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Abstract

Determining the well locations and settings that maximize reservoir performance is

a key issue in reservoir management. Computational optimization procedures are

commonly applied for this purpose. In conventional optimization methods, flow sim-

ulation is performed over the basic reservoir model. If optimization under uncertainty

is considered, multiple geological realizations, which quantify reservoir uncertainty,

are typically used. This can result in great computational expense, as commonly used

optimization methods may require thousands of function evaluations (each of which

entails multiple flow simulations). Efficient surrogate models, which can be used to

reduce the computational requirements, would thus be highly beneficial.

In this thesis, a multilevel optimization procedure, in which optimization is performed

over a sequence of upscaled models, is developed for use in combined well placement

and control problems. The multilevel framework is applicable for use with any type of

optimization algorithm. In this work it is implemented within the context of a particle

swarm optimization – mesh adaptive direct search (PSO-MADS) hybrid technique.

An accurate global transmissibility upscaling procedure is applied to generate the

coarse-model parameters required at each grid level. Distinct upscaled models are

constructed using this approach for each candidate solution proposed by the opti-

mizer at each grid level. We demonstrate that the coarse models are able to capture

the basic ranking of the candidate well location and control scenarios, in terms of

objective function value, relative to the ranking that would be computed using fine-

scale simulations. This enables the optimization algorithm to appropriately select

and discard candidate solutions.

The multilevel optimization framework is further extended for use in optimization
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under geological uncertainty. Toward this goal, we introduce an accelerated multilevel

optimization procedure, in which the full PSO-MADS algorithm is used only at the

coarsest grid level. At subsequent grid levels, standalone MADS (a local optimization

algorithm) is applied. An optimization with sample validation (OSV) procedure is

also incorporated into the multilevel method. This approach enables us to optimize

over a limited set of geological realizations. The combined use of accelerated multilevel

optimization and OSV leads to substantial speedup compared to direct application

of the standard multilevel optimization procedure.

Optimization results for two- and three-dimensional example cases, which involve

both single and multiple geological realizations, are presented. The multilevel proce-

dure for single realizations is shown to provide optimal solutions that are comparable,

and in some cases better, than those from the conventional (single-level) approach.

Computational speedups of about a factor of five to ten are achieved. For optimization

under uncertainty, we use the accelerated multilevel procedure with sample validation

to further reduce the computational cost of the optimization. Speedups of a factor of

10–20 are achieved by the accelerated multilevel approach relative to the conventional

procedure for examples with ten realizations. An additional speedup factor of about

two is observed through incorporation of OSV for cases involving 100 realizations.

Our overall findings thus suggest that this framework may be quite useful for prac-

tical field development. We also investigate the application of the multilevel Monte

Carlo approach for field development optimization under geological uncertainty as an

alternative to the multilevel optimization technique. Although this approach provides

speedup relative to the conventional (single-level) treatment, it is not as efficient as

the multilevel procedure developed in this work.
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Chapter 1

Introduction

The determination of the well locations and controls that maximize a particular ob-

jective is of primary importance in oil field development and operation. The reservoir

performance associated with a particular set of well locations and controls is evalu-

ated using flow simulation. Many optimization procedures have been developed for

this problem, and they typically require large numbers of simulations. Conventional

approaches entail performing these simulations using the actual reservoir model (or

models), which may be a high-resolution description.

Multiple geological realizations are typically used to characterize reservoir uncertainty.

In optimization under uncertainty, flow simulation over multiple geological models

must be performed for each function evaluation required during optimization. This

leads to very large computational demands. In this case the objective function is

evaluated by averaging over the individual model flow responses.

Different approaches can be used to reduce the computational requirements associ-

ated with optimization. The use of efficient but accurate surrogate models could

lead to a substantial reduction in computational requirements. In addition, using an

appropriate set of ‘representative’ realizations selected from the full set of geological

models can further reduce the computational requirements.

In this work, we develop an optimization framework that greatly reduces computa-

tional requirements for field development optimization. The main component of this
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2 CHAPTER 1. INTRODUCTION

framework is a multilevel optimization procedure that uses a sequence of upscaled

models. For optimization under uncertainty, we also incorporate model selection and

validation procedures into the multilevel optimization framework. This reduces the

number of realizations that must be simulated during the optimization.

1.1 Literature review

Extensive literature exists on the general topics of field development optimization

and well control optimization. Here, we first discuss derivative-free optimization

algorithms, which are the types of algorithms used in this work. Then, joint field

development and production optimization is described. Next, optimization under

geological uncertainty and optimization with sample validation are discussed. Studies

involving the use of proxies in optimization, and multigrid-based optimization, are

then reviewed. Finally, upscaling procedures are discussed.

1.1.1 Optimization procedures for oil field problems

Oil field optimization problems can be categorized as well placement problems, well

control problems, or joint optimization problems involving both well placement and

control. In well placement problems, the locations of wells are optimized, while in

well control problems, well settings such as flow rates and/or bottom-hole pressures

(BHPs) are optimized. Joint optimization problems involve the simultaneous op-

timization of both sets of variables. Derivative-free optimization methods do not

require gradients, and they can be used for all of these problem types. They are usu-

ally, however, less efficient than adjoint-gradient methods, though adjoint methods

are invasive and require access to simulator source code. In this section we present

studies that applied derivative-free methods for oil field optimization.

The most common approach used for well placement optimization is probably the ge-

netic algorithm (GA) [26, 51], which is a stochastic evolutionary procedure. Guyaguler

et al. [25] used GA to optimize well placement. Yeten et al. [61] optimized type, loca-

tion and trajectory of nonconventional wells using GA. Litvak and Angert [39] applied

GA to optimize field development in giant oil fields. Recently, Bouzarkouna et al.
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[9] applied another procedure called covariance matrix adaptation evolution strategy

(CMA-ES) for well placement problems. They reported that CMA-ES outperformed

GA on the well placement optimizations considered. Onwunalu and Durlofsky [43]

applied a different global optimization algorithm, particle swarm optimization (PSO),

which is based on the social interactions of animal groups, for well location problems.

They found that PSO provided better results than GA for a variety of well location

optimization problems. It should be noted, however, that there are many variants of

both GA and PSO, and certain variants may perform better for particular problems.

Global search algorithms can be hybridized with local derivative-free search methods

to improve overall efficiency and performance. Yeten et al. [61] combined a local

hill-climber algorithm with GA and demonstrated that the hybrid algorithm outper-

formed standalone GA. Guyaguler and Horne [24] hybridized GA with a polytope

method and applied it to well placement problems. Recently, Isebor et al. [29, 31, 32]

presented a hybrid algorithm that is a combination of (global) PSO [20] and (local)

mesh adaptive direct search, or MADS [5], and demonstrated that the hybrid proce-

dure outperformed the standalone PSO and MADS algorithms. In our optimizations

here, we will utilize this PSO–MADS algorithm.

Gradient-based approaches are commonly applied for well control optimization prob-

lems. Wang et al. [57] compared various optimization algorithms including steepest

ascent and simultaneous perturbation stochastic approximation (SPSA) for produc-

tion optimization in a closed-loop reservoir management framework. They showed

that the steepest ascent method is the most efficient among all of the algorithms

considered. Sarma et al. [47] and Brouwer and Jansen [10] applied adjoint-gradient-

based optimization to waterflooding problems. The adjoint procedure is more efficient

because it uses gradients that are constructed efficiently from the underlying simu-

lator. Echeverŕıa et al. [23] compared several derivative-free optimization methods,

including Hooke-Jeeves, general pattern search (GPS), and GA to gradient-based al-

gorithms for well control optimization problems. They concluded that gradient-based

sequential quadratic programming, GPS and a hybrid method combining GA with

an efficient local search method, were the most effective.
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The optimization of well placement and well controls can be addressed in a sequen-

tial or in a joint (simultaneous) manner. In the sequential approach, well locations

are optimized with a specified set of well controls or a particular well control strat-

egy. Then, well controls are optimized in a separate optimization problem (with well

locations fixed). In the joint approach, well locations and controls are considered

together. The multilevel optimization procedure developed in this thesis can be used

with both sequential and joint approaches. Because the problems addressed in this

work involve joint optimization, we now discuss recent work in this area.

Bellout et al. [8] implemented a nested joint optimization approach involving direct

search (for well placement) combined with adjoint-gradient-based optimization (for

well controls). They demonstrated that this approach provided improved objective

function values compared to a sequential procedure. Similar findings were reported by

Li and Jafarpour [38], who developed a method in which they alternated between the

two optimization problems. They used the well-distance constrained SPSA algorithm

for well placement and a gradient-based optimization for well control. Humphries et

al. [28] used a hybrid optimization algorithm, which is a combination of a stochastic

procedure (PSO) and a direct search (GPS), for joint optimization problems. They

came to somewhat different conclusions, as they did not observe consistently better

solutions using a joint optimization approach. This may be due to the specific al-

gorithmic treatments employed in their work, including the use of heuristics for well

control during well placement optimization.

Isebor et al. [31, 32] proposed a PSO–MADS procedure that optimizes well locations

and controls simultaneously. Using this approach, joint optimization was found to

consistently outperform sequential optimization for combined field development and

well control problems [31]. As noted above, the method used in this work is this

PSO–MADS procedure.

1.1.2 Optimization under geological uncertainty

Reservoir models that are used in field development optimization contain many un-

certain parameters due to uncertainty in the subsurface reservoir geology (reservoir

structure, faults, permeability, porosity), fluid properties, etc. Multiple geological
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realizations are created to characterize subsurface uncertainty. For a particular well

configuration in optimization, flow simulation must then be performed over multiple

geological realizations, which leads to substantial computational expense.

A number of researchers presented studies on well control optimization under uncer-

tainty. Aitokhuehi and Durlofsky [2], van Essen [54], Sarma et al. [48], Su and Oliver

[52] and Wang et al. [57] optimized well controls with multiple geological models.

They used gradient-based algorithms in their optimizations.

Several researchers investigated well placement optimization under geological uncer-

tainty. Guyaguler and Horne [24] applied decision tree tools and a utility theory

framework to solve well placement optimization under geological uncertainty to max-

imize expected NPV. Cameron and Durlofsky [11] considered well placement and

control optimization under geological uncertainty for carbon storage problems. They

generated multiple geological realizations to represent uncertainty in aquifer models

and then used optimization to minimize the risk of leakage.

Optimization under geological uncertainty is computationally expensive. Although

uncertainty may be better represented with a large number of realizations, computa-

tional requirements increase as the number of realizations increases. There have been

some studies on improving the efficiency of optimization under uncertainty. Artus

et al. [4] optimized monobore and dual-lateral well locations under geological uncer-

tainty. They applied a cluster-analysis-based proxy model to estimate the cumulative

distribution function (CDF) of the objective function. Artus et al. [4] reported that

with this approach, by using about 10% or 20% of the realizations, they were able to

achieve comparable results to those obtained using all realizations. Wang et al. [58]

applied a retrospective optimization (RO) framework that solves a sequence of opti-

mization subproblems using an increasing number of realizations. They showed that,

by using the RO procedure with cluster-based sampling, the computational expense

of well placement under uncertainty was reduced by about an order of magnitude

compared with optimizing using the full set of realizations at all iterations.

Shirangi and Durlofsky [50] introduced an alternative approach to reduce the com-

putational demands of optimization under geological uncertainty. They presented a
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systematic optimization with sample validation (OSV) procedure to reduce the num-

ber of geological models used in optimization. This procedure shares some similarities

with the retrospective optimization (RO) procedure presented by Wang et al. [58].

As in RO, OSV divides the optimization problem into subproblems with increasing

numbers of realizations. However, in OSV, the performance of the optimization in

a subproblem is assessed with a specific validation criterion. The objective function

value is calculated at the beginning and end of the optimization using all realiza-

tions. Then, the relative improvement (RI), which is the ratio of objective function

value improvement with all realizations to the improvement with only the represen-

tative realizations, is calculated. If RI does not meet the defined criterion, then the

optimization is repeated with a larger number of representative realizations.

There are some differences in the model selection strategies used in the OSV and RO

approaches. Wang et al. [58] used random and cluster sampling in RO to select the

representative models to be used in optimization. They constructed clusters based

on cumulative oil production, original oil in place (OOIP) and the location of the

water-oil contact. Shirangi and Durlofsky [50], by contrast, used the CDF of the

objective function values to select the representative geological models. To generate

this CDF, all realizations are run using the current best well configuration. Models are

then selected such that the representative set of models provides a CDF in essential

agreement with the CDF based on the full set of models. In this study, we incorporate

the OSV procedure into our multilevel optimization framework.

Another approach that can be used to reduce the computational cost of optimiza-

tion under uncertainty is the multilevel Monte Carlo (MLMC) method. The MLMC

method enables the efficient computation of the expected value of a reservoir simula-

tion output (e.g., the objective function) over multiple realizations. MLMC is based

on a so-called telescopic sum of different numbers of realizations at different coarsen-

ing levels. Müller et al. [40] combined MLMC with streamline simulation to assess

uncertainty in problems involving two-phase flow in random heterogeneous porous

media. They showed that results using MLMC led to an order of magnitude speedup

and were similar to results using all realizations. In this work, we will use MLMC in

field development optimization and compare it with optimization using a sequence of
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upscaled models.

1.1.3 Treatment of nonlinear constraints

Bound, linear and/or nonlinear constraints are typically required in optimization

problems. Bound constraints appear when there is a specified range for the optimiza-

tion variables. Well rate constraints (with BHPs as the control variables) and water

cut constraints are examples of nonlinear constraints. Including these constraints in

field development optimization often renders the optimization more difficult.

Isebor et al. [32] applied a filter method to handle nonlinear constraints. Use of a

filter method is somewhat similar to performing biobjective optimization, where the

first objective is minimizing or maximizing the objective function, and the second

objective is minimizing the aggregate constraint violation. Feasibility is typically

achieved after some number of optimization iterations.

Isebor et al. [32] applied the filter method for field development optimization with

a single realization. However, this approach may not be the most appropriate for

optimization under uncertainty. In this case, a feasible solution that honors all con-

straints in all realizations might not even exist. Even if such a solution exists, it may

be overly conservative. For this reason, we do not use filter methods in this work.

Penalty methods are also widely used in constrained optimization problems. Guyag-

uler et al. [25] applied a penalty method to treat constraints in the optimization of

well locations and water pumping rates in a Gulf of Mexico field. Echeverŕıa et al.

[23] used a penalty method for production optimization with constraints. Both of

these studies considered problems with only a single realization.

Penalty methods have been used in mining applications to treat constraints in op-

timization with multiple realizations. Dimitrakopoulos [17] formulated an objective

function, using a stochastic programming formulation with a penalty, to optimize

mining operations under geological uncertainty. This formulation penalizes realiza-

tions that violate the constraints. In this work, this type of formulation is used to

handle nonlinear constraints in field development optimization under uncertainty.
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1.1.4 Proxy-based optimization

The general problem of optimizing with expensive function evaluations has also re-

ceived significant attention in other application areas. Shan and Wang [49] provide

a survey of strategies for addressing high-dimensional optimization problems with

computationally-expensive black-box functions. Bandler et al. [7] reviewed the ap-

plication of surrogate models in engineering design optimization. They showed that,

through model refinement, the efficiency and robustness of the optimization scheme

can be significantly improved. Echeverŕıa [21] and Echeverŕıa and Hemker [22] used

surrogates with multiple levels of accuracy to solve optimization problems. They iter-

atively corrected an existing surrogate to improve the quality of the surrogate model

during the optimization process. This correction is local in nature. They applied

their surrogate-based optimization algorithm for optimization problems in the fields

of magnetics, electronics and photonics, and showed that computation time can be

significantly reduced.

Surrogate or proxy models have been used for a variety of oil field optimization prob-

lems. Yeten et al. [61] and Guyaguler and Horne [24] used artificial neural networks

and kriging as statistical proxies in well placement optimization. Doren et al. [18],

Cardoso and Durlofsky [13] and He and Durlofsky [27] applied reduced-order mod-

eling procedures based on proper orthogonal decomposition (the latter two studies

also incorporated trajectory piecewise linearization) for well control optimization.

