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Abstract

The simulation of complex thermal recovery processes such as in-situ upgrading is

computationally demanding. Reduced-order modeling techniques allow the represen-

tation of high-dimensional computational problems in a reduced mathematical space,

where most of the physical behavior can be reproduced. Use of such models can lead

to significant reduction in computational demands. This work focuses on the applica-

tion of the trajectory piecewise linearization (TPWL) procedure to nonlinear thermal

problems. The thermal problem considered is a highly idealized representation of the

in-situ upgrading process. Thus this work represents a first step in the application of

reduced-order modeling for challenging thermal simulation problems.

The trajectory piecewise linearization procedure entails running one or more train-

ing high-fidelity (full-order) simulations. During these runs, snapshots of the states

of the system are recorded at every timestep, along with Jacobian matrices and other

derivative information. Proper orthogonal decomposition is then applied to produce

a basis matrix for projection into the reduced space. The governing equations of the

thermal simulation problem are then linearized around the previously saved states,

and projected into the reduced space using the basis matrix.

The governing equations solved in this thesis describe the flow of a single compo-

nent in a single phase coupled to an energy equation. Downhole heaters are modeled

by fixing the temperatures of selected grid blocks in the energy equation. The models
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that are simulated contain up to 75,000 grid blocks and involve heterogeneous perme-

ability fields. Viscosity is taken to be a strong function of temperature and varies over

several orders of magnitude during a simulation. Density is also a strong function of

pressure and temperature.

Initially, one training run is used to construct the TPWL model. Results are found

to be in reasonable agreement with the reference high-fidelity simulations when the

heater and bottom hole pressure controls are set close to those used in the training

run. When the controls differ significantly from those of the training run, the TPWL

accuracy is shown to degrade, sometimes considerably. Accuracy is restored however

when two additional training runs are used in the construction of the TPWL model.

The same multiple training approach is applied for a more challenging example, which

involves more significant nonlinearities. For this case, TPWL results consistently

display close agreement with the reference high-fidelity simulations. For the examples

considered in this work, the TPWL procedure provides runtime speedups of a factor

of 400-500. The overhead requirements for TPWL depend on the number of training

runs used. For the examples considered here, TPWL overhead corresponds to the

simulation time for 3-10 high-fidelity runs. Thus, it only makes sense to use TPWL

if many simulations are to be performed, as would be the case in computational

optimization procedures.
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Chapter 1

Introduction

1.1 Background and motivation

World population is expected to grow from six to nine billion in the next four decades

and energy demand could increase by a factor of two over this same period [1]. Today,

this demand is mainly fulfilled by the use of fossil fuels such as coal, conventional oil

and natural gas, but this might not be the case in the future as conventional oil and

gas are expected to be more scarce. Thus it will become necessary to produce new

kinds of resources in order to meet this increasing demand. This is likely to include

significant quantities of unconventional oil resources such as oil sands, and possibly

more challenging resources such as oil shales.

Oil shale refers to a fine-grained sedimentary rock that contains a large amount of

kerogen, and this kerogen can be converted into oil by heating to high temperature.

An immense amount of oil shale has been identified in the Green River formation

that covers parts of Colorado, Wyoming and Utah. According to the US Geological

Survey [2], there are over one trillion barrels of oil (in oil shale) in place. Oil sands

are a type of bitumen deposit and consist of sands mixed with an extremely dense

and viscous type of petroleum. They are found in large quantities in the province of

1



2 CHAPTER 1. INTRODUCTION

Alberta, Canada, where it is estimated that there are about 1.7 trillion barrels of oil

in place along the Athabasca river.

Oil from both oil sands and oil shales can be recovered using surface mining and

further processing. However, only the shallower parts of the deposits can be recovered

using this technology, leaving the large majority unrecovered. Shell has developed new

technologies that enable the production of deeper formations: the in-situ conversion

process (ICP) for oil shale, and the in-situ upgrading process (IUP) for oil sand and

heavy oil [3]. Both processes use underground heaters, as shown in Figure 1.1, in order

to alter the properties of bitumen or kerogen directly within the subsurface. Then the

fluids can be produced using conventional wells. Although the technical feasibility

of such techniques has been demonstrated at pilot scale, many challenges remain for

large-scale commercial application. Use of numerical modeling and optimization may

contribute significantly to resolving these challenges.

Figure 1.1: Schematic of Shell’s in-situ upgrading process (IUP) (from Shell, 2007)

Modeling numerically the in-situ upgrading process is, however, a difficult task

because many physical and chemical phenomena must be represented in the model. In

addition to the transport of fluids through porous media, in-situ upgrading involves

the transport of heat and multiple chemical reactions. The reactions and system

properties are strongly dependent on temperature, which renders the problem highly
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nonlinear. It is also necessary to account for a large number of components in the

fluid. These and other complications lead to highly involved simulation models. For

this reason, the simulation of practical problems of this type is CPU intensive, and

can require days of calculation for a single production scenario.

Regardless of whether we are considering the production of conventional or uncon-

ventional resources, the use of computational optimization can improve recovery and

lead to more efficient operations. Optimization here refers to mathematical proce-

dures that provide a set of parameters or controls that maximize a selected response

of the system. The system is a model of the production of oil or gas under some

constraints. A classical optimization problem in reservoir engineering is to find the

optimal locations of new wells in order to maximize future profits. Optimization al-

gorithms can consider more than one objective function. For example, it is possible

to find the best set of inputs in order to maximize profitability while simultaneously

minimizing the environmental impact. The production of oil shales and oil sands is

expensive and has a large environmental impact, so these operations could strongly

benefit from the application of optimization procedures.

There are different types of optimization algorithms that can be applied and all

have their advantages and limitations. Adjoint-based algorithms might require only

tens of runs, but such approaches have yet to be applied for in-situ upgrading. Nonin-

vasive approaches such as genetic algorithms or pattern search may require hundreds

or thousands of runs. These algorithms are typically implemented on multiple cores,

which significantly reduces the elapsed time, but the computational costs remain very

high.

Although the potential benefits can be large, performing optimization for in-situ

upgrading processes may not be practical because the simulation models require ex-

tremely long calculation times. Motivated by similar concerns in other application

areas, so-called reduced-order modeling procedures, which attempt to reduce the
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overall computational cost of the simulations, have been developed and applied. The

intent of these approaches is to significantly decrease simulation time at the price of

a relatively small loss of accuracy. Indeed, if the model retains sufficient accuracy,

the optimal controls for the system can still be found through application of an opti-

mization algorithm. In order to achieve this, the reduced-order model (ROM) should

be able to model the response of the original (full-order) system, with a minimal loss

of accuracy, when the system controls are modified.

1.2 Literature review

The general idea behind reduced-order modeling approaches is to represent a high-

dimensional problem in a reduced mathematical space, where most of the physical

behavior can be reproduced. A number of these procedures involve the use of proper

orthogonal decomposition (POD). This approach requires the simulation of one or

more high-fidelity training runs during which state vectors, referred to as snapshots,

are saved at each timestep. A singular value decomposition (SVD) is then performed

on the so-called snapshot matrix. The singular vectors associated with the largest

singular values are used to define a projection from the full-order space to a reduced

space. This procedure is explained in detail in Chapter 2. Discussions of previ-

ous applications using the POD procedure, and recent developments in the field of

reduced-order modeling, have been presented by Cardoso and Durlofsky [4, 5]. The

following overview follows their descriptions.

Lumley [6] introduced proper orthogonal decomposition and used it in order to

identify coherent structures in dynamical systems. It has since been applied for a

variety of applications. For example, Zheng et al. [7] applied POD to a system of

partial differential equations describing a reactor system. Meyer and Matthies [8]

applied it on a structural model for a horizontal-axis wind turbine rotor blade, while
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Bui-Thanh et al. [9] used it to reconstruct flow fields from incomplete aerodynamic

data sets. Cao et al. [10] created a POD-based reduced model for a large-scale upper

tropical Pacific ocean model.

It appears that Vermeulen et al. [11] were the first to apply POD for subsurface

flow modeling. They achieved significant runtime speedup for a heterogeneous aquifer

model with 33,000 active nodes where the governing equation was linear or nearly

linear. Jansen and coworkers [12, 13] applied POD to two-phase, oil-water reservoir

models. For these nonlinear cases, they achieved limited speedups, of a factor of 5 or

less. More specifically, Markovinović et al. [13] used POD to reduce the computational

effort required in solving the linear systems resulting from the application of Newton’s

method to the nonlinear system. However, all other tasks such as the construction

of the Jacobian matrix, which is required at each iteration, were not affected. In

consequence, they only achieved a runtime speedup of about a factor of 3. Van Doren

et al. [12] used POD to accelerate a gradient-based optimization procedure. They

applied it to both the forward model and the adjoint system. The total computational

speedup was less than a factor of 1.5 due to the need for retraining the reduced model

during the optimization process.

