output and g′ is the derivative of

the activation function. The learning rate is usually close to unity. The learning

rate determines the convergence behavior of the back-propagation algorithm. The

optimum value of the learning rate is problem specific.

The weight between an input unit k and a hidden layer unit j is updated by
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Figure 2.5: The structure of a feed-forward neural network.
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wt+1
k,j = wt

k,j + αak∆j (2.23)

where ∆j is defined as

∆j = g′

∑

j

inj


∑

i

wt
j,i∆i (2.24)

The back-propagation algorithm can also be interpreted as a gradient-descent

search to minimize NN error in weight space.

Practically, the example set is partitioned into a training set and a test set. The

training set is used to update the weights and the NN performance is tested with the

test set. Such an approach provides an indication of whether the NN is generalizing

to the whole example set and not overfitting the training set.

2.4 The Hybrid Genetic Algorithm (HGA)

In this study GA was hybridized with the polytope method. In addition the proxy

approach was integrated within the steps of a conventional GA. The proxy was im-

proved iteratively at each generation. The resulting algorithm is referred to as the

Hybrid Genetic Algorithm (HGA). The HGA flowchart is given in Fig. 2.6.

2.4.1 Hybridization

A polytope is constructed from nd + 1 individuals, nd being the dimensions of the

problem. The polytope method is then used to generate a new potential member of

the population. Three different strategies to construct a polytope were considered:

• Polytope construction from the nd+1 fittest individuals in the current popula-

tion (Fig. 2.7).

• Polytope construction from the nd+1 fittest individuals ever encountered in all

populations so far (Fig. 2.8).



2.4. THE HYBRID GENETIC ALGORITHM (HGA) 31

N Y

Create initial population

Select individuals

Apply GA operators: crossover, mutation

Return bestStop criteria met?

Apply polytope method

Create proxy function from database

Optimize with proxy function (recursive)

Verify result with actual evaluation function

Figure 2.6: HGA flowchart with the conventional GA steps followed by the polytope
steps and the proxy approach.

• Polytope construction from the fittest ever encountered individual and the nd

closest individuals to this individual (Fig. 2.9).

The first two methods of constructing a proxy are more of a mutation operator

than a refinement. The last method is the best way to construct a polytope for the

purpose of local refinement. The effect of polytope strategy on algorithm performance

was investigated and is presented in Appendix 7.

As a result of the polytope steps, if the solution is improved, then the individual

with the lowest function value (worst solution) is replaced and the GA is resumed.

The polytope method will require several (one to three) function evaluations per

polytope step.

To integrate the proxy method, a database of visited points is constructed and

updated whenever a function evaluation is made. This database is used to construct

the proxy, which replaces the actual evaluation function. Using this proxy, estimations

are made for the unevaluated points. The maximum point of the proxy representation

of the evaluation function is found by a recursive call to the HGA with the proxy

replacing the numerical model. This proxy maximum is then evaluated by the actual
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Figure 2.7: Illustration of the polytope constructed from the best solutions in the
generation for a one-dimensional problem.
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Figure 2.8: Illustration of the polytope constructed from the best solutions in the
generation for a one-dimensional problem.
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Figure 2.9: Illustration of the polytope constructed from the solutions closest to the
best solution in the database for a one-dimensional problem.

evaluation function for verification, and if better than the best solution, the worst

solution in the generation is replaced. The proxy method requires only one function

evaluation per generation.

Error Analysis

An additional step may be employed when using the kriging proxy in order to further

ensure robustness. The kriging framework enables the computation of the estimation

variance (Eq. 2.17). The location in the search space with the maximum kriging

variance is the location furthest away from all data taken together. Thus making

an additional simulation at this location ensures that the proxy is not missing a

significant optimal region, making the overall hybrid algorithm more robust. This

approach will be referred to as Error Analysis.

The HGA was implemented in C++ with object-oriented design criteria. The

structure of the code and implementation details are given in Appendix B.

2.4.2 Other Helper Techniques

Some additional techniques were investigated as ways to further enhance the HGA

performance.
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Invalid Point Interpretation - A point in the search space is considered invalid

when it does not have a physical description. An example would be the place-

ment of a well in an inactive grid block. Invalid points could be given a fitness

of 0. However such an approach disrupts the effectiveness of the polytope and

the proxy and also makes it harder for the optimization algorithm if the optimal

solution happens to be adjacent to the invalid solution. Invalid points in this

study were assigned a fraction of the fitness of the closest valid point, which

enables easier proxy calibration and better located polytopes. This approach is

analogous to the penalty function approach used in constrained optimization.

Local Mutation - In order to further resolve the issue of refinement, local mutation

is proposed. The best solution at each generation is perturbed within a given

range and probability. This lowers the chance of missing better points close by.

Local mutation is similar to the perturbation made during simulated annealing,

although here the range and probability of the perturbation is kept constant

throughout successive generations.



Chapter 3

Synthetic Model - Well Placement

Optimization

The performance of the HGA was tested on a synthetic model. Controlled experi-

ments were carried out to compare the performance to simple GAs. Schlumberger-

Geoquest’s ECLIPSE was used for numerical simulation.

3.1 The Synthetic Model

A heterogeneous, two-dimensional (32 × 32) numerical model was constructed. The
permeability field was established by sequential Gaussian simulation conditioned to

arbitrary permeability data. The permeability distribution is given in Fig. 3.1. The

permeability values range from 9 md to 47 md. Porosity was related to permeability

through a logarithmic function given in Eq. 3.1.

φi = 11.889 + 2.277 log (ki) (3.1)

3.2 Producer Placement

The optimum location of a producer on the 32×32 synthetic field was determined by
exhaustive search. The purpose in doing this was to know the true global optimum

35
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Figure 3.1: The permeability distribution for the synthetic model.

and hence be able to evaluate the effectiveness of the algorithm in finding it. The

example reservoir already had three existing producers. The wells were controlled by

bottom hole pressure. The cumulative oil production surface produced by exhaustive

simulation is given in Fig. 3.2. Possession of the objective function value at every

possible location of the grid enables the test runs to be made without any further

simulation. Thus sensitivity studies were carried out with minimal computational

resources. The effectiveness of the GA operators and hybridization were studied by

comparing to the exhaustive search result.

This problem was influenced strongly by the fluid properties, boundary conditions

and the existing production well locations as well as heterogeneity. It is seen from

Fig. 3.2 that the optimum location is (20,1). This grid block is adjacent to a no-flow

boundary, however it is less affected by the other producers. The block (32,1) would

probably be least affected by the producers, however due to its adjacency to two

no-flow boundaries, the well would switch to bottom hole pressure control too early

in the simulation, lowering the cumulative oil production from the field. After the

system reaches pseudosteady state, the shape of the surface (Fig. 3.2) will not change

significantly, therefore the duration of production from the field is not crucial for the

optimum location of the production well.



3.2. PRODUCER PLACEMENT 37

5
10

15
20

25
30

5
10

15
20

25
30

0.995

1

1.005

1.01

1.015

1.02

1.025

1.03

x 10
4

i
j

C
um

ul
at

iv
e 

O
il 

P
ro

du
ct

io
n,

 M
S

T
B

Figure 3.2: Cumulative oil production surface for the single production well place-
ment problem for the 32× 32 synthetic case obtained by exhaustive sim-
ulation.

Experiments were carried out to test HGA performance. Three experiments were

made and 50 optimization runs were made for each experiment. Each optimization run

in these experiments was terminated once the algorithm found the optimal solution

and the number of function evaluations to get to the optimum were recorded. First

simple GA was used, then GA and polytope method, and finally the full HGA, which

is GA, polytope method and the kriging proxy applied together. Binary encoding

of the optimized parameters, (i, j) locations of the optimized wells, would require

a total of 10 strings and the binary mapping would be exact. In this work integer

genes were used since integer encoding has the ability to avoid the inexact mapping

of binary strings for parameters that are not discretized to powers of 2. According

to suggestions of Goldberg (1989) and De Jong (1975) the following sets of basic GA

parameters were used for all runs:

n = lbinary = 10

pc = 0.6

pm = 1/n = 0.1

where n is the population size, lbinary is the length of the binary string, pc is the
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Figure 3.3: Comparison of the means (crosses) and the standard deviations (error
bars) for different combinations of Genetic Algorithm (GA), Polytope
method (P) and Kriging (K) for the producer placement problem on the
32× 32 synthetic case.

crossover probability and pm is the mutation probability.

The necessary number of simulations required to find the global optimum for

each run was recorded. The means and the standard deviations of the number of

simulations for the three experiments are given in Fig. 3.3.

It was observed that the HGA reduced the required number of simulations by a

factor of 3.3 (108.1 to 32.7 simulations) compared to the simple GA with significantly

less uncertainty about the run performance (Fig. 3.3).

3.3 Injector Placement

The optimum location for an injection well was investigated on the 32 × 32 het-

erogeneous model. Three existing producers were placed at the same locations as

the previous run. The cumulative oil production surface given by exhaustive runs is

shown in Fig. 3.4.

This optimization problem is influenced by fluid and rock properties, especially
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Figure 3.4: Cumulative oil production surface for the single injection well placement
problem for the 32×32 synthetic case obtained by exhaustive simulation.

relative permeability, the existing producer locations, the boundaries, and the dura-

tion of injection and production from the field. The duration of the simulation in

this case is important since the water breakthrough time at the producers will be

the determining factor for their productivity. Figure 3.4 suggests that the optimum

location for the injector well is (32,1), which is the block most distant from the three

producers, which means that time of water breakthrough at producers dominates

other factors.

Experiments were carried out with the same parameters as the producer place-

ment problem. The means and the standard deviations of the number of simulations

required to find the global optimum of Fig. 3.4 for the three experiments are given

in Fig. 3.5.

It was observed that the HGA reduced the required number of simulations by a

factor of 2.2 (38.8 to 17.8 simulations) compared to the simple GA with much less

uncertainty about the run performance (Fig. 3.5).
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Figure 3.5: Comparison of the means (crosses) and the standard deviations (error
bars) for different combinations of Genetic Algorithm (GA), Polytope
method (P) and Kriging (K) for the injector placement problem on the
32× 32 synthetic case.

3.4 Well Indexing

The way the well-blocks are indexed is important since it determines the behavior

of the evaluation function. Bittencourt and Horne (1997) indexed active cells only,

arguing that (i, j) indexing is not suitable because the optimization algorithm could

place wells in inactive regions. Several types of well-block indexing were investigated

for the 32 × 32 synthetic case, injector placement problem. Well indexing types

investigated are given in Table 3.1.

The indexing schemes in Table 3.1 map the two-dimensional surface (Fig. 3.4)

into a single dimension. The resulting one-dimensional functions are given in Fig 3.6.

All of the indexing schemes except the Hilbert curve are easy to generate. The

Hilbert curve was first described by David Hilbert in 1892. The Hilbert curve is a

space filling curve that visits every point in a square grid with a size of any power of

2. The useful feature of Hilbert curves is that two points close to each other on the

Hilbert curve are also close in the two-dimensional space. The Hilbert curve mapping
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Figure 3.6: One dimensional objective functions generated by mapping from the
32 × 32 synthetic injector placement problem by different well indexing
schemes.
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Table 3.1: Well indexing schemes.

Index name Scheme

Row

Column

Snake row

Snake column

Spiral

Hilbert curve

results in a smaller number of large scale local optima but the one-dimensional func-

tion has a lot of small scale noise (Fig. 3.6). The Hilbert curve has links to the area

of fractals and the generation of the Hilbert curve requires a recursive algorithm. The

one limitation in our case is that the Hilbert curve mapping works only for square

grids with a size of any power of 2. The 32× 32 Hilbert curve, also referred to as the
level 5 Hilbert curve (25 = 32), is shown in Fig. 3.7;

After mapping with the given indexing schemes, the smooth two-dimensional func-

tion (32×32) given in Fig. 3.4 is replaced by noisy one-dimensional functions (1024×1)
given in Fig 3.6. This artificial noise is problematic from an optimization point of

view. The HGA was applied to the indexed one-dimensional functions (Fig 3.6) and

the results are given in Fig. 3.8.

