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Abstract 

This study investigated methods of characterizing areally heterogeneous reservoirs 

through the interpretation of pressure data and tracer data. The analysis of pressure 

data and the analysis of tracer data were studied both individually and simultane- 

ously. 

A nonlinear least square method was applied to interpret multiwell transient pres- 

sure data from interference tests. Several models, including anisotropic reservoir, 

circular discontinuity, no-flow linear boundary and interaction among multiple wells 

were investigated. Their solutions were reformulated to fit into the nonlinear regres- 

sion algorithm. Results showed that using multiwell data avoids inconsistent results 

for the selected reservoir model, increases the tolerance to noise in the data, increases 

the confidence of the interpretation and improves the convergence of the regression 

search. 

Analytical solutions to tracer flow were obtained for three cases: radial flow, 

linearly varying dispersivity and linear flow in composite reservoir. Another semi- 

analytical solution to tracer flow in two dimensional reservoirs based on the charac- 

teristic method is presented. 

The method of Green’s functions has been a powerful tool to solve unsteady flow 

problems in homogeneous reservoirs. The application of the Green’s function method 

was extended to diffusivity problems in heterogeneous reservoirs. A fundament a1 

formula was obtained to express the general pressure solution to the diffusivity equa- 

tion with nonhomogeneous initial and boundary conditions in terms of Green’s func- 

tions. Through practical examples, appropriate methods were suggested for obtaining 

Green’s functions that are more difficult to find in heterogeneous problems than in 
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homogeneous ones. Reciprocity is a basic and useful property which facilitates the 

understanding to porous media flow problems. With the Green’s function method 

developed, the conditions under which the Principle of Reciprocity holds in hetero- 

geneous formation were studied. The application of the Green’s function method to 

convection-dispersion equation and its limitations are also discussed. 

After the analysis of pressure data and tracer data are described individually, di- 

rect method is presented to simultaneously interpret pressure data and tracer data 

from multiple wells to characterize the areal permeability distribution in heteroge- 

neous reservoirs. Since tracer data are more sensitive to heterogeneity than pressure 

data, integration of the two kinds of data should give a better description of the 

reservoir. A correlation between permeability and dispersivity was investigated, and 

used to reformulate the convection-dispersion equation and diffusion equation to a 

system of first-order equations in permeability. The system of equations can then 

be solved to yield the permeability distribution for appropriate boundary conditions. 

Advantages and disadvantages of this new scheme are discussed. As an example, the 

time function method was applied to the interpretation of pressure and tracer data 

of a multiwell reservoir with a circular discontinuity. 

V 



Acknowledgements 

In completing this dissertation, I am indebted to many people and organizations. 

First, I thank my advisor, Dr. Roland N. Horne, for his guidance, suggestions, and 

continuous encouragement during the course of this study and for his encouragement 

extended beyond this study. I wish to express my gratitude to Dr. Thomas A. Hewett 

and Dr. Clayton V. Deutsch for serving on the reading committee, and to Dr. Martin 

Blunt for participating on the examination committee. Appreciation is extended to 

the faculty, staff, and students of the Department of Petroleum Engineering, who 

have made my life as a graduate student so enjoyable. 

I thank my family for all the love that they have given me and will give me in 

the future. Without their supports and understandings, this work would never have 

been completed. 

This material is based upon the work supported financially by the U.S. Depart- 

ment of Energy under grant DE-FG07-90 ID12934 to the Stanford Geothermal Pro- 

gram. This financial support is gratefully acknowledged. 

vi 



Contents 

Abstract 

Acknowledgements 

iv 

vi 

1 Introduction 

2 Use of Pressure Data from Multiple Wells 7 
2.1 Multiwell Data of Anisotropic Reservoir . . . . . . . . . . . . . . . .  7 

2.1.1 Mathematical Considerations . . . . . . . . . . . . . . . . . .  8 
2.1.2 Field Example . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 

2.2 Heterogeneity of the Circular Discontinuity Type . . . . . . . . . . .  16 
2.2.1 Discontinuity Without Wellbore Storage . . . . . . . . . . . .  17 
2.2.2 Discontinuity with Wellbore Storage . . . . . . . . . . . . . .  24 
2.2.3 Transformation of Coordinate System . . . . . . . . . . . . . .  26 
2.2.4 Objective Function . . . . . . . . . . . . . . . . . . . . . . . .  28 
2.2.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35 
2.2.6 A Special Case - Concentric Active Well . . . . . . . . . . . .  38 

2.3 Analysis of Drawdown-Buildup Pressure Data in Multiwell Systems . 47 
2.4 No-Flow Linear Boundary 59 
2.5 Interpreting Multiwell Pressure Data of Ohaaki Geothermal Field . . 63 

. . . . . . . . . . . . . . . . . . . . . . . .  

3 Green's Functions and the Reciprocity Principle in Heterogeneous 
Media 72 
3.1 Definition of Green's Functions . . . . . . . . . . . . . . . . . . . . .  72 

vii 



3.2 Properties of Green’s Functions . . . . . . . . . . . . . . . . . . . . .  75 
3.3 Pressure in Terms of Green’s Functions . . . . . . . . . . . . . . . . .  76 
3.4 Examples of Green’s Functions . . . . . . . . . . . . . . . . . . . . .  76 

3.4.1 Case 1: Separation of Variables . . . . . . . . . . . . . . . . .  76 
3.4.2 Case 2: Fourier Transformation . . . . . . . . . . . . . . . . .  78 
3.4.3 Case 3: Working in Laplace Space . . . . . . . . . . . . . . . .  80 

3.4.4 Case 4: Decomposition . . . . . . . . . . . . . . . . . . . . . .  82 
3.5 Anisotropic and Heterogeneous Reservoirs . . . . . . . . . . . . . . .  84 

3.6 Principle of Reciprocity . . . . . . . . . . . . . . . . . . . . . . . . . .  85 
3.7 Effects of Wellbore Storage and Skin . . . . . . . . . . . . . . . . . .  86 

3.8 Green’s Functions for Tracer Flow Problems . . . . . . . . . . . . . .  88 

4 Analytical Solutions to Tracer Flow 90 

4.2 Linear Tracer Flow in a Composite Reservoir . . . . . . . . . . . . . .  95 
4.1 Convection-Dispersion Equation with Linearly Changing Dispersivity 92 

4.3 Radial Convection-Dispersion Tracer Flow in Homogeneous Reservoir 103 
4.4 Streamlines in an Infinite Reservoir with a Circular Discontinuity . . 104 

5 Using Tracer and Pressure Data Simultaneously 113 
5.1 Dispersivity and Permeability Correlation . . . . . . . . . . . . . . .  113 
5.2 Integrating Tracer and Pressure Data in Heterogeneous Reservoirs . . 115 
5.3 Ill-posedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  116 

5.4 Permeability Constraints . . . . . . . . . . . . . . . . . . . . . . . . .  118 

5.5 Direct Method for Tracer Data . . . . . . . . . . . . . . . . . . . . .  121 

5.6 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125 

6 Conclusions 136 

A Equivalence of two Anisotropic Solutions 142 

B Pressure Expression in Green’s Function 146 

C Reciprocity of Green’s Function 

... 
Vlll 

150 



D Two-Dimensional Green’s Functions in Problems with Variable Per- 
meability 154 

E Pressure and Tracer Solutions for a Multiwell Heterogeneous Sys- 
tern 158 

Nomenclature 164 

Bibliography 168 

ix 



List of Tables 

2.1 
2.2 

2.3 

2.4 

2.5 
2.6 

2.7 

2.8 

Water-injection interference pressure rise above the initial pressure . . 11 
Configuration of the formation . . . . . . . . . . . . . . . . . . . . . .  28 
Generated pressure data for the reservoir of Example 1 . . . . . . . .  36 

Properties of the reservoir in Example 1 . . . . . . . . . . . . . . . .  37 
Initial guess. matching result and true value . . . . . . . . . . . . . .  38 

Generated pressure data of Example 2 . . . . . . . . . . . . . . . . .  39 
Properties of the reservoir for Example 2 . . . . . . . . . . . . . . . .  40 

Initial guess. matching result and true value . . . . . . . . . . . . . .  40 

X 



List of Figures 

2.1 
2.2 
2.3 
2.4 

Field well pattern in an anisotropic reservoir . . . . . . . . . . . . . .  
Using three sets of pressure data in an anisotropic reservoir example . 
Using nine sets of pressure data in an anisotropic reservoir example . 
Using another three sets of pressure data in an anisotropic reservoir 

example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.5 Infinite reservoir with a circular discontinuity . . . . . . . . . . . . .  

Pressure response versus compressibility of first region . . . . . . . . .  
Pressure response versus permeability of first region . . . . . . . . . .  

2.8 Pressure response versus compressibility of second region . . . . . . .  

2.10 Pressure response versus position of active well (distance) . . . . . . .  
2.11 Pressure response versus position of active well (angle) 

2.6 

2.7 

2.9 Pressure response versus permeability of second region . . . . . . . .  

. . . . . . . .  
2.12 Pressure response versus radius of discontinuity . . . . . . . . . . . .  
2.13 Comparison of pressure response in active well with or without wellbore 

storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.14 Comparison of pressure response in observation well with or without 

wellbore storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.15 Transformation of two coordinate systems . . . . . . . . . . . . . . .  
2.16 Well pattern for an infinite reservoir with a circular discontinuity . . 
2.17 Objective function versus various position of active well . . . . . . . .  
2.18 Objective function versus various position of active well . . . . . . . .  
2.19 Objective function versus various position of active well . . . . . . . .  
2.20 Objective function versus various position of active well . . . . . . . .  

10 
12 

14 

15 
18 

20 
20 
21 

21 

22 

22 

23 

25 

25 
27 

29 
30 

31 
32 

33 

Xi 



2.21 Comparison of pressure responses between skin factor approach and 

discontinuity approach . . . . . . . . . . . . . . . . . . . . . . . . . .  

discontinuity model approach . . . . . . . . . . . . . . . . . . . . . .  
2.22 Comparison of pressure responses between skin factor approch and 

2.23 Matching result for concentric model . . . . . . . . . . . . . . . . . .  
2.24 Matching result for concentric model . . . . . . . . . . . . . . . . . .  
2.25 Interference pressure response versus production time . . . . . . . . .  
2.26 Pressure response versus production time and wellbore storage effect . 
2.27 Pressure response versus production time and wellbore storage effect . 
2.28 Pressure response versus production time and wellbore storage effect . 
2.29 Pressure response versus production time . . . . . . . . . . . . . . . .  
2.30 Pressure response versus production time and wellbore storage effect . 
2.31 Pressure buildup response versus time after shut-in . . . . . . . . . .  
2.32 Pressure buildup versus time after shut-in and wellbore storage effect 

2.33 Configuration of six-well and infinite-well systems 

2.34 Pressure response versus production time . . . . . . . . . . . . . . . .  

2.36 Pressure buildup response versus time after shut-in 

2.38 Drawdown pressure response versus production time . . . . . . . . . .  
2.39 Drawdown pressure response versus production time 

2.41 Contour of objective function using two sets of pressure data . . . . .  
2.42 Contour of objective function using three sets of pressure data 

2.43 Approximate matching results from Leaver e t  aZ(1988) 

2.45 Matching results with initial pressures as parameters 
2.46 Matching results with weights emphasizing early data . . . . . . . . .  

. . . . . . . . . . .  

2.35 Pressure response versus production time and wellbore storage effect . 
. . . . . . . . . .  

2.37 Pressure buildup versus time after shut-in and wellbore storage effect 

. . . . . . . . .  
2.40 Well pattern for an infinite reservoir with a linear no-flow boundary . 

. . . .  
. . . . . . . .  

2.44 Matching results without weights and initial pressures as parameters . 
. . . . . . . . .  

2.47 Matching results with initial pressures as parameters 

2.48 Matching results with weights and initial pressures as parameters 

. . . . . . . . .  
. . 

42 

43 

44 

45 

48 

48 
49 

49 

51 
51 

52 

5 2 

53 

55 
55 

56 

56 
58 
58 

60 
61 

62 

66 
67 

68 

69 
70 
71 

xii 



3.1 Distribution of mobility and storativity . . . . . . . . . . . . . . . . .  82 

4.1 Tracer responses(incorrect) calculated by Stehfest algorithm . . . . .  93 

4.2 Tracer response(correct) calculated by Crump algorithm . . . . . . .  93 

4.3 Comparison of constant dispersivity and linearly changing dispersivity 94 

4.4 Linear tracer flow in composite region . . . . . . . . . . . . . . . . . .  96 

4.5 Tracer profile in one dimensional uniform region . . . . . . . . . . . .  98 

4.6 Tracer profile in one dimension with two different dispersivities . . . .  98 

4.7 Tracer profile in one dimension with two different dispersivities . . . .  99 

4.8 Tracer profile in one dimension with two different porosities . . . . .  99 

4.9 Pressure distribution of two wells in discontinuous reservoir . . . . . .  106 

4.10 Streamlines of two wells in a homogeneous reservoir . . . . . . . . . .  107 
4.11 Streamlines of two wells with a discontinuity of lower permeability . . 108 
4.12 Streamlines of two wells with a discontinuity of higher permeability . 109 

4.13 Tracer profile in a doublet system of infinite reservoir . . . . . . . . .  111 

4.14 

5.1 
5.2 

5.3 

5.4 

5.5 
5.6 

5.7 

5.8 

5.9 

5.10 

5.11 

Tracer profile in a doublet system of infinite reservoir . . . . . . . . .  111 

Propagation of concentration of discontinuity at x = 0 . . . . . . . .  124 

x-y-t diagram showing characteristic surface for the concentration of 

radial flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124 

Pressure distribution of multiwell system with a circular discontinuity 126 

Pressure contour of multiwell system with a circular discontinuity . . 126 

128 

Streamline of multiwell system but without the circular discontinuity 128 

Concentration front in the multiwell system with a circular discontinuity129 

Concentration front in the multiwell system without the circular dis- 

continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  130 

x-y-t diagram showing the time at which the concentration front arrives 

Streamline of multiwell system with a circular discontinuity . . . . . .  

as a function of (x. y) . . . . . . . . . . . . . . . . . . . . . . . . . . .  131 
The time at which the concentration front arrives as a function of (x. y)131 
Permeability distribution calculated using pressure and tracer data 

from 300 by 300 observation points . . . . . . . . . . . . . . . . . . .  133 

... 
Xll l  



5.12 Permeability distribution calculated using pressure and tracer data 

from 100 by 100 observation points . . . . . . . . . . . . . . . . . . .  134 

from 30 by 30 observation points . . . . . . . . . . . . . . . . . . . .  135 
5.13 Permeability distribution calculated using pressure and tracer data 

xiv 



Chapter 1 

Introduction 

Pressure tests and tracer tests are used frequently to estimate parameters and identify 

flow paths in geothermal reservoirs that are often controlled by the large heterogeneity 

in permeability due to fractures. 

The use of tracer tests to determine the nature of the flow paths in geothermal and 

groundwater reservoirs was studied broadly in the 1980s. Jensen and Home (1983) 
developed a matrix model to obtain the tracer returns from fractured reservoirs. A 
similar model was used to forecast the thermal breakthrough from tracer test data by 

WaZkzlp and Home (1982). A single well tracer test in fractured geothermal reservoirs 

was studied by Kocabas and Home (1987). Due to the geometric complexity in 

representing the fractures, all these models were applied only to systems with one or 

two fractures. There has been little work done in solving the tracer problem for a 

multiply fractured reservoir that also includes the geometric effects of the fractures. 

Tracer tests are believed to be more sensitive to heterogeneity than pressure tests. 

Pressure interference tests are good for determining directional permeability trends 

and the average properties between two wells, while well-to-well tracer tests indi- 

cate the extent of heterogeneity that is merely averaged in the pressure interference 

tests. These two types of tests describe different characteristics of the reservoir. 

Thus, running both tests may be helpful. In addition, obtaining both pressure and 

tracer data should help in reducing the uncertainty or nonuniqueness in the solutions. 

Nonuniqueness always arises with either tracer test analysis or pressure test analysis 

1 



CHAPTER 1. INTRODUCTION 2 

alone because the property identification problem is under-determined when the het- 

erogeneity is represented as a spatial function. It is important to coordinate different 

studies, such as geology, geophysics, coring, well logging, pressure testing and tracer 

testing etc. so that the interpreted properties of the reservoir are compatible with 

all the sources of information. The central emphasis of this work is on combining 

pressure data and tracer data from multiple wells. 

Among the efforts to integrate tracer data with other type of data, Hyndman (1993) 

presented the Split Inversion Method to combine crosswell seismic and natural gra- 

dient tracer tests data in a process-oriented parameter estimation algorithm. This 

iterative method can estimate the location and shape of large-scale lithologic zones, 

and the mean seismic velocity, hydraulic conductivity, and dispersivity within each 

zone. Peters and Afzal (1992) made effort in other direction by using CT imaging 

data of the media to estimate permeability and porosity distributions. The model 

developed was for one-dimensional linear incompressible flow of st able displacement 

in laboratory-scale porous media. 

The convection-dispersion equation has been the model used most commonly to 

describe transport phenomena in porous media. Bear (1961) considered the concen- 

tration distribution, in two dimensions, resulting from a point tracer injection into a 

uniform macro-flow and showed that an approximated variance of this concentration 

distribution yields a tensorial coefficient of dispersions Dij, and that this tensor could 

be related to a fourth rank dispersivity tensor a i j k l ,  the components of which were de- 

termined by geometrical characteristics of the porous medium only. De Jossenlin de 

Jong and Bossen (1961) subsequently established a dispersion equation on this basis, 

valid for three-dimensional convective tracer transport through an isotropic porous 

medium. De Jossenlin de Jong and Bossen (1961) showed that the dispersion tensor 

resulting from Bear’s analysis could be written 

Abbaszadeh-Dehghani (1982) developed the analytical solutions to immiscible dis- 

placements for a variety of repeated flooding pattern. The dispersion effects were 
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considered by computing the concentration of the displacing fluid along the stream- 

lines. For heterogeneity, Abbaszadeh-Dehghani (1982) studied a stratified model with- 

out layer communication. These noncommunicating layered systems were further 

investigated by Mishra (1987) together with both pressure and tracer data. The 

result Mishra (1987) reached indicated that tracer data convey more information 

than pressure data for describing layered systems. Mishra (1987) also introduced the 

heterogeneity index of&,&) defined as the product of permeability variance and a 

dimensionless correlation length scale to describe the permeability difference. The 

effects of large or small heterogeneity index on tracer flow were compared. 

Yu (1984) studied a one-dimensional, uniform, vertical flow of radioactive nuclide 

in a homogeneous, saturated porous medium with instantaneous adsorption and the 

linear Freundlich isotherm. Linear and nonlinear least square methods were used to 

estimate the parameters iteratively. 

Compared to the tracer problem, pressure problems are usually easier to solve 

analytically. There are a wide variety of analytical well test analysis models in the 

literature. In particular, the Green’s function method has been found to be an effec- 

tive analytical tool to construct pressure responses in homogeneous reservoirs. 

Using the Green’s function method to solve linear ordinary and partial differen- 

tial equations is not a new idea. However, many of the textbooks of mathematics 

only cover the application of this method to simple equations. Starkgold (1979) and 

Roach (1982) showed some examples how to use this method for equations of parabolic 

and hyperbolic equations with constant coefficients. The method of Green’s func- 

tions has been a powerful tool to solve unsteady flow problems for homogeneous 

reservoirs in petroleum engineering. De Wiest (1969) used this method in a prob- 

lem of water flowing through porous media. Gringarten and Ramey (1973) made 

this approach practically useful in petroleum engineering by giving tables of Green’s 

functions for pressure diffusion in homogeneous or anisotropic reservoirs. Oxkan and 
Raghavan (1991) extended these tables and provided solutions in Laplace space, as 

well as for naturally fractured reservoirs. Curslaw and Jaeger (1959) discussed the 

Green’s function approach for problems of heat conduction; however, their definition 

of Green’s function is less useful if applied to composite or heterogeneous regions. 
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A subtle, yet important aspect of using Green's functions in heterogeneous prob- 

lems is their dependence on the Principle of Reciprocity. By investigating the condi- 

tions under which reciprocity holds, we were able to illustrate those problems whose 

solutions are accessible by use of Green's functions. 

