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Abstract

Unconventional shale reservoirs are currently one of the most developed energy re-

sources in the world. In the US alone, more than 1.1 million shale wells are currently

in production and the estimated US shale oil reserves are at around 4.29 trillion bar-

rels. The development of shale reservoirs is very rapid in the US. Some companies

drill more than 400 horizontal shale wells per year, and this trend is likely to increase

in the coming years. In such setting, quick uncertainty quantification and forecasting

is of paramount importance. Conventional approaches to uncertainty quantification

and forecasting were mostly found impractical in shales due poorly understood pro-

duction mechanisms, high temporal requirements of uncertainty quantification studies

and also because of the poor collection of scientific data. Shale reservoirs are mostly

developed by small to mid size companies that usually cannot a↵ord the collection

of highly sophisticated scientific data or advanced geomodeling and simulation soft-

wares. Moreover, transport in shales and upscaling of shale reservoir properties are

very active research areas without well established practical work-flows and software.

For these reasons, many reservoir modelers have adopted the so called data-driven ap-

proaches for reservoir data analysis and production forecasting. Commonly employed

data-driven methodologies include regression methods for the analysis of production

data and neural network based models for production forecasting. What most of

the approaches employed up to date have in common is that they work with scalar

outputs (i.e. 3, 6, 9 months of cumulative production or peak oil/gas), spatial corre-

lations and spatial trends are rarely analyzed, and many of the commonly employed

approaches are incapable of properly quantifying uncertainty in forecasts. In this

dissertation, we take a di↵erent approach to data-driven reservoir data analysis and

forecasting. Firstly, we start from a perspective that shale production profiles need

to be analyzed as a whole, or as curves, and not as some discretized components of
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cumulative production. Secondly, we embrace the existence of spatial correlations

between production profiles. It is quite intuitive that similarly completed wells would

produce similar amounts of hydrocarbons if drilled reasonably close (without inter-

ference). The question is at what distance does this ”similarity” disappear and how

does that a↵ect forecasts, recoverable reserve estimation and ultimate decision mak-

ing? Here, we develop methodologies for interpretation, forecasting and uncertainty

quantification of spatially correlated reservoir production curves or functions. The

methodologies are based on the tools of relatively recently established statistical dis-

cipline called functional data analysis (FDA) and the advances in its sub-discipline,

geostatistics for functional data. We demonstrate that the well known geostatistis-

tical tools such as variograms and sequential Gaussian simulation can be e�ciently

used for shale reservoir data analysis and forecasting. The developed methodologies

are demonstrated in two unconventional reservoir case studies. The first case study

analyzed gas production from 900 horizontal wells completed in the Barnett shale,

while the second case study used Anadarko Petroleum Company (APC) provided

dataset with 189 wells that produced oil and gas.

The previously mentioned methodologies are capable of analyzing and forecasting

single variate functional data (i.e. oil rates curves only). However, the APC dataset

contained wells that produced multivariate functional data, oil and gas rates over

time. When analyzing such dataset the question of multivariate functional data

analysis and forecasting naturally arises. The encounter of this question motivated

the development of a methodology capable of analyzing and forecasting multivariate

functional data. The developed methodology is based on regression trees, a well

known machine learning technique, and it represents a contribution to both fields of

Earth sciences and functional data analysis. The methodology is also demonstrated

on the APC dataset.

Functional data is not only observed in unconventional reservoir data analysis and

forecasting. One also encounters functional data in conventional reservoir modeling.

For example, flow simulation curves computed with conventional reservoir simulators

also represent functional data. Proper numerical uncertainty quantification requires

consideration of a large number of modeling parameters with wide ranges. Exhaustive

exploration of such high dimensional spaces is computationally demanding and rarely

achievable in practice. For this reason, modelers often employ statistical emulators
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that aim to interpolate or emulate the reservoir simulation solution at unexplored

portions of the input space. Statistical emulators require a certain number of train-

ing runs computed with high fidelity reservoir simulators and in most applications

up to date work with scalar outputs (i.e. EUR). Since reservoir simulator outputs

are functional in nature, one can develop statistical emulators with the aforemen-

tioned methodologies we developed for shale reservoir forecasting. We explore this

application in the last, sixth chapter of this dissertation.

Another problem in conventional uncertainty quantification studies is with the use

of proxy models. Proxy models are numerical models of lower fidelity and high speed

that are commonly used to quickly explore the high dimensional input spaces. Their

stand-alone solution is often considered noisy and sub-optimal. For this reason, mod-

elers often employ machine learning to model the discrepancies (errors) between the

proxies and their high fidelity counterparts, or they employ co-kriging based schemes

that fit a statistical emulator that aggregates both proxy and high fidelity solutions

in estimating unevaluated high fidelity solutions. In chapter 6, we develop novel

functional co-kriging methodologies for building statistical emulators that aggregate

functional responses produced by proxies and high fidelity numerical models. The

methodologies are applied and compared in three case studies along with the emula-

tors constructed with the techniques we previously used in shale reservoir modeling.
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Chapter 1

Introduction

Unconventional reservoirs, or organically rich shales, are nowadays one of the most

widely developed energy resources in the world. What was once considered a vast

but untappable resource (due to very low permeability), today it is developed at

such a rapid pace that some developers drill more than 400 wells per year. This rapid

development is a result of years of scientific and industry research that started in 1976

with the Eastern Shales Gas Project (ESGP) that was initiated and funded by the US

Department of Energy (DOE). The project lasted until 1992 and it consisted of many

real reservoir experiments that identified horizontal drilling with hydraulic fracturing

as one of the most e↵ective engineering techniques to unlock the great potential of

organically rich shales. While the project initially started with an objective to unlock

the potential of Devonian gas shales in the Appalachian basin, it eventually motivated

the development of other oil and gas rich shales throughout the US (figure 1.1), and

around the world (China, Argentina, etc.). A conservative estimate of the worlds

shale oil resources is around 6 trillion barrels (World Energy Council [2016]). Around

80% of the worlds shale reserves are in teh US (World Energy Council [2016]). The

Green River basin alone, is estimated to contain around 3.7 trillion barrels, while

Devonian shales in the Appalachian basin are estimated to contain around 189 billion

barrels of oil (World Energy Council [2016]).

1
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Figure 1.1: North American shale plays 1

1.1 Geological Properties of Shales

Organically rich shales are finely grained sedimentary rocks that were deposited in

calm, oxygen poor oceanic environments (Roen et al. [1996]). Low oxygen content

enabled the preservation of trapped organic matter until subsequent burial due to

sediment influx. Historically, in petroleum geology, organically rich shales were often

referred to as source rocks. This was mainly due to the fact that when exposed to

high temperatures the organic matter contained in organically rich shales converts

into hydrocarbons and migrates into shallower sandstones where it forms conven-

tional hydrocarbon reservoirs. Hydrocarbons contained in shales were generated and

trapped in situ, in other words no migration ever happened. For this reason shales

are often refereed to as self-sourcing reservoirs. Mineralogical composition of shales

varies both between and within shale plays. In table 1.1 we are showing mineralogical

composition of core samples extracted from four shale plays in the US. Within shale

1Source EIA (https://www.eia.gov/oil_gas/rpd/shale_gas.pdf)

https://www.eia.gov/oil_gas/rpd/shale_gas.pdf
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and between shale variations in mineral content are quite significant. Permeability

of shales is on the scale of nano Darcys, they are almost entirely impermeable rocks.

Hydrocarbons in shales can be free or chemically bounded (sorbed gas) to the rock.

Some shales have very well developed networks of natural fractures (i.e. parts of Mar-

cellus shale) while others have very few natural fractures. This high heterogeneity of

shales imposes unique challenges on geologists and geomodelers since best practices

established in one shale play are rarely transferable to other shale plays.

Table 1.1: Core sample properties of four shale plays (Modified from Sone and
Zoback [2013])

Shale Play
QFP
Vol.%

Carbonate
Vol.%

Clay
Vol.%

Kerogen
Vol.%

Porosity
%

Description

Barnett-1 50-52 0-3 36-39 9-11 4-9
Silt grains

in clayey matrix
Barnett-2 31-53 37-60 3-7 2-3 1-2 Carbonate rock

Haynesville-1 32-35 20-22 36-39 8 6
Silt grains

in clayey matrix

Haynesville-2 23-24 49-53 20-22 4 3-4
Silt grains

in clayey/calcerous matrix

Eagle-Ford-1 22-29 46-54 12-21 9-11 5-7
Calcerous biotic grains

in clayey/calcerous matrix

Eagle-Ford-2 11-18 63-78 6-14 4-5 5-7
Calcerous biotic grains

in clayey calcerous matrix

Fort. St. John 54-60 3-5 32-39 4-5 5-6
Silt grains in
clayey matrix

QFP = quartz, feldspar, pyrite

1.2 Hydraulic Fracturing

Given their very low permeability, in shales, production with vertical wells is rarely

economical. In some Devonian shales in the Appalachian basin economical production

was established with vertical wells due to highly developed networks of natural frac-

tures that provided high permeability flow paths (i.e. Lower Huron Shale). In other

basins dense fracture networks are not very common and in such cases economical

production can be established only by means of horizontal drilling with multi-stage

hydraulic fracturing. Hydraulic fracturing is an operation in which a mixture of sand,

water, gelling agents and chemicals is pumped in sequence into a well under high

pressure until the surrounding rock breaks, creating an artificial fracture. Hydraulic
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fracture orientation depends on the orientation of the maximum principal stresses in

the subsurface. Hydraulic and natural fractures tend to propagate perpendicularly

to the minimum principal stress (Zoback [2007]). At large depths, minimum prin-

cipal stress is one of the two horizontal principal stresses hence hydraulic fractures

are always vertical. To maximize the contact of hydraulic fractures with the reser-

voir, horizontal wells are drilled in the direction of minimum principal stress (so that

hydraulic fractures propagate perpendicular to the horizontal well, 1.2).

(a) (b)

Figure 1.2: a) - Principal stresses acting on unit volume in the subsurface. b) - Top
cross section of a horizontal well with hydraulic fractures drilled along the direction
of the minimum principal stress.

The principal stresses are measured in early stages of drilling by means of micro

frac testing (Proskin et al. [1990]) and they do not represent an uncertain parameter

in reservoir development. However, mechanical properties of shales can vary through-

out the reservoir due to spatially varying mineralogical composition of the rock. It

was found (Altamar and Marfurt [2014], Wang and Gale [2009], Ren et al. [2014])

that brittleness of shales depends on the mineralogical content. In particular, high

clay content makes the rock ductile while large content of quartz, feldspar or dolomite

makes the rock brittle. Ren et al. [2014] states that hydraulic fracturing in ductile

shales produces planar hydro fractures, while fracing in brittle shales produces dense

networks of artificial fractures. Spatial distribution of mechanical reservoir proper-

ties is uncertain and it determines the success of a hydraulic fracturing job and the

magnitude of subsequent production. It is important to mention that in some shales
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hydraulic fracturing with water based mixture is detrimental to hydrocarbon produc-

tion due to swelling of clay minerals (Karpiński and Szkodo [2015]). In such shales,

foam based fracing mixtures are commonly used, however in early stages of reservoir

development a significant amount of experimentation always takes place.

1.3 The Need for Data Driven Modeling

While the technology to develop unconventional reservoirs is relatively new, the ques-

tions that reservoir engineers need to answer are the same as in conventional reser-

voirs. Where to drill the next well? And what production to expect? Convention-

ally these questions are answered through some sort of forecasting and uncertainty

quantification studies. One of the most widely adopted uncertainty quantification

approaches in conventional reservoir engineering is reservoir modeling with flow sim-

ulation (RMFS, Caers [2011]). RMFS approach starts by developing complex earth

models that incorporate all available reservoir data (well logs, seismics, well test, pvt,

production) and then uses such earth models to conduct flow simulation studies and

forecast new wells. This approach to reservoir characterization and forecasting is

impractical for unconventional reservoirs due to the following:

1. Flow mechanisms of shales are not yet well understood hence there is no consen-

sus on the best and the most appropriate flow and transport modeling technique.

Early approaches to flow simulation in shales considered the well-known dual

porosity models. However, recent research has shown that dual porosity models

are inappropriate for unconventional reservoir modeling since transport occurs

across multiple scales (Yan et al. [2016]). It was also found that Darcys law

becomes inapplicable in the case when pore sizes are at the level of nano-meters

(Guo et al. [2015]) that is very common in shales. Several reservoir simulation

techniques have been recently developed to deal with these problems. Par-

ticularly interesting are multiscale methods that simulate transport in shale

reservoirs through organic and inorganic components of the matrix (Yan et al.

[2016]). What all of the recently developed methods have in common is the

fact that they are highly complex and that they require a significantly more

sophisticated static reservoir modeling compared to conventional reservoirs2.

2There are many more parameters to consider compared to conventional reservoir simulation
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Moreover, upscaling of reservoir properties and flow simulation of micro e↵ects

to a larger scale is an active area of research, hence currently available methods

are not yet ready for a wide practical use.

2. RMFS is highly sophisticated and as such it requires large teams of geologists,

geo-modelers, geo-mechanics experts, flow simulation engineers, and decision

analysts. Such large teams are rarely available to small to mid-sized companies

that are the main developers of unconventional resources in the US.

3. RMFS uncertainty quantification technique falls short in meeting the demands

of rapid reservoir development since one solid RMFS study can take anywhere

from a couple of months to a couple of years. This obviously becomes highly

impractical when 400 wells are being drilled per year.

As an alternative to RMFS modelers have turned towards the so-called data driven

approaches. Data driven approaches rely on some sort of machine or statistical learn-

ing technique for interpretation and forecasting of reservoir production. Statistical

methods are often fast to develop and capable of incorporating many di↵erent types

of information. Commonly used data driven approaches in unconventional reservoir

data interpretation include regression analyses (LaFollette and Holcomb [2011]), neu-

ral network based sensitivity analyses (Shelley et al. [2012], Nejad et al. [2015]), and

production clustering analyses (Esmaili and Mohaghegh [2013]).

Neural networks appear to be one of the most popular forecasting approaches. Ap-

plications to date used neural networks to develop single well, single time, forecasting

models without explicitly taking into consideration spatial correlations between the

wells (Mohaghegh et al. [2011], Cao et al. [2016], Grujic and Mohaghegh [2010]).

Other approaches to reservoir forecasting rely on some form of decline curve analysis

(Arps [1945], Duong [2010]) applied on existing wells and then aim to use regression

or neural networks to forecast new wells by forecasting its decline curve parameters.

studies
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1.4 Motivation and Key Contributions

One thing that is commonly overlooked in nowadays performed unconventional pro-

duction data analyses and forecasting studies is the fact that from a statistical per-

spective production data represents functions or curves. The shape and the magnitude

of these production curves depends on the location of the well, its completion param-

eters (i.e. the number of fractures, lateral length, etc.), and its operating conditions.

Proper analysis of production curves requires looking at the entire production curve

as a whole and not some segments of it, like peak production or 3, 6, 9 months of

cumulative production, as it is commonly done in the industry. Another very impor-

tant, but often overlooked aspect in production data analysis and forecasting studies

is the presence and the magnitude of spatial correlations between wells. Knowing the

extent of spatial correlations (i.e. variogram ranges) can inform us about the main

trends in the reservoir quality and also improve the results of production forecasting

and uncertainty quantification of new wells.

Statistical discipline that develops techniques for the analysis of functional data

is called functional data analysis (FDA, Ramsay and Silverman [2005]). A special

branch of this discipline deals with the analysis and forecasting of spatially correlated

functional data such as unconventional reservoir production curves. In this disserta-

tion, we explore the applicability of geostatistics for functional data for the analysis

and forecasting of unconventional wells. We develop work-flows and methodologies

to analyze, forecast and quantify uncertainty in production curves in unconventional

reservoirs. The developed methodologies are demonstrated on two real unconven-

tional reservoir datasets: the Barnett shale dataset with 934 horizontal gas wells

and a dataset provided to us by Anadarko Petroleum Corporation (APC) with 188

horizontal oil and gas wells.

Most nowadays developed unconventional reservoirs produce more than one fluid

(i.e. oil and gas). This means that engineers need to analyze multivariate curves, that

we know are spatially correlated. Motivated by this problem we developed a novel

methodology for the analysis and forecasting of multivariate production curves based

on regression trees, a statistical learning technique. While our developments aimed at

unconventional reservoir data analysis and uncertainty quantification, the developed

methodology represents a contribution to the field of functional data analysis and as
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such it is applicable to problems in other branches of science.

Production curves also occur in numerical uncertainty quantification studies in

conventional reservoirs. Proper uncertainty quantification requires exploration of high

dimensional input spaces that is always computationally expensive. To save compu-

tational time engineers often develop statistical or machine learning surrogate models

or proxies. Up to date proxies were developed for scalar outputs (i.e. EUR) and not

the entire simulated production curves. The methods developed for the analysis and

forecasting of unconventional production curves are also applicable for construction

of statistical emulators for computer experiments that produce curves as outputs.

In this dissertation, we also explore this application, and in addition, we develop a

novel method for constructing emulators for computer codes of multiple levels of fi-

delity3 that all produce time series as outputs. This development is also novel and it

represents a contribution to both Earth science and functional geostatistics fields.

1.5 Dissertation Outline

In chapter 2, we outline the basics of functional data analysis mostly based on the

book Functional Data Analysis by Ramsay and Silverman [2005]. Topics covered

include: functional data smoothing from raw observations to functions, functional

principal component analysis, and regression for functional data. In addition to this

literature review, we outline a practical technique for smoothing of curves that have

di↵erent length, such as unconventional produciton curves4.

In chapter 3, we review the techniques of geostatistics for functional data. We

start by reviewing the recently developed universal trace kriging methodology by

Menafoglio et al. [2013], co-kriging for functional data by Nerini et al. [2010] and we

also propose an extension to Nerini et al. [2010] method for non-stationary spatially

correlated functional data. The chapter concludes with a real Barnett shale unconven-

tional reservoir case study with 834 multi-stage fractured wells of similar horizontal

length. Work presented in chapter 3 is a result of collaboration with Alessandra

Menafolgio of Politecnico di Milano and it was recently published (Menafoglio et al.

3For example, finely gridded reservoir models and coarsely gridded reservoir models. Another
example are models with reduced physics.

4Since wells start on di↵erent dates, production curves often have di↵erent length
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[2016b]) in the journal of Spatial Statistics.

In chapter 4, we propose a methodology based on the techniques presented in

chapter 3 to model a real reservoir data with a variable number of completion pa-

rameters. We demonstrate that the techniques from chapter 3 can be used without

much change to forecast and interpret unconventional reservoir production data when

wells have di↵erent completion parameters. The methodologies were applied on a real

unconventional reservoir case study with 188 horizontal wells that produced oil and

gas and had 26 well specific parameters (covariates). The case study considered oil

production curves only. Parts of the work presented in chapter 4 were presented at

the SPE Annual Technical Conference and Exhibition (ATCE) in 2015 (Grujic et al.

[2015]), and at the Petroleum Geostatistics conference in Biarritz, France in 2015.

In chapter 5, we develop a regression tree based methodology for forecasting and

interpretation of multivariate functional data. The developments were motivated by

the need for an uncertainty quantification technique capable of forecasting both oil

and gas rates simultaneously. The methodology was applied on both oil and gas rates

of the Anadarko dataset considered in the previous chapter.

In chapter 6, we explore new avenues of research that were opened by the work out-

lined in the previous three chapters. In particular, we explore the use of geostatistics

for functional data for emulation of computer codes that produce functional outputs.

In addition, we develop two novel techniques for incorporation of secondary data into

functional modeling workflows outlined previously and we conclude the chapter with

an outline for future research directions. The work presented in chapter 6 was done

in collaboration with Alessandra Menafoglio and it was recently submitted for pub-

lication in the journal of Stochastic Environmental Research and Risk Assessment

(SERRA)(Grujic et al. [2017]).

