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Abstract

For the last decade, modern machine learning, especially the deep neural network, has made tremen-
dous impacts to all facets of life. The energy industry is not oblivious to the trend, and machine
learning has found its applications in all of kind of operations. Often, the most cost-intensive op-
eration that is carried out in the energy industry is the well drilling operation. This report is an
extensive study on the application of deep neural networks in optimizing geothermal well drilling
operation, but can be readily applied to oil and gas well due to their similarities.

This study shows that drilling optimization by optimizing rate-of-penetration from past drilling
records is a highly delicate process. Not only a sufficient amount of data from multiple sources of
information is required, the data also must be properly recorded and standardized, or it must go
through preprocessing to filter out invalid entries and to standardize. In this study, a R2 score of 0.53
has been achieved for the rate-of-penetration prediction deep neural network model with random
train/validation splitting scheme. However, as the rate-of-penetration prediction model trained with
random splitting scheme has limited usage in production, an alternative splitting scheme called well-
by-well train/validation splitting is used. With the well-by-well train/validation splitting scheme,
the rate-of-penetration prediction deep neural network model was only able to achieve a R2 score of
0.1.

Rate-of-penetration is not the only criterion used in drilling optimization. This study also con-
sidered optimization by reducing nonproductive times. The most common reasons for nonproductive
times are tripping, and the drillers encountering problems. Therefore, having a model that can fore-
cast these nonproductive times is helpful to the overall quest of minimizing the total costs. In this
study, machine learning models that can predict potential tripping/problems from drilling records
have been developed, and both models have satisfactory accuracy to be used in real life situations.

The problem of incorporating nonnumerical entries in drilling records was also studied in this
study. In addition to the standard numerical-type entries, textural-type entries are often found in
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drilling records. These textural-type entries are often nonstandardized written English remarks/-
comments from the drillers, which may carry useful information about the condition of the well that
does not available elsewhere in the records. However, these remarks/comments require expensive
and time-consuming manual data preprocessing in order to incorporate them into machine learning
models. Bidirectional Encoder Representations from Transformers (BERT) provides a solution for
automating preprocessing of textural data. Using textual information, together with numerical in-
formation, has improved the quality of predictions in most cases.
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Glossary

Backpropagation: An algorithm for training feed-forward neural networks. Backpropagation in-
volves calculation of the gradients backward from the last layer to the first layer.
Correlation plot: A scatter plot between predicted values and true values
Feed-forward neural network: A neural network where output of the previous layer is served as
input of the next layer. Each layer has the form of y(x) = F (x) where x is the input and F (x) is a
learnable mapping
R2 score: Also called Coefficient of determination, normally lies between 0.0 and 1.0. Measure the
goodness-of-fit between true and predicted values
Overfit: A machine learning model is overfitted when it fits the training data well but performs
poorly on validation data.
Recurrent neural network: A type of neural network that works only on sequential data, and the
outputs depend on the prior elements of the input sequence
Stuck pipe: Stuck pipe is when the drill pipe cannot be rotated, or moved. The pipe is considered
stuck if it cannot be freed without damaging the pipe, wellbore, or equipment.
Training set: The dataset used during the training process.
Tripping: The act of pulling the drill string out the wellbore and putting it back in. Usually done
to replace the drill bit or retrieve loose items in the wellbore
Validation set: The dataset used to provide unbiased evaluation of a model.
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Chapter 1

Introduction

Machine Learning (ML), and to some extent Artificial Neural Network (ANN) are rising trends that
have dominated many different industries. The oil and gas industry, and the geothermal indus-
try, are not exceptions to these trends. There has been a great interest in these industries to take
advantage of the recent progresses in ML to uncover valuable insights for profitability and safety.
Naturally, drilling has been a frequent application of interest.

Drilling operations use highly intricate equipment in a very uncertain and hostile downhole en-
vironment, while keeping the costs to a minimum. Due to the high cost of renting and operating
a drilling rig, reducing the total drilling time always has high priority when talking about drilling
optimizations. Typical optimizations include increasing rate-of-penetration (ROP), and reducing
nonproductive times (due to unscheduled tripping and problems, etc.) However, there is no clear
relationship between the hundreds of parameters sent from the rigs and the optimizing parameters.
Compounded with the complexities in downhole lithology and wellbore, drilling optimizations can
be unreliable and depend strongly on who is making the prediction.

Machine learning offers a promising solution to the intricate problem of drilling optimization.
Modern ML methods like ANN not only can accurately describe complex relationship between rig
data and optimizing parameters, but can also process nonnumeric data like written text, sound or
image recordings. Coupled with the ability to process inputs with missing data, modern ML offers a
new perspective on drilling optimization where classical statistical methods have failed before. With
modern ML, the dream of autonomous drilling in complex formation with minimal prior knowledge
may be a reality in the future.

A collection of drilling records from different geothermal field in the United States and Iceland,
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CHAPTER 1. INTRODUCTION 2

each with different geological properties, was used in this study. A preliminary analysis of the collec-
tion of drilling records is the main topic of Chapter 3. Chapter 4 will discuss about the deep neural
network model developed to predict rate-of-penetration, and potential future tripping/problems.
The problem of integrating text data into the predictions is also in the scope of this study, and will
be discussed in Chapter 5.



Chapter 2

Background & Related Work

Using machine learning in drilling optimization is not an entirely new concept. Although not as pop-
ular as ML in production forecasting or reservoir engineering, there have been many papers written
on the topic of using ML in drilling.

Rate-of-penetration (ROP) has often been the benchmark of drilling performance of a well, and
positively correlated to cost. Low ROP results in more days required to drill which in turn increases
the overall cost. However, increase in ROP, which reduces the cost of renting the rig, can also result
in increase in overall costs because high ROP drilling may be associated with frequent bit changes
or high risk in drilling downtime due to problems like stuck pipe. Therefore, drilling optimization
involves finding a sweet spot in ROP that minimizes costs. Given the importance and complexity of
ROP modeling, data-driven modeling of ROP has been a focal point of drilling optimizations.

There have been many empirical mathematical models for ROP, with the earliest dating back
to 1964 with the Bingham model2. Unfortunately, the accuracy of these models has been routinely
questioned3 as their applicability on different formations are highly uncertain. Data-driven modeling
with ML is a promising new direction in ROP modeling. These models have been shown to be able
to generalize across different datasets.

2.1 Empirical models for rate of penetration

Bingham ROP model2 is an early ROP model documented in literature. The model is bit-type
agnostic model:

ROP = ¸ · RPM ·
»
WOB
Db

–˛
(2.1)

3



2.1. EMPIRICAL MODELS FOR RATE OF PENETRATION 4

where:

ROP is the rate of penetration

¸; ˛ are formation dependence constants

RPM is the rotary speed of the drill string

WOB is the weight on bit

Db is the bit diameter

An improved ROP model is the Bourgoyne and Young model4, which models ROP as a function of
eight parameters:

ROP = exp
ˆ
a0 +

8X
i=2

aixi
˜

(2.2)

where:

ROP is the rate of penetration (ft/hr)

a1 is the formation strength parameter

x2; a2 are the normal compaction trend and its exponent

x3; a3 are the under compaction trend and its exponent

x4; a4 are the pressure differential and its exponent

x5; a5 are the weight on bit and its exponent

x6; a6 are the rotary speed of the drill string and its exponent

x7; a7 are the tooth wear parameter and its exponent

x8; a8 are the bit hydraulics parameter and its exponent

With the rise of polycrystalline diamond compact (PDC) bits, a PDC-specific model was developed5,
which includes the effect of rock strength and bit wear:

ROP = Wf ·
G ·WOB¸ · RPM‚

Db · CCS
(2.3)

where:

ROP is the rate of penetration

¸; ‚ are formation dependence constants
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RPM is the rotary speed of the drill string

WOB is the weight on bit

Db is the bit diameter

CCS is the confined rock strength

The Bingham model is the most basic ROP model, it assumes that the two main factors that
affecting ROP are WOB and RPM. The Motahhari model includes the effect of rock strength, and
the Bourgoyne and Young model adds mud flow-rate as a factor for ROP data-driven modeling. The
common point of these models is that they all have empirical constants that are unique for each
formation and bit design. Usually, these constants are found using history matching, where they are
fitted to minimize errors over past drilling records of the same or similar wells. However, having em-
pirical constants makes these models unable to generalize well across different geology and bit design.

2.2 Data-driven models for rate of penetration

Empirical models for rate of penetration, while they are easy to interpret, are not robust enough to
account for the effect each drilling parameter has on others6. Compounding with the fact that most
empirical models have dataset-specific parameters makes generalizing these models difficult.

In oil and gas, Big Data has become an integral part of operations, where an astounding amount
of data is generated and processed every second. This is also undoubtedly true for the drilling indus-
try, where a modern drilling rig can output hundreds of measurement each second. Huge volumes of
fluid flow rates, pressure, temperature, drill string and bit conditions, etc. are the expected output
of a modern rig. Given the complexity and nonlinear nature of these data, an equally complex and
sophisticated model is needed to process and model them.

Data-driven modeling with ANN provides a solution to model the Big Data encountered daily in
drilling operations. With proper usage, ANN can unravel complex relationships that enable accurate
prediction. In addition, ANN models can predict future performance based on information of past
wells, and enable transfer of knowledge between different geological domains.

There have been many attempts at using data-driven models to optimize ROP. Li and Samuel7

predicted future ROP using ANN with surface and downhole values of torque, WOB, and rotary
speed measurement as inputs. The paper shows good accuracy for ROP predictions. There are also
several similar attempts to optimize the ROP that have been done6 8 9 10, which all yielded promising
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results using ML in drilling optimization.

2.3 Criteria for drilling optimization

ROP is the most common optimization criterion for drilling optimization because it is strongly cor-
related to costs. However, drilling optimization should not stop at ROP because there are also other
optimization criteria that can bring similar level of cost savings. ROP optimization has the final goal
to reduce the amount of time spent drilling, and consequently reduce the final costs. In addition to
optimizing the amount of time spent drilling (productive time), minimizing nonproductive time will
also have similar effect on overall costs. Nonproductive times are usually the result of unscheduled
drilling problems such as top drive and circulation system failures, well cleaning, lost circulation, etc.

