INFERRING DEPTH-DEPENDENT RESERVOIR PROPERTIES FROM INTEGRATED ANALYSIS USING DYNAMIC DATA

A REPORT SUBMITTED TO THE DEPARTMENT OF PETROLEUM ENGINEERING OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

By
Vinh Quang Phan
June 1998
I certify that I have read this report and that in my opinion it is fully adequate, in scope and in quality, as partial fulfillment of the degree of Master of Science in Petroleum Engineering.

Dr. Roland Horne
(Principal advisor)
Abstract

To be able to predict reservoir performance or to optimize reservoir production, the
determination of reservoir properties is required. The reservoir properties are spatially
dependent and deterministic but are sampled at only a very small number of points.
It is impossible to determine most of them by direct measurement.

The ambition of modern reservoir modeling is to make integrated use of dynamic
data from multiple sources to infer the reservoir properties. The process of infer-
ring the reservoir properties from indirect measurement is an inverse or parameter
estimation problem.

The parameters of interest in this work are porosity and absolute permeability.
These parameters have important influence in determining the performance of the
reservoir and in reservoir optimization. This work represents a way of estimating such
parameters from a variety of indirect measurements such as well test data, long-term
pressure and water-oil ratio history, and 4-D seismic information and also considers
the effect of the data on the uncertainty and resolution of reservoir parameters.

In particular, since earlier work (Landa, 1997) has addressed two-dimensional
problems, this study focuses on the estimation of parameters in three dimensions
where properties vary as a function of depth.

The objective is to find sets of distributions of permeability and/or porosity such
that the model response closely matches the reservoir response. In addition, besides
physical constraints, the sets of permeability and porosity must also satisfy constraints
given by other information known about the reservoir.
I would like to express my sincere gratitude to Dr. Roland N. Horne, chairman of Petroleum Engineering Department, for his valuable guidance and counsel as principal advisor throughout the entire course of this study. This work could not be done without his profound knowledge and experience. The financial support provided by SUPRI-D, Consortium on Innovation in Well Testing, is gratefully acknowledged.
This report is dedicated to my mother, *Nguyen Thi Thi*, and to the memory of my father, *Phan Thon*.
Contents

Abstract iii
Acknowledgements iv
Table of Contents vi
List of Tables ix
List of Figures x

1 Introduction 1

2 Previous Work 4

3 The Inverse Problem 7
3.1 Principle 7
3.2 Forward Model Equations 9
3.3 Objective Function 11
3.4 Minimizing the Objective Function 13
3.4.1 Gauss-Newton Method 14
3.4.2 Line Search 19
3.4.3 Penalty Function and Step-Size Controller 20
3.4.4 Scaling, Marquardt Modification, and Cholesky Factorization 25
3.4.5 Pixel Modeling 27
3.5 Resolution of Parameters 27
A Lists of Programs

A.1 General Instructions .. 126
A.2 Data File Structure ... 126
A.3 Data File Contents .. 127
A.4 Ancillary Programs ... 132
A.5 Input Data Files .. 132
A.6 Output Data Files ... 133
A.7 Example Data Files ... 134
 A.7.1 Input Data File .. 134
 A.7.2 Flow Rate Data File 141
 A.7.3 Observation Data Files 142
 A.7.4 Reservoir Property Data Files 143

Bibliography
List of Tables

4.1 CPU time in seconds .. 68

5.1 Average certainties and certainties of the estimates in gridblocks (1,1,1), (4,1,1), and (4,4,1). .. 79
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Forward and inverse problems.</td>
<td>8</td>
</tr>
<tr>
<td>4.1</td>
<td>General well completion</td>
<td>46</td>
</tr>
<tr>
<td>4.2</td>
<td>Three-layer reservoir model for sensitivity study</td>
<td>59</td>
</tr>
<tr>
<td>4.3</td>
<td>Injection rate of Well #4</td>
<td>60</td>
</tr>
<tr>
<td>4.4</td>
<td>Long term pressure and water cut at Well #2</td>
<td>60</td>
</tr>
<tr>
<td>4.5</td>
<td>Change in water saturation between 50 and 150 days.</td>
<td>61</td>
</tr>
<tr>
<td>4.6</td>
<td>Sensitivity of pressure and water cut with respect to the permeabilities</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>in NE-SW diagonal at 150 days.</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>Sensitivity of pressure and water cut at Well #2 with respect to the</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>permeability in gridblock-(1,20,1).</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>Sensitivity of pressure and water cut at Well #2 with respect to the</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>permeability in gridblock (20,1,1).</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>Sensitivity of change in water saturation between 50 and 150 days.</td>
<td>64</td>
</tr>
<tr>
<td>4.10</td>
<td>Water saturation distribution in the bottom layer at 150 days.</td>
<td>64</td>
</tr>
<tr>
<td>4.11</td>
<td>Sensitivity of water saturation distribution in the bottom layer.</td>
<td>65</td>
</tr>
<tr>
<td>5.1</td>
<td>Individual layer well completion.</td>
<td>71</td>
</tr>
<tr>
<td>5.2</td>
<td>Multilayered well completion.</td>
<td>71</td>
</tr>
<tr>
<td>5.3</td>
<td>Nine wells in multilayered reservoir with individual layer well completion</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>(LP).</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Nine wells in multilayered reservoir with multilayered well completion</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>(CP).</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>Time-dependent rate history of nine wells.</td>
<td>74</td>
</tr>
</tbody>
</table>
5.6 Long-term pressure and water cut data ... 81
5.7 4-D seismic data .. 81
5.8 Water saturation at 15 days: Layer Production (LP). 82
5.9 Match of long term pressure and water cut data 82
5.10 Match of 4-D seismic data ... 83
5.11 Comparison between true and calculated permeability, matching Layer Production and Layer by Layer Seismic (LP-LS). 84
5.12 Certainty of permeability estimates, matching Layer Production and Layer by Layer Seismic (LP-LS). ... 84
5.13 Comparison between true and calculated permeability, matching Layer Production and Depth-Averaged Seismic (LP-AS). 85
5.14 Uncertainty of permeability estimates, matching Layer Production and Depth-Averaged Seismic (LP-AS). ... 85
5.15 Comparison between true and calculated permeability, matching Commingled Production and Layer by Layer Seismic (CP-LS). 86
5.16 Uncertainty of permeability estimates, matching Commingled Production and Layer by Layer Seismic (CP-LS). ... 86
5.17 Comparison between true and calculated permeability, matching Commingled Production and Depth-Averaged Seismic (CP-AS). 87
5.18 Uncertainty of permeability estimates, matching Commingled Production and Depth-Averaged Seismic (CP-AS). ... 87
5.19 Comparison of permeability estimates between Layer Production and Layer by Layer Seismic (LP-LS) and Layer Production and Depth-Averaged Seismic (LP-AS) examples. ... 88
5.20 Comparison of permeability estimates between Commingled Production and Layer by Layer Seismic (CP-LS) and Commingled Production and Depth-Averaged Seismic (CP-AS) examples. ... 89
5.21 Comparison of the resolution matrices between Layer Production and Layer by Layer Seismic (LP-LS) and Layer Production and Depth-Averaged Seismic (LP-AS) data types. ... 90
5.22 Comparison of permeability estimates between Layer Production and Layer by Layer Seismic (LP-LS) and Layer Production and Depth-Averaged Seismic (LP-AS) data types.
5.23 Comparison of permeability estimates between Commingled Production and Layer by Layer Seismic (CP-LS) and Commingled Production and Depth-Averaged Seismic (CP-AS) data types.
5.24 Comparison of certainty for four data types: channel case.
5.25 Resolution matrices by matching four data types: channel case.
5.26 Comparison of permeability estimates between Layer Production and Layer by Layer Seismic (LP-LS) and Layer Production and Depth-Averaged Seismic (LP-AS) data types.
5.27 Comparison of permeability estimates between Commingled Production and Layer by Layer Seismic (CP-LS) and Commingled Production and Depth-Average Seismic (CP-AS) data types.
5.28 Comparison of certainty (with calculated values) for four data types: fault case.
5.29 Comparison of certainty (with true values) for four data types: fault case.
5.30 Resolution matrices by matching four data types: fault case.
5.31 Estimates of permeability in different situations.
5.32 Estimates of porosity in different situations.
5.33 Resolution matrices: either permeability or porosity is known.
5.34 Resolution matrices: permeability and porosity are treated independently.
5.35 Certainty in estimates of porosity.
5.36 Measure of correlation: permeability and porosity are treated independently.
5.37 Measure of correlation between permeability and porosity.
Section 1

Introduction

The predictions of reservoir performance, coning effects such as gas coning in oil wells and water coning in gas wells, the effect of water influx from nearby aquifers, the optimization of reservoir production, the placement of infill wells, and the predictions of breakthrough time and recovery all require the availability of a reservoir simulation model in which rock properties such as porosity and permeability are specified at all block locations. Moreover, the reservoir model geometry and types of reservoir boundaries such as faults, closed, linear, and constant pressure must also be known in advance. For some purposes, relatively simple models such as a homogeneous, fractured or dual-porosity reservoir may be adequate and traditional well test analysis is a useful tool to provide a good reservoir description in the vicinity of a well in such models. But other cases, for example to study the effect of water influx and coning on reservoir performance, to optimize reservoir production or to predict breakthrough time and recovery, often require detailed, distributed descriptions of the reservoir parameters. Traditional well test analysis encounters difficulties in such cases. The main cause of these difficulties is that traditional well test analysis deals only with relative simple models such as homogeneity or at most dual-porosity. Another cause is that traditional well test analysis handles transient pressure data collected at a single well over a relatively small time interval, analyzing each set of collected data and estimating each parameter individually. As a result, traditional well test analysis ignores the interaction between different regions of data. This approach can only
capture the average properties in the well vicinity. There exist several multiple-well analysis methods to capture the heterogeneity of the entire reservoir, however, the scale at which parameters are resolved is relatively coarse. Reservoir heterogeneities often control most of the reservoir flow phenomena and thus the determination of reservoir parameters at fine scales is necessary.

The focus of this work is on the estimation of the spatial distribution of reservoir properties by matching data of different types at multiple locations and time. In particular, the study considered the integration of well test data, long term pressure and production history, and spatial saturation changes as indicated by 4-D seismic surveys. Since earlier authors have considered mainly two-dimensional problems, this work addressed the determination of properties as a function of depth in a fully three-dimensional space.

This report consists of seven sections.

Section 2 of this report outlines a list of related work that has been conducted previously.

Section 3 describes the principle of reservoir parameter estimation in general and discusses in detail the solution technique for estimating these parameters. The method of computing the resolution of parameters is also presented.

Section 4 demonstrates an efficient method of computing sensitivity coefficients (derivatives of the response of a reservoir with respect to gridblock permeabilities and porosities) for layered systems, particularly where wells intersect several layers. The substitution method is also presented for the purpose of ensuring the correctness of the computational results.

Section 5 demonstrates the viability of the method developed in this work for layered reservoirs and examines several study cases to answer fundamental issues associated with the resolution of depth-dependent properties in reservoir characterization problems.

Section 6 analyzes the meaning of the parameters estimated from the nonlinear parameter estimation problem and also presents some important issues to be addressed for the purpose of designing an optimal strategy for data collection.

Section 7 summarizes the approach developed in this study and explores the
areas that need further research. Several remarks are also made in applying this approach to the reservoir characterization problem.
Section 2

Previous Work

Several previous works have addressed the problem of reservoir characterization using integration of data from various sources. This section discusses some of these related works in which parameters were estimated by making use of gradient method.

Chu, Reynolds, and Oliver (1995a) explored the application of gradient methods to the problem of reservoir characterization for two-dimensional, single-phase flow. The permeability field was estimated by matching well test pressure data and hard data. Chu et al. first generated a realization of permeability field that honored all data locations by kriging and then used this realization as prior information and as an initial guess for the Gauss-Newton method to condition to the well test pressure data. Although this method results in considerable savings in computational time by computing only sensitivities of wellblock pressure, the sensitivity coefficients were only approximate.

Chu, Reynolds, and Oliver (1995b) generated reservoir rock property fields and well skin factors conditioned to multiwell pressure data, hard data and prior information which included the variograms and the correlation coefficient between porosity and permeability. The Gauss-Newton algorithm was used with sensitivity coefficients computed by the General Pulse Spectrum Technique (GPST). The authors reported that their algorithm is very efficient. The convergence was achieved in five to eight iterations and did not get trapped at local minima.

Reynolds, He, Chu, and Oliver (1995) recognized that the inverse of the Hessian
matrix at each iteration in the Gauss-Newton algorithm becomes very expensive as the number of permeability and porosity values need to be estimated is large (e.g. thousand of gridblocks). They suggested two methods to improve the computational efficiency. The first method used spectral (eigenvalue/eigenvector) decomposition of the prior model. The second method used the subspace vector to reduce the size of the matrix that must be solved at each Gauss-Newton iteration. The authors showed that if the parameters are properly reparameterized, the computational time required to generate the reservoir model decreases significantly.

Landa, Kamal, Jenkins, and Horne (1996) presented a method to obtain a two-dimensional reservoir description for the Pagerungan Field, offshore Indonesia by integrating well test, production, shut-in pressure, log, core, and geological data. In this work, sensitivity coefficients were computed in a very efficient way using a modification of GPST method described by Chu and Reynolds (1995) and Tang and Chen (1985) and (1989)

He, Reynolds, and Oliver (1996) extended their own previous work from two-dimensional single-phase to three-dimensional single-phase flow problems. They used an adjoint method for computing sensitivity coefficients in a way that requires only one additional simulation run per well for each iteration of the inverse problem. The method is relatively efficient for the cases in which the number of wells and the number of gridblocks are not large. For this single-phase problem, He et al. assumed no pressure gradient along the well bore. As we discuss in detail later, these assumptions significantly ease the computation of the sensitivity of wellbore pressure and water cut and may not be valid for most of the cases in which the WOR and GOR will change with depth and gas may be liberated in the wellbore at an elevation above the lowermost perforation.

In this work, we investigated the use of the gradient-based method for the three-dimensional two-phase reservoir characterization problem in which a more general and accurate approach for computing sensitivity coefficients was used. These sensitivity coefficients can then be incorporated into the inverse problem procedures for estimating the reservoir parameters. Due to the existence of uncertainty both in measurements and in models, these parameter estimates are not intended to be used as
final answers for the reservoir parameters but rather as a realization for the reservoir characterization problem.
Section 3

The Inverse Problem

Reservoir characterization is a problem of describing reservoir properties indirectly from remote measurements. Because the measurements are imprecise we can never hope to determine the true values of reservoir properties with absolute certainty. Instead, we can only characterize these uncertainties within a confidence interval.

This section first explains the principle of the inverse problem in reservoir characterization and then discusses some methods that can be used to estimate the reservoir properties. We will focus in detail on the Gauss-Newton method that we used in this work.

3.1 Principle

A physical situation can be described by an engineer in equation form to show the relationship among certain quantities. These quantities are classified into variables and parameters. Variables refer to measurable quantities and parameters refer to the inherent properties of nature.

If these parameters are known within an acceptable accuracy, computing the behavior of a certain physical situation (behavior of some variables) in response to an external perturbation (some other variables) is referred to as the forward problem.

In the reservoir characterization problem, variables can be pressure and saturation and parameters can be absolute permeability, relative permeability, porosity, well
skin factors etc. These parameters are deterministic but in some situations their values are unknown and need to be estimated. This situation is referred to as the inverse problem and the process of inferring these parameters is also called parameter estimation. These concepts are summarized in Figure 3.1.

Forward problem

\[
\begin{align*}
\text{parameters} & \quad \rightarrow \quad \text{physical situation} & \quad \rightarrow \quad \text{predicted behavior} \\
\text{external perturbation} &
\end{align*}
\]

Inverse problem

\[
\begin{align*}
\text{true behavior} & \quad \rightarrow \quad \text{physical situation} & \quad \rightarrow \quad \text{parameters} \\
\text{external perturbation} &
\end{align*}
\]

Figure 3.1: Forward and inverse problems.

In this work, we dealt with the inverse problem in which the parameters are estimated given the response of a reservoir at a series of injector and producer wells. The general procedure for the solution of the inverse problem can be divided into three major steps as follows:

1. Establishing forward model equations.
2. Defining an objective function.
3. Minimizing the defined objective function.

Having established the forward model equations and defined an objective function, a common algorithm for minimizing the defined objective function in the inverse problem is as follows:

1. Compute or reasonably guess a value for an unknown set of parameters.
2. Compute the response of the mathematical model.
3. Compute the value of the defined objective function which is defined as the square of the discrepancy between the reservoir response and the model response. If the value is less than a predetermined tolerance then the algorithm is terminated.

4. Updating by computing a change in the set of parameters. If the parameters are not updated significantly (the change is less than a certain predetermined tolerance) then the algorithm is terminated.

5. Go to step 2.

3.2 Forward Model Equations

The forward mathematical model equations used in this work were derived from material conservation and Darcy’s law. In petroleum engineering, the mass conservation for any component is normally converted to the volume conservation evaluated at standard conditions or surface conditions.

Consider an arbitrary, fixed volume V embedded within a permeable medium through which is flowing an arbitrary number of component. The conceptual volume conservation equation for a component c in volume V is:

$$
\begin{bmatrix}
\text{Rate of accumulation of } c \text{ in } V \\
\text{Rate of production of } c \text{ in } V \\
\text{Net rate of } c \text{ transported from } V
\end{bmatrix} = \begin{bmatrix}
\text{Rate of production of } c \text{ in } V \\
\text{Net rate of } c \text{ transported from } V
\end{bmatrix}
$$

All terms in Equation 3.1 are volumetric flow rates evaluated at standard conditions. Assuming the material transported in the porous medium is only by convection:

$$
\begin{bmatrix}
\text{Net rate of } c \text{ transported from } V
\end{bmatrix} = \sum_{p=1}^{np} \int_{S} R_{cp} \frac{\tilde{U}_{p} \cdot \tilde{n}}{B_{p}} dS
$$

The surface integral in Equation 3.2 can be converted to a volume integral through the divergence theorem.
SECTION 3. THE INVERSE PROBLEM

\[\sum_{p=1}^{np} \int_S R_{cp} \frac{\tilde{U}_p \cdot \tilde{n}}{B_p} dS = \sum_{p=1}^{np} \int_V \nabla \cdot \left(R_{cp} \frac{\tilde{U}_p \cdot \tilde{n}}{B_p} \right) dV \] (3.3)

\[\text{Rate of accumulation of } c \text{ in } V = \frac{d}{dt} \sum_{p=1}^{np} \int_V R_{cp} \frac{S_p \phi}{B_p} dV = \sum_{p=1}^{np} \int_V \frac{\partial}{\partial t} \left(R_{cp} \frac{S_p \phi}{B_p} \right) dV \] (3.4)

\[\begin{pmatrix} \text{Rate of production of } c \text{ in } V \\ \text{of } c \text{ in } V \end{pmatrix} = \int_V q_c dV \] (3.5)

where:

- \(q_c \) is volume metric production rate of component \(c \) per unit bulk volume evaluated at standard conditions.
- \(\tilde{U}_p \) is the Darcy velocity of phase \(p \).
- \(R_{cp} \) is solubility of component \(c \) in phase \(p \).
- \(B_p \) is formation volume factor of phase \(p \).
- \(\phi \) is the porosity of the porous medium.
- \(np \) is the number of phases.

Combining Equations 3.2 through 3.5 into Equation 3.1 gives the following scalar equation for the component \(c \):

\[\sum_{p=1}^{np} \int_V \frac{\partial}{\partial t} \left(R_{cp} \frac{S_p \phi}{B_p} \right) dV = \int_V q_c dV - \sum_{p=1}^{np} \int_V \nabla \cdot \left(R_{cp} \frac{\tilde{U}_p \cdot \tilde{n}}{B_p} \right) dV \] (3.6)

Let the arbitrary volume \(V \) approach zero:

\[\sum_{p=1}^{np} \frac{\partial}{\partial t} \left(R_{cp} \frac{S_p \phi}{B_p} \right) = q_c - \sum_{p=1}^{np} \nabla \cdot \left(R_{cp} \frac{\tilde{U}_p \cdot \tilde{n}}{B_p} \right) \] (3.7)

Equation 3.7 is the differential form for the component \(c \). The forward flow model equations were constructed in this work with the following features:

- Three-dimensional flow in Cartesian coordinates.
- Slightly-compressible fluids (water and oil).
• Flow is only by convection.
• Heterogeneous and isotropic medium.
• No capillary pressure.

Applying these features to the general Equation 3.7 gives the following equations that were used in this work for the forward mathematical model:

\[
\nabla \cdot \left(\frac{\tilde{U}_w}{B_w} \right) + \frac{\partial}{\partial t} \left(\frac{\phi_0(\tilde{x})f(p)S_w}{B_w} \right) + q_w = 0 \quad (3.8)
\]

\[
\nabla \cdot \left(\frac{\tilde{U}_o}{B_o} \right) + \frac{\partial}{\partial t} \left(\frac{\phi_0(\tilde{x})f(p)S_o}{B_o} \right) + q_o = 0 \quad (3.9)
\]

\[
\tilde{U}_w = -\frac{k_{rw}(S_w)k(\tilde{x})}{\mu_w} \nabla. (\Phi_w) \quad (3.10)
\]

\[
\tilde{U}_o = -\frac{k_{ro}(S_o)k(\tilde{x})}{\mu_o} \nabla. (\Phi_o) \quad (3.11)
\]

\[
\Phi_w = p - \gamma_w z \quad (3.12)
\]

\[
\Phi_o = p - \gamma_o z \quad (3.13)
\]

\[
\gamma_w = \frac{1}{144} \rho_w g \quad (3.14)
\]

\[
\gamma_o = \frac{1}{144} \rho_o g \quad (3.15)
\]

\[
B_w = B_w(p) \quad (3.16)
\]

\[
B_o = B_o(p); \quad (3.17)
\]

3.3 Objective Function

The objective is to estimate the reservoir parameters by matching the model response to the actual reservoir response. To match the model response to the reservoir response, we minimize the objective function which is the discrepancy between the observation data and the response computed from the mathematical model. There
are several ways to define an objective function provided that it is a measure of discrepancy. One of the most common forms of the objective function is the \textit{Weighted Least Square} described by Equation 3.18.

\begin{equation}
\text{Objective Function} = E = \tilde{e}^T W \tilde{e} \tag{3.18}
\end{equation}

\(\tilde{e}\) is the discrepancy between the observation data and model response:

\begin{equation}
\tilde{e} = (\tilde{d}_{\text{obs}} - \tilde{d}_{\text{cal}}) \tag{3.19}
\end{equation}

\(\tilde{d}_{\text{obs}}\) is the set of data measurements and \(\tilde{d}_{\text{cal}}\) is the response computed from the mathematical model. The observation data considered in this work includes long term well pressure, water cut from production data, and the change in water saturation inferred from 4-D seismic.

\begin{equation}
\tilde{d} = \begin{bmatrix}
\tilde{p}_{\text{wf}}(\tilde{\alpha}) \\
\tilde{w}_{\text{ct}}(\tilde{\alpha}) \\
\Delta \tilde{S}_w(\tilde{\alpha})
\end{bmatrix} \tag{3.20}
\end{equation}

\(\tilde{\alpha}\) = \((\tilde{k}, \tilde{\varphi})\) \tag{3.21}

\(\tilde{k}\) Permeability distribution

\(\tilde{\varphi}\) Porosity distribution

\(\tilde{p}_{\text{wf}}\) Long term well pressure

\(\tilde{w}_{\text{ct}}\) Water cut

\(\Delta \tilde{S}_w\) Change in water saturation

\(W\) is a diagonal weighting factor matrix which is included into the objective function to account for the different scales of the different measurements. For example, measurement of water cut is between 0 and 1 while the measurement of pressure may be from 1000 psia to 10000 psia.

Combining Equation 3.18 and Equation 3.19 gives the \textit{Weighted Least Square} form of the objective function that was used in this work:

\begin{equation}
E = (\tilde{d}_{\text{obs}} - \tilde{d}_{\text{cal}})^T W (\tilde{d}_{\text{obs}} - \tilde{d}_{\text{cal}}) \tag{3.22}
\end{equation}
3.4 Minimizing the Objective Function

Having defined the objective function, \(E = E(\bar{\alpha}) \), the next step is to construct an optimal set of parameters \(\bar{\alpha}^* \) such that this function is minimized.

\[
E(\bar{\alpha}^*) = \min_{\bar{\alpha}} E(\bar{\alpha}) \quad (3.23)
\]

\(\bar{\alpha} \in D \)

\(D \) is the domain in which the parameters are defined. This domain is determined by a set of parameter constraints as will be discussed later in this section.