In addition to the research presented in this dissertation, three R software pack-

ages were developed. The packages implement all of the methods discussed in this

dissertation and are freely available in the public domain. The list of packages along

with the web-links to their repositories is given below:
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• The DGSA package that implements the DGSA sensitivity analysis method

(Fenwick et al. [2014]). The package can be found at: www.github.com/ogru/

DGSA

• The fdagstat package that implements the methods outlined in chapters 3,4 and

6. The package can be found at: www.github.com/ogru/fdagstat

• The fTree package that implements the functional regression trees methodolo-

gies outlined in chapter 5. The package can be found at: www.github.com/

ogru/fTree

www.github.com/ogru/DGSA
www.github.com/ogru/DGSA
www.github.com/ogru/fdagstat
www.github.com/ogru/fTree
www.github.com/ogru/fTree


Chapter 2

Functional data analysis

In many fields of science and technology it is pretty common for data to come in a form

of curves or surfaces, or in other words, data that varies over a continuum (i.e. space

or time). Such data is often referred to as ”functional” to emphasize its dependence

on the continuum. Examples of functional data are temperature and precipitation

measurements as a function of time in meteorology, oil and gas production as a

function of time in petroleum engineering, well logs as a function of depth in geology,

micro resonance images in medical research, etc. A statistical discipline that deals

exclusively with interpretation, analysis, and prediction of functional data is called

”Functional data analysis” or FDA in short. In this chapter, we will review the basic

concepts of FDA that will serve as building blocks for the developments presented in

subsequent chapters where we deal with the functional data that occurs in subsurface

engineering. The developments presented below are mostly based on the seminal

books by Ramsay and Silverman [2005], Ferraty and Vieu [2006], and Horváth and

Kokoszka [2012].

2.1 An Infinite Dimensional Hilbert Space Frame-

work for Functional Data

In statistics of scalars we analyze random variables that belong to the space of real

numbers R. While in multivariate statistics we analyze vectors as finite dimensional

random variables that take values in finite dimensional Euclidean vector space Rn.

11
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Given that functional data varies over a continuum its dimensions are essentially in-

finite. For example, if we consider continuous curves that vary over time X (t), t 2 T

it is obvious that such data can be evaluated at infinitely many time steps that are

all within T . Therefore, proper analysis of functional data requires an appropriate

mathematical framework that would honor the infinite dimensional nature of the data.

The most basic tools in FDA were developed around the idea that functional data

comes as samples of a functional random variable, which was defined by Ferraty and

Vieu [2006] as follows

Definition 2.1.: A random variable X is called functional random variable if it

takes values in an infinite dimensional space (or functional space). An observation

(or a sample) of X is denoted with X .

Note that in this definition Ferraty and Vieu [2006] ”implicitly make the following

identification X = {X (t), t 2 T} and X = {X (t), t 2 T}”. In further text we will

use the two notations interchangeably.

There are many infinite dimensional spaces (Hilbert, Banach, Sobolev,...) around

which one can develop statistical frameworks for the analysis of functional data. The

most basic developments in FDA assume that functional data takes values in an

infinite dimensional L2(T ) space, which is a separable Hilbert1 space endowed with

the inner product (Horváth and Kokoszka [2012]):

hX
i

(t),X
j

(t)i =
ˆ
T

X
i

(t)X
j

(t)dt

This inner product induces the following norm:

kX (t)k =
p
hX (t),X (t)i =

sˆ
T

X 2(t)dt

Two additional assumptions are made in the L

2(T ) framework. The assumption of

1Separable vector spaces have a countable orthonormal basis. Hilbert space is a complete inner
product space that can be also viewed as a generalization of the Euclidean vector space into high
dimensions (Wik). A finite dimensional Euclidean space Rn is also a separable Hilbert space, by
definition.
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integrability of functions E[kXk] < 1, and the assumption of square integrability of

functions E[kXk2] < 1.

If the L

2(T ) space is also equipped with Borel’s � algebra then the assumption of

integrability implies that there exists a unique mean function µ 2 L

2(T ) such that

E[hf,X i] = hf, µi, 8f 2 L

2(T ) (Horváth and Kokoszka [2012]). The mean function

has the following important property:

µ(t) = E[X (t)] for almost all t 2 T (2.1)

Implying that within L

2(T ) framework we can estimate the mean function from N

available samples ofX (t), with the following intuitive relation (Horváth and Kokoszka

[2012]):

µ̂(t) =
1

N

NX

i=1

X (t), 8t 2 T

From the assumption of square integrability follows the definition of covariance

function2:

c(s, t) = E [(X (t)� µ(t)) (X (s)� µ(s))] , s, t 2 T (2.2)

Which is in practice estimated from a sample of N curves with the following

relation (Horváth and Kokoszka [2012]):

ĉ(s, t) =
1

N � 1

NX

i=1

(X
i

(t)� µ(t)) (X
i

(s)� µ(s))

In this dissertation, we will adopt this L2(T ) framework for analyzing functional

data. In other words, in all our developments we will assume that the analyzed

functions are realizations of a random process that takes values in L

2(T ) separable

Hilbert space equiped with the inner product and the induced norm, and also that

functions are square integrable.

2Operators on Hilbert spaces are beyond the scope of this dissertation. Interested readers should
consider Horváth and Kokoszka [2012] for a detailed dissection of the topic.
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2.2 From Discrete Observations to Functions

All FDA analyses start from observations of functional data that are often given in

pairs (y
ij

, t

ij

), t 2 T . Here i = 1, 2, ..., N represents realizations of functional data

and j = 1, 2, ...,M
i

represents the index of observations for i� th function. Sampling

along T can be coincident or it can vary across realizations which makes the analysis

and comparison of realizations di�cult. In addition, the data are often observed with

noise that adds another level of analytic di�culty. The main assumption behind the

methods of FDA is that observations of functional data were generated by a smooth

process corrupted by noise.

y

ij

= X
i

(t
ij

) + ✏ (2.3)

Therefore, the first question of FDA is how to estimate the smooth and continuous

function X
i

(t) from its raw and noisy observations. In FDA, this is achieved by means

of basis expansion, a non-parametric curve fitting procedure. Basis expansion starts

from a selection of an appropriate basis system that consists of a finite number of

analytic basis functions. The analytic basis functions span the entire domain T . The

type of the basis system is data dependent. When functional data are non-periodic,

the most commonly used analytic basis functions are B-splines (Boor [1978]), while in

the case of periodicity in the data, periodic (trigonometric) basis functions are often

used. Hence, we distinguish two most commonly used basis systems, B-Spline and

Fourier basis systems (figure 2.1).

Figure 2.1: An example of basis systems. Left - Fourier Basis, Right - B-Spline
Basis
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After selecting the basis system one has to expand it to the observed data. This

is achieved by scaling the basis functions with appropriate set of coe�cients and

summing up the scaled products

X̂
i

(t) =
KX

k=1

c

ik

b

k

(t) (2.4)

This procedure is commonly referred to as data smoothing since it results in a smooth

function fitted to noisy observations. The most appropriate coe�cients for basis ex-

pansion are found such that the following least squares objective functional is mini-

mized

argmin
ci1,ci2,...,cik

TX

j=1

 
X (t

j

)�
KX

k=1

c

ik

b

k

(t
j

)

!2

(2.5)

Figure 2.2: An example of basis expansion. Left - Selected B-spline basis system,
Right - Basis expansion and the resulting fit.

Since smoothing is achieved by scaling of analytic basis functions whose derivatives

are known, the derivatives of the resulting fit are also known3. This opens doors to

deeper derivative analyses of the data that are unavailable to multivariate statistics,

and also to a more complex fitting criterion that imposes smoothness penalty on the

3The derivative of a sum is a sum of the derivatives.
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second derivative of the fit

argmin
ci1,ci2,...,cik

TX

j=1

 
X (t

j

)�
KX

k=1

c

ik

b

k

(t
j

)

!2

+ �

ˆ
T

X̂ 00
(t)dt (2.6)

The quality of the fit depends on the number of basis functions and the magnitude

of the smoothing penalty (�). Too many basis functions might result in over-fitting,

while too high smoothing penalty might cause the fit to be overly smooth and miss

important features in the data. An example of the influence of these two parameters

on the resulting fit is given in figure 2.3.

Ramsay and Silverman [2005] outline a generalized cross validation (GCV) pro-

cedure for estimation of the number of basis functions and the smoothing penalty.

The idea is simply to remove a part of the observations, perform basis expansion and

compute the error between the removed observations and the corresponding smooth

values. The number of basis functions and the value of the regularization coe�cient

that yields the lowest mean cross validation error are deemed the best. In our experi-

ence these are just tools to help users narrow down ranges for fitting the parameters.

The final decision on how many basis functions to use and the degree of smoothing

is problem dependent and always at the discretion of the analyst.
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Figure 2.3: The influence of the number of basis functions and the smoothing penalty
on basis expansion. (nB - the number of basis functions; lambda - the value of the
smoothing penalty (equation 2.6))

2.3 Functional Principal Component Analysis

Functional data analysis community invented a functional version of the principal

component analysis. The technique is analogous to the conventional (multivariate)

principal component analysis, and it represents an irreplaceable component of every
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functional data analysis study. The developments presented below start from a com-

putational perspective since in that way it is much easier to understand functional

principal component analysis and see the many analogies it has with conventional

principal component analysis.

Let {X
i

(t), t 2 T}N
i=1 be a set of curves and let {x

i

2 R

m}N
i=1 be a set of their ”vec-

torized” equivalents produced by evaluating each curve over a fine equidistant grid

t1, t2, ..., tm that spans the entire time domain T . Let µ(t) and µ be the mean function

and vector respectively, let {xc

i

2 R

m}N
i=1 be a set of centered vectors produced by

subtracting the mean vector from each x

i

and let ⌃
m⇥m

be the empirical variance-

covariance matrix of xc

i

’s. Note that this variance-covariance matrix is a discretized

equivalent of the covariance function (eq (2.2)), c(t
i

, t

j

) = ⌃[i, j]. By definition,

principal component decomposition of the variance-covariance matrix ⌃
m⇥m

is given

with

⌃
m⇥m

= V

m⇥m

⇤
m⇥m

V

T

m⇥m

(2.7)

Where the columns of matrix V are orthogonal eigen-vectors (principal compo-

nents) and ⇤ is a diagonal matrix of eigen values (�1,�2, ...,�m

). We will refer to the

columns of V as �
j

, j 2 [1,m], and assume that index j corresponds to the decreasing

order of eigen values4.

Notice that the length of the eigen vectors is the same as the length of the fine

equidistant grid. This suggest that the coe�cients of eigen vectors are time depen-

dent. As a matter of fact every �

j

is a ”vectorized” version of its functional equivalent

�

j

(t) that takes values in the same L

2 Hilbert space as the original data. �
j

(t)’s are

commonly referred to as functional principal components or ”fpcs” in short. Fpc’s

are orthogonal, meaning that

h�
j

(t),�
k

(t)i =
ˆ
T

�

j

(t)�
k

(t)dt = h�
j

,�

k

i = 0 8j, k = [1, 2, ...,m]; j 6= k (2.8)

and as such they form an ortho-normal basis in L

2(T ).

Analogously to the conventional multivariate principal component analysis fpca

also makes use of the principal component scores that are given with

⇠

k

i

= hX (t)� µ(t),�
k

(t)i =
ˆ
T

((X (t)� µ(t))�
k

(t)) dt (2.9)

4As returned by many software implementations of eigen value decomposition (i.e. prcomp in R).
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and in practice computed with ⇠

k

i

⇠ hx
i

,�

k

i. Principal component scores are by

definition uncorrelated (cov
�
⇠

k

i

, ⇠

l

i

) = 0, 8k, l s.t. k 6= l

�
.

As in multivariate principal component analysis functional principal components de-

scribe variance in functional data. More specifically, the variance of principal com-

ponent scores of the k-th fpc equals the k-th eigen value

�

k

=
1

N � 1

NX

i=1

(⇠k
i

)2 (2.10)

An interesting property of the fpcs is that they can be used to ”reconstruct” every

function in the ensemble

X̂
i

(t) = µ(t) +
kX

j=1

⇠

j

i

�

j

(t), k  m (2.11)

Given that this reconstruction is achieved by multiplying each eigen function with

a scalar (that is very similar to basis expansion) functional principal components

are often viewed as an ideal basis system that most adequately represents a given

ensemble of curves. In practice, we often work with a truncated fpc basis system

formed out of k leading principal components that describe most of the variance in

the data. The most commonly used criterion for selecting k is the fraction of variance

explained (FVE)

FV E

k

=

P
k

j=1 �jP
m

j=1 �j

(2.12)

where we select the lowest k for which FV E

k

is higher or equal to some user selected

threshold (often 0.95). Working with a truncated basis of functional principal compo-

nents adds additional layer to data smoothing. Higher-order fpcs often describe small

variations in functional data that can be attributed to noise. Discarding these higher

order fpcs in functional data reconstruction (eq. 2.11) results in smoother curves

than was the case with basis expansion that preceded the fpca. In practice, basis

expansion, fpca and fpc reconstruction (eq. 2.11) are done in sequence, iteratively,

until acceptable functional representations of the data are achieved.

Another interesting property of functional principal components is that they are

interpretable. Ramsay and Silverman [2005] suggested plotting fpcs as perturbation
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around the mean function

µ(t)±
p
�

j

�

j

(t)

to better understand the modes and the degrees of variation that they describe.

One example of functional principal component analysis is given in figure (2.4) with

the fpcs plotted as perturbations around the mean. We can see that the first fpc

describes the overall variation in temperature data. The second component appears

to describe the summer and winter variation jointly. The third and the fourth fpcs

are more di�cult to interpret.
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Figure 2.4: An example of fpca5. Top row - smooth functional data and associated
functional principal components. Middle and bottom rows - FPCS as perturbation
(+-) around the mean(black).

As mentioned before, functional principal components form an ortho-normal basis

in L

2(T ) Hilbert space (or R

n) that best describes the functional data in terms of

variance. While such basis is by definition the best, it is not unique. There are other

5This dataset and the analysis were adapted from Ramsay and Silverman [2005]. The data and
the functions that produce these plots are a part of the fda R package (Ramsay et al. [2009]).
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orthogonal bases of the same dimension that describe the same amount of variance

in the data (Ramsay and Silverman [2005]). Ramsay and Silverman [2005] suggested

that the components of some of those other bases might be more interpretable (than

the original fpcs) when plotted as perturbations around the mean function. All such

orthogonal bases can be obtained from the basis of fpcs with a simple orthogonal

rotation. For example, consider an orthogonal rotation matrix R (RT

R = I) and a

matrix of fpcs stacked in columns V . The rotated functional principal components

can be computed as follows6

V

r

= RV

T (2.13)

The question is how to find R that produces the most interpretable components in

V

r

? While there are many di↵erent criteria to consider, practice has shown that

the VARIMAX (Kaiser [1958]) rotation criterion produces the most optimal results

(Ramsay and Silverman [2005]). The idea behind VARIMAX is to rotate the fpcs

such that they align, as much as possible, with the directions of the time steps in

R

n. Consider an fpc vector ⇠i = [⇠
i

(t1), ⇠i(t2), ..., ⇠i(tn)]. To say that ⇠i is perfectly

aligned with the direction of the j�th time step implies that ⇠
i

(t
j

) = ±1 and ⇠

i

(t
k

) =

0, 8k 6= j. Therefore, the VARIMAX rotation criterion aims to find R that produces

V

r

whose values are, or very close to: 1, -1 or zero7. This is implicitly accomplished

by maximizing the variance of the values in V

r

hence the name VARIMAX.

VARIMAX rotation is always performed on a truncated basis of fpcs (i.e. for

FVE=0.95). One example of VARIMAX rotated fpcs is given in figure 2.5 where

we plot the four rotated fpcs as perturbations around the mean on the previously

considered temperature dataset. From this analysis, we can see that the first ro-

tated fpc represents winter temperature variations, the second and third represent

spring and autumn temperature variations respectively, while the fourth rotated fpc

describes summer temperature variations. Clearly, these rotated fpcs are much more

interpretable than their unrotated counterparts.

The rotated fpcs describe the same amount of variance in the data as the original

fpcs, however, they distribute the variance di↵erently among components (figure 2.5

titles).

6Note that here the rotation is performed on raw eigen (unit) vectors and not on loadings as it
is commonly done in factor analysis.

7That is while maintaining the columns as unit vectors
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Figure 2.5: Varimax rotated functional principal components as perturbation (+-)
around the mean function.

2.4 Regression for Functional Data

In many modern applications of FDA, it is quite common for functional data to be

observed along with a set of explanatory variables (covariates/predictors). In such

setting the question of forecasting of functional data naturally arises. Ramsay and

Silverman [2005] outlined several methods for forecasting of functional data, and for

forecasting with functional data. Since the former are the most interesting for the

problems addressed in this dissertation, in this section, we will review two of the

commonly used methods for functional data forecasting. The first method relies on

functional principal component analysis, as an intermediate modeling step, while the

second method is capable of directly predicting functional data from a given set of

covariates. In all our developments, we will refer to observed data as {X
i

(t), z
i

}N
i=1
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where t 2 T and z 2 R

n, forecasted function as X0(t) and associated known vector

of explanatory variables (predictors) as z0.

2.4.1 Functional Principal Component Regression

As the name suggests, functional principal component regression relies on functional

principal component decomposition of available functional data. Let µ(t) be the

mean function of the observed functional data, e
k

: {�1(t),�2(t), ...,�k

(t)} be a set of

ortho-normal functional principal components, and ⇠

j

i

, j 2 [1, 2, ..., k] be associated

functional principal component scores. Recall that all observed functions can be

reconstructed from the mean, the fpc’s and the associated fpc scores (eq. (2.11)).

The same relationship can be applied to the forecasted function X0(t) as follows:

X̂0(t) = µ(t) +
kX

j=1

⇠

j

0�j

(t) (2.14)

If the mean and the fpcs are estimated from all available functional data and assumed

constant, the only thing missing in order to fully predict function X0(t) are its fpc

scores ⇠

j

0. The idea of functional principal component regression is to predict X0(t)

by predicting its functional principal component scores from associated covariates z0.

This is achieved by means of multiple regression where predictions are given as linear

combinations of the principal component scores of all already observed functions and

appropriate regression coe�cients

⇠

j

0 =
LX

l=0

f

l

(z0)�
j

l

(2.15)

here f

l

(.) represents l-th transformation function8 and �

j

l

represents l-th regression

coe�cient.

The regression coe�cients are estimated from all available training data as a solution

8for example f0(z) = 1, f1(z) = z1, f2(z) = z2, ..., fj(z) = z21 , fj+1(z) = z22 , ...
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to the following minimization problem

argmin
�

j
0,�

j
1,...,�

j
L

NX

i

 
⇠

j

i

�
LX

l=0

f

l

(z0)�
j

l

!2

(2.16)

the solution of this optimization problem is found in a closed form with normal

equations9

�

j

= (F T

F )�1
F

T

Y

j

(2.17)

where �

j

=
⇥
�

j

0, �
j

1, ..., �
j

L

⇤
, Y

j

=
⇥
⇠

j

1, ⇠
j

2, ..., ⇠
j

N

⇤
, and

F =

2

66664

f0(z1) f1(z1) · · · f

L

(z1)

f0(z2) f1(z2) · · · f

L

(z2)
...

...
. . .

...

f0(zN

) f1(zN

) · · · f

L

(z
N

)

3

77775

To develop a functional regression forecasting model one needs to fit k such mul-

tiple regression models, one for each functional principal component. Note that this

approach exploits the fact that principal component scores are uncorrelated and as

such it cannot be applied directly to varimax rotated functional principal component

scores. If forecasting of rotated fpcs is desired one might consider a more advanced

form of regression with multiple inputs and multiple outputs called ”Currds and

Whey” procedure as proposed by Breiman and Friedman [1997].