In addition to having a good model to finding ROP sweet spot, drillers also benefit from having
a model that can give them warning about potential future drilling problems using past data. This
will help drillers to further reduce rig-on-site time, which can result in significant cost savings.



Chapter 3

Dataset

This chapter introduces the dataset used in this study, and discusses the origin, contents, structures
and problems with the dataset. This chapter also discusses the exploratory data analysis done on
this dataset and how to prepare the data for later machine learning study.

3.1 Introduction

The dataset used in this study is a part of the EDGE project, which is a research project aimed
at developing machine learning strategies in geothermal drilling optimization under the support of
the EDGE Program of the US Department of Energy (DOE) Geothermal Technologies Office. The
EDGE project aims to build a database of geothermal drilling data and from there develop optimiza-
tion schemes based on machine learning and deep learning methodologies. Currently, the dataset
includes data from 113 wells from different geothermal projects developed over the past thirty years.
These data represent vastly different geologic and operational settings.

For each well, records are collected, averaged daily, and tallied by record number. All collected
records are stored in a relational database for the ease of query and modification. Each relational
table in the database is related to other tables by using WellID and Record Number as keys. There
are a total of 63 tables, each corresponding to a different source of information. Sources of infor-
mation include drilling rigs, drill string, drill bit, mud logging, etc. The high variety in information
sources is very beneficial to the process of ROP optimization as modeling the subsurface environment
accurately requires detailed surface measurements but also detailed wellbore measurements.

Although having numerous sources of information, it is not recommended to use all tables as
input due to both the nature of the dataset and computational power constraint. The continuity

7



3.2. EXPLORATORY DATA ANALYSIS 8

of some sources of information is not guaranteed. In some wells, the collection frequency of some
sources is low enough that there are only few datapoints for the entire drilling operation. In some
other cases, the information is only collected in short bursts a few times. Due to the sparsity of
some sources, it is not possible to make assessments about the quality of the collected information.
Therefore, only the frequently collected features were selected to use as inputs to the models. There
is also the problem of nonnumeric records, which will be addressed in Chapter 5 of this study. The
relational tables that were selected to use in our model are shown in Table 3.1, with focus on the
dailydrilldetail table and dailybitinfo table. These two relational tables contain basic param-
eters that are frequently used to predict ROP. Another other problem with using all relational tables
is the limits in computational power. If all relational tables are used as input, the number of features
will be in the thousands. Training big ML models with that many input features is computationally
intractable.

3.2 Exploratory data analysis

By selecting frequently collected features from the database, it is possible to do exploratory data
analysis (EDA) on the collected data to make assessments about their quality and find relationships
between variables.

The first problem in the dataset is that data gaps appear frequently in many features as seen in
Table 3.2. As some machine learning methods cannot deal with missing data, this will have negative
impacts in the analysis and the modeling of the dataset.

The first step in the EDA is to graph the histograms of all features. Because naturally occurring
variables will have the tendency to be distributed under some common probability distributions
(Gaussian, Exponential, etc.), any feature that is unusually distributed is worth examining. It is
easy to see from Figure 3.1 and Figure 3.2 that while some features exhibit common distributions
(MudFlowMax, AnnVelocityDC, AnnVelocityDP, BitHrs), most features do have a spike in the his-
togram around zero value. This is an unexpected behaviour, which indicates these features may
have extreme positive outliers or wrong units. Another unexpected problem is that some features
have negative values when they should be positive (BitFootage, BitROPAvg).

Histograms of some example features that exhibit the zero are in Figure 3.3 and Figure 3.4. It is
easy to see that most recorded values of BitWOBAvg and BitTorqAvg data are in the [0-1000] range,
both features contain some values that go up to 35000, or about three orders of magnitude difference
compared to typical values. A theory for this behavior is that the different drillers mixed up the unit
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Table 3.1: Selected relational tables

Table name Content Example features

bhainfo Basic info about each BHA
used

BHA Length; BHA Weight;
Jars Weight; WOB; etc.

bhadetail Detailed about constructions
of each BHA used

Inner diameter; Outer
diameter; Tensile strength;
Collar types; etc.

bitinfo Basic info about each Bit used Bit manufacture; Diameter;
Types; IADC code; etc

bitruninfo Detailed about constructions
of each Bit used

Jets diameter; Time on Bit;
Pump pressure; Wear and
Dull condition; etc.

dailybitinfo Daily drilling parameters from
bits data (Collected daily)

Bit footage; Bit ROP
Average; Bit ROP Max; Bit
WOB Average; Bit WOB
Max; Jet Velocity; etc.

dailyreport Basic summary of daily
operations from rigs data
(Collected daily)

Start Depth; Ending Depth;
Current Operation; Future
Operation; etc.

dailydrilldetail Daily drilling parameters from
rigs data (Collected daily)

Mud flow rate; ROP Average;
ROP Max; WOB Average;
WOB Max; Pump pressure;
etc.

dailydrillmisc Daily miscellaneous
information from rigs data
(Collected daily)

Hook load rotate; Hook load
pickup; Pump 1-4 pressure;
Drag Average; Drag Max;
Annulus pressure Average;
etc.

dailyoperations Coded of daily operations
with driller comments
(Collected daily)

Operations Code; Phase
Code; Descriptions

dailysolidscontrol Daily parameters from rigs
shakers (Collected daily)

Shaker 1-6 Top and Bottom;
Desanders hours; Degasses
hours; etc.

dailymudreport Daily mud parameters from
rigs data (Collected daily)

Mud density; Mud viscosity;
Mud resistivity; etc
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Table 3.2: Missing data rate of some features

Feature name Number of missing
values

Total number of
values

Data missing rate (%)

Mud flow Average 848 4624 18.34
ROP Average 346 4624 7.49
Pump pressure
Average

628 4624 13.58

Torque Average 1943 4624 42.02
Bit ROP Average 555 4341 12.79
Bit WOB Average 753 4341 17.34
Bit Pressure Drop 1159 4341 26.7

when recording the values: some recorded BitWOBAvg as lbs while some as kilo-lbs, etc. An easy
fix to this problem is noticing the original units for BitWOBAvg and BitTorqAvg are lbs and lbf·ft.
Therefore, any value under 100 is incorrectly recorded and should be multiplied by 1000. The results
of the proposed correction method are in Figure 3.5 and Figure 3.6. It is observed that in Figure 3.5,
the proposed correction method turns the BitWOBAvg distribution into a Gaussian distribution,
which indicates that our theory likely is correct. However, the opposite happened in Figure 3.6,
where the proposed correction method does not significantly change the distribution shape, which
may indicate that our theory is not applicable for BitTorqAvg. In addition, because torque values in
drilling can vary significantly when drilling when factoring in stuck pipe, lost circulation and mud
motor, BitTorqAvg should be left as is. Another problem with BitTorqAvg is that some extreme
values (20000, 35000, etc.) only appear a few times in the entire dataset. These datapoints can be
considered extreme outliers and removed.

By following the same procedures as BitWOBAvg and BitTorqAvg, improper and extreme outlier
values can be identified and fixed/filtered out as seen in Table 3.3.

After all improper values in the dataset are taken care of, the next step is to find if there is any
underlying structure in the dataset. This is crucial as if some features are incorrectly recorded, or
the features have no correlation to each other, there will be no or very weak underlying structures
and the modeling job will be much harder. A commonly used analysis method for this step is prin-
cipal component analysis (PCA), which is a dimensionality reduction method so the data can be
visualized. However, for a dataset with a large number of dimensions like ours, there are superior
dimensionality reduction methods. In this study, t-distributed stochastic neighbor embedding (t-
SNE)11 was used for dimensionality reduction. Because t-SNE cannot function properly with missing
data, any data row with one or more missing points is dropped completely. This act of dropping
rows with missing values significantly reduces the number of data points available for t-SNE analysis



3.2. EXPLORATORY DATA ANALYSIS 11

Table 3.3: Correction methods used

Relational table Feature name Correction method

dailybitinfo BitMudDensity Remove all values
BitMudDensity < 1 and
BitMudDensity > 20

dailybitinfo BitWOBAvg BitWOBAvg ≤ 100 *= 1000
dailybitinfo BitTorqAvg Remove all values BitTorqAvg

> 20000
dailybitinfo BitRPMAvg Remove all values

BitRPMAvg > 2000
dailybitinfo BitMudFlowAvg Remove all values

BitMudFlowAvg > 1600
dailybitinfo BitROPAvg Remove all values BitROPAvg

> 1600
dailybitinfo BitWOBAvg Remove all values

BitWOBAvg > 300
dailydrilldetail WOBAvg WOBAvg ≤ 100 *= 1000
dailydrilldetail RPMAvg Remove all values RPMAvg >

2000
dailydrilldetail MudFlowAvg Remove all values

MudFlowAvg > 1600
dailydrilldetail ROPAvg Remove all values ROPAvg >

200
dailydrilldetail PumpPSIAvg Remove all values

PumpPSIAvg > 5000
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Figure 3.1: Histogram of dailydrilldetail data

as seen in Table 3.4.

