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Abstract

The economics of oil and gas field development can be improved significantly by

using computational optimization to guide operations. In this work, we present a

general workflow for applying optimization to the development of shale gas reservoirs.

Starting with a detailed full-physics simulation model, which includes heterogeneous

geology, highly-resolved fracture networks, dual-porosity, dual-permeability regions,

and gas desorption, the approach first entails the generation of a much simpler, and

much more computationally efficient, reduced-physics surrogate model. The reduced-

physics model is tuned using a procedure akin to history matching to provide results

in close agreement with the full-physics model. The surrogate model is then used for

field development optimization. During the course of the optimization, the surrogate

model is periodically retrained to match the full-physics representation of the current

best solution.

In the optimizations considered here, we apply a direct search technique (gen-

eralized pattern search) and seek to determine the optimal locations, lengths, and

number of fracture stages for a set of horizontal wells. In two examples, involving

three-dimensional models with heterogenous properties representative of the Barnett

Shale, optimization is shown to provide field development scenarios with net present

values that are more than double those of base case designs.
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Chapter 1

Introduction

Natural gas production from US shale reservoirs has increased rapidly in recent years

and now accounts for more than 20% of total US gas production. Fig. 1.1, which shows

the historical and projected US natural gas production, suggests that shale gas will

comprise about half of natural gas production in 2035. Much of the early production

was from dry gas fields such as the Barnett Shale in North Texas (Montgomery

et al., 2005), but recent industry attention has shifted to gas condensate and light-oil

bearing shale formations such as the Eagle Ford of South Texas and the Bakken in

North Dakota (Pollastro et al., 2008). Horizontal drilling combined with multistage

hydraulic fracturing techniques has been crucial to unlocking both gas and oil from

shale reservoirs. These resource plays are characterized by large drilling programs

involving hundreds of wells drilled per year.

Given the very low permeability of shale formations, and the fact that the source

rock is the reservoir rock, the underlying physics of gas production differs from that

associated with more permeable (conventional) reservoirs. Clarkson et al. (2011) and

King (2010) provide broad overviews of shale gas production and discuss the relevant

physics. This includes matrix flow and flow through fractures of various sizes, gas

desorption, non-Darcy effects, and stress-dependent permeability. Flow in hydrauli-

cally induced fractures is also crucial to shale gas production. Microseismicity studies

have documented the complex nature of the induced fracture network (Mayerhofer

et al., 2008; Vermylen and Zoback, 2011). Natural orthogonal fracture networks in

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Historical and predicted natural gas supply in the United States (EIA,
2012).

shale formations, as described by Engelder et al. (2009), can provide a reference for

understanding the induced fractures. Within a shale reservoir, gas may exist both

as free gas in pores or as gas adsorbed to the rock (Lu et al., 1995). Depending on

the reservoir pore pressure and the details of the desorption process, adsorbed gas

may constitute a significant portion of the gas in place. Due to the nanoscale pore

structure, molecular phenomena may also impact shale gas production, and some

authors have incorporated Knudsen diffusion corrections into Darcy flow equations

(Javadpour, 2009).

Numerical reservoir simulation can effectively model discrete fracture networks

and the key physical effects, as noted above, that may be important in shale reser-

voirs. Detailed simulation models have included dual-porosity, dual-permeability and

multiple interacting continua (MINC) representations to capture fracture-matrix in-

teractions (Moridis et al., 2010). Discrete fracture models, with the fractures repre-

sented using unstructured grids, have also been applied (Cipolla et al., 2011). That

particular study involved a detailed workflow that used microseismic data to pro-

vide the discrete fracture characterizations. Fracture networks in shale gas reservoirs
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have also been represented using refined Cartesian grids and a dual-porosity, dual-

permeability framework (Cipolla et al., 2010). This approach enables resolution of

pressure transient behavior near the fracture and has been used in conjunction with

microseismic imaging to provide properties for the stimulated reservoir volume, or

SRV (Mayerhofer et al., 2008).

Computational optimization techniques have been developed for a variety of oil

production problems, though they have not been widely applied to shale gas pro-

duction. Gradient-based procedures to determine optimal well settings (bottom hole

pressures or BHPs) have been presented by, e.g., Brouwer and Jansen (2004) and

Sarma et al. (2006), while Echeverŕıa Ciaurri et al. (2011) have applied derivative-

free pattern search techniques for these problems. Well placement optimization has

been considered by a number of investigators, including Yeten et al. (2003) and On-

wunalu and Durlofsky (2010), who applied stochastic global search procedures, and

Sarma and Chen (2008) and Forouzanfar et al. (2010), who used gradient-based ap-

proaches. Computational optimization generally requires hundreds or thousands of

flow simulations (the precise number depends on the complexity of the problem and

the optimization technique applied), so it is often useful to apply proxy or surrogate

models in place of the full-order simulation model. Reduced-order numerical models

represent one such proxy, and these approaches have been used with computational

optimization procedures (Cardoso and Durlofsky, 2010; Van Doren et al., 2006).

Our goal in this work is to determine the well spacing, well length, and num-

ber of fractures for each horizontal well in order to optimize the economics of shale

gas production. In our treatment, we first define a “full-physics” simulation model,

which represents a high-fidelity description of the reservoir and is viewed as the “ref-

erence” model. In our work this model includes highly-resolved fracture networks,

dual-porosity, dual-permeability regions, and gas desorption. Our particular exam-

ple incorporates heterogeneous geology constructed from Barnett Shale well logs us-

ing geostatistical techniques. Next, we develop a much simpler (and much faster)

reduced-physics surrogate model that can be used for optimization. The parameters

that characterize the surrogate model are determined through a tuning procedure

that entails “history matching” to the full-physics model. This surrogate model is
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periodically retrained during the course of the optimization procedure to maintain

quantitative correspondence with the full-physics model. We apply a derivative-free

generalized pattern search optimization technique, using the surrogate model, to de-

termine the optimal field development scenario. The overall approach is very general

and can accommodate any type of full-physics model, various optimization algorithms,

and different strategies for retraining the surrogate model during the course of the

optimization.

This thesis proceeds as follows. We first present the full-physics and surrogate

models, including the tuning procedure and workflow issues. The optimization prob-

lem is then described. Next, results are presented for two field development problems,

for which it is shown that the optimized strategies provide net present values that

exceed those of the base case developments by 336% and 252%. We conclude with a

summary and a discussion of future directions. An alternate procedure and results

for idealized two-dimensional cases are presented in an appendix.