2.4.2 Functional Regression

Ramsay and Silverman [2005] outlined a predictive procedure called functional re-

gression. The idea is to forecast functions as a linear combination of scalar predictors

and associated coe�cient functions

X0(t) =
LX

l=0

f

l

(z0)al(t) (2.18)

Where f

l

(.) are transformation functions, and a

l

(t) are coe�cient functions.

9for more details on multiple regression please see Hastie et al. [2009].



CHAPTER 2. FUNCTIONAL DATA ANALYSIS 26

To fit a regression model one needs to infer coe�cient functions a

l

(t). This is done

in least squares sense by minimizing the following objective functional

argmin
a1(t),a2(t),...,aL(t)

NX

i

ˆ
T

 
X

i

(t)�
LX

l=0

f

l

(zi)al(t)

!2

dt (2.19)

In practice this objective functional is minimized by first assuming a common basis

system (i.e. B-spline) b
k

(t)(k = 1, 2, ..., K) and expressing each a

l

(t) in terms of it

argmin
c

1
1,c

2
1,...,c

k
l

NX

i

ˆ
T

 
X

i

(t)�
LX

l=0

f

l

(zi)
KX

k=1

c

k

l

b

k

(t)

!2

dt (2.20)

In this way the problem of inferring coe�cient functions is transformed into a problem

of inferring the coe�cients of their basis expansion. Additionally, the basis and the

functions are evaluated over a common fine equidistant grid t1, t2, ..., tM , that replaces

the integral with a sum

argmin
c

1
1,c

2
1,...,c

k
l

NX

i

MX

j=1

 
X

i

(t
j

)�
LX

l=0

f

l

(zi)
KX

k=1

c

k

l

b

k

(t
j

)

!2

= argmin
c

1
1,c

2
1,...,c

k
l

Q (2.21)

The solution to this transformed objective functional is sought in a conventional way

by setting the partial derivatives of the basis coe�cients to zero

@Q

@c

1
1

=
@Q

@c

2
1

= ... =
@Q

@c

1
2

=
@Q

@c

2
2

= ... =
@Q

@c

1
l

=
@Q

@c

2
l

= ... =
@Q

@c

1
l

= 0 (2.22)

It is easy to show that the solution to this optimization problem is found in a closed

form with the following system of normal equations
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2

6666666666666666666666666664

X1(t1)

X1(t2)
...

X1(tM)

X2(t1)

X2(t2)
...

X2(tM)
...

X
N

(t1)

X
N

(t2)
...

X
N

(t
M

)

3

7777777777777777777777777775

=

2

6666666666666666666666666664

f0(z1)b(t1), f1(z1)b(t1), · · · , fL(z1)b(t1)

f0(z1)b(t2), f1(z1)b(t2), · · · , fL(z1)b(t2)
...

f0(z1)b(tM), f1(z1)b(tM), · · · , f
L

(z1)b(tM)

f0(z2)b(t1), f1(z2)b(t1), · · · , fL(z2)b(t1)

f0(z2)b(t2), f1(z2)b(t2), · · · , fL(z2)b(t2)
...

f0(z2)b(tM), f1(z2)b(tM), · · · , f
L

(z2)b(tM)
...

f0(zN

)b(t1), f1(zN

)b(t1), · · · , fL(zN

)b(t1)

f0(zN

)b(t2), f1(zN

)b(t2), · · · , fL(zN

)b(t2)
...

f0(zN

)b(t
M

), f1(zN

)b(t
M

), · · · , f
L

(z
N

)b(t
M

)

3

7777777777777777777777777775

2

66664

c0

c1
...

c

L

3

77775
(2.23)

Where b(t
j

) = [b1(tj), b2(tj), ..., bK(tj)], and c

l

=
⇥
c

1
l

, c

2
l

, ..., c

K

l

⇤
.

This approach to fitting a functional regression model can be applied to pre-smoothed

functions or directly to their raw (noisy) observations. In the case of raw data, one

might add an additional smoothing term that penalizes the second derivative of the

functional regression coe�cients. In this case, the objective functional becomes

argmin
a1(t),a2(t),...,aL(t)

NX

i

ˆ
T

 
X

i

(t)�
LX

l=0

f

l

(zi)al(t)

!2

dt+ �

ˆ
T

a

00
l

(t)dt (2.24)

The solution to this optimization problem is also found in a closed form, however

its derivations are beyond the scope of this dissertation. Interested readers should

consider chapter 12 of Ramsay and Silverman [2005] for more details.

When functional data is pre-smoothed (i.e. with basis expansion) and the same

basis is used for data and the coe�cients, then, the coe�cient functions found with the

procedure outlined above coincide with the coe�cient functions estimated by applying

conventional multiple regression on each time step t1, t2, ..., tM . The procedure is as

follows. For one time step (t
j

) the values of functional coe�cients are sought as
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solutions to the following optimization problem

argmin
a1(tj),a2(tj),...,aL(tj)

NX

i

 
X

i

(t
j

)�
LX

l=0

f

l

(zi)al(tj)

!2

(2.25)

the solution to this optimization problem is given in closed form

a(t
j

) = (F T

F )�1
F

T

y

j

(2.26)

where a(t
j

) = [a1(tj), a2(tj), ..., aL(tj)], yj

= [X1(tj),X2(tj), ...,XN

(t
j

)], and

F =

2

66664

f0(z1) f1(z1) · · · f

L

(z1)

f0(z2) f1(z2) · · · f

L

(z2)
...

...
. . .

...

f0(zN

) f1(zN

) · · · f

L

(z
N

)

3

77775

It should be emphasized that this piece-wise parameter inference procedure is

appropriate only in the case of pre-smoothed functional data due to the fact that it

does not explicitly enforce smoothness of functional coe�cient functions.

2.5 Curve Completion

In subsurface engineering, it is quite common for functional data to be sparsely or

partially observed over analyzed time domain. One such example are hydrocarbon

decline curves in unconventional reservoir engineering where the temporal length of

hydrocarbon production profiles varies between wells. The resulting fit of basis expan-

sion on such partially observed functional data becomes unstable and often produces

sub-optimal results (figure 2.6). This is because basis functions get too many degrees

of freedom in time domains where functional data was not observed. Given that

all FDA techniques assume that all realizations of functional data were observed (or

can be adequately smoothed) over the same time domain, some sort of smoothing

with data completion is necessary. In oil and gas engineering this is routinely accom-

plished with parametric models (i.e. decline curves). While widely used, parametric

models are too rigid and often unable to adequately capture all important features
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in functional data. As an alternative, in this dissertation we will use a very robust

non-parametric curve completion approach based on functional principal component

analysis. The method allows us to smooth incomplete curves with the information ex-

tracted from complete functional data10. In petroleum engineering terms this means

that we are learning the parameters of production decline from all available longer

producing wells and use it to smooth and complete production profiles of wells with

shorter production.

Figure 2.6: An example of unstable fit resulting from partially observed functional
data.

Let {X
i

(t), t 2 T}N
i=1 be a set of smooth functions fully observed on time domain

T , let e
k

: {�1(t),�2(t), ...,�k

(t)} be a set of functional principal components, let ⇠k
i

be

associated functional principal component scores, and let {y
j

, ⌧

j

}J
j=1 be a set of raw

observations of curve Y(t) observed over a subset of the time domain T (⌧
j

2 T ⇢ T ).

Here we assume that X
i

(t)’s and Y(t) were generated by the same data generating

process.

10The method originates from the course notes by Giles Hooker (http://faculty.bscb.cornell.
edu/

~

hooker/FDA2008/Lecture10_handout.pdf).

http://faculty.bscb.cornell.edu/~hooker/FDA2008/Lecture10_handout.pdf
http://faculty.bscb.cornell.edu/~hooker/FDA2008/Lecture10_handout.pdf
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Recall the fpc reconstruction formula (eq. (2.11))

X̂
i

(t) = µ(t) +
kX

j=1

⇠

j

i

�

j

(t) (2.27)

and consider its ”vectorized” form produced by evaluating X
i

(t), µ(t) and �

k

(t)’s over

a common regular grid t1, t2, ..., tM that spans the entire time domain T .

2

66664

X
i

(t1)

X
i

(t2)
...

X
i

(t
M

)

3

77775
=

2

66664

µ(t1)

µ(t2)
...

µ(t
M

)

3

77775
+

2

66664

�1(t1) �2(t1) · · · �

k

(t1)

�1(t2) �2(t2) · · · �

k

(t2)
...

...
. . .
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�1(tM) �2(tM) · · · �
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(t
M

)

3

77775
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1
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2
i

...

⇠

k

i

3

77775
(2.28)

This equation suggests that when the mean and the fpc’s are known, functional

principal component scores can be computed with the following relation

2
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1

CCCCA
(2.29)

This relation can be used to compute functional principal component scores of func-

tion Y(t) from its raw observations (y
j

, ⌧

j

) by evaluating �

k

(t)’s and µ(t) at times

where the raw data was observed:

2
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y
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1

CCCCA
(2.30)

Once the fpc scores are computed, Y(t) can be expressed in terms of µ(t) and

�

k

(t) with equation (2.28), and as such it is fully defined on the entire time domain

T .

The previously outlined curve completion procedure is very robust and applica-

ble to most types of functional data. However, in our experience, it requires a pretty
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large sample of complete data (> 50) before it starts producing accurate results. This

mainly has to do with the estimation of the mean function (µ(t)) and the functional

principal components (⇠
i

(t)). The discussion that follows is concerned with the ques-

tion of how to use all available raw functional data (complete and incomplete) to

better estimate the mean function and the functional principal components.

The estimation of µ(t). Starting from raw observations of N realizations of

functional data (y
ij

, t

ij

) one can estimate the mean function by computing the esti-

mates of the mean at every available time step, with all raw observations available at

that time step

µ(t
j

) =
1

|N(t
j

)|
X

i2N(tj)

y

ij

(2.31)

Where N(t
j

) is a set of curves for which raw observations are available at time step t

j

.

After computing the raw estimates of the mean, at all available time steps, one can

simply employ basis expansion (curve smoothing) to arrive to its continuous smooth

functional estimate, µ(t).

The estimation of the FPCS. To estimate functional principal components it

is su�cient to estimate the corresponding covariance matrix from all available data.

This can be achieved by estimating the elements of the covariance matrix, one by

one, with the following equation

[⌃]
l,k

=
1

|N(t
lk

)|
X

i2N(tlk)

(y
il

� µ(t
l

))(y
ik

� µ(t
k

)) (2.32)

where [⌃]
l,k

is the l, k-th element of the covariance matrix ⌃, N(t
lk

) is a set of

curves for which raw observations are available at time steps t
l

and t

k

.

Once the covariance matrix is estimated one can compute the fpcs with the equa-

tion (2.7). Note that the fpcs estimated in this way might not be smooth. In such

situations, one has to employ curve smoothing (basis expansion) on the estimates of

the fpcs.

Once the mean and the functional principal components are estimated from all

available data one can proceed to smooth all functions in the ensemble with the curve

completion procedure we outlined previously. That is, expand the mean and the fpcs

onto raw functional data with equation (2.30).



Chapter 3

Forecasting of Spatially Correlated

Functional Data1

Spatially correlated functional data is recorded in various fields of science. The most

rudimentary example of spatially correlated functional data are daily temperature

measurements curves presented in chapter 2. In petroleum engineering, an example

of spatially correlated curves are unconventional reservoir production curves. In this

chapter, we will review modern techniques for interpolation and interpretation of spa-

tially correlated functional data. In particular, we will review universal trace kriging

(Menafoglio et al. [2013]), a recently introduced method for direct interpolation of

functional data. We will also review a method by Nerini et al. [2010] for interpolation

of stationary functional data and propose and extension for non-stationary case. The

reviewed methods are demonstrated and compared on a real unconventional Barnett

shale case study with 832 horizontal wells.

3.1 Universal Trace Kriging (UTrK)

Menafoglio et al. [2013] developed UTrK methodology concurrently with Caballero

et al. [2013]. The method relies on the definitions of trace variance and trace covari-

ance that we present next.

1Research presented in this chapter was conducted in collaboration with Alessandra Menafoglio
and it was recently published in Menafoglio et al. [2016b]

32
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3.1.1 Trace Variance

Trace variance was defined by Menafoglio et al. [2013] as follows2:

Var
t

(X ) = E
⇥
kX � µk2

⇤
= E

⇥
kXk2

⇤
� kE [X ] k2

= E
ˆ

T

(X (t)� µ(t))2dt

� (3.1)

This equation is an infinite dimensional analogue of the total variance, a measure of

overall dispersion commonly used in multivariate statistics. Consider a vector X of

length n and its variance covariance matrix ⌃ of size n⇥n. In multivariate statistics,

the total variance is defined as the trace of the variance covariance matrix ⌃

trace(⌃) = E[(x1 � µ1)
2] + E[(x2 � µ2)

2] + ...+ E[(x
n

� µ

n

)2] (3.2)

This functional is equal to the expected value of the inner product of X � µ with

itself.

E [hX � µ,X � µi] =
NX

i=1

E
⇥
(x

i

� µ

i

)2
⇤

(3.3)

3.1.2 Trace Covariance

In a similar manner one can define trace covariance between two random functions

Cov
t

(X ,Y) = E [hX � µX ,Y � µYi]

= E
ˆ

T

(X (t)� µX (t)) (Y(t)� µY(t)) dt

� (3.4)

This functional is also an infinite-dimensional analogue of the total covariance be-

tween two vectors of the same length.

With the definitions of trace variance and trace covariance for functional data

Menafoglio et al. [2013] developed universal trace kriging that we review next. The de-

velopments presented below closely follow the developments presented in Menafoglio

et al. [2013].

2The proof of the first line in equation (3.1) can be found in Hsing and Eubank [2015] page 179.
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Starting from a set of functions {X
i

(t), t 2 T}N
i=1, that take value in L

2(T ) space,

observed over a set of spatial locations s
i

2 D ⇢ R

2, Menafoglio et al. [2013] seek to

predict an unobserved function X0(t) at some location s0 as a linear combination of

all observed functions

X0(t) =
NX

i=1

�

i

X
i

(t) (3.5)

The data generating process is assumed non-stationary in D and further decom-

posed into deterministic drift and second order stationary and spatially correlated

functional residual

X
i

(t) = m

i

(t) + r

i

(t) (3.6)

The drift term is modeled with the functional regression (chapter 2)

m

i

(t) =
LX

l=0

f

l

(s
i

)a
l

(t) (3.7)

Trace covariances between the residuals are assumed to depend on distance in D,

for example: Cov
t

(r
i

(t), r
j

(t)) = C(s
i

, s

j

).

The weights �1,�2, ...,�N

are found by minimizing the mean squared error under

unbiasedness constraint

argmin
�1,�2,...,�N

✓
E
h
kX̂0(t)� X0(t)k2

i
= Var

t

h
X̂0(t)� X0(t)

i
�
���E
h
X̂0(t)� X0(t)

i���
2
◆

(3.8)

The unbiasedness constraints are developed from the second term on the right of



CHAPTER 3. SPATIAL INTERPOLATION OF FUNCTIONAL DATA 35

equation (3.8) as follows:

E
h
X̂0(t)� X0(t)

i
= E

"
NX

i=1

�

i

X
i

(t)

#
+ E [X0(t)]

=
NX

i=1

�

i

E [X
i

(t)]� E [X0(t)]

=
NX

i=1

�

i

LX

l=0

f

l

(s
i

)a
l

(t)�
LX

l=0

f

l

(s0)al(t)

=
LX

l=0

a

l

(t)

 
NX

i=1

�

i

f

l

(s
i

)� f

l

(s0)

!

Obviously, this quantity will be equal to zero if and only if

NX

i=1

�

i

f

l

(s
i

) = f

l

(s0) (3.9)

Therefore, to find the optimal weights for the best linear unbiased prediction one

needs to solve the following constrained optimization problem:

argmin
�1,�2,...,�N

Var
t

⇣
X̂0(t)� X0(t)

⌘
s.t.

NX

i=1

�

i

f

l

(s
i

) = f

l

(s0) (3.10)

Analogously to universal kriging of scalars, the constrained optimization problem

(3.10) is solved by introducing L+1 Lagrange multipliers (⌘0, ⌘1, ..., ⌘L) that leads to

the following objective functional

� = Var
t

⇣
X̂0(t)� X0(t)

⌘
+ 2

LX

l=0

⌘

l

 
NX

i=1

�

i

f

l

(s
i

)� f

l

(s0)

!
(3.11)
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Which is further transformed into a more convenient form as follows

� = Var
t

 
NX

i=1

�

i

X
i

(t)

!
+Var

t

(X0(t))� 2Cov
t

 
NX

i=1

�

i

X
i

(t),X0(t)

!
+

2
LX

l=0

⌘

l

 
NX

i=1

�

i

f

l

(s
i

)� f

l

(s0)

!

=
NX

i=1

NX

j=1

�

i

�

j

Cov
t

(X
i

(t),X
j

(t)) + Var
t

(X0(t))� 2
NX

i=1

�

i

Cov
t

(X
i

(t),X0(t))+

2
LX

l=0

⌘

l

 
NX

i=1

�

i

f

l

(s
i

)� f

l

(s0)

!

=
NX

i=1

NX

j=1

�

i

�

j

C(s
i

, s

j

) + Var
t

(X0(t))� 2
NX

i=1

�

i

C (s
i

, s0)+

2
LX

l=0

⌘

l

 
NX

i=1

�

i

f

l

(s
i

)� f

l

(s0)

!

(3.12)

To find the weights �
i

that minimize (3.12), its partial derivatives with respect to

�

i

are set to zero:

@�

@�

i

= 2
NX

j=1

�

j

C(s
i

, s

j

)� 2Var
t

(X (t))) + 2
LX

l=0

⌘

l

f

l

(s
i

) = 0 i = 1, 2, ..., N

@�

@⌘

l

= 2

"
NX

i=1

�

i

f

l

(s
i

)� f

l

(s0)

#
= 0 l = 0, 1, ..., L

(3.13)

Which, after rearranging, leads to the following system of linear equations

NX

j=1

�

j

C(s
i

, s

j

) +
LX

l=0

⌘

l

f

l

(s
i

) = C(s
i

, s0) i = 1, 2, ..., N

NX

i=1

�

i

f

l

(s
i

) = f0(s0) l = 0, 1, ..., L

(3.14)
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Note that this system of equations is analogous to the system of universal kriging

equations presented in Chiles and Delfiner [1999].

The trace kriging variance is given by

�

2
UTrK

(s0) = C(0)�
NX

i=1

�

i

C(s
i

, s0)�
LX

l=0

⌘

l

f

l

(s0) (3.15)

System (3.14) can be expressed in matrix form as follows:

2

6666666666666664

C(s1, s1) C(s1, s2) · · · C(s1, sN ) f0(s1) f1(s1) · · · fL(s1)

C(s2, s1) C(s2, s2) · · · C(s2, sN ) f0(s2) f1(s2) · · · fL(s2)
...

...
. . .

...
...

...
. . .

...

C(sN , s1) C(sN , s2) · · · C(sN , sN ) f0(sN ) f1(sN ) · · · fL(sN )

f0(s1) f0(s2) · · · f0(sN ) 0 0 · · · 0

f1(s1) f1(s2) · · · f1(sN ) 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...

fL(s1) fL(s2) · · · fL(sN ) 0 0 · · · 0

3

7777777777777775

2

6666666666666664

�1

�2

...

�N

⌘0
⌘1
...

⌘L

3

7777777777777775

=

2

6666666666666664

C(s1, s0)

C(s2, s0)
...

C(sN , s0)

f0(s0)

f1(s0)
...

fL(s0)

3

7777777777777775

(3.16)

The same developments apply in the case of constant functional mean that ulti-

mately leads to the ordinary trace kriging system of equations introduced by Giraldo

[2009]3.

3.1.3 Parameter Estimation

In universal trace kriging, parameter inference is accomplished with the method of

moments. Currently, this is the only applicable parameter inference approach since

the concept of density for functional data is not well defined (Delaigle and Hall [2010]).