POD-based procedures for oil-water reservoir simulation have been further en-

hanced by Cardoso et al. [4, 14]. These researchers specified that the controls in the

training simulations, such as the well bottom hole pressures, vary randomly over a

specified range of values. They also used a snapshot clustering procedure [15] and a

missing point estimation technique [16] that reduced the computational requirements

for the reduced-order model. They applied their procedure to geologically realistic

models containing as many as 60,000 grid blocks and achieved speedups of up to a fac-

tor of about 10. However, POD was still applied only at the linear solver level so the

speedup achievable was intrinsically limited. The trajectory piecewise linearization
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(TPWL) method, which is a relatively recent development in the field of reduced-

order modeling, can potentially overcome this problem by combining POD with a

piecewise linearization. In practice, it requires recording, in addition to the solution

snapshots, the Jacobian matrix and other matrices during the training simulations.

The TPWL procedure has shown real promise in reducing the computational time

of simulations. Rewienski first applied TPWL to nonlinear transmission-line circuit

models [17]. The system contained 1500 unknowns and used 21 linearization states

to generate a reduced-order model of dimension 30. He achieved runtime speedups

of 1150 compared to the full-order model. The error using the reduced model was

between 0.4% and 13.5% compared to full-order simulations. TPWL has since been

applied in other fields such as computational fluid dynamics (Gratton and Willcox

[18]) and heat transfer modeling (Yang and Shen [19]). The first application of TPWL

in oil reservoir simulation was performed by Cardoso and Durlofsky [20]. They applied

the procedure to two-phase oil-water problems and used realistic geological models

containing up to 60,000 grid blocks. When test runs had two fluids of equal density,

TPWL results were in close agreement with their respective full-order solutions. The

runtime speedups achieved were quite substantial (a factor of 200 to 2000). When

the fluid densities differed considerably, however, they reported instabilities in some

instances. He et al. [21, 22] proposed a stabilization scheme in order to address

these limitations. In addition, they introduced a local high-resolution procedure that

enhanced TPWL accuracy.

Cardoso and Durlofsky [20] employed TPWL in optimizations involving two-phase

oil-water models. They applied it in conjunction with gradient-based techniques,

where gradients were computed numerically using finite differences. They obtained

optimized net present values in close agreement with those obtained from optimiza-

tions using high-fidelity models. He et al. [21] successfully incorporated two-phase

oil-water TPWL models into a generalized pattern search optimization technique.
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Occasional retraining was applied to maintain accuracy in the TPWL model.

TPWL has not yet been applied for more complex subsurface processes such as

thermal reservoir simulation. Thermal production strategies introduce complicated

physics and significant nonlinearities into the simulation problem. If TPWL, or re-

lated reduced-order modeling techniques, can be developed for these problems, then

they could be applied for production optimization. As indicated above, optimizations

for complex thermal processes are very challenging when full-order models are used.

It is therefore of interest to evaluate the performance of TPWL for such applications.

1.3 Approach and objectives

In light of its potential for large runtime speedup in optimization, the objective of

this work is to investigate the feasibility and performance of the trajectory piecewise

linearization procedure for idealized nonlinear problems related to those that appear

in thermal reservoir simulation.

This work represents a preliminary assessment of the applicability of TPWL for

thermal problems, as the models considered here are much simpler than those used

in realistic thermal simulations. As discussed previously, IUP and ICP are thermal

processes that use downhole heaters in order to facilitate upgrading and alter fluid

properties directly within the subsurface. Numerous chemical reactions, together

with heat transfer, modify fluid properties and allow production with traditional wells.

These in-situ upgrading and conversion processes are very complicated as they involve

chemical kinetics, phase equilibrium between gas and liquid phases, mass transport,

heat transfer, geomechanical effects, modification of porosity and permeability under

the effect of pressure, temperature and composition, etc. In addition, the complex

nature of the fluids and reactions requires the use of fully-compositional models with

a large number of components.
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In this work, our approach is to apply the TPWL procedure to equations that

are much simpler and faster to solve, yet retain some of the nonlinear character of

thermal problems. Heavy oil is modeled with a single liquid component, though its

properties are functions of pressure and temperature. In particular, the fluid viscos-

ity decreases by several orders of magnitude over the temperature range encountered

during downhole heating. Density is also dependent on temperature in order to repro-

duce, to some extent, the increase in reservoir pressure with increasing temperature.

Our model also includes an energy equation, in which the downhole heaters provide

the energy input, to model temperature variation throughout the system. Chemical

reactions, phase changes, geomechanical effects and other complicated physics are not

considered. Although our representation is quite simplified relative to realistic IUP

and ICP models, the large changes in density and viscosity with reservoir pressure

and temperature should mimic some of the important nonlinearities appearing in the

original problem.

This thesis proceeds as follows. In Chapter 2 we present briefly the thermal simu-

lation equations solved under the assumptions stated above. We then describe the use

of proper orthogonal decomposition. This is followed by a detailed description of the

trajectory piecewise linearization procedure applied to our idealized thermal reservoir

simulation. The necessary modifications to the full-order simulator are also presented

in this chapter together with implementation details. In Chapter 3, numerical exam-

ples demonstrating the performance of TPWL for this problem are presented. The

examples considered involve realistic geological models which contain up to 75,000

grid blocks. As described above, oil viscosity varies over several orders of magnitude

and density is a function of pressure and temperature. Initially, a single training

simulation is used, and test results show reasonable accuracy for controls that are

close to those used for the training. A sensitivity analysis is presented in which well

controls are varied significantly from those used in the training case. For the most
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extreme test cases, the accuracy of the TPWL model is shown to degrade. However,

reasonable accuracy is restored by using multiple training runs in the construction of

the TPWL model. This approach is then tested further by increasing the nonlinear

dependencies in viscosity and density. Taken in total, the results indicate that TPWL

is well suited for the solution of the idealized thermal models considered in this study.

Conclusions and directions for future work are presented in Chapter 4.



Chapter 2

Governing equations and TPWL

formulation

2.1 Thermal reservoir simulation equations

Subsurface flow models for the general isothermal case are derived by combining

mass conservation equations with the multiphase version of Darcy’s law. In the case

of thermal reservoir simulation, an energy conservation equation must also be solved.

In this work, the fluid is modeled as a single component in a single phase, which

greatly simplifies the formulation. Other simplifications and assumptions used in this

work are explained in the following sections.

2.1.1 Mass conservation equation

Mass conservation for the oil component is expressed by the following partial differ-

ential equation:

∇ · [λok (∇p − ρog∇D)] =
∂

∂t

(

φ

Bo

)

+ q̃w
o , (2.1)

10
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where k is the absolute permeability, assumed to be a diagonal tensor, p is pressure,

ρo is oil density, g is gravitational acceleration, D is depth and λo = kro/(µoBo) is

the oil mobility. In this case, since we have only one phase, the relative permeability

kro = 1 and therefore oil mobility reduces to λo = 1/(µoBo). Here Bo is the formation

volume factor of oil and µo is the oil viscosity. Other variables are t, which represents

time, φ which designates porosity, and q̃w
o , the source/sink term (the superscript w

denotes well and tilde means per unit volume).

Figure 2.1: Representation of cell i and its neighboring cells

In this work, the governing equations are solved using Stanford’s General Pur-

pose Research Simulator (GPRS) [23, 24]. We briefly present here the finite volume

discretization used to solve equation 2.1. This description closely follows that in [5]

(see also [25] for more details). For simplicity, we consider a one-dimensional grid

oriented horizontally (therefore ∇D = 0) and we assume the grid block dimensions

(∆x,∆y,∆z) to be constant. In the fully-implicit representation, the discretized form

of the convective terms is

∂

∂x

[

kλo
∂p

∂x

]

≈
1

V

(

Υn+1
i−1/2

[

pn+1
i−1 − pn+1

i

]

+ Υn+1
i+1/2

[

pn+1
i+1 − pn+1

i

]

)

, (2.2)

where the superscript n + 1 designates the next timestep and the subscript indicates

the gridblock number as defined in Figure 2.1. Here, V = ∆x∆y∆z is the volume of
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grid block i and Υi−1/2 is the transmissibility at interface i − 1/2. It relates the flow

through this interface to the difference of pressure between grid blocks i − 1 and i.