Chapter 2

Full-Physics Model and

Reduced-Physics Approach

In this chapter, the methods and workflow for the overall procedure are presented.

First, a description of the full-physics shale gas simulation is provided. The proxy

model and the tuning technique are then presented, followed by the optimization

procedure. Finally, the entire workflow is described.

2.1 Full-Physics Simulation Model

2.1.1 Grid and Basic Properties

The full-physics simulation model uses representative properties for the Barnett Shale

and is adapted from Cipolla et al. (2010). This approach includes a dual-porosity,

dual-permeability treatment, refined grids associated with fractures, non-Darcy flow

effects, and gas desorption. The dual permeability, dual porosity treatment differs

from the basic dual porosity formulation in that neighboring matrix cells also commu-

nicate, as illustrated in Fig. 2.1. The dimensions of the field are 10, 600 ft×5, 300 ft×
300 ft, or approximately two adjacent square miles in area. A Cartesian grid of di-

mensions 106×53×5 is used in this example. The basic properties for the simulation

model are summarized in Table 2.1. Average matrix permeability is 100 nanodarcies

5
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Figure 2.1: Schematic of the dual porosity, dual permeability formulation.

and average porosity is 4.1%. More detail on the geological model can be found in

Section 2.1.2.

We use a 7 × 7 × 1 local refinement of the Cartesian grid in the stimulated zone

(refinement is applied only in the x and y dimensions). Fracture conductivities (kw,

where k is permeability and w is fracture aperture) are 2.0 md-ft for primary frac-

tures and 0.4 md-ft for secondary fractures. Primary fractures are a direct result of

the hydraulic stimulation and propagate in the direction of least principal stress (or-

thogonal to wellbore). Primary fractures are assumed to contain the majority of the

proppant material deposited during the stimulation, leading to a higher conductivity

than secondary fractures. Both primary and secondary fractures are explicitly mod-

eled with refined-grid cells of thickness 2 ft (k is adjusted in these cells such that kw

is preserved). Fractures are aligned with either the x-z or y-z plane and extend over

the entire thickness of the reservoir. Fracture half-lengths, xf , are 500 ft (this and

the well length determine the areal extent of the SRV). See Fig. 2.2 for a depiction of

a natural fracture network in a Marcellus Shale outcrop along with a corresponding

(refined grid) representation of these two orthogonal fracture sets.

The number of grid blocks in the full-physics model depends on the length of the

well (which determines the amount of grid refinement), but the typical range for our

cases is between 500,000 to 2,000,000 cells. The simulations are time consuming and

typical run-times are on the order of 3-10 hours with a single CPU.



2.1. FULL-PHYSICS SIMULATION MODEL 7

(a) Marcellus Shale outcrop (Engelder, 2008)

(b) Grid representing fracture network

Figure 2.2: Orthogonal fractures in shales and representation in simulation model.



8 CHAPTER 2. MODELING DETAILS

Table 2.1: Full-physics model properties

Depth 7000 ft
Average Porosity 4.1%
Average Permeability 100 nd
Rock Compressibility 1.25× 10−5 psi−1

Fracture Half-Length, xf 500 ft
Grid Dimensions 106× 53× 5
Grid Cell Dimensions 100× 100× 60 ft3

Grid Refinement (SRV) 7× 7× 1

Desorption is modeled using the Langmuir equation:

Vads =
VLp

pL + p
, (2.1)

where Vads represents the volume of gas adsorbed in the reservoir rock (scf/ton), p

is pressure, and VL and pL are termed the Langmuir volume and Langmuir pres-

sure respectively. The Langmuir volume is the maximum adsorption capacity of the

rock and the Langmuir pressure is the pressure where Vads is equal to half the Lang-

muir volume. Frantz et al. (2005) modeled the Barnett Shale with a gas adsorption

capacity of 88 scf/ton and a Langmuir pressure of 440 psi. Using these isotherm

properties, both free and adsorbed gas can be plotted as a function of pressure, as

shown in Fig. 2.3. At an initial pressure of 3800 psi, the gas content in the reser-

voir is approximately half free gas and half adsorbed gas. As the reservoir pressure

drops toward the flowing bottom hole pressure (FBHP) of 1000 psi, this ratio shifts

to 75% adsorbed gas. It is evident that gas desorption will not significantly affect gas

production until the reservoir has been drawn down substantially below the initial

pressure. This behavior is consistent with that observed in previous work for the

Barnett Shale (Cipolla et al., 2010), where gas desorption flattened the decline curve

after significant production had occurred, but had only a minor effect on cumulative

gas production.
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Figure 2.3: Barnett Shale gas content with pressure.

Non-Darcy flow is modeled using the Forchheimer (1901) modification to Darcy’s

Law:

−∇p =
µ

k
u + βρ|u|u, (2.2)

where u Darcy is velocity, µ is viscosity, permeability k is taken to be isotropic, β

is the Forchheimer correction, and ρ is phase density. Darcy’s law is recovered for

β = 0. For flow in many different porous media, Evans and Civan (1994) proposed

the following equation for β:

β =
1.485× 109

φk1.021
, (2.3)

where φ is porosity. Since the fractures have been “effectivized” to 2.0 ft grid cells

from their assumed physical width of 0.001 ft (this effectivization preserves kw), a

correction factor, as described by Rubin (2010), is applied to the grid cells representing

fractures.

As indicated earlier, for the purposes of this work, the full-physics simulations are

treated as reference solutions. In our full-physics representation, many key effects are

included, but others, such as coupled geomechanics, are not. This is not a limitation
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of the general procedure, as the full-physics model can include whatever effects are

deemed necessary for the problem under study.

2.1.2 Geologic Model Construction

Petrophysical log data from five wells in the Barnett Shale were used together with

geostatistical techniques to build a simple geological model of the reservoir that can

be used for flow simulation. The well logs considered in this analysis are the gamma

ray values for five horizontal wells along with density-porosity data from a single

well in the set. Yang and Alpin (2010) developed a correlation for mudstone and

shale permeability as a function of porosity and clay content. In order to utilize

this correlation, clay content must be deduced from the gamma ray logs. Our proce-

dure is as follows. First, using sequential Gaussian simulation (SGS), a 3D grid was

populated with gamma ray values. SGS is a commonly used geostatistical technique

that provides a heterogeneous field honoring the variogram and hard (measured) data

(Deutsch and Journel, 1992). The model at this stage contains grid blocks that are

100 ft × 100 ft × 60 ft, resulting in a total of about 28,000 blocks.