One of the characteristics of the reservoir parameter estimation problem is that the objective function to minimize is nonlinear with respect to the parameters. Therefore, finding the optimal point in parameter space is an iterative search process in which the succession of changes of parameters are computed to satisfy these conditions:

1. The objective function must reduce in each iteration.
2. The parameters are confined inside the feasible domain.

Since the forward model is complex and expensive to compute, the number of function evaluations should be as small as possible. As shown in the literature, there are a large number of methods for minimizing a multivariate function. In devising or choosing an optimization method one attempts to minimize the total computation time required for convergence to the minimum. This time is composed primarily of the following two factors:

1. Function and derivative evaluations.
2. Algebraic manipulations such as matrix inversions or eigenvalue determinations.

It is usually possible to trade off these factors against each other. A method employing more laborious algebraic procedures may require fewer iterations, and hence fewer function evaluations. This is likely to pay off if the objective function is a complicated one. In parameter estimation problems, the objective function is synthesized from the model equations and from the data obtained in many experiments and its computation
is usually time consuming. We do not hesitate therefore to recommend methods which are sophisticated algebraically, as long as they are efficient in terms of the number of required function and derivative evaluations. For the reservoir parameter estimation problem, gradient-based methods have often been found to be the most effective. The backward-solution technique used in this work to obtain the solution of the inverse problem made use of the following features:

1. Gradient-based Gauss-Newton method to compute a direction of descent.
2. Line search to search for a better point in the direction of descent.
3. Penalty functions and a step-length controller to constrain parameters within the feasible domain.
4. Scaling, modified Marquardt, and Cholesky matrix solution techniques for stabilization.

These features are discussed in the following sections.

3.4.1 Gauss-Newton Method

The Gauss-Newton algorithm was used in this work to compute a direction of descent in the parameter estimation problem.

δ\tilde{\alpha} is said to be a direction of descent if there exists a small positive number ρ such that
\[E(\tilde{\alpha} + \rho \delta \tilde{\alpha}) < E(\tilde{\alpha}) \] (3.24)

The objective is to find \(\tilde{\alpha}^* \) defined as
\[\tilde{\alpha}^* = \min_{\tilde{\alpha}} E(\tilde{\alpha}), \quad \tilde{\alpha} \in D, \quad D \subseteq \mathbb{R}^{npar} \] (3.25)

where \(npar \) is the number of parameters.
\(\tilde{\alpha}^* \) is a local minimum of \(E \) in \(D \) if
\[E(\tilde{\alpha}^* + \delta \tilde{\alpha}) > E(\tilde{\alpha}^*); \forall 0 < \| \delta \tilde{\alpha} \| \leq \epsilon; \tilde{\alpha}^* + \delta \tilde{\alpha} \in D \] (3.26)
\(\hat{\alpha}^* \) is a global minimum of \(E \) in \(D \) if
\[
E(\hat{\alpha}^* + \delta \hat{\alpha}) > E(\hat{\alpha}^*); \forall \| \delta \hat{\alpha} \| > 0; \hat{\alpha}^* + \delta \hat{\alpha} \in D
\]
(3.27)

\(\hat{\alpha}^* \) is referred to as the optimal point. Since the main purpose of the inverse problem is to find the minimum point, it is important to review some optimality conditions.

The necessary conditions for an interior point \(\hat{\alpha}^* \) to be a local minimum point of a smooth objective function are:
\[
\nabla E(\hat{\alpha}^*) = \frac{\partial E}{\partial \hat{\alpha}} \bigg|_{\hat{\alpha}^*} = 0
\]
(3.28)

\(\hat{\alpha}^* \) is a stationary point; and the Hessian matrix \(H^* \) of \(E \) evaluated at \(\hat{\alpha}^* \) is semipositive definite.
\[
\hat{\alpha}^T H^* \hat{\alpha} \geq 0; \forall \hat{\alpha} \neq 0
\]
(3.29)

The Hessian matrix \(H \) is defined as the second derivative of \(E \) as follows:
\[
H = \frac{\partial^2 E}{\partial \hat{\alpha} \partial \hat{\alpha}}
\]
(3.30)

or,
\[
H_{ij} = \frac{\partial^2 E}{\partial \hat{\alpha}_i \partial \hat{\alpha}_j} = \frac{\partial^2 E}{\partial \hat{\alpha}_j \partial \hat{\alpha}_i} = H_{ji}
\]
(3.31)

From Equation 3.31, the Hessian matrix is symmetric matrix. The sufficient conditions is the same as the necessary conditions except that the Hessian matrix \(H^* \) is positive-definite. Equation 3.29 becomes a strict inequality.

Hence at the optimal point the solution of the inverse problem must satisfy these two conditions:

1. The function \(E \) must be at a stationary point.

2. The Hessian matrix evaluated at the stationary point is positive-definite.

The stationary point can be found by solving Equation 3.28 which is nonlinear with respect to \(\hat{\alpha} \). The equation can be linearized by applying a Taylor series expansion for \(\nabla E \) in the neighborhood of \(\hat{\alpha}_0 \):
\[
\nabla E(\hat{\alpha}_0 + \delta \hat{\alpha}) = \nabla E(\hat{\alpha}_0) + \frac{\partial^2 E}{\partial \hat{\alpha} \partial \hat{\alpha}} \bigg|_{\hat{\alpha}_0} \delta \hat{\alpha} + O(\| \delta \hat{\alpha} \|^2) = \nabla E(\hat{\alpha}_0) + H \delta \hat{\alpha} + O(\| \delta \hat{\alpha} \|^2)
\]
(3.32)
If $\tilde{\alpha}^* = \tilde{\alpha}_0 + \delta \tilde{\alpha}$ is a stationary point, it must be true that $\nabla E(\tilde{\alpha}_0 + \delta \tilde{\alpha}) = 0$ and combining with Equation 3.32 gives:

$$\nabla E(\tilde{\alpha}_0) + H^0(\tilde{\alpha}^* - \tilde{\alpha}_0) + O(\| \tilde{\alpha}^* - \tilde{\alpha}_0 \|^2) = 0 \tag{3.33}$$

Truncating the series after the first order gives a linear system of equations that can be solved for an approximation to $\tilde{\alpha}^*$:

$$\nabla E(\tilde{\alpha}_0) + H^0 \delta \tilde{\alpha} = 0 \tag{3.34}$$

or,

$$H^0 \delta \tilde{\alpha} = -\nabla E(\tilde{\alpha}_0) \tag{3.35}$$

If the Hessian matrix in Equation 3.35 is computed exactly, the method is known as Newton’s method. Although the rate of convergence of this method is fast (quadratic convergence), this method does not work in many cases for the following two reasons:

1. The Hessian matrix is not positive-definite. Therefore, $\delta \tilde{\alpha}$ is not guaranteed to be a direction of descent and the stationary point may not be a minimum point.

2. The method requires the evaluation of the second derivatives. This places a heavy computational burden and may be difficult where the objective functions are complicated.

As was discussed earlier, the sufficient condition for a stationary point to be a minimum point is that the Hessian matrix evaluated at the stationary point must be positive-definite. We will show that if the Hessian matrix is positive-definite, $\delta \tilde{\alpha}$ obtained from Equation 3.35 is a direction of descent.

Premultiplying Equation 3.35 by $\delta \tilde{\alpha}^T$ gives

$$\delta \tilde{\alpha}^T H^0 \delta \tilde{\alpha} = -\delta \tilde{\alpha}^T \nabla E(\tilde{\alpha}_0) \tag{3.36}$$

Since H^0 is positive definite, the left hand side of Equation 3.36 is positive and hence

$$\delta \tilde{\alpha}^T \nabla E(\tilde{\alpha}_0) < 0 \tag{3.37}$$
SECTION 3. THE INVERSE PROBLEM

E can be approximated in the neighborhood of $\tilde{\alpha}_0$ using Taylor series expansion. There exists a value of ρ positive and small enough such that the following equation holds.

$$E(\tilde{\alpha}_0 + \rho \delta \tilde{\alpha}) = E(\tilde{\alpha}_0) + \rho \delta \tilde{\alpha}^T \nabla E(\tilde{\alpha}_0)$$ \hspace{1cm} (3.38)

Combining Equation 3.38 with Equation 3.37 gives

$$E(\tilde{\alpha}_0 + \rho \delta \tilde{\alpha}) < E(\tilde{\alpha}_0)$$ \hspace{1cm} (3.39)

As we have shown, we can not guarantee $\delta \tilde{\alpha}$ to be a direction of descent unless the Hessian matrix is positive-definite. In many cases it may be necessary to make a change in the Hessian matrix to achieve two following properties.

1. The modified matrix is positive-definite.

2. The modified matrix is close to the Newton Hessian matrix.

The second property is desirable for the quadratic convergence. Gill, Murray, and Wright (1981) describe several well-known methods to make the Hessian matrix positive-definite while retaining the advantages of the Newton method. Newton-Greenstadt and Marquardt’s method are designed to overcome the problem of indefiniteness, whereas the Gauss-Newton and Singular Value Decomposition (SVD) methods eliminate the need for computing second derivatives. Since this work made use of the Gauss-Newton method, we will describe this method in detail, in particular, how to compute both sides of Equation 3.35. We start with the definition of the objective function:

$$E = \tilde{e}^T W \tilde{e} = (\tilde{d}_{obs} - \tilde{d}_{cal})^T W (\tilde{d}_{obs} - \tilde{d}_{cal})$$ \hspace{1cm} (3.40)

$$\nabla E = \frac{\partial E}{\partial \tilde{\alpha}} = \left(\frac{\partial \tilde{e}}{\partial \tilde{\alpha}} \right)^T \frac{\partial E}{\partial \tilde{e}}$$ \hspace{1cm} (3.41)

By assuming the matrix W is symmetric and constant:

$$\frac{\partial E}{\partial \tilde{e}} = 2W \tilde{e}$$ \hspace{1cm} (3.42)

and,

$$\frac{\partial \tilde{e}}{\partial \tilde{\alpha}} = \frac{\partial (\tilde{d}_{obs} - \tilde{d}_{cal})}{\partial \tilde{\alpha}} = -\frac{\partial \tilde{d}_{cal}}{\partial \tilde{\alpha}} = -G$$ \hspace{1cm} (3.43)
SECTION 3. THE INVERSE PROBLEM

Combining Equation 3.41 with Equation 3.43 gives the formula to compute the gradient of the objective function as follows:

\[\nabla E = -2G^T W \tilde{e} \] (3.44)

The Hessian matrix is computed as:

\[H = \nabla^2 E = \frac{\partial \nabla E}{\partial \tilde{\alpha}} \] (3.45)

Considering column \(i \) of matrix \(H \):

\[H_i = \frac{\partial \nabla E}{\partial \alpha_i} = -2 \frac{\partial (G^T W \tilde{e})}{\partial \alpha_i} \] (3.46)

but,

\[\frac{\partial (G^T W \tilde{e})}{\partial \alpha_i} = \frac{\partial G^T}{\partial \alpha_i} W \tilde{e} + G^T W \frac{\partial \tilde{e}}{\partial \alpha_i} \] (3.47)

thus,

\[H_i = -2 \frac{\partial G^T}{\partial \alpha_i} W \tilde{e} - 2G^T W \frac{\partial \tilde{e}}{\partial \alpha_i} = -2 \frac{\partial G^T}{\partial \alpha_i} W \tilde{e} + 2G^T W \frac{\partial \tilde{d}_{cal}}{\partial \alpha_i} \] (3.48)

or,

\[H = [H_i] = -2 \left[\frac{\partial G^T}{\partial \alpha_i} W \tilde{e} \right] + 2 \left[G^T W \frac{\partial \tilde{d}_{cal}}{\partial \alpha_i} \right] \] (3.49)

\[or, \]

\[H = -2 \left[\frac{\partial G^T}{\partial \alpha_i} W \tilde{e} \right] + 2G^T W \frac{\partial \tilde{d}_{cal}}{\partial \alpha_i} = -2 \left[\frac{\partial G^T}{\partial \alpha_i} W \tilde{e} \right] + 2G^T W G \] (3.50)

In the Gauss-Newton method, we neglect the first term in Equation 3.50, and the Hessian matrix \(H \) is replaced by the Gauss-Newton Hessian matrix:

\[H_{gn} = 2G^T W G \] (3.51)

Equation 3.35 becomes

\[H_{gn} \delta \tilde{\alpha} = -\nabla E(\tilde{\alpha}) \] (3.52)

If the weighting factor matrix \(W \) is positive-definite, we can prove that the Gauss-Newton matrix defined by Equation 3.51 is at least semipositive-definite.
For all $\delta \tilde{\alpha} \in \mathbb{R}^{npar}$ and $\| \delta \tilde{\alpha} \| \neq 0$

$$\delta \tilde{\alpha}^T H_{gn} \delta \tilde{\alpha} = 2 \delta \tilde{\alpha}^T G^T W G \delta \tilde{\alpha} = 2 (G \delta \tilde{\alpha})^T W (G \delta \tilde{\alpha})$$ \hspace{1cm} (3.53)

W is positive-definite and $\| G \delta \tilde{\alpha} \| \geq 0$. Therefore, from Equation 3.53, we have

$$\delta \tilde{\alpha}^T H_{gn} \delta \tilde{\alpha} \geq 0$$ \hspace{1cm} (3.54)

Thus, the Gauss-Newton matrix is semipositive-definite. The equality occurs only when $G \delta \tilde{\alpha} = 0$. Combining $G \delta \tilde{\alpha} = 0$ to Equation 3.51 and Equation 3.52 gives

$$\nabla E(\tilde{\alpha}) = 0$$ \hspace{1cm} (3.55)

Thus the equality in Equation 3.54 occurs only at the minimum point. This argument shows that although the Gauss-Newton matrix may not be positive-definite at some iterations during the solution process, $\delta \tilde{\alpha}$ computed from Equation 3.52 is still a direction of descent provided the Gauss-Newton matrix is nonsingular.

3.4.2 Line Search

The purpose of computing the direction of descent is to provide a direction ($\delta \tilde{\alpha}$) along which we can find another point at which the value of the objective function is lower. **Line search** is an algorithm for searching along the direction of descent for such points.

The basic idea behind line search is that we first pick a point along the direction of descent ($\tilde{\alpha} + \rho \delta \tilde{\alpha}$). If the point we have picked is worse ($E(\tilde{\alpha} + \rho \delta \tilde{\alpha}) \geq E(\tilde{\alpha})$), we next try a smaller value of ρ, and keep repeating the process until a better point is found. As was shown in the previous section, if $\delta \tilde{\alpha}$ is a direction of descent, such ρ_0 always exists. Because line search involves only plain function evaluation while computing the direction of descent requires both function and derivative evaluation which is at much higher cost, it always pays to try at least one other value of ρ to see whether we can do even better. The optimal value of ρ is determined by minimizing a quadratic approximation to the objective function in the neighborhood of $\tilde{\alpha}$.

For all $\rho > 0$, $\tilde{\alpha} + \rho \delta \tilde{\alpha}$ is a point along the direction of descent ($\delta \tilde{\alpha}$) and $E(\tilde{\alpha} + \rho \delta \tilde{\alpha})$ is an univariate function depending only on ρ.

$$E(\rho) = E(\tilde{\alpha} + \rho \delta \tilde{\alpha})$$ \hspace{1cm} (3.56)
The quadratic approximation to the objective function is of the form:

\[E^*(\rho) = a\rho^2 + b\rho + c \] \hspace{1cm} (3.57)

We have computed:

\[E(0) = E(\bar{\alpha}) \] \hspace{1cm} (3.58)

\[E(\rho_0) = E(\bar{\alpha} + \rho_0\delta\bar{\alpha}) \] \hspace{1cm} (3.59)

\[E'(0) = \left. \frac{\partial E}{\partial \rho} \right|_{\rho=0} = \delta\bar{\alpha}^T \nabla E(\bar{\alpha}) \] \hspace{1cm} (3.60)

Since the quadratic approximation \(E^*(\rho) \) in Equation 3.57 must satisfy the conditions described from Equation 3.58 to Equation 3.60, parameters \(a, b \) and \(c \) are determined as:

\[c = E(\bar{\alpha}) \] \hspace{1cm} (3.61)

\[b = \delta\bar{\alpha}^T \nabla E(\bar{\alpha}) \] \hspace{1cm} (3.62)

\[a = \frac{E(\bar{\alpha} + \rho_0\delta\bar{\alpha}) - b\rho_0 - c}{\rho_0^2} \] \hspace{1cm} (3.63)

Then the optimal step size \(\rho^* \) is obtained by minimizing Equation 3.57 as:

\[\rho^* = \frac{-b}{2a} \] \hspace{1cm} (3.64)

This line search algorithm was described by Bard(1970). As we will show later, line search alone does not work in some cases, particularly where constraints are imposed on parameters and the objective function is concave downward close to the boundary. In these situations, the algorithm may search for a point outside the feasible domain. For this reason it is often necessary to use penalty functions and a step-size controller in the line search algorithm.

3.4.3 Penalty Function and Step-Size Controller

The feasible region in which the parameter estimate is to be found is limited and any search algorithm should be confined only to this region. This work made use of penalty functions and a step-size controller to confine the search. One of the reasons for the search to step out of the feasible domain is that the objective function
is concave downward close to the boundary. Therefore the penalty functions must be designed to become very large when the parameters approach the boundary (the objective function then is concave upward) and to become negligible elsewhere inside the feasible region. Since the penalty function is defined based on the constraints of parameters, it is worth to first discuss the types of constraints that we used in this work. For the reservoir parameter estimation problem that uses the pixel modeling method (this method will be explained later) to describe the permeability and porosity distributions, the parameters are the unknown properties in each grid cell and the constraints imposed on those parameters are ranges of reasonable values. The general form of the constraints on the parameters is expressed as follows:

\[\tilde{c}(\tilde{\alpha}) \geq 0 \]

(3.65)

where \(\tilde{c} \in \mathbb{R}^{n_{cons}} \) and \(n_{cons} \) is the number of constraints. These constraints can be linear or nonlinear with respect to the parameters \(\tilde{\alpha} \). In the case where the parameters are permeabilities or porosities it is useful to set lower and upper bounds:

\[k_{\text{min}} < \alpha_i < k_{\text{max}} ; \forall i \]

(3.66)

or,

\[\phi_{\text{min}} < \alpha_i < \phi_{\text{max}} ; \forall i \]

(3.67)

\(k_{\text{min}} \) and \(\phi_{\text{min}} \) can be set to zero or to reasonable lower bounds. Each constraint in Equation 3.65 is then expressed as:

\[c_j(\tilde{\alpha}) = k_{\text{max}} - \alpha_i ; \forall i \]

(3.68)

and,

\[c_{j+1}(\tilde{\alpha}) = \alpha_i - k_{\text{min}} ; \forall i \]

(3.69)

where \(i \) is parameter index (\(i = 1 - n_{par} \)) and \(j \) is constraint index (\(j = 1 - n_{cons} \)). The new objective function including the penalty functions is defined as:

\[\hat{E} = E + \sum_{j=1}^{n_{cons}} \epsilon_j \frac{\epsilon_j}{c_j(\tilde{\alpha})} \]

(3.70)
The choice of ϵ_j should be positive and small enough that the objective function remains almost unchanged in the interior of the feasible region and should approach zero as the search approaches the minimum point.

$$\epsilon_j \to 0 \quad \text{as} \quad E \to 0 \quad (3.71)$$

The initial choice of ϵ_j should also be dictated by the range of values that $c_j(\tilde{\alpha})$ can take in the feasible region. One appropriate definition of ϵ_j satisfying these conditions is as follows:

$$\epsilon_j = 10^{-3}(k^{\text{max}} - k^{\text{min}})E \quad (3.72)$$

Using penalty functions still does not always confine the line search to remain within the feasible region. Sometimes the search procedure may step too far and cross the feasible region into an infeasible one where the value of the objective function may be smaller. To guarantee that the search always stays within the feasible domain, it is necessary to have a step-length controller.

The basic idea behind the step-length controller is that the step length ρ_i at each iteration is controlled by an upper bound $\rho_{i,\text{max}}$ which is the smallest positive value of ρ for which $\tilde{\alpha} + \rho \delta \tilde{\alpha}$ lies within the boundary of the feasible region. For simple constraints in Equation 3.66 and Equation 3.67, $\rho_{i,\text{max}}$ can be calculated as follows. Since $\tilde{\alpha}$ and $\tilde{\alpha} + \rho \delta \tilde{\alpha}$ are interior points:

$$\alpha_{\text{min}} < \alpha_j < \alpha_{\text{max}}; \forall j = 1 \to \text{npar} \quad (3.73)$$

and,

$$\alpha_{\text{min}} < \alpha_j + \rho \delta \alpha_j < \alpha_{\text{max}}; \forall j = 1 \to \text{npar} \quad (3.74)$$

Combining Equation 3.73 and Equation 3.74 we have

$$\rho < \frac{\alpha_{\text{max}} - \alpha_j}{\delta \alpha_j}; \quad \text{if} \quad \delta \alpha_j > 0 \quad (3.75)$$

or,

$$\rho < \frac{\alpha_{\text{min}} - \alpha_j}{\delta \alpha_j}; \quad \text{if} \quad \delta \alpha_j < 0 \quad (3.76)$$

thus $\rho_{i,\text{max}}$ is expressed as:

$$\rho_{i,\text{max}} = \min_j \left\{ \frac{\alpha_{\text{min}} - \alpha_j}{\delta \alpha_j}_{\delta \alpha_j < 0}, \frac{\alpha_{\text{max}} - \alpha_j}{\delta \alpha_j}_{\delta \alpha_j > 0} \right\}; \forall j = 1 \to \text{npar} \quad (3.77)$$
It is also reasonable to have a lower bound for ρ. This lower bound $\rho_{i,\text{min}}$ is the positive smallest step size such that further iterations fail to change the parameter values significantly. The algorithm will be terminated if the step length is forced to be less than $\rho_{i,\text{min}}$. The smallest allowable change of parameters between two iterations recommended by Bard (1970) is as follows:

$$\epsilon_j = 10^{-4}(\alpha_j^{(i)} + 10^{-3})$$ \hspace{1cm} (3.78)

That means, we accept $\tilde{\alpha}^{(i+1)}$ as the solution $\tilde{\alpha}^*$ provided

$$|\alpha_j^{(i+1)} - \alpha_j^{(i)}| \leq \epsilon_j; \forall j = 1 \rightarrow npar$$ \hspace{1cm} (3.79)

where superscripts denote iteration index and subscripts denote parameter index.