This transmissibility is a function of pressure and temperature (through Bo and µo)

and is given by

Υn+1
i−1/2 =

(

k∆y∆z

∆x

)

i−1/2

(

1

Boµo

)n+1

i−1/2

. (2.3)

In this discretization scheme, the mass accumulation term in grid block i is represented

as:
∂

∂t

(

φ

Bo

)

≈
φ

∆t

[

(

1

Bo

)n+1

i

−

(

1

Bo

)n

i

]

, (2.4)

where ∆t = tn+1 − tn is the timestep. The second term on the right-hand side of

equation 2.1 represents the producer wells. Its discrete representation is given by:

(qw
o )n+1

i = Wi (λo)
n+1
i

[

pn+1
i − pw

i

]

, (2.5)

where (qw
o )n+1

i is the flow rate (volume per time) of oil from block i into the well at

time n + 1, Wi is the well index (defined below), pn+1
i is the pressure in grid block i

at timestep n+1, and pw
i is the wellbore pressure of well w in grid block i. If the well

is operated under bottom hole pressure (BHP) control, the value of pw
i is specified

(as a function of time) and the corresponding flow rate (qw
o )n+1

i is computed using

equation 2.5. The well index Wi is given by:

Wi =

(

2πk∆z

ln(r0/rw)

)

i

, (2.6)

where rw is the wellbore radius and r0 ≈ 0.2∆x for ∆x = ∆y and isotropic permeabil-

ity. One can consult [26] for more details and [24] for a discussion of other well rep-

resentations. The discrete representation of mass conservation in three-dimensional

systems can be obtained from a generalization of the one-dimensional case presented
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above.

2.1.2 Energy conservation equation

Under the simplifications noted above, energy conservation is described by the fol-

lowing partial differential equation:

∇ · (ρoHouo) + ∇ · (κ∇T ) =
∂

∂t
[φρoUo + (1 − φ) ρRUR] + q̃H + ρoHoq̃

w
o . (2.7)

The term ∇ · (ρoHouo) represents heat transfer through convection, where Ho is the

oil specific enthalpy and uo is the Darcy velocity of oil, given by uo = (k/µo)(∇p −

ρog∇D). The term ∇·(κ∇T ) represents conductive heat transfer, where T represents

oil temperature and κ is the thermal conductivity (here taken to be a scalar). Together

they form the heat flux part of the equation. On the right hand side, Uo is the internal

energy of oil and UR is the internal energy of the rock, q̃H refers to the energy injected

through the downhole heaters, and ρoHoq̃
w
o represents the energy transported by the

oil into production wells (the superscript w denotes well and tilde means per unit

volume).

We now briefly describe the finite volume discretization of equation 2.7 used in

GPRS. We again consider a one-dimensional horizontal model. Using the notation

presented in Figure 2.1, the conductive heat transfer term can be expressed in discrete

form as

∇ · (κ∇T ) ≈
1

V

κ∆y∆z

∆x

(

T n+1
i−1 − T n+1

i

)

. (2.8)

Although κ generally varies with temperature and location, in this work, for simplicity,

we take it to be a constant. The convective part of the heat flux is given by:

∇ · (ρoHouo) ≈
ρ0

o

V

(

(HoΥ)n+1
i−1/2

[

pn+1
i−1 − pn+1

i

]

+ (HoΥ)n+1
i+1/2

[

pn+1
i+1 − pn+1

i

]

)

. (2.9)
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Here ρ0
o is the reference density and the transmissibility (Υ)n+1

i−1/2 is computed accord-

ing to equation 2.3 (and similarly for (Υ)n+1
i+1/2). Defining the total internal energy in

grid block i as Ei = (φρoUo + (1 − φ) ρRUR)i, the first-order time discretization for

the energy accumulation term is

∂E

∂t
≈

1

∆t

(

En+1
i − En

i

)

. (2.10)

The internal energies of rock (UR) and oil (Uo) are represented as

UR = CR (Ti − Tref ) , (2.11)

Uo = Co (Ti − Tref ) , (2.12)

where Co and CR are the specific heat capacities of oil and rock respectively, at

constant volume.

The well term ρoHoq̃
w
o describes the energy transported by the oil into the well.

The flow rate qw
o is computed from equation 2.5, and ρoHo is computed using the well

block properties.

Heat injection qH is the key driving force for both IUP and ICP. In this work,

downhole heaters are modeled by specifying their temperature. Numerically, this is

achieved by specifying the initial grid block temperature to be the heater temperature,

and then fixing the heat capacity of the rock in this block to a very large number (in

this work we use CR = 108 Btu/lb/ft3/◦F in heater blocks). The heater temperature

can however be changed at any time by simply specifying a new block temperature.

This simple approach allows us to introduce heat without implementing a proper

heater well model. This procedure is physically reasonable when the size of the

heater well block is comparable to the size of the actual heater well. We note that

this approach was used by Fan et al. [27]. More sophisticated heater well models
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have been developed recently by Aouizerate et al. [28] and could be incorporated in

our formulation. As a consequence of our simplified treatment, the term qH vanishes

from the discretized system, as it is represented, in effect, as a boundary condition.

2.1.3 Discrete system of equations

The overall discrete set of equations solved at every timestep in GPRS is constructed

by combining the discrete representations for equations 2.1 and 2.7. This nonlinear

system can be written as:

g
(

xn+1,xn,un+1
)

= F
(

xn+1
)

+ A
(

xn+1,xn
)

+ Q
(

xn+1,un+1
)

= 0, (2.13)

where x =
(

p1, T1, . . . , pNg
, TNg

)T
is the vector of states and u =

(

pw1
, . . . , pwNw

)T

is the vector of controls, with Ng the number of grid blocks and Nw the num-

ber of producer wells. The vector g =
(

gm1
, ge1

, . . . , gmNg
, geNg

)T

is the overall

residual we seek to drive to zero, F =
(

Fm1
, Fe1

, . . . , FmNg
, FeNg

)T

is the overall

flux term, A =
(

Am1
, Ae1

, . . . , AmNg
, AeNg

)T

is the overall accumulation term, and

Q =
(

Qm1
, Qe1

, . . . , QmNg
, QeNg

)T

is the overall source/sink term. Here the sub-

script m indicates that the contribution derives from the mass conservation equation

2.1 and e that the contribution is from the energy equation 2.7. The number (1 to

Ng) designates the grid block.

The system of equations 2.13 is nonlinear because it contains functions of un-

knowns (e.g., λo (p, T )) multiplying unknowns. Therefore it cannot be solved directly.

We use the Newton-Raphson method, in which the solution is found iteratively by

solving the following linear system at each iteration:

J(ν)∆x(ν+1) = −g(ν), (2.14)
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where J(ν) is the Jacobian matrix, ∆x(ν+1) = x(ν+1)−x(ν) is the change of the unknown

over the iteration, and g(ν) is the residual at the end of the νth iteration. The Jacobian

matrix contains the derivatives of all elements of vector g with respect to all state

variables (the elements of vector x). This can be written mathematically as:

J =
∂g

∂x
. (2.15)

For three-dimensional systems, J is block hepta-diagonal and each block is of dimen-

sions 2× 2. For example, the block element containing the derivatives of the residual

in grid block i with respect to the variables in grid block j is as follows:

(

∂g

∂x

)

ij

=











∂gmi

∂pj

∂gmi

∂Tj

∂gei

∂pj

∂gei

∂Tj











(2.16)

2.2 TPWL representation for simplified thermal

model

The objective of this work is to apply the TPWL procedure to the model described

above in order to significantly decrease the computational time of running a simula-

tion, at the cost of a small loss of accuracy. As will be explained below, the main

cost of using TPWL is the overhead computations. Indeed, some preprocessing is

needed in order to construct the TPWL model before it can be used with new sets

of controls. This phase is often referred to as training. As is the case for many other

reduced-order modeling techniques, because of this overhead training cost, it only

makes sense to use TPWL for applications that require many simulation runs. This

is indeed the case for optimization or sensitivity analysis. The following descriptions



2.2. TPWL REPRESENTATION FOR SIMPLIFIED THERMAL MODEL 17

of the POD and TPWL procedures follow those provided by Cardoso and Durlof-

sky [5]. The details of the TPWL procedure differ from those in [5] as we are here

addressing a thermal problem rather than an oil-water system.

2.2.1 Proper orthogonal decomposition

TPWL entails a piecewise linearization combined with a projection into a reduced

space. The reduced space is intended to capture most of the physical behavior of

the full-order space. In this work, the projection into reduced space z is achieved by

using an orthonormal basis Φ, of dimensions 2Ng × ℓ, found by proper orthogonal

decomposition (POD). Specifically, we have x = Φz. The dimension of the initial

high-fidelity model is 2Ng since there are two states (T and p) for each grid block,

and ℓ is the dimension of the reduced space. In general ℓ is much smaller than Ng.

We now briefly describe the construction of the basis matrix Φ using POD.

The first step in constructing Φ is to run one or more training simulations with

the high-fidelity model. In order to do so, control variables such as well bottom hole

pressures (BHP), well flow rates or heater temperatures must be set by the user.