It is seen from Fig. 3.8 that (i, j) indexing of wells is the most suitable for opti-

mization algorithms for the well placement problem since other kinds of indexing may

introduce artificial noise due to the discontinuities in the indexed search space. Oddly,
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Figure 3.7: The Hilbert curve used to map the 32× 32 two-dimensional surface into
a single-dimension.
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Figure 3.8: Comparison of the efficiency of the HGA for different types of indexing;
crosses indicate the means and the error bars indicate the standard devi-
ations of 50 runs.
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the promising Hilbert curve indexing scheme results in the worst optimization perfor-

mance which implies that for this problem, small-scale noise is more of a hinderance

to optimization with GAs than large-scale noise. A solution to reduce this small-scale

noise might be to sample a lesser number of points from the two-dimensional repre-

sentation of the search space. This would result in a smoother one-dimensional line

that would be an approximate representation of the real search space, but would be

easier to optimize.



Chapter 4

Optimization of Waterflooding in

the Pompano Field

The HGA was applied to the Pompano field which is an offshore development in the

Gulf of Mexico. The operating companies decided to carry out waterflooding after

2.6 years of production. The optimum location and rate of water injection wells were

sought.

4.1 Reservoir Description

The Pompano field extends over five Gulf of Mexico Blocks, Mississippi Canyon (MC)

27, 28, 72, and Viosca Knoll (VK) 989, 990 located approximately 24 miles Southeast

of the Mississippi River Delta (Güyagüler et al., 2000). BP Amoco and Kerr McGee

hold 75% and 25% equity respectively. The Pompano platform sits in block VK 989

in 1290 feet of water and is a 40-slot fixed-leg platform. This platform is the second

tallest fixed structure in the Gulf of Mexico. The platform receives production from

three reservoirs: Upthrown Pliocene, Downthrown Pliocene, and the Miocene. In

this study we focused on the Miocene reservoir which comprises two thirds of the

field reserves.

The Miocene sands are located in blocks MC 28, and 72. Developing these sands

45
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has proved challenging given the large distance from the platform. The longest drill-

able platform wells (about 18,000 ft of lateral step-out) can only reach the northern

one third of the reservoir. Thus the remaining two thirds in the south were developed

from a 10-slot subsea template located in block MC 28 in 1800 ft of water. The

template is tied back to the VK989 platform via two 8 inch flowlines approximately

4.5 miles in length.

Production from the Miocene commenced in April 1995. The oil has very favorable

properties which help in achieving high production rates. API gravity is 32, viscosity

is 0.38 cp, and the gas-oil ratio (GOR) was initially 1037 SCF/STB and climbing

with increased production. The very restricted range of variability in the producing

wells emphasizes the connectivity in the Miocene reservoirs. There are 12 wells in

operation, five drilled from the platform to the north during Phase I, and seven drilled

from the template during Phase II. The average initial flow rate was 7880 STB/D for

the five Phase I wells and 6343 STB/D for the seven Phase II wells.

The Miocene sands were deposited as midslope turbidites in a large aggradational

channel complex. There is significant connectivity between channels as younger chan-

nels frequently eroded into previously deposited ones. Pressure depletion in succes-

sively drilled wells suggests that most of the reservoir complex is in pressure and fluid

continuity. Grain size ranges from very fine to medium, with the bulk being fine

grained. The average thickness of the Miocene sand is 50 net ft of oil (NFO) in a

vertical target interval of 300 to 400 ft, and the thickest sand penetrated is 110 ft

NFO in a single sand.

A north-south trending channel system draped over east-west trending structural

nose forms the trap. The channel sands are laterally confined by the shales and silty

shales of the overbank deposits. An oil-water contact at -10,200 ft true vertical depth

subsea (TVDSS) has been penetrated on the southern edge of the field and is im-

plicated on the north/northwest end by seismic interpretation and water production.

Maximum hydrocarbon column height is approximately 600 ft. The large aquifer

system below, estimated to be three times larger than oil in place, is judged to be an

advantage to help offset pressure losses during reservoir depletion.

A geological reservoir model based on seismic data (acoustic impedance) and tied



4.2. CONTROLLED EXPERIMENTATION 47

Figure 4.1: The numerical model for the Pompano field.

to appraisal wells was built. The heterogeneous anticlinal turbidite reservoir was

discretized into an approximately three million cell blocks at seismic resolution. It

was then scaled up to a 40,000 cell block simulation model, with dimensions of 40×
40 × 25 having 7,533 active cells. The three-dimensional visualization of the grid

for the numerical model is shown in Fig. 4.1. Sensitivity runs with the simulation

model suggested that an injector placed in the northern Miocene, (where aquifer size

is believed to be more limited than in the south) had the potential of adding an

additional 10 MMBOE of recoverable reserves. A more detailed investigation of the

location and pumping rates of injectors was studied in this work.

4.2 Controlled Experimentation

The HGA was used first to optimize the location of one injection well injecting water

at constant rate. Fixing the pumping rate decreased the size of the search space and

the relatively small search space enabled the exhaustive simulation of every possible

well location. The exhaustive run for this problem was made by carrying out a
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Figure 4.2: Illustration of the process for the evaluation of well configurations for the
optimization of Pompano field development.

simulation at every possible active cell in the numerical model. The corresponding

incremental NPVs from the no-injection case for each well location were calculated

from the simulation output. The process of evaluation of a well configuration is

illustrated in Fig. 4.2. The parameters for NPV calculations are given in Table 4.1.

The resulting incremental NPV surface is shown in Fig. 4.3. This NPV surface is

very noisy. Gradient-based techniques would fail miserably in locating the global

maximum for this surface. The global maximum on this surface is at (25, 12) with

an incremental NPV of $21.9 million. Note that some injector well locations result in

loss. Possession of such an exhaustive run provided the means to carry out sensitivity

analysis without further simulation. When the HGA placed a well on the numerical

model, the corresponding NPV could be looked up from a table.

While it is the simplest, this problem offers the most control in overall performance

assessment because the exhaustive run is possible. The exhaustive run also provides

insight about the more complex well optimization problems of similar sort. 100 runs

were made for each case considered since the process is stochastic. A mean and

standard deviation value was obtained for each case.

The total simulation time was 4.6 years with 2 years of water injection. Various

combinations of the proposed methods were experimented with for this problem. The
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Table 4.1: Parameters for net present value calculations.

Parameter Value
Discount rate, % 10.0
Oil price, $/bbl 25
Gas price, $/MSCF 3
Water handling cost, $/bbl 1
Operation cost, $/day 40,000
Well cost, $/well 20,000,000
Capital expenditures, $ 50,000,000

Figure 4.3: The incremental net present value surface for the single injector well place-
ment problem generated by exhaustive simulations.
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rule of thumb values for HGA parameters were utilized. A more detailed study of

sensitivity of optimization performance algorithm parameters is presented in Chapter

7.

Performance of the different combinations of the proposed algorithms were com-

pared. A maximum of 300 evaluations and 100 iterations were allowed for all the

algorithms. The number of simulations consumed to correctly locate the optimum

well location are given in Table 4.2 and visualized in Fig. 4.4. Some runs fail to

achieve the global optimum given 300 evaluations and 100 iterations. The success

percentage of the algorithms is also given in Table 4.2. It is observed that ordinary

GA performs poorly with an average of 182.0 simulations and fails to locate the global

optimum in 36 of the 100 runs carried out. Utilization of the polytope method with

the GA improves the search efficiency and the average number of simulations required

to correctly locate the optimum location is decreased to 141.0. Utilization of kriging

further improves the algorithm efficiency and the average number of simulations is

114.0 for this case. The introduction of the error analysis step does not significantly

improve the performance and the avergae number of simulations is 115.0. Introduc-

tion of the kriging proxy greatly improves the success percentage of the hybrid.

The hybrid employing the neural network is less efficient with an average of 133.2

simulations. It should be noted that this is still better than the ordinary GA and the

GA-polytope composite. However several issues influence the efficiency of the neural

network proxy. The size and structure of the network and the number of training iter-

ations were kept constant throughout the optimization process. The neural network

estimates are poor initially since the network overfits the small number of points at

the earlier generations. Network estimates are also poor at later generations when

there are a lot of data points for an accurate estimation. In other words the network

does not generalize at early generations and is not representative enough at later

generations. This problem might be overcome by varying the size and structure of

the networks and also the number of training iterations as the optimization algorithm

progresses.

The effect of invalid point interpretation and local mutation was also investigated.

It was observed that when invalid point interpretation or local mutation were not used
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Table 4.2: Means (m) and standard deviations (σ) of the number of simulations and
the success percentage (%) to correctly locate global optimum for the com-
posite algorithms: Genetic Algorithm (GA), Polytope algorithm (P), Neu-
ral Network (NN), Kriging (K) and Error analysis (E).

GA GA+P GA+P+NN GA+P+K GA+P+K+E
m 182.0 141.0 133.2 114.0 115.0
σ 92.1 94.1 66.6 72.4 72.3
% 74 80 91 94 95

GA GA+P GA+P+NN GA+P+K GA+P+K+E
0

50

100

150

200

250

300

N
um

be
r 

of
 S

im
ul

at
io

ns

Figure 4.4: Comparison of the mean (crosses) and the standard deviation (error bars)
for different combinations of Genetic Algorithm (GA), Polytope method
(P), Kriging (K) and Error analysis (E).
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Figure 4.5: Effect of invalid point interpretation (IPI) and local mutation (LM) on
algorithm performace; crosses indicate the means and the error bars in-
dicate the standard deviations of 50 runs.

the helper methods were less efficient. The effect of invalid point interpretation and

local mutation on algorithm performance is summarized in Fig. 4.5.

The evolution of the kriging estimate of the NPV surface for one of the runs using

GA, polytope method and the kriging proxy is shown in Fig. 4.6. It is seen that as

generations progress and more points are visited, the kriging estimates get better and

eventually at generation 6, the algorithm correctly locates the optimum well location

resulting in the highest NPV.

4.3 Multiple Well Location and Rate Optimization

The configuration and pumping rates of up to four wells were optimized using the

HGA. In these cases it is not feasible to carry out exhaustive runs since the search

space size is very large (Table 4.3) and a very large number of simulations would be

necessary. The pumping rate was discretized into seven intervals from 0 STB/D to

30,000 STB/D which allows optimization of rate with a precision of 5,000 STB/D.

Search space sizes for the problems considered are shown in Table 4.3. Runs were
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Generation 1 Generation 3

Generation 5 Generation 7

Actual Surface

Figure 4.6: Evolution of the kriging estimation around the global optimum for the
single injector placement problem.
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allowed to consume a maximum of 300 evaluations before termination. Simulation

times were a total of 7.6 years with 5 years of injection. Results are given in terms of

incremental NPV from the base case, where there is no injection. The configurations

and rates of injection wells proposed by the HGA and the resulting NPVs are given in

Table 4.4. The locations of the existing producers and the proposed injector locations

are plotted in Fig. 4.7 through Fig. 4.10. From the results in Table 4.4, it is observed

that water injection increases profit in all cases and that three injectors with the

proposed configuration is the most profitable development plan.

One Injector The algorithm converges to an (i, j) location of (24,13) and a pumping

rate of 30,000 STB/D. Well location is shown in Fig. 4.7. This location has

the best balance between injectivity, pressure maintenance and water cut. The

pumping rate hits its upper limit suggesting that the pressure maintenance

factor was dominating. The incremental NPV is $63 million.

Two Injectors The locations for two injection wells proposed by the HGA for high-

est NPV are shown in Fig. 4.8. These locations have favorable rock properties

and are strategic for better sweep and pressure maintenance. In this case the

pumping rates of the two wells are 25000 STB/D. The pumping rates do not

hit the upper limit in order to prevent high water cut. The HGA solution is

intuitive in that it provides a good balance between pressure maintenance and

water production. The incremental NPV is $115 million for the two wells case.