Since,

$$\alpha_j^{(i+1)} = \alpha_j^{(i)} + \rho \delta \alpha_j^{(i)}$$ \hspace{1cm} (3.80)

combining with Equation 3.79 gives

$$\rho |\delta \alpha_j^{(i)}| \leq \epsilon_j; \forall j = 1 \rightarrow npar$$ \hspace{1cm} (3.81)

or,

$$\rho \leq \frac{\epsilon_j}{|\delta \alpha_j^{(i)}|}$$ \hspace{1cm} (3.82)

hence the minimum admissible ρ for the ith iteration is

$$\rho_{i,\text{min}} = \min_j \left\{ \frac{\epsilon_j}{|\delta \alpha_j^{(i)}|} \right\}$$ \hspace{1cm} (3.83)

Summary of Basic Equations

Having introduced the penalty function into the definition of the objective function, it is necessary to recompute the gradient and the *Hessian* matrix. A new set of basic equations is as follows:

$$\tilde{e} = (\tilde{d}_{\text{obs}} - \tilde{d}_{\text{cal}})$$ \hspace{1cm} (3.84)

$$G = \frac{\partial \tilde{d}_{\text{cal}}}{\partial \tilde{\alpha}}$$ \hspace{1cm} (3.85)
\[E = \tilde{e}^T W \tilde{e} \]
\[\hat{E} = E + \sum_{j=1}^{\text{ncons}} \frac{\epsilon_j}{c_j(\tilde{\alpha})} \]
\[\nabla E = -2G^T W \tilde{e} \]
\[\nabla \hat{E} = \nabla E - \sum_{j=1}^{\text{ncons}} \frac{\epsilon_j}{c_j^2} \nabla c_j \]
\[H = -2 \left[\frac{\partial G^T}{\partial \alpha_i} W \tilde{e} \right] + 2G^T WG \]
\[\hat{H} = H + 2 \sum_{j=1}^{\text{ncons}} \frac{\epsilon_j}{c_j^3} \nabla c_j \nabla c_j^T - \sum_{j=1}^{\text{ncons}} \frac{\epsilon_j}{c_j^3} \frac{\partial \nabla c_j}{\partial \tilde{\alpha}} \]
\[H_{\text{gn}} = 2G^T WG \]
\[\hat{H}_{\text{gn}} = H_{\text{gn}} + 2 \sum_{j=1}^{\text{ncons}} \frac{\epsilon_j}{c_j^3} \nabla c_j \nabla c_j^T \]
\[\hat{H}_{\text{gn}} \delta \tilde{\alpha} = -\nabla E \]

From Equation 3.91, the new Gauss-Newton matrix \(\hat{H}_{\text{gn}} \) could also be written as follows:
\[\hat{H}_{\text{gn}} = H_{\text{gn}} + 2 \sum_{j=1}^{\text{ncons}} \frac{\epsilon_j}{c_j^3} \nabla c_j \nabla c_j^T - \sum_{j=1}^{\text{ncons}} \frac{\epsilon_j}{c_j^3} \frac{\partial \nabla c_j}{\partial \tilde{\alpha}} \]

If \(\tilde{\alpha} \) is far away from the \(j \)th constraint, the contribution of \(\epsilon_j/c_j(\tilde{\alpha}) \) and its derivatives is very small. Close to the \(j \)th constraint \(c_j \) is nearly zero, and the second term under the summation of Equation 3.95 may be neglected relative to the first term. In either case, it is safe to replace Equation 3.95 by Equation 3.93. It should also be noted that since \(\nabla c_j \nabla c_j^T \) is semipositive-definite, the new Gauss-Newton matrix \(\hat{H}_{\text{gn}} \) is guaranteed to be positive-definite as is required. The addition of the penalty functions does not spoil the definiteness of the original Gauss-Newton matrix. In the case of linear constraints, particularly those specifying only the physical limits of the parameters, the second derivatives vanish anyway and Equation 3.93 is then exact.
3.4.4 Scaling, Marquardt Modification, and Cholesky Factorization

As was shown before, at each iteration the backward solution technique using Gauss-Newton algorithm requires the solution of a set of simultaneous linear equations:

\[\mathbf{H}_{gn} \delta \tilde{\alpha} = -\nabla E \] \hspace{1cm} (3.96)

in which, from Equation 3.51, \(\mathbf{H}_{gn} \) is given by:

\[\mathbf{H}_{gn} = 2\mathbf{G}^T \mathbf{W} \mathbf{G} \] \hspace{1cm} (3.97)

where,

\[\mathbf{G} = \frac{\partial \mathbf{d}_{cal}}{\partial \tilde{\alpha}} \] \hspace{1cm} (3.98)

The Hessian matrix \(\mathbf{H}_{gn} \), as was proved in Section 3.4.1, is semipositive-definite. The lack of strictly positive-definiteness in \(\mathbf{H}_{gn} \) arises directly from the structure of the sensitivity matrix \(\mathbf{G} \). In reservoir parameter estimation, the reservoir normally does not respond to all parameters at the same order of magnitude. There are some parameters that cause strong effect on the reservoir behavior but others that show almost no influence. As a result, some columns of the sensitivity matrix may be zero or very small compared to the others and consequently the Hessian matrix \(\mathbf{H}_{gn} \) becomes singular or very ill-conditioned. If the matrix is singular, Equation 3.84 has no solution and is impossible to solve. If the matrix is ill-conditioned, round-off error can cause problems of accuracy and the solution process may not be numerically stable. To overcome these difficulties, it is important to first recall at this point that our main interest is in finding a direction of descent rather than computing \(\delta \tilde{\alpha} \) precisely. Therefore, we can introduce a change to the matrix \(\mathbf{H}_{gn} \) in such a way to prevent the lack of strict positive-definiteness. Obviously the change should be slight to retain the quadratic convergence property of the original matrix close to the optimum point. This approach was implemented in this work by means of Marquardt and Cholesky Factorization methods that will be discussed next.

Finally the stabilization process is also enhanced by prescaling the matrix \(\mathbf{H}_{gn} \) to make all the diagonal elements unity. This was accomplished by first constructing a
diagonal scaling matrix F whose elements are the inverse of the square root of the diagonal elements of H_{gn}:

$$F_{ii} = (H_{gnii})^{-\frac{1}{2}}$$ \hspace{1cm} (3.99)

and then pre- and postmultiplying matrix H_{gn} by F. Equation 3.84 becomes

$$(FH_{gn}F)F^{-1}\delta\tilde{\alpha} = -F\nabla E$$ \hspace{1cm} (3.100)

Solving Equation 3.88 for $(F^{-1}\delta\tilde{\alpha})$ is more stable than solving Equation 3.84. $\delta\tilde{\alpha}$ then can be determined as:

$$\delta\tilde{\alpha} = F(F^{-1}\delta\tilde{\alpha})$$ \hspace{1cm} (3.101)

Marquardt Method

This method converts the semipositive-definite Gauss-Newton Hessian matrix into a positive-definite one by adding a sufficiently large number to its diagonal:

$$H_{gn} = H_{gn} + \mu I$$ \hspace{1cm} (3.102)

where I is the identity matrix and μ is a positive number. The value of μ is chosen sufficiently large to avoid ill-conditioning but small enough to retain the closeness between the modified matrix and the original one.

Modified Cholesky Factorization Method

This method is a modification of Cholesky Factorization method to handle the situation in which the factored matrix is not guaranteed to be positive-definite. The Cholesky factors of a matrix exist only when the matrix is positive-definite. If the Cholesky factorization fails then the matrix is not positive-definite and the method introduces an incremental change in the diagonal elements of the original matrix.

$$\bar{H}_{gn} = H_{gn} + E$$ \hspace{1cm} (3.103)

where E is a nonnegative diagonal matrix. This method is described in detail by Gill, Murray, and Wright (1981). Since the method converts the matrix into a positive-definite one and simultaneously stabilizes it, this method is most desirable for solving either Equation 3.35 or Equation 3.88 to obtain a direction of descent. The method was implemented in this work.
3.4.5 Pixel Modeling

This approach was used in this work to describe the permeability and porosity distribution of the reservoir at the finest level of the simulation grid. Since each unknown reservoir property in every cell of the simulation grid is considered as one parameter, this method is attractive in terms of the large amount of reservoir information being achieved and may result in sets of permeability and porosity distributions that reproduce the observation data.

When the pixel modeling approach is used along with a gradient-based method, it is necessary to compute the sensitivity of the model response to the permeability and porosity at every cell of the simulation grid. The method used to compute these sensitivity coefficients in an efficient manner will be discussed in detail in Chapter 4.

3.5 Resolution of Parameters

The resolution of parameters can be determined by answering the three questions:

1. How close to the true value can each parameter be resolved?
2. How well does the computed response agree with the observed data?
3. What is the certainty in each parameter estimate?

For the nonlinear parameter estimation problem, answering these questions quantitatively is still left unresolved. However, the resolution of parameters can be well understood for the linear cases, in which the response of the model is linear with respect to parameters, and is described in literature by Jackson (1972) and Menke (1989). In this work, this theory was used for the nonlinear case in a manner similar to that of Landa (1997) and Datta-Gupta, Vasco, and Long (1995).
3.5.1 Nonlinear Parameter Estimates

The idea is to linearize the behavior of the system with respect to the parameters. That is, if \tilde{d} denotes the behavior of the system, then:

$$\frac{\partial \tilde{d}}{\partial \alpha} = G = \text{const}$$ \hspace{1cm} (3.104)

or,

$$\tilde{d} = G\tilde{\alpha} + \text{const}$$ \hspace{1cm} (3.105)

As was shown earlier, the parameters can be estimated by minimizing the least square objective function:

$$E = (\tilde{d}_{\text{obs}} - \tilde{d}_{\text{cal}})^T(\tilde{d}_{\text{obs}} - \tilde{d}_{\text{cal}}) = \| \tilde{d}_{\text{obs}} - \tilde{d}_{\text{cal}} \|^2$$ \hspace{1cm} (3.106)

Combining Equation 3.106 and Equation 3.105 we have,

$$E = \| \tilde{d}_{\text{obs}} - G\tilde{\alpha} \|^2$$ \hspace{1cm} (3.107)

The parameters obtained by minimizing Equation 3.107 represent the unique solution of a linear system of equations described as:

$$G^T G\tilde{\alpha} = G^T \tilde{d}_{\text{obs}}$$ \hspace{1cm} (3.108)

or,

$$\tilde{\alpha}^* = (G^T G)^{-1}G^T \tilde{d}_{\text{obs}} = G^{-g} \tilde{d}_{\text{obs}}$$ \hspace{1cm} (3.109)

where $G^{-g} = (G^T G)^{-1}G^T$ is the generalized inverse of matrix G which can be computed based on the Singular Value Decomposition theory.

For any nonsquare $nobs \times npar$ matrix G can be decomposed as:

$$G = U\Lambda V^T$$ \hspace{1cm} (3.110)

where U is an orthogonal $nobs \times nobs$ matrix, V is an orthogonal $npar \times npar$ matrix, and Λ is a diagonal $nobs \times npar$ matrix.

$$U^T U = UU^T = I_{nobs}$$ \hspace{1cm} (3.111)
SECTION 3. THE INVERSE PROBLEM

\[V^T V = VV^T = I_{npar} \]

(3.112)

\[\Lambda = \begin{bmatrix} \Lambda_p & 0 \\ 0 & 0 \end{bmatrix} \]

(3.113)

where \(I \) is the identity matrix, \(\Lambda_p \) is a square diagonal \(p \times p \) matrix, and \(p \) is the number of nonzero elements on the diagonal of \(\Lambda \).

Matrices \(U \) and \(V \) can be expressed as:

\[U = \begin{bmatrix} U_p & U_0 \end{bmatrix} \]

(3.114)

\[V = \begin{bmatrix} V_p & V_0 \end{bmatrix} \]

(3.115)

where \(U_p \) and \(V_p \) are the columns of \(U \) and \(V \) respectively corresponding to the nonzero elements in \(\Lambda \). \(U_0 \) and \(V_0 \) are the columns of \(U \) and \(V \) respectively corresponding to the zero elements in \(\Lambda \).

\[U^T_p U_p = I_p \]

(3.116)

\[V^T_p V_p = I_p \]

(3.117)

Combining Equation 3.110 with Equation 3.115, matrix \(G \) can be given as follows:

\[G = U\Lambda V^T = \begin{bmatrix} U_p & U_0 \end{bmatrix} \begin{bmatrix} \Lambda_p & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V^T_p \\ V_0^T \end{bmatrix} = U_p\Lambda_p V_p^T \]

(3.118)

Combining Equation 3.116 with Equation 3.118 to the definition of the generalized inverse of matrix \(G \) in Equation 3.109 gives:

\[G^{-g} = (G^T G)^{-1} G^T = \left((U_p\Lambda_p V_p^T)^T (U_p\Lambda_p V_p^T) \right)^{-1} (U_p\Lambda_p V_p^T)^T = V_p\Lambda_p^{-1} U_p^T \]

(3.119)

Equation 3.119 can be used to compute the generalized inverse of matrix \(G \) and the best least square estimate of the parameters is:

\[\tilde{\alpha}^* = G^{-g} \tilde{d}_{obs} \]

(3.120)

However,

\[\tilde{d}_{obs} = G\tilde{\alpha}_t \]

(3.121)
where $\tilde{\alpha}_t$ is the true values of parameters. Thus,

$$\tilde{\alpha}^* = G^{-g}G\tilde{\alpha}_t = R\tilde{\alpha}_t$$

(3.122)

and,

$$\tilde{d}_{cal} = G\tilde{\alpha}^* = GG^{-g}\tilde{d}_{obs} = S_{inf}\tilde{d}_{obs}$$

(3.123)

where $R = G^{-g}G$ is the *resolution* matrix determining the relationship between the estimated parameters and the true parameters. If R is close to identity, the estimated parameters have good resolution. $S_{inf} = GG^{-g}$ is the *information density* matrix determining the relationship between the calculated response and the true response. If S_{inf} is close to identity, the true response is matched well. The *resolution* and *information density* matrices can be determined based on the singular value decomposition as:

$$R = V_p \Lambda_p V_p^T$$

(3.124)

$$S_{inf} = U_p U_p^T$$

(3.125)

According to Equation 3.119, to compute the generalized inverse requires a singular value decomposition as described in Equation 3.118. An alternative method which was used in this work to compute the component matrices in Equation 3.118 makes use of the *eigenvalue* decomposition. From Equation 3.118 G is given by:

$$G = U_p \Lambda_p V_p^T$$

(3.126)

Then we can construct matrix M defined as:

$$M = G^T G = V_p \Lambda_p^2 V_p^T$$

(3.127)

The matrix M is symmetric and thus can be decomposed by *eigenvalue* decomposition to find V_p and Λ_p^2. From Equation 3.126, U_p is then determined by:

$$U_p = G V_p \Lambda_p^{-1}$$

(3.128)

From Equation 3.120, the estimated parameters are:

$$\tilde{\alpha}^* = G^{-g} \tilde{d}_{obs}$$

(3.129)
The covariance matrix of the parameter estimates can be calculated as:

\[
C\{\hat{\alpha}^*\} = G^{-g} C\{\tilde{d}_{\text{obs}}\} G^{-gT} = V_p \Lambda_p^{-1} U_p^T C\{\tilde{d}_{\text{obs}}\} U_p \Lambda_p^{-1} V_p^T
\]

(3.130)

where \(C\{\tilde{d}_{\text{obs}}\}\) is the covariance of the observed data. If the measurement errors are independent, \(C\{\tilde{d}_{\text{obs}}\}\) is a diagonal matrix. Combining Equation 3.127, Equation 3.128, and Equation 3.130 gives

\[
C\{\hat{\alpha}^*\} = V_p \Lambda_p^{-1} V_p^T G^T C\{\tilde{d}_{\text{obs}}\} G V_p \Lambda_p^{-1} V_p^T
\]

(3.131)

\[
= V_p \Lambda_p^{-2} V_p^T G^T C\{\tilde{d}_{\text{obs}}\} G V_p \Lambda_p^{-2} V_p^T
\]

(3.132)

\[
= M^{-1} \bar{C} M^{-1}
\]

(3.133)

where the matrices \(M\) and \(\bar{C}\) are \((n_{\text{par}} \times n_{\text{par}})\) and are given as follows:

\[
M^{-1} = V_p \Lambda_p^{-2} V_p^T
\]

(3.134)

\[
\bar{C} = G^T C\{\tilde{d}_{\text{obs}}\} G
\]

(3.135)

The variance of parameters can be obtained directly from the diagonal of the covariance matrix of parameters \(C\{\hat{\alpha}^*\}\) as:

\[
\sigma_{\alpha_i}^2 = \sum_{k=1}^{n_{\text{par}}} \sum_{j=1}^{n_{\text{par}}} H_{ij}^{-1} \bar{C}_{j,k} H_{k,i}^{-1}
\]

(3.136)

where \(\sigma_{\alpha_i}^2\) is the variance of parameter \(i\).

3.5.2 Permeability and Log-Permeability Space

In many cases, it is convenient to consider the logarithm of permeability (permeability is a log-normal distribution or logarithm of permeability is linearly correlated to porosity etc.) It is useful to perform a variance and resolution analysis in log-permeability space. We now show how to transform sensitivity coefficients from permeability space to log-permeability space. In review of Equation 3.104, the sensitivity coefficients in permeability space can be expressed as:

\[
G_k = \frac{\partial \tilde{d}}{\partial k}
\]

(3.137)
Where G_k is the sensitivity coefficients with respect to permeability. The sensitivity coefficients with respect to log permeability are determined as:

$$G_{lnk} = \frac{\partial \tilde{d}}{\partial \ln \tilde{k}}$$ \hspace{1cm} (3.138)

and the chain rule gives:

$$G_{lnk} = \frac{\partial \tilde{d}}{\partial \ln \tilde{k}} = \frac{\partial \tilde{d}}{\partial \tilde{k}} \frac{\partial \tilde{k}}{\partial \ln \tilde{k}} = G_k \text{diag}\{\tilde{K}\}$$ \hspace{1cm} (3.139)

where $\text{diag}\{\tilde{K}\}$ is the diagonal matrix whose diagonal elements are permeabilities. The generalized inverse of the sensitivity coefficients in log-permeability space can be computed as:

$$G_{lnk}^{-g} = \left(G_k \text{diag}\{\tilde{K}\} \right)^{-g} = \text{diag}\{\tilde{K}^{-1}\} G_k^{-g} = \text{diag}\{\tilde{K}^{-1}\} G_k^{-g}$$ \hspace{1cm} (3.140)

where $\text{diag}\{\tilde{K}^{-1}\}$ is the diagonal matrix whose diagonal elements are the inverse of permeabilities. G_k^{-g} is the generalized inverse of the sensitivity matrix in permeability space computed by the SVD algorithm as shown earlier in Section 3.5.1.
Section 4

Sensitivity Coefficients

To minimize the objective function using a gradient based method, we need to evaluate the derivatives of the objective function with respect to all unknown parameters. In many parameter estimation problems, these unknown parameters appear only implicitly in the objective function. The objective function depends explicitly on the model response, which in turn depends on the parameters through the forward mathematical model equations. To compute derivatives of the objective function, we first differentiate it with respect to the model response, and then differentiate the model response with respect to the parameters. The derivatives of the model response with respect to the parameters are called the sensitivity coefficients. It should be noted that the response of the model should not be confused with the solution of the forward flow equations. The response of the model refers to the response corresponding to the observed data while the solution of the forward flow equations refers to the pressure, saturation, and reference pressures in all the wells. If \tilde{d}_m denotes the response of the model and \tilde{y} denotes the solution of the forward flow equations, then \tilde{d}_m and \tilde{y} are expressed as follows:

$$\tilde{d}_m = \begin{bmatrix} \tilde{p}_{wf} \\ \tilde{w}_{ct} \\ \Delta \tilde{S}_w \end{bmatrix}$$

(4.1)
\[
\tilde{y} = \begin{bmatrix}
\tilde{y}_b \\
\tilde{y}_w
\end{bmatrix} = \begin{bmatrix}
\tilde{p} \\
\tilde{S}_w \\
\tilde{p}_{ref}
\end{bmatrix}
\]

where \(nb = nx ny nz \) is the total number of gridblocks and \(nx, ny, \) and \(nz \) are the number of blocks respectively in \(x, y, \) and \(z \) directions. \(nw \) is the number of wells. \(\tilde{p} \) and \(\tilde{S}_w \) are respectively the pressures and water saturations at gridnode locations. \(\tilde{p}_{ref} \) are the well pressures at reference layers. Since the change in water saturation and water cut can be computed from the vector solution, the response of the model is indeed a function of the forward solution and parameters:

\[
\tilde{d}_m = \tilde{d}(\tilde{y}, \tilde{\alpha})
\]

Discretizing the forward equations as described in Equation 3.8 to Equation 3.11 in space and time, we obtain a set of residual flow equations which are used to determine the solution of the forward flow problem:

\[
\tilde{R}(\tilde{k}(\tilde{x}), \tilde{\phi}(\tilde{x}), \tilde{y}^{(n)}, \tilde{y}^{(n+1)}, \tilde{x}) = 0
\]

As was discussed earlier in Chapter 3, in the pixel modeling approach, since each
unknown gridnode permeability and porosity is considered as one parameter, Equation 4.4, in term of parameters, becomes:

\[\tilde{R}(\tilde{\alpha}, \tilde{y}^{(n)}, \tilde{y}^{(n+1)}, \tilde{x}) = 0 \] (4.5)

where \(\tilde{R} \) is a set of residuals in all gridblocks, including well constraints. \(\tilde{x} \) is a set of discrete locations. \(\tilde{\alpha} = \tilde{\alpha}(\tilde{x}) \in \mathbb{R}^{npar} \) is a set of discrete parameters. \(npar \) is the number of discrete parameters. \(\tilde{y} = \tilde{y}(\tilde{\alpha}, \tilde{x}, t) \) is a vector solution at discrete locations \(\tilde{x} \) and time \(t \). \(\tilde{y}^{(n)} \) and \(\tilde{y}^{(n+1)} \) are respectively vector solutions at time step \(n \) and \((n + 1) \). In the forward flow problem, the parameters \(\tilde{\alpha} \) in Equation 4.5 are known and since this equation is nonlinear with respect to \(\tilde{y}^{(n)} \) and \(\tilde{y}^{(n+1)} \), given the solution at time step \(n \), the solution at time step \((n + 1) \) can only be solved by iteration such as by the Newton-Raphson method.

\[
J \frac{\partial \tilde{y}^{(n+1)}}{\partial \tilde{y}^{(n+1)}} = \frac{\partial \tilde{R}}{\partial \tilde{y}^{(n+1)}} \delta \tilde{y}^{(n+1)} = -\tilde{R}(\tilde{\alpha}, \tilde{y}^{(n)}, \tilde{y}^{(n+1)}, \tilde{x})
\] (4.6)

where \(J = \frac{\partial \tilde{R}}{\partial \tilde{y}^{(n+1)}} \) is the Jacobian matrix of \(\tilde{R} \) determined at \(\tilde{y}^{(n+1)} \). The Newton-Raphson algorithm can be summarized as:

1. Set \(\tilde{y}^{(n+1)} = \tilde{y}^{(n)} \) as an initial guess for the new time step.

2. Compute the Jacobian matrix \(J \) at \(\tilde{y}^{(n+1)} \).

3. Solve Equation 4.6 for \(\delta \tilde{y}^{(n+1)} \).

4. If converged, then replace \(n + 1 \) by \(n \) and go to step 1.

5. Update the new \(\tilde{y}^{(n+1)} \) by:

\[
\tilde{y}^{(n+1)} = \tilde{y}^{(n+1)} + \delta \tilde{y}^{(n+1)}
\]

6. Go to step 2.

By iterating forward in time, the entire vector solution \(\tilde{y}(\tilde{\alpha}, \tilde{x}, t) \) can be obtained and hence the response of the model \(\tilde{d} = \tilde{d}(\tilde{y}) \) is also determined. The new set of parameters is obtained by perturbing the next parameter and Equation 4.5 is
section 4. sensitivity coefficients

solved for the new forward solution. If this process is repeated until all parameters are perturbed, the sensitivity coefficients can be approximated by a finite difference method. This is the basic idea of the substitution method that will be discussed in detail next.

4.1 Substitution Method

The purpose is to compute the sensitivity matrix \(G \) defined as:

\[
G = \frac{\partial \tilde{d}}{\partial \tilde{\alpha}}
\]

(4.7)

The first order approximation to \(\tilde{d} \) by Taylor series is:

\[
\tilde{d}(\tilde{\alpha} + \delta \tilde{\alpha}, \tilde{x}, t) \approx \tilde{d}(\tilde{\alpha}, \tilde{x}, t) + \frac{\partial \tilde{d}}{\partial \tilde{\alpha}} \delta \tilde{\alpha}
\]

(4.8)

Thus, the matrix \(G \) can be approximated as:

\[
G = \frac{\partial \tilde{d}}{\partial \tilde{\alpha}} \approx \frac{\tilde{d}(\tilde{\alpha} + \delta \tilde{\alpha}, \tilde{x}, t) - \tilde{d}(\tilde{\alpha}, \tilde{x}, t)}{\delta \tilde{\alpha}} = \frac{\Delta \tilde{d}}{\Delta \tilde{\alpha}}
\]

(4.9)

or,

\[
G_{i,j} = \frac{\Delta d_i}{\Delta \alpha_j}
\]

(4.10)

The algorithm of the substitution method implemented in this work is as follows:

1. Set \(\tilde{\alpha} = \tilde{\alpha}_0 \) at which the sensitivity is computed.

2. Solve Equation 4.5 for \(\tilde{y} = \tilde{y}(\tilde{\alpha}_0, \tilde{x}, t) \) and compute \(\tilde{d}_0 = \tilde{d}(\tilde{y}) \).

3. For \(j = 1 \rightarrow \text{npar} \):

 Perturb \(\alpha_j = \alpha_j + \delta \alpha_j \). Where \(\delta \alpha_j \) is a fraction of \(\alpha_j \); \(\delta \alpha_j = F \alpha_j \). \(F \) is a positive number prespecified based on types of data and parameters (typically \(10^{-7} \)).