Cardoso [4] has shown that for oil-water systems, varying the BHP randomly over

a prescribed range of values appears to provide a reasonable basis Φ. Indeed, the

training simulation(s) should capture as much of the potential behavior of the system

as possible. During these runs, state variables are saved at each timestep. These

vectors of saved states are known as solution snapshots. Consistent with [4], POD

is applied separately for pressure and temperature, so two snapshots are saved at

a given timestep: xp containing the pressures of all grid blocks and xT containing

the temperatures of all grid blocks. Two data matrices Xp and XT can then be

formed (the snapshots at each timestep represent the columns). For convenience, the

subscript is dropped in the following description, though it should be kept in mind

that the procedure is performed separately for Xp and XT .
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The POD basis matrix Φ contains as its columns the eigenvectors of the covariance

matrix XXT that are associated with the largest eigenvalues. If there are k snapshots

recorded during the training simulations, the data matrix X is of dimensions Ng ×

k. Therefore the dimensions of XXT are Ng × Ng. The eigenvectors of XXT are

identical to the left singular vectors of X. Using this property, it is sufficient to

perform a singular value decomposition (SVD) of X to obtain the eigenvectors of

XXT . Eigenvalues of XXT (λi) are related to the singular values of X (σi) through

the relation λi = σ2
i .

Once the eigenvectors and eigenvalues of the covariance matrix are computed, the

ℓ vectors associated with the largest eigenvalues are used in Φ. The choice of ℓ can

be based on the distribution of energy among the eigenvalues or other criteria can

be applied – see He at al. [21] for discussion. Here we apply an energy criterion.

Specifically, the energy is computed as Eℓ =
∑ℓ

i=1 λi with the eigenvalues λi in

decreasing order. When ℓ = k, Eℓ represents all of the energy in the system. The

actual value of ℓ is found by specifying the percentage of the total system energy to

be captured.

This procedure is applied successively to Xp and XT to create two basis matrices

Φp and ΦT of respective dimensions Ng × ℓp and Ng × ℓT . These matrices are then

combined into one basis matrix Φ of dimension 2Ng×ℓ where ℓ = ℓp+ℓT . The matrix

Φ can now be used to project the high-fidelity state vector x into a reduced-order

space of dimension ℓ (z = ΦTx) or it can be used to represent the full-order states in

terms of the reduced-order states (x = Φz). We will see below how Φ enters into the

TPWL formulation.

2.2.2 Trajectory piecewise linearization

The basic idea behind the TPWL procedure is to run a small number of high-fidelity

training simulations and save the solution snapshots, Jacobian matrices and other
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derivatives at all timesteps. Then, in order to compute the solution (designated

xn+1) for a new simulation with different controls (designated un+1), we apply a first-

order expansion around a previously saved state. Indeed, the residual equation 2.13

can be expanded around any of the saved states, denoted by (xi+1,xi,ui+1). Here,

xi+1 and ui+1 are the vector of states and vector of controls respectively, saved at

timestep i + 1. The vector xi refers to the saved states from the previous timestep.

Representation of the residual g (xn+1,xn,un+1), which we seek to drive to zero,

around saved state (xi+1,xi,ui+1), gives:

g (xn+1,xn,un+1) = g (xi+1,xi,ui+1) +

(

∂g

∂x

)

i+1

(xn+1 − xi+1)

+

(

∂g

∂x

)

i

(xn − xi) +

(

∂g

∂u

)

i+1

(un+1 − ui+1) + · · ·

(2.17)

Note that un+1, the new set of controls at timestep n + 1, is specified by the user.

Since g (xn+1,xn,un+1) = g (xi+1,xi,ui+1) = 0, it is evident from this equation that,

using the previously saved data, and given xn, the solution at the next timestep xn+1

can be approximated. In order to minimize the approximation error, the saved state

xi+1 should be chosen to be as ‘close’ as possible to xn+1. However, only the solution

at the current timestep n is known. But, if xi is the ‘closest’ saved state to the current

state xn, it is reasonable to use xi+1 as the ‘closest’ saved state to xn+1. There are

different ways to define the ‘distance’ between the new and saved states. More details

on this issue are presented below.

The exact terms that need to be saved from the training simulations can be

determined by expanding all terms of equation 2.13. Starting with the flux terms,

the first order expansion is given by

Fn+1 ≈ Fi+1 +
∂Fi+1

∂xi+1

(

xn+1 − xi+1
)

, (2.18)
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where Fn+1 = F (xn+1) and Fi+1 = F (xi+1). The matrix ∂Fi+1/∂xi+1 represents the

derivative of the flux terms (mass and energy components) with respect to the state

variables (p and T ).

Expanding the accumulation term, an additional term appears because A depends

on both xn+1 and xn:

An+1 ≈ Ai+1 +
∂Ai+1

∂xi+1

(

xn+1 − xi+1
)

+
∂Ai+1

∂xi

(

xn − xi
)

, (2.19)

where An+1 = A (xn+1,xn) and Ai+1 = A (xi+1,xi). Finally, the first order approxi-

mation of the source term is

Qn+1 ≈ Qi+1 +
∂Qi+1

∂xi+1

(

xn+1 − xi+1
)

+
∂Qi+1

∂ui+1

(

un+1 − ui+1
)

, (2.20)

where Qn+1 = Q (xn+1,un+1) and Qi+1 = Q (xi+1,ui+1). The matrix ∂Qi+1/∂ui+1 is

technically of dimensions 2Ng ×Nw where Nw refers to the number of producer wells,

and u is of dimension Nw. However, because only the small fraction of grid blocks

that contain producer wells contribute to Q, the entries for blocks without wells are

zero. Thus the dimension of Q can be taken to be 2Nw and the dimensions of ∂Q/∂u

can be taken to be 2Nw × Nw.

Inserting equations 2.18, 2.19 and 2.20 into equation 2.13 gives

gn+1 ≈ Fi+1 +
∂Fi+1

∂xi+1

(

xn+1 − xi+1
)

+

Ai+1 +
∂Ai+1

∂xi+1

(

xn+1 − xi+1
)

+
∂Ai+1

∂xi

(

xn − xi
)

+

Qi+1 +
∂Qi+1

∂xi+1

(

xn+1 − xi+1
)

+
∂Qi+1

∂ui+1

(

un+1 − ui+1
)

.

(2.21)

Recognizing that gi+1 = Fi+1 + Ai+1 + Qi+1 = 0 and that the Jacobian matrix
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associated with state xi+1 is defined by

Ji+1 =
∂gi+1

∂xi+1
=

∂Fi+1

∂xi+1
+

∂Ai+1

∂xi+1
+

∂Qi+1

∂xi+1
, (2.22)

it is possible to rewrite equation 2.21 as

gn+1 ≈ Ji+1
(

xn+1 − xi+1
)

+
∂Ai+1

∂xi

(

xn − xi
)

+
∂Qi+1

∂ui+1

(

un+1 − ui+1
)

. (2.23)

Using the fact that gn+1 = 0, a linearized representation of the governing equations

can be written as

Ji+1
(

xn+1 − xi+1
)

= −
∂Ai+1

∂xi

(

xn − xi
)

−
∂Qi+1

∂ui+1

(

un+1 − ui+1
)

. (2.24)

All quantities in this equation are known (or specified by the user) except for xn+1.

It is evident from equation 2.24 that, in addition to the solution snapshots xi+1 and

xi, the Jacobian matrix Ji+1 and the two matrices ∂Qi+1/∂ui+1 and ∂Ai+1/∂xi must

be saved in order to compute xn+1 using this linearized representation.

Although it is possible to compute xn+1 from equation 2.24, this would require

operations with very large matrices and vectors (e.g., Ji+1 is of dimensions 2Ng×2Ng)

and it would not lead to significant computational savings. Instead, we now introduce

the projection matrix Φ discussed in Section 2.2.1. Specifically, x is now represented

as x = Φz and equation 2.24 is projected into the reduced space by premultiplying

by ΦT . This gives

ΦTJi+1Φ
(

zn+1 − zi+1
)

= −ΦT

[

∂Ai+1

∂xi
Φ

(

zn − zi
)

+
∂Qi+1

∂ui+1

(

un+1 − ui+1
)

]

.

(2.25)

Defining

Ji+1
r = ΦTJi+1Φ, (2.26)
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(

∂Ai+1

∂xi

)

r

= ΦT

(

∂Ai+1

∂xi

)

Φ, (2.27)

(

∂Qi+1

∂ui+1

)

r

= ΦT

(

∂Qi+1

∂ui+1

)

, (2.28)

and rearranging, we can rewrite equation 2.25 more concisely as

zn+1 = zi+1 −
(

Ji+1
r

)

−1
[(

∂Ai+1

∂xi

)

r

(

zn − zi
)

+

(

∂Qi+1

∂ui+1

)

r

(

un+1 − ui+1
)

]

, (2.29)

where subscript r denotes reduced. Note that while Ji+1 is a sparse matrix of di-

mensions 2Ng × 2Ng, Ji+1
r is a full matrix of dimensions ℓ × ℓ, where ℓ << Ng. It

is therefore feasible (and generally fast) to invert Ji+1
r . Similarly,

(

∂Ai+1/∂xi
)

r
is of

dimensions ℓ × ℓ and
(

∂Qi+1/∂ui+1
)

r
is a matrix of dimensions ℓ × Nw.