The principle of reciprocity is also useful in understanding reservoir physics. 

McKinley e t  al. (1968) investigated the effect of this property in the analysis of in- 

terference well testing. Ogbe (1984) studied this principle in the presence of wellbore 

storage and skin effect for infinite reservoirs. McKinley e t  al. (1968) proved that 

this principle holds if the mobility and storativity are continuously distributed. We 

were able to show that the principle can also be extended to discontinuous distribu- 

tions of reservoir properties, and also investigated the influence of wellbore storage 

on reci pro ci t'y. 

Most studies of well test analysis start by solving the diffusivity equation in which 

permeability or dispersivity and porosity are treated as coefficients. For instance, the 

pressure equation is solved to yield pressure for specific boundary conditions. Once 

this mathematical model is formed, the pressure response can be calculated for any 

given permeability and porosity. The remaining work in the analysis is to compute 

the correct pressure curve to match the real data and infer the needed permeability. 

In computer-aided interpretation, an initial permeability value is estimated, then 

the pressure response is obtained and compared with the observed pressure data. 

Based on the difference, the estimate is adjusted iteratively. This iterative process is 

referred to as the Output Error Criterion by Yeh (1986). When a large set of data 

is involved, this approach will require a large amount of calculation and sometimes 

becomes inefficient and impractical. One of the solutions to this problem is to put a 

filter in front of the interpreter. The filter serves to choose a subset from the whole 

set of data. The question then becomes which subset is a good representation and 

how to avoid inconsistent results interpreted from different subsets. This problem 

is not easy to  solve either. Moreover, the minimization of an error criterion defined 

on the difference between the computed and observed data may be associated with 

multiple local convergences. 
There also exist cases that defeat the output error procedure as shown by Falk (1983). 
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Even though conditions can be specified to guarantee the unique determination of the 

permeability k(x, y), the optimization approximations k;j do not necessarily converge 

to the unique function k(z, y) as the grid spacing decreases. Nonetheless, for the 

output error procedure, the possibility of using regularization method or constrained 

optimization can make the methods attractive in some cases. 

Besides this conventional approach, there have been some attempts to identify 

the parameters by solving the diffusivity equation from the opposite direction. One 

type of the parameter identification approach was called the Direct Method in aquifer 

studies, e.g. Sagar et  al. (1975), also referred to as the Equation Error Criterion by 

Yeh (1986). In this approach, taking the equation 

as an example, the permeability values are considered as dependent variables of pres- 

sure in the form of a formal boundary value problem. If the pressure p is known 

everywhere, then g, 2,  3 and e are also known, and the equation becomes a a!I2 
linear first-order hyperbolic equation in terms of permeabilities. Yeh e t  al. (1983) 

applied this method to an unsteady flow in a heterogeneous, isotropic, and confined 

aquifer. There, kriging was used as a presampling filter for reconstruction and the 

parameter was estimated by using a multiobjective optimization criterion to find the 

optimum dimension. 

Nelson (1968) presented a direct method for a steady flow system called the en- 

ergy dissipation method which was based on the characteristic equation. This method 

requires a boundary condition on permeability since the equation was reduced to a 

first-order partial differential equation in the unknown permeability. For pressure 

interpretation, the finite element method has also been employed in approximating 

pressure and permeability, e.g. Frind e t  al. (1973) and Yeh e t  al. (1983). An alge- 

braic method was developed by Sugar (1975) and its error bound was obtained by 

Yukowitz (1976). This technique utilized the idea that the effect of the permeability 

value at a location is uniquely determined by values of pressure in a neighborhood of 

the location. 

The direct approach has not yet been widely applied to the tracer equation. With 
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the assumption that there is a correlation between dispersivity coefficients and perme- 

abilities, both the tracer equation and the pressure equation will have permeabilities 

as parameters, then permeabilities could be solved directly as unknowns in both the 

pressure and tracer equations. The interpretation of pressure data and tracer data 

together should provide a better estimation of the permeability distribution in het- 
erogeneous reservoirs. 

The goal of this study was the interpretation of pressure data and tracer data for 

multiwell systems. First, the multiwell pressure data were investigated for several 

heterogeneous models with analytical pressure solutions. The methods for finding 

solutions to tracer problems were studied with an emphasis on analytical methods. 

Then, the Green’s function method was established for both diffusivity equation and 

convection-dispersion equation with an investigation of the principle of reciprocity. 

Finally, an approach to integrate pressure and tracer data to estimate areal perme- 

ability distribution was investigated. 



Chapter 2 

Use of Pressure Data from 

Multiple Wells 

Considering the amount of data collected in well test analysis, there are two oppo- 

site scenarios that require special attention: more data than necessary and insuffi- 

cient data. In the first case, interpretation results by conventional methods may be 

nonunique depending on the sufficient subset of data chosen and usually, it is difficult 

to tell which answer is correct or better. One way to avoid the nonuniqueness in this 

approach is to interpret all the applicable data sets simultaneously. 

In this chapter, a nonlinear least square method is presented to analyze multiwell 

transient pressure data for various reservoir models that have simple heterogeneities 

such as anisotropy, circular discontinuity or no-flow boundary. In a multiwell system, 

neighbor wells in production have influence on the buildup pressure data from ob- 

servation wells. The interaction among multiple active and testing wells is discussed 

in Section 2.3. Section 2.5 applies the nonlinear least square method to interpret 

multiwell data from the Ohaaki geothermal field. 

2.1 Multiwell Data of Anisotropic Reservoir 

For an anisotropic formation, the directional permeabilities are the parameters of 

interest as they play an important role on planning reservoir development such as fluid 

7 
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injection. In the 1960s, there appeared a series of papers on the well test analysis for 

anisotropic aquifers in groundwater hydrology. The type-curve matching method for 

multiple observation wells recommended by Papadopulos (1965) and Walton (1970) 
averages the pressure-scale match points to avoid different pressure-scale matches 

that may be found for various observation wells. Based on the observation that the 

pressure scale in pounds per square inch is the same for all the sets of field data, 

as indicated in the solution of anisotropic formation, Ramey (1975) outlined another 

approach to simply align the pressure scale and adjust the time scale until all sets 

of field data match. However, due to noise in real data, the pressure scale matched 

from the pressure data of one well may not be the same as that matched from other 

wells. Nonunique results may arise when the matching starts with the pressure data 

of a different well. Furthermore, the method can only make use of pressure data from 

three wells. Choosing a typical set of three wells from multiple wells is not easy. 

2.1.1 Mat hemat ical Considerat ions 

The theory of fluid flow through an anisotropic medium has been well established. 

Consider a well producing at a constant rate in an infinite anisotropic medium with 

three permeability components as kxx, itxy, kyy. The thickness h and porosity 4 of 

the medium are constant. 

Collins (1961) chose the permeability axes as the coordinates system axes. A 
solution to the governing equation 

d2P d2P dP 
dY dx2  + kYY- = dCLctz k x x  - 

for infinite-acting radial flow was obtained as 

where kxx and k y y  are principal permeabilities. From the general governing equation 

dP 
- 4 C L C t S  

d 2 p  + k y y w  d2P - + 2kzy- d2P 
d x d y  kZX - d X 2  

Papadopulos (1965) derived another solution using Fourier transformation and Laplace 

transformation 
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-$/x kxxy2 + ky,x2 - 2k x h (Pi - PX,Y,t) = --Ei 1 [ ( xy ’)] (2.4) {m’ 141.2qBp 2 0.001056t kxxkyy - kZY 

kxx - kxx 8 = arctan ( k,y ) 
Though these two solutions are mathematically equivalent as shown in Appendix A, 
the solution presented by Papadopulos (1965) is more convenient for the analysis of 

observed pressure data since the permeabilities or permeability axes are unknowns in 

well test analysis. 

When more pressure data than needed are present, using all the sets of data 

Estimating the directional can be achieved by nonlinear least square regression. 

permeabilities is transformed as to minimize the following objective function 
n 

j ( a J ,  y) = C(APi - 
i= l  

where a = d-, /? = kxx , y = k,, and Ap;, At; are t’he measured pressure 

and time; xi, y; are the positions of wells from which Ap;,At; are measured. There 

exist many methods to solve nonlinear least square problems. Among them, the 

Marquardt (1963) method works well for anisotropic formations if a restriction is 

posed that ,By - a = 0.001 when ,@y - a < 0. 

2.1.2 Field Example 

The field example presented by Barney (1975) was interpreted in this section using 

the nonlinear square approach. 

In order to determine whether directional permeability would influence the pro- 

duction in a watered out formation, an injection well test was run. Fig. 2.1 represents 
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I -C(-470y430) 
0 

I-E(475,514) 
0 

1 -D(0,475) 

5-C(-455,0) 
*X 

5-E(475,0) 

9-C(-47OY-460) e 4 
0 

9-E(47OY-41 5) 

Figure 2.1: Field well pattern in an anisotropic reservoir 
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At Ap 
24 4 
47 8 
72 13 
94 17.7 
115 18 
126 18 

Table 2.1 : Water-injection interference pressure rise above the initial pressure 

At 
23.5 
28.5 
51 
75 
95 
120 

95 

At 
47 
71 
94 
113 
124 

_I AP 
6.7 
7.2 
15 
20 
25 

Ap 
10 
17.2 
24 
25.1 
26 

Well 1-E 
At 
21 
47 
72 
94 
115 
122 

At 
27.5 
47 
72 
95 
115 
125 

Ap 
4 
11 
16.3 
21.2 
22 
25 

AP 
3 
5 
11 
13 
16 
16 

Well 5-C Well 9-C I Well 9-D 
AP 
8.2 
9.3 
17 
23.2 
27.2 
27 

11 

Well 9-E 
At 
21 
47 
71 
94 
115 
125 

AP 
3 
3 
3 
10 
12.5 
13 

the well pattern where well 5-D served as a single injection well and the surrounding 

wells (5-E, LE, 1-D, 1-C, 5-C, 9-C, 9-D and 9-E) were observation wells. The ris- 

ing parts of the pressure(psi) and time(h0ur.s) are presented in Table 2.1. Table 2.1 

represents a set of interference data from seven wells, which is more than required to 

obtain a unique result since only three sets of the data are needed to determine k,,, 

k,,, k,, and +c. Using Wells 5-E,1-E and 1-D, Ramey (1975) obtained by manual 
type curve matching: 

kxx = 15.2 md 
kyg  = 19.4 md 

kXy  = 3.12 m d ,  

while for the same set of data, a nonlinear least square method gives the solution 

kxx = 15.59 md 
k,, = 19.59 md 
k,, = 2.07 md 

as shown in Fig. 2.2. The noticeable difference is the k,, value. The initial guesses 

used in the nonlinear least square algorithm are: 

k,, = 5 
k,, = 4 
k,, = 1 



CHAPTER 2. USE OF l?Z%!%'SURE DATA FROM MULTIPLE WELLS 

Well 1-E 
10 , , , , , , , ,  , , , , , , , ,  , , , I , , , ,  , , I / / / I / j  I 4 I / / I ,  

deltat 

, , , ! $ ,  4 , / I /  
I , ,  

0 1  1 10 100 lo00 loo00 
0 01 

denat 

10 

1 

i 
0.1 1 , "  

Well 9-E 
10 , / . i  , ( , ,  , , , / , , , ,  , / , / , / / / I  , I , , , , ,  $ 1  I 1 1 1 1  

deltat 

10 

1 

n 

0.1 

12 

I 

I , I  , , , , 1 1 1  6 , . I l l / i  I , *  , , / , I  I . I  , / / /  

0 1  1 10 100 lo00 loo00 
001 , 1 8  I 

deltat 

Well 9-D 
" " ' I  " " -  lo , , , , , , , , , , , , , , , , , . , , , . , 

Match Data Sets of 

Well 1-E Well 5-E 
Well 1-D 

Kxx Kyy Kxy 
15.59 19.59 2.07 

Figure 2.2: Using three sets of pressure data in an anisotropic reservoir example 
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This set of initial guesses was used also in all the other matches described below. 

When pressure data from all the seven wells are used, the matched curves are shown 

in Fig. 2.3 and the permeability solution is 

k,, = 13.96 m d  

ky, = 18.60 md 
k,, = 3.56 md 

If another set of three wells, for example, Well 9-D, 5-C, 9-E are chosen, then the 

kxx, kxy, k,, solution to the nonlinear square problem is shown in Fig. 2.4 

IC,, = 11.88 md 
ICyy = 16.30 m d  
ICxy = 4.50 md 

The two results generated from the two sets of wells are modestly different. There is 

no definite way to tell which one is the correct answer. If the residual is used as an 

indicator of preference, Fig. 2.3 shows a better match to the data set of each well. 

The small difference among the matching results from different well combinations 

most likely means there is no strong heterogeneity present in this example. The 

homogeneous anisotropic model is a good approximation to the reservoir. During the 

matching process, if the data from some wells are believed to be affected by noise, 

the data set that has the worst behavior can be identified by matching all the well 

data except for one well each time. 

Through the investigation of this field example, it can be seen that the nonlinear 

least square method is useful for estimating the anisotropic permeabilities from mul- 

tiple well interference data. Though the application is shown only for homogeneous 

anisotropic formations here, it is not difficult to extend the nonlinear least square 

method to other reservoir configurations, for instance, a reservoir with a circular 

discontinuous region. 
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Well 1 1  
10 , , , , , , , ,  , , , ( ( , , , ,  , , , , , , ,  I , , , , , /  10 

, , I I ,  / , , /  I 8 I I I , 1 / 1  1 I I , ,  I ,  I , I 

Well 1-D 10 , , , , , , , , , 

I , , ,  I , , , I  1 , , I 1 . 8 ,  ' , , , , , !  , , , , ,  
0 1  1 10 100 lo00 loo00 

Mal  

001 ' 1 

10 

1 

t 
0.1 

! ! , \ I  , , I I , , , ,  I I , I , , , / I  I I ! , , ! , ,  I I $ I l l i t  0.01 , , 1 

0.1 1 10 100 lo00 loo00 
delta1 

10 

1 

1 

0.1 

t 

14 

10 

1 

Match Data Sets of 

Well 1-E Well 5-E 
Well 1-D Well 9-C 
Well 5-C Well 9-D - 
Well 9-E 

Kxx Kyy Kxy 
13.96 18.60 3.56 

Figure 2.3: Using nine sets of pressure data in an anisotropic reservoir example 
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Well 1-E 

f 

_. . 
denat 

, / . I  I " '  , , , , I l l  I ' I '  , Well 5-c 
10 , , , . , , , , 

t i 

0.1 t / 

deltal 

1 100 loo0 loo00 0.01 0.1 10 
deltal 

I 

Well 9-D 
10 , , , , , / ,  , , , , , , ~ , ,  , , , , , , 

P 
V 

- 
1 

Match Data Sets of 

Well 5-C Well 9-D 
Well 9-E 

Kxx KW KxY 
11.88 16.30 4.50 

Figure 2.4: Using another three sets of pressure data in an anisotropic reservoir 
example 
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2.2 Heterogeneity of the Circular Discontinuity 

Interference testing in geothermal fields is usually designed to estimate the mobility- 

thickness product and the reservoir thickness-porosity-compressibility product (also 

referred to as transmissivity and storativity, respectively), and to locate hydrologi- 

cal heterogeneities, for instance, no-flow boundaries or different property subregions. 

Heterogeneities in the hydrology of geothermal reservoirs can be caused by mineral 

deposition, by changes of heat in the system, by crustal movements, by changes in 

fluid compositions or by exploitation. The main disadvantage of interference testing 

is that the magnitude of the pressure changes decreases as the observation well is 

located farther away from the source well. When the pressure changes are small, 

especially at the early-time, noises such as earth tide and barometric pressure fluctu- 

ations may play a significant role and might lead to uncertainties in the estimation 

of reservoir parameters. 

If the history of the noise is known, the effect of noise may be reduced by correcting 

the pressure data. An attractive and more practical alternative might be to use 

multiwell data to increase the tolerance of the procedure to noise in pressure data 

and decrease the uncertainty in parameter estimation. 

The exponential integral solution introduced by Theis (1935) based on heat- 

transfer analogy can be used for a reservoir with homogeneous properties. However, 

if one treats the formation more elaborately, one may consider different property sub- 

regions within the reservoir. Such subregions may take various geometric shapes as 

in the case resulting from steam zones in geothermal reservoirs or shale lenses in oil 

reservoirs. In this section the subregion will be represented as a circular discontinuity 

in order to make mathematical consideration easier. 

Many studies have appeared in the literature about composite reservoir systems 

with circular discontinuities since the related work of heat conduction in composite 

materials by Jaeger (1941 and 1944). Sageev (1983), also Grader and Home (1988) 
investigated discontinuities that either have constant pressure (equivalent to infinite 
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permeability of the model here) or have no-flow boundaries (equivalent to zero perme- 

ability of the model here). A more recent study by Rosa (1991) developed theoretical 

solutions without wellbore storage effect to both internal and external circular dis- 

continuities though the numerical calculation of the pressure response was not robust. 

This section focuses on the application of the composite model with and without 

wellbore storage to the interpretations of multiwell pressure data through nonlinear 

regression. The motivation was to examine the feasibility of estimating geometric 

parameters as a function of the number of different locations at which the pressure 

transients are maintained. This study formed a preliminary part of a broader study 

to investigate the matching of multiple data streams of different types (for example, 

pressure transient and tracer data). 

2.2.1 Discontinuity Without Wellbore Storage 

The pressure distribution in a reservoir with an external or internal discontinuity was 

obtained by Rosa (1991). With a simpler approach of the two cases being handled 

together and using the notation in Fig. 2.5, the solution function can be written for 

first discontinuous region ( r < a )  as 

i71 = { r 7 

and for second region ( T  2 a )  as 

F2={ 

where 

IC, ( z2r )  cos (8 

. el)  

if a >_ r' 
(2.10) J 

if a < r' 

J (2.11) 
if a > r' 
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0 bservation We1 I 

18 

Figure 2.5: Infinite reservoir with a circular discontinuity 
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The pressure drop for a constant surface flow rate q (without wellbore storage) in 

Laplace space is 

(2.12) 

A computer program to evaluate the pressure drop was developed using the Ste- 

hfest’s algorithm (Stehfest, 1970) to calculatle the Laplace transformed expression. 

Since Ii’, and In appear together as a product, and since the product becomes of 

type (0 - GO) when the argument or the order goes to infinity, it is not practical to 

evaluate Kn and In directly. In order to avoid the overflow and underflow of I(, and 

In, e-..In(s) and eXKn(z )  are calculated in the program when n is not too large or x is 

not so small. The convergence of the series was checked by the asymptotic expansions 

for large orders of Bessel functions. It turns out that the summation of 50 terms of 

the series is sufficient in practical calculation. 

Figs. 2.6 to  2.12 show how the pressure drop responds as the parameters vary. 

For some parameters, the pressure drop changes a great deal, which means it is easier 

to estimate these parameters from pressure data. On the other hand, if the pressure 

drop does not change much as the parameters vary, as in the case of the pressure 

response of an observation well located in second region versus the compressibility 

of the first region, it means that pressure response is not sensitive to this parameter 
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Generated Pressure Data -- Circular Discontinuity 
100 

1 
0.01 0. I 1. 10 100 I( 

, por=.3 viacd. 
I I 1 , 1 1 1 1  I I I I I I I  I t 1 I I l l ,  I I I 1 l l l l  I I I I 1 1 1 1  

10 

Figure 2.6: Pressure response versus compressibility of first region 

Generated Pressure Data -- Circular Discontinuity 
100 

20 

Figure 2.7: Pressure response versus permeability of first region 
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Figure 2.8: Pressure response versus compressibility of second region 

Generated Pressure Data -- Circular Discontinuity 

10 - 

1. - 

0.1 - 

/ ....... ... 
--  

Figure 2.9: Pressure response versus permeability of second region 
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Time(hrs) 

Figure 2.10: Pressure response versus position of active well (distance) 

Generated Pressure Data -- Circular Discontinuity 
100 

Time(hrs) 

Figure 2.11 : Pressure response versus position of active well (angle) 
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E M 
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Figure 2.12: Pressure response versus radius of discontinuity 
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and the parameter would not be well determined in a well test. This is likely to be 

a problem in the interpretation of pressure data when the pressure data measured 

include noise larger than five percent. 