The amount of clay in a reservoir can be correlated to gamma ray readings because

radioactive elements (potassium, thorium, uranium) are primarily found in the clays.

Clay content is typically calculated through an empirical formula:

Cclay =
GRlog −GRmin

GRmax −GRmin

Cclay,max, (2.4)

where GRmax and GRmin are the maximum and minimum gamma ray values on the

log sustained over a minimum length interval to eliminate noise (Darling, 2005). The

quantity Cclay,max refers to the maximum amount of clay found in the reservoir, and

is typically interpreted from reservoir cores or local geology. For this study, Cclay,max

was taken as 60% and GRmin and GRmax were taken from the logs as 30 and 300 API

units respectively. This is consistent with literature values, as Kuuskraa et al. (1998)

reported gamma ray values up to 400 API units and Jarvie et al. (2007) described

highly variable clay content from 0-65% in the Barnett Shale. Fig. 2.4 displays a

histogram of the calculated clay content, where most of the values fall between 20%
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Figure 2.4: Histogram of reservoir clay content.

and 40% clay by mass. This is consistent with literature values, where the Barnett

Shale clay content was reported as between 10-50% (Bruner and Smosna, 2011).

Porosity data was inferred from a density log of the vertical section of a single well

in the reservoir. As can be seen from Fig. 2.5, the porosity log exhibited a significant

amount of noise; for this reason the log was averaged over 60 ft intervals for modeling

purposes. Density porosity is calculated from the following equation:

φd =
ρm − ρlog
ρm − ρfluid

, (2.5)

where ρm and ρfluid are the densities of the rock matrix (zero-porosity) and the

reservoir fluid (water in this case) respectively. In this case, the matrix density for

the well log was assumed to be 2.71 g/cm3, corresponding to the density of limestone,

which is prevalent in the Fort Worth Basin mineralogy. The reservoir fluid was taken

to be water with a density of 1 g/cm3. The average porosity from the well log,

interpreted in this manner, was 12.8%, which is much higher than reported values of

3-6% in literature.

This discrepancy may result because the matrix density is assumed constant over

the well log, even though the well passes through many different formations. This
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Figure 2.5: Vertical density-porosity log and corrected values.

can lead to errors in the characterization of the reservoir. One source of error in

zones with high organic content is due to kerogen’s lower density of about 1.7 g/cm3

(Ward, 2010). To address this issue, the matrix density for the Barnett Shale was

adjusted to 2.55 g/cm3, which led to an average porosity value of 4.1%. Literature

values report bulk density between 2.5-2.6 g/cm3 and porosity typically between 3-6%

(Jacobi et al., 2008). This step leads to the “Corrected Porosity” values displayed

in Fig. 2.5. Adjusting matrix density in density porosity calculations is common

industry practice, see for example Zhao et al. (2007). Because porosity was derived

from a vertical well, the porosity model of this reservoir will be strictly layered, with

constant values for each vertical layer.

Once the values of porosity and clay content have been established over the geo-

logic grid, the remaining step is to assign permeability values using a modified version

of the Yang and Alpin (2010) equation. This correlation was derived empirically by

curve fitting published data from a variety of mudstone and shale samples. The cor-

relation uses clay content and porosity to determine permeability. This correlation

was normalized in our work to provide a mean permeability of 100 nanodarcies over

the entire reservoir, consistent with values reported by Bruner and Smosna (2011). A
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Figure 2.6: Histogram of matrix permeability for the 3D model.

Figure 2.7: 3D model porosity (left) and permeability (right).

histogram of the calculated permeability values (Fig. 2.6) shows a multi-modal dis-

tribution. The layer with the highest porosity accounts for most of the permeability

values above 200 nanodarcies.

Fig. 2.7 displays the final geological (porosity and permeability) model, where

porosity is strictly layered and permeability varies in x, y, and z. As mentioned

above, the high porosity top layer contains the highest permeability values. There

are approximately two orders of magnitude variation in matrix permeability. This

model defines the underlying geology in the flow simulations used in this study.
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2.2 Surrogate Model and Tuning Procedure

The reduced-physics surrogate is a simplified model that treats fewer physical effects

and contains fewer grid blocks than the full-physics model. As a result, simulation

runs using this model require much less computation time. The parameters associated

with this model are determined by a tuning procedure using full-physics models as

reference solutions.

Some amount of numerical experimentation must be performed to determine the

level of physics and grid resolution required for the reduced-physics model. Our inves-

tigations showed that single-porosity models, without desorption, non-Darcy effects

or local grid refinement but with tuned multipliers for permeability and porosity in

the stimulated zone (designated Mk and Mφ), could provide results in close agree-

ment with the full-physics model. Property multipliers are constant values that act

on every (i,j,k) grid block within the stimulated zone. Multipliers preserve local het-

erogeneity because the property in the stimulated zone will be a function of both the

original matrix property and the property multiplier:

(φs)i,j,k = (φm)i,j,k ×Mφ,

(ks)i,j,k = (km)i,j,k ×Mk,
(2.6)

where subscript m indicates the matrix property of a grid block in the full-physics

model and subscript s denotes the property in the stimulated zone of the surrogate

model. Permeability and porosity values outside the stimulated zone remain identical

to those in the full-physics model. Instead of explicitly modeling fractures, each

fracture in the reduced-physics model is represented through a completion along the

wellbore in the stimulated region. The reduced-physics model, shown in Fig. 2.8, thus

contains at least a factor of 20 fewer grid blocks than a typical full-physics model.

The determination of Mk and Mφ is accomplished using a procedure akin to his-

tory matching, but instead of using historical data we use the gas production of

the full-physics model. Specifically, we determine the surrogate-model parameters

such that the difference in predictions between the full-physics and surrogate models

is minimized for a particular set of wells (multiple well configurations can also be
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Figure 2.8: Full-physics (left) and surrogate (right) simulation models.

considered). The quantity we seek to minimize, denoted by J , is defined as:

J =
N∑
n=1

(
qnref − qnsurr

)2
e−itn , (2.7)

where n indicates the time step and N indicates the maximum number of time steps

in the simulation, qnref and qnsurr are the field gas production rates for the full physics

and surrogate models, and i is an interest rate which is used to discount gas produc-

tion. Note that the particular form of J should be chosen consistent with the actual

production optimization problem (e.g., if discounting is not used we would set i = 0).