Depending on the modeler’s preference, one can choose to work with trace covariances

or trace variograms, both were defined by Menafoglio et al. [2014], Giraldo [2009] as

follows

Trace covariogram estimator:

g

TR

(h) =
1

|N(h)|
X

(ij)2N(h)

ˆ
T

r

i

(t)r
j

(t)dt (3.17)

3OTrK is a special case of universal trace kriging obtained for L = 0 and f0(sj) = 1, 8j.
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Trace variogram estimator:

�

TR

(h) =
1

2|N(h)|
X

(ij)2N(h)

ˆ
T

(r
i

(t)� r

j

(t))2 dt (3.18)

where N(h) denotes the set of pairs (i, j) such that h��h  ks
i

�s

j

k  h+�h.

The properties of the trace variogram are the same as the properties of conven-

tional variogram. It is a negative definite function of spatial distance.

The relationship between trace variogram and trace covariogram is analogous to

the relationship between scalar variogram and scalar covariogram:

�

TR

(h) = g

TR

(0)� g

TR

(h) (3.19)

Universal trace kriging modeling work-flow per Menafoglio et al. [2013] is as fol-

lows:

1. Use piece-wise OLS regression to infer a functional regression model and com-

pute functional residuals

2. Compute the empirical trace variogram on the functional residuals for a pre-

defined set of lags with equation (3.18)

3. Fit one of admissible variogram models (Gau, Sph, Matern, etc.) and compute

the covariance matrix

4. Fit a piece-wise GLS regression on the raw functional data with the covariance

matrix from the previous step and compute functional residuals.

5. Iterate steps 2-4 a few times.

6. Use the final fitted variogram model to forecast new functions at their respective

locations.
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3.2 Projection Based Approaches for Spatial In-

terpolation of Functions

An alternative approach to spatial interpolation of functions relies on the expansion

(or projection) of functional data onto some sort of basis (i.e. B-splines) and then

proceeds to spatially interpolate the coe�cients of basis expansion. One of the first

approaches of this kind was proposed by Nerini et al. [2010] who used B-spline basis to

expand functional data and then employed ordinary co-kriging to spatially interpolate

the coe�cients of basis expansion. In this section, we will review the method by Nerini

et al. [2010] and proceed to develop an extension for non-stationary functional data.

3.2.1 Ordinary co-Kriging of Basis Coe�cients of Spatially

Correlated Functional Data

Let {X
i

(t), t 2 T}N
i=1 be a set of functions observed over a set of spatial locations

s

i

2 D ⇢ R

2, let c

i

= {c
i1, ci2, ..., ciK} be a vector of basis expansion coe�cients

of i-th function, and let’s assume that functions have a constant mean µ(t) in D

whose basis expansion coe�cients are c
µ1, cµ2, ..., cµK . Nerini et al. [2010] proposed to

forecast an unobserved function X0(t) at location s0 by forecasting its basis expansion

coe�cients {c⇤01, c⇤02, ..., c⇤0k} with the best linear unbiased combination of the basis

coe�cients of all already observed curves

c

⇤
0j =

NX

i=1

�

ij

c

ij

+
NX

i=1

KX

k 6=j

�

ik

c

ik

(3.20)

While assuming that covariances between the coe�cients are a function of spatial

distance Cov(c
il

, c

jp

) = C

lp

(ks
i

� s

j

k).
The weights in (3.20) are found by solving the following constrained optimization

problem

argmin
�

E
h�
c

⇤
0j � c0j

�2i
s.t. E

⇥
c

⇤
0j � c0j

⇤
= 0 (3.21)

The unbiasedness constraints are developed from the second term in (3.21) as
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follows:

E
⇥
c

⇤
0j � c0j

⇤
= E

"
NX

i=1

�

ij

c

ij

+
NX

i=1

KX

k 6=j

�

ik

c

ik

#
� E [c0j]

=
NX

i=1

�

ij

E [c
ij

] +
NX

i=1

KX

k 6=j

�

ik

E [c
ik

]� c

µj

= c

µj

NX

i=1

�

ij

+
NX

i=1

KX

k 6=j

�

ik

c

µk

� c

µj

= c

µj

 
NX

i=1

�

ij

� 1

!
+

KX

k 6=j

c

µk

NX

i=1

�

ik

(3.22)

Obviously, this functional will be equal to zero if and only if

NX

i=1

�

ij

= 1 and

NX

i=1

�

ik

= 0 8k 6= j (3.23)

Under these unbiasedness constraints, minimizing (3.21) amounts to minimizing

the variance of the prediction

argmin
�

Var
⇥
c

⇤
0j � c0j

⇤
s.t.

NX

i=1

�

ij

= 1 and

NX

i=1

�

ik

= 0 8k 6= j (3.24)

This constrained optimization problem is solved by first developing the first term in
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(3.24) and introducing K Lagrange multipliers ⌘1, ⌘2, ..., ⌘K

�(�) = C

kk

(0) +
KX

k=1

NX

i=1

KX

k

0=1

NX

i

0=1

�

ik

�

i

0
k

0
C

k

0
k

(ks
i

� s

i

0k)�

2
KX

k=1

NX

i=1

�

ik

C

kk

(ks
i

� s0k)+

2⌘
j

 
NX

i=1

�

kj

� 1

!
+

2
KX

k=1
k 6=j

⌘

k

 
NX

i=1

�

ik

!

(3.25)

The solution is found by setting the partial derivatives of (3.25) with respect to

the weights to zero. This ultimately leads to the following system of linear equations

KX

k=1

NX

i=1

�

ik

C

k

0
k

(ks
i

� s

i

0k) + ⌘

k

0 = C

k

0
k

(ks
i

� s

i

0k),

(k0 = 1, ..., K; i0 = 1, ..., N ; );
NX

i=1

�

i1 = 1;

NX

i=1

�

ik

= 0, 8k 6= 1.

(3.26)

This system can be expressed in matrix form as follows:

2

666666666666664

C11 C12 · · · C1K 1 0 · · · 0

C21 C22 · · · C2K 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...

C

K1 C

K2 · · · C

KK

0 0 · · · 1

1T 0T · · · 0T 0 0 · · · 0

0T 1T · · · 0T 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...

0T 0T · · · 1T 0 0 · · · 0

3

777777777777775

2

666666666666664

�1

�2
...

�K

⌘1

⌘2
...

⌘

K

3

777777777777775

=

2

666666666666664

c10

c20
...

c

K0

1

0
...

0

3

777777777777775

(3.27)
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Where: C
pl

is a matrix whose (i,m)-th element equals Cov(c
ip

, c

ml

) = C

pl

(ks
i

�s

m

k),
1 and 0 are a vectors of ones and zeros of length N respectively, �

k

is a vector of

weights associated with k-th basis coe�cients, and c

k0 is a vector whose p-th element

is Cov(c0j, cpk) = C

jk

(ks0 � s

p

k).

In order to forecast one function, one needs to solve K such systems of equations

and then simply construct X ⇤
0 (t) from the forecasted coe�cients and the common ba-

sis system (X ⇤
0 (t) =

P
K

j=1 c
⇤
0j�j

(t)). The dimensionality of the system (3.27) depends

on the number of basis functions used in data smoothing and the number of ob-

served functions. This dimensionality can be significantly reduced by projecting the

functional data onto a low dimensional truncated basis of functional principal compo-

nents4 and then forecasting the principal component scores instead of forecasting the

coe�cients of basis expansion. Another advantage of using functional principal com-

ponents is that in many cases there is a complete absence of spatial cross-correlation

(nugget) between functional principal component scores. In such situations, the en-

tire problem of forecasting unobserved functions boils down to ordinary kriging of

principal component scores (autokrigeability problem in Wackernagel [2010]). It is a

good modeling practice to always investigate for spatial cross correlations between the

fpc scores since it is not a general rule that they are equal to zero (see Wackernagel

[2010] for a detailed discussion).

3.2.2 Universal co-Kriging of Basis Coe�cients of Spatially

Correlated Functional Data5

Let {X
i

(t), t 2 T}N
i=1 be a set of functional data (i.e. oil production curves) observed

over a set of spatial locations s

i

, s 2 D ⇢ R

2, let b

k

: {�1(t),�2(t), ...,�K

(t)} be a

basis system consisting of K basis functions and let c
i

= {c
i1, ci2, ..., cik} be a vector

of basis coe�cients of i-th function. Here, we assume that the data generating process

is non-stationary on D and that it can be decomposed into deterministic drift and

4i.e. by using the FVE criterion to select the number of leading fpcs.
5The developments presented in this section were published in a slightly di↵erent form in

Menafoglio et al. [2016b].
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second order stationary spatially correlated residual.

X
i

(t) = m

i

(t) + r

i

(t) (3.28)

Where the drift term was previously modeled (UTrK) with functional regression
P

L

l=0 fl(si)al(t). The function, the residual and the functional drift coe�cients can

all be expressed in terms of a common basis system

KX

k=1

c

ik

�

k

(t) =
LX

l=0

f

l

(s
i

)
KX

k=1

b

k

l

�

k

(t) +
KX

k=1

c

r

ik

�

k

(t) (3.29)

Where c

ik

is the k-th basis coe�cient of the i-th function, f
l

(.) is a transformation

function operating on the vector of spatial location, bk
l

is the k-th basis coe�cient

of the l-th functional coe�cient (a
l

(t)), and c

r

ik

is the k-th basis coe�cient of the

residual of i-th function. The first term on the right side of equation (3.29) can be

rearranged as follows

KX

k=1

c

ik

�

k

(t) =
KX

k=1

�

k

(t)
LX

l=0

f

l

(s
i

)bk
l

+
KX

k=1

c

r

ik

�

k

(t) (3.30)

We can further drop the basis functions from the equation to arrive to the following

expression: 2
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This expression implies that non-stationarity in functional data translates into

non-stationarity in basis coe�cients. This further implies that interpolation of non-

stationary functions can be achieved by means of interpolation of non-stationary basis

coe�cients with universal co-kriging (Chiles and Delfiner [1999]). The developments

presented below follow the developments presented in Chiles and Delfiner [1999] pg.

305, for universal co-kriging with algebraically independent drifts.
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The objective is to predict function X0(t) at location s0 by predicting the coe�-

cients of its basis expansion with a linear combination of basis expansion coe�cients

of all already observed functions
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As before the weights are sought by minimizing the mean squared error in predictions

under unbiasedness constraints
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The unbiasedness constraints are developed from the second term in (3.33) as follows:
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Equation (3.34) will be equal to zero if and only if
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The updated constrained optimization problem is as follows
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This optimization problem is solved in the same manner as before by developing

the variance term and introducing K ⇥ (L+ 1) Lagrange multipliers
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After setting the partial derivatives with respect to weights to zero, and rearranging,

we arrive to the following system of equations
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That can be expressed in matrix form as follows:
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3.2.3 Parameter Estimation

In both stationary and non-stationary cases outlined before, one needs to perform co-

variance estimation and smoothing by fitting one of the admissable covariance struc-

tures (Sph, Mat, Gau,...). Here we review the auto and the cross-covariograms and

variograms that are well known in geostatistics.

Covariogram estimator The very well known covariogram estimator was for-

mulated by Matheron as follows:
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where N(h) denotes the set of pairs (i, j) such that h��h  ks
i

�s

j

k  h+�h,

c

il

, c

ip

are l-th and p-th coe�cients of the i-th function, while µ

l

and µ

p

are their

respective means.

Variogram estimation. A much more widely used approach for parameter in-

ference is by means of auto and cross variography. Variogram estimator is formulated
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as follows
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For l = p this variogram estimator is called auto-variogram estimator, while in the

case of l 6= p it is called pseudo - cross variogram estimator (Clark et al. [1987]) for

distinction from the conventional cross-variogram estimator formulated by Matheron,

and given with the following equation
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The pseudo cross-variogram is always a positive function of spatial distance while

the conventional cross-variogram can be both positive and negative. The motivation

behind the pseudo-cross variogram definition is that it can be computed on both

isotopic and heterotopic data samples while the cross-variogram can be computed only

on isotopic data samples (Wackernagel [2010]). In the case of co-kriging of functional

basis coe�cients (or fpc scores), both cross-variogram estimators are applicable since

the data is isotopic by default. This is due to the fact that all basis expansion

coe�cients are always observed at all locations.

Modeling procedure consists of selecting one of admissable variogram models (Sph,

Gau, Exp,...) that are then fitted with the linear model of coregionalization (LMC,

Goovaerts [1997]) to the auto and cross variogram estimates computed with equation

3.41 (and/or eq (3.42)) for a pre-selected number of spatial lags.

3.3 Simulation of Functional Data

Simulation of functional data can be achieved by means of sequential Gaussian co-

simulation (CO-SGSIM, Verly [1992]) of the functional principal component scores

or basis coe�cients (Menafoglio et al. [2016a]). Co-simulation maps can be useful

for reservoir data interpretation along with the interpretation of functional principal

components (or rotated fpcs). For example, high values in fpc scores might indi-

cate higher well productivity or indirectly inform about a secondary variable that is

highly correlated with the fpc scores (i.e. total organic content) and the features in

functional data described by the scores. Another advantage of co-simulation is that
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it produces a large number of functional forecasts at each location that can be used

to construct prediction bands. This feature of CO-SGSIM is highly useful in hydro-

carbon production forecasting where uncertainty quantification is one of the main

modeling objectives.

3.4 Barnett Shale Case Study

In this section, we apply and compare the previously outlined functional interpolation

methods on a real unconventional reservoir dataset. The unconventional reservoir in

question is the Barnett shale in Eastern Texas, one of the longest producing shale

plays in the world. The dataset was obtained from drilling-info website and it con-

tains information on wells horizontal length and monthly gas production rates dating

back to year 2007. In this case study, we analyze gas production from horizontal

hydraulically fractured wells that have been in production for more than 5 years. As

a part of pre-processing, we discarded production data that preceded the ”peak” gas

rate of each well, since during the early ”pre-peak” periods of production wells mostly

produce flow back water from hydraulic fracturing operations. The final dataset con-

tained 922 wells that had horizontal length of about 2000 ft. Due to the absence of

hydraulic fracturing information, and given similar horizontal length, in our analysis

we assumed that all wells were completed in a similar way with a similar number of

hydraulic fractures. Well locations and the location of the studied area are shown in

figure (3.1).
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Figure 3.1: The studied area and well locations

The first step of functional data analysis is to convert discrete observations of gas

production into smooth declining curves. Here we selected a basis system that placed

more basis functions at earlier times in order to better ”capture” the variations in early

production. Basis expansion was performed directly on observed monthly production

rates, and it considered only the first 60 post-peak months of production.

Basis expansion is an iterative process. We varied the number of basis functions and

the smoothing penalty until visually acceptable smoothly declining fits were produced.

Certain wells had erratic behavior where production was not uniformly declining.

This erratic behavior was not a consequence of geology or physical processes that

take place in the reservoir, but rather a consequence of a change in wells operating

conditions6. Since no information about the changes in operating conditions was

available, basis expansion on such data was very di�cult. No amount of smoothing

was able to force the fits of such wells to be uniformly declining7. In this work, we

decided to treat these wells as outliers and we removed them from the study. The

final ”clean” dataset contained 863 wells. Plots of the basis system and the basis

expanded (smooth) functional data are shown in figure 3.2.

6For example, a change in wells choke size can increase or decrease wells production.
7Alternatively one could consider special smoothing techniques such as monotonically declining

fits. These are not analyzed in this dissertation since they are too specialized and as such too di�cult
to use. Interested readers can consult the documentation of the fda R package (Ramsay et al. [2009]
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Figure 3.2: Left - Selected basis system. Right - Basis expanded (smooth)
ensemble of curves.

Smoothed data was first analyzed with universal trace kriging and trace variog-

raphy. The trace variogram is given in figure 3.3. The model fitted to the empirical

variogram is Matern with a range of about 8.6 km. We used this variogram to pro-

duce maps of production decline shown in figure 3.4. From these maps we can clearly

see that the most prolific area of the reservoir is located in the N-E section with

an overall SW-NE trend in reservoir quality. The nugget in figure 3.3 is most likely

a consequence of variation in the size of fracturing jobs across the wells (a missing

piece of information). The next step in our data analysis was functional principal

component analysis (FPCA). FPCA analysis on the entire dataset is given at the

top of figure 3.5. We are plotting the first two fpcs since they captured more than

95% of variance in the data. The interpretation of the fpcs is somewhat di�cult. We

observe that the first fpc describes variation in the overall magnitude of gas produc-

tion while the second fpc mostly describes variations in later times of production. To

improve interpretability of the fpcs, we employed the varimax rotation (see chapter

2). The varimax rotation enabled us to obtain rotated functional principal compo-

nents that have a higher degree of interpretability (figure 3.5 bottom). From figure

3.5, we observe that the first rotated fpc almost exclusively describes the variation

in early gas production, while the second rotated fpc describes production variation

in later times. It is well known that in early times unconventional hydrocarbon wells

drain existing and artificial fracture networks, while in later times (in the case of gas)
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Figure 3.3: Scaled omni directional trace variogram with a Matern model with a
range of 0.12 (8.6km in original scale)

production is dominated by the amount of sorbed gas in the rock (or reserves). In our

case study, we assumed that all wells were completed in the same or similar manner

given that they have similar well lengths. In light of this assumption, a high score

on the first rotated functional principal component could potentially indicate a high

degree of natural fracturing around the well or a high degree of artificial fracturing

around the well caused by high brittleness of the rock. In either case, the score on

the first rotated fpc describes geological property and as such it is expected to be

spatially correlated. The scores of the second rotated fpc are also expected to be

highly spatially correlated since they most likely describe the amount of sorbed gas.

Both of these hypotheses can be verified by computing the variograms of rotated

functional principal component scores. The variograms given in figure 3.6, clearly

show the presence of spatial auto and cross correlation in rotated fpc scores. What

is interesting to notice is that the cross variogram is always positive8. If the assump-

tion of uniform completion holds, in light of the previous interpretation, this would

potentially suggest that the brittleness of the rock depends on the amount of sorbed

gas (or total organic content). We computed the maps of the first and second rotated

fpc that are shown in figure 3.7. These maps are consistent with the universal trace

kriging analysis, the North-East portion of the reservoir has high initial production

8Cross variogram was computed with conventional formula and as such it can be both positive
and negative
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Figure 3.4: A few maps of gas rate over time produced with universal trace
kriging. All maps are in MMSCF

and high late time production suggesting higher recoverable reserves.

Next we will evaluate the forecasting capabilities of the outlined forecasting meth-

ods. We randomly split the dataset into 159 training wells and 704 test wells. We fit-

ted two models on the training data, one universal trace kriging model (UTrK) and one

universal co-kriging model on the scores of the varimax rotated fpcs (UCoK.vrmx).

The rotated fpcs were re-computed on the sub-setted training data. The fitted vari-

ograms had the same range as the variograms used in the previously outlined analysis

on the entire dataset, however with di↵erent sills due to lower training set size and

associated noise.

A few randomly selected forecasts are given in figure 3.8. Visually there is not

much di↵erence between the forecasts computed with trace kriging and the forecasts

computed with universal co-kriging on rotated fpc scores. To better assess the quality

of the forecasts we computed the sum of squared errors (SSE) normalized with the

overall trace variance of the data (equation (3.43)). A summary of normalized SSE’s

is given in table 3.1.
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(t)� X
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P
N
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i

(t)� µ(t)k
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From table 3.1, we can see that the trace-based approach slightly outperformed

universal co-kriging of rotated fpcs approach. This is because we were not using all

functional principal components but rather the two that captured the most of the
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Figure 3.5: Top - Functional principal components as perturbation about the mean.
Bottom - rotated functional principal components as perturbation about the mean

Table 3.1: SSE table

UTrK UCoK.vrmx

min 0.0012 0.003
mean 0.697 0.993
median 0.352 0.499
max 7.408 10.271

variance in the data. Therefore, truncation leads to some degree of information loss.