2.2.2 Discontinuity with Wellbore Storage 

When the wellbore storage effect at the active well is considered, the sandface flow 

rate qSf  is no longer constant even though the surface flow rate q is constant. These 

two flow rates are related by wellbore storage coefficient C, 

Hence 

(2.13) 

(2.14) 

in Laplace space. The pressure drop caused by qs f ( t )  is obtained by superposition 

(Gringarten and Ramey, 1973) 

Taking the Laplace transformation, the above equation becomes 

- 1 
Ap(r ,  r', 8, O',  z )  = -=(z)F(r) r', 8, e', z )  

+Cth 

where v(r ,  r', 0, d', t )  is the Green's function for the composite model, 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 
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Figure 2.13: Comparison of pressure response in active well with or without wellbore . 

storage 
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Figure 2.14: Comparison of pressure response in observation well with or without 
wellbore storage 
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and F,F are shown in Eq. 2.10 and Eq. 2.11. Fig. 2.13 shows the pressure response 

as a function of time in an active well with the wellbore storage coefficient C being 

increased from zero to 0.5 bbllpsi.  Wellbore storage affects the pressure response at 
early time. These differences decrease with increasing time but may still be about 

5 p s i  at 10 hours for C = 0.15 bbl/psi.  

Fig. 2.14 shows the pressure change at an observation well versus time for the 

cases of C = 0 to 0.5 bbllpsi.  The observation well is located 100 f e e t  away from the 
active well. Neglecting the effect of wellbore storage at the active well will cause an 

underestimation of the permeability of the reservoir. 

2.2.3 Transformation of Coordinate System 

All the equations discussed above are based on a coordinate system that has the 
center of the circular discontinuity as the origin. However, when pressure data are 

analyzed, the position of the discontinuity is unknown; it is among the parameters 

to be obtained as part of the analysis. When field data are collected, the locations 

of the observation wells are therefore given relatively to the position of the active 

well. In other words, the locations of observation wells are represented in a Cartesian 

coordinate system with the active well as the origin. In order to calculate the pressure 

response in a reservoir of circular discontinuity, well locations need to be transferred 

to the coordinate system used in the solution expressions. 

The relationship between two coordinate systems is straightforward as shown in 

Fig. 2.15, where ( X I ,  ~ 1 )  represents the field coordinate system and ( x2 , yZ )  represents 

the coordinate system of the circular discontinuity. Assuming that the active well is r' 

away from the center of discontinuity and is in 0' direction, its Cartesian coordinates 

in (x2,  Y 2 )  are 

(2.20) 

If the coordinates of an observation well given in the real data system is ( x l , y l ) ,  its 

Cartesian coordinates in system of circular discontinuity will be 
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Active Well (0,O) 

Figure 2.15: Transformation of two coordinate systems 
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Table 2.2: Configuration of the formation 

28 

(2.21) 

Thus, from the coordinates of the observation well (21, yl) ,  its polar coordinates ( r ,  8) 
used in the solution expression can be obtained from the following equations 

r2  = (r' . cos 8' + + (r' - sin 6' + yl)2 
(2.22) 

2,2*4 Objective Function 

The estimation of reservoir parameters from multiwell observation responses can be 

posed as to a nonlinear regression problem (Barua et al., 1988). In this study, a 

weighted least squares method is employed. The objective function is the weighted 

sum of squares of differences between the observed responses and the reservoir esti- 

mated model responses: 
n 

E XU;  [Ap; - Ap(Z, At;, x;, yi)I2 
i= l  

(2.23) 

where (At;, Ap;) are a set of n time-pressure data from observation wells located at 

(xi, yi), cr' is a set of unknown reservoir parameters such as kl, k2, ctl, ct2, r', 8', a 

or C ,  and w; are the weighting set which emphasize the early time pressure data or 

small magnitude pressure data. In this formulation, wi = E;= 1 AP, 
Apt . 

Fig. 2.17, Fig. 2.18, Fig. 2.19 and Fig. 2.20 show the shapes of the objective 

function E as a function of r' and 0') with the the reservoir configuration shown in 

Table 2.2. It can been seen that as more and more observation wells are used, the 

shape of the objective function includes more character. So the minimum is easier to 
obtain and local minimum can be avoided. Actually, if the data of two observation 
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Distributions of Active Well and Observation Wells 

(-3 0 ,I 0 0 
a 

a 
(-1 0 0 ,o ) 

0 
(140,80) 

(0 1-1 0 0 ) 

Figure 2.16: Well pattern for an infinite reservoir with a circular discontinuity 
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Figure 2.17: Objective function versus various position of active well 
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Figure 2.18: Objective function versus various position of active well 
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Figure 2.19: Objective function versus various position of active well 
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Figure 2.20: Objective function versus various position of active well 
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wells are used, one located at ( r  = 5, 0 = 0), and the other located at (P = 125, 

0 = O) ,  there will be more than one local minimum value. For any fixed 0' between 

(-50°, SO'), r' has three local minimum values, one lying in (0, SO), one located in (50, 
130) and one beyond 130(00), which stands for the homogeneous reservoir without 

discontinuity. This brings a restriction on the initial guess of r' because if the guess lies 

outside of (60,130), the global minimum cannot be reached by nonlinear regression. 

In this case, three or more initial guesses need to be tried before the search process 

reached the correct minimum. 

There have been some powerful algorithms described in the literature for solving 

nonlinear least square problems. In this implementation, a modified algorithm is 

applied. The algorithm is based on a method proposed by Fletcher (1971). Let 

(2.24) 

(2.25) 

the algorithm is as follows: 

1. From an initial guess 60 and a damping factor U ,  calculate D f ,  f ,  D f T D  f and 

D f f ,  where D is the differential operator with respect to 6. 

2. Calculat'e E = fTf. If E < E ,  stop the iteration. In order to avoid false 

convergence, some requirements can be put on the parameter change llDXII or 

on the number of iterations; 

3. Solve equation system 

( D f T - D f  + U I ) D X  = - D f T * f  

to obtain D X ;  

4. Calculate the value of E as El at Go + D X ;  

5 .  Calculate 

E - El 
D X T ( - D f T  - f )  + U D X T D X  R =  
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0 If R > .75, let U = 

0 If .25 5 R 5 3 5 ,  go to 6, 

0 If R > .25, then U = 

and if U < .OO1,  let U = 0. Go to 6, 

if U = 0, else U = U s  V where 

< 2 ,  E -E - v = 2 if v1 = 2 + D X T ( l D f r . f )  
- V = 10 if VI  > 10 and 

- V = V l i f 2 ~ V l < l O .  

Then go to 3 if El > E ;  go to 6 if El 5 E ;  

6. Substitute a. with a. + D X  , go to 2. 

The matrix of derivatives D X  is obtained by numerica differentiation wlill relative 

step 0.001 and the initial value of damping factor U is 0.01. 

It is easier to obtain estimates of the parameters of the second region k2, q2 because 

the objective function is a strong function of the two parameters. The same is true in 

the case of kl, ctl if there is one or more observation wells in the first region. However, 

itl is not possible to know the location of the discontinuity in advance in practice as 

the position of the discontinuity is a unknown parameter. 

It can be seen that the pressure data from the active well and one observation well 

are not sufficient to estimate the position of the discontinuity; at  least two observation 

wells are needed in the example. Mathematically speaking, the more observation 

wells, the more information about the discontinuity that may be included. Notice that 
the active well and the observation wells should not be on a straight line, otherwise, 

the estimates based on the pressure data are not unique. 

2.2.5 Examples 

Pressure data were generated artificially with random noise to see how the non- 

linear least square approach would work and to determine which parameters can be 

estimated successfully. 

Example 1: Unknowns k2, r', 8', a, ~ 2 ,  C 
Table 2.3 includes the pressure data generated with one percent noise and the 

known reservoir properties used are shown in Table 2.4. The initial guess and the 
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Positions (x, y) 

At; A P i  At; 
0.0013 0.0457 0.1 148 
0.0016 0.0585 0.1318 
0.0020 0.0743 0.1514 

(0, 100) (0, -100) (100, 0) I (-100, 0) 
APi AP2 AP; APi 1 

0.0001 0.0002 0.0002 0.0002 
0.0003 0.0003 0.0004 0.0004 
0.0004 0.0005 0.0005 0.0005 

0.0025 
0.0032 
0.0040 
0.0050 

0.0949 0.1738 0.0006 0.0007 0.0007 0.0007 
0.1208 0.1995 0.0008 0.0010 0.0011 0.0011 
0.1533 0.2291 0.0010 0.0017 0.0017 0.0017 
0.1942 0.2630 0.0014 0.0031 0.0031 0.0031 

010063 
0.0079 
0.0100 
0.0126 

0.2467 0.3020 0.0022 0.0059 0.0059 0.0059 
0.3134 0.3467 0.0040 0.0109 0.0110 0.0110 
0.3965 0.3981 0.0079 0.0199 0.0202 0.0199 
0.4970 0.4571 0.0155 0.0347 0.0353 0.0348 

0.0158 
0.0200 
0.0251 

0.6290 0.5248 0.0291 0.0585 0.0595 0.0591 
0.7982 0.6026 0.0525 0.0949 0.0966 0.0958 
1.0079 0.6918 0.0890 0.1481 0.1523 0.1508 

0.0316 
0.0398 
0.0501 
0.0631 
0.0794 

1.2693 0.7943 0.1453 0.2253 0.2324 0.2299 
1.5889 0.9120 0.2280 0.3325 0.3433 0.3392 
2.0089 1.0471 0.3427 0.4796 0.4949 0.4872 
2.5366 1.2023 0.4991 0.6723 0.6890 0.6851 
3.1567 1.3804 0.7086 0.9188 0.9504 0.9380 

0.1000 
0.1259 
0.1585 

~~ 

3.9647 1.5849 0.9742 1.2365 1.2651 1.2689 
4.9781 1.8197 1.3029 1.6383 1.6744 1.6587 
6.2005 2.0893 1.7158 2.1156 2.1485 2.1515 

0.1995 
0.2512 
0.3162 
0.3981 

7.7146 2.3988 2.2126 2.6860 2.7238 2.7065 
9.5244 2.7542 2.7680 3.3449 3.3924 3.3905 

11.7947 3.1623 3.4309 4.0913 4.1293 4.1167 
14.4375 3.6308 4.1656 4.9047 4.951 1 4.9638 

0.5012 17.7034 4.1687 4.9930 5.8682 5.8711 5.9024 
0.6310 21.3863 4.7863 5.8761 6.8062 6.8165 6.8714 
0.7943 25.9568 5.4954 6.7674 7.9208 7.8794 7.9188 
1.0000 30.9352 6.3096 7.7381 8.9722 8.9130 8.9863 
1.2589 36.2503 7.2444 8.7613 10.1510 10.0283 10.1487 
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Active well 
At; APi 

1.9953 48.7194 
2.5119 55.2196 
3.1623 61.6283 
3.981 1 67.2365 
5.0119 72.5952 
6.3096 77.0253 
7.9433 81.1865 

!! 

Observation Wells 
At; AP; Api AP; APi 

9.5499 10.9054 12.3914 12.2931 12.3826 
10.9648 11.9544 13.5561 13.4564 13.5806 
12.5893 13.0069 14.6518 14.5340 14.6424 
14.4544 14.0602 15.7939 15.6419 15.7799 
16.5959 15.0836 16.9317 16.8066 16.8296 
19.0546 16.1059 18.0142 17.7633 17.8972 
21.8776 17.2182 19.1974 18.8317 18.9823 

12.5893 
15.8489 
19.9526 
25.1189 

87.3582 28.8403 19.3435 21.1629 20.9977 21.0232 
89.9176 33.1131 20.2165 22.2034 22.0172 22.1025 
92.2144 38.0189 21.2108 23.3209 23.1296 23.1424 
94.2082 43.6516 22.3442 24.3604 24.0744 24.2053 

I 63.0957 I 101.0565 11 75.8578 I 26.1800 1 28.5421 I 28.0381 I 28.1081 I 

31.6228 
39.8107 
50.1187 

95.7760 50.1 187 23.2092 25.2624 25.0429 25.2406 
98.2806 57.5440 24.3699 26.4343 26.0535 26.1485 
99.5769 66.0693 25.3674 27.3163 27.1172 27.1443 

Table 2.4: Properties of the reservoir in Example 1 

79.4328 
100.0000 

102.8120 87.0964 27.1859 29.3354 29.0095 29.3468- 
104.5314 100.0000 28.3910 30.2947 30.2034 30.2314 

Q 
110 bbllday 

4 f w  P h kl C t l  

0.3 0.4 ft 3.0 30 ft 50 rnd 8.e-6 l/psi 
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Table 2.5: Initial guess, matching result and true value 

F 

k2 rnd r' ft 8' O a ft ct2 ( l lps i )  
Initial Guess 50 50 50 50 8. x 

Matching Result 110.0 79.8 81.5 49.1 ll.E-6 
True Values 110 80 80 50 1l.E-6 

C (bbllpsi) 
.05 

0.0998 
.1 

L 

matching result are listed in Table 2.5. The matching started from the initial guess 

of a homogeneous model k1 = k2 = 50(rnd)  and ctl = ~2 = 8 x 10-6(l/psi). The 

residual of weighted squares was 0.357 and iteration number reached 40 to achieve 

the absolute and relative errors for each parameter less than lo-'. In this example, 

there is one observation well located in the discontinuity and the noise is only one 

percent, so the result is encouraging. However if kl and ctl were unknown, the initial 

guess kl = k2 = r' = a = 8' = 70, ql = q 2  = 1. x C = 0.05 resulted in 

incorrect estimated values of k1 = 159, k2 = 104, r' = 83, 8' = 125, a = 58, ctl = 

10.4 x 

Example 2:  Unknowns k1, k2, r', 0', a ,  c t l ,  ct2, C 
ct2 = 11.2 x low6, C = 0.1 with the residual 38.0 after 11 iterations. 

This example also has one observation well located in the discontinuity region, 

and the noise added in pressure data is 3 percent. 

Table 2.6 and Table 2.7 include the pressure data and the property data of the 

reservoir, respectively. The initial guess, matching result and the true parameter 

values are shown in Table 2.8. The absolute and relative errors of each parameter 

are within lo-' after 14 iterations, which gives 1.94 as the residual of the weighted 

squares. 

2.2.6 A Special Case - Concentric Active Well 

If r' = 0: the active well is concentrically located in the discontinuous region. The 

pressure drop in Laplace space can be simplified to be 
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I Active Well 

39 

Observation Wells 
Positions (x, y) 

At; APi At; 
0.0013 0.01 14 0.1148 

(0, 100) (0, -100) (100, 0) (-100, 0) 
APi A Pi APi A Pi 

0.0001 0.0000 0.0001 0.0001 

I 0.0063 I 0.0621 

J. t 

0.1318 0.0001 0.0001 0.0001 0.0001 
0.1514 0.0001 0.0001 0.0001 0.0001 
0.1738 0.0002 0.0001 0.0002 0.0002 
0.1995 0.0002 0.0002 0.0003 0.0004 

0.0316 

0.2291 0.0004 0.0004 0.0004 0.0006 
0.0012 0.2630 0.0008 0.0008 0.0008 

0.3020 0.0015 0.0015 0.0015 0.0022 

r 

t. 

I 0.0398 I 0.3998 

0.3981 
0.4571 
0.5248 
0.6026 

0.1000 1.0257 
0.1259 1.3091 
0.1585 1.6415 
0.1995 2.0670 
0.2512 2.5662 
0.3162 3.2503 
0.3981 4.0275 

0.0051 0.0050 0.0053 0.0066 
0.0089 0.0086 0.0092 0.01 11 
0.0149 0.0145 0.0154 0.0182 
0.0246 0.0234 0.0249 0.0285 

0.6918 
0.7943 
0.9120 
1.0471 

0.0379 0.0362 0.0396 0.0439 
0.0578 0.0555 0.0608 0.0662 
0.0867 0.0822 0.0903 0.0966 
0.1244 0.1205 0.1319 0.1384 

~1 0.3467 I 0.0028 I 0.0027 I 0.0029 I 0.0039 

1.2023 
1.3804 
1.5849 

0.1760 0.1708 0.1830 0.1969 
0.2597 0.2727 0.2475 0.2358 

0.3373 0.3261 0.3474 0.3829 
~ 

1.8197 
2.0893 
2.3988 
2.7542 

0.4490 0.4501 0.4781 0.5088 
0.6031 0.6010 0.6265 0.6910 
0.8006 0.7955 0.8259 0.8938 
1.0177 1.0347 1.0751 1.1898 

~ 

1 3.6308 
4.1687 
4.7863 

~1 3.1623 I 1.3158 I 1.3264 I 1.3588 I 1.5002 
1.6669 1.6618 1.7037 1.9229 
2.1 124 2.1444 2.1412 2.4485 
2.6261 2.6071 2.61 13 3.0241 

6.3096 
7.2444 

I 5.4954 I 3.1618 I 3.3025 I 3.2418 I 3.7343 
3.8377 3.9685 3.8791 4.5257 
4.6438 4.8734 4.6848 5.5402 
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10.0000 
12.5893 
15.8489 
19.9526 
25.1189 
31.6228 
39.8107 
50.1187 
63.0957 
79.4328 

100.0000 

59.4432 25.1189 16.1505 16.7536 15.9403 18.3905 
66.6974 28.8403 17.7758 17.9402 17.4309 19.6863 
73.8492 33.1131 18.8632 19.4461 18.8634 21.3972 
80.4117 38.0189 20.2719 21.1601 20.5391 22.9837 
85.8640 43.6516 22.0724 22.6550 21.7625 24.6182 
89.5990 50.1187 23.0581 23.7405 23.0253 26.1421 
95.4497 57.5440 24.9066 25.5720 24.3816 27.2351 
97.3391 66.0693 26.2379 26.5427 25.8681 28.5692 
99.3742 75.8578 26.9678 28.501 1 26.9258 29.7714 

101.9808 87.0964 28.2723 29.1563 28.1063 31.8347 
104.3303 100.0000 30.1881 30.2841 29.9239 32.7357 

q bbllday porosity 
110.0000 0.3000 

Table 2.8: Initial guess, matching result and true value 

rw f t  viscosity thickness 
0.4000 3.0000 30.0000 

40 

F 

kl md k2 m d  r' ft 

Match 238.66 100.35 79.51 
Initial 50 50 50 

True 250 100 80 

8' O a f t  ctl ct2 IJpsi C 

197.63 61.02 18.63-6 1O.E-6 0.4 
50 50 5.E-6 5.E-6 .1 

200 60 19.E-6 10.E-6 .4 - 
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From the approximate expressions for modified Bessel functions of small arguments: 

So for small radius a and large time (small z ) ,  the pressure drop becomes 

(2.27) 

(2.28) 

(2.29) 

and its Laplace transformation inversion is easy to obtain. From Eq. 2.29, it can be 

seen that the pressure drop outside the discontinuity is the same as the line source 

solution (exponential integral solution) and the pressure drop inside discontinuity 

should be the line source solution plus 141;C229hBp2 (e - 1) In :. Therefore, a composite 

reservoir with a centered source well can be treated in convention as a homogeneous 

reservoir without the first region by introducing a skin factor 

(2.30) 

However, this simplification is true only when the radius of the first region is not very 

large and the time considered is not very small. Fig. 2.21 and Fig. 2.22 provide an 

idea what a and t should be. For a = 50 (feet), t 1 (hour), using the skin factor 

approach will result in incorrect results as shown in Fig. 2.21. 
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8 
c 

- 0  
0 

Figure 2.21: Comparison of pressure responses between skin factor approach and 
discontinuity approach 
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H 

3 

0 

3 

8 

v-4 
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Figure 2.22: Comparison of pressure responses between skin factor approch and dis- 
continuity model approach 



CHAPTER 2. USE OF PRESSURE DATA FROM MULTIPLE WELLS 44 

al nSSaJd 

Figure 2.23: Matching result for concentric model 
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E 3 

0 
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Figure 2.24: Matching result for concentric model 
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The same thing happens in Fig. 2.22 where a = 100 feet, t 5 10 hours. For the 

general concentric composite reservoir where the simplified skin factor approach does 

not apply, the solution presented in Eq. 2.26 runs faster and is more suitable than 

the solution presented in Eqs. 2.10 and 2.11 in finding the unknown parameters such 

as kl, k2 and a as shown in Fig. 2.23 and Fig. 2.24. 