Three Injectors The well locations proposed by the HGA for the placement of

three injection wells are shown Fig. 4.9. The proposed configuration results in

an incremental NPV of $154 million. Among the configurations considered, this

well configuration results in the highest NPV value for the Pompano field thus

the optimum number of wells is three.

Four Injectors For the four well placement problem, the HGA places the wells as

shown in Fig. 4.10. Introduction of the additional well does not pay off and the

resulting incremental NPV of $151 million is less than the three-well scenario.
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Table 4.3: Search space sizes for the problems considered for the Pompano field.

Number of Injectors Search space size
1 6,090
2 18,522,735
3 37,514,712,620
4 56,919,197,722,695

Table 4.4: Number of injectors (ninj), pumping rates in MSTB/D, number of simu-
lations (nsim) and the resulting incremental NPVs in MM$ for the HGA
runs.

ninj nsim NPV (i1, j1) q1 (i2, j2) q2 (i3, j3) q3 (i4, j4) q4
Base Case 1 0
1 Well 106 63 (20,4) 15
2 Wells 155 115 (25,14) 25 (17,20) 25
3 Wells 275 154 (30,22) 15 (33,26) 15 (23,13) 20
4 Wells 254 151 (28,12) 30 (34,21) 30 (17,4) 20 (23,14) 30
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Figure 4.7: Optimum well location for the one injector placement problem for the
Pompano field.
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Figure 4.8: Optimum well location for the two injector placement problem for the
Pompano field.
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Figure 4.9: Optimum well location for the three injector placement problem for the
Pompano field.
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Figure 4.10: Optimum well location for the four injector placement problem for the
Pompano field.
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In all the cases considered the HGA proposed intuitive solutions. A reservoir en-

gineer would not oppose the well locations and pumping rates proposed by the HGA.

It should be noted that, different from a human being, the optimization procedure

is able to evaluate all the effects of possibly hundreds of factors in a straightforward

and precise manner. Some of these factors are rock and fluid properties, physics of

flow through porous media, economic parameters, etc. Most of these factors have

nonlinear and implicit effects on the objective function, which are hard to evaluate

manually. In particular it should be noted that adding more injectors changes the

optimal location of earlier injectors; this phenomenon would prevent the application

of successive or sequential optimization methods such as dynamic programming.

4.4 Comparison with the DeepLook Approach

The well placement problem for the Pompano field has also been studied by the

DeepLook consortium (Chawathe, 1999). Johnson and Rogers (2001) used a neural

network proxy for the numerical model for the Pompano field and optimized using

GA. Although the reservoir simulator and the economic parameters for NPV cal-

culations were different in this study, a qualitative comparison is noted. Johnson

and Rogers proposed 25 candidate locations for injection wells based on injectivity

concerns. The determination of these 25 locations was based on reservoir properties

thus was independent of the objective function (NPV). These preselected 25 candi-

date locations and the HGA proposed well locations are shown in Fig. 4.11. The

optimum location for the single injector placement problem, for which the optimum

was found explicitly here through exhaustive simulation, does not fall onto any of the

25 preselected locations. Also comparison was made for the three injector placement

case. The top ranked three-well optimum configuration was run through the HGA for

pumping rate optimization. The resulting NPV of the project was $159 million less

than the solution proposed by the HGA for the three well configuration. Thus there

is evidence that a preselection of locations based on criteria other than the objective

function can be limiting. Such preselection will especially be problematic in multiwell

scenarios where well interactions become very important.
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Figure 4.11: The 25 candidate well locations selected by the DeepLook consortium
prior to optimization and the locations proposed by the HGA.

4.5 The Quality Map Approach

The quality map was introduced by da Cruz et al. (1999) in an effort to quantify the

complex interactions and reservoir response into a simple two-dimensional represen-

tation. da Cruz et al. also suggested an approach to locate single and multiple wells

using the quality map. This suggested approach of well placement with the quality

map was improved and applied to the Pompano field injector placement problem.

4.5.1 Quality Map Definition

The objective is to maximize the total quality (Qt) given the quality values for each

well (Qw):

Qt =
nw∑
c=1

Qw (4.1)

where nw is the number of wells.
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The quality of each well can be calculated by adding the inverse distance weighed

qualities of cells belonging to that well:

Qw =
ncw∑
c=1

Qc · wc (4.2)

where ncw is the number of cells belonging to the well.

The cell weights (wc) are given by:

wc =
1

a · db
wc

(4.3)

where dwc is the well-cell distance and a, b are constants and wc = 1 for dwc = 0.

da Cruz et al. proposed a = 2 and b = 2 as the result of some sensitivity studies.

These values were also used here.

The advantage of the quality map approach is that no simulations are performed

beyond those used to generate the map. This may make the approach attractive when

simulations are expensive. In effect the quality map is used as a form of proxy.

4.5.2 Optimization with the Quality Map

da Cruz et al. also proposed a simple optimization heuristic for the well placement

problem which has a high likelihood of delivering suboptimal solutions. In this study

the HGA was utilized for the optimization of total quality for single and multiple

well locations. The exhaustive NPV map for the Pompano field for the single injector

placement problem injecting with constant rate was used as the quality map. Up to

four well locations were optimized. The results are given in Figures 4.12 through 4.15.

Injection rates were fixed because including variable injection rates is not straight-

forward with the quality map approach, although some kind of ad hoc scaling might

usefully be applied.

In order to evaluate the results obtained by the quality map approach, direct

optimization of well locations with constant injection rates was carried out. As shown

in Figures 4.16 through 4.19 the well locations proposed by the quality map approach

are significantly different from those obtained by direct optimization using numerical

simulation for the evaluation of well configurations. Numerical simulation with the
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Figure 4.12: Resulting optimized single well location with the quality approach for
the Pompano field; red-white crosses indicate the location of existing
producers and the proposed well locations have unit cell-weight.
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Figure 4.13: Resulting optimized two well locations with the quality approach for
the Pompano field; red-white crosses indicate the location of existing
producers and the proposed well locations have unit cell-weight.
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Figure 4.14: Resulting optimized three well locations with the quality approach for
the Pompano field; red-white crosses indicate the location of existing
producers and the proposed well locations have unit cell-weight.
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Figure 4.15: Resulting optimized four well locations with the quality approach for
the Pompano field; red-white crosses indicate the location of existing
producers and the proposed well locations have unit cell-weight.
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Figure 4.16: Well locations suggested by the quality approach and direct optimiza-
tion using the numerical simulator as the evaluation function for the
Pompano field one injector placement problem.

well configurations suggested by the quality map approach were carried out. Quality

map approach results in less incremental NPV for multiple well locations as given in

Table 4.5.

The well locations obtained with the quality map approach using the HGA for

Table 4.5: Comparison of resulting incremental net present value calculations for the
quality map and direct optimization approaches.

Quality NPV, $ ×107 Direct Optimization NPV, $ ×107
No Wells 0.00 0.00
1 Well 2.19 2.19
2 Wells -2.84 3.05
3 Wells 2.82 7.59
4 Wells 1.40 10.00
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Figure 4.17: Well locations suggested by the quality approach and direct optimiza-
tion using the numerical simulator as the evaluation function for the
Pompano field two injector placement problem.
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Figure 4.18: Well locations suggested by the quality approach and direct optimiza-
tion using the numerical simulator as the evaluation function for the
Pompano field three injector placement problem.



4.5. THE QUALITY MAP APPROACH 67

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

i

j

Direct Optimization
Quality Approach
Producers

Figure 4.19: Well locations suggested by the quality approach and direct optimiza-
tion using the numerical simulator as the evaluation function for the
Pompano field four injector placement problem.

optimization appear to be sensible when one considers the relative locations of pro-

ducers and other injectors (Figures 4.12 through 4.15). However the well interactions

are modeled implicitly with a very simple inverse distance weighing scheme which

will not be sufficiently accurate for real-world decisions. This can be observed in

Figures 4.12 through 4.15 where it is seen that introduction of additional injectors

does not significantly change the locations of previous injectors. Although the opti-

mization procedure is simultaneous the results are as if the injectors were introduced

sequentially. Consequently the quality approach may be useful for initial approximate

evaluation of the well placement problem or perhaps as a helper method for full and

direct optimization but not as a stand-alone decisive method. The significantly lesser

incremental NPV values obtained by the quality approach (Table 4.5) for the multiple

well placement problems indicates the importance of well interactions.



Chapter 5

Real-World Field Development

Optimization

Optimization of field development of a real-world reservoir has been undertaken. The

reservoir will be referred to as REAL. The numerical model for the REAL field has

approximately half a million active cells, thus optimization by using the numerical

model as the evaluation function poses a significant challenge. The optimum deploy-

ment schedule of 13 potential producers that would meet a production schedule was

sought.

5.1 Problem Definition

5.1.1 Optimization Objective

The objective of the full field optimization problem is defined as follows:

Objective - Maximization of profit (NPV) by scheduling the deployment of the 13

predrilled candidate producers to meet a specific production target schedule.

There are 13 predrilled producers ready for deployment. Each producer is as-

sociated with a different deployment cost. There is a field oil production schedule

imposed by the operating company. The numerical simulation forecast with no new

68
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Figure 5.1: The target rate and production forecast for the REAL field when no new
wells are deployed.

wells fails to meet this imposed production schedule for some periods (Fig. 5.1) which

necessitates the deployment of some or all of the new wells.

The optimal deployment schedule of the 13 predrilled producers was sought. Due

to the imposed production constraint, maximization of NPV is equivalent to the

minimization of the cost of meeting the production target constraint. This is due to

the fact that, out of two deployment schedules that both meet the production target

at all times, the one that costs less to implement will have a higher NPV. The NPV

of a deployment schedule will depend on the flow forecasts made by the numerical

simulator and also the deployment dates and the costs of the wells used.

5.1.2 Production Constraint Handling

During the production forecast, when the production rate exceeds the imposed pro-

duction constraint, the numerical simulator has to decrease the field production. Two

different strategies to achieve this were considered. One strategy would be to shut the
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Figure 5.2: The target rate and production forecast for the REAL field when new wells
are deployed and the wells are shut when production target is exceeded.

more prolific wells when the field production has to be reduced. The numerical simu-

lation results when highest producing wells are shut once the field production exceeds

the target is given in Fig. 5.2. It is observed from Fig. 5.2 that the field production is

quickly cut below the production target when the target is exceeded, however there is

no simulator feature that would turn the well back on once it is needed again. Also it

does not make practical sense to shut wells and then to introduce new wells to match

the production targets.

A second strategy would be to choke back producer rates until the field produc-

tion target is matched exactly. Numerical simulation forecasts when the numerical

simulator scales back simulation rates in the case of overproduction is given in Fig.

5.3. It is observed from Fig. 5.3 that overproduction is scaled back to the target rate.

It is also observed that computational time increases drastically when the numerical

simulator tries to scale back the significant overproduction during the last two periods

of the target production schedule. This is due to convergence problems associated

with rate scaling. Fortunately in this case, optimization for the last two periods is
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Figure 5.3: The target rate and production forecast for the REAL field when new
wells are deployed and the well rates are scaled back to meet the target
rate in the case of overproduction.

not necessary since the field is able to meet the target rates even when none of the

wells are employed (Fig. 5.1), thus numerical simulations and the optimization search

space do not need to cover these last two periods.

The second strategy of scaling rates was used for the REAL problem since this

strategy is less problematic and optimization is expected to lead to more practical

results. Also the convergence problems may be minimized in this particular case by

excluding the last two periods of the production rate target for which these problems

are intense.

5.2 Optimization Approach

5.2.1 Formulation

The well deployment scheduling problem for the REAL field may be formulated in

several different ways. One can optimize the deployment date of every individual well.
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This will result in a search space size given by (ntime)
13 where ntime is the number

of time points at which the wells are to be deployed. For instance if the deployment

dates were to be optimized over a period of 9 years and the precision of dates were

to be one year, then we would have 10 time points and the search space size would

be 1013.