 Solve Equation 4.5 for \(\tilde{y} = \tilde{y}(\tilde{\alpha}, \tilde{x}, t) \) and compute \(\tilde{d} = \tilde{d}(\tilde{y}) \).

 Compute \(G_{i,j} = \frac{d_i - d_0}{\delta \alpha_j} \)
4. End.

Although this method is straightforward and very easy to implement, it requires \(npar + 1 \) simulation runs which is very expensive in terms of computational work when the number of parameters \(npar \) is large. A far more efficient method to compute sensitivity coefficients is by embedding the algorithm to compute the full sensitivity matrix inside the forward solution procedure as will be shown in the next section.

4.2 Computation of Full Sensitivity Matrix

The purpose is to compute the full sensitivity matrix \(S \) defined as:

\[
S = \frac{\partial \tilde{y}}{\partial \tilde{\alpha}}
\]

(4.11)

In this work, this matrix was computed in a manner similar to that of Anterion, Eymard, and Karcher (1989). The size of the vector solution \(\tilde{y} \) is the same as the number of unknown variables in the forward flow problem, that is the total of pressures and saturations in all gridblocks and the number of wells:

\[
\text{size} = 2nb + nw
\]

(4.12)

where \(nb \) and \(nw \) are the number of gridblocks and wells respectively. Therefore, the size of the full sensitivity matrix \(S \) is \((\text{size} \times npar) \). Approximating the residual flow equations described in Equation 4.5 by first-order Taylor series expansions with respect to \(\tilde{\alpha}, \tilde{y}^{(n)}, \) and \(\tilde{y}^{(n+1)} \) gives:

\[
\tilde{R}(\tilde{\alpha} + \delta\tilde{\alpha}, \tilde{y}^{(n)} + \delta\tilde{y}^{(n)}, \tilde{y}^{(n+1)} + \delta\tilde{y}^{(n+1)}, \tilde{x}) = \tilde{R}(\tilde{\alpha}, \tilde{y}^{(n)}, \tilde{y}^{(n+1)}, \tilde{x}) + \frac{\partial \tilde{R}}{\partial \tilde{\alpha}} \delta\tilde{\alpha} + \frac{\partial \tilde{R}}{\partial \tilde{y}^{(n)}} \delta\tilde{y}^{(n)} + \frac{\partial \tilde{R}}{\partial \tilde{y}^{(n+1)}} \delta\tilde{y}^{(n+1)}
\]

(4.13)

However,

\[
\tilde{R}(\tilde{\alpha} + \delta\tilde{\alpha}, \tilde{y}^{(n)} + \delta\tilde{y}^{(n)}, \tilde{y}^{(n+1)} + \delta\tilde{y}^{(n+1)}, \tilde{x}) = \tilde{R}(\tilde{\alpha}, \tilde{y}^{(n)}, \tilde{y}^{(n+1)}, \tilde{x}) = \tilde{0}
\]

(4.14)

thus,

\[
\frac{\partial \tilde{R}}{\partial \tilde{\alpha}} \delta\tilde{\alpha} + \frac{\partial \tilde{R}}{\partial \tilde{y}^{(n)}} \delta\tilde{y}^{(n)} + \frac{\partial \tilde{R}}{\partial \tilde{y}^{(n+1)}} \delta\tilde{y}^{(n+1)} = \tilde{0}
\]

(4.15)
Dividing both sides of Equation 4.15 by $\delta \tilde{\alpha}$ and combining with Equation 4.11 gives:

$$\frac{\partial \tilde{R}}{\partial \tilde{\alpha}} + \frac{\partial \tilde{R}}{\partial \tilde{y}(n)} S^{(n)} + \frac{\partial \tilde{R}}{\partial \tilde{y}(n+1)} S^{(n+1)} = \tilde{0}$$

(4.16)

which becomes, by rearranging:

$$\frac{\partial \tilde{R}}{\partial \tilde{y}(n+1)} S^{(n+1)} = -\frac{\partial \tilde{R}}{\partial \tilde{y}(n)} S^{(n)} - \frac{\partial \tilde{R}}{\partial \tilde{\alpha}}$$

(4.17)

where $S^{(n)}$ and $S^{(n+1)}$ are full sensitivity matrices at time step n and $(n+1)$ and are given by:

$$S^{(n)} = \frac{\partial \tilde{y}^{(n)}}{\partial \tilde{\alpha}}$$

(4.18)

$$S^{(n+1)} = \frac{\partial \tilde{y}^{(n+1)}}{\partial \tilde{\alpha}}$$

(4.19)

The function of Equation 4.17 is to compute the full sensitivity matrix S. From this equation, given $S^{(n)}$, to compute $S^{(n+1)}$ we need to compute three matrices $\frac{\partial \tilde{R}}{\partial \tilde{y}(n)}$, $\frac{\partial \tilde{R}}{\partial \tilde{y}(n+1)}$, and $\frac{\partial \tilde{R}}{\partial \tilde{\alpha}}$. The first one is the *Jacobian* matrix and is the same one computed in the forward solution procedure (Equation 4.6). The three matrices are obtained by differentiating the set of residual flow equations with respect to the unknowns at the current time step, the unknowns at old time step, and the parameters respectively. The computation is discussed in detail later in this section.

Overall, $S^{(n+1)}$ is computed by columns. If $S_i; i = 1 \rightarrow \text{npar}$ denotes column i of matrix S, Equation 4.17 is equivalent to npar systems of linear equations:

$$\frac{\partial \tilde{R}}{\partial \tilde{y}(n+1)} S_i^{(n+1)} = -\frac{\partial \tilde{R}}{\partial \tilde{y}(n)} S_i^{(n)} - \frac{\partial \tilde{R}}{\partial \tilde{\alpha}}; \quad i = 1 \rightarrow \text{npar}$$

(4.20)

To compute the full sensitivity matrix S, it is necessary to solve Equation 4.20 npar times.

4.2.1 Computation of Jacobian Matrix

The residual flow equations in each gridblock can be expressed as a flow term \tilde{F}, a well term \tilde{Q}, and an accumulation term \tilde{A} as follows:

$$\tilde{R}_b = \tilde{F} - \tilde{Q} - \tilde{A}$$

(4.21)
or, at block index l as:

$$R_l = F_l - Q_l - A_l$$ \hspace{1cm} (4.22)

where

$$F_l = \sum_{t=1}^{6} -T_{lt} \Delta \Phi_{lt}$$ \hspace{1cm} (4.23)

where the lt index denotes the interface between block l and block t.

$$\Delta \Phi_{lt} = (\Delta p_{lt} - \gamma_{lt} \Delta D_{lt})$$ \hspace{1cm} (4.24)

$$Q_l = T_w (p_l - p_{wf})$$ \hspace{1cm} (4.25)

$$A_l = \frac{V_l}{\Delta t_{n+1}} \left(\left(\frac{\phi_S}{B} \right)_{l}^{(n+1)} - \left(\frac{\phi_S}{B} \right)_{l}^{(n)} \right)$$ \hspace{1cm} (4.26)

In this work, the set of finite-difference residual flow equations are described by a fully implicit scheme. All coefficients are evaluated at the new time step. Pressure-dependent terms are evaluated using *mid-point* averaging. Saturation-dependent terms are evaluated using *single-point upstream* approximation.

V_l is the bulk volume of block l

$$V_l = (\Delta x \Delta y \Delta z)_l$$ \hspace{1cm} (4.27)

$$T_{lt} = \frac{A_{lt} K_{lt} kr(S)}{\Delta L_{lt} (\mu B)_{lt}}$$ \hspace{1cm} (4.28)

$$(\mu B)_{lt} = \frac{\Delta x_l (\mu B)_t + \Delta x_t (\mu B)_l}{\Delta x_l + \Delta x_t}$$ \hspace{1cm} (4.29)

$$K_{lt} = \frac{k_l k_t (\Delta x_l + \Delta x_t)}{k_l \Delta x_l + k_t \Delta x_t}$$ \hspace{1cm} (4.30)

$$\Delta L_{lt} = 0.5 (\Delta x_l + \Delta x_t)$$ \hspace{1cm} (4.31)

$$T_w = W I A$$ \hspace{1cm} (4.32)

$$W I = \frac{2\pi k h}{\ln \left(\frac{r_0}{r_w} \right) + s}$$ \hspace{1cm} (4.33)

$$r_0 = \begin{cases}
0.14 \sqrt{\Delta x^2 + \Delta y^2} & \text{vertical well;} \\
0.14 \sqrt{\Delta x^2 + \Delta z^2} & \text{horizontal well in y direction;} \\
0.14 \sqrt{\Delta y^2 + \Delta z^2} & \text{horizontal well in x direction.}
\end{cases}$$ \hspace{1cm} (4.34)
\[\Lambda = \frac{K_r(S)}{\mu B} \]

(4.35)

The residuals for well constraints are:

\[R_w = Q_w^{sp} - \sum_{i=1}^{nc} Q_i; w = 1 \rightarrow nw \]

(4.36)

where \(Q_w^{sp} \) is the specified flow rate and \(Q_i \) is the flow rate at connecting well block \(i \).

The Jacobian matrix is computed by differentiating Equation 4.21 and Equation 4.36 with respect to all unknown variables which are pressures and saturations in all gridblocks and reference pressures in all wells. The ordering of the set of flow equations described in Equation 4.21 and Equation 4.36 is water before oil equation in each block, then block by block in the \(x \) direction, then row by row in the \(y \) direction, and finally layer by layer downward in the \(z \) direction. With this order, the residual vector \(\tilde{R} \) is expressed as:

\[\tilde{R}_b = \begin{bmatrix} \tilde{R}_w^w \\ \tilde{R}_o^w \\ \tilde{R}_b^w \\ \tilde{R}_w^o \\ \tilde{R}_o^o \\ . \\ . \\ . \\ \tilde{R}_w^{bw} \\ \tilde{R}_o^{bw} \end{bmatrix} \]

(4.37)
\[\tilde{R}_w = \begin{bmatrix} R_{w1} \\ R_{w2} \\ \vdots \\ \vdots \\ R_{wnw} \end{bmatrix} \]

(4.38)

\[\tilde{R} = \begin{bmatrix} \tilde{R}_b \\ \tilde{R}_w \end{bmatrix} \]

(4.39)

If \(\tilde{y}_b \) denotes the pressures and saturations in gridblocks and \(\tilde{y}_w \) denotes the reference pressures in all wells, that is:

\[\tilde{y}_b = \begin{bmatrix} p_1 \\ S_{w1} \\ p_2 \\ S_{w2} \\ \vdots \\ \vdots \\ \vdots \\ p_{nb} \\ S_{wnb} \end{bmatrix} \]

(4.40)

\[\tilde{y}_w = \begin{bmatrix} p_{ref1} \\ p_{ref2} \\ \vdots \\ \vdots \\ p_{refnw} \end{bmatrix} \]

(4.41)
then the *Jacobian* matrix \mathbf{J} is given by:

$$
\mathbf{J} = \frac{\partial \tilde{\mathbf{R}}}{\partial \tilde{\mathbf{y}}} = \frac{\partial \begin{pmatrix} \tilde{\mathbf{R}}_b \\ \tilde{\mathbf{R}}_w \end{pmatrix}}{\partial (\tilde{\mathbf{y}}_b, \tilde{\mathbf{y}}_w)} = \begin{bmatrix}
\frac{\partial \tilde{\mathbf{R}}_b}{\partial \tilde{\mathbf{y}}_b} & \frac{\partial \tilde{\mathbf{R}}_w}{\partial \tilde{\mathbf{y}}_w} \\
\frac{\partial \tilde{\mathbf{R}}_b}{\partial \tilde{\mathbf{y}}_w} & \frac{\partial \tilde{\mathbf{R}}_w}{\partial \tilde{\mathbf{y}}_w}
\end{bmatrix}
$$

(4.42)

Due to the similarity between the residual equations of water and those of oil, we will derive only the derivatives of the water equations with respect to unknowns.

$\frac{\partial \tilde{\mathbf{R}}_b}{\partial \tilde{\mathbf{y}}_b}$ is a (2x2) block matrix and its elements are (2x2) matrices given by:

$$
\frac{\partial R^w_{bi}}{\partial y^b_j} = \frac{\partial}{\partial (p_j, S^w_{wj})} \begin{pmatrix} R^w_{bi} \\ R^o_{bi} \end{pmatrix} = \begin{bmatrix}
\frac{\partial R^w_{bi}}{\partial p_j} & \frac{\partial R^w_{bi}}{\partial S^w_{wj}} \\
\frac{\partial R^o_{bi}}{\partial p_j} & \frac{\partial R^o_{bi}}{\partial S^w_{wj}}
\end{bmatrix}
$$

(4.43)

where R^w_{bi} and R^o_{bi} are respectively water and oil residual equations at gridblock i. p_j and S^w_{wj} are respectively pressure and water saturation at gridblock j. Differentiating Equation 4.22 gives:

$$
\frac{\partial R^w_{bi}}{\partial p_j} = \frac{\partial F^w_i}{\partial p_j} - \frac{\partial Q^w_i}{\partial p_j} - \frac{\partial A^w_i}{\partial p_j}
$$

(4.44)

$$
\frac{\partial R^w_{bi}}{\partial S^w_{wj}} = \frac{\partial F^w_i}{\partial S^w_{wj}} - \frac{\partial Q^w_i}{\partial S^w_{wj}} - \frac{\partial A^w_i}{\partial S^w_{wj}}
$$

(4.45)

Differentiating Equation 4.23 gives:

$$
\frac{\partial F^w_i}{\partial p_j} = \sum_{t=1}^6 \left(- \frac{\partial T^l_{lt}}{\partial p_j} \Delta \Phi^l_{lt} - T^l_{lt} \frac{\partial (\Delta \Phi^l_{lt})}{\partial p_j} \right)
$$

(4.46)

$$
\frac{\partial F^w_i}{\partial S^w_{wj}} = \sum_{t=1}^6 \left(- \frac{\partial T^l_{lt}}{\partial S^w_{wj}} \Delta \Phi^l_{lt} \right)
$$

(4.47)

Differentiating Equation 4.28 gives:

$$
\frac{\partial T^l_{lt}}{\partial p_j} = - \frac{A_{lt} K_{lt} K_r(S) \partial (\mu B)_{lt}}{\Delta L_{lt}(\mu B)_{lt}^2} \frac{\partial (\mu B)_{lt}}{\partial p_j}
$$

(4.48)

$$
\frac{\partial T^l_{lt}}{\partial S^w_{wj}} = \frac{A_{lt} K_{lt} \partial K_r(S)}{\Delta L_{lt}(\mu B)_{lt}} \frac{\partial (\mu B)_{lt}}{\partial S^w_{wj}}
$$

(4.49)

Differentiating Equation 4.29 gives:

$$
\frac{\partial (\mu B)_{lt}}{\partial p_j} = \frac{\Delta x_l \frac{\partial (\mu B)_{lt}}{\partial p_j} + \Delta x_l \frac{\partial (\mu B)_{lt}}{\partial p_j}}{\Delta x_l + \Delta x_l}
$$

(4.50)
Differentiating Equation 4.24 gives:

\[
\frac{\partial (\Delta \Phi_{lt})}{\partial p_j} = \left(\frac{\partial (\Delta p_{lt})}{\partial p_j} - \frac{\partial \gamma_{lt}}{\partial p_j} \Delta D_{lt} \right)
\]

(4.51)

Differentiating Equation 4.26 gives:

\[
\frac{\partial A^w_i}{\partial p_j} = \frac{V_i S}{\Delta t_{n+1}} \frac{\partial (\frac{\phi}{B})}{\partial p_j} = \frac{V_i S}{\Delta t_{n+1}} \frac{\partial \phi_i B - \phi \frac{\partial B}{\partial p_j}}{B^2}
\]

(4.52)

\[
\frac{\partial A^w_i}{\partial S_{wj}} = \frac{V_i \phi}{\Delta t_{n+1} B}
\]

(4.53)

Differentiating Equation 4.25, Equation 4.32, and Equation 4.35, gives:

\[
\frac{\partial Q^w_i}{\partial p_j} = T_w \left(\frac{\partial p_i}{\partial p_j} - \frac{\partial p_{wf_i}}{\partial p_j} \right) + \frac{\partial T_w}{\partial p_j} (p_i - p_{wf_i})
\]

(4.54)

\[
\frac{\partial Q^w_i}{\partial S_{wj}} = T_w \left(-\frac{\partial p_{wf_i}}{\partial S_{wj}} \right) + \frac{\partial T_w}{\partial S_{wj}} (p_i - p_{wf_i})
\]

(4.55)

\[
\frac{\partial T_w}{\partial p_j} = WI \frac{\partial \Lambda}{\partial p_j}
\]

(4.56)

\[
\frac{\partial T_w}{\partial S_{wj}} = WI \frac{\partial \Lambda}{\partial S_{wj}}
\]

(4.57)

\[
\frac{\partial \Lambda}{\partial p_j} = -\frac{K_r(S)}{(\mu B)^2} \left(\mu \frac{\partial B}{\partial p_j} + B \frac{\partial \mu}{\partial p_j} \right)
\]

(4.58)

\[
\frac{\partial \Lambda}{\partial S_{wj}} = \frac{1}{(\mu B)} \frac{\partial K_r(S)}{\partial S_{wj}}
\]

(4.59)

The partial derivatives given by Equation 4.43 to Equation 4.59 only exist when gridblock \(j \) is a neighbor connection of gridblock \(i \).

\(\frac{\partial \tilde{R}_{b_i}}{\partial y_{wj}} \) is a (2x1) block matrix and its elements are (2x1) matrices given by:

\[
\frac{\partial R_{b_i}}{\partial y_{wj}} = \frac{\partial \left(\begin{array}{c} R^w_{b_i} \\ R^o_{b_i} \end{array} \right)}{\partial y_{wj}} = \left[\begin{array}{c} \frac{\partial R_{b_i}^w}{\partial p_{ref_j}} \\ \frac{\partial R_{b_i}^o}{\partial p_{ref_j}} \end{array} \right]
\]

(4.60)

where \(p_{ref_j} \) is the reference pressure at well \(j \).

\[
\frac{\partial R_{b_i}^w}{\partial p_{ref_j}} = -\frac{\partial Q^w_i}{\partial Q^w_i} = T_w \frac{\partial p_{wf_i}}{\partial p_{ref_j}}
\]

(4.61)
The partial derivatives given by Equation 4.60 and Equation 4.61 only exist when gridblock i is a connecting wellblock of well j.

\[
\frac{\partial \tilde{R}_w}{\partial y_b} \text{ is a (1x2) block matrix and its elements are (1x2) matrices given by:}
\]

\[
\frac{\partial R_{w_i}}{\partial y_{b_j}} = \frac{\partial R_{w_i}}{\partial (p_j, S_{w_j})} = \begin{bmatrix}
\frac{\partial R_{w_i}}{\partial p_j} & \frac{\partial R_{w_i}}{\partial S_{w_j}}
\end{bmatrix}
\] (4.62)

where R_{w_i} is the well constraint equation of well i.

Differentiating Equation 4.36 gives:

\[
\frac{\partial R_{w_i}}{\partial p_j} = -\sum_{k=1}^{nc} \frac{\partial Q_k}{\partial p_j}
\] (4.63)

\[
\frac{\partial R_{w_i}}{\partial S_{w_j}} = -\sum_{k=1}^{nc} \frac{\partial Q_k}{\partial S_{w_j}}
\] (4.64)

The partial derivatives given by Equation 4.63 and Equation 4.64 exist only when gridblock j is a connecting wellblock of well i.

\[
\frac{\partial R_{w_i}}{\partial y_{w_i}} \text{ is a (1x1) matrix and its elements are given by:}
\]

\[
\frac{\partial R_{w_i}}{\partial y_{w_i}} = \frac{\partial R_{w_i}}{\partial p_{ref_j}}
\] (4.65)

Differentiating Equation 4.36 gives:

\[
\frac{\partial R_{w_i}}{\partial p_{ref_j}} = -\sum_{k=1}^{nc} \frac{\partial Q_k}{\partial p_{ref_j}}
\] (4.66)

The partial derivatives given by Equation 4.66 exist only when well j is the same as well i (e.g. $i = j$). As was shown from Equation 4.43 to Equation 4.66, we have related the elements of the Jacobian matrix to terms all of which, except for the pressure gradient along the wellbore and its derivatives with respect to the solution vector, are known. It is important to remark that to ease the computation of the derivatives of wellbore pressure with respect to the solution vector in layered systems, in the forward flow simulation one normally uses a semi-implicit scheme for the pressure gradient along the wellbore. This means that the wellbore pressure at any layer at the new time step is related to the pressure at the reference layer through the pressure gradient at the old time step. In this case, the derivatives of wellbore pressure with
SECTION 4. SENSITIVITY COEFFICIENTS

respect to the solution vector are simply either one or zero. This semi-implicit scheme is no longer valid for the parameter estimation problem. Since the downhole pressure and water cut depend on the wellbore pressure gradient at the new time step, using the pressure gradient at old time step to explicitly evaluate the pressure and water cut at new time step gives an inaccurate response of the model and consequently the parameters estimated by matching downhole pressure and water cut data are distorted. Computing pressure gradient along the wellbore and its derivatives implicitly in layered systems is relatively complex and is discussed separately as follows.

Let us define the following terms (see Figure 4.1):

- l: index for perforated layers
- k: index for the reference layer

Our interest is to relate the pressures in all layers to the pressure at the reference depth and compute the derivatives of these pressures with respect to the solution vector. Considering two adjacent layers l and $l + 1$, and neglecting the pressure loss due to friction along wellbore, the difference in pressure between the two layers with depth can be expressed as:

$$\Delta p = p_{l+1} - p_l = \bar{\gamma}(D_{l+1} - D_l) = 0.5(\gamma_{l+1} + \gamma_l)\Delta D \quad (4.67)$$

where γ_l and γ_{l+1} are the specific weights of fluid present in layer l and layer $l + 1$ and are given by:

$$\gamma_l = \gamma_w^l f_w^l + \gamma_o^l f_o^l \quad (4.68)$$

$$\gamma_{l+1} = \gamma_w^{l+1} f_w^{l+1} + \gamma_o^{l+1} f_o^{l+1} \quad (4.69)$$

γ_w and γ_o are the specific weights of water and oil phases.

$$\gamma_w = \gamma_w^{ref}(1 + c_w(p - p_{ref})) \quad (4.70)$$

$$\gamma_o = \gamma_o^{ref}(1 + c_o(p - p_{ref})) \quad (4.71)$$

f_w and f_o are layer fractional flow rates of water and oil phases respectively.

$$f_w = \frac{\lambda_w}{\lambda_w + \lambda_o} = \frac{1}{1 + \frac{k_w(S_w)\mu_w}{k_r w(S_w)\mu_o}} \quad (4.72)$$
Combining Equation 4.68 with Equation 4.72 gives:

\[
\gamma_l + \gamma_{l+1} = \gamma_w^l f_w^l + \gamma_{w+1}^l f_{w+1}^l + \gamma_o^l f_o^l + \gamma_{o+1}^l f_{o+1}^l \\
= \gamma_w^l f_w^l + \gamma_{w+1}^l f_{w+1}^l + \gamma_o^l f_o^l + \gamma_{o+1}^l f_{o+1}^l \\
= \gamma_w^l (f_w^l + f_{w+1}^l) + \gamma_{w+1}^l c_w((p_l - p_{ref}) f_w^l + (p_{l+1} - p_{ref}) f_{w+1}^l) + \\
\gamma_o^l (f_o^l + f_{o+1}^l) + \gamma_{o+1}^l c_o((p_l - p_{ref}) f_o^l + (p_{l+1} - p_{ref}) f_{o+1}^l) \\
\]

(4.74)

This equation is then combined with Equation 4.67 to give the pressure in layer \(l + 1 \)
as a function of the pressure in layer l and the water saturation in layer l and layer $l+1$.

$$p_{l+1} = \frac{p_l (\gamma_w r_c f_w l^l + \gamma_o r_c f_o l^l) + \gamma_w r_f (f_w + f_{w+1}) (1 - p_r e f c_w) + \gamma_o r_f (f_o + f_{o+1}) (1 - p_r e f c_o)}{2(\Delta D)^{-1} - (\gamma_w r_c f_w f_{w+1} + \gamma_o r_c f_o f_{o+1})}$$

(4.75)

The important application of Equation 4.75 is that it can be used in a fully implicit scheme to compute pressure gradient along the wellbore with depth. The derivatives of wellbore pressure with respect to the solution vector can be computed by the method described in the following paragraph.