2.3 Detailed treatments of various terms

2.3.1 Constructing the required matrices

As indicated above, high fidelity simulations are performed using Stanford’s General

Purpose Research Simulator GPRS [23, 24]. The simulator was modified to out-

put the solution snapshots xi+1, the Jacobian matrices Ji+1, the derivative matrices

∂Ai+1/∂xi, and selected fluid properties (ρo, Ho, µo and Bo) at every timestep.

Unlike the Jacobian matrix, the matrix ∂Ai+1/∂xi is not needed in the solution of

the governing system of equations in GPRS. Therefore, it would require some mod-

ification of the simulator to construct this matrix. However, ∂Ai+1/∂xi+1, which is

a part of the Jacobian matrix (see equation 2.22), is computed at every timestep in

GPRS. It is in fact possible to use this matrix to reconstruct ∂Ai+1/∂xi. Indeed,

vector Ai+1 is constructed by combining the accumulation terms from the mass con-

servation equation (2.4) and the energy conservation equation (2.10). For grid block
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j, this vector is written as

Ai+1
j =

1

∆ti+1







(

φ

Bo

)i+1

j

−

(

φ

Bo

)i

j

Ei+1
j − Ei

j






, (2.30)

where ∆ti+1 = ti+1 − ti and E = (φρoUo + (1 − φ) ρRUR) is the total internal energy

in block j. Now, the block-diagonal matrix ∂Ai+1/∂xi+1 (here, each block is of

dimensions 2× 2) contains the derivatives of the accumulation terms with respect to

the state variables at timestep i+1. For grid block j, the corresponding block-element

in matrix ∂Ai+1/∂xi+1 is

(

∂Ai+1

∂xi+1

)

j

=
1

∆ti+1

∂

∂xi+1
j







(

φ

Bo

)i+1

j

Ei+1
j






. (2.31)

Similarly, for grid block j, the corresponding diagonal block-element in ∂Ai+1/∂xi is

(

∂Ai+1

∂xi

)

j

= −
1

∆ti+1

∂

∂xi
j







(

φ

Bo

)i

j

Ei
j






. (2.32)

Thus we see that matrix ∂Ai+1/∂xi can be computed by multiplying the matrix

∂Ai/∂xi (which is just ∂Ai+1/∂xi+1 at the previous timestep) by −∆ti/∆ti+1.

2.3.2 Representation of well derivatives

Well derivative matrix ∂Qi+1/∂ui+1 is not required in GPRS and thus it is not

recorded directly during the training runs. Instead we compute it using the solu-

tion snapshots and the saved fluid properties. For the derivatives of the well term in

grid block j with respect to the controls in grid block j (derivatives with respect to
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other grid blocks are zero), the specific expressions used in our TPWL implementation

are

(

∂Qi+1

∂ui+1

)

j

=













(

∂Qm

∂pw

)i+1

j
(

∂Qe

∂pw

)i+1

j













=





(Wiλo)
i+1
j

(ρoHoWiλo)
i+1
j



 . (2.33)

Once all of the derivative matrices are available (saved Jacobians, saved accumula-

tion derivatives and reconstructed well derivatives), these matrices are projected into

the reduced-order space, using the projection matrix Φ, as described in equations

2.26, 2.27 and 2.28. However, as noted in Section 2.2.2, the dimension of vector Q

can be taken as 2Nw. It follows that matrix ∂Qi+1/∂ui+1 is of dimensions 2Nw ×Nw.

In consequence, when projecting ∂Qi+1/∂ui+1 into the reduced space, only the rows

of matrix Φ that correspond to grid blocks with producer wells are included. This

new projection matrix is called Φw and appears as follows:

(

∂Qi+1

∂ui+1

)

r

= ΦT
w

(

∂Qi+1

∂ui+1

)

, (2.34)

where Φw is of dimensions of 2Nw × ℓ. The matrix
(

∂Qi+1/∂ui+1
)

r
, of dimensions

ℓ×Nw, is then used in equation 2.29. Note that ΦT
w replaces ΦT appearing in equation

2.28.

2.3.3 Determination of closest saved state

As discussed previously, application of the TPWL procedure requires running one

or more high-fidelity training simulations. Then, as described in Section 2.2.2, the

‘closest’ saved state to the current solution must be determined at every step of

the procedure. There are many ways to determine which saved state to use. If

only one training run is performed, during which data are saved at every timestep,

a simple approach is to use the saved state at the timestep corresponding to the
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timestep being simulated. Although this choice may not provide the closest saved

state mathematically, we have found it to be a practical and robust choice. This is

the approach applied in Chapter 3 when a single training run is used.

When more than one training run is performed, it is necessary to apply a different

approach. We achieved accurate and robust results by computing distances based on

(high-fidelity) temperatures of grid blocks containing producer wells. This approach

is applied in the examples in Chapter 3 that involve multiple training runs. This

treatment is of course heuristic and other approaches are possible.

2.3.4 Treatment of heater wells

The special treatment used to model heater wells in this work requires some modifi-

cations prior to applying the TPWL procedure. Since heater wells are modeled with

grid blocks at (essentially) constant temperatures, they appear as boundary condi-

tions in the governing system of equations. However, we would like, in effect, to use

these temperatures as control variables. Therefore, we need to maintain the ability

to change their values at any given time.

In order to achieve this, the small fraction of grid blocks that contain heater wells

is not projected into the reduced space when applying TPWL. This is achieved with

a method analogous to the local high-resolution procedure described by He et al.

[21]. In this case, however, only the heater well block temperatures need be kept at

the high-resolution level. If we let xH =
[

TH1
, . . . , THNH

]T

designate the full-order

temperatures associated with the heater well blocks, where TH designates the heater

temperature and NH is the number of heater well blocks, and xG the full-order states

for all other variables, then we write





xH

xG



 =





ΦH 0

0 ΦG









zH

zG



 , (2.35)
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where ΦH is the identity matrix (thus zH = xH) and ΦG is found using POD, as

described in Section 2.2.1.

We will use equation 2.35 to project our linearized representation of the governing

equations (2.24) into reduced space. First we isolate the equations corresponding to

heater well blocks. The system can now be written as:



















xn+1
H = un+1

H

Ji+1
G

(

xn+1
G − xi+1

G

)

= −

(

∂Ai+1

∂xi

)

G

(xn
G − xi

G) +

(

∂Qi+1

∂ui+1

)

(un+1 − ui+1) ,

(2.36)

where the first line represents the equations solved in the heater well blocks and un+1
H

contains the target temperatures at timestep n+1 (specified by the user) for these grid

blocks. The second line in equation 2.36 shows the linearized governing equations for

all other grid blocks (denoted by the subscript G). We then proceed by representing

the high-fidelity state variables using equation 2.35 and by premultiplying by

Φ̃ =





I 0

0 ΦG



 . (2.37)

This gives:























xn+1
H = un+1

H

zn+1
G = zi+1

G −
(

Ji+1
G,r

)

−1

[

(

∂Ai+1

∂xi

)

G,r

(zn
G − zi

G) +

(

∂Qi+1

∂ui+1

)

r

(un+1 − ui+1)

]

,

(2.38)

where the subscript r denotes reduced and G indicates that rows and columns asso-

ciated with heater wells have been removed. It is evident from equation 2.38 that the

heater well blocks are not projected into the reduced space. They can therefore be



2.3. DETAILED TREATMENTS OF VARIOUS TERMS 27

specified by the user at any timestep.

Note that we can also apply the local high-resolution procedure described by He

et al. [21] to resolve production well blocks. This approach, which is used in the

examples in Chapter 3, is compatible with the treatment of heater wells described in

this section. For this case, equation 2.35 becomes:











xH

xP

xG











=











ΦH 0 0

0 ΦP 0

0 0 ΦG





















zH

zP

zG











, (2.39)

where xP contains the producer well state variables, and ΦP is taken to be the identity

matrix (thus xP = zP ). Appropriate modifications also appear in equations 2.36 and

2.38. In the examples of Chapter 3, the local high-resolution procedure is applied to

both pressure and temperature of the heater well blocks and producer well blocks.



Chapter 3

Numerical examples

In this chapter we apply the TPWL procedure to two reservoir models – one contain-

ing 35,200 grid blocks and the other containing 75,000 grid blocks. The simulations

entail solution of the pressure and energy equations discussed in Chapter 2. Both

models use realistic permeability distributions, generated using the software SGeMS

[29].