The optimization problem we solve for the tuning of the surrogate model is: Find

the (Mk, Mφ) that minimize J in Eq. 2.7. We solve this problem using a generalized

pattern search (GPS) algorithm (Kolda et al., 2003). GPS is a stencil-based direct

search method that moves systematically through the (Mk, Mφ) parameter space. A

two-dimensional GPS is depicted in Fig. 2.9. The red star in the first frame indicates

the local minimum and the curves are contours of the objective function. The stencil

at iteration ν + 1 is centered on the best point found through iteration ν. All points

on the stencil, five in this case, are then evaluated at iteration ν + 1 (results can
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Figure 2.9: Illustration of generalized pattern search optimizer for surrogate tuning.

be saved to avoid re-running cases that have already been simulated). The stencil

is then shifted to the best point and the procedure continues. When the search no

longer provides improved values, the stencil size is reduced (last frame in Fig. 2.9).

Convergence occurs when no improvement in the solution is attained and the stencil

size has reached its user-specified minimum. GPS is a local optimizer, but some

amount of global exploration can be achieved by choosing a sufficiently large initial

stencil size.

The tuned surrogate model can now be used to evaluate many different well designs

in order to optimize the economics of shale gas reservoirs. In this work, the surrogate

model is initially trained to a base case field design. During the course of the field

development optimization, this field design will change and the surrogate model will

need to be retrained. This is accomplished by periodically computing an updated Mk

and Mφ, as will be discussed in Section 2.4.

2.3 Field Development Optimization

After the tuning process, the reduced-physics model can be expected to provide sim-

ulation results that are similar to those of the full-physics model (at least for well

configurations that are similar to those used for the tuning), so it can be used to eval-

uate field development scenarios. A number of decisions are generally required for the

development of shale resources including the determination of the number, location

and length of new wells, and the number of hydraulic fractures completed in each
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Figure 2.10: Possible wells and fractures for field development optimization.

well. Additional issues involving the detailed completion design must also be consid-

ered. Computational optimization procedures can efficiently sample the search space

defined by these many decision parameters and associated constraints to determine

the most economic field development plan.

In this work, all wells are taken to be horizontal and to extend in the y-direction.

We specify the total number of wells Nw. The decision variables determined in the

optimization are the x-locations of the heel of each well (xi), the length of each well

(Li), and the number of fracture stages in each well (Nf,i). Each well is centered

in the y-direction and completed in the middle layer of the model so its location is

determined solely by the two variables xi and Li. Fracture half-length, xf , is fixed

at 500 ft in our models. Fracture stages are spaced equally along the length of the

well as shown in Fig. 2.10. Wells must be separated by a minimum distance of two

fracture half-lengths, 2xf . There are a total of 3Nw decision variables. The bounds

(minimum and maximum) associated with each of these variables are provided in

Table 2.2. More decision variables could of course be considered, but this would

increase the complexity of the optimization problem.

The objective function we seek to optimize is the net present value (NPV) of the

field development, which is the sum of the discounted cash flows (DCF) minus the
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capital expenditures, Ccapex:

NPV =
N∑
n=1

DCFn − Ccapex. (2.8)

For this calculation, a cost function was constructed from publically available data.

An example cost function for a shale gas well was given by Williams-Kovacs and

Clarkson (2011) and a modified version of this is used in this work. Discounted cash

flow is given by:

DCFn = (1− T ) [qnG(1−R)− CLOE] e−itn , (2.9)

where qn is production over the time step, G is the gas price, R is royalty payment,

and T is tax rate. In this work, rates of 15% and 30% were used for royalty and tax,

respectively. A lease operating cost, CLOE, of $150/day is also incorporated. Note

that continuous economic discounting is used.

The capital expenditure for the development is an upfront cost composed of three

components – the leasing cost, the drilling cost, and the completion cost:

Ccapex = Clease + Cdrill + Cfrac. (2.10)

The leasing cost is set at $1.28M for the field, or $1000/acre. This cost is independent

of the well design and does not impact the solution to the optimization problem. The

cost to drill each well is $250 per foot of measured depth (vertical depth plus horizontal

length for simplicity). Completion costs are specified as $250,000 per fracture stage.

These costs were inferred from recent corporate presentations and industry articles

(Cowan, 2011; Marsh et al., 2011). Depreciation is not included in these calculations.

A summary of the costs is given in Table 2.3.

We again use GPS to determine the field development parameters (xi, Nf,i, Li)

that maximize NPV. The dimension of the search space is now 15, which is much larger

than the search space for tuning the surrogate model, but the generalization of GPS

to higher dimensions is straightforward. This optimization does, however, require
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Table 2.2: Field development optimization constraints

Variable Constraints

Well Heel Location, xi xi − xi−1 ≥ 2xf
Fractures, Nf,i 2–30
Horizontal Length, Li 1000–5000 ft

Table 2.3: Economic model parameters

Gas Price $3.50/mcf
Lease $1.28M
Drilling $250/ft
Completion $250,000/stage
Operating $150/day
Royalty 15%
Tax 30%

much more computation, because the number of function evaluations (simulations of

the surrogate model in this case) per GPS iteration scales with the dimension of the

search space.

2.4 Overall Tuning and Optimization Workflow

The workflow described above entails first defining and tuning a surrogate model.

Next, this surrogate model is used for optimizing field development. During the

course of the optimization procedure, it may be necessary to retrain the surrogate

model to ensure that its accuracy is maintained. In our work, this “retraining” is

applied after the optimization procedure has performed a specified number of func-

tion evaluations (simulations of the surrogate model). At this point, a full-physics

simulation is performed using the current best configuration of wells and fractures.

This serves as the reference model for retraining the surrogate. A flowchart of the

entire workflow is shown in Fig. 2.11.

Each time a full-physics simulation is performed, the NPV is also calculated. If,

at some point, the NPV for the current full-physics model is not higher than that for

the previous full-physics model, the optimization proceeds from the previous trained
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Figure 2.11: Field development optimization with surrogate retraining algorithm.
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surrogate. Retraining is then applied after a smaller number of function evaluations.

There are several variants of this basic workflow that could be applied, and some of

these have been tested in this work. For example, the surrogate model could be tuned

once, for a range of well designs, and then left unchanged during the optimization.