Differentiating Equation 4.67 with respect to $S_w l$, $S_w l+1$, and p_l gives:

$$\frac{\partial p_{l+1}}{\partial S_w l} - \frac{\partial p_l}{\partial S_w l} = 0.5 \Delta D \left(\frac{\partial \gamma_l}{\partial S_w l} + \frac{\partial \gamma_l}{\partial p_l} \frac{\partial p_l}{\partial S_w l} + \frac{\partial \gamma_{l+1}}{\partial p_{l+1}} \frac{\partial p_{l+1}}{\partial S_w l} \right)$$

(4.76)

$$\frac{\partial p_{l+1}}{\partial S_w l+1} = 0.5 \Delta D \left(\frac{\partial \gamma_{l+1}}{\partial p_{l+1}} \frac{\partial p_{l+1}}{\partial S_w l+1} + \frac{\partial \gamma_{l+1}}{\partial S_w l+1} \right)$$

(4.77)

$$\frac{\partial p_{l+1}}{\partial p_l} - 1 = 0.5 \Delta D \left(\frac{\partial \gamma_l}{\partial p_l} + \frac{\partial \gamma_{l+1}}{\partial p_{l+1}} \frac{\partial p_{l+1}}{\partial p_l} \right)$$

(4.78)

Rearranging gives:

$$\frac{\partial p_{l+1}}{\partial S_w l} = \frac{\frac{\partial p_l}{\partial S_w l} \left(1 + 0.5 \Delta D \frac{\partial \gamma_l}{\partial p_l} \right) + 0.5 \Delta D \frac{\partial \gamma_{l+1}}{\partial p_{l+1}}}{1 - 0.5 \Delta D \frac{\partial \gamma_{l+1}}{\partial p_{l+1}}}$$

(4.79)

$$\frac{\partial p_{l+1}}{\partial S_w l+1} = \frac{0.5 \Delta D \frac{\partial \gamma_{l+1}}{\partial p_{l+1}}}{1 - 0.5 \Delta D \frac{\partial \gamma_{l+1}}{\partial p_{l+1}}}$$

(4.80)

$$\frac{\partial p_{l+1}}{\partial p_l} = \frac{1 + 0.5 \Delta D \frac{\partial \gamma_l}{\partial p_l}}{1 - 0.5 \Delta D \frac{\partial \gamma_{l+1}}{\partial p_{l+1}}}$$

(4.81)

where the derivatives of the γ functions at layer l with respect to wellbore pressure and water saturation at the same layer are obtained by differentiating Equation 4.68:

$$\frac{\partial \gamma_l}{\partial p_l} = \frac{\partial \gamma_w r_c f_w l^l}{\partial p_l} + \frac{\partial \gamma_o r_c f_o l^l}{\partial p_l}$$

(4.82)

$$\frac{\partial \gamma_l}{\partial S_w l} = \gamma_w \frac{\partial f_w l^l}{\partial S_w l} + \gamma_o \frac{\partial f_o l^l}{\partial S_w l}$$

(4.83)
Differentiating Equation 4.70 to Equation 4.73 gives:

\[
\frac{\partial \gamma^l}{\partial p_l} = \gamma^r e_f c_w
\]

(4.84)

\[
\frac{\partial \gamma^o}{\partial p_l} = \gamma^r e_f c_o
\]

(4.85)

\[
\frac{\partial f^l}{\partial S_{w_l}} = \frac{\partial \lambda^w_l}{\partial S_{w_l}} \lambda^f_l - \lambda^w_l \frac{\partial \lambda^o_l}{\partial S_{w_l}} \frac{2}{(\lambda^w_l + \lambda^o_l)^2}
\]

(4.86)

where,

\[
\frac{\partial \lambda^w_l}{\partial S_{w_l}} = \frac{1}{\mu_w} \frac{\partial k_{rw}}{\partial S_{w_l}}
\]

(4.87)

\[
\frac{\partial \lambda^o_l}{\partial S_{w_l}} = \frac{1}{\mu_o} \frac{\partial k_{ro}}{\partial S_{w_l}}
\]

(4.88)

\[
\frac{\partial f^l}{\partial S_{w_l}} = -\frac{\partial f^l}{\partial S_{w_l}}
\]

(4.89)

Equation 4.79 through Equation 4.81 can be used recursively to compute the derivatives of the wellbore pressure in each layer with respect to the solution vector.

Since the partial derivatives exist only at a few locations, the Jacobian matrix is very sparse meaning that it contains only a relatively small number of nonzero elements. There are several practical schemes to optimize the computational work in solving a sparse system of linear equations, such as the Yale solver (1977).

4.2.2 Computation of \(\frac{\partial \tilde{R}}{\partial \tilde{y}^{(n)}} \)

This matrix is obtained by differentiating the set of residual flow equations defined at new time step \(t^{(n+1)} \) with respect to the unknowns at old time step \(t^{(n)} \).

\[
\frac{\partial \tilde{R}}{\partial \tilde{y}^{(n)}} = \begin{bmatrix} \frac{\partial \tilde{R}_b}{\partial \tilde{y}^{(n)}_b} & \frac{\partial \tilde{R}_w}{\partial \tilde{y}^{(n)}_w} \\ \frac{\partial \tilde{R}_b}{\partial \tilde{y}^{(n)}_b} & \frac{\partial \tilde{R}_w}{\partial \tilde{y}^{(n)}_w} \end{bmatrix}
\]

(4.90)

Since only the accumulation terms depend on the solution at the old time step, this matrix is expressed as:

\[
\frac{\partial \tilde{R}}{\partial \tilde{y}^{(n)}} = \begin{bmatrix} \frac{\partial \tilde{R}_b}{\partial \tilde{y}^{(n)}_b} & 0 \\ 0 & 0 \end{bmatrix}
\]

(4.91)
where $\frac{\partial R}{\partial y^{(n)}}$ is a (2x2) block diagonal matrix whose diagonal elements are determined by:

$$
\frac{\partial R_{b_i}}{\partial y^{(n)}} = \frac{\partial \left(\begin{array}{c} R_{b_i}^{w} \\ R_{b_i}^{o} \end{array} \right)}{\partial \left(\begin{array}{c} p_i^{(n)} \\ S_{w_i}^{(n)} \end{array} \right)} = \left[\begin{array}{cc} \frac{\partial R_{b_i}^{w}}{\partial p_i^{(n)}} & \frac{\partial R_{b_i}^{w}}{\partial S_{w_i}^{(n)}} \\ \frac{\partial R_{b_i}^{o}}{\partial p_i^{(n)}} & \frac{\partial R_{b_i}^{o}}{\partial S_{w_i}^{(n)}} \end{array} \right] \tag{4.92}
$$

$$
\frac{\partial R_{b_i}^{w}}{\partial p_i^{(n)}} = - \frac{\partial A_{i}^{w}}{\partial p_i^{(n)}} = \frac{V_i}{\Delta t_{n+1}} \left(- \frac{S}{\partial p_i^{(n)}} \phi B \right)^{(n)} \tag{4.93}
$$

$$
\frac{\partial R_{b_i}^{o}}{\partial S_{w_i}^{(n)}} = - \frac{\partial A_{i}^{w}}{\partial S_{w_i}^{(n)}} = \frac{V_i}{\Delta t_{n+1}} \left(\frac{\phi}{B} \right)^{(n)} \tag{4.94}
$$

4.2.3 Computation of $\frac{\partial \tilde{R}}{\partial \tilde{\alpha}}$

As described in Section 3.4.5, in the pixel modeling approach the parameters being estimated are the permeability and porosity at each block of the simulation grid. The matrix $\frac{\partial \tilde{R}}{\partial \tilde{\alpha}}$ is therefore a function of the unknown permeability and porosity vectors:

$$
\frac{\partial \tilde{R}}{\partial \tilde{\alpha}} = \left(\begin{array}{cc} \tilde{R} & 0 \\ \partial \tilde{R}_b & \partial \tilde{R}_{\alpha} \end{array} \right)^{(k)} \tag{4.95}
$$

$$
\frac{\partial \tilde{R}}{\partial \tilde{\alpha}} = \tilde{R}_b + \tilde{R}_w \left(\begin{array}{c} \partial R_{b_i}^{w} \\ \partial R_{b_i}^{o} \end{array} \right) = \left[\begin{array}{c} \partial R_{b_i}^{w} \\ \partial R_{b_i}^{o} \end{array} \right] \tag{4.96}
$$

$$
\frac{\partial R_{b_i}^{w}}{\partial \alpha_j} = \frac{\partial \left(\begin{array}{c} R_{b_i}^{w} \\ R_{b_i}^{o} \end{array} \right)}{\partial \alpha_j} = \left[\begin{array}{cc} \frac{\partial R_{b_i}^{w}}{\partial \alpha_j} & \frac{\partial R_{b_i}^{o}}{\partial \alpha_j} \end{array} \right] \tag{4.97}
$$

$$
\frac{\partial R_{b_i}^{w}}{\partial \alpha_j} = \frac{\partial F_{i}^{w}}{\partial \alpha_j} - \frac{\partial Q_{i}^{w}}{\partial \alpha_j} - \frac{\partial A_{i}^{w}}{\partial \alpha_j} \tag{4.98}
$$

$$
\frac{\partial F_{i}^{w}}{\partial \alpha_j} = \sum_{t=1}^{6} \left(- \frac{\partial T_{lt}}{\partial \alpha_j} \Delta \Phi_{lt} \right) \tag{4.99}
$$

$$
\frac{\partial T_{lt}}{\partial \alpha_j} = \frac{A_{lt} K_r(S) \partial K_{lt}}{\Delta L_{lt}(\mu B)_{lt}} \tag{4.100}
$$
\[
\frac{\partial K_l}{\partial \alpha_j} = \frac{\Delta x_l + \Delta x_t}{(k_l \Delta x_t + k_t \Delta x_l)^2} \left(\Delta x_l k_l^2 \frac{\partial k_t}{\partial \alpha_j} + \Delta x_t k_t^2 \frac{\partial k_l}{\partial \alpha_j} \right) \tag{4.101}
\]

\[
\frac{\partial Q^w_i}{\partial \alpha_j} = \frac{\partial T_{wi}}{\partial \alpha_j} (p_i - p_{wf, i}) \tag{4.102}
\]

\[
\frac{\partial T_{wi}}{\partial \alpha_j} = \Lambda_i \frac{\partial W I_i}{\partial \alpha_j} \tag{4.103}
\]

\[
\frac{\partial W I_i}{\partial \alpha_j} = \frac{\partial W I_i}{\partial k_i} \frac{\partial k_i}{\partial \alpha_j} \tag{4.104}
\]

\[
\frac{\partial W I_i}{\partial k_i} = \frac{2\pi h}{\ln \left(\frac{r_0}{r_w} \right) + s} \tag{4.105}
\]

\[
\frac{\partial A_i^w}{\partial \alpha_j} = \frac{V_i}{\Delta t_{n+1}} \left(\left(\frac{S}{B} \frac{\partial \phi}{\partial \alpha_j} \right)_i^{(n+1)} - \left(\frac{S}{B} \frac{\partial \phi}{\partial \alpha_j} \right)_i^{(n)} \right) \tag{4.106}
\]

\[
\frac{\partial \phi}{\partial \alpha_j} = f(p) \frac{\partial \phi_0}{\partial \alpha_j} \tag{4.107}
\]

\[
\frac{\partial R_{wi}}{\partial \alpha_j} = -\sum_{k=1}^{nc} \frac{\partial Q_k}{\partial \alpha_j} \tag{4.108}
\]

All of the terms in Equation 4.95 to Equation 4.108 depend on \(\frac{\partial k_i}{\partial \alpha_j} \) and \(\frac{\partial \phi_0}{\partial \alpha_j} \) which are the derivatives of permeability and porosity at gridblock \(i \) with respect to that at gridblock \(j \). These derivatives are either zero or one:

\[
\frac{\partial k_i}{\partial \alpha_j} = \begin{cases}
1 & i = j; \\
0 & i \neq j.
\end{cases} \tag{4.109}
\]

\[
\frac{\partial \phi_0}{\partial \alpha_j} = \begin{cases}
1 & i = j; \\
0 & i \neq j.
\end{cases} \tag{4.110}
\]

Since the three matrices \(\frac{\partial \tilde{R}}{\partial \tilde{y}^{(n+1)}}, \frac{\partial \tilde{R}}{\partial \tilde{y}^{(n)}}, \) and \(\frac{\partial \tilde{R}}{\partial \tilde{\alpha}} \) are all very sparse, to optimize the computational work and save space, only their nonzero elements are computed and stored.

Having computed these matrices, the full sensitivity matrix \(S \) can be determined by solving Equation 4.20 \(npar \) times. The key simplification is that the left-hand side of this equation is held constant, while only the right-hand side is changed. This task was effectively implemented using the Yale solver (1977). As was mentioned in Section 4.1, our final interest is to compute the sensitivity of the responses corresponding
to the observed data with respect to the parameters of the inverse problem. These sensitivities can be computed from the full sensitivity matrix S as will be explained next.

4.3 Computation of Sensitivity Coefficients

By knowing the vector solution of the forward problem \tilde{y}, we can completely determine the response of the model $\tilde{d}_m = d(\tilde{y}, \tilde{\alpha})$. Therefore, the sensitivity coefficients can be computed as:

$$
G = \frac{\partial \tilde{d}_m}{\partial \tilde{\alpha}} = \frac{\partial \tilde{d}}{\partial \tilde{y}} \frac{\partial \tilde{y}}{\partial \tilde{\alpha}} + \frac{\partial \tilde{d}}{\partial \tilde{\alpha}} = \frac{\partial \tilde{d}}{\partial \tilde{y}} S + \frac{\partial \tilde{d}}{\partial \tilde{\alpha}} \tag{4.111}
$$

From Equation 4.111, having determined S, to compute G we need to compute $\frac{\partial \tilde{d}}{\partial \tilde{y}}$ and $\frac{\partial \tilde{d}}{\partial \tilde{\alpha}}$. Since these two matrices depend on the type of data in the parameter estimation problem, it is important to define this set of data first. The set of data for the parameter estimation problem in this work consists of:

1. Downhole pressures of wells (denoted by \tilde{p}_{wf}).

2. Water cut of wells (denoted by \tilde{w}_{ct}).

3. Change in water saturation distribution over the reservoir between two given instants (denoted by $\Delta \tilde{S}_w$).

$$
\tilde{d}_m = \begin{bmatrix}
\tilde{p}_{wf} \\
\tilde{w}_{ct} \\
\Delta \tilde{S}_w
\end{bmatrix}
\tag{4.112}
$$

$$
\tilde{y} = \begin{bmatrix}
\tilde{p} \\
\tilde{S}_w \\
\tilde{p}_{ref}
\end{bmatrix}
\tag{4.113}
$$

Therefore,

$$
G = \frac{\partial \tilde{d}_m}{\partial \tilde{\alpha}} = \begin{bmatrix}
\frac{\partial \tilde{p}_{wf}}{\partial \tilde{\alpha}} \\
\frac{\partial \tilde{w}_{ct}}{\partial \tilde{\alpha}} \\
\frac{\partial \Delta \tilde{S}_w}{\partial \tilde{\alpha}} \\
\frac{\partial \tilde{p}_{ref}}{\partial \tilde{\alpha}}
\end{bmatrix}
\tag{4.114}
$$
SECTION 4. SENSITIVITY COEFFICIENTS

\[S = \frac{\partial \tilde{y}}{\partial \tilde{\alpha}} = \begin{bmatrix} \frac{\partial \tilde{p}}{\partial \tilde{\alpha}} \\ \frac{\partial \tilde{S}_{w}}{\partial \tilde{\alpha}} \\ \frac{\partial \tilde{p}_{\text{ref}}}{\partial \tilde{\alpha}} \end{bmatrix} \quad (4.115) \]

From Equation 4.114 and Equation 4.115, to compute the sensitivity matrix \(G \), we need to compute the three matrices \(\frac{\partial \tilde{p}_{\omega f}}{\partial \tilde{\alpha}} \), \(\frac{\partial \tilde{w}_{ct}}{\partial \tilde{\alpha}} \), and \(\frac{\partial \Delta \tilde{S}_{w}}{\partial \tilde{\alpha}} \). The last one is obtained directly from the full sensitivity matrix \(S \):

\[\frac{\partial \Delta \tilde{S}_{w}}{\partial \tilde{\alpha}} = \left. \frac{\partial \tilde{S}_{w}}{\partial \tilde{\alpha}} \right|_{t_2} - \left. \frac{\partial \tilde{S}_{w}}{\partial \tilde{\alpha}} \right|_{t_1} \quad (4.116) \]

Where \(t_1 \) and \(t_2 \) are the two given instants in time at which 3-D seismic information is collected to infer the time-lapse (4-D) seismic signal. The first two matrices can not easily be obtained from the full sensitivity matrix and the computation of these matrices emphasizes the difference in the level of difficulty between single-layer and multilayered reservoir problems. In multilayered reservoirs, particularly when wells are completed over several layers, the derivatives of wellbore pressure and water cut with respect to the parameters becomes extremely complicated. The layer flow rate is parameter dependent. Moreover, the pressure gradient varies along the wellbore and is a function of pressure and saturation in all connecting wellblocks and thus the derivatives of the wellbore pressure with respect to the parameters can no longer be derived directly from the derivatives of the wellblock pressure in the well constraint equations. Similarly, the water cut is no longer just a simple function of mobility ratio as is the case in single layer problems but is a complex function of mobility ratios, pressure, and saturation in all layers. Thus, the derivative of water cut with respect to the parameters requires the derivatives of mobility, pressure, and saturation in each layer penetrated by the wells. One way of computing the derivatives of wellbore pressure and water cut with respect to parameters from the full sensitivity matrix in multilayered systems is proposed in the following section.

4.3.1 Derivatives of Wellbore Pressure

Wellbore pressure and its derivatives with respect to the parameters depend upon the location of the downhole tool. Since the location of the downhole tool may change
SECTION 4. SENSITIVITY COEFFICIENTS

during the test, the reference layer may not be the same as the layer where the measurement takes place. Therefore, the pressure at the tool depth is not simply the reference pressure but is related to the reference pressure by Equation 4.75. Applying Equation 4.111 for the pressure at the tool depth we have.

\[
\frac{\partial \tilde{p}_{wf}}{\partial \tilde{\alpha}} = \frac{\partial \tilde{\alpha}}{\partial \tilde{\alpha}} \bigg|_{\tilde{\alpha}} \frac{\partial \tilde{y}}{\partial \tilde{\alpha}} + \frac{\partial \tilde{p}_{wf}}{\partial \tilde{\alpha}} \bigg|_{\tilde{\alpha}} = \frac{\partial \tilde{\alpha}}{\partial \tilde{y}} \bigg|_{\tilde{\alpha}} \mathbf{S} + \frac{\partial \tilde{p}_{wf}}{\partial \tilde{\alpha}} \bigg|_{\tilde{\alpha}} (4.117)
\]

From Equation 4.75, it is easy to see that wellbore pressure does not depend explicitly on the parameters. Therefore, the last term in Equation 4.117 vanishes.

\[
\frac{\partial \tilde{p}_{wf}}{\partial \tilde{\alpha}} \bigg|_{\tilde{\alpha}} = 0 (4.118)
\]

Hence,

\[
\frac{\partial \tilde{p}_{wf}}{\partial \tilde{\alpha}} = \frac{\partial \tilde{p}_{wf}}{\partial \tilde{y}} \bigg|_{\tilde{\alpha}} \mathbf{S} (4.119)
\]

where the terms \(\frac{\partial \tilde{p}_{wf}}{\partial \tilde{y}} \bigg|_{\tilde{\alpha}} \) are the derivatives of wellbore pressure at the depth of the downhole tool with respect to the solution vector and can be computed by using Equation 4.79 to Equation 4.81 recursively. In this work, the reference layer was assumed to coincide with the layer where the measurement takes place \((\tilde{p}_{wf} = \tilde{p}_{ref})\).

\[
\frac{\partial \tilde{p}_{wf}}{\partial \tilde{y}} \bigg|_{\tilde{\alpha}} = \frac{\partial \tilde{p}_{ref}}{\partial \tilde{y}} \bigg|_{\tilde{\alpha}} = \begin{cases} 1 & \tilde{y} = \tilde{p}_{ref}; \\ 0 & \text{otherwise}. \end{cases} (4.120)
\]

4.3.2 Derivatives of Water Cut

The water cut at each well is defined as the ratio between the water and the total liquid volume metric flowrates measured at surface conditions.

\[
w_{ct} = \frac{q_w}{q_w + q_o} (4.121)
\]

where \(q_w \) and \(q_o \) are respectively water and oil volume metric flow rates measured at surface conditions. For the injectors, since only water is injected, we have:

\[
w_{ct} = 1 (4.122)
\]
and,
\[\frac{\partial \tilde{w}_{ct}}{\partial \tilde{\alpha}} = 0 \] (4.123)

For the producers, differentiating Equation 4.121 with respect to parameters gives:
\[\frac{\partial w_{ct}}{\partial \tilde{\alpha}} = \frac{\partial w_{ct}}{\partial q_w} \frac{\partial q_w}{\partial \tilde{\alpha}} + \frac{\partial w_{ct}}{\partial q_o} \frac{\partial q_o}{\partial \tilde{\alpha}} = \frac{1}{(q_w + q_o)^2} \left(q_o \frac{\partial q_w}{\partial \tilde{\alpha}} - q_w \frac{\partial q_o}{\partial \tilde{\alpha}} \right) \] (4.124)

Since the inner boundary conditions can be specified in term of water, oil, or total liquid rates, the derivatives of water cut with respect to parameters according to Equation 4.124 differs with these conditions.

If water flow rate is specified:
\[\frac{\partial w_{ct}}{\partial \tilde{\alpha}} = -\frac{q_w}{(q_w + q_o)^2} \frac{\partial q_o}{\partial \tilde{\alpha}} \] (4.125)

If oil flow rate is specified:
\[\frac{\partial w_{ct}}{\partial \tilde{\alpha}} = \frac{q_o}{(q_w + q_o)^2} \frac{\partial q_w}{\partial \tilde{\alpha}} \] (4.126)

If total liquid rate is specified:
\[\frac{\partial w_{ct}}{\partial \tilde{\alpha}} = \frac{1}{q_w + q_o} \frac{\partial q_w}{\partial \tilde{\alpha}} \] (4.127)

From Equation 4.125 to Equation 4.127, to compute the derivatives of water cut, we need to compute the derivatives of water and oil flow rates at the producers with respect to the parameters. The flow of water and oil components from each well is the sum of the flow of those components from all the perforated layers.