To compute prediction bands around our forecasts we employed sequential Gaussian

co-simulation on the residuals of the rotated functional principal component scores

computed on the training data. A few realizations of co-SGS simulations with added
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Figure 3.6: Empirical variograms computed on the rotated fpc scores along with
the fits produced with the linear model of coregionalization. The fit is Matern with a

range of 0.1 ( 7.2km in original scale)

spatial trend are shown in figure 3.9 while the forecasts produced with co-SGS simu-

lations are shown in figure 3.10. We observe that co-SGS forecasts fully enclose the

true production data.

3.4.1 Monte Carlo Study

In this section we present a more thorough analysis of the predictive capabilities of the

presented forecasting methods. We selected 5 training set sizes, and for each training

set size we sampled the dataset 100 times, fitted the two forecasting models and used

them to predict the left out wells (test set). On each iteration, we computed the SSE

errors between the forecasted and the actual functional data and summarized each

test set with the mean and the median of the SSE error. A plot of the mean and the

median of each forecasting method for each training set size is given in figure 3.11

while the supporting data is given in table 3.2.

From the results of the Monte Carlo study, we observe that the two methods

produce very similar results. However, it is evident that universal trace kriging slightly

outperforms the universal co-kriging of fpc scores. As before, this small discrepancy

is the result of working with truncated functional principal components instead with

all fpc’s. It should be noted that universal trace kriging also requires a much smaller

modeling e↵ort compared to the universal kriging of fpc scores. We also noticed that

the LMC parameter inference becomes increasingly di�cult with the increase in the
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Figure 3.7: Maps of the first and the second rotated functional principal
component

number of kept fpc’s.
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Figure 3.8: A few forecasts. Black dots - real data, Red line - smoothed real data,
Blue line - universal trace kriging forecast, green line - UcoK forecast produced with

universal co-kriging on rotated fpc scores
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Figure 3.9: A few realizations of fpc co-simulation on rotated fpc scores
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Figure 3.10: A few randomly selected forecasts produced with co-simulation of
rotated fpcs. Red dots represent real production data, blue lines are the forecasts

produced with co-simulation of rotated fpc scores.
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Figure 3.11: The results of the Monte Carlo Analysis. UTrK = Universal Trace
Kriging, UCoK = Cokriging of fpc scores.  = percentage of the entire dataset used

for training. The plot is adapted from Menafoglio et al. [2016b].

Table 3.2: The results of the Monte Carlo study

Training size Median Mean Std

Mean RSSE(UCok)
 = 25 0.153 0.153 0.019
 = 50 0.136 0.137 0.012
 = 75 0.132 0.133 0.014

Median SSE(UCok)
 = 25 0.066 0.066 0.006
 = 50 0.060 0.060 0.005
 = 75 0.056 0.057 0.007

Mean SSE(UTrK)
 = 25 0.150 0.151 0.017
 = 50 0.134 0.136 0.011
 = 75 0.129 0.130 0.014

Median SSE(UTrK)
 = 25 0.065 0.065 0.005
 = 50 0.059 0.059 0.005
 = 75 0.056 0.057 0.006
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3.5 Chapter Conclusion

In this chapter, we reviewed the principles of geostatistics for functional data. Two

methods, universal trace kriging (UTrK) by Menafoglio et al. [2013] and ordinary

co-kriging of basis coe�cients by Nerini et al. [2010], were reviewed. We demon-

strated that the latter method can be easily extended with universal co-kriging to

accommodate for non-stationary functional data and serve as an alternative to UTrK

methodology. The new extension and the UTrK methodologies were compared and

evaluated on a real reservoir case study of the Barnett shale, an unconventional gas

reservoir. While intrinsically di↵erent the two methods were found to have a similar

performance over many test sets analyzed in our Monte Carlo study. UTrK was found

to require a slightly lower modeling e↵ort than the method based on universal co-

kriging of basis coe�cients (or fpc scores). However, in combination with the varimax

rotated functional principal components and sequential Gaussian co-simulation the

universal co-kriging of fpc scores was found to have a much greater interpretative and

practical forecasting power.



Chapter 4

Forecasting of Spatially Correlated

Functional Data in Presence of

Non-Spatial Covariates

4.1 Introduction

In many fields of Earth sciences, it is quite common to observe spatially correlated

functional data along with a certain number of explanatory variables or covariates.

One example of such data are unconventional reservoir hydrocarbon production curves

whose shape and magnitude depends on the location of the well within the reservoir

(geology) and hydraulic fracturing parameters that are a consequence of human activ-

ity at that particular well. From a statistical perspective, the analysis and forecasting

of such data is di�cult since one needs to jointly model and analyze the influence of the

location as well as the influence of explanatory variables1. The previously presented

methods for interpolation of functions are still applicable (with slight modifications)

to this problem. In this chapter, we will present detailed theoretical derivations of the

modifications of the two methods and demonstrate and compare them on a real un-

conventional reservoir dataset provided by Anadarko Petroleum Corporation (APC).

The dataset consists of 188 horizontal, hydraulically fractured horizontal wells that

1The Barnett shale case study we presented in the previous chapter was a special case where
all wells had similar hydraulic fracturing parameters hence we modeled their dependence on spatial
location.

61
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produce oil, gas and flowback water (more on that later). Additionally, we will also

present practical solutions to problems that arise when working with such real dataset.

4.2 Methodology

Here, we will consider a set of smooth functions {X
i

(t), t 2 T}N
i=1 (i.e. oil production

curves) observed over a set of spatial locations s
i

2 R

2 along with a certain number

of explanatory variables or covariates z
i

2 R

n (i.e. hydraulic fracturing parameters).

We will jointly refer to all spatial and non-spatial variables as x
i

= {s
i

, z

i

}. Further
in our developments, we assume that all functions in the set are realizations of a non-

stationary random process that can be decomposed into a deterministic functional

drift and globally second order stationary residual

X
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(t) + r

i

(t) (4.1)

we also assume that the drift is a function of all parameters and that it can be

modeled with a functional linear regression model m
i

(t) = f(x
i

) =
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l
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)a
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Furthermore, we assume that the residuals are spatially correlated and that their

covariances are a function of spatial distance cov(r
i

(t), r
j

(t)) = C(ks
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� s
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k).
Here, we refer to the overall mean (or the average) of the ensemble of curves as

µ(t), ortho-normal set of empirical fpc’s as e
k

: {�1(t),�2(t), ...,�k

(t)} and functional

principal component scores as ⇠k
i

= hX
i

(t)� µ(t),�
k

(t)i.

4.2.1 Universal Trace Kriging-based Forecasting

As in the previous chapter, we are seeking predictions of an unobserved function

(production from an undrilled well) at some location s0 with a user specified set

of covariates z0 as the best linear unbiased combination of all observed functions

(production from existing wells)

X ⇤
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NX

i=1

�

i

X
i

(t) (4.2)
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As in chapter 3, we seek �1,�2, ...,�N

that minimize the following objective criterion:
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The unbiasedness constraint is developed from the second term in (4.3) as follows
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The updated optimization problem is as follows
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This optimization problem is solved in the same manner as universal trace kriging
we presented in chapter 3 by introducing L + 1 Lagrange multipliers and setting
the partial derivatives with respect to weights to zero. Therefore, the weights are
computed with the following system of equations that we express here in matrix
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form
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Note that the only di↵erence with respect to the universal trace kriging (UTrK)

system of equations from chapter 3 is in the transformation functions f(.) that are

now operating on the entire vector x instead on vector s only.

Parameter inference is analogous to the parameter inference in universal trace

kriging

1. Fit a piece-wise functional OLS model on pre-smoothed functional data2.

2. Compute trace variogram on the residuals and fit one of the admissible vari-

ogram structures (Gau, Mat, Exp, Sph,...).

3. Fit a piece-wise functional GLS model to pre-smoothed functional data with

covariance matrix corresponding to the trace variogram fitted in the previous

step.

4. Iterate steps 2 and 3 a few times.

5. Use the final model for interpretation and forecasting.

4.2.2 FPCA-based Forecasting

Similar to trace kriging-based approach presented above, we can modify the universal

cokriging of basis coe�cient approach to accommodate for covariates z0. As shown

2Recall that functional regression produces the same results as piece-wise OLS on pre-smoothed
functional data.
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in the previous chapter, the drift in functional data can be expressed in terms of the

drift in the coe�cients of basis expansion or functional principal component scores.

Namely, for each fpc score equation (3.31) implies the following decomposition
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As before, the weights are sought with an objective to minimize the mean squared

error in predictions under unbiasedness constraints
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The unbiasedness constraints are developed from the second term in (4.9) as follows:
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Equation (4.10) will be equal to zero if and only if
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Therefore, we arrive to an updated constrained optimization problem
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The solution to this constrained optimization problem is found in the same manner

as in chapter 3 by developing the variance term, introducing K ⇥ (L+1) Lagrangian

multipliers (⌘
lk

), and setting the partial derivatives with respect to weights to zero.

The final form of the system of equations that solves the constrained optimization

problem is given below in matrix form.
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Once again the only thing that changes with respect to the system of equations given

by equation 3.39 are the transformation functions f(.) that are now operating on the

entire vector x instead on vector s only.

4.3 Unconventional Reservoir Case Study

In this section, we evaluate the presented methodologies on a real unconventional

reservoir case study. The dataset considered in this case study comes from one of the

most prolific unconventional reservoirs in the United States and it was provided to

us by Anadarko Petroleum Corporation (APC)3. The dataset contains 188 horizontal

wells with multiple hydraulic fractures (stages). The horizontal wells produce oil,

gas and in early months flow-back water from hydraulic fracturing operations. One

example of well production data is shown in figure 4.1.

Since the presented forecasting methodologies are capable of forecasting only one

functional variable at a time, in this case study the focus will be on oil production

curves only4.

Figure 4.1: An example of production data from one well in APC dataset. Time
represents the number of days since the first day of production.

3The exact name of the shale play is omitted due to the data confidentiality agreement with
Anadarko Petroleum Corporation

4Multivariate forecasting of functions is left for later chapter
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As a part of data pre-processing, for each well, we discarded oil production data

that preceded the peak in oil rate since during those days wells mostly produced flow-

back water from hydraulic fracturing operations5. Besides daily production rates, the

dataset contained information on daily averages of well-head and down-hole pressures,

daily well downtime and daily choke sizes for each well.

In addition to production data, a total of 26 parameters (hydraulic fracturing,

petro-physical and geographical) were available for each well. A complete list of all

available well parameters with their respective ranges is given in table 4.1.

4.3.1 Production Data Smoothing

The first step of functional data analysis is to convert the raw functional observations

into smooth continuous curves. Unlike the Barnett shale case study (chapter 3),

here we had a much richer dataset that enabled us to perform more advanced data

smoothing. In particular, the availability of daily downtime information enabled us

to handle the noise in production data more e↵ectively.

Consider a plot of one production profile given in figure 4.2 left. Notice that the

profile is ”noisy” since many data points deviate from the overall trend in production

decline. The problem here is that this ”noise” is not noise per se6. Every single data

entry in oil production curves has an explanation. In particular, consider the coloring

of points in figure 4.2 left, where the color corresponds to daily well downtime. Notice

that daily rates that deviate from the overall trend in production correspond to days

during which the well was in production for less than 24 hours. The higher the

downtime the larger the deviation from the overall trend. To eliminate this noise, it

is first important to emphasize that reported daily production rates represent daily

cumulative and not instantaneous rates. Secondly, reporting days represent calendar

dates since the beginning of production and not the actual time in production. In

such setting, a much more appropriate measure of well production performance are

cumulative production curves plotted vs actual time in production. Such curves

are often smoother than the cumulative production curves plotted vs reporting days

(figure 4.2 right) since they e↵ectively remove data entries with 24 hours of daily

5There is no conate water in the analyzed reservoir.
6i.e. normally distributed noise that comes as a consequence of imperfections in measurement

device.
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Table 4.1: Well parameters

Type Parameter Name min max Source Unit

Geographical
GeolX Rel* 865.0 89424.2 - m
GeolY Rel* 0.0 -66243.3 - m

Nearby Wells
ProdVert200* 0.00 0.29 - scaled
ProdVert300* 0.00 0.58 - scaled

Petrophysical

Porosity 0.06 0.10 Well log %
Water Saturation 0.17 0.49 Well log %
Total organic content 0.04 0.06 Well log -
Vol. fract. of clay 0.06 0.21 Well log %
Vol. fract. of carbonates 0.48 0.75 Well log %
Vol. fract. of quartz 0.09 0.19 Well log %
Vol. fract. of pyrite 0.01 0.02 Well log %

Fracturing

StagesPumped* 8 45 - count
Stimulated lateral length* 2194 9526 frac. log ft
Average fracture spacing* 99 476 frac. log ft
Number of screenouts 0 2 frac. log count
Total fluid pumped* 40507.74 259617.81 frac. log bbl
Amt. of slick water 0.00 199703.87 frac. log bbl
Amt. cross-link fluid 0.00 71978.74 frac. log bbl
Amt. of acid* 0.00 738.11 frac. log bbl
Amt. of linear fluid 0.00 35233.12 frac. log bbl
Clean fluid total 0.00 73578.78 frac. log bbl
Total proppant used* 1276781 8410537 frac. log lbs
Proppant per foot 323.53 1524.37 frac. log lbs/ft
100 Mesh sand total 0 92637 frac. log lbs
Resin coated sand total 0 360878 frac. log lbs

PVT Oil API gravity 42.8 53.6 - API

downtime. They are also much easier to smooth with basis expansion, and given

the fact that the expansion is performed with analytic basis functions7 it is trivial to

convert these curves into production rate vs time in production curves. One example

of a smoothed cumulative oil vs time in production curve is given in figure 4.3 along

with its first derivative (daily rate) plotted over reported daily production data vs

reporting time.

7The derivative of the fit is available in this case which is convenient since the rate production
curves are given by the first derivative of the cumulative production fits.
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Figure 4.2: Left - An example of noisy production data colored by daily downtime.
Right - Cumulative production plotted vs time in production (TIP) and vs reporting

time (Time).

Due to the fact that wells did not start producing on the same date, at the

time of dataset generation the length of production profiles varied between the wells.

Given that all of the proposed forecasting methodologies assume the same length of

functional data, data completion strategy outlined in chapter 2 had to be employed.

We chose to work with a common time domain of 600 days in production since

there were about 75 wells whose production profiles were of that or longer length.

This number of wells was enough to accurately estimate the functional principal

components and the mean as a common basis for curve completion (smoothing). After

performing data smoothing and curve completion on the cumulative production, we

computed the final ensemble of rate vs time curves by taking the first derivative of

the final cumulative fits. The final ensemble of smoothed curves is given in figure 4.4

right.
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Figure 4.3: An example of curve smoothing. Left - cumulative production vs. time
in production with basis expansion and resulting fit. Right - production rate vs. time

in days with the first derivative of the fit on the left (red curve).

Figure 4.4: Left - Raw rate vs time data. Right - the final smoothed ensemble of
curves.

4.3.2 Sensitivity Analysis

In this section, we outline the results of sensitivity analysis that helped us better un-

derstand the relationships between available well parameters and oil production. The

results were produced with distance based generalized sensitivity analysis (DGSA,
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Fenwick et al. [2014]). The DGSA method starts by clustering production data, and

then computing cluster specific cumulative density functions on each of the available

parameters. The cluster specific cumulative density functions are compared to the

overall cumulative density function of the analyzed parameter, computed on the entire

dataset (all clusters). Departures in cluster specific cumulative density functions from

the overall cumulative density function suggest that the parameter is influential on

the analyzed response, while the lack of departure suggests the converse. The actual

quantification of sensitivity is performed by averaging L1 norms computed between

the cluster specific CDFs and the overall CDF. In this way computed sensitivities are

then used for parameter ranking.

In our analysis, we first computed Euclidean distances between the smoothed oil

production curves, followed by multidimensional scaling (MDS) that produced a two

dimensional space for clustering (figure 4.5) in which we simply employed k-means

method (Hastie et al. [2009]) to cluster the responses. The plots of cluster specific

and the overall CDFs of each well parameter are shown in figure 4.7, while the low

dimensional distance plots colored by each of the input parameters are shown in figure

4.8. Influential parameters show trends in low dimensional colored plots. For example,

stimulated lateral length is an important parameter since its trend is quite apparent

in the colored low-dimensional distance plot, while ”PetroSwt” is a non-influential

parameter since it shows complete absence of a trend in the colored low-dimensional

distance plot.

The final ranking of the parameters is given in figure 4.6. We observe that hy-

draulic fracturing parameters appear as the most influential on oil response followed

by location and PVT parameters. What is surprising is the low ranking of petrophys-

ical parameters, in particular ”PetroTOC” (total organic content). This low ranking

is due to the lack of variability in input parameters that is also apparent from the

CDF plots. ”PetroTOC” took only three values (0.04, 0.05, 0.06) that were also

inconsistent with the total organic content values extracted from vertical well logs

drilled in the study area8.

8Besides horizontal well data the APC dataset contained 2500 vertical well logs from the same
study area.
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Figure 4.5: Left - MDS plot of production produced with Euclidean distance and
clusters produced with k-means clustering. Right - k-means clustering viewed on

original production

Figure 4.6: DGSA - Pareto plot
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Figure 4.7: DGSA - CDF analysis
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Figure 4.8: DGSA - Scatter Plot Analysis
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4.3.3 Functional PCA

The next step in our data mining workflow is to examine the functional principal

components. A plot of the first two fpcs as perturbations around the mean function

is given at the top of figure 4.9. This situation is fairly similar to the fpcs computed

on the Barnett shale dataset. The first fpc acts as a scalar that shifts curves upwards

or downwards, while the second fpc describes the shift in time, potentially describing

the onset of bilinear flow. In general, interpretation of fpcs is di�cult since they

both describe variations in all parts of the analyzed time domain. To improve inter-

pretability, as before, we apply varimax rotation to this set of fpcs and arrive to a set

of rotated fpcs shown at the bottom of figure 4.9. At this point things become much

clearer. The first rotated fpc describes the variation in the tail of the production while

the second rotated fpc describes the variation in early oil production. This result is

also very similar to the rotated fpcs on the Barnett shale dataset.

Given that all wells have di↵erent completions, one interpretation of this result

is as follows. The first rotated fpc most likely depends on the well locations and

total organic content, or in other words reserves. The second fpc is most likely

correlated with hydraulic fracturing parameters, since in early days wells are draining

the network of artificial fracture networks.
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Figure 4.9: Top - The first two fpcs as perturbations around the mean function.
Bottom - The two rotated fpcs as perturbations around the mean.

4.3.4 Geostatistical Analysis

Next in our analysis, we will examine the spatial correlations between the production

curves. Here, we will apply the two methodologies outlined in the methodology section

of this chapter, on the entire dataset (188 curves). We approached the problem from a

forecasting perspective hence we chose to work with the parameters that are available

to modelers before a well is drilled, namely the high ranking hydraulic fracturing

parameters from the pareto-plot in figure 4.6 and well locations. Well parameters that

were used in this study are marked with a star in table 4.1. Prior to this analysis, all

non-spatial input parameters were standardized, while spatial parameters were scaled
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to [0,1] scale. This was necessary due to numerical issues with drift modeling. First,

we will examine the omni-directional trace variogram given in figure 4.10. The model

fitted to this variogram is of Matérn type with a range of 0.17 scaled units (15km

in original units). This spatial correlation represents the continuity in the overall

reservoir quality and not the continuity of some reservoir parameter (i.e. porosity).

What this variogram informs is that one can expect a similar production profiles of

two wells completed in the same way, and separated by at most 15km.

Figure 4.10: Trace variogram on oil rates.