Reduced-physics models have also been used for optimization. Examples include the

use of streamline procedures for well control optimization in waterfloods [59] and

the use of simplified simulation models for optimizing horizontal wells and hydraulic

fractures in shale gas production [60].

Upscaled models have additionally been applied within optimization frameworks.

Abukhamsin [1] performed well placement optimization using coarse-scale models

and found that the optimal locations differed from those using fine models. Krogstad

et al. [34] recently applied global transmissibility upscaling, as is used here, to gen-

erate coarse models for gradient-based well control optimization. A high level of

solution accuracy and clear computational benefits were reported. Neither of these

studies, however, used a sequence of upscaled models, nor did they consider the joint
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optimization of well locations and controls, as is accomplished here.

Lewis and Nash [36] and Nash and Lewis [41] used a multigrid optimization method

to accelerate nonlinear programming algorithms. According to Lewis and Nash [36],

although multigrid optimization is computationally efficient for problems governed

by elliptic partial differential equations (PDEs), it can also be applied for systems

described by other types of equations. Multigrid optimization entails the use of

a sequence of grids, in common with our approach. These authors showed that

results close to those from traditional optimization approaches can be obtained more

efficiently with multigrid methods.

1.1.5 Upscaling techniques

Reservoir models with a large number of grid blocks are computationally expensive

to run. If such models are used for optimization, which may require many thousands

of simulation runs, elapsed times may be excessive. A variety of upscaling methods

can be used to reduce the computation time required for simulation. Durlofsky and

Chen [19] describe many of the existing upscaling methods in detail.

As discussed by Durlofsky and Chen [19], upscaling methods can be classified in terms

of the types of properties that are upscaled. In single-phase upscaling, permeability

or transmissibility is upscaled, and in two-phase upscaling, relative permeability is

additionally upscaled. Although the upscaling of both single-phase and two-phase

properties provides better accuracy than the use of single-phase upscaling alone, two-

phase upscaling requires substantial additional computation. Also, single-phase up-

scaling is in some cases more robust. For these reasons, in this study we use only

single-phase upscaling techniques.

Single-phase upscaling methods can be further classified in terms of the region over

which the coarse-scale properties are computed. These methods can be divided into

four categories: local, extended local, local-global and global upscaling, based on

the region used in the computations [19, 37]. Local upscaling methods use only

the fine-scale cell information for the target coarse block. Extended local methods
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include neighboring fine-scale cells in the upscaled property computation. Local-

global methods use global coarse-scale simulations to estimate boundary conditions

for local and extended local upscaling computations. Global upscaling methods are

generally considered to provide the most accurate coarse models among all these

upscaling techniques, though they are typically more expensive. In this study we use

a global upscaling method since the time required for upscaling is relatively small

compared to the other computations performed in the optimization.

The coarse-scale property computed in single-phase upscaling can be either absolute

permeability or interface transmissibility. Coarse-scale transmissibility includes both

grid-block permeability and geometry effects. In fact, transmissibility upscaling often

provides more accurate coarse results than permeability upscaling. This has been

shown in [46], for a local upscaling method, and in [15] for a local-global upscaling

procedure.

Based on the discussion above, in this work we apply a global transmissibility up-

scaling procedure. Specifically, we use a method of the type described by Chen et al.

[16] and Zhang et al. [62]. In [16], boundary conditions were specified along portions

of the reservoir boundary, while in [62], flow was driven by wells. In our work, as in

[37], transmissibility and well index values for the coarse model are calculated from

the global velocity and pressure fields, for a specific set of well locations and controls.

1.2 Scope of work

Finding the optimum well locations and controls is a key problem in reservoir man-

agement. Field development optimization procedures are, by nature, computationally

expensive. Incorporating geological uncertainty into the optimization substantially

increases computational requirements. The main focus of this dissertation is to im-

prove the efficiency of field development optimization algorithms, for both single and

multiple realization optimization problems.

Toward this goal, we introduce a multilevel optimization procedure that uses a se-

quence of upscaled models. We extend the framework to handle optimization under

geological uncertainty. A stochastic programming formulation with an appropriate
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penalty function is implemented to handle nonlinear constraints in optimization. We

improve the efficiency of the procedure by only using a local search method after

some number of optimization iterations. Finally, we incorporate the sample validation

(OSV) procedure to further reduce the computational requirements for optimization

under uncertainty.

The main objectives of this research are:

• to develop a new multilevel optimization framework. We introduce an efficient

optimization approach that allows us to replace most of the expensive fine-

scale simulation runs with less expensive runs that use upscaled models. Any

optimization procedure could be used as the core optimizer.

• to extend the multilevel optimization framework to handle optimization un-

der geological uncertainty with constraints. The objective function includes

a penalty term, which is nonzero for realizations that violate nonlinear con-

straints. As the optimization proceeds and simulation runs become more ex-

pensive, we introduce a treatment where we replace PSO–MADS with MADS,

a local optimization algorithm. This approach, called the accelerated multi-

level procedure, further improves the efficiency of the multilevel optimization

framework.

• to incorporate the OSV procedure into the multilevel optimization framework.

The OSV method reduces the number of realizations used in the optimization

process and thus acts to further reduce computational requirements.

• to apply MLMC to field development optimization under uncertainty. This

approach can then be compared to our multilevel optimization procedure.

1.3 Dissertation outline

In this dissertation, we introduce a new and efficient procedure for the joint optimiza-

tion of well location and control. In Chapter 2 we pose the field development and
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well control problem as a mixed-integer nonlinear programming (MINLP) problem,

as described by Isebor [29]. The formulation is extended to treat optimization under

geological uncertainty. Then, we briefly describe the PSO–MADS hybrid procedure

used in this work. We also discuss our penalty-based approach for treating constraint

violations in multiple-realization problems. The iterative global upscaling method

and multilevel optimization procedure are then described. The incorporation of a

sample validation procedure into the multilevel optimization framework is discussed.

Finally, we describe the use of a MLMC method for optimization under geological

uncertainty. We note that part of the work presented in Chapter 2 has appeared in

[3].

In Chapter 3 we apply the multilevel optimization procedure to field development and

well control problems. We consider two- and three-dimensional examples involving a

single geological realization. Multilevel optimization results are compared to results

from the conventional approach where only the fine-scale model is used. Most of the

examples in Chapter 3 have been presented in [3].

In Chapter 4 we extend the multilevel optimization procedure to field development

problems characterized by multiple realizations. Optimization is performed based on

the expected value over these multiple realizations to find a robust solution. The per-

formance of the multilevel optimization procedure is further improved by switching

from PSO–MADS to MADS as the optimization proceeds. The sample validation

procedure is applied to reduce the number of models used in the optimization. Re-

sults and timings are compared to those achieved using simpler procedures. We also

apply MLMC for one of the examples to enable a comparison with our multilevel

optimization procedure.

We conclude this dissertation with a summary and suggestions for future work in

Chapter 5.



Chapter 2

Multilevel Optimization Procedure

In this chapter, we introduce the multilevel optimization procedure used to solve

well location and control optimization problems. We first describe the formulation

for jointly optimizing field development and well control, including the treatment

of geological uncertainty. Next, the PSO-MADS hybrid optimization procedure is

presented. A penalty-based method to handle nonlinear constraints in optimization

under uncertainty is described. The iterative global upscaling procedure used in this

work is then presented. Next, we introduce the multilevel optimization framework.

We incorporate optimization with sample validation (OSV) into the framework to

reduce the number of realizations used during optimization. Finally, we describe the

use of MLMC in field development optimization.

2.1 Joint optimization of well location and control

In this section we present the optimization problems considered in this work. The

PSO–MADS procedure and the treatment of constraints are also described.

2.1.1 Optimization problems

Following Isebor et al. [32], we pose the field development and well control optimiza-

tion problem as a mixed integer nonlinear programming (MINLP) problem, which

13
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can be stated as follows:

(P )

 max
u∈U,v∈V,z∈Z

J (u,v, z) ,

subject to c (u,v, z) ≤ 0,
(2.1)

where J is the objective function we seek to optimize and c ∈ Rm represents the

nonlinear constraints. The bounded sets V = {V ∈ Zn1 ; vl ≤ v ≤ vu} and U =

{u ∈ Rn2 ; ul ≤ u ≤ uu} define the allowable values for the well placement variables v

and well control variables u. In this work, we use bottom-hole pressure (BHP) as the

control variables, though rates could also be used. The vector z ∈ Z denotes discrete

categorical variables, which could designate, for example, whether a well is an injector

or a producer. Here n1 and n2 indicate the number of optimization variables for well

placement and well control, respectively.

For problems involving geological uncertainty, we optimize the expected reservoir

performance by averaging over multiple geological realizations. In this case Eq. 2.1

can be generalized to

(
P̂
) max

u∈U,v∈V,z∈Z
E[J ] =

1

Nreal

Nreal∑
s=1

Js (u,v, z) ,

subject to c (u,v, z) ≤ 0,

(2.2)

where Nreal is the number of (in this case equally probable) geological realizations

and E[·] denotes expected value. Note that other objective functions, such as a utility

function, could be used instead of E[J ].

2.1.2 PSO–MADS algorithm

We now briefly describe the MADS and PSO methods, and then discuss how they

are combined in the PSO–MADS hybrid algorithm used in this work.

Mesh adaptive direct search (MADS), developed by Audet and Dennis [5], is a

gradient-free, local optimization technique that can be classified as a pattern search

algorithm. MADS, which is supported by local convergence theory, involves ‘polling’
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on a stencil in search space. A MADS iteration entails evaluating the objective func-

tion at all points on a stencil emanating from a central point. The central point is

the best point, in terms of objective function value, found thus far in the optimiza-

tion. For a problem with n optimization variables, there are 2n stencil points in our

implementation of MADS, so 2n function evaluations are required at each iteration.

At iteration k + 1, the central point is shifted to the point that provided the best

objective function value at iteration k (different criteria may be used to select the

new central point if all solutions are infeasible in terms of nonlinear constraints). The

MADS stencil, in contrast to that in generalized pattern search, is not oriented in the

coordinate directions of the search space, but rather in random directions that change

with iteration. This leads to arbitrarily close poll directions and faster convergence in

some cases. If no improvement is achieved at a particular iteration, the stencil size is

reduced. MADS stopping criteria involve reaching a minimum stencil size or a maxi-

mum number of function evaluations. The algorithm naturally parallelizes because all

of the function evaluations (reservoir simulations) can be performed simultaneously.

For more details on MADS, see [5], [6], [35] and [31].

Particle swarm optimization (PSO) is a stochastic global search algorithm that was

originally developed by Eberhart and Kennedy [20] and first applied for well location

optimization (in oil field problems) by Onwunalu and Durlofsky [43]. PSO is based

on the social behaviors of swarms of animals and, like a genetic algorithm, involves

a set of candidate solutions at each iteration. A particular PSO candidate solution

is called a particle and the set of solutions is referred to as the swarm (there are Np

particles in the swarm). Particle i moves through the search space according to the

equation

xk+1
i = xk

i + vk+1
i ∆t, (2.3)

where xi = (u,v, z)i defines a well location and control scenario; i.e., the location

of the particle in the search space, vi is the particle velocity, k and k + 1 indicate

iteration level, and ∆t is the ‘time’ increment, typically taken to be 1.

The velocity is comprised of three separate contributions — the so-called inertial,

cognitive and social velocity components. The inertial term acts to maintain a degree
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of continuity in particle motion by moving the particle in the same direction it was

going in the previous iteration. The cognitive term moves the particle toward the

best location (in terms of objective function and/or nonlinear constraint violation

value) in the search space that it has encountered up to iteration k. The social term

moves particle i toward the location of the best particle in its ‘neighborhood.’ In some

PSO procedures, the neighborhood includes all Np particles in the swarm, but in our

implementation we use a random neighborhood topology in which particle i interacts

with only a portion of the swarm. This portion changes, in a random fashion, over

the course of the optimization. Stopping criteria for PSO involve a maximum number

of iterations or function evaluations, or a minimum change in objective function value

over one or more iterations. Like MADS, PSO naturally parallelizes because the flow

simulations for all particles can be performed simultaneously.

PSO provides global search, though convergence, even to a local minimum, is not

guaranteed. MADS, by contrast, provides essentially a local search (though some

degree of nonlocality can be achieved by using a large initial stencil size), though

it does lead to local convergence in many cases. By combining the two algorithms,

the advantages of each approach can be exploited. This hybridization was accom-

plished by Isebor et al. [31, 32], who demonstrated that the PSO–MADS procedure

outperformed both standalone MADS and standalone PSO. These references should

be consulted for full details on the procedure. We note that an earlier hybridization

involving PSO was developed by Vaz and Vicente [55].

The PSO–MADS hybrid algorithm is illustrated in Figure 2.1 for a minimization

problem in two variables (i.e., a search space of dimension two). In the figure, the

contour lines indicate objective function value. Note that there is a local minimum

(in the lower left in Figure 2.1(a)) as well as a global minimum, which is indicated by

the red star. The green points in Figure 2.1(a) depict PSO particles at iteration k.

Figure 2.1(b) shows the particle positions at iteration k+1. If there is no improvement

in the best particle for a specified number of subsequent PSO iterations, then MADS

is applied, using the best particle (shown in red in Figure 2.1(b)) as the central point

of the stencil. MADS iterations, depicted in Figure 2.1(c), proceed with a fixed stencil

size until the solution stops improving, at which point we return to PSO. Other PSO
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particles will be attracted to the best particle (through the social velocity term), which

typically leads to additional improvement in the solution. The next time MADS is

called, the stencil size is reduced. The algorithm proceeds until a minimum MADS

stencil size is reached or until a maximum number of function evaluations have been

performed.

In the examples presented in this work, we apply the PSO settings used in [31, 32].

Specifically, a random neighborhood topology is applied, and we set the coefficient

of the inertial velocity term (ω) to 0.721, and the coefficients of the cognitive and

social velocity terms (c1 and c2) to 1.193. The PSO swarm size (Np) varies from case

to case, but it is in the range 30 ≤ Np ≤ 60. The initial (maximum) MADS stencil

size is 10 fine-scale grid blocks (well locations are always tracked on the finest scale),

and the minimum stencil size is 1 fine-scale block. When we switch grid levels in the

multilevel optimization procedure, the MADS stencil is reset to its initial size of 10

grid blocks. We note that the minimum MADS stencil size is usually not reached since

the algorithm typically terminates once a (specified) maximum number of function

evaluations are performed.

(a) PSO iteration k (b) PSO iteration k + 1 (c) MADS iteration

Figure 2.1: Illustration of PSO–MADS iterations for a minimization problem in a
two–dimensional search space, from Isebor et al. [32]
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2.1.3 Nonlinear constraint treatment in optimization under

uncertainty

Both bound and nonlinear constraints typically appear in field development and well

control optimization problems. Bound constraints, which could include maximum

or minimum allowable BHPs, are usually handled by the optimization algorithm, so

little if any specialized treatment is required. Nonlinear constraints, by contrast, are

more complicated. Examples of nonlinear (output) constraints include minimum oil

production rate or maximum water cut from a well when BHP is the control variable.

The constraints are nonlinear because they depend on simulation variables, and a

nonlinear set of equations (i.e., the flow simulation equations) must be solved to

determine these variables.

In Isebor et al. [31], a filter treatment for handling nonlinear constraints in PSO–

MADS was developed. This involves viewing the problem in what is essentially a

biobjective optimization fashion, and simultaneously minimizing the objective func-

tion along with an aggregate constraint violation function. This approach enables

the algorithm to consider infeasible (in terms of the nonlinear constraints) solutions

during the course of the optimization, even though the final solution is feasible.