For water,
\[q_w = \sum_{l=1}^{nc} Q_{wl} \] (4.128)

For oil,
\[q_o = \sum_{l=1}^{nc} Q_{ol} \] (4.129)

Differentiating Equation 4.128 and Equation 4.129 with respect to parameters gives:
\[\frac{\partial q_w}{\partial \tilde{\alpha}} = \sum_{l=1}^{nc} \frac{\partial Q_{wl}}{\partial \tilde{\alpha}} \] (4.130)
\[
\frac{\partial q_o}{\partial \tilde{\alpha}} = \sum_{l=1}^{nc} \frac{\partial Q_{ol}}{\partial \tilde{\alpha}}
\]
(4.131)

Recalling Equation 4.25, the layer flow rate of water and oil components is given by:

\[
Q_{wl} = T_w(p_l - p_{wf_l})
\]
(4.132)

\[
Q_{ol} = T_o(p_l - p_{wf_l})
\]
(4.133)

Since the layer flow rate is a function of pressure \((p_l)\) and saturation \((S_l)\) in the wellblock, the pressure in the wellbore \((p_{wf_l})\) and the permeability in the wellblock \((k_l)\), differentiating Equation 4.132 and Equation 4.133 with respect to parameters gives:

For water,

\[
\frac{\partial Q_{wl}}{\partial \tilde{\alpha}} = \frac{\partial Q_{wl}}{\partial p_l} \frac{\partial p_l}{\partial \tilde{\alpha}} + \frac{\partial Q_{wl}}{\partial S_l} \frac{\partial S_l}{\partial \tilde{\alpha}} + \frac{\partial Q_{wl}}{\partial p_{wf_l}} \frac{\partial p_{wf_l}}{\partial \tilde{\alpha}} + \frac{\partial Q_{wl}}{\partial k_l} \frac{\partial k_l}{\partial \tilde{\alpha}}
\]
(4.134)

For oil,

\[
\frac{\partial Q_{ol}}{\partial \tilde{\alpha}} = \frac{\partial Q_{ol}}{\partial p_l} \frac{\partial p_l}{\partial \tilde{\alpha}} + \frac{\partial Q_{ol}}{\partial S_l} \frac{\partial S_l}{\partial \tilde{\alpha}} + \frac{\partial Q_{ol}}{\partial p_{wf_l}} \frac{\partial p_{wf_l}}{\partial \tilde{\alpha}} + \frac{\partial Q_{ol}}{\partial k_l} \frac{\partial k_l}{\partial \tilde{\alpha}}
\]
(4.135)

where,

\[
\frac{\partial Q_{wl}}{\partial p_l}, \frac{\partial Q_{wl}}{\partial S_l}, \frac{\partial Q_{ol}}{\partial p_l} \text{ and } \frac{\partial Q_{ol}}{\partial S_l}, \text{ can be computed from Equation 4.54 and Equation 4.55.}
\]

\[
\frac{\partial Q_{wl}}{\partial k_l} \text{ and } \frac{\partial Q_{ol}}{\partial k_l} \text{ can be computed from Equation 4.102.}
\]

\[
\frac{\partial k_l}{\partial \tilde{\alpha}} \text{ can be computed from Equation 4.109.}
\]

\[
\frac{\partial p_l}{\partial \tilde{\alpha}} \text{ and } \frac{\partial S_l}{\partial \tilde{\alpha}} \text{ can be obtained from the full sensitivity matrix } S.
\]

\[
\frac{\partial Q_{wl}}{\partial p_{wf_l}} = -T_w
\]
(4.136)

and,

\[
\frac{\partial Q_{ol}}{\partial p_{wf_l}} = -T_o
\]
(4.137)

where \(T_w\) and \(T_o\) are the transmissibilities of water and oil components respectively between the well and the formation and are given by Equation 4.32. \(\frac{\partial p_{wf_l}}{\partial \tilde{\alpha}}\) are the derivatives of wellbore pressure at each layer penetrated by the well with respect to the parameters and are computed by the following steps.
As was discussed earlier, since the pressure in layer \(l + 1 \) depends on the pressure in layer \(l \) and the saturation in layer \(l \) and \(l + 1 \), differentiating the pressure in layer \(l + 1 \) with respect to parameters gives:

\[
\frac{\partial p_{wf_{l+1}}}{\partial \alpha} = \frac{\partial p_{wf_{l+1}}}{\partial p_{wf_{l}}} \frac{\partial p_{wf_{l}}}{\partial \alpha} + \frac{\partial p_{wf_{l+1}}}{\partial S_{l}} \frac{\partial S_{l}}{\partial \alpha} + \frac{\partial p_{wf_{l+1}}}{\partial S_{l+1}} \frac{\partial S_{l+1}}{\partial \alpha}
\]

(4.138)

If layer \(l \) is the reference layer then the pressure in layer \(l \) is the reference pressure and its derivative with respect to parameters is obtained from the full sensitivity matrix. Knowing the derivatives of wellbore pressure in layer \(l \), the derivatives of wellbore pressure in layer \(l + 1 \) with respect to parameters can be computed from Equation 4.138 in which \(\frac{\partial p_{wf_{l+1}}}{\partial p_{wf_{l}}} \), \(\frac{\partial p_{wf_{l+1}}}{\partial S_{l}} \), and \(\frac{\partial p_{wf_{l+1}}}{\partial S_{l+1}} \) are computed from Equation 4.79 to Equation 4.81, and \(\frac{\partial S_{l}}{\partial \alpha} \) and \(\frac{\partial S_{l+1}}{\partial \alpha} \) are obtained from the full sensitivity matrix.

Equation 4.138 can be used recursively to compute the derivatives of wellbore pressure in all layers penetrated by the well with respect to the parameters.

Up to this point, we have shown an accurate way of computing the sensitivity coefficients for multilayered reservoirs. These sensitivity coefficients have some features that can be summarized as follows:

• The sensitivity coefficients can be computed from the full sensitivity matrix.
• This computation occupies most of the work and is very difficult to implement in terms of computer coding.
• The computation is much more complex for three-dimensional multiphase problems than for two-dimensional or single-phase problems.

4.3.3 Computational Results

The correctness and efficiency of the method of computing the sensitivity coefficients was tested and ensured by comparing computational results to the results obtained from the numerical substitution method. To serve this purpose, a model of a rectangular parallelepiped reservoir of uniform thickness was prepared as depicted in Figure 4.2. The reservoir model consists of three layers in vertical communication. Three-dimensional, two-phase flow of oil and water was considered. The dimensions of the reservoir were chosen to be sufficiently small to capture all possible scenarios
for the sensitivity study in a short time period. A 600 ft by 600 ft by 150 ft reservoir with no-flow boundaries was modeled using a uniform grid with 30 ft by 30 ft by 50 ft cubic gridblocks. The discretized reservoir was therefore represented as a 20x20x3 grid (1200 gridblocks). The reservoir contains four wells. Three producers (well #1, #2, and #3) penetrate fully through the reservoir thickness. Wells #1 and #3 produce at a constant total liquid rate of 750 STB/d. Well #2 produces at a constant oil rate of 750 STB/d. The injector (Well #4) is completed only in the bottom layer and injects water at a series of step rates as depicted in Figure 4.3. The porosity was set constant throughout the reservoir ($\phi_0 = 0.2$). The permeability is uniformly distributed within each layer, 400md in the top and bottom layer and 600md in the middle layer. The long term pressure and water cut of Well #2 are shown in Figure 4.4. The abrupt change in slope of pressure at 200 and 250 days is due to the step change in injection rate. Water arrives at this well in approximately 40 days. The change in water saturation between 50 and 150 days in all three layers is depicted in Figure 4.5. The sensitivity of pressure and water cut at Well #2 with respect to the permeabilities in all cells along the NE-SW diagonal (see Figure 4.2) were computed using both analytical and numerical methods. The comparison is shown in Figure 4.6. Note that the sensitivity coefficients are largest at the gridblock containing the well. The downhole pressure is less sensitive to the permeabilities at gridblocks far from the well. The water cut is also less sensitive to the permeabilities at gridblocks far from the well but regains sensitivity to the gridblocks close to the injector. The sensitivity of water cut reaches its minimum at the point between the producer and the injector. Figure 4.7 and Figure 4.8 show the sensitivity of pressure and water cut at Well #2 with respect to the permeability in gridblocks containing the injector (1,20,3) and the producer (20,1,1) as a function of time. These sensitivity coefficients are zero before water arrival at Well #2 (40 days) and rapidly increase after that. The sensitivities of the change in water saturation in all cells between 50 and 150 days with respect to the permeability in cell (10,10,3) were also computed with both methods and are shown in Figure 4.9. These figures indicate that the results computed using the analytical method proposed in this work and the substitution method are almost identical. In
fact, they match to six decimal places. The water saturation distribution in the bottom layer is shown in Figure 4.10. The effect of permeabilities on the water front and water saturation distribution was also studied by computing the sensitivity of the latter with respect to the permeabilities in the upstream gridblock containing the injector (1,20,3), the downstream gridblock containing the producer (20,1,3), and the gridblock that lies at the water front between the injector and the producer (10,10,3) (see Figure 4.10). This result is shown in Figure 4.11. It is interesting to observe that the most sensitive region may not always contain the block whose permeability is being studied. This is because the upstream water saturation at late times becomes almost constant.
Figure 4.2: Three-layer reservoir model for sensitivity study.
Figure 4.3: Injection rate of Well #4.

Figure 4.4: Long term pressure and water cut at Well #2.
Figure 4.5: Change in water saturation between 50 and 150 days.

Figure 4.6: Sensitivity of pressure and water cut with respect to the permeabilities in NE-SW diagonal at 150 days.
Figure 4.7: Sensitivity of pressure and water cut at Well #2 with respect to the permeability in gridblock-(1,20,1).
Figure 4.8: Sensitivity of pressure and water cut at Well #2 with respect to the permeability in gridblock (20,1,1).
Figure 4.9: Sensitivity of change in water saturation between 50 and 150 days.

Figure 4.10: Water saturation distribution in the bottom layer at 150 days.
SECTION 4. SENSITIVITY COEFFICIENTS

Figure 4.11: Sensitivity of water saturation distribution in the bottom layer.
The observations drawn from the computational results are summarized as follows:

1. In most cases, the response in a given gridblock is more sensitive to the permeability of that gridblock than to the permeability of more distant gridblocks.

2. Downhole pressure and water cut show low sensitivity to the permeability before water arrival and show strong sensitivity after that.

3. The downstream saturations are more sensitive to the permeabilities in the gridblocks at the water front than are upstream saturations.

4. The changes in downstream saturations are more sensitive to the permeabilities in the gridblocks at the water front than those in upstream saturations.

5. The permeabilities in blocks behind water front show stronger effect on the distribution of water saturation in the reservoir than do those ahead of the water front.

6. Water saturation in a downstream gridblock is most sensitive to the permeability in that gridblock.

7. Water saturation in an upstream gridblock is not necessarily most sensitive to the permeability in that gridblock.

Although these observations are drawn from the particular reservoir model, many of them are still valid in general and can be used to determine principles for a data collection strategy as will be discussed in the next section. Since the data with high sensitivity contains more information about the parameters being estimated, the sensitivity coefficients can be interpreted in terms of data information as follows:

1. Distributed data such as the change in water saturation are richer in information, being physically close to the blocks whose permeabilities are being estimated.

2. Single point data such as long-term downhole pressure or water cut history collected at each well are richer in information after water arrival.
3. The changes in downstream water saturations are richer in information about the permeabilities in the region containing the water front. The wider the transitional area of this water front, the more values of gridblock permeabilities can be resolved. This is true whether the transition area is extended by physical dispersion, or by the effects of heterogeneity in reservoir properties.

4. Water saturation in a downstream gridblock is richest in information about the permeability in that gridblock.

5. Water saturation in an upstream gridblock may not be richest in information about the permeability in that gridblock.

The efficiency of the analytical method of computing sensitivity coefficients for layer system proposed in this work can be analyzed by considering the computation time.

Let us define the following terms:

- t_s: CPU time required to solve Equation 4.6.
- t_α: CPU time required to solve Equation 4.20 with fixed left-hand side.
- n_p: The number of parameters of interest to which the sensitivities are computed.
- n_s: The number of time steps in one simulation run.

t_s and t_α depend on the size of the forward problem, the solver algorithm, and the computer hardware on which the code is run. Note that the number of parameters of interest n_p is not necessarily the same as the number of parameters for the inverse problem $npar$. For the purpose of the sensitivity study, the sensitivities with respect to only some parameters whose impact on the reservoir response need to be studied are computed. The CPU time required to compute the sensitivity coefficients with respect to n_p parameters of interest can be expressed as:

By the analytical method:

$$t_\alpha = n_s(t_s + n_p t_\alpha)$$

By the substitution method:

$$t_n = n_s(n_p + 1)t_s$$
Since computer efficiency is defined as the inverse of the CPU time, the comparison of the efficiencies of the two methods is given by a ratio.

\[
\text{efficiency of the analytical method} / \text{efficiency of substitution method} = \frac{\frac{1}{t_a}}{\frac{1}{t_n}} = \frac{t_n}{t_a} = \frac{n_s (n_p + 1) t_s}{n_s (t_s + n_p t_\alpha)} \quad (4.141)
\]

Equation 4.141 can be rearranged as:

\[
\text{efficiency of the analytical method} / \text{efficiency of substitution method} = \frac{n_p + 1}{1 + n_p \frac{t_\alpha}{t_s}} = \frac{t_s}{t_\alpha} - \frac{\frac{t_\alpha}{t_n} - 1}{1 + n_p \frac{t_\alpha}{t_s}} \quad (4.142)
\]

Since \(t_\alpha \ll t_s \), the middle fraction in Equation 4.142 is greater than unity and the method proposed in this work is more efficient than the substitution method. The dominant efficiency of the analytical method is emphasized as the number of parameters of interest increases. The greatest efficiency \(t_s / t_\alpha \) is archived as \(n_p \) approaches infinity. The actual efficiencies of the two methods were evaluated by running the same code on the same machine (a UNIX workstation running at 400 MHz). The results are shown in Table 4.1. The analytical method is 1.33 times faster than the substitution method for computing the sensitivity coefficients with respect to 1 parameter. For computing the sensitivity coefficients with respect to 21 parameters, the analytical method is 4.07 times faster than the substitution method and 65 times faster for computing the sensitivity coefficients with respect to 1200 parameters. To estimate 1200 permeabilities for this reservoir model, the analytical method takes about 92 minutes to compute all sensitivity coefficients that are required for the inverse problem while the substitution method takes about 4 days to perform the equivalent work.

<table>
<thead>
<tr>
<th>(n_p)</th>
<th>Simulation</th>
<th>Analytical</th>
<th>Substitution</th>
<th>Ratio of Two Efficiencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>298.82</td>
<td>298.82</td>
<td>298.82</td>
<td>1.0</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>432.51</td>
<td>573.19</td>
<td>1.33</td>
</tr>
<tr>
<td>21</td>
<td>X</td>
<td>1457.5</td>
<td>5925.29</td>
<td>4.07</td>
</tr>
<tr>
<td>1200</td>
<td>X</td>
<td>5520.2</td>
<td>358882.82</td>
<td>65.0</td>
</tr>
</tbody>
</table>
Section 5

Application of the Method

This section demonstrates the application of the parameter estimation procedure described in the previous sections for several study cases. By examining these cases, we addressed some fundamental issues associated with the resolution of depth-dependent properties. These issues are as follows:

- What type of data is necessary to resolve depth-dependent reservoir properties?
- What type of data reveals most depth-dependent information?
- How much does each type of data contribute to reducing the uncertainty of the parameter estimates?
- How well can the reservoir properties be determined in the depth dimension as compared to the areal resolution?
- How is the certainty of the estimates distributed in the depth dimension?

For two-dimensional problems, wells can only be produced in a single layer and the change in water saturation available from 4-D seismic interpretation can be considered as the change in each cell. For multilayered reservoirs, wells can intersect several layers and the 4-D seismic data can be interpreted as the information either within each layer or the average over several layers. To address the fundamental issues mentioned above, the reservoir parameters were estimated by matching different types of data. The types of these data are described as follows:

- \(LP \): Layer production data (wells produced in separate layers (see Figure 5.1)).
• *CP*: Commingled production data (wells produced at several layers (see Figure 5.2)).

• *LS*: Layer-by-layer seismic data (the change of water saturation is available at every gridblock in each layer of the reservoir). This type of data is only feasible for thick layers.

• *AS*: Depth-averaged seismic data (only the average change of water saturation in the depth dimension is available). This type of data is for thin reservoirs.

The parameters being estimated are the permeabilities in all cells of a layered reservoir. All individual values of gridblock permeability of this example reservoir are already known and are considered as the true solution for the parameter estimation problem. The advantage of having a known solution is that the solution obtained from the procedure developed in this work can then be compared to the known solution and the fundamental issues stated earlier can then be addressed. If the parameters estimated by matching a set of data are close to the true parameters, then such data are said to reveal the reservoir parameter information. The field data used in these examples were generated by the numerical simulator using the true permeability distribution. The data generated therefore contain no noise. The true reservoir was discretized with seven gridblocks in both *x* and *y* dimensions and three gridblocks in the *z* dimension. The reservoir is produced by five wells and water is injected at four other wells. The three-layer reservoir model with layer production (*LP*) is shown in Figure 5.3 and with commingled production (*CP*) in Figure 5.4. The flow rate histories of all nine wells are shown in Figure 5.5. We investigated three example reservoirs: one with a uniform distribution of permeability and porosity in each layer, one with a channel, and one with a fault.
SECTION 5. APPLICATION OF THE METHOD

Figure 5.1: Individual layer well completion.

Figure 5.2: Multilayered well completion.
Figure 5.3: Nine wells in multilayered reservoir with individual layer well completion (LP).
Figure 5.4: Nine wells in multilayered reservoir with multilayered well completion (CP).
Figure 5.5: Time-dependent rate history of nine wells.
5.1 Example 1: Uniform Properties within Each Layer

The purpose of this example was to test if it was possible to recover the true depth-dependent permeabilities by matching separately the four different types of data described earlier. There were only three independent permeability parameters, one for each layer. However we assumed that the uniformity of properties is unknown to us and hence we must describe the reservoir model at a finer scale to approach this problem. The finest scale is at the scale of the reservoir simulator which is 7x7x3. This approach is known as *pixel modeling* as described in Chapter 3. The first type of data we considered were Layer Production and Layer by Layer Seismic (LP-LS). The true permeabilities vary only in the depth dimension and are 400md in the top and bottom layer and 800md in the middle layer. The observed data were generated from these true permeabilities using the numerical simulator and are shown in Figure 5.6 and Figure 5.7. Figure 5.7 shows the change in water saturation between 5 and 15 days as might be determined from 4-D seismic data. Figure 5.8 shows the water saturation at 15 days. Water arrives very early at the five producers. The wiggle in observed pressure before 20 days in Figure 5.6 is due to the rapid change of specified flow rates. Figure 5.7 shows no change in water saturation in the first layer because water does not arrive at this layer before 15 days. All nine wells were partially penetrated. Wells #1 to #5 are produced at gridblocks (4,4,1), (1,1,2), (7,7,2), (7,1,3), and (1,7,3) respectively with specified oil rates. Wells #6 to #9 inject water at gridblocks (4,1,3), (7,4,3), (4,7,3), and (1,4,3) respectively with specified water rates. The time-dependent flow rates of all nine wells were shown earlier in Figure 5.5.

Figure 5.9 shows the match of long-term pressure and water cut at the nine wells. The continuous lines are observed data and the points are the computed values. Figure 5.10 shows the match of seismic data at all three layers. The data are matched perfectly. Figure 5.11 compares the computed permeabilities to the true permeabilities in all three layers. The true permeability values are recovered almost exactly in the third layer and fairly well in the first and the second layers except at a few blocks.
These poorly recovered blocks are green in the first layer where the true color is blue and red in the second layer where the true color is green. This can be explained as follows:

- The green blocks in the first layer are located ahead of the water front and from the sensitivity analysis shown in Chapter 4, the permeabilities in these blocks have weak or no effect on the water saturation.

- In the second layer, the water front is the X-shaped region containing the two diagonals (not including the blue block). The true color is recovered in this region. This is consistent with the observation that the water saturation is most sensitive to the permeabilities in the water front area. The second best area is in the region of the red blocks located just behind the water front and far from the wells. The worst area is the single blue block. It is important to note here that although this blue block is located next to a well, the distance from the well is 220 ft which, according to Figure 4.6 is still not close enough to show any effect on the pressure and water cut at this well. Moreover, this block is still ahead of water front.

Figure 5.12 shows the certainty of the permeability estimates in each cell and the average certainty in each layer. The blocks in warmer color represent higher certainty and the permeabilities in these blocks can be resolved with more confidence. The certainty in each layer has common observations that can be interpreted as follows:

- The best determined areas are at the well locations. Pressure and water cut data are collected at these wells.

- The worst determined areas are the ones located ahead of the water front and far from the wells. Water saturation is only weakly sensitive to the permeabilities in downstream areas.

- The moderately well determined areas are the ones located either next to the wells or behind the water front. Water saturation is strongly sensitive to the permeabilities in upstream areas.

The areal average of the certainty also increases from the first to the third layer. This comes from the fact that there were more wells in the second and third layer than there were in the first. Also the 4-D layer seismic data are richer in information about the third layer which is located upstream of the water front.
The next type of data we matched was Layer Production and Depth-Averaged Seismic (LP-AS). The final results are shown in Figure 5.13 and Figure 5.14. The true permeability values in the first and the third layers were only recovered at the well locations. One interesting result observed here in the second layer is that the true permeability values in most cells are very well recovered as compared to those in the first and third layer and are as well recovered as in the case of Layer Production and Layer by Layer Seismic (LP-LS). This is because (see Figure 5.8) the second layer contains the water front region and according to the sensitivity analysis, the permeabilities in this region show the strongest effect on water saturation. Moreover, also from Figure 5.8, at 15 days water arrives at almost every gridblock in the second layer. The first layer is far from the water front in the second layer and thus contains no mobile water. The first layer shows no change in water saturation and is therefore insensitive with respect to the permeabilities in the second layer. In fact, the sensitivity of the change in water saturation in all three layers with respect to the permeabilities in the second layer were computed and the computational results show that the first layer is insensitive with order of magnitude 10^{-10} while the second layer is of order 10^{-6} and the third layer is of order 10^{-7}. Therefore, in terms of resolving the permeabilities in the second layer, matching depth-averaged seismic over the three layers is essentially the same as matching depth-averaged seismic over only two layers and matching seismic data layer by layer is essentially the same as matching seismic data in the second and third layer.

The next two types of example investigated have different well completions and thus the observed data sets differ from those of the first two types. The producers are fully penetrated. The results obtained by matching Commingled Production and Layer by Layer Seismic (CP-LS) data are illustrated in Figure 5.15 and Figure 5.16 and the results obtained by matching Commingled Production and Depth-Averaged Seismic (CP-AS) data are illustrated in Figure 5.17 and Figure 5.18.

By matching layer seismic (LS), permeability values are well determined with highest certainty at the injectors but are poorly resolved at the producers and everywhere else except in the second layer. The true permeabilities in the second layer
are recovered well if matching layer seismic but poorly recovered if matching depth-averaged seismic data (AS). Matching Commingled Production (CP) data does not help in resolving the wellblock permeability values for multilayered completion but by adding Depth-Average Seismic (AS) and then Layer by Layer Seismic (LS) data the resolution is significantly improved. We can see this improvement by, for instance, looking at the central well in Figure 5.15 and Figure 5.17. The true permeability value in Layer #3 is only recovered in the center wellblock if matching Depth-Average Seismic (AS) but if matching Layer by Layer Seismic (LS) data all the true values of connecting wellblock permeabilities are recovered.

The three fundamental issues mentioned at the beginning of this section can be answered quantitatively by computing the average of k/σ values obtained by separately matching the four data types and determining the probabilities that the true permeability values fall in a given acceptable interval (10% is a typical acceptable range for permeabilities Horne 1995). To compute these probabilities, we assumed permeabilities are log-normal distributions with mean being the estimates and variance being σ^2. The results of this analysis are given in Table 5.1. The average values of k/σ and the corresponding average probabilities are obtained by averaging over all gridblocks. The last three columns show the individual probabilities in gridblocks (1,1,1), (4,1,1), and (4,4,1). From these probabilities, we can know how much each type of data contributes to the certainty of the estimates of permeabilities in these blocks. Data type LP-LS gives the highest certainty (71%) on average and the closest recovery of the true values of permeabilities, hence reveals the most depth-dependent information. Data type CP-AS gives the lowest certainty (37%) on average with the poorest recovery of the true values of permeabilities and is considered to reveal the least depth-dependent information. The permeability value in gridblock (1,1,1) is resolved with only 3.2% certainty for type LP-LS and 2.7% for type LP-AS and can not be taken seriously. This is because this block is located far from any wells and ahead of the water front. While types CP-LS and CP-AS can resolve this gridblock permeability value at much higher certainty (26% and 24%), this comes from the fact that this block is now one of the connecting well blocks. Type CP-LS gives higher certainty (6.6%) than LP-LS (5.5%) in determining the permeability value in gridblock...
(4,1,1) because there are more wells intersecting the first layer. \(LP-LS\) and \(LP-AS\) resolve the well block permeabilities with absolute certainty (100%) while \(CP-LS\) and \(CP-AS\) can resolve only with 15% certainty. Data type \(LP\) itself can resolve the value of wellblock permeability accurately with almost absolute certainty while \(LS\) type can only resolve with roughly 20% certainty behind the water front and 3% ahead of water front. This is because the pressure measured in a wellblock contains much more information about the wellblock permeability than does the change in saturation in the same block and the saturation is more sensitive to conditions upstream than to conditions downstream of the water front. However, the average certainty by matching the \(LP\) type data increases with the number of wells. In this particular problem, \(LP\) gives higher certainty than \(LS\) data type on average because we have a relatively large number of wells compared to the total number of gridblocks. Layer Seismic (\(LS\)) data is richer in information than Averaged-Seismic (\(AS\)) as is to be expected. This result is emphasized if the time interval of the 4-D seismic interpretation is large enough to show sufficient change in water saturation at every layer. Finally, data type \(CP\) is the worst.