We fitted a universal co-kriging with covariates model to the rotated functional

principal component scores. The variograms computed on the residuals are given in

figure 4.11. The model fitted to these empirical variograms is Matérn with a range

of 0.17 (15km). These variograms are very similar to the trace variogram analyzed

previously. We observe that the residuals have a negative spatial cross-correlation in

this case.
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Figure 4.11: Variograms of the residuals of the rotated functional principal
component scores

4.3.5 Forecasting Study

Next, we evalute the forecasting capabilities of the presented methodologies. We

split the dataset into 100 randomly selected wells that were used for training, and

88 wells that were used for testing. We recomputed the rotated functional principal

components on the training set and fitted trace-based and projection-based forecast-

ing models. We then used the models to predict the wells from the test set. A few

forecasts of the test wells are shown in figure 4.12. Notice that in this case the two

modeling approaches produced similar forecasts since the variogram ranges were the

same. SSE errors are summarized in table 4.2.

Table 4.2: SSE Error table

Method min mean median sd max
Universal Trace Kriging 0.002 0.451 0.214 0.63 3.762

U. Cokriging of rot. fpc scores 0.004 0.446 0.211 0.615 3.606
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Figure 4.12: A few forecasts. Black dots represent true data, red curves are
forecasts produced with universal co-kriging on rotated fpcs and blue curves are

universal trace kriging forecasts.

Next we applied sequential Gaussian co-simulation to produce confidence bands

around the forecasts. In figure 4.13 we are plotting three realizations of the rotated

functional principal components with added spatial components of the drift. The

overall trend in the map of the first rotated fpc corresponds to the trend in API

gravity (figure 4.14) of oil.
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A total of 100 co-sgsim realizations of the residuals were produced and then com-

bined with the drift term computed for each test well to produce 88 forecasting

ensembles of curves (one ensemble for each test well). A few randomly selected en-

sembles are plotted in figure 4.15 along with the actual production data. Notice that,

in general, the ensembles of the forecasts fully enclose the true data.

Figure 4.13: Co-sgsim realizations of rotated fpc scores.
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Figure 4.14: Well locations colored by API gravity.

4.3.6 Monte Carlo Study

Next we evaluated the performance under variable training set sizes. We varied the

size of the training set from 30 to 150 wells and on each iteration we predicted a non-

overlapping test set of size 38. For each training set size we produced 100 random

train/test splits of the available data and fitted universal trace kriging and universal

co-kriging of rotated fpc scores models. At every iteration we computed the mean

and the median of the SSE on the test set. Distributions of the mean and the median

of the SSE are summarized in figure 4.16. We observe that the distribution of the

median was similar for the two methods, however the mean was slightly higher for

universal co-kriging of coe�cients. This discrepancy is a consequence of two things:

fpc truncation error and di�culties with LMC fitting with low sample sizes. In our

study we also observed a lot of outliers in the mean of the SSE. These outliers are a

consequence of extrapolation. Kriging methods are great interpolators but very poor

extrapolators which is one limitation of the presented methods. From figure 4.16 we

also observe that the median stabilizes for training set sizes of 60-70 wells suggesting

that is the minimum number of wells that is necessary to produce reliable forecasts

with the proposed methodologies.
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Figure 4.15: Blue curves - forecasts produced with co-simulation of rotated fpc
scores. Red dots - true data.
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Figure 4.16: Monte Carlo analysis - The influence of the training set size on
forecasting capabilities. trace = Universal Trace Kriging, UcoK Universal

co-kriging of coe�cients

4.4 Chapter Conclusion

In this chapter, we showed that the methods from chapter 3 can be used with slight

modification for forecasting of shale hydrocarbon production curves with variable

hydraulic fracturing parameters. The methodologies were found to produce similar

results in both data mining and forecasting studies on the Anadarko data set with 188

horizontal wells with multiple frac-jobs. However, the approach with rotated func-

tional principal components in combination with sequential Gaussian co-simulation

was found to be the most adequate for the types of analyses and forecasting studies

in unconventional reservoir engineering. The first rotated fpc that describes the vari-

ation in late oil production was found to be highly correlated with API gravity of oil,

while prediction bands generated with sequential Gaussian simulation fully enclosed

the true data. Currently, the methodologies rely on distance-based generalized sensi-

tivity analysis for evaluation of parameter importances and selection since parameter

selection for functional regression is an ongoing research area. This practical issue

leaves space for improvement in future research work.



Chapter 5

Interpretation and Forecasting of

Multivariate Functional Data with

Regression Trees

While trace variograms and variograms evaluated on the residuals of basis coe�cients

are powerful interpretation tools, drift modeling techniques for functional data are

not quite interpretative. The coe�cients in functional regression are functions that

are in many cases almost impossible to interpret. On the other hand the nature of oil

and gas data is such that explanatory variables are always correlated1 that ultimately

makes the t-tests in principal component regression highly misleading2. Moreover, the

techniques outlined in the previous chapter are capable of working with single variate

functional outputs. This is a significant limitation given that hydrocarbon wells

often produce multiple fluids (i.e. oil and gas) giving rise to multivariable functional

forecasting problem.

In this chapter, we develop a regression tree-based methodology that is capable of

producing highly interpretable drift models. In the original developments by Breiman

et al. [1984], regression trees were designed to work with scalar outputs. Later work

by Segal [1992] expanded the method to accommodate for multivariate outputs. Here,

we propose an expansion of the original idea that enables us to grow regression trees

with multivariate outputs of any type, including multivariate functional outputs such

1i.e. the number of fracturing stages is often correlated with the amount of injected fluid/proppant
2Multicollinearity problem in ordinary least-squares (Hastie et al. [2009])
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as oil and gas production curves.

This chapter is organized as follows. In the methodology section we outline the

basics of regression trees followed by a review of the method by Segal [1992] for

growing regression trees with multivariate outputs (vectors). We then proceed to

develop an approach for growing regression trees with multivariate functional outputs.

The method is demonstrated on the Anadarko dataset introduced in chapter 4; only,

in this case, we are analyzing and forecasting all functional outputs, oil and gas curves,

together at the same time.

5.1 Methodology

Here, we consider a set of functions {X
i

(t), t 2 T}N
i=1 (i.e. oil production curves)

observed over a set of spatial locations s
i

2 D ⇢ R

2 along with a set of explanatory

variables or covariates z
i

2 R

n. We will refer to all spatial and non-spatial covariates

as x
i

= {z
i

, s

i

}. As in the previous chapters, we assume that the functions are non-

stationary and that they can be decomposed into a deterministic mean and globally

second order stationary functional residual

X
i

(t) = m

i

(t) + �

i

(t) (5.1)

the drift term m

i

(t) is assumed to depend on all spatial and non-spatial covariates

x, and in this chapter it will be modeled with functional regression trees that we

introduce next. The residual will be assumed to depend only on spatial locations

and, as such, it will be modeled with the functional interpolation methods outlined

in chapter 3 (OTrK, UCoK).

5.1.1 Regression Trees

Consider a training set T : {(xi, yi)}N
i=1 where x

i

is a vector in R

n and y

i

is a scalar

output (y
i

2 R), and let f : x ! y be a function that maps x
i

’s to y

i

’s. The idea of

regression trees is to partition the p-dimensional input space spanned by x

i

’s into M

disjoint sub-regions R
m

’s, and then in every sub region approximate the true function

f with some local function f

m

. This local function can be a constant (i.e. the local

mean), a local regression or even a Gaussian process. Input space partitioning can
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be performed in many ways, however, one of the most widely adopted partitioning

schemes is the binary recursive splitting method proposed by Breiman et al. [1984].

Their method is binary because it considers binary splits of Rn along one predictor

(covariate) at a time. It is recursive because regions are recursively split into sub-

regions until some stopping criteria is met, or, no more training data is left to split.

The procedure is also greedy since, in determining the best split of a region it does

not consider the quality of later splits. To determine the best split of one region, the

method relies on user specified cost function G. For example, when considering some

split s along predictor p of region R

m

into two sub-regions R
ml

and R

mr

one would

compute the quality of the split as follows:

Q

m

s,p

= G(R
m

)� [G(R
ml

) +G(R
mr

)] (5.2)

The split that has the highest quality is accepted and the procedure continues to fur-

ther refine the newly formed regions. For trees with scalar outputs that approximate

the true function with the local mean, the most appropriate cost function is the sum

of squared residuals G
sse

(R
m

) =
P

yi2Rm
(y

i

� µ

m

)2.

Regression trees have very high interpretative capabilities. Every step of the

recursive partitioning procedure can be recorded in a form of a decision tree that

visually puts the whole splitting process into perspective. An example of a recursive

regression tree produced on an input space spanned by two parameters (X1 and X2)

is given in figure 5.1.

Recursive splitting can be performed on pretty much any type of input parame-

ters. Splitting on continuous input parameters is trivial, the data is simply ordered

and the split point is moved from the lowest to the highest point of the parameters

range. Categorical predictors have two cases, orderable and unorderable. For order-

able categorical predictors the splitting procedure is the same as for continuous, while

for unorderable one has to consider di↵erent combinations of categories. Obviously

this becomes tedious and numerically di�cult for a large number of categories3.

Another type of predictors that commonly occurs in Earth sciences are the func-

tional predictors (i.e. relative permeability curves, porosity distributions etc.). This

is a special kind of input parameter that cannot be directly treated with any of the

previously considered splitting approaches. Instead, we propose a simple two step

3In our experience more than six categories are already intractable.
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Figure 5.1: An example of recursive splitting. Left - Recursively partitioned input
space; Right - The corresponding regression tree

ordering procedure for this job.

• First, the realizations of a complex input parameter (i.e. rel permeability

curves) are clustered with hierarchical clustering (Eisen et al. [1998], Hastie

et al. [2009]) with a distance metric appropriate for the type of the analyzed

functional predictor.

• A leaf reordering algorithm (Bar-Joseph et al. [2001]) is run as a post-processor

on the hierarchical tree, from the previous step, to create an ordered sequence

of complex parameter realizations.

• Once an ordered sequence is established we employ the same splitting technique

as in the case of orderable continuous or categorical predictors.

An example of ordering of a complex predictor is given in figure 5.2.
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Figure 5.2: An example of ordering of complex predictors. A - Raw unordered
functional predictor data. B - Low dimensional (MDS) representation of the data
colored by original (old) ordering. C - Hierarchical clustering performed on the raw
data. D - Leaf reordered hierarchical clustering dendrogram. E - A low dimensional
representation (MDS) colored by the new ordering of the data. F - A plot of the

original data colored by the new ordering.
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Bootstrapped Regression Trees

While having great interpretative properties, regression trees forecasting capabilities

are not so impressive since they do not produce any type of prediction bands and

in addition, they also tend to over-fit the training data. As a remedy for these

problems, Breiman [1994] proposed bootstrapping. The idea is simple, the training

data is sampled many times with replacement and a regression tree is fitted to each

sample. In this way, an ensemble of regression trees is produced. This ensemble is

then used on a new set of predictors to produce an ensemble of forecasts. Finally, the

ensemble of forecasts is used to construct prediction bands and the mean prediction.

This procedure of generating ensembles of bootstrapped trees is commonly referred

to as ”bagging”.

In later research, it was observed that predictors that are highly correlated with

the output always placed high in the dendrogram of a regression tree thereby never

giving a chance to less but still significantly important predictors. To give equal

chance to all predictors in the training data and avoid over-fitting, Breiman [1999]

proposed a double bootstrapping procedure or better known as ”random forest”.

This idea also starts by bootstrapping the observations as bagging, however when

growing regression trees, on each split, it only considers a randomly selected (without

replacement) subset of predictors rather than all of the available predictors. This

procedure is numerically faster than bagging, and it was also found to produce better

forecasts in some cases.

Variable Importance

The decision tree topology is indicative of variable importance. Since the tree building

procedure is greedy, input parameters that are the most correlated with the output

are usually used in earlier splits, while the less correlated parameters either appear on

later splits or are not used in splitting at all. To quantify input parameter importance,

Breiman et al. [1984] proposed the following variable importance (sensitivity) index

S

p

=
1

M

MX

m=1

1

N

m

max{Qm

s,p

, 8s} (5.3)



CHAPTER 5. FUNCTIONAL REGRESSION TREES 91

Where: Qm

s,p

is given by equation (5.2), M is the number of splits in a tree and N

m

is

the number of training points within region m.

The sensitivity index S

p

quantifies the overall reduction in cost function caused by

splitting on parameter p. This index can also be computed for bagged trees by

simply averaging over all trees in the ensemble. The value of the sensitivity index

is not influenced by the correlations between the input parameters (unlike t-test in

linear regression). For example, sensitivity indices S

p

of perfectly correlated input

parameters would have the same value4.

5.1.2 Functional and Multivariate Regression Trees

Previously reviewed regression trees considered a simple situation with scalar outputs

(y
i

2 R). In this sub-section we will review and develop strategies for building regres-

sion trees when the output data are vectors (y 2 R

n), functions (X (t), t 2 ⌧), and

multiple functions (X = (X 1(t),X 2(t), ...,X k(t)), t 2 ⌧). To grow regression trees

with such complex outputs, modifications at the level of cost functions (G(R
m

)) are

needed. For instance, when the outputs are vectors, Segal [1992] proposed to grow

regression trees with the following cost function

G(R
m

) =
X

yi2Rm

(y
i

� µ

m

)T⌃�1
m (y

i

� µ

m

) (5.4)

This cost function is essentially a sum of Mahalanobis distances between the output

vectors y
i

contained in m-th region, and the regions mean vector µ
m

. One practical

di�culty with this approach lies in the fact that the covariance matrix (⌃
m

) needs to

be estimated in every region (for every split) and that such matrix must be positive

semi-definite. A simple practical workaround is to use a common covariance matrix

for all splits in a tree.

Regression trees with functional outputs. When the outputs are functions, there

are several ways in which one could proceed. The simplest approach is to expand the

functional data onto a set of K basis functions5

4For a detailed discussion on the topic of variable importance in regression trees please consult
Louppe et al. [2014]

5for example, a B-Spline basis system or a set of functional principal components
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X
i

(t) =
KX

k=1

c

ik

�

k

(t)

and then work with the expansion coe�cients, c
ik

’s. In this way, functional data

is transformed into multivariate data and regression trees can be grown with the

cost function given with equation (5.4) (Yu and Lambert [1999]). As an alternative,

for smooth functional data, such as hydrocarbon decline curves considered in this

dissertation, one could grow regression trees with a cost function that is widely used

in functional data analysis (Ramsay and Silverman [2005])

G(R
m

) =
X

Xi(t)2Rm

ˆ
T

(X
i

(t)� µ

m

(t))2dt (5.5)

Where µ

m

(t) is the mean function of m-th region.

This cost function produces the same results as the following cost function:

G(R
m

) =
X

Xi(t)2Rm

k(X
i

(t)� µ

m

(t))k2 (5.6)

which is a special case of the cost function (5.4) for ⌃
m

= I, that computes the sum

of Euclidean distances from the regions mean vector.

Distance-based tree growing strategy. A universal and much more general

strategy for growing regression trees is by means of similarity distances. Let D̂m

K⇥K

be a similarity distance matrix (i.e. Euclidean) between the outputs in region m. To

split the region based on distances, we formulate the following cost function

G(R
m

) = min{
KX

i=1

d

m

ij

; 1 < j < K} =
KX

i=1

d

m

i,medoid

(5.7)

where d

m

ij

is ij-th element of D̂m

K⇥K

.

Unlike the previously introduced cost functions that compute either the sum of Ma-

halanobis or Euclidean distances from the regions mean, this cost function computes

the sum of distances from the most central data point of the region (in terms of
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outputs), the medoid6. This concept is very robust and applicable to a variety of

situations commonly occurring in Earth sciences. For example, it is not unusual to

have multiple outputs of di↵erent type such as functions and vectors, or functions and

images, or as it is the case in this dissertation oil and gas production curves. To grow

trees with such complex outputs, one would compute appropriate distance matrices

on each output type and then simply compute a joint distance matrix as follows

D

mv

=
KX

k=1

w

k

D

⇤
k

(5.8)

Where:

D

⇤
k

is a scaled distance matrix computed on k-th output type

w

k

is an optional weight given to k-th output type7

This matrix of joint distances is then used to build a regression tree with the cost

function given by equation (5.7). Computation of parameter importances on such

regression tree is performed in the same way as before, only in this case parameter

importance indices reflect parameters influence on all considered output types to-

gether. Forecasts produced with this type of tree are the local means of each output

type.

5.1.3 Method Summary

Several modeling workflows can be envisioned with functional regression trees and

spatial interpolation methods outlined in chapter 3. Table 5.1 outlines all possible

modeling workflows.

6Working with medoids is computationally faster since distances between outputs are computed
only once prior to running the partitioning algorithm

7This parameter is determined through cross validation or its simply user specified.
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Table 5.1: Possible modeling workflows

Funct. Output Type Drift Model Residual Model

Single-Variate

1. Reg. tree with cost (5.6)
2. Basis expansion and
Reg. tree w/ cost (5.4)

3. Distance modeling and
Reg. tree with cost (5.7)

1. Ordinary Trace Kriging
2. Ordinary Co-kriging

of basis coe�cients (or fpcs)

Multi-Variate

Distance modeling of
each output type.

Combine distances with eq(5.8),
then Reg. tree w/ cost (5.7)

1. Ordinary Trace Kriging
of each output type

2. Ordinary Co-kriging
of basis coe�cients
of each output type

3. Ordinary Co-kriging
of basis coe�cients
of all output types8

5.2 Case Study

In this section, we demonstrate the previously introduced modeling methodology on

oil and gas responses from 188 horizontal wells in the Anadarko dataset introduced in

the previous chapter. To smooth gas production curves we applied the same strategy

as in chapter 4. We smoothed cumulative gas rates vs. time in production (in hr)

and then we took the first derivative of each fit to arrive to a set of gas rate vs

time in production curves. The final ensemble of oil and gas production curves is

given in figure 5.3. Prior to smoothing, we conducted the same data pre-processing

as in chapter 4. Production data that preceded the peak in oil rate was discarded,

since it did not represent the actual reservoir response due to flow back water from

hydraulic fracturing. It is interesting to notice in figure 5.3 right that a large number

of gas production curves did not decline concurrently with the oil production curves.

Instead, many of the gas production curves increase until some peak in gas rate is

achieved before they start declining. This behavior is most likely a consequence of

sorbed gas being released from solution with the drop in reservoir pressure. This

particular case is a perfect example of the power of non-parametric curve smoothing.

8We outline this procedure in chapter 6.
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Gas production behavior described previously cannot be adequately parameterized

with any of the widely used decline curve models.

Figure 5.3: Left - Smoothed oil production curves. Right - Smoothed gas
production curves

5.2.1 Data Analysis

First, we will use the tree based methodology to perform data mining. We computed

Euclidean distances between all 188 oil curves (D
oil

) and Euclidean distances between

all 188 gas curves (D
gas

). Both distance matrices were scaled to [0,1], and later

combined into a joint distance matrix with equation (5.8)

D

joint

= D

⇤
oil

+D

⇤
gas

The joint distance matrix was then used to build a multivariate regression tree with

the distance-based cost function (5.7). The fitted multivariate tree is given in figure

5.4, while the variable importance plot corresponding to this tree is given in figure

5.5 right. On the same joint distance matrix, we performed distance-based general-

ized sensitivity analysis (Fenwick et al. [2014]) in order to compare its results with

the results of the tree-based variable importance analysis. Distance-based sensitivity

analysis requires the output data to be pre-clustered. This was done with k-means
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method (Hastie et al. [2009]) on the joint distance matrix. The final parameter rank-

ing based on DGSA is given in figure 5.5 left while the low dimensional9 scatter plots

(of the joint distance matrix) colored by each of the analyzed input parameters is

shown in figure 5.7. We observe that the tree based method and DGSA produced

quite similar results. In both cases, hydraulic fracturing parameters ranked very high,

and were almost immediately followed by X and Y well locations suggesting a strong

spatial dependence. Analysis of the regression tree in figure 5.4 also suggests strong

parameter interactions. In di↵erent parts of the reservoir, di↵erent hydraulic fractur-

ing parameters become important. Proper quantification of parameter interactions is

left for future work.