3.1 Reservoir model 1

3.1.1 Model description

This reservoir model, shown in Figure 3.1, is three-dimensional and contains 35,200

grid blocks. The number of grid blocks in each direction is nx = 40, ny = 40 and

nz = 22. Each grid block is of dimensions 5 ft × 5 ft in the horizontal plane and

3 ft in the vertical direction. Thus the overall model is rather small, of dimensions

200 ft × 200 ft × 66 ft. There are four producer wells (designated P1-P4) that are

completed in the five deepest layers of the reservoir (layers 18-22). There are also

21 heater wells that are completed in layers 8-22. Note that the heater blocks are

28
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considerably larger than actual heater wells, so our constant-temperature treatment

of heater blocks overpredicts the input of energy into the model.

 

 

2 3 4 5 6 7 8

Figure 3.1: Reservoir model 1 showing log permeability (mD), production wells
(black) and heater wells (red)

Permeability is taken to be a diagonal tensor (kx = ky = kz) and follows a log-

normal distribution with a mean value of 140 mD and a variance σlogk = 2. Porosity

is set constant in all grid blocks and equal to 0.3. The fluid is modeled with a single

oil component in one phase. The system is compressible, with density varying with

pressure and temperature as follows:

ρo (p, T ) = ρ0 exp
(

cp

(

p − p0
)

− cT

(

T − T 0
))

, (3.1)

where ρ0 = 45 lb/ft3 is the reference density of oil at reference pressure p0 = 14.7 psi

and reference temperature T 0 = 500◦R. The coefficient cp is the oil compressibility
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with pressure, taken to be constant and equal to 4.57×10−6 psi−1, and the coefficient

cT is the oil compressibility with temperature, taken to be constant and equal to 10−3

◦R−1. The variation of density with pressure and temperature is depicted in Figure

3.2.
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Figure 3.2: Oil density versus pressure (at 500 ◦R) and temperature (at 14.7 psi) for
reservoir model 1

Oil viscosity varies with temperature, according to the following expression [30]:

µo (T ) = a exp

(

b

T − T 0

)

, (3.2)

where µo is in units of centipoise, a = 0.7 and b = 600 are two empirical coefficients,

and T and T 0 are as defined above. The variation of viscosity with temperature is

shown in Figure 3.3. Note that, over the range T = 540◦R to T = 1400◦R, µo varies

by a factor of about 1000.

3.1.2 Training simulation

As discussed in Section 2.2.2, the first step in the TPWL procedure is to perform

training simulations using the high-fidelity model to generate the states, Jacobian
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Figure 3.3: Variation of oil viscosity with temperature for reservoir model 1

matrices and other derivative matrices. For the first set of results, only one full-order

training run is performed with GPRS. The training controls (BHP and heater temper-

ature) are set for ten periods of 100 days each, for a total of 1000 days of production.

All four producers have the same BHP training schedules and all 21 heaters have

the same temperature training schedules. As displayed in Figure 3.4, producer well

training BHPs are prescribed to decrease with time, while heater training temper-

atures are prescribed to increase with time. If the well settings to be used in the

testing stage differ considerably from those shown in Figure 3.4, then the TPWL

model may lose accuracy. In this case, a new training run should be performed. In

the training run, the maximum timestep is 5 days. In total, 208 pressure and tem-

perature snapshots are recorded, and the reduced basis Φ is computed as described

in Section 2.2.1. It contains 24 columns, of which 12 correspond to pressure states

and 12 correspond to temperature states. This basis matrix captures 99.99% of the

system energy for the pressure snapshots and 99.997% of the system energy for the
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(a) Producer well BHP training schedule
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(b) Heater well temperature training schedule

Figure 3.4: Training schedules for production wells and heater wells for reservoir
model 1

temperature snapshots (recall that POD is applied separately for pressure and tem-

perature). For both variables, a local high-resolution method is applied for heater

well blocks and producer well blocks, following the procedure described in [21], as dis-

cussed in Section 2.3.4. In consequence, 630 (2 states× 21 heaters× 15 completions)

columns corresponding to high-resolution states in the heater well blocks and 40

(2 states × 4 wells × 5 completions) columns corresponding to high-resolution states

in the producer well blocks are added to the matrix. In total, the matrix Φ thus

contains 694 columns.

We now present the simulation results obtained with the high-fidelity model

(GPRS) using the control schedules described above. Figure 3.5 shows the oil pro-

duction rates for the four producer wells. Figure 3.6(a) and (b) show the producer

well block temperatures and pressures respectively, for the upper completion block

(layer 18) of each well. In each graph, results from the high-fidelity training runs

are depicted by continuous blue lines. In addition, we assess the ability of TPWL to

reproduce results from the training runs by applying the same BHP and temperature

schedules as those used for the training simulation. We see from these figures that
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Figure 3.5: Oil production rates for the training run for reservoir model 1

the TPWL results, depicted by red circles, are in essentially perfect agreement with

the reference high-fidelity (GPRS) solutions, as would be expected for the training

case.

In Figure 3.5, oil flow rates of all producer wells show a rapid increase, followed by a

decrease at early production time. During this period there is an increase in reservoir

pressure, evident in Figure 3.6(b). This is due to the increase in oil volume with

increasing temperatures. The high reservoir pressure, together with the propagation

of heat into the reservoir (which lowers oil viscosity), boosts the production of oil.

Oil production peaks at about 3 to 6 barrels per day, depending on the producer well.
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Following the initial production peak, viscosity continues to decrease and pressure

decreases rapidly as the reservoir is depleted. In this model, since we use a constant

value of heat capacity over the entire domain, differences in well production are due to

the heterogeneous permeability field and the relative distances to heater well blocks.

Subsequent changes in the BHP controls result in local peaks in production. These

peaks are evident about every 100 days after the first 200 days of production (Figure

3.5). The decreasing pressure of the producers along with the increasing reservoir

temperature acts to sustain the oil production over the course of the simulation.
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(a) Producer well block temperatures for the training run
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(b) Producer well block pressures for the training run

Figure 3.6: Producer well block (layer 18) temperatures and pressures for the training
run for reservoir model 1
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3.1.3 TPWL results and sensitivity analysis

In this section we assess the performance of the TPWL procedure for the reservoir

model described above. We define six new heater temperature schedules. As depicted

in Figure 3.7, these schedules differ by varying degrees from the training temperature

schedule. For example, temperature schedule 4 represents a relatively small deviation

from the training schedule, while temperature schedules 2 and 7 deviate significantly.

Similarly, we define seven new BHP schedules that also differ from the training BHPs

(see Figure 3.8). Since the TPWL procedure is based on a piecewise linearization,

we expect that the accuracy of the results will decrease as the testing schedules

increasingly deviate from the training schedules.

We now perform a sensitivity analysis by applying the TPWL procedure for all

combinations of heater temperature schedules and producer well BHP schedules. This

represents 56 distinct TPWL simulations. The accuracy of each simulation is then

assessed quantitatively by computing the average error, relative to the reference high-

fidelity simulation, for the oil production rate. The error computation follows the

procedure presented in [4]. Rates from the TPWL simulation are interpolated to fit

the simulation times of the corresponding high-fidelity simulation. Then, for each

producer well k, we compute the high-fidelity oil production rate Qk
hf, and the TPWL

oil production rate Qk
tpwl, at every timestep. The time-average error for each well,

designated Ek, is calculated as the average of the absolute differences, normalized by

the time-average oil flow rate Q̄k
hf for the well. Error is then given by

Ek =
1

NtQ̄k
hf

Nt
∑

i=1

∣

∣

∣Q
k,i
hf − Qk,i

tpwl

∣

∣

∣ , (3.3)

where the superscript i represents the timestep at which each flow rate is computed

and Nt is the total number of timesteps. The total error E is then calculated as the
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Figure 3.7: Heater temperature schedules for testing runs
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Figure 3.8: Producer well BHP schedules for testing runs
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arithmetic average of the errors of all wells. Specifically:

E =
1

Nw

Nw
∑

k=1

Ek, (3.4)

where Nw is the total number of producer wells (four in this case).

Table 3.1: Error for oil production rates for reservoir model 1

T sch BHP 1 BHP 2 BHP 3 BHP 4 BHP 5 BHP 6 BHP 7 BHP 8

1 0.0009 0.0018 0.0014 0.0010 0.0013 0.0016 0.0020 0.0025
2 0.2249 0.2269 0.2255 0.2244 0.2245 0.2250 0.2328 0.2347
3 0.0689 0.0695 0.0690 0.0687 0.0726 0.0736 0.0752 0.0739
4 0.0065 0.0060 0.0062 0.0063 0.0069 0.0072 0.0077 0.0080
5 0.0068 0.0075 0.0073 0.0070 0.0070 0.0073 0.0076 0.0086
6 0.0256 0.0272 0.0266 0.0259 0.0261 0.0267 0.0273 0.0285
7 0.0420 0.0441 0.0431 0.0424 0.0426 0.0433 0.0441 0.0454

Errors computed using equation 3.4 are compiled in Table 3.1. The training

simulation, which has the lowest error, is indicated in bold. Each row in this table

displays the TPWL error for a fixed heater temperature schedule, while each column

gives the error for a particular BHP schedule. It is evident that the errors are relatively

similar on a given row, though they vary along a given column. This indicates that

varying BHP schedules over the range considered has a relatively limited impact on

the accuracy of the TPWL procedure for this reservoir model. TPWL production

rate results for temperature schedule 1, BHP schedule 8 are shown in Figure 3.9.