When optimizing over multiple realizations (as in Eq. 2.2), however, requiring strict

feasibility for all geological realizations might be too severe. A more appropriate

procedure in this case may be to instead penalize realizations that do not satisfy

the nonlinear constraints. Such an approach is described by Dimitrakopoulos [17],

who used a stochastic programming formulation with a penalty for optimizing mining

operations under geological uncertainty. Following this approach, we now express the

optimization problem as

(
P̂
){

max
u∈U,v∈V,z∈Z

E[J∗] =
1

Nreal

Nreal∑
s=1

(Js (u,v, z)−Rs (u,v, z)), (2.4)

where Rs is the penalty term. Our optimization procedure is quite general and can

treat any appropriate objective function. In the examples presented in this paper, we
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maximize undiscounted net present value (NPV). We express this objective function,

with x = (u,v, z), as

Js(x) = PpoQpo(x)− PpwQpw(x)− PiwQiw(x)− Cdrill(x), (2.5)

where Ppo is the price of oil ($/STB), Ppw and Piw are the costs of produced and

injected water ($/STB), Qpo(x) and Qpw(x) are the cumulative volumes (STB) of oil

and water produced, Qiw(x) is cumulative water injected (STB), and Cdrill(x) is the

drilling cost.

The specific form of Rs depends on the actual constraints in the problem. In con-

trast to penalty functions commonly used in optimization to drive solutions towards

feasibility, this penalty is meant to reflect the actual economic cost of the constraint

violation. For example, if we have a minimum oil production rate constraint (qo,min)

and a well does not meet this constraint, we shut the well in and additionally penalize

the solution by defining Rs as follows:

Rs(x) = PpenQunmet(x), (2.6)

where Ppen is the ‘penalty’ price for oil (we would typically take Ppen > Ppo) and the

cumulative ‘unmet’ oil production (unmet because the well has been shut in) is given

by Qunmet = qo,min × tshutin, where tshutin is the total amount of time during which

the well is shut in. If the well is shut in because of a different constraint violation

(e.g., produced water rate exceeds the maximum), we still apply the penalty in this

form. Treatments other than that in Eq. 2.6 could of course be used, and would in

fact be required for cases that do not involve the specification of qo,min.

2.2 Upscaling procedure

In this work, we apply a multilevel optimization procedure, where grids at several

different levels of refinement are used over the course of the optimization run. The

coarse-grid properties for each scenario are determined by applying a flow-based up-

scaling procedure. The problems considered here involve oil-water systems. In coarse-

scale models for such systems, both single-phase (i.e., permeability and porosity) and
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two-phase (relative permeability) properties can be upscaled. Chen and Durlofsky

[14] and Durlofsky and Chen [19] discuss many of the upscaling methods available for

problems of this type.

In the current implementation, we upscale only single-phase flow parameters and not

the two-phase flow functions. This means we compute upscaled transmissibility, des-

ignated T ∗, for each coarse block-to-block interface, and upscaled well index, WI∗,

for each coarse block in which a well is completed. This type of coarse-scale model

is in general less accurate than a model that additionally includes upscaled relative

permeability functions [14]. However, this approach is more computationally efficient,

since the calculation of upscaled relative permeability functions is time consuming,

and it provides reasonable accuracy as the grid is refined. For very coarse grids our

approach does incur some error but, as we will see, the ranking of solutions proposed

by the optimization algorithm is largely maintained. In other words, candidate so-

lutions that would be among the best (in terms of objective function value) when

evaluated on the finest scale are among the best when evaluated on the coarse scale,

and similarly for median and poor solutions.

A variety of single-phase parameter upscaling techniques exist, and here we apply

what is essentially the most accurate method available. Specifically, we use a global

transmissibility upscaling procedure of the type described by Chen et al. [16] and

Zhang et al. [62]. With this method, we first solve the global single-phase pressure

equation with flow driven by the actual wells:

∇ · (k∇p) = q, (2.7)

where p is pressure, k is the diagonal permeability tensor, and q denotes the well-

driven source term. Wells are represented using the usual Peaceman [44] well index.

Recall that at each iteration of either MADS or PSO, multiple solutions xi must

be evaluated, and each of these solutions corresponds to a different set of wells and

controls. In our optimization framework, we solve Eq. 2.7 for each proposed well

scenario xi at each iteration of the optimizer. Thus, if the optimization involves

30 PSO particles, we solve the fine-scale pressure equation 30 times at each PSO

iteration. The source term q also depends on the controls ui embedded in xi, and
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these controls can change in time. Because Eq. 2.7 is a steady-state equation, we

average the time-varying behavior in ui to arrive at the source term q.

We describe the upscaling procedure with reference to the schematic in Figure 2.2(a),

which shows a 15× 15 fine grid (lighter lines) and a 5× 5 coarse grid (heavier lines).

Wells are depicted by the ×’s. A region corresponding to two coarse blocks is high-

lighted in Figure 2.2(a) and extracted in Figure 2.2(b). Given the fine-scale pressure

solution corresponding to well scenario xi, we compute T ∗
j by relating the integrated

(summed) flow rate through coarse interface j to the (estimated) coarse-scale pressure

difference. This results in the following expression for T ∗
j :

T ∗
j =

∑
l fl

⟨p⟩j− − ⟨p⟩j+
, (2.8)

where fl designates the flow rate through fine-scale interface l, which lies on coarse

interface j, and ⟨p⟩j− and ⟨p⟩j+ are the bulk-volume averages of the fine-scale pressure

over coarse blocks j− and j+. We note that, in the case of very small
∑

l fl and/or

(⟨p⟩j−−⟨p⟩j+), it is possible that the resulting T ∗
j will be anomalous (i.e., negative or

extremely large). In such cases we replace the T ∗
j from Eq. 2.8 with a value computed

from the geometric averages of the fine-scale permeabilities in blocks j− and j+.

For a coarse block j containing a well, WI∗j is computed in an analogous manner:

WI∗j =

∑
l f

w
l

⟨p⟩j − pw
. (2.9)

Here the sum is over the l fine-scale well blocks lying in coarse well block j (the sum

is needed for, e.g., vertical wells in three-dimensional models), fw
l is the flow rate

into or out of the well in fine-scale block l, ⟨p⟩j is the bulk-volume average of the

fine-scale pressure over coarse block j, and pw is the wellbore pressure (averaged over

coarse block j if necessary). It is important to note that wells do not need to be in

the center of the well block except at the finest scale (see Figure 2.2(a)). The effect

of a well being off-center in a coarse block is captured by WI∗ and the well-block T ∗.

This is a very useful feature of this upscaling method, as it allows us to consistently

track the well location on the finest grid regardless of the refinement level in use in

the optimization algorithm.
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(a) 15 × 15 fine grid (lighter lines) and
5 × 5 coarse grid (heavier lines). Wells
designated by ×’s

(b) Two coarse-block region for T ∗
j com-

putation

Figure 2.2: Schematic showing fine and coarse grids and transmissibility upscaling

The use of T ∗ and WI∗ computed using Eqs. 2.8 and 2.9 generally provides coarse-

scale models that can closely replicate the integrated single-phase flow behavior of the

fine-scale model. As such, these coarse models are very useful in our workflow. Chen

et al. [16] observed, however, that improved accuracy could be achieved in many cases

by iterating on the coarse-model properties. These iterations involve first solving the

pressure equation for the coarse-scale model with the T ∗ and WI∗ computed from

Eqs. 2.8 and 2.9. This provides pressure in every coarse-scale block. By replacing

⟨p⟩j− and ⟨p⟩j+ in Eq. 2.8 with the actual coarse-scale pressures pcj− and pcj+, we

obtain an updated estimate for T ∗ (and similarly for WI∗). Rather than use the

new T ∗ and WI∗ directly, a damping procedure is applied. In this work we apply 10

iterations of this procedure. This is still inexpensive because these are all coarse-scale

computations. Refer to Chen et al. [16] for full details on this iteration procedure.

Figure 2.3 displays results for a channelized model using the iterative transmissibility

upscaling procedure described above. The figure shows maps of y-direction trans-

missibility for various coarse grids (Figures 2.3(a)-(d)) and for the finest grid (Fig-

ure 2.3(e)). This model contains three production and two injection wells (shown as

red and blue circles, respectively). We reiterate that the upscaled properties depend
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(a) Level 1 (10× 10 grid) (b) Level 2 (20× 20 grid)

(c) Level 3 (25× 25 grid) (d) Level 4 (50× 50 grid)

(e) Level 5 (100× 100 grid)

Figure 2.3: Log10 transmissibility in y-direction at different coarsening levels. Pro-
duction and injection wells shown as red and blue circles
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on these well locations and their BHPs.

In this work, we extended an existing two-dimensional iterative transmissibility up-

scaling procedure to upscale three-dimensional models. Figure 2.4 shows a map of the

y-direction transmissibility for a fine-scale 30× 30× 6 model. This three-dimensional

permeability model is used in Case 2 in Chapter 3, and the simulation parameters are

presented in Table 3.2. The model contains four production wells and one injection

well. All wells are perforated in all model layers. We applied the upscaling method

to this three-dimensional model. The transmissibility map for one of the coarse-grid

models, of dimensions 15×15×2, is shown in Figure 2.5. Coarse layer 1 in this figure

corresponds to layers 1–3 in the fine model, and coarse layer 2 to fine layers 4–6.

It is apparent that the channel resolution is fairly low for the 15 × 15 × 2 coarse

model, though even the coarsest grid provides results of high accuracy for single-

phase flow quantities. This is demonstrated in Figure 2.6, where we show the steady

state production rate for production well 1 (P1) at different coarsening levels. We see

that the error in the single-phase flow rate, relative to the fine-scale solution, is less

than 5% at all coarsening levels. Similar results are obtained for other wells.

Next, we use the upscaled models for two-phase flow simulations (using AD-GPRS).

Oil and water production rates for P1 and P4 at different coarsening levels are plotted

in Figures 2.7 and 2.8. We also plot the water injection rate for I1 in Figure 2.9. We

see that the two-phase flow effects increase the error in the coarse-scale simulation

results. However, as the number of grid cells in the upscaled models increases, the

error in the two-phase simulation output reduces and the upscaled models provide

results close to those from the fine model.

2.3 Multilevel optimization framework

As noted in the Introduction, upscaled models have been used previously for op-

timizing well locations [1] and well control [34]. Related procedures include the

multigrid-based optimization methods developed by Lewis and Nash [36, 41]. In

these approaches, coarse-resolution problems were used to generate search directions
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(a) Layer 1 (b) Layer 2

(c) Layer 3 (d) Layer 4

(e) Layer 5 (f) Layer 6

Figure 2.4: Log10 transmissibility in y-direction for 30×30×6 fine model. Production
and injection wells shown as red and blue circles. Model from [29]
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(a) Coarse layer 1 (b) Coarse layer 2

Figure 2.5: Log10 transmissibility in y-direction for 15×15×2 coarse model generated
from the model in Figure 2.4. Production and injection wells shown as red and blue
circles.

Figure 2.6: Upscaling results for single–phase flow (Case 2 in Chapter 3)

(for gradient-based optimization) for finer-resolution problems. Our approach dif-

fers from earlier methods in that we apply a multilevel approach, in which a set of

subproblems are optimized sequentially. In addition, our approach is suitable for

use in challenging field development problems, in which both well locations and well

controls are optimized. Although our method is incorporated into the PSO–MADS

framework, it could be used with a wide range of optimization procedures, including

gradient-based, direct search and meta-heuristic algorithms.
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(a) P1 oil production rate

(b) P1 water production rate

Figure 2.7: Upscaling results for two-phase flow for well P1 (Case 2 in Chapter 3)

We now describe the multilevel procedure for optimization with a single geological

model. The key component of the method is the global transmissibility upscaling

technique presented in the previous section. For specificity, assume the finest-grid

model contains 100×100 grid blocks (as in Figure 2.3(e)). We begin the optimization

with a coarse model containing 10 × 10 grid blocks (as in Figure 2.3(a)). We refer

to this coarse-grid optimization problem as P1, and the grid as the Level 1 grid.
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(a) P4 oil production rate

(b) P4 water production rate

Figure 2.8: Upscaling results for two-phase flow for well P4 (Case 2 in Chapter 3)

Recall that, at any iteration (involving either PSO or MADS), many different well

scenarios are considered. For each scenario xi, we generate an upscaled Level 1 model.

This is necessary since the upscaled properties depend on the well locations and

BHP settings. Although these computations are more time consuming than simpler

upscaling approaches, they can be much more accurate than alternate procedures,

and they are still fast compared to solving the fine-scale two-phase flow problem.
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Figure 2.9: Upscaling results for well I1 (Case 2 in Chapter 3)

We refer to the result from the P1 optimization problem as x∗
1. This solution is then

used as an initial guess for optimization problem P2. In PSO, an initial swarm is

required, and the other particles in the swarm are generated randomly. The Level 2

grid in this case contains 20 × 20 grid blocks (as in Figure 2.3(b), though the well

locations would now correspond to x∗
1). Note that, because well locations are always

defined on the finest grid, they are not perturbed when we change grid levels. We

proceed in this manner, using the solution to optimization problem Pm−1, designated

x∗
m−1, as the initial guess for problem Pm. The optimization at any level ends when

we reach the stopping criteria. These are either a maximum number of function

evaluations (this number can vary from level to level) or a minimum MADS stencil

size. As noted earlier, the maximum number of function evaluations is typically

reached before the minimum stencil size. When the optimization is started on the

next level, the MADS stencil size is initialized to its maximum (10 fine-grid blocks in

our examples).

In the two-dimensional multilevel optimization examples presented here, the fine-grid

model is defined on a 100 × 100 grid. The grid levels included in the multilevel

procedure are determined by applying the same integer upscaling ratio in both the

x− and y−directions; i.e., we consider 10 × 10, 20 × 20, 25 × 25 and 50 × 50 grids.



30 CHAPTER 2. MULTILEVEL OPTIMIZATION PROCEDURE

It should be possible, however, to skip some of these grid levels, or to use different

stopping criteria at different levels. This should be a topic for future investigation.

Our multilevel approach shares some similarities with the retrospective optimization

(RO) procedure presented by Wang et al. [58]. In that work, a sequence of subprob-

lems was used for optimization under geological uncertainty. The number of geological

realizations considered in the optimization increased from subproblem to subproblem.

In both RO and the current procedure, early subproblems, which require substantial

exploration by the optimizer and thus many function evaluations, entail much faster

flow computations. Later subproblems involve more expensive function evaluations,

but fewer iterations are required because the solution is ‘closer’ to the optimum (by

optimum here, we mean the best solution found by the optimization algorithm).

To apply the multilevel procedure for optimization under geological uncertainty, we

consider multiple (Nreal) geological models, and now take the objective function to

be the expected (average) response over the Nreal realizations. Then, for each func-

tion evaluation, we compute E[J∗] = (1/Nreal)
∑

s(Js − Rs) as in Eq. 2.4. This

means that at each PSO iteration, Np × Nreal simulations are required, and at each

MADS iteration, 2n × Nreal simulations must be performed. This can be very ex-

pensive computationally for large Nreal (e.g., for Nreal ∼ O(100)), and in such cases

a cluster-sampling procedure, such as that used by [58], could be applied to select a

representative subset of realizations. Alternatively, a procedure such as a multilevel

Monte Carlo method (described in Section 2.5), which entails performing a ‘telescopic

sum’ involving different numbers of realizations simulated at different levels of refine-

ment, could be considered [40]. The approach used most extensively in this work,

optimization with sample validation (OSV), is described in the next section. With any

of these treatments, the multilevel optimization procedure now requires that we con-

struct coarse-scale models (i.e., perform flow-based upscaling) for each well location

and control scenario xi, in each geological realization ms, evaluated in subproblem

Pm. Although this corresponds to a large number of upscaling computations, it is

still highly cost effective relative to performing fine-scale two-phase flow simulations.

The multilevel optimization framework described thus far uses PSO–MADS [31, 32]

as the core optimizer at all grid levels used in the optimization. Using the PSO
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component, which provides global search, at all levels of the optimization may, how-

ever, not be necessary. This is based on our observation that the best solution often

changes relatively little after the first level, and many of these changes are local in

character. We therefore introduce a modified (accelerated) multilevel field develop-

ment optimization procedure that uses only the local optimizer (MADS) in the later

levels. This will be shown to save a significant amount of computation time.