Such an approach, discussed in Appendix A, was used for idealized two-dimensional

models. Additionally, following convergence of the optimization using the surrogate

model, the full-physics model could be used for further optimization. This approach

could be time-consuming, but it will be much more efficient than direct optimization

using the full-physics model.
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Chapter 3

Results and Discussion

In this section, we present results for the surrogate tuning procedure and for two

example optimization problems involving different economic scenarios. The field de-

velopments involve five horizontal wells placed parallel to the y-axis. As described in

Chapter 2, the full-physics simulations include a dual-porosity, dual-permeability for-

mulation, explicit fractures described by locally refined grids, non-Darcy flow effects

and gas desorption. All simulations in this work are performed using CMG’s IMEX

black-oil simulator (CMG, 2010).

A list of properties and correlations used for the simulations is given in Table 3.1.

Well BHPs are set to 1000 psi, except at very early times where a maximum surface

gas rate constraint of 10 MMscfd may take effect. The well radius, rw, is 0.125 ft

reflecting the common use of tubing in gas wells. The initial reservoir pressure is

3800 psi. A method developed by Seidle and Arri (1990) for including Langmuir

desorption effects in black-oil simulators was incorporated in this work. The viscosity

of water was assumed to be constant. Gas specific gravity, γg, was taken as 0.71

at stock tank conditions (14.7 psia, 60 ◦F). Relative permeability curves with Corey

exponents of 2.0 were used to model both water and gas phases. Hysteresis was not

considered. Initial and irreducible water saturation are both equal to 30%, leading to

no water production in this model.

23
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Table 3.1: Reservoir simulation model properties

PVT Properties
pi 3800 psi
T 180 ◦F
µw 0.37 cP
µg Gonzalez and Lee (1968)
Bw 1.03
Bg Standing and Katz (1942)
γg 0.71
Langmuir Volume 88 scf/ton
Langmuir Pressure 440 psi

Relative Permeability Model
Sw,i 0.3
Sw,min 0.3
Sg,r 0.02
Cw 2
Cg 2

Well Description
rw 0.125 ft
Geometric Factor 0.37
Minimum BHP 1000 psi
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Figure 3.1: Base case field design.

3.1 Results from Tuning Procedure

As described in Section 2.2, the surrogate model is initially tuned to a base case field

design. This design contains five evenly spaced wells, with 3000 ft laterals and eight

fracture stages per well, as shown in Fig. 3.1. The minimization problem defined

earlier is then solved using GPS to provide Mφ and Mk. Because of the nature of the

decline curve and the effect of discounting, only ten years of production are simulated.

Monthly field production is recorded, for a total of 120 data points from each run.

The progression of the GPS tuning is shown in Fig. 3.2. After 98 function eval-

uations, the mismatch between the full-physics and surrogate models was reduced

to less than 2% of its initial value. The initial and optimized SRV properties, along

with the optimization constraints, are displayed in Table 3.2. The stimulated zone

permeability was multiplied by a factor of 195, while the increase in porosity was

much less significant. The increase in permeability accounts for the fracture network,

which is no longer modeled explicitly but contained within single porosity grid cells.

On the other hand, the increase in porosity within the SRV largely accounts for gas

desorption effects, which are not explicitly included in the surrogate models.

Tuning results for the base case scenario are shown in Fig. 3.3. The solid blue line

represents gas production from the full-physics model, which serves as the reference

data for the tuning procedure (qref in Eq. 2.7). The dashed lines represent the

surrogate model response for both the initial and tuned porosity multipliers. It is

apparent that the tuning procedure is able to provide a surrogate model that gives
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Figure 3.2: Optimization performance for tuning of the surrogate model.

Table 3.2: Initial and tuned stimulated zone property multipliers

Property Multiplier Initial Optimized

Mφ (0.5 - 3) 1 1.20
Mk (50 - 300) 100 195
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Figure 3.3: Tuning results for base case field design.

results in close agreement to the reference full-physics model.

A comparison of production from two individual wells (Well B and Well D) is

shown in Fig. 3.4. The wells are labeled from left to right in the areal field design.

These results display slightly more error than the field-wide results in Fig. 3.3, though

it is nonetheless evident that the surrogate model also provides accurate well-by-well

production rates.

These simulations were performed on a single CPU machine with 2 GB of memory.

The computational demand for the full-physics simulations is proportional to the

total number of grid cells, which depends on the length of the horizontal well and

the number of fractures. The surrogate models do not utilize refined grids, so their

CPU expense does not vary based on the well design. The tuned surrogate model

runs about 300 times faster than the full-physics model for this well design. For this

example, depending on the specific well/fracture configuration, we observe speed-ups

ranging from about 200 to 700.
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(a) Well B

(b) Well D

Figure 3.4: Well production comparison for the base case field design.
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The pressure fields associated with the full-physics and surrogte models at various

times are also of interest. In Fig. 3.5, pressure profiles of the middle reservoir layer

with the base case well design are compared. As shown in Fig. 3.5(a), the pressure in

the fracture network of the full-physics model decreases at early time. The surrogate

model does not contain an explicitly modeled fracture network and displays more

complete reservoir drainage near the well. After ten years of production, a comparison

of the pressure profiles does not reveal any major differences, as evident in Fig. 3.5(b).

At early times, free gas production from the fracture network is dominant, but at later

times more gas is produced from the low permeability matrix within the stimulated

zone. The surrogate model effectively captures both of these effects through properly

tuned Mk and Mφ.

3.2 Field Development Optimization Results

We now present results for field development optimization. The surrogate model is

initially tuned to the base case well design and then periodically retrained during the

course of the optimization. In this work, it was found that retraining the surrogate

model every 200 function evaluations led to acceptable solution performance.

The initial guess for the optimization includes five evenly spaced horizontal wells,

3000 ft in length, with eight fracture stages (this is the base case described in Sec-

tion 3.1). The performance of the GPS optimization is shown in Fig. 3.6. The blue

curve displays the optimization performance using the surrogate model, while the

stars depict results using the full-physics model during the optimization. The yellow

star represents a verification of the accuracy of the surrogate model for the optimum

configuration at the end of the optimization. Red stars indicate the periodic full-

physics training or retraining runs used to calibrate the surrogate model. There is

clearly very close agreement between the two models for the optimized configuration

(see Table 3.3 for a detailed comparison), which demonstrates the efficacy of the

surrogate modeling procedure.