Table 5.1: Average certainties and certainties of the estimates in gridblocks (1,1,1), (4,1,1), and (4,4,1).

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Average of (k/\sigma)</th>
<th>Average Certainty</th>
<th>(k_{(1,1,1)})</th>
<th>(k_{(4,1,1)})</th>
<th>(k_{(4,4,1)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(LP-LS)</td>
<td>10.48</td>
<td>71%</td>
<td>3.2%</td>
<td>5.5%</td>
<td>100%</td>
</tr>
<tr>
<td>(LP-AS)</td>
<td>8.63</td>
<td>62%</td>
<td>2.7%</td>
<td>3.5%</td>
<td>100%</td>
</tr>
<tr>
<td>(CP-LS)</td>
<td>5.72</td>
<td>44%</td>
<td>26%</td>
<td>6.6%</td>
<td>15%</td>
</tr>
<tr>
<td>(CP-AS)</td>
<td>4.71</td>
<td>37%</td>
<td>24%</td>
<td>4.9%</td>
<td>14.7%</td>
</tr>
</tbody>
</table>

Figure 5.19 and Figure 5.20 summarize the results of matching the four different types of data and Figure 5.21 compares their resolution matrices. As was stated in Chapter 3, the resolution matrix presents the relationship between the estimated parameters and the true parameters. The closer this matrix to identity or the more dominant the diagonal over the off-diagonal elements then the closer the estimated values lie to the true values. As indicated in Figure 5.21, the resolution matrix
by matching Layer by Layer Seismic (LS) contains only the diagonal while the resolution matrix by matching Depth-Averaged Seismic (AS) does contain significant off-diagonal elements.
Figure 5.6: Long-term pressure and water cut data.

Figure 5.7: 4-D seismic data
Figure 5.8: Water saturation at 15 days: Layer Production (LP).

Figure 5.9: Match of long term pressure and water cut data.
Figure 5.10: Match of 4-D seismic data.
Figure 5.11: Comparison between true and calculated permeability, matching Layer Production and Layer by Layer Seismic ($LP-LS$).

Figure 5.12: Certainty of permeability estimates, matching Layer Production and Layer by Layer Seismic ($LP-LS$).
SECTION 5. APPLICATION OF THE METHOD

Figure 5.13: Comparison between true and calculated permeability, matching Layer Production and Depth-Averaged Seismic (LP-AS).

Figure 5.14: Uncertainty of permeability estimates, matching Layer Production and Depth-Averaged Seismic (LP-AS).
Figure 5.15: Comparison between true and calculated permeability, matching Commingled Production and Layer by Layer Seismic (CP-LS).

Figure 5.16: Uncertainty of permeability estimates, matching Commingled Production and Layer by Layer Seismic (CP-LS).
Figure 5.17: Comparison between true and calculated permeability, matching Commingled Production and Depth-Averaged Seismic (CP-AS).

Figure 5.18: Uncertainty of permeability estimates, matching Commingled Production and Depth-Averaged Seismic (CP-AS).
Figure 5.19: Comparison of permeability estimates between Layer Production and Layer by Layer Seismic (LP-LS) and Layer Production and Depth-Averaged Seismic (LP-AS) examples.
Figure 5.20: Comparison of permeability estimates between Commingled Production and Layer by Layer Seismic (CP-LS) and Commingled Production and Depth-Averaged Seismic (CP-AS) examples.
Figure 5.21: Comparison of the resolution matrices between Layer Production and Layer by Layer Seismic (LP-LS) and Layer Production and Depth-Averaged Seismic (LP-AS) data types.
5.2 Example 2: Channel in Each Layer

In Example 1, we described the investigation of the case in which the reservoir properties depend only on the depth dimension. In reality, most reservoir properties can vary in any or all dimensions and can have complex distribution characteristics. A common type of reservoir considered here is a channel reservoir. In our example, the reservoir was described by three different channels, one in each layer. The true permeability inside the channel is 1000md and outside is 300md. The same four data types as in Section 5.1 were considered. The sets of observation data were matched perfectly in all four cases. The comparison between the estimated and the true permeability values obtained by matching these four data types are shown in Figure 5.22 and Figure 5.23. The LS data type resolved the channel geometry fairly well, as well as the permeability values inside and outside the channel. The true values at some blocks were not accurately recovered. The true values could be recovered more accurately if we matched two 4-D seismic intervals instead of one. The AS data type did not resolve any features of the reservoir except at the well locations. These results can be summarized by looking at the resolution matrices shown in Figure 5.25. The LS data type results in a stronger diagonal dominance than does the AS type. Figure 5.24 shows the certainty maps obtained by matching the four data types. The permeability values inside the channel are determined with higher certainty than those outside the channel and the LS data type gives much higher certainty than the AS type.
Figure 5.22: Comparison of permeability estimates between Layer Production and Layer by Layer Seismic (LP-LS) and Layer Production and Depth-Averaged Seismic (LP-AS) data types.
Figure 5.23: Comparison of permeability estimates between Commingled Production and Layer by Layer Seismic (CP-LS) and Commingled Production and Depth-Averaged Seismic (CP-AS) data types.
Figure 5.24: Comparison of certainty for four data types: channel case.
Figure 5.25: Resolution matrices by matching four data types: channel case.
5.3 Example 3: Vertical Fault

In this section, the true reservoir was described with a single vertical fault. There are only two values of true permeability. The one inside the fault is 50md and the other outside is 500md. We matched the same four types of data as in Sections 5.1 and 5.2. The observation histories were matched perfectly and the final results are shown in Figure 5.26 and Figure 5.27. The permeability value in the fault and its shape in all three layers are recovered very well for $LP-LS$ and $CP-LS$ data types, while type $LP-AS$ and $CP-AS$ can only detect the fault location and its true permeability value at Layer #2. It is important to note here that the fault intersects the water front region in the second layer. Type $LP-AS$ also recognized the fault region fairly well in the third layer. This is because there are up to eight LP wells in this layer.

Figure 5.28 and Figure 5.29 show maps of certainty distribution computed using the calculated and true values of permeabilities. The reason of showing both maps is that type $CP-AS$ data are very poor in information in terms of the permeabilities in the first layer (most of this layer is far ahead of the water front) and may result in permeability estimates that are too high or too low. These too low or too high values can then mislead the interpretation of these certainty maps. The observations seen from these maps are:

- The permeability values inside the fault are determined with lower certainty than those outside the fault.
- The LS data type resolves fault geometry well and the fault permeability value while the AS type can not resolve either. However, for the fault segment inside the water front region, both geometry and permeability values are recovered well.
Figure 5.26: Comparison of permeability estimates between Layer Production and Layer by Layer Seismic (LP-LS) and Layer Production and Depth-Averaged Seismic (LP-AS) data types.
Figure 5.27: Comparison of permeability estimates between Commingled Production and Layer by Layer Seismic (CP-LS) and Commingled Production and Depth-Average Seismic (CP-AS) data types.
Figure 5.28: Comparison of certainty (with calculated values) for four data types: fault case.
Figure 5.29: Comparison of certainty (with true values) for four data types: fault case.
SECTION 5. APPLICATION OF THE METHOD

Figure 5.30: Resolution matrices by matching four data types: fault case.
5.4 Resolution of Permeability and Porosity

From the previous sections, we have shown in three examples that to determine layer properties it is necessary to collect layer information and the type of data that best provided this kind of information is Layer Production and Layer by Layer Seismic (LP-LS). In this section we used this data type to study the resolution of reservoir attributes (permeability and porosity) in different situations that are described as follows:

1. Permeability is unknown.
2. Porosity is unknown.
3. Permeability and porosity are both unknown but with known correlation.
4. Permeability and porosity are both unknown and with unknown correlation.
5. Permeability and porosity are independent.

We reused the vertical-fault reservoir model as defined in Section 5.3 as our synthetic example. A set of observation data was generated from this model using the numerical simulator. The true permeabilities and porosities are correlated by Equation 5.1.

\[\log k = 6.0\phi + 1.5 \]

(5.1)

Figure 5.31 and Figure 5.32 show the comparison between the computed and the true values of permeability and porosity respectively in all five different situations. By examining the two figures we can see the permeability map reveals the fault fairly well but not the porosity map. Inside the fault, permeability is better determined than porosity. Most of the true porosity values are recovered for the case in which permeability is assumed to be known (the bottom three maps in Figure 5.32) but the true permeability values are not recovered for the case in which porosity is assumed to be known (the bottom three maps in Figure 5.31). This can also be seen by comparing the two resolution matrices in Figure 5.33. However at and near the well locations, this observation is reversed. Permeability is resolved better than porosity. This may
be because the relative sensitivity of the seismic data with respect to porosity is higher than that with respect to permeability (the relative sensitivity is \((\partial S_w/S_w)/(\partial \varphi/\varphi)\)). Also the pressure measured at the wells determines the wellblock permeability values but is not a strong function of the porosity at the same block. Since seismic data contains information about porosity and is poor in information about permeability, having both seismic data and porosity information may be redundant while having both seismic data and permeability values is not. For the case in which porosity and permeability are both treated as unknown (the third and fourth rows in both Figure 5.31 and Figure 5.32), the true values are almost as well recovered with unknown permeability-porosity correlation as with known correlation. This is probably because the inverse problem with unknown correlation has only two more parameters (the two unknown coefficients in the correlation) and this increment is very small compared to the total of 363 independent parameters. If permeability and porosity are treated as independent variables, the results show that in the region far the well (the first and second layer for example) porosity values are fairly well determined but not the permeability whereas at or near the well locations (the third layer) the permeability values are recovered better than porosity. Figure 5.34 shows that the resolution matrix for porosity is closer to identity than that for permeability. This means the true values of porosity are recovered better than those of permeability if the two are treated independently. The certainty of the estimates was also computed and is shown in Figure 5.35. The permeability-porosity correlation gives highest certainty in the estimates. Moreover, an unknown correlation between permeability and porosity gives as much certainty as fixed correlation. The second highest certainty belongs to the case in which either permeability or porosity is known and the worst is the independent permeability and porosity case.

Another interesting observation is drawn from the cases in which we assumed no correlation between permeability and porosity. These cases are:

- Permeability is treated as unknown with known porosity (the bottom three maps in Figure 5.31).
- Porosity is treated as unknown with known permeability (the bottom three maps in Figure 5.32).
• Porosity and permeability are treated independently (the second rows in both Figure 5.31 and Figure 5.32).

Looking in more detail at these maps, in some areas the computed permeability is observed at high values where values of porosity are low and vice versa. This observation is not consistent with the nature of typical reservoir rock where high values of permeability are associated with high values of porosity. This may due to various reasons. First, the amount of data is not sufficient to recognize any correlation between permeability and porosity. Second, the number of unknown parameters to be estimated in the inverse problem is large as compared to the amount of data, and is doubled in the independent permeability and porosity case. Third, and most importantly, the sensitivity coefficients with respect to permeability and porosity show opposite sign in some regions. This means that an increment in permeability has the same effect as a decrement in porosity, or in other words, an increase in permeability can be compensated by a decrease in porosity. The inversion process can either increase permeability or decrease porosity to obtain the same gradient of data and this results in regions with high permeability values and low porosity values and vice versa. If we observe at some cells that $k > k_{\text{true}}$ and $\varphi = \varphi_{\text{true}}$ (permeability is treated as unknown with known porosity) we also may observe at the same cells that $k = k_{\text{true}}$ and $\varphi < \varphi_{\text{true}}$ (porosity is treated as unknown with known permeability).

This effect is seen in regions that indicate a negative correlation between permeability and porosity (as shown in Figure 5.36).

Figure 5.37 shows the plots of computed porosity versus computed permeability values in all cells for the cases in which permeability and porosity are both unknown. The line shows the true correlation. The square points show the computed values with unknown correlation. The true correlation is recovered very well with c_1 equal to 5.88 compared to the true value of 6.0 and c_2 equal to 1.56 compared to the true value of 1.5. The cloud of triangles presents the correlation between the computed permeability and porosity values for the case in which they are both treated as independent variables. The true permeability-porosity correlation in this case is recovered very poorly with a correlation coefficient value of 0.155 which is far less than unity (a correlation coefficient of one represents a perfect correlation while a value of zero
represents no correlation).

Figure 5.36 shows how the permeability-porosity correlation can be resolved as a function of depth. The correlation coefficients increase from the top (Layer #1) to the bottom layer (layer #3). The first layer shows no correlation ($\rho = 0.014$). Some of the areas in this layer also indicated a negative correlation between log-permeability and porosity. This is the reason why (as was remarked earlier) in some regions the computed permeability values are high with low values of porosity and in vice versa. The second layer shows stronger correlation than the first layer but the value of correlation coefficient is still very small ($\rho = 0.097$). Only a few blocks in this layer show negative correlation. The third layer with $\rho = 0.388$ indicates the strongest correlation of the three layers (most of the wells are located in this layer) and at some blocks the true correlation between log-permeability and porosity is perfectly recovered ($\rho = 1.0$). However, since the correlation coefficient is still far from unity, we can not claim any correlation to any reasonable certainty.
Figure 5.31: Estimates of permeability in different situations.
Figure 5.32: Estimates of porosity in different situations.
SECTION 5. APPLICATION OF THE METHOD

Figure 5.33: Resolution matrices: either permeability or porosity is known.

Figure 5.34: Resolution matrices: permeability and porosity are treated independently.
Figure 5.35: Certainty in estimates of porosity.
Figure 5.36: Measure of correlation: permeability and porosity are treated independently.

Figure 5.37: Measure of correlation between permeability and porosity.
5.5 Summary

Up to this point, we have shown quantitatively the effect of various data types on the resolution of reservoir properties in terms of how close to the true values and how certain the permeability and porosity can be determined for some common reservoir types. The effects can be summarized as follows:

- **LP-LS** type reveals most depth-dependent information while **CP-AS** type resolves reservoir property poorly in the depth-dimension.
- **LP** resolves permeability better at or near well locations while **LS** resolves porosity better far from the wells.
- **CP** and **AS** types do not resolve individual values of gridblock permeability and porosity accurately. However these data types help in reducing the vertical uncertainty.
- Vertical resolution of reservoir properties is orders of magnitude less than areal resolution.
- The existence of permeability-porosity correlation (either known or unknown) is extremely valuable while knowing either permeability or porosity distribution in advance is not. The existence of the correlation can be verified from hard data provided that hard data is available and sufficient. If hard data shows weak correlation then using a correlation in the inverse problem could distort the estimates of the permeability and porosity distributions.
- Seismic data (either **LS** or **AS** type) is rich in information inside and behind the water front region and poor in information ahead of water front region. The amount of information also depends on the 4-D seismic time interval. If the interval is too narrow to show sufficient change in water saturation then the seismic data contains no useful information. If the surveys are at very late time the water saturation in some regions close to the injectors may be uniform which results in little information from seismic data in those regions.
- Long term pressure and water cut histories at a well are rich in information after water arrival but poor in information before that.
Section 6

Optimal Strategy for Data Collection

6.1 The Meaning of Parameter Estimates

In the previous chapter we have investigated the implementation of a method that can estimate the properties of a multilayer reservoir by matching various dynamic data types. In this chapter we discuss the meaning of these estimates and show how data can be collected to improve the certainty in reservoir forecasting. The ultimate purpose of characterizing a reservoir is not to infer the reservoir properties but to predict the future reservoir performance. The uncertainty in the prediction is associated with the uncertainty in reservoir description which in turn depends on the accuracy, the amount, and the type of data collected. Due to the imprecise nature of measurements we can never hope to have a completely accurate data set. Instead, the data set is always associated with some uncertainty. Yet, due to the nature of the nonuniqueness of the solution of the inverse problem, we may have other distributions of permeability and porosity values that also match the given data sets. All of these sources result in the overall uncertainty in our estimates which consequently can not be considered as true parameters but rather as the outcome of random functions. If the uncertainty associated with the data set can be characterized by a normal distribution then our best Weighted Least Square estimates are identical
to the *maximum likelihood* estimates and thus our estimated outcome represents the most probable model of the true reservoir.

6.2 Optimal Strategy for Data Collection

It is very important to answer the following questions before designing an optimal strategy for data collection.

- How much does each type of data contribute to reducing the uncertainty in the estimates?
- What type of data is necessary to resolve a given parameter?
- In what time interval and what region of the reservoir does each type of data need to be collected to reveal information?
- What is the amount of data that needs to be collected to ensure sufficiency but not redundancy?

The first three questions are associated with the resolution of the estimated parameters. They were posed and answered in the previous chapter without the requirement of knowing the true values of the parameters. The reason we do not require any of the true values is that since the sensitivity analysis is valid over a range of parameters and computing sensitivity coefficients does not require knowledge of true values of parameters, we can use the sensitivity matrix to perform a variance and resolution analysis.

Generally, to increase the certainty in the estimates, it is necessary either to select a type of data that are rich in information or to increase the amount of a given type of data (collect more data points) which also means more cost. We can show quantitatively how the cost in collecting data affects the uncertainty and the loss associated with the error in reservoir forecasting. The fourth question posed earlier will also be answered in this context. Any error in predicting future reservoir performance leads to a loss (for instance, we may under- or overestimate the future total oil production or the remaining reserve of a producing reservoir). Let us define the following terms:

- a: denotes the loss (in dollars) due to one stock tank barrel of oil in error.
b: denotes the cost of one day collecting data (we will use as the cost of collecting one data point).

N_p: denotes the estimate of the total oil production in a period of interest in the future (between t_1 and t_2).

Then the loss associated with the error in predicting total oil production can be expressed as:

$$L = a \left(\sum_{\text{all cells}} \frac{\partial N_p}{\partial k} \sigma_k + \sum_{\text{all cells}} \frac{\partial N_p}{\partial \varphi} \sigma_\varphi \right)$$ \hspace{1cm} (6.1)

Where σ_k and σ_φ are respectively the standard deviations of the estimates of permeability and porosity and can be computed as shown in previous chapters. $\frac{\partial N_p}{\partial k}$ and $\frac{\partial N_p}{\partial \varphi}$ are the sensitivities of the total oil production with respect to permeability and porosity respectively and can be computed as described next.

The total oil production between two instants in future time t_1 and t_2 is given by:

$$N_p = \int_{t_1}^{t_2} q_o \, dt = \int_{t_1}^{t_2} (1 - w_{ct}) q \, dt$$ \hspace{1cm} (6.2)

where q_o is the specified total liquid rate. The sensitivities of total oil production with respect to permeability and porosity are computed as:

$$\frac{\partial N_p}{\partial k} = -q \int_{t_1}^{t_2} \frac{\partial w_{ct}}{\partial k} \, dt$$ \hspace{1cm} (6.3)

$$\frac{\partial N_p}{\partial \varphi} = -q \int_{t_1}^{t_2} \frac{\partial w_{ct}}{\partial \varphi} \, dt$$ \hspace{1cm} (6.4)

Combining Equations 6.1 to 6.4 gives the loss in predicting total oil production (assuming either overprediction or underprediction leads to a loss) as:

$$L = aq \sum_{\text{all cells}} \left(\sigma_k \int_{t_1}^{t_2} \left| \frac{\partial w_{ct}}{\partial k} \right| \, dt + \sigma_\varphi \int_{t_1}^{t_2} \left| \frac{\partial w_{ct}}{\partial \varphi} \right| \, dt \right)$$ \hspace{1cm} (6.5)

where $\frac{\partial w_{ct}}{\partial k}$ and $\frac{\partial w_{ct}}{\partial \varphi}$ are respectively the sensitivities of water cut with respect to permeability and porosity and can be computed as shown in previous chapters. The cost of collecting $nobs$ data points is $b \times nobs$. Finally the total cost of both collecting data and the loss due to error in prediction is expressed as:

$$COST = nobs \times b + aq \sum_{\text{all cells}} \left(\sigma_k \int_{t_1}^{t_2} \left| \frac{\partial w_{ct}}{\partial k} \right| \, dt + \sigma_\varphi \int_{t_1}^{t_2} \left| \frac{\partial w_{ct}}{\partial \varphi} \right| \, dt \right)$$ \hspace{1cm} (6.6)
Let us analyze the meaning of Equation 6.6.

- If either permeability or porosity in some regions show only weak effect on the total oil production then the uncertainty of the estimates in those regions is not important.

- Since including more data is equivalent to increasing cost, if oil production is insensitive to either permeability or porosity in some regions then including more data to reduce the uncertainty of the estimates in those regions does not make any sense.

- The first and second terms in Equation 6.6 change in opposite directions with respect to the same change in number of data points n_{obs}. Therefore, we can expect an optimal number of data points at which the total cost of our business is a minimum.
Section 7

Conclusion

7.1 Summary

We have developed a method that can infer the spatial-dependent properties of a reservoir (permeability and porosity) by matching dynamic data and used this method to examine the estimate properties that vary with depth. Due to a variety of sources, the estimated parameters contain uncertainty and we have also described a technique to assess these uncertainties. A method to compute the sensitivity coefficients for layered reservoirs was introduced. Finally, the implementation of the procedure was demonstrated in several synthetic cases to answer the fundamental issues associated with the resolution of the parameters estimated in the reservoir characterization problem especially in the context of depth dependence. This procedure allowed us to integrate data from several sources. The information that was integrated in this research included:

- Long term pressure (from permanent gauges).
- Production history (water cut).
- Interpreted 4-D seismic data (the change in water saturation).
- Permeability-porosity correlation.

Also various dynamic data types that are associated with well completions and vertical resolution of 3-D seismic surveys were integrated:

- Layer production (wells produced from individual layers).
• Commingled production (wells produced from several layers).
• Layer by layer seismic (the change of water saturation is available at every gridblock of the discrete reservoir). This type of data is only feasible for thick layers.
• Depth-averaged seismic (only the average change of water saturation in depth dimension is available). This type of data is for thin reservoirs.

7.2 Major Results

Depth-averaged data resolves reservoir properties poorly in the depth dimension while layer data reveals most depth- and space-dependent information. We can not know layer properties unless we know layer information. In fact, as indicated in some examples in this research, the combination of layer by layer seismic and layer production data provides sufficient information to describe depth-dependent properties completely. Layer information reduces the uncertainty significantly and increases the resolution of parameter estimates in both depth as well as space. However, the resolution of the reservoir properties in the depth dimension is still orders of magnitude less than the areal resolution. Long-term pressure and water cut data collected at a well that is produced from an individual layer resolve permeability better at or near the well location while layer seismic data resolves porosity better far from the well. For multilayered reservoirs, pressure, water cut, and depth-averaged seismic data do not accurately resolve individual values of gridblock permeabilities and porosities. However, they do reflect the average-thickness values of properties at and near well locations and help in reducing the vertical uncertainty. Knowledge of a permeability-porosity correlation is extremely valuable while knowing either permeability or porosity distribution in advance is not.

7.3 Computational Procedures

1. This work contributed an efficient method to compute sensitivity coefficients for multilayered reservoirs where wells can have various types of completions, operations, and constraints. The efficiency, accuracy, and the numerical stability
of the algorithm were tested through many problems against the *substitution* method.

2. Computing sensitivity coefficients occupies most of the work and is extremely complex in multilayered reservoir models. It is also very difficult in terms of computer coding. Since computing sensitivity coefficients as described in this work is independent from one parameter to another the computational efficiency could be enhanced by parallel CPU processes.

3. The *Gauss-Newton* algorithm combined with penalty function, step-length controller, Marquardt modification, Cholesky factorization, and line search was shown to be very effective in the reservoir parameter estimation problem in terms of stability and the rate of convergence. The convergence was achieved for all examples shown in this study in 10 to 40 iterations. This algorithm has not failed to converge for all examples shown in this work. It should also be noted that the data used in this work is synthetic and thus contained no noise. We have not evaluated the performance of this algorithm on noisy data.

4. Computing sensitivity coefficients accurately is necessary to perform the sensitivity, variance, and resolution analysis but may become an unnecessary burden on the inversion problem for various reasons. First, the *Hessian* matrix is only approximated in the *Gauss-Newton* algorithm. Second, our interest is not in solving for the exact values but only in finding a direction of descent. We have not yet found a way of approximating the sensitivity coefficients to increase the efficiency but still guarantee a fast rate of convergence in the *Gauss-Newton* algorithm.