In summary, for circular discontinuities, parameters such as permeability, com- 

pressibility in both regions can be obtained in addition to the location and the range 

of the discontinuous region if the noise in the pressure data are not large. The more 

data that are used, the higher tolerance for noise that may be allowed in pressure 

data for parameter identification. The wellbore storage coefficient in the active well 

can also be estimated. If the active well is located in the center of the discontinuous 

region, a skin factor may replace an explicit representation of the discontinuous region 

under some restrictions. 
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2.3 Analysis of Drawdown-Buildup Pressure Data 
in Multiwell Systems 

This section focuses on how the producing neighbor wells affect the buildup pressure 

data in the testing well. The investigation started with the development of the so- 

lutions in Laplace space and covered the system of both finite number of wells and 

infinite number of wells. The system of an infinite number of wells can be used to 

simulate the behavior of transient pressure in rectangular reservoirs. 

Consider an infinite homogeneous reservoir with n + 1 wells. All wells are labeled 

with an integer. Well 0 is the observation well, well 1 is the testing well producing 

at a constant flow rate q at the beginning and at constant rate 0 after t p D ,  while 

wells n ( n  > 1) are the neighbor wells producing at constant rate q at any time. 

The producing neighbor wells in this configuration will have impact on the pressure 

buildup on the observation well. The pressure data from shut-in test of well 1 cannot 

be analyzed correctly without studying the effect of neighbor wells. 

If the wellbore storage effect is taken into account, the pressure solution in Laplace 

space for the multiwell system of finite number of wells can be obtained by superposing 

finite sources in time and space, 

or basing the time scale on and using as the parameter, 
reD reD 

where Co is the wellbore storage coefficient, and r i D  is the distance between obser- 

vation well 0 and well i. 
When n = 1, this solution represents the interference case with one active well 

and one observation well in an infinite homogeneous reservoir. The type curves for 
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Figure 2.25: Interference pressure response versus production time 
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Figure 2.27: Pressure response versus production time and wellbore storage effect 
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Figure 2.28: Pressure response versus production time and wellbore storage effect 



CHAPTER 2. USE OF PRESSURE DATA FROM MULTIPLE WELLS 50 

drawdown and buildup without wellbore storage are provided by Ramey (1981) as 

shown in Fig. 2.25. In this special case, the pressures at  any place are the same 

except at early time if p o  is plotted VS. 9 with 9 as a parameter (reo = r l D  = ro) .  

As can be seen from Fig. 2.26, Fig. 2.27 and Fig. 2.28, the pressure responses depend 

greatly on the distance between testing well and observation well if wellbore storage 

is considered. 

TD TD 

Fig. 2.29 and Fig. 2.30 show the pressure drawdown and buildup for a six-well 

system, where the testing well is also the observation well. All the production wells 

contribute to the drawdown curve. When the testing well is shut in, the buildup curve 

eventually follows the curve corresponding to the production of all the neighboring 

wells. 

Fig. 2.31 and Fig. 2.32 show the buildup parts for the same system. For a fixed 

shut-in time, p D  will become larger than p ( t p D )  at late time, so each curve reaches 

below zero at some time. The shut-in time affects the buildup pressure data very 

much as well as the wellbore storage effect as can be seen from Fig. 2.31. 
If there are infinite number of wells, well 0 is the observation well, well 1 is the 

testing well producing at constant rate q first and at constant rate 0 after t p D ,  if all 

the other neighboring wells are producing at the constant rate q all the time, and if 

the wellbore storage effect is included, the pressure solution in Laplace space for the 

infinite system can be written as 

(2.33) 

where r n D  is the distance between observation well 0 and well n. 

To compare the effect of number of wells on the drawdown and buildup curves, 

a six-well system and an infinite-well system shown in Fig 2.33 are considered as 

an example, where the distances in x direction and y direction between any two 

neighboring wells are 500ft, and the testing well and observation well are located at 
(0,O). The pressure response due to the production of infinite neighboring wells is 
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Figure 2.29: Pressure response versus production time 
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Figure 2.30: Pressure response versus production time and wellbore storage effect 
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Figure 2.31: Pressure buildup response versus time after shut-in 
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Figure 2.32: Pressure buildup versus time after shut-in and wellbore storage effect 
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Six-well System 

Infinite-well Svstem 

Figure 2.33: Configuration of six-well and infinite-well systems 
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m=l 

54 

where 

and 

1 
f W  

rm,n = d(ma - x , ) ~  + (nb - Y , ) ~ - .  

With a = b = 500.0ft’ x, = yw = O.Oft and rw = 0.3f t  as an example, Fig. 2.34 
and Fig. 2.35 show the difference of drawdown and buildup curves between the two 

systems with and without wellbore storage effect, while Fig. 2.36 and Fig. 2.37 show 

only the buildup part of the response. The pressure in the infinite-well system drops 

more rapidly at  long time, indicating a higher rate of depletion. 

The solution for a well in a closed rectangular reservoir is equivalent to that of the 

infinite number of wells in an infinite reservoir. Eq. 2.32 can be extended to express 

the pressure response (drawdown or drawdown and buildup) for a well in a rectangle 

with closed boundary or const,ant pressure boundary. 

For the drawdown case 

(2.34) 

For the drawdown and buildup case 

where roo is the distance between the testing well and the observation well, and r,D 
represents the distance between the observation well and any image well or neigh- 

boring well. A similar expression could be written for a partial penetrating well in a 
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Figure 2.35: Pressure response versus production time and wellbore storage effect 
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Figure 2.36: Pressure buildup response versus time after shut-in 
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Figure 2.37: Pressure buildup versus time after shut-in and wellbore storage effect 
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reservoir with no flow or constant pressure boundary where superposition by imaging 

is applicable. As an example, the pressure responses are calculated in Fig. 2.38 and 

Fig. 2.39 for a rectangular reservoir of 800ft x 500ft, thickness 50ft, permeability 

lOOrnd in radial direction and z direction. The testing well and observation well are 

located at ( l o o f t ,  l o o f t )  with well radius 0.3ft .  The well penetrates the upper 60% 
of the formation thickness and the pressure is measured both at the bottom of the 

well and at the top of the completion interval. The difference in pressure responses 

between the partial penetration and full penetration is noticeable in Fig. 2.38 and 

Fig. 2.39 from early time through late time. In well test analysis, if the partial pene- 

tration effect is not considered, the permeability of the reservoir will not be correctly 

interpreted. 
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2.4 No-Flow Linear Boundary 

For an infinite homogeneous reservoir with a linear no-flow boundary of infinite length, 

one method of locating the no-flow boundary is the Inference Ellipse method devel- 

oped by Vela (1977). The Inference Ellipse method requires exactly two sets of 

interference data to determine the position of the no-flow boundary. If more than 

two sets of well pressure data are collected, as in most interference testing, using the 

inference ellipse method can only provide rough estimates about the location of the 

no-flow boundary and the result depends on which two sets of data are chosen. In this 

section, the pressure expression is formulated in consideration of applying multiple 

sets of the pressure data to locate the no-flow boundary position. The approach will 

be applied to the field pressure data in following section. 

e 

If the wellbore storage effect is included at the active well, the pressure solution 

in Laplace space would be 

(2.36) 

Consider a reservoir configured as in Fig. 2.40, where one active well and three 

observation wells are present. The shapes of the least square residual objective func- 

tion are shown in Fig. 2.41 and Fig. 2.42. Pressure data, from two wells are used in 

Fig. 2.41 and the objective function has two local minima, leaving the interpretation 

result nonunique. However, if more than two sets of pressure data are used, there 

will be only one global minimum as in Fig. 2.42. This indicates that using multiwell 

interference pressure data simultaneously is necessary in locating the position of the 

no-flow boundary as well as in estimating permeability and storativity. The wellbore 

storage in the interference test is not important except when CD/r; becomes larger 

than 10. It can be seen from Eq. 2.36 that small rg will contribute to the enlargement 

of the wellbore storage effect. 
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Figure 2.40: Well pattern for an infinite reservoir with a linear no-flow boundary 
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Figure 2.41: Contour of objective function using two sets of pressure data 



CHAPTER 2. USE OF PRESSURE DATA FROM MULTIPLE WELLS 62 

I I  I I I I I I I I  I I I 

- 1  17.0 -58.5 0 . G  58.5 117.0 

Figure 2.42: Contour of objective function using three sets of pressure data 
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2.5 Interpreting Multiwell Pressure Data of Ohaaki 
Geot herrnal Field 

This section shows the interpretation of a set of interference data from Ohaaki geother- 

mal field using nonlinear regression. Multiple sets of pressure data were used. The 

purpose was to identify how the no-flow boundary affects the result. 

Using interference testing to evaluate reservoir heterogeneity and average trans- 

missivity and storativity is a convenient and common method in geothermal fields. 

Twelve interference tests were conducted in the Ohaaki geothermal field among six 

wells at different times. Leaver  e t  a2 (1988) analyzed these tests in a.n effort to iden- 

tify a no-flow linear boundary using the inference ellipse method by Vela (1977). The 

pressure data sets were matched only one pair at a time. The results were dominated 

by the local transmissivity and storativity between or around the two wells; each 

match gave a different local average. It is hard to determine which value can be used 

as the average for the whole reservoir. Furthermore, the inference ellipse method 

carries some uncertainty in deciding the location of linear boundary, since two pairs 

of data provide two inference ellipses that are sufficient to determine the location of 

linear boundary. A better approach is to match all the pairs simultaneously to give 

consistent results. 

The parameters matched were bulk transmissivity k h / p ,  storativity dcth, the lo- 

cation of linear boundary (two coordinate variables) and the initial pressures of each 

active well. There are twelve sets of interference pressure data available, which means 

we have sixteen parameters to be matched in our model. The theoretical drawdown 

and buildup curves used in our analysis were similar to those developed by Eip- 
p e r  (1985), but the linear boundary effect has been included in the curves in order to 

regress on all the parameters together. To make this possible, a Cartesian coordinate 

was created with BR20 as the origin, so the location of each well is represented by a 

pair of numbers (x, y) as follows: 

BR23 (0.0, 0.0) 

BR13 (-1079.9, -1977.3) 

BR23 (-527, -1230.31) 
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BR31 (-1757.5, -878.8) 

BR34 (-2680.3, -2636.4) 

BRl9 (-1318, -659.1) 

We represented the linear boundary by another pair of (x,y) ,  the coordinates of one 

point on the boundary that are nearest to the origin of our Cartesian coordinates. 

The algorithm used to solve this nonlinear regression problem is the same modified 

Fletcher (1971) method discussed in Section 2.2.4. 

The results from Leaver e t  a2 (1988) are presented in Fig. 2.43 and listed as follows 

with an average set of values: 

kh = 250.0 d ft qkth = 80.0 f t / p s i  x lo4  xb = -1494.0 ft $/b = 2724.0 ft. 

This interpretation gives a residual of 1.999 psi2 per data point (there are 1969 data 

points for all 12 wells). Starting from this result as an initial guess, after 11 iterations, 

the algorithm found a solution as shown in Fig. 2.44: 

kh = 547.92477 &h = 119.91531 xb = -1981.07651 Yb = -1631.12899, 

which gave an average residual of 1.4366 psi2 per point. Notice tha,t tests B7  and 

B8 are worse than before, because they have fewer points and contribute less to the 

residual. 

Adding the twelve initial pressures of the active wells as parameters, we were able 

to reduce the residual to 0.97 psi2 per data point as shown in Fig. 2.45 with estimaked 

parameter values as follows: 

kh = 584.96150 +cth = 47.34690 xb = -3031.12267, Y b  = -2076.63377 

$1 = -7.11689 pB2 = -10.50041 p r 3  = -53.15206 pF4 = 14.30722 

pBs = -9.13517 

pF10 = -32.76060 p f "  = 3.36854 

pF7 = -117.83430 JIB' = -67.89931 pB9 = 297.20062 

pC2 = -24.25505 pf3 = -6.17686 

From Fig. 2.45, we see that four sets of data B6, B7, B8 and B9 are not well- 

behaved. Excluding these four sets, we performed the matching again with the re- 

maining eight sets of pressure data. Fig. 2.46 is the matching result without initial 

pressures as parameters but with weights to emphasize the early data. The result is 
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k h  = 734.75503 &th = 52.16619 2b = -1663.09485 ZJ~ = -2883.21636 

With initial pressures as parameters without emphasis on early data, we have (Fig. 2.47): 

kh  = 659.31439 4cth = 32.35258 xb = -5067.12074 Yb = 18.74405 
pB1 = -4.88181 pB2 = -2.75039 pB3 = -54.73846 = 14.38455 

pBlo = -29.48337 p?' = 12.12687 pF2 = -14.24363 pF3 = 14.83868 

With weights and initial pressures as parameters, we end up with 

kh  = 630.98879 4cth = 33.71702 Xb = -1506.85394 Yb = 2749.59898 
p f 1  = -4.41652 pB2 = 0.37996 pF3 = -61.96414 p:4 = 17.10718 

pB10 = -34.01868 p f l  = 5.96005 p?' = -28.81102 pC3 = 17.35140 

as shown in Fig. 2.48. All the results were calculated with h = 2297.0 ft and p = 

0.34 cp. Notice that in B3 of Fig. 2.46 we see the calculated type curve parallel above 

the actual data and we can not shift the curve vertically without sacrificing other 

matches. All the data affect each other here. When the initial pressures are allowed 

to vary, the actual data of B3 are increased by the same amount, resulting in the 

early data having a big jump in the log-log graphs as in Fig. 2.47 and Fig. 2.46. 

The location of the linear boundary is sensitive to the sets of data used. It is more 

likely that there is a northwest/southeast trend of faults, and we always had a higher 

estimate of average permeability than the value 110 md as suggested by Leaver e t  

a1 (1988). 
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Figure 2.43: Approximate matching results from Leaver e t  a1 (1988) 
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Figure 2.44: Matching results without weights and initial pressures as parameters 
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Figure 2.45: Matching results with initial pressures as parameters 
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Figure 2.46: Matching results with weights emphasizing early data 
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Figure 2.48: Matching results with weights and initial pressures as parameters 



Chapter 3 

Green’s Functions and the 
Reciprocity Principle in 
Heterogeneous Media 

This chapter starts with the definition of the Green’s function for heterogeneous 

reservoirs and the discussion of its properties. The general expression to represent 

pressure in terms of Green’s functions is presented. Through some examples, it is 

shown that the Green’s function method is still a helpful tool in finding analytical 

pressure solutions for heterogeneous reservoirs even though it loses the useful Newman 

product property. 

The Principle of reciprocity is discussed next. The effect of wellbore storage and 

skin on reciprocity is also included. Finally, using Green’s functions in tracer flow 

problems is briefly discussed. 

3.1 Definition of Green’s Functions 

For pressure transient calculations in a homogeneous formation, the Green’s function 

is usually defined as the pressure response at (x, y, z )  at time t due to an instantaneous 

point source of unit strength generated at point (IC‘, y’, z‘) at time 7, with the reservoir 

being initially at a constant pressure pi, and the boundary being kept without flow 

72 
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or at the same constant pressure p ; .  So, the Green's function G(x, y, z ,  x', y', z', t - r )  

is the solution to the following equation, 

d2G d2G d2G 4pCtdG 
k dt  d X 2  dY 

- -- - + - -  
dZ2 

+ -  
G ( x ,  y ,  Z ,  x', y', z', 0) = S ( X  - x')S(Y - y ' )6 (~  - z')  (3.2) 

where S ( x )  is the Dirac function, which is handled algebraically as if it were an 

ordinary function with the following properties, 

S(x) = O for x # O 
roo 

J_, S(x)dx = 1 

and 
oo 

f(Y)G - Y)dY = f ( 4  1, 
for every arbitrary continuous function $(x). However this definition of Green's func- 

tion can not be used directly for heterogeneous reservoirs, since the coefficients of the 

flow equation for heterogeneous reservoir are not constant. 

There are two ways to define the Green's function for heterogeneous formations. 

One treats the instantaneous source still as an initial condition and the time range 

involved is [0, 001: 

Another way treats the instantaneous source as a source with strength concentrated 

at time r ,  the time range as (-00,oo) and restricts the solution to be zero for t < r .  

So G(x, y, z ,  x', y', z', t - r )  is a solution of the following equation: 
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I C ,  p ,  4 and q above are all functions of ( x ,  y ,  z ) ,  continuous throughout the reservoir, 

or continuous within several subdomains of the reservoir and discontinuous on the 

subdomains' boundaries along which additional conditions of continuous pressure 

and material balance are maintained. 

These two definitions are equivalent in some sense. Assume G1 and G2 are Green's 

functions from the first and the second definitions respectively, then 

G2(x,  y ,  z ,  x', y ' ,  z',t - T) = G l ( x ,  y, z ,  x', y', z ' , t  - +€(t - T) (3.7) 

where 

I i f t 2 r  

0 otherwise 
H ( t  - r )  = { 

If G, satisfies Eqs. 3.3 and 3.4, then 

so Gz satisfies Eqs. 3.5 and 3.6. We chose the first approach which is easier to 

understand and has more obvious physical meaning. It defines the Green's function 

as the pressure response due to an instantaneous source of a strength related to the 

storativity at  the source location, rather than due to an always unit strength as in 

the homogeneous case. 
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3.2 Properties of Green's Functions 

From the definition, some properties can be inferred for Green's functions in hetero- 

geneous reservoirs. Those properties will be applied to derive the expression for the 

general pressure response in terms of Green's function. 

1. Principle of reciprocity: 

G(x ,  y, Z ,  x', y', z', t - T )  = G(x', y', z', X, y, Z ,  t - T )  (3.9) 

Proof is included in Appendix C. Once we have this reciprocity for a Green's 

function due to an instantaneous point source, it is not difficult to derive the 

conditions of reciprocity for the general pressure due to any kind of source. 

2. G(x ,  y, z ,  x', y', z', t - T )  as a function of (x ' ,  y', z', r )  satisfies: 

d k(x ' ,  y', z') dG d k(x' ,  y', z') dG -+-  -+ - 
d x ' p ( x f ,  y', 2') dx' dy' p ( x f ,  y', z') dy' 

d k(x' ,  y', z') dG 
82' p ( x f ,  y', 2') dz' 

dG 
dT 

- -- - - # C t ( X ' ,  y', 2)- 

3. The initial condition gives: 

G(x ,  y, Z ,  x', y', z', t - 7)dX'dy'dz' = f ( x ,  y, Z )  

4. If the outer boundary of domain is closed or no-flow, then for t > r:  
r 

J, #(x', y', z')ct(x', y', ~ ' ) G ( x ,  y, Z ,  x', y', Z ' , t  - r)dR = 1 

(3.10) 

(3.11) 

(3.12) 

The Newman's product theorem presented by Newman (1936) does not hold in 

heterogeneous reservoirs. This is a major limitation on the use of Green's functions 

for heterogeneous problems. The Green's functions have to be found individually, 

instead of being constructed from existing easier solutions. This restriction comes 

from the fact that the domain can not be decomposed as in the homogeneous case, 

for instance, a cubic region (three-dimensional) is no longer the product of three 

one-dimensional intervals. 
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3.3 Pressure in Terms of Green's Functions 

The Green's function is the pressure response due to an instantaneous point source 

in the reservoir with homogeneous boundary conditions. With that, we can derive 

the pressure response due to any kind of source in the reservoir and with any non- 

homogeneous boundary condition. Suppose that the distribution of pressure in the 

reservoir is initially g(x, y, z ) ,  and the source in the reservoir is f(x, y, z ,  t )  at point 

(x, y ,  r ) ,  at time t with a unit volume rate of injection per unit volume of reservoir, 
then the pressure can be expressed in terms of the Green's function: 

(3.13) 

The detailed derivation is included in Appendix B. 