Another approach would be to make use of the numerical simulator feature that

allows the user to specify a drilling queue from which the wells are deployed in the

order specified only when the production rate from the field fails to meet the spec-

ified target. Hence the item to optimize becomes the order of wells in the drilling

queue. Different ordering of wells results in a different deployment schedule which is

determined by the numerical simulator. Formulation of the problem as the ordering

of wells in the drilling queue results in a search space size of 13! = 6, 227, 020, 800

which is a 1/1606 fraction of search space size of 1013 resulting from the previous

formulation of optimization of the deployment date of every individual well.

Drilling queue optimization eliminates solutions that would propose deployment

of wells even when the target rates have already been met, hence any deployment

schedule obtained by using the drilling queue can be considered preoptimized. Given

a well order the deployment schedule is optimized relying on a simple heuristic: deploy

the next well in the drilling queue when field production falls below target.

This formulation also utilizes only the necessary number of wells, that is if the

production target can be met with a subset of the 13 wells, the remaining wells will

not be deployed by the numerical simulator. This also minimizes the convergence

problems associated with rate scaling since the production target is never signifi-

cantly exceeded. Another advantage is that the time dimension does not need to be

discretized, in other words there is no dependence on ntime.

5.2.2 Solution Representation

Formulation of the approach as the ordering of wells within a drilling queue makes the

optimization analogous to a Traveling Salesman Problem (TSP). In a TSP the task is

to determine the order of cities the salesman is to visit while minimizing his traveling
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costs. Every city has to be visited exactly once. In our REAL world problem we need

to determine the order of wells which maximizes NPV and each well has to appear in

the drilling queue exactly once. Although the objective is completely different than

that of a TSP, the data structure will be similar.

There are several ways to represent TSP solutions within an optimization context.

One can employ sequential representation where the cities are listed in the order in

which they are visited. For instance a path that includes three cities might look like

this: (2,1,3).

Such a representation is problematic in a GA context since straightforward crossover

and mutation may result in a path where some cities are visited more than once and

some not visited at all. Consider a crossover of two paths from the first crossing point:

(2, 1, 3)× (1, 3, 2) = (2, 3, 2)and(1, 1, 3)

Resulting individuals (2,3,2) and (1,1,3) are infeasible paths. Crossover and muta-

tion operators customized for the TSP have been suggested (Grefenstette et al., 1985).

GA-customized TSP operators generally rely on local search heuristics which require

the evaluation of costs of travel between individual cities. These TSP operators are

often referred to as greedy operators. For instance, evaluation might be required to

determine whether a subsection of the path would be cheaper if reversed. This is

easily done for the TSP problem since costs associated with a subsection of the path

can be evaluated without the evaluation of the complete path. However in the case

of drilling queue optimization, there is no way to determine the effect of changing a

subsection of the queue without carrying out full-field numerical simulation.

Other crossover or mutation operators that do not utilize local search or repair

algorithms that correct an invalid path may be used. However these approaches

require major customization of the GA without apparent gain in efficiency.

One can also employ specialized decision trees as the path representation in TSPs.

The decision nodes at any point in this decision tree represent the next well (or city)

in the queue. Instead of working on the well indices, we modify and optimize the

branching order on the decision tree. These specialized decision trees start with a

single decision node and initially branch to nwell decision nodes. Each of these decision
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Figure 5.4: Decision tree for the four well ordering problem.

321

121323

213132

Figure 5.5: Decision tree for the three well ordering problem, the integers on the
decision nodes are the well indices.

nodes branch to one less number of nodes with increasing tree depth until only one

decision node is left. A sample decision tree for a problem involving four wells is

illustrated in Fig. 5.4.

The order of nwell wells can be determined by (nwell − 1) integers which represent
the branching order on the decision tree. This will be demonstrated for three wells

(nwell = 3). Consider the decision tree for the three-well ordering problem, shown in

Fig. 5.5. The integers at the decision nodes in Fig. 5.5 are the well indices. The six

(nwell!) possible well orders can be represented with this decision tree.

The order of three wells can be determined by two integers representing the

branching order. Consider the following branching order: (1,2). As shown in Fig.
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1

321

121323

213132
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Figure 5.6: The path and the well order resulting from the branching order of (1,2).

5.6 if a branching order of (1,2) is used the resulting well order is: (1,3,2).

A decision tree for 13 wells was utilized for the REAL field deployment schedule

optimization. It should be noted that one does not need to explicitly construct the

decision tree which would be a computationally challenging task. Instead a simple

algorithm to decode a branching order into a well order can be used (Fig. 5.7).

5.3 Results

The GA has been used to optimize deployment schedule since the hybrid components

of the HGA are not suitable for the decision tree data structure. The GA was allowed

to consume 100 numerical simulations. The optimization process was run in parallel

on four processors. Refer to Appendix A for parallelization details.

The computational effort that went into the optimization process was significant,

approximately 100 CPU-days on a single 2GHz Xeon processor, or approximately

25 days in parallel on four processors (two 2GHz and two 1.8GHz Xeon). However,

considering the importance and possible implications of the decision and also keeping

in mind that computer processors are the entities that do the work and not engineers,

the amount of computational effort is reasonable.

The best solution found utilized all the wells to meet the production target. The
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Figure 5.7: The algorithm to decode a branching order (b) into a well order (w) by
modifying a vector of tasks that remain (r).
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best solution resulted in a 15.23% increase in NPV compared to the base case where

no new wells were deployed. Also the best solution resulted in a 0.70% increase in

NPV compared to the case where all the new wells were deployed at the beginning

of the forecast. These percentage improvements translate into significant monetary

value which justifies the computational effort spent in finding the optimal development

plan.



Chapter 6

Assessment of Uncertainty

It is realized that the numerical model, on which we chose to base the well placement

decision, relies on data that is incomplete thus the numerical simulation forecasts are

uncertain. Optimization in such an uncertain case has many additional complications.

A deterministic global solution is not available in the case of uncertainty. Given the

data available, what we hope to achieve is to estimate the expected outcome of any

proposed decision and also the risks associated with it. The established framework

of decision and utility theory enables us to manage uncertainty (DeGroot, 1970).

Realizing the fact that every decision maker would act differently given options with

probabilistic outcomes, the framework also provides the tools necessary to quantify

the risk attitudes of the decision maker (Holloway, 1979).

Decision theory framework has been used extensively and successfully in a wide

range of industries (Chacko, 1993) including the petroleum industry (Simpson et al.,

2000; Thankur, 1995; Jonkman et al., 2000; Erdogan et al., 2001; Sarich, 2001). How-

ever it was observed that, in the petroleum industry, decision analysis tools are gen-

erally used during exploration and initial development stages (Jonkman et al., 2000).

Application of decision analysis tools to the reservoir development process has been

limited due to the exponentially increasing number of options with added uncertainty

in the decision trees. Due to this exponential growth property of the decision trees,

decision makers have been forced to use approximate evaluation tools. In this study

78
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we insist on using full numerical simulation as the evaluation tool. The use of numer-

ical simulation was rendered computationally feasible by transforming the problem

into a deterministic problem through utility functions that quantify risk attitudes and

by using the HGA for optimization.

The utility framework requires the outcome probabilities for proposed well config-

urations. In some cases the determination of outcome probabilities might be compu-

tationally infeasible, particularly for very large numerical models. A second approach

is presented in which the well placement problem has been formulated as the opti-

mization of a random function which does not require the prior knowledge of outcome

probabilities. The GA was used for optimization.

6.1 Utility Framework

The problem of well placement can be studied within the decision analysis framework

since the problem consists of the decision of the location to drill the new well and the

probable events thereafter.

6.1.1 Decision Tree Construction

The decision tree for the well placement problem is visualized in Fig. 6.1. Deci-

sions are made at the decision nodes (square nodes). The decision in this study

corresponded to the selection of a particular well configuration. Due to imperfect

information about the truth, each decision leads to an event, Eventi, with different

probabilities of occurrence, Pi. The outcome of an event is the Net Present Value,

NPVi. Each event is also assigned a utility value, Ui, which is a measure of the satis-

faction of the decision maker over the possible range of outcomes. Satisfaction for any

given outcome depends on the risk attitude of the decision maker. The risk attitude is

quantified in the form of a mathematical function called the utility function which is

used to translate an outcome (NPV ) into utility. The utility function simply returns

a utility value given the NPV. The final step is to calculate the expected utility by:
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Event A, PA, NPVA, UA

Event B, PB, NPVB , UB

Event C, PC, NPVC , UC

Decision Node

Event Node

Decision 1

Decision 2

Decision 3

Figure 6.1: The well placement decision tree.

E {U (decision)} =
Nevent∑

i=1

Ui · Pi (6.1)

The event nodes are collapsed into a single expected utility value as shown in Fig.

6.2. The decision with the maximum utility is then chosen. The number of decisions,

that is, the number of possible well configurations is typically too many to evaluate

exhaustively. Thus optimization by evaluating a subset of the decisions can be carried

out to determine the decision that leads to maximum expected utility.

Expected value is used in this case since most of the histograms look symmetric

and a consistent skewed distribution is not observed. If there is an evident basis

that expected value is not representative of the distribution, one could consider using

different statistical measures.

6.1.2 Utility Theory and Utility Functions

The whole process of decision tree construction and definition of the problem as

the maximization of expected utility rather than the monetary value constitutes a

transformation of the problem according to the decision makers attitude towards risk.

Utility or preference theory explains how this transformation is possible (Holloway,

1979).

The utility function is the tool to quantify the decision maker’s risk attitude
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E{U(D1)}
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E{U(D3)}

Maximize E{U(D)}

Figure 6.2: The well placement decision tree with event nodes collapsed into expected
utility.

(Rubinstain, 1975). The shape of the utility function determines whether the decision

maker is risk-neutral, risk-averse or risk-prone. A risk-neutral decision maker has a

linear utility function which is equivalent to basing decisions purely on monetary value

(NPV). A risk-averse decision maker has a concave utility function which corresponds

to the avoidance of uncertain areas of the search space even if they might have the

possibility of greater financial gain. The risk-prone decision maker has a convex utility

function which represents a decision maker who is willing to take some risk for the

chance of greater financial gain (Holloway, 1979).

A simple analytical utility function has the exponential form:

U (x) = a+ be−rx (6.2)

where x is the objective function value which is NPV in this case.

A normalized version of Equation 6.2, with a = 1 and b = −1, is visualized in Fig.
6.3.

The curvature of the utility function determines the risk attitude of the decision

maker as illustrated in Fig. 6.3. The magnitude of risk aversion of a given utility

function, U , is given by:

R (x) = −U ′′ (x)
U ′ (x)

(6.3)
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Figure 6.3: The exponential utility function for different exponent values, R.

The term R(x) in Equation 6.3 is also referred to as the Arrow-Pratt measure

of absolute risk aversion or the risk aversion coefficient (Holloway, 1979). The risk

aversion coefficient is a constant for the exponential utility function and is equal to

the exponent r in Equation 6.2.

6.1.3 The Certain Equivalent

The implications of the steps to construct the utility framework for any given problem

are subtle. However the utility framework can be explained intuitively with the notion

of certain equivalent. Consider the set of probable outcomes of a decision as a lottery.

The certain equivalent of this lottery is the amount of certain monetary value for

which the decision maker is willing to give up participating in the lottery, in other

words, the decision maker’s selling price of the lottery. This amount will be different

for different decision makers with different risk attitudes. The utility of the certain

equivalent of a lottery is equal to the utility of the lottery:

U (CE(L)) = U(L) (6.4)

Thus the certain equivalent is given by:
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CE(L) = U−1 (U(L)) (6.5)

The certain equivalent or the selling price of a given lottery will depend on the

decision maker’s risk attitude. A risk-averse decision maker’s selling price for the

lottery will be less than the risk-prone decision maker’s selling price since a risk-

averse person prefers certainty to risk.

6.1.4 Axioms of Utility Theory

von Neumann and Morgenstern (1947) developed an axiomatic approach to utility

theory. The decision maker should accept these axioms that the utility theory is

based on. If all five of the axioms are applicable to the decision maker, the decision

with the maximum expected utility will honor the decision makers risk preferences.