2.4 Optimization with sample validation

Because the number of realizations used in the optimization directly scales the number

of simulation runs required, it is important to reduce the number of realizations

to the extent possible. Toward this aim, we employ the optimization with sample

validation (OSV) approach developed by Shirangi and Durlofsky [50], which we now

describe. We assume that the subsurface geological uncertainty is characterized using

a total of Nreal realizations. We start the optimization with a small number (Nrep)

of ‘representative’ realizations. ‘Representative’ realizations are selected from the full

set of Nreal realizations using the CDF approach that we will discuss later. At a

particular grid level, we designate xl−1 and xl as the initial and optimum solutions

respectively. Then, the increase in the objective function value, with Nrep realizations,

is J∗{xl, Nrep} − J∗{xl−1, Nrep}.

Our goal in the optimization is however to improve the objective function over all

Nreal realizations. We thus evaluate all Nreal realizations for the x
l−1 and xl solutions

to quantify overall improvement, which is given by J∗{xl, Nreal}−J∗{xl−1, Nreal}. We

now compute the relative improvement (RI), which is the ratio of the improvement

in objective function value with all Nreal realizations to the improvement with Nrep

representative realizations:

RI =
J∗{xl

m, Nreal} − J∗{xl−1
m , Nreal}

J∗{xl
m, Nrep} − J∗{xl−1

m , Nrep}
, (2.10)

where the subscript m refers to the current coarsening level in the multilevel opti-

mization framework.
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We do not proceed to the next level in the optimization unless RI ≥ θ, where θ

is a user-specified validation criterion (here we set θ = 0.5). If RI < θ, then the

number of representative models Nrep is increased and the PSO-MADS procedure

is repeated with the larger number of representative models. OSV is terminated if

RI ≥ θ is satisfied or if a maximum number of OSV steps is reached. See [50] for

further details.

The number of OSV steps and the number of representative realizations at each step

are specified by the user. Different approaches can be used to select the representative

realizations out of the full set of Nreal realizations. In this work, we base the selection

on the cumulative distribution function (CDF) of the Nreal model responses [50].

The CDF of the objective function is constructed based on xl−1, which is the current

optimum scenario. Then, the two realizations that correspond to the P10 and P90

values (10th and 90th percentiles) on the CDF are selected. Next, the CDF between

P10 and P90 is equally divided into Nrep− 2 regions and the median realization from

each region is selected. This procedure is illustrated in Figure 2.10.

Figure 2.10: Ordered NPV plot for Nreal = 100 realizations. The ten selected Nrep

realizations are designated by the red points

A flowchart of the overall multilevel optimization procedure with OSV is shown in

Figure 2.11. For each grid level in the multilevel optimization framework, we perform
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the OSV procedure. We start OSV with a small number of representative models and

then increase the number of realizations as required, until the RI criterion is satisfied

or a maximum number of OSV steps is reached. Then, the model is refined (i.e., we

proceed from Pm to Pm+1) and OSV is restarted with the finer model.

Figure 2.11: Flowchart of the multilevel optimization procedure with OSV



34 CHAPTER 2. MULTILEVEL OPTIMIZATION PROCEDURE

2.5 Optimization under uncertainty using MLMC

The multilevel Monte Carlo (MLMC) method enables an efficient estimate of the

expected value of a reservoir simulation output over multiple realizations. MLMC is

based on a telescopic sum with different numbers of realizations at different coarsening

levels. Müller et al. [40] combined MLMC with two–phase streamline simulation to

assess the impact of geological uncertainty in oil–water flow problems. They showed

that MLMC provided accurate results with an order of magnitude speedup. We now

describe the MLMC procedure and its application to field development optimization.

Assume for now that we wish to compute a fine-scale quantity using solutions on five

grid levels. The fine-scale quantity, J∗
5 , can be represented in terms of a telescopic

sum as follows:

J∗
5 = J∗

5 + (J∗
4 − J∗

4 ) + (J∗
3 − J∗

3 ) + (J∗
2 − J∗

2 ) + (J∗
1 − J∗

1 ) = (J∗
5 − J∗

4 )+

(J∗
4 − J∗

3 ) + (J∗
3 − J∗

2 ) + (J∗
2 − J∗

1 ) + (J∗
1 − J∗

0 ) =
5∑

m=1

(J∗
m − J∗

m−1).
(2.11)

Note that decreasing m corresponds to coarser grid levels, with J∗
1 corresponding to

the coarsest model. We set J∗
0 = 0 in Eq. 2.11. The general form of the equation can

be written as follows

J∗
M =

M∑
m=1

(J∗
m − J∗

m−1), (2.12)

where J∗
M refers to a quantity on the finest grid level and M refers to the number of

levels in the telescopic sum.

In field development optimization under uncertainty, we need to compute the expected

value of the objective function over multiple geological realizations of the fine-scale

model. The telescopic sum is thus extended to compute E[J∗
M ], the expected value
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of the fine-scale solutions over all Nreal realizations. We can express E[J∗
M ] as:

E[J∗
M ] =

M∑
m=1

1

Nreal

Nreal∑
i=1

(J∗
i,m − J∗

i,m−1). (2.13)

Now, we introduce the MLMC approximation to reduce computation time. The

key is to use different numbers of realizations at different coarsening levels. More

realizations are used at coarser levels than at finer levels. For each level m we define

Nm to be the number of models used at that level. The expected objective function

value E[J∗
M ] is now approximated by the MLMC estimator E ′[J∗

M ] as

E[J∗
M ] ≈ E ′[J∗

M ] =
M∑

m=1

1

Nm

Nm∑
i=1

(J∗
i,m − J∗

i,m−1). (2.14)

Here (J∗
i,m − J∗

i,m−1) denotes the difference between solutions at levels m and m − 1

for realization i, which means they derive from the same permeability realization.

In [40], the Nm models were randomly sampled from the full set. In this work, we also

employ the CDF approach described previously [50] to select models. This approach

is compared to MLMC estimation using random sampling. Also, we investigate the

effect of the number of grid levels (M) on MLMC performance.
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Chapter 3

Single-Realization Optimization

Results

In this chapter, we apply the multilevel optimization procedure described in Chapter 2

to optimization problems involving a single realization. The first two examples are for

two- and three-dimensional models, with fixed numbers of injectors and producers,

while the third example involves the optimization of well number and type. We also

perform conventional optimization for each of these examples, using only the fine-scale

model, to enable comparisons with the multilevel optimization results.

Any field development optimization algorithm can be used in the multilevel optimiza-

tion framework. In this work, the PSO–MADS hybrid algorithm [29], described in

Chapter 2, is used for all optimization runs. Key economic and operational parame-

ters are presented in Table 3.1. The objective in all cases is to maximize undiscounted

NPV, given in Eq. 2.5.

Flow simulations are performed using either Stanford’s General Purpose Research

Simulator (GPRS), described in [12] and [33], or the more recent Automatic Differ-

entiation-based General Purpose Research Simulator (AD–GPRS), described in [63].

All cases involve oil-water flow. The relative permeability curves used in all runs are

shown in Figure 3.1. Other simulation parameters are presented in Table 3.2.

37
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Figure 3.1: Relative permeability curves used for all simulations

Table 3.1: Optimization parameters used in the example cases
Parameter Case 1 Case 2 Case 3
Ppo, Ppw and Piw, $/STB 100, 5 and 5 100, 5 and 5 100, 10 and 5
Well drilling cost, $ million per well 5 5 100
Injection BHP range, psi 6000 – 9000 6500 (fixed) 6000 – 9000
Production BHP range, psi 1500 – 4500 1500 (fixed) 1500 – 4500

3.1 Case 1: Two-dimensional channelized model

In this case we optimize the locations of three production wells and two injection

wells, along with three BHP control values for each well. There are thus a total of

n = 25 optimization variables (ten location variables and 15 control variables). The

production time frame is 2190 days, and BHPs are determined at initial time, at

730 days, and at 1460 days. The reservoir model, shown in Figure 3.2, was generated

by Isebor and Durlofsky [30] using SGeMS [45]. An initial guess for the well locations

is also shown in Figure 3.2. For this case we specify Np = 50 for PSO. Each MADS
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Table 3.2: Simulation parameters used in the example cases
Parameter Cases 1 and 3 Case 2
Grid size 100×100 30×30×6
Grid cell dimensions 32.8 ft×32.8 ft×32.8 ft 100 ft×100 ft×20 ft
Initial pressure pi, at datum 2900 psi at 3280 ft 3500 psi at 8400 ft
Rock compressibility cR, psi

−1 0.5 ×10−5 0.3 ×10−5

µo and µw, cp 3 and 1 1.20 and 0.31
ρo and ρw, lbm/ft3 62.4 (both) 49.6 and 64.79
Bo and Bw, RB/STB 1.00 1.00

iteration also entails 2n = 50 function evaluations (simulations). Given that we

can access 50 computational cores, the optimization in this case is fully parallelized.

Nonlinear constraints are not included in this example.

In this and subsequent cases, the multilevel optimization at each level stops when

the maximum number of simulation runs (prescribed for that level) is reached. The

specific numbers of simulation runs will be presented below. We run the single-level

optimization for the same number of total simulation runs, which in this case is 13,300.

Figure 3.2: Log10 permeability (in md) for Case 1. Model from [30]

Before discussing optimization results, we first assess the performance of the upscaled

models for this case. The well configuration considered in this assessment is shown in
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Figure 3.2. Figure 3.3 displays the oil and water production rates for models at dif-

ferent levels of coarsening. The 10× 10 models clearly overpredict oil production and

underpredict water production by substantial margins, but they do capture general

trends. As we refine, the coarse model results are seen to systematically approach the

fine-scale (100× 100) results for both oil and water production rates. This feature is

very useful in the context of multilevel optimization.

Figure 3.4 displays the NPVs associated with 50 well scenarios (these are the 50

candidate scenarios considered by the optimizer after 6000 simulation runs) at various

grid levels. The NPV computed for the fine model is plotted against the NPVs for

the coarse models. If the coarse models were perfectly accurate, all points would

fall on the 45◦ line. It is evident that, as the grid is refined, the points generally

shift towards the 45◦ line. We also see that the coarse models typically overpredict

NPV. This bias is consistent with the flow results shown in Figure 3.3, where the

coarse models overpredict oil production while underpredicting water production.

The degree of NPV overprediction in Figure 3.4 clearly decreases with increasing grid

resolution.

An important feature of Figure 3.4 is the fact that the general ordering of the 50 mod-

els is reasonably well captured, even at the coarsest grid level. In other words, well

scenarios that are among the best (in terms of NPV) for the finest grid are also

identified as among the best for the 10 × 10 or 20 × 20 grids. This indicates that

these models are indeed useful for optimization, where the relative performance of

the various scenarios is of primary importance.

The timings for upscaling and the subsequent two-phase flow simulation for the vari-

ous models are shown in Table 3.3. The number of simulation runs and elapsed time

at the different grid levels are presented in Table 3.4. We see in Table 3.3 that the

coarser models run much faster than the fine model. From Table 3.4 it is evident that

although the elapsed times at the various grid levels are comparable (these timings

assume 50 cores are always available; i.e., the optimization is fully parallelized), many

more iterations are performed using coarse models than fine models. This results in

substantial overall computational savings.
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(a) P1 oil production rate

(b) P1 water production rate

Figure 3.3: Upscaling results for two-phase flow (Case 1)

Optimization results are reported in Table 3.5. Results are shown for both the con-

ventional (single-level) optimization approach, with all computations performed on

the 100× 100 fine grid, and for the multilevel procedure. We perform three runs for

each approach due to the stochastic nature of the PSO–MADS algorithm. In these

runs, the single-level procedure uses 13,300 simulation runs, which is the same as is
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Figure 3.4: Comparison of NPVs evaluated at different grid levels for the 50 well
scenarios after 6000 simulation runs (Case 1)

used in the multilevel runs. The best run for each method is shown in bold. The

results from the two approaches are quite comparable. The conventional approach

provides an average NPV that is about 0.2% higher than that from the multilevel

procedure, but the best multilevel optimization result is about 0.2% higher than the

best single-level result. As expected, the multilevel procedure is much faster than the

conventional approach; here it requires only about one tenth of the elapsed time of

the single-level method.

Table 3.3: Upscaling and simulation times for different grid levels (Case 1)
Model size 10× 10 20× 20 25× 25 50× 50 100× 100
Upscaling time per model, sec 3 4 4 5 –
Simulation time per model, sec 1 2 6 15 84
Total time per model, sec 4 6 10 20 84

The progress of the optimization for the conventional and multilevel approaches is
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Table 3.4: Multilevel optimization computations (Case 1)
Model size 10× 10 20× 20 25× 25 50× 50 100× 100
Total time per model, sec 4 6 10 20 84
Number of function
evaluations 6000 4000 2000 1000 300
Elapsed time (fully
parallelized), hours 0.13 0.13 0.11 0.11 0.14

Table 3.5: Optimization results for three runs. Best result shown in bold (Case 1)
Run 1 Run 2 Run 3 Average NPV Time
($MM) ($MM) ($MM) ($MM) (hours)

Conventional opt. 322.5 338.8 329.5 330.3 6.2
Multilevel opt. 334.2 315.4 339.5 329.7 0.6

shown in Figures 3.5(a) and (b), where we plot NPV versus the number of simulation

runs. The objective function value for the conventional approach improves very little

after about 7000 simulation runs, though it does continue to increase (very slowly)

until about 12,500 iterations. If we stopped the conventional optimization after 7000

simulation runs, we would obtain a speedup of five (instead of ten) using the multilevel

approach. In Figure 3.5(b), the solid line shows the current NPV, at the grid level in

use at that point in the optimization. The NPV for the current best xi, computed

using the fine-scale model, is also shown (as the black points) when the grid level

changes. There are clear jumps as we proceed from one grid level to the next, and

these jumps are substantial for the coarser grid levels. There are also significant

differences between the NPV computed for the fine-scale model and that computed for

the coarse-scale model. However, the fine-scale NPV clearly increases with iteration

even though the actual value is not very well approximated on coarse grids. This

occurs because the coarse-grid models are indeed capable of identifying promising

scenarios, which are then improved upon through additional PSO–MADS iterations.

The best well configurations found by each method are shown in Figure 3.6. The

locations clearly differ between the two runs, but both scenarios show injection wells

linked to production wells through channel sand. The optimized BHP controls for

production well P1 and injection well I1 are shown in Figures 3.7(a) and (b). Results
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(a) Conventional approach

(b) Multilevel approach

Figure 3.5: Evolution of objective function (Case 1)

for the run leading to the highest NPV for each method are shown. The reference

solution corresponds to the initial guess with well locations shown in Figure 3.2. The

multilevel optimization introduces BHP variation in time, while the BHPs from the

conventional approach are nearly constant. Final saturation maps for these optimized

solutions are presented in Figures 3.8(a) and (b). The channels are well swept in both

cases, as would be expected.
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(a) Conventional approach (b) Multilevel approach

Figure 3.6: Best solutions found by the two methods (Case 1). Background shows
log10 k

(a) Production well P1 (b) Injection well I1

Figure 3.7: Optimum BHPs found by the two methods (Case 1)

We plot the cumulative production profiles for these optimized solutions and for the

reference (initial guess) scenario in Figures 3.9(a)-(c). From the production profiles, it

is evident that cumulative oil production in both optimized solutions is about 1 MM-

STB higher than in the reference scenario. Cumulative water injection and production

are also less than in the reference scenario. The two optimized solutions provide sim-

ilar cumulative production and injection profiles. This agreement is consistent with

the very similar saturation maps in Figure 3.8.

The optimum well locations at the end of each level in the multilevel optimization are

displayed in Figure 3.10. Note that the injection wells do not shift very much after
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(a) Conventional approach (b) Multilevel approach

Figure 3.8: Comparison of the final oil saturation maps (red indicates oil and blue
water), for the optimized solutions found by the two methods (Case 1)

the Level 1 optimization is completed, and the producers are very near their final

locations after the Level 3 optimization. This illustrates the ability of the coarser

models to identify near-optimal well locations.

3.2 Case 2: Three-dimensional channelized model

In this example we optimize well locations only; BHP values are prescribed (see Ta-

ble 3.1). Four vertical production wells and one vertical injection well are considered.