3.4 Examples of Green's Functions 

Without the Newman product scheme it is more difficult to find the Green's func- 

tion for a heterogeneous region. Appropriate mathematical method is needed for the 

method to be successful in heterogeneous reservoirs. In this section, several mathe- 

matical methods are presented with examples in finding Green's functions for some 

interesting and practical distributions of permeability and porosity. 

3.4.1 Case 1: Separation of Variables 

In a one-dimensional finite region, usually the time variable t and the space variable 

x can be separated. Consider the problem in region 0 < x < 1, with % = ez, 

4 ( x ) c t ( x )  = ez and a constant pressure boundary. We need to find the solution to: 

O < x < l ,  t>O d dG dG -(ez-) = ez- 
ax dx at (3.14) 

S(x - x') 
G(x,z',O) = 

ex' (3.15) 



CHAPTER 4. GREEN’S FUNCTION AND RECIPROCITY PRINCIPLE 77 

G(O,x’,t) = G(I,x‘,t) = 0 t > 0. (3.16) 

The corresponding Sturm-Liouville problem is: 

d d X  
-(ez-) + X ezX = O 
dx dx 

X(0)  = X(1) = 0. 

(3.17) 

(3.18) 

The equivalent equation 

X“ + X’ + AX = 0 (3.19) 

gives 

(3.20) 

where C1, C2 and X are decided from the boundary condition (Eq. 3.18), 

n = 1,2, ... (3.21) 2 2  1 X = n n  + -  
4 ’  

with C1 = 0 and eigenfunction: 

sin nnx (3.22) (n27r2+1/4)t-z/2 Gn(x,t) = Cne- 

Using the initial condition, multiplying by ef sin n r x ,  then C n  = 2e-f sin nnx’, and 

the Green’s function is: 
03 s’+l-t e-n2.ir2t G(x,x‘,t) = 2e- 2 4 sin nnx’ sin nnx 

n= l  
(3.23) 

With the approach of variable separation, Green’s functions can be found for one- 

dimensional flow problems with the following distributions of mobilities and storativ- 

ities, where either could be scaled by a constant: 

~ ( x > / P ( x )  = x, +(x)Ct(x) = x in region [--I, I]. 



CHAPTER 4. GREEN'S FUNCTION AND RECIPROCITY PRINCIPLE 78 

0 k(x)/p(x) = (1 - z)P-q+'xq, #(x)Ct(x) = (1 - x)P-qxq-' where q 1: 1, p - q 2 0 
in region [-I, I]. 

0 k(x)/p(x) = a ( z  - b)2, 4(z)Ct(x) = 1 in region [O,cm). 

0 k(x)/p(z) = a(x - b)3 ,  q3(z)Ct(z) = x - b in region [ O , o o ) .  

Special functions are involved in those solutions. Notice that we can not specify a 

boundary condition at  a place where mobility vanishes. 

3.4.2 Case 2: Fourier Transformation 

When the eigenvalue problem resulted from the separation of variables has a contin- 

uous spectrum, Fourier transformation is a good choice. 

Let us try to find the Green's function in a two-dimensional infinite reservoir with 

a plane interface at  x = 0 which separates the reservoir into two regions with different 

properties of storativity and mobility. 

Assume that the mobility and storativity are X1 and ql respectively for the half 

space x > 0 and A 2  and 772 respectively for the other half J: < 0. Without loss of 

generality, the position of the instantaneous source can be taken to be at (x',O). 
The free space Green's function in Laplace space is 

1 

(3.24) 

Assume in region 1 that G = u1 + w and in region 2 that G = v, then in Laplace 

space we need to  solve: 

d2W d2W 2- 
ax2 dy2 

+ - - z1w = 0 for x > 0 

d2v d2u 2 -  

ax2 dy 
- + 2 - x2v = 0 for x < 0 

(3.25) 

(3.26) 

with boundary conditions: 

t i + w = u  a t x = O  (3.27) 
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(3.28) 

where z1 = 6 and z2 = g. 
Separation of variables x and y gives a continuous spectrum for this eigenvalue 

problem, which suggests that a Fourier integral replace the eigenfunction expansion 

theorem. An equivalent way is to use the Fourier transformation. 

After Fourier transformation: 
a 2  = 

d X 2  

W 
(s2 + 2l”)W = 0 for x > 0 -- 

8 2  = 

d X 2  
2, 

( s2  + z;)z = 0 for x < 0 -- 

with -E! = 0 when x --+ --oo we see that: 

A and B can be decided by the boundary conditions: 

U 1 + W = G  a t x = O  

- 1 z - z ~ i p q  
Substituting Gl = ke ,/s2+z; gives 

so 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 
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for x > 0, and 
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for x < 0. In Laplace space, the Green’s function is 

(3.37) 

(3.38) 

G ( x ,  y, x‘, 2 )  = J’ J” G(x ,  s, XI, z )  cos(ys)ds 
T O  

(3.39) 

3.4.3 

For infinite reservoirs, working in Laplace space is a good idea since we can focus on 

spatial variables without worrying about the time variable or the initial condition. 

There are effective numerical methods that invert the solutions in Laplace space to 

real space conveniently. 

Case 3: Working in Laplace Space 

A good example is the pressure solution for an infinite homogeneous reservoir 

with a circular discontinuity in properties as shown in Fig. 2.5. For this problem, it 
is easier to work in Laplace space. In Laplace space, a function extended from the 

homogeneous Green’s function was obtained by Rosa (1991). The key idea is a kind of 

perturbation; adding a to-be-decided function to the already known solution for the 

homogeneous reservoir without the discontinuity. The solution is assumed to be u;+v; 

for region i (z = 1,2) ,  where u; is the solution of homogeneous reservoir with the same 

properties as region i and vi is the function to be decided. This idea was applied to 

composite media for heat transfer by Curslaw and Jaeger (1959). In their approach, 

the Green’s function was defined due to a unit strength source. This definition makes 

the Green’s function lose the reciprocity property in heterogeneous reservoirs, and is 

quite inconvenient when applied to continuous sources. In our definition, the Green’s 

function in Laplace space for the first region ( r  < a )  is 
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For the second region ( r  2 a ) ,  it is 

- 
v2 = 

Oo In ( Z I T ' )  IC, (z2r) 
cos (0 - 0') 5k n=O CE" Q n  

if a > r' 
L 

(3.40) 

(3.41) 

where 

Notice that the two equations presented above are different from Eq. 2.10 and Eq. 2.11 

because Eq. 2.10 and Eq. 2.11 are not actually Green's function for the circular 

discontinuity problem. 

The pressure drop for a constant surface flow rate q in Laplace space is 

qB ly (r, 0, z )  . - 
A P ( r , e , z )  = -- r r z h  z 

(3.42) 
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where 

3.4.4 Case 4: DecomDosition 

We do not have Newman's product theorem for Green's functions in heterogeneous 

reservoirs, so generally we can not decompose a higher dimensional problem into 

several lower dimensional problems that are easier to solve, except in some very 

special cases, for example, when mobility and storativity have the same distributions 

and are functions of only one of x ,  y or z .  
Consider a closed rectangular reservoir in two dimensions with mobility and stora- 

tivity varying linearly in the x direction only, as shown in Fig. 3.4.4. The Green's 

function for this problem satisfies: 

d dG d dG 
- [(ax + b)-] + -[(ax + = (ax + b)- d X  a x  dy  at 

which, after transformation with any constant c, 

x' = ax + b 
y' = ay  + c 

t' = a2t  

is equivalent to the following problem: 

1 d dG d2G dG --(x-) + - - -- 
s a x  ax dy2 - a 

with 0 5 a 5 x 5 band 0 5 Y L 1. 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

This two-dimensional problem can be decomposed into two one-dimensional prob- 

lems by assuming 

Substituting into Eq. 3.45, we obtain two subproblems, 
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0 

0 

Closed rectangular reservoir in two dimensions 
Mobility and storativity vary linearly in x direction 

Y 

Figure 3.1: Distribution of mobility and storativity 
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1 d dG1 dG1 
x d x  ax at 
--(x-) = - 

with 0 5 a 5 x 5 b and Gl(x,x ' ,O) = 9, 6 x  x and 

d2G2 dG2 -- - - 
dY2 at 

with 0 5 y 5 I and G 2 ( y , y ' , O )  = 6(y - y'). 

The Green's function for Eq. 3.47 is 

(3.47) 

(3.48) 

(3.49) 

where y n ( z )  = J1 (ana )~~(CYnz ) -~ (ana )Jo (a , x ) .  Detailed derivation for this solution 

is in Appendix D. 
Eq. 3.48 represents a one-dimensional homogeneous reservoir with a Green's func- 

tion presented by Gringarten and Ramey (1973) 

03 n 2 2 t  nny m y '  
cos -). 1 

I G2(y,y' , t)  = ~ ( 1  + 2 e - 7  cos- 
I n=l 

Therefore, the Green's function for our two-dimensional problem is 

n 2 2 t  n r y '  n n y  
1 

00 

cos -) 1 
I G(x ,  x', y, y'' t )  = i(l + 2 e - 7  cos - 

n=l 

(3.50) 

(3.51) 

If we have one active well with production rate q ( t )  at position (XI,#), then the 

pressure response is 

(3.52) 

3.5 Anisotropic and Heterogeneous Reservoirs 

The general pressure equation for a.n anisotropic and heterogeneous reservoir can be 

written as: 
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(3.53) 

Generally speaking, Green’s functions are not good for this kind of complicated prob- 

lem. We will look at the problem with the following restriction, 

k X ( X , Y , 4  - - k X ( 4  
PX(X,  Y, 2) P x ( 4  ’ 

and 

In such a case, this three-dimensional problem can be decomposed into three one- 

dimensional problems provided that the domain of the three-dimensional problem 

can be represented by the product of three one-dimensional intervals. 

Suppose pl(x,t) is the solution of 

p2(y,t) is the solution of 

a P 2  - 4ct- 
a kY(Y) dP2 
dy P Y ( Y )  dY at 

aP3 
- 4G- a kz(z) aP3 

8.2 & ( Z )  32 at 

--- - 

and p3( z ,  t )  is the solution of 

---- 

over the corresponding decomposed intervals, then it is true that 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

is the solution of the three-dimensional problem. 
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3.6 Principle of Reciprocity 

Once we know that reciprocity holds for the Green's function, we can start to inves- 

tigate under which conditions the pressure response is reciprocal. Suppose there are 

two wells, well A produces at some rate, which causes a pressure response at well B. 
Under which conditions, will the pressure response at well A be the same if well B is 

produced at that rate? The pressure can be represented in terms of Green's function 

as: 

(3.58) 

where f ( x ,  y ,  z ,  t )  is the source distribution and g ( x ,  y ,  z )  is the initial pressure. 

In order to satisfy reciprocity, the second and last terms on the right hand side 

have to be zero, i.e. the initial pressure is zero everywhere and boundary is no-flow or 

kept at constant zero pressure. From this, considering the pressure drop instead of the 
pressure response itself, we see that' reciprocity also holds for the pressure response 

if the initial pressure is uniform and the boundary is kept at the initial pressure or 

the boundary is no-flow. For infinite reservoirs, the boundary terms disappear, and 

only the uniform initial pressure condition is required. Notice that these conditions 

are also necessary conditions. So if the initial pressure distribution is not uniform, or 

when there is a boundary at which the pressure is not kept at initial pressure, then 

we do not have reciprocal pressure responses. 

3.7 Effects of Wellbore Storage and Skin 

The skin factor does not change reciprocity, since the reservoir is treated as a compos- 

ite reservoir when skin is present. From the discussion above, we know that reciprocity 

holds for the composite reservoir which is a special case of heterogeneity. 

The wellbore storage coefficient is related to the sandface flow rate by 

(3.59) 
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dPwD 
q s f D ( t D )  = 1 + C D -  

d t D  

In Laplace space, it is 

(3.60) 

(3.61) 

The derivation is true for any dimension, but we will show it only in two dimensions as 

an example. Suppose there are two positions (x1,yl)  and ( 5 2 ,  y 2 )  and two correspond- 

ing GIXen’s functions G l ( X D , Y D , X l D ,  y l D , t D  - T D )  and G 2 ( x D , Y D , Z 2 D , Y 2 D , t D  - 7 D ) .  

From the principle of reciprocity, we know that: 

In Laplace space, 

so  

Similarly, 

(3.63) 

(3.64) 

(3.65) 

(3.66) 

(3.67) 

(3.68) 
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Thus in order to make 

we need 

(3.69) 

if C D  is not zero. 

In infinite homogeneous reservoirs, this can always be satisfied since 

For other cases, even in homogeneous reservoirs, the wellbore storage may invalidate 

the reciprocity as shown by the following example. 

For a one-dimensional homogeneous reservoir, with a no-flow boundary at x = 0 

and x = xe, its Green’s function is 

1 nrx’ n r x  
G ( x ,  x‘, t - T )  = -[1 + 2 5 e - y c o s -  cos -1 

X e  n=l Xe Xe 

For reciprocity to hold we require 

or 
n r x l ,  n r x l  nrx2 ,  n r x 2  

cos - cos - = cos-cos- 

Assuming xlw = xl  + x ,  and x2,  = 2 2  + x w ,  then we would need: 

which is not true, hence reciprocity does not hold for this no-flow boundary reservoir. 

3.8 Green’s Functions for Tracer Flow Problems 

This section considers the application of the Green’s function method in convection- 

dispersion tracer problems. 

Considering one-phase flow through a homogeneous porous media, the general 

convection-dispersion equation is 
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(3.71) 

px; P X i  Assuming no volume change on mixing, then 7 = 1. Denoting c; = - we have 
i=l Pa PP ’ 

d 
-(+c;) + ~ ( v ’ c ; )  - V ( 4 D i  ~7 ci) = O dt i = 1, ..., 72, 

xa 
Pi 

if v(+D;? p )  is neglected. For one dimension and two components: 

d 2 C  dv 4m1 dc 4 D G  + Z C  = 0. 
dc 

q q x ) z  + [V - - - - 
dx dx  

Multiplying on both sides by t ( x )  which is yet to be determined: 

We want to have: 

So the requirement is 

which gives 

If v is constant, the convection-dispersion problem 

(3.72) 

(3.73) 

(3.74) 

(3.75) 

(3.76) 

(3.77) 

(3.78) 

with conditions c(x,O) = ~1 and ~ ( 0 , t )  = c2 is the same as the pressure problem in 

one dimension: 
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(3.79) 

with conditions p(x,O) = p1 and p ( 0 , t )  = p2. Thus the Green’s function also can 

be used for the convection-dispersion equation in one dimension, or even for the 

convection-dispersion equation with adsorption in a homogeneous reservoir. 

For two-dimensional or three-dimensional dispersion problems, the Green’s func- 

tion method can be applied too, but it will not so powerful as it is for pressure 

problems. The difference comes from the fact that for dispersion problem, we usu- 

ally have fixed concentrations at wells that are kinds of boundary conditions rather 

than source constraints, and the Green’s function for boundary problems is more 

complicated to derive analytically. 



Chapter 4 

Analytical Solutions to Tracer 
Flow 

Solving tracer problems analytically is challenging work. A classical analytical solu- 

tion found by Aronofsky and Heller (1957) is the complementary error function for a 

semiinfinite linear flow in a homogeneous reservoir: 

where c is the dimensionless normalized concentration, P, = $$ is the Peclet number, 

D is dispersion coefficient, v is the Darcy velocity, and L is the length of the flow. 

The second term is small and usually is neglected in application except at very early 

time. A general convection-dispersion equation in two dimensions is: 
d c  d dc dc d d C  d C  - -  & - & ( D z X Z  + D"Y$ + &(DWZ + DYY$ 

d clq 
d X  dY 4 h  

-v,-c - vy-c - - 

where the velocities v, and vy are related to pressure distribution, D;j are the com- 

ponents of the hydrodynamic dispersion coefficients, c1 is the concentration of the 
source/sink, and q is the rate of injection and/or withdrawal in volume flux per unit 

area. 

The reasons this convection-dispersion equation is difficult to solve analytically 

include: 

91 
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0 The phase velocity (v,,vy) appears as a coefficient in the convection-diffusive 

equation. 

0 The velocity is determined by the pressure distribution and depends on the well 

pattern. 

0 Analytical expressions for velocity usually are complicated in two dimensions. 

Even though the Green’s function method can be extended for convection-dispersion 

equations as for the diffusive equations in heterogeneous reservoirs, the method is not 

as effective because the condition at  the injection well is a constant concentration 

and a constant concentration can not be described as a source. On the other hand, if 

the injection condition is treated as a constant boundary condition, the mathematical 

domain becomes more complex and makes it virtually impossible to find the Green’s 

function. 

Due to these restrictions, analytical solutions for convection-dispersion equation 

can be obtained only in some simplified situations. In this chapter, some of these 

cases are discussed. The concentration expression in a one-dimensional composite 

region with different constant dispersivities will be shown. Also shown is the solution 

to linear tracer flow with linearly changing dispersivity. One-dimensional problems 

are always easier to handle in seeking the analytical solution. Moving from one di- 

mension to two dimensions requires more simplifications. A two-dimensional example 

included in this chapter is the analytical solution to radial tracer flow that actually is 

solved as a one-dimensional problem. At the end, a streamline semianalytic solution 

based on characteristic method is presented for an infinite reservoir with a circular 

discontinuity. 
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4.1 Convect ion-Dispersion Equation with Linearly 

Changing Dispersivity 

Denoting the fluid Darcy velocity by v, porosity by 4 and dispersion coefficient by D, 
for two-component, one-phase linear flow in a semiinfinite region, the tracer concen- 

tration can be expressed in Laplace space as 

1 W-(. -a)&&5+$ 
C'(s ,x)  = - e 

S 
(4.3) 

This solution can be inverted analytically to real space. 

For a one-dimensional system with linearly varying dispersion coefficient D( x )  = 

a x ,  in a semiinfinite domain, the concentration equation is 4 

(4.4) 
ac - a VOXdC v a c  
at a x  q3 ax ($ax 
- - --- - -- 

with initial condition C(x,O) = O(x > a ) ,  boundary conditions C(a , t )  = l ( t  > 0), 
C(o0, t )  = O(t > 0). Taking the Laplace t'ransform, it becomes 

C ( q 0 )  = 0 ( 5  > a )  (4.6) 

1 
C ( a , s )  = - 

S (4.7) 

C(o0 ,s )  = 0 (4.8) 

The solution for this equation was worked out in Laplace space as 

where u = 2, 
vo ' 

Using the Stehfest algorithm to invert the solution to real space will not yield 

the correct answer. As can be seen in Fig. 4.1, numerical errors similar to  Gibb's 

phenomena are present on two sides of the front zone indicating that the Stehfest 
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Figure 4.3: Comparison of constant dispersivity and linearly changing dispersivity 
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algorithm is not applicable here. 

tracer problem is the algorithm developed by Crump (1976). 
corresponding correct tracer concentrations recalculated by the Crump algorithm. 

A better approach for Laplace inversion in the 

Fig. 4.2 shows the 

As a contrast to constant dispersivity, Fig. 4.3 shows the concentration profiles 

at fixed points with different dispersivities in the media. The differences between 

constant dispersivity and linearly changing dispersity solutions are not large though 

the concentration of the latter cannot be matched well using the concentration from 

the constant dispersivity solution. This implies that the concentration profile does 

carry the nonconstant dispersivity information even though it is not reflected strongly. 