The TPWL production curves match closely those from the reference high-fidelity

simulation. This high level of agreement is consistent with the small error (0.25%)

for this case.

The next set of production results, shown in Figure 3.10, are for temperature

schedule 6 and BHP schedule 5. For this case, the relative error is about 2.6%. It
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Figure 3.9: Oil production rates using temperature schedule 1 and BHP schedule 8

is noteworthy that, despite the fact that both the temperature and BHP schedules

differ from the training schedules, TPWL provides results of high accuracy. We next

consider a case with moderate error – temperature schedule 3 and BHP schedule 3

(relative error of 6.9%). Results for this case are shown in Figure 3.11. Here we see

that, although TPWL provides an accurate solution at early time, by around 300

days, clear discrepancy in production rates is evident. We note that, as is evident

from Table 3.1, error is even larger for TPWL runs with temperature schedule 2.

These results illustrate the potential loss of accuracy for testing runs with controls

that differ significantly from those used in the training runs.
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Figure 3.10: Oil production rates using temperature schedule 6 and BHP schedule 5
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Figure 3.11: Oil production rates using temperature schedule 3 and BHP schedule 3
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3.1.4 TPWL results with multiple training runs

We now seek to improve the accuracy of TPWL by using a multiple training approach.

In addition to the training simulation presented in Section 3.1.2, we run two new

training runs using BHP schedule 1 (as defined in Figure 3.8), and heater temperature

schedules 2 and 7 (as defined in Figure 3.7). These new training schedules are shown

in Figure 3.12.
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(a) Producer well BHP training schedule
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(b) Heater well temperature training schedules

Figure 3.12: Training schedules for multiple training approach for reservoir model 1

Each of the three training simulations generates 208 pressure and temperature

snapshots. The reduced basis Φ is again computed with POD, as described in Section

2.2.1. The matrix Φ now contains 47 columns, of which 21 correspond to pressure

states and 26 to temperature states. This basis matrix captures the same percentage

of the system energy as for the single training case considered above. Again, we use

local high-resolution for heater well blocks and producer well blocks, resulting in a

total of 670 extra columns. Thus in total, Φ contains 717 columns.

By selecting the training schedules to span a large range of temperatures, we

expect to capture model behavior over a wider range of testing schedules. We show

in Table 3.2 the relative errors between results found with TPWL, using multiple
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Table 3.2: Error for oil production rates for the multiple training approach for reser-
voir model 1

T sch BHP 1 BHP 2 BHP 3 BHP 4 BHP 5 BHP 6 BHP 7 BHP 8

1 0.0009 0.0018 0.0014 0.0010 0.0053 0.0085 0.0108 0.0049
2 0.0013 0.0030 0.0025 0.0018 0.0019 0.0056 0.0089 0.0107
3 0.0152 0.0153 0.0150 0.0149 0.0148 0.0157 0.0155 0.0203
4 0.0101 0.0088 0.0084 0.0097 0.0106 0.0104 0.0115 0.0105
5 0.0074 0.0076 0.0075 0.0074 0.0122 0.0156 0.0164 0.0117
6 0.0026 0.0027 0.0027 0.0028 0.0081 0.0117 0.0142 0.0080
7 0.0003 0.0018 0.0013 0.0009 0.0060 0.0108 0.0160 0.0068

training runs, and the corresponding reference high-fidelity simulations. These errors

are indeed much smaller than those in Table 3.1. Again, TPWL reproduces the

training cases with high accuracy (errors for those cases are indicated in bold in

Table 3.2). Errors for all cases are now less than 2%. Note in particular that the

errors for temperature schedule 2 are now less than 1%, in contrast to the 22% errors

for these cases when a single training was used. These significant reductions in error

result because temperature schedule 2 is now used for training.

Production rates using temperature schedule 3 and BHP schedule 3 are shown

in Figure 3.13. For this case, the relative error was reduced from 6.9% to 1.5% by

switching to a multiple training approach. The results in Figure 3.13 are clearly more

accurate than those in Figure 3.11, where a single training run was used.

For reservoir model 1, the high-fidelity (GPRS) reference simulations require about

2500 seconds to run. For both the single and multiple training approaches, TPWL

simulations run in about 6 seconds. This results in runtime speedups of a factor of

about 400. Note that our TPWL implementation was performed using Matlab, which

may not render the best runtime speedups achievable. The overhead computational

requirement is equivalent to less than three high-fidelity reference simulations for the

single training case. For the multiple training approach, using three high-fidelity
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Figure 3.13: Oil production rates using temperature schedule 3 and BHP schedule 3,
using multiple training simulations

training runs, the overhead work requirement is equivalent to about six high-fidelity

reference simulations. Each training run entails about twice the computational work

of running a reference simulation. The extra time is due to the need to save the

required (high-fidelity) data and to perform some TPWL pre-processing. Some of

these overhead computations are performed using Matlab, and we expect that they

could be accelerated.

Increasing the number of training runs provides more saved states in the TPWL

procedure. Thus, this approach requires an efficient and robust point selection
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method. Here we use a distance-based selection method based on the high-fidelity

producer well grid block temperatures, as described in Section 2.3.3. Although our

implementation was found to be reasonably robust, this is a heuristic approach and

improved treatments may be possible.

3.2 Reservoir model 2

In this section, we apply the TPWL procedure to a more challenging example. This

case involves a larger reservoir model and increased nonlinearities in pressure and

temperature. We assess the performance of TPWL for this example using a multiple

training approach.

 

 

0 1 2 3 4 5 6 7 8

Figure 3.14: Reservoir model 2 showing permeability (mD), producer wells (black)
and heater wells (red)
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3.2.1 Model description

Reservoir model 2 (Figure 3.14) contains 75,000 grid blocks, with nx = 50, ny = 50

and nz = 30. For this model, grid block dimensions are ∆x = 5ft, ∆y = 5ft and

∆z = 3ft. There are four producer wells (designated P1-P4) that are completed in

layers 20-26, and 16 heater wells in layers 11-30. Permeability follows a log-normal

distribution with a mean value of 94 mD and a variance σlogk = 2.
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Figure 3.15: Oil density versus pressure (at 500 ◦R) and temperature (at 14.7 psi) for
reservoir model 2

Porosity is set constant and equal to 0.3 in all grid blocks. The dependence of

density on pressure is larger than in reservoir model 1; here we use cp = 10−3 psi−1

rather than cp = 4.57×10−6 psi−1, which was used in reservoir model 1. The variation

of oil density with temperature and pressure is plotted in Figure 3.15. Viscosity is

again modeled using the correlation in equation 3.2, now with a = 0.5 and b = 800.

The resulting curve is shown in Figure 3.16. For the example considered below, this

correlation leads to a variation in viscosity over about four orders of magnitude during

the first 1000 days of production. This is one order of magnitude more variation than

what was observed in reservoir model 1.
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Figure 3.16: Variation of oil viscosity with temperature for reservoir model 2

3.2.2 Training simulations

We perform five training runs for this case. For the first training run, BHPs of the

four producer wells are set to follow BHP schedule 1, as defined in Figure 3.8. Heater

temperatures for the heater well blocks are set to follow temperature schedule 1,

shown in Figure 3.7. Two additional training simulations are performed using BHP

schedule 1, along with temperature schedules 2 and 7. The last two training runs

are performed using temperature schedule 1 along with BHP schedules 2 and 8. The

controls used for these five training simulations are plotted in Figure 3.17. By setting

these training simulations to cover a wide range of pressures and temperatures, our

intent is to construct a TPWL model that can capture a wide range of behavior.

The training simulations are performed using a maximum timestep of 5 days.

This results in 1132 saved states for the 5 training runs (about 226 timesteps/run

on average). The basis matrix Φ, found by applying POD, contains a total of 146

columns, of which 90 correspond to pressure states and 56 to temperature states.

This basis matrix captures 99.99% of the system energy for pressure and 99.997% of
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0 200 400 600 800 1000

900

950

1000

1050

1100

1150

H
ea

te
r 

T
em

pe
ra

tu
re

s 
(R

)
Time (day)

 

 

training 1,4,5 training 2 training 3

(b) Heater well temperature training schedules

Figure 3.17: Training schedules for multiple training approach for reservoir model 2

the system energy for temperature. In addition, a local high-resolution procedure is

applied for both states, in all heater well blocks and all producer well blocks. This

results in a total of 696 (2 states × 16 heaters × 20 completions + 2 states × 4

producers × 7 completions) additional columns. The final matrix Φ used in the

TPWL procedure thus has a total of 842 columns.