Table 3.4: Dataset after removing rows with missing values

Relational table Number of rows after
drop

Number of rows
before drop

Drop rate (%)

dailybitinfo 1375 4341 68.32
dailydrilldetail 1144 4624 75.26

From Figure 3.7 and Figure 3.8, it is observed that in both cases dropping the missing data rows
has no detrimental effect on the EDA as t-SNE was still able to separate different geothermal fields
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Figure 3.2: Histogram of dailybitinfo data

cleanly. This is a good news for later analyses because dropping rows with missing values is a valid
strategy for some ML methods, and in this case dropping does not destroy the structures of the
dataset. Another interesting feature from Figure 3.7 and Figure 3.8 is the amount of separation
between dailydrilldetail data and dailybitinfo data. Each geothermal field is more cleanly
delineated in the t-SNE using dailybitinfo compared to the one from dailydrilldetail. This
indicates the data collected from dailybitinfo is of higher quality for ML modeling purpose. How-
ever, each geothermal field can be easily identified from t-SNE graphs from dailydrilldetail data,
showing that there is a strong underlying data structure even in dailydrilldetail data. Finally,
the results from t-SNE analysis confirmed that there is data sufficiency for further ROP modeling.
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Figure 3.3: Histogram of BitWOBAvg data

Figure 3.4: Histogram of BitTorqAvg data
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Figure 3.5: Histogram of BitWOBAvg data (fixed)

Figure 3.6: Histogram of BitTorqAvg data(fixed)
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Figure 3.7: t-SNE results on dailydrilldetail data. Each dot represents a daily datapoint and
each color represents a different geothermal field

3.3 Nonnumerical data

In additional to standard drilling records described above, there are also nonstandard drilling records
in the database. These records are in textual information format, rather than numerical format and
need to be processed separately. One such feature that carries important drilling information is
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Figure 3.8: t-SNE results on dailybitinfo data. Each dot represents a daily datapoint and each
color represents a different geothermal field

the “OpsGroup” column. The “OpsGroup” column encodes what kind of drilling operations happen
during a drilling day, from a predefined categorical format: “DRILL” for normal drilling, “TRIP”
for tripping, “PROBLM” for problems, and “OTHER” for other operations (i.e. “DRILL”-“DRILL”-
“TRIP”-“TRIP”). This feature is important as the content of the daily operations are not transparent
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from the daily average numerical records alone (i.e. it is hard to infer whether trippings occur or not
solely from the numerical records). This will also serve as indicator of nonproductive times, which
sometimes are correlated to significant cost-saving opportunities as discussed in Chapter 2.

Additionally, the records also contain daily remarks from the drillers in the “Description” column.
This feature includes remarks from drillers which contain detailed descriptions of what happened
that day that cannot be easily described using numbers. There are four different categories that
these remarks belong to, depending on the purposes of the remarks (Table 3.5 and Table 3.6).

Table 3.5: Drilling remarks’ categories

Remark category Purposes

CurrentOps Records of current drilling operations
FutureOps Tentative lists of future operations
Daily Comment Comments from the drillers about any current

drilling operation
MgmtSummary Summary and remarks from rig managements

Table 3.6: Sample of remarks from the “Description” column

Remark category Example

CurrentOps Drill 12 1/4” hole from xxxx to xxxx using
mud pump 2; worked on mud pump 1;
replaced 4 seats & valves. Drilled 12 1/4” hole
from xxxx to xxxx

FutureOps Recover fish, make up and inspect new bottom
hole assembly, run in hole and continue
drilling 12 1/4” hole f/ xxxx

Daily Comment No mud loss. No new fractures. Rig up drag
at xxxx - 200,000. Rig still pulling good

MgmtSummary No problems with 20” casing run. NO fill on
bottom

As pointed out in Chapter 2, the lithology of the drilling formations is indispensable in creating
an accurate model. However, accurate lithological information is hard and expensive to acquire in
advance. Therefore, other sources of information are usually used as proxies for lithology informa-
tion. In our dataset, the rock compositions and properties from the mud-shakers, which record a
“Litho” column, can serve as a proxy. However, the problems of processing textual data encountered
with the “Description” column also apply to the “Litho” column . In fact, the records from mud-
shakers are even harder to understand compared remarks from the drillers (Table 3.7).
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Table 3.7: Sample of daily records from the “Litho” column

40-60% Phyllite, 40-60% Silstone and Clay

xxxx-xxxx 0-20% Phyllite 20-40% Siltstone 40-80% Clay, xxxx-xxxx 0-20% Qtz Vng 30-50%
Phyllite 20-50% Silstone 20-40% Clay, xxxx-xxxx 0-20% Phyllite 20-40% Silstone 40-60% Clay

Mod ylsh brn; firm to hd; sbrnd ctgs; aphnc w rd glassy incl; com qtz & calct fill amyg; tr clystn

Rhyolite/ Basalt; lt-med gry, prplish gry, hd, subblky-subang ctngs, aphnc-sli porh, (qtz, calct,
chalcedony) fillied amyg

It will be very beneficial for the modeling process if the model can incorporate textual information
in additional to the conventional numerical information. However, despite the wealth of information
that the textual data contains, extracting that information is not easy as the remarks are records
in written English with no standardized structure. Conventionally, manual processing is the only
way to extract useful information out of the remarks, which is highly time, and resource, consuming.
Even then, it is hard to incorporate the extracted information into the ML model to use together
with other drilling records. Hence, these kinds of textual data are very often ignored in ML modeling.
This study will discuss about how to incorporate these remarks effectively without manual processing
in Chapter 5.



Chapter 4

Modeling with Deep Neural
Networks

4.1 Introduction

From 2010 onward, deep neural network (DNN) methods have gained remarkable improvements,
and sometimes outperform humans in some tasks. From the humble beginning of AlexNet (2012)
with merely 66 million parameters to the modern GPT-3 (2020) with more than 17 billion parame-
ters, DNN sizes have grown astoundingly in the last decade, and so have their capabilities. AlexNet
started out with simple object classification tasks, but now GPT-3 is capable of holding natural lan-
guage conversation with humans12. This remarkable advance strongly corresponds to how complex
the network is, i.e., the number of layers in the network.

However, simply stacking layers upon layers does not really make a DNN powerful. DNNs are
notoriously hard to train properly, coupled with the fact that adding more parameters to the net-
work makes the network tend to overfit the training dataset. It took research and experimentation
to arrive at modern DNN architecture.

This chapter discusses the dual-path dual-branch deep residual neural network (DPDBN) archi-
tecture used in this study: the history, the mathematical theory, and the evolution to the DPDBN
architecture. In addition, this chapter also discusses about the methodologies and the results of
using DPDBN in well optimizations.

20
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4.2 Dual-path dual-branch deep residual neural network

The DNN AlexNet (2012) was the 2012 winner of object classification task ImageNet (ILSVRC
competition) with a predictions error rate of 15.3%, 10.8% higher than the runner-up13. It was a
sensational result at that time, where a neural network model outperformed sophisticated hand-
crafted feature statistical models. The authors cite that it is the depth of 8 layers that enables
AlexNet to achieve high performance. This was also the trend for the DNN industry for a while,
where progressively deeper neural network architectures achieved higher accuracy in ImageNet pre-
dictions.

Despite the vast differences in architecture, most neural networks must rely on back-propagation
to be trained efficiently. However, the fundamental problem of vanishing/exploding gradients of
back-propagation hampers the convergence of DNN from the beginning. To understand this problem,
consider a L layers conventional feed-forward neural network; at the ‘th layer, the weight is W ‘, and
the activation function is f ‘. Let the input and true output pair be x and y , then the output of the
neural network g(x) is:

g(x) = f [WL · f L−1[WL−1 · :::f 1[W 1 · x ]:::]] (4.1)

Given a criteria function C, the errors term of the neural network respects to true output y is:

C(y; g(x)) = C(y; f L[WL · f L−1[WL−1 · :::f 1[W 1 · x ]:::]]) (4.2)

Denote the output of the ‘th layer as a‘, then from chain rule, the gradient of criteria with respect
to x is:

∇xC(y) = (W 1)T · (f 1)′ · (W 2)T · (f 2)′ · :::(WL−1)T · (f L−1)′ · (WL)T · (f L)′ · ∇aLC(y) (4.3)

Or, at the ‘th layer, the gradient of the weight can be computed recursively as:

∇W ‘C(y) = (f ‘)′ · (W ‘)T · ∇W ‘+1C(y) (4.4)

From Equation 4.4, it easy to see that the gradient at the ‘th layer is the product of (f ‘)′[(W ‘)T ].
Unless the values of all (f ‘)′[(W ‘)T ] are close to 1, the value of ∇W ‘C(y) can be exceeding large or
exceeding small, and the problem worsens with larger L. This behavior is called the exploding/van-
ishing gradients problem.

Due to the exploding/vanishing gradients problem, training a DNN with a large number of layers
is notoriously hard. A lot of efforts have been made to remedy this problem. Normalized initial-
ization and intermediate normalization14, whose goal is to bring the values of all (f ‘)′[(W ‘)T ] in
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Equation 4.4 close to 1, are the most typical methods used to fix the gradients problem, which was
considered largely addressed by 2015. However, when deeper networks start converging, another se-
rious problem was discovered; the network performance decreased rapidly with depth despite proper
convergence. Overfitting is not the cause for such degradations as the network performance on both
the training and validation sets degrade (Figure 4.1). This indicates that the training process is not
to blame, but there is a architectural problem with the conventional DNNs themselves that prevents
these networks from training.

Figure 4.1: Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer
conventional DNN1

Similarly, there are also efforts in creating alternative architectures to remedy the problem with
conventional DNN. On of the early successes is with the winner of ILSVRC 2014: GoogleNet15,
which utilizes a Network-in-Network structure. A breakthrough came in 2015 with development of
Deep Residual Neural Network (ResNet)1, which was the winner of ILSVRC 2015 by a wide margin.
ResNet, together with its proposed deep residual learning framework, enables researchers to create
and train neural networks hundreds of layers deep, while still maintaining superior performance. The
deep residual learning framework is also the foundation of the dual-path dual-branch deep residual
neural network used in this study.

The key idea of deep residual learning framework is that conventional deep networks performances
degrade because they struggle to learn identity mapping due to multiple layers of nonlinearity map-
ping. If this hypothesis holds true, then a solution is rather than ask the network to find the direct
mapping function f : f (x) = y , the network is asked to find the residual mapping h : h(x) = y − x .
By asking the network to find the residual mapping, if the identity mapping is the optimal mapping
then the network simply drives the weight to zero to approximate the mapping. More specifically,
consider x is the input and h(x) is the output of a one/many layer(s) neural network block, then a
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building block of the deep residual network is defined as:

y = h(x) + x (4.5)

where + denotes element-wise addition.
The dimension of h(x) has to match the dimension of x . If the dimensions are not matched, then
the building block is:

y = h(x) +Ws · x (4.6)

where Ws is a linear mapping so that Ws · x and f (x) have the same dimensions.