4.2 Linear Tracer Flow in a Composite Reservoir 

Consider a linear flow in a reservoir that has two regions of different dispersivities D1 
and D2 as shown in Fig. 4.4. The two regions contact at  x = a. Since the flow is 

linear? the phase velocities in two regions are the same v. 

a2c1 v dC1 dC1 
at ax  & a x  

D 1 7 -  -- O < x < a  - =  (4.10) 

(4.11) 

with initial condition C(x,O) = 0 (x > 0) and two boundary conditions Cl(O,t) = 

1 (t  > 0 ) ,  C2(00 , t )  = 0 (t  > 0). In order to completely define the problem, we need 

two other conditions at x = a .  One has to be the material balance at x = a, that flux 

in due to convection and dispersion should be equal to flux out due to convection and 

dispersion , 

(4.12) 

The other condition can be posed to require continuity of concentration across ~t: = a ,  

Cl (a ,  t )  - C2(a,t) = 0 (4.13) 

The solutions in Laplace space are 

C ~ ( X , S )  = Alex11x + BleX12" (4.14) 
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- Constant one-phase flow-rate 

Two conditions at the interface: 

1 Material balance 

2 Continuity of concentration 

97 

Figure 4.4: Linear tracer flow in composite region 
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and 

C2(x, s )  = A2eX2Ix + B2eX22x 

with ~ 2 1 =  + J& + and ~ 2 2  = - J& + e. 
Applying boundary conditions to Cl and C2, we obtain: 

A2 = 0 

This linear equation system gives: 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

Therefore, we obtained tracer solutions in Laplace space for the composite one- 

dimens ion a1 problem: 
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X(cm). 
Figure 4.8: Tracer profile in one dimension with two different porosities 
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This solution, again, cannot be inverted into real space correctly using the Stehfest 

algorithm. Some profile curves are calculated by the Crump algorithm as shown in 

Figs. 4.5-4.8. The change in dispersivities in the two regions affects the curves. The 
differences between the figures are not so obvious, but are there and can contribute 

significantly to the breakthrough curves. 

Now let us consider a linear flow in a reservoir which has two regions of different 

properties, with very small dispersion in one or both regions. This is a special case 

of the convection-dispersion equation with some of the dispersion coefficients equal 

to  zero. However, the solution expressed in Eq. 4.23 does not apply to this special 

case because D1 and D2 appear in the denominator of A’s. All other conditions are 

set as before, namely: two regions contact at x = a; initial condition C(q0)  = 

O(x > 0); boundary conditions CI(0,t)  = l ( t  > 0)) C ~ ( C O , ~ )  = O(t > 0); continuous 

concentration Cl(a,  t )  - C2(a, t )  = 0; and material balance 

There are three cases possible. 

1. Dispersion in Both Regions Neglected 

If dispersion coefficients in both regions are set to zero, then we have 

dC2 2) dC2 
at 4 2  ax +--=0 x > a  

The solution in Laplace space is 

1 -+ Cl(x,s) = -e 
S 

These solutions can be inverted back to real space as 

(4.24) 

(4.25) 

(4.26) 

(4.27) 
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(4.28) 

The tracer front moves at velocity 
second region. 

in the first region, and at velocity -& in the 

2. Dispersion in the First Region Neglected 

For this case, the equakions governing the tracer flow in two regions are: 

v dC1 dC1 
at 01 a x  

O < x < a  - = --- 

The solutions for this case can be worked out in Laplace space as 

1 -9+ Cl(z,s) = - e 
S 

and both of these can be inverted analytically into real space. 

2. Dispersion in the Second Region Neglected 

The second region has a very small dispersion coefficient D2 m 0, 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

with the material balance condition C 1 - e % l z = a  = C2. Transforming into Laplace 

space, we have: 
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- v dC1 
41 dx 

scz  + -- x > a  

The general solutions are 

C,(x, s) = AleX1'" + B1eXlzZ 

Applying boundary 

1 C,(o,s) = -, 
S 

C l ( a ,  s> = C2(a, 

conditions 

s) 

and 

- c 2  C l ( a , s >  - -- - # l a  dC1 
v dx 

or 

then 

1 Ai + B1 = - 
S 

(4.33) 

A1AlleX1la + BJ12eX12a = 0 (4.35) 

Solving linear equations Eq. 4.33, Eq. 4.34, and Eq. 4.35 to determine the coefficients 

gives 
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So, the solutions of tracer concentration in Laplace space for this case are 

where 

V V Z  S 
A l l  = - +-  

WlD1 +.Jm D1 

and 

(4.36) 

(4.37) 

2) V2 S 
’12=--/m 2#1D1 + -* D1 

These solutions cannot be inverted to real space analytically, so a numerical inversion 

method like Crump algorithm should be used. 

4.3 Radial Convection-Dispersion Tracer Flow in 
Homogeneous Reservoir 

This section deals with the tracer problem for radial flow in homogeneous reservoirs. 

Denote the Peclet number by P, = $$ where v is the Darcy velocity, L is the length of 

the flow) q5 is the porosity and D is the diffusion coefficient. For two-component, one 

phase linear flow, the solution has been obtained by solving the following convection- 

diffusion equation, 

(4.38) 

The governing equation of tracer flow in the two-dimensional infinite domain is 

(4.39) 
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Starting from Eq. 4.39, the equation for a radial system that satisfies 

v, = rcosfl 

vy = r sin 0 

can be derived as 

105 

(4.40) 

Consider a model with simple initial condition and boundary conditions as an example 

C(r,O) = 0 
C(1,t) = 1 
lim C(r ,  t )  = O 

?---to0 

The tracer solution to this model in Laplace space can be expressed in terms of 

modified Bessel functions of real orders 

(4.41) 

where p = y. 
After the superposition for the convection-dispersion equation in two-dimensional 

tracer flow was investigated and found not to be true, it was realized that the concen- 

tration distribution of tracer in multiwell system cannot be obtained by superposing 

the separate radial flow solutions. The superposition is not true due to the specifica- 

tion of concentration at each injection well that serves as a boundary condition. 

4.4 Streamlines in an Infinite Reservoir with a 

Circular Discontinuity 

This section introduces a semianalytic method for generating streamlines in an in- 

finite two-dimensional heterogeneous reservoir, where the local heterogeneity is ap- 

proximated by it circular region with permeability and porosity different than the rest 

of the reservoir. This semianalytic solution can serve as a basis to verify the general 

numerical method that solves the tracer flow in reservoirs with blocks of heterogene- 

ity. In this semianalytic method, the pressure equation is solved first, the velocity 
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fields are obtained from the pressure distributions, and then the streamline is cal- 

culated. Following enough number of streamlines from injection well to production 

well simulates the tracer flowing between wells and will give the tracer concentration 

in the production well, i.e., tracer return profile. It is believed that heterogeneity 

has more effect on tracer flowing than dispersion. The dispersion effect, therefore, is 

assumed to be very small in this discussion. With the dispersion effect neglected, the 

tracer convect ion-dispersion equation 

dC d dC d dC d dC d dC 
dY d X  

-- at - z ( D x x z )  + ,(DYY,,) + -#x,-) + -&(D""-) 

can be simplified to a first order equation 

dC dC dC - + Vx- + vy- = 0 
at dX dY 

(4.42) 

(4.43) 

where the velocity ux and uy are determined by pressure equation. The streamline is 

calculated according to 

(4.44) 

The pressure distribution for a reservoir with circular discontinuity can be ob- 

tained exactly from the Green's function with superposition of the effects of the 

injection wells and production wells. Fig. 4.9 shows the pressure distribution in a 

configuration of one injection well and one production well in an infinite reservoir 

with a circular discontinuity between the two wells. Streamlines in Fig. 4.10 are for 

the reservoir without the discontinuity, while Figs. 4.11 and 4.12 show the streamlines 

for different permeabilities in the discontinuity, lower than the reservoir in Fig. 4.11 
and higher than the reservoir in Fig. 4.12. The example has just one production well 

and one injection well. The scheme is applicable directly to multiwell system when 

the pressure distribution is superposed using all wells. 

The circular discontinuity does affect the shape of the streamlines. What is the 

effect on the tracer breakthrough? To answer this, the tracer return profile should 

be calculated. Following sufficient streamlines from the tracer injection well to the 
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Figure 4.9: Pressure distribution of two wells in discontinuous reservoir 
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Figure 4.10: Streamlines of two wells in a homogeneous reservoir 
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Figure 4.11: Streamlines of two wells with a discontinuity of lower permeability 
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Figure 4.12: Streamlines of two wells with a discontinuity of higher permeability 



CHAPTER 4. ANALYTICAL SOLUTIONS TO TRACER FLOW 111 

tracer production well is an effective way to calculate the tracer concentration in the 

production well or tracer profile. Weighting each streamline according to its velocity 

upon the breakthrough time generates the solution to the tracer flow problem. The 

implementation is a numerical method of characteristics. 

Fig. 4.13 and Fig. 4.14 compare the tracer return profiles for three permeabilities of 

the circular disk. The locations of the circular disks in the two figures are different; one 

lies between two wells (O"), 90 f t  away from the injection well and the other lies 45", 
90 f t  away from the injection well. In both figures, the system with the discontinuity 

of smaller permeability has later breakthrough. This is easy to understand with 

a physical explanation that the presence of the small permeability zone blocks the 

flowing channel. The curves are distinguishable from each other, so a small area of 

heterogeneity does yield different concentration profiles at the production well. On 

the other hand, the difference present between curves probably is not large enough 

to determine the permeability of circular discontinuity with confidence. More data 

would be needed to reduce the ambiguity, for example, by combining pressure data 

with the tracer data. 

The tracer return profiles in both figures are calculated by following 500 stream- 

lines from the injection well to the production well. Each streamline is assigned a 

weight proportional to its in-flux, where the sum of the 500 weights is 1. When a 

streamline breaks through, its weight is counted into the contribution of the tracer 

concentration at the production well. 

The streamlines actually are the projection of three-dimensional characteristic 

curves defined in Eq. 4.44 onto the x-y plane. Along each characteristic curve, the 

concentration C ( t , x , y )  is a constant equal to the concentration Co a t  the injection 

well, Each characteristic curve starts from the injection well, and eventually reaches 

into the production well. The time at which a characteristic curve intersects with the 

production well is its breakthrough time. 

In calculation of the streamlines, the time step for each iteration should be chosen 

carefully so that the advances of tracer fronts during the time step along all the 

streamlines are no more than a given distance. The time step should not be calculated 

based on the average velocity at the current time, which causes problems because the 
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advance of the fastest tracer front might be larger than the diameter of the production 

well, and the front could escape from the detection of the breakthrough condition. 

In this example, the velocity at the start point of each time step was used in 

computing streamlines along a characteristic curve. Using the velocity at the start 

point is just a first approximation. To be more accurate, a second approximation can 

be applied. In the second approximation, the velocities are replaced by known mean 

values over the advance arc along the characteristic curve. This second procedure can 

be repeated iteratively until successive iterates agree to a specified number of decimal 

places, and will usually yield a much better approximation. 



Chapter 5 

Using Tracer and Pressure Data 
Simultaneously 

The nonlinear least square regression method is an indirect method to obtain reser- 

voir properties from observed data. It has been applied widely in well test analysis, 

especially for interpreting transient pressure data. Based on the difference between 

observed and calculated pressure data, the estimates of the parameters are adjusted 

until the calculated response is sufficiently close to that of observations. This method 

works for limited observations and is most successful if the objective function is con- 

vex or has few local minima. However, as the number of observations increases, as in 

the case of data from multiple wells, the calculation in the indirect method becomes 

inefficient. Another disadvantage is that the optimization may converge to a local 

minimum and hence the estimated result becomes dependent on the initial guess of 

the parameters. 

5.1 Dispersivity and Permeability Correlation 

It has long been considered that heterogeneity is one of the causes of the disper- 

sion effect and the coefficients of dispersion should be a function of permeability. 

Harleman et al. (1963) conducted an experiment for uniform media and formulated 

expressions relating intrinsic permeability and longitudinal dispersivity. Bear (1979) 

114 
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showed that the dispersivity of an isotropic porous medium can de defined by two 

constants, the longitudinal dispersivity of the medium and the transverse dispersivity 

of the medium. A more detailed study by Arya and Hewett (1988) introduced the 

concepts of macroscopic dispersion and megascopic dispersion, and investigated how 

the dispersions vary with heterogeneity, aspect ratio, and diffusion coefficient. 

Including the molecular diffusion effect, a commonly used formula for dispersion 

coefficients, is 

where u = (u1 ,u2 )  = - I C  ~7 p is the Darcy velocity, IuI = t/.: + u;, d, is the 
molecular diffusion coefficient, and dl and dt are the magnitudes of longitudinal and 

traverse dispersion. Since 

P 

dispersion coefficients can be expressed in term of permeability and pressure 

where ma-trices A and B are just of functions of pressure: 

A =  ( 
3 2 2  
a x  ay 

This expression transforms the convection-diffusion equation to an equation with 

k as coefficient instead of Dij, which is the basis of the integrating tracer and pressure 

data. 
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5.2 Integrating Tracer and Pressure Data in Het- 
erogeneous Reservoirs k 

Consider two-dimensional single phase flow in an isotropic reservoir, the pressure 

governing equation at steady state is given by 

and an example of a transport dominated convection-diffusion equation is given by 

d c1 Q 
d X  dy 4h , v,c - -vyc - - d -- (5.4) 

where the velocities 

and 

are interstitial velocities, related to pressure distribution, D;j are the components of 

dispersion coefficients as expressed in Eqs. 5.1 and 5.2, c1 is the concentration of the 

source/sink, and q is the rate of injection and/or withdrawal in volume flux per unit 

area. 

The following are the steps in the direct approach for integrating tracer and pres- 

sure data: 

1. According to the data measured at multiple wells, generate tracer and pressure 

distributions at various time on the whole reservoir by an interpolation scheme 

such as spline or kriging. 

2. After the pressure as a function of 2, y is known, Eq. 5.3 becomes a first order 

partial differential equation for IC(  x, y).  
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3. Apply a relationship between dispersion coefficients and permeability, so that 

tracer equation has permeability as coefficients, too. The relationship could be 

the correlation from the experiment. 

Eq. 5.4 at this step becomes a first-order hyperbolic equation for k ( z ,  y). 

4. Discretize both first-order hyperbolic equations. They have permeabilities as 

unknowns after discretization, and are solved by numerical methods to obtain 

'ki j .  

This scheme favors the multiwell data. When there are more observation wells, 

the reconstruction of the pressure distribution and tracer distribution becomes more 

accurate. Another useful feature of this approach is that including data from more 

wells will not increase the amount of computation, which differs from the nonlinear 

regression scheme of matching pressure data. 

On the other hand, there are two steps of approximation in the approach. The 

first approximation comes from the reconstruction of the pressure and tracer distri- 

butions, which can be reduced by applying more data from more wells. The second 

approximation comes from the numerical error introduced in solving the first-order 

equations . 
Other important factors need to be taken into consideration. For examples, how 

to pose boundary conditions for the permeability in the discretized pressure equation. 

This approach generally is not applicable to three dimensional problems because 

the pressure and tracer data are not collected for different locations in the vertical 

direction and so pressure or tracer data cannot be interpolated vertically. 

5.3 Ill-posedness 

The process of solving a partial differential equation numerically usually ends up as 

the solution to a system of linear equations, such as 

Ak = u, (5 .5 )  

where A is a matrix and k and u are vectors. The problem of determining k from u 
is called well-posed if it satisfies the following three conditions: 
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0 for each u, there exists a solution k 

0 the solution is unique and 

0 the solution depends continuously on u (it is stable against small variations of 

u>* 

If one of the above conditions is not satisfied, then the problem is called ill-posed. As 
an example of numerical demonstration for ill-posedness, look at the following system 

of equations: 

(: 1 . L )  (:I) = (:) 
The solution of the system is k,, = 1, kyy = 0. 

Now, let us introduce one percent error into the right hand side as in measurement, 

and see what effect the small error has on the solution. Solving 

( : lil ) ( :I) = ( 1 . L )  (5.7) 

yields k,, = 0, kyg = 1. A small change in the right hand side has dramatically 

changed the permeability solution. 

The system of simultaneous equations that come up in performing inverse analyses 

during parameter identification is often ill-posed. Basically, for the case of nonunique- 

ness, there is no mathematical method that can do much in overcoming the difficulty. 

The only way is to add more limitation or constraint to the solution, e.g. range, 

smoothness. However, for instability, various mathematical methods have been intro- 

duced. For example, the inverse problem of mathematical physics can be well-posedly 

formulated based on the introduction of additional information about the sought-for 

solution; the regularization method studied by Kravaris and SeinjeZd (1985) can yield 

stable approximate solutions to ill-posed problems in accordance with the accuracy 

of the data. 
The solution for the direct method of pressure equation is theoretically unique 

under appropriate conditions provided that the pressure related terms are given ex- 

actly anywhere. These appropriate conditions have been studied by Richter (October, 

1981) for the steady state diffusion equation. 
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As an example of ill-posed permeability identification, whose boundary conditions 

are not appropriately posed, consider a rectangular reservoir of 0 < x < a ,  O < y < b 
that has reached steady-state, 

with boundary conditions 

Furthermore, the pressure data are measured at any location in the reservoir as 

p ( q y )  = 100 0 < It: < a, 0 < y < b. (5.10) 

The permeability identification is not well-posed for the given boundary conditions 

and the measured data because the permeability coefficient could take any value. 

Since no fluid flow occurs in the reservoir, the measured pressure data do not carry 

any information about the reservoir. 

Ill-posedness is not a property of the direct method. It is associat,ed with the 

parameter identification problem itself. Ill-posedness could also exist in the nonlinear 

least square regression approach; including noise in the pressure data can change the 

nonlinear least square solution dramatically or introduce more local minima to the 

objective function. 

5.4 Permeability Constraints 

Eq. 5.3 with permeability as the unknown is a first order hyperbolic equation. To solve 

it, permeability should be specified on a curve that intersects with each characteristic 

curve as discussed by Nelson (1962). The following one-dimensional problem will help 

understand the inverse nature of permeability. 

Consider a finite section of linear flow bounded by J: = 0 and x = 1 with a source 

distribution q(z)? 0 < J: < 1 such that 1; q(z)dz = 0, 
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with the boundary conditions 

-Wp’(O) P = vo { - W p ’ (  P 1) = 211. 

120 

(5.11) 

(5.12) 

For such a one-dimensional problem, pressure p(x) as the unknown can be solved 

easily as a function of k(x). It is also easy to obtain k(x) as a result of interpretation 

from the given ~ ( x ) ,  q(x) and the boundary conditions in Eq. 5.12 if vo # 0 and VI # 0. 
Will it be as easy if the boundary condition is changed to a no-flow boundary, e.g. 

vo = w1 = O? In this case, we have 

--- k(x) d p  - - q(x) 0 < x < 1 
dx p dx 

with boundary conditions 

pya) = 0 { p‘(1) = 0 

(5.13) 

(5.14) 

Suppose the pressure distribution p(x) satisfying conditions p’(0) = ~ ‘ ( 1 )  = 0 has 

been solved or measured, can we infer k(x) uniquely from p(x)? Since it is a one- 

dimensional equation, taking an integral of x on both sides will yield 

--= dp(x) Ax &)dz 
’ p  dx 

so at x where p’(x) # 0, k(x) can be obtained explicitly as 

(5.15) 

k(x) = J’q(s)dx 
P ( 4  O 

(5.16) 

The observation from this discussion is that discretization and solution of Eq. 5.13 

do not require any boundary condition for k(x) at x = 0 or x = 1. 
However, if the boundary condition is constant pressure p ( 0 )  = p(1) = 0, the 

same discretized equation itself will not be sufficient to give k(x). A permeability 

value specified anywhere makes the equation solvable uniquely. What is going on, 

is k(x) not uniquely determined by p(.)? It is generally believed that different k(x) 
will result in a different pressure distribution. To answer this question, it is helpful to 
have a look at the analytical derivation. Treating p(x) as known, measured or solved, 

solve for k(x) from Eq. 5.13 by integration 
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(5.17) 

where C is a constant. This constant is not free, however, it is related to the constant 

pressure boundary condition. 