These axioms are:

1. Orderability of Outcomes: The decision maker must be able to rank the

outcomes according to his/her preferences, thus transitivity among preferences

must hold:

A � B B � C A � C

where � means preferred over.

2. Continuity: Given A � B � C, the decision maker can determine a probability

p∗ such that he/she is indifferent between receiving B for sure or facing a lottery

where the possible outcomes are the best and the worst outcomes with respective

probabilities of p∗ and 1− p∗:

∃p∗ :

{p = 1→ B} ∼

 p = p∗ → A

p = 1− p∗ → C




where ∼ indicates indifference. This axiom implies the following equality:

U(B) = p∗U(A) + (1− p∗)U(C)
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3. Substitutability: A lottery and its certain equivalent are interchangeable from

the decision makers point of view.

4. Monotonicity: Given two event nodes (lotteries) with the same outcomes, the

decision maker must prefer the lottery with the higher probability of obtaining

the preferred outcome.

5. Decomposability: The decision maker is indifferent to the differing decision

sequences of an otherwise equivalent outcome.

These axioms are all satisfied for the well placement problem, thus the decisions

based on the utility framework will represent the risk attitude of the decision maker.

6.2 Random Function Formulation

An alternative approach is proposed for the cases where computational requirements

of determining the outcome probabilities of well configurations is intractable. The

well placement problem is formulated as the optimization of a random function. The

GA was used as the optimization tool. Hill-climbing will not be effective in this case

since the evaluation function value changes every time an evaluation is made at a

specific point resulting in an uneven surface.

Each time a well configuration was to be evaluated a different realization of the

reservoir properties was selected randomly from the set of realizations which all honor

the geologic and dynamic data available from the reservoir. Numerical simulation was

then carried out with this randomly selected realization to calculate the NPV and the

objective function value was updated for this well configuration. For instance if the

objective was to be to maximize expected NPV, the expected NPV for a specific well

configuration would be updated every time the algorithm revisited this configuration.

This results in a setup where the GA visits the feasible well configurations more

frequently and the objective function values are more accurately computed for these

feasible configurations. Furthermore the utility framework can be established within

the random formulation context. Such a setup constitutes the gradual update of the

expected utility value at the well configuration suggested by the GA.
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The random function formulation is significantly different than optimization by

calculating the objective function value (e.g. expected NPV) by carrying out sim-

ulations on all realizations whenever the GA proposes a solution. More numerical

simulations are carried out for feasible well configurations with the random function

formulation approach. The objective function value for the infeasible well configura-

tions is not fully determined. Consider the following scenario:

The objective is to maximize expected NPV. The GA proposes a well con-

figuration. Suppose that if numerical simulation on all realizations were

made and the NPVs were calculated, the resulting expected NPV would

be significantly below average. However we do not carry out simulation on

all realizations, instead a single numerical simulation is carried out with

a randomly selected realization at this well configuration and the NPV

is calculated. Unless the choice of this realization was unlucky, the NPV

resulting from the randomly selected realization will be below average and

the GA will be less likely to visit this configuration later in the run. Sup-

pose the choice of the realization was unlucky and we sampled a NPV

from the higher tail of the NPV distribution. In this case the GA will re-

visit this point and another numerical simulation will be carried out with

a randomly selected but different realization. Unless we are unlucky every

time the GA visits this configuration the NPV will be sampled to be be-

low average before numerical simulations on all realization are made. The

same scenario can be considered for feasible well configurations. In this

case the GA will revisit the feasible locations until the objective function

value is determined absolutely.

The basic steps for the random function formulation follows:

• GA proposes a well location.

• Numerical simulation is carried out with a randomly selected realization and
the objective function value is calculated.
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4xnp
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fnp

→ fi = f̃ (4xi, r̃)

r̃ =

Figure 6.4: Illustration of the suggested methodology to optimize in the presence of
an uncertain reservoir model; the ˜ indicates a random variable.

• If this is a feasible well configuration, then the GA will revisit it; another numer-
ical simulation is then made with a randomly selected realization (different from

previously simulated realizations) and the objective function value is updated.

The procedure is illustrated in Fig 6.4. The GA is known to be able to cope

with such functions of random nature (Goldberg, 1989), that is the GA does not

breakdown with changing objective function values as the algorithm progresses. The

GA is anticipated to eventually converge to the well configuration with maximum

objective function value. It should be noted once again that the problem can be

set up to maximize expected utility (Fig. 6.1) and all the advantages of the utility

framework can be gained. This is simply achieved by recalculating the expected

utility value (Equation 6.1) for a well configuration whenever the GA revisits it.

6.3 Application to the PUNQ-S3 Reservoir

The proposed methodology for the uncertainty assessment of well placement optimiza-

tion was tested in an application to the PUNQ-S3 reservoir. The PUNQ-S3 problem

was evaluated within the utility framework assessing the effects of uncertainty. For

comparison, the PUNQ-S3 problem was also formulated as the optimization of a

random function.
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Figure 6.5: Histograms of the cumulative distributions for the 23 realizations of the
PUNQ-S3 field, the cross indicates the true value.

6.3.1 The PUNQ-S3 Model

The PUNQ-S3 model is a standard test case that was based on a real field and was

used for the PUNQ (Production forecasting with UNcertainty Quantification) project

in context of the EU-Joule program (Barker et al., 2000). PUNQ-S3 is a small-size

industrial reservoir model based on a real field operated by Elf. The numerical model

(19× 28× 5 = 2660 blocks, 1761 of them active) and 23 history-matched realizations

were provided to us by Elf. The truth case from which these realizations were gener-

ated was also available. The dataset brackets the true cumulative properties, however

is not a complete match to individual well histories (Figures 6.5 and 6.6). The truth

case permeability fields for the five layers of the PUNQ-S3 model are shown in Fig.

6.7. The fields are very heterogeneous with connected high permeability streaks ob-

served in all layers. The streaks are also observed in all the realizations. The field

has six producers with 16.5 years of production history. The proposed development

plan is an additional 5 years of water injection from a single infill well. Here we

investigated the problem of finding the optimum location of this infill injector and

assessing the uncertainty associated with it.
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Figure 6.6: Match of history with the truth case of the Elf data set for the PUNQ-S3
model, dotted lines were generated by numerical simulation on the 23
permeability realizations and the solid line was generated by numerical
simulation on the true permeability field.
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Figure 6.7: Truth case permeability fields for the PUNQ-S3 model.

The results of the comparative study are given in Fig. 6.8. The histograms of

the cumulative parameters for the flow simulation results of the realizations and the

truth case are given in Fig. 6.5. Although the true cumulative oil production is on

the edge of the distribution, it is observed that the Elf data set is generally doing a

good job in bracketing the uncertainty on cumulative properties despite the mismatch

in individual well histories as shown in Fig. 6.6.

6.3.2 Exhaustive Runs

Exhaustive simulations were carried out on all the realizations and the true case. The

generation of this exhaustive dataset was for research purposes and was carried out

in order to enable controlled experimentation and sensitivity studies. The problem

of locating a single constant-rate injector well was investigated. The dataset was

constructed by placing the well at every active grid location on every realization,

carrying out a simulation, and calculating the NPV of the particular well configuration
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Figure 6.8: Results of the PUNQ-S3 comparative study (plot taken from the Nether-
lands Institute of Applied Geoscience, TNO-PUNQ online presentation,
http://www.nitg.tno.nl/punq).

with the resulting flow history generated by the simulator. The same was done for

the truth case as well. The economical parameters used for the NPV calculations

are given in Table 6.1. The total number of simulations performed was 9912. The

flow results of each simulation were converted into a single monetary value through

NPV calculations hence NPV maps could be constructed for all the realizations as

well as for the truth case. The NPV histogram of all the flow simulation runs on the

realizations is given in Fig. 6.9. A wide range of NPVs was observed. The mean and

standard deviation of NPVs over the 23 realizations is given in Figures 6.10 and 6.11

respectively.

6.3.3 Analysis of the Exhaustive Dataset

The mismatch and uncertainty in the flow history between the realizations and the

truth case can be shown on the NPV maps as well. Fig. 6.12 demonstrates the ex-

tent of this mismatch. The true NPVs at the optimum locations of the realizations

are sorted and plotted in Fig. 6.12. This shows, for example, that if a particular

realization had been chosen and a well was drilled at the optimum location suggested

by this realization, we could be 15% to 1% off the true optimum, thus the choice

of the realization makes a big difference even though geostatistically all realizations
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Table 6.1: Parameters for net present value calculations.

Parameter Value
Discount rate, % 10.0
Oil price, $/bbl 25
Gas price, $/MSCF 3
Water handling cost, $/bbl 1
Operation cost, $/day 40,000
Well cost, $/well 20,000,000
Capital expenditures, $ 500,000,000
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Figure 6.9: NPV histogram of all the flow simulation runs on the PUNQ-S3 realiza-
tions.
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Figure 6.10: Mean of NPVs over the 23 realizations for the PUNQ-S3 model.

are equiprobable. The means and standard deviation of the NPVs at the optimum

locations on each of the 23 realizations are also plotted in Fig. 6.12. The center

and spread of the NPVs are very close for all the realization optima which suggests

that these optima are the extreme NPVs for particular well locations. The essen-

tial message of Fig. 6.12 is that a decision based on a single realization may differ

substantially from the true optimum.

Examining the optimum location histogram (Fig. 6.13), which is the two-dimensional

histogram of the optimum well locations on the 23 realizations, we observe that the

scatter of the optimum locations is unstructured and none of the realization optimal

well locations coincide with the truth-case optimum. There is no clear definition of

what the optimum well location is and how one would approach such a problem.

However, keeping in mind that the truth case is never known, given the realizations

one should not expect to discover the true optimum well location exactly and deter-

ministically, but rather one would like to be able to evaluate the outcomes and risks

associated with any given well configuration.
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Figure 6.11: Standard deviation of NPVs over the 23 realizations for the PUNQ-S3
model.
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Figure 6.12: True NPVs (sorted) at the optimum locations of the realizations and the
spreads of these locations for the PUNQ-S3 model.
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Figure 6.13: Two-dimensional histogram of the optimum well locations of the 23 re-
alizations for the PUNQ-S3 model.
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So how does one make a decision with uncertainty? There is no defined global

optimum solution to the problem in the case of uncertainty. The optimum depends

on the amount of risk the decision maker is willing to take, some play it safe, while

others like to gamble and are willing to take some risk for the possibility of having a

better outcome. As explained earlier, the utility framework addresses this problem.

6.3.4 Application of the Utility Framework

The utility framework was applied to the PUNQ-S3 problem. The exponential utility

function given in Equation 6.2, with a = 1 and b = −1, was used. The effect of the risk
aversion coefficient (Equation 6.3) was investigated. The risk aversion coefficient was

varied from the extreme risk-prone value of -10 to the extreme risk-averse value of 10

with unit increments. It should be noted that Equation 6.2 is a scalar for r = 0, but we

assumed that r = 0 corresponds to the risk-indifferent case where the utility function

is linear. Normal NPV distributions were assumed at each well location. The NPV

distributions were obtained by fitting a normal distribution on the NPV histogram

at the particular location (Fig. 6.14). The NPV histograms for each well location

are constructed form 23 samples (realizations) and they do not pose indication of

skewness. The utility surfaces were generated for each case through the procedure

illustrated in Figures 6.1 and 6.2. The gradual transformation of the decision makers

attitude from extreme risk-prone to extreme risk-averse is plotted in Fig. 6.15. The

NPV mean and standard deviation maps are plotted as three-dimensional surfaces

in Fig. 6.16. Examining Figures 6.15 and 6.16 simultaneously we observe that the

risk-prone decision maker does not mind the risk involved as long as the expected

outcome is high whereas the risk-averse decision maker is willing to give up high

incomes for the sake of smaller risk. The point with maximum utility on the surface

of the extreme risk-prone decision maker (r = −10) corresponds to a high NPV and
also high standard deviation whereas the maximum point for the extreme risk-averse

decision maker (r = 10) has very low standard deviation and also low expected NPV.