For each well, we optimize the areal location (x, y) and the vertical completion in-

terval (z1, z2). This corresponds to a total of 20 optimization variables. For PSO we

take Np = 30, and for MADS we use 2n = 40 poll points. For this case 40 computa-

tional nodes are required to fully parallelize the optimizations. The permeability field

for this case, taken from Isebor [29], is shown in Figure 2.4 (in the previous chapter).

Nonlinear constraints are not included in this example. The total simulation time in

this case is 2000 days.

Figure 3.11 shows the NPVs for the 30 well scenarios after 3600 simulation runs

computed at each grid level. As in Figure 3.4, we see that the accuracy of the models

increases with grid refinement and that the general ordering is captured even using

the coarsest (10 × 10 × 1) models. The timings and number of simulation runs for
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(a) Cumulative oil production

(b) Cumulative water production

(c) Cumulative water injection

Figure 3.9: Comparison of cumulative production and injection profiles for the opti-
mized and reference solutions (Case 1)
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(a) Initial solution at start of Level 1 (b) Best solution at end of Level 1

(c) Best solution at end of Level 2 (d) Best solution at end of Level 3

(e) Best solution at end of Level 4 (f) Best solution at end of Level 5

Figure 3.10: Evolution of optimum well locations in multilevel procedure (Case 1).
Background shows log10 T

∗
y

the various models are shown in Table 3.6. Again we see that a large number of the

PSO–MADS iterations are performed using coarse models, and that these models run

much faster than the finest-scale model. Results for three runs, again using both the

single-level and multilevel approaches, are shown in Table 3.7. Optimized NPVs are
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Figure 3.11: Comparison of NPVs evaluated at different grid levels for the 30 well
scenarios after 3600 simulation runs (Case 2)

very similar between the two methods, though the multilevel approach provides a

factor of eight speedup.

Figures 3.12(a) and (b) show the evolution of NPV with iteration for the conventional

and multilevel approaches. The objective function value stops improving after about

4000 simulation runs in the conventional approach. The optimization continues run-

ning after 4000 simulation runs because none of the termination criteria is satisfied. If

Table 3.6: Multilevel optimization computations (Case 2)
Model size 10× 10× 1 15× 15× 2 30× 30× 3 30× 30× 6
Total time per model, sec 6 9 39 111
Number of function
evaluations 3600 1800 600 180
Elapsed time (fully
parallelized), hours 0.20 0.15 0.22 0.19
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Table 3.7: Optimization results for three runs. Best result shown in bold (Case 2)
Run 1 Run 2 Run 3 Average NPV Time
($B) ($B) ($B) ($B) (hours)

Conventional opt. 1.21 1.15 1.20 1.19 6.4
Multilevel opt. 1.21 1.19 1.20 1.20 0.8

(a) Conventional approach

(b) Multilevel approach

Figure 3.12: Evolution of objective function (Case 2)



3.2. CASE 2: THREE-DIMENSIONAL CHANNELIZED MODEL 51

(a) Layer 1 (b) Layer 2

(c) Layer 3 (d) Layer 4

(e) Layer 5 (f) Layer 6

Figure 3.13: Optimum well locations and completion intervals from multilevel proce-
dure (Case 2). Background shows log10 k

better termination criteria were used for the conventional approach, then the speedup

would be closer to a factor of five.

The behavior of the multilevel approach (Figure 3.12(b)) in this case is similar to
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(a) Layer 1 (b) Layer 2

(c) Layer 3 (d) Layer 4

(e) Layer 5 (f) Layer 6

Figure 3.14: Optimum well locations and completion intervals from conventional
approach (Case 2). Background shows log10 k

that observed in Figure 3.5(b). We again see that the fine-scale NPV continues to

improve, though there is only a small amount of improvement after the completion of

the Level 1 optimization. The optimized well locations and completion intervals from

the best multilevel optimization are shown in Figure 3.13. The injector is completed
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(a) Cumulative oil production

(b) Cumulative water production

(c) Cumulative water injection

Figure 3.15: Comparison of cumulative production and injection profiles for the op-
timized and reference solutions (Case 2)
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in only the lower three layers. With the exception of P2, all producers are also

completed in only some of the layers. The well locations from the best single-level

optimization run are shown in Figure 3.14. This well configuration is quite different

from that in Figure 3.13, though the NPVs for the two cases are essentially the same.

Cumulative production and injection profiles, for the optimized solutions found by

the conventional and multilevel approaches, are presented in Figures 3.15(a)-(c). The

reference solution corresponds to the well locations shown in Figure 2.4 and the BHPs

prescribed in Table 3.1. Both of the optimized solutions provide similar cumulative

oil production, which is about 4 MMSTB more oil than in the reference (initial guess)

scenario. This is achieved by injecting significantly less water than in the reference

scenario. We also see that water breakthrough occurs about 700 days later in the

optimized cases than in the reference case.

3.3 Case 3: Inclusion of categorical variables

The permeability field for this example is shown in Figure 3.16. The model, taken

from [56], represents a channelized system with channels oriented in the northwest

direction.

In this example, we seek to determine the optimal number of wells (maximum of

five wells), their type (injector or producer), locations and controls. For each well, we

have one ternary variable (specifying if the well is to be an injector, a producer, or not

to be drilled at all) along with two location variables and three BHP variables. The

total number of optimization variables is thus 30 (five ternary variables, ten location

variables, and 15 control variables). The production time frame is 2190 days, and

BHP controls are determined at initial time, at 730 days, and at 1460 days. We have

specified well costs to be high in this case ($100 MM, as shown in Table 3.1), so we

expect the optimizer to eliminate wells during the course of the optimization. We set

Np = 60, and the number of simulation runs per MADS iteration is also 60 (2n). We

use 60 computer nodes to fully parallelize the PSO-MADS optimization procedure.

We now assess the performance of the upscaling method for this case. A cross-plot of
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Figure 3.16: Log10 permeability (in md) for Case 3. Model from [56]

Figure 3.17: Comparison of NPVs evaluated at different grid levels for the 60 well
scenarios after 6000 simulation runs (Case 3)

the NPVs for the fine and coarse models for the 60 field development scenarios after

6000 simulation runs is shown in Figure 3.17. The accuracy of the coarse models

again increases with refinement, and the general ordering of NPVs, for well scenarios

involving different numbers and types of wells, is generally preserved. Thus, coarse

models can again be used to replace expensive fine-scale models in the optimization.
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Table 3.8: Multilevel optimization computations (Case 3)
Model size 10× 10 20× 20 25× 25 50× 50 100× 100
Total time per model, sec 4 6 12 24 110
Number of function
evaluations 6000 4200 2100 900 300
Elapsed time (fully
parallelized), hours 0.11 0.12 0.12 0.1 0.15

Table 3.9: Optimization results for three runs. Best result shown in bold (Case 3)
Run 1 Run 2 Run 3 Average NPV Time
($MM) ($MM) ($MM) ($MM) (hours)

Conventional opt. 332.4 302.1 275.6 303.4 6.9
Multilevel opt. 273.9 329.0 297.2 300.0 0.6

The computational requirements for this case are shown in Table 3.8. Again, most of

the flow simulations are performed with the coarser models. Optimization results for

three runs are shown in Table 3.9. In this case, the conventional approach provides

both a higher NPV and the best individual run. However, for both quantities, the

multilevel procedure provides results within about 1%. We again observe an order of

magnitude speedup through the use of the multilevel procedure.

The evolution of the objective function for the conventional and multilevel optimiza-

tions is shown in Figures 3.18(a) and (b). The conventional approach does not im-

prove the objective function value after about 7000 simulation runs. If we stopped

the conventional optimization after 7000 simulation runs, then the speedup from the

multilevel procedure would be about a factor of six. In Figure 3.18(b), the solid lines

again show the improvement of the objective function value at each grid level, while

the black points show the current best well scenario evaluated on the 100× 100 grid.

In this figure, we see that as the optimization proceeds, the NPV displays significant

increase at both the 10× 10 and 20× 20 levels. This is due to changes in the number

of wells, as we now illustrate.

The optimum well locations obtained at the end of each optimization level are shown

in Figure 3.19. We begin the optimization with five wells (two injection and three

production wells). After the Level 1 optimization, we see that the number of wells
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(a) Conventional approach

(b) Multilevel approach

Figure 3.18: Evolution of objective function (Case 3)

has decreased to three. The number of optimum wells is further reduced to two

after the Level 2 optimization. The number of wells stays at two for the rest of the

optimization. This indicates the ability of the coarser models to find the optimal

number of wells, and is consistent with expectations given the very high cost of wells

in this case.
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(a) Initial solution at start of Level 1 (b) Best solution at end of Level 1

(c) Best solution at end of Level 2 (d) Best solution at end of Level 3

(e) Best solution at end of Level 4 (f) Best solution at end of Level 5

Figure 3.19: Evolution of optimum well locations in multilevel procedure (Case 3).
Background shows log10 T

∗
y

The best well locations found by the conventional and multilevel methods are com-

pared in Figure 3.20. Both approaches find the optimal number of wells to be two,

with one an injector and one a producer. The well locations are actually quite similar,

though the well types are opposites. The BHP profiles for the two wells are shown
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(a) Conventional approach (b) Multilevel approach

Figure 3.20: Best solutions found by the two methods (Case 3). Background shows
log10 k

(a) Production well P1 (b) Injection well I1

Figure 3.21: Optimum BHPs found by the two methods (Case 3)

in Figure 3.21. The optimized solutions provide similar BHP values except at the

last time period. The final saturation maps of these optimized solutions are shown

in Figure 3.22. The areal sweep associated with both solutions is very similar even

though the wells are located in opposite positions.

Cumulative production and injection profiles for the optimized and reference (initial

guess) solutions are shown in Figure 3.23. The optimized solutions provide almost

identical production and injection profiles (the optimal NPVs for the two cases differ

by only about 1%). The reference solution produces slightly less oil, while injecting

and producing much more water, than the optimized cases.
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(a) Conventional approach (b) Multilevel approach

Figure 3.22: Comparison of the final oil saturation maps (red indicates oil and blue
water), for the optimized solutions found by the two methods (Case 3)

3.4 Summary

In this chapter, we applied the multilevel optimization procedure for three different

field development problems involving a single realization. We showed that, although

the coarse models provided objective function values that differed from those for the

fine models, the ordering of the objective functions for the various well scenarios

was essentially preserved. Replacing fine models with coarse models in the multilevel

optimization procedure thus provided comparable optimal objective function values to

those from the conventional (single-level) approach. Specifically, optimization results

for both average optimal NPV over three runs, and best NPV obtained in any run,

were consistently within about 1% for the two approaches. We achieved a factor of

5–10 speedup using the multilevel optimization procedure.
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(a) Cumulative oil production

(b) Cumulative water production

(c) Cumulative water injection

Figure 3.23: Comparison of cumulative production and injection profiles for the op-
timized and reference solutions (Case 3)
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Chapter 4

Optimization under Geological

Uncertainty

In reservoir modeling and optimization studies, multiple geological realizations are

generated to represent subsurface geological uncertainty. Although the use of mul-

tiple realizations in optimization substantially increases the computational demand,

the optimum solution found by considering multiple realizations is expected to be

more robust than that found using a single realization. In the previous chapter, we

have shown that the multilevel optimization procedure can reduce the computational

expense by up to an order of magnitude. However, even using the multilevel proce-

dure, optimization under geological uncertainty can still be very expensive. In this

chapter, we apply modified versions of the multilevel optimization procedure that

lead to reduced computational expense for optimization under geological uncertainty.

In Chapter 2, we described two modifications to improve the efficiency of the multi-

level optimization procedure. The first modified approach is referred to as the ‘accel-

erated’ multilevel procedure. In this accelerated procedure, we apply only the local

MADS optimizer at later stages of the multilevel procedure. The second modification

is the incorporation of the ‘optimization with sample validation’ (OSV) procedure

into the accelerated multilevel optimization framework.

63
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We consider three example cases in this chapter, each of which involves 100 re-

alizations intended to capture geological uncertainty. The first example is a two-

dimensional model that is not conditioned to any hard data and does not have any

existing wells. The second and third examples are two- and three-dimensional systems

that are conditioned to hard data and have existing wells.

We divide each example into two sets of runs. In the first set, we use ten geolog-

ical realizations to compare the conventional, multilevel, and accelerated multilevel

optimization procedures. In the second set, we compare the accelerated multilevel

procedure using all 100 realizations to the accelerated multilevel procedure with the

OSV approach. We do not run the conventional and (standard) multilevel procedures

in the second set of runs because, with 100 realizations, the optimization process is

very expensive with these approaches. In addition, in the first set of runs we will show

that the accelerated multilevel procedure provides results close to those from the con-

ventional and standard multilevel procedures. We additionally present optimization

results using MLMC for the first example. This enables comparison of MLMC to

multilevel optimization procedures.

The PSO–MADS hybrid algorithm [31, 32] is used in the conventional (single-level)

procedure and at all levels of the multilevel optimization approach. In the accelerated

multilevel optimization, standalone MADS is used at all levels except at the first

level, in which PSO–MADS is used. Optimization with sample validation (OSV) [50],

described in Chapter 2, is employed to reduce the number of geological realizations

in the accelerated multilevel optimization framework.

We use Stanford’s Automatic Differentiation-based General Purpose Research Simu-

lator (AD-GPRS) [63] for all simulations in this chapter. Tables 4.1 and 4.2 present

the simulation and optimization parameters used in this study.

4.1 Case 1: Two-dimensional channelized model

This model is taken from Isebor and Durlofsky [29]. The fine grid in this case is

100 × 100. The 100 realizations are not conditioned to any hard data, though all
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Table 4.1: Simulation parameters used in the example cases
Parameter Value
Grid cell dimensions 32.8 ft × 32.8 ft × 32.8 ft
Initial pressure pi, at datum 2900 psi at 3280 ft
Rock compressibility cR 0.5 ×10−5 psi−1

µo and µw at pi 3 cp and 1 cp
ρo and ρw 49.6 and 62.4 lbm/ft3

Bo and Bw at pi 1.00 RB/STB (both)

Table 4.2: Optimization parameters used in the example cases
Parameter Value
Ppo, Ppw and Piw $100, $5 and $5/STB
Well drilling cost $5 million per well
Injection BHP range 6000 – 9000 psi
Production BHP range 1500 – 4500 psi

realizations correspond to a channelized system with channels oriented roughly in the

x-direction. We optimize the locations of three production wells and two injection

wells. A constant BHP is also determined for each well. We additionally specify

nonlinear constraints in the form of well minimum oil (qo,min) and maximum water

production rate constraints of 62.9 STB/day and 2000 STB/day, respectively. If either

constraint is violated by a particular well, we shut the well in until the end of the simu-

lation. We then compute the penalty Rs in Eq. 2.6 using Ppen = $110/STB (note that

Ppo = $100/STB). The value of Qunmet in Eq. 2.6 is simply (62.9 STB/day)×tshutin,

where tshutin is the total number of days during which the well is shut in. The total

simulation time is 3650 days. There are 15 optimization variables for this case, and we

again take Np = 30. The maximum number of available cores is 30 in this example.

4.1.1 Case 1a: Optimization with ten geological models

In the first set of runs, we use ten realizations and compare the conventional (single-

level) approach to the multilevel and accelerated multilevel optimization approaches.

These ten realizations are shown in Figure 4.1. For each level of the multilevel opti-

mization algorithm, the maximum number of simulation runs is defined. Optimization

at each level is terminated when the maximum number of simulation runs is reached.



66 CHAPTER 4. OPTIMIZATION UNDER GEOLOGICAL UNCERTAINTY

(a) Realization 1 (b) Realization 2 (c) Realization 3

(d) Realization 4 (e) Realization 5

(f) Realization 6 (g) Realization 7 (h) Realization 8

(i) Realization 9 (j) Realization 10

Figure 4.1: Ten geological realizations used for Case 1a. Log10 permeability (in md)
is shown. Model from [29]
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Figure 4.2: Comparison of expected objective function values over 10 realizations
evaluated at different grid levels for the 30 candidate well scenarios after 3600 function
evaluations using the multilevel approach (Case 1a)

For the conventional (single-level) approach, the number of simulation runs is spec-

ified to be the sum of the maximum numbers of simulation runs at all levels in the

multilevel optimization. Note that a single function evaluation in Case 1a requires

ten flow simulations (one for each realization).