The deep residual network architecture is composed of many residual building blocks defined in
Equation 4.6 (Figure 4.2) stacked on top of each other. The original author has successful trained a
152-block deep residual convolution neural network, each block containing three convolutional lay-
ers, for the ILSVRC 2015 competition. The results were excellent, just like AlexNet brought forward
in 2012, as seen in Table 4.1. ResNet-152 outperformed other state-of-the-art neural networks by
a significant amount on the ImageNet dataset. The result is also an important proof for the deep
residual learning framework hypothesis. Although originally used for image classifications, deep
residual neural network architecture can be readily modified to accept tabular information, like that
used in this study.

Table 4.1: Top-5 prediction errors rate ImageNet validation set of some neural network architectures

Network Top-5 prediction errors rate (%)

VGG (ILSVRC 2014 Runner-up) 8.43
GoogLeNet (ILSVRC 2014 Winner) 7.89
ResNet-34 5.60
ResNet-50 5.25
ResNet-101 4.60
ResNet-152 (ILSVRC 2015 Winner) 4.49
DenseNet-264 (2016) 5.29
DPN-131 (2017) 4.16

However, the residual neural network is not the only successful attempt to circumvent the perfor-
mance degradation problem. Another successful deep neural network is Densely Connected Neural
Networks (DenseNet)16, which is based on a different but similar hypothesis. DenseNet architecture
is based on the hypothesis that when a network becomes increasingly deep, any information about
the inputs, after passing through many layers, vanishes by the time it reaches the end of the network
(or the beginning in backpropagation). ResNet remedies this problem by creating shortcuts that
allow information to flow freely from the beginning to the end of the network. DenseNet argues
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Figure 4.2: Deep Residual Network

that rather than using roundabout methods to create these shortcuts, the network should have these
shortcuts built-in explicitly. DenseNet connects all layers directly with each other to ensure infor-
mation flows between layers as seen in Figure 4.3. Different from ResNet, DenseNet never combines
features with summation before passing them to another layer; these features are simply concate-
nated with each other before passing.

More specifically, consider the layer ‘ of densely connected neural networks, denoting the outputs
of all previous layers as z1; z2; z3; :::; z‘−1, then the output of the ‘th layer is:

y‘ = f ([z1; z2; z3; :::; z‘−1]) (4.7)

where f (x) is the mapping function of the ‘th layer and [z1; z2; z3; :::; z‘−1] is the concatenation of all
previous layers features.
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Figure 4.3: Densely Connected Network

Densely connected neural networks are also composed of basic building blocks (Figure 4.3) stacked
on top of each other, similar to the ResNet architecture. One important parameter of DenseNet, in
addition to depth, is growth rate k of the network. The growth rate is defined as follows: a DenseNet
has a growth rate of k if the ‘th layer has k0 + k(‘ − 1) feature maps, where k0 is the number of
feature maps in the initial layer. A simple way to understand the role of growth rate k is to consider
all the feature maps in the network is the global state of the network, then each layer contributes k
feature maps to this global state. Due to these densely connected layers, the network’s global state
can be accessed from anywhere in the network, eliminating the need for feature maps replications in
traditional feed-forward network.

Despite the seemingly large differences in architectures, DenseNet is conceptually similar to
ResNet and able to produce a similar result to ResNet on the ImageNet dataset (Table 4.1). One
reasonable explanation for this is that both ResNet and DenseNet help increase the parameter uti-
lization rates; there is no need to relearn a feature map if it is previously learnt. ResNet makes these
known feature maps accessible implicitly through identity additions, while DenseNet make them
available explicitly. However, each approach also has its drawbacks: ResNet is good at finding and
reusing dominant feature maps, but bad at finding new feature maps; DenseNet on the other hand
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tends to explore many feature maps, but suffers from redundancy as newly explored feature maps
may be very similar to the known ones.

Naturally, due to the similarities and drawbacks, there were efforts to try to combine the ResNet
architecture with DenseNet architecture, and one of the more successful attempts is with the Dual
Path Networks (DPN)17. The DPN architecture not only has the advantage of ResNet where feature
maps are reused efficiently and also the ability to explore new feature maps of DenseNet. More
specifically, in the DPN architecture, the ‘th building block F‘(x) has the form:

Let:
x‘ = [z1; z2; z3; :::; z‘−1; y‘−1]

r = f‘(x‘)

F‘(x‘) = [z‘; y‘]

Then:
[z‘; y‘] = [g‘(r); y‘−1 + h‘(r)]

(4.8)

where [z‘; y‘] are the two outputs of the ‘th building block, f‘, g‘, h‘ are subsequently the common
path, the individual path, and the residual path mapping functions.

It is easy to see from Equation 4.8 that there are two distinct flows of information in DPN.
Information can flow from layer to layer through y‘, which goes through an identity addition trans-
formation after every block, or through [z1; z2; :::; z‘], where a new mapping z‘ is added after every
block. If all z‘ of a DPN are discarded, then the resulting network is a ResNet, whereas if all y‘ are
ignored, the resulting network will be a DenseNet. Hence, y‘ resemble for residual connections the
enable feature maps reuses, and z‘ resemble densely connected paths that enable efficient feature
map explorations. By using both z‘ and y‘ as input of any building block, DPN was able to achieve
superior results on the ImageNet dataset compared to both ResNet and DenseNet despite having
fewer parameters (Table 4.1).

While a neural network architecture is vital to its performance, there are also other considerations
in order to achieve good results. One of most important criteria when designing a machine learning
model is its ability to generalize, a machine learning model is only useful if it is able to give good
predictions on unseen datasets. This is undoubtedly true with neural networks, which have far more
learnable parameters than traditional machine learning methods. This is the common explanation
for why neural networks tend to be over-fitted. While it is easy to come up with a neural network
that predicts well only on the training dataset (memorization of the dataset), developing a network
that gives good predictions on both seen and unseen dataset is hard. Unfortunately, there is not
a concrete theory to explain why some neural network architectures generalize exceptionally well
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Figure 4.4: Dual Path Network

while some do not. However, when the total number of learnable parameters is large, some form of
regularization is needed to avoid poor generalizations.

The uses of regularization has accompanied the development of machine learning in general. In
addition to the architecture used, a proper regularization scheme can also greatly improve the final
predictions of a model. In classical machine learning, the most common methods for regularization
include L1, L2 regularizations and early stopping. L1 and L2 regularizations both constrain the
growth of the model’s coefficients in order to avoid over-fitting. However, although they work well
in classical machine learning, L1 and L2 regularizations are considered harmful in neural networks
and are seldom used. On the other hand, early stopping stops the training process before the model
becomes over-fitted. Unfortunately, it is not easy to use in conjunction with neural network models
as these models can have complicated training processes where over-fitting is not easy to identify.

Because of the needs for regularizations in neural networks, specific methods have been devel-
oped. In conventional feed-forward neural networks, the standard method for regularizations is
using Dropout18, where in each training iteration, some randomly selected nodes in the network are
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zeroed out. This means a random portion of the network is deactivated and does not contribute to
the training process. Through the Dropout process, random noises are added into the information
flow of the neural network, and consequently into its gradients during training. Dropout reduces
the dependency of each neuron to the input data and the outputs of other neurons, which results
in better generalization of the model. In addition, a side effect of Dropout noises is they help the
optimizers to get out of local minima, and to explore “difficult to reach” parts of the loss surface that
are not easily accessible normally. Despite that, due the specific natures of ResNet, Dropout is not as
helpful and sometimes undesirable. A more specific regularization scheme should be employed when
dealing with ResNet and its derivatives. A regularization scheme specifically designed for ResNet,
called Shake-Shake regularization, was used in this study.

Shake-Shake regularization is an attempt to improve the generalization ability of multibranch
neural networks (ResNet, DenseNet, DPN, etc.) by introducing stochastic elements into the net-
work19. The original method is based on ResNet architecture, but can be modified to accommo-
date other multibranch neural network models. In Shake-Shake regularization, for the ‘th building
block, instead of only one residual mapping h(x) (Equation 4.6), there are two residual mappings
(or branches) h1(x) and h2(x). Let ¸ and ˛ be two variables sampled from a uniformly random
distribution, then Shake-Shake regularization is defined as:

y(x) =

8>>><>>>:
x + ¸h1(x) + (1− ¸)h2(x); in forward phase

x + ˛h1(x) + (1− ˛)h2(x); in backpropagation phase

x + E[¸]h1(x) + E[1− ¸]h2(x); in validation

(4.9)

Normally, the range of the uniform random distribution that ¸ and ˛ are sampled from is chosen as
[0; 1], which results in E[¸] = E[1− ¸] = 0:5.

In forward calculation of a ResNet with Shake-Shake regularization, the residual mapping is the
sum of two separate residual branches with a fuzzy number ¸. The purpose of ¸ is to let the two
evolve independently rather than converging to the same residual mapping during the training phase.
The result is that the final residual mapping is the average of two different residual branches, which
hopefully increases the generalization abilities of the network. Normally, during the backpropagation
phase, if a branch is multiplied by ¸ then its gradient will also be scaled by ¸. However, the gradient
here is scaled by ˛ (or 1 − ˛) rather than ¸ (or 1 − ¸). This has the effect of introducing noises
into the gradients during the backpropagation phase, which helps the optimizing process, similarly
to what Dropout does.