In terms of the actual optimization results, after nearly 700 function evaluations

the optimized NPV is more than a factor of three greater than the base-case NPV. Five
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(a) Six months

(b) Ten years

Figure 3.5: Pressure profiles at six months and ten years.
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Figure 3.6: Field development optimization performance.

full-physics simulations were required during the course of the optimization (four runs

for training and a final verification). The surrogate-model simulations associated with

the field development optimization require less CPU time than a single full-physics

simulation. This means that the use of surrogate models leads to a speed-up factor

of over 100 compared to optimizing the field using the full-physics model.

The surrogate model was trained four times during the course of the optimization.

Fig. 3.7 displays the best field design after 200 function evaluations. The optimizer

has lengthened the horizontal sections and added fracture stages compared to the

wells in the base case. A full-physics simulation of this field design is performed

and used for retraining the surrogate model. Fig. 3.8 shows the progress of the GPS

optimization for this retraining. The initial error is much smaller initially in this case,

at about 3,000 compared to 32,000 for the initial tuning shown in Fig. 3.2. Initial
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Table 3.3: NPV for initial and converged solutions

Surrogate Full-Physics Error

Initial ($MM) 5.89 5.93 0.7%
Converged ($MM) 19.84 19.93 0.5%
Change 337% 336%

Figure 3.7: Best field design after 200 function evaluations.

and tuned surrogate production responses are compared to the reference full-physics

results in Fig. 3.9. The initial surrogate shows slightly higher gas production at early

times while the tuned surrogate matches the reference production more closely at

these times.

Relatively small changes in (Mφ, Mk) take place after the surrogate model is

initially tuned, as shown in Table 3.4. The porosity multiplier increases slightly (2%)

as the optimization progresses, while the permeability multiplier declines by 8%. The

fact that Mφ and Mk change only slightly during the course of the optimization

is encouraging and indicates that the surrogate model can be expected to remain

accurate over a range of well and fracture configurations.

Areal views of the field development plans for the base case and the optimized

solution are shown in Fig. 3.10. The optimized well lengths are the maximum allowed
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Figure 3.8: Retraining performance after 200 function evaluations.

Figure 3.9: Production responses before and after retraining.
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Table 3.4: Stimulated zone property multipliers used in the optimization

Mφ Mk

Initial Tuning 1.206 194.3
200 Iterations 1.229 187.6
400 Iterations 1.233 185.4
600 Iterations 1.231 178.9

Figure 3.10: Base case and optimized field design.

(5000 ft), though the wells include a variable number of fracture stages (from 18

to 22 depending on reservoir quality). This is consistent with current practice in

shale reservoirs, where the typical well is completed with between 10 and 20 stages

(Thompson et al., 2011). These results demonstrate that tailoring the number of

fracture stages to reservoir quality can improve economic returns in the development

of shale resources.

3.2.1 Aggressive Development Case

To demonstrate the adaptability of the workflow to variable economic conditions, a

second example involving higher gas prices and capital costs was considered. In this

example, the price of natural gas is doubled (to $7.00/mcf) and well drilling and

completion costs experience an increase of 50%. A summary of costs in this example
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Table 3.5: Economic model parameters for aggressive development case

Gas Price $7.00/mcf
Lease $1.28M
Drilling $375/ft
Completion $375,000/stage
Operating $150/day
Royalty 15%
Tax 30%

is given in Table 3.5. Average capital expenditures in this case range from $7-15 MM

per well. This scenario is intended to represent an “aggressive development,” where

a relatively high gas price spurs activity and increases competition for drilling and

completion services.

The base case field design is equivalent to that used in the previous example, with

equally spaced wells with 3000 ft laterals and eight fracture stages apiece. Fig. 3.11

displays the performance of the optimization procedure along with the four full-

physics solutions used to train and verify the surrogate model. The surrogate model

and full-physics solutions again show excellent agreement, with less than 1% error

for both the base case and optimized field designs, as indicated in Table 3.6. In this

example, the field NPV was increased by a factor of 2.5 to nearly $65 MM during

the optimization. This is more than three times higher than the NPV found in the

previous example. It is evident that the increase in gas price more than compensates

for the rise in service costs in this case.

The optimized field designs for both examples are displayed in Fig. 3.12. Under

aggressive economic conditions, it is again optimal to extend the horizontal wells

to the maximum allowable length (5000 ft). With the drilling cost a function of

measured depth, there is an incentive to maximize reservoir contact by extending the

horizontal section to recover the cost of drilling the 7000 ft vertical section. This result

is underscored by the recent industry trend toward longer horizontal well sections and

multilateral wells (Durst and Vento, 2012). The average number of fracture stages

per well rose to 25 compared to 21 in the previous example. The algorithm thus

balances the marginal cost of additional fracture stages ($375,000) with the positive
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Figure 3.11: Optimization performance for the “aggressive development” case.

Table 3.6: Initial and converged NPV for aggressive devel-
opment example

Surrogate Full-Physics Error
Initial ($MM) 25.56 25.60 0.2%
Converged ($MM) 64.79 64.63 0.2%
Change 253% 252%



3.2. FIELD DEVELOPMENT OPTIMIZATION RESULTS 37

Figure 3.12: Optimized field designs for different economic conditions.

effect of additional production on NPV. With a higher gas price, the marginal benefit

is sufficient to justify the use of a greater number of fractures. The well placement

also differs between the two cases indicating that some portions of the reservoir may

offer better returns depending on the economic conditions.

The two examples presented here demonstrate the flexibility of the surrogate mod-

eling approach. Specifically, the overall procedure was shown to provide fast and accu-

rate optimized field designs for cases with significantly different gas prices and service

costs. This framework thus appears to be viable for the optimization of practical

shale gas production scenarios.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

In this work, we presented a procedure for optimizing the development of shale gas

fields. Starting with a full-physics simulation model, our approach involves the gen-

eration of a reduced-physics surrogate model and the subsequent use of this model

for the function evaluations (reservoir simulations) required during the optimization.

The surrogate model parameters are determined through use of a formal tuning pro-

cedure, which essentially “history matches” the surrogate model such that it provides

predictions in close agreement with results from the full-physics model. These sur-

rogate models require significantly less computation than the underlying full-physics

model, running hundreds of times faster on average. During the course of the opti-

mization procedure, the surrogate model is periodically retrained to ensure continued

accuracy.