We first assess the accuracy of the upscaled models for this case. Figure 4.2 displays

the objective function values of 30 well scenarios (after 3600 function evaluations in

the optimization run) for different coarsening levels. The objective function plotted

in Figure 4.2 is computed using Eq. 2.4. Note that the x and y scales differ for clarity

(y = x line is shown). As in the single-realization cross-plots in the previous chapter,

we see that the ordering of the objective function values is very well preserved, and

the best well scenarios for coarse models correspond to the best well scenarios for

the actual models. This indicates that, for optimization over multiple realizations,

coarse models can again be used to evaluate the relative performance of the various
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scenarios considered in the optimization. It is again apparent that the offset (error)

decreases systematically as the grid is refined.

Table 4.3: Multilevel optimization computations (Case 1a)
Model size 10× 10 20× 20 25× 25 50× 50 100× 100
Total time per model, sec 6 9 14 28 120
Number of function
evaluations (PSO–MADS) 3600 2400 1200 600 180
Elapsed time, hours
(using 30 nodes) 2.0 2.0 1.6 1.6 2.0

Table 4.4: Accelerated multilevel optimization computations (Case 1a)
Model size 10× 10 20× 20 25× 25 50× 50 100× 100
Total time per model, sec 6 9 14 28 120
Number of function
evaluations
(PSO–MADS/MADS) 3600 810 420 210 60
Elapsed time, hours
(using 30 nodes) 2.0 0.7 0.5 0.5 0.7

Table 4.5: Optimization results for three runs. Best result shown in bold (Case 1a)
Run 1 Run 2 Run 3 Average Time
($MM) ($MM) ($MM) ($MM) (hours)

Conventional opt. 170.2 186.3 164.6 173.7 88.7
Multilevel opt. 186.5 159.2 162.6 169.4 9.2
Accelerated multilevel opt. 183.3 159.2 161.2 167.9 4.4

Tables 4.3 and 4.4 show the performance of the multilevel and the accelerated mul-

tilevel procedures. In these tables, the total computation time per model includes

the time required to upscale a fine-scale realization and run the flow simulation. The

number of simulation runs and the elapsed time for each level of the multilevel pro-

cedures are also presented. Recall that the difference between the multilevel and
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accelerated multilevel procedures is that we use MADS instead of PSO–MADS af-

ter the first optimization level in the accelerated procedure. Therefore, the number

of function evaluations in the accelerated multilevel optimization (5100) is less than

in the multilevel optimization (7980). For the conventional (single-level) approach,

the total number of function evaluations is 7980, which is equal to the total num-

ber of function evaluations in the (standard) multilevel optimization. Note that the

accelerated procedure requires about one-third the number of function evaluations

at Levels 2–5 of that required by the standard multilevel approach. This leads to

significant savings in elapsed time.

Optimization results for three runs using all procedures are presented in Table 4.5.

We see that all three approaches achieve fairly similar results. The conventional

approach provides the best average result, though the best individual run is obtained

by the multilevel approach. The accelerated multilevel procedure is about two times

faster than the multilevel approach and about 20 times faster than the conventional

approach. Optimization results using this procedure are about 3% less on average

than those with the conventional approach.

The improvement in the objective function for the best solution over the course of the

optimization for the conventional, multilevel and accelerated multilevel approaches

is shown in Figures 4.3(a)-(c). In the conventional approach, the objective function

improves very little after 40,000 simulation runs. This indicates that, with an ap-

propriate termination criterion, this optimization might require only 40,000 or 50,000

simulations. In this case, the timing reported in Table 4.5 would reduce to about

45 hours (instead of 88.7 hours), and the speedups for the multilevel and accelerated

multilevel procedures would be about 5 and 10 (rather than 10 and 20).

As in Chapter 3, for the multilevel and accelerated multilevel approaches, the solid

lines in Figures 4.3(b) and (c) indicate the objective function values evaluated using

coarse models and the black points indicate results for the actual (fine-scale) models.

Although there are errors in the objective function values of the coarse models (as

is evident in Figure 4.2), the optimizer still improves the actual objective function

value. We also see that after the first level, the number of simulation runs is reduced

significantly with the accelerated multilevel procedure. Since flow simulations are
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(a) Conventional approach

(b) Multilevel approach

(c) Accelerated multilevel approach

Figure 4.3: Evolution of objective function (Case 1a)
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(a) Best solution using conventional approach (b) Best solution using multilevel approach

(c) Best solution using accelerated multilevel approach

Figure 4.4: Best solutions found by the three methods. Injection and production
wells are shown as blue and red circles respectively (Case 1a)

more expensive in later levels, this reduces considerably the cost of the optimization.

The optimum well locations obtained by the conventional, multilevel and acceler-

ated multilevel approaches are shown in Figure 4.4. It is evident that the multilevel

and accelerated multilevel procedures provide similar well configurations. Figure 4.5

shows how the well locations change as the optimization proceeds in the (standard)

multilevel approach. The well locations change less after the Level 1 optimization,

which motivates the switch, in the accelerated procedure, from the global optimizer

(PSO–MADS) to the local optimizer (MADS) after Level 1. This approach is effective

because PSO has relatively little effect on the improvement of the objective function

after the Level 1 optimization is completed.

The optimized (constant) BHPs for the production well P1 and injection well I1 are

shown in Figures 4.6(a) and (b). The reference value is the initial guess BHP used
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(a) Initial solution at start of Level 1 (b) Best solution at end of Level 1

(c) Best solution at end of Level 2 (d) Best solution at end of Level 3

(e) Best solution at end of Level 4 (f) Best solution at end of Level 5

Figure 4.5: Evolution of optimum well locations in multilevel (PSO–MADS at all
levels) procedure. Injection and production wells are shown as blue and red circles
respectively (Case 1a)
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(a) Production well P1 (b) Injection well I1

Figure 4.6: Optimum BHPs found by the three methods (Case 1a)

in the optimization. It is evident that the optimization shifts the BHPs towards

the bounds (1500 psi for P1, 9000 psi for I1). The optimized BHPs for the other

production and injection wells display similar results.

Cumulative production and injection profiles, for the optimized solutions obtained by

the conventional, multilevel and accelerated multilevel approaches, are compared to

the reference solution in Figures 4.7(a)-(c). The well locations and controls used in the

reference solution are shown in Figures 4.5(a), 4.6(a) and 4.6(b). In Figures 4.7(a)-(c),

the thin broken lines indicate the simulation results for each of the ten realizations,

and the thick solid line is the mean of the results for the ten realizations. It is ev-

ident that the three optimized solutions provide significantly larger (∼ 1 MMSTB)

expected cumulative oil recovery than the reference scenario. The optimized solu-

tions all display similar expected cumulative oil recoveries. The optimized expected

cumulative water injection in Figure 4.7(c) exceeds that of the reference case. This

is because, given the water production and injection costs ($5/STB), additional wa-

ter use is beneficial in terms of NPV. Recall that the nonlinear constraint violation

term in these optimizations enters as a penalty function, so these constraints may be

violated in some realizations.
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(a) Cumulative oil production

(b) Cumulative water production

(c) Cumulative water injection

Figure 4.7: Cumulative production and injection profiles for the optimized solu-
tions obtained by the conventional, multilevel and accelerated multilevel approaches
(Case 1a)
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Table 4.6: Accelerated multilevel optimization computations (Case 1b)
Model size 10× 10 20× 20 25× 25 50× 50 100× 100
Total time per model, sec 6 9 14 28 120
Number of function
evaluations
(PSO–MADS/MADS) 1800 420 210 120 60
Elapsed time using all
100 models, hours
(using 30 nodes) 10 3.5 2.7 3.1 6.7

4.1.2 Case 1b: Optimization with 100 geological models

We now consider the full set of 100 geological realizations in the optimization. The

problem set up is otherwise identical to that of Case 1a. In Case 1a we showed that the

accelerated multilevel optimization provided relatively close results to those from the

conventional and multilevel approaches with ten geological realizations. Therefore,

we will not run the conventional and multilevel approaches with 100 geological models

as these would be quite expensive (especially the conventional single-level procedure).

Here, we compare the accelerated multilevel approach using all 100 realizations to

the accelerated multilevel approach with OSV. We also run optimization with the

MLMC approach. The total computation time per model, number of simulation

runs, and elapsed time for the accelerated multilevel optimization using all geological

realizations are shown in Table 4.6. Using the OSV approach, we specify the number

of realizations for each problem to be either 10, 30, 50 or 100. In other words,

optimization is first performed over Nrep = 10 realizations, and if the validation

criterion (RI > 0.5) is not satisfied, then Nrep is increased to 30, etc. The number of

representative realizations used in each subproblem at each level is shown in Table 4.7.

We see that an RI of 0.5 or greater is achieved at every level. The time required at

each level using OSV is shown in Table 4.8. For both the accelerated multilevel

approach using all 100 geological realizations and the OSV approach, 30 cores are

used for parallelization.
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Table 4.7: Number of representative realizations (determined using OSV) and the
corresponding relative improvement values at each level for the best run (Case 1b)

Level Nrep RI
10× 10 10 0.18
10× 10 30 0.77
20× 20 10 0.13
20× 20 30 0.55
25× 25 10 0.63
50× 50 10 0.34
50× 50 30 0.95
100× 100 10 -0.33
100× 100 30 0.10
100× 100 50 0.78

We now analyze the accuracy of the objective function, E[J∗], using different num-

bers of representative models at different levels of resolution. Results are shown in

Figure 4.8. To generate these plots, we first simulate all 100 realizations using 10×10

models. The upscaling required to generate these 10 × 10 models is performed us-

ing the best scenario after 1800 function evaluations have been performed by the

optimizer (using the accelerated multilevel with OSV method). The CDF of the

objective function is then constructed. Next, we select different numbers of represen-

tative models (10, 30, 50, 100) from this CDF, as described in Section 2.4. Finally,

we compare the expected values for the representative models to the expected values

for all 100 fine-scale models for various well scenarios (the 30 candidate scenarios in

the optimization after 1800 function evaluations).

We see in Figure 4.8(d) that when we use all 100 realizations, there are clear trends

between E[J∗] for the fine and coarse models at all levels. This is consistent with

Figure 4.2. These trends are still evident with 50 representative models (Figure 4.8(c))

but significant scatter appears with 30 and 10 representative models (Figures 4.8(b)

and 4.8(a)). Note that the scales differ between these figures and that the y-axis range

is fairly narrow. Figure 4.9 shows how the accuracy of the expected objective function

value increases as the number of representative models increases for the 100 × 100
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Table 4.8: Accelerated multilevel optimization computations with OSV for the best
run (Case 1b)
Model size 10× 10 20× 20 25× 25 50× 50 100× 100
Total time per model, sec 6 9 14 28 120
Number of function
evaluations with 10 models 1800 420 210 120 60
Number of function
evaluations with 30 models 1800 420 0 120 60
Number of function
evaluations with 50 models 0 0 0 0 60
Number of function
evaluations with 100 models 0 0 0 0 0
Elapsed time with
OSV, hours
(using 30 nodes) 4 1.4 0.3 1.2 6

model. Figures 4.8 and 4.9 highlight the impact of approximations in both model

resolution and the representation of uncertainty. For this example, the upscaling

errors appear to be more systematic. This should pose less of a problem for the

optimizer than the scatter evident when a relatively small number of realizations is

used.

Table 4.9: Optimization results for three runs. Best result shown in bold (Case 1b)
Run 1 Run 2 Run 3 Average Time
($MM) ($MM) ($MM) ($MM) (hours)

Accelerated multilevel
opt. (100 realizations) 148.2 143.6 139.7 143.8 26.0
Accelerated multilevel
opt. with OSV 147.8 136.2 144.0 142.6 12.9
Optimization with MLMC 146.2 139.2 141.2 142.2 51.2

Optimization results for three runs using the accelerated multilevel optimization with

all geological models and accelerated multilevel optimization with OSV are compared

in Table 4.9 (MLMC results will be discussed below). For the runs that use 100

realizations, each function evaluation requires 100 simulations. When OSV is used,

the number of simulations per function evaluation varies. We see that the OSV
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(a) 10 representative models

(b) 30 representative models

(Caption on following page)
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(c) 50 representative models

(d) 100 representative models

Figure 4.8: Comparison of expected objective function values evaluated at different
grid levels with different numbers of representative models for the 30 candidate well
scenarios after 1800 function evaluations using the accelerated multilevel approach
with OSV method (Case 1b)
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Figure 4.9: Comparison of expected objective function values over 100 realizations
evaluated at the fine-grid level with different numbers of representative models for
the 30 candidate well scenarios after 1800 function evaluations using the accelerated
multilevel approach with OSV method (Case 1b)

procedure provides optimum objective function values, for both the average and the

best individual run, that are within 1% of those using all realizations. However, OSV

requires only one half of the time needed when all models are used. We estimate that

the time required to run the conventional approach, with 100 fine-scale (100 × 100)

models used for every simulation, and a total of 4080 function evaluations (this is the

number of function evaluations in the multilevel approach), would be about 453 hours.

Relative to this, accelerated multilevel optimization with OSV provides a speedup of

about 35. Speedup would be closer to a factor of 20 if only around 2000 function

evaluations were required.

Figures 4.10(a) and (b) display the best well locations found by the accelerated multi-

level optimization with all geological models and accelerated multilevel optimization

with OSV. Both approaches locate injection and production wells on opposite sides

of the reservoir. Cumulative production and injection profiles for the optimized and

reference solutions are shown in Figures 4.11(a)-(f). The reference scenario is the

same as in Case 1a. Although the variation in the cumulative oil production for the
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100 realizations (Figure 4.11(a)) is very large, we see a significant improvement in the

expected value (Figure 4.11(b)) compared to the reference scenario. Optimized solu-

tions correspond to more water production and injection compared to the reference

scenario (Figures 4.11(c)-(f)).

The evolution of the objective function for the accelerated multilevel procedure using

all geological models and with the OSV approach is shown in Figure 4.12. In Fig-

ure 4.12(b), we see that OSV requires more than one optimization subproblem, with

increasing numbers of representative models, for the 10 × 10, 20 × 20, 50 × 50 and

100×100 models. This is because the relative improvement (RI>0.5) criterion is not

satisfied using only ten realizations at these grid levels.

(a) Best solution using accelerated mul-
tilevel procedure

(b) Best solution using accelerated mul-
tilevel procedure with OSV

Figure 4.10: Best solutions found by the two methods. Injection and production wells
are shown as blue and red circles respectively (Case 1b)

Finally, we consider the use of the multilevel Monte Carlo (MLMC) method for this

example. In the MLMC method presented by Müller et al. [40], different subsets of

realizations are randomly sampled from the full set of realizations at every coarsening

level. In this study, we compare random sampling to the CDF approach [50], discussed

in Section 2.4, to select representative models in MLMC. Note that, even though the

sampling is no longer random when we use the CDF approach, we still refer to the

procedure as multilevel Monte Carlo.

We also compare MLMC with a single and multiple coarsening levels. In MLMC
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(a) Cumulative oil production (b) Expected cumulative oil production

(c) Cumulative water production (d) Expected cumulative water production

(e) Cumulative water injection (f) Expected cumulative water injection

Figure 4.11: Cumulative production and injection profiles for the optimized solu-
tions obtained by the accelerated multilevel and accelerated multilevel with OSV
approaches. Left plots show results for 100 realizations, right plots show expected
values. Note difference in scales (Case 1b)
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(a) Accelerated multilevel approach with all 100 realizations

(b) Accelerated multilevel approach with OSV

Figure 4.12: Evolution of objective function (Case 1b)

with multiple coarsening levels, we run all 100 realizations at the 10 × 10 level, 40

realizations at the 20× 20 level, 20 realizations at the 25× 25 level, ten realizations

at the 50× 50 level, and five realizations at the 100× 100 level. The expected value

of the objective function is then estimated using Eq. 2.14. The total computation

time for one function evaluation performed in this way is 2120 seconds, compared to

12,000 seconds in the conventional approach (100 runs with 100 × 100 models). In

MLMC with a single coarsening level, we use 100 realizations at the 10 × 10 level

and five realizations at the 100 × 100 level. The total time required for a function
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evaluation using this treatment is 1200 seconds.