To satisfy p(0) = p(1) = 0, we have 

c1 = 0 

and 

so  

Therefor e, 

Eq. 5.22 is an integral equation, which suggests 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

that permeability can not be ob- 

tained by a simple finite difference method even though permeability is determined 

uniquely. In this case, constraining permeability at any given point as suggested by 

Nelson (1962) will make the finite difference method work. Similar discussion can 

be extended to infinite linear flow and the flow in higher dimensions provided that 
permeability is of value larger than zero. Richter (April, 1981) developed a modi- 

fied upwind difference method to solve for permeability directly from the first order 

hyperbolic equation. When certain conditions are met, this method has first order 

convergence. 
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5.5 Direct Method for Tracer Data 

A traditional approach of interpreting field tracer data involves a history match- 

ing procedure based on the nonlinear least square method, which in many cases is 

time-consuming and may result in a nonunique solution. In this section, a direct 

method is investigated for tracer data provided that the tracer distribution has been 

reconstructed correctly. There are various schemes to reconstruct the concentration 

distribution at any location in the reservoir at any time from the tracer data at pro- 

duction wells and observation wells, such as cubic spline, finite difference, Lagrange 

interpolations and kriging. Kriging interpolation is an exact method. Pan (1995) 

studied kriging algorithm as an multivariate interpolation method. The smoothness 

of the interpolated function was controlled by the highest degree of the representa- 

tive polynomials in Kriging algorithm. Pan (1995) found that kriging interpolation is 

more accurate than least square interpolation in capturing the optimal values of the 

interpolated function. 

In the following discussion, it is assumed that dispersion effect is small enough 

to be neglected. The one-dimensional problem is studied first and then the two- 

dimensional. 

For the one-dimensional tr&cer equation without dispersion, the phase of fluid 

carrying concentration c moves at a constant average velocity u, 
dC u dc -++- - - 0  
at 4(X)dX 

(5.23) 

where x is distanc,e, t is time and 45 is a non-constant porosity. As an easy example, 

for 

(5.24) 

where 451 and 452 are constant, the solution for the boundary condition that a constant 

concentration co is maintained at 2 = 0, is 

(5.25) 

for the region 0 < x < a ,  and 
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(5.26) 

for the region x > a.  

This solution represents a piston-like displacement with a concentration disconti- 

nuity varying from 0 to Q that propagates forward as shown in Fig. 5.1. This solution 

will facilitate the understanding of the following recovery method for $. 
Now, assume that the solution is given numerically, i.e., either there is a function 

or a table to tell the concentration c at any x > 0 and any t > 0, how to obtain I for 

any x from this information? The most important information is the concentration 

discontinuity position, at what time t the discontinuity reaches at position x. After 

that time, the concentration at x will always be co. The concentration at x before 

that time is always 0. These values do not contribute to the recovery of $ at all. 

Through the given table or function, the time at which the discontinuity reaches x1 
can be obtained 

tl = f(X1). 

So the time for x2 = x + dx is 

t 2  = f(x2). 

With tl, t2, x1 and x2 available, then 3 can be calculated, 

This expression actually is the difference form of the characteristic equation 

A similar scheme can be developed for two-dimensional tracer problem 

ac dC d C  - + vx- + vy- = 0. 
at dx dy 

(5.27) 

(5.28) 

(5.29) 

(5.30) 

The characteristic curve for this first order hyperbolic equation is determined by 

(5.31) 
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If the concentration distribution is reconstructed by the measured tracer data, then 

v, and vy can be recovered as 

(5.32) 

where t(x, y) is the time at which the concentration discontinuity reaches at location 

(X ,Y) .  

As an example, consider the radial flow around an injection well in an infinite 

reservoir. The injection flow rate is a constant q. With the coordinates origin set at 

injection well, the average phase velocity at (x, y) can be derived, 

The tracer equation for this radial flow model without dispersion is 

(5.33) 

(5.34) 

The solution to this equation with an injection well maintained at a constant concen- 

tration Q, starting at t = 0 and a zero initial concentration can be obtained by the 

characteristic met hod, 

(5 .35 )  

The surface consisting of all the characteristic curves originating from J: = 0, y = 0 
and t = 0 in space (x, y, t )  is plotted in Fig. 5.2 .  The equation defining this surface is 

which, actually, turns out to be the time function that plays an important role in 

recovering u,, uy or 4. 
Once the pressure distribution is known and the velocity field is obtained, the 

permeability distribution can be calculated by applying Darcy’s law. Notice that 
there is no boundary difficulty in interpreting tracer data, which is different to the 

direct interpretation of pressure data. 
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Figure 5.1: Propagation of concentration of discontinuity at x = 0 
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Figure 5.2: x-y-t diagram showing characteristic surface for the concentration of radial 
flow 
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In the above discussion it was assumed that tracer flow has negligible dispersion 

effect. In the case in which significant dispersion prevails, it remains true that the 

concentration front data has more weight in contributing to the recovery of the areal 

permeabilit ies. 

5.6 Example 

Consider a multiple well system in an infinite isotropic reservoir with a local region 

of heterogeneity that can be approximated by a circular disk of different permeability 

and porosity. The center of the circular discontinuity is chosen to be the origin of 

coordinates system in order to make the pressure expression simple. Assume the 

permeability of the circular discontinuity is 

and its radius is 

a = 50, 

and the rest of the reservoir has permeability of 

There is an injection well located at (-100,O) with injection rate q = 400. Four 

production wells are located at 

(100,O) with production rate q = 150 
(-300,O) with production raie q = 50 
(-100,200) with production rate q = 100 
(-100, -200) with production rate q = 100 

Furthermore, assume that the system has been in injection and production for a 

long time. The solution for the pressure change for such a multiple well system can 

be obtained as shown in Appendix E by superposition. Fig. 5.3 shows the pressure 

distribution calculated from Eq. E.23 in Appendix E for this system, and Fig. 5.4 is 

the corresponding pressure contour. 
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Figure 5.3: Pressure distribution of multiwell system with a circular discontinuity 
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Figure 5.4: Pressure contour of multiwell system with a circular discontinuity 
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To obtain the concentration semianalytically, assume that the dispersion effect is 

small enough to neglect. With this assumption, convection-diffusion Eq. 5.4 becomes 

Eq. 5.30, so the characteristic method can be applied here to show the idea. 

As discussed in the previous chapter, the streamlines are actually the projection 

of three dimensional characteristic curves defined in Eq. 5.31 onto the x-y plane. 

Fig. 5.5 includes some streamlines for the multiple well example with the circular 

discontinuity. As a comparison, Fig. 5.6 shows all the corresponding streamlines 

in the homogeneous reservoir where the permeability of circular region is equal to  

100 m d .  
The concentration front at each time step can be computed together with the 

streamlines. Fig. 5.7 shows the shape of concentration fronts at various time for the 
heterogeneous system while Fig. 5.8 shows the shape for the corresponding homoge- 

neous reservoir. However, in order to obtain the velocity as expressed in Eq. 5.32, it 

is necessary to determine the time function of (x, y) at which the concentration front 

reaches the location (x, y) .  In real application, the time function is reconstructed from 

the observed concentration data. Fig. 5.9 is an example of the three-dimensional plot 

of this time function and Fig. 5.10 is the two-dimensional contour of the time function. 

Once this time function is available, the velocity at each location can be obtained and 

therefore the permeability is derived from applying Darcy’s law as pressure distribu- 

tion is known. In a little more details, the recovery of permeability follows these 

steps: 

1. To obtain the permeability distribution, first the pressure distribution is gener- 

ated by interpolation from observation wells, so the pressure gradient (g , 2 )  
can be calculated for any location (x,y);  

2. Reconstruct the front time function t(x,y)  at each location ( q y )  from the 

observed concentration data; so the time t(x,y)  for tracer front to reach (x,y)  

can be found; 

3. Move a small distance dd along the opposite direction of pressure gradient 

(3 3 )  and find another time t d d  tracer front takes to reach by interpolation; ax, ay 

4. Then, a formula that is derived from Eq. 5.32 
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Figure 5.5: Streamline of multiwell system with a circular discontinuity 
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Figure 5.6: Streamhe of multiwell system but without the circular discontinuity 
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Figure 5.7: Concentration front in the multiwell system with a circular discontinuity 
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Figure 5.9: x-y-t diagram showing the time act which the concentration front arrives 
as a function of (x, y) 

- 7,- -''J,i c' 

L40.0 

120.0 

60 0 

-60.0 

- 120.0 

- 1 e0.c 

-240.0 

-300 0 
-360.0 -240.0 - 120.0 0.0 120 0 

Figure 5.10: The time at which the concentration front arrives as a function of (x, y) 
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is applied to obtain velocity value; 

5 .  Finally, Darcy’s law 

133 

(5.36) 

(5.37) 

is used to obtain permeability. 

The results of this calculation procedure for different numbers of observation points 

for the example of circularly discontinuous reservoir are shown in Figs 5.11, 5.12 and 

5.13. The number of observation points used in the three figures are 300x300, 100x100 

and 30x30, respectively. 

Since a tracer test usually measures the cumulative concentration vs. time at  

production well, it would be difficult to recover this entire permeability distribution 

from observations of tracer returns at a limited number of locations. However, the new 

technique of 4-D seismology has the ability to track the moving front of steam or tracer 

in the reservoirs as discussed by Nur (1988) and Brzostowski and McMechan (1991). 

With the help of 4-D seismology, the direct method using the time function will be a 

practical method in the near future. 
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Figure 5.1 1: Permeability distribution calculated using pressure and tracer data from 
300 by 300 observation points 
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Figure 5.12: Permeability distribution calculated using pressure and tracer data from 
100 by 100 observation points 
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Figure 5.13: Permeability distribution calculated using pressure and tracer data from 
30 by 30 observation points 



Chapter 6 

Conclusions 

In this work, pressure test analysis and tracer test analysis in multiwell systems were 

studied first individually and then together. The main contribution of this work will 

be summarized in this chapter and the conclusions will be stated for each topic. 

6.1 Analysis of Pressure Data from Multiple Wells 
Several models were studied with an emphasis on how to use the pressure data from 

multiple wells. The objective functions were formulated to avoid using just a subset 

of the multiwell data. A nonlinear least square method was presented to find the 

optimal solutions to the objective functions. 

In the analysis of multiwell interference tests for anisotropic reservoirs, the nonlin- 

ear regression method was proposed to utilize multiple sets of pressure data. A field 

example from an injection interference test was interpreted using the new approach. 

It can be concluded that: 

0 The nonlinear least square approach is a practical method for estimating the 

anisotropic permeabilities - compared to the conventional approach, it makes 

use of all the pressure data, avoids inconsistent results and increases the confi- 

dence level of the estimates. 

0 The solution presented by Papadopulos (1965) is preferable to the one by CoZZins 
(1961) in formulating the objective function. 
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For the multiwell system whose heterogeneity is represented by a circular dis- 

continuity, a robust procedure was developed to generate the pressure solution with 

wellbore storage. Pressure-time curves were plotted to show how the pressure varies 

with the parameters. Two coordinate systems were discussed to make nonlinear re- 

gression possible. A modified Fletcher (1971) method was presented for solving the 

nonlinear least square problems. The interpretation procedure was applied to some 

simulated examples. The effect of the noise and the number of observation wells were 

investigated. For this circular discontinuity model, the following conclusions can be 

stated: 

0 If wellbore storage is not significant and the noise in the measured pressure 

data is no greater than five percent, the transmissivity and storativity in both 

reservoir and the circular discontinuity can be estimated. The position and 

extent of the discontinuity are also obtainable. 

0 When wellbore storage effect is significant, all the properties for the circular 

discontinuity can be obtained by ana,lyzing the pressure data from the active 

well and more than one observation well. However, the validity of the estimated 

properties of the discontinuity depends on the locations of the observation wells. 

0 The larger the noise in the pressure data, the less accurate are the estimates of 

the properties, the position and the range of the discontinuity. 

0 With more well data, the surface of the objective function is steeper and smoother, 

and the parameters are easier to estimate. Adding more observation wells can 

suppress the effect of noise in the pressure data. 

0 The skin factor approach for wellbore damage is applicable at the active well 

when the following two conditions are satisfied: the damage area is not very 

large and the measured data is not at very early time. 

0 Having some of the observation wells near or inside the discontinuity region can 

make the objective function more sensitive to the properties, the position and 

the extent of the discontinuity. 
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In a multiple well system, neighbor wells may have impact on the interference 

pressure behavior for a testing well if these neighbor wells continue production dur- 

ing the test. The solution to the homogeneous system of any number of neighboring 

wells was obtained through the application of the Laplace transformation and super- 

position. Type curves of drawdown and buildup were presented for both finite well 

systems and infinite well systems. The pressure solution for rectangular reservoirs 

was derived by using an infinite number of imaging wells. From the results of these 

investigations, the following conclusions can be reached: 

Pressure responses in drawdown and buildup tests depend greatly on the ob- 

servation distance when wellbore storage is taken into consideration. 

In drawdown and buildup tests, the shut-in time and the wellbore storage effect 

have large influence on the buildup part of the pressure data. 

The buildup pressure in a reservoir in which other wells are producing eventually 

follows the pressure trend of the neighboring producing wells. 

Partial penetration effects need to be considered to make the pressure interpre- 

tation accurate for the rectangular reservoirs with no-flow or constant pressure 

boundaries. 

The situation in identifying the position of a no-flow linear boundary in a ho- 

mogeneous reservoir is similar to that of estimating permeabilities in an anisotropic 

reservoir. The identification problem is over-specified in the sense of utilizing the 

inference ellipse method. In order to apply multiple sets of pressure data, the nonlin- 

ear least square method was used with the general pressure solution developed in the 

Laplace space. Then the nonlinear regression was applied to interpret a real multiwell 

interference test in a geothermal field. From the study, we can conclude that: 

0 Theoretically, more than two sets of observation data are required to locate the 

position of a no-flow boundary uniquely. 

0 The wellbore storage effect is reduced in more distant observations. A closer 

observation well sees more wellbore storage effect in the pressure data. 
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0 The Ohaaki geothermal field appears to have a northwest to southeast trend of 

faults when all the interference pressure data are considered simultaneously. 

6.2 The Green’s Function and Principle of Reciprocity in Heterogeneous 
Problems 
The Green’s function method, a powerful tool in finding analytical pressure transient 

solutions, was extended to heterogeneous reservoirs in this study. The properties 

of the Green’s function were derived and their application were discussed. As the 

Newman’s product cannot be used for heterogeneous reservoirs, Green’s functions 

are more difficult to find for heterogeneous problems of high dimension. Therefore, 

some mathematical methods were presented through examples. The Green’s func- 

tion method is still attractive for heterogeneous problems because finding the Green’s 

function means that a set of pressure problems with various boundary conditions, 

initial condition and well conditions are all solved. Even though the Green’s func- 

tion method can be applied to tracer problems, it is not as powerful since the fixed 

concentration at well is a boundary condition rather than a source constraint. 

The reciprocal property is an interesting topic that turns out to be associated 

with the Green’s function. With Green’s function theory extended, the Principle of 

Reciprocity was investigated for practical cases in heterogeneous reservoirs including 

those with discontinuous mobility and storativity. The cases where the Principle of 

Reciprocity does not hold were also illustrated. In general, reciprocity holds for: 

1. Heterogeneous reservoirs of uniform initial pressure with no-flow boundaries. 

2. Heterogeneous reservoirs of uniform initial pressure with constant initial pres- 

sure boundaries. 

3. Heterogeneous infinite reservoirs of uniform initial pressure. 

4. Homogeneous infinite reservoirs with wellbore storage. 

Reciprocity does not hold for: 

1. Reservoirs of nonuniform initial pressure. 
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2. Reservoirs with nonzero flux across the outer boundary. 

3. Reservoirs with wellbore storage where Eq. 3.69 is not true. 

6.3 Analytical Solutions to the Convection-Dispersion Equation 
The analytical solutions to the convection-dispersion equations of three simplified 

tracer flow systems in heterogeneous reservoirs were derived using the Laplace trans- 

formation approach. One of the objectives in developing these analytical solutions 

was to help understand more about the tracer flow in heterogeneous reservoirs. A 
semianalytic method was also discussed for calculating streamlines and tracer return 

profiles. 

0 The Crump algorithm is more suitable than the Stehfest algorithm for inverting 

the analytical tracer solution from Laplace space. 

0 Superposition does not apply to two-dimensional tracer flow. This means that 

the concentration distribution in a multiwell system cannot be obtained by 

superposing the solution of each single well system. 

0 The time step in the semianalytic method should be selected so that the advance 

of the fastest tracer front will not be too big to escape from the detection of 

breakthrough condition. 

6.4 Simultaneous Analysis of Pressure and Tracer Data 
Pressure data and tracer data were studied together for characterizing heterogeneous 

reservoirs. The correlation between dispersion coefficients and permeabilities was dis- 

cussed, and based on this correlation a scheme to integrate pressure data and tracer 

data was proposed. The technique presented can be used to  obtain the permeabil- 

ity distribution as well as the storativity from interpreting tracer data and pressure 

data simultaneously, and can be used directly in practice for well test analysis of 

heterogeneous reservoirs with slight modification. The concept of ill-posedness was 

investigated for the direct method of permeability identification. The need to con- 

strain permeability when using the direct method to interpret pressure data was ex- 

amined. Finally, the direct method was demonstrated as an example in a steady-state 
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multiple well reservoir with a circular discontinuity. Tracer data and pressure data 

were generated artificially, and then successfully inverted to estimate the permeability 

distribution. The observations and conclusions reached from this study are: 

0 The direct method favors multiple well data. 

a Permeability constraint is needed for the direct method to be applied to the 

pressure equation if the simple finite difference method is used even though the 
permeability is uniquely determined mathematically. 

0 The solution to the pressure equation from the direct method is unique un- 

der appropriate conditions including that flow occurs at all locations and that 

pressure can be estimated everywhere. 

0 No permeability constraint is required to apply the direct method to the tracer 

equation. 

0 For tracer data, the concentration front data are of greater importance in re- 

covering the areal permeability distribution. 

0 Unless the pressure and tracer data are collected vertically over depth, the direct 

method is not applicable to three dimensional problems. 

0 The time function approach described here is a method by which 4-D seismic 

data can be interpreted together with pressure data to yield estimates of the 
permeability distribution. 



Appendix A 

Equivalence of two Anisotropic 
Solutions 

This appendix shows the equivalence between two equations used by Papadopu- 
20s (1965) and Collins (1961). The equation used by Collins (1961) will be derived 

from the equation used by Papadopulos (1965). 

Start with equation 

Rotate the (x, y) coordinates by 0 degree to a new coordinates (t ,  q ) ,  where 8 will be 

determined later. 

[ = x cos 9 + y sin 0 
= -xsin0 + ycos8 

Under the new coordinates, the pressure derivatives are 

d 2 ~  = prr sin 0 cos e + pST cos 2 8 - p,tq sin2 8 - p,, sin 0 cos 0 
dxdy 

- d2P = prr cos2 8 - p t ,  cos 8 sin 0 - prq sin 8 cos 0 + pT,  sin 2 8 
d2X 
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-- d2P - p t t  sin2 6 + pt,, COS 6 sin 6 + pt, sin 0 cos 0 + p,, cos2 6 
d2Y 

Substituting the pressure derivatives into Eq. A. 1, 

kxxptt cos2 6 - 2kxxp~ ,  sin 6 cos 6 + k,, sin2 6pEq + 2kx,ptt sin 8 COS 8 

+2 kxyptq ( cos2 6 - sin2 6) - 2 kXypgq sin 6 cos 0 + kyyptg sin2 6 

8 P  +2kyypt,, sin 0 cos 6 + ky,p,, cos2 6 = g5pctz 

or in a simpler form, 

( kxz cos2 6 + 2kx, sin 8 cos 6 + k,, sin2 6)pt t  + 2[( cos2 6 - sin2 6)k,, 

+(E,, - k x x )  sin 0 cos d]pt, + ( kxx sin2 6 - 2kx, sin 6 cos 0 + kyy  cos2 6)pvQ 

= ( P P C t z  

(A.9) 

a P  

In order to find the principal axis direction, choose a value of 6 that makes the 

coefficient of p,, disappear, i.e. 

(cos2 8 - sin2 8) kzy + (k,, - kxx)  sin 6 cos 6 = 0. 

Written in another form, 

- k,Y cos 6 sin 6 
 COS^ 6 - sin2 6 

- 
krx - kg,' 

SO 8 has to satisfy 

tan 6 1 k X Y  

1 - t an2$  2 kxz - kyy' 
= - tan20 = 

I C ,  

tan 6 
1 - tan2 6 

= A as a known term, then tan6 can be solved first from Denote krz-7Cyy 

= A. 