A generalized pattern search algorithm was applied both to tune the surrogate

model and for the field development optimization. In these optimizations, we deter-

mined the optimal locations, lengths, and number of fracture stages for a prescribed

number of horizontal wells. The effectiveness of the overall procedure was demon-

strated for two example problems, where it was shown that the optimization algorithm

can account for variations in reservoir quality and direct well placement and fracture

intensity to higher quality regions of the reservoir. In the second example, a stronger

39
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economic environment led to optimal well designs with more fracture stages.

Shale gas reservoirs are an important and growing source of natural gas in the

United States, and possibly elsewhere, in the future. Because shale resource devel-

opment is characterized by intensive drilling across thousands of acres, the detailed

and time-consuming reservoir simulation workflows developed in recent years may

not be appropriate for these reservoirs. Additionally, the wells that are prevalent in

shale developments are customizable, with the length of the horizontal section and

the number and spacing of hydraulic fracture stages left to the engineer’s judgement.

With this in mind, new tools such as reduced-physics modeling coupled to optimiza-

tion may enable a more technical approach for efficiently producing shale resources

in the future.

4.2 Directions for Future Work

There are several areas that should be targeted in future work. First, the optimiza-

tion problem could be expanded to include uncertainty, in either the geology or cost

functions. The optimization could then solve for the field design which maximizes

expected net present value over an ensemble of geological models. Uncertain future

gas prices and capital costs could be incorporated through the use of probability dis-

tribution functions. Also, a time component could be included in the placement of

the wells. The optimization could consider completing all the wells at once, or drilling

a single well to “hold” the lease and then drilling the remaining wells in the future

when gas prices may have risen.

Finally, application of the overall procedure to gas condensate and light-oil shale

reservoirs should be assessed. The well completions in these fields are similar to

those in shale gas formations, so the main modification will be the fluid properties

and local geology included in the full-physics model. In gas condensate reservoirs,

a reservoir simulator with a compositional, rather than a black-oil, formulation may

be required. Compositional simulations are generally computationally expensive, so

the use of reduced-physics models, or other surrogate modeling techniques, will be

essential.



Nomenclature

C = Cost

Cclay = Clay content

DCF = Discounted cash flow

FBHP = Flowing bottomhole pressure

G = Gas price

GIP = Gas in place

GPS = Generalized pattern search

GR = Gamma ray log value (API units)

i = Interest rate

J = Tuning procedure objective function

k = Permeability

Li = Horizontal section length

mcf = Thousand standard cubic feet

MMscfd = Million standard cubic feet per day

Mk = Permeability multiplier

Mφ = Porosity Multiplier

n = Time step

N = Total number of time steps

Nf,i = Number of fracture stages

NPV = Net present value

p = Pressure

q = Period gas production

Q = Cumulative gas production
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R = Royalty rate

SRV = Stimulated reservoir volume

S = Saturation or number of scenarios

t = Time since investment

T = Tax rate

u = Darcy velocity

V = Volume

xi = Well heel location

xf = Fracture half-length

Greek

β = Forchheimer correction

γ = Specific gravity

µ = Viscosity

ν = Optimizer iteration

φ = Porosity

ρ = Density

Subscripts

ads = Adsorbed

i = Initial or well number

L = Langmuir property

LOE = Lease operating expense

m = Matrix property

n = Time period

ref = Reference solution

s = Stimulated zone property

surr = Surrogate solution

w = Water



Appendix A

Idealized Two-dimensional

Examples

In this section, we present a variant of the workflow which was applied to an idealized

two-dimensional, homogeneous reservoir model. Importantly, the tuning procedure in

this section differs from that presented in Section 3.1. Due to the homogenous nature

of this reservoir, retraining the surrogate model does not appear to be necessary. In

the approach here, the surrogate model is initially tuned to a wide variety of field

designs, and then left unchanged during the optimization.

A.1 Idealized Full-Physics Model

The basic properties for the two-dimensional simulation model are summarized in

Table A.1. To add some variability and remove symmetry from the reservoir, an

initial pressure gradient across the domain is specified (see Fig. A.1); this can be

viewed as resulting from depletion in nearby regions. Matrix permeability is 100

nanodarcies, and the fracture conductivities (kw, where k is permeability and w

is fracture aperture) are again 2.0 md-ft for primary fractures and 0.4 md-ft for

secondary fractures. See Fig. 2.2(b) for a depiction of these two fracture sets. A

coarse grid of dimensions 106 × 53 × 1 covering approximately two square miles is

used in this example. A 9 × 9 × 1 refinement of this coarse grid is applied in the
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Table A.1: Barnett Shale model properties for two-dimensional
example

Depth 7000 ft
Porosity 3.0%
Sw,i 0.3
Initial Pressure 3600 - 4000 psi
FBHP 1000 psi
Grid Dimensions 106× 53× 1
Grid Cell Dimensions 100× 100× 300 ft3

Figure A.1: Areal view of initial reservoir pressure.

stimulated zone, and both primary and secondary fractures are explicitly modeled

with refined-grid cells of thickness 2 ft (k is adjusted in these cells such that kw is

preserved). The number of grid blocks in the full-physics model depends on the length

of the well and the number of fractures, but the typical range is around 50,000 to

250,000 cells.
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Table A.2: Development scenarios for surrogate model tuning

Scenario Horizontal Length Fractures

Base case 3000 ft 8 stages
Long well, many fractures 5000 ft 20 stages
Long well, few fractures 5000 ft 4 stages
Short well, many fractures 1500 ft 10 stages
Short well, few fractures 1500 ft 3 stages
Combination One of each above

A.2 Reduced-physics Model and Tuning

The reduced-physics models are again tuned with property multipliers as defined in

Eq. 2.6. In this case, the matrix properties are homogenous, leading to homogenous

stimulated zone properties as well. The reduced-physics model contains 5618 grid

blocks, which is a factor of 10 (or more) fewer than a typical full-physics model for

this case.

In this example, the surrogate model will be tuned only once, using a variety

of scenarios involving multiple wells with different well lengths and well and frac-

ture spacings. The configurations are intended to correspond to field developments

that may be encountered during the optimization. Reasonable well and fracture ar-

rangements can be determined prior to the optimization based on knowledge of the

constraints (e.g., minimum and maximum fracture spacings) to be used during the

optimization.

For validating the tuning procedure, six field development scenarios are considered.