Results using the four combinations of the sampling and coarsening-level treatments

are compared to the expected value of the objective function evaluated using all 100

fine models in Figure 4.13. Each point represents one of the 30 well configurations

considered at a particular point in the optimization (after 1800 function evaluations).

Although MLMC with a single coarsening level is computationally more efficient,

MLMC with multiple coarsening levels appears to provide better results (e.g., the

blue points show less scatter than the green points). We therefore use MLMC with

multiple coarsening levels in subsequent optimizations. In addition, the use of the

CDF approach for model selection in MLMC can be seen in Figure 4.13 to provide

slightly more accurate results than random selection (e.g., the blue points show less

scatter than the red points). Therefore, we use the CDF approach with multiple

coarsening levels in our MLMC-based optimizations.

Figure 4.13: Comparison of expected objective function values over 100 realiza-
tions evaluated at the fine-grid level with MLMC estimation for the 30 candidate
well scenarios after 1800 function evaluations using the MLMC optimization method
(Case 1b)
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Optimization results using MLMC with multiple coarsening levels and the CDF ap-

proach for model selection are shown in Table 4.9 above. The elapsed time required

for these runs (2610 function evaluations) is 51.2 hours. This approach provides opti-

mum objective function values that are comparable to those from the two accelerated

multilevel optimization procedures. Although optimization with the MLMC approach

is more efficient than the conventional approach, it is still more expensive than the

accelerated multilevel optimization procedures for this example. It is possible that

other MLMC implementations may be more efficient, and this should be explored in

future work.

4.2 Case 2: Oriented channel models

In Case 2, we begin with an initial set of 1500 geological realizations of a bimodal

channelized system generated by Vo [56]. Ten of these geological realizations are

shown in Figure 4.14. All realizations are conditioned to hard data that are available

from the nine wells shown as black, red and blue points in Figure 4.15 (the wells in

black can be viewed as exploration wells).

Of these nine wells, two production wells and one injection well, shown as red and

blue circles in Figure 4.15, are assumed to have been producing for two years. The

production history is synthetically generated by taking one of the 1500 models as the

‘true model’ (realization 1052), which is shown in Figure 4.15, and then performing

flow simulation. We then select the 100 geological realizations from the remaining

1499 prior realizations that provide the closest production response to the production

history. ‘Closeness’ is quantified here by the usual least-squares objective function

used in [42]. These 100 geological realizations are then used in the optimization.

The optimization problem now involves finding the locations of one production well

and one injection well and the BHP control values for all five wells (three existing

and two new wells) for three time intervals. The simulation is performed for a total of

eight years (two years of which is viewed as production history). The BHP values are

updated at the end of the second, fourth and sixth years. We also specify minimum oil

and maximum water production rate constraints of 62.9 STB/day and 2000 STB/day,
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(a) Realization 1 (b) Realization 2 (c) Realization 3

(d) Realization 4 (e) Realization 5

(f) Realization 6 (g) Realization 7 (h) Realization 8

(i) Realization 9 (j) Realization 10

Figure 4.14: Ten geological realizations used for Case 2a. Log10 permeability (in md)
is shown. Models from [56]
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Figure 4.15: Log10 permeability (in md) of the true model (realization 1052) for
Case 2. Black points indicate hard data (exploration well) locations. Existing pro-
duction and injection wells shown as red and blue circles, respectively. Model from
[56]

respectively. The constraints are again handled with the penalty approach described

in Chapter 2.

There are a total of 19 optimization variables, of which four are location and 15 are

control variables. We set Np = 38, and the number of simulation runs per MADS

iteration is also 38. The optimizations are run with 38 cores.

Table 4.10: Multilevel optimization computations (Case 2a)
Model size 10× 10 20× 20 25× 25 50× 50 100× 100
Total time per model, sec 4 6 12 24 110
Number of function
evaluations (PSO–MADS) 1824 1216 608 380 228
Elapsed time, hours
(using 38 nodes) 0.53 0.53 0.53 0.67 1.83

4.2.1 Case 2a: Optimization with ten geological models

In Case 2a, in the conventional (single-level) approach, we simulate ten 100 × 100

models at every function evaluation. The PSO–MADS algorithm is terminated after

4256 function evaluations. One simulation run using the 100 × 100 model takes

about 110 seconds. Therefore, the total elapsed time required to run the conventional
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Table 4.11: Accelerated multilevel optimization computations (Case 2a)
Model size 10× 10 20× 20 25× 25 50× 50 100× 100
Total time per model, sec 4 6 12 24 110
Number of function
evaluations
(PSO–MADS/MADS) 1824 456 228 152 76
Elapsed time, hours
(using 38 nodes) 0.53 0.20 0.20 0.27 0.61

Figure 4.16: Comparison of expected objective function values over 10 realizations
evaluated at different grid levels for the 38 candidate well scenarios after 1824 function
evaluations using the accelerated multilevel approach (Case 2a)

approach with 38 cores is about 34 hours. In the multilevel approach, most of the 4256

function evaluations are performed using upscaled models. The total computation

time per model, number of function evaluations per level, and elapsed time are shown

in Table 4.10. The total elapsed time required for the multilevel approach is about

4.1 hours. We also run the accelerated multilevel approach, with standalone MADS

in the later levels. The elapsed time required for the accelerated multilevel approach

is 1.8 hours, as indicated in Table 4.11.
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The objective function values for 38 different well configurations, after 1824 function

evaluations using the accelerated multilevel approach, are shown in Figure 4.16. The

objective function value for each scenario is the expected value over the ten geological

realizations. Results for different coarsening levels are shown. The cross-plot for this

case displays more scatter than in the previous example (Figure 4.2). This might

be due to the large number of thin high-permeability channels that characterize the

models in this case. Such systems can be more challenging to upscale accurately.

The upscaling is also complicated in this case because new wells are introduced after

production is underway.

Table 4.12: Optimization results for three runs. Best result shown in bold (Case 2a)
Run 1 Run 2 Run 3 Average Time
($MM) ($MM) ($MM) ($MM) (hours)

Conventional opt. 522.5 500.8 492.3 505.2 34.2
Multilevel opt. 513.5 508.6 530.7 517.6 4.1
Accelerated multilevel opt. 514.8 509.9 501.8 508.8 1.8

Optimization results for three runs of the conventional, multilevel and accelerated

multilevel optimization approaches are presented in Table 4.12. The multilevel ap-

proach provides the highest average of the three runs and the best individual run,

though the other two methods provide results that are within about 3% for both

quantities. The accelerated multilevel approach is 19 times faster than the conven-

tional approach and about twice as fast as the standard multilevel procedure. Fig-

ures 4.17(b)-(d) show the best well locations obtained by the three approaches (the

initial guess is shown in Figure 4.17(a)). All three approaches locate the new wells

(open circles) away from the existing wells (solid circles). The optimized BHP con-

trols found by the three methods for the two new wells are shown in Figure 4.18. The

optimized BHP controls differ substantially between the three methods. Note that

these wells are drilled at 730 days, so BHPs are not defined before this time.

We present results for cumulative production and injection profiles in Figures 4.19(a)-

(c) for the optimized solutions. These results display less variation than the previous

case. All three optimized solutions have similar expected cumulative oil production

profiles and provide about 1.4 MMSTBmore oil than the reference scenario. Reference
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(a) Reference solution (b) Conventional approach

(c) Multilevel approach (d) Accelerated multilevel approach

Figure 4.17: Reference (initial guess) solution and best solutions found by the three
methods. Existing production and injection wells shown as filled red and blue circles
respectively. Optimized production and injection wells are shown as open red and
blue circles (Case 2a)

well locations and controls are shown in Figures 4.17(a) and 4.18(a) and (b). Note

also that the cumulative oil production for each individual realization is larger than

that in the reference scenario. We see in Figure 4.19(b) that the optimized solution

from the multilevel procedure produces slightly less water than the solutions from the

other two optimization methods. This solution provides the highest NPV.

In Figure 4.20, we show the evolution of the objective function with the conventional,

multilevel and accelerated multilevel approaches. In the conventional approach the

objective function does not improve after about 25,000 simulation runs. Thus, with

better termination criteria, the time required for this approach could be reduced from

about 34 hours to perhaps 20 hours. The multilevel procedures also perform more
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(a) Production well P1 (b) Injection well I1

Figure 4.18: Optimum BHPs found by the three methods (Case 2a)

simulations than are necessary, but most of these are at coarse grid levels, so savings

in elapsed time through use of better termination criteria would be fairly modest for

these methods.

4.2.2 Case 2b: Optimization with 100 geological models

We now consider all 100 realizations. The OSV parameters are the same as in Case 1b.

Accelerated multilevel optimization results are presented in Table 4.13. The total

time required for each run is about 18 hours with this approach. The numbers

of realizations used by the accelerated multilevel approach with OSV are shown in

Table 4.14. Timings for the best run are presented in Table 4.15. The total time

required for this case is 7.6 hours.

Table 4.13: Accelerated multilevel optimization computations (Case 2b)
Model size 10× 10 20× 20 25× 25 50× 50 100× 100
Total time per model, sec 4 6 12 24 110
Number of function
evaluations
(PSO–MADS/MADS) 1824 456 228 152 76
Elapsed time, hours
(using 38 nodes) 5.3 2.0 2.0 2.7 6.1
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(a) Cumulative oil production

(b) Cumulative water production

(c) Cumulative water injection

Figure 4.19: Cumulative production and injection profiles for the optimized solu-
tions obtained by the conventional, multilevel and accelerated multilevel approaches
(Case 2a)
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(a) Conventional approach

(b) Multilevel approach

(c) Accelerated multilevel approach

Figure 4.20: Evolution of objective function (Case 2a)
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Table 4.14: Number of representative realizations (determined using OSV) and the
corresponding relative improvement values at each level for the best run (Case 2b)

Level Nrep RI
10× 10 10 0.69
20× 20 10 0.44
20× 20 30 0.15
20× 20 50 0.72
25× 25 10 0.21
25× 25 30 0.46
25× 25 50 0.89
50× 50 10 -1.07
50× 50 30 1.36
100× 100 10 -0.57
100× 100 30 0.52

We compare the expected objective function values with different numbers of repre-

sentative models to the expected values of all 100 realizations in Figures 4.21(a)-(d)

for 38 different well scenarios. As in Case 1b, we see that as the number of represen-

tative realizations increases, the estimation of the expected objective function value

improves, though there is significant scatter. Figure 4.22 shows how the number of

representative realizations for the fine (100 × 100) models affects the estimation of

expected value for all 100 realizations. As in the previous case, accuracy is improved

as the number of realizations is increased.

Figures 4.23(a) and (b) show the improvement of the objective function for both

approaches. There is a consistent improvement in the actual objective function value

in the accelerated multilevel procedure using all 100 realizations. In the accelerated

multilevel procedure with OSV, in Levels 2, 3, 4 and 5, the use of a small number of

representative realizations does not improve the actual objective function value and

the optimization must be restarted with a larger number of realizations.

The optimization results for both approaches are shown in Table 4.16. The accel-

erated multilevel optimization approach with OSV slightly outperforms accelerated

multilevel optimization using all realizations, though the results are very close. The

estimated times for the conventional and multilevel approaches with 100 realizations
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Table 4.15: Accelerated multilevel optimization computations with OSV for the best
run (Case 2b)
Model size 10× 10 20× 20 25× 25 50× 50 100× 100
Total time per model, sec 4 6 12 24 110
Number of function
evaluations with 10 models 1824 456 228 152 76
Number of function
evaluations with 30 models 0 456 228 152 76
Number of function
evaluations with 50 models 0 456 228 0 0
Number of function
evaluations with 100 models 0 0 0 0 0
Elapsed time, hours
(using 38 nodes) 0.5 1.8 1.8 1.1 2.4

Table 4.16: Optimization results for three runs. Best result shown in bold (Case 2b)
Run 1 Run 2 Run 3 Average Time
($MM) ($MM) ($MM) ($MM) (hours)

Accelerated multilevel
opt. (100 realizations) 498.4 488.8 489.0 492.1 18.1
Accelerated multilevel
opt. with OSV 504.9 491.7 487.1 494.6 7.6

are about 342 and 41 hours respectively. The accelerated multilevel with OSV ap-

proach would thus provide a speedup of nearly 45 relative to the conventional ap-

proach.

The optimum well locations obtained by the two approaches are shown in Fig-

ures 4.24(a) and (b). The optimized well locations are again located away from

the existing wells, though the locations of the new producers differ in the two cases.

Production results for all 100 realizations for the optimized solutions are shown in

Figures 4.25(a)-(f). The optimized solutions provide higher expected cumulative oil

recovery than the reference case (the reference scenario for Case 2b is the same as in

Case 2a). Additional water injection is also evident in the optimized solutions.
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(a) 10 representative models

(b) 30 representative models

(Caption on following page)
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(c) 50 representative models

(d) 100 representative models

Figure 4.21: Comparison of expected objective function values evaluated at different
grid levels with different numbers of representative models for the 38 candidate well
scenarios after 1824 function evaluations using the accelerated multilevel approach
with OSV method (Case 2b)
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Figure 4.22: Comparison of expected objective function values evaluated at the fine-
grid level with different numbers of representative models for the 38 candidate well
scenarios after 1824 function evaluations using the accelerated multilevel approach
with OSV method (Case 2b)

4.3 Case 3: Three-dimensional channel-levee model

For this case we generated 100 three-dimensional geological models using the Petrel

software [53]. The models are of dimensions 30× 30× 6. All models are conditioned

to hard data from five vertical exploration wells. One production and one injection

well that perforate all layers, as shown in Figure 4.26, are considered to have been

operating for one year.

In this example, the areal locations of three new vertical wells, their completion

intervals, and a single BHP control value for all wells (two existing and three new

wells), are to be optimized. The production time frame is nine years. Each new well

is defined with four optimization variables (x, y, z1, z2), where (x, y) define the areal

location and (z1, z2) the completion interval. The total number of variables is 17 (12

location and 5 control variables). The PSO swarm size is 34 and MADS evaluates 34
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(a) Accelerated multilevel approach with all 100 realizations

(b) Accelerated multilevel approach with OSV

Figure 4.23: Evolution of objective function (Case 2b)

simulation runs per iteration. The maximum number of available cores is 34. Other

simulation and optimization parameters are shown in Tables 4.1 and 4.2. Nonlinear

constraints, specifically minimum oil and maximum water production rates, are the

same as in the previous cases.
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(a) Best solution using accelerated mul-
tilevel procedure

(b) Best solution using accelerated mul-
tilevel procedure with OSV

Figure 4.24: Best solutions found by the two methods. Existing production and
injection wells shown as filled red and blue circles respectively. Optimized production
and injection wells are shown as open red and blue circles (Case 2b)

4.3.1 Case 3a: Optimization with ten geological models

We now compare conventional (single-level) optimization to the multilevel and acceler-

ated multilevel approaches using ten realizations. The number of function evaluations

is 4216. Ten simulations are run for every function evaluation in all methods.

Table 4.17: Multilevel optimization computations (Case 3a)
Model size 10× 10× 1 15× 15× 1 30× 30× 3 30× 30× 6
Total time per model, sec 5 7 30 80
Number of function
eval. (PSO–MADS) 2040 1224 680 272
Elapsed time, hours
(using 34 nodes) 0.8 0.7 1.7 1.8

Details of the computation time for the multilevel and accelerated multilevel ap-

proaches are shown in Tables 4.17 and 4.18. The time required to run the multilevel

and the accelerated multilevel approaches are 5.0 hours and 1.9 hours respectively.

The conventional optimization for this case requires about 28 hours.