3.2.3 TPWL results and sensitivity analysis

Following the same procedure used with reservoir model 1, we apply TPWL using all

combinations of the control schedules defined in Figures 3.7 and 3.8. Relative errors

with respect to the corresponding high-fidelity runs are compiled in Table 3.3, with

the training cases indicated in bold.

These errors are found to be relatively low over the range of BHP and temperature

schedules considered. Indeed, a majority of the cases leads to errors smaller than 2%,

indicating that TPWL results are in close agreement with the corresponding reference

high-fidelity simulation. We show, for example, oil production rates obtained with
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Table 3.3: Error for oil production rates for the multiple training approach for reser-
voir model 2

T sch BHP 1 BHP 2 BHP 3 BHP 4 BHP 5 BHP 6 BHP 7 BHP 8

1 0.0000 0.0000 0.0218 0.0218 0.0087 0.0025 0.0002 0.0000

2 0.0010 0.0673 0.0599 0.0262 0.0197 0.0253 0.0217 0.0190
3 0.0128 0.0210 0.0491 0.0230 0.0227 0.0240 0.0240 0.0242
4 0.0039 0.0037 0.0277 0.0208 0.0078 0.0064 0.0075 0.0073
5 0.0230 0.0566 0.0456 0.0296 0.0144 0.0138 0.0134 0.0134
6 0.0024 0.0489 0.0331 0.0126 0.0092 0.0109 0.0121 0.0122
7 0.0004 0.0520 0.0359 0.0143 0.0075 0.0099 0.0105 0.0106

TPWL using temperature schedule 7 and BHP schedule 6, along with the correspond-

ing high-fidelity results in Figure 3.18. For this case, the relative error is about 1%.

Figure 3.19 displays results obtained by setting the well BHPs to follow schedule 5

and the heater temperatures to follow schedule 3. For this case, although both BHP

and temperature schedules differ from the training schedules, TPWL results are again

in close agreement with those obtained from high-fidelity simulations. The relative

error is about 2.3%. Note also that these oil production rates differ considerably from

those shown in Figure 3.18, which demonstrates the ability of the reduced model to

capture a range of physical behaviors.

A few TPWL simulation results, however, show some mismatch with the reference

high-fidelity runs (errors between 5% and 7%). We show, for example, in Figure 3.20,

a comparison of oil production rates found with TPWL using temperature schedule

2 and BHP schedule 3. For this case, TPWL error is about 6%. Though the main

production trends are reproduced, additional training is probably needed for this case,

depending on the level of accuracy required.

For reservoir model 2, the high-fidelity (GPRS) reference simulations run in about

6,000 seconds. TPWL simulations require less than 12 seconds, which means they

provide runtime speedups of a factor of about 500. The total overhead computational
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requirements represent the equivalent of about ten high-fidelity runs (two for each

training run used). We reiterate that it would only make sense to use TPWL if many

sensitivity runs (or simulations in an optimization procedure) are to be performed.
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Figure 3.18: Oil production rate using temperature schedule 7 and BHP schedule 6
for reservoir model 2
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Figure 3.19: Oil production rate using temperature schedule 3 and BHP schedule 5
for reservoir model 2
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Figure 3.20: Oil production rate using temperature schedule 2 and BHP schedule 3
for reservoir model 2



Chapter 4

Conclusions and future work

In this thesis, we have applied the reduced-order modeling procedure trajectory piece-

wise linearization (TPWL) to nonlinear thermal reservoir simulation problems. The

two examples considered involved realistic permeability distributions, and contained

35,200 and 75,000 grid blocks respectively. The main outcomes of this work are as

follows.

• The TPWL method was extended to thermal problems involving single-phase

flow coupled to an energy equation. Downhole heater wells were modeled by

fixing the temperature of selected grid blocks.

• For the first reservoir model, density and viscosity were set to vary significantly

with pressure and temperature. A TPWL representation of this model was

generated from a single high-fidelity training simulation and tested with a wide

range of well BHP and heater temperature controls. TPWL results were found

to be in close agreement with the respective high-fidelity runs when the controls

were close to those used in the training simulation. For the most extreme test

cases, the accuracy of the TPWL model was shown to degrade, in some cases

quite considerably.
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• TPWL accuracy was restored, however, by using multiple training simulations.

With this approach, relative errors between results obtained from the TPWL

model and those obtained from the high-fidelity runs were reduced to less than

2% for all test cases.

• The multiple training approach was also used for the second reservoir model.

For this case, the nonlinear dependencies in viscosity and density were greater

than in the first model. Nonetheless, for this more challenging case, TPWL

continued to display a reasonable level of accuracy.

• Significant runtime speedups were achieved for the examples considered in this

thesis. For reservoir model 1, the runtime speedup was a factor of about 400,

and for reservoir model 2, the runtime speedup was a factor of about 500. The

overhead computational requirements, in our implementation, were equivalent

to approximately two runs of the high-fidelity model for each training run used.

The models considered in this work are much simpler than those used in realistic

situations, and this work represents a preliminary assessment of the applicability of

TPWL for thermal problems. Our conclusion is that TPWL is well suited for the

solution of the idealized models considered here. In consequence, its application to

more complex thermal reservoir models should be considered. Following are some

suggestions for improvement and future work.

• Heat injection was achieved, in the current formulation, by setting an entire grid

block at (essentially) constant temperature. For this approach to be accurate,

grid blocks must be the same size as heater wells. New heater well models [28]

have been developed recently, and they should be integrated into our TPWL

formulation. This will enable the accurate representation of downhole heaters

in models with large grid blocks.
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• For the multiple training approach, we have used a heuristic procedure for the

selection of the closest saved state to the current TPWL state. This approach

was based on the difference in well block temperatures between the current

TPWL solution and the saved state. Our technique was shown to be reasonably

robust, but it may be possible to develop more accurate approaches.

• In the formulation developed here, oil was modeled with a single component

in a single phase. A multiphase model, involving the presence of water and

gas in the formation, should be formulated and tested. Also, complex phenom-

ena such as chemical reactions and geomechanical effects were neglected. Such

physics, along with multiple components, could be gradually introduced into

the TPWL model in order to reproduce the actual in-situ upgrading process

more accurately.

• In light of its potential for the idealized thermal problems used in this work,

other thermal applications could be considered. The so-called steam assisted

gravity drainage (SAGD) process could be an interesting candidate for the ap-

plication of TPWL. This would require the implementation of several of the

capabilities noted in the previous point.

• The application of TPWL to more challenging and realistic thermal problems

would naturally lead to its use in optimization. Coupling TPWL to gradient-free

optimization methods is relatively straightforward, although an appropriate re-

training strategy must be developed. A successful implementation could enable

optimizations of complex thermal processes.



Nomenclature

Abbreviations

BHP bottom hole pressure

GPRS General Purpose Research Simulator

ICP in-situ conversion process

IUP in-situ upgrading process

POD proper orthogonal decomposition

SVD singular value decomposition

TPWL trajectory piecewise linearization

Variables

A accumulation term

a, b coefficients in viscosity correlation

B formation volume factor

C specific heat capacity

cp compressibility with respect to pressure

cT compressibility with respect to temperature

D depth

E total internal energy in a grid block, or TPWL error

F flux term

g vector of residual equations

57
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g gravitational acceleration

H specific enthalpy

J Jacobian matrix

k permeability tensor

ℓ dimension of the reduced space

Ng number of grid blocks

NH number of heater well blocks

Nw number of wells

p pressure

Q source/sink term

Qhf high-fidelity oil production rate

Qtpwl TPWL oil production rate

q volumetric flow rate

q̃ volumetric flow rate per unit volume

q̃H heat injection rate per unit volume

r0 equivalent well radius

rw wellbore radius

T temperature

t time

U internal energy

u vector of controls

uo Darcy velocity of oil

V grid block volume

W well index
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X matrix of snapshots

x vector of states

z reduced vector of states

Greek symbols

Φ POD basis matrix

κ thermal conductivity

λ mobility

φ porosity

ρ density

σ singular value

Υ transmissibility

Superscripts

0 reference value

ν Newton iteration

i timestep level of saved data

n timestep level

T transpose

w well

Subscripts

e contribution from energy conservation equation

G global

H heater well block

i grid block number

m contribution from mass conservation equation



60 CHAPTER 4. CONCLUSIONS AND FUTURE WORK

o oil

p pressure

R rock

r reduced

T temperature
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[12] J.F.M. van Doren, R. Markovinović, and J.D. Jansen. Reduced-order optimal

control of water flooding using proper orthogonal decomposition. Computational

Geosciences, 10:137–158, 2006.
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