(A.10) 

( A . l l )  

(A.12) 

(A.13) 

This is a quadratic equation, 
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A t a n 2 0 + t a n O - A = O  

with solution 

-1 + d i  
2 A  

t an0  = 7 

or 
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(A.14) 

(A.15) 

(A.16) 

Now cos 0 and sin0 can be expressed in terms of k,,, k,, and k,,. Denote B = 

d( kxx - E,,)2 + 4k&, then 

- 4k& - 
1 

1 + tan2 fl 
cos2 0 = 

4kxy + ( k,, - kxx + B)2 ’ (A.17) 

(A.18) 

The coefficients of pss and pqq can also be written in terms of k,,, kx, and k,, without 

0’ 

kxx cos2 0 + 2k,, sin 0 cos 0 + k,, sin2 0 

( B  + IC,, - kxx) (B  + k,, + kxx) 
2 ( B  + k,, - kxx) 

1 
- (B  2 + k?/, + kxx) 

k x x  (A.19) 
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kx, sin2 8 - 2kx, sin 0 cos 0 + k,, cos2 8 

= k,, + k,, - (kxx  cos2 0 + 2kxy sin 0 cos 0 + kyy  sin2 0) 

= k y y .  

Therefore, in the new coordinates, Eq. A.9 becomes 

( A . 2 0 )  

( A . 2 1 )  



Appendix B 

Pressure Expression in Green's 

Function 

Once the Green's function is worked out for the homogeneous equation, the solution 

to the equivalent nonhomogeneous equation with a nonhomogeneous initial condition 

and nonhomogeneous boundary conditions can be represented. 

We start by defining a differential operator L: 

d . k d p  d k d p  d k d p  dP Lb]  = -(--) + -(--) + -(--) - q5ct- d x  p a x  dy p a y  d z  p d z  & '  

Its adjoint operator is then 

d k d G  d kdG d kdG dG 
dx' p a x  dy pdy'  d z  pdz '  

L*[G] = -(-7) + +--) + +--) + q5C"Z. 

Suppose p ( z ,  y, z ,  t )  is the solution to 

with some well-posed boundary conditions and suppose that G(z, y,  z ,  x', y', z', t- r)  is 

the Green's function to the corresponding homogeneous equation with homogeneous 

boundary conditions, i.e. G(x ,  y, x, x', y', z', t - r )  satisfies: 

L[G] = 0 (B.5) 
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dG 
G(x ,  y, Z ,  x', y', z', t - T )  = 0 or - d n  = 0 ( x ,  Y 7 Z )  S e  

where Se denotes the boundary if there is. From Property 2 of the Green's function 

that is listed in Section 3.2, G ( x ,  y, x ,  x', y', z', t - T )  satisfies the adjoint equation as 

function of variables 

L*[G] = 0 

Consider a general second order 

and its adjoint differential operator 

linear differential operator C 

C 

C* 

(B. l l )  

(B.12) 

where a;j, b;, c are second order continuously differentiable functions of x l ,  x2 ,  ... , 2,. 
The Green's formula for these operators is: 

(B.13) 

where Se is the boundary of domain 0, n is the outward normal vector of Se, ei = 

(0, ..., O , l , O ,  ..., 0) is the axis vector of xi, (n ,  e;) represents the angle between vectors 

n and ei and 

d U  d 
pi = C["a; j -  - u-(aijv)] + biuv 

j=1 dxj  dxj  

m 

(B.14) 

As for our operator L and its adjoint operator L*, 
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dk  + uv- du  d ( k v )  
p i  = vk- - U- dX d X  d X  

dk  + uv- du d ( k v )  
433 = vk- - U- 

dz  dz dz 

we can work out a Green's formula from the above 

- 1 # c t ,  a(uw> d o  
0 7 

J,cv Lu - u L*v)dR = 

Now let v = G ( x ,  y, z ,  x', y', z', t - r ) ,  u = p(x', y', z', r ) ,  then 

L'v = 0 

and 

Lu = f ( X I ,  yl, z', r ) ,  

so 

Integrating r from 0 to  t gives: 

because of Eqs. B.4, B.9 and 

J, q5c&(x', yl, z', t)G(O) - p(x', y', z', O)G(t)dx'dy'dz'. 
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(B.15) 

(B.16) 

(B.17) 

(B.18) 

(B.19) 

(B.20) 

(B.21) 

(B.22) 

(B.23) 

Therefore the solution can be written as 
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(B.24) 

If the domain is infinite and has no boundary, then the first term in the right hand 

side will disappear. 

Now we can apply this result to the production of a well at a flow rate q.  Remember 

in the material balance equation, Eq. B.3, the source term f ( x , y , z , t )  has the unit 

volume rate of injection per unit volume of reservoir, so 

9- inside the well 

0 outside the well 
(B.25) 

uniform over the well volume. Assuming the boundary is no-flow, then 

(B.26) 

where W is the region in the well, and 0 is the domain of reservoir. Now if the initial 

pressure is constant pi everywhere, we have 

(B.27) 

For three dimensions, if the well is approximated by a point source at position X I ,  y ' ,  z', 

the solution becomes 

pi - p ( x ,  y ,  z , t )  = J' *G(x ,  y ,  x ,x ' ,  y l ,  z',t - r)dr 
o x r t h  

(B.28) 

For two dimensions, if the well is approximated by a line source at X I ,  y l ,  the solution 

is 

pi - p ( x ,  y, t )  = /' Q(')G(x, y ,  x', y ' ,  t - r)dr 
o r r i h  (B.29) 

For one dimension, if the well is approximated by a plane source at X I ,  the solution 

is then 

= /' Q(7)G(x, X I ,  t - r)dr. 
o rr:h Pi - P ( X , t )  (B.30) 



Appendix C 

Reciprocity of Green’s Function 

For one dimension, we can easily show that Green’s function is symmetric to  x and 

2‘. According to the definition, G(x ,x ’ , t )  is the solution to 

a < x < b a n d  t > O  

dG 
d X  a lG+az-=O at x = a  

dG 
d X  

PlG+P2-=O at x = b  

Assuming G ( x ,  t )  = T ( t ) X ( x ) ,  substituting into Eq. C.l,  and separating variables, 

then: 

which gives two equations 

T‘(t) + AT(t) = 0 or T ( t )  = b e-xt 

and 
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with boundary conditions: 
dX 
dx 

C ~ ~ X + C Y ~ - = O  at x = a  

dX 
dx , & X + p 2 - = 0  at  x = b  

152 

which is a Sturm-Liouville boundary-value problem having eigenvalues An and eigen- 

functions X n ( x ) .  The solution can be written in terms of the eigenfunction expansion: 

(C.10) 

The initial condition requires: 

Multiplying +(x)c t (x )X, (x )  and integrating x from a to b leads to 

if we normalize X n ( x )  to make s ,b4(Z)q(x)X:(z)dx = 1. Therefore, the Green's 

function is 

(C.11) 

which does have the symmetry for x and x', and therefore assures the the principle 

of reciprocity. 

For higher dimensional or discontinuous coefficients, we cannot apply Sturm- 

Liouville theory. However, the reciprocity for Green's function still holds, as can 

be shown from calculus of variations. The following argument applies to Green's 

function of any dimension, but for simplicity, we will consider the Green's function 

for a two dimensional domain 0 with discontinuous mobility p ( x , y )  and storativity 

p( . , y )  on 0. In order to write the equations for the Green's function on this do- 
main 0, we need to divide the domain into several subdomains GI, 0 2 ,  G3, ..., On such 

that p ( x ,  y) and p(x, y) are continuous on each of the subdomains. On the boundary 

between any two subdomains, the Green's function and its derivative needs to be 

continuous because pressure and flux are continuous across any boundary. Denoting 

the boundaries among the subdomains by I'l, I ' 2 ,  ..., I?,, the Green's function satisfies 
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dG - + aG = 0 or G = 0 on boundary l? 
dn  

(C.12) 

(C.13) 

(C.14) 

and also conditions that guarantee function's continuity and material balance (flux 

continuity) along I?; (i = 1, . . . , m). So the Green's function is continuous in 0 and 

has piecewise continuous first derivatives in 0. 
By assuming G(x ,  y, x', y', t )  = u ( x ,  y)O( t )  and separating variables, we have an 

eigenvalue problem, 

(puZ)T + (pu,), + Apu  = 0 on O1: n27 ' ' n, 
function continuity equation along rl, I ' 2 ,  - - -, rm 
flux continuity along rl, r2, - ., rm 
g + a G = O  or G=O on boundary I? 

((3.15) 

Reciprocity can be shown for the Green's function as in the one-dimensional case if 

the eigenvalues A; and associated complete eigenfunctions u; for eigenvalue problem 

(C.15) exist. This existence is obtained from its variational counterpart. 

The associated variational eigenvalue problem is to find q5 which minimizes the 

following quadratic functional expression 

where 

under the normal condition 

and the orthogonality condition 
r r  

(C.16) 

(C.17) 

(C.18) 

(C.19) 
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The existence of a solution to our minimum problem q5 is discussed by Morrey [1966] 

for piecewise continuous p(x, y) and p(x,  y). This q5 gives the next eigenfunction u, 
of equation (C.15) with boundary condition + ou,, = 0 on I'; the associated 

eigenvalue A,, equals the minimum value D[u,]. 

For the boundary condition u = 0 on r, everything above applies except that one 

more boundary condition 4 = 0 is added and D[#, 41 becomes D[$, 43. 
The proofs that those u, are also eigenfunctions for the differential equation prob- 

lem (Eq. (2.15) and that they are complete are similar to the discussions made by 

Courant and Hilbert (1953), and so are omitted here. 



Appendix D 

Two-Dimensional Green’s 
Functions in Problems with 
Variable P e r  rneabili t y 

To obtain GI (x) x’, t )  for tke following equation, 

1 d dG1 dG1 
x a x  ax at 
--(x-) = - 

with 0 5 a _< ~t: 5 b and G1(x)x‘,O) = 9) we try separating variables by assuming 

GI = X(x)T(t), which in tuns gives two equations. The first one is 

with solution T ( t )  = 

The second equation is 

X’ x” + - + a2X = 0 
X 

which is a Bessel equation vith general solution 

Applying boundary conlitions, 
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Denote an ( n  = 1,2, -) as the roots of 

then the solutions to Eq. D.3 are XO(x) = Co and X n ( x )  = Cny ,  (n = 1,2, - a )  where 

and C, (n = 0,1,2, - . e )  are constants to be decided. 

So the eigenfunctions for Eq. D.l are 

and the Green's function we are looking for is 

where yo(x) = I and Cn (n  = 0,1,2,  - - a )  are determined by the initial condition 

CL. n=l 

We can obtain Cn by the orthogonality of yn(x)  

Multiplying by xym(x )  on both sides of Eq. D.9 and integrating on ( a ,  b ) ,  we have 

Co can be worked out directly, 

(D. l l )  

(D.12) 
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Therefore the Green’s function is 

(D.13) 

We can further simplify S,b xy i (x )dz  ( n  > 0 )  by applying the following five equa- 

tions: 

b2 U 2  lb xJ&x)dx = -[J:(crb) + J&b)] - -[Jt(cya) + J&a)] 
2 2 

b b2 U 2  J, xG2(ax)dx  = -[q2(ab) + Yi(ab)] - T[q2(au )  + Y t ( a u ) ]  
2 

b 
2 

lb x Y o ( ~ ~ ) J o ( ~ x ) d x  = - [K(ab)J l (ab)  + Y o ( a b ) J o ( ~ b ) ]  

(D.14) 

(D.15) 

(D.16) 

(D.17) 

We first expand y:(z) in the integral, then apply Eqs. D.14, D.15 and D.16. 
Through some algebraic manipulation, we get 

Now, by Eq. D.17, 

and by Eq. D.18, 
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The last step is to apply Eq. D.16 again, 

Therefore, we end up with the Green’s function as 

(D.19) 



Appendix E 

Pressure and Tracer Solutions for 

a Multiwell Heterogeneous System 

The pressure solution for a multiwell system in an infinite reservoir with a circular 

discontinuity can be obtained by its Green’s function; the pressure change due to 

multiwell production/injection is the superposition of pressure change due to pro- 

duction/injection of each well. This transient pressure solution is costly to compute 

because of the series of Bessel functions. For the tracer problem, what is needed from 

this pressure expression is its late time solution, which is difficult to derive from the 

transient pressure expression. However, the late-time pressure solution for a multiwell 

system that has equal amounts of injection and production, can be closely approx- 

imated by superposing pressure change of each well in steady state. This appendix 

includes the derivation of the steady-state pressure solution for an infinite reservoir 

with a circular discontinuity. 

Denote the permeability, porosity of the circular region k1(q y),  $b(z, y), the 

permeability, porosity of the other region k&c,y), 4 2 ( x , y ) .  The first step in the 

derivation is to find p l ( r , 6 )  and p 2 ( r , 6 )  that satisfy the following two equations 

with the boundary conditions 
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and the condition posed by a single well with flow rate q at position (r', 8'). Depending 

on the value of r', there are two cases: 

1. Source well inside of circular discontinuity r' < a 

2. Source well outside of circular discontinuity r' > a.  

Assume 

P I =  u1+ v = *lnR + v { p2 = w 

for Case 1 and 

~ ~~ 

€or Case 2, where R = d r 2  + rf2  - 2rrfcos(0 - 8')) while v are w are the functions 

to be determined accounting for the existence of circular discontinuity, u1 and u2 

are the well-known pressure solutions to the homogeneous reservoirs of AI and A 2 ,  
respectively; they will take care of the well condition in the heterogeneous reservoir. 

It is easy to see that v and w satisfy Eq. E.l and Eq. E.2. The general solution to 

Eq. E.1 and Eq. E.2 can be obtained by separating variables r and 8: 

Because v is bounded at r = 0 and w is bounded at r = 00, 

co 
w = Wlkr-k cos k8 + W2kr-k sin k0  

k=O 

In order to apply the boundary conditions in Eq. E.3 and Eq. E.4, In R needs to 

be expressed in Fourier series, 
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oo rk 
1nR = lnr'  - - co sk (9  - 0') r < r' 

k r fk  k = l  

In R = In r - I cos k(9 - 9') 
k rk  r > r' 

k = l  

(E.lO) 

(E.ll) 

Since the derivations for both cases are very similar, discussion below will focus on 

Case 2 as an example. 

Applying boundary conditions, we obtain 

COS k0' + W1ka-k (E.12) Q ak Kkak = --- 
27rA2h k r f k  

Solving Eqs. E.12, E.13, E.14 and €3.15 yields 

q cosk0' 
nhr" k(A1+  A,) 

v1k = -- 

q sin k0' 
7rhrfk k(A1 + A,) V2k = -- 

A 1  q a2kcosk9' 
')27rhrfk k(A1 + A2) 

wlk = (x 
q a2'sin k9' 

k(A1 + A2) 
A 1  

W2k = (x - 
Substitute into Eqs. E.8 and E.9, then 

(E.13) 

(E.14) 

(E.15) 

(E.16) 

(E.17) 
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Applying the Fourier series expression of In R in Eq. E.10, v ( r ,  0, r', 8') and w(r,  8, r', 8') 

can be written as 

(E.18) 

Therefore, for a source well outside circular discontinuity (r' > a ) ,  the pressure 

change is 

(E.20) 

Similarly, for a source well inside circular discontinuity (r' < a ) ,  we can obtain 

where 

(E.21) 

Consider an infinite reservoir with a a  injection well and n production wells, where 

each production well is located at (ri, 0;) and has rate qi, (i = 1 , .  . . , n )  and the 

injection well has rate 

(E.22) 

and position (r;,&). There is a circular discontinuity of radius a with mobility Al. 

The long time pressure change for this system can be superimposed by the solution 

in Eqs. E.20 and E.21 for one single well, 

(E.23) 
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where 

for well i outside the circular discontinuity and the observation well inside the circular 

discontinuity, i.e. r < a and r’ > a; 

1 CY a 
2 ~ h X 2  2 ~ h X 2  2 ~ h A 2  

G(r,O,r;,0:) = - In R; + - ln(rr:) - - In Ri 

for well i outside the circular discontinuity and the observation well outside the cir- 

cular discontinuity, i.e. r > a and r‘ > a ;  

for well i inside the circular discontinuity and the observation well inside the circular 

discontinuity, i.e. r < a and r’ < a;  

for well i inside the circular discontinuity and the observation well outside the circular 

discontinuity, i.e. r > a and r’ < a 

The pressure change for reservoirs of multiple injection wells and multiple produc- 

tion wells can be formulated similarly. Notice that the pressure change observes the 

principle of reciprocity. 

In the above discussion, Darcy units were used. To use field units, just substitute 

Q 2rhX with v. Actually, the pressure change in Eq. E.23 is independent of the unit 

of length; the steady-state model of an infinite reservoir with a circular discontinuity 

is fully scalable. To verify this, it is sufficient to show that Eqs. E.20 and E.21 will 

be modified by the same amount when the unit of length is changed. Suppose the 

old unit is the new unit times a factor C ,  then 
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So the difference between the new expression and the old expression will be 

In C 
l nC=-  

a 2 
1nC + 

2 ~ h X 2  2Th(X1+ A2)  2 ~ h X 2  

for the expression of r' > a and r < a ,  

a a In C 
l nC+-  InC2 - - InC2 = 

1 
2 ~ h A 2  2 ~ h A 2  2 ~ h A 2  

for the expression of r' > a and r > a ,  

a In C 
1nC-- InC2 = - 1 (x, - X 2 ) a  

2 ~ h X 1  In'+ 2rhX1X2 2 ~ h A 1  2nhX2 

for the expression of r' < a and r < a ,  and 

In C 
l n C = -  

a 2 
1nC + 

2 ~ h X 2  2Th(A1+ A2)  2ThXZ 

for the expression of r' < a and r > a. Since 

2% = 0, 
i = O  
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(E.24) 

(E.25) 

(E.26) 

(E.27) 

(E.28) 

all the differences incurred by changing the unit of length in Eq. E.23 will cancel out. 
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ai j 
B 
C 

C 

Ct 

D 
D 
V 
Di 
E 

ei 

f 
G 
g 
h 

I ,  K 
J’ y 
k 

kxx 

radius of circular discontinuity 

equal distance between wells in x, y directions 

general function 

formation volume factor 

wellbore storage coefficient 

constant coefficients 

dimensionless concent rat’ion of displacing fluid 

concentration of component i in the phase 

tot a1 sys tern effective compressibility 

differential operator or functional operator 

diffusive coefficient, effective mixing coefficient 

functional operator 

dispersion of component i in the phase 

residual of the least squares 

axis vector of x; 
general function 

Green’s function 

general function 

thickness 

modified Bessel functions 

Bessel functions 

permeability 

maximum principal permeability 
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components of the permeability tensor 

minimum principal permeability 

reference length of flow 

differential operator 

width of reservoir 

adjoint differential operat or 

general linear operator 

general linear adjoint operator 

outward normal vector 

pressure 

dimensionless pressure response at observation well 

Peclet number 

flow rate 

sandface flow rate 

radial distance of observation well 

radial distance of active well 

dimensionless reference distance 

dimensionless distance between observation and neighbor wells 

wellbore radius of active well 

skin factor 

boundary, integral variable on boundary 

Laplace variable 

time 

dimensionless producing time before shut-in at testing well 

damping factor 

general function 

general function 

Darcy velocity 

Darcy velocity of the phase 

region in the well 

coordinate in Cartesian system 
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XI, yl, z' 

xi 
z 
well 0 
well 1 
well n 

a 

r 
AP 
6 
'I 

8' 
x 

e 

P 
U 

P 
P4 
7 

7 

4 
R 

v 

Cartesian coordinates of source 

mole fraction of component i in the system 

Laplace variable 

observation well 

testing well 

neighboring well or image well( n> 1) 
root of Bessel function equation 

reservoir boundary 

pressure drop 

Dirac function 

hydraulic diff usivi t y 

angle of observation well position 

angle of active well position 

mobility 

viscosity 

Green's function 

dimensionless distance 

mole density of the phase 

mole density of component i at standard condition 

dimensionless time 

integral variable 

porosity 

reservoir domain, integral variable 

gradient operat or 

Superscripts 
T transpose 

Subscripts 

D 
1 

dimensionless 

circular discontinuous region 



NOMENCLATURE 

2 reservoir, the second region outside discontinuity 
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