In this project, a neural network architecture, called dual-path dual-branch neural network
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Figure 4.5: Deep Residual Network with Shake-Shake regularization

(DPDBN) was used. DPDBN is a modified DPN architecture that includes Shake-shake regu-
larization. In DPDBN, each ‘th building block F‘(x) has twice the amount of mapping functions
compared to Equation 4.8. More specifically, f 1‘ and f 2‘ ; g

1
‘ and g2

‘ ; h
1
‘ and h2‘ are subsequently the

two branches of the common path, the individual path, and the residual path mapping functions,
the ‘th building block F‘(x) can be described as:

Let:
x‘ = [z1; z2; z3; :::; z‘−1; y‘−1]

r1 = f 1‘ (x‘); r
2 = f 2‘ (x‘)

F‘(x‘) = [z‘; y‘]

Then:

[z‘; y‘] =

8>>><>>>:
[¸g1

‘ (r
1) + (1− ¸)g2

‘ (r
2); y‘−1 + ˛h1‘ (r

1) + (1− ˛)h2‘ (r
2)]; in forward phase

[‚g1
‘ (r

1) + (1− ‚)g2
‘ (r

2); y‘−1 + ‹h1‘ (r
1) + (1− ‹)h2‘ (r

2)]; in backpropagation phase

[E[¸]g1
‘ (r

1) + (1− E[¸])g2
‘ (r

2); y‘−1 + E[˛]h1‘ (r1) + (1− E[˛])h2‘ (r2)]; in validation
(4.10)

where ¸, ˛, ‚, and ‹ are variables sampled from a uniformly random distribution in the range [0; 1].
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Figure 4.6: Dual-path dual-branch Network

4.3 Methodology

4.3.1 ROP modeling

As discussed in Chapter 2, the ML model developed to help drill a successful well will have ROP
as the main criterion. For that purpose, a ML model based on DPDBN has been developed. The
target is to create a ML model that is able to accurately predict ROP from typical drilling records.

The daily-averaged drilling records described in Chapter 3 serve as inputs, and the daily-averaged
ROP will be the target. However, these inputs and outputs cannot be used directly as they are due to
multiple problems in the original records, as uncovered in the second section of Chapter 3. Therefore,
some data preprocessing works are needed to make the data ready for the later modeling part. The
data preprocessing work done on the inputs includes the follow steps:

1. Take care of improper values

2. Fill missing values or extreme outliers with nan

3. Scale the features to have mean of zero and standard deviation of one
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4. Create the feature mask

5. Replace missing values or extreme outliers with zero

6. Concatenate scaled data with the feature mask to create the final input

The first step is described in detail in Chapter 3. In addition, to prevent data leaking from the
inputs to the outputs, some features must be removed from the inputs. The removed data includes
features that record footage or total drilling time of the bits (BitFootage, BitHrs, etc.). In step
two, any missing data, or any extreme outlier deemed by the previous step, is replaced with a nan
value. The purpose of this step is to remove the influences of any extreme outlier, and make the
data easier to work with in the later steps. The third step is scaling the data, which is a requirement
for most neural network models. One of the most common scaling methods is standard scaling,
which transforms the data so that it has the mean of zero and standard deviation of one feature-
wise. Standard scaling is also the chosen scaling method for this project due to its effectiveness and
simplicity. After scaling, a feature mask is created. A feature mask is a table which has the same
dimension as the scaled data, where a value of one in the table indicates a missing/outlier value in
the original data, and value of zero indicate the data is present. The purpose of the features mask
is to inform the locations of missing data so the model can react accordingly. Using a feature mask
is a strategy that helps a ML model deal with incomplete information, which can also be used to
describe the dataset used in the project. Without this feature mask, any row with missing data has
to be dropped, which may reduce the size of data by up to 75% (Table 3.4). Finally, the input is
the simple concatenation of the scaled-data and the feature mask.

The same process repeats for preparing the outputs, albeit with a few small differences: there
is only one feature, and rather than using a feature mask, missing data or extreme outlier (and the
corresponded row in the inputs) are dropped. A subset of the inputs is shown in Table 4.2.

Table 4.2: Sample of the inputs used for ROP modeling

BitWOB BitRPM BitTorq BitMud ... Mask_1 Mask_2 Mask_3 Mask_4 ...
Avg Avg Avg FlowAvg

-1.69918 0 -2.13653 0 ... 0 1 0 1 ...
-1.17123 0 -1.98401 0 ... 0 1 0 0 ...

Considering the purpose of this model, which is to help drillers to model and maximize the ROP,
there are two different approaches to construct such model. The estimate can either try to model the
current ROP using the current drilling record from the rigs, so that the drillers can use the model
as an anomaly detector when there is a big discrepancy between true ROP value and the predicted
ROP value, and the model can also help the drillers to maximize the ROP by allowing them to
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adjust the input parameters and observe the response from the model. In the second approach, the
model can try to predict the next day ROP from the current drilling record, giving drillers ample
warning times for potential problems. For the first approach, the model will be trained with drilling
record at time t and asked to predict the ROP at time t, while for the second approach, the model
will be trained with drilling record at time t − 1 and asked to predict the ROP at time t. This
project considered the latter approach.

Conventionally in machine learning, the training set and the validation set are constructed by
randomly selecting datapoints from the original dataset. This is to ensure that both the training and
the validation data have the same underlying distributions, which is an important assumption when
using them to gauge the network performances/generalizations. However, considering how a ROP
model would be used in drilling, the model is trained on drilling records of known wells so that it
can accurately model the ROP of any new similar well in the same area. This means that a random
train/validation splitting scheme is not suitable as there is no information about the new well. To
deal with this problem, another train/validation splitting scheme must be used; rather than splitting
the information randomly, the train/validation is chosen well-by-well (i.e. there are drilling records
of well 10, 11, 12, 13, 14, and 15; then the records of wells 10, 11, 12, and 13 will be included in
the training set while the records of wells 14, and 15 will be included in the validation set). This
train/validation splitting scheme mimics how drillers would use a ROP model in production. This
project considered both approaches.

With the inputs and outputs clearly defined, the next step is to train the neural network model
on the dataset. The DPDBN used in this study is constructed with the parameters described in
Table 4.3.

Table 4.3: DPDBN parameters for ROP modeling

Parameter name Value

Number of elementary block, nb 15
Growth rate, k 5
Number of elementary block nt 3
Activation function ReLU
Total number of parameters 2595904
Loss criteria function Huber loss

The common path, the individual path, and the residual path mapping functions f‘, g‘, and h‘ in
each branch of the DPDBN model is simply a feed-forward neural network with three layers and two
ReLU activation functions in between. The network will be trained on the dataset until over-fitting
occurs (early stopping), and the results are the average of ten individual runs.
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4.3.2 Non-ROP modeling

As discussed at the end of Chapter 3, there are other important parameters to the success of a well.
Constructing a model that can give future warning about potential problems and nonproductive
times is also beneficial to the drillers. Rather than ROP, this model will predict what operations
will happen tomorrow (the “OpsGroup” feature). In this project, a model to predict the two lead-
ing causes of nonproductive times, “TRIP” and “PROBLM”, was developed. This model takes the
drilling record at time t − 1 and predicts whether “TRIP” or “PROBLM” happens at time t. This
will give drillers ample warning time to prevent/remediate potential nonproductive periods. For this
purpose, the inputs, the train/validation splitting scheme, and the models are similar as in the ROP
modeling process. The only difference is the output, which will be coming from the “OpsGroup”
column.

4.4 Results

4.4.1 ROP modeling

From Figure 4.7, it is easy to see that in random train/validation splitting, the ROP model is doing
reasonably well on the drilling records dataset. The model achieves an R2 score of 0.56 on the
training set and 0.54 on the validation set. The 95% confidence interval of the model on Figure 4.8
indicates good prediction quality.

However, switching from random to well-by-well train/validation splitting has a detrimental ef-
fect on the results. The model only achieves an R2 score of 0.34 on the training set and 0.10 on the
validation set (Figure 4.9). The 95% confidence interval of the model on Figure 4.10 shows the high
uncertainties in the predictions (i.e. a real ROP of 10 ft/hr is often predicted to be in the range of
5 ft/hr to 15 ft/hr).

It is clear from the result that even with an identical machine learning model, using random
train/validation splitting produced a model that is accurate enough for use in production, while
using well-by-well train/validation splitting produced a model with subpar prediction quality. Un-
fortunately, as discussed before, the model trained on random train/validation splitting data has
limited use in production despite it superior accuracy as it requires knowledge from the future. On
the contrary, the model trained on well-by-well train/validation splitting has use in production, but
its accuracy was not sufficient.
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Figure 4.7: Correlation plot for ROP modeling, random train/validation splitting

There is a possible explanation for the discrepancies between the two models. Random train/-
validation splitting is often used as it is an easy method to make sure that the training dataset
and validation dataset have similar underlying distributions. On the other hand, it is shown that
ROP modeling depends strongly on the lithological properties of the drilling formation (Chapter 2),
hence only wells in the same field are chosen in well-by-well train/validation splitting as they have
high probability to have similar geological properties. However, there are discrepancies between the
two models, indicating that the training dataset and validation dataset have different underlying
distributions, even though they belong to the same field. If that were that case, then a better result
can be obtained by selecting wells that have similar geological properties, or by adding lithological
information into the inputs.
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Figure 4.8: 95% confidence interval plot for ROP modeling, random train/validation splitting
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Figure 4.9: Correlation plot for ROP modeling, well-by-well train/validation splitting
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Figure 4.10: 95% confidence interval plot for ROP modeling, well-by-well train/validation splitting
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4.4.2 Non-ROP modeling

Figure 4.11: Confusion matrix for tripping and problem predictions: left for tripping predictions,
right for problem predictions. One indicates tripping/problem did happen, zero indicates trip-
ping/problem did not happen.

In contrast to the poor results with ROP modeling, modeling with non-ROP information did
produce a model that is usable in production. In Figure 4.11, the left confusion matrix is from
“TRIP” prediction model, while the right confusion matrix is from “PROBLM” prediction model.
The left matrix indicates a really good result as the model predictions are correct most of the time,
especially in when tripping happens, with ratio of True positive to False positive ratio nearly equal
to 3.5:1.