Next in our data analysis, we performed trace variography. To model the drift,

we used bagging procedure with the same multivariate setup as outlined previously.

The fitted bagged trees were used to predict the entire training set10 and compute

the functional residuals. Trace variograms shown in figure 5.6 were computed on

the residuals of oil and gas rates individually. In this case, we do not observe any

meaningful spatial structure. Both variograms appear to be pure nuggets.

5.2.2 Forecasting Study

In this subsection, we evaluate the forecasting capabilities of the proposed functional

regression tree based methodology. As in previous chapter, we randomly split the

dataset into 100 training wells and 88 testing wells. We computed Euclidean distances

between the oil rates and the gas rates separately and combined them into one joint

distance matrix that was then used to build a distance based (eq. (5.7)) random

forest. There are two reasons why we used random forest for forecasting. Firstly,

boostrapped trees are capable of producing confidence bands around forecasts, which

is always required in oil and gas uncertainty quantification studies. Secondly, the

prediction accuracy of random forests is expected to be the same or better than of

bagged trees. A few forecasts produced with the random forest are shown in figures 5.8

and 5.9. Since there was no apparent spatial structure on the residuals, geostatistical

modeling was not performed on this dataset. SSE errors summarized in table 5.2

9low dimensional representation of the distance matrix was computed with multidimensional
scaling - MDS (Borg and Groenen [2005])

10Bagged trees are an ensemble procedure that makes many predictions for one set of inputs.
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Figure 5.4: Multivariate tree fitted on the entire dataset with cost function (5.7)
and joint distance matrix computed on oil and gas responses

were computed between the mean of the forecasts produced with the random forest

and the smoothed versions of the raw data. As in the previous chapters, all errors

were normalized with the trace variance of the entire dataset. The median of the

error was around 22% in both cases, however the containment of the true data within

prediction bands was 94% for oil and 89% for gas11.

11To assess the containment within prediction bands we used the bagplot procedure by Rousseeuw
et al. [1999]. The true data was considered to be outside the prediction bands if it was deemed an
outlier in the bag plot analysis.
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Figure 5.5: Left - DGSA sensitivity on joint data; Right - multivariate tree
variable importance.

Monte Carlo Study

To better asses the error and its dependence on the size of the training set, we set

up a Monte Carlo study in which we varied the size of the training set from 30 to

150 wells. For each training set size, we randomly sampled 100 training/testing sets

on which we fitted a multivariate distance-based random forest, made predictions

and computed the mean and the median of the test set SSE. In every case, the test

sets had a size of 38 and were non-overlapping with the corresponding training data.

For comparison purposes, we also assessed the predictive performance of universal

trace kriging (UTrK) models fitted on oil and gas responses separately and universal

co-kriging (UCoK) models fitted on the coe�cients of oil and gas responses jointly12.

The variation in the mean and the median of the SSE test error as a function of the

training set size is shown in figure 5.10 for each modeling approach.

12Formulating a universal co-kriging system on the coe�cients of multivariate functional data is
straight forward. This approach is explained in great detail in the following chapter.
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Figure 5.6: Trace variograms computed on the residuals of oil and gas rates.

Table 5.2: Random Forest - SSE Error table (PB = Prediction Bands)

Method Type min mean median sd max
# in
PB

% in
PB

Functional
Random Forest

Oil 0.006 0.43 0.237 0.514 2.393 83 94.3
Gas 0.002 0.50 0.235 0.660 3.276 79 89.7

Universal
Trace Kriging

Oil 0.006 0.477 0.264 0.672 4.135 - -
Gas 0.002 0.513 0.204 0.832 4.602 - -

U. Cokriging
of coe�cients

Oil 0.001 0.619 0.215 0.971 6.149 - -
Gas 0.003 0.639 0.248 1.029 5.141 - -

From figure 5.10 we observe that in terms of the mean and the median of the SSE

multivariate random forest outperformed the other methods for low training set sizes.

For large training set sizes, universal trace kriging (UTrK) and multivariate random

forest appear to produce similar results. Note the outliers in the plot of the mean

of the normalized SSE, these are only present in the case of kriging based methods

and are a consequence of erroneous solutions caused by extrapolation13. Note that

the random forest error starts to stabilize around 50-60 wells in both the mean and

the median, on both oil and gas responses. This suggests that the method starts to

become reliable when the number of produced wells is around 50.

13It is well known that kriging is a good interpolator but a poor extrapolator
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Figure 5.7: Low dimensional scatter plots (MDS) based on the joint distance
matrix and colored by each input parameter
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Figure 5.8: A few forecasts produced with random forest. Left column are oil rates,
right column are corresponding gas rates. ”mv FRF” = multi-variate functional

random forest
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Figure 5.9: A few forecasts produced with random forest. Left column are oil rates,
right column are corresponding gas rates. ”mv FRF” = multi-variate functional

random forest
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Figure 5.10: The results of the Monte Carlo study. Abbreviations: ”trace” =
Universal Trace Kriging, ”rf” - Multivariate random forest, ”UcoK” - Cokriging of

fpc scores, ”projection” - joint UCoK of fpc scores of oil and gas responses.



CHAPTER 5. FUNCTIONAL REGRESSION TREES 104

5.3 Chapter Conclusion

In this chapter, we presented a tree-based methodology for the analysis and forecast-

ing of unconventional reservoir production curves. We proposed and demonstrated a

robust approach for growing regression trees with similarity distances, that can ac-

commodate any number and type of outputs. From a data analysis point of view, the

method was found to produce similar variable importance results as distance based

generalized sensitivity analysis (Fenwick et al. [2014]). Visual representations of re-

gression trees also provide a deeper insight into parameter interactions, however, at

this stage of research we did not make any attempts to quantify the importance of

parameter interactions. This problem is left to be addressed in our future work. In ad-

dition, we also proposed a novel approach for growing regression trees with functional

inputs. This proposition opens completely new avenues of research in sensitivity anal-

ysis of numerical reservoir models that commonly take probability density functions

as inputs14. This topic will also be explored in our future work.

From a production data forecasting point of view, the method was found to pro-

duce reliable forecasts of oil and gas production curves simultaneously. In our fore-

casting study, we found that the prediction bands contained the true data in 94% of

oil forecasts and 89% of gas forecasts. This result is very impressive given that in

oil and gas industry forecasting is always conducted for the purpose of uncertainty

quantification and decision making, hence, reliable prediction bands are of paramount

importance.

The method also achieved a much smaller SSE error than the methods presented in

the previous chapters. We observed a much smaller modeling e↵ort compared to the

previously proposed approaches. The tree-based approaches do not have numerical

issues, they do not require standardization (rescaling) of input parameters and, with

the developments presented in this chapter, they can work with pretty much any type

of input parameters.

In our case study, we failed to obtain a meaningful variogram structure on the

residuals of bagged functional regression trees. While this is unfortunate from a

demonstration point of view, we still believe that the method is solid and that it may

produce a better variogram on some other dataset. Identification of the exact reasons

14i.e. porosity distribution curves that are provided as inputs to sequential Gaussian simulation
algorithm.
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for nugget variograms will be in the focus of our future research work.

Finally, another source of uncertainty that surrounds all of the presented meth-

ods is the uncertainty in data smoothing. Data smoothing approaches presented

in chapter 2 also provide us with covariance matrices of basis coe�cients that de-

fine uncertainty of the fits. The regression tree bootstrapping paradigm allows us

to easily incorporate such uncertainties into the forecasting framework presented in

this chapter. When performing bootstrapping of the training data one would first

sample observations and then also sample potential fits of one observation based on

the covariance matrix of its basis expansion coe�cients. Rigorous evaluation of this

approach is also left for future work.



Chapter 6

Forecasting of Spatially Correlated

Functional Data in Presence of

Secondary Data

Numerical simulation and modeling is an irreplaceable component of all modern un-

certainty quantification studies. Numerical models used in these studies are featured

with high dimensional inputs and often produce multidimensional outputs of various

types (scalars, functions, images, etc). Proper uncertainty quantification with such

complex models entails exhaustive exploration of high-dimensional input spaces that

is rarely achievable in practice due to extremely large computational requirements.

For this reason, modelers often use computationally cheaper solutions by either ig-

noring certain physical aspects (lower fidelity) in their numerical models or by using

statistical learning to build computer code emulators1.

One of the most popular methods for emulation of computer experiments with

scalar outputs is kriging for computer experiments (Sacks et al. [1989],Rasmussen and

Williams [2006]). The method generalizes the concept of kriging to high-dimensional

input spaces and it exactly reproduces the training data which is a desirable feature in

this application. Another interesting generalization of geostatistical concepts comes

from Kennedy and O’Hagan [2000] who applied co-kriging to aggregate information

from numerical models of di↵erent levels of fidelity (multi-fidelity).

1This chapter as a whole was submitted and accepted for publication in the journal of Stochastic
Environmental Research and Risk Assessment. Reference: Grujic et al. [2017]
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Emulation of computer experiments that produce functional outputs is currently

an active area of research. Josset et al. [2015] used functional regression to model

functional errors between computer models of di↵erent levels of fidelity. Bottazzi and

Della Rossa [2017] used functional interpolation by Nerini et al. [2010] to interpolate

functional data over multidimensional input spaces. Thenon et al. [2016] also uses the

functional interpolation approach by Nerini et al. [2010] in the context of functional

multifidelity reservoir modeling. Trehan et al. [2017] constructs a functional error

model with piece-wise regression.

Inspired by the work by Kennedy and O’Hagan [2000], in this chapter, we de-

velop universal trace co-kriging, a novel method for interpolation of multivariate

functional data that is applicable to emulation of computer codes of multiple levels

of fidelity (multi-fidelity). The method is an extension of the universal trace krig-

ing methodology (introduced in chapter 3) into multivariate context. In addition

to these developments, we present a projection-based approach for interpolation of

multivariate functional data which is an extension of the universal co-kriging of basis

coe�cients approach we developed in chapter 3. Besides the theoretical developments,

we present detailed practical and methodological comparisons with the methods pre-

sented in chapter 3 on synthetic (oil reservoir) and real (Uranium contamination)

numerical reservoir simulation case studies.

The chapter is organized as follows. In section 2 we present the theoretical de-

velopments of the universal trace co-kriging methodology followed by an outline of

projection based approach. In section 3, we present the results of a synthetic reservoir

case study, while in section 4, we present the results of uranium contamination case

study. The chapter ends with conclusions based on extensive Monte Carlo analyses

and ideas for future research.

6.1 A Trace-Cokriging Predictor for Multivariate

Functional Data

Here, we consider a multivariate random process {X s, s 2 D ⇢ R

n} where each

element X s is a vector of K random functional elements X (1)
s1 (t), ...,X (K)

sn (t) defined
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on the same temporal domain (t 2 T )2:

X s =
�
X (1)

s (t), ...,X (K)
s (t)

�
T

.

We call ms the spatial drift of the process at s in D, that is

ms = E[X s] =
�
m

(1)
s (t), ...,m(K)

s (t)
�
T

, m

(k)
s (t) = E[X (k)

s (t)].

To define a measure of multivariate spatial dependence, we generalize to the multi-

variate setting the concept of trace-covariogram previously presented in chapter 3.

Cov

t

(X (k)
s (t),X (l)

u (t)) = E
ˆ

T

(X (k)
s (t)�m

(k)
s (t))(X (l)

u (t)�m

(l)
u (t))dt

�
.

Note that this quantity cannot be defined in cases where components of multivariate

functional process are defined on di↵erent temporal domains.

In this work, we assume that every element X (k)
s of the multivariate process X s

is non-stationary, and that it can be represented by a sum of deterministic drift and

zero-mean globally second-order stationary residual:

X (k)
s (t) = m

(k)
s (t) + �

(k)
s (t) (6.1)

here, the drift is assumed to be non-constant in space D and, analogously to universal

trace kriging, modeled with a functional linear model:

m

(k)
s (t) =

LX

l=0

a

(k)
l

(t)f
l

(s) (6.2)

where a

(k)
l

(t) are functional coe�cients in, and f

l

(.) are scalar regressors known over

the entire domain D. Further, the residual is assumed to be globally second-order

stationary in the sense of Menafoglio et al. [2013]. That is, we assume that the multi-

variate trace-covariogram structure depends only on the increment between locations,

i.e. C
kl

(ks� uk) = Cov

t

(X (k)
s (t),X (l)

u (t)), for all s,u 2 D.

2An example of such data are field oil production curves computed with K reservoir simulators,
of di↵erent levels of fidelity, with the same set of input parameters.
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We call s1, ..., sNj (j = 1, ..., K) the measurement locations (or design of exper-

iment), and X (j)
s1 (t), ...,X (j)

sNj
(t) the partial observation of the j-th element of the

multivariate process at these locations. Within the former assumptions, we aim to

predict the k-th element X (k)
s0 (t) of X s0 at a target location s0 in D. To this end,

we consider the trace-cokriging predictor, that is the best linear unbiased predictor

within the class of linear predictors

X (k)�
s0 (t) =

KX

j=1

NjX

i=1

�

ji

X (j)
si (t) (6.3)

To find the optimal weights, �⇤
ji

, j = 1, ..., K, i = 1, ..., N
j

, we minimize the mean

squared error of prediction under the unbiasedness constraint, that is

min
�ji2R,

j=1,...,K,i=1,...,Nj

E
⇥
kX (k)�

s0 (t)� X (k)
s0 (t)k2

⇤
(6.4)

subject to E[X (k)�
s0 (t)] = m

(k)
s0 (t).

It is straightforward to see that the unbiasedness constraint reads as

NkX

i=1

�

ki

f

l

(s
i

) = f

l

(s0), 8l;

NjX

i=1

�

ji

f

l

(s
i

) = 0, for j 6= k, 8l;

(6.5)

Therefore,

E[X (k)�
s0 (t)] =

KX

j=1

NjX

i=1

�

ji

m

(j)
si
(t)

and the latter quantity is equal to m

(j)
s0 (t) if and only if the condition 6.5 is fulfilled.



CHAPTER 6. FORECASTING WITH SECONDARY DATA 110

Developing the first line of Eq. 6.4 yields:

E
⇥
kX (k)�

s (t)� X (k)
s (t)k2

⇤
= C

kk

(0)+

KX

j=1

NjX

i=1

KX

j

0=1

Nj0X

i

0=1

�

ji

�

j

0
i

0
C

jj

0(s
i

� s

i

0)

�2
KX

j=1

NjX

i=1

�

ji

C

jk

(s
i

� s0)

(6.6)

Introducing K ⇥ (L + 1) Lagrange multipliers to account for the unbiasedness

constraints in Eq. 6.5 leads to the following objective functional

�(�) = C

kk

(0) +
KX

j=1

NjX

i=1

KX

j

0=1

Nj0X

i

0=1

�

ji

�

j

0
i

0
C

jj

0(s
i

� s

i

0)�

2
KX

j=1

NjX

i=1

�

ji

C

jk

(s
i

� s0)+

2
LX

l=0

⌘

kl

 
NkX

i=1

�

ki

f

l

(s
i

)� f

l

(s0)

!
+

2
LX

l=0

KX

j=1
j 6=k

⌘

jl

0

@
NjX

i=1

�

ji

f

l

(s
i

)

1

A

(6.7)

After taking partial derivatives of equation 6.7 with respect to �’s and ⌘’s we

arrive at the following system of linear equations:

KX

j=1

NjX

i=1

�

ji

C

jj

0(s
i

� s

i

0) +
LX

l=0

⌘

j

0
l

f

l

(s
i

) = C

j

0
k

(s
i

0 � s0),

(j0 = 1, ..., K; i0 = 1, ..., N
j

0 ; );
NkX

i=1

�

ki

f

l

(s
i

) = f

l

(s0), 8l;

NjX

i=1

�

ji

f

l

(s
i

) = 0, j 6= k, 8l;

(6.8)
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The trace-variance associated with predictor X (k)⇤
s0 =

P
K

j=1

P
Nj

i=1 �
⇤
ji

X (j)
si is given

by

�

2
k

(s0) = C

kk

(0)�
KX

j=1

NjX

i=1

�

ji

C

jk

(s
i

� s0) +
LX

l=0

⌘

kl

f

l

(s0).

System (6.8) can be expressed in a matrix form as follows (for k = 1):

2

66666666666666664

C11 C12 · · · C1K F1 0 · · · 0

C21 C22 · · · C2K 0 F2 · · · 0
...

...
. . .

...
...

...
. . .

...

C

K1 C

K2 · · · C

KK

0 0 · · · F

K

F

T

1 0 · · · 0 0 0 · · · 0

0 F

T

2 · · · 0 0 0 · · · 0

0 0 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · F

T

K

0 0 · · · 0

3

77777777777777775

2

66666666666666664

�1

�2
...

�

K

⌘1

⌘2

⌘3
...

⌘

K

3

77777777777777775

=

2

66666666666666664

c10

c20
...

c

K0

f01

0

0
...

0

3

77777777777777775

(6.9)

where:

[C
mn

]
ij

= Cov

t

⇣
X (m)

si ,X (n)
sj

⌘
= C

mn

(s
i

� s

j

)

c

j0 =

2

66664

C

jk

(ks1 � s0k)
C

jk

(ks2 � s0k)
...

C

jk

(ks
Nj � s0k)

3

77775
,�

j

=

2

66664

�

j1

�

j2
...

�

jNj

3

77775
,⌘

j

=

2

66664

⌘

j0

⌘

j1
...

⌘

jd

3

77775
,

F

j

=

2

66664

f0(s1) f1(s1) · · · f

L

(s1)

f0(s2) f1(s2) · · · f

L

(s2)
...

...
...

...

f0(sNj) f1(sNj) · · · f

L

(s
Nj)

3

77775
,f0j =

2

66664

f0(s0)

f1(s0)
...

f

L

(s0)

3

77775
.

The system given in equation (6.9) is analogous to the system of universal co-

kriging equations outlined in chapter 3 and in Chiles and Delfiner [1999].

Parameter inference is analogous to the parameter inference in conventional

co-kriging. First, functional regression (Ramsay and Silverman [2005]) is used to

compute the functional drift of each of the elements of multivariate functional data,
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then the estimates of the trace-auto and trace-cross covariances are computed on the

functional residuals and admissible covariance structures are fitted with the linear

model of coregionalization (LMC, Goovaerts [1997]).

Auto-covariance estimation is performed simply by means of trace-variography Gi-

raldo [2009], Menafoglio et al. [2013]. Recall the trace variogram estimator presented

in chapter 3

�

k,k

(h) =
1

2|N(h)|
X

(i,j)2N(h)

ˆ
T

⇣
X (k)

si (t)� X (k)
sj (t)

⌘2
dt (6.10)

where N(h) denotes the set of pairs (i,j) such that h � �h  ks
i

� s

j

k  h +

�h. To find the cross-covariance estimators we proceed by analogy with multivariate

geostatistics by generalizing the well known cross-variogram (Goovaerts [1997]) and

pseudo cross-variogram (Clark et al. [1987]) estimators:

1. The trace cross-variogram estimator:

�

k,l

(h) =
1

2|N(h)|
X

(i,j)2N(h)

ˆ
T

⇣
X (k)

si (t)� X (k)
sj (t)

⌘⇣
X (l)

si (t)� X (l)
sj (t)

⌘
dt (6.11)

2. The pseudo trace-cross-variogram estimator:

�

k,l

(h) =
1

2|N(h)|
X

(i,j)2N(h)

ˆ
T

⇣
X (k)

si (t)� X (l)
sj (t)

⌘2
dt (6.12)

The properties of the trace cross-variograms are the same as their scalar coun-

terparts. The pseudo trace cross-variogram is always positive and applicable to both

isotopic and heterotopic data sampling, while the trace cross-variogram is only ap-

plicable in the case of isotopic data sampling (Wackernagel [2010]). In practice,

inference and fitting of trace variograms over high dimensional input spaces is limited

to omni-directional variograms. This is mainly due to di�culties with unidirectional

(marginal) variogram estimation in high dimension that is necessary for product and

sum covariance structures (De Cesare et al. [2001]).