The well length and number of fracture stages modeled are shown in Table A.2. For

the first five cases, all wells in the model are the same (e.g., all long wells with many

fractures, or short wells with few fractures, etc.), while in the last case the wells are

all different. These six cases are displayed in Fig. A.2. These configurations are all

simulated using the full-physics model. Then, parameters for the surrogate model are

computed, as we now describe.
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Figure A.2: Well designs used in the tuning procedure.
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The quantity we seek to minimize, again denoted by J , is defined as:

J =
S∑
s=1

N∑
n=1

(qs,nref − qs,nsurr)2

Qs
ref e

itn
, (A.1)

where s indicates the particular scenario and S is the total number of scenarios.

Additionally, each scenario is normalized by cumulative production, Qs
ref , to give

equal weighting to each configuration. An important difference with this technique

is that we tune the surrogate model to reduce error over a number of scenarios in

Eq. A.1, as opposed to only a single field design in Eq. 2.7. However, the workflow

described in Section 2.4 applies retraining, which is not used here.

The minimization problem is again solved using GPS to provide Mφ and Mk.

The progression of this minimization is shown in Fig. A.3. After nearly 400 function

evaluations, the mismatch between the full-physics and surrogate models was reduced

by over 95% compared to the initial guess. The initial and optimized SRV properties,

along with the optimization constraints, are displayed in Table A.3. The stimulated

zone permeability increased by nearly a factor of two, while the increase in porosity

was less significant.

Tuning results for two of the six scenarios are shown in Fig. A.4. Importantly,

these two scenarios share the same tuned SRV properties, demonstrating the ability

of the proxy model to match production results from the full-physics model for a

number of field development scenarios. As can be seen by the production responses,

the steepness of the decline curve depends on the number of fracture stages and

the length of the horizontal wellbore. The tuned surrogate model reproduces the

production decline curve of the full-physics model closely in both cases, especially at

the crucial early stages of production. For both scenarios shown, the tuned surrogate

models run over 100 times faster than the full-physics simulations. This level of

speed-up is typical for this two-dimensional case.
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Figure A.3: Optimization performance for tuning the surrogate
model.

Table A.3: Initial and tuned SRV properties

Property Multiplier Initial Optimized

Mφ (0.5 - 3) 1 1.27
Mk (50 - 300) 100 182
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(a) Long wells with many fractures

(b) Short wells with few fractures

Figure A.4: Example surrogate tuning results for 2D case.
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Table A.4: NPV for initial and converged solutions

Surrogate Full-Physics Error
Initial ($MM) 2.44 2.40 1.7%
Converged ($MM) 14.1 13.9 1.4%
Change 578% 579%

A.3 Optimization with Gas at $3.50/mcf

We now present results for field development optimization with gas priced at $3.50/mcf.

All economic parameters are equal to those displayed in Table 2.3. The initial sce-

nario includes five evenly spaced horizontal wells, 3000 ft in length, with eight fracture

stages. The optimization algorithm is expected to shift the well locations toward the

portion of the reservoir with higher initial pressure because this region has more gas

in place (GIP), which will lead to more production.

The performance of the GPS optimization is shown in Fig. A.5. The blue curve

displays results using the surrogate model, while the yellow stars depict results using

the full-physics model at the start and end of the optimization. There is clearly very

close agreement between the two models for the base case and optimized configura-

tions (see Table A.4 for a detailed comparison), which demonstrates the efficacy of

this surrogate modeling procedure for this example. In terms of the actual optimiza-

tion results, the optimized NPV is nearly a factor of six greater than the base-case

NPV. Using the surrogate, each function evaluation requires only a few seconds, so

the optimization required less than an hour of computation. The tuning procedure,

and full-physics simulation using the optimized development plan, adds another 1-2

hours of computation.

Areal views of the field development plans for the base case and the optimized

solution are shown in Fig. A.6. As expected, the optimizer shifts the wells toward the

higher GIP region of the reservoir. In addition, the well lengths are the maximum

allowed (5000 ft) and the optimized solution uses 16 fracture stages in the two wells

located in the highest initial GIP region and 14 stages in the other three wells.
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Figure A.5: Field development optimization performance for $3.50/mcf gas.

Figure A.6: Areal view of base and optimized field designs. Background shows initial
reservoir pressure (psi).
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Figure A.7: Optimization performance under different gas price assumptions.

A.4 Optimization with Gas at $6.50/mcf

We now consider a second field development problem, with the gas price increased

to $6.50/mcf. All other problem specifications are the same as in the previous ex-

ample. The idea here is to demonstrate how the optimization algorithm responds to

different economic assumptions. The optimization performance and a comparison to

the results for the first example are shown in Fig. A.7. Yellow stars again designate

full-physics simulations, and close agreement between these results and the surrogate

model results is again observed. In this optimization, the base case gives an NPV of

$26.0 MM and the optimized solution an NPV of $64.5 MM. It is evident from the

figure that the higher gas price results in a much better NPV – a factor of 4.6 greater

than that for gas priced at $3.50/mcf. This is because costs such as the expense of

the lease and drilling the vertical portion of the well were kept constant between the

two examples.

The optimum field development plan is also of interest. As seen in Fig. A.8(a), well
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locations and well lengths remain unchanged from the optimum in the first example.

However, a greater number of fracture stages are now present in each well. The

algorithm thus balances the marginal cost of additional fracture stages ($250,000)

with the positive effect of additional production on NPV. Fig. A.8(b) displays the

reservoir pressure after ten years of production. Most of the SRV is largely depleted,

though a portion of the reservoir remains essentially unchanged. This indicates a

possible infill location, or that this reservoir could have supported additional wells.

In such a case it may be useful to re-run the optimization using a larger number

of wells. Because the overall optimization procedure is quite efficient, a number of

different cases can be considered within a reasonable time frame.

We tested the tuning procedure used here on the three-dimensional models with

heterogeneous geology described in Section 2.1. We found, however, that this ap-

proach did not perform as well as the procedure that used retraining (described in

Section 2.4). This may indicate that the use of a single set of (Mφ, Mk) leads to some

inaccuracy in heterogeneous cases, though it is sufficiently accurate for homogeneous

models.
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(a) Optimized wells and initial reservoir pressure

(b) Optimized wells and pressure after ten years of production

Figure A.8: Pressure profiles (in psi) and development scenario for $6.50/mcf gas.
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