On the other hand, with the right confusion matrix, while it shows good results when forecasting
“PROBLM” in the cases where problem does not happen, the model does poorly when problem does
happen. When problem does happen, the ratio of True positive to False positive ratio is 1:1. In
other words, if the model forecasts problem in the future, it is just as reliable as flips of a coin.
Unfortunately, although problem does not happen in most drilling processes, any instance of it
can result in extensive nonproductive time and consequently significant costs. Therefore, it is im-
portant that the model be able to predict possible future problem correctly rather than the opposite.

The final result is a model that is useful in production. The trip prediction model, with its
accurate prediction, is able to give drillers at least one day in advance warning, which can result in
proper preparation and reduction of nonproductive time.



Chapter 5

Natural Language Processing

5.1 Introduction

In additional to impressive results in computer vision that made self-driving vehicles a reality, mod-
ern deep neural network also revolutionized the field of natural language processing (NLP). The
most modern NLP models, with the help of deep neural networks, are capable of NLP tasks that
exceed the highest expectation of a decade ago. With GPT-312 or RoBERTa20, researchers have
created NLP models that are capable of holding natural conversations with humans, or writing an
essay from a single sentence prompt that is indistinguishable from human writings.

This chapter will discuss the usage of natural language processing (NLP) in the drilling modeling
process. This includes constructing a BERT architecture used in this study, and the history, the
theory and the evolution of the BERT architecture. In addition, this chapter also shows how to
prepare the data and train the BERT model, and how to integrate the new results into the results
obtained from Chapter 4.

5.2 Seq2seq model

The goals of natural language processing are to read, and to understand the human language. NLP
with machine learning, by itself, is not a novel concept as it is dated from at least the 1950s. It
is not easy for even humans to understand their own method of communication, and the problems
only exacerbate when replacing the human with a machine. Due to being completely unstructured
data, modeling natural language is a notoriously hard problem. It is very difficult to meaningfully
construct numerical representations of a letter or a word (word embedding); natural language is full
of ambiguities and can only be inferred within the context itself. Understanding a language requires

39
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not only the model to understand the meaning of each word but also the abstract concepts that
associate with that meaning. Consequently, it comes as no surprise that the histories of NLP are
filled with ups and downs, and it was considered as a dead-end more often than not throughout its
developments. Up until the 1990s, after hundreds of millions of dollars poured into research, NLP
still used complex models with numerous “hand-written” exceptions that do not generalize well. In
1997, long short-term memory (LSTM)21 recurrent neural network (RNN) architecture was intro-
duced, and became the de-facto choice for NLP for the next two decades. However, similar to what
happened in computer vision, NLP with deep neural network did not gain traction in the field of
NLP until the mid 2010s.

One of the first breakthroughs of NLP that solved the problem of word embedding was with the
Word2vec technique22 (Figure 5.1). Previously, the most popular method of word embedding was
one-hot-encoding, where each word is given a different one-hot vector (a binary vector with all zeros
except for one place) representation. Unfortunately, one-hot-encoding word is extremely inefficient
for this kind of task, where a vocabulary of a few thousand words is considered small. The ideal of
Word2vec is rather than encoding words as one-hot vectors, encode them as dense vectors with fixed
dimension (dense vector representation). The mappings of these dense representations are unknown,
but they can be learnt. By training a neural network on any NLP task using these mappings as
inputs, a more optimal mapping can be found at the end of the training. These new embeddings not
only solve the dimensionality problems of one-hot-encoding, but also partially capture the meanings
behind each word (words with similar meanings are mapped closer in the vector space). Since its
introduction, Word2vec and its derivatives have become the first choice for many language model-
ing tasks. In 2014, Word2vec, coupled with LSTM or the newly introduced Gated Recurrent Unit
(GRU)23 recurrent neural network, opened the flood gate between deep neural networks and NLP.

Figure 5.1: Simple Word2vec embedding

The most useful and obvious NLP task that was within reach is machine translation: translate
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a sentence from one language to another language. A model that was very successful with this
kind of NLP task was seq2seq24. The architecture is conceptually simple: the model consists of an
encoder and a decoder, the encoder maps the embedded input into a internal representation while
the decoder maps the internal representation of the inputs into the target language. The encoder
and decoder are often based on the RNN architecture or its derivatives (LSTM, GRU).

Despite many variants, all RNN architecture bears the same structure as described in Figure 5.2:

1. The input is composed of multiple elements with a specific iterating order.

2. The network has multiple cells, with the number cells equal to the length of the input.

3. Each cell uses its inputs and optionally a hidden state vector to produce a new output and a
new hidden state vector.

4. The network iterates on the input, with the nth cell uses the nth input and the nth − 1 hidden
state vector to produce the nth output and the nth hidden state vector.

Figure 5.2: Common Recurrent Neural Network structure

Most of the differences between RNN architecture (plain RNN, LSTM, or GRU) are laid in the
constructions of each cell, while the overall structure stays nearly unchanged. Consequently, the
simplest architecture for seq2seq can be described as in Figure 5.3:



5.2. SEQ2SEQ MODEL 42

1. The input is the dense vector representation of each word in the original sentence, with special
tokens at the beginning and the end: <BOS> indicates the beginning of a sentence, and <EOS>

indicates the end of a sentence.

2. The encoder iterates on the input, producing the nth hidden state vector, while all other outputs
are discarded.

3. The decoder starts by taking the <BOS> token and the nth hidden state vector as input, produc-
ing an embedded output in the target language. Then the decoder will take previous output,
in conjunction and the last hidden state vector, to produce the next output. This process stops
when the decoder produces the <EOS> token.

Figure 5.3: Simple seq2seq architecture

The simple seq2seq architecture, although it works well with short and simple sentences, has a
significant drawback. The results of the decoder depend solely on the last hidden state vector of the
encoder. In the case of long sequences, there is a very high probability that the final hidden state is
strongly influenced by recent inputs, while the initial contexts may have been lost. This is called the
“forgetting” in NLP. Changing the RNN cell structure to more modern ones like LSTM and GRU
does improve the final results, but they still do not solve the “forgetting” at root. A new type of
“hidden state” should be created for this specific problem.

The main problem of using only the last hidden state vector as input for the decoder is that
the encoder cannot effectively compress all information from the input into a fixed-size vector. An
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obvious solution is for the decoder to use all of the hidden state vectors, rather than only the last one.
Although this solution looks simple at a glance, it is hard to achieve as a decoder, which produces
hidden state vectors with the same dimension of all the encoder’s hidden state vectors concatenated,
will have its size grow exponentially to the size of the input. Such a decoder is not computational
feasible on modern computers. Fortunately, with the introduction of the concept of Attention in
2014, an elegant and efficient solution to the ‘forgetting” problem was found.

5.3 Attention, Self-attention, and Multihead attention

With the previous seq2seq problem, assuming that there are n encoder hidden state vectors es1; es2; :::; esn,
let us define the attention score to be smk , then the attention weight a

m
k can be described as:

amk = sof tmax(smk ) =
exp smkPn
i exp s

m
i

(5.1)

and the context vector for the mth decoder cell dm is:

cm =

nX
i

ami · esi (5.2)

Here, a new concept called attention score is introduced: the attention score smk , which is a function
of the encoder hidden state esk and the decoder hidden state dsm, described the relevancy of the
hidden state esn to the mth decoder cell dm. If there is a such function, then problem of “forgetting”
is solved because at each mth step of the decoder, it can look at the mth context vector cm which
contains most relevance hidden states; or the mth decoder cell focuses its attentions on only the
relevant parts of the input.

There are many ways to approach the problem of attention score function, one of the popular
and effective ways is the bilinear method described in the Luong model25. In the bilinear model, for
each decoder cell dm, the attention score can be calculated as:

smk = dsTm ×W × esk (5.3)

where dsTm is the transposed of the mth decoder cell’s hidden state, W is a learnable matrix, and esk

is the k th hidden state of the encoder.

With Equations 5.1, 5.2, and 5.3, a new seq2seq with attention model can be constructed as
described in Figure 5.4. In this new seq2seq with attention model, the main difference compared to
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the simple seq2seq is with the mth output of the decoder. Rather than using the output of the mth

decoder cell directly, the output is calculated as:

ym = tanh(Wd × [dsm; c
m]) (5.4)

where dsm is the mth decoder cell’s hidden state, Wd is a learnable matrix cm is the context vector
for the mth decoder cell, and [dsm; c

m] is the concatenation of two vectors dsm and cm.

Figure 5.4: seq2seq with attention architecture

With the new concept of attention, the deep neural network is now capable of doing NLP tasks
on very long input without the risk of “forgetting”. This revolutionized the field of NLP, enabled re-
searchers to do tasks that no other machine learning model could do before. Despite the tremendous
success of seq2seq with attention, there is still room to improve the model further. The seq2seq uses
RNN, which is very computationally intensive on longer inputs, hindering the training process.

Another significant breakthrough came in 2017 with the Transformer architecture26. This new
architecture replaces the RNN in the encoder and the decoder of the seq2seq model with attention
blocks. On top of the improved quality, this replacement also brings an order of magnitude of im-
provements in training speed. As of 2021, the Transformer model is the preferred architecture of
nearly any NLP task.

A new and very important concept in the Transformer is the concept of self-attention. In normal
seq2seq architecture, the attention mechanism is looking from one decoder state to all encoder states.
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On the contrary, the new ideal with self-attention is that the attention mechanism is now from each
state to all other states (within a same set). Consequently, with the normal attention mechanism,
the encoder needs O(N) steps to process an input of length N, where in the self-attention, the en-
coder only uses O(1) (constant) steps to process any sentence. This not only brings significant speed
improvements but also higher quality results compared to NLP model with RNN.