Fig. 6.17 sh ows the transformation from risk-averse to risk-prone as a function of

the risk aversion coefficient. Fig. 6.17 is a step function since the decision variables,
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Figure 6.14: The normal distribution of NPVs obtained by fitting to the histogram
for a particular well location for the PUNQ-S3 field.

(i, j) coordinates on the numerical model, are discrete. It should be noted that the

tails of the NPV distributions of the risk-prone decision maker reach beyond those of

the more risk-averse decision maker resulting in higher probabilities of having lesser

NPVs for the risk-prone decision maker.

6.3.5 Application of Random Function Formulation

The random function formulation illustrated in Fig. 6.4 was established for the

PUNQ-S3 problem. The objective was to maximize expected NPV which corresponds

to a linear utility function if considered within the utility framework. The expected

NPV was constructed iteratively as the GA sampled different points in the search

space. The GA was allowed 250, 500 and 2500 simulations and ten runs were made

for each case. The percent differences from the actual maximum expected NPV (Fig.

6.16) and the correlations between the actual means and the GA established means
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Figure 6.15: The gradual transformation of the decision makers attitude from extreme
risk averse to extreme risk prone for the PUNQ-S3 problem.
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Figure 6.16: The three-dimensional surfaces of the mean and standard deviations of
the NPV maps of the 23 realizations for the PUNQ-S3 model.
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Figure 6.17: Standard deviations (error bars) and expected NPVs (crosses) of optimal
decisions as a function of the risk aversion coefficient, r.

are given in Table 6.2. It was observed that for this specific problem the number

of simulations allowed for the optimization does not strongly affect the accuracy of

the results. This might be due to the plateau-like surface around the optimum (Fig.

6.16). The GA in this case pointed out this area around the optimum but rarely was

able to locate the global optimum given the limited number of simulations (Table

6.2).

The number of times the GA visits well locations is shown as a two-dimensional

histogram given in Fig. 6.18. Examining Fig. 6.18 and the mean NPV surface (Fig.

6.10) it is observed that the GA samples the well locations where the mean NPV is

higher more than locations with lower mean NPV, thus spends less computational

time on poorer areas of the search space. This can also be observed by plotting the

NPVs of the solutions and the number of times the GA visited these solutions (Fig.

6.19).
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Table 6.2: The percent differences from the actual mean NPV and the correlations
between the GA sampled and actual means for the three cases where the
GA was allowed 250, 500 and 1000 simulations.

250 Simulations 500 Simulations 1000 Simulations
Run Off, % Corr.Coeff. Off, % Corr.Coeff. Off, % Corr.Coeff.
1 2.5675 0.3815 0.0000 0.3154 1.9615 0.6490
2 0.1842 0.4377 1.3775 0.5486 0.5583 0.7532
3 1.7428 0.4735 1.3032 0.5350 2.2383 0.6692
4 3.9201 0.4440 3.1891 0.4278 2.1924 0.6812
5 1.4379 0.4915 1.3775 0.4861 0.4275 0.6583
6 1.3775 0.5325 1.7428 0.4945 1.2690 0.6691
7 0.1165 0.4177 1.1411 0.4542 1.9615 0.5979
8 1.2762 0.2354 2.4685 0.5207 0.9611 0.6680
9 1.2690 0.5444 0.8612 0.5008 0.9611 0.6771
10 0.9611 0.2844 3.1891 0.4766 1.3775 0.6828

Average 1.4853 0.4243 1.6650 0.4760 1.3908 0.6706
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Figure 6.18: Histogram for the number of times the GA visited well locations for the
random function formulation of the PUNQ-S3 well placement problem.
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Figure 6.19: The NPVs of the solutions visited by the GA and the number of revisits
for the random function formulation of the PUNQ-S3 well placement
problem.
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6.4 Discussion

The usefulness of the utility framework comes from the fact that it allows a clear

definition of the otherwise arbitrary notion of an optimum solution to an uncertain

problem. Decision makers who decide not to use the utility framework must define

their objectives clearly since the optimum is not clear in case of uncertainty. One

might choose to base decisions on expected value of monetary outcomes and carry

out optimization. However the action to take is not clear if the maximum expected

outcome turns out to have a risk higher than the decision maker is willing to take.

One could penalize risky solutions and redo the optimization, however the extent of

these penalties are unclear. Essentially the utility framework enables the decision

maker to balance the risks and outcomes according to his/her specific risk attitude.

The utility framework has been applied extensively in many real world cases.

However the application of the utility framework has not been widespread in the

petroleum industry (Simpson et al., 2000). One reason for this may be the difficulty

in defining a utility function to represent the risk attitudes of a company. Another

reason could be that the engineering and management fields do not have strong links.

These problems can be overcome by some experimentation with the decision analysis

methodology and a closer look at the theory behind the utility framework. The

framework constructed here for the well placement problem can be established for

other problems as well. The utility framework gives decision makers the ability to

quantify their strategies when making an investment, thus should be used. If the risk

attitudes are not taken into consideration, the problem would be difficult to construct

and the decisions might not represent the company’s intentions.

The HGA was able to determine the optimum well configuration in an average of

64 simulations for the case with the linear utility function. The utility framework, as

constructed in this study, requires the knowledge of the distributions of the objective

function for the well configurations proposed. This can be obtained by carrying out a

simulation on each realization. If all realizations were used each time the GA proposed

a well configuration the total number of simulations would be 64× 23 = 1472, which
may not be computationally feasible for some large numerical models. Alternatively,



6.4. DISCUSSION 103

the number of simulations required to construct the objective function distributions

can be reduced by selecting a limited number of representative realizations based

on some heuristics, such as injectivity. For instance if five realizations could be

selected that roughly represent the NPV distributions for well placement, the total

number of simulations required to determine the optimum well configuration would

be 64× 5 = 320.
Another approach to optimization under uncertainty, the random function formu-

lation of the problem, provided approximate results that were around 1.5% off the

true optimum on the average (Table 6.2) for the PUNQ-S3 model. However it should

be noted that this may be due to the plateau nature of the optimized surface around

the optima (Fig. 6.16), hence results might not be as satisfactory for problems with

bumpier surfaces. Nevertheless, the random function approach may be useful in that

it requires less computational time. Several hundreds of simulations was sufficient to

get very close to the optimum for the PUNQ-S3 problem (Table 6.2).



Chapter 7

Sensitivity of Optimization

Algorithm Parameters

The sensitivity of HGA performance to algorithm parameters were examined for the

Pompano and PUNQ-S3 injector placement problems.

7.1 GA Performance Sensitivity

7.1.1 Rule of Thumb Determination of GA Parameters

The GA parameters used in this study were based on rule-of-thumb values from the

literature. For binary alphabets Goldberg (1989) suggests an appropriate population

size and De Jong (1975) suggests appropriate GA operator probabilities based on

experimentation over problems of different nature:

Population size - same as total string length, n = l

Crossover probability - pc = 0.6 works well for a wide range of problems

Mutation probability - inverse of population size, pm = 1/n

For the Pompano and PUNQ-S3 problems integer data structures were used. For

the Pompano problem a population size of 12 was used since the length of the equiva-

lent binary string would have been 12. Since De Jong suggests a mutation probability

104
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of 1/12 per bit the equivalent of this for integer data structures is 0.5 mutation prob-

ability. The same procedure applied to the PUNQ-S3 problem resulted in a mutation

probability of 0.5 as well.

7.1.2 Crossover and Mutation Probabilities

Sensitivity of the GA performance to mutation and crossover probabilities was deter-

mined by varying these probabilities from 0.0 to 1.0 with 0.01 increments. The mean

and variance of the necessary number of simulation runs consumed by the GA to

locate the global optimum for the single injector placement problem for the Pompano

and PUNQ-S3 fields was determined by carrying out 100 GA optimizations for each

mutation and crossover probability pairs.

The dependency of the GA to mutation and crossover probability is shown in Fig.

7.1 for Pompano and in Fig. 7.2 for PUNQ-S3 which shows the average number of

simulations that was required to locate the global optimum. The total number of GA

optimizations made to construct the sensitivity plots (Fig. 7.1 and 7.2) were:

(101 pm values) × (101 pc values) × (100 GA runs per pc - pm pair) = (1,020,100

optimization runs per plot)

where pm is the mutation probability and pc is the crossover probability.

The variance of the number of simulations that the GA consumed to locate the

global optimum is given in Fig. 7.3 for Pompano and in Fig. 7.2 for PUNQ-S3. In

each of the 1,020,100 optimization runs carried out, the GA was allowed to consume

at most 1000 simulations, otherwise the run was terminated after 1000 generations.

Such an extensive sensitivity analysis was made possible by the construction of the

exhaustive data sets for the Pompano and PUNQ-S3 single injector problems.

The result acquired from Fig. 7.1 and Fig. 7.3 is rather surprising at first glance:

GA optimization performance does not depend on crossover probability for the single

injector placement problem for the Pompano and PUNQ-S3 fields. However this result

is reasonable when one evaluates the single injector placement problem more carefully.

Optimized parameters are the i and j location of the proposed injector and there is

no insight suggesting that a particular i or j value contributes to the fitness of an
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Figure 7.1: The average number of simulations that the GA consumed to locate the
global optimum for different values of mutation probability (pm) and
crossover probability (pc) for the Pompano problem.
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Figure 7.2: The average number of simulations that the GA consumed to locate the
global optimum for different values of mutation probability (pm) and
crossover probability (pc) for the PUNQ-S3 problem.
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Figure 7.3: The variance of the number of simulations that the GA consumed to locate
the global optimum for different values of mutation probability (pm) and
crossover probability (pc) for the Pompano problem.
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Figure 7.4: The variance of the number of simulations that the GA consumed to locate
the global optimum for different values of mutation probability (pm) and
crossover probability (pc) for the PUNQ-S3 problem.
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individual. In other words the combination of i and j is what makes an individual

fit, i or j alone is not correlated with the fitness of a given well configuration. This

can also be observed by looking at the search space (Fig. 4.3). Crossover would make

a difference if there was a clear trend on the search space. For instance if the NPV

values increased with increasing i values, crossover would make a difference even for

the one-well case.

Also the mutation probability obtained with the method suggested by De Jong

(pm = 0.5) is observed to be a reasonable value.

Although we cannot prove this empirically due to computational limitations,

crossover will play an important role when more than one well is considered and

rate is optimized together with location. This is simply due to the fact that the

fitness of a well configuration is correlated with the locations and rates of individual

wells and fitter individuals might be obtained by combining individuals with fit (i, j)

pairs.

7.1.3 Selection Type

Effect of selection type on algorithm performance was investigated for the Pompano

field, single injector placement problem. Three types of selection were examined:

• Raw Fitness - Raw fitness of the individual is used for selection.

• Windowing - The fitness of the least fit individual is subtracted from all the

individuals in the generation.

• Rank-Based - The individuals are ranked in the order of increasing fitness and

(n−rank) is assigned as the fitness, n being the population size. Thus, the best

individual in the generation has a fitness of (n− 1) and the worst individual in
the generation has a fitness of zero.

In order to assess the effects of type of selection, 100 runs were carried out for

each of the three types of selection. The GA and the polytope method were utilized.

The results are given in Table 7.1. It is observed that, although the performances

are very similar, rank-based selection performs the best and selection based on raw
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Table 7.1: Effect of selection type on algorithm performance; the mean and standard
deviation of the number of simulations required to locate the optimum well
location for 100 optimization runs.

Selection Type Mean Standard Deviation
Raw Fitness 152 97
Windowing 147 97
Rank-Based 141 94

fitness performs the poorest. This is due to scaling issues associated with using

raw fitness values. Windowing partially solves the scaling problem and rank-based

selection eliminates it.