The objective function values of the coarse models versus those for the actual models

for various well scenarios are shown in Figure 4.27. We again see that the coarse



4.3. CASE 3: THREE-DIMENSIONAL CHANNEL-LEVEE MODEL 101

(a) Cumulative oil production (b) Expected cumulative oil production

(c) Cumulative water production (d) Expected cumulative water production

(e) Cumulative water injection (f) Expected cumulative water injection

Figure 4.25: Cumulative production and injection profiles for the optimized solu-
tions obtained by the accelerated multilevel and accelerated multilevel with OSV
approaches. Left plots show results for 100 realizations, right plots show expected
values. Note difference in scales (Case 2b)
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(a) Layer 1 (b) Layer 2

(c) Layer 3 (d) Layer 4

(e) Layer 5 (f) Layer 6

Figure 4.26: Realization 1 of the three-dimensional geological model used for Case 3.
Existing production and injection wells shown as red and blue circles respectively.
Log10 permeability (in md) is shown.
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Table 4.18: Accelerated multilevel optimization computations (Case 3a)
Model size 10× 10× 1 15× 15× 1 30× 30× 3 30× 30× 6
Total time per model, sec 5 7 30 80
Number of function
evaluations
(PSO–MADS/MADS) 2040 306 170 68
Elapsed time, hours
(using 34 nodes) 0.8 0.2 0.4 0.4

Figure 4.27: Comparison of expected objective function values over 10 realizations
evaluated at different grid levels for the 34 candidate well scenarios after 2040 function
evaluations using the accelerated multilevel approach (Case 3a)

models (even the 10× 10× 1 model) maintain reasonable orderings of the solutions.

Optimization results for three runs using each approach are shown in Table 4.19.

Average results are very close for the three methods, though the best run using the

accelerated multilevel procedure is 4% less than that using the multilevel procedure.

We do not show the production profiles for Case 3a. The optimized solutions obtained

by the three methods provide similar cumulative oil and water production profiles, and

these correspond to more produced oil and water than in the reference scenario. This
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(a) Conventional approach

(b) Multilevel approach

(c) Accelerated multilevel approach

Figure 4.28: Evolution of objective function (Case 3a)
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is achieved by injecting more water compared to the reference scenario. The evolution

of the objective function values for the three methods are shown in Figure 4.28. The

general behavior is consistent with that observed in Cases 1a and 2a.

Table 4.19: Optimization results for three runs. Best result shown in bold (Case 3a)
Run 1 Run 2 Run 3 Average Time
($MM) ($MM) ($MM) ($MM) (hours)

Conventional opt. 252.1 248.2 274.3 258.2 27.6
Multilevel opt. 275.2 251.6 245.1 257.3 5.0
Accelerated multilevel opt. 264.5 257.4 251.5 257.8 1.9

Table 4.20: Accelerated multilevel optimization computations with all realizations
(Case 3b)
Model size 10× 10× 1 15× 15× 1 30× 30× 3 30× 30× 6
Total time per model, sec 5 7 30 80
Number of function
evaluations
(PSO–MADS/MADS) 2040 306 170 68
Elapsed time using all
100 models, hours
(using 34 nodes) 8.3 1.8 4.2 4.4

4.3.2 Case 3b: Optimization with 100 geological models

The number of models is now increased to 100. Optimization parameters for the

accelerated multilevel approach with all 100 geological realizations and with OSV are

shown in Tables 4.20 and 4.21. The computation time required for the accelerated

multilevel approach with all realizations is 18.7 hours, while that using OSV is 12.4

hours.

Results for three runs using both methods are tabulated in Table 4.22. The two meth-

ods provide average and best case results that are within about 2%. The evolution of

the objective function value for the best runs are shown in Figures 4.29(a) and (b).

In the accelerated multilevel approach with all 100 realizations, there is a consistent

improvement in the actual objective function value. For the accelerated multilevel
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Table 4.21: Accelerated multilevel optimization computations with OSV for the best
run (Case 3b)
Model size 10× 10× 1 15× 15× 1 30× 30× 3 30× 30× 6
Total time per model, sec 5 7 30 80
Number of function
eval. with 10 models 2040 306 170 68
Number of function
eval. with 30 models 2040 306 170 0
Number of function
eval. with 50 models 2040 0 170 0
Number of function
eval. with 100 models 0 0 0 0
Elapsed time with
OSV, hours
(using 34 nodes) 7.5 0.7 3.8 0.4

Table 4.22: Optimization results for three runs. Best result shown in bold (Case 3b)
Run 1 Run 2 Run 3 Average Time
($MM) ($MM) ($MM) ($MM) (hours)

Accelerated multilevel
opt. (100 realizations) 318.6 286.3 303.7 302.9 18.7
Accelerated multilevel
opt. with OSV 312.0 299.4 301.5 304.3 12.4

approach with OSV, the expected value over all realizations is seen to decrease in

some cases when a small number of representative models is used (Figure 4.29(b)).

The number of models used for each OSV level for the best run is shown in Table 4.23.

We see that the number of realizations must be increased at all levels except for the

fine-grid 30× 30× 6 level.

The estimated time for the conventional (single-level) approach with 4216 function

evaluations, where the 100 actual models are evaluated for every function evaluation,

is about 276 hours. The accelerated multilevel approach with OSV is thus about 22

times faster than the conventional approach. The optimized production profiles for

this case are similar to those presented above for Case 3a.
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(a) Accelerated multilevel approach with all 100 realization

(b) Accelerated multilevel approach with OSV

Figure 4.29: Evolution of objective function (Case 3b)

4.4 Summary

In this chapter, we applied the multilevel procedure for well location and control

optimization problems with multiple realizations. Although including multiple real-

izations in the optimization is computationally expensive, we reduced the computa-

tional cost significantly by modifying the multilevel procedure. The modifications
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Table 4.23: Number of representative realizations (determined using OSV) and the
corresponding relative improvement values at each level for the best run (Case 3b)

Level Nrep RI
10× 10× 1 10 0.14
10× 10× 1 30 -0.12
10× 10× 1 50 0.92
15× 15× 2 10 -0.39
15× 15× 2 30 0.74
30× 30× 3 10 0.17
30× 30× 3 30 0.42
30× 30× 3 50 0.55
30× 30× 6 10 0.62

introduced were the use of local optimization after the first level and a sample vali-

dation procedure to enable the use of an appropriate number of realizations.

Table 4.24: Optimization results for Cases 1a, 2a and 3a
Case Optimization Best run Average Time

approach ($MM) ($MM) (hours)
Conventional opt. 186.3 173.7 88.7

Case 1a Multilevel opt. 186.5 169.4 9.2
Accelerated mult. opt. 183.3 167.9 4.4
Conventional opt. 522.5 505.2 34.2

Case 2a Multilevel opt. 530.7 517.6 4.1
Accelerated mult. opt. 514.8 508.8 1.8
Conventional opt. 274.3 258.2 27.6

Case 3a Multilevel opt. 275.2 257.3 5.0
Accelerated mult. opt. 264.5 257.8 1.9

We presented three optimization problems, each of which involved both ten and 100

geological realizations. The first two problems considered two-dimensional reservoirs,

while the third problem involved a three-dimensional reservoir. We divided each

problem into two parts. In the first part, we demonstrated that using only MADS

in the later levels of the multilevel procedure provides comparable results to the

conventional approach for optimization problems with ten realizations. In the second

part, we used all 100 realizations in the accelerated multilevel procedure and compared
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results to the multilevel procedure with the OSV technique.

The results for optimizations with ten realizations (Cases 1a, 2a, 3a) and 100 real-

izations (Cases 1b, 2b, 3b) are summarized in Tables 4.24 and 4.25. In Table 4.24,

we see that the best individual runs for the three cases were found by the multilevel

approach. The conventional method provided the highest average results for Cases 1a

and 3a. The accelerated multilevel method provided objective function values that

were 1-4% less, for the best individual runs and average results, than those from

the conventional and multilevel methods. It is, however, about 20 times faster than

the conventional method and two times faster than the multilevel method. From

Table 4.25, it is evident that the accelerated multilevel approach provided the best

individual runs for Cases 1b and 3b. The highest average results for Cases 2b and

3b were obtained by the accelerated multilevel approach with OSV. The difference

between the two methods is 2% or less for best and average runs in all three cases.

The accelerated multilevel approach with OSV is two or more times faster than the

accelerated multilevel approach in Cases 1b and 2b, though less speedup is observed

in Case 3b.

As an alternative to the multilevel approach, we also applied an MLMC procedure

in the optimization to reduce the computational cost. This method was applied only

in Case 1b. Optimization with the MLMC approach provided optimum objective

function values close to those from the accelerated multilevel procedure. Although

MLMC is computationally more efficient than the conventional approach, it was more

expensive than the multilevel procedure for the case considered.
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Table 4.25: Optimization results for Cases 1b, 2b and 3b
Case Optimization Best run Average Time

approach ($MM) ($MM) (hours)
Case 1b Accelerated multilevel

opt. (100 realizations)
148.2 143.8 26.0

Accelerated multilevel
opt. with OSV

147.8 142.6 12.9

Case 2b Accelerated multilevel
opt. (100 realizations)

498.4 492.1 18.1

Accelerated multilevel
opt. with OSV

504.9 494.6 7.6

Case 3b Accelerated multilevel
opt. (100 realizations)

318.6 302.9 18.7

Accelerated multilevel
opt. with OSV

312.0 304.3 12.4



Chapter 5

Summary, Conclusions and Future

Work

Existing field development optimization methods are computationally expensive.

When geological uncertainty is incorporated into the optimization problem, the com-

putational requirements increase further. In this research, we introduced an optimiza-

tion framework that improves the efficiency of existing field development optimization

algorithms. The key accomplishments and conclusions from this work are as follows:

• We introduced a multilevel optimization framework that entails the use of a se-

quence of upscaled models. Optimization is performed over models at different

levels – from coarsest to finest – and the solution at the previous level is used

as an initial guess for the next-level optimization. Essentially any core opti-

mization algorithm could be used in this multilevel framework. In this study,

we applied the recently developed PSO–MADS hybrid procedure, which entails

global stochastic search (PSO) combined with local pattern search (MADS). A

global transmissibility upscaling procedure was applied to generate the coarse-

scale models. Because coarse-scale transmissibilities depend on well locations

and controls, the upscaling computations must be performed for each candidate

solution (in each geological realization) at each iteration.

• We compared multilevel optimization results to results from the conventional

111
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method (which uses only the fine-scale model). The differences in the objective

function values between the two approaches were less than 1% for both the best

individual run and for the average of three runs, for several example cases. The

multilevel approach yielded higher optimum objective function values in some

cases. The multilevel procedure provided a factor of 5–10 speedup for the cases

considered.

• We extended the multilevel optimization framework to handle optimization un-

der geological uncertainty with nonlinear constraints. This entails upscaling

and simulating multiple realizations (rather than a single realization) for every

candidate solution. A penalty method was introduced to minimize constraint

violations while maximizing the expected value of the objective function over

all realizations.

• We incorporated two approaches to improve the efficiency of the multilevel opti-

mization procedure for optimization under uncertainty. First, the PSO-MADS

global hybrid algorithm, which requires a large number of simulation runs, is

only used at the first level in the multilevel optimization. In subsequent lev-

els, only MADS is used. This approach is referred to as accelerated multilevel

optimization. We also applied an optimization with sample validation (OSV)

procedure into the multilevel framework to reduce the number of realizations

used in the optimization. Reducing the number of realizations in optimization

is potentially problematic because the selected realizations might not be repre-

sentative of the full set of realizations. The OSV procedure allows us to assess

the representivity of the selected models, and to increase the number of models

used in the optimization when necessary.

• We compared the conventional, multilevel, and accelerated multilevel optimiza-

tion procedures using ten geological realizations. We showed that the accel-

erated multilevel approach provided optimum objective function values within

about 1–4% of those from the conventional and multilevel approaches. Speedup

of about a factor of 2–3 relative to (standard) multilevel optimization was
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achieved. We also performed optimization using 100 geological realizations and

compared the accelerated multilevel and accelerated multilevel with OSV meth-

ods. Results were very similar, though the accelerated multilevel with OSV

method is about two times faster than the accelerated multilevel approach.

• We investigated the application of the multilevel Monte Carlo (MLMC) ap-

proach for field development optimization under geological uncertainty as an

alternative to the multilevel optimization approach. We assessed the perfor-

mance of MLMC with different model selection strategies and coarsening levels

before using it in the optimization. Results for one example demonstrated that

optimization using MLMC can provide similar optimum objective function val-

ues to those from the other optimization procedures. Although the optimization

with MLMC is computationally more expensive than the accelerated multilevel

optimization procedures, it is still more efficient than the conventional approach.

The multilevel optimization framework introduced in this work is quite general but

there are several additional issues that should be addressed in future work. The

following topics are suggested for further study:

• Relative permeability upscaling, in addition to the single-phase upscaling used

in the current implementation, could be incorporated. This will require addi-

tional upscaling computations, but it would lead to more accurate coarse models

and might enable us to perform significantly fewer fine-scale simulations.

• The choice of grid levels, and the optimization parameters to use at these levels,

should also be considered. In the examples presented here, we observed that the

objective function value improved only slightly at some grid levels. Also, the

objective function was seen to stop improving after some number of function

evaluations at some levels. This indicates that we could skip or reduce the

number of function evaluations at some grid levels. Thus, it will be useful to

develop better termination criteria, as well as techniques to determine which

grid levels to use in the multilevel optimization.
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• Treatments for nonlinear constraints in coarse models should also be studied.

Given the general biases of coarse models, it may be useful to modify the con-

straint handling (or penalty function) as we proceed from level to level. Other

constraint handling treatments such as the filter method could also be investi-

gated within the multilevel optimization framework.

• Some problems many involve very large numbers (hundreds or thousands) of

realizations. Approaches for such cases, which do not require simulating all

realizations, should be developed.

• The use of MLMC for optimization under uncertainty should be further studied.

It may be possible to effectively combine this approach with the multilevel

procedures developed in this work. This might be accomplished by applying

MLMC instead of optimizing over the finer grid levels.

• The introduction of the multilevel optimization procedure into a multiobjective

optimization framework should be considered. Multiobjective problems can be

very demanding computationally, so the use of our methods could enable two

or more (possibly conflicting) objectives to be minimized.

• Finally, the overall methodology should be tested on realistic field cases. In

addition, the multilevel optimization algorithm can be considered for use in

areas outside of petroleum engineering in which simulation-based optimization

is performed.



Nomenclature

Abbreviations

BHP bottomhole pressure

CDF cumulative distribution function

GPRS general purpose research simulator

MADS mesh adaptive direct search

MINLP mixed-integer nonlinear programming

MLMC multilevel Monte Carlo

MM million

NPV net present value

OSV optimization with sample validation

PSO particle swarm optimization

PSO-MADS hybrid of particle swarm optimization and mesh adaptive direct search

STB stock tank barrels

Greek Symbols

µ viscosity

ρ density

θ validation criterion

Variables

B formation volume factor

Cdrill drilling cost per well

E[.] expected value

fl flow rate through fine-scale interface l

J objective function without penalty term
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J∗ objective function with penalty term

n number of optimization variables

Np number of PSO particles

Nreal number of realizations

Nrep number of representative realizations

q flow rate

qo,min minimum oil rate

Qiw injected water rate

Qpo produced oil rate

Qpw produced water rate

Qunmet unmet oil production

p pressure

Piw price of injected water

Ppen penalty price of oil

Ppo price of produced oil

Ppw price of produced water

RI relative improvement

Rs penalty function for realization s

T ∗ coarse-scale transmissibility

u vector of continuous well control variables

v vector of integer (pseudo-continuous) well location variables, or veloc-

ity in PSO update equation

WI∗ coarse-scale well index

x vector of optimization variables

z vector of categorical variables

Subscripts

I refers to set of injection wells

l lower bound

P refers to set of production wells

o oil

u upper bound

w water
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Superscripts

∗ indicates upscaled quantity

c coarse

k iteration level

w well
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methodology with local and global search for the constrained joint optimiza-

tion of well locations and controls. Computational Geosciences, 18(3-4):463–482,

2014.
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