Formally, the concept of self-attention can be described with a concept of query-key-value atten-
tion mechanism, where query, key, and value are three vectors which can be defined as:

• Query: Q = Wq × [ embedded input ], vector the attention mechanism is looking from

• Key: K = Wk × [ embedded input ], vector the attention mechanism is looking to

• Value: V = Wv × [ embedded input ], the value of the attention

where Wq;Wk , and Wv are three learnable matrices with same dimension. There are a query, a key,
and a value matrix corresponding to every embedded element in the input. Then the self-attention
can be defined as:

Attention(Q;K; V ) = sof tmax(
Q ·KT

√
d

) · V (5.5)

where KT is the transpose of the key matrix and d is the dimension of K. Consider an input x which
has n embedded elements, then the output of a single self-attention head (Figure 5.5) on that input
is:

Let:
sel f_attention(xk) = concat[Attention(Qk ; Ki ; Vi )]; for 0 ≤ i ≤ n; i ̸= k

Then, the output of self-attention head is:
sel f_attention_head(x) = concat[sel f_attention(xi )]; for 0 ≤ i ≤ n

(5.6)

The self-attention head described in Figure 5.5 and Equation 5.6 is only for the encoder. There
is a difference between the head used in the encoder and the head of the decoder. The decoder does
not know the complete full sequence before hand, hence it can only look at the previous outputs.
Therefore, any future token of the output will be masked out (Figure 5.6).
One major benefit of the self-attention head model is it can easily expand, both in the horizon-

tal direction and the vertical direction. If the model is expanded horizontally, then it is called a
multihead self-attention model where each head produces a different self-attention. If the model is
expanded vertically, then it is called a multilayer self-attention model where the previous head’s self-
attention is the input for next self-attention head. The Transformer encoder-decoder model (similar
to seq2seq) takes full advantage of the self-attention mechanism by expanding the self-attention head
vertically and horizontally.
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Figure 5.5: Self-attention head for encoder

The Transformer architecture is similar to the encoder-decoder structure of seq2seq, but uses
multiple layers of multihead attention units for both its encoder and decoder. Consider an input x
which has n embedded elements, let a self-attention head defined as Equation 5.6, then the output
of a multihead attention unit composed of h heads can be defined as:

multi_head_attention(x) = concat[sel f_attention_headj(x)]; for 0 ≤ j ≤ h (5.7)
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Figure 5.6: Masked self-attention head for decoder

where sel f_attention_headj is the j th self-attention head. Similarly, the output of a masked mul-
tihead attention unit composed of h heads is defined as:

masked_multi_head_attention(x) = concat[masked_sel f_attention_headj(x)]; for 0 ≤ j ≤ h

(5.8)
where masked_sel f_attention_headj is the j th masked self-attention head.

With the multihead attention unit properly defined, the Transformer model can be constructed as
in Figure 5.7. In the Transformer model, the encoder/decoder is composed of encoder/decoder cells.
Each encoder cell include a multihead attention unit, and a feed-forward unit. The feed-forward unit
can be any feed-forward neural network without an activation function at the last layer. After each
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Figure 5.7: Transformer architecture

unit is a residual connection (described in Equation 4.6). The decoder unit is similar to the encoder
unit, except that it has a masked multi-head attention unit in front. In addition, rather than using
the Key and Value vectors from the previous masked multihead attention, the multihead attention
uses the Key and Value vectors from the final cell of the encoder. The training process is similar to
the seq2seq training process:

1. The embedded input is fed into the encoder, producing the Key and Value vectors K; V at the
final encoder cell.

2. The decoder starts by taking the <BOS> token and the encoder’s K; V vectors, producing an
embedded output in the target language. Then the decoder will take previous output, in
conjunction with the encoder’s K; V vectors, to produce the next output. This process stops
when the decoder produces the <EOS> token.

Up until now, the method of choice for input embedding has been Word2vec. Although this
embedding method works reasonably well with any NLP model, there are still some problems that
need to be resolved. One of the biggest drawbacks of Word2vec is that it cannot effectively deal
with out-of-vocabulary words (words that do not appear in the training set). This out-of-vocabulary



5.3. ATTENTION, SELF-ATTENTION, AND MULTIHEAD ATTENTION 49

problem can be alleviated to some degree by training on a bigger dataset and masking out-of-
vocabulary words with a special token (<UNK>) so that the model can guess it by using the contexts.
However, when the out-of-vocabulary words are crucial to the meanings of the sentence (subject,
verb, etc.), then the models collapse. In addition, the relationships between words have to be learnt
every time; if a Word2vec embedding learnt about relationships between “TALL” and “TALLER”,
it will not immediately result in the learning of the relationship between “SHORT” and “SHORTER”.

There is another method of sentence segmentation that remedies most of Word2vec drawbacks,
it is called Byte Pair Encoding (BPE)27. Although Byte Pair Encoding is known from 1994, it only
became the norm in input embedding around 2017, together with the rise of Transformer. Byte Pair
Encoding originally is a simple data compression technique, that seeks to replace the most used pair
of bytes with a single byte that does not appear in original data. The BPE method that is used in
NLP task referred to an adaptation of BPE to use in sentence segmentation.

One the main motivations for using BPE is that in most languages, a word is not smallest order of
division that has meaning. Word can be divided into prefix, root, and suffix, where each division has
meaning by itself. Therefore, a subword segmentation will be more beneficial compared to word-by-
word splitting. Byte Pair Encoding is an effective solution for the subword segmentation problems
as BPE seeks to construct the original input with small tokens that have the highest frequency of
appearing in the input. A common process to train a BPE model is:

1. Add the special token “<\w>” to the end of every word of the input dataset to indicate the
end of a word.

2. Splitting all words into characters tokens (i.e “NEWEST” into [“N”, “E”, “W”, “E”, “S”, “T”,
“<\w>”]).

3. Count the frequency of all consecutive character pairs, merge the most frequent consecutive
character pair into a new token (i.e [“E”, “S”] into “ES”).

4. Repeat Step 2 and Step 3 until the targeted number of merges, or the targeted vocabulary
size, has been achieved.

To encode a sentence into its Byte Pair representations, iterate through the list of all tokens, from
longest to the shortest, and replace any substring in the input with the token if they are matched.
The decoding process is simply the merging of tokens to form words. Most of time, the tokens
produced from BPE will be turned into dense vector representation forms and served as the inputs
for downstream NLP models.
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A consequence of BPE is that the resulted tokens are likely to be subword tokenizations and carry
some meanings on their own; common tokens from BPE include “S<\w>”, “ER<\w>”, “EST<\w>”,
“NON”, “UN”, etc. It is easy to see that BPE not only is able to work with out-of-vocabulary words,
but also can guess and learn the relationships between words very effectively. For example, let
assume a BPE model that only trained on general English and has not encountered any geological
term so far, encounters an out-of-vocabulary word “CLAYSTONE”. The BPE model has the tokens
“CLAY” and “STONE” as they are very common in any dataset. Therefore, the BPE model splits
“CLAYSTONE” into “CLAY” and “STONE<\w>” and helps the downstream NLP model to correctly
guess the meaning of the word “CLAYSTONE”.

5.4 Bidirectional Encoder Representations from Transform-

ers

With the introduction of Transformer, and to some lesser extent Byte Pair Encoding, a new era
of NLP was opened. Now NLP models can process very long inputs, can be effectively trained on
terabyte-size datasets, and can achieve near human performance in some NLP tasks. However, these
state-of-the-art NLP models all share some common points: they are all enormous with billions
of trainable parameters, and they are all trained on extremely large datasets, which requires an
enormous amount of computational power. Therefore, training a model for a specific NLP task un-
til it achieves state-of-the-art performance is something only the biggest organizations are capable of.

Due to the difficulty in training a good NLP model, transfer learning is an active field of research
in NLP. The goal of transfer learning is to transfer knowledge and information between different
models in order to accelerate the training process. Transfer learning is especially effective when
dealing with NLP tasks. Although NLP tasks may be different drastically from each other, most of
the time they all have same common requirement to the NLP models built to solve them, which is
the ability to read and understand written natural language.

Some simple methods for transfer learning in NLP are already described previously. Word2vec
with Byte Pair Encoding and its derivatives are a form of transfer learning. If the inputs between
two NLP models are similar, then the input embedding mapping of one model can be used for the
other model, which eliminates the need of training a new input embedding mapping from scratch
and may improve the final results of the other model. However, only the relationship mappings
between words/tokens are transferred in this case, any other knowledge (grammar, syntax, etc.) the
other NLP model has to figure out from scratch. A better and more complete transfer learning is
needed.
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This is where the holders of the state-of-the-art results (GPT-3, RoBERTa, etc.) come in. These
Transformer based models have achieved exceptional results on a wide range of NLP tasks, and have
taken over the NLP field completely. Together with Byte Pair Encoding, Transformer based models
have become the first choice for almost any NLP task. Despite many difference in architectures
and implementations between these models, they all share the same design concept (aside based on
Transformer), namely a model trained on general NLP tasks that fine-tuned for all tasks. The model
is trained on a set of “general NLP tasks” with an extremely large dataset (billions of words), then
the knowledge can be transferred to any NLP task by fine-tuning the model to that specific task.
This resulted in a very versatile NLP model that can quickly be modified to achieve exceptional
results on most tasks.

Bidirectional Encoder Representations from Transformers28 (BERT) is a Transformer based NLP
model with very good results on most NLP tasks and exceptional transfer learning capability. The
architecture of BERT is remarkably simple: it is the encoder part of the Transformer architecture
(Figure 5.7). What gives BERT its strength is the training objective and how BERT is used in
further downstream tasks.

BERT is an encoder from the Transformer architecture with an additional linear and softmax
layer at the end, trained on two “general NLP tasks”: Masked Language Modeling (MLM), and
Next Sentence Prediction (NSP). In Masked Language Modeling, BERT is asked to recover the
original sentence from a corrupted input. In more detail, with the MLM, the training process can
be described as (Figure 5.8):

1. Take any sentence as input. Add the special tokens <CLS> at the beginning and <SEP> at the
end of the sentence.

2. Select some tokens from the input with p = 15% as the probability of being selected.

3. Replace the selected token with: a special <MASK> with p = 80%, a random token with p = 10%,
the same token (remain unchanged) with p = 10%.