7.2 Polytope Strategies

The effect of polytope strategies, explained in Section 2.4.1, was investigated for the

Pompano field, single injector placement problem. The GA and the polytope method

were used and 100 runs were carried out for each polytope strategy. The results are

given in Table 7.2. It is observed that the choice of the polytope strategy does not

make much of a difference for this problem. The polytopes constructed with the best

of the generation or the best of the database are expected to have more of a global hill-

climbing behavior and also a mutation effect since the points in the polytope are not

necessarily close to each other in the search space thus may not belong to different

peaks in the search space. On the other hand the polytopes constructed with the

closest to the best points in the database are expected to have a more deterministic

behavior and will aid in local refinement of the search.
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Table 7.2: Effect of polytope strategy on algorithm performance; the mean and stan-
dard deviation of the number of simulations required to locate the optimum
well location for 100 optimization runs.

Selection Type Mean Standard Deviation
Best in Generation 141 76
Best in Database 144 92
Closest to Best in Database 141 94

7.3 Discussion

The results given here are for a limited number of problems. In order to generalize,

a wide range of problems with different characteristics have to be considered. Never-

theless the results may be valuable as a starting point for further studies of similar

sort.



Chapter 8

Concluding Remarks

8.1 Conclusions

A hybrid method of GA, polytope and proxy methods was developed. The component

methods in the hybrid compensated for the weaknesses of each other, resulting in an

algorithm that outperformed the individual methods.

The ordinary kriging algorithm was used as a proxy to numerical simulation.

Kriging has the favorable properties of being data-exact and suitable for multiple

dimensions. In addition, the kriging estimation variance enabled error analysis and

helped ensure robustness.

The HGA was applied to the injector placement problem for the Pompano field in

the Gulf of Mexico. The HGA proposed intuitive solutions. Controlled experimenta-

tion for the single well, constant rate case showed that the HGA was able to reduce

the number of numerical simulations required. Waterflooding with three injectors

was the most profitable option with an incremental NPV of $154 million compared

to the no-injection case.

The deployment schedule for a real-world field was optimized. The numerical

model had approximately half a million cells and optimization posed a significant

challenge. Optimization was made in parallel on four processors. The problem was

formulated as a TSP and the branching order of a task tree was used as the data

structure. Optimized well deployment schedule improved the NPV from the field by
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15.23% compared to the base case where no new wells were deployed. Also the best

solution resulted in a 0.70% increase in NPV compared to the case where all the new

wells were deployed at the beginning of the forecast.

Realizing the uncertainty in numerical simulation forecasts, the utility framework

was utilized to assess this uncertainty. The utility framework provides the tools to

quantify risk attitudes through utility functions. The proposed utility framework for

the well placement problem was applied to the PUNQ-S3 problem. It was observed

through controlled experiments that the utility framework gave results that were

consistent with the intent implied through the utility functions. The HGA performed

significantly better than its individual components for the PUNQ-S3 problem as well.

An alternative approach to the assessment of uncertainty, the random function

formulation of the problem, was also investigated. It was observed that this approach,

although not very accurate, gave satisfactory results with smaller computational ef-

fort.

8.2 Suggestions for Future Work

Several topics are suggested as potential areas of future research.

Physical Proxies - In this study kriging and neural networks were evaluated as

proxies. Both of these interpolation algorithms are purely mathematical and

have no consideration of the physics underlying the process. A proxy that can

be calibrated and one that honors physics would be very useful for the purpose

of optimization of petroleum reservoirs. Perhaps a simpler version of stream-

line simulation might be appropriate. Possibly a mathematical structure of

nodes and connections with nodes being the wells and the boundaries and the

connections representing the interactions among wells and wells with bound-

aries. Possibly Buckley-Leverett equations may be employed to represent these

interactions.

Further Applications - The algorithm may be utilized for the optimization of var-

ious sorts of reservoir engineering problems. Optimization on other real world
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oil fields will also enhance our understanding of reservoir optimization.

Algorithm Performance Sensitivity - The sensitivity of the optimization perfor-

mance to a limited number of algorithm parameters were examined in this study.

Sensitivity of other parameters remains to be investigated. Also it is not possi-

ble to generalize the performance results based on only a few problems. Hence

similar studies for other types of optimization problems should be carried out.

Neural Networks - When one works with optimization of discrete design deci-

sions, the kriging proxy is not sufficient. NNs have the ability to represent such

problems. However when NNs are used as proxies within the HGA framework

as described in this study, the issues stated in Section 4.2 have to be addressed.



Appendix A

Algorithm Parallelization

A.1 Value of Parallelization

The HGA has been parallelized in this study. The basic setup of GAs enable straight-

forward parallelization since the individuals at any given generation can be evaluated

independently from each other. Moreover the computational time scales back linearly

with the increasing number of computers in the parallelization process. Assuming that

the evaluation of solutions takes an equal amount of time on all the computers and

that the overhead time is negligible, then the following inequality holds:

TNc ≤ T1

min
{
z : z ≥ ni

Nc
, z ∈ Z

}
ni

= T1

ceiling
{

ni

Nc

}
ni

(A.1)

where Nc is the number of machines available for the parallel run, Ti is the time it

takes to complete the optimization run with i machines, and ni is the number of

individuals that is to be evaluated at each generation.

For instance for a run with three machines and assuming 10 evaluations are made

at each generation, Eq. A.1 states that the run will be at least 10/4 times faster or

for a run with five machines for which 20 evaluations are made for each generation,

the run will be five (20/4) times faster.

With differing evaluation time among computers and overhead time taken into

account, the scaling may be less favorable than that shown in Eq. A.1. Nevertheless
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if a machine is not extremely slow compared to others, scaling close to Eq. A.1 will

be achieved.

Notice that the value of parallelization is dependent on the number of evaluations

that are carried out at each generation (Eq. A.1) which decreases the advantages

of parallelization. For instance in the extreme case when only one individual is to

be evaluated at each generation parallelization will have no benefits since all the

processors would need to wait for the evaluation of this single individual. This might

become a problem at the later stages of a GA run when the algorithm visits a smaller

number of new points at each generation due to convergence.

Fewer new points will be visited at each generation especially when the population

size is relatively small. Hence an approach would be to use a larger population size

than rule-of-thumb values (Chapter 7). An alternative way to increase the number

of newly visited points in a generation would be to increase the mutation probability.

One could also make use of the wasted CPU power by evaluating an unvisited point

with the processors that wait. This point may be generated randomly or could be

located around the best solution obtained so far in the run for the purpose of local

search.

A.2 Parallel Setup of Optimization

A master program organizes processes. This master program essentially takes each

unprocessed solution across the river, as illustrated in Fig. A.1. At most one solution

is assigned to a processor at any time. The HGA routine updates a pool of solutions

without making the actual evaluation each time an evaluation is to be made within

the HGA iteration. This pool is sent to the process organizer at the end of each

iteration. The process organizer then assigns the solutions in this pool to machines

for evaluation and returns the results back to HGA when all solutions have been

evaluated.

Communication between the master process organizer and individual processes is

carried out through network sockets (internet). Thus all the computers do not have

to be connected through a local network, they just have to be able to access the
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Figure A.1: Cartoon analogy of how the process organizer works; two machines help-
ing processes cross the river.

internet and not be behind a firewall. The parallel setup is illustrated in Fig. A.2.

Fig. A.2 illustrates a single remote server, however there would be more than one

remote servers for a parallel run.

The process organizer and the communicating servers at remote computers were

written in the Java language. The HGA and process launcher were written in C++.
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Main Application
(Java)

HGA Dynamic
Library (C++)

Remote Server (Nc)
(Java)

Process Launcher
(C++)

6 Send back
results

1 Send
population

2 Send
individual

5 Send back
individual

fitness

3 Send
individual

4 Send back
individual

fitness

Figure A.2: Parallelization setup.
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HGA Implementation

B.1 The Program

The algorithms developed and presented in this study were implemented in C++

using object-oriented design. Some of the classes making up the HGA can also be

used as standalone objects. The class design is given in Fig. B.1. The arrows in Fig.

B.1 indicate inheritance.

The following objects are required to make an HGA run:

• A HybridGeneticAlgorithmParameters object encapsulating the HGA parame-
ters.

• A method implementing the evaluation function. This has to be in the following
form:

double EvaluationFunction(vector<double>& solution, vector<bool>& flags)

The flags[0] should be set to true if evaluation was made and to false otherwise.

• A function implementing the processing of a solution before evaluation. This
function has to be in the following form:

void ProcessPoint(vector<double>& solution)
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OptimizationAlgorithm

GeneticAlgorithm PolytopeAlgorithm

HybridGeneticAlgorithm

OptimizationAlgorithmParameters

GeneticAlgorithmParameters PolytopeAlgorithmParameters

KrigingParameters NeuralNetworkParameters

Parameters

PopulationParameters

BaseAlgorithm

InterpolationAlgorithm

KrigingAlgorithm BackPropagationAlgorithm

CostParameters

HybridGeneticAlgorithmParameters

OptimizationStatistics

GeneticAlgorithmStatistics PolytopeAlgorithmStatistics HybridGeneticAlgorithmStatistics

DataStructure

Chromosome

DataStructureListPopulation

GeneticAlgorithmOperators

GeneticAlgorithmSelection

SimpleDatabase

Generation

CustomStream

DataStructurePointerCompare

VectorRead

Allele

RunStatistics

TemplateCustomStream

TemplateVectorRead

EvaluationInterface

LUDecomposition

StringTokenizer

Variogram

Normalization

NetPresentValue

TemplateVectorRead

SummaryRead

SummaryColumn EclipseKeywords HeaderRead

WellOptEclipseLaunch WellOptSimulationParameters

SimulationParameters

Figure B.1: C++ classes making up the HGA; arrows indicate inheritance.
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It is straightforward to set up an optimization run with the HGA. The HGA is

completely indifferent to what is being done within the problem-specific evaluation

method. The calculations within the function evaluation method can be as simple

as simple mathematical methods, or as complex as calling a numerical simulator and

calculating economics from generated flow history.

The following piece of code sets up a nonparallel HGA run whose objective is to

maximize the sum of the parameters:

#include <iostream>

#include <vector>

#include "hybridgeneticalgorithmlib.h"

double EvaluationFunction(vector<double>& solution, vector<bool>& flags)

{

double sum = 0;

for (int i=0; i<solution.size(); i++) sum += solution[i];

flags[0] = true;

return sum;

}

// This function does nothing in this case

void ProcessPoint(vector<double>& solution) {}

int main()

{

HybridGeneticAlgorithmParameters parameters;

// Parameters are read in from a file called ”parameters.dat”

ifstream in("parameters.dat");

in >> parameters;

HybridGeneticAlgorithm hga(parameters,EvaluationFunction,ProcessPoint);

hga.Run();

return 0;

}
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B.2 The Keywords

A HybridGeneticAlgorithmParameters object which encapsulates the optimization

parameters is required to make an HGA run. Following is a sample data file containing

the HGA keywords:

HYBRIDGENETICALGORITHM

{

CLOSESTSCALINGFACTOR 9.000000e-001

CONVERGENCETOLERANCE 0.000000e+000

CONVERGENCEVALUE 1511180000

FITNESSSCALINGFACTOR 1.000000e+000

NEIGHBORHOODRANGE 3.000000e+000

PCROSSOVER 5.000000e-001

PMUTATION 2.000000e-001

PMUTATIONNEIGHBORHOOD 0.0

CONVERGENCECRITERIA 1

MAXNUMEVALUATIONS 500

MAXNUMITERATIONS 100

MAXTIME 1000000

NUMPOPULATION 1

NUMRUN 10

NUMTOURNAMENT 2

RANDOMSEED 1975

SELECTIONTYPE 2

DOKRIGING 0

DOKRIGINGERRORANALYSIS 0

DOPOLYTOPE 0

EVALUATEATEND 0

OUTPUTFILES 0

USECLOSESTDATA 0

USEDATABASE 1

USEELITISM 1

KRIGINGRECURSIVEFILENAME SAME-10

LOADDATABASE 1

OLDDATABASEFILENAME database.dat

RUNDESCRIPTION ResOpt Run

RUNNAME ResOptRun

KRIGINGALGORITHM

{

VARIOGRAMA 1.750000e+000

VARIOGRAMC 1.000000e+000

NUMKRIGDATA 1000

VARIOGRAMTYPE 3

OUTPUTFILES 0

RUNNAME ResOptKriging
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}

POLYTOPEALGORITHM

{

CLOSESTSCALINGFACTOR 9.000000e-001

CONTRACTIONCOEFFICIENT 5.000000e-001

CONVERGENCETOLERANCE 0.000000e+000

CONVERGENCEVALUE 0.000000e+000

EXPANSIONCOEFFICIENT 2.000000e+000

REFLECTIONCOEFFICIENT 1.500000e+000

CONVERGENCECRITERIA 0

MAXIMUMNUMCONTRACTION 0

MAXNUMEVALUATIONS 10

MAXNUMITERATIONS 1

MAXTIME 1000000

EVALUATEATEND 0

OUTPUTFILES 0

USECLOSESTDATA 1

USEDATABASE 1

RUNDESCRIPTION ResOpt Polytope

RUNNAME ResOptPolytope

INITIALSOLUTION { 1.000000e+000 1.000000e+000 }

MAXVALUE { 4.000000e+001 4.000000e+001 }

MINVALUE { 1.000000e+000 1.000000e+000 }

}

POLYTOPETYPE { 2 }

POPULATION

{

POPULATIONSIZE 10

OUTPUTFILES 0

UNIFORMINITIALIZATION 1

POPULATIONNAME ResOptPop

RUNNAME ResOptPopRun

VALUENAME { i j }

ALPHABETSIZE { 19 28 }

MINVALUE { 1.000000e+000 1.000000e+000 }

MAXVALUE { 4.000000e+001 4.000000e+001 }

PRECISION { 1.000000e+000 1.000000e+000 }

}

}

In addition to these keywords CostParameters and SimulationParameters are also

required for well placement optimization. The description for all the keywords is

given in Tables B.1 to B.6.
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Table B.1: Keywords for the HybridGeneticAlgorithmParameters class.

Keyword Description
CLOSESTSCALINGFACTOR (double) Power scaling of the invalid points
CONVERGENCECRITERIA (int) Flag indicating the criteria for convergence, 0:MAXNUMITER-

ATIONS, 1:CONVERGENCEVALUE
CONVERGENCETOLERANCE (double) Percent (of the CONVERGENCEVALUE) tolerance to test

convergence
CONVERGENCEVALUE (double) The minimum sought evaluation function value, if found an

equal or better solution, the algorithm quits
DOKRIGING (bool) If true, the kriging proxy is constructed after each generation
DOKRIGINGERRORANALYSIS (bool) If true, the kriging error analysis is carried out after each gen-

eration
DOPOLYTOPE (bool) If true, the polytope algorithm is carried out after each gener-

ation
EVALUATEATEND (bool) Flag to wait until the end of the iteration before making the

function calls. If a parallel run is to be made, this flag should be set to
1 and the user supplied evaluation method should be able to manage
the parallel evaluation of the group of individuals crated at the end
of each HGA iteration.

FITNESSSCALINGFACTOR (double) Power scaling factor of the fitness value
KRIGINGALGORITHM (KrigingParameters) Parameters for the kriging algorithm
KRIGINGRECURSIVEFILENAME (string) Filename with the necessary HGA parameters to be used for

the recursive run with the kriging proxy
LOADDATABASE (bool) Flag to load a database and use it for the optimization
MAXNUMEVALUATIONS (int) Maximum number of function evaluations after which the algo-

rithm quits
MAXNUMITERATIONS (int) Maximum number of iterations after which the algorithm quits
MAXTIME (int) Maximum time in seconds after which the algorithm quits
NEIGHBORHOODRANGE (double) Range of neighborhood mutation
NUMPOPULATION (int) Number of sub populations
NUMRUN (int) Number of runs to carry out
NUMTOURNAMENT (int) Number of individuals to participate in the tournament selection
OLDDATABASEFILENAME (string) The database file to load
OUTPUTFILES (bool) Flag to output files, 0:no output, 1:output to files
PCROSSOVER (double) Probability of crossover for each individual, [0,1]
PMUTATION (double) Probability of mutation for every single gene, [0,1]
PMUTATIONNEIGHBORHOOD (double) Probability of neighborhood mutation, [0,1]
POLYTOPEALGORITHM (PolytopeParameters) Parameters for the polytope algorithm
POLYTOPETYPE (vector<int>) Flag indicating how the initial polytope is constructed,

list one or several of the choices, from 0:best of generation, 1:best of
database, 2:closest to the best

POPULATION (PopulationParameters) Parameters for the population
RANDOMSEED (int) Random seed for the run, 0 indicates a random seed based on

CPU time
RUNDESCRIPTION (string) Description of the run
RUNNAME (string) Name of the run, no spaces
SELECTIONTYPE (int) Criteria to construct the roulette wheel, 0:fitness based, 1:rank

based, 2:windowing
USECLOSESTDATA (bool) Flag to use the scaled closest data function value for invalid

points, 0:assign 0, 1:assign scaled function value of closest data to
invalid points

USEDATABASE (bool) Flag to use the database, 0:no database, 1:use database
USEELITISM (bool) Flag to use elitism, 0:no elitism, 1:use elitism
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Table B.2: Keywords for the PopulationParameters class.

Keyword Description
ALPHABETSIZE (vector<int>) Vector of the respective alphabet sizes of the variable
MAXVALUE (vector<double>) Vector of the minimum bounds on the variables
MINVALUE (vector<double>) Vector of the minimum bounds on the variables
OUTPUTFILES (bool) Flag to output files, 0:no output, 1:output to files
POPULATIONNAME (string) Descriptive name of the population
POPULATIONSIZE (int) Number of individuals in the population
PRECISION (vector<double>) Vector of the minimum discretization intervals of

each variable
RUNNAME (string) Name of the run, no spaces
UNIFORMINITIALIZATION (bool) Flag to initialize the population by uniform design, 0:random,

1:uniform
VALUENAME (vector<string>) Vector of descriptive names of the variables to be

optimized

Table B.3: Keywords for the PolytopeAlgorithmParameters class.

Keyword Description
CLOSESTSCALINGFACTOR (double) Power scaling of the invalid points
CONTRACTIONCOEFFICIENT (double) Contraction coefficient of the polytope contraction step,

0<...<1
CONVERGENCECRITERIA (int) Flag indicating the criteria for convergence, 0:MAXNUMITER-

ATIONS, 1:CONVERGENCEVALUE
CONVERGENCETOLERANCE (double) Percent (of the CONVERGENCEVALUE) tolerance to test

convergence
CONVERGENCEVALUE (double) The minimum sought evaluation function value, if found an

equal or better solution, the algorithm quits
EXPANSIONCOEFFICIENT (double) Expansion coefficient of the polytope expansion step, >1
INITIALSOLUTION (vector<double>) The initial solution from which the initial polytope

is constructed
MAXIMUMNUMCONTRACTION (int) The maximum number of contraction steps that will be allowed
MAXNUMEVALUATIONS (int) Maximum number of function evaluations after which the algo-

rithm quits
MAXNUMITERATIONS (int) Maximum number of iterations after which the algorithm quits
MAXTIME (int) Maximum time in seconds after which the algorithm quits
MAXVALUE (vector<double>) Vector of the minimum bounds on the variables
MINVALUE (vector<double>) Vector of the minimum bounds on the variables
OUTPUTFILES (bool) Flag to output files, 0:no output, 1:output to files
REFLECTIONCOEFFICIENT (double) Reflection coefficient of the polytope reflection step, >0
RUNDESCRIPTION (string) Description of the run
RUNNAME (string) Name of the run, no spaces
USECLOSESTDATA (bool) Flag to use the scaled closest data function value for invalid

points, 0:assign 0, 1:assign scaled function value of closest data to
invalid points

USEDATABASE (bool) Flag to use the database, 0:no database, 1:use database
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Table B.4: Keywords for the KrigingParameters class.

Keyword Description
NUMKRIGDATA (int) The number of data to be used to construct the kriging system
OUTPUTFILES (bool) Flag to output files, 0:no output, 1:output to files
RUNNAME (string) Name of the run, no spaces
VARIOGRAMA (double) The power coefficient
VARIOGRAMC (double) The multiplier coefficient
VARIOGRAMTYPE (int) Type of variogram to use, 0:spherical, 1:exponential, 2:gaussian,

3:power, 4:hole effect, 5:auto

Table B.5: Keywords for the SimulationParameters class.

Keyword Description
ACTIVECELLSFILENAME (string) Name of the file which has iSize*jSize 0,1’s indicating if cell

is active, i cycles faster (Eclipse format). Required if ALLCELLSAC-
TIVE=0

ALLCELLSACTIVE (bool) Flag indicating all wells are active, 0:all cells not active (re-
quires input of ACTIVECELLSFILENAME), 1:all cells active

ECLIPSEDATAFILENAME (string) Name of the Eclipse data file without the ’.DATA’
ECLIPSEINCLUDEFILENAME (string) Name of the Eclipse include file that will have the well location

parameters
ISIZE (int) Number of grid blocks in the x-direction
JSIZE (int) Number of grid blocks in the y-direction
NUMWELLS (int) Number of well locations to optimize
OUTPUTFILES (bool) Flag to output files, 0:no output, 1:output to files
RUNNAME (string) Name of the run, no spaces
WELLDEPTH (vector<double>) Well depth, ft
WELLKLOWER (vector<int>) End of the perforation interval (k2)
WELLKUPPER (vector<int>) Beginning of the perforation interval (k1)
WELLNAME (vector<string>) Name of the well
WELLPWFMIN (vector<double>) Minimum flowing pressure of well, psia
WELLRATE (vector<double>) Rate of the well (production or injection). Negative

rate indicates that the rate is being optimized
WELLRW (vector<double>) Well radius, ft
WELLSKIN (vector<double>) Well skin
WELLTYPE (vector<int>) Type of the well, 0:producer, 1:injector
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Table B.6: Keywords for the CostParameters class.

Keyword Description
DISCOUNTRATE (double) Discount rate, fraction
FIXEDCOST (double) Initial fixed investment amount (CAPEX), $
GASCOST (double) Price/cost of gas, $/MSCF
OILCOST (double) Price of oil, $/bbl
OPERATINGCOST (double) Operating costs, $/day
OUTPUTFILES (bool) Flag to output files, 0:no output, 1:output to files
RUNNAME (string) Name of the run, no spaces
WATERCOST (double) Cost of handling water, $/bbl
WELLCOST (double) Cost of one well, $/well



Nomenclature

a constant, neural network node output

A population

A string

A,B,C outcome

b constant

c constant, polytope centroid

CE() certainty equivalent

d distance

E() expected value

f function value, fitness

f̄ average fitness

f̃ random function

g() sigmoid function

h distance

H schema

in neural network node input

k permeability

l string size

L lottery

m() number of occurrence of schema

n population size
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N number of

NPV net present value

o() order of schema, order of algorithm

p probability

P probability

Q quality

r risk aversion coefficient

R() Arrow-Pratt measure of absolute risk aversion

t generation

T true output, computational time

U utility value

U() utility function

w neural network connection weight, quality cell weight

x point

Z integer set

Z() intrinsic random function

Symbols

α reflection coefficient, neural network learning rate

β expansion coefficient

δ() defining length of schema

γ contraction coefficient

γ() variogram function

λ kriging weight

µ Lagrange parameter

φ porosity

σ standard deviation

σ2 variance
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Superscripts

∗ estimation

t connection layer

Subscripts

a alphabet

b binary

c polytope contraction, crossover, computer, cell

cw cells c belonging to well w

e polytope expansion

i individual

event event

E estimation

i coordinate, event, string, node

j coordinate, node

m mutation

max maximum

min minimum

r polytope reflection

s survival

t total

w well

wc well-cell
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