5. The reliability of the procedure proposed in this research is still dependent on the simulation part where flow coupling between well and reservoir was modeled making use of the conventional Peaceman’s formula, in spite of its known limitations.
7.4 Areas that Need Further Research

The 4-D seismic data was used in this work as an inference of the movement of fluids. The seismic wave velocity, however, is a function of both fluid movement and rock type. Matching single-time sets of wave velocity data in addition to the differenced ones, we hope to add better understanding of the complexities of the rock formations. More research needs to be conducted in this area.

The forward model equations play a critical role in parameter estimation problems. Using inexact models may result in a distortion of the estimates of permeability and porosity. It is important to conduct more research in the areas of forward flow modeling, especially the modeling of flow in horizontal wells with friction and the flow coupling between the reservoir and wells that are located close to boundaries.

Other areas that need further research are the uses of layer flowrate and hard information from well-logs and core analysis to improve the vertical resolution of the estimated parameters. The idea of an optimal strategy for data collection in the context of minimizing the cost associated with the error in forecasting future reservoir performance was only introduced but not yet implemented. The main diagonal of the covariance matrix of parameters was used for variance analysis and the second diagonal elements of the matrix were only found useful in the permeability-porosity correlation analysis. A large fraction of the covariance matrix was still not considered. Describing reservoir properties at fine scale requires simulation and sensitivity coefficient computation also at fine scale, both of which are very expensive in CPU time. Therefore, an approximate but faster method to compute sensitivity coefficients would be useful.
Nomenclature

\begin{align*}
p & \quad \text{Pressure} \\
g & \quad \text{Gravitational acceleration} \\
\tilde{x} & \quad \text{Vector position} \\
D & \quad \text{Depth} \\
\tilde{U} & \quad \text{Darcy velocity} \\
S & \quad \text{Saturation} \\
k_r & \quad \text{Relative permeability} \\
k & \quad \text{Absolute permeability} \\
B & \quad \text{Formation volume factor} \\
q & \quad \text{Volume metric flow rate at standard condition} \\
s & \quad \text{Well skin factor} \\
\text{npar} & \quad \text{Number of parameters} \\
\text{nobs} & \quad \text{Number of observations} \\
\text{ncons} & \quad \text{Number of constraints} \\
d & \quad \text{Data} \\
E & \quad \text{Objective function} \\
R & \quad \text{Residual in material balance and resolution matrix} \\
S_{in} & \quad \text{Information matrix} \\
C & \quad \text{Covariance matrix} \\
G & \quad \text{Sensitivity matrix} \\
H & \quad \text{Hessian matrix} \\
U & \quad \text{SVD factor matrix} \\
V & \quad \text{SVD factor matrix} \\
W & \quad \text{Weight matrix} \\
q & \quad \text{Production (Injection) rate}
\end{align*}
Symbols

\(\rho \) Density or step size in linear search
\(\mu \) Viscosity
\(\Phi \) Flow potential
\(\varphi \) Porosity
\(\gamma \) Specific weight
\(\alpha \) Parameter
\(\Lambda \) Diagonal matrix of singular values
\(\Delta \) Difference
\(\sigma \) Standard deviation

Subscripts

\(\text{w} \) Water phase
\(\text{o} \) Oil phase
\(\text{p} \) Nonzero singular values
\(\text{cal} \) Calculated data
\(\text{obs} \) True or observed data

Superscripts

- Vector
Bibliography

Appendix A

Lists of Programs

A.1 General Instructions

The algorithms and methods that were described in this report were implemented in the form of C++ routines. Most of these routines were written by the author of this report and the rest were from *Numerical Recipes* (1996). The necessary files consist of five types:

- Source code files have extensions .C.
- Header files have extensions .h.
- One input data file has extension .DATA.
- Library files have extensions .a (all library routines were from *Numerical Recipes* (1996) and *Yale Sparse Matrix Solver* (1977)).
- Output files have extension .out (storing computational results from the run).

The files with extensions .C, .h, and .a are for compiling and linking. This job is accomplished by using the `make` utility with a provided `makefile`. The file with extension .DATA is input into the program.

A.2 Data File Structure

The input data file is split into sections each of which begins with a semantic key word followed by a brief instruction and then associated data which can be either
explicit data or INCLUDE file name. The data record must be terminated with a slash (/). The order in which the sections are specified is not important. Any lines beginning with two characters ' - - ' are treated as comments. A data quantity can be repeated a required number of times by preceding it with the required number and an asterisk. After each section is read a CHECKING DATA routine is invoked to ensure the correctness of data input. If data are input improperly a message will be displayed. The displayed message is a warning if the error is minor and the program continues. If the error is fatal the program is terminated. The displayed message contains information about all possibilities that may cause the error. The computer memory is allocated dynamically and can shrink and grow during run time to optimize memory management. Some messages associated with the memory management are also displayed during run time to report the point at which the original allocated memory was insufficient.

A.3 Data File Contents

A brief description of the contents of each section in the input data file is as follow:

SPECGRID
The number of gridblocks in X, Y, and Z dimension.

DATACHECK
Option of data checking or problem solving.

RUNOPTION
Specifying four running options.
- Simulation.
- Generating History.
- Sensitivity.
- Parameter Estimation.

RUNMETHOD
Methods of estimating reservoir property
- Pixel Modeling.
- Static Object Modeling (not implemented).
• Dynamic Object Modeling (not implemented).

SENMETHOD

Methods of computing sensitivity
• Analytically
• Numerically

FRACPARA

Specifying a fraction $FRACPARA$ by which parameters are perturbed for numerically computing sensitivity

\[\delta \alpha = FRACPARA \alpha \]

CONSTRAINTS

Specifying lower and upper bounds of porosity, permeability, and skins.

REDUCSTEPSIZE

Step size is reduced by a factor of REDUCSTEPSIZE until nonlinear constraints are satisfied.

FLOWDIR

Option to update flow direction at every *Newton-Raphson* iteration.

EPSILON

Option to update the numerator of the *penalty* function at every *Gauss-Newton* iteration.

PENALTY

Option to use penalty function

DXV

Grid block size in X direction

DYV

Grid block size in Y direction

DZV

Grid block size in Z direction

TOPRES

Depth of reservoir top

COORD
Specification of the angles between the coordinate axes with downward vertical direction. The origin is at the reservoir top. $X, Y,$ and Z axes form angles with positive downward vertical direction. The range of the angles must be from 0 to 90 degrees and must be given in order of: $(X, \text{vertical}), (Y, \text{vertical}),$ and $(Z, \text{vertical})$

ATTRIBUTE

Specification of the status of each attribute which can be porosity and directional permeability. The status can be:

- Unknown and depends on parameters.
- Unknown and depends nonlinearly on another attribute.
- Known.
- Unknown and linearly depends on another attribute.

CORRELATION

Specification of coefficients in nonlinear correlation.

RELATION

Specification of coefficients in linear correlation.

PARAMETERGUESS

Initial guess for object parameters

UNKNOWNSKINS

Initial guess for unknown skins

UNKNOWNCOEFFICIENTS

Initial guess for unknown coefficients

PORO

Porosity values

PERMI

Permeability in X direction

PERMJ

Permeability in Y direction

PERMK

Permeability in Z direction

ROCK

Compressibility of rock at reference pressure
APPENDIX A. LISTS OF PROGRAMS

DENSITY
Densities of oil and water at standard condition

PVTW
Formation volume factor, compressibility, and viscosity of water at reference pressure

PVTO
Formation volume factor, compressibility, and viscosity of oil at reference pressure

RELPERM
Parameters in Stone model for relative permeability

CAPILLARY
Parameters in Stone model for capillary pressure

SURF
Definition of standard condition (pressure and temperature)

EQUIL
Specification of equilibrium condition

INITIALIZATION
Specification of initial condition

STARTFILE
Start file name

USERINITIAL
The file name of initial condition defined by user

CONSTPRE
Pressure for constant pressure boundary blocks

CONSTSAT
Water saturation for constant saturation boundary blocks

RESTEMP
Reservoir temperature

WELLSPECS
Well specification includes well name, well head position, penetration direction, connecting wellblock, well operation, fluid type, well radius, and well skin

TIMEEXPORT
File name for the output time step

SEISMICTIME
The two instants at which 3-D seismic surveys are performed.

FLOWRATE
File name for flow rate input

OBJECTFILE
File name for object definition

TUNING
Automatic time-step selection criteria

CONVERGENCE CRITERIA
Convergence criterias for different constraints

ITERATION LIMIT
The maximum number of Newton and linear iterations

SOLVER
The name of the solver

DESIRED CHANGE
Specifying tuning factors in automatic time-step control

WEIGHTINGFACTORS
Weighting factors of observed data

AVGSEISMIC
Options of Layer by Layer or Average seismic

MATCHING
Options of matching different types of data

DEVIATION
Standard deviations of measurements

COVARIANCE
Options of performing variance and resolution analysis

OUTPUT
Control output for the simulator

SENSITIVITYOUTPUT
Control output for sensitivity analysis
IMAGETIME
File name for time dependent maps

BLOCKINDEX
Specification of inactive, active, and known blocks

INCLUDE
Include file names for rock properties

A.4 Ancillary Programs

Ancillary programs are necessary to perform some tasks before or after the job. These programs are described as follows:

- **gps**: generate color maps and plots in Postscript format, this program was written by R.C. Wattenbarger at Stanford University in 1992.
- **genr**: generate 3-D stochastic realization including Monte Carlo, Unconditional, and Conditional simulations. This program was written by the author of this report.
- **mix**: generate 3-D synthetic geological objects. This program was written by the author of this report.
- **time**: UNIX utility to print out the amount of real, system, and user time used.

A.5 Input Data Files

There is only one input data file whose name is fixed that is INPUT.DATA. The names of the other input data files are arbitrary and are specified in the INPUT.DATA file. These data files include:

- one file for restart the job.
- one file for user initial condition.
- one file for export time step.
- one file for input flow rate.
• one file for object definition.
• one file for time-dependent images.
• one file for heterogeneous porosity field.
• one file for heterogeneous permeability in \(X\) direction field.
• one file for heterogeneous permeability in \(Y\) direction field.
• one file for heterogeneous permeability in \(Z\) direction field.
• one file for parameter distribution.

A.6 Output Data Files

After the job is finished there are several output files created. Following is a list of these output files together with a brief description of what is being stored in each file during the run.

coeffs.out storing computed coefficients in nonlinear correlation.
coeffstrue.out storing the \textit{true} coefficients in nonlinear correlation.
cul.out storing cumulative production (injection) of liquid.
cuo.out storing cumulative production (injection) of oil.
cuw.out storing cumulative production (injection) of water.
dswmap.out storing computed 4-D seismic values.
dswmapobs.out storing \textit{observed} 4-D seismic values.
liqr.out storing production (injection) liquid rate.
oilr.out storing production (injection) oil rate.
watr.out storing production (injection) water rate.
permxmap.out storing computed permeability in \(X\) direction.
permxmaptrue.out storing \textit{true} permeability in \(X\) direction.
permymap.out storing computed permeability in \(Y\) direction.
permymaptrue.out storing \textit{true} permeability in \(Y\) direction.
permzmap.out storing computed permeability in \(Z\) direction.
permzmaptrue.out storing \textit{true} permeability in \(Z\) direction.
poromap.out storing computed porosity values.
poromaptrue.out storing true porosity values.
pressmap.out storing field pressure.
pwf.out storing well bottom hole pressure.
pwfobs.out storing down hole pressure from permanent gauges.
wct.out storing computed water cut.
wctobs.out storing observed water cut.
satmap.out storing field water saturation.
sendswmapa.out storing sensitivity of 4-D seismic computed analytically.
senpwfa.out storing sensitivity of down hole pressure computed analytically.
senswmapa.out storing sensitivity of water saturation computed analytically.
senwcta.out storing sensitivity of water cut computed analytically.
sendswmapn.out storing sensitivity of 4-D seismic computed numerically.
senpwfn.out storing sensitivity of down hole pressure computed numerically.
senswmapn.out storing sensitivity of water saturation computed numerically.
senwctn.out storing sensitivity of water cut computed numerically.
skins.out storing well skin factors.
skinstrue.out storing the true values well skin factors.

A.7 Example Data Files

A.7.1 Input Data File

SPECGRID
 - - The number of gridblocks in X, Y, and Z dimension.
 11 11 3/
DATACHECK
 F/
 - - ** Reservoir Geometry **
APPENDIX A. LISTS OF PROGRAMS

DXV
 11*50/
DYV
 11*50/
DZV
 3*50/
TOPRES
 8000/
COORD
 - - (X, vertical), (Y, vertical), (Z, vertical)
 90 90 0/
 - - ************************Rock Properties*************************
PORO
 363*0.2/
PERMI
 363*200/
PERMJ
 363*500/
PERMK
 363*500/
ROCK
 - - Reference pressure(psia) and compressibility (1/psia)
 3000.00 0.3E-05 /
 - - ************************Fluid Properties**************************
DENSITY
 - - Oil and water densities at standard condition (lbm/ft³).
 53.0500 72.4188 /
PVTW
 - - Ref pressure(psia), For vol fac(RB/STB), compressibility(1/psia), viscosity(cp)
 3000.0000 1.00340 5.0E-06 1.0 /
PVTO
APPENDIX A. LISTS OF PROGRAMS

- Ref pressure (psia), For vol fac (RB/STB), compressibility (1/psia), viscosity (cp)
 3000.0000 1.0 5.0E-07 10.0 /
- Rock-Fluid Interaction

RELPERM
- Swc, Sor, KRWE, KROE, nwo, now
 0.1 0.2 1.0 0.8 1 2.4 /

CAPILLARY
- awo, aw1, aw2, aw3
 0 0 0 0 /

SURF
- Surface temperature (°R) and surface pressure (psia)
 520 14.65/
- Initialization

EQUIL
- Datum depth, pressure at datum, oil-water contact depth, and capillary pressure at the phase contact.
 8050.0 3534.0 8200 0.0 /

INITIALIZATION
- 0 from equilibrium, 1 from start file, 2 from user condition.
 0 /

STARTFILE(1)
 start.dat

USERINITIAL(2)
 UserInitial.dat
- Boundary Conditions

CONSTPRE
 2500 20*2200 2000 /

CONSTSAT
 1.0 11*0.8 0.6 9*0.4 /

RESTEMP
 692 /
- - **********************Well Specification*******************************

WELLSPECS

PRO 1 6 6 1 Z 6 6 6 1 3 PRO L .375 0
PRO 2 1 1 3 Z 1 1 1 1 1 3 PRO L .375 0
PRO 3 1 1 3 Z 1 1 1 1 1 3 PRO L .375 0
PRO 4 1 1 3 Z 1 1 1 1 1 3 PRO L .375 0
PRO 5 1 1 3 Z 1 1 1 1 1 3 PRO L .375 0
INJ 6 1 6 3 Z 1 1 6 6 3 3 INJ W .5 0
INJ 7 6 1 3 Z 6 6 1 3 3 INJ W .5 0
INJ 8 1 1 6 3 Z 1 1 1 6 3 3 INJ W .5 0
INJ 9 6 1 3 Z 6 6 1 1 3 3 INJ W .5 0/

FLOWRATE

flowrate.dat

- - ****************************Convergence Criterias*******************************

FLOWDIR

0/
TUNING

0.01 10 0.1 2.0 0.3 0.1 1.25/
CONVERGENCE CRITERIA

1e-7 1e-7 1e-7 1e-7/
ITERATION LIMIT

12 40/
SOLVER

yale
DESIRERED CHANGE

0.5 400 0.4/
BLOCKINDEX

- - 0 for inactive blocks,1 for unknown blocks.
- - 2 for constant pressure and saturation blocks.
- - I cycle fastest and then J, and K.
363*1/
APPENDIX A. LISTS OF PROGRAMS

- - ******************** Running Options ******************************

RUNOPTION
- - 0 for simulation only.
- - 1 for generating history.
- - 2 for sensitivity only.
- - 3 for parameter estimation.

3/

RUNMETHOD
- - 0 for pixel modeling.

0/

SENMETHOD
- - 0 for analytically computing sensitivity.
- - 1 for numerically computing sensitivity.

0/

EPSILON
- - 1 if epsilon is updated for every GN iteration.
- - 0 if epsilon is updated for every GN optimization.

1/

PENALTY
- - 0 no penalty function is used.
- - 1 with penalty function.

1/

AVGSEISMIC

0/

MATCHING

1 1 1/

COVARIANCE

1/

ATTRIBUTE

0 0 -1 -1/

- - ******************** Input Parameters for Inversion Problem ***************
APPENDIX A. LISTS OF PROGRAMS

FRACPARA
 1e-6/

CONSTRAINTS
 - - Lower and upper bounds in order of porosity, permeability, and well skin factor.
 0 1 10 2000 -20 20/

REDUCSTEPSIZE
 0.9/

CORRELATION
 - - Number of coefficients in nonlinear constraints.
 5/
 - - Coefficients in the constraints.
 1 0 0 6 1.5/

PARAMETERGUESS
 - - Initial guess for parameters.

OBJECTPARAS
 10*250/

UNKNOWNSKINS.
 1 2 3 4 5 6 7 8 9/

UNKNOWNCOEFFICIENTS.
 3 1/

TIMEEXPORT
 timex.dat

SEISMICTIME(Days)
 50 150/

OBJECTFILE
 obj.dat

WEIGHTINGFACTORS
 well# 1 2 3 4 5 6 7 8 9
 pwfl 1e-1 1e-1 1e-1 1e-1 1e-1 1e-1 1e-1 1e-1 1e-1
 watct 1e2 1e2 1e2 1e2 1e2 1e2 1e2 1e2 1e2
 DSw 1e8/
DEVIATION
 0.1 0.01 0.05/

IMAGETIME
 timeimage.dat/

INCLUDE
 poro.dat
 permx.dat

- - **************************Control on Output***********************************

OUTPUT
 =OilRate WaterRate LiquidRate
 1 1 1
 =CumulativeOil CumulativeWater CumulativeLiquid
 1 1 1
 =WellborePressure WaterCut ChangeinSaturation
 1 1 1
 =PressureField SaturationField PorosityField
 1 1 1
 =PermXField PermYField PermZField WellSkins Coeffs
 1 1 1 1 1/

SENPFOUT SENWCTOUT SENDSWOUT SENSWOUT
 1 1 1 1/

SENSITIVITYOUTPUT
 For — pwf — pwf — wct — wct
 well# — par# — (i,j,k,attr) — par# — (i,j,k,attr) —
 1 — 1 — 6 6 1 permx — 2 — 6 6 1 permx
 3 — 3 — 7 1 1 permx — 5 — 7 1 1 permx
 1 — 1 — 4 4 1 unkc — 5 — 4 4 1 unkc
 8 — 10 — 7 4 3 permx — 7 — 7 4 3 permx
 9 — 10 — 4 7 3 permx — 300— 4 7 3 permx
 1 — 1 — 4 4 1 NULL — 274— 4 4 1 unks
9 — 1 — 4 7 3 unks — 9 — 4 7 3 NULL/
For — (DSw)
par# — (i,j,k,attr) —
1 — 6 6 1 permx
2 — 7 1 1 unks
3 — 7 1 1 permx
4 — 7 1 1 permx
5 — 7 1 1 unkc
6 — 7 1 1 NULL/
For — (Sw)
par# — (i,j,k,attr)
1 — 6 6 1 permx
2 — 7 1 1 unks
3 — 8 1 1 permx
4 — 9 1 1 permx
5 — 10 1 1 unkc
6 — 11 1 1 NULL/

Besides the INPUT.DATA file, all other necessary data files must exist before the job can be launched. These data files are prepared in free format. The same rules as used for the INPUT.DATA file such as repeated data quantity and comments can also be applied for these files. The reading and writing are sequential in order of x (cycling fastest), y, z, and t. The program checks data as it is read. Following are examples of some data files that were used.

A.7.2 Flow Rate Data File

- - Input well flow rates (STB/d).
of data points: 13
- - (days) pro1 pro2 pro3 pro4 pro5 inj1 inj2 inj3 inj4
nq q1 q2 q3 q4 q5 q6 q7 q8 q9 q10
0.0000 100.0 1000.0 1000.0 1000.0 2000.0 1000.0 1000.0 1000.0 1000.0/
A.7.3 Observation Data Files

- Long term pressure (from permanent gauges):

<table>
<thead>
<tr>
<th>Time (DAYS)</th>
<th>well#1</th>
<th>well#2</th>
<th>well#3</th>
<th>well#4</th>
<th>well#5</th>
<th>well#6</th>
<th>well#7</th>
<th>well#8</th>
<th>well#9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>3524.79</td>
<td>3561.63</td>
<td>3561.63</td>
<td>3561.63</td>
<td>3561.63</td>
<td>3561.63</td>
<td>3561.63</td>
<td>3561.63</td>
<td>3561.63</td>
</tr>
<tr>
<td>1.0</td>
<td>3220.16</td>
<td>2345.09</td>
<td>2382.05</td>
<td>2321.10</td>
<td>2361.11</td>
<td>3815.32</td>
<td>3839.75</td>
<td>3836.29</td>
<td>3817.54</td>
</tr>
<tr>
<td>2.0</td>
<td>3202.83</td>
<td>2343.59</td>
<td>2375.04</td>
<td>2323.62</td>
<td>2353.67</td>
<td>3741.58</td>
<td>3765.88</td>
<td>3762.59</td>
<td>3743.78</td>
</tr>
<tr>
<td>3.0</td>
<td>3185.59</td>
<td>2352.82</td>
<td>2375.66</td>
<td>2355.26</td>
<td>3697.09</td>
<td>3720.20</td>
<td>3717.05</td>
<td>3699.26</td>
<td>3699.26</td>
</tr>
</tbody>
</table>

- Production history (water cut):

<table>
<thead>
<tr>
<th>Time (DAYS)</th>
<th>well#1</th>
<th>well#2</th>
<th>well#3</th>
<th>well#4</th>
<th>well#5</th>
<th>well#6</th>
<th>well#7</th>
<th>well#8</th>
<th>well#9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0002553</td>
<td>0.0036693</td>
<td>0.0025063</td>
<td>0.0044463</td>
<td>0.0027912</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>2.0</td>
<td>0.0003424</td>
<td>0.0154215</td>
<td>0.0105428</td>
<td>0.0189830</td>
<td>0.0107696</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>3.0</td>
<td>0.0005242</td>
<td>0.0389930</td>
<td>0.0277107</td>
<td>0.0468609</td>
<td>0.0278597</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
</tbody>
</table>
• Interpreted 4-D seismic (the change in water saturation):
 Change in water saturation between 50 and 150 DAYS
 Units: fraction
 0.0008003 -0.0028759 -0.0030029 -0.0023691 0.0055210 0.0358141 -0.0037842
 -0.0074068 -0.0036253 -0.0017872 -0.0014098
 0.0059487 0.0003434 -0.0023890 -0.0012187 -0.0016230 -0.0012481
 -0.0013350 -0.0022945 -0.0022157 -0.0018015
 0.0126603 0.0012177 -0.0023538 -0.0023928 -0.0023309 -0.0005618 -0.0015837
 -0.0022959 -0.0022729 -0.0019377 -0.0033319
 0.0270302 0.0025671 -0.0022708 -0.0023586 -0.0023544 -0.0008950 -0.0022863
 -0.0023110 -0.0022106 -0.0011390 -0.0046780

• Reservoir permeability distribution:
 PermX Units: md
 587.96 1083.87 1089.64 467.91 710.63 923.13 473.23 826.83 1003.06 942.78 763.56
 546.13 357.33 235.92 494.58 632.28 301.24 834.41 881.38 956.28 749.74 765.47
 559.99 335.76 409.93 468.49 377.68 520.69 1085.47 1133.54 1076.28 921.14 862.16
 615.27 630.64 209.40 524.69 313.85 367.36 848.56 669.57 752.73 574.90 569.84

• Reservoir porosity distribution:
 Porosity Units: fraction
 0.159 0.125 0.278 0.220 0.142 0.175 0.271 0.280 0.178 0.180 0.178
 0.170 0.123 0.156 0.201 0.141 0.197 0.146 0.154 0.198 0.180 0.165
0.166 0.132 0.161 0.167 0.161 0.213 0.148 0.186 0.181 0.174 0.193
0.159 0.139 0.168 0.164 0.163 0.169 0.179 0.177 0.172 0.171 0.208
.
.
.