4. Compute loss between the original input and the model predictions.

Another “general NLP task” that BERT is trained for is Next Sentence Prediction (NSP). NSP is
a binary classification task, where the input is composed of two corrupted sentences, and the model
is asked to predict whether the two sentences are consecutive sentence or not. For example:

• Input: <CLS> I <MASK> the report on my computer. <SEP> The report is fifty <MASK> long.
<SEP>

Output: TRUE
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Figure 5.8: Masked Language Modeling with BERT

• Input: <CLS> I <MASK> the report on my computer. <SEP> The beach is a perfect <MASK>
destination. <SEP>
Output: FALSE

Usually, the BERT model will be trained to achieve the best results on both Masked Language
Modeling task and Next Sentence Prediction task.

To fine tune the model to the downstream task, the input is fed into the pretrained BERT model



5.4. BIDIRECTIONAL ENCODER REPRESENTATIONS FROM TRANSFORMERS 53

and the output corresponds to the <CLS> token will be used as input for a feed-forward neural net-
work. This feed-forward neural network will have its outputs suitable for the downstream tasks, and
will be trained together with the model used in the downstream tasks (Figure 5.9). In most cases,
the pretrained BERT model’s parameters are frozen and will not be modified in the fine tuning
process.

Figure 5.9: Fine-tuning with BERT
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5.5 Methodology

5.5.1 Qualification of BERT

In this project, a pretrained BERT model called bert-base-uncased was used to process the textual
drilling records. This pretrained model is a case-insensitive, 12 layers, 12 attention heads, 110 mil-
lion parameters, BERT architecture neural network trained on the BookCorpus, a corpus of 11038
unpublished books, and the entire English Wikipedia. The model also comes with a WordPiece
tokenizer (a slightly modified BPE tokenizer) that splits the string inputs into small tokens. This
makes the model ready to receive textual inputs under the form of strings. The bert-base-uncased
model can receive an up to 512 tokens-long input from the WordPiece tokenizer. If the number of
tokens in the input is N, then the output will have the shape of [N × 768], where the first and the
last outputs correspond to the <CLS> and <SEP> special tokens of the input string.

To process the textual records, each record is pass through the WordPiece tokenizer and the
bert-base-uncased model, then the output corresponds to the <CLS> is taken (the first output),
which has the size of [768]. This vector of size [768] will be served the numerical representation of
the textual information in the original record.

The first task was to qualify the pretrained BERT model, so that is it is able to parse and un-
derstand these remarks and lithological comments from the drilling records. As described at the
end of Chapter 2, there are four different categories for the remarks. Together with the lithological
type, there are five categories that any piece of textual data can fall into. If the network can truly
understand the contents of the remarks/comments, then it should be easy to categorize them into
the correct type.

In order to test its performances on the drilling records, the remarks/comments were fed into
the pretrained BERT model, then the output corresponds to the <CLS> token was fed to another
feed-forward neural network to categorize the source of the input. All the remarks/comments in the
drilling records were used as the dataset for this task; 70% of the randomly selected remarks/com-
ments were used for the training, and the rests were used for validation.

5.5.2 Modeling with Natural Language Processing

As discussed at the end of Chapter 3, in addition to standard numerical records, there is also a
wealth of textual data in the daily drilling record. This textual information often provides valuable
information that is not available elsewhere. However, this textual information is recorded as written
English remarks without any standardized structure. It is very hard to automatically process these
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textual records, hence Chapter 4 inputs do not contain them. However, BERT provided an elegant
solution to process these textual records.

The numerical representations of the remarks/comments described previously, together with the
numerical drilling records , were used as inputs for this task. The new representations of the remark-
s/comments is concatenated into the final input described in Chapter 3. Except with the new inputs,
the methodology and the goals of the studies described in this chapter are identical to the method-
ology and the goals of Chapter 3: DPDBN is the still the deep neural network architecture used; the
target is still to create a ML model that is able to accurately predict the ROP/“TRIP”/“PROBLM”
from the drilling records.

5.6 Results

5.6.1 Qualification of BERT

As the dataset is imbalanced (the numbers of datapoints belonging to each class are not equal),
accuracy cannot be used to quantify the results of the described model as the class with the most
datapoints will dominate the accuracy results. A better performance metric, which accounts for the
imbalances between classes, like F-1 score, should be used in this case. The F-1 score metric can be
described as:

Let:
precision = True Postive

True Postive+False Postive

recall = True Postive
True Postive+False Negative

Then:
F-1 = 2 · precision·recall

precision+recall

(5.9)

which means the F-1 score must lie in the range of [0; 1], where 1 is the best possible and 0 is the
worst possible.

The bert-base-uncased was able to achieve an F-1 score of 0.9 on both training and valida-
tion dataset, indicating the capabilities to read and understand textual information included in the
drilling records. The results show that the BERT model was also able to work with long input (up
to 512 tokens) without the problem of “forgetting”. It can be concluded from the results that BERT
is strong enough to use in latter modeling parts.
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5.6.2 Modeling with Natural Language Processing

Figure 5.10: Correlation plot for ROP modeling with textual information, random train/validation
splitting

Direct comparisons between Figure 4.7 and Figure 5.10, Figure 4.8 and Figure 5.11, Figure 4.9
and Figure 5.12, and Figure 4.10 and Figure 5.13 show that adding textual information only provides
small improvements in the quality of ROP predictions. This contradicts the hypothesis from the
end of Chapter 3 that adding lithological information would improve the quality of ROP predictions.
Even with drillers’ remarks and lithological information proxies from the mud-shakers, it is not pos-
sible to improve the ROP results enough to make the models usable in production.

An explanation for this contradiction is that the lithological proxies used are not sufficient, and
direct measurements of the geological properties are necessary for accurate predictions. Another
possible explanation is that the properties of the training dataset and the validation dataset are
significantly different from each other. The final possible explanation is that BERT outputs are not
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Figure 5.11: 95% confidence interval plot for ROP modeling with textual information, random
train/validation splitting

useful to the downstream DPDBN, therefore there are only minor differences between using BERT
and not using BERT. This explanation is rather unlikely, as demonstrated before, BERT is capable
of understanding the remarks/comments in the drilling record, and a simple feed-forward neural
network was enough to differentiate between remarks/comments. On the other hand, DPDBN,
which is many times more powerful than standard feed-forward neural network, should be able to
“understand” the outputs from BERT.

However, Figure 5.14 and Figure 5.15 provide a completely different picture when using BERT.
Figure 5.14 shows that using BERT also provides small improvements in tripping prediction ac-
curacy. However, Figure 5.15 shows that BERT helps bring significant improvements in problem
prediction accuracy. Without using BERT, the accuracy of predictions if problems do indeed hap-
pen is only 50%, which is no better than a random guess. However, with BERT, the ratio of True
positive to False positive improved to nearly 2:1. This results in a model that is accurate enough to
use in production, which can give drillers ample preparation for possible future problems.

The results in Figure 5.15 can be explained by the fact that the drillers tend to make remark-
s/comments about unusual observations encountered when drilling. A future problem will likely
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Figure 5.12: Correlation plot for ROP modeling with textual information, well-by-well train/valida-
tion splitting

correlate to unusual observations in the past (however the opposite is not true). BERT is able to
pick out those observations, and in conjunction with numerical drilling records, DPDBN can give
accurate forecast about possible future problems.

However, this only mystifies the problem of why BERT does not help in ROP modeling. BERT
can give valuable information about the drilling process or geological information that is not avail-
able in standard numerical drilling records. This, in theory, should bring significant improvement in
prediction quality. Unfortunately, that was not the case in this study.

Another observation is that by adding outputs from BERT, the prediction quality will improve
in most cases. This shows that DPDBN is capable of processing very large inputs, and only pick out
the most relevant features while ignoring the rest, which is a vital property when processing data
like the inputs with BERT which are composed of more than one thousand features.
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Figure 5.13: 95% confidence interval plot for ROP modeling with textual information, well-by-well
train/validation splitting

Figure 5.14: Confusion matrix for tripping predictions: left uses textual information, right do not.
One indicates tripping did happen, zero indicates tripping did not happen.
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Figure 5.15: Confusion matrix for problem predictions: left uses textual information, right do not.
One indicates problem did happen, zero indicates problem did not happen.



Chapter 6

Conclusion and Future Works

Although this study failed to developed an accurate ROP predicting deep neural network model, it
outlines in detail the procedures on how to process, develop, and train a deep neural network model
on geothermal drilling records. Due to the similarities between drilling in the geothermal industry
and the oil and gas industry, this procedure can be rapidly adapted to use in oil and gas industry.

Due to the fact that the dataset used in this study is daily-averaged, it is hard to pinpoint
the reason for the low performance of ROP prediction. As there many different drilling operations
throughout a single drilling day, daily-averaged records cannot capture all of these operations. If
higher resolution data were available, then better ROP predictions may be achievable.

This study also shows that using Bidirectional Encoder Representations from Transformers
(BERT) can effectively process and encode textual information into a form that can be incorpo-
rated with normal numerical records. This enables the use of textual data in drilling optimization
without costly manual preprocessing. If a sufficiently powerful neural network is used in modeling,
then the encoded textual information will provide benefits when used with conventional numerical
data.

Because all drilling records in this study are recorded in English, a BERT model pre-trained on
the English language was used. However, there are also pretrained BERT models in other languages.
If the drilling records are written in an unfamiliar language, then a suitable pretrained BERT can eas-
ily encode them into usable forms. This results in not only savings from not manually preprocessing
the textual information, but also from not hiring foreign language translators to translate the records.

However, most pretrained BERT models are only trained on the general materials, and these
models do not have much experience with specialized context (geothermal and geology in this case).

61
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If there is a specialized BERT model trained on geology and geothermal materials, then the quality of
the resulting numerical representation forms of textual information could be improved significantly.
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