Currently, the method of moments is the only possible parameter inference proce-

dure in trace-cokriging. This is because the concept of density for functional data is
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not mathematically defined (Delaigle and Hall [2010]) making it di�cult to formulate

any type of automated maximum likelihood-based parameter inference procedure.

The range of applicability. As mentioned previously, the temporal domain

over which the elements of the vector X
s

are defined must be coincident in order

to compute the trace cross-covariances. In multi-fidelity modeling, this is almost

always the case since low-fidelity simulations produce the same type of output data

as their high-fidelity counterparts. Another requirement for this modeling strategy to

work is that the discrepancies between functional data be mostly in amplitude rather

than in phase (figure 6.1 A.). Interpolation of phase shifted functional data is much

more complex and it would require modeling with warping functions (Ramsay and Li

[1998]) that is beyond the scope of the presented work.

Figure 6.1: A - Amplitude shifted ensemble of functions. B - Phase shifted
ensemble of functions. C - Phase-amplitude shifted ensemble of functions

6.2 Projection Based Interpolation of Multivariate

Functional Data

Alternatively, one can approach the problem of interpolation of multivariate func-

tional data from a projection perspective. The idea is to assume K basis systems,

one for each level of multivariate functional data, and then use the coe�cients of basis

expansion in combination with multivariate geostatistics to forecast new functions at
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some new locations3.

For instance, consider a sample of bi-variate (2-levels) functional data X si =⇣
X (1)

si ,X (2)
si

⌘
T

fully observed over a set of design points s

i

where i = 1, 2, ..., N and

where s is a vector in Rd. Let e(1) = {�(1)
1 ,�

(1)
2 , ...,�

(1)
P

} and e

(2) = {�(2)
1 ,�

(2)
2 , ...,�

(2)
Q

}
be ortho-normal sets of functional principal components of X (1)

si ’s and X (2)
si ’s, re-

spectively, and let ⇠

p(k)
si be a principal component score of X (k)

si on �

(k)
p

. As in the

previous section, we assume that each of the two elements of multivariate data is

non-stationary and that it can be decomposed into deterministic mean and globally

second order stationary residual

X (k)
s (t) = m

(k)
s (t) + �

(k)
s (t) (6.13)

We have shown in chapter 3 that interpolation of non-stationarity in functional data

translates into non-stationarity of fpc scores (or basis coe�cients):

⇠

p(k)
si

= m̂

p(k)
si + r

(k)
si ;

m̂

p(k)
si =

dX

l=0

�

l

f

l

(s), �

l

2 R.
(6.14)

The new function of k-th level is estimated by forecasting its fpc scores with a linear

combination of fpc scores of all already observed functions (across all levels):

⇠

p(k)
s0 =

NX

i=1

PX

p=1

�

(1)
i,p

⇠

p(1)
si

+
NX

i=1

QX

q=1

�

(2)
i,q

⇠

p(2)
si

. (6.15)

This is a co-kriging problem that is analogous to the single variate projection based

interpolation outlined in chapter 3. Hence, the weights �(k)
p,q

are found by solving the

well-known system of universal co-kriging equations (Chiles and Delfiner [1999], pg.

300):

3It is not a huge intellectual leap to develop this extension after the developments presented in
chapter 3. As a matter of fact Bohorquez et al. [2016] had the same idea however in di↵erent context.
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Where [C lm

pq

]
ij

= Cov(⇠plsi , ⇠
qm

sj
) = C

lm

pq

(si�sk), and F

l

p

(i, .) = {f0(si), ..., fL(si, )}.
Parameter inference. Given that this approach e↵ectively transforms a mul-

tivariate functional interpolation problem into a multivariate (vector) interpolation

problem, many parameter inference procedures developed in multivariate geostatis-

tics are available. Both variogram fitting procedures with the linear model of co-

regionalization (LMC, Goovaerts [1997]), as well as automated maximum likelihood

approaches are applicable (Gelfand et al. [2004], Fricker et al. [2013], Zhang [2007]).

The size of the model depends on the size of the training dataset and the number of

kept functional principal components on every level of multivariate functional data.

Bohorquez et al. [2016] reported numerical di�culties with the linear model of co-

regionalization for large numbers of kept principal components.

The range of applicability. The projection-based approach is applicable to a

variety of modeling situations. The method is not limited to amplitude shifted curves,

instead, it can work with phase, amplitude and phase-amplitude shifted ensembles

(figure 6.1). The only consequence that higher complexity in functional data could

have on this method is the increase of the dimensionality of the model that ultimately

a↵ects parameter inference4. One attractive feature of this approach is that it does not

require that all levels of multivariate data be defined on the same temporal domain.

What’s more the components of multivariate data do not even need to be functional.

The method can work equally well with proxies that produce outputs of di↵erent type

(i.e. flow diagnostics (Shahvali et al. [2012]), image processing based proxies, etc.).

4The higher the complexity in functional data, the larger is the number of fpcs needed to ade-
quately describe such data.
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6.3 Performance Analysis on Synthetic Datasets

In this section, we set out to explore and assess the performance of the previously

presented emulation techniques on a purely synthetic numerical model of the subsur-

face. For this purpose, we developed a homogeneous 3D oil-water reservoir model

with 4 producer wells at the top of the reservoir structure, and an aquifer connected

at the bottom left corner for pressure support (Figure 6.2 left). The four wells pro-

duce two types of fluid, oil and water. Initially, the reservoir is saturated with oil and

wells do not produce any water until the reservoir pressure becomes low enough to

allow water encroachment from the aquifer. The speed of encroachment is dependent

on the reservoir properties and the viscosity of the present fluids. One typical field

water production rate (FWPR) response is given in Figure 6.2 right, while the model

parameters that are the most influential on FWPR are summarized in Table 6.1.

Given that all of the presented computer code emulation techniques aim to make

use of both computationally expensive (high fidelity), and computationally cheap (low

fidelity) simulations two levels of numerical abstractions were considered. High fidelity

flow simulations, were computed on a finely gridded reservoir volume (150x100x25),

while the low fidelity flow simulations were computed on a coarsely gridded reservoir

volume (150x100x13). The two solutions produce somewhat di↵erent, but highly

correlated (⇢ = 0.91) flow responses (Figure 6.2 - right).

We used the model to develop two datasets for methodological comparisons and

assessment. The first dataset considered only two input parameters, PERMZm and

PORVm (Table 1). The second dataset considered three input parameters: PER-

MZm, PORVm, and PERM (Table 1). Both datasets consist of training and testing

subsets. The training subsets were produced by latin hypercube sampling and were

evaluated with both high and low fidelity flow simulations. The test sets were pro-

duced with uniform sampling and were evaluated only with the high fidelity flow

solution (the target response). The two datasets are summarized in Table 6.2.

Output data pre-processing The training ensemble of FWPR curves of the

two parameter dataset is given in Figure 6.4 - right. What is obvious from this figure

is that the data are shifted in both phase and amplitude. Trace based co-kriging is

not directly applicable in this case since the method can only work with amplitude

shifted data. However, the ensemble of phase-amplitude shifted FWPR curves can
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Figure 6.2: Left - 3D reservoir model; Right - An example of proxy and full solu-
tions.

Table 6.1: Simulation parameters

Parameter Value Description

PORVm (-) 1-1000 Aquifer Strength
PERMZm (-) 0-1 Vertical Perm. (K mult.)

K (md) 25 Reservoir permeability
� (frac) 0.2 Reservoir porosity
µ

o

(cp) 0.0002 Oil Viscosity
µ

w

(cp) 0.00001 Water viscosity

be transformed into an ensemble of amplitude-shifted curves with a simple ad-hoc

procedure. For one curve, the procedure consists of identification of the water break-

through time, followed by a simple regression fit to the early post water breaktrhough

rates and substitution of the zero production rates with regressions solution. This

procedure is explained visually in Figure 6.3.

6.3.1 Analysis: Computer Experiment with Two Parameters

Our first analysis focuses on the two parameter dataset. In this exercise, only a por-

tion of the available training data was used, namely 50 high fidelity flow (fine) sim-

ulations and 150 low fidelity simulations (proxy). The sub-sampled training dataset

was used to fit the following models: Universal Trace Kriging (UTrK) by Menafoglio



CHAPTER 6. FORECASTING WITH SECONDARY DATA 118

Table 6.2: Summary of the produced datasets

Dataset type # Proxy # Full # Test

2 parameter 189 176 400
3 parameter 466 462 400

Figure 6.3: Curve transformation procedure. Left - Original curve with a straight
line fitted through the early breakthrough rates. Right - The resulting ”transformed”

curve.

et al. [2013], Universal Trace Co-Kriging (UTrCoK) introduced in this paper, pro-

jection based interpolation for functional data (UCoK) by Menafoglio et al. [2016b]

(chapter 3), and projection based Universal co-kriging with secondary functional data

(UCoK2) presented previously. Note that UCoK and UTrK were fitted only on the

full physics responses (i.e., without considering the low-fidelity model) since they are

univariate functional interpolation methods.

Given that the projection based methods can be fitted with a variable number of

principal components, we produced models with two (su�x: ”.K2”), and three (suf-

fix: ”.K3”) leading principal components. For parameter inference, we used vari-

ogram fitting and linear model of coregionalization (LMC, Goovaerts [1997]) on omni-

directional variograms computed over the unit cube of re-scaled input parameters5.

The produced statistical models were then used to predict the test set (400 curves)

and summarize the predictions by computing the sum of squared errors (SSE) of each

5This common practice was proposed by Sacks et al. [1989]
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Figure 6.4: Raw and transformed FWPR curves from 2 parameter dataset. Left -
Raw curves colored by PERMZm, Right - Transformed curves colored by PORVm

prediction.

SSE

i

= kX (k)
i

(t)� X̂ (k)
i

(t)k2 (6.16)

To better appreciate the magnitude of the error all SSE’s were normalized by the

average squared norm of the entire test set (400 simulations).

SSE

n

i

=
SSE

i

1
400

P400
i=1kX

(k)T
i

(t)� µ

(k)T (t)k2
(6.17)

µ

(k)T (t) is the mean of the test set.

Empirical variograms of the trace based co-kriging and universal co-kriging with sec-

ondary data are given in Figures 6.5 and 6.6 along with the fits produced with LMC.

Test sets error summary is given in Table 6.3, and visually in Figure 6.8. We

observe that trace based methods performed slightly better than projection based

approaches, and we also observe that incorporation of the secondary data in a form

of proxy solution improved the overall SSE. Examples of forecasts produced with each

interpolation approach are shown in figure 6.7 for four design points.

6.3.2 Monte Carlo Analysis

To assess the performance under variable training set sizes and di↵erent ratios of full

physics to proxy simulations, we set up a Monte Carlo study. For variable numbers
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Figure 6.5: Empirical omni-directional trace variograms and models fitted with
the LMC (Sph( d

0.85)). Left - trace-cross-variogram, middle and right auto trace-
variograms

Table 6.3: 2D dataset - Error Summary Table (SSE)

min p0.25 p0.5 p0.75 max mean
Projection Methods

UcoK.K2 0.0019 0.0080 0.0205 0.0535 2.3807 0.0739
UcoK.K3 0.0004 0.0026 0.0052 0.0112 2.2712 0.0483
UcoK2.K2 0.0018 0.0088 0.0181 0.0486 0.9568 0.0482
UcoK2.K3 0.0005 0.0027 0.0049 0.0086 1.0661 0.0239

Trace Methods
UTrCoK 0.0000 0.0001 0.0005 0.0034 0.4143 0.0175

UTrK 0.0000 0.0001 0.0007 0.0045 2.2030 0.0416

of proxy and full physics simulations we repeated the previous forecasting study one

hundred times, and at each step we computed the mean and the median of the test

sets SSE’s. Distribution of the mean and the median of SSE for each fitting method on

the two parameter dataset is shown in Figure 6.9. The same analysis was performed

on the three parameter dataset and its results are shown in Figure 6.10.

We observe that the median of the SSE was consistently lower for trace-based

methods compared to projection-based methods. We also observe that all methods

had similar SSE for a large number of full physics simulations.
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Figure 6.6: UCoK2: Empirical auto and cross omni-directional variograms and
models fitted with the LMC for K=2. (Sph(d/0.94).

6.4 Case Study: Uranium Contamination Dataset

In this section, we apply and illustrate the presented computer code emulation tech-

niques on a real case study. The case study considers a numerical model of uranium

bio-remediation experiment in Rifle Colorado (Yabusaki et al. [2007], Li et al. [2011],

Kowalsky et al. [2012]). The experiment consisted of acetate and tracer injection into

eleven injection wells and monitoring their concentrations at twelve monitoring wells

(Figure 6.11 left). The presence of acetate in the subsurface is known to stimulate bio-

chemical reactions between in-situ bacteria and mobile uranium U(VI) ions (Williams

et al. [2011]), producing immobile uranium U(IV) ions. Since there is no direct way

of inferring the volumes of immobilized uranium, indirect inference by means of nu-

merical simulation and inversion is necessary. In particular, spatial distributions of

immobilized uranium from the numerical models that matched the measured data at

monitoring wells can be used to estimate of the immobilized volumes of U(VI).

Numerical modeling of bio-remediation is di�cult and computationally expen-

sive. One has to consider both geological and geochemical uncertainties and complex
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Figure 6.7: 2 parameter dataset: An example of forecasts for four randomly selected
design points.

physics need to be simulated with advanced reactive transport numerical simulators.

Simulation models used in this case study were developed with Crunchflow (Steefel

et al. [2015]), a reactive transport simulator. The contaminated site is an unconfined

aquifer in aluvial floodplane that was modeled as a single layer with 64x68x1 grid

blocks with thickness of about 2.5 meters. We used latin hypercube sampling to vary

five input parameters: three geological and two geochemical. Geological parameters

are: mean log permeability (meanLogK) of the reservoir, correlation length (CorrL)

of reservoir permeability and the variance of reservoir permeability (varK), while geo-

chemical parameters are kinetic rates of microbial reactions: ferric rate (FerricRate)

and microbial sulfate reduction rate (SRBrate). The parameters and their ranges

are summarized in Table 6.4. Geological properties were modeled with sequential
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Figure 6.8: Normalized SSE distribution of each forecasting approach.

Gaussian co-simulation (coSGS, Verly [1992]), and a total of 500 geological models

were developed. While this model is fairly small, one simulation run took around

2 hours due to high complexity of the modeled physics. To demonstrate and eval-

uate our computer code emulation methodology we upscaled/upgridded the models

to produce proxy flow simulations. Upgridded models contained 32x34x1 grid blocks

and this simplification reduced simulation time to just about 10 minutes.

Table 6.4: Uranium contamination model parameters

Parameter Range

meanLogK -10.5 to -10
CorL 3 m - 7 m
varK 0.2 - 0.7
FerricRate 1 - 2
SRBRate 0 - 2

In our analysis, we considered simulated acetate concentration curves from mon-

itoring well number 11 (Figure 6.12). With this data we conducted the same type

of Monte Carlo study as we did before on the synthetic reservoir model. The only

di↵erence was that in this case we did not have a fixed test set, instead at every iter-

ation we randomly sampled for variable numbers of proxy and full physics reservoir

models and a non overlapping test set of size 100. In all models, we used variogram



CHAPTER 6. FORECASTING WITH SECONDARY DATA 124

Figure 6.9: Error analysis of Monte Carlo results on 2 parameter dataset.
(Note: mean = mean of means; median = mean of medians accross 100 datasets as

varied in MC study)
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Figure 6.10: Error analysis of Monte Carlo results on 3 parameter dataset.
(Note: mean = mean of means; median = mean of medians accross 100 datasets as

varied in MC study)
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fitting procedure for parameter inference, and in the case of projection-based methods

we considered five and six principal components since they captured the most of the

variance in this data (98%). A few forecasts produced with the trace-based methods

on this dataset are given in Figure 6.13, while the results of the Monte Carlo study

are given in Figure 6.14.

We observe that the results of the uranium case study are very similar to the results

we obtained on synthetic datasets. Trace-based approach slightly outperformed the

projection-based approaches, and in this case there was not much di↵erence between

single variate projection based approach (UCoK) and multivariate projection based

approach (UCoK2).

Figure 6.11: Uranium contamination model. Left - spatial setup (modified from
Kowalsky et al. [2012]). Right - A map of immobilized uranium at the end of

simulation time

6.5 Chapter Conclusion

In this chapter we introduced and analyzed trace co-kriging (UTrCoK), a novel and

original method for interpolation of multivariate functional data. The method is

useful for emulation of functional variables produced by computer codes of variable

degrees of fidelity and numerical speed. The proposed method is applicable to sit-

uations where all computer codes produce the same type of functional outputs (i.e.

rate vs. time), and where discrepancies between the functions are in amplitude rather
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Figure 6.12: Uranium Dataset: Full physics and approximate physics datasets

than in phase. In addition, we also presented a projection-based multifidelity com-

puter code emulation technique. The two methods were applied to real and synthetic

subsurface flow modeling case studies and their solutions were then compared to the

solutions of another two single-variate functional interpolation methods: universal

trace kriging (UTrK: Menafoglio et al. [2013], chapter 3) and universal co-kriging for

functional data (UCoK: Menafoglio et al. [2016b], chapter 3). To gain deeper under-

standing about the ranges of applicability of each method, we set up three Monte

Carlo studies in which we varied the size of the training sets and the ratios between

proxy and full physics simulation runs. Based on the results of our analyses we draw

the following conclusions:

• In general UTrCoK performed best out of all considered methods, and partic-

ularly better in cases when the number of high fidelity flow simulations was

low. This is due to the fact that proxy flow simulations in combination with

the linear model of coregionalization (LMC) helped produce better variogram

fits.

• UTrCoK requires a much lower modeling e↵ort. Trace variography required

LMC fitting over three empirical variograms for two levels of computer code,

while the projection-based method on the same data and with only two principal

components on each level of computer code required computing and fitting

ten variograms. Automated parameter inference procedures in the context of

UCoK2 were not attempted in this work.
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Figure 6.13: Uranium Dataset: A few forecasts
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Figure 6.14: Error analysis of Monte Carlo results on Uranium contamination
dataset.

(Note: mean = mean of means; median = mean of medians accross 100 datasets as
varied in MC study)
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• All methods, single and multivariate, converged to the same solution for larger

numbers of high fidelity flow simulations. This result suggests that proxy flow

simulations become useless after a certain number of full physics simulations

and that one can approximate the true solution by means of single variate

functional interpolation. This result raises an important practical question of

how to estimate this critical number of full physics simulations, or when to stop

sampling with the proxy?

• Projection-based methods performed worse than trace based methods for low

numbers of high fidelity flow simulations. This poor performance is due to

di�culties with the estimation of the functional principal components with very

low number of training functions. This in combination with the previous item

suggests that there is a specific (most likely narrow) range of high fidelity runs

for which it is beneficial to use proxy modeling with projection based approach.

We hypothesize that this range depends on the complexity of functional data

and the dimensionality of the input space. This topic remains to be investigated

in future research.

In our analyses we relied on variogram fitting for parameter inference which was

our only option in the case of trace based methods. However, we do recognize the

need for the development of an automated procedure for parameter inference of trace

based methods. This subject will also be in the focus of our future work.

6.5.1 Application to Shale Reservoir Modeling

In the US there is a plethora of information from thousands of vertical wells that were

drilled through nowadays developed shale plays. Such information mostly includes

well logs and in specific cases production data. For example, Anadarko dataset con-

sidered in chapters 4 and 5 also included 2500 well logs from vertical wells drilled in

the study area. The challenge is how to incorporate such massive amount of data into

data driven shale forecasting framework. We hypothesize that the projection based

approach presented in this chapter can be applied with slight modifications (as in

chapter 4) to this forecasting problem. This topic is left to be explored in